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Abstract

In this work, we define a novel Internet service, called ABE (Alternative Best-
Effort), which allows interactive multimedia applications to reccive low queucing
delay within the existing hest-effort Internet. We then develop and analyse a number
of innovative scheduling algorithms that can implement ABE in a router.

ABE differs from other services that provide low queneing delay in that it does
not, rely on any reservation and requires no charging of those that avail of the low
dolay service. We retain the best-cffort context by protecting traflic that docs not
require lower delay for individual packets so that the existence of ABE is transparent
to them, namely their performance is at least as good as it would be in the current
best-effort Internet.

The primary scheduler to implement ABE we developed is called DSD (Dupli-
cate Scheduling with Deadlines). It guarantees that traffic marked as low-delay will
spend no longer in the system of cach router than some operator specificd value.
The performance of other traflic is protected by the use of a virtual queue, a packet
deadline decision based mechanism and a controller. We prove important properties
of DSD and show, by the tools of queuecing analysis and simulation, that it succeeds
in its goal: protecting the performance of other traffic and the best possible perfor-
mance for low-delay traffic subject to the constraints of not exceeding the maximum
permitted delay

The final part of this work addiesses the question: what is the resultant long-term
distribution of rates amongst flows, with equal round-trip times in « general network,
that update their rates by the additive increase/multiplicative decrease algorithm?
Contrary to what was previously believed, we find that the rate allocation is not

proportionally fair, but is more closely represented by an allocation we derive.
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Version abrégée

Dans ce travail, nous définissons un nouveau service pour PInternet. Il permet
aux applications multimedias interactives de bénéficier d’un faible délai d’attente
dans le contexte actucl “best-cffort” (meilleur serviee possible) de IInternet. Nous
développons et analysons plusicurs algorithmes d’ordonnancement et de service des
paquets, capable d'implémenter ABE dans un routeur.

Contrairement, aux autres services offrant un faible délai d’attente, ABE ne re-
quicrt ni réservation, ni facturation de frais supplémentaires a ses utilisateurs. Le
contexte du best-cffort est maintenu en protégeant, au niveau paquet, le trafic qui
ne requiert pas un faible delai d’attente. La performance de cette classe de traflic est
au moins aussi bonue avec ABE que dans 'Internet actuel. Ainsi, tout en procurant.
anx utilisateurs qui le soubaitent un faible délai d’attente, ABE est transparent aux
autres utilisateurs qui souhaitent conserver le service actuel.

Le principal algorithme ¢’ordonnancement ot service réalisant ABE ue nous
avous développé est appelé DSD (Duplicate Scheduling with Deadlines). I garantit
que la classe de trafic marquée pour le service a bas délai ne séjournera pas dans un
routcur plus longtemps qu’une valeur spécifice par le vendeur. Les performances de
Pautre classe de trafic sont préservées & un niveau au moins aussi dlevé que celni qui
aurait ¢té atteint si ABE n’était pas implémenté dans ce routeur, grace a 'utilisation
d’une file virtuelle, d’nn serveur basant ses décisions sur les échéances anxquelles les
paquets doivent avoir ¢uitté le routeur, et d’'un régulatenr. Nous établissons des
propriétés importantes du DSD. En utilisant des outils de théorie des files d’attente
ot de simulation, nous montrons que cet algorithme remplit son objoctif: la meilleure
perfomance possible pour le trafic a faible delai est atteinte, tout en garantissant un
délai maximum fixé pour cette classe de trafic et un service an moins aussi bon que
si ABE n’était pas déployé pour Pautre classe de trafic.

La dernire partic de ce travail répond a la question suivante: dans un réseau
dont les flots mettent & jour lewrs taux de transmission par un algorithme de crois-
sance additive /décroissance mudtiplicative, quelle est, a long terme, la distribution
des tawr allowés a chacun, dans le cas on lewrs temps d’aller-retour dans le réseau
sont identiques ¢ Contrairement & 'opinion admise jusqu’a présent, nous trouvons
que cette distribution n’est pas proportionellement équitable, mais se rapproche da-
vantage d’un nouveau type d’allocation intermédiaire entre équité proportionnelle

et équité max-min.
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Chapter 1

Introduction

1.1 Goals and achievements
Tle primary goals of this dissertation are:

o the definition a low queneing delay service which enhances the standard hest-

effort Internet service;
o the derivation of router algorithins for the provision of this service;
e investigation of fairness objectives.
The primary achievements are:

o formal definition of a low queucing delay service for best-cffort 1P networks,
the ABE service;

e creation of a new scheduling algorithm, DSD, based on a new idea of combining

a virtual queue and service deadlines to packets;

¢ derivation of immportant properties of DSD, and analyse it using a queneing

model and through in depth simulation testing;

o derivation, by modelling and aunalysis, of the fairness in the distribution of rates
amongst sources when these are of the type additive increase/multiplicative

decrcasc;

o design and simulation testing of a first generation ABE implementation, EDF.



2 CHAPTER 1. INTRODUCTION
1.2 Dissertation overview

1.2.1 Motivation

In best-cffort IP networks, packets are forwarded independently of the nature of the
different service requirements of the traflic. Many applications arc of file transfor
type and seek to minimise the overall transfer time (from source to destination)
of a given amount, of data. Others, such as interactive andio, are delay-sensitive,
with real-time deadlines. Yet despite these varying requirements, both types of
application are not trcated differently by the network, in terms neither of the delay
their individual packets receive nor in the chances that one of their packets may be
dropped.

The performance parameters that affect the utility a delay-sensitive application
receives from the network can be thought of as being at least two dimensional, as
illustrated in Figure 1.1. In this case, an audio source receives very good delay
performance when its packets take less than 150ms to reach their destination, while
the quality starts to deteriorate more rapidly after this. A source receives higher
benefit the higher its rate of transfer, but after reaching a sufficiently high rate any
further increase provides negligible benefit.

Currently, even when a delay-sensitive application is allocated (by the network)
more than enough throughput, it can be handicapped by the end-to-end delay.
Moreover, it. can be common to dimension large buffers in routers in ovder to keep
packet loss low in times of congestion. While this may suit file transfer applications,
it can result in unacceptable delays for more delay-sensitive applications.

Facilitating delay-sensitive flows is traditionally approached by providing a form
of reservation with a level of guarantee on loss and delay. They then have prior-
ity over regular best-offort traflic. By treating this traffic quantifiably better than

sary to charge for this service.

regular best-cffort traflic, it can become nec

We approach the problem by a service which provide delay-sensitive flows with
sufficiently low (ueueing delay within the existing best-effort Internet. This is mo-
tivated by the observation that there now exist interactive nmltimedia applications

(such as those whose utility rescmbles that of Figure 1.1) that adapt thcir sending

rate and encoding parameters in order to perform well across a wide range of loss and

throughput conditions, but for which delay often remains the major impediment. It

is desirable that such a service should:
o retain the operational simplicity of the current hest-effort network;

¢ not have to police how nnich traffic uses the low-delay capability;
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Figure 1.1° The uuility an audio source receives for given performance under the E-model

o be possible to introdoce gradually;

o uot require clisrging more to nse the low-delny serviee,

1.2.2 The ABE service

O of the main achievements of this dissertution s te croation of ABE (Altermstive
Best-Effort ). n novel service for P petworks which offers applivations the choice
betwoen reeeiving a lower ond-to-end dolsy and receiving more overall throngliput.
Best offort 1P packets are eithor low delay packets, eallod green packoets, or ather
st effort packets, enlled blue packets, The choice of the terms blue aud green, two
tentbrnd colons, 11 to dndieate fhat peither of the two Lins poiovity over the other. In
order to distingmish one frone the other, it mny belp the render to pote thnt groo,
which Indicares low quencing delny, is the colonr of the teaffic gl sigual for go.

Groen packets arve guarastecd o low bounded delay at overy hop, For the service
to rewnin best-effort with to oversl]l advsaitoge to either teaflic type, sources which
choose pot to avadl of the lower deliy mnst recenve st lenst s good w0 serviee ws they
would us i all packets lusd hoen Blue. The introduction of ADE must ho transparest
to then

As such, ABE mequires thint green does not hurt blure 1If some souree decides to
pinrk sowe of its packets green patler than blue, then the quality of service eoeived

Iy sosrees thiat mark all their packets blue pnet reauin the sane or hecotne better,
As a consequence, green packets are more ikely to be dropped during periods of
congestion than blue oes. All ABE packets belong to one stngle best effort olass. 1f
thie total losd is Ligh, then every soneee wny reeeive o stdl shinee of the bandwidils.




4 CHAPTER 1. INTRODUCTION

Howaever, entirely blue sonrces would experience more throughput than entirely green

sources sharing the same network resources.

Some applications will still require priority hased schemes such as differentiated
services. Our goal is not to replace these. Rather, we address a different market
and offer no throughput guarantees. It offers a new degree of freedom to best-cffort
services, enabling a moderately loaded network to offer low delay to some appli-
cations (typically, adaptive multimedia applications), as long as such applications
are satisfied with the throughput they receive. However, a highly loaded network
offering ABE will give little throughput to all best effort flows, no matter whether
green or blue.

The green does not hurt blue requirement divides into two types of transparency:
local and throughput. Local transparency is satisfied if, for each blue packet in the
ABE scenario, the delay is not larger than it would have been in flat best-effort and
it is dropped only if it would have been in the flat hest-effort scenario. Throughput
transparency means that a blue flow receives no less throughput than if the network
was flat best-effort, namely, where a node would treat all ABE packets as one single
best effort class.

When rate adaptation is performed such that the application is TCP friendly,
namely it docs not receive more throughput than a TCT flow would, ABE provides
low-delay at the expense of possibly less throughput. However, many multimedia
flows arc not TCP fricndly and the stronger condition of local transparency cnables
protection for blue in the presence of non-adaptive traffic.

The first ABE implementation we created was ABE/EDF, which ensures through-
put transparency. It, however, relies on flows being TCP friendly. The latest imple-
mentation, DSD, implements both local and throughput transparency, cnabling the
support of TCP, TCP friendly, and flows that do not adapt.

It is noteworthy that local transparency does not imply throughput transparency.
Imagine some sources sending green that are rate-adaptive (TCP friendly) and
greedy (take as much bandwidth as permitted). It is quite possible that, by be-
coming green, a TCP friendly source would achicve a higher data rate, duc to the
reduction in round-trip time. This is a result of the known Dbias in the TCP con-
gestion control algorithm which favours flows with shorter round-trip times. In
addition, unlike local transparency, throughput transparcncy scems impossible to
implement exactly. It requires knowledge of the round-trip time for every flow,
which is not practical and the rate adaptation algorithm implemented by a source
may significantly deviate from strict TCP friendliness.

A router implementation of ABE is required to implement differential scheduling,

and cnsure those that do not choose lower delay, do not suffer in terms of overall
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throughput.

1.2.3 DSD implementation of ABE

The present state of the art ABE implementation we developed is Duplicate Schedul-
ing with Deadlines (DSD). It provides the service through a novel use of packet dead-
lines and a virtual queue, and is designed to provide green with the best possible
service while still ensuring protection for blue. DSD minimises the number of green

losses subject to the constraints that green packets spends no longer in the sy

than a fixed time d, local transparency holds, the scheduling is work conserving and
packet order is preserved between colour (i.e. no later blue packet is served before
an earlier one and similarly for green).

DSD sends a duplicate of cach packet arrival to a virtual queue. A blue packet
is only dropped if its duplicate was in the virtual queue. Otherwise it reccives a
deadline equal to the time its duplicate finishes service in the virtual (ueue. A
green packet is accepted if it passes what is called the green acceptance test and is
then assigned a deadline equal to its arrival time plus the maximumn time it can
spend in the system d. We subscquently reduce the complexity of this test by the
use of what we call a holding queue.

Green and blue packets are (uened separately, and the deadlines of the packets
at the head of blue and green queues are used to determine which one is to be served
next. Blue packets are served at the latest their deadline permits and green served
in the meantime.

Throughput transparency is provided by two mechanisms. Firstly, we use a
controller, which acts on the green bias parameter ¢ to control the service received
by green packets. Often Dboth the Dlue and green packets at the head of their
respective queucs can wait, namely serving the other packet first still enables it to
be served before its deadline. To decide which once is served first, the parameter g
used, which is the probability of serving the green packet first. The delay and loss
ratio are monitored, and the controller adjusts ¢ to ensure throughput transparency
is maintained. Secondly, we force green packets to be dropped if their duplicate was
dropped in the virtual queue. This is done to avoid situations when green traffic
has a lower loss ratio than blue trafic over a period of time.

We also developed serial DSD, a scheduler that is functionally equivalent to DSD
but combines blue and green in the same queue and makes most decisions based on
deadlines at packet arrival rather than at service. We then describe algorithms,
which are extensions of serial DSD, that reduce the delay differential between blue

and green traffic without increasing the green loss rate and while adhering to the
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maximum green delay d.

A Markov chain description of DSD was created and used to analyse the prop-
erties of the scheduler in steady-state nnder the simple case of Poisson arrivals and
exponential packet sizes. This Markov chain description can be used as a basis for

further queucing analysis of DSD.

1.2.4 EDF implementation of ABE

ABE/EDF is comprised of a Packet Admission Controller (PAC) and a scheduler.
The PAC manages the quene by dropping packets whenever necessary or appro-
priate. Acceptance is biased in favour of blue packets, cnsuring suflicient green
packets are dropped to protect blue. Green packets that would otherwise cxperi-
ence a (ueueing delay greater than the specified guarantee d are dropped. It controls
the dropping of green packets to ensure throughput transparency, while trying to
keep these green losses to a minimum. A blue packet is dropped according to the
qucuc management Random Early Detection (RED). A green packet is dropped if
it cannot be sorved within the maximum queueing delay tolerated d or if it fails the
RED acceptance test with a higher dropping probability determined by a specified
value which is called the drop bias. This drop bias provides a drop disadvantage to
green packets.

The scheduling is a form of Earliest Deadline First (EDF), where cach packet
is assigned a finishing service time deadline, and the packet currently having the
lowest value is served first. Arriving green packets are assigned a finishing service
time deadline ecqual to its arrival time. A blue packet is assigned a time equal to
its arrival time plus the value of the offset bound, the goal of the offset bound being
to limit the delay penalty imposed on blue. To preserve throughput transparency,
we compensate for the delay penalty imposed on blues by artificially reducing their
drop rate. This is done by adjusting the value of the drop bias. Minimising the
green drop ratio is performed by means of a control loop which adjusts the offset

bound and the drop bias.

1.2.5 Analysis of TCP fairness

As a separate part, of this thesis, we analyse the distribution of the rates amongst
flows when they are TCP or TCP friendly. We show that TCP compliant sources
with equal round trip times competing for bandwidth do not, as was previously
thonght, end up with a distribution of rates in accordance with proportional fairness.

Proportional fairness is a form of fairness which distributes bandwidth with a bias
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in favour of flows using a sinaller munber of hops; this is in contrast with max-min
fairness, which gives absolute priority to small flows.

We show, on the other hand, that when feedback is rate dependent and negative
feedback rare, the distribution agrees with what we define as Fy-fairness. This is
confirmed by the fact that our results maintain consistency with the standard TCP
throughput as a function of loss formula. It is known that TCP gives less throughput
to connections with longer round trip times. Based on our analysis there are two
possible reasons. F-fairness provides less to conncctions that use several hops or
the fact that TCP maintains a sending window rather than a sending rate.

Modelling this mechanism is complex because it containg both a random feedback
(under the form of packet loss) and a random delay (the round trip time, including
time for destinations to give feedback). In our work, we consider all round trip times
to be constant and equal. The method of the Ordinary Differential Equation (ODE)
is used, which gives some insight into the convergence of the system. The result of the
method is that the stochastic system converges, in some sense, towards an attractor
of the ODE for which we identify a Lyapunov function. We find that for the case of
small increments and constant round trip times, and in the regime of rare negative
feedback, the proportional fairness result can only very approximately reflect the real
rate allocation wheun we assune that the feedback received by sources is independent
of their sending rates. In the case where sources receive feedback proportionally
to their sending rates, and for sources with identical round trip times, this is no
longer truc and the fairness provided is different. We also show, by simulation on
some examples, that cven for larger increments, the average rate convergence is in

agreement with our results.

1.3 Dissertation outline

The thesis is organised as follows. We define the low queueing delay service, ABE,
in Chapter 2, outlining its motivations, and demonstrating the uscefulness of the
service.

Chapter 3 presents the DSD implementation of ABE. It motivates and describes
its design, its properties, and the control loop used. Properties of the implementation
are described and proved. In Chapter 4, we describe the serial DSD impletnentation
of ABE.

Chapter 5 presents a Markov chain description of DSD. We then analyse it when
the arrival process is Poisson and the packet size process is exponential. Chapter 6
presents results of tests, by simulation of DSD by simulation. Chapter 7 describes

the EDF implementation of ABE and simulation tests of it.
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The fairness of additive increasce and multiplication decrease is examined in Chap-
ter 7. Finally, in Chapter 8 we present conclusions and put forward possible further

work.



Chapter 2

The ABE Service

In this chapter, we
o introduce aund define the ABE service;
e describe its objectives and advantages;
o define and explain the important property, green does not hurt blue;

o demounstrate the application and usefulness of ABE in the context of best-effort

services;

e describe other services that offer low-delay and how they differ from ABE.

2.1 Introduction and motivation

ABE (Alternative Best-Effort) is an enhancement to the IP best-effort service whose

goal is to
e provide a low queucing delay service and
e operate in best-effort mode.

The first requirement is for applications with stringent real-time constraints, such
as interactive audio. The second requirement is to retain the operational simplicity
of the original Internet, with no requirement to regulate how much of the traffic can

use the low delay capability.

2.1.1 Adaptive applications

ABE is designed primarily to support, in a best-effort service environment, multi-

media applications who adapt their rate in order to cope with the current network

9
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conditions. They change their rate by adjusting the level of compression, altering
the amount of error-correction to protect against packet losses, and dimensioning the
play-out buffer to mitigate the effects of delay jitter. The sending rate is adjusted
based on the level of congestion.

The feasibility of implementing adaptive multimedia applications which perform
across a wide range of network conditions is now established [2, 7). However, delay re-
mains the major impediment for interactive applications in many circumstances [19].

The key idea of ABE is to provide low-delay at the expense of sometimes less
throughput, a concept which is essential to ensure ABE does not require usage

control.

2.2 Definition of ABE

ABE is defined as follows:

1. ABE packets are marked cither green or blue.

]

. Green packets reccive a low, bounded delay at every hop.

3. Green does not hawrt blue: If some source decides to mark some of its packets
green rather than blue, then the quality of the service (delay and throughput)
received hy sources that mark all their packets blue cither remains the same

or improves. This definition is expounded on in Section 2.4 on page 13.

4. All ABE packets belong to one single best-cffort class. If the total load is
high, then every source may receive little throughput. However, entirely blue
sources would experience more throughput than entirely green sources sharing

the same network resources.

The terms blue and green, two primary colours of equal value, is to indicate that
neither has priority over the other. Low queucing delay and green can be compared

to the indication that a green traffic light means to go.

2.3 Discussion

ABE remains a best-effort service with no reservation asswmed and no necessity to

rely on per-flow information. As stch, flat-rate based pricing may be retained.
The incentive to choose blue or green is based on the nature of the particular

traffic with overall benefit for both traffic types. During a period when there is cither

1o blue or green traffic, the other colour cau make use of the whole baudwidtli. The
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network-level quality of service (packet loss and (ueneing delay) received by blue or
green cannot, be classified as being better than the other. The appropriate matching
between the service received and the application nature is a major advantage of this
system. ABE also avoids making an unsatisfactory trade-off between the different
buffer size requirements of real and non-real time traffic.

In essence, ABE can be thought of as allowing an application to trade delay for
loss or less throughput, by marking some packets green. A key requirement of the
service is green does not hurt blue, namely, if some sources send green rather than
blue packets, there should be no negative impact on the throughput of those sources
which remain blue. In particular, an entirely blue flow must receive as much average
thronghput as it would in a flat hest-effort, network, i.e. if all packets were blue. The
requirement derives from the objective that the colour chosen by an application nced
not be policed. Indeed, if green does not hurt blue ts enforced, then an application
which decides to mark some packets green must do so hecause it values the low
delay more than a potential increase in loss (or decrease in throughput). Otherwise,
it would mark its packets Dlue.

In all cascs, there is no penalty for other applications which might choose to
mark all their packets blue. This requirement also plays a role in interworking
and migration (Section 2.6 on page 16). As discussed in Section 2.3.3 on page 12,
ABE supports traffic that may be solely TCP friendly traflic or non-TCP friendly,
or a mixture of the two. Thus, it is not required to police the colour chosen by
applications.

As is the case using current best-cffort, a highly loaded network offering ABE
will give little thronghput to all best-effort flows, no matter whether green or blue.
However, ABE enables a moderately loaded network to offer low delay to some
applications, typically adaptive multimedia applications, as long as such applications

have sufficient throughput to successfully operate.

2.3.1 Benefit for all

There is benefit for all. The addition of ABE is advantageous for both real-time and
bulk-data transfer traffic. The decision of some flows to become green in order to
have low qucucing delay can only benefit those that remain blue. Delay sensitive
traffic, such as voice, receives a low hounded delay, possibly at the expense of reduced
throughput. This results in superior voice (uality over moderately loaded network
paths. If the path becomes highly loaded, such a source can always revert to sending
blue packets only. Non-delay-sensitive traflic, such as image or text transfer, receives

a low number of losses. If a source which was previously blue now decides to mark
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its packets green, it will receive lower queueing delay, but this will never be at the

expensce of other sources which continue to send blue packets.

2.3.2 Choice of blue or green

Green packets would usually be interactive traffic where packet transfer from end
to end must be short and delay variation low. Examples of green traflic include
Internet Telephony and videoconferencing trafic, where if the data does not reach
the receiving application within a certain time it may well he too late to be useful
to it.

Blue packets arc typically non-interactive traflic whose end to end delay can be
variable and the goal is minimisation of overall transfer time. Examples of blue
traffic conld include data traflic (e.g. TCP traffic) and delay adaptive stream-like

applications (playback audio and video applications).

2.3.3 TCP friendliness

For rcasons of fairness and to avoid congestion collapse, there is a movement to
mandate that non-TCP sources be TCP friendly [14], namely, the source should not
receive more throughput than a TCP flow would for the same conditions of loss..
Howcver, it is still the case that many multimedia flows arc not TCP friendly.

The requirement that green does not hurt blue applies thus even if green traffic
originates from non-TCP friendly sources. Note that non-TCP friendly sources may,
in some cases, severely hurt TCP friendly sources, and this is true with or without
ABE. The requirement simply means that sources that send green traffic do not

make the situation worse.

2.3.4 Network feedback

The amount of negative feedback (e.g. packet losses) received hy green traffic is
greater than that received by blue traffic. The admitted green packets are given a
shorter queucing delay. In the Internet today, feedback is based on packet drop while
in the future, binary feedback based on Explicit Congestion Notification (ECN) [11]
may become widespread. ECN provides congestion feedback to the source by mark-
ing a bit in the packet header, thus enabling it to adjust to feedback without neces-
sarily dropping its packets.

We focus on packet loss as the method of providing negative feedback. Neverthe-

less, ABE remains valid in the case of systems using some form of ECN (and indeed
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ABE would work even better with it). If ECN is used, green packets are more likely

than blue packets to be marked with a congestion bit.

2.3.5 Colour mixing

An ABE aware source would probably use a colowr mixing strategy, where it would
send some green packets and some blue. This would for example be used by the
colour adaptation algorithm for monitoring purposes. This is perfectly permissible
and considered normal practice; in fact, apart from possibly policing TCP Friendli-
ness, the network supporting ABE doces not need to analyse individual flows. Source
strategies would typically be performed at the application level as expected by Ap-
plication Layer Framing (ALF) {3].

We focus on the simpler case where a traffic source chooses to be cither green or

blue.

2.4 Green does not hurt blue

The service requirement that green does not hurt blue, is now defined more accu-

rately. Intuitively, it can be expressed by considering two scenarios:
1. all sources are blue;
2. some sources decide to mark some packets green.

The quality of service received by those packets which have remained blue in the
second scenario should be as good as in the first one. Firstly, the delay for any blue
packet must not be any larger. Secondly, a packet which is not dropped (or marked
with a congestion notification) in the first scenario would not be dropped in the
sccond scenario cither. As a consequence, the throughput of an entircly blue flow
wonld be at least as good in the second scenario (if we assume that flows are TCD
friendly).

A problem with that simple, intuitive definition is that sources arve assumed to
be adaptive (TCP friendly), and thus in the sccond scenario, the packets sent by
the sources will not be the same as in the first one. Furthermore, the behaviour
of sources is dependent on their rate adaptation algorithim which, while being TCP
friendly, may have different incarnations.

Thus, we divide the requirement in two; the first addressing the case of non-TCP

friendly sources, and the seccond accounting for the rate adaption.
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2.4.1 Local transparency

Definition 2.4.1 (Local Transparency) Consider the scenario, flat best-effort, in
which a node would forget colour and treat oll ABE packets as one single best effort
class. The node satisfies local transparency if, for each packet that is blue in the

original (ABE) scenario:

1. the delay is not larger in the real, ABE scenario than in the flat best-effort

scenario;

2. if the blue packet is not dropped (or marked with congestion notification) in the

flat best-effort scenario, then it is not dropped either in the real, ABE scenario.

It mcans that if some packets are marked green it does not hurt blue packets,
assuming one can ignore the effects due to rate adaptation in the sources. It is a
necessary requirement to ensure green does not hurt blue. However, it may not be
sufficient, since the rate adaptation algorithm at the source might produce a higher

rate when the end-to-end delay is smaller.

2.4.2 Throughput transparency

The average rate of a TCP flow, for a given loss ratio and ronnd-trip time, can be
estimated by application of one of the many versions of the TCP loss-throughput
formula given in [25, 31, 10, 37, 4]. A source can be considered to be TCP friendly

if it produces a data rate not exceeding € where 8 is given by

S
R,/ %f—) + 3t/ %131)(1 + 32p?)

and I? is the round-trip time, p the rate of loss events, t; the TCP retransmit time

O(p, Ry = (2.1)

(roughly speaking, proportional to the round-trip time), and s is the packet size [37].

Thus, it is quite possible that, by becoming green, a TCP friendly source would
be allowed a higher data rate, duc to the reduction in round-trip time. Such a source
would gencrate more packets than if it were blue, and there is the risk that, in some

cases, it wonld hurt blue packets. This leads to the secoud part of the requirement:

Definition 2.4.2 (Throughput Transparency) Assume that sources employ a rate
adaptation algorithm which conforms to a loss-throughput formula such as Equa-
tion (2.1). An ABE node provides blue with throughput transparency if it en-
sures that an entirely green flow gets a lesser or equal throughput than if it were
blue. :
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Unlike local transparency, throughput transparency seems impossible to implement
exactly. On the one hand, it requires knowing the round-trip time for every flow
which is not practical. On the other hand, the rate adaptation algorithm imple-
mented by a source may significantly deviate from a straight application of Equa-
tion (2.1). Indeed, the dependency of rate on round-trip time in Equation (2.1) is
not necessarily a desirable feature of a rate adaptation algoritlun. It should not be
confused with the fact that a source using many hops should receive less throughput,
which is desirable and caused by a having a higher loss ratio [43].

As we will later describe in Section 3.4 on page 39, local transparency may hold
while, over a time window of mauny round-trip times, green traflic has a lower loss
ratio than blue traffic. This situation needs to he avoided since adaptive flows of
short duration may sce a lower loss probability while green, and thus receive less
throughput if blue. An ABE implementation can cnsure this is not possible, such
as by how it is done in Scction 3.4.1 on page 40.

Fixes have heen suggested to rate adaptation algorithms that would remove the
dependency of rate on round-trip time [18]. If such fixes were to become widespread,
and a method cmployed to cnsure the green loss ratio is not lower than the blue
loss ratio for certain period of time, then throughput transparency would be an
automatic consequence of local transparency. However, the current definition of
TCP friendliness does imply a dependency of rate on round-trip time and in this
context, it is necessary to compensate for the delay decrease obtained by green

traffic.

2.5 Requirements for a router implementation
A router implementing ABE must:

1. Provide low, bounded delay to green packets; the delay bound is fixed by

network management.
2. Provide local transparency (Definition 2.4.1).
3. Enforce throughput transparency (Definition 2.4.2).

4. Keep green packet loss as low as possible, while adhering to the above require-

ments.

The first three requirements directly derive from the previous discussion. The
fourth requirement is because an implementation should try to make using green as

attractive as possible.
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ABE aware applications,
Colour switching
between green and blue

ABE aware
network

ABE unaware applications

Default colour here
must be blue

Figure 2.1: Gradual deployment of ABE

In today’s Internet, it is considered desirable to preserve packet ordering, though
this is not always enforced. Similarly, an ABE node is cxpected to preserve packet
order as much as possible. However, the delay preference given to green may result

in a green packet overtaking a blue one.

2.6 Internetworking and migration

ABE could be used by an operator in two distinct ways; either as a separate service,
or as a replacement to the flat (existing) best-effort IP service; we focus on the
latter. Indeed, as mentioned carlicr, the initial thinking behind ABE was to provide
support for interactive, adaptive Internet applications, while retaining the simplicity
of the original Internet service model.

Aun operator might introduce ABE and let customers and other carriers gradually
move over to ABE without any specific change to charging or control policies. ABE
may be employed on some links in the network only where needed. As such, an ABE
aware source may use a concatenation of networks, some ABE, some flat best-effort,
and sources that are oblivious to the existence of ABE must not suffer adversely due
to the introduction of ABE.

Replacing flat best-effort by ABE requires a rule for assigning a colour to packets

that do not have onc (such packets come from a non-ABE source or nctwork).
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Figure 2.2: A possible strategy for a multimedia source using the ABE service.

Imagine, for example, the scenario as in Figure 2.1. The network has added ABE,
but there are some sources (in the lower part of the diagram) which would benefit
from being green in that they want low delay, but their applications do not exploit
ABE. The default traffic colour is blue. Local Transparency ensures no increase in
delay or loss for blue packets. Thus ABE unaware sotrces do not suffer as a result
of the deployment of ABE.

We have mentioned earlier that an ABE aware source must probably implement a
colour adaptation algorithm. Now, depending on traflic conditions, the ABE source
might sce small or large delays even for green traffic. This implics that the colour
adaptation algorithm should not make any quantitative assumption about the valne

of end-to-end delay guaranteed for green trafhic.

2.7 An example

A flow that rcceives sufficient throughput for application opcration, while being
green, albeit a smaller share than if it were blue, can operate with reduced end-to-
end packet delays. This can be scen in a simple simulation shown in Figure 2.2. An
interactive, adaptive audio source has a minimum rate it needs in order to operate.
It competes with 7 background sources for one hottleneck. The source has the choice
of marking packets blue or green. All other sources are blue.

Assume the source has, for a given loss pattern in the network, a required min-

imumn rate Ry in order to function properly. The graph shows the throughput the
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source would receive if blue or green for varying numbers of blue sources. The rate
Ry is given by the horizontal dashed line. Let us also assume that the source is able
to forward-correct packet losses, as long as the mininnun rate is achieved (see [2)
for such an application example. Note that this would not be needed if ECN was
uscd). The choice of whether to be green or blue is made by the audio application.

The quality the source obtains from the network conditions depends on its utility
function u(R, D), for a given throughput R and end-to-end nctwork delay 1. On

this simplified example, we assume that the utility function for our sonrce satisfies

o u(R,D)=0for R < Ry and
e u(R, D) is a decreasing function of D only for R > Ry.

In other words, once the minimum rate Ry is achieved delay becomes the major
impediment. Note that in general more complex utility functions of delay and rate
will be used, such as the one shown in Figure 1.1.

While the minimum throughput is attained, the source is better off being green
since its queucing delay will be much shorter. At the point the minimum rate is
no longer attainable while green, the source must then become blue provided it
can operate with highly variable end-to-end packet delays. The application cannot
operate when the minimum throughput Ry cannot be achieved even while blue.
Thus, it must either cease sending for a while or as shown resort to just sending text
as opposed to anudio.

This example illustrates how ABE opens up a new region of operation for the
best-effort network. In low load scenarios, a source may decide to obtain less
throughput at the benefit of low delay. In a flat best-effort network, a network
without the ABE service, there is no such option. Indeed, by refraining from send-
ing at a higher rate, there is in general no impact on queueing delay, due to external
SOULCES.

Note that the region in which the source is currently operating must be detected
automatically by the source itself, using a colonr adaptation algorithm. This could,
for example, take the form of sending probe packets of cither colour in order to
determine which region the source is currently operating in. Unlike the multimedia
source above, a source using TCP is probably more interested in its thronghput and

shonld thus mark all its packets blue.

2.8 ABE is better than destination drop

Destination drop might appcar to be an alternative to ABE that would require

no support from the nctwork. This would consist of the destination dropping all
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Figure 2.3: The amount of useful packets received by an application as a function of the
end-to-end delay tolerance D).

packets that arrive too late, after say some maximum tolerable end-to-end delay
Dopj. However, as we now show, it wastes network resources, since packets are
dropped after being carried by the network, and the overall performance of such a
scheme can become very poor.

Consider the shnulation resnlts in Figure 2.3. The network consists of flows with
long and short round-trip times which are TCP friendly, and cach compete on the
same best-cffort network. The number of useful packets received by the application
as a function of the tolerated deadline Dey,; is plotted.

If Dob; is less than the end-to-end delay when there is no queueing, no useful
packets can be reccived by the application. Then, the amount of uscful packets
received by the application is larger while green, up to point that the delay tolerance
is sufficiently high that there is no need for a low delay service. The throughput
reduction due to being green is less than the throughput reduction due to dropping
late packets. When the delay objective Da,j is large, then of course no packet is
dropped at the destination, and it is better to mark the packets bhue.

There arc thus explicit cases, using ABE, when it is better for this type of
application to use green rather than blue packets. In addition, this behavionr frees
up network resources, benefitting other users of the network. In a flat best-effort

network all late packets are discarded at, the destination, wasting network resources.
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ABE results in more packet drops in the network but less at the destination, thereby

resulting in a less congosted network.

2.9 Other services

As the Internet evolves towards a global communication infrastructure, a munber
of propositions exist, for providing QoS (Quality of Service) architectures. These
aim to support more sophisticated services than those provided by flat best-cffort
scrvices. Currently there are two broad families for QoS provision and both are
based on some form of priority and service differentiation.

The first family of solutions, Integrated Services, (IntServ) uses reservations
(admission coutrol) and requires routers to manage per flow states and perform per
flow operations. It also requires per flow accounting and charging. The sccond family
of solutions, Differcntiated services (DiffServ), is based on a coarser notion of QoS,
focussing on aggregates of flows in the core routers and intendiug to differentiate
between service classes rather than provide absolute per flow QoS measures.

Integrated services have heen shown to exhibit much higher flexibility and as-
surance level than those provided by Differentiated services. However the main
disadvantages of these services are that they arc less scalable and robust than dif-
ferentiated services. Hence, these latter services have been the focus of attention
lately mainly because they move the complexity of QoS provision from the core to
the edges of the network where it may be feasible to maintain a restricted amount
of per-flow state. Often Integrated services are identified as being supported by net-
work architectures with a lot of state (because of the per-flow management), while
differentiated services are identified as underpinned by stateless network architec-
tures.

An example of such an architecture is SCORE (Scalable Core) proposed by Stoica
and Zhang [41] with the aim of providing guaranteed services without per-fiow state
management. They proposed the Dynamic packet State (DPS) technique to estimate
the aggregate reservation rate and use that estimate to perform admission control.
To achicve this, they perform Core-Stateless fair queucing (CSFQ) using DPS to
encode dynamic per flow state in the context of approximating the Fair queueing
algorithm. Nandagopal ¢t al. [35] also proposed a core statcless QoS architecture
(called Corelite) which offers per-hop per-class relative average delay differentiation
and end-to-end delay adaptation.

There are several proposals for supporting QoS through differentiated services.
Crowcroft [6] proposed a low delay service, analysed by May et al [32], coded with a

single bit. Turning on this bit ensures that the packet receives serving priority while
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constrained to a smaller buffer size. Depending on the input traffic and the buffer
sizes of both types of traffic, this typically would result in the low delay tratlic also
having more throughput. Similarly, Expedited Forwarding [20] (EF) aims to provide
extremely low loss and low queucing delay guarantees. SIMA [22] offers applications
the choice of a level (0-T) of how “real-time” its traffic is, with each level Laving
relatively lower delay and loss ratio than the previous one.

Dovrolis et al [8] described a proportional differentiation model where the quality

between classes of traffic is proportional and thus can be performed independently

of the load within cach class. Central to their work was the utilisation of two packet
schiedulers BPR. (Backlog Proportional Rate) and WTP (Waiting-Time Priority) to
approximate the behaviour of the proportional differentiation model. Moret and

Fdida {34] also described a two-class proportional differentiation model called Pro-

portional Queuc Control Mechanism (PQCM). Both studics proposc controlling the
relative gqueucing delays between classes.

All of these proposals couple low delay with improved thronghput, and are some
form of priority. They can be used to support adaptive and non-adaptive interactive
applications, provided that some form of admission control is performed. They can
provide a premium service, at a price that has to be higher than the best cffort
service (otherwise all trafic would use the better service). In contrast, ABE green
packets cannot be said to receive a better treatment than blue ones and ABE may
be introduced as a replacement for the existing best effort service. On the other
hand, ABE is not suited to support multimedia applications which require hard
guarantees and cannot adapt.

Another differentiated service is Assuwred Forwarding (AF) [17]. It divides AF
traftic into classes within each there are distinet levels of drop precedence and offers
an assurance that IP packets arc forwarded with high probability as long as the
aggregate input traflic within a class does not exceed an agreed profile. The authors
also suggest that an AF class could be used to implement a low delay service where
low loss is not. an objective, by allocating an AF class with a low buffer space (call
it the low delay AF class). Such a service is in principle different from ABE, which
views all blue and green packets as one class; the service received by green packets
is dependent on the amount of green and blue traffic. In contrast, the performance
of an AF low delay class is not expected to be affected by the amount of best
effort traffic. In that sense, the low delay AF class is a differentiated service which
requires differentiated charging, contrary to ABE. Hence, ABE can be viewed as

heing positioned between the flat best-cffort service and AF.






Chapter 3

ABE Implementation: DSD

Duplicate Scheduling with Deadlines (DSD), is a novel scheduling algorithm to im-
plement ABE. It optimises green traffic perforimance while satisfying the constraint

that bluc traffic must not be adversely affected.

In this chapter, we:

¢ show how a quick and dirty scheduler which satisfies the requirements of ABE

can provide extremely poor performance to green (Section 3.1, page 24);

motivate and describe the DSD scheduler (Section 3.2, page 25);

define and prove properties of DSD (Section 3.3, page 32);

o discuss the provision of throughput transparency in DSD and describe two
wethods for its enforcement: an additional acceptance criterion for green and

a control loop (Section 3.4, page 39);

o describe how DSD can be implemented in conjunction with RED (Random

Barly Detection) (iteue management (Section 3.5, page 43);

o describe a holding queue which is used to reduce the complexity of the green

packet acceptance test in DSD.

In Chapter 4, we describe serial DSD, a scheduling algorithm that is functionally
cquivalent to DSD in that it provides the same output for the same input, but uses
one quente to store hoth green and hlue packets. In cases of potential ambiguity, we
refer to the original DSD implementation, described in this chapter, as vanilla DSD.

In that chapter we also describe modifications to serial DSD called green at
the back and green at the back, blue pushed up. The latter algorithm reduces the
complexity of the scheduler, while both algorithms increase the average green delay

without affecting the mumber of greens accepted.

23
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Figure 3.1: The loss probability (log scale) for green, blue and flat best-effort in the “rough

and ready” notional implementation. The total intensity varies but the proportions of green
and blue traffic remains the same (parameters were p, = 0.5p, k' = 10, Ky = 3).

In Chapter 5, we present a Markov chain description of DSD that lends itself
to queucing analysis and verification, and we then analyse this model under the

relatively simple but tractable case of Poisson distributed arrivals and service.

3.1 Rough and ready implementation?

An implementation that may spring to mind at first glance at the requirements is

a first-come first scrved scheduling discipline with a threshold drop policy which

filters green packets. In such a scheme, blue packets would be accepted whenever
there is space in the buffer, while green packets would be accepted only if they can
be served within some maximum delay d of arriving. However, it exhibits very poor
performance, and most of the time there wonld be little or no incentive to be green.

Consider Figures 3.1 and 3.2. A description of the model and method used in
the attainment of these results is deferred until Section 5.2 on page 62, given that
a feeling for the potential futility of this schemne is all that is needed at this stage.
The loss rates for green are magnitudes higher than for the blue. The green only

see a siguificantly reduced delay over blue when the load is higl, so they pay an
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Figure 3.2: The long-term expected delay for green, blue and flat best-effort in the “rough
and ready” notional implementation. The total intensity varies but the proportions of green
and blue traffic remains the same (parameters were p, = 0.5p, K’ = 10, iy = 3, A, = 20).

cxorbitantly high price in the tradeoff of lower delay for higher loss.! Note how the
blue henefits from the greens’ poor performance, having a lower loss-rate and delay
than in flat best-effort.

Obviously such a scheie is not practical. The desire is to provide green with the
best service possible while still ensuring green does not hurt blue. Any significant
extra gain by blue packets is at the expense of green ones, so it should be kept
to a minimum such that there is still an incentive to use green packets whenever

appropriate. The way is now paved for presenting the motivation behind DSD.

3.2 DSD

3.2.1 Introduction

The overall design goal of DSD is to provide green with the best possible service
while still ensuring protection for blue, nanely that green does not urt blue. It is

a solution to the optimisation problem, which minimises the number of green losses

"I'he resnlts shown are for fixed levels of traftic. With 'T'CP or 'I'CP friendly sources, green
would react to losses by drastically reducing their rate and they would be even worse off!
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subject to the following constraints:

o Green packets remain in the system no longer than d, namely that they finish

scrvice within d seconds of arriving (thus satisfying the low delay requirement).
o Local transparency to blue holds.
¢ The scheduling is work conserving?.

e No reordering within colour: Blue (respectively green) packets are served in

the order of arrival.

DSD supports any mixture of TCP, TCP friendly and nou-TCP friendly traffic.
It is based on the concept of duplicates and the use of a virtual gqueue. Deadlines are
assigned to packets upon arrival, and green and blue packets arc queued separately.
For both green and blue packets, the deadline represents the latest time the packet
can remain in the system (it must finish service at the latest by its deadline). At
service time, the deadlines of the packets at the head of the blue and green queues
arc used to determine which one to serve next.

DSD sends a duplicate of each packet arrival to a virtual queue. A blue packet
is dropped if its duplicate was dropped in the virtual queue. Otherwise it receives
a deadline equivalent to the service time its duplicate has in the virtual quene. A
green packet is accepted if it passes what is called the green acceptance test, and
then assigned a deadline equal to its arrival time plus the maximum time it can
spend in the system d.

Green and blue packets are quened separately, and the deadlines of the packets
at the head of blue and green queucs are used to determine which one is to be served
next; blue packets are served at the latest their deadline permits and green packets
are served in the meantime.

The virtual quene is not restricted to drop-tail queneing. An active queue man-
agement scheme such as RED [12] can be applied to the virtual queue, which changes
the assigned losses and deadlines appropriately. More detail on this is given in Sec-
tion 3.5 on page 43.

Some of the building blocks in DSD are similar to those in other scheduling
techniques. The caleulation and tagging of deadlines to each arriving packet is
also performed by Earliest Deadline First (EDF)[44] schednlers and its variants.
However, EDF sorts packets according to deadlines, whercas DSD serves cach of its
two queues in a first come, first scrved manner, and the deadlines arc used at service

to determine whether the head of the green or the head of the blue quene should

0 - . :
“work conservation means the scheduler never goes idle whenever there is a packet to serve.
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Figure 3.3: Two snapshots as an example of DSD, at time ¢t = 0 (left) and ¢t = 5 (right).
For this example, all packets have the same length and “packet” time is used. To facilitate
understanding, we consider first the case where green packets do not undergo the green ac-
ceptance test and where ¢ = 1. The maximal buffer size is Buff = 7 packets. The maximum
green queue wait is d = 3 packets. B and G denote blue and green packets respectively. In
the first snapshot, B, is served at time + = 0 in order to meet its deadline, followed by G,
B3, B3, By. However, (G2 has to be dropped from the green queue because it has to wait for
more than d = 3, whereas B;; had to be dropped because the virtual queue length was equal
to Buff when it arrived. At time ¢ = 5, we reach the situation of the second snapshot. As no
blue packet has reached its deadline yet, GGy can be served, followed by B;, Br, G4, Bg, and
Bv.

be served. The use of a virtual quene has been used many times, for example in an
admission control context [9].

To provide thronghput transparency in the DSD scheduler, a controller, as de-
scribed in Section 3.4.2 on page 41, acts upon a parameter g to control the service
received by green packets. ¢ is the probability of serving the green queuc first in the
event that the deadlines of the packets at the head of cach quene can both be met
it the other (uene was served beforehand. The delay and loss ratio are monitored,

and the controller adjusts ¢ to ensure throughput transparency is maintained.

3.2.2 Description

The architecture of DSD is outlined in Figure 3.4, while Figure 3.5 provides an
overview of the actions at arrival and service. Pseudocode for DSD is shown in

Table 3.1. An example of how DSD works is shown in Figure 3.3.

Virtual Queue

Duplicates of all incoming packets arce sent to a virtual ¢queue with a buffer sive Buff.
A duplicate is admitted if the virtual buffer has space. Packets in the virtual queue
are served according to first come, first served at rate ¢, as they would be in flat

best-cffort. The times at which duplicates will finish service are used to assign bluc
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Buff

arriving packet
is assigned a deadline Blue Queue

and queued _.@

Green Queue

No green packet spends more
than d scconds in the system

duplicate of each — - — e— e — — — -

arriving packet Buff I
goes to the virtual I

queue | Virtual Qucuce —@ |

Figure 3.4: Overview of DSD.

packets deadlines at which they would have been served in flat best-effort.

The original arriving packets are fed according to their colour into a green and
a blue queue. Blue packets arc always served at the latest their deadline permits
subject to work conscrvation. Green packets are served in the meantime if they can

finish scrvice within d scconds of arriving, and arc dropped otherwise.

Blue Packet Acceptance

A Dblue packet is dropped if its duplicate was not accepted in the virtual quene. This
rule we call the virtual queue test. Otherwise, it is tagged with a deadline, given by
the time at which its duplicate will be served in the virtual queue, and placed at

the back of the hlue (ueue.

Green Packet Acceptance

Given the constraints of transparency, the goal is to squecze in as many green as
possible. One way to do this would be to accept all green packets initially, serve
those that could make it in d scconds, and drop all those that do not (indeed our
draft design did exactly this). This method turns out to be a high drain on resonrces
and instead we use a test as follows.

A green packet is accepted if it passes what is called the green acceptance test
and dropped otherwise. Consider a green packet arriving at time (. It fails the test

if the sum of the length of the green queue at time ¢ (including this packet), and of
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Figure 3.5: DSD queueing and serving.

the length of the first part of the blue quene, that contains packets tagged with a
deadline which is less than or equal to ¢ + d, is more than ¢d, and passes otherwise.

We prove in Scction 3.3 on page 32 that the use of the test ensures the total
huffer occupancy, namely the sum of the green and blue gueue lengths does not
exceed Buff. An accepted green packet is assigned a deadline which is the sum of
its arrival time plus the maximum time it can spend in the system d, and placed at
the back of the green gueue.

Consider again the example in Figure 3.3, except green packets are now quened
ouly if they pass the green acceptance test. This amounts here to accepting a green
packet at time ¢ if the number of green packets in the (uene at time ¢, plus the
number of blue packets in the queue with a deadline hetween [¢, ¢ + 4] is no more
than 4. The only difference from Figure 3.3 is that G is no longer gqueued. Indeed,
when it arrived, the green quence already contained packet Gy, and the blue queue
contained packets By, B2 and Bz. The total queue length at the time ¢t = 0 was 5
packets (including G2), and so Gy fails the test.

Note that green arc not subject to the virtual queue test, so it may be that a

green is accepted while its duplicate is not. This does not violate local transparency,
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but is a point worth returning to, which we shall do in Section 3.4.1 on page 40.
A green that is not accepted but whose duplicate is accepted in the virtual queue

causes what we refer to as a discriminatory drop.

Serving Algorithm

At cach scrvice time, a decision is made as to which qucue to serve. The serving
mechanism’s primary function is to cnsure that blue packets are always served no
later than their deadlines. The best perforinance green could receive would be to
then serve the green (ueue as much as possible, subject to this restriction. However,
as previously discussed in Section 2.4.2 on page 14, in addition to local transparency,
throughput transparency is needed to ensure green adaptive applications do not
benefit too much from lower delay.

As an aid to what follows, it useful to say precisely what we mean by a packet’s

ability to wait.

Definition 3.2.1 A packet in a DSD quene can possibly wait if its deadline is

less than the time it finishes service.

By itself, all that can be said is that a packet can possibly wait, When the
transmission time of another packet is known, we can define a term can wait given

this other packet.

Definition 3.2.2 A packet p in a DSD quene can wait given a packet p' if p still

finishes service by its deadline if p’ was served before it.

Mathematical definitions of these concepts “can possibly wait” and “can wait”
are given later in Scetion 3.3.1 on page 33.

There are service instances when both blue and green packets at the head of
their respective (ueues are able to wait given the other, as letting the other packet
go first would still allow it to be scrved within its deadline. When this situation
arises, the packet serving algorithm uses the current value of the green bias g, a
value in the range [0,1], to determine the extent to which green is favoured over
blue. More precisely, when both blue and green packets can wait given each other,
¢ is the probability that the green packet is served first.

The value g = 1 corresponds to the case where green is always favoured. Con-
versely, the value g = 0 corresponds to the systematic favouring of bluc packets c.g.
in Figure 3.3 the order of packet service would have been By, B., iy, Bs, By, Bs,
Bz, (I3, /4, Bg and By.

A value of g less than 1 causes the delay for green traffic to be increased. This

increase in delay for green TCP friendly traffic reduces their throughput, thereby
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Packet Queueing Algorithm
packet p arrives at the output port
dup - p

Add dup to Lhe virtual queue

if p is blue

Packet Serving Algorithm

headGreen  packet al head of green queue
headBlue  packet al head of blue queue

l(l dup was dropped from virtual quene if headCireen 0 // 1o green Lo sorve
roj ”
drop p if headBlue # 0
serve hewdBlue
clse
. s Ise il headBlue 0 OT Vi
vl = length of the virtual quene (in bits) clse if head Blue // no blue to serve
.dewdline = not /¢ -
p-deacline ow | vlfc serve headGreen
add p to blue quene
y else // Doth quenes contain packets

s i cen
clse // pis greer py = headUreen.transDelay
e e dead, headGreen.deadline
if p fails “green acceptance test” v

P ialls Tglee pLuce e pr headBluctransDelay
dead,  headBlue.deadline
drop p

lse // if headBlue cannot wait given headGreen
if now 4 p, > deady, —
serve headBlue
// else if headCreen cannot wait given headBlue
clse if now + py, > dead, — py
} serve headGreen
else with probability g // both can wait

serve headCireen
“Green acceptance Test” else

pdeadline now +d
add p to green gqueue

1 length of packet p

v length of green queue

5, length of packets in blue queue with. ..
.. .deadlines < now +d }

il )l 1, > ed

retirn “p fails test”
else
return “p passes test”

serve headBlue
clean up any possible stale green packets

Table 3.1: Pseudocode of DSD. now is the current time, p.deadline denotes the latest time
a packet p can remain in the queue (whose value is tagged onto packet p), and p.transDelay
denotes its transmission delay. Throughout, we use the notation that 0 denotes no packet.

enabling blue traffic to increase its throughput. Increasing the delay of non-TCP
friendly traffic may not reduce their throughput, but blue flows are, in the worst
case, as equally protected from this type of traflic as they would have been in a flat
best-effort service. The value of ¢ cliosen is made according to a control loop which
is described in Section 3.4.2 on page 41.

At service time, the possible events that arise and packets served by DSD are
summarised in Table 3.2,

All green packets that niss their deadline, by spending more than d scconds in
the systetn, are said to have become stale, and are removed from the green quene.
Stale packets can occur if ¢ < 1 and a blue packet is favoured over a green packet

when hoth can wait.
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Event What is Served?
Both queunes empty Nothing
Green queue empty, blue quene not | Head of blue queue
empty
Blue queue empty, green quene not | Head of green queue
cmpty
Head of blue quene cannot wait Head of blue quene

Head of blue queue can wast, head of | Head of green queue
green queue cannot

Head of green quene and of blue queue | With probability ¢, hLead of green
can wait queue, else head of blue queue

Table 3.2: Service Decisions.

3.3 Properties of DSD

We now describe some of the most important properties of DSD.

1.

w<

All accepted blue packets will be served by their deadlines. Accepted blues
are thns served at the same tite as, or earlier than, they would have been in

flat best-cffort.

. All green packets finish service within d scconds of arrival, or are otherwise

dropped. Low bounded (per hop) delay for the green packets is enforced by
dropping a green packet that waits or would have to wait d seconds in the

quene.

. The green acceptance test does not cause the dropping of any green packet

that could have otherwise heen served within its deadline.

. If g = 1, the green acceptance test accepts exactly those green packets that

will be served within d seconds.

. Buffer space constraint: the total buffer occupancy for real packets (greeu

and blue counted together) at any given time is less than Buff, the maximum
buffer size of the virtual queuc. Morcover, it is always less than current virtual

queuce size at any given time.

Items 1 and 2 are direct consequences of the DSD algorithm. Items 3 and -1 are

proved in Theorem 3.3.1 on page 34, and item 5 in Theorem 3.3.2 on page 35 and

Theorem 3.3.3 ou page 37.
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Xg(t)

xy(t)

Buff

Figure 3.6: Notation used in proofs of properties of DSD.

3.3.1 Proofs of properties

The definitions of “can possibly wait” (Definition 3.2.1), and “can wait” (Dcfini-

tion 3.2.2) can be expressed mathematically in the following way.

Definition 3.3.1 Let L be the current time. Consider a packet p with length 1, and
with deadline d, >t in the DSD queune serving a link of capacity c. Let q(t) be the
munber of bits that currently will be served ahead of p. We say p can possibly
wait if and only if

at)

]1
dy— L2 t+ 2=
(& &

Definition 3.3.2 Let L be the curvent time. Consider a packet p with length I, and
with deadline dp 2 U in the DSD queue serving o link of capacity ¢. Let p' be another
packet of length Ly, Let q(t) be the nwmber of bits that currently will be served ahead

of p. We say p can wait given p' if and only if

a(t) + 1y

l)
([1: -2t 2 L+
C C

Some of the notation used in the proofs is illustrated in Figure 3.6. Let ¢,(t) be
the length of the green queue at time f. Let ¢,(t) be the total length of the Dlue
queue and ¢, (¢) be the length of the virtual queue at time £,

Let gp=(ty, ¢2) be the sum of the length of the packets in the blue queue whose

deadlines arc in [t;, (o).

3u the DSD pseudocode of Table 3.1, I, = ¢,(t) and l, = gp**4(¢, t + d)
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Theorem 3.3.1 (Green Acceptance Test) Let g = 1. Consider a green packet
G of length le which arrvives at time (. Let g,(t—) be the number of green bits in
the quene just before the green packet arvived. Let local transparency hold. Let the
quene be served at a rate c.

Then, if the green packet is placed in the green queue, it will finish service by
time ¢+ d if and only if

qe(t=) + @t t+ d) + g < ed. (3.1)

Proof: (7 can spend a maximum of d scconds in the queue, thus the deadline for G
ist+d.

Provided (i can finish service by t 4+, no packet which arrives after ¢ will be
served before (7 according to the DSD serving algorithm when g = 1. (This is proved
in Theorem 3.3.4 on page 38)

(1) Counsider first the case when there are no blue packets in the queue. Then G
can be served if and only if the time it takes to drain the green queue plus serve ¢/
is less than d. Thus ¢ can be served if and only if Equation (3.1) holds.

(ii} Cousider the casc wherce all packets in the blue queue can wait given G. Now

G will then be accepted if and only if
qo(t=) +le < ed (3.2)

since, when ¢ = 1, the green will go in front of the first packet in the blue queue
but behind all greens still in the gueue. It is clear that Equation (3.1) implies
Equation (3.2).

Now imagine that ¢/ is accepted, and consider the last packet in the blue quene
with deadline in [£, L +d]. Let its deadline be d,. Since this packet can wait given G

(all blue can wait),

@ttt + d) + q,(t=) + e
¢

t+d>dy >t +

and thus Equation (3.1) follows.
(iif) Now consider the case where there is at least one packet in the blue quene
that cannot wait given (7, and let W denote the last one. Let its length be Iy and

its deadline be dy-. We have, by Definition 3.3.2, that

(=) + gt L+ dy) + e
- .

(lw <!+ % (33)
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Now (7 will finish service by its deadline ¢ + d if and only if ¢/ can wait given

packet ¥, i.e. by Definition 3.3.2, if and ouly if

Go(l=) + @=L L+ dyy)

les
t+d= >0t (3.4)
¢ ¢
or equivalently, if and only if
Gy(b=) + a5, L+ de) + L < ed. (3.5)

What we wish to show is that Equation (3.1) holds if and only if Equation (3.5)
lolds.
Note that Equations (3.3) and (3.4) holding implics

dy <t+d. (5())
= First the “if” part. Let Equation (3.1) hold. Equation (3.6) implics that
4 ) < (et 4 d)

and thus Equation {(3.1) implies Equation (3.5).
<: Now assume that the green can finish service within its deadline ¢ - d, namely
that Equation (3.5) holds.

Call 1 the last packet in the blue whose deadline dy, is less than (+d. This exists
since, by Equation (3.6), at least 1V has a deadline less than ¢ + d.

If I, =W, then d;, = dyy and
Gt 4+ du) = gt dy) = gyt + d),

and the result follows. Otherwise, L is behind W in the queue since, by Equa-
tion (3.6), W’s deadline is less than ¢ 4 d.
L can necessarily wait given G since W is the last blue packet that cannot wait.

Thus,
C

L+d>dp> 1+

which implies that

gy (1) + @'t + d) + 1 < ed.

[m}

Theorem 3.3.2 (Buffer space constraint) The sum of the blue and green queue
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lengths does not exceed the maximum virtual queuve size Buff, i.e. at any time L,
alt) + g,(1) < Buff.

Proof: Consider the system at any time ¢ > 0.

(i) Consider first the case where there are no green packets in the queuce at time
t, le. qu(t) =0,

A Dblue packet is present in the blue queue only if its duplicate is present in
the virtual queuce. This is because a blue packet is accepted if and only if its
corresponding duplicate is also admitted, and since it is always served no later than
its duplicate. Therefore g,(¢) < q,(¢).

Since the virtnal queue length is always less than Buff,

@ (t) +q4(0) = qu(t) < qu(l) < Buff.

(i) Consider now the case where q (t) > 0. Let s be the last time prior to ¢ that an
incoming green packet arrived and was admitted.

@=L, s + d) is the length of the portion of the blue queue whose packets have
deadlines in ¢, s + d]. It contains the bits that arc counted in ¢p**(s, s + d).

Similarly, go(t) contains the bits that are counted in g, (s) and that have not yet
been served, since there are no new green arrivals after time s.

The green queue is never empty in [s, ] because y(¢) > 0, and thercfore the

server is never idle during {s, {]. Thus,
Gt s+ d) F qpt) = s, s + d) + qo(s) — (& = 8)e.
At time s, since the last green packet to arrive passed the green acceptance test,
(s, s +d) + qy(s) < ed
which combined with the previous equation yiclds
@, s 4+ d) 4+ qo(t) < ed = (t — s)e. (3.7)

On the other hand, let (¢, s + d) = g5(t) — gb**'(¢, 5 + d) denote the length of
the portion of the blue queue at time ¢ with packets having deadlines larger than
s+ d.

The deadline of a queued blue packet is larger than s + d if there arc at least
(d4 5 —1)c bits to be served by the virtual server of rate ¢, before the corresponding

duplicate finishes service.
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The maximum number of bits in the virtnal queue at time # that can belong to
duplicates of blue packets with deadline greater than s+d is at most Buff —(d+s—t)c.
The length of the portion of the blue queue with packets having a deadline larger
than s + d satisfics
g (t, s+ d) < Buff — (d+ s —t)e,

since a blue packet is present in the blue queue only if its duplicate is present in the

virtual queue. Combining this inequality with Equation (3.7) yiclds

I

@(t) + qq(t) B (8 s+ d) + gy (s + ) + gy (t)
Buff — (d+s—)c
cd — (t — s)e = Buff.

IN

+

a

Theorem 3.3.2 can be refined and the following established using the fact that

the amount of bits admitted in the virtnal queue is the same as the incoming fresh

traflic as long as ¢, < Buff. The proof follows the approach of the proof of Lemma
3, p. 20 in [20].

Theorem 3.3.3 (Virtual Queue Bounds Actual Queue) At any time (,

(1) + q,(1) < qu(t).

Proof: Let a(t) be the total amount of traffic (in bits) that arrived in the router
in {0,¢]. Let 2(t) (respectively 2,.(1)) be the total number of bits corresponding to
packets (resp. duplicates) that have been admitted in the router (resp. in the virtual
queue) in [0,#]. The sum of the backlogs it the blue and green quenes at time ¢ can

then be expressed by
qo (1) + @(t) = sup {a(t) —a(s) — (1 — )¢}

€[04

whereas the virtual quene length at time ¢ is
G (1) = sup {a,() — x,(s) — (L = 5)c}.
s€[0.¢}

Let t be a given tine.
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(i) Consider first the case where the virtual queuc was never full in [0,1]. The

backlogged data in the actual system at time ¢ is then given by

a,(t) + ap(t) = sup {a(t) — x(s) — (£ — s)c} < sup {alt) —als) — = s)c}

s€(0.2) s€(0.f]
= “Ilv{ wo(t) = 2y (s) = (E = s)e} = ().
sefot

(i1) Consider now the case where the virtnal queue was full at least once in [0, 1],
Let w € [0,¢] be the last time the virtual quene was full. Thus g¢,(u) = Duff. The
traflic entering the virtual system during [u, {] is identical to the traffic that arrived
during [u, 1] i.c. z,(t) — x,(w) = a(t) — a(u). Then using Theorem 3.3.2,

qo(t) + @ (t) = sup {&(t) — x(s) — (¢ — s)c}

s€lo,f)
= sup {&(t) — 2(s) - (t — s)e} V sup {a(t) — a(s) — (t — s)c}
3€[0,u] s€fu,f
= ‘::);?‘l{;v(t) —a(w) = (L = wye + a(u) ~ x(s) — (w~ s)c}
v osup {#(t) — a(s) — (t — s)c}
sE|u,t)
= {z(t) — 2(u) — (t — w)c+ sup {z(u) — a(s) — (u— s)c}}
s€[0,u}
vszﬂ‘pﬂ{;v(L) — () = (L = s)c}
= {a(t) — x(u) = (t — w)e+ g (u) + ()} v osup {wlu) —a(s) — (£ = s)c}

s€fud]

<A{x(t) - x(w) — ({ = w)e+ Buff} vV sup {z(ly —x2(s) — (L — $)c}

s€fut

< A{a(t) —a{u) = (t —uw)e+ Buff } Vv sup {‘u,(t) —als) — (t — s)c}

= {2u() = wo(u) = (t = w)e +Bu#}veisel'11“v”{ o(t) = () = (£ = 5)c}

= {2, (t) = 2 (1) = (L —w)e+ g (u)} v ;tllﬁ]{:vu(t) ~ay(s) = (L = s)c}

= {au(t) = wo(u) = (t = u)e+ s:y_ll{:vu(u) = aiy(s) = (u = s)c}}
V;Eﬁ]{wv(t) = ay(s) ~ (L — s)c}

:s:(l)l.?:j{IU(L) —@u(s) = (L - s)C}V;u“pf{ () = xu(s) = (L= s)c}

= sup {z,(t) = 24(s) = (t = s)c} = (1)

5€]0,1)
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Theorem 3.3.4 Let g = 1. Then an accepted blue packet that arrives after an

accepted green. packet will be served after the green packet.

Proof: Suppose a green packet arrives at time ¢t. It be must checked that any
accepted blue packet that arrives after £ will be served after a green packet that
arrived at time £.

Let « be the smallest time larger than or equal to ¢ such that q,(u) > ed (if no
such time exists, let v = 00). Theu ¢,(s) < cd for all s € [t,u).

The sum of the blue and green quene lengths is less than ed, due to Theorem 3.3.3,
S0

g, (1) + (1) < qu(u) < cd.

This mcans all packets which arrived at any time s € [{,u), including the green
packet that arrived at time £, will finish their service within d scconds from their
arrival time in a first come, first served manner.

On the other hand, for all s > w,
Gol8) = qu(u) — (s ~w)e > ed — (s — u)e

and thus any blue packet which arrived at any time v > u« will have a deadline such
that

s+qis)fe > s+d=(s—u)
= ut+d>t+d,

i.e. after the green packet under consideration will have completed its service. O

3.4 Providing throughput transparency

As previously mentioned, local transparency is not necessarily sufficient to ensure

greent do not hurt blue as sources sending green traffic that are rate-adaptive and

greedy may obtain more throughput than they would if they were blue. There are
.

two reasons for this:

1. TCP causcs flows with shorter round-trip times to receive more bandwidth.
With local transparency, the decrease in delay may more than compensate for

the increase in loss.

2. As mentioned in Section 3.2.2 on page 28, plain DSD docs allow green packets

to be accepted when their duplicate is not accepted in the virtual ¢ueue. This
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arrival at time { of green G with length [

holding queue

G dropped because
duplicate was dropped

. irtual ¢ueuc
Buff vir

G’s duplicate dropped

hecause virtual quene was full
Figure 3.7: llustration of green undergo virtual queue test. The green packet G is dropped
despite sufficient space (¢p4(t,t + d) + ¢, () + ler < ed) because its duplicate was dropped
(0u(t) + le: = Buff).

leads to periods of time when green packets are accepted and not blue, enabling

green flows to increase their rate in periods when blue flows are reducing theirs.

We solve Item 1 by the use of a controller, described in Section 3.4.2. It acts
upon the green bias parameter ¢g. By measurement of the delay and loss ratio, and
using the TCP loss-throughput formula (Equation (2.1)), the controller adjusts ¢ to
cnsure throughput transparency is maintained.

The coutroller solves the isstie of evaluating the round-trip time of flows hy the
observation that an under-evaluation of green round-trip times is more protective of
blue flows. Thus, the controller assumes that all flows are greedy and have a total
round-trip time cqual to the queucing time at this node plus a fixed, virtual basc
value. This value is taken to be small so that it is unlikely that any real value could
be below it.

Item 2 is solved by the green undergo virtual queue test, namely that whenever
a green’s duplicate is not accepted in the virtual queue, the green is not accepted in
the real queue. In Scection 3.4.1 we describe the method and the reasoning behind
it.

3.4.1 Green undergo virtual queue test

This requirement, as illustrated in Figure 3.7, means that a green is not accepted

into the real system if its duplicate was dropped in the virtual queuc even if it could
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finish service within d seconds of arrival and not violate local transparency.

This extra requirement on basic DSD is used to preserve throughpnut trans-
parcncy. Without it, in a very busy period, blues can be dropped while greens
are accepted because of green drops that occurred at the beginning of the busy
period which can be many round-trip times ago.

The test ensures that, over the tine window of the order of a round-trip time,

the rate of green drops is not lower than the rate of blue drops.

3.4.2 Control loop

As described in Section 2.4.2 on page 14, unlike local transparency, maintaining
throughput transparency is hy its nature approximate. The green bias ¢ is used
as a control parameter to balance the throughputs of green and blue, which are
cstimated by the loss-throughput formula in Equation (2.1) on page 14.

A fixed value 7, is used to represent the non-queneing delay portion of the round-
trip time of a flow. This value is chosen to be small, since this favours blue traffic,
which we show below.

For the purposes of the control, flows are assumed to be greedy, since this also
increases the protection to blue flows.

Estimates for the delay and loss ratio for both green and blue traffic are moun-
itored, and throughput estimated by Equation (2.1). Let 0,(t) and 0,(t) be these
cstimates for the blue and green throughput respectively at time ¢. The value of
¢ is chosen so that their ratio is close to a desired value v, which is slightly larger
than 1 to provide blues with a small advantage in throughput and to offer a safety
margin for protection from errors in throughput estimation.

¢ is npdated every T secomds according to the control law,

Q

gl +T)= (1 —a)g(t) + 1T+ (40,(1) /0, ()~

(3.8)
where a € (0,1) and A > 0 are two control paramcters. T is a chosen paramcter
of the system which determines the rate of update of g. The initial value of g upon
commencenent of control can he chosen to be 1, namely ¢(0) = 1.

We do not claim this control loop is optimal. The use and control of the green
bias g is only one possible scheme, and its performance can be improved, for example,
by taking into account the deadlines of all the packets in the queues, and not just
those at the head.

Let us briefty explain the rationale hehind this choice of control law. In the ideal

case where 6, = v0,, there should not e priori be any bias against bluec or green,
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and the value of g should be 1/2. If 8, is larger than 8, then g must be increased,
and vice versa if 6 is smaller than 46,.

We wish to maintain symmetry in the amount by which we increase or reduce ¢.
The amount by which ¢ is increased if 0,/70, is multiplied by some factor A should
be the same amount by which g is decreased if 8,/46, is divided by the same factor
A.

Denoting by £ = In(8,/+6,), the targeted g should therefore be an increasing
function I of € with central symmetry around 0, and such that I'(0) = 1/2, () = 0
for £ = —oo and [(€) = 1 for £ — oo. The sigmoid

1

O = 5re

is such a function. I\ is the slope of I at the origin. The larger I\ is, the closer the

sigmoid is to the step (Heavyside) function

1 if €>0
F)=< 1/2 if £€=0
0 if £<0

The control law
gt +T) = g(t) + a(F(€) — g(t))

whore « is the adaptation gain, will therefore bring ¢ to the targeted value. If
« € [0, 1), this control law keeps g(l) between 0 and 1 at all times ¢. Replacing € by
In(0y,/~0,) in this equation, we get the control loop equation for the green bias as

given in Equation (3.8).

Best protection for blue is smallest round-trip time

We show here that if (g, 7. + db) > (g, T + dg) then for all h > 0,
Ny, e +do + 1) 2 0(qgy 7o + dy + 1),

We first note that Equation (2.1) on page 14 can be written in the form 8(p, R) =
6:(p)/ R and thus,
et dy 0i(qy)

Te+dy ~ Olq)
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goes here if Bluc at top of qucue let in
deadline is > now +d  once its deadline 1s < now + d

Blue Queue

Accepted Holding Quene

Blue

gocs directly into
blue quene
if deadline is < now + d

Green Queue

Figure 3.8: Holding Queue for DSD. The Blue queue is partitioned into those packets with
deadlines > now + d and those with deadline < now + d.

Now (7. + dp)h 2> (7o + dy)h for all h > 0, since blue traffic has a higher average

queucing delay (dy, > d,), which implics that

Ttdgth  Tetdy  Oi(g)
To+dy+h T n+dy T 0(g)

3.5 Supporting RED

Wlhen the gueune management on the virtual queue is RED the following is the
alteration to DSD.

An arriving green packet is queued if it can be served within d seconds and its
duplicate was accepted in the virtual queue (i.e. it also undergoces the green virtual
(quene test). An arriving blue packet is, as before, accepted in the blue queue if its
duplicate is accepted in the virtual queue, and if accepted, assigned a deadline equal
to the time it will finish service in the virtual queue.

The virtual queue accepts a duplicate if the buffer is not full and the RED
dropping algorithm decides the packet should be accepted. The green must undergo
the virtnal quene test. Otherwise, the sum of the blue and green (ueues could
potentially be larger than the size of the virtual queue, causing blues to he possibly

unable to meet the deadlines they are assigned.

3.6 Holding queue

The main bottleneck in the green acceptance test is the calculation of the number
of blue bits with deadline less than or equal to now + d, a value that changes

coutinously. When a green packet arrives, calculating this value would involve a
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scarch from the front of the blue queue until the end is reached, or a packet with
deadline greater than now + d is found.

We overcome this difficulty by introducing the concept of a holding quene, as in
Figure 3.8. The blue queue is partitioned into those that have a deadline greater
than now+d and those that do not, enabling us to know straight away if a green can
be accepted. Blue packets do not enter the blue queue while their deadline exceeds
now + d, and arc instead kept in the holding queuc until their deadline is less than
or equal to now + d.

The sum of the lengths of blue packets with deadline less than now + d is then
simply the total length in bits of the blue queue. A green packet is then accepted if
its length plus the total number of bits in the green and the blue quenes does not
exceed cd.

The pseudocode for the algorithm is given in Table 3.3. The service algorithm
must be modified slightly also. It can happen that there are blue packets in the
1

holding queue, but none in the blue queucl. In this case, the first packet in the

holding queuc is under consideration for service.

Te.g. a burst of greens were dropped followed by blues that were accepted. These blue may
have higher deadlines than now + d hecause the duplicates of the green burst were accepted in the
virtual queue.
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DSD with Holding Queue

Packet Queueing Algorithm:
packet p arrives at the output port
dup=p

Add dup to the virtual queue

if pis bluc

{

if dup was dropped from virtual quene
drop p

else

{
vt s length of the virtual queue (in bits)
pdeadline = now | vl/c
if p.deadline > now 1 d

add p to holding quene
if pis the only packet in holding queuce
setlloldingQueue T'imer()

else // pdeadline < now |- d

add p to blue queue

}
}

clse // pis green
{

1, = length of green queue (in bits)
1), = length of blue queue (in hits)
ifl, 1 &) plength > ed

t

drop p

clse
{
pudeadline = now | d
add p to green queue
}

if holding queue non-empty
setHoldingQneueTimer()
}

Packet Serving Algorithm:

headGreen  packet at head of green queue
headBlue  packet at head of blue queue
headHolding  packet at head of holding queue
if headBlue == ¢

headBlue = headHolding

il headGreen 0 // no green to serve

if headBlue / 0
serveBlue()

else if headBlue == 0 // no blue to serve
serve headGreen
clse // both queues contain packets

Py headGreen.transDelay
deady, = headGreen.deadline
p1, = headBlue.transDelay
dead), = headBlue.deaclline

// il headBlue cannot wait given headGreen
il dead), — pi, < now + p,,
serveB3lue()
// else if headCreen cannot wait given headBlue
else if dead, — py < now |
serve headGreen
else with probability g // both can wait
serve headGreen
clse

servel3tue()
drop any possible stale green packets
}
}

setHoldingQueueTimer()

¢ = head of holding queue
set timer to expire at g.deadline = (d | now)

}
timerExpires()

q  head of holding queue
transfer ¢ to back of blue queuc

serveBlue()
serve headBlue
if headBlue == headHolding
cancel previous timer

if holding queue non-empty
sctlloldingQueuetimer(}

Table 3.3: Holding queue version of DSD (pseudocode). now is the current time, p.deadline
denotes the latest time a packet p can remain in the queue, p.transDelay its transmission delay,

and p.length its length in bits.






Chapter 4

Serial DSD

In this chapter, we:

e describe (in Section 4.1) the serial DSD algorithm; this algorithm is function-
ally equivalent to vanilla DSD (described in Chapter 3) in that it gives, for the
same input, the same output. However, it has different complexity propertics
than vanilla DSD.

discuss the possibility of and reasous for increasing the average green delay,
while still ensuring the maximum green delay d is maintained and that there

arc no additional green losses (Scction 4.2 on page 53);

o describe green af back; a change to serial DSD which reduces the complexity
of the scheduler while incrcasing the average green delay with no change in

loss rate (Section 4.2.1 on page 55);

o present blue pushed up; an additional mechanism to green at the back, which
further increases the average green delay with no effect on the loss rate (Sec-

tion 4.2.2, page 56).

4.1 Serial DSD

We present an algorithim, referred to as serial DSD, which is equivalent to vanilla
DSD but uscs a single queue instead of separate blue and green queucs. More

precisely, we present three different algorithms:

1. serial DSD, simple version which is functionally cquivalent to vanilla DSD

when g = 1.

2. serial DSD, optimised version: The simple version is refined to allow for a

holding queue plus the maintenance of the last blue that can possibly wait.

47
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(a) arrival of blue B

Served
first in, first out

< cd bits

G* = last green

Served
first in, first out,

Serial Queuc

last blue that
cannot wait
given G

Figure 4.1: lllustration of serial DSD, simple version. An arriving blue I (shown first) goes
at the back of the serial queue since its duplicate is accepted in the virtual queue. Then an
arriving green G (shown second) can finish service in d seconds and is thus accepted to go just
behind the last blue that cannot wait given G.

3. serial DSD, variable ¢ which is functionally equivalent, to vanilla DSD and can

e used with the control loop as described in holding quene.

By layering the algorithmic complexity in this mauner we endeavour to facilitate
initial understanding without the clutter of all the bells and whistles. As well as
warranting study in its own right, serial DSD cnables extensions such as those in
Scction 4.2 on page 53, and proves additionally applicable in the modelling of Chap-
ter 5.

We note that for the first two implementations, deadline checking at service
time is completely avoided, and for the last one the amount of checking at service
is sizeably reduced. However, deadline checking and decisions at the arrival of a
packet is required.

Anyone who implements the scheduler will have to make decisions based on
hardware, software limitations and the trafic parameters. We cannot say a priori
which algorithm is best in all circumstances and instead strive to facilitate case of
implementation by providing many potential optimisations. Indeed, it is conceivable

to implement a scheduler which combines features of serial and vanilla DSD.
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Serial DSD, shinple version

o . else // only biue in serial queue
7 = last green accepted and still in serial queue /1 onl;

(let (i* =0 if no green in the serial quene) b
tr, = time (7 will start service

head of serial queue
{ - time b is due to start service

Packet Queuneing Algorithm: }

packel p arrives at the output pori
dup: p
Add dup to the virtual quene

while b # 0 // while not reached back of serial quene

// A p cannot wait given b

e il p.deadline — p.transDelay < ¢+ b.iransDelay
if pis blne : -
drop packet

il dup was dropped from virtual queue exit, while loop

drop p

clse // i b can wait given p

if h.deadline — b.transDelay > transDelay
vl = length of the virtual quene (in bits) l( hdeadlive — b transDelay 2 £ | ptransDelay

paleadline = now | vl/c

insert p in serial queue just in front of b
aked p to the back of serial queue z a J

exit. while loop

Lt btransDelay
b= baewt // try next blne in the quene
} // end of while loop

clse // pis green

pdeadline = now | d

if acket in serial quene awaits service .
if no packet. in serial quene awaits service if p was not dropped
¢+ time packel in service finishes transmission ith
(¢ now il there is no packet in service)
if £ > now + d — p.transDelay

0 // no blue could wait, p can go al back
add p to the back of serial queue

Tt = v
tr, =t
drop p o
return // we are finished )
}
b=10

Packet Serving Algorithm:

p - first packet in queue (serve FIFQ)

ilp G* // there is no longer any green in queue
=0

serve p

clse if G* / 0 // there is a green in serial queue

b G’next
t=1t;, | *.transDelay

Table 4.1: Pseudocode of Serial DSD, simple version. now is the current time, p.deadline
denotes the latest time a packet p can remain in the queue, p.next denotes the next packet
behind p in the queue (which will be served after p), and p.transDelay denotes its transmission
delay.

4.1.1 Simple version

Figure 4.1 outlines the general technicue of the simple-version aud the pseudocode is
shown in Table 4.1. Advantage is taken of the fact that, when g = 1, future arrivals
neither affect an arriving green packets acceptance nor its service time (shown in
Theorem 3.3.1 on page 34 and Theorem 3.3.4 on page 38).

As in vauilla DSD, provided a blue’s duplicate is accepted by the virtual queue,
it is accepted in the real system and assigned a deadline corresponding to the time
its duplicate finishes service.

The current location of the last green in the serial queue G* as well as the time
it is due to begin service tf, is stored. When a green arrives a search is done from

the packet behind G* to the end of the serial queue (where only blue reside) until



50 CHAPTER 4. SERIAL DSD

one of the following occurs:
1. The green cannot wait given some hlue. The green is then dropped.

2. A blue is found such that it can wait given the green arrival. The green is then

inserted so as to receive service before this blue.

3. The length of the scrial queue, including the length of the green packet, is

smaller than cd bits. It is then placed at the back of the serial (uene.

Esscntially, the decision as to which packet should go first is made at arrival
time instcad of waiting until scrvice time, as in the vanilla DSD casc. The green
acceptance test is not used since we determine explicitly whether the packet can be
accepted and where it should go.

Serial DSD is the same as vanilla DSD when g = 1 for the following reasons:

¢ Local transparency holds. Exactly those blues that are accepted in vanilla
DSD are accepted in serial DSD. In addition, no blue’s deadline is allowed
to be violated. A green ¢ is only inserted in front of a blue that can wait
given (. All blues that come behind this blue can also wait given & thanks

to Theorem 3.3.4 on page 38.

1t is clear from the algorithm that no reordering has occurred. A blue goes
at the back of the queue while a green goes behind the last aceepted green (if

any).

¢ Optimality for green holds. The samce greens arc accepted as in vanilla DSD.
They are served the earliest possible subject to local transparency, work con-

servation, and the prohibition of reordering within colour.

4.1.2 Optimised version

The optimised version adds a holding queue plus the extra state of a blue packet /3*
and the corresponding time it is currently due to start service L. If there are green
packets in the serial quene, then B* is the first blue, behind the last green packet
G, that can possibly wait. If there is no green packet currently in the queue, then
3* is simply the first bluc that can possibly wait.
An example is sketched in Figure 4.2, and we present pscudocode in Table 1.2,
Knowledge of B* is used to speed up checking at arrival time. We now, in effect,

have a quadruple partition of the queue:

1. the holding queue of containing blues with deadline greater than now + d;
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arrival of green G

G* = last green

Served FIFO

Serial Queuc

* 1o
first blue that B (:h}“t ].’l“‘f
cun wait given G E‘&l}{‘lg can possibly

< cd bits

Figure 4.2: lllustration of serial DSD, optimised version. An arriving green G can finish service
in d seconds (because the serial queue had less than cd bits once G was added) and is thus
accepted. Its place in the queue is just behind the last blue that cannot wait given G, which

is found by going from the last blue behind G* that can possibly wait until the first blue that
can wait given G is found.

o]

. the blues, behind the last green G in the queue, that can possibly wait;
3. the blues behind G* that cannot possibly wait;

4. G plus the greens and blues ahead of it.

4.1.3 The variable ¢ algorithm

We can make adjustments to the serial DSD, optimised version, in order to make it
work with a variable ¢ so that it is compatible with the control loop as described in
Scction 3.4.2 on page 41. Figure 4.3 provides an cxample of how it works and the

changes arc as follows:

o arrival of green (: As in the serial DSD, optimised version, (7 is dropped if
the length of the serial queue plus the length of (7 is more than ¢d. Otherwise,
13, the first blue that can wait given G, is found. Now G gocs ahcad of /3,
with probability g. Otherwise, it goes ahcad of /3,, the next packet behind
13y, with probability ¢g. This continues until cither it gocs ahead of some bluc

or goes at the back of the serial queue.

o placing of blue B into the serial queue (either from holding queue or directly
upoun arrival): A search from the first packet after the last blne in the serial
queue to the back of the quene proceeds as follows. If a packet can weit given
13, the packet /3 goes in front of this packet with probability 1 — ¢ or otherwise

the search continues.

o service time: If there are blue packets in the serial queue, serve the head of

the serial queue. Otherwise, consider the head of the serial queue ¢ and the
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(a) transfer of blie B to serial queue

goes

these greens
cannot wait given 3

holding queue

G* . last green
first green that
can wait given B

last green

holding queuc

B*=first_blue that

first blue that can possibly wail

can wait given (7

< od bits

(e) service decision

13 can wait
given 7

otherwise serve B

holding queue serve G
with prob. ¢

0 can wuit
given 3

Figure 4.3: lllustration of serial DSD with variable g. (a) A blue B leaves the holding queue.
The last green that can wait given B is G*, so B goes behind G* with probability ¢ (based on
a random draw). If it succeeds in overtaking G* then it cannot overtake the next packet (that
cannot wait) and thus must go just behind it. (b) A green G arrives and can be accepted. It
is put, depending how it fares in the random biased coin tosses (biased by g¢), at worst behind
the last blue in the queue, at best in front of the first blue that can wait given G. (c) There
are no blue packets in the serial queue. Both B can wait given GG and G can wait given B, so
G goes first with probability ¢.
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] et
2
g DSD with ¢ =0
@ and green undergo
s DSD with J virtual queuc test
control loop .
DSD with g =0
green at back O’
N "
P ~ O\Othcr o
DSD with o = 1 green at back, strategies?
iy blue pushed up
] |
0 average green delay |
(

Figure 4.4: Effect of various algorithms on green delay and green loss (note the figure is
illustrative and does not represent any particular calculated values).

head of the holding queue B. If (¢ cannot wait given B then (' is served.
Otherwise, either can wait given the other, so serve ¢ with probability ¢, and

I3 otherwise.

With the exception of the direct holding queue service, all confrontations that

oceur in vanilla DSD are decided in advance.

4.2 Maximising green delay

We now discuss strategies that, while preserving the maximum tolerated time spent
in the system d, can increase the delay of green packets without increasing the
number of green losses.

As stated in Section 3.2.1, page 25, DSD is a solution to the optimisation prob-
lem to minimise the munber of green losses subject to local transparency, work
conservation, the maxinmm green delay d and no reordering within classes. It also
minimises the green delay given the minimum number of green losses.

There is, in a sense, a two-dimensional optimisation problem in green loss and
delay given all the above mentioned counstraints. Look at Figure 4.4. It illustrates

the trade-off of green loss and average green delay for a host of different scheduling
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Serial DSD, optimised version

7* last green accepled and still in serial queuc
(let (7* = 0 if no green in the serial gueue)
{3 lime G* will start service
B* = first blue behind (7* in serial queue. ..
that can possibly wail
(similarly B* = 0 if none exi
t;; = time B* will start ser

Packet Queueing Algorithm:
packet p arrives at the output port
dup=p

Add dup to the virtual queue

if pis blue
il dup was dropped from virtual queue
drop p
clse
vl length of the virtual queue
p.deadline = now | vl/e
il p.deadline > now + d
add p to holding queue
if pis the only packet in holding queue
settloldingQueuc’limer()
else // p.deadline < now | d
addBlueToSerial(p)
}
}
else // p is green

L. = length of serial queue (in bits)
if Lo+p.length > ed

{

drop packet

}

else

pdeadiine  now+d
addCireenToSerial()
}

}

Packet Serving Algorithm:
p = first packet in serial queue (serve FIFQO)
ifp. 0

p  first packet in holding queue
cancel previous timer
if holding queue non-empty (afier p’s removal)
setHoldingQueneTimer()
} .
fp==C"*
7* 0 // nolonger any green in serial queue
else if p== B*

ty, = t1, 1 B*.transDelay
B B*.next

}

serve p

addGreenToSerial()}

it 3* /0 // ablue behind G* that can possibly wait]

else if (/* # 0 // there is a green in serial quene

b= (7" next
L tp 4 G*transDelay

}
else
{
b0
t - now

while b £ 0 // while not reached back of serial queue

// if b can wail given p
if b.deadline — b.transDelay > ¢ | p.transDelay

insert p in serial queue just, in front of b
recalelLast ThatCanPossibly Wait()}
exit while loop

t =t 1 b.transDelay

b. bnext // lry next blue in the queuce
} // end of while loop

“=p
ot
if b == 0 // no blue could wait, p can go at back

add p to the back of serial queuc

addBlueToSerial(q)

add ¢ to Lthe back of serial gueue

if B* == 0 and ¢ can possibly wait

{
B* =g
L. length of serial queue (in bits)
ty, = now t {y/c

}
timerExpires()
{

g = head of hokling guene

add3lucToScrial(q)

if holding quetie non-empty
settHoldingQueue l'imer()

}

recalcLastThatCanPossibly Wait()

N
23
2

L+ p.transDcelay
=b
// while not reached the end of serial queue
// and haven’t found a packet that can possibly wait
while £3* / 0 AND /3* cannot possibly wail
{y g+ B .transDelay
B* = B next
}
}

Table 4.2: Pseudocode of Serial DSD, optimised version. now is the current time, p.deadline
denotes the latest time a packet p can remain in the queue, p.next denotes the next packet
behind p in the serial queue (which will be served after p), and p.transDelay denotes its
transmission delay. setHoldingQueueTimer() is the same as in Table 3.3 on page 45.
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Pl
o

arrival of green G

Served FIFO

holding queuc Serial Queue

first blue that
can wait given G

< ed bits

Figure 4.5: lllustration of green at back strategy. An arriving green G can finish service in
d seconds (because the serial queue had less than ¢d bits once GG was added) and is thus
accepted. It is placed at the back of the serial queue. This is in contrast to Figure 4.2 where it
is placed just behind the last blue that cannot wait given . Only the green delay is increased,
with no increase in the chances of dropping a future green. Note how the algorithm completely
avoids queue searches.

algoritluns. As stated, DSD is optimal in green delay given the minimum in green
losses?.

When dealing with TCP or TCP friendly sources, increasing average green delay
without increasing green losses (at all/much) is desirable for reasons of throughput
transparency and stability. Increasing average green delay has the effect of decreas-
ing the rate at which green adaptive flows send, while decreasing blue delay (a direct
consequence) has the opposite effect. We stress that increasing the green delay can
increase green throughput in certain circumstances as it can have the effect of caus-
ing green flows to induce less losses from the constraints of local transparency.

Shortly, we present two algorithms, green at back and green at back, bue pushed
up where the minimumn of green loss ratio is achieved. In Figure 4.4 these are shown
along the line of minimal loss. We then answer the question as to whether the
sccond algorithm is optimal in the sense that we cannot increasc the green delay

more without potentially increasing green losscs.

4.2.1 Green at back

Consider the serial DSD, optimised version from Section 4.1.2 on page 50. The green
at back strategy simply involves placing an accepted green G at the back of the serial
queue. This is as opposed to finding the best position by placing ¢ bhehind the last
blue that can wait given /.

The strategy is shown in Figure 4.5. The chances of a future green packet being

'the optimal in green delay wnconstrained by losses is to drop all green packets that cannot
immediately begin service
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transfer of blue /3 from holding to serial queuc

these greens
cannot wail given I3

Served FIFO

holding queue Serial Queue

first green that
can wait given B

Figure 4.6: lllustration of green at back with biue pushed up strategy. A blue B is transferred
from the holding queue because its deadline is now equal to now + d. It is placed ahead of
two greens that can wait given I3, behind the last green that cannot wait given B. This is
in contrast to Figure 4.2 where it is placed at the back of the green queue. Note that an
arriving blue which bypasses the holding queue (its deadline was less than or equal to now +d
at arrival) is also placed in the serial queue ahead of the last green that can wait given this
packet. Only the green delay is increased, with no increase in the chances of dropping a future
green.

dropped is not increased. This is because a green is accepted if the number of bits
in the serial quette plus its length is less than cd, which is independent of the order
of packets in the serial queue.

This first strategy to maximising green delay is doubly advantageous. It makes
the scheduling algorithm more efficient and it increases green delay without affecting
their loss.

Observe that increasing green delay simultaneously reduces the blue delay, thus
bringing the average delays of botl classes of traffic closer together. Note that a blue

packet that arrives after a green packet cannot be served before the green packet.

4.2.2 Green at back with blue pushed up

Here in addition to green packets being placed at the back of the serial queue,
a blue that enters the serial queue, whether via the holding queue or directly upon
arrival, is placed as far up the quenic as possible while not violating the deadline of
any packet. We illustrate this in Figure 4.6. Recall that in the original optimised
version of serial DSD, the blue went at the back of the serial queue.

Consider a blue packet B. A search is performed from the back of the serial
gueuc which terminates when cither a green that cannot wait given 13 is found, a
bluc is found, or the scarch reaches the head of the gueue. In the latter case, it is
placed at the head of the queue, while in the two former cases it is placed behind

the packet which has been found.
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Again, a future packet’s chance of acceptance is unaffected, as only the arrange-
ment of packets within the serial quene is changed. Note that here it is possible for

a blue packet that arrives after a green packet to be served before the green packet.

4.2.3 Other strategies?

The next question to ask is whether we can further increase the average green
delay without subjecting the green to further losses. Unfortunately without known
restrictions on the arrival process we cannot.

Imagine that the serial queue had ouly green packets, and that all packets in
the serial queue can wait given B, the Lead of the holding quene. Without further
information, we cannot know that letting /3 go ahead of these packets will not cause
a future green loss. Immediately after /3 begins service, a large green packet may
arrive. The serial queue is now longer than it would have been had B waited, and
may be too large for the arriving green packet.

For a given maximum packet size and a bounded input rate to the queue, onc
could make a decision as to whether 13 could go ahead without possibly inflicting
losses. In addition, one could cnsure the probability of inducing a green loss is kept

below some small value.
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Serial DSD, variable ¢

Packet Serving Algorithm:
p - first packet in serial queue
b = first packet in holding quene
ifp —~0or
(B*==0andb#0
and p can wait given b
and with probability 1 - g}

{
b0
{

serve b

cancel previous timer

if holding quene non-empty (after b’s removal)
setifoldingQueuctimer()

clean up any possible stale packets in serial quene

clse // p exists and il necessary won the biased “toss”

serve p
ilp ---G*

* =0 // no longer any green in serial queue
cse il p .o B*

Ly - now 4 B* . transDelay
B" = B*.next
}
}

addGreenToSerial()
if B* # 0 // blue behind ¢ that can possibly wait

b=B*
oty

cse if G* /8 // theve is a green in serial gueue
b . G*.ext

t =1, 1 G* transDelay

}

else
{
b 0
t = now

while b % 0 // while not reached back of serial queue]

// i b can wail given p and p wins biased “Loss”
if b.deadline — b.transDelay > ¢ | p.transDelay
then with probability ¢:

insert p in serial queue just in front of b
recalcLast That CanPossibly Wait()
exit while loop

Lt 4 biranshelay
b=bnewt // try next blue in the queue
} // end of while loop

G p
t,=t
irb 0 // pcan go at back
add p to the back of serial queune
¥

addBlueToSerial(q)
{

r = last blue packet in queue

r =head of serial quee
whiler /0

if r can wait given ¢
then with probability 1 — g:
{
insert ¢ just behind r
clean up stale packets (if any)
exit while loop

}

»
}
if ¢ was not inserted

insert g at back of serial queue

= r.next

il 13* -0 and ¢ can possibly wait
B*=gq

1. length of serial queue {in bits)
ty = now i lufe

Table 4.3: Pseudocode of Serial DSD. g variable. now is the current time, p.deadline denotes
the latest time a packet p can remain in the queue, p.next denotes the next packet behind p
in the serial queue (which will be served after p), and p.transDelay denotes its transmission
delay. The “packet arrival algorithm”, timerExpires() and recalcLast ThatCanPossiblyWait()
are the same as for serial DSD, optimised (Table 4.2 on page 54). setHoldingQueueTimer()

is the same as in Table 3.3 on page 45.



Chapter 5

Queueing Analysis of DSD

In this chapter, we:

o present a finite-state description model of DSD that lends itself to queneing

analysis and verification (Section 5.1);

o analyse this model under the relatively simple but tractable case of Poisson

distributed arrivals/scrvice (Section 5.3, page 65).

The results that follow are an analysis of the DSD queue under the simple model
of Poisson arrivals and Poisson service intervals. These are not realistic conditions in
which ABE will operate, but it is a useful first step. Pogsible further more detailed
analysis is discussed in the future work scction in Chapter 9.

We first describe the finite-state model. We then look at the “rough and ready”
notional implementation described in Section 3.1 on page 24 where some munerical
results were already presented. Finally, we describe the method of calculation for the

finite-statc DSD model followed by some numerical analysis using the said method.

5.1 Finite-state description of DSD

We developed a model of DSD queucing in terms of a state description of the num-
bers of packets in the quene. The motivation for this model is that it provides
an analytical tool for the study of the performance of DSD and the effect of the
variations of DSD. As a first step in this direction, Section 5.3 on page 65 studies
the performance of DSD for the simple but tractable case of Poisson arrivals and
services.

The model mirrors serial DSD, simple version, described in Section 4.1.1 on
page 49. The main simplification is that things are done on a packet level, so that

the model is equivalent to DSD with ¢ = 1 when packets have the same length.

09
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A green packet is not accepted if there are K, packets or more who cannot wait,
as opposed to DSD, which guarantees a maximum delay of d to all green packets.'
Recall Definition 3.3.1 (a packet can possibly wait) and Definition 3.3.2 (a packet
can wait) on page 33. For this model “can possibly wait” and “can wait” are the
same thing.

The current system state is desceribed by means of the general vector

., NI\'—I\',,).

w

(Nyy Ny, N}

wr e

Now N, is the current virtual qucuc length in number of packets. The real queucing

system is divided up as follows:
e Nyt the mmnber of blue packets that cannot wait plus all accepted green
packets;
e Nyyi=1,...,N—Iy: the number of blue packets that can wait until i green
packets go ahecad of it.

For convenicnce, we define N = Ny, which considers green packets as able to wait

0 packets. The current number of packets in the real queue is

.
N =N

i=0
The total number of packets that can wait is

K=K,

Mu = Z Nliv'
i

Note that the values N, and Ny include the packet that is currently in service.
There are three possible events: a blue amival, a green arrival or the finish of a

packet service. The rules for packet acceptance are:

o an arriving blue packet is accepted neither in the real queue nor the virtual

queue if the virtual queue is full, i.c. when N, = K.

e an arriving green packet is not accepted into the virtual queue if N, = K. It

is not accepted into the real queuc if Ny = I,

A scrvice cannot take place when N, = 0. For a given state of the system, the

transitions are as given in Table 5.1.

YIf L is the maximum length of a packet in the scheduler, then this model guarantees a worst
case delay to green of N, L/c for a link of handwidth ¢.
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Event New state

Blue acceptance Ny = N+ 1. IfN = 0then Ny — 1; clse
/VN-'—/\/ —_ Nlﬁ/u—/\/ +1

w

Green acceptance in real | (max(N, + 1, K), Ny + 14+ NL N2 NG 0)

queite

Green duplicate accepted | N, — N, +1

in virtual queuc

Service (packet leaves | Ny — N, — 1. If A = 0 then Ny — Ny — L.
systein) After that, if Ny =0 and A # 0 then let 4 be the
smallest valuc in {1,..., N—=K,} such that N}, # 0,
and then Ny — 1 and N}, — Ni — 1.

w u

Table 5.1: State Transitions for Model of DSD.

Thesc transitions can be explained as follows:

o Blue acceptance: The virtual queue increases by one packet since the blue’s
duplicate was accepted in the virtual ¢ueue. If there are no packets in the
queue, then this blue must euter the “cannot wait” part of the queue, since it
will begin service straight away and pre-empting is not permitted. Otherwise,
the arriving blue can allow the same number of green to overtake it as the last

blue in the queue, since the same number of spaces exist for it.

o Green acceptance in real queue: A green is accepted even if its duplicate is
rejected in the virtual queue. A green packet is placed at the back of the
packets that cannot wait, hence this total increases by one packet. This green
has skipped ahead of all blue that can wait, which now can wait for one less

green packet.

o Green duplicate accepted in virtual queue: A green that does not make it in
the real quene has its duplicate accepted in the virtual queuc if there is space,

in order to create a space for future green packets.

e Service: The virtual quene length is reduced by one packet. If there is a packet
in the real system, the packet at the head of the queue leaves the system. If

there are then only packets that can wait, the first one must enter the “cannot
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wait” scction in order to reccive service next. Note that by Theorem 3.3.3 on

page 37, the size of real system is never larger than the size of the virtual one.

5.1.1 Example state space

For those that wish to understand the model through a worked example we provide
an cxample state space for the simple case of N’ =5 and hy = 2. Starting from the
state of an empty (ueue, one can iterate to produce the entire state space below.

Note that for clarity, trailing zeros are suppressed.

0,0 Ll |22 |33 3,2 14 |43 2,1
421 |42 |55 |54 531 |53 |10 3,1,1
522 [521(31 {5201]52 4121411 2,0
41,0141 |51,3]51,1,1]51,02130 151001

5.1.2 Green undergo virtual queue test

When including the virtual queue drop for green, a green is not accepted if its
duplicate is dropped. Thus, the state update upon green acceptance in the real

queue becomes (N, + 1, Ny + 1+ N} N2 ..., J ,0).

w?

5.2 Queueing analysis of “rough and ready”

5.2.1 Method

Recall the rough and ready proposed implementation as described in Section 3.1
on page 24. The model of an output queuc for this system is as follows. The
quecue can store up to i packets, with blue and green packets arriving according to
Poisson processes of rates Ay and Ay respectively. Packet lengths are exponentially
distributed, represented by service times which are Poisson with rate j.

An arriving green packet is dropped if it finds /¥, or more packets in the quene
The situation is thus a modified M/M/1/KK quenc.

Steady State Probabilities

Let {P,i=0,...,'} be the steady-state probabilities.? The overall arrival rate of
the process is A = Ay + Ay The intensity of the system is given by p = A/p, the

blue intensity by p, = Ay/pt, and the green intensity by p, = p — pp. It is not hard

*Let N(t) be the number of packets in the queue at time ¢; then Py = lim,_ P(N(#) = i).
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to derive that3

Pi=p Py, i=0....,K, (5.1)
alxd
Po=p Mool = K, K (5.2)
where )
, (A =p(t =)
Po= IS K11-13, P
L=py=pfe(p—py = p) “(p—1))

Delay and Loss Calculations
The blue loss probability is /7 and the preen loss probability is

I ) 1— /)1\' 11—k,
PN 2 K= > P = pI\”/’o——'ﬁ;—‘-

n K,

In steady-state, a typical arriving green will enconmnter the expected number of
packets in the system. Thus, the expected time an accepted green will spend in the
system is the amount of time it takes the queie to serve the expected number of
packets in the system given that the green was accepted plus the expected time it

will take to be scrved, so

i

. 1 .
E{D,)] ;(1 +E[N|N <))

Ny Kyt _ N,+1) Ky 53
{ = p# 1 )

N,+1 —
2p P =1
Similarly the expected time an accepted blue will spend in the system is

E[D,] = % + Lgv N < R,
T

Se.g. follow p.438-440 of [40], with the balance equations given instead by

APy = uly,
{(u+ NP = APy 4+ Py, i=1,...  K,~1},
(t+X)Pr, = AP, 1+ 1P, 1,
{(+ )P =Py + pPryy, i=RK 41, K-1},
wPr = MNPy,
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Figure 5.1: The loss probability (log scale) for green, blue and flat best-effort in the "rough
and ready” notional implementation, as a function of the proportion of traffic that is green
(py/p). The total intensity of traffic p is fixed at 0.8 {other parameters were K = 10, K, = 3).

Flat Best-Effort

The results for flat best-effort follow directly from page 440 of [40]. The loss prob-

ability is

P —
Prow =

- N
{=0er p#1
p=1

1
N+1

and the expected time spent in the system is

14 1\',,,1\' [y N | ])pl\‘
B0l = i 07
=y p=1

5.2.2 Numerical results

We alrcady showed in Section 3.1 on page 24 the poor performance in terms of

loss the green receive under this notional implementation as a function of the traffic

intensity p, when the proportion of blue and green traffic is the same (i.e. py = 0.5p).

Now consider Figure 5.1 where p is fixed but the fraction of traffic that is blue,
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Figure 5.2: The loss probability (log scale) for green, blue and flat best-effort in the “rough
and ready” notional implementation, as a function of Iy; a green is only accepted if there are
I, — 1 or less packets in the queue. (all other parameters were fixed as follows: K = 10,p =
0.8, = 0.5).

po/ p, is varied. The green loss ratio remains the same since %, is independent of p,,
and the loss probability for green naturally decreases, albeit slowly, as the intensity
of blue traffic decreases. Figure 5.2 shows that as Iy increases linearly, the loss
probability decrcases exponentially, so the lower the green delay, the much higher

the tradeoff in terms of loss.

5.3 Queueing analysis of DSD

Now let us examine the DSD model as described in Section 5.1 on page 59 under
Poisson arrival processes, with blue rate Ay and green rate Ay Let A = Ay + A/, and

let packets be served exponentially with service rate p.

5.3.1 Method
Steady State Probabilities

Let S be the state-space generated from the state rules and p = (p;) be the steady-

steady probability vector of size |S|, containing clements 1,...,[S]. Let /2 be a
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S| x S} matrix where cach clement /2 ; represents going from state ¢ € S to state
iJ

j €S, and defined as follows:

A+ Ay reachable from ¢ by blue or green arrival

Ab j reachable from ¢ by blue arrival only
Pii=13 A 4 reachable from i by green arrival only

I 7 reachable from 7 by packet service

0 otherwise

where 4,j € S.

This is not precisely the transition matrix but chosen for its suitability in cal-
culation, and for convenience P; = 0 for all ¢ € S. The rate of entry into a state
sE€Sis

> il (5.6)
ics
and the rate of leaving s is
ps Y P (5.7)
€S

In steady-state these equations are equal, resulting in the halance equations. The
input into all states, Equation (5.6), can be expressed by the vector PT'p, and the
output from all states, Equation (5.7}, by the vector N'p where K is composed by
smnming the rows of P, and placing the resultant vector along the diagoual of an

|S x |S| matrix?. The steady-state probabilities p can then be obtained by solving
P'p=Kp
together with the requirement that the probabilities sum to 1,

ZPS =1

SES

4In “matlab” notation this would be expressed

K = diag(sum(PT)1).
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Loss Calculations

The probability of a blue loss is obtainable directly by examining the virtual queue,

and so by Equation (5.4),

prie o (1~ /’)/)K
e = Do = T P

The probability of a green loss is

Pr = P(Ny > K.

lons.

Delay Calculations

An arriving green is accepted whenever Ny < Iy, If accepted, the expected delay
is the time it takes to serve all packets ahead that cannot wait plus the expected

time to serve the packet itself, i.e.

BID,) = (1 + E[Ng| Ny < K,)
which can be calenlated from the steady-state probability vector p.

Calculating the expected delay for blue in the same manner would not be straight-
forward since it involves consideration of the green packets that arrive after a blue
but which receive priority whenever the blue can wait. Instead, we observe the
conservation properties of the queueing system [23] and Little’s law to obtain that

(1= PRYNE[D) 4+ (1 = PEemNED,] = EWV],

8 loss

and thus that

]E[-A/] - (1 - l’li::““)/\_,,]E[l)y].

E[Dy} =
o (L= PN

(5.8)
Recall from Scction 5.1 on page 59 that N is the number of paclets in the system
pag )

Green undergo virtual queue test

The loss rate for green is

Pt = P(Ny, > K, UN, = K]
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Figure 5.3: The loss probability (log scale) for green and blue traffic using DSD, as a function
of the total intensity of traffic. The proportion of traffic is 50% green and 50% blue. Note
that, due to the virtual queue, the loss probability in flat best-effort is the same as the blue
loss probability. (parameters were p, = 0.5p, k' = 10, Ky = 3, \ = 40)

and the expected delay is
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,l_(l + ]E[IV,/, | N!/f < /\y NN, < /\])
L

5.3.2 Numerical results

Figure 5.3 shows the loss probability as the total level of traftic increases, when there
arc equal proportions of green and blue traffic. Recall that the loss probability in flat
best-cffort is equal to the bluc loss probability. The corresponding expected delay
for green and blue is shown in Figure 5.4. The reduction in green delay necessitates
a higher loss rate for green in order to provide local transparency, but the increase
is the minimum possible.

When there is little traflic, the difference in loss rates is higher, at the same time
as the queucing delays are small. In a region of medium to high levels of overall
traffic, there is less difference between green and blue loss rates (although the overall
number of losses increase). It is also at this point that green traffic needs the delay
distinction. In summary, when the green need lower delay most, the price they pay
in increased losses is not as high, justifying the trade-off and indeed the nced for
ABE.

Now consider Figure 5.5, which shows how the loss probability varies when the
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Figure 5.4: The expected delay for green and blue traffic using DSD and in flat best-effort
traffic, as a function of the total level of traffic. The proportion of traffic is 50% green and
50% blue (parameters were p, = 0.5p, ¥ = 10, Ky = 3, A = 40).

overall amount of traffic is constant but the percentage of green traffic is varied.
The blue loss probability does not change, as it is a function of the total intensity of
traffic. As the amount of traffic that becomes green increases, the overall green loss
probability drops with decreasing rate of change. If there is little green traffic then
there are less diseriminatory drops for green, and less traffic to take advantage of
them. Figure 5.6 shows the expected delay for blue and green using DSD compared
to flat best-effort. The average blue delay decreases as it henefits from less amount
of traffic being accepted. The green delay, seen more clearly in Figure 5.7, increases
initially before decreasing, although the range of values is very small. There are three
factors interacting: blue traffic decreasing which decreases green delay; green traffic
increasing which increases green delay; and green losses increasing which decreases
green delay. Initially, the extra amount of green traffic causes the increase but its
effect becomes gradually less until eventually the other two factors dominate.
Finally, in Figures 5.8 and 5.9 we look at the case when the value of Ay, the
maximum number of cannot wait packets permitted, is varied. The total intensity
and proportions of blue and green traffic is fixed. The green traffic can pay a high
price in terms of loss for a lower maximum delay which has ramifications for the

choice of d by an operator.
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Figure 5.5: The loss probability for green and blue traffic using DSD, as a function of the
fraction of traffic that is green. The total amount of traffic is constant. Note that the blue
loss probability is only a function of the total amount of traffic and invariant to the amount
of green and blue traffic. (parameters were p = 0.8, K’ = 10, iy = 3,\ = 40)
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Figure 5.6: The expected delay for green and blue traffic using DSD and in flat best-effort
traffic, as a function of the fraction of traffic that is green. The total amount of traffic is
constant. In Figure 5.7, the delay for green is shown by itself in order to demonstrate its
behaviour. (parameters were p = 0.8, K’ = 10, Ky, = 3, A = 40)
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Figure 5.7: A close-up of the delay behaviour for green traffic from Figure 5.6. Initially ail
traffic is blue. Then, as the percentage of green traffic increases, so does the delay, up to a
maximum level. Then the increase in the number of green losses means that the delay comes
down.
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Figure 5.8: The loss probability for green and blue traffic using DSD, as a function of Iy, the
size of the buffer green packets “see”. The total intensity of traffic and proportion of it that
is green is constant. (parameters were p = 0.8, p, = 0.4, K = 10, Ky = 3,\ = 40)
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Figure 5.9: The expected delay for green, and blue traffic using DSD, as a function of i, the
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Chapter 6

DSD Simulation Study

In this chapter we examine the performance of DSD and its variants under sinntation
given a large amonnt of different conditions. The simulation tool is ns-2 [36] which
has become the de facto discrete-cvent simulator of Internct protocols and traffic
control.

The fundamental things to establish are that:

o green does not hurt blue: the throughput for blue must be at least as good as

it would in flat best-effort;
e green receive acceptable performance in which to operate.

We first look, in Section 6.1, at a scenario where there are blue and green TCP
flows, sharing a bottleneck link, that all have the same non-queneing ronnd-trip
time. Then, in Section 6.2 on page 82 we look at the more general case where
round-trip times are different, the green traffic uses a TCP friendly protocol, and
there is non-adaptive traffic present.

The main finding is that DSD, with the control loop and the green undergo
virtual queue test, ensures green does not hurt blue while still providing green with
a reasonable level of throughput. Also, we recommend the green at back test as it
reduces scheduling complexity of green packets but does not have a negative impact

when used in conjunction with the control loop.

6.1 TCP and equal round-trip times

6.1.1 Simulation description

Figure 6.1 describes the general simulation topology. For cach simulation run, n

blue flows and m green flows compete along a hottleneck link of speed 10Mbps. All

73
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n blue TCP flows

10 Mbps, 7/6

total round-trip time 7

maximum green (ueueing delay d %

m green TCP flows

Figure 6.1: n blue TCP flows, m green TCP flows, all of non-queueing round-trip time 7.

flows arc the SACK variant of TCP [30], have non-queucing round-trip time 7, and
send packets of 1000 bytes. The maximum tine greeu can spend in the system is d
and the virtual queue buffer size is equal to the bandwidth-delay product (i.e. 1250+
packets).

The duration of cach simulation is 300 seconds. To avoid synchronisation and to
add an element of realism, every packet sent by an application is held for a period
of time randomly distributed between 0 and 10 milliseconds. This is to represent,
random overhead in packet sending. Five simulation runs are performed and the
average and confidence of the result ascertained. We omit the confidence interval

whenever it is so small that it makes the graphs unrcadable.

6.1.2 The “rough and ready” implementation

Firstly, we confirm that the “rough and ready” notioual huplementation is not prac-
tical. Figure 6.2 shows the average number of packets reccived by 30 green and 30
blue TCP flows as a function of time. In flat best-effort, both receive approximately
the same throughput, with oscillations around the average as you would expect.
Using “rough and ready”, the blue traffic gets all of the throughput soon after the
slow-start, period. Most green packets are dropped since the buffer is nearly always

too full for them to Icave the system within d = 0.1 scconds of arrival.
6.1.3 Fixed amounts of traffic

Local transparency can mean throughput transparency

We show, in Figure 6.3, a case where throughput transparency is achieved while

using DSD with the green bias fixed at ¢ = 1. In fact, the blue sources get more
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Figure 6.2: The throughput TCP sources received in the “rough and ready” notional implemen-
tation. The green flows eventually get no throughput because the buffer is too full and there is
no green packets can make their deadline. (parameters were n = 30, m = 30,7 = 0.2,d = 0.1)

throughput than in flat best-cffort, while the green sources receive a reasonable
share of the handwidth and a lower bounded queucing which is shown by the delay
Listogram in Figure 6.4. The relative increase in loss rate for green was enough to
compensate for the decrease in delay green received.

This was a very lightly loaded network where there were very few losses. The blue
and green loss ratio was 0.13% and 0.28% respectively, extremely small; but green
had twice as many losses. This reflects the situation as we saw in the munerical
results of the modelling in Section 5.3.2 on page 68 where the less traffic in the
network, the higher the relative loss ratio, and the lower the difference in average
delay.

We now look at a relatively more heavily loaded network, where there there are
n = 30 blue and m = 30 green flows and, without the control loop, the lower delay
for the green TCP flows enables them to receive more throughput than their blue
counterparts.

Local transparency does not imply throughput transparency

Figure 6.5 shows the average throughput received by 30 blue and 30 green flows in flat

best-effort and using DSD wlen the green bias ¢ is fixed at 1 (always favouring green
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Figure 6.3: The throughput TCP sources receive using DSD with the green bias ¢ = 1, and
using flat best-effort. In this case, although not in general, local transparency is sufficient for
throughput transparency. (parameters were n = 3,m = 3,7 = 0.2,d = 0.1)

in both can wait situations). Here, throughput transparency doces not hold, with
green benefitting from substantially énereased throughput and very low queucing

delay.

Control loop ensures throughput transparency

Figure 6.6 shows that the average blue throughput is larger than the green through-
put, cnsuring that green does not hurt blue, when using the standard sct-up for
DSD, which is with the control loop and the green undergo virtual queue test. Fig-
ure 6.7 shows the how the green undergo virtual queue test increases throughput for
blue, but reduces it for green. (Note that to make things visible, the smoothing
filter of the transfer rate is larger than in Figure 6.6.)

The effect on green delay of the green undergo virtual queue test can be seen
in Figurc 6.8. Tt changes dramatically the green delay profile, because it causcs
the rejection of green packets at precisely the moments when the quene would be
relatively full for green, namely when the virtual queue is full. Also, if there is a
period where mostly green arce accepted and not blue, a burst of green has a higher

chance of being accepted.
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Figure 6.4: Histogram of delay experienced by green traffic using DSD with the green bias
g = 1, and using flat best-effort. Note that the minimum delay possible is the transmission
time of .8ms. Using DSD, the delay was bounded to 0.1 seconds. (bins of size 100, normalised
to be of unit area, n = 3,m = 3,7 =0.2,d =0.1)

Green at back, blue pushed up

Next we show the effect of the strategies green at back and green at back, blue
pushed up.

Consider Figure 6.9, which shows the average throughput for blue and green
flows with the control loop, with the green at back strategy cither on or off. The
throughput for blue is only slightly increased by employing the strategy. This is
because the control loop drives the system into delaying green packets anyway.
Thus, it appcars that green at back is a good way to reduce scheduler complexity.
Figure 6.10 shows the cffect of this strategy and that of additionally blue pushed up

have on green delay. Blue pushed up drives the green quencing delay towards d.

Effect of total amount of traffic

In Figure 6.11 we look at how DSD (with control loop) performs as the number of
sources increases. The average number of packets per flow decreases as you would

expect, and throughout green does not hurt blue.
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30,m =307 =0.2,d =0.1)
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Figure 6.11: Average throughput (log scale) as a function of number of flows, when using
DSD (with control loop and green undergo virtual queue test). The overall average throughput
naturally decreases as the number of flows increase, but the control loop ensures that green
does not hurt blue. There is an equal number of blue and green flows (n = m). Error bars
are for 95% confidence.
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Figure 6.12: Simulation Topology |

6.2 TCP friendly and variable round-trip times
We now look at when there are flows of various round-trip times, and where green

Hlows may be either TCP friendly or non-TCP friendly.

6.2.1 Simulation description

There are 115, blue sources and 14, green sources with an outgoing link propagation
delay of 20ms (sources of type 1), and nya blue and n,o green sources with an
outgoing 10Mbps link of propagation delay 50ms (sources of type 2). All sources
pass the 5Mbps link /. of propagation delay 20ms, and terminate via a 10Mbps link
of propagation delay 10ms. These blue sources arc the SACK variant of TCP, and
the green sources are the TCP friendly algorithm as described in [3]. There is also
green traffic which sends a constant rate » (CBR) and passes through the link L.
The router buffer sive was 60 packets (i.e. Buff = 60) and the maximum time a
green can spend in the system, d, was 0.048s. For simplicity, the size of all packets is
fixed at 1000 bytes. The control loop updates its value of g every 0.5s (i.e. T = 0.5),
the gain parameter o was 1.1, and the conservative value of 20ms was taken to be
the round-trip time used for estimating throughput. Each simulation ran for 300

seconds of simulated time.

6.2.2 Equal fraction of green and blue

We first examine some scenarios when there are only TCP and TCP friendly flows.
For the case where there are 5 blue TCP and 5 green TCP friendly flows of each

type (nyy = ny» = N1 = Ny = 5), Figure 6.13 shows the average transfer rate for
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Figure 6.13: Average packet transfer rate for green and blue connections, as a function of time
t, when the router implemented DSD and when it implemented flat best-effort. The results
are obtained by simulating the network described on Figure 6.12, with 5 blue flows and 5 green
flows of each type, namely np | = np> = ng1 = nge =5, and no CBR traffic

each blue and green connection, of both types at each time ¢. Figure 6.14 shows
the end-to-end delay distributions received for green packets under ABE and flat
best-cffort. Blue flows of cach type receive more throughput with ABE than the did
in flat best-cffort, thus benefitting from the use of ABE. Green flows reccive less,
and in exchange, the green queucing delay is small and bounded by d = 0.048s. The
green loss ratio was 4.97% when using ABE, and 3.3% in the flat best-effort, while
the Dlue loss ratio decreased from 3.2% to 2.5% when moving to ABE. The extra
throughput that blue flows of type 1 reccive over type 2 flows follows from the lower

round trip-time they experience.

6.2.3 Asymmetry in numbers of blue and green

ABE is designed to work independently of asymmetry in the amount of green and
blue traflic. For the case where there are 5 blue TCP and 3 green TCP friendly
flows of type 1 (np1 = 5, 1091 = 3) and 3 blue TCP and 5 green TCP friendly flows

of type 2 (np2 = 3, ny2 = 5), Figure 6.15 shows that again green does not hurt blue.
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Figure 6.14: Density plot of waiting time for green packets under DSD and flat best-effort; 5
blue TCP and 5 green TCP friendly flows of each type

6.2.4 TCP and constant bit-rate sources

The situation where blue traffic is TCP, and green traffic is no longer TCP friendly,
but a constant bit-rate source is now examined. Here there are 5 blue TCP flows
of each type (np1 = ny2 = 5) and CBR green traffic which sends at 1Mbps. The
number of packets received for cach blue traffic type and for the CBR source is
shown as a function of time in Figure 6.16. What we sce is that the blue traffic
receives slightly more throughput with DSD than with flat best-effort, due to the

local transparency property, and the non-TCP friendly CBR traffic receives less.

6.2.5 TCP, TCP friendly and constant bit-rate

We now look at the scenario where there is blue TCP traffic (e, = np2 = 5), and
green traflic is composed both of TCP friendly sources (n,, = n,2 = 5) and CBR.
traffic of rate 1Mbps. The average packet transfer rate for the blue and green of
type 1, and for the CBR source as a function of time is shown in Figure 6.17. The

results for type 2 traflic is omitted for casc of reading.
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Figure 6.16: Average packet transfer rate per green and blue connection, as a function of time
t, when the router implemented DSD and when it implemented flat best-effort. There are 5
blue flows of each type and a CBR flow of 1Mbps which is green.
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Chapter 7

ABE Implementation: EDF

We now describe ABE/EDF (Earliest Deadline First), the first ABE impletnentation
that we created. It provides a low bounded queneing delay to green while ensuring
throughput transparency.

It was developed prior to the invention of the concept of local transparency, and
thus, in coutrast to DSD in Chapter 3, it relies on flows being TCP friendly, which
is a major disadvantage. We do note however that one advantage to implementing
throughput transparency directly is that there is extra freedom to delay blue packets.
In addition, one other difference is that number of blue packets accepted is on average

higher than in the virtual queuve.

7.1 Introduction

The design of ABE/EDF is outlined in Figure 7.1. It consists of two main modules:

a Packet Admission Control (PAC) module and a scheduler. The PAC module man-

Packets

Figure 7.1: Overview of ABE/EDF's Router Support.
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Figure 7.2: Summary of PAC Algorithm for ABE/EDF.

ages the queue by dropping packets whenever necessary or appropriate, acceptance
being biased in favour of blue packets. It must cnsure that sufficient green packets
are dropped in order to prevent blue flows from suffering and must not accept green
packets if they would experience delay greater than a specitied bound d, where d is
maximum time a green packet can spend in the system.

The scheduler determines which packet, if any, from the buffer should be sent
next. Typically, it is biased towards giving green packets less queneing delay. A
clagsifier is also required for identifying the traffic class of the incoming packet, i.e.
whether it is green or blue. The PAC controls the dropping of green packets such
that blue traffic receives as much throughput as if the network was flat best-effort,
while trying to keep these green losses to a minimum. Let ¢, and g, be the drop
ratio of blue and green traflic respectively. The PAC attempts to have the following
relation hold,

Gg = Q@y

where o > 1 is a controlled parameter, called the drop bias, which provides a drop

disadvantage to green packets.

7.2 Description

The PAC uscs Random Early Detection (RED) [12] to obtain an initial probability
q of dropping a packet. RED is a congestion avoidance mechanisin, such that when
the average queuc size exceeds a pre-set threshold, the router drops cach arriving
packet with a certain probability which is a function of the average queue size. The
modification is as shown in Figure 7.2. First, the RED dropping probability ¢ is

calculated. Then, if the packet is green, the probability of dropping ¢ is multiplied
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by o

The scheduling is Barliest Deadline First (EDF) [16]. Each packet is assigned
a finishing service time deadline, a tag, and the packet currently having the lowest
value is served first (i.c. carlicst deadline). Each green packet arriving is assigned
a finishing service time deadline equal to its arrival time, which is given by now. A
blue packet is assigned a time equal to its arrival time, now, plus the value of the
offset bound D, namely now + D. The goal of the offset bound is to limit the delay
penalty imposed on blue.

The scheduling does impose a delay penalty on blue packets, which reduces
throughput. We compensate for the delay penalty imposed on blues by artificially
reducing their drop rate, and this is done by adjusting the value of the drop bias cv.
The determination and behaviour of the minimum o required to provide throughput
transparency in a given network is analysed in Section 7.5. A sufficient « in the
general case is described in Section 7.4.

A green packet can only be provisionally accepted at this point. To ensure the
low delay guarantee to green is met, it is only accepted if the sum of the lengths of
the packets in the queue with a deadline less than the current time, plus the length
of the green packet, is less than ed, where ¢ is the speed of the outgoing link. This
bounds the queuneing delay for green packets to d. In this way, if there are only green
packets arriving, the system acts like a flat best-effort network with smaller huffers.

We summarise the PAC algoritlun in Table 7.1. The queue size Buff and maxi-
mum queucing delay d arc fixed, whercas the offset bound /7 and the drop bias o are
adjusted automatically, on a slow time scale, by mceans of the control loop, which is
now described. The question as to what drop bias ¢ would be sufficient to protect

blue flows is analysed in Section 7.5.

7.3 Satisfaction of router requirements

1. The per-hop delay bound for green, d, is enforced by the PAC.

[\V]

. Throughput transparency is obtained by the PAC ensuring that the delay
penalty incurred by blue is compensated by a lower drop ratio. This is imple-

mented by adjusting the offsct bound /) and the drop bias «.

3. Minimising the green drop ratio is performed by the control loop which adjusts

the offset bound 1 and the drop hias .

4. Packet sequence within blue and within green is preserved.
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packet p arrives at the output port
if buffer full
drop p
else if p is blue
drop with random probability
if p is still not dropped
p-deadline = now + D
accept packet
clse // p is green
drop with random probability qor
it p is not dropped
{ = sum of length of packets in quene with deadline < now
it [ 4 p.length > cd
drop packet
else
p.deadline = now

accept packet

Table 7.1: Pseudocode of ABE/EDF PAC. now is the current time, p.deadline determines
when packet p will be served (whose value is tagged onto packet p), and p.length denotes the

length of the packet

the average queue size is smaller in the real system.

7.4 The control loop

5. As described in the introduction (Section 7.1), it does not implement local
transparency, because the delay for blue can be higher, violating the no higher
delay requirement of Definition 2.4.1 on page 14. Note that the number of

blue packets accepted is, on average, higher than in the virtual quene, since

The control loop has two functions: to provide throughput transparency, and to

cnsure as few green losses as possible. We first look at the mechanism to cnsure the

former.

7.4.1

Motivation

In Scction 7.5 on page 96, we determine, under modelling conditions, the required

minimum « for a given network topology and number of flows in Section 7.5 on

page 96. However, in general, knowledge of the network conditions to determine
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Figure 7.3: Virtual System used in ensuring throughput transparency.

the optimal drop bias « is impractical. Thus, in practice we must choose a safe o
which works under general conditions for an unknown number of blue and green
flows, unknown round-trip times, and unknown conditions flows through the router
experience elsewhere. modelling relied on losses being packets.

Given our limited knowledge of the network, we cannot ascertain what would
happen in a flat best-effort network, and thus the required minimum throughput each
blue source would need to ensure throughput transparency is not known. We can
however put our system in a state such that, provided certain general assumptions

hold, the throughput blue sources receive is at least as high as in flat best-cffort.

7.4.2 General mechanism

Constder the scenario as in Figure 7.3. It consists of measuring a virtual queue
which is configured as in the ABE/EDF case but treats all packets as blue. This
system is not the same as flat best-effort, since loss feedback to sources comes from
the real system.

We usc the following notation:

e ¢: the blue loss ratio

o q,: the green loss ratio

o ¢,: the loss ratio for packets in the virtual queue

o dy: the average queueing delay for blue packets
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o d,: the average queucing delay for green packots
o d,: the average delay for packets in the virtual queuc.

We assume the established loss-throughput formula, Equation (2.1), holds.

Let 7, be the lowest reasonable round-trip time a source could have through the
router, oxcluding any queucing delays. This value is a parameter specified in the
router. The higher 7, can be chosen, the less green losses there will be. If it is chosen
too high, there may be circumstances in which blue flows inay not receive as much

as they would in a flat best-cffort network. Lot

.’131,(7') = (}((j(,, T+ db)
2y(7) = 0(qy, 7 + dy)
To(T) = 0(qy, T + dp)

If a blue source with a round-trip time 7, excluding queueing delay has a through-
put higher than a green source, and it is higher than it would have in the virtual

system, namely,
Zp(7e) = max(2,(7e), Ta(7e)), (7.1)

theu throughput transparency holds for this blue source.
In addition, if Equation (7.1) holds, then throughput transparcncy for any flow

with a higher round-trip time 7 than 7, also holds, namecly that
() 2 max(x, (), x,(7))
for all 7 > 7,. This result can be scen from Scetion 3.4.2 on page 42.

7.4.3 Control of «

The condition in Equation (7.1) motivates a control law which increases « if the blue
throughput is less than either the green or the virtual throughput, and decreases o
if the blue throughput is higher than both green and virtual throughput. We use

one such control law here,

a — max {1, o + Ny * (max(zy, ) — ) ,
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for gain parameter 'y > 0. We prevent « from going below 1, because otherwise
green could get more throughput than blue.

Now « respounds to variations in quencing delays and losses, thus automatically
o b o

adapting to variations in green and blue traffic load. Note that for a given «, the
system will not drop exactly o times more green than blue packets due to: (a) the
intrinsic randommness in the dropping mechanism, (b) the approximate modelling in
the loss-throughput formula, aud (c¢) the variations in the input process and green
drops which occur in the sccond stage. The actual ratio of green to blue drop ratios
achieved may be quite different from the a specified. The control law automatically
adjusts o to reflect these inacenracies.

"For the purpose of determining «, the ronter acts as if it were the only bottleneck
for all flows that pass through it. We show through simulation in Scction 7.6, and
through analysis in Section 7.5, that assuming one bottleneck results in a higher and
thus sufficient a than if o was (able to be) chosen in conjunction with more global

state.

7.4.4 Control of D

The current value of the offset bound 1, which determines the level of delay priority
given to green, is also controlled. The reasons to do so are two-fold. We would like
to ensure there are few drops due to second stage drops (which is caused if D is
too low), thus increasing the number of drops caused by the differential loss. Also,

we seck to minimise green first stage losses, and having too high a /1 results in too

many green losses to protect blue.

The lower D is, the less variations there are between the throughputs @, ©, and
#,. This keeps o low which reduces the number of first stage green drops. There
can however be an increase in the number of second stage drops. Many sccond stage
drops is a symptom of too low a 1),

Conversely, if D is high, the throughputs are further apart, and thus o is high.
This may result in an unnecessarily high nunmber of green losses. The higher the
« the lower the average number of green packets in the queue. To minimise green
losses, the number of green packets in the queue should be maximised as much as
possible whilc avoiding sccond stage drops. We control D in such a way as to drive
it into this operating region.

The actions required can be thought of as follows. « should be increased if the
delay boost increases or too many blue packets were dropped in the past. Conversely,
o should be decreased if the delay boost decreases or too many green packets were

dropped in the past. /) should be decrcased if the number of green packets in the
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queue has been small, and increased if there were many second stage drops.

We now describe the controlling mechanism for the offset bound ). Lot wy be
the measured average number of bits with a deadline less than now over the time
interval Ty. Let (1!’1/ denote the ratio of the number of second stage green packet losses
to the total number of green arrivals.

In the control law, a safety margin A is used to avoid waiting for sccond stage
losses to accumulate before increasing /2 where A is a measure of the tolerance of
how close we allow the green buffer to being full. Thus we consider Acd — w; to be
a measure as to how far we are from a full queue, or, if negative, by how much we
have exceeded it. In controlling /) we would like to ensure g — 0 and w; — Acd.
We arrive at the control law,

w;

D— D+ Ky (m - 1) + Ry

for gain parameters N, Nz > 0 and A € (0,1]. 1) is restricted to lie in the range
[0, Dinas], where D, is the highest tolerable offset bound, given by the value beyoud
which the system behaves effectively as if it gave absolute priority to greens. From

our experiments, it was found that A should lic between 0.4 and 0.6.

7.4.5 Implementation details

We now describe how the control loop is mplemented. The measurements o and
D are updated after each time interval 71, for some Tj. In a given time period the

following arc the measured values:

¢ the ratio of bluc losscs to number of blue arrivals

qq': the ratio of greeu losses to number of green arrivals

. q;"’: the ratio of second stage green losses to number of green arrivals
o q': the ratio of losses in the virtual system to total munber of arrivals
o djb: the average green queueing delay

o di*: the average blue queucing delay

dy: the average queucing delay in the virtual system.

In order not to be too reactive to the instantancous values of the measured loss
ratios, we smooth using an exponentially weighted moving average (EWMA) filter

with parameter v, € {0, 1]. The measured average queueing delays are also smoothed
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by an EMWA filter with parameter v, € [0,1], and qg’” is smoothed by an EWMA
filter with parameter v € {0,1].

The average queucing delays and q;’"‘ are filtered using a different smoothing
paramcter to the loss ratios in order to react to higher frequency oscillations in
these signals. We nse the measured value of w; without auy filtering.

We now summarise the control action for the nth iteration (i.e. at time nT}):

() = memn -1+ (1 -n)g'(n)

%) = magn =1+ (1 -7)qy(n)

(I,l,,(”) = ’Y;fl“(” -+~ s)qqm(”)

dy(n) = mdy(n =1+ (1 - w)d}(n)

dg(n) = yady(n — 1) + (1 = y2)dy"(n)

dy(n) = ydi(n—=1)+ (1 = y)d)'(n)

wg(n) = O{qe(n), 7 + dg(n))

zp(n) = 0(q(n). 7. + dy(n))

iy () = 0(ge(n)s Te + dp(n))

an) = max(l,a(n — 1)+ Ky * (max(z,, x,) — )

D) = Dn—1)+ Nax (-l—i%z) - 1) + Nagy(n)

Optimal settings for the parameters of the system are not necessary for the

implementation to work, as we have found that the system is sufficiently robust.
Examples of settings used are shown in the simulations section in Section 7.6 on

page 101,

7.4.6 Initial values

Upon system commencement some initial values are required. Their choice is not

vital as the system will settle to operating values.

o The intial loss ratios ¢,(0), 44(0), ¢,(0) are chosen based on observation, e.g.
(0) = 0.01, ¢,(0) = 0.04 and ¢,(0) = 0.01. The initial drop hias is then

a(0) = ¢,(0)/qs(0).
e Initially it is reasonable to assume no second stage drops, so qq 7(0) = 0.

o D(0) should be chosen to reflect a reasonable delay differential, e.g. D(0) =
0.1.
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¢ The queucing delay measurements can be chosen to be d,(0) = 0, d,(0) = 0
and d,(0) = D(0)/2.

7.5 Analysis of minimum drop bias «

Let b be the delay boost for an output queue to a link, i.e. the difference hetween
the average gueueing delay for blue packets and for green packets. Theu b is dy, — dy,
for average blue queucing delay dy, and average green queueing delay d,.

In this section we analyse the drop bias o requirements for a given network for
a given delay boost b.

We first describe a method to determine o for a given arbitrary network com-
posed of a deterministic munber of blue and green sounrces and links. We then

demonstrate under an example topology, that:

(i) the minimum « required is dependent on the relative number of green and blue

sources;

(ii) the determination of the minimum « for all flows is equivalent to choosing the

highest « needed for sources with just one bottlencck;

(iif) the required « increases approximately exponentially as the boost b increases

lincarly.

The establishment of (i) was shown on the example and not in gencral, a result
which was also verified by simulation. Result (iii) has significance in the engineering
of a router’s delay advantage t()bgreen.

The resnlts we show apply to long lived flows. However, it is known that shorter
flows will suffer more than long term ones when there are losses. Therefore the worst
casc drop bias « needed is obtained by considering all flows as being long lived (since

we protect blue flows more).

7.5.1 The model

Consider the following abstraction of a general network, It contains 1 links, a set
of blue sources B and a set of green sources (7. L is the sct of all sources that use
link . A source s is on link [ if s € L;. Assume each source s has a long term rate
of 2y and a fixed round-trip time 7,. The capacity of each link ! is ¢;. Whenever
the probability of not accepting a blue packet on a link I is g, the probability of

rejecting a green packet is agq.
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Assume a source s responds in an additive increase/multiplicative decrease way,
i.e. in the event of no loss in a round-trip time 7, it increases its rate by r,, and
responds to loss detection by decreasing its rate by 1 € (0,1). This behaviour is a
simplification of the congestion responsc of a TCP flow.

We need to wse this method of global modelling, rather than simply applying
known TCP equations [25, 31, 10, 37, 4] which relate loss rate to throughput for an
individual source, with no concept of the number of bottlenecks a flow experiences.

The following theorem describes a method to determine under this model of a

network, the distribution of long term rates between flows.

Theorem 7.5.1 Let o = oy for alll = 1... 1. (the drop bias is the same on ev-
ery link). Then the dis

dbution of long term rates g can be determined by the

mazimisation of the utility function,

-1
&)
~

Z 1 \ &g n 1 1 | g (
— log —— + — — log ——— .
Ty 6 red T, o AL & [ SR

subject to the link constraints,

Sa<a, 1=1,...,L (7.3)

sELy
Proof: The derivation, which relics on losses being rare, is an casy consequence of
the results in Chapter 8 and [43].
Let 6, = o if s € (7 (source is green) and &, = 1 if s € B (sowce is blue).

Equation (22) on page 4 of [43] changes to

’vs+7]"l:s)d‘s Z g/(fl)

teLs€EL;

since the dropping probability function for a green source is ag(f;). From this, it

follows that

JA(E) =Z‘1 og ——tme —Z g — ().
s 15+7)1, e('T"’ u-i—l]ls
The rest of the derivation is the same. ]
The restriction that a = ay for all [ = 1,..., L is of course not true in general.

Determining the distribution in this case is not as simple, and not necess

ry for the
network which we analyse here. When o = 1, the maximisation results in the flat

best-effort distribution of rates.
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For a blue source s and a delay boost b, the minimum drop bias «, should be

the smallest value such that:

1. Its throughput with ABE/EDF is no less than if the network were flat best-
cffort. This ensures throughput transparency is satisficd. The minimum in this
case, o, is given when both throughputs are the sanie i.e. it is the solution
to 2,(b, o)) = xf where 2,(a}) is the thronghput from an ABE/EDF network
with drop bias o, and @f is the throughput the flow reccives in a flat best-cffort

network.

o

. If the blue source were to become green it would not receive more throughput.

The minimum in this case, af, is given by the solution to z,(af) = /(o)
where x,(a7)) is the throughput from the ABE/EDF network if the source was

green rather than blue.

The minimum drop bias for a source s is thus given by s = max({a’, a?). Note that
in general o) > o may not hold, a point we illustrate in Section 7.5.3.

For a given network, the « that protects all blue flows at minimum cost to green
flows is given by o = max,e s 5. Using this drop bias a ensures that all blue flows
receive at least as nnch as they wonld if the network were flat best-effort, and that

turning green cannot result in a throughput advantage.

7.5.2 Example topology

We now look at the parking lot scenario as depicted in Figure 7.4. There are / links
each of capacity ¢. There arve 1, blue flows with throughput 2, and n,; green flows
with throughput ,, which traverse all links. These are the long flows. On each link
there are ny, blue flows with throughput 24, and n,,, green flows with throughput
x4, which traverse just this link. These arc the short flows.

When this is an ABE/EDF network, the long and short green flows have a round-
trip time (RTT) of 7., and 7, respectively. The long and short blue flows have a
round-trip time of 7,y and 7, , respectively. Let the average extra queucing delay at
cach link for a bluc flow be the delay boost b. Thus, 7, = 7 +band 7,y = T+ 1b.
The assumption that the drop bias «v is the same on cach link is valid given that
the load on each link is the same. For the same reason, the delay boost b can also
be considered to be the same on each link. The a sufficient to ensure blues do not
suffer is given by max(ay, o), where oy and a are the minimam drop biases for long
and short flows respectively.

When this network is flat best-effort, o = 1. The round-trip times of the flows

are unknown, unless (ueueing analysis is performed. To bypass this difficulty we



"

7.5, ANALYSIS OF MINIMUN DROP BIAS 99

Np,1 blue flows with throughput x;, ;
ng, - flows with throughput

Dropping Probability at each router:
Biu

6:160 c.=10.0

Dropping parameter: o.
. Delay boost: b

np ¢ blue flows with throughput x;, ¢ nb;s blue flows with throughput x; o
Ngq i+ flows with throughput = Ngs:" =+~ flows with throughput

Figure 7.4: Parking Lot Scenario used in analysis of «.

consider all possible values to determine a worse-case a.

Let 5 = 0.5. The additive increase parameters for a long and short blue flow
are given by 13,; and ry, respectively, and vy, and by 1y, for a long and short green
flow. Let 1py = 1/74, 1o = 1/, 1qs = 1/7,y and vy = 1/7,,. This mcans the
sources react like a TCP source by decreasing their rate by two in the cvent of a
lost packet, and increasing their rate accordingly in the event of no loss.

The throughput for the long blue and green flows is given by a3, and 2,4, and
by @, and 24, for the short blue and green flows. By maximisation procedures, we
can determine from Equations (7.2) and (7.3) that the distribution is given by the

solution to the following eguations:

a6 (2 4+ ngweg)

1
Ty = —— (—(\’ + \/O’(O‘ -+ 117!),l7.b,[(2 + mb,lTb,I))) (75)
| a7yl
| 1

Tps = (—1 + \/1 + 1517b,17‘b,l(2 + -'Fb,ITb,l)) (76)

Tb.s
1

Oty Tgo(2+ TgaTys) (74)

Ty (€ — Mpupg — Ny Ty — Nyl g) - (7.7)

Mgy
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Figure 7.5: The throughput of long and short flows as a function of the drop bias «. Here,
Ny = Mgy =5, N5 =1y =3, and b = 0.03.

7.5.3 Numerical results

The results we now present are determined by nunerical solutions to Equation (7.7).
Cousider the case when I = 2, the capacity of each link ¢ = 100, 7,; = 0.2 and
7gs = 0.1. We examine first the case of an equal number of green and bluc flows,
Nyy = Mgy = 5, Ny s = Mg,y = 3. First let the boost be fixed at & = 0.03. Figure 7.5
shows the throughput of cach source. The short flows get more throughput than
the long ones due to their shorter round-trip times and less number of bottlenecks.
In the long flow case, blue flows receive more than green flows when o > af’ & 1.40
but do not receive as high a rate as in a flat best-effort network until o > o] &~ 1.44.
In the short flow case, blue flows receive at least as much as they would in a flat
best-effort network when « > of & 1.42, but do not receive more than green flows
until & > o & 1.46. When the short blue flow receives as much as in the flat case,

the greens still get more because the long green flows lose sufficient throughput to
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Figure 7.6: The minimum « for the long and short flows as a function of the delay boost b.
My = gt =5, Ny =3, Ngs = 1, and b = 0.03.

the benefit of the short green flows. Overall, o = 1.46 is sufficient to cansure both
blue flow types receive enough throughput.

In Figure 7.6 we let the delay boost b vary, and measure the required o, and «y.
We notice two things. Firstly, satisfying the short blue flows requires a higher o
than the long blue flows. Sccondly, as b increases, we must increase a exponentially
to compensate.

Suppose we vary the munber of short and long blue and green flows alternatively
as in Figure 7.7. The nunber of other flows directly influences the mininuim required
drop bias. In this case, we see that increasing the number of short bluc flows increases
the size of a needed while in all other cases it reduces the « required.

Note that the delay boost is fixed at b = 0.03 here. In reality, when we change
the nmunber of ows, we also change . To obtain the relationship hetween b and the

number of flows, a queueing analysis would be needed.

7.6 Simulation study

The general test topology, shown in Figure 7.8, consists of: 1y, blue and ng; green
sources which traverse both links, the long flows; ny,, bluc and ng,, green sources
which traverse the first link, the type 1 short flows; and ny 5, Dlue and ng 4, green

sources which traverse the second link, the type 2 short flows. The links from the
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Figure 7.7: « required when we vary alternatively the number of flows of a given type and
colour while. For fixed b = 0.03.

sources and sinks to the bottleneck links were 10Mbps and had propagation delays
of 20ms.

Each router buffer size was 60 packets (i.c. Ly, = 60) and the maximum queue-
ing delay for green d was 0.0176 seconds, which represents the transmission time of
11 packets. The set of RED parameters used, were as follows: The initial threshold
ming, = 10, maximum threshold ey, = 30, the upper bound on the (blue) mark-
ing probability mazx, = 0.15, and average queue weight w, = 0.002. the success of
ABE. Throughout, v, = 0.8, 42 = 0.4, and 3 = 0.4, and the control loop updates a
and D every T = 0.5s5. The gain parameters were Ny = 1.1, ks = 0.02, K3 = 2.0
and A = 0.4. The initial values were ¢,(0) = 0.01, wy(0) = 4, and D(0) = 0.1,
d, = D(0)/2. The round-trip time 7., used in determining o, was 0.18, which is
based on the propagation delays for the short flows.

Given the randomness in dropping, average values were obtained after four sim-
ulation runs and confidence interval results obtained. Throughput and delay mea-

surements for the first 30s of simulation time are not measured as we allow the
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1y blue flows
g green flows

| | 5Mbps 50ms 5Mbps 50ms
Np,s, Dluc flows Np,sy Dlue flows
Ny, green flows g5, green fows

Figure 7.8: Simulation topology for ABE/EDF Experiments

control mechanisi to warm up to reflect more realistic operation.

7.6.1 Equal numbers of blue and green flows

We first look at the case when there are an equal munher of blue and green flows
for cach flow type, explicitly ny, = ny,, = my,, = 5 and Nyl = Ngay = Nggy = O
Figure 7.9 shows the average number of packets received by cach blue and green
connection at each time ¢. The average shown at cach time ¢ is the average obtained
over 4 simulation results for that time . For clarity the confidence intervals are
not shown. The worst-case interval for 95% confidence seen was small, 67 packets.
Figure 7.10 shows the end-to-end delay distributions received for green packets of
cach type under ABE and flat best-cffort. We show only the type 1 short flows delay
distribution, since the type 2 short flow distribution is practically identical.

The delay for green packets is small and bounded, receiving the benefit of low
bounded delay. The blue flows receive at least as much as they would as with
flat best-cffort. They actually receive more, thus receiving benefit from the use of
ABE/EDF. The green sources reccive not significantly less throughput than in flat
hest-effort.

Figure 7.9 provides some additional observations. The long blue flows receive
less throughput than the short blue flows duc to their longer round-trip time and
multiple bottlenecks. A similar observation hold for the green flows. The long
blue flows receive proportionally more throughput benefit from ABE/EDF than the
short blue flows do, which is expected. The minimum round trip-time valne wsed

in the calculation of the drop bias « was the short flows’ propagation delay. Thus,
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the long flows benefitted from being considered, for the purposes of protecting it
by dropping green packets, as having a lower round-trip time. Also, because of
) l g =t ) E k

the multiple bottlenecks, the long green flows’ losses receive a proportionally lower

share.

7.6.2 Unequal numbers of blue and green flows

We now look at the case where there is the same munber of long blue and green
flows, but there are more blue than green flows of type 1, and more green than blue
flows of type 2. The explicit values are ny; = ngy = 5, np,, = 4, ngq, =4, 1y, =1,
and ng,, = 4. Figure 7.11 shows how the average throughput received by cach type
varics. For brevity, we omit the end-to-end delay distribution which is similar to the
l)l'e\’i()llﬂ case.

We observe that, when using ABE the type 2 short blue flow get o higher increase
in throughput than the type 1 short blue sources. This is expected bhehaviour. Both
compete with the same number of flows on its bottlencck link. However, the type
2 short blue flow has more since it competes with less blue flows and more green
flows. If these greens were to become blue then the throughput of type 2 short blue

flows would reduce.
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Figure 7.9: Average number of packets transferred per green and blue connection, for each
traffic type, at each time t. When routers implement ABE/EDF and not (flat best-effort).
There are 5 blue and green flows of each flow type.
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Chapter 8

Fairness Analysis

8.1 Introduction

In this chapter, we re-examine the topic of the rate allocation in packet networks
to sources that adapt their rate according to the additive increase/multiplicative
decrease algorithm. The network sends binary feedback (cither implicitly by infer-
ring the existence or absence of packet loss), or explicitly in the form of cxplicit
congestion notification) to sources that adjusts their rate as follows. They decrease
it multiplicatively (by some factor ) upon receipt of negative feedback and increase
it lincarly (by some value ) if there is positive feedback.

This algorithm [5] was originally belicved to exhibit maz-min fairness, an allo-
cation favonring smaller rates. This is the allocation reached such that any further
increase in the rate of one source results in the decrease of some smaller rate.

Results in (21, 29] suggest that for equal ronnd-trip times TCP appears to provide
proportional fairness. Proportional fairness is a form of fairness which distributes
bandwidth with a bias in favour of flows using a smaller number of hops, in contrast
to max-min fairness, which gives absolute priority to small Aows.

Imagine there are I sources. An allocation of rates & = {ug,..., 247} amongst
these sources is said to be proportionally fair if and only if, x; # 0 for all ¢ and for

any other permitted allocation §,

1
Z Yi— T
: r;
i=1

€T

Let A;; be the amount of traffic source j carried on link L. It was shown [21] that
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ng type 0 sources of rate x, link capacity c
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n, type i sources of rate %

Figure 8.1: Parking lot Scenario with I links

this is equivalent to stating that the rates x; maximise

i
Io(@) = Z log «; (8.1)
i=1

subject to the constraints that the link capacitics in the network may not be ex-

ceeded, i.e. subject to

I
Z/ll'j.'l:j < ¢ for all links 1. (8.2)
=1
Consider, for example, what is called the parking lot scenario in Figure 8.1. It
consists of I links each with capacity ¢. Sources of type 0 traverse the entire I links,
while sources of type i > 1 only traverse the 4th link. The number of sources of cach
type is given by i = (19,7, ...). The question posed is what is the rate allocation
to cach source type.
It can be shown that the distribution for max-min fairness in this network is

given by

[ C—Nply . .
Ty = —————— = —————, t=1,...,/ (8.3)
Nng + max;. 1. N N

and for proportional fairness by

¢ Cc—negty .
To = =7 ;oW = , t=1,...,1 (8.4)

dioMi ‘ 1

From this it can be scen that the sources of type 0 get less in a proportional

fairness allocation than a max-min one.
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Qutline

In what follows we shall argue that TCP connections of equal round-trip times do
not converge to long term rates in agreement with proportional fairness. Rather, we
show that in the event of rare negative feedback and equal round trip times, TCP
distributes rates more closely in accordance with the fairness distribution algoritlun
derived here which we shall call F-fairness.

Even in the event where we have rate independent feedback we prove a result
which closer reflects the convergence than proportional fairness. We use the frame-
work of the ODE method to examine the development of long term rates for different
sources. This establishes, in the event of rare negative feedback, convergence to Iy-
fairness, as the multiplicative decroase factor and additive increase factor approach
zero.  We subsequently demonstrate by simulation that for large factors such as
those specified by TCP, the average rate for each source converges around the value
determined by ["4-fairness.

We demonstrate the behaviour of an [y-fairness distribution in the context of
the well-known example, the parking lot scenario. Finally, we cstablish that in the
event of rate proportional feedback, our results maintain consistency with the well-
lnown derivations relating TCP throughput as a function of loss ratio. However,
this does not hold for the rate independent case, which is further validation of the

assumption of rate dependent feedback.

8.2 Model

We consider a simplified network modecl, as follows. Traffic sources, labelled
1,...y4..., 1, cach send data to a given destination. The nctwork is viewed as a

collection of links labelled 1,...,1,..., L, where the only resource consumed is link

bandwidth. Every traffic source uses a fixed route. Let 2; be the sending rate for
source i and assume that the amount of traflic from source ¢ carried on link Lis A ;2;.
The latter assumption amounts to assuming that losses are negligible. If source @
sends traflic to one or several destinations over one single route, then A;; = 0 or 1
for all I, and those links ! for which A;; = 1 constitute the route followed by the
data. The general case where A;; may have values between 0 and 1 allows traffic
splitting over parallel paths. We assume that the rates of all sources are controlled
by a mechanism of additive increase and multiplicative decrease as is encountered
in TCP.

Modelling this mechanism is very complex because it contains both a random

feedback (under the form of packet loss) and a random delay (the round trip time,
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including time for destinations to give feedback). We consider all round trip times
to be constant and cqual.

The system evolves as follows. Consider a munber of time cycles of duration 7,
where 7 is the common ronnd trip of all sources. During time cycle number ¢, the
source sending rate for source i is assumed to be constant, and is given by 2;(1). At
the end of time cycle number ¢, source ¢ receives a random, binary feedback #{(¢)
which is used to compute a new valuc of the sending rate. The binary fecdbacks I2;(1)
for all ¢ are independent Bernoulli random variables given the state of the system
It) = (@), ... wil?),...,21(t). The sequence &(t) is thus a Markov chain. The
feedback models packet losses in the Internet, or the congestion experienced bit in
DecNet, Frame Relay or ATM. We assume rare negative feedback, and thus /5(t)
takes values in the set {0, 1}.

Sources react to feedback by adjusting their rate; additively increasing it, when
Ei(t) = 0 and multiplicatively decreasing it, when E;(t) = 1. This yields the

following rclationship,
it + 1) = (&) + ro(1 — Ei(t)) — nai(t) Ei(t) (8.5)

or equivalently
(L 4+ 1) = m;(L) + ro = (o + (L) (8.6)

79 is the additive increment for the rate and 5 the multiplicative decrease factor.
For TCP, ignoring the effect of exponential increase during slow start, and assuming
that all packets have the same size, 57 = 0.5 and rg = 1/7 (in packets per second)
for no delayed acknowledgements and v = 1/(27) for delayed acknowledgements.

We derive first a behaviour in an ideal case where, unlike real TCP implemen-
tations, rp and n are small. Afterwards we present simulation results which show
that a TCP-like connection’s average rate converges to a value in agreement with
our results.

We also assume that all packets have the same fixed size. The amount of neg-
ative feedback received during one time cycle of duration 7 is equal on average to
E(12:(t)|F(t)}, which is the conditional expectation of /(L) given F(l).

We consider two possible cases for the distribution of feedback (a) rate propor-

tional and (b) rate independent as follows.
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Case A: rate proportional feedback

The conditional expectation of £4,(() given F({) is given by

E(15; )—TZJI JiGE))) At 8.7)

where
JGER)) = Z A s (

Now fi(t) represents the total amounnt of traffic flow on link [, while A;; is the
fraction of traftic from source i which uses link 1. We interpret Equation (8.7) by
assuming that (/) is the probability that a packet is marked with a feedback cqual
to 1 (negative feedback) by link I, given that the traffic load on link [ is expressed
by the real munber f. In the regime of rare negative feedback, we assume that we
can neglect the ocenrrence of a packet marked with a negative feedback on several
links within one time cycle. Equation (8.7) simply then gives the expectation of the
number of marked packets received during one time cycle by source 4.

We believe that this models accurately the case where all flows receive the same
loss rate independent of packet level statistics. This is Delieved to be achieved by

using active quene management such as RED {12].

Case B: rate independent feedback

In this hypothetical case, the expectation of the amount of feedback received per

cvele would have the form

E(E:(t)|#(t)) = ¢ Zm(h ) Av

where (" is a constant, and the rest is as per case A. We do not think that this case is a
realistic model for congestion control under the assumption of rare negative feedback,

and examine it partly because it implicitly underlies the findings in [21, 29, 15].

8.3 The ODE method

With our system model, (1) is a Markov chain and the transition probabilitics
can he entirely defined using Equations (8.6) and (8.7) for case A, or (8.6) and

(8.8) for case B. We use here an alternative tool, which gives some insight into the
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convergence of the system. The tool is the ODE method which was developed by
Ljung [27] and Kushner and Clark [24]. The method applics to stochastic iterative

algorithms of the form

L+ 1) = ) + yITEW), E1) (8.8)

where £(t) is a sequence of random inputs and vy > 0 a small gain parameter, to

which we associate the ODE,

”‘;S”) = h(¥(s)) (3.9)
where
h(E) = E{A(E, #(1))|Z(t))}. (8.10)

The result of the method is that the stochastic system in Equation (8.8) con-
verges, in some sense, towards an attractor of the ODE in Equation (8.9). The
attractor ¥ of the ODE is &7 = limy_.q (t) for solutions #(t) of Equation (8.9)
given appropriate initial conditions. The case of intcrest is when the attractor is an
cquilibrinm point.

Let §= E= (E\, Es,... Ey). Since 1 and 5 are small, we can write
ro = Iy

and
= hyy
where &, and &, are two positive constants. Then il = (H,..., 1) with
HAE, @) = ky — Ei(hy + ky).
The components of the mean vector ficld ﬁ(l") arc thercfore,
L
ha(®) = ky = Tl + ky2) > g fi(@)) A
=1
in Case A with a similar cxpression for Case B:
L
Ri(E) == oy = C(y + higei) Y (1)) A
=1

As the components of the random feedback vector E(t) are independent, variables
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depending only on the current value of 7(t), and as the mean vector field satisfies
the requirements of Theorem 3 of Chapter 2 from [1], we can apply this theorem,

which we rephrase as follows:

Theorem 8.3.1 If the ODE (8.9) is globally stable, with a unique stable equilibrium
&, then for v > 0 sufficiently small, for all € > 0, there exists o constant C/{7)

tending towards zero as v tends to zero, such that

m,li”pp{“ﬁ([) -2t > e} < Cly). (8.11)

Note that multiplying the right-hand side of Equation (8.9) by v > 0 does not
modify the convergence properties of the ODE (it only amounts to a change of time
scale). For simplicity of notation, we therefore study the equivalent ODE

d;(;> = yh(i(s)).

8.4 Application to the analysis of cases A and B

We now apply the ODE method to find some properties of our system in both cases.

Case A (rate proportional feedback)
Combining Equations (8.9), (8.10) with (8.6) and (8.7), we obtain:

I
dz; !
— = 1o — Txi(ro + ;) Zg,([l)ﬁl“ (8.12)

ds
I=1

where f; = Zf Ay Tnorder to study the attractors of this ODE, we identify a

Lyapunov function for it [33]. As such, we follow [21] and [15] and note that

L

) L
S A= o= > Gl i) =
T

[

JC(T)
Ox;
where (7 is a primitive of ¢ detined for example by
1 4 1 )

-/

Gi(f) = / ()
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and
L
G =Y Gilf).
i1
Equation (8.12) then becomes,

da;

by o ) 7o _
ds = i(ro +1:) {;1:,(1‘0+7];l:,-) T o

Consider now the function J, defined by

= Z () — 7G(T)

where

. L podu T
€)= = log .
o) /0 w(ro + nu) & To +NX;

We can then rewrite Equation (8.13) as

da; a4 (T
e xi(ro + 11:1;,-)—5—:”%—).

AC () } |

FAIRNESS ANALYSIS

(8.13)

(8.14)

(8.15)

Now it is casy to sce that J is strictly concave and therefore has a unique

maximum over any bounded region. It follows from this and from Equation (8.15)
that J4 is a Lyapunov function for the ODE in (8.12), and thus the ODE in (8.12)

has a unique attractor, which is the point where the maximum of J,; is reached.

Combined with Theorem 8.3.1 this shows that, for case A, the rates @; (L) converge

at equilibrium towards a set of values that maximise J4(¥), with J4 defined by

I
— 7G(T).
; Io+l}l, @)

Case B (rate independent feedback)

The analysis follows the same line. The ODE is now

(111

o =g — C'(ro + 125 )Z(ll(fl)/llt

(.16)
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from which we derive that, for case B, the rates x;(1) converge at equilibrivun towards

a set of value that maximises .Jp(¥), with .Jg defined by

I
Jp(%) = ’,—;’Z log(re +nw;) — C'CG(T).

il

Interpretation and comparison with previous results

In order to iuterpret the previous results, we follow [21] and assume that, calling ¢
the capacity of link {, the function g can be asstmmed to be arbitrarily close to §,, in
some sense, where 6.(f) = 0if f < ¢ and 0,(J) =1 if [ > ¢. Thus, in the limit, the

method in [21] finds that, for case A, the rates are distributed so as to maximise

!

€,
Fi(X) = log ———o, S.17
4(T) Zog e (8.17)

i=1

subject to the link constraints Z;z LAy <o forall I For case B, the rates tend

to maximise
1
Fi(%) = Z log(ro + n;), (8.18)
i=1

subject to the link constraints Z;:l Ay <o forall .

Let us now compare these results with those of [21] and [29] as discussed in
Section 8.1. Both find, under the limiting case mentioned where g tends to d,,, that
the rates a; are distributed according to proportional fairness, which is equivalent
to stating that the rates z; maximise Equation (8.1) subject to the link constraints
Equation (8.2). If we compare our results we find two differences. Firstly, in [21]
and [29], the model implicitly assumes case B, whereas we contend that case A is
more realistic, in the regime of rare negative feedback.

Secondly, even for case B, our results do not exactly coincide. Indeed, in [21]
and [29], the system is directly modelled with a differential equation, without using
the intermediate stochastic modelling as we do in Scction 8.3. The differential

equation in [21] and {29} is
dz; L
=0 ( — [Z .tn(fr)/lz.,)

which differs from Equation (8.16) by a missing term ry in the second part, and

the constant (' multiplied over the whole expression. It is our interpretation that
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our modelling method using the stochastic system more accurately reflects the real
behaviour of the additive increase/multiplicative decrease algorithm, at least for the
cases where our assumptions hold.

If we compare case B with proportional fairness, we find that, since g is assumed
to be small, the difference between £ and F is small, and thus if feedback is dis-
tributed independently of the sending rate, the rates tend to be roughly distributed
according to proportional fairness. In some sense, this confirms the results in [21)
and [29]. However, on the example of the next section, we find that case B tends to
give less to sources that use several bottleneck links.

The situation is very different for case A, which we claim is more realistic. Here,
the weight given to z; tends to —logn as @; tends to oco. Thus, the distribution
of rates will tend to favour small rates more than proportional fairness. In the
next section we find an example that is indeed between proportional and max-min

fairness.

8.5 Examples of 4 and F; fairness

Fy-fairness and Fp-fairness are defined to be the distribution of rates given by
maximising Fa and #5; respectively as shown in Equations (8.17) and (8.18). In this
section we show for the example of the parking lot scenario I'4-fairness allocates
more to sources that receive a small rate allocation from proportional fairness, and
less to these sources than max-min fairness. When there is very little capacity (c is
small}, it approximates proportional fairness. For large ¢, F,-fairness varies between
max-min and proportional fairness.

We also show that I7;-fairness always allocates less than proportional fairness to
sources that get small rates from proportional fairness.

The distribution of rates determined by Fy-fairness favours giving smaller rates
more than proportional fairness and more closely reflects max-min fairness. We show
also that [;-fairness allocates less to sources with sialler rates than proportional

fairness.,

8.5.1 Analysis of I'y-fairness

Consider again the parking lot scenario from Figure 8.1. We now analyse the nature
of the rate allocations obtained by I j-fairness when using this networl. The fraction
of capacity distributed by I7;-fairness is not independent of the capacity, unlike the
proportional and max-min fairness cases.

We show here how Fy-fairness varies with capacity i.c. we illustrate what we
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have already mentioned: for higher capacities, max-miu approximates Iy while for
lower capacities, Iy resembles proportional fairness.

Since ngxg + nyx; = ¢, Fy can be expressed in terms of x
0o y P 0

/
Xo C— Mgty p

Filxo) =nolog | ———— ) + n;log | —————— 1} . 8.19

‘1(20) = no log <'1'0+1}:1;0) Zn og (’l'om+7/((~'—7'o-’"0)> (8.19)

Note that F(2e) goes to —00 as @y goes to 0 and also as 24 goes to i} This
guarantees at least one maximum in the valid range x4 € (0, 7;3) We can thus
determine the distribution of ¥ by solving F',(z9) = 0. For gencral 71 maximising
this directly is hard, as it involves solving a polynomial of order up to 2/. So we

focus ou the case when 7 = (v, w,w,...), for which the follow result may be derived:

Lenuna 8.5.1 The IF4-fairness distribution for the parking lot scenario where 71 =

(v,10,10,...) is given by

1 2
Ty = —— e v(2c ! [wrg—
o (0 = Tu?) (U( cn + row) + Twry 520
V(2en + row) + Tw?rg)? — d(w? = Tuen(ie + mw))
when v2 — 1w # 0, and
" c(ne + row) (8.21)

B IwPrg + o(2en + row)

when v® — Tw? = 0. x; is then given by

Proof: Sce Section 8.9
From Equations (8.3} and (8.4), when i = (v,w,w,...), the distribution for

max-min fairness and proportional fairness is given by xy = and @ = 7|1_1u7

respectively. To examine how Fjy-fairness distribution varics with ¢ we examine the

¢
ERT

fraction of capacity source 0 receives, xo/c, as capacity increases.
For I'y-fairness, ay/c is increasing in ¢ and it can be determined from Equa~

tion (8.20) that,
Ty

1 ¥ 1
11_1_1.1010(— = T\/Tw and }13(1] ?— = 7w for all v, I, w. (8.22)
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For ¢ small | For ¢ large
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Figure 8.2: Comparison of throughput given to type 0 sources by different fairness derivations.

We can see that Iy-fairness, in this case, allocates more of the fraction of capacity to
sources of type 0 than proportional fairness, getting further away from proportional
fairness as capacity increascs, and cxactly equalling it in the case of zero capacity.

We can also sce that Fy-fairness allocates less capacity than max-min fairness
for any capacity. When capacity is large we can see from Equation (8.22) that the
distribution to type 0 sources can be approximated by ZT\(/_E

We show in Figure 8.2 a summary of the relationship between the three fairness
criteria.

A graph of %52 for I4-fairness alongside graphs for proportional and max-min
fairness is shown in Figure 8.3 for the example when n = 05,19 = 5,1 = 2,v =
3,w = 2. This graph is representative of any parameter settings.

If there arc a lot of non-type 0 sources relative to type 0 sources (Jw is large
comparced to v), the difference between this and what max-min fairness would al-
locate is smaller than that of proportional fairness. Thus, for sources which would
receive small rates from proportional fairmess (large number of competing sources,

many bottlenecks) Fy-fairness is better approximated by max-min fairness.

8.5.2 Fjp analysis

Lemma 8.5.2 The [;-fairness distribution for the parking lot scenarvio where

7= (v, w,w,...} is given by

c (I ~ tywry
Lo = Max - 0}. 3.23
fo = thiax ('u +lho v+ )’ ) (8:23)

Proof: Sce Scction 8.9.

xo is strictly increasing in ¢. limg—o Zo/c = F+l/_u Thus, when | = 1, Fy-
fairness’ fraction of capacity is the same as that for proportional fairness (and max-
min fairness). When I > 1, the fraction of capacity allocated is always less than

proportional fairness.
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Figure 8.3: Numerical illustration of Section 8.5.1: o /c as a function of c.

In the limiting case, i.c. for very small capacity relative to the number of com-

peting sources, Fj-fairness allocates zero to type 0 sources.

8.6 Verification by simulation

In this section, we investigate the convergence of the average rate of the time series
for the sources for small values of 1 and rg, and also for more TCP-like settings for
the parameters. This is done both for the cases of rate proportional feedback and
rate independent feedback.

We do this by simulation of the stochastic process in the parking lot scenario

where 7l = (v,w,w,...).

8.6.1 Rate proportional feedback

We first verify that the convergence holds for small increments of 3 and 9. We then
show that the series converges for TCP-like settings. More precisely, we show that
in a regime of rare negative feedback, the average of the series converges to that
expected from I74-fairness for TCP-like settings of 1) and rp i.e. the distributed rates

cventually oscillate around the value determined by £-fairness.
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For the simulations, we consider the family of g, functions,

1 fze
ga(f,dp)=4 0 o f<de
( I:j) otherwise

These functions are 0 when the link usage is less than dc, an increasing function
from 0 to 1 for link usage between de and ¢, and 1 when the link usage exceeds
capacity available on the link. p is representative of how steep the increase between
0 and 1 should be.

At the start of cach simulation, cach @; is assigned a random number from a
uniform distribution on (0,¢). At cach iteration, the expectation, f5; for cach source
i is calculated. Then a random number is drawn from a uniform distribution on
(0,1). Tf this mumber is greater than or equal to the calculated expectation, a value
of E; = § is asstuned to have occurred, and z; is linearly increased by ry. Otherwise,
z; is multiplicatively decreased by 9. The system continues to evolve until the total
average capacity allocated does not change by a given tolerance.

The available simulation parameters are n, ry, 7, {, v, w, d and p. For each
chosen parameter set, the simulation is run four times, and the average of all four
are calculated along with determined confidence intervals.

With additive increase/multiplicative decrcase, the aggregate average rate allo-
cated on a link will always be less than a link’s nominal capacity ¢. Thus the sum
of the average rates of all sources converges to a value, ¢, below this nominal rate c.
How close ¢ is to ¢ is determined by the efficiency of the g, function in maximising
overall throughput.

So, for cach source, we consider the proportion of its average rate that it has of
¢’. This valuc is what we refer to as the sceled average. We obtain the Fy-fairness

distribution from Equation (8.20).

Small values of n and

Here we consider values of 9 = rg = 0.01 and 7 = 0.2. We varied the paramcters as
follows: [ =2,5, v and w=1,2,6,12, ¢ = 250,625, d = 0,0.5,1, and p = 1, 2,5, 10.

In all cases except when d = 1, we found the scaled average to converge to
that expected from Fjy-fairness, which can be seen in Figure 8.4, When d = 1,
the assumption of rare negative feedback no longer held because every source was

recciving a large amount of negative feedback at the same time.
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Figure 8.4: Scatter plot of F4 versus simulation results of type 0 sources’ fraction of capacity.
For small values of 1 and ry. Each point represents a simulation run for values of the parameters
v.w, I.dand p.

TCP-like parameter settings

Here we set 7 = 0.5, 7 = 0.2 and rg = % We varied the parameters as in the

previous case. As hefore, we found the scaled average to converge to that expected
from I-fairness except for the case d = 1. This 1s illustrated by the scatter plot in
Figure 8.5 for simulation values not including the d = 1 casc. The crror bars for 95%
confidence are there, but perhaps not too visible given that the highest confidence
interval is £0.002.

To stnmarise, we have established that I7;-fairness is a realistic model for TCP-
like connections with equal round-trip times,

We can sce the evolution of cach of the source’s time series in Figure 8.6 for the
case of sources of type 0 and type < when / =2, d = 0.5 and p = 5. They cach start
from random values and then oscillate. Convergence in the sense of Theorem 8.3.1
does not occrir because 1 and 1 do not tend to zero. However, it can observed that

the time averages couverge towards the rates predicted by Fy-fairness.

8.6.2 Rate independent feedback simulation

The case when the feedback is assumed to be rate independent as described in

Section 8.2 was also simulated. This was done for small and TCP-like values of n
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Figure 8.5: F.y versus simulation results of type 0 sources’ fraction of capacity. For TCP-like
parameter settings.

and rg and the results conipared with the values as detemined by Ip-fairness.

We found that in both cases, the results agree with that anticipated from fg-
fairness, the main finding being that even with TCP-like parameter scttings, the
average rate converges in agreement with F;.

We preserve the same conditions for simulation as in the rate proportional feed-
back case. The ouly difference is that the expectation of Ei(t) is given by Equa-

tion (8.8) rather than Equation (8.7).

Small values of n and r

Again we consider values of 5 = vy = 0.01, where 7 = 0.2 and for the same range of
] ) 8
parameters as in the previous simulations. We found the scaled average to converge

to that expected from Fp-fairness. This is shown in Figure 8.7.

TCP-like parameter settings

Here we set = 0.5, 7 = 0.2 and 1y = % Again the same parameter set was used.
Figure 8.8 shows the converged rate of wy sources versus results from calculating
Fy-fairness.

Even when [;-fairness determines that sources of type 0 should be allocated
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Figure 8.6: Example trace of the fraction of capacity time-series for two TCP-like sources of
type 0 and two of type L. (I = 2,0 =2,w=2,d =0.5,p=15)

a rate of zero, the result converges to almost sero. This is in contrast to the rate

allocated by proportional fairness. For a typical example, in one case the simula-
tion average rate for type 0 sources converged to approximately 0.0000006. Here,
I'g would allocate 0 to type 0 sources, while proportional fairness would allocate

0.08333323.

8.7 Rate as a function of packet loss ratio

The analysis also provides a simple means to derive the source rates as a function of

the packet loss ratio experienced by the source. For a given rate distribution vector
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Figure 8.7: Fpg versus simulation results of type 0 sources’ fraction of capacity. For small
values of 7 and rg.

T, the packet loss ratio ¢;(¢) over the path of source i is

2
a(t) =3 ali(FO) AL

(=t
and we interpret Equation (8.7) by observing that, with case A, the expected feed-
back over onc time cycle of duration 7 is proportional to the number of packets
sent which is given by 2;(¢)r. With the hypothetical case B, we would say that the
feedback is proportional to the packet loss ratio, but independent of the nnmber of
packets sent over one time interval (Equation (8.8)).

In the limit, we have for case A that
dai(t)

lim ———— =
t—oe

which combined with Equation (8.12) yields
1o — T {ro ) =0

where o7 = lim_eo 2;(0) and ¢} = lim,_ . ¢:(¢).
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Solving for a7 yields

—7qr I 2T
ay = T4’ + Iofq' T '0. (8.24)
2rgiy

For very small loss ratio ¢, the leading term in Equation (8.24) is given by

) Ty
€T R .
1 +
TGN

In the case of a TCP conncetion, we have ry =

% (packets per sccond) and
7 = 0.5. The previous equations give rates in packets per seconds; calling MSS the

packet size in bits, we obtain the rates in hits per second from the previous equation:

*

MSS €
T~

with (' = v/2. This last result is in line with a family of similar results [31, 10, 25].

b/s

Our results differs in the value of €7, which we attribute to the fact that we have
assumed a finid model converging towards some equilibrium, whereas in reality the
TCP window size oscillates around some equilibrium.

If we did the same analysis with the modelling of case B, we would find that the
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leading factor in x} would be in (7'_;, which does not match the previous results. We
interpret this as a further confirmation that model A is closer to reality than model
B.

8.8 Conclusions

TCP compliant sources with equal round trip times competing for bandwidth do
not, as was previously thought, end up with a distribution of rates in accordance
with proportional fairness.

Rather, we show that when feedback is rate dependent and negative feedback
rare, the distribution agrees with Iy-fairness. In addition, we confirm this by deriva-
tion of the standard TCP throughput as a function of loss formnla.

Even in the cases where feedback counld no longer be assumed to be rate depen-
dent, we have shown that proportional fairness would only approximate the long
term rate distribution, and would be reflected closer by [';-fairness.

An assumption of rare negative feedback is valid when the increments are small
(i.e. the round-trip time 7 is small) and the losses relatively low. It is our belief
that these results essentially hold when we remove the assumption of rare negative
feedback, but this remains to be verified.

Finally we mention that in [43] the authors extend the modelling described here
to the case of heterogeneous round-trip times, resulting in a rate allocation given hy

the maximisation of .
€Ty
P2 = — log ——
A Z Ti s ri 0T
€S
subject to the usual link constraints
I
Z Ay < ¢ foralll
ol

where 7; is the round-trip time of source <. This differs from Fy-fairness by the

round-trip time factor 1/7;.

8.9 Proofs

Proof of Lemma 8.5.1

o C— Vo
Filxy) =vlog | ———— |} +w/! log [ ——————}.
o) & (n) + l):lt0> o8 (mw + (e — ‘Um()))
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Solving the differential equation Ij(wo) = 0 results in a quadratic equation, Axd +
By + ¢ =0 where,

A= = Tw?), B=~(lw*+v(2n+row)), and C = c(ne+ row).

If A=0(ie v?=Tw?) then 2y = =%, which yields Equation (8.21).

If A0 (v° # lw?), we get the nsual quadratic solution, zy = w
Since we have only two extrema, only one of these solutions can lic in (0, £), and this
must be the maximum. Denote the plus and minus roots by af and @ respectively.
We have two cases.

case A > 0: Here 2 > 0 since VB2~ 4AC > 13 because 13 < 0.

x5 > 0 if and only if B+ 132 —4AC < 0 which is true since 4,C > 0. So
x, > 0.

Since both roots are greater than zero and only one of the roots can be less than
¢/v, the smallest of them, 25 must be the maximum,

casc 4 < 00 x) > 0 <= VB2=4AC < I3 which is false since 3 > 0 i.c.
zd < 0.

x5 >0 &= VB —4AC > B which is true since B < 0. So xj > 0.

Thus, in both cases, 2y is the ouly possible solution, and so Equation (8.20)

maximises Fy(wxo) for 2o € (0, £). 0

Proof of Lemma 8.5.2

I (o) = vlog(ig + niy) + Twlog (7‘0 + M) .

w

Solving F};(xe) = 0 results in Equation (8.23). This xy maximises Fg(y), since
Fg(¥0) < 0, and is less than or equal to £. However, for certain values, Fg(wg) = 0
results in 29 < 0, which is not in the valid range. Since () is a decreasing

function in this case, I's(ag) is maximised when xy = 0 for this case.0






Chapter 9

Conclusions

o We propose that ABE be introduced as a replacement for the existing best-effort
Internet service. It enables Dest-effort traffic to experience a low (ueueing
delay, at the expense of maybe less throughput, with no concept of reservation
or signalling and while retaining the spirit of flat rate pricing. It docs this
with no deterioriation in the performance of traffic that does not need the

lower delay.

The design of a multimedia adaptive application that exploits the new degree
of freedom offered by ABE is an important next step. To this end, Boutremans
aud Le Boudec [3] describe an ABE-aware audio application which combines
colour adaptation, forward crror correction control, and TCP friendly rate

adaptation for the purpose of maximising a utility function.

o The current state of the art implementation of ABE is the use of serial DSD
together with the holding queue, control loop, green undergo virtual queue test,
and the green at the back algorithm. This, we believe, has the lowest level of
complexity and still provides green traffic with the best service subject to local

and throughput transparcucy.

If a fix in TCP to remove the bias against flows with longer round-trip times [18]
were to become widespread, then the green undergo virtual queue test in vanilla
or scrial DSD would be sufficient to satisy both local and throughput trans-

parency and hence sufficent to implement ABE.

The simulation results of Chapter 6 show the beuefit of the new degree of
freedom offered by ABE. We found that, under ABE, blue flows received more
throughput than under a flat best-effort network while green flows received a
low bounded delay. DSD thus facilitates multimedia adaptive applications to

increase, in many cases, their utility.

131




132

CHAPTIER 9. CONCLUSIONS

Possible Future Work

Many avenues of future work arise of which we particularly note the following:

ABE in a class-based queueing environment: We described the implementation
of DSD for a constant rate server. It would useful to extend DSD to work in
the more general environment where the link is shared [13] and ABE is but

one class amongst potentially many.

ABE with per-flow gueueing: A scheduler which combines providing some
flows with low-delay using ABE and a form of fair queucing [38] would have
interesting fairness and flow isolation propertics. One starting point would be

the work on supporting TCP with per-flow queueing by Suter et al [42].

Increasing average green delay: In Section 4.2 on page 53, we described algo-
rithins which do not affect green loss rate but reduce the difference in delay
between blue and green flows. This work could be extended to ensure the

robability of inducing a green loss, by making it wait, is kept small.
g [=3 3 W 1

FEatension of DSD queueing analysis: The queueing analysis could be extended
to consider other arrival and service processes and to examine the structure of
the green and blue loss distributions. The Markov state description could be

broadened to incorporate strategies such as green at the back.

Fairness analysis of local transparency: The extension of the work in Chapter 8
on the fairness of additive increase/multiplicative decrease to determine the
long-term distribution of rates between blue and green traffic under optimal
local transparcucy is a natural follow on. The difliculty lies in determining the
relative delays and loss rates for blue and green traffic under realistic models
that capture the bursty nature of TCP traffic. Que possible approach would be
the use of Markov modulated Poisson processes or the N-burst arrival model
of TCP traffic as described by Schwefel in [39).

A further interesting, and admittedly hard, open problem that arises is the
determination of a distributed algorithi, in the spririt of Low and Lapsley [28],
that optimises the distribution of rate amongst hluc and green flows subject

to the constraint of local transparency and the maximum queueing delay d.
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