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Abstract

The purpose of this thesis is the numerical approximation of the fluid-structure interaction
problem appearing when an incompressible fluid flows in a compliant vessel. This is indeed
the typical situation arising in the hemodynamics of large arteries. The vessel wall dynamics
is described by means of a thin elastic membrane model while the fluid motion by the Navier-
Stokes equations for incompressible Newtonian fluids.

We account for quitc large deformations of the structure, which induce a non negligible
movement of the fluid domain. The fluid equations are described resorting to an Arbitrary
Lagrangian Eulerian (ALE) formulation.

The first part of this work deals with the analysis of the ALE technique in the context of
a finite clement approximation. Stability and convergence properties of a few finite element
ALE schemes, and their relation with the so called Geometric Conservation Laws (GCL) are
investigated on a lincar advection diffusion equation. The obtained results are then generalised
to the incompressible Navier-Stokes equations in a moving domain. Moreover we show how
inexact factorisation schemes can be extended straightforwardly to the ALE framework.

In the sccond part of this thesis we focus on the fluid-structure problem. We consider
a finite element approximation in space, which allows for possible non-conformitics between
fluid and structure discretisation. Morcover, we propose three fully implicit time-advancing
schemes and we analyse their stability properties. In particular we prove an unconditional
stability result for two of them, while for the third one, which employs an explicit structure
solver, we show that the stability condition is not more restrictive than the one associated to
the structure discretisation. Finally, we present several numerical results on a simplified 2D
geometry. In particular we are able to simulate the propagation inside the vessel of a pressure
pulse imposed at the inflow section.

One of the peculiar features of the coupled problem at hand is, indeed, the appearance of
pressure and flow rate waves inside the vessel. This fact introduces the further difficulty of
devising suitable boundary conditions which allow to “absorb” the outgoing waves. To this
aim, we couple the 3D fluid-structure model with a reduced mono-dimensional model which
acts as an “absorbing” device for the waves exiting the computational domain. Numerical
results showing the effectiveness of this technique are presented as well.






Version abrégée

Cette thése concerne 'approximation numérique des problémes d’intéraction fluide-structure
qui apparaissent dans Pétude de I'écoulement d’un fluide incompressible & Pintérieur d’un
vaisscau déformable. Cela est, en effet, la situation type en hemodynamique, c’est-a-dire
dans ’étude de I’écoulement sanguin dans les grandes artéres. Le mouvement de la paroi du
vaisseau est décrit & Paide d’un modéle élastique membranaire; quant 3 1’écoulement fluide,
il est décrit par les équations de Navier-Stokes pour un fluide newtonien incompressible. On
considere le cas oil les déformations de la structure peuvent étre assez grandes et induisent un
mouvement non négligeable du domaine fluide. Le probléme fluide est alors décrit en utilisant
une formulation ALE.

La premiére partie de cesravail porte sur I’analyse de la technique ALE dans le contexte
d’une approximation par éléments finis. On étudie, sur une équation de diffusion et transport
linéaire, les propriétés de stabilité et de convergence de plusieurs schémas ALE éléments finis,
ainsi que leur relation avee les lois de conservation géométrique (GCL). Les résultats obtenus
sont ensuite généralisés aux équations de Navicr-Stokes incompressibles dans un domaine
mobile. De plus, on montre comment des schémas de factorisation inexacte pour la résolution
des équations du fluide peuvent étre étendus dans le cas d’une formulation ALE.

Dans la deuxiéme partie de la thése, on se concentre sur le probléme fluide-structure. On
considére une approximation en espace par éléments finis qui permet des non-conformités
entre les discrétisations fluide et structure. Ensuite, on propose trois schémas en temps
complétement implicites et on analyse leurs propriétés de stabilité. En particulier, pour deux
d’entre eux, on démontre un résultat de stabilité inconditionnelle; pour le troisitme, qui
utilise un solveur explicite structure, on démontre que la condition de stabilité n’est pas plus
restrictive que celle qui est associée & la discrétisation de la structure. Enfin, on présente
plusieurs résultats numériques sur une géométrie simplifiée bi-dimensionnelle. En particulier,
on est capable de simuler la propagation, a I'intérieur du domaine, d’une impulsion de pression
imposée sur la section d’entrée.

Un des aspects caractéristiques du probléme couplé est, en effet, la formation des ondes
de pression et de débit 4 'intérieur du vaissean. Cela introduit des difficultés supplémentaires
pour établir des conditions au bord permettant d’absorber les ondes sortantes. Cette difficulté
est surmontée par le couplage du modéle fluide-structure 3D avec un modéle réduit, mono-
dimensionnel, qui agit comme un “dispositif absorbant” pour les ondes sortantes du domaine
de calcul. Enfin, on présente des résultats numériques qui montrent Péfficacité de cette
technique.
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Introduction

Fluid structure interaction problems appear in many different applications of physics and
engineering. We may cite, for instance, acroelasticity problems or fluttering of wings and
structures, wind induced oscillations of bridges, gas explosions in pipelines or buildings, hy-
draulic shock absorbers, vibrations or water hammer effects in pipe network and, of course,
the application we are interested in, that is blood flow in large arteries. These are only a few
examples drawn from a wide range of applications.

In all the aforementioned situations, fluid and structure dynamics influence each other.
Indced, the structure deforms under the action of the fluid stresses and, conversely, the fluid
follows the structure displacement; that means not only that the fluid velocity equals that of
the structure at the interface, but that the region itself in which the fluid is confined changes
as a consequence of the structure motion.

Typically, structure dynamics (displacement, strains and stresses) is described in a La-
grangian frame of reference, i.e. with respect to a fixed configuration Qg . On the other hand,
the fluid equations are tackled in an Eulerian framework, which allows us to describe the fluid
quantities at each time ¢ and at each point z of the physical domain QF that is considered in
the application.

In those cases where the structure deformation is very small, the fluid domain QF may
be thought of as fixed and the presence of the structure accounted for by suitable boundary
conditions (called transpiration conditions). Standard formulations and numerical approxi-
mation schemes may thus be adopted for both the fluid and the structure. This approach is
widely used for instance in the study of wing fluttering or more generally structure vibrations
induced by a fluid flow.

In the case where the structure displacement induces non negligible deformations of the
fluid domain, as for instance in hemodynamics where, during a cardiac beat, the diameter of
an artery may undergo a variation of about 10%, we are faced with the problem of solving
fluid equations on a moving domain. The first part of this work deals precisely with this
aspect.

Different techniques have been proposed in the literature to numerically approximate
equations on moving domains. We mention, among others, the Arbitrary Lagrangian Eulerian
(ALE) formulation, proposed at the beginning of the eighties (see e.g. [20, 48]); the space
time approach, sce c.g. [88, 89, 59] and [61] for an application to fluid structure problems;
the fictitious domain method ([37, 38]); the level set method ([12]); and finally the immersed
boundary method proposed by C. Peskin [69, 68] and applied successfully since the seventies,
to the simulation of heart contractions. Among these techniques, very likely the most popular
is the ALE formulation. It is based on the introduction of an appropriate (arbitrary) mapping

1



2 INTRODUCTION

A, from a reference fixed configuration Qf to the current moving domain QF () :
A QF 5 QF @), x(Y,1) = A(Y), VY e Qf.

We will refer to Y as the ALE coordinate and x as the Eulerian coordinate. A triangulation
Th,t of the physical domain 2F(t) can be easily obtained as the image through the mapping
Ay of a triangulation 7, on 95 , provided .4; is invertible and sufficiently regular.

In this way, we will obtain a mesh 7y that naturally follows the boundary movement.
In order to effectively apply the ALE technique, one has then to rewrite the equations in
a moving frame of reference: the space derivative terms are left expressed as a function of
the Eulerian coordinate x, since their expression is much simpler; on the contrary, the time
derivatives will be computed along a constant Y line. Introducing the notion of domain
velocity w = %ﬁ (also frequently called mesh velocity since it represents in fact the velocity
of each mesh node in the physical space}, a generic conservation law of the following type

du

defined on a moving domain QF (t), can be written in ALE form as

Ou

—| -w-Vau+V,-Flu)=f  inQ"@), (0.0.2)
atly
thanks to relation
ou ou
Bty " at) T Ve

Formulation (0.0.2) is not the only possible one in the ALE context. Another frequently used
formulation, equivalent to (0.0.2), which has the advantage of maintaining the conservation
properties of equation (0.0.1), reads

8(J4,u)
At

+J4 V- (F—wu) =Ja,f, (0.0.3)
Y

where J4, is the jacobian of the ALE transformation A,. Its derivation will be presented in
Chapter 1. We will refer to formulation (0.0.2) as the non-conservative form and to (0.0.3)
as the conservative one.

In spite of the popularity that ALE formulations have gained in the last years, a rigorous
mathematical analysis of both conservative and non-conservative forms as well as a thorough
investigation of the properties of the numerical approximations deriving from them is still
missing. The present work is a contribution to the study of ALE numerical schemes based on
finite element approximations.

Another relevant aspect in the investigation of ALE schemes concerns the so-called Ge-
ometric Conservation Laws (GCL). The ALE formulation has been used extensively for
fluid structure interaction problems particularly for compressible fluid dynamics and aero—
elasticity, using mainly finite difference and finite volume schemes. In some of those works
numerical instabilities and oscillations were noted. The main cause has been related to a
misrepresentation of the convective fluxes due to an inaccurate calculation of geometrical
quantities such as surface normals and volumes of the control cells used in finite-volume
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computations. When dealing with a moving domain it is possible to write the differential
equations governing the “evolution” of such geometrical quantities during the domain move-
ment. A failure of the numerical scheme in correctly representing such an evolution may
cause a loss of the conservation properties, which may lead to instabilities. Ways to overcome
the problem have been devised for finite volume schemes and they result in an appropriate
evaluation of the geometric guantities to be used in the time advancing scheme. This led to
the development of the GCL. Unfortunately, no clear-cut analysis is so far available and the
real significance of those conditions in terms of scheme stability and accuracy properties has
not yet been established. In [56], M. Lesoinne and C. Farhat have analysed a spatial finite
volume ALE formulation and have related the GCL to a minimal condition on the precision
of the quadrature formula used to compute time-integrals. Notably, the minimal degree of
exactness must depend on the number of space dimensions. In the same work, a preliminary
analysis on the form of the GCL conditions for finite element schemes is given. In a later work
[44], H. Guillard and C. Farhat have proved that the GCL are sufficient to guarantec that
particular finite volume schemes remain at least first order accurate in time, independently
of the law according to which the domain moves.

Nevertheless, a thorough analysis of the implication and possible limits of the ALE for-
mulation in the context of finite element methods is still missing.

In part I of this thesis we will focus on some aspects of the ALE formulation. We begin
by investigating the smoothness conditions on the ALE mapping required to obtain a proper
discretisation. We carry out a comparison between conservative and non-conservative formu-
lation, reinterpret the GCL in a finite element context and analyse stability and accuracy
properties of a few time marching schemes. The major part of this investigation will be made
on a linear scalar advection diffusion equation.

We then discuss time discretisation. We may ask the following general question: given a
time marching scheme which features some stability and accuracy properties when applied to
a differential equation defined on a fixed domain, does it preserve the same properties when
applied to the same equation defined on a moving domain and written in ALE from? And,
furthermore, what role do the GCL play in this regard?

We will show that for an Implicit Euler scheme applied to the conservative formulation
(0.0.3), GCL are sufficient conditions to recover an unconditional stability resuls.

This result is not as general as we wounld have hoped; indeed, we will see that other
time discretisation schemes (first or second order accurate), which are unconditionally stable
when applied to a differcntial equation on a fixed domain, do not preserve the same stability
propertics when written in ALE form.

On the contrary, our conclusion is that the accuracy of time discretisation schemes does not
degrade when solving problems on moving domains in ALE form; we prove this theoretically
for one scheme and numerically for others. In this regard, GCL seem not to play any relevant
role in the accuracy of the numerical schemes.

Part of our work on the ALE formulation, notably the derivation of the conservative
and non-conservative ALE formulation and their corresponding finite element approximation,
and the stability result for the Implicit Euler scheme, has already been published in a work
coauthored with L. Formaggia, entitled A stability analysis for the Arbitrary Lagrangian
Eulerian formulation with finite elements [30].

In Chapter 3, much of the work done in Chapters 1 and 2 on a linear advection diffusion
equation will be generalised to the incompressible Navier-Stokes equations. In particular, we
will discuss the finite element approximation of the fluid equations in the ALE framework and
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we will extend to this situation the unconditional stability result obtained for the Implicit
Euler scheme, satisfying the GCL, that was introduced in Chapter 1. We are interested
in solving the Navier-Stokes equations with inexact factorisation schemes, which allow us to
decouple the computation of the pressure from that of the velocity field; in particular we focus
on the Yosida projection scheme proposed in [77]. We will describe how these techniques can
be extended to the ALE framework and we will show their effectiveness on a numerical test
case.

This analysis represents a necessary step toward the approximation of the fluid-structure
interaction problem that we propose to investigate.

The second part of this thesis is dedicated to the study of the fluid-structure interaction
problem arising in hemodynamic applications.

Cardiovascular diseases are one of the leading causes of death in Western countries. They
are closely related to altered flow conditions such as separation and flow reversal zones or
low and oscillatory shear stress zones. A detailed understanding of the local hemodynamic
environment can have useful clinical applications, mainly in predicting of the consequences of
a surgical intervention.

In large arteries, the mechanical interaction between blood and the arterial wall plays
an important role in the control of blood flow in the overall circulatory system. Indeed,
during the first part of the cardiac beat (systolic phase), the wall deformation accumulates
part of the mechanical energy as elastic energy which will afterwards be returned back to the
fluid in the second part (diastolic phase). This mechanism allows the propagation toward
the peripheral vessels of pressure waves coming from the heart and guarantees an almost
uniform flow rate at capillary level. Hence, fluid/structure interaction phenomena must be
appropriately accounted for in the modelling of blood flow. In particular, the deformation of
the geometry should be properly described since, as we have already mentioned, the radius
of an artery may vary up to 10% between diastole and systole.

The mathematical modelling of this problem is a hard task because of the complexity
of blood and arterial tissues and the lack of *in-vivo” measurements. Blood is a complex
suspension, in an aqueous polymer solution called plasma, of different particles: red cells,
white cells and platelets. Yet, in large arteries, these particles have dimensions much smaller
than the diameter of the vessel and blood can be considered a homogeneous and incompressible
fluid. Furthermore, it can be assumed to behave as a Newtonian fluid. This assumption is no
longer true in small vessels or capillaries.

The modelling of arterial wall is even more difficult. Indeed, arteries are formed by three
layers: an intima, a media and an adventitia, each of them being constituted by different
materials with different mechanical features such as collagen fibers, elastin, smooth muscle
and water. For an overview on the mathematical modelling of blood flow we refer to [79]. In
the present work we will consider a very simple model both for blood and artery: for blood
dynamics we adopt Navier-Stokes equations for incompressible Newtonian fluids, while the
arterial wall will be described as a thin membrane in cylindrical configuration. Moreover, we
will account only for radial displacements. )

Figure 1 shows an idealised configuration of a segment of an artery. The boundary I'?” rep-
resents the deformable arterial wall while the two sections S| and S, are “artificial” boundaries
introduced only to bound the computational domain. In the geometry depicted in figure 1
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Figure 1: A sketch of a segment of an artery.

we will consider the coupled problem

pou+ pu- Vu — div (2uD(u) — pI) = 0

in €, (0.0.4)
diva=0
. 627] 827] 631"
Pw _6t2r —a 8227‘ + b — c(’)_?z{;t =9, on Fau (0‘0~5)
u=re
' on Iy (0.0.6)

[(p = pect)n —~ 2uD(u) -n]- e, =

where u is the fluid velocity, p the fluid pressure and 7, the wall displacement (in the radial
direction) computed with respect to the reference cylindrical configuration I'y.  We have
denoted by D(u) the strain tensor D{u) = (Vu + VTu)/2 and by I the identity tensor. The
parameters appearing in (0.0.4) and (0.0.5) characterise the physical properties of blood and
arterial tissue. Finally, equations (0.0.6) enforce the continuity of velocity and stresses at the
fluid-structure interface and constitute the coupling conditions between fluid and structure
equations. Here n is the normal outward unit vector to I'Y’ and e, the unit radial vector.
This model will be addressed in Chapter 4. We will consider and analyse a global weak
formulation for this coupled problem, which accounts at the same time for the fluid and the
structure equations, and we will describe in detail a finite element approximation in the case
of both a conforming and a non-conforming discretisation between fluid and structure.

About time discretisation, many strategies can be envisaged in order to effectively solve
the coupled problem. See, for instance, [41] for an overview of possible coupling algorithms.
The simplest strategies, known as staggered or partitioned procedures, are obtained by making
the coupling explicit and allow to solve at each time step the fluid and the structurc equations
only once and independently. For instance, in our case, given an approximation 1™ of the
wall displacement at time #*, we may solve the fluid equations with an imposed velocity,
provided from the previous time step, at the fluid-structure interface (which means to use the
first of the coupling conditions (0.0.6) as a Dirichlet boundary condition), thus obtaining a
fluid velocity and pressure; then, we solve the structure equation with a forcing term ® which
depends on the newly computed values of u and p, and we obtain the wall displacement at
the new time step 1.

Unfortunately, we have experienced that staggered algorithms are unstable for the problem
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at hand when the wall density is comparable with that of the fluid, which is indeed the case
when the parameters of the model are chosen within a physiological range.

For this reason, in this work we will consider only implicit coupled algorithms. In partic-
ular, we will propose three algorithms; the first two use an implicit structure solver and will
be proven to be unconditionally stable. The third one employs an explicit structure discreti-
sation. We will obtain, in this case, a conditional stability result with a stability constant
governed only by the structure discretisation (in other words, the proposed coupled algorithm
does not engender a further condition on the time step).

The use of implicit coupled algorithms makes simulations much more costly. Indeed, at
each time step we are faced with a non-linear system to solve. The strategy adopted in the
present work to compute the solution of such a non-linear system consists of simply sub-
iterating between fluid and structure until the coupling conditions {0.0.6) are satisfied within
a fixed tolerance.

We will also present many numerical results on a simplified 2D geometry. In particular,
we will simulate the propagation of a pressure pulse, imposed at the inflow section, inside the
vessel. This simulation would represent the propagation, in a segment of straight artery, of a
pressure wave coming from the heart and traveling towards the peripheral vessels.

Indeed, as already anticipated previously, a peculiar feature of this fluid-structure interac-
tion problem is the appearance of traveling pressure waves along the vessel. Even if the flow
is governed by parabolic equations such as the incompressible Navier-Stokes, the behaviour
of the coupled fluid-structure system is in many respects more akin to that of a hyperbolic
problem. As a consequence, an additional complexity arises in the treatment of the “inflow”
and “outflow” boundaries (section &; and Sy, respectively), where one would like to have
a correct representation of the traveling waves, without spurious reflections. In the case of
compressible flows and more general hyperbolic equations, the problem of devising absorbing
boundary conditions has been widely studied, sce for instance [22, 35, 36]. However, in our
case, where the propagation phenomena are due to the fluid-structure interaction and not to
the fluid compressibility, little may be found in the literature.

In the present work, this issue is tackled by coupling the 3D fluid-structure problem with
a reduced one-dimensional model, which acts as an “absorbing” device for the waves exiting
the computational domain. This reduced model is obtained by integrating the fluid equations
over each section normal to the axis of the vessel and describes the coupled system in terms
of transversally averaged flow rate and pressure. Figure 2 illustrates this idea.

3D model

Figure 2: Coupling a 3D model with a 1D model

In Chapter 5 we will first present and analyse the 1D model. We will show that it is a
hyperbolic system of equations with source term, hence well suited to describe propagative
phenomena and we will derive an a priori energy inequality for the sub-critical case, which is
the most relevant for our target application. The 1D model will be discretised with a finite
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element Lax-Wendroff scheme.

We will next consider the coupling between the 3D fluid-structure model and the 1D
reduced one. Referring to figure 2, suitable coupling conditions must be devised, at the
interface 'y, in order to make the two models interact with one another. We will propose
several Interaction Models and we will present numerical results for a few of them. The 1D
model provides only averaged quantities at Ty, such as the averaged pressure or the mass
flux. We are then faced with the problem of imposing averaged quantities as boundary
conditions {called defective) to the fluid equations. This aspect is the subject of a paper
coauthored with L. Formaggia, J.F. Gerbeau and A. Quarteroni, entitled Numerical treatment
of defective boundary conditions for the Navier-Stokes equations [28]; the results obtained
therein will be summarised in Section 5.2.2. Finally, numerical results are provided for a
2D /1D models coupling, showing the effectiveness of this technique in dramatically reducing
spurious numerical reflections.

To our knowledge, this approach is completely new. It is the subject of two papers On
the Coupling of 3D and 1D Nawvier-Stokes equations for Flow Problems in Compliant Vessels
by L. Formaggia, J-F. Gerbeau, F. Nobile and A. Quarteroni [29] and Multiscale Modelling of
the Circulatory System: a Preliminary Analysis by L. Formaggia, F. Nobile, A. Quarteroni
and A. Veneziani [32].

Even though we are constantly inspired by the application to blood flow in arteries, many
of the considerations in Chapters 4 and 5 can be applied to other situations as well; notably,
whenever an incompressible fluid flows in a compliant vessel. An example is provided by the
study of vibrations or water hammer effects in pipe network flows. This class of problems
has been extensively investigated, see for instance the review article [90]. The methodology
proposed in this work may be of interest in those situations as well. For this reason we have
tried to give a presentation of the subject a little more geperal than the specific hemodynamic
application.

This thesis is the synthesis of a three year work that has been partially carried out in
collaboration with other people, as attested to by the coauthored papers cited in this In-
troduction. Yet, a considerable part of the present work, notably the results presented in
Chapters 2, 3, 4 and some considerations on the equivalence between conservative and non-
conservative ALE formulation presented in Chapter 1, are the fruit of an individual research
and have not yet been published.






Part I

ALE approximation of differential
problems in moving domains






Chapter 1

Parabolic equations in moving
domains

Introduction

In this chapter we will describe in a rather abstract form the ALE approach for a generic
conservation law of the following type

ou
Ft—+V,(~F(U)=f, (1.0.1)

defined on a moving domain. We will derive the conservative and non-conservative formula-
tions already presented in (0.0.2) and (0.0.3) and we will introduce their corresponding weak
formulations. Moreover, we will investigate the smoothness condition that the ALE mapping
should satisfy if we wish to maintain a H! spatial regularity which is the one enjoyed by
piecewise continuous finite element spaces. The aim is to find a condition compatible with an
approximation of the ALE mapping by means of finite elements base functions, which will be
indeed addressed later on in the chapter.

In a second part of the chapter, we will consider a linear transport-diffusion model problem.
Some considerations on the existence of weak solutions and the equivalence between the
different formulations are made in section 1.6.2. Sections 1.7, 1.8 and 1.9 deal with the finite
clement space discretisation of the model problem and the Implicit Euler time discretisation
both for the conscrvative and the non-conservative formulation; a stability analysis is carried
out in the two cascs. In this framework, we will introduce the Geometric Conservation Laws
(GCL) which have been originally designed for finite-volume schemes as a sort of “patch test”
to which the discrete scheme should obey. We will recognize their formulations in a finite
element scheme and we will assess their relevance for obtaining a stability result independent
of the domain movement law for the Implicit Euler discretisation of the conservative weak-
ALE formulation.

The contents of this chapter, with the exception of subscction 1.6.2, have been already pub-
lished in the paper by L. Formaggia and F. Nobile A stability analysis for the Arbitrary
Lagrangian Eulerian formulation with finite elements [30].

11
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1.1 The Arbitrary Lagrangian Eulerian (ALE) formulation

The Arbitrary Lagrangian Eulerian frame of reference, that we adopt when the computational
domain changes, may be defined in a way similar to the Lagrangian frame that is widely used
in continuum mechanics. Let 4, be a family of mappings, which at each ¢ € (t5,T) associate
a point Y of a reference configuration Qg (the domain configuration at time £ = £g) to a point
x on the current domain configuration €; :

A QC R 5 Q c R, x(Y, 1) = A(Y).

We assume A4; to be an homeomorphism, that is A, € C%(Qy) is invertible with continuous
inverse A;! € C°(1%;). Furthermore, we assume that the application

t+x(Y,t), Ye

is differentiable almost everywhere in [ty, T'}. In the following, we will denote by I the interval
[to , T].

We name Y € Q the ALE coordinate while x = x(Y,t) will be indicated as the spatial (or
Eulerian) coordinate.

In the following we will often have the necessity of switching between the different framc of
reference. For the sake of notation, we will use the shorthand notation €, x I to indicate the
set

{(x7t)' XEQz,tEI}.

Let f : € x I — R be a function defined on the Eulerian frame and f := f o A, the
corresponding function on the ALE frame, defined as

FixI =R F(Y,1) = f(A(Y),1).

The symbol %‘Ll will indicate the time derivative on the ALE frame, written in the spatial

coordinate. It is defined as

of

o Y x I 2R,

of = 3_f(y,t), Y = A7 (x) (1.1.1)
Y :

Bt v (x,t) Bt

For analogy, we will indicate by %tL| the partial time derivative in the spatial frame.
x

We then define the domain velocity w as

w(x,t) = 9x

5 L{ (1.1.2)

1.1.1 Derivation of ALE formulation for first order time dependent prob-
lems in conservative form

Let us consider the time dependent problem

find w:; xI—R, such that % + L(u) =0, (1.1.3)

x
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with appropriate initial and boundary conditions.

Here, £ indicates a differential operator (linear or non lincar) in the space variable x. In
order to find the equivalent equation for u o A;, a standard application of the chain rule to
the time derivative gives

du

Gu| _ Ou
Bt

y &

Ix u
x+ Bt Vgt = —

+w - Veu. (1.1.4)
v o

x

The symbol Vy is here used to indicate the gradient with respect to the x variable, while Vy
will be used when the gradient is taken with respect to the reference domain. Thus

o

ot

+ L(u)—w- V=0 (1.1.5)
Y

is the ALE counterpart of (1.1.3). The main difference with the original formulation is the
appearance of a convective-type term due to the domain movement.

Often, PDE’s governing continuum mechanics problems are written in conservative form,
which reflects the fact that they express indeed conservation properties. Since the context in
which the ALE technique is used is normally that of conservation laws, in the following we will
always refer to equation written in conservative form. Nevertheless, large part of the results
illustrated in this work may be readily extended to the more general case. The conservation
equation for a quantity v is written as

Ou

% +Ve-F=f (1.1.6)

x

where F indicates the flux vector which is generally a function of u and of its first and second
space derivatives, while f is a possible source term. The application of relation (1.1.4) gives

u
ot

+ V- (F)—w-Vyu=f (1.1.7)
Y
Expression (1.1.7) represents one of the possible forms in which a conservation law may be
cast in the ALE frame. Another possible ALE formulation may be directly derived from the
integral formulation of the conservation equation. We indicate the Jacobian matrix of the
ALE mapping as

and its determinant,
J4, = det(J 4,).

We now make use in the following derivation of the Euler expansion formula[2], which relates
the time evolution of J4, to the divergence of the domain velocity field, according to the
following differential equation

aJ 4,

Sl = (118)
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which is valid for Y € Qp, x = A(Y) and ¢ € I. Supplemented by the initial condition
J4, = 1for t = ¢y, expression (1.1.8) may be also interpreted as an evolution law for the
Jacobian determinant, once the domain velocity field is known. This interpretation is not
the usual one, since expression (1.1.8) is normally regarded as an identity satisfied at each
time during the domain evolution process. Yet, considering (1.1.8) as an evolution law may
shed some light on a possible interpretation of the Geometric Conservation Laws, as it will
be discussed later on. The derivation of expression (1.1.8), yet relative to a full Lagrangian
frame, may be found inf2]. It may be readily extended to the ALE frame.

We wish now to find an expression for a term in the form

d
— dQ 1.1.9
7 J,, 0 (1.1.9)

where V} is an arbitrary sub-domain ¥, C ;. We will indicate with ¥ the subset of Qy such
that V; = A;(V,). We have

d d O(uda,)
— Q=— 0= ——= dQ 1.1.10
T el Ll S T M (1.1.10)
then, using expression (1.1.8), we finally obtain that
d Ou
e Q= —_ . 1.1.11
o /WUd . [[ﬂ y +uVy w] ds, ( )

which is a generalisation of the well known Reynolds transport formula[2].
Consequently, the conservation equation (1.1.6) in integral form and ALE frame is

4 udQ+ [ V- (F—wu)dﬂ:/ fdsd. (1.1.12)
dt Jv, Vi i

In the previous relation all integrals have been expressed in the current frame of reference.
However, one may choose to write the equation with respect to the reference domain. This
would lead to the following expression

f {7,

and, due to the arbitrariness of Vj, we may write the following differential equation,

B(JAt u)
ot

+J4, [Vy - (F — wu) —f]}dQ:O, (1.1.13)

+ J4, Vi (F—wu)=Ju,f, (1.1.14)
Y

which is another admissible form of the ALE equations (see, for instance,{54]).]. Relation
(1.1.14) could have been derived directly from (1.1.7) by employing the Euler expansion
formula (1.1.8).

The previous presentation had the objective of deriving some common forms in which the
ALE equations are presented in the literature. Another approach may be followed by using a
variational formulation as a starting point, which is the basis for the derivation of ALFE finite
elements.

'Relation (1.1.14) may be written completely on the reference dormain by transforming the divergence term
by exploiting the Piola-Kirchoff theorem([14]. We omit the derivation here; it may be found in [54].



1.2. WEAK FORMULATION IN THE ALE FRAME 15

1.2 Weak formulation in the ALE frame

The flux F = F(u) in (1.1.6) may be often decomposed into two parts
F(u) = F.(u) + Fy(u) (1.2.1)

where F, does not contain any derivative of %, while Fy{u) contains first order spatial deriva-
tives of the unknown. A typical case is the Navier-Stokes equations which govern fuid dy-
namics, where F, contains the convective terms, while F,, represents the viscous fluxes.

A weak formulation of (1.1.6) may be formally obtained as

fr (G

where W(£),) is the space of test functions defined in §2;, with the required regularity at each
time ¢. For all £, u is sought in a suitable functional space, which essentially coincides with
W(;) up to the boundary behaviour. Relation (1.2.2) is formally the weak formulation of
(1.1.5). Yet, in that form is impractical, since it contains a time derivative in the Eulerian
frame, while it will be natural to work with variables that follow the domain evolution.
Morecover, the test functions cannot be taken constant with time since they should vanish on
the part of the moving boundary where essential boundary conditions are applied. It is then
natural to recast them in the moving frame of reference as well.

To that purpose, we consider a space of admissible test functions Y((p), defined on the
reference domain, and made of functions % : £ — R that are smooth enough. The ALE
mapping then identifies a corresponding set X(£;) of weighting functions on the “current
configuration”, defined as follows,

XOQ)={y: UxI->R ¢=19o4, ¥V} (1.2.3)

At cach time £, we must have X(€,) € W(€) in order for the function space to be admissible.
This condition will imposc constraints on the regularity of the mapping, as it will be analysed
in a later scction for the particular case in which W(§;) = H1(Q,).

+Vx-Fe(u)) a0 — / Fy(u) Vit d2 = / BidQ, VP e W), (12.2)
x Q¢ Q

In the following of this section we will illustrate two possible ways of building a weak formu-
lation in the ALE frame.

1.2.1 A non-conservative formulation

If we transform the Eulerian time derivative of relation (1.2.2) into its ALE counterpart the
following weak formulation may be written

[

1.2.2 A conservative ALE formulation.

A+ | P (Vy - Felu) ~ wVyu) dQ — / Fu(u) - VepdQ = / PfdQ
Y Q Q Q

Vip € X(§y), (1.2.4)

Another ALE variational formulation may be obtained bearing in mind that functions in
V(%) do not depend on time. An immediate consequence is that:

B .
0= m’y— pil, T Vb Ve, (1.2.5)
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and then, for any time-differentiable function g = g(x,t), we have that

a(yg)

o . Ve X(). (1.2.6)

_, 9
”waty

Y

By recalling expression (1.1.11), one may then write the following useful formulae, valid for
any ¥, x € X().
d

L pao= [ ¢v, wde, (1.2.7)
dt Jo, 2
d Ou
% /n. Yudl = ‘/(;t 1/1(?3—t Y +uVy - w)d2 (1.2.8)
d
2 / Yxd(t = / P$x Vi - wdld. (1.2.9)
dt Qt Qt

The alternative ALE weak formulation may then be obtained following two routes. The first
moves from (1.2.2), taking ¢ € X(Q;), expanding the time derivativc using (1.1.4) and finally
exploiting relation (1.2.8). The result is the following expression

d
= nt¢udﬂ+/nt¢(vx-(Fe(u)—wu))dQ—/Qt F,,(u)~Vx1/JdQ:/m P fdQ,
Vi € X(9). (1.2.10)

The second formulation is obtained from the differential expression (1.1.14) which in weak
form reads

)dQ+/ Pda, (V- (Folu) — wu)) dQ2 -/ Ja,Fy(u) - Vb dQ =
Y Q9 Qo

/JM&fdn Vi € V(). (1.2.11)
2

By exploiting the fact that g = 0 (see (1.2.5)) the time derivative may be moved out of
g ¢y

the integral sign and the integrals may be transformed on the current domain configuration,
leading again to (1.2.10). In this formulation the transient term is expressed as a total time
derivative while the ALE convection term appears in the form of the divergence of the product
of the domain velocity field w and the solution u. The time derivative term accounts for both
effects due to the variation of the solution u and the domain movement. For conservation
equations, it has the advantage that the ALE term is itself in “conservation form”, therefore
the modification of an existing “fixed-grid” code is (at least apparently) straightforward, as
it is just required to change the definition of the fluxes. In addition, the formulation is
“conscrvative”, in the sense that, taking any V C ; with Lipschitz continuous boundary,
should |y = const be an admissible test function?, we derive from (1.2.10), taking f = 0,
that

i/ud9+/ F-ndl - uw - ndl’ =0, (1.2.12)
dt Jy v av

2This is always the case if V C @
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i.e. in absence of source terms, the variation of u over V' is due only to boundary terms. It
can be noted that also the contribution of the ALE term to the conservation reduces to a
boundary term, which is indeed related to the additional “flux” of » through the boundary
as a consequence of its movement?.

Formulations (1.2.4) and (1.2.10) are equivalent at the continuous level, however they lead to
different discrete problems. In particular, the conservation property just mentioned, may not
be satisfied by the finite dimensional problem associated to (1.2.4).

1.3 On the regularity of the ALE mapping
We may note that the fulfillment of the appropriate regularity condition for the functions in
X(§)) may impose a certain level of regularity to the ALE mapping. Since we are mainly
interested in fluid flow and elastic structures, we would like to deal with functions u(x,t) that
satisfy

u(t): 1 = V() c HI(Q,).
Therefore, we will investigate the regularity required on the mapping in order that if Y(%) C

H'(€) then, at each time ¢ during the domain motion the ’transformed function space’ X'(£;)
remains a subspace of H'(€},).

1.3.1 Some additional notation

In the following we will make use of standard function spaces. We will indicate by L*(2),
with 1 < p < o0, the set of measurable functions v defined on € ¢ R¢ and such that

/ [v(x)}|Pd < oo, 1<p<oo (1.3.1)
Q

or, when p = oo
3C st w(x)] < C ae inQ (1.3.2)

The set LP({2) forms a Banach space when equipped with the norm

1
ollzrey = ( [ weopan)’, 1<p<oo (133)
0
[Wllpec @y = inf{M| [o(x)| <M ae inQ}, p=o00 (1.3.4)

With the Sobolev space W*P(Q), with & > 0 integer and 1 < p < oo, we indicate the class of
functions

WhEP(Q) = (v € LP(Q)] D% e LP(Y), |a| <k}, (1.3.5)

3We may anticipate that for the Navier-Stokes equation the “ALE” fluxes will exactly balance the convective
fluxes on the part of the boundary which moves at the same velocity as the fluid, reflecting the fact that there
is no mass cxchange through that portion of boundary.
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being & = (a1, ,0q), with o; > 0 integer, and o] = o1 + -+ + ag. D® indicates the
distributional partial derivative

dlely
o,
D%y = Formy - Gouzy (1.3.6)

With HP(£) it is indicated the Hilbert space WP2(§2). Finally, H}(Q) indicates the subspace
of H'(Q2) of functions with zero trace on 8Q. We remind the Poincaré inequality

/«;2 Q< Cg/ |Vo2dQ, Vv HA(Q). (1.3.7)
Q Q

For vector functions, we will use the bold symbols. Hence L?(€2) indicates the space of vector
functions v such that each component v; satisfies v; € LP(Q) (similar notations for H¥(£2)).
The associated norm is then defined by

lv”LP(Q) E ”Uz”Lp(Q) (1.3.8)
When dealing with space-time functions
v(t,x), with (t,x) €I xQ,

we will make use of the spaces

LHI; HP(Q)) = {v: I = HP(Q)| v measurable, / o) Fe(ydt < o0}, (1.3.9)
I
equipped with the norm
1
2
oty = ([ IOt (13.10)
and
HYI;H?(Q)) = {'u € L*(I; HP(Q))| ‘3: L1, HP(Q))} (1.3.11)

The dual space H~1(Q) of H}(R), is formed by all continuous linear operators on functions
belonging to H}(§2). We will indicate the duality paring between H'(Q) and H} () by

<fiw>  feH'(N), veHNQ). (1.3.12)
The space H™1(f) is equipped with the norm
< f,v>

sup
verd(a) Wlmg)
11l 1 ) #0

I F -1y = (1.3.13)

In the presence of a moving domain £2;, we extend the definition (1.3.9) as follows:
LALHP(S) = {v: Q% x [ 5 R| /1 o () gayy < 00},

equipped with the norm as in (1.3.10). Finally, we indicate with L2(I; H(€,)) the closure of

D(Qq x I) with respect to the norm || - [|L2(1;m1(0,)), P(€% x ) being the space of infinitely
differentiable functions whose support is a compact subset of §; x I.
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1.3.2 Mapping regularity condition
The following problem will be addressed

Problem 1.3.1 Find sufficient conditions for the ALE mapping A; so that if & € H'(S)
then v =00 A7! € H' (), and vice-versa.

Classical results [7] indicate that a sufficient condition is that A; be a Cl-diffeomorphism,
which implies that Vt €

A€ Cl Q) A7 e CHIY), (1.3.14)
and, moreover,
J 4, € L®(Q) J_At—l € L°(). (1.3.15)

Unfortunately, this requirement is too restrictive for our purposes. In fact, we would like to
express the ALE mapping by means of finite clement shape functions, which are required to
be in H'(f), but not necessarily in C*'(€2). The reason is that in practical applications, we
will reconstruct the ALE mapping from the boundary movement and, as we shall see later
on, we will use for this purpose a finite element space discretisation. We need therefore to
relax the above requirements. This is possible by imposing some mild constraints on §2;.

We can then state the following

Proposition 1.3.1 L Let Qo be a bounded domain with Lipschitz continuous boundary and let
A, be invertible in Yy and satisfy the following conditions: for each t € I

o Q= Ai(Q) is bounded and 8y is Lipschitz continuous?,
[ ]

A e WHR(Qg), A7t e WHe(,). (1.3.16)

Then, v € H' () if and only if 6 = vo A, € H'(Qg). Moreover, |[vll(q,) 8 equivalent to
1311711 2), Yo € H'(S20)-

Proof. Under the assumption (1.3.16), Sobolev embedding theorem assures that
A e C'(Q), A7 e CU() (1.3.17)
and, as consequence of the hypotheses, the Jacobian
T, 1 Qg — B,
and
J Rk Q, — RIxd

belong to L*(€) and L*®(€), respectively, and their determinants, Ja4, and J 41, being
made of products of L™ functions defined on a bounded domain, are themselves in L*(£2)
and L®(£Y,), respectively. Moreover, we have

9.4, © A7 Hlneogyy = 1.4, lLeo(ag)s (1.3.18)

4f A¢ were a C'-diffcomorphism this requirement would be automatically satisfied, sce, for example, [14]
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19,452 © AdllLee(an) = 1 apt Lo ey (1.3.19)

Finally, because of the invertibility of .A;, there is no loss of generality in assuming that there
are two positive constants ¢, c2 such that

J4(Y) 2 a VY € Qp,Vt e,
and

JAt—l(x)zcz Vx e, Vtel
We then have

ol = [ #0= [ L0 < Wil ol in (13.20)
0 t

o0y = [ 0= [ 140 < Walowolillay (320
t 0

In addition,

2
d A\ 2 d d .
21} v 0.Tj
2 (W;) dn_/ﬂ, JA:_' E (E -BTJ(,)—YIC) dsd. (1.3.22)

1 k=1 \j=1
We have
2
i iﬂax] <‘i i(i,u_)l z“:(az])z
=i\ o 92 vy | == oz; ot Y,
d 2 d 2 2 d 2
ox i) Jz; v
d» max ——]) (— <d2( a —]) (——) . (1.3.23
; j (d k ]2:; 1z - H;ch Y; ng 3.’17]' ( )
Then from (1.3.22) we obtain
|17|§,1(90) < d2||'IA;l “Lm(m)”JAt“%w(no)h’ﬁ:l(m)' (1.3.24)

Analogously, by exchanging the role of v and 9 we have
Iulf‘;ﬂ(m) < dz“JAe”Lm(Qo)”JAt-l ”im(gt)f’aﬁp(go), (1.3.25)
by which the theorem is proved. I
As for the time regularity of the mapping, we will assume that the function x(Y,t) satisfies
x € H' (I; W (Qp)) . (1.3.26)

Proposition 1.3.2 Under the assumption (1.8.26), we have that if 6 € H' (I, H'(Qy)) then,
v=90A' € H'(I,HY{)) and
v

3y € LYI, H' (). (1.3.27)
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Proof. Owing to proposition 1.3.1 we have established an isomorphism between H!{Q;) and
H'($,). Being H'(§2) a separable Hilbert space, we may express any & € H\(I; H'(Q)) as

8(Y,1) = {Zﬁi(t)\Pi(Y), (1.3.28)
i=1

where {@;(Y)} is an orthonormal basis of H'(2%) and #;(t) = (9, ¥;)gi(n,) is the corre-
sponding Fouricr coefficient. We have indicated by (-,+)jr1(q,) the scalar product in H 1(Q).
Clearly, #;(t) € H'(I). Then, we have

Ov % . dd; iy

m Y oAy = i dt (1.3.29)
Therefore,
v 2 1
—| oA, € LY(I; H' (D)) (1.3.30)
dtly

Finally, we note that the set {®;] &; = ¥;0 A; '} forms a complete basis (not necessarily
orthogonal) of H'(€;), thanks to the equivalence of norms in H'(£;) and H' () proved in
proposition 1.3.1. Then we have,

x o0
v=do A7 =Y %o A =Y 6, (1.3.31)
i=1 i=1
thus v € H'(I, H'(2,)). Furthermore,

v di; di;
o Z iy 0 A7) E - (1.3.32)

Then, |, € L}(I; H'()). A

1.4 A practical construction of the ALE mapping A;
In practice we are normally faced with the problem:
Problem 1.4.1 Given the time evolution of the domain boundary
g: Oy xI- o
find an ALE mapping A, such that, at each timet € I,
A(Y) = g(Y, 1), VY € 9%.

Several techniques have been proposed in the literature to solve this problem. For instance,
one may construct the domain motion by considering the domain as an ’clastic’ or viscoelastic
solid and solve the stated problem by resorting to the equations of elastodynamics. This
approach is used, for example, in[26]. Yet, one may look to simplified models. Here, we
present two possibilities without the pretension of being exhaustive.
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1.4.1 Solving a parabolic system
It consists in finding a solution to the following problem.

Problem 1.4.2 Given the initial configuration g and the law of evolution of the domain
boundary g, find

x:QoxI >

such that
%—Vy~(nVyx)=0 Y e,tel,
x(Y,0)=Y Y € (14.1)
x(Y, 1) = g(Y, 1) Y eatel

Here & is a positive constant (whick may be taken equal to 1).

Remark 1.4.1 We may note that a more complez expression for i, by letting it be a ten-
sor function with coefficients depending on the numerical solution of the problem at hand,
may allow to implement a mesh adaption scheme based on node movement, at very little
computational price, since the domain movement has to be computed anyway.

1.4.2 Harmonic extension

Very often we need to know the ALE mapping only at discrete time levels, where the approx-
imate solution of the problem at hand is sought. The data of the problem are the reference
(initial) configuration and the new position of the boundary, which could be described as a
function h : 89y — 907, being N the configuration at the given time T'. In this case a sim-
ple alternative to the previously described technique consists in making a harmonic extension
of h onto the whole domain §2p. That is, one solves the following problem

Problem 1.4.3 Given Qy and h, find x : Q¢ — Qr such that

{Vv (kVyx)=0 Y e (1.4.2)

x(Y) = h(Y) Y € 00,

Again, if  is a function of the numerical solution it may be used to drive an adaption type
procedure.

1.5 Finite element discretisation of the ALE mapping

Our final objective will be the numerical solution of problems (1.2.4) or (1.2.10) by a finite
element method. The choice of finite element space for the main variable u will undoubtedly
affect the type of discretisation to be used for the ALE mapping. In particular, the discrete
ALE mapping should be such that the domain triangulation maintains during its movement
its suitability with respect to the chosen finite element space. For instance, if we use linear
finite elements we need to ensure that the images of the mesh during the domain movement
maintain straight edges.

There are thus two inter-related issues which must be faced:
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1. finding the appropriate discrete formulation for (1.2.4) and (1.2.10);

2. finding a suitable finite clement discretisation, Ap,, for the ALE mapping or, equiva-
lently, of problems (1.4.1) or (1.4.2).

We briefly recall some basic concepts of the finite element method which are necessary for our
discussion. The domain  is discretised by partitioning it into a finite number of (possibly
curved) polyhedra called finite elements. The set of finite elements is called mesh and it is
indicated by Tpo. The discretised domain §4 ¢, formed by the union of all mesh elements,
may differ from Qp because of the approximation of the boundary. Yet, since this fact is
not particularly relevant for our discussion, in the following we will assume Q59 = 2. We
consider Lagrangian finite elements and the general case of a finite element function space
Fai of degree n and parametric mapping degree k, defined as follows.

Fuk (Tro) = {TZh (=Rl P € COT), P %o o M € P,(Kg), VK, € 771,0},
(1.5.1)

where, @th indicates the restriction of 1:[)\;1 to the finite element Ky, F,(Kg) is the space of
0

polynomials of degree.n defined on the simplex Kg and M ,’:" € P(Kpg) is a homeomorphic
mapping from Kg to Ko. In general & < n and in particular it is either equal to 1 (affine
mapping) or n (isoparamectric mapping). Since we wish to consider the general case, we will
indicate with the term “vertices” the finite element nodes which are used for the parametric
mapping. Mf" is defined as follows,

M Kp— Ko, Y()=M{(n)= ) Yidi(n), ne€Kg, & €P(Kp). (152
iENK

Here, @; is the basis function associated to i-th vertex of the reference element, while Y;
is the coordinate of the correspondent vertex in 7. The sum extends over all vertices of
Kp, here indicated by N%. It can be shown that Fp, 1 (Tho) C H' (%), and, in particular,
Fog (Tho) C WH(Q). In case of an affine mapping the finite element space F,,1 reduces
to the more familiar expression,

Faa (Too) = {n: Q0 > R 4 € CO@),  Inf, € Pa(Ko), VKo € Tig}.  (15.3)

Should we wish to utilise a finite element discretisation for our problem, the space of test
functions Y () will be approximated by Ap($2%) = Fp i (Tho); we remark that this implies,
in particular, that VK € Thg, M f“ € Py(KR). In section 1.2 we have advocated that the
proper ALE extension of the discrete test function space to a moving domain would be

Xn(Qne) ={¥n: Uy xI >R, Ypodp,= Dny Br € Xn(0)}, (1.5.4)

where Q¢ = A (£2) is an approximation of @, and we usc in (1.5.4) the discrete ALE
mapping. Therefore, in order to be consistent with the chosen finite element discretisation,
we should require that at any ¢ X, (@) = Fn i (Tr,) where Ty is the image under the ALE
mapping of Tho. I x;(t) denotes the position of the i-th vertex at time f, we may formally
define MX +* on each element K; of 7;,; as follows (see figure 1.1 for a graphic representation),
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Figure 1.1: Finite element Ky of 75,0 and K, of T, as images of the simplex Kg.

M Kp = K, x(m) = M) = Y x(O)di(n), n€Kr, 6 € Pu(Kr), (155)
iENK

while Fr i (Tr ) is

Far (M) = {¥n: e >Rl $n € C¥0), bl o ME € Pu(Kr), VK: € Thy} -

(1.5.6)
Proposition 1.5.1 If, at any t € I the discrete ALE mapping satisfies
Antly, oMEC = M, VK€ Thp,  Ki = Ai(Ko), (1.5.7)
(equivalently Anglp, = Mf‘ o (Mf")_l) and
Xn () = Fuk (Tho) t = tg, (1.5.8)
then the space An(Qh,), defined in (1.5.4) satisfies
() = Fok (Thy), Vtel (1.5.9)

Proof. We just note that the under the given hypothesis

24(00) = {90 > RI Fu € COth), i, o ME € Po(Ki), VKo € T} (1510

Then, from (1.5.4), we have that if ¢, € X,(Q4,) then
(¥ © Aol g, © ME® € Po(Kp)

By recalling the definition of F;, (74 ), given in (1.5.6), and exploiting the continuity of the
discrete ALE mapping, we finally obtain that ¢, € Fp 4 (Th:)- W

As a consequence of condition (1.5.7) it is easily verified that the appropriate finite element
function space for the discrete ALE mapping is the isoparametric space F i (T,0), since, by
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definition, if ¢ € Fi i (Tho) then ¢|x, OMkK" € Py(KRr), and condition {1.5.7) indeed implies
that

Anilg, © M € Po(Kr).
If we denote by
{1/)5, 1€ NT}

the set of nodal basis function of Fyx, the discrete ALE mapping would then provide the
following discretisation for the function x in (1.4.1) or (1.4.2)

xa(Y,1) = Ane(Y) = D xi(th(Y) : (15.11)

ieNT
We can then proceed to the solution of (1.4.1) or (1.4.2) by standard finite elernent procedures.

Remark 1.5.1 We may note that the construction of the discrete ALE mapping depends on
the degree k of the parametric mapping chosen for the finite element space where we wish to
solve our problem, but not on the degree n of the finite element representation chosen for our
principal unknown wy. For instance, if we decide to use quadratic elements with an affine
parametric mapping, the discrete ALE transformation should be built by using isoparametric
linear elements.

Remark 1.5.2 By construction, the discrete ALE mapping satisfies the required regularity
assumptions, and the mesh velocity field on §dy, can be expressed as

wa(Y, )= 3 witi(Y), in8oxI. (1.5.12)
ieNT

Remark 1.5.3 In practical applications, the ALE mapping will be computed only at some
instants t; € I. A global mapping Ap,, defined for all t € I, may then be obtained by
interpolation in time of the transformations Ay ;. We will always adopt this technique in the
next sections when we will present the fully discrete schemes.

A further discussion on the finite element spaces in the ALE frame will be carried out in
Section 1.7, with respect to a specific model problem.

1.6 A linear advection diffusion problem

To analyse the properties of the discrete schemes resulting from the ALE formulation, we
consider the following model problem
Ou
—87+Vx-(ﬂu)——p,Axu=f forxey, tel
u=ug forx €y, t=1tg (1.6.1)

u=up forxedy, tel

where B is a convection velocity, which is assumed to satisfy Vi - 8 = 0, p a constant
diffusivity, Ay indicates the Laplacian operator and up is an assigned boundary condition
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of Dirichlet type (in the case u = 0, the boundary condition should be applied only on the
inflow part of the boundary). We may note that equation (1.6.1) is a special case of (1.1.6),
with

Fe(u) = Bu, Fy(u) = -pVyu.

In this Section, we will investigate the stability of the continuous problem in ALE form and
the existence of weak solutions of equation (1.6.1) rewritten either in conservative or non-
conservative ALE form. We will consider only the case of homogencous Dirichlet boundary
conditions. An equivalence result stating that a weak solution of the ALE problem is also a
weak solution of the model problem (1.6.1) will be given in Theorem 1.6.2.

In the next Sections, instead, we will consider the discrete scheme and derive some necessary
conditions by which the numerical approximation satisfies the so called “Geometric Conser-
vation Laws”.

1.6.1 Stability analysis of the differential equation in ALE frame

We first verify that the differential equation written in the ALE frame maintains stability
properties similar to those of an advection-diffusion problem on a fixed domain. Here we
proceed formally by supposing the solution u be regular enough. A rigorous derivation of an
a-priory estimate will be given in the next subsection. For the sake of completeness, we will
consider a general convective field 8, satisfying ||V - Bllro,(axry = 7 < 00. We write the
differential equation on the ALE frame in the form

du

ot

+ V- [(B—wWhu] —pAxu+uVy-w=f forxeQ, tel
Y

u=ug forxeQ, t=1;, (1.6.2)
u=0 forxedy, tel

We multiply the equation by v and integrate over £;. Using the Reynolds transport formula,

we have
a,u‘z
L%

From (1.6.2) it may be derived that

d
d2 = — ||u)? —/ u?Vy - wdQ2. 1.6.3
' 7 le2llz 020) o (1.6.3)

1d, 2 2 1 2 _
3@ lellz . + 21 Vxullz @, + /Q, V- [(B — w)u] ud + 5 /m u*Vy  wdQ = o, FudQ.

(1.6.4)

Thanks to the homogeneous boundary conditions, we have

/ Ve [(8 - whuud = 1 [ / 2V, Bd0 - | w2, wdQ] (1.6.5)
Q 2 Q

Qe

and therefore relation (1.6.4) becomes:

1d e 2 _1 / 2y, .
2dt ”u”Lz(Qt) +I"'“VXu”Lz(ﬂz) - /ﬂt fudQ 9 0, uVy ﬁdﬂ (166)
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We may observe that the terms depending on the domain velocity have been canceled out.
Integrating in time between ty and ¢, we have:

t t
)+ 2 [ 195l s = Ity +2 [ s [ u -
. o to

Q,
t
/ds/ w2V, - BdD. (1.6.7)
to 8

Then, by using the definition of the H~! norm and the Poincaré inequality (1.3.7), we deduce
that

Oy + 1 [ I8,y s < By + S22 [ 2
@) t# | tllz g, 8 < otz e, + m A -1,y +
0 0

t
+'y/t ”“”%z(ﬂ,)ds' (1.6.8)
0

Finally, by using the Gronwall lemma (sce e.g. [80]), we obtain

4
O+ [ 19l 05 < K e (1.69)
0
where
; 1+ C t
K = o0, + S [ 111 (16.10)
0

If Vx - B = 0 then the stability expression simplifies furtherly. At continuous level, then, the
stability properties of the problem are not affected by the domain velocity field. Clearly, we
may expect that this will not be true anymore for the discrete problem.

1.6.2 Existence and uniqueness results

Existence and uniqueness of a weak solution of problem (1.6.1) have been proven in different
works. For instance, in [57] one can find a proof of existence and uniqueness of a solution
w € LAI H'Y (), & € (L2(J; Hy(%)))"® under the hypotheses that f € (L(I; H (),
B € L*®°(Qy x I) and the domain Q; x I is sufficiently smooth; in particular €25 and the lateral
surface T = 00, x I are supposed to be infinitely differentiable surfaces of R%. Finally, the
boundary and initial data are supposed to be traces of a function & belonging to the space
B(® x I) = {v € (I, H'()), 5 € (LA HY(%)))'}-

An alternative proof of existence of a weak solution in the same functional space mentioned
before can be obtained through an elliptic regularization following the same guidelines as in
[568, example 2.7, pages 343-345].

Other theoretical results of existence and uniqueness of the solution under weaker conditions
on the domain regularity can be found in [10, 94], in [51] where a penalization method is used
and in [11] where the problem is recast in an abstract semigroup setting.

We are going to provide a direct proof of existence of weak solutions of problem (1.6.2)
rewritten in ALE formulation adopting a Faedo-Galerkin approach.

5With V' we indicated the dual of the functional space V.
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Let € be a bounded domain in R? with a Lipschitz boundary. We consider an ALE mapping
Ay € [Who(Qyx T )]d that satisfics the hypotheses of Proposition 1.3.1, an initial datum
up € L?() and a forcing term f € L%(Q x I)5. Moreover, we take Y(Qg) = H} ()
and X () defined as in (1.2.3). Then, the two weak formulations introduced in (1.2.4) and
(1.2.10) read, respectively

Non-conservative formulation findu: @ x I - R, u =0 on 98y, such that

[ 2
T

PdQ+ u,/ Vit Vtp d2 + / PV -[(B — w)u] d2 + / PYuVy - wdQ =
Y Q Q 2

= fydQ Vi € X(), ae. inl, (1.6.11)
2

Conservative formulation findu: 4 x I - R, u =0 on 8Qy, such that

d
dt /m PYudt + p /ﬂ, Vit VxudQ + /nt PVy - (B —~ whu]dQ =

= fYdQ Yy € X(), ae. inl, (1.6.12)
Q

and u = ug in 2y, at ¢+ =ty in both cases.

The time derivatives in the previous problems have to be intended in a way which will be
clarified later on.

We first provide some useful properties of the functional spaces we will be using.

Lemma 1.6.1 Under the aforementioned hypotheses on Qy and Ay, the application & =
v o A is an isomorphism from L(I; H'(SY,)) onto L3(I; HY(Q)), from L®(I; L*(§},)) onto
L®(I; L2(Q)) as well as from HY(Q, x I) onto H' (g x I);

Proof. The first two properties derive directly from relations (1.3.20)-(1.3.21) and (1.3.24)-
(1.3.25) observing that the quantities ||.J 4, o) ”J‘At_l 2o (20)» 19.2: ”%m(ﬂ:) and “J-Af' “iec(nt)
belong all to W(I). The third property can be proved in a similar way as in Proposition
1.3.1 accounting also for the time derivative. Indeed, we may introduce the space-time map-
ping A: Qo xI - Q, x1,

(x’ t) — ./i(Y,T), {x = -AT(Y)?
t=r7.
Clearly, A C [Wl'°°(ﬂo x I )]d+1 and the result is obtained by applying Proposition 1.3.1 on
the mapping .4 and in the domain Qg x I.
n

We start analyzing the conservative formulation {1.6.12). The first result we will prove is

SThe derivation presented hereafter can be easily generalized to the case of a forcing term f = Vyg, g €
LX(Q, x I)
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Theorem 1.6.1 Under the aforementioned hypotheses on g, Az, ug and f, problem (1.6.12)
admits a unique solution u € L*(I; HS () N L®(I; L*(Qy)) such that

4 / wpdQ € LX(I), Vip € X(S).
at Jo,
Moreover, u satisfies the energy estimate (1.6.9).

Proof In order to study existence and uniqueness of the solution of problem (1.6.12) we
rewrite (1.6.12) on the reference configuration g. To this aim we note in the following with
4 a function defined on @, recast on Qo : 4 =uo A;. ThenVi =1,...,d we have

Ou Z ot dYJ

z; 0Y; Oz;
by aY; 8Y, \ i 9%
VauVat = Z Om; Om; Z (Z Bz a.zi) ER

Bﬁ Y; 9B
Ve B= Z = Z(Zaﬂa)fk>

The weak problem (1.6.12) written on the reference configuration reads then

d L2 - BYJ a A
@i Jo, Tabdn }J: /n ! JMbZ To 3V, ((ﬁ,c wk)u) o+

ay; 0%\ 94 & - .
%:u / L (Z . Bmi) 57 5 12 -/ afhde W ed), tel,
(1.6.13)

Let us introduce the following notation : V(Z),’(ZJ € Y(Q)
mitsdi) = [ Tadban
Qo
aY; N
alt; 4,9) = Z/ 140 Y 532 g (B - 9)d) an+
3Y; 8, \ 89 &
3 (Z %a_) o, 3%,
aY; ow
;b =Z/ IaH Y g g 0

We analyse the conservative formulation (1.6.13) by adopting a Faedo-Galerkin method (see
for instance [80, 87]). Let {¢;};>1 be a complete orthonormal basis of H{(Q), VY =
span{(fﬁl, ... ,¢n}, and consider the approximate problem :
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find N (t) € VN such that

d , o . |
{Em(t;ﬁlv(t%(éj) + a(t;uN(t), ¢J) = /{;0 JA:f¢j dQ V.? =1,... :N (1614)

aN(0) = .
where u(l,v is the L? orthogonal projection of 1y onto the space V.

We look for a solution of the form &/ (t) = Z:j:] cs(t)ps and we note ¢V = [¢,(t), ... ,en(B)]T.
Then, system (1.6.14) is equivalent to the system of ordinary differential equations

d N N —_
a(M(t)c(t))+A(t)c(t)_F(t), tel (16.15)
cN(0)=¢p
where
M(t)i; = mit; §5, ), A(t)ij = alt; ¢, $i),
F(t); = /n Ja fidQ and {cg)i = /n wgdi A2
We observe that
M@ e W)Y, Aw) e [Lo)F, F(t) e [LAD)]Y, (1.6.16)

and M (t) is a symmetric and positive definite matrix for all ¢ € I since, VeM (t) € R?, ¢V (t) # 0,
T . 2
(€)M = [ Lo = [ WO = O, >0
0 t

We introduce the vector d¥(t) = M (t)c" (t) which satisfies

dt

DANG) + AHM L) (1) = F(r), tel
dN (D) = M(t)cg.

This system admits a unique solution d™ (t) € [H'(I)] N and consequently (1.6.15) admits a
unique solution ¢V (t) € [H‘(I)]N since ¢V (t) = M~1(t)d™(t) and M~1(t) € [W1'°°(I)]d2.
As a consequence, @™ (t) € H'(I; H} (Q0)).
We multiply now equation (1.6.15) by (cV (t))T and we observe that for almost every t € I
d _d P g o 'y oY, owy 3
£ M)y = o /QO Tabidhi 2 = ;/ﬂo Tadids ¥ g Gy a0 =00 (1617)

where we have exploited relation (1.1.8) and we have noted

C(t)i; = clt; ¢;, ).
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Hence

(eMT (;lt (Mc™) = (cN)T% (Mc™) + %% (™) McM) - %%(cN)TMcN =

1 vl oy 1d oo vy Lo N8 N
2(c)(M(M<:.)+2dt((c)Mc) Q(C)Mdtc

,‘;—t((cN)TMcN) +%(cN)T%M(t)cN (1.6.18)

DN

We obtain then the equation

1d

5 (P OTM@EN (@) + T AW (1) + %cN(t)TC(t)cN(t) —NWTR), Viel

(1.6.19)

which is the algebraic counterpart of

df/ ™ (¢ |1+M/ W, ()2 + fvx (8 = W™ (6)] u™ (1) +
+3 /Q , [ ()2 Vy - wd2 = /Q , ful (t)dQ.

We observe that, thanks to (1.6.16), the last three terms in (1.6.19) are measurable functions

in time. Then, by integrating (1.6.19) between £y and 7, 7 € I and proceeding as in the
previous section, we obtain the estimate :

2 T 2 7 14+ G T
(ol PRPSTT /tn ¥t ()]0, 45 < (”“0 [ (_unl ./to 1110, ds) <
(1.6.20)

as in (1.6.9). According to Lemma 1.6.1, the norms L%(I; H} (%)) and L*®(I; L*(%)) are
cquivalent to L2(I; H} () and L>®(I; L*(§)), respectively. The sequence {#V(#)} is thus
bounded in L>(I; L2(Q)) N L3(I; H' (%)) and we can extract a subsequence {&""™(#)} con-
verging to a limit function @(t) weakly in L2(I; H'(€)) and weak* in L(I; L3(Qp)).

Passage to the limit

In order to pass to the limit in (1.6.14) we multiply cach differential equation by 8(t) € D(I)
and we integrate by parts the first term :

_/I(/QU 48N (£ dQ) t)dt+/ (t;ﬁ.N(t),Jﬁj)O(t)dt:/I/nn Ja.f$i0(t) dQ dt

Vi=1,...,N, vo(t) e D)

In all the terms we can pass to the limit for N,m — co; moreover, since the linear combinations
of ¢; arc dense in H{ () we obtain finally

N d gy
‘/,( o0 "A*“‘”MQ> ot dt+ /,a(t,u() D)) dt = / / T4, f0() dat
Vi € Y(Q), VO(t) € D(I) (1.6.21)
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which is nothing else then problem (1.6.13) where the time derivative has to be intended in
a distributional sense. In a standard way it can be shown that also the initial condition is
satisfied (see e.g. [80, Theorem 11.1.1, Chap 11]). We conclude that problem (1.6.13) admits
a solution 4 € L®(I; L?(€)) N L(I; H} (%)) and moreover from equation (1.6.13) we infer
that

d ) ; T 7R
EA;MWMMLW)WEﬂ%) o 2D ey, e

Finally, equation (1.6.21), written on the domain € coincides with problem (1.6.12). Then,
thanks to the isomorphism results of Lemma 1.6.1, the function u = % o .A,_l belongs to
L2 B Q) 0 L2(T; L2($%)) and is a solution of (1.6.12); moreover, from (1.6.22)

%/ uhdQ € L2(1), Vip € X(Q).
2

In order to prove the a-priori estimate we need the following

Lemma 1.6.2 Let E and F be two Banach spaces equipped with the norms || - ||g and || - || .

Let, moreover, A: E — F be an isomorphism between E and F. Then,
a. There exists an isomorphism B : E' — F'.

b. Given a sequence {(i)N} such that {$V} — ¢ weakly in E, then {A$N} — A weakly
in F.

Proof. We note in the following ¢ = Ad. Since Ais an isomorphism we have
NAllei,m < Cr, 1A lgermy < Co
a. For every functional f € E' we can define a functional f € F’ such that
Ve F, < f¢>=<fAT'¢>=<f >

moreover

<f,¢> Cy<f,¢>

Iflirr = sup ———= < sup =
scr  ollr ¢eF lIglle
¢l g0 ll¢ll 570

<Colflle

We set f = Bf; clearly iBllz(e,Fy < Cp and with similar arguments it can be shown
that | B~ |l¢(pr,) < Cr.

b. By the definition of weak convergence we have that
VieE, <fi¢"> > <fd>.

From item a. we know that Vf € F' there exists f = B~!f. Then, we deduce immedi-
ately that

VieF, <fAPN >=<f V> o <fd>=<fAd>.

and this concludes our proof.
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= .
Thanks to Lemma 1.6.2 and to the isomorphism between L?(I; H} (%)) and L2(I; HA (),
proved in Lemma 1.6.1, we conclude that the sequence {u™™(¢)} = {aV"™(¢)0.4;'} converges
weakly to u(t) = a(t) o A7 in L2(1; H{ ().

We prove now that the sequence {uN"'(t)} - u(t) weakly* in L®(I; L?(€;)). Indeed, V¢ €
L'(I; L*(§%)) the function ¢ = J4, ¢ belongs to L' (I; L*()) and

//QuN"' )pdQdt = //ﬂ a¥m () d T /I/n ﬂ(t)fdet:/l/Q u(t)d dQ dt

We infer from (1.6.20) and the propertics of the weak convergence that the limit function u(t)
satisfies the estimate

1+Ca) (7
llu(r )”LI(Q )+H/ ||qu(3)||L2(n yds < (||u0||%,(nn) +‘(_N_l/¢ ||f”?7—1(n,)d3> e’
0
(1.6.23)

Unigueness of the solution is a direct consequence of (1.6.23) and the linearity of the problem.
|
The second result we will prove is the following

Theorem 1.6.2 The solution u of (1.6.12) does not depend on the choice of the ALE mappmq
A; and is the unique solution of problem (1.6.1) defined in the space (L(I; H{ (Qt)))

Proof. We remind that the solution u = u(z,t) of (1.6.12) belongs to L*(I; H} () N
L(L LA(8)).

First step : we prove that 3} ‘9" € H' (2 x I),
Indeed, the distributional tlme derivative of « is defined as

—// u%dﬂdt, V¢ € D(S2 x I).
rla, Ot

Since D(§ x I) is dense in H} () x I) and u € L?( x I), the right hand side can be
extended by continuity to all functions ¢ € H{ x I} . 1t follows immediately that %—‘t‘ €
(Hi (S x 1)) = H (2 x ).

Second step : We prove that % ¢ (L*(I; H&(Q,)))' and
<QE,¢ > +u// VeV dQ dt + /f Vx~(ﬂu)¢d9.dt=// FpdQdt, (1.6.24)
ot 1o 1o, 1Ja,
for all ¢ € L3(I; H} ().

Lot {¢);}i>1 be a basis of H} () and {§;} ;51 be a basis of H}(I). We can write, as in (1.6.21),

the equation

~d A P an o
—// JAtﬁw;E%det+/a(t;ﬂ,¢i)0jdt=// Tafibib; ddt,  Vi,j>1
IJ0 1 T4
(1.6.25)

7it can be extended to a larger class of test functions but this is enough for our purposes
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where, as usual we have noted & = uo.4,;. By setting fij(Y,t) = (Y)éj(t), equation (1.6.25)
may be written equivalently

—/ JA,a‘—lg:ldetJr/a(t;a,éij)dt=// 4, fGidQdt,  Vij>1  (1.6.26)
18y I 1JQ
and since {é{j}i,jZ[ is a basis of H}(Q x I) relation (1.6.26) can be written for all test

functions ¢ € H{ (0 x I). Again from Lemma 1.6.1, the function ¢ = ¢ o A;! belongs to
H} (9, x I) and we can write all terms in (1.6.26) on the configuration €, :

a¢ .
- - d Ve < (8- dQdt =
[./{)tuatydﬂt+u/[ ntvuvngdH/r/n,V (B — w)u]¢ d2dt
=/ fCdQdt,  V¢e HiQu x I). (1.6.27)
IJsy

Exploiting relation (1.1.4) in the first term, we have

5 L), a0 [ ]
- = dQdt=— u - dQdt— uw - Vi(dQdt =
/I/shuaty rJo, Ot 1Jo,
__ %
- [,/n“at

dQddt + / Vi - (wu)¢ dQ dt.
x 174,

and (1.6.27) becomes

Sl

dQddt + u/ VxuVi( dQ2 dt + // Vx - (Bu)CdQdt =
x 1J IJQ,

= // FCdQdt, V(€ HY(SQU x I). (1.6.28)
1J0:
or equivalently, V¢ € HY(Q x I)

<o >=/ f(det—p/ qungdet‘// Vi (Bu)Cddt. (1.6.29)
o 1 Ja, r/a, 1/o,

Since the right hand side in (1.6.29) is a linear continuous functional on L?(I; H} (%)) and
H}($2 x I) is dense in L2(I; H}(£2;)) we can extend (1.6.29) to all { € L2(I; H3(SY)). This
implies that 2% € (L2(I; H}(%))) and u satisfies problem (1.6.1) in (L2(I; H} (€)'

Third step : we prove now that the solution u of (1.6.12) does not depend on the ALE
mapping A;.

Indeed, let us consider two possible different ALE mappings .Agl) and AEQ) (which describe,
clearly, the evolution of the same domain €, Vi > 0). Then, solving problem (1.6.12) with
the two mappings, we obtain two solutions u{!) and u(2). Both solutions satisfy the same
problem (1.6.1), thus the difference v = u{!) — u(?) satisfies problem (1.6.1) with homogencous
data and, moreover, v satisfies the a-priori estimate (1.6.23). Then, necessarily, v = 0.

In other words, whatever ALE mapping we choose, the solution u on the actual configuration
 is always the same.
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About the non-conservative formulation (1.6.11), we would like to define the ALE derivative
in a distributional sense by means of the Reynolds transport formula (1.1.11). To this aim, we
observe that for a given function v : £, x I - R, regular enough, we have, for all ¢ € D(Q, xI)

v 0¢
» det:—// (—- oV, )det
./I/;zt dt\(¢ I n,v ot |y ¢ v

_—:—/I/(;‘v(%—?+vx-(¢W)> dQdt

We may thus define the ALE derivative, in a distributional sense, of any function v € L!({; x
I) and ALE mapping A; € [W!*(2; x I)]d as

v

<@

Jp>=— <, %t‘-” + Uy (W) >,  Vpe D@ xI). (1.6.30)
Y

If we consider, now, the weak-solution « of the conservative ALE formulation (1.6.12), which
belongs in particular to L2(I; H} (%)), we have

Ou

N

, P >=< (—’Emﬁ > +// ¢ow - Vyeu dQdt, V¢ € D x I). (1.6.31)
Y ot 1/

As we have shown in Theorem 1.6.2, u is also a solution of problem (1.6.1) in (L2(T; H} ()
thus, exploiting cquation (1.6.29) in (1.6.31) we obtain

,¢>=/ f¢d(2dt—;4// qudeJdet—// Ve (B — wu)dQdt
Y IJo I/ I1J9;
—/ $u-Vy-wdQdt, VYpeD(QxI). (16.32)
149

’
)

o

<%

The right hand side in (1.6.32) may be extended to all functions ¢ € L*(7; H}()). Hence,
the solution u of the ALE conservative formulation is also a solution of the non-conservative
formulation

O
a_: F V(B - whu] - pAsu +uVy - w=f  in (L3I HY(SW))

"y
where the ALE derivative is defined in (1.6.30).
Observe that, in this way, we recover only a solution of the non-conservative eguation in a
weak formulation both in space and time. Yet, such a solution does not necessary satisfy
equation (1.6.11) which, instead, should hold pointwise in time.

1.7 Finite element spaces in the ALE frame

We will use Lagrangian type finite elements and a discrete ALE mapping A, as described
in section 1.5, and a Galerkin formulation. Our discrete function space on g, X,(Q0), will
then coincide with F, x (Tr,0), defined in (1.5.1). The corresponding finite element space on
Dty Xn(Sln,e), will be formed by functions of Fp, i (T 1)
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We will now indicate with A/ the set of nodes of the finite element mesh, and with N, C N
the set of internal nodes. We also introduce the set of finite element nodal basis functions

{¥i, i € (), €N}

which forms a basis of A3 (2, ;). Here, ¥; is the finite element function associated with node 1.
With X (Q,) we indicate the discrete function space Xy (Q) N HE(4,e). The set

{1/’1'7 i€ Mnt},

forms a basis of Xgn(Q,)-
The numerical solution up will then be sought in the space A,(Q4,). In particular, we have
that u, will be expressed as linear combination of nodal finite element basis functions,

un(x,t) = Y gilx, hu(2), (1.7.1)

ieN

with time dependent coefficients u;(t). The set X 4(£2, ¢) will be used as test function space.
For the sake of simplicity, we will drop the subseript k when it is clear from the context that we
are considering the discrete solution. This applies in particular to the computational domain
which in the following will be indicated simply by ;. We wish to remind that, because of the
ALE mapping, functions in A({2 ) depend both on x and ¢, even if the functions in &, ()
do not depend on time. Thanks to relation (1.2.5) we may then write,

Gun
ot

du;
b)) = i\x, 1) —-(1). 7.2
Lo gwx o ® (17.2)

1.7.1 A remark on the significance of the Geometric Conservation Laws

Geometric Conservation Laws have been originally investigated in the context of finite differ-
ence and finite volume schemes for fluid dynamic problems. It stems from the basic idea that
the solution should be minimally affected by the domain movement law. Indeed, at the contin-
uous level, the ALE formulation is formally equivalent to the original problem; yet this is not
generally true when the fully discrete system is considered. It has been proposed that some
’simple’ solution of the differential problem should be also solutions of the discrete system.
In particular, the attention has been concentrated on the capability of the discrete system
of representing a constant solution, which is clearly a solution of the differential equation (in
the absence of the source term and with the appropriatc boundary and initial conditions).
Following this approach we can state that a numerical scheme satisfies the Geometric Con-
servation Laws if it is able to reproduce a constant solution. It is therefore, similar to the
“patch test” often used by finite element practitioners. As we will see, the GCL constraint
involves only mesh geometrical quantities and the domain velocity field. The significance of
this condition is still not completely clear. Recent results are available for special type of
finite-volume schemes in [44] where the GCL have been linked to convergence properties of
the proposed scheme.

In the following analysis, the GCL for a finite element scheme will be investigated in more
detail and its relation with the stability properties of some time evolution schemes will be
addressed.
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1.8 Finite element approximation of the conservative formu-
lation

The finite element, semi-discrete approximation of (1.2.10) reads as follows,
d
E/ PpupdQ + p/ Vaton Vieen dQ + / YV - [(B — wp)up]dQ =
Qe o1 Q.

= | fyYndQ Y€ Xpu(h),t €I, (18.1)
Q

with

up =upy, forxe€dy, tel
up =ugp forx € Oy, L =1y.

upp and ugy, being suitable finite element approximations of up and ug, respectively.
Equation (1.8.1) may be equivalently written in algebraic form as follows

L (M()U) + () - Alt,wa) U = F,

dt
Ui =up i € N\ Nine,

where U = {u;}ien is the vector of the nodal values of the discrete solution,

) = ihd
Mo s,

is the mass matrix, while H and A are defined as

H(t) = { /ﬂ ,. $: Vi - (B;)d + /ﬂ ' Vit - szpjda}

(18.2)

i,§€Nins
and
Aft,wy) = {/ PiVy - (Wh"/’j)dn}
Qe 4,j€Nint
In this context the space integrals may be substituted by numerical quadrature. In the

following, we will always assume that the numerical quadrature rules employed are able to
integrate ezactly the terms involved.

1.8.1 Stability analysis of the semi-discrete conservative scheme.

Unless for fixed domains, for the stability analysis of the semi-discrete scheme we cannot take
P, = wuy, since the two functions have, in general, a different time evolution. However, we
can express the solution uy, as a linear combination of the test functions with time dependent
coefficients, as indicated in (1.7.1). We then take v, = 9; and we multiply the equation for
1;(t) obtaining:

w®)g [ a0 [ Va8 - mu v+ [ Ve Taun) i =
- / fui(t)id (1.8.3)
e
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The first term can be rewritten as

d d du;(t)
()= ) . AV ) — . 0
u,(t)dt /n, upt; dQ2 7 /m upi(t)y; d§2 /m upt; o d
d piui(t)
= — i (8)9: dS2 — - 3
7 /m upu ()9 dQ /ﬂ, g T dS

Summing over 7 all the equations, we obtain

(1.8.4)

d du,
E”“h“h(nt)‘/(; up a_th dQ+/ Vi (B ~ wh)un] un+p “VthH:;,,(Q.) =/ Fup d2.
t Y Q 2
(1.8.5)
The term )
/'u. dun dQ:lf I
o Otly 2Jn, O |y

can be manipulated as in (1.6.3), leading to equation (1.6.4) written for the semi-discrete
solution up of the problem. We can then proceed as in section 1.6.1, obtaining a stability
inequality which is insensitive to the domain velocity field.

1.8.2 The discrete scheme

System (1.8.2) is a system of ODE’s which needs to be integrated in time. With this aim, we
will consider the following time integration schemes:

My, Uns1 = My, Up + INT 2 [HU) - INT ' [AU] = F. (1.8.6)

tn

where ZN'T, and ZN'T, represent two quadrature formulae used to integrate numerically in
time the terms HU and A U:

tn41
INT " [HU] » HUdt

tn

tnt+1
INTy " [AU] ~ AUdt

tn
In particular, the unknown U in the these two terms may be taken equal to U™H! (implicit
scheme) or U™ (explicit scheme).
1.8.3 The Geometric Conservation Laws

When F = 0, sufficient conditions for a constant field to be a solution of the numerical scheme
(1.8.6), for each time step interval (¢,,t,41) C I, are

) / $iVx - (BY;)dUE =0, Vi€ Nim (1.8.7)

jen /S

> / Viti - VjdQdt =0, Vi € Ny (1.8.8)
Qe

JEN
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and

f

Qniy

U’i(xa tn+1 )dQ - / 1//i(x7 tn )dQ = INT?i:H [/ "pivx *Wp dQ] Vi e Mnt-
7 Qe
(1.8.9)

Relation (1.8.7) and (1.8.8) are satisfied by the finite element shape functions. Indecd, they
provide a partition of unity

Zzpi(x) =1, ¥x€Q,. (1.8.10)
ieN

Consequently, being Vxt; € L),

> Vi =0 inQ. (1.8.11)
ieN
Remark 1.8.1 In o finite volume contezt, a relation equivalent to (1.8.7) would furnish a
condition for the computation of the normal unit vector to the surface of the moving control
volumes. That condition is often called surface conservation law[92]. The reader may refer
to[86] for a discussion about the relationship between Lagrangian finite element and finite
volume schemes for conservation laws.

Condition (1.8.9) expresses the Geometric Conservation Laws written for the FEM scheme
which employs formulation (1.8.6). It states that the time integration scheme ZN'T, must be
chosen in such a way that the identity

/

hold on each time-interval.

PpdQ — / PYrdQ = INTzf,':“ [/ P Vx - Wy dﬂ] Vipn € Xoa() (1.8.12)
Q, Q4

tn+1

Remark 1.8.2 Relation (1.8.12) may also be interpreted as the finite element discretisation
of the weak form associated to relation (1.1.8). Indeed, we have already observed that relation
(1.1.8) must be identically satisfied in order for the differential equation (1.1.14) (of which
relation (1.2.10) is the weak form) to be equivalent to the original differential problem (1.1.7).
The GCL enforce such condition at the discrete level.

Remark 1.8.3 In o finite element framework, it may be useful to consider another identity,
namely relation (1.2.9). Requiring its fulfillment at discrete level would lead to

I,

This relation may be considered as another form of the GCL for scheme (1.8.6), suited for a
finite element approzimation.

vty = [ el d0 = INTH [ IR da] Vi, € N (18.13)
Q, 0

n+1

Proposition 1.8.1 A sufficient condition for the fulfillment of (1.8.12) and (1.8.13) is to
use a time integration scheme INTq for the ALE term of degree d-s—1, where d is the space
dimension and s is the degree of the polynomial used to represent the time evolution of the
nodal displacement within each time step.



40 CHAPTER 1. PARABOLIC EQUATIONS IN MOVING DOMAINS

Proof. In order to find out the degree of exactness of the time integration scheme necessary
for the fulfillment of the GCL, we consider the time interval [t,,t,11] and we take €, as the
reference configuration. In the following, we indicate with A,, ;,,, the ALE mapping between
the two time levels, that is

At tar = Abtop © Ay - (1.8.14)

The following identity holds for all ¥, € Ap 5(¢).

J

where Jh(Y) =YpoAy, 1., and Wy =wyod; 4, while J, ¢ is the co-factor matrix of the
ALE mapping Jacobian J Atn tagr If the domain displacement law is taken to be a piecewise
polynomial in time, then J cof would be a polynomial in time in [¢,,41), whose degree will
depend also on the number of space dimensions. Expression (1.8.15) allows to determine the
degree of the polynomial which has to be numerically integrated in time in the right hand side
of relation (1.8.12). Assuming that the space integral is computed exactly, the satisfaction of
the GCL conditions imposes some restrictions on the time integration rule employed for the
ALE convection term.

Function 'J; is constant in time. If the nodal displacement is represented on each time step by
a polynomial in time of degree s then wy, is a polynomial of degree s — 1, and J cof of degree
(d — 1)s, being d the number of space dimensions. Consequently, a sufficient condition for the
fulfillment of the GCL is obtained by employing a time advancing scheme of exactness (at
least) d - s — 1. Similar arguments apply for formulation (1.8.13).1

¢hvx~whdn=/n B(Y) T oo V) - i, (1.8.15)

tn+1

For instance, if we assume a linear time variation for x{Y,t) on cach time step (s = 1)
the GCL are satisfied in 2D if we use the mid-point rule, which exactly integrates a linear
function. These results are in agreement with what has been found by Leisoinne and Farhat
in [56), in the context of finite volume formulation.

Remark 1.8.4 It may be noted that the condition on the time advancing scheme just found
for the fulfillment of the GCL involves only the numerical discretisation of the ALE convective
term, without any direct involvement of u. Indeed, only terms related to the mesh movement
are present. Consequently, as suggested in/56], we may in principle use a separate (possibly
less accurate) time-integration rule for the other terms. For ezample, for a two dimensional
problem and piecewise linear time evolution of mesh displacement, we may adopt an ezplicit
treatment for the term HU, using, for instance, o first-order forward Euler scheme, while
adopting a mid-point rule just for the time integral of the ALE term.

Remark 1.8.5 Since there is no one-point integration scheme of ezaciness 2, in three dimen-
sional problems the mesh quantities should be evaluated at (at least) two intermediate points.
For ezample, we may use a 2 points Gauss quadrature formula for the ALE convective term.

Remark 1.8.6 For the case of linear finite elements, B. Nkonga and H. Guillard [62] have
ezploited the equivalence between Galerkin finite element discretisation and finite volumes
on the dual grid in order to inlegrate ezactly the ALE convection term, thus assuring the
satisfaction of the GCL for their three dimensional numerical scheme.
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Remark 1.8.7 The GCL formula for a finite volume scheme is readily inferred by noting
that if we take 9 = 1 on a patch of elements §;(t), expression (1.8.12) becomes

/ Q- / Q= INTo" Vo wh dﬂ] =INTom [ }z{ wy,-ndl'|,
Qi(tnr1) Q;{tn) Qi(t) (L)
(1.8.16)

which is the form which has been proposed in [97, 56].

1.8.4 A stability result for the implicit Euler method applied to the con-
servative scheme

Let us denote with u}} an approximation of u,(t"). Clearly, u} is defined on the domain
Q4n; yet it can be transported on any other configuration Q;, s # t", through the mapping
Apn g = Ah,s o .A;,}n. To lighten the notation, whenever we need to integrate uy, on a domain
Qs, s # 1" we will write simpliy

/ up, d§ instead of / up 0 A o df.

Let us consider, now, the following time discretisation of the semi-discrete problem (1.2.10)
for a two dimensional problem. We assume a piecewise constant in time mesh velocity field
and we adopt a mid-point time integration rule, thus satisfying the GCL. Yet, we will adopt
an implicit Euler time discretisation for u,. We obtain the following expression

/ upt oy, dQ — / ullpp dQ + At / BV P Ty, 0O
Qng1 ynt1/2

n

+ At / Y Vs - [(B — wp)up T dQ = At / Y20, d0
n1/2 Qntis2
Yy, € XO,h(Qt) (1817)
with

ulb =0 ondy, i=1,2,...

U?L = Ugp in Qo

Taking v, = u;:'"l and integrating by parts the convective terms as in (1.6.5) we obtain

2 2 1
7 sy + A8 N0 N = 580 [ T
\

1 2 1
< n, n+l n+1/2 "'HdQ & = ||t Z la,nt
< /Qm upuy” A2+ A’5/0 [y < 3 e My 5 Ikl

n+1/2

@ 12 (1+Ca) || snt1/2
+ AtE “quz ”,‘th"“/!) + At—zﬂ Fianl

2
Lo(9m) T
2

. (1.8.18)
=Yy 4i/2)
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Since this scheme satisfies the GCL, the following equality holds (we exploit equation (1.8.13),
where we set ¢; = ¢; = uzﬂ):

g+l
2 2
1 s = 1 e = [, ¥ waa

=At / [T 2V - wrdQ. (1.8.19)
Qnt1/2

Substituting this equation in the previous inequality, we obtain the stability result:

+1§2 n+1{(2 ny2 (1+0Ca) +1/2”2
[l [ aq gy + At [ Vi “Lz(ﬂt,,+|/2) < Rl ym) + At——‘—“ “f" H4 @)
(1.8.20)
Finally, summing over all the time steps:
2 - 2
+1 i+1
”“Z ”Lz(ntnﬂ) + Atl‘§ “VX“;I ”Lz(ntm/,)
i
14 Ca) || ;i 2
<l + A3 Ca) w/2| . (st
” h”LZ(Q‘") i ; f IH_'(Q¢5+|/2) ( )

In this case, one may observe that the stability result does not depend on the domain velocity
field and that this property has been obtained thanks to the fulfillment of the GCL condition
written in the form (1.8.13).

1.9 Finite element approximation of the non-conservative for-
mulation

The semi-discrete counterpart of (1.2.4), based on the pure Galerkin finite element method,
reads as follows:

/%
Qzat

U0+ [ (8- wn) - Vundf [ VeV d =
Y o [¢9)
= o fibn dQ Vipy, € Xo,h(Qt) (1.9.1)
t

with

up =up forxe oy, tel;
up =ug, forx €y, t=1t

where we have written 8Vxuy, instead of Vy - (Bup) thanks to the hypothesis of incompress-

ibility of the convective field 8. System (1.9.1) may be equivalently written in algebraic form

as we have done for the conservative scheme: :
17

M(t)— + H{H)U -~ B(t,ws)U = F, (1.9.2)
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and
ui(to) = u(xi(to), to) 1EN, (1.9.3)
ui(t) = up(x;, t) i € N\ Nine. (1.9.4)
Here,
B(t,wy) = {/ Yi(wn - Vi) dﬂ} . (1.9.5)
R i €N

If the space integrals are computed exactly, it is immediately verified that a constant function
will satisfy (1.9.2) (in the absence of forcing terms) independently of the numerical time
integration formula adopted. Indeed,

Y [ o V=0 Vi€ N, (196
jeN I

because of relation (1.8.11). Therefore, this scheme automatically satisfies the GCL since
it is able to represent a constant solution. Unfortunately, while the discrete system (1.8.1),
maintains the conservation property of the original problem this is not immediatcly true for
relation (1.9.1).

1.9.1 Stability analysis of the semi-discrete scheme

As for the conservative scheme (1.8.1) analysed in the previous section, we cannot take ¢, =
uy. Since each term in (1.9.1) is linear in ¥y, if we take ¢, = 9;, we multiply each term for
u;(t) and sum over the index 4, we get:

/’ Oy,
o Of

The first term can be transformed exploiting (1.6.3) and obtaining:

/?"_h
o, Ot

while the second one becomes:

1Lth+/ (ﬂ-—wh) quhuhdﬂ+p,/ |quh|2 a2 -‘:/ fuy d9, (1.9.7)
Y Q Q O,

1d 9 1
L 2 =5 lullly) ~ 5 /nt w2 Vy - wpdQ, (1.9.8)

1
[ 6= w) Vanunan = [ (8- w) Tudunl? a2
Q Qe
1 1
= ——/ Vx'(ﬁ—wh)|1l,h!2dﬂ=—~/ Vx-whluhlgdﬂ. (1.9.9)
2 Ja, 2 Q

Combining these two results into equation (1.9.7), we obtain exactly equation (1.6.6) written
for the solution uy, of the semi-discrete problem at hand. Also in this case, we can proceed as

in section 1.6.1, obtaining stability inequality without any intervention of the domain velocity
field.
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1.9.2 Stability result for the implicit Euler method

Let us consider the implicit Euler discretisation of problem (1.9.1),

/ u;’l+l¢th — / upppdS + At/ [¢/1(ﬁ - W},)quz'H + ququszﬁh] dQ
Quntt ynt1

Qi1

= At / FiMlndQ Vg € Xpalf) (1.9.10)
Qynt1

with

up =0 ondfy, i=12,...

ug =ugy in Qp.

Again, we take ¥, = uZ‘H; by exploiting equation (1.9.9) for the treatment of the convective
terms, we obtain

el 112 2
”"’h+1”Lz(Qtn+1) + Oty || Veuy ! “LZ(QM,)

< —%At / Vi walul 20 + At / Frrupttdo + / upupt! dQ
Rynt1 Q

in+1 ynp1

yn+1)

1 . (1+Cq) 2
< LA . n+12 A MY n+1
=3 t/Qt,.“ Vx Wh‘“h 1°dQ+ At % ”f “"—1(9

2 1 2 1 b
A G o+ e + 2 I ey (191)

where the last term is evaluated on the configuration at time ¢**1; such term can be modified
as in (1.8.19):

1

[ RSNE 1 T i AT (19.12)
13

n
Consequently we have

n+1

2 2
”“h ”Lz(nt,,ﬂ) + Aty ||qu2+1“L2(n

t"+l) S

g+l

< / Vy - wplul [2dQdt — At / Vi - wplulH2dQ
58 Q Qa1

(1+0Cq 2
+ Ry + At——#q) ||f"+‘||,1_,(nt"+l) (1.9.13)

In this case we cannot obtain a stability result independent on wy,, because of the presence
of the term

nt+l
/ Vi - whlul|2dQdt ~ At / V- walult2d2 ) . (1.9.14)
A Q Qynt1
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Remark 1.9.1 We may note that even if the scheme satisfies condition (1.8.13), i.e. in the
2D case we compute the second integral in the mid-configuration and consequently we can
write:

gn+1
At / Vi - wy|ul 120 = / / Vi - wilul T 12d0dt, (1.9.15)
Qni1y2 [Ad o2
the term (1.9.14) is equal to
g+l
/ / Vi - wallul|? — [ H12)dQdt (1.9.16)
Al o

which is, in general, different than zero.

We can finally obtain a stability inequality, which depends on wy,, from (1.9.13):

[lup*! ”i,(nm.) + Aty ”VXUZ+1“§,3(Q!n+1)

n Tt 2 (1 + C ) 113
< At “Vx : Wh(t + )",’m(ﬂi"ﬂ) Hu‘h+l an(Q,n-H) + At—'u—ﬂ nf Jdnil—l(nt"“)

+(1+At sup )nJA,n,t"Hvx.wh||Lw(,,t)) lafl7 ) - (19:17)

l€(l",t"+l

Using the notations ) )
M= “Vx . w"(tl)lle(Qig)

Vs = supye(i i) 1Ay, ephy Vi - Wall oot
we can rewrite the previous inequality as

2 2
”“ﬁ“ “Lz(n,n“) + Aty ||quﬁ+1 ”r,,(ntﬂ,)

2 (14 Cq) 2
< A 0,0y + (L AR IR ) + A2 1 sy
(1.9.18)
Summing over the index n we obtain:

n+1
”“ZH ”ig(nl,ﬁ, )+ Aty Z ||quh|l;2(n,;)
i=1

n
< At'Y'lH—‘ "uT{H ”iz(ﬂmﬂ) * Atz\(’ﬂ * 75) "u;l“i’zmu')
=

1+ C, n+l .
#0480 [0 + AL ST

o) =1
ntl . g 2
< At Z(’Y'l +7) ll";t“h(ﬂ,;) + (14 Aty)) llu?l“Lz(Qtn)
i=1

(1+C) ™ o
A Z;”f’”mlmﬂ_) (1.9.19)

Let us recall the following discrete Gronwall lemma (for the proof see for instance [80]).
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Lemma 1.9.1 Given 6, gy, an, by, cn,Tn Sequences of non negative numbers for n > 0, if the
Jollowing inequality holds

n n n
an+6ij < 5Z'yjaj +6Zq + g0
j=0 j=0 3=0

then, for alln >0
n n n
an+52bj§ezp 620j7j 5ZCj+go
=0 3=0 =0
where a; = ——'715 and v;6 < 1 for all j.

Then we conclude that

n+1
i 112
[ D 3 | L

2 (1+Ca) 2 o2 7+ %
< ((1 + Atyg) ”“?IHL,(QN) +At—;_; I/ ”H—l(n,i) oXp Atz - Alt o i,h)

(1.9.20)
provided that:
1 ; -
A< (HVx'Wn(t‘)lhw(nt,.) et (X2 Vx'“’h”L;,;(ﬂt))
for all 4 = 1,--- ,n + 1. According to this stability analysis, we conclude that the scheme

is only conditionally stable even if it is based on an implicit Euler method. Moreover, the
maximum allowable time step will depend on the speed at which the domain is deforming.



Chapter 2

Convergence analysis and second
order schemes

In the first part of this chapter we will carry out a convergence analysis for the discrete
problems introduced in the Chapter 1.

A recent result of convergence for linear problems on moving two-dimensional domains has
been obtained by L. Gastaldi in [34]. In that paper, the model problem (1.6.1) is addressed,
and its discretisation in space with P finite elements and in time with the Implicit Euler
scheme (1.8.17) that satisfies the GCL, are considered; moreover, the ALE mapping is con-
structed solving an elasticity problem. A linear convergence in both space and time is proved.
What seems to cmerge from this work is that GCL are important to recover the accuracy
properties of the Implicit Euler discretisation.

Following the same approach as in [34], we will carry out a convergence analysis for a general
discretisation in space with P isoparametric finite elements, under some regularity hypothe-
ses on the discrete ALE mapping. In Subsection 2.1.1 we present some approximation error
estimates for the finite element interpolation and projection operators in the ALE frame-
work. In Subsection 2.1.2 the crror on the semi-discrete problem is studied. We will prove
a convergence rate of O(h¥) provided the solution is regular enough and the mesh remains
regular in time. The main result is contained in Proposition 2.1.1. In particular, we aim at
highlighting how the constants appearing in the error estimate depend on the ALE mapping
A;. In Subsection 2.1.4 we will consider a straightforward application of the Implicit Euler
scheme to the semi-discrete problem in conservative form. This discretisation docs not satisfy
the GCL, in general. In Proposition 2.1.2 we will prove a linear convergence in time, under
suitable hypotheses of regularity on the data of the differential problem and the discrete ALE
mapping. This result shows that even though the GCL are not satisfied, the accuracy of the
Implicit Euler scheme is not affected.

In the second part of this Chapter, we will introduce two second order temporal discretisation
schemes, both for the conservative and non-conservative formulation, and we will derive the
corresponding Geometric Conservation Laws. Both schemes are unconditionally stable when
applicd to a linear problem on a fixed domain; we will study their stability propertics in
the context of an ALE formulation. Unfortunately, we have been unable to generalise the
unconditional stability result obtained for the Implicit Euler scheme, even when the GCL are
satisfied. In all the cases, we could only prove a conditional stability where the maximum
allowable time step depends on the rate of deformation of the domain. These results have

47
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been confirmed numerically. Indeed, in Section 2.3 we will present many numerical tests
showing how these schemes, when written in ALE form, do not preserve the same stability
properties they feature on a fixed domain problem.

Always in Section 2.3 we will carry out a numerical convergence analysis of the time discreti-
sation error,

2.1 Convergence and error analysis

Throughout this section we will adopt the following notations. We will indicate by Ay, the
discrete (finite element) ALE mapping constructed solving either problem (1.4.2) or more
complex problems as suggested in [34]. We remind that Ay, depends on the boundary
displacement g : 9% x I - R¥! (or, more precisely, on its finite element interpolation
gr) and on the type of problem chosen to construct the mapping. We will note by ;¢
the finite element approximation of the reference domain Q and by Qn, = A 4(p) the
computational domain at time ¢, which might differ from the exact domain Q.
Moreover, as in Section 1.5, let T, g be a triangulation of Q40, 75, the triangulation induced
by the ALE mapping Ap; on Qp,; and XE(Qp) = Fr ke (Th,t) the space of isoparametric finite
elements of degree k. Finally, we set

h = max diam(T}) and h = max diam(T}).

Ti€Tho Ti€Th e

We will make the following hypotheses : the boundary displacement g and the discrete ALE
mapping Ay, are such that

Th,, temains a regular mesh V¢t € T, (2.1.1)

3Cy, C, > 0 such that Cih < h < Cah. (2.1.2)

where the constants C| and Cy might depend on g but not on h and ¢. Here we refer to the
definition of regular isoparametric mesh given in [15, chap. 4, pag 241]

2.1.1 Finite element approximation errors in the ALE framework

We introduce the following finite element operators for every k > 1 :

Interpolation operator

I: Cy) = X (), IFu= Y uiz)s (2.1.3)
iENT
where {1;, i€ N7} is the set of nodal basis functions of Fyx (Th,.).

Thanks to the hypothesis on the regularity of the mesh 7, standard finite element
error estimates provide (see e.g. [15])

_ gk I+1—-m < . =
“u I""“Hm(nh,n < OBl )y 1<ISK m=01  (214)

Thanks to hypothesis (2.1.2) these error estimates can be rewritten as functions of &,
which is indeed a parameter independent of time.
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L? projection operator

s ) > @), [ Muwar= [ updn v e 2f@n)
bt h,t
(2.1.5)

Again, thanks to the hypothesis on the regularity of the mesh 7,,, standard finite
element error estimates provide (see e.g. [15] and [80])

Iu — Hﬁu“

141~ _
Hm(@0) S Ch '"||11,||H:+|(nhyt), 0 < 1 S k, m = 0,1 (216)

Also these error estimates can be rewritten as functions of A.

Now, we consider a time dependent function ¢ — u(#) which belongs to H' k“(Qh,t) for almost
every ¢ € I and with a time derivative ¢ — %%(t) € HE Q).

We are interested in estimating the approximation error on the time derivative & &¢, both for
the interpolation and the L2 projection operators. We will prove the following two Lemmas :

Lemma 2.1.1 (Interpolation operator) The following relations hold for all k > 1 :

a x Ou

a) af],,u|y 5l (2.1.7)
b) BtIh" = Ih 5 +wh V(u — I¥u) - (w;l W — I (w, - Vu)) (2.1.8)
OAns

where wy, = —git is the grid velocity. Furthermore, under the assumption that there ezists a
constant v, independent on h such that

VT] € 77,,;, ”Wh”W’“»w(’T}) <% (2.1.9)
we have
ou 0 Ou 12
i < Chf + whl foogar, o) Wl iresag, ) + VA s o
Bt~ ot La() 8t () Lo(Qy ) HYFHQy, ) HE R {Qy, )

(2.1.10)

Proof. In the following, we will adopt the usual notation of 4 to indicate a function « defined
on the actual domain §2y, ¢ and recast to the reference domain Q, ¢ through the discrete ALE
mapping Ap ;.

a) We have
9 = 8
%I,’ju = %1,':«., oAy} = (E 3 ﬁ(Yi,t)ap,»(Y)> o AL}
iENT

. _ 7
= ( > 5;“(Yi,t)¢i(y)> oAy =1 791% Y

iENT
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EI,’fu

pir +wy, . Vu) whAVI,‘fu

Ou
—wp-VIfu = IF (dt

du
k —
5 %),
= I,’f% +wp - V(i — Iu) — (w,, W — IE(wy, - Vu)) . (21.11)

—Iky Y—wh-VIﬁu =

From b) we have immediately

du 0 ,

ou
u_9 k
ot aih

_Iha

+ ”wh - V(u — IFu)

L2(Qp,¢)

La(@ns) “ ot La(Sn.)

+ nwh - Vu — If(wp - V“)HLQ(H;.,:)

The first two terms in the right hand side give directly the first two terms of the estimate
(2.1.10). The third term is more troublesome since the function wy, - Vi does not posscss
more regularity than W* on all the domain Q. Yet, if we consider this term evaluated
elementwise, we have :

37w Vu— I (W Yu)ll3 2z
Ty €T,

< Y Ch|ws- Vu||H,,T)_C~/h2 lleell e (g (2112)
T;€Tn,e

“w;l Vu — If(wy, - Vu)

La(Q z)

and the thesis follows immediately. W

Lemma 2.1.2 (Projection operator) The following relations hold

17} ou
o) gl 1 =11 [at + VW (u—nﬁu)] (2.1.13)
b) %n,’m:n ‘3t+n,, [V - wn (= T0fu) | + 1T (wi - V) = wi - WITEw). (2.1.19)

Moreover, under the same hypothesis (2.1.9) as in the previous Lemma, we have

< Ch* ( u
La(@.0) E3

1/2
Wl 2 o, o lull e, ) + VA el rengg, o) - (2115)
(Qn2) , (Q,,

+ RV wal[}/2 Loy ) lelleniqa,, )

HE(Qy, )

Ou 5 Ou
|5 -uis

Proof
a) In order to characterize the ALE derivative of the L? projection of u, we derive in time

relation (2.1.5)
;t / (b d = 7 / ()9 d€2,

which is equivalent to

L, vl [ g githd= [
Q0 U Q

L~ i
Ja,, V- Wl by + / Jap, 5 P

B0 Qp 0
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8 k 6“
. g, v = fn 7

For all t € I, IT’,{u(\f) € XF(0), thus it can be expanded on the basis {1’1;1', i€ NTY} of
X}I:(tho) :

Py + Vx~whm,bh—/ Vi wallfuy,.  (2.1.16)
Y 7} Q¢

(Y, )= 3 ai®)i(Y).

iENT
Then,
O~ 0 ~ da,(t
v =5 D wtd(Y) = Z — (YY) € XF (o)
ieNT iENT
and
[s _ da,(t) "
52n,,u‘Y = Y0 Sl t) € Ah).
ieNT
We deduce, from (2.1.16), that
o o
al’[ﬁu’ =1 [ % |y + Vo wp(u — Hﬁu)] .

b) By applying the definition of the distributional Eulerian derivative, we have V¢ € D($), , xT)

P) ac ac '
<T-Hk’ >:—// Hk———// H (?' - V)
e R, 6 ' o, e - hu 5 Y wy, - V¢
3C| / &
= Mu 2| - V- (will 2.1.17
/l‘ Qp,p htat Y Qe * (Wh h“)g ( )

The first term on the right hand side can be developed as follows

— g
il u = —f/ Ja, TEu =2
/ g g R Bt
— 8 = .
= J. . k —Iik
/’/S;hn A Vx Whnhuc-l—/,"/nhvo.]/qh'tat pug

=/ Vx - whHhu(+/ ;%Hﬁul ¢ = {using (2.1.13)}
T, Qs Y

:/ Vx-whﬂﬁu_(—{—// ¥ {Qg
Qi e Qe

=/ Vyx whHhu(-f-// Hk[ + Vi« (whu)—Vx~w;,Hﬁu](
Qn,e Q¢

+ V- wp(u— H;‘lu)] ¢
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Using this result in (2.1.17) we obtain (2.1.14) for almost every (x,t) € Qp,, x I.

Equation (2.1.14) can be rewritten equivalently as

%Hf,u - ng‘;—: 11} [V wios — 1050+ wi - Vi~ TT5) = [+ s = 1w - W)
(2.1.18)
Then we have directly
Ou 9 ou £ Ou k
— — —=Ilju <= M= + |V - wi{u — [Tju)
& 0t Mo,y 10 MO, ” i et
+ "wh - V(u— Hﬁu)"h(ﬂh N + "Wh - Vu ~ Hﬁ(wh . v“)"l«z(ﬂp. R

where we have exploited the fact that ”Hg”L(L’(ﬂn,c),b’(nf.,t)) = 1. By proceeding as in the
proof of Lemma 2.1.1 and evaluating the last term elementwise we obtain the desired result.

2.1.2 Error estimate for the semi-discrete problem

We aim at comparing the solution of the differential problem (1.6.1) with that of its semi-
discrete counterpart (1.8.1). We remark that the error estimate we will obtain is valid also
for problem (1.9.1) in non-conservative formulation. Indeed, the two formulations {1.8.1) and
(1.9.1) are equivalent as far as no discretisation in time is carried out.

To begin with, in order to lighten the presentation, we will make first the hypothesis that
the real domain €2, can be represented exactly by the discrete ALE mapping Ay, i.e. Qp, =
Q,, vt € I. We will remove this hypothesis in Remark 2.1.1. Then, we can write problem
(1.6.1) in weak-ALE form (1.6.12) adopting the discrete ALE mapping. Thus, we have to
compare the differential problem : find u(t) € H} (), ulto) = uo, such that

4 PudQ + p Vytp VudQ + PVyx - [(B — wp)u]d =
dat Qn,y Qe Qe

= fydQ Vi € X(), ae. inl, (2.1.19)
Dt

with the semi-discrete one : find uy(t) € X& o (¢), un(to) = uon, such that
d
o[ e [ CanViunde+ [ 9V (6 - w)mlan =
Qp ¢ Qe Q¢

= / FndQ V€ XF,(Qny), ae. inl, (2.1.20)
Dt

where we have noted X&h(ﬂh,t) = X,{“(Q;.‘t) N H{(Qny). For the purpose of the convergence
analysis, we define the space V(Z; &%,) of functions ¢ — vy (2) € A, (Q,() such that

wn(t) = Y oi(tyhi, os(t) € H'(I), Vie NT (2.1.21)

ieENT
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Proposition 2.1.1 The following estimate holds

t
3 100) ~ O+ 5 [ 190000) = oD 0, 0 <

o = wonl7 ) + | inf { () = v, 0
h

N
o — o (to)] +/‘ @”%(e)—v o
07 IR L) w| v 0 . " L2(Q,)
2Cq |18IZ
+ (57“ + ﬂl}i‘—""‘—“*—’) 1 W (tu(s) —vh(s))”izmh‘a)} ds}. (2.1.22)

Moreover, should the ezact solution u belong to L2(I; H*¥Y(Qy 1)) N L(I; H¥ (), k > 1,
with time derivative %—'{ € L%(I; H*(,)), then, under the hypotheses (2.1.1),(2.1.8) and

(2.1.9) on the discrete ALE mapping and the condition |luo — uonllp,q, ) < Chk eeoll gy )5
we have the following error estimate '

100 ~ O+ [ I9006) = )10

y tlsu 2CalBI% .
< O {Hu(t)ll"}mnh»,) + ol 3k o) + / (7" + ——-N‘—> lu(5) s ds
0

L 9C,
+/_n(
tw M

Proof. We take in (2.1.19) as test function a discrete function 4, and we subtract it to
equation (2.1.20). We obtain, Vi, € Xé‘, ()

du(s)
ot

T (Qy,,,)

2
+ (Iwal i, ) +vA) nu(s)n,,kﬂ(n,m)) ds}. (2.1.23)

L[ wmtm—winp / Victhn Vi (tin— 1) A+ / IV [(B — Wh)(un — u)] dS2 = 0.
v Qh,t Qh,t Qh.t

(2.1.24)

Should we allow the test function 1, to be time dependent, i.e. ¢¥,(t) € V(I; X({ 1 )> €quation
(2.1.24) should be rewritten in the form (see section 1.8.1 and in particular equation (1.8.5))

i 1/1},(’ll,h - u)dQ - /

Ofn
{up —u} —=
dt Dy Qns at

da + ,u/ Vitbn Vi (up — u)d2
Y Qe

+/ U Vx- [(B — wp)(up —u)}dQ =0. (2.1.25)
Qnz
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We write, now, ¥5(t) = up(t) — vp{t) and we elaborate (2.1.25) as follows

d 2 Oup — vp)
5 lun = onliz g, ) = /ﬂ;. (un = o) ——5—
*

Y A+ p |V (un = )70, )

+/Qh,t (un —vp)Vx - [(B = wa)(uy — vp)]dQ = %/ﬂh,t (up — vp)(u — vp)dQ

_ ('U, _ Uh) a(uh — Uh)

dQ+u Vi(up — vp) V{u — v)dQ
Qe ot

Y Qp s

+/ (up —vp) Vi - [(B — Wp) (1 —vp)]d (2.1.26)
Qne

The left hand side can be manipulated as in section 1.8.1, leading to

1d

Ieft hand side = =
eft hand side oy,

[fesn, — Uh”i,(n,h,) + (| Vi(un — Uh)“%g(n,,',) . (2.1.27)

On the other hand, the first term on the right hand side gives

d
s QM(U). = vp)(u — vy )dQ
d
= [ gltm ) —ol| d2+ [Tyl =)o - )] a0
Dt Y Qp e
_ Oup — vn) Bu—w),
= /ﬂm(u - p) 5 N dQ + o ——5 (up — vy)d2

+ Vy - fwn{u —vp)] (up — vp)d2. (2.1.28)
Qe

Inserting (2.1.27) and (2.1.28) in (2.1.26) we obtain then

1d 2 2 O(u —~vp)
31 10—l 19 = 0l 0, = [ 2 - i

h.t

+p/ Vi (up — vp) Vi {u — vy, )dQ2 +/ (un —vp) B - V(u —vp)dQ (2.1.29)
Qs Qp,e .

where, in the last term, we have exploited the fact that Vy - 8 = 0. The right hand side in
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(2.1.29) can be bounded as follows

/ M(uh —up)d+p / Vi (un — o) Ve (1 — 0,)d2
Qe ot

+/ (un = v8) B - Vie(ts — v)d2

< H it =)l
+ | Ve (i — Uh) La@y) | V(e = ondllLyq, )
F 18U L o2 03 1 = 20}y, ) 1V = 01)ll 00, )
< @8 ) R 1)l Y
+ £ 11 un = v, + 21Vt~ 000, )
, Ca |8l

+ £ 11V — )|

Qp ¢) 2
Lo T — 22| V(= wn)l00, ) -

By putting this result in (2.1.29) and integrating in time between ¢y and ¢, t € I, we have the
following estimate for |Jup(t) — 1’h(t)|liz(ﬂh 0t

t
lua(®) = a7, 00, ) + %/to I ¥(an(5) = on (D7) 4
2Cn
< Nup(te) — valto))); +/
0 L2(Q4t) 7 La(Qp,)

c
+ (m + —"”ﬁi—’“ﬁ) 1 Vic(uls) - vh(s))lla(nhvt)} ds. (2.1.30)

Finally, by observing that

F) 2

&(U(S) —v(s))

unto) = onltodF s, ) < Wuion = woliZ a3 + o — wn(to) T, )

and that

1 t
3 I(t) = ()1 0, + / 1V0u(s) = un()) B0,y 45

t
< 1) = Oy, 0+ 5 [ 19(0) = (D 0,
QO

¢
+llun(t) = oy + 5 [ 1Velun(s) = on)F 0, o ds: Voult) € VI XY,
(9, 2 /i, .

inequality (2.1.22) follows immediately.
We can take, now, vw,(t) = I¥u(t) (or, equivalently vy(f) = MEu(t)!) Observe that form
(2.1.8) we deduce that yl,’fu(f € L(I; X(fh(()h,t)) and then ffu(t) € V(I; X(fh). Thus, the

'The operator Hﬁ should be defined in this case as the L? projection onto the subspace X;‘ r(nt), ie.
fﬂh X Ty, dQ = fn,‘  utndQ Vi € X§ 5 (,¢). Incqualities (2.1.6) and (2.1.15) still hold Vu € H{ ().
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choice vy, (t) = Ifu(t) in (2.1.22) is admissible (analogous arguments hold for vy (t) = IIfu(t)).
Hence, by explomng in (2.1.22) inequalities (2.1.4) and (2.1.10), under the hypotheses (2.1.1),
(2.1.2) and (2.1.9) on the discrete ALE mapping and the condition {jugy — ugl| La(@po) S

Ch¥ Nuoll 2 (g, 5)> We easily obtain the error estimate (2.1.23).

Remark 2.1.1 Should the computational domain Q, differs form the exact domain £,
(given that the boundary 08, is the finite element interpolation of OQ) we could proceed
as proposed in [84] (see also [15]). We consider a domain Q. which contains both Q; and Qn,e
for all t € I. Should the solution u(t) of (1.6.1) belong to L2(I; H¥1(,)) N Lo(I; HE(Q)),
k > 1 with time derivative % € L¥(I; H*(@)), we can always introduce an estension ::(tv) of
u(t) to Q such that

e L HEY @) NI EE @), T e 121 4@
and

Wl parmen @y < Clellvyn ey
”ﬁ”[,w(l;[{k(nt)) < C”“"L""(I;H"(Qt))

ou ou
at 3t

LA5HMT) L2(1HM )

Clearly, this extension should be an extension both in space and time to allow the time deriva-
tive to belong to L(I; H’“(Qt)) We can not just take an eztension i € H*Y( Q[) at each give
tel. IfnowB € [W’*“(QL)] , a.e. in I, we can introduce suitable eztensions f and ﬁ of f
and 8 on Qt such that

0t

o7~ HAT+ V- Bu)=f, inQ,. (2.1.31)

By multiplying (2.1.31) by a discrete test function vy, (extended by zero outside Q) and
integrating over Qp;, we can write (2.1.31) in the weak-ALE formulation, using the discrete
ALE mapping An; *

d N . .
A yud0+p / Vi Vsid + [ Vs [(B - wa)a] da =
Qp¢e

dt Jo,, Qs

= / FondQ  Vyu € X5 (D), ae in, (2.1.32)
Qh,t

which has to be compared to the semi-discrete problem : find up(t) € X&h(ﬂh,t), uwp(to) = uon,
such that

d ~
S| wmde -+ / Vit Victnd + / Vs [(B ~ wilun d2 =
(2798 [T Qe

= /n Fondt Vi € Xy (D), ae in 1. (2.1.33)
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For problems (2.1. 32) and (2.1.38), exactly the same error estimate as in Proposition 2.1.1
hold, replacing u by 4

To avoid the practical construction of the extended data f and ﬁ, we may adopt numerical
integration schemes, which use only quadrature nodes internal to Yy to compute the integrals
in (2.1.83) (so that the values of f and B coincide with those of f and B, respectively, provided
that f and B are continuous functions). In such a case, in estimates (2.1.22) and (2.1.23)
terms deriving from the numerical approzimations of the integrals will appear as well. The
rate of convergence will be in general preserved if k-th order quadrature rules are employed.

2.1.3 A priori estimates for the semi-discrete solution

In order to carry out an error analysis for the fully-discrete problem, which will be presented
in the next section, we nced firstly to derive some a-priori estimates for the solution of the
semi-discrete problem (2.1.20). A first result has already been given in section 1.8.1, stating
that

t
ur@E s+ | 19 0,05 < C (2139

where the constant €| depends on |jugs
of h.
Let us now consider a discrete ALE mapping Ap; € [W°(Q x I )]d that satisfies the
hypothesis of Proposition 1.3.1; we introduce the matrix

%2(90) and f; |]f(s)||r‘,’,_,m,) ds but is independent

A xI>RY, A= J;:‘z—% (Cof3a,,) T%,, (2.1.35)

where J 4, is the Jacobian matrix of Apy and CofJ 4, , is the co-factor matrix of J 4, ,-
Observe that, thanks to the hypotheses on A, the quantity [|Alle(0,xr) is bounded.
Further regularity results on the solution of the semi-discrete problem (2.1.20) can be found
in the work by L. Gastaldi [34). We may summarize them as follows

Lemma 2.1.3 Given a forcing term f € L2(, x I), the solution of the semi-discrete problem
(2.1.20) satisfies
t
J.

where Cy depends on the constant Cy iniroduced in (2.1.84), as well as on N A|l e(agx1))

IV - Whllzoo@exry, 1 lr2a, 0y and [[ViuonllT 5 00)-
Moreover, assumed that there exist two positive constants v1 and -y, independent of h such

[ (e, L,

“ 9B — wn) <7 (2.1.38)

Aup,
s Y (s)

ds + 1‘2- IWctia(®)ll3 50 < Ca (2.1.36)
L2(Q,)

) ds <m (2.1.37)
L2(9,)

Y oo, %1y
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and that %’ith v (to) € L3(Qy), then the following a priori estimate holds true

dup 2 dup 2 )
T?t— (t) / Vx a3t (S) ds < 03, (2.1.39)
Y Lz(nf) 1 La(n,)
where C3 depends on Cy, Ca, v, 72 and | l (to) .
La(Q0)

These results are not yet enough for the error estimates on the fully discrete problem that we
will derive in next section. Let us then recall some useful relations that have been proven in
[34] : let ¢+ 2 x I —» R be a differentiable function with respect to t and x and b a vector
field such that b € [Wl’“’(ﬂt X I)]d. Then, for allv: Qy x I — R such that v = 60 Ap,,
with 0 : Qy = R differentiable, the following relations hold :

. 4 REBATE (?i’ )-vad9+/(AVx¢)»vadQ
dt Q‘ at nt
n / Ve (AViw)dS — / VWiVt Vv dQ (2.1.40)
[N 2,
. 8 [ 4b-Vwan - Q“-” b~vadQ+/ s P v a0
dt Y o Otly
+ / #b - (AVyv) dO2 (2.1.41)
99

where the matrix A is given in (2.1.35). We are now in the position to prove the following

Lemma 2.1.4 Under the same conditions (2.1.37) and (2.1.38) as in Lemma 2.1.8 the fol-
lowing estimate on the solution of the semi-discrete problem (2.1.20) holds for almost every
tel:

d2
[ a0 a2 < O 19l e, (2.1.42)
Qp¢
where Cy(t) is a square integrable function on I, independent of h and the quantity
e- [t (2.1.43)
1

depends on the constants Ca, C3, 11, 12 introduced in Lemma £.1.3, as well as on || Al o, 1),
IV - Wall Lo xny-

Proof. Inequality (2.1.42) can be obtained by differentiating in time the semi-discrete problem.
We have, Vi), € Xé‘ w(Sh,¢), and for almost every t € T

d
- / mndr= g [ wndo g [ GenVando g [ V(8- wa
(2.1.44)
where the last term has been integrated by parts. Observe that
d

g,
a f’g[lh d = Ef' 'tﬂ}, a2 + / f¢th - Wp dQ.
Qe Qne Y Qe
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Then, by exploiting in {2.1.44) relations (2.1.40) and (2.1.41) we obtain

< Cn(

+ (2 1Al o) + 1 Vx - Wh”Lw(n,)) ||quh||1,,(m)} 1V tllz(q,)

2 3f

ot |y

1V Wil 0 Hf”L,(ﬂg) NZ5'78 P
La(Q:)

d
W/Qh,t un(t)yn dQ
Yy Fup,

+p{ g Y

(e

La(Q)

+ |4l 18 ~ Whlle(nt)) llenllz s

Yl Lo ()

Ouy,

I8 = wall o || 5

} ¥xtnlly 0,

Yz (0,
All the terms appearing in the previous inequality are square integrable functions thanks
to hypotheses (2.1.37), (2.1.38) and the estimates provided in Lemma 2.1.3 and in (2.1.34).
Thus, estimates {2.1.42) and (2.1.43) hold.

|

2.1.4 Error estimate for the fully-discrete problem

In this section we will analyse the discretisation error for a standard Implicit Euler scheme
applied to the conservative formulation. We remind that this discretisation does not satisfy
the GCL, in general. We would like to point out here that satisfying the GCL is not a
neeessary eondition to preserve the accuracy of the Implicit Euler scheme.

In the fully-discrete problem, we will adopt a linear interpolation in time of the domain
deformation. Thus, the discrete ALE mapping that we will employ, denoted by Ap a¢, is
defined in each time slab [t?,#*1] as

tn-H -t

t—t"°
Ana(Y,t) = —Kt—Ah,tn Y)+ AT

Ah,tn-{-l (Y)

where Ay, is the time continuous ALE mapping adopted in the semi-discrete problem (2.1.20).
The mesh velocity is thus constant on each time step and is given by

Ap 1 (Y) = Apn (Y)
= n+1 Y) = h,t 5
Wha(Y) At
and wle(x,t) =wpt(Y)o A;,k[(x), t € (17, "],
We aim at comparing the semi-discrete problemn (2.1.20), that we rewrite hercafter for con-
venience : find uy(t) € X&h(ﬂh,,), un(to) = ugn, such that

i / YpupdQ + [J/ Vithn Vetn dS2 + / P Vy - [(ﬁ(f) - wh(t))u.h] ds) =
dt Ja,, Qe Jou,

= JUnd Vi, € XEL(Shy), ae. in I, (2.1.45)
Qp ¢
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with the Implicit Euler discretisation : find u}} € X&h(ﬂh:tn), n=12..., ud =uy such
that

1 / n+1 1 n+1 n+l 1
-~ up Ty d — — up ¥y A2 + PV [(BE™) — Wit up ) a2
At h,tn+] h At Qp m " Dy, pntt *

of

I XLED!

pVRu T ey, dQY = / P dQ Ve € XE (D), n >0 (2.1.46)

h in+l

We will prove the following result

Proposition 2.1.2 For a sufficiently small At the error estimate

n+l
i = st Dl ) A0 D19 (3 = 06 [0,
’ i=1 '

< oar? {i:l{]i%ﬂ (se(fi‘?l) ) “JA""’ “L‘*’(“t") ¢

n+l
> at| |quh{|L2(ﬂ o (2147

Leoo(Sk) =t

+Cgq sup
sel

atl (b)

holds, under the hypotheses of Lemma 2.1.3 and provided A, € [W“"’(Qq X I)] dﬂ[Wz""’(I; L“(Slo))]d,

The constant Q is given in Lemma 2.1.4 while the constant C depends eventually on Ap, but
not on At. The quantity Z"“ At ||qu’}‘”?2(n o B8 bounded thanks to inequality (1.9.20).
2(0,:

Proof We take the difference from equation (2.1.45) and (2.1.46) at the time level t**!. To
lighten the notations, we drop out the subscript h to indicate the computational dormain.
Then, Vi, € X&h(ﬂh,,), n > 0 we have

1 bl 1 d /

—_ dQt - — uphy, dQ - — up, (£)dQ

7 /ﬂt“+1 up A o, iy Yn @ Jo, Prun(t) -

+ / BV (al T — (7)) Vierpy, A2 + / Ya Vs - [BETH (! — (")) d2
Qpnts Qunti

- / PnVx - [W’,:t\}tuzﬂ ,,(t"+1)uh(t"+‘)] =0 (2.1.48)
Qnt1

We sct e ™ = ul+! — gy, (#711); then, by taking in (2.1.48) v, = e}, integrating by parts
Uy, h g Y P
the convectlve terms and exploiting the fact that V- 8 = 0, we obtain

! F1gntt ! +1 +1 -+l
—A—t/QMuz ey dQ-Kt- nmu;;eg d(l——/ up(t) e} dﬂ +u“vx “h(%nﬂ)

+ / Viept - (Wil - wa( ) upt a0 + / Ve ™! -w,,(t"+‘) eptld =0
Dt ! Q2
(2.149)
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Observe that, in the second term of (2.1.49), the function e;:“ can be transported on (n

either through the mapping Ap, or Apa;- In the sequel, we will adopt always the first
possibility. We will use the following Taylor expansions around ¢ = t"+! :

4 -1 n+l _ / n
dt /Qz uh(t)whdn At /s:lt"“ “’h(t )’(I) daQ At uh(f' )"l’th

1 tﬂ+| d2
_— L0 P 5
+ Al /tﬂ (s—t )d32 (/ﬂ, uh(s)1phd9> ds, (2.1.50)

which holds for all ¥, € X(f, w(Qh), and

a-Ah ¢

Anrnn (Y) = Ann(Y) 8P,
At/ (s—t") 9s? (

wi(Y, ") = x

(Y, "y = Y, 3)ds

(2.1.51)

that, once written on the configuration Q.41 reads

gl

0 Ap 4 -
wh(x, oy = w;;'zlt(x) + i ([ (s —t") éAh (Y,s)ds ) °'Ah,iﬂ+1 (x) (2.1.52)

n

Exploiting (2.1.50) and (2.1.52) in (2.1.49), we obtain

s

d?
Lz(nt,,ﬂ) At/ e et - ~ (s~ t")a? (/f-l. uh(s)eZ“dQ) ds

1

1 +1 142

+ || Vet ”M(QM) — E/n . Vs - wa(t™H) (€12 dO2
1

n+l

n

t"'H
- —1—/ Vert!. / (s —t")a A’” (Y,s)ds | o A} pnt (K)uptldQ = 0. (2.1.53)
At Qns1 t

Then, by manipulating the term fﬂ e} PZH d$? (as done in section 1.8.4 or 1.9.2) as

1 1 2

1 2 1

/Q enen’ d < S el 00 + 3 llext "1,2(0”.)
i

gt

2 1 2 142
L) 1 §||CZ+1”L,(QH.+,) Vx ~wa(s)(cy ) d2ds,

equation (2.1.53) can be elaborated as follows

1
= 3 lefl

1 2 1
AL ”(’:H”iﬂntw,) +u ”Vxe:HHLg(ntnﬂ) < AL “eﬁlli'b’(nt")

gntl
+1 / Vo w7 ()20 - = / Vi wals)(€H)2ds | (Ty)
2 Qntr At n Q,
2
l tﬂ+l d2 "
— — 3 . n
+ At/ (s—t E </f‘2, ur(s) e} dﬂ) ds (T3)

st

+ Klf/ Ve t!. (/ (s — fn)a Ap, S(Y,S)ds) °A;,i,.+.(x) W (T)
t"+1 tn
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We analyse separately the last three terms on the right hand side, noted T3, T3 and Ty
respectively. The term T, can be bound as

1
T < _’Yn+l ll“n+llle(Qtn+1
where

Ul ARG RN LR AE §

) Loo(21)”

and At,-,s = .Ah,s ° 'Ah,t"'

g+t

1
T3 < E/ (s —t")Cy(s) nv"enH“Lz(ﬂa) ds

gntl 1
/ iy o O VG 9 gy

tn+l gt
t" Aty

I/\

. b
(s —t")? || Vel ! ||22(n,7.+| ) ds)

1
2
Ci(s)ds /
Loc(Qynt1) +(s) b) ( n
l
I 3 et »
<= J Ci( V;
= 3 ae(ts'l‘ftg*'l)“ Am+1 Lool@nt1) (/t" “ xeh ||L2(ntn+l)

< — At ”J “ e 02 d © 'V n+1)2
3u se(ts'uutI:H) At Loo(@ynt1) Ji 1) $+Z, *h “L2(9¢n+1)'
Finally, for Ty we have
[n+l 2A
RS ~
/ / T4, i (5 = 1)V Z“ o7 ——2 g ds
1 1
1 e n\2 n+1 : e 32~Ahs : ~n+1)2 :
< -A_t (/t; (9 -t ) ” "ph ”L;(Qt,,“) /t /Qo JAM"M Os2 (uh ) d)ds
At +1 Gl 62./4}1,5 2 +1112
YT e | [ ] ] B* U @
Loo(ﬂ )
At Cﬂ n+l 32_Ah5 © n+1]|2
< | W ||L2(“t"+‘)se(,snuﬁ+n) 22 8 o )+Z“Vxeh ||"2(9m+1)-
o0 0

Combining all these term we obtain finally

2
”ezH“LQme) + Aty IIVxeﬁﬂlli,(n < Aty Hﬁﬁ“lligmm,)

,.th-u) -
2At2 gntl
+ {le}if? o+ —=— sup “JA . C(s)ds
AlL2(@m) T3y se(en gty 17 e Lo (@yn) Jy 1()

2At Cn

| B

(23 ey Wy .
oo {30
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and, summing over n we have

ller*!

2 n+1 o n+1 . -
Lo(@puyr) T O 2; ||Vxe;l”Lz(thti) <At X}: el “‘331”1,2(:2“-)
1= =

2482
* B imlmtl (sei,}f,,;)"JA“’"”Lm(nti)> e

2A12Cq 62.'4}.,; 2 ™ Sn2
Y B @ 2 At [Vt 100,
‘ Lon(®) =1

By applying the discrete Gronwall Lemma we obtain the desired inequality where the constant
C' is given by

_2 n+l Y _ i
C‘;mexl’{t 1—Am}’ R L

2.2 Second order time discretisation schemes

In sections 1.8 and 1.9 we have considered an Implicit Euler discretisation of model problem
(1.6.1) applied to both the conservative and the non-conservative ALE formulation. ‘In the
first case, in particular, we have proposed a modified version of the scheme, which satisfies
the GCL and we have shown that it is unconditionally stable. In this section, we would like
to extend these considerations to higher order schemes. We will use the same notations as in
Scctions 1.8 and 1.9. In particular, we will drop the subscript h to indicate the computational
domain. The finite element space will be indicated with X5(£2.) and may be taken as the finite
element function space Fy, x(7a,) of degree n and parametric mapping degree k. Finially, the
discrete ALE mapping adopted will be indicate always with A),; and will be supposed to be
polynomial in time within each time step.

2.2.1 The Crank-Nicolson method

We will consider here a slight modification to the classical Crank-Nicolson method that, for
a scalar ordinary differential equation

y(t) = gly(t),t), t>0, and y(0)=yo (2.2.1)

reads
n+1 (3
Yt -yt = Atg (y——-——z—ty—,t""%) (2.2.2)

More precisely, it is a Gauss-Legendre implicit Runge-Kutta method of order 2. Nevertheless,
for a linear advection diffusion equation on a fixed domain and with time-independent coeffi-
cients, this method coincides with the more classical Crank-Nicolson. With a little abuse on
notations, we will refer to method (2.2.2) as a Crank-Nicolson method.
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Discretisation of the conservative formulation

A straightforward application of scheme (2.2.2) to the conservative formulation (1.2.10) pro-
vides :

n+1 n "ﬁ“ +up
uH dQ ~ [l d+ At pV 2 TEh G d0
st Qn Q 2

/2

n+1 n
+ At/ p V- [(ﬁ ~ w;:““)u] = At/ £ 2y, 40
Dni1/2 2 Qnti/2
Vi € Xop(Q), n=0,1,... (22.3)
with
uhi=0 ondy, i=12,...

uz =ugp in

We remark that this formulation satisfics the GCL only for a 2D problem and a linear in time
reconstruction of the geometry (i.c. a piecewise constant in time mesh velocity).

In order to satisfy the GCL in the more general case, we firstly observe that the right hand
side of (2.2.2) can be seen as an approximation of

n+1 n gntl
Atg (% t"+%> ~ / gly(t), t)dt. (2.2.4)
n

We can adopt then a quadrature rule different to the midpoint one to integrate the right hand
n-1 n
side in (2.2.4) while keeping y(t) = £ e,

g+l

1 n+1 n
-yt = [ 0,0~ INTE [ (y—}y—t)]
;

We introduce, thus, a modified scheme

/ o, df2 - / upp dS
eI Qun

n—H n+1 n
FINT [/ A S AT (ﬁ——”h 2*“") (m}

netl
—INTYR [/ P Vx - (Wh(t) +uh> an

= At / Py, dn
Qtn+l/2
Vifn € Xon(l) (2.2.9)

where we take the liberty of using two different quadrature rules for the advection-diffusion
terms and the term accountmg for the domain deformation. In order to satisfy the GCL, the
quadrature formula ZN T2ln+ must satisfy the requirements on the degree of exactness given
in Proposition 1.8.1. We recall, in particular, that if we use a quadratic in time reconstruction
of the ALE mapping for a 2D problem, we need for instance a 2 point Gaussian quadrature
formula or the Simpson formula.
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We are going now to study the stability of this scheme. We will present only the case of a
two dimensional domain and a piecewise linear in time reconstruction of the geometry, which
allows us to employ scheme (2.2.3). The results we will obtain can be easily extended to the
more general scheme (2.2.5). We will first derive the following result :

Lemma 2.2.1 The discrete solution uj, of scheme (2.2.3) satisfies the inequality

At +1 2
||uh ILz(Qth) +3 u”V (up ™ +uf ”L2(9,n+1/2) T, o Vi - walud Tt — uf|?dQ
0
1+ Cq) 2
< [le?)? +At(—-— "'H/zll 2.2.6
<l h”,&(ntn) ® f H YR n1172) ( )
foralln=0,1,...

Proof, We take in (2.2.3) ¢y, = (u}™' +u}) and we usc the identity

1 1 1
(@,6-+8) = slal + 5lla-+ bl = 3B

to write the first two terms in (2.2.3) as

/;) uh"'l(u',z“ +up)dQ ~ / up (it £4)d0
ntl .

Qn

+1 2 1 2
”"n + “;IL“M t7l+1) ) ”u;:”L’(Qt"*‘)

1 2
=3 ”“Tl ”Lz(ﬂm+|)
1
‘Qnuzniz(n,n “”" ! +“'h"L2(Q¢n)+ ”“h llle(nm)

n+1(2
La(On) = At /ﬂ Vi wplup ™ "dQ
ynt+1/2

12

= Hu;: La(@ut1) ||uh
1 1

- —At/ Vi - wy|uf[2dQ + —At/ Vo walud ™+l 240
2 Qn+1/2 2 Qnt1/2

2 2 n+l
o)~ ||um[L2(nw) + At /Q o Vy -wpup  up dQ, (2.2.7)
i

n+1

= ||up

where we have exploited relation (1.8.19). Then, equation (2.2.3) with ¢y = (™! + )
becomes, after integration by parts of the convective term

2
”“2“ ”Lg(nt"“) |“h||12(9,,,) + At/ V- whul Tl d0
Qnr1s2

At n+1 ny (|2 At n+1 n;2

toH ([ Wi +uf) PRUI el A o Vi whlup ™ + up[*d
in
(1+Caq) n+1/2 2 [t n+l ny||2
S At—== f || + At ||V (uy +“h)”L2m,n+1/z) (2.2.8)

H (@ t112)

and the thesis follows immediately.
| ]
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We remark that, if V. -wp, <0, Vx € Quia/2 and n =0,1,... , (ie. in the case of a uniform
contraction of the domain), from (2.2.6) we could obtain a global stability independent on the
mesh velocity as for the Implicit Euler scheme. In the more general case we can only obtain
a conditioned stability where the maximum allowable time step will depend on the speed at
which the domain is deforming. Indeed, we can write

At / Vi wilupt! — o 2dQ < At Vo wh (Jui 2 + [uf|?) a0

4 Qnt1y2 2 Dnt1/2

: ) At ;
+1 = :
< 3_ "Vx . Wh"Lw(ﬂ,,.,.l/z) ”u: “L2(Qn+1/2) -+ ”Vx . wh|le(nn+l/2) "“m'Lz(Qnﬂ/z)
< At'y""'l ”u +1”le"+1) + Aty ”uh”Lg(Q }

where we have set

’Y{'H 5 ”Vx Wh"Lx(Q"H/z) JA,nH'th/z Lm(nn-}—l)’
v = ‘2‘ 1V Wallz o,y JA i g ()
and inequality (2.2.6) becomes
flu*! “LQ(QM,) l‘ [V(ur + “Z)”i,(ntnw,)
< Aty Jupt! ||L2mm+2) + (14 At3) gl 0,0y + Attt %) Cﬂ frt1/z “

H30, 0 p172)
(2.2.9)

which is very similar to (1.9.18). Then, applying the discrete Gronwall lemma we obtain a
stability result similar to (1.9.20) under the condition
. -1
Lm(Q;))

J

A it1s2

J

A o1z

At <

T (”V" i@

+||Vx-w
Loo(52) IVx-wille (0

i41/2)

foralli=1,...,n

Discretisation of the non-conservative formulation

Scheme (2.2.2), applied to the non-conservative formulation (1.2.4}, reads :

o +1 uh+l +u}
Py, dQ — up dQ + At uVy — 2V, 1, d +
Qynti
. n+l
(8- wi )V (—L) s = At [ FrE 2, o
2 Qni1/2

Qynti Dynt1/2 2
+ At/
Q
Yy, € Xg,h(Qg) (2210)

As for the Implicit Euler scheme, this scheme always satisfies the GCL. A stability analysis
can be carried out following the same guidelines as in the conservative case, by taking ¥y, =

"“ + uj; as a test function. As for the Implicit Euler method analyzed in section 1.9.2, it
can be shown that this scheme is only conditionally stable and the stability condition depcnds
on the mesh velocity. We omit the calculations for the sake of brevity.

172
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2.2.2 The second order backward difference scheme BDF(2)

The second order backward difference scheme (in the following BDF(2)) applied to the scalar
model equation (2.2.1) reads :

3 1
Eyn+l _ 2yn + Eyn—] =g (yn+l,tn+l) , n 2 1. (2.2.11)

This scheme can be initialized by a one-step second order method such as, for instance, the
Crank-Nicolson onc presented in the previous section.

Discretisation of the conservative formulation

Scheme (2.2.11), applied to the conservative formulation (1.2.10) rcads :

3
-2-/ uﬁ“’d’h dQ - 2/ wphy, dQ + %/ uﬁ—l’lﬁh a0
Qunis Qn

Qs

+ At / BV Vit d + At / U Vi (B — witHupt']dQ
Qnt1

Qn+1

= At / FPRdR Vi € Aon(R) (2.2.12)
Qi

This scheme does not satisfy the GCL in general. However, we observe that

[n+l n

1
Syt gy g Ly 3 / o), it — = [ gy(e), 0. (2213)
2 2 2 Jn 2/,

-1

Then, we can modify the scheme (2.2.11) in the following way

3 n+| 2,‘/11 + ;1/ Z—NT¢H+I [ ( n+1 t)] INTU. , [q(y""",t)], (2214)

where, as usual, we use a quadrature formula to integrate the right hand side in (2.2.13) while

kooplng y(t) = u"‘“ The modified version of the BDF(2) scheme that satisfies the GCL reads
then

gf u;;+1,,,,,dn—2/ uzw,.dn+%/ Wy dO
Qnt1 Qn Qn1

vt | [ w0 (Gu) a0 - INTLs [ A wvx-(wh(t)uz“)dn]

—%INT,ﬁi_, [ /n BVup T Vit + V- (Bup +1)d9]+ INTabns [ / YV - (wht)hupr “)dﬂ}

= At/ FrHgd0 Vi € Xoa(R)  (2.2.15)
Qz'-+1

Again, we feel free to take to different quadrature formulae for the advection-diffusion terms
and the term accounting for the domain deformation. It can be easily verified that this
scheme satisfies the GCL provided the quadrature formula ZA' T2 fulfills the requirement on
the degree of exactness given in Proposition 1.8.1. In particular, for a 2D problem and a
piecewise linear in time ALE mapping, at each time step we need to compute the matrix
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associated to the term fnt Y Vi (whuh“) d$} on both configurations nt1/2 and Qp_1/a.

For a 3D problem a 2 points Gaussian quadrature formula should be employed for ZN' T2
thus implying four computations of the same matrix. This scheme has already been proposed
by Farhat and Koobus in [52] in the context of a finite volume approximation.

In the remaining part of this section, we will derive a stability result for the BDF(2) scheme
(2.2.15). We will limit ourselves to the case of a bidimensional domain and a piccewise lincar
in time ALE mapping. Furthermore, we will consider a standard BDF(2) approximation
of the advection-diffusion terms, i.e. we set ZNT 1t i[g(y(t),t)] = INT " [g(u(2),1)] =
Atg(y™*1, 1), while ZN'T, will be taken as the mid-point quadrature rule. The resulting
scheme reads then

§/ u;:“a/;,.dn-zf uwhdn+l/ ey, d92
2 /0,00 Qn 2Ja,.

en—1

+ At / [V by, + 44, Ve - (Bul ™) dQ—gAt / PV - (Wi Punty dq
Qyn1

n¢n+1/2

1 -
+ EAt/ 1/)th : (W;: 1/2’U,Z+1) dl = At/ fn+l’l/)h dQ2 V’l/}h € Xo,h(nt)
Qnois2 Qynt1
(2.2.16)

We will first prove the following result :

Lemma 2.2.2 The discrete solution u} of scheme (2.2.16) satisfies the inequality

- ||uh+l”Lz(ﬂtn+l) + = ”2“h+1 uh“Lz(Qtn) + - “uh — Zuh +"‘h ||iz(ﬂt,._|)

+1 n+1/2 194
+ Aty HV upy ||L2(Qtn+l) At/ﬂ Vi wy gt dn
nt1/2

+ At/ Vx - w;:_l/2 (]uZ“]rl - 211;:'“1#) dQ
Q

n—1/2

1 1+ G
< IR + 5 1208 = 7, + A L )

k1)
foralln=1,2...

Proof. Let us take 95, = up™" in (2.2.16). The first three terms can be developed in the
following way

3 1
I = EAI |uz+l|2 dQ — 2/n u;:u;:"f-l dQ+ = / uz—luz+l a0 (2.2.18)
tn+l R gn—1
3
=3 / fup ™ P a2 - 2 / wuntd + 5 / W~ 4o (2.2.19)
Qn in Qun
+ ;At/ Vo Wit st 2 gy~ %At/ Vo wi T Rp-lyg 4 go
Qntis2 Qg2

(2.2.20)
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where we have employed relation (1.8.19). Let us observe, now, that

3 1
E/Q a2 dQ — 2[) upult! dQ + 5/0 up 2t 4O
tn n 3

; ! ! 112
=5 J, 07 i )T [t gt [

in

1 _ 1 -
= HU"“IIM,MZIIUZ“ = 208+ 0y = 7 1208~ 7 )

el ”2’an+1

1 2
I ”2uh+l ||,2m'" - “2”;2(9”) -1 Iluﬁllizm,n) - ”“;:H“Lg(n,n)

1
4
+
1 —1)j2
= (I Wy + 7 1208 =R ) + 3 I = 24

- (G 0 e+ 0 = )
(2.2.21)

Then, applying (2.2.21) in {2.2.20) we obtain

n-+1

1 P
=3 ”“Tl”;(ntn) t37 [[ 20" - “ﬁ”;(n,n) ti H“

; 1 2 3

2 -1 n+1/2| nt1y2

La(@m) T [P P §At/n o V- wy, T dQ
in

= 2uj + “Tl”i,(n,n)

1
- 5l

—lAt/ A w"l l/2 ;: 1 n+1dQ
2 Qn-1/2

2 —1yy2
= (— "“h+ ”Lz(ﬂt"“) + = 1 ||2u,h+1 1‘2”1,2(9,7.)) i H'u"‘*'l —2ul +uf 1”[,2(11”_1)
- (Z 7 peem) + 1 [|2ug — ! ||izmt"_‘)) + ZAt/ﬂ V- w2412 4o
n+1/2

+%At/ V. w n 1/2 [( n+1 — o} +up” ) _ (2u2_u;:—1) __2un 1 n+1] 40
Qn_1/2

9 1 —112
= (‘ ”"’h-H”L; Q) T g ”2“h+] “ZHLQ(Q,,.)) + 1 ”“ZH - 2up, + uy l”L;(nm_l)
5
_ (Z ||ug||§2(nm +7 |[2u;; —ul ||L2(QM)) + At/ﬂ / Vx.w:ﬂ/zlu;;ﬂlz dan
‘n—H 2

1 -
+ ZAt/ V- Wy 12 (P = dufiad) dO.
Q12

Finally, by integrating by parts the convective terms in (2.2.16) and employing the previous
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result we have
1 2 1 2 _1n2
+1 +1 +1 1
(Z ||“Z ”Lg(nl,.“) +3 “2“2 - “z"h(ntn)) a ”“n - 2uf +uy ||L2(Qtn_1)

-1)2 +1/2 .
- (_““””Lz(ﬂt")’L [ ‘IIL,mm_l))J“EAt/Q V- wi Pt a0

ynt1/2

1 ~1/2
+ 58 /Q - Vo Wy (o - 20 ) dO At |V |

1+C
<allt D e A a2 ) (2222

Qunt1 int1)

from which inequality (2.2.17) follows.

|
Should the domain be fixed, we would have the following global stability result

““h“”n,m) +3 ”2“n+1 "h”L @
+ 2 Z ”“iﬂ - 2uj, +"’h 1”Lg(n) + AWZ “Vx l‘liz(n)
1 (l +Ca) «
<3 ||“h“L2(Q) 3 ”2“): “han(ﬂ) + At—_—# s Z ”f’“”,, oy (22:23)

without any condition on At.
In the case where the domain moves, we may use the bound

-acf
Q

Vi - w:“/quZHl? do - At/ Vi wp 172 (Y2 - 2u 1 u?) a2

Qn-1/2

< Aot I,

n+1/2

2
@) T AR ekl La0,n) -

Then, by applying the discrete Gronwall lemma, as in Section 1.9.2, we can recover a condi-

tional stability. The limitation on the time step At is given by
N +7%

and depends on the mesh velocity.

Discretisation of the non-conservative formulation

The BDF(2) scheme applied to the non-conservative formulation (1.2.4) reads :

/ (3 ntl —2up + lu ) Py dQ2 + At/ /Jqu,"l+1Vx1ﬁ,, an
Qn1 2 2 [2

+ At / Ya(B ~ withV, - a1 d0 = At / FrH g, dQ
Qn 1 Q

g1

Vi, € Xo,h(ﬂg) (2224)



2.3. NUMERICAL ASSESSMENT 71

As already pointed out for the other schemes previously proposed, this scheme always satisfies
the GCL. A stability analysis can be carried out as in the previous section, by taking ), =
UZ“. Again, it can be shown that this scheme is only conditionally stable as the Crank-
Nicolson and the Implicit Euler ones. We omit the calculations for the sake of brevity.

2.3 Numerical assessment

We have considered the model advection-diffusion problem on a 2D domain. The ALE map-
ping has been constructed solving the Laplace problem (1.4.2) at each time step ". We
have considered both a piecewise linear and piecewise quadratic in time interpolations; more
precisely, we have considered the linear interpolation of the domain movement in [i*, t"+!]
given by

— il (t-tn) ) (t_tn-H)
x (Y t)=x7(Y) A xp(Y) Y (2.3.1)
and consequently a constant in time mesh velocity
n+l T
wa(Y,t) = 2 XD ) — x3(¥) (2.3.2)

At !

where we have noted x}(Y) = Apy,(Y). As a quadratic interpolation of the domain
movement, in {t", #"*!] we have taken

{t-tm) - -t - (t -t -t

S eV Y n—1
xu(¥,) = Xt (v) S xp (V) X N
(2.3.3)
and
o — " — 8"_1 o — gntt _ gn-l 2 — gntl _gn
— 0+l P . n—1 —_—
wi(Y,t) = x} (Y)———-ZAt2 xH(Y) AP +x37(Y) SA (2.34)

In this case, given x)(Y) and the initial domain velocity wi(Y'), the domain deformation in
the first time interval [t0,4!] is given by

_ 4032 032 40y _ gl
xn(r,8) = L) Af;) +x0(Y) [1_%] —w‘,).(Y).("’t—;(:t_l

and

_40 — 341 _ 40
wi(Y,t) =2 (x(Y) -x4(1)) (tmz ) -wh() & Zt =

For both linear and quadratic interpolation, we have taken wj(Y,t") = lim;» wy(Y,t)
since wp, is discontinuous at the time instants t™.
All the numerical schemes proposed in the previous sections, i.e. the Implicit Euler, the Crank-
Nicolson and the BDF(2) schemes in both conservative and non-conservative formulation (in
the following indicated by the suffixes ne and ¢, respectively) have been implemented. For
the conservative formulation, we have considered the time discretisation which don’t satisfy
the GCL (in the following indicated with the suffix noGCL), the one which satisfies the GCL
for a linear in time deformation of the domain (suffix GCLI) and the discretisation which
satisfies the GCL for a quadratic in time domain deformation (suffix GCL2). The quadrature
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formulae ZN'T| and ZN'T 3 have been taken as the mid-point rule for the schemes GCL1 and
as the two point Gaussian quadrature formula for the schemes GCL2. We remind that, for a
2D problem, the Crank-Nicolson scheme (2.2.3) always satisfies the GCL for a linear in time
deformation of the domain. Then, in this case, the scheme GCLO coincides with GCLI.

We will present hereafter two test cases. The first one aims at validating the stability results
derived in the previous sections while the second one will focus on the time accuracy.

First test case - stability analysis

We have taken as reference domain €y the unit 2D square. The domain deformation is given
by

z1 = Y1[2 — cos(20xt)]

zg = Y5[2 — cos(20mt)] (23.5)

x=A(Y): {

We observe that the deformed domain is still a square that expands and contracts periodically
with a period T = 1/10. Moreover, since .4,(Y) is linear in Y, by solving a Laplace problem
at each time step t" for the discrete ALE mapping, we recover the deformation given in (2.3.5)
exactly. The mesh velocity on the domain €, is given by

w = 207z, sin(20mt) 207z, sin(20mt) T
2 — cos(20mt) ' 2 — cos(20wt)

and its divergence is constant in whole the domain and is given by Vx -w = %‘%.
We have considered the problem

qu_ 0.01Au =0, in O

at

u=0, on 9%, (2.3.6)
u(0) = 1600Y1(1 — Y1)Y2(1 -~ Y2), in Qo.

Observe that for such a problem {[u(t){|,,q,) is a decreasing quantity (see inequality (1.6.8}}.
Problem (2.3.6) has been discretized in space with P; finite elements. The monotonicity
property of the L2 norm of the solution is clearly valid for the semi-discrete problem as well.
When problem (2.3.6) is defined on a fixed domain, the Implicit-Euler and the Crank-Nicolson
schemes preserve that property, i.e. the computed solution u} has a decreasing L? norm.
On the other hand, when considering a moving domain, starting from our estimates, we
should expect that only the Implicit Euler scheme applied to the conservative formulation
and satisfying the GCL will preserve that property.

Figures 2.1 and 2.2 show, for the two schemes and the two cases of a lincar and a quadratic
interpolation of the domain deformation, the computed quantity ||um|iz(nt") together with

the "exact” norm ”“h(t)”iz(n,) of the solution of the semi-discrete problem (computed on the
same mesh but with a very small time step) during the time interval [0, 0.4] {corresponding
to 4 periods of oscillation of the domain). In all cases we have used a time step At = 0.01.
We can observe that, only the Implicit Euler discretisation which satisfies the GCL, applied
to the conservative formulation, is strictly monotone, as it was predicted by our estimates.
Furthermore, for the Crank-Nicolson scheme, the £? norm increases during the expansion of
the domain and decreases during the contraction phase, coherently with estimate (2.2.6).
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Implick Euler ~ quadratic displacemant

Implicit Euler ~ linear displacement
60|

Ndpllzg

"
19130

02 025 03

time

Figure 2.1: Test case 1 : L? norm of the computed and “exact” solution as a function of time

for the Implicit Euler scheme. Interpolation in time of the domain deformation : linear on

the left and quadratic on the right.

Crank-Nicolson ~ linear displacement

Crank-Nicolson - quadratic displacement

0.35 04

03

0.2 025

015
time

015 02 025 03

0.35
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time

the left and quadratic on the right.

[ . X
Figure 2.2: Test case 1: L? norm of the computed and “exact” solution as a function of time
for the Crank-Nicolson scheme. Interpolation in time of the domain deformation : linear on
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The BDF(2) scheme, even when applied to problem (2.3.6) on a fixed domain, does not feature
the monotonicity property of the L? norm of the solution. On the other hand, as shown by

estimate (2.2.17), the quantity which turns out to be decreasing, for a problem on a fixed
domain, is e} = § Ilum[izmt") + 3 [|2up - uz_llli,(nm-l)' Observe that € — JJun(t*){I7,(q,)
when At — 0. Figure 2.3 shows the quantity e} for the different versions of the BDF(2)
scheme and for the two cases of a linear and a quadratic in time interpolation of the domain
deformation. On the same picture, we report also the norm |ju,(t)]] La(n,) Of the "exact”
solution. It is evident that the quantity €, is not decreasing, coherently with estimate (2.2.17).

BDF{2) - quadratic displacement

BOF (2} ~ Gnear displacement

8

OS I Iz y + OSU2W ~ s

1)
05l llag , + 0520 - sy

0.2 025 03 035 04

[} 0.05 o1 0.5
time

Figure 2.3: Test case 1 : quantity €} as a function of time computed by the BDF(2) scheme,
compared to the "exact” value |jup(t)]| Ly(n,) = limagsge. Interpolation in time of the
domain deformation : linear on the left and quadratic on the right.

Finally, in Figure 2.4, we report the L? norm “"mlbz(ﬂtn) of the solution computed by the
BDF(2) scheme. This figure highlights the dissipation propertics of this scheme and should

be compared to Figures 2.1 and 2.2.
BDF (2) - quadratic displacement

BDF(2) ~ lnear displacement

(L4 o)

g la y

Figure 2.4: Test case 1 : L? norm of the computed and “exact” solution as a function of time
for the BDF(2) scheme. Interpolation in time of the domain deformation : linear on the left

and quadratic on the right.



2.3. NUMERICAL ASSESSMENT 75

Second test case - error analysis in time

We have considered again as reference configuration €y the unit 2D square. The domain
deformation is given by

x) = Yi[2 — cos(107t)]
= A(Y): 2.3.7
x «(¥) {52 = Y2[2 — cos(10xt)] { )
The problem we have considered is
% —0.1Au = f, in Q,
u=0, on Y (23.8)

u(0) = 16Y; (1 - ¥})Y2(1 ~ Y2), in Q.
The forcing term f has been chosen in such a way that the corresponding exact solution
u(Y,t) is

u(Y,t) = 16 (1 + %sin(51rt)) Yi(1-Y)Ya(l - Y)

Thus

3.2(1 + 0.5 sin(5nt))
m(}’l(l 1)+ Y2(1-13))

1607 (1 + 0.5sin(5wt)) sin(5wt)
- 2 — cos(10xt)

FOY, ) = 40m cos(5at)Y; (1 — Y1)Ya(l ~ Ya) +

Yi¥a(2 - 3Y; — 3%, + 411 V3)

Problem (2.3.8) has been discretized in space with Py isoparametric elements. Figure 2.5
shows the mesh used (on the left) and the initial solution (on the right). We have taken

Figure 2.5: Mesh and initial solution of the problem illustrated in Test case 2

a sequence of decreasing time steps At = 1/20,1/40,... ,1/320 and we have computed the
L? norm of the error at time ¢ = 0.3 over the actual domain €. In all cases the error is
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Implicit Eules

Implicit Euler - quadratic displacement

lu(ey- it

e |E-nC
- IEc-noGCL |-
- IE-c-GCL1 _FiT

I

WAL [
1 10

* 10" 10°

10
Figure 2.6: Test case 2 : error in the L? norm as a function of the time step At for the
Implicit Euler scheme. Interpolation in time of the domain deformation : linear on the left
and quadratic on the right.

Crank—Ni 1 — linear ¢ Crank-Nicolson - quadratic displacement

Figure 2.7: Test case 2 : error in the L? norm as a function of the time step At for the
Crank-Nicolson scheme. Interpolation in time of the domain deformation : linear on the left
and quadratic on the right.

dominated by the time discretisation. The results obtained are presented in figures 2.6, 2.7,
2.8 for the Implicit Euler, the Crank-Nicolson and the BDF(2) schemes, respectively.

We observe that all the different implementations of the Implicit Euler scheme are linearly
convergent in time while all the Crank-Nicolson ones are quadratically convergent.

On the contrary, the BDF(2) scheme, applied to the non-conservative formulation or to the
conservative one, without satisfying the GCL, is only linearly convergent when a linear in
time interpolation of the domain deformation is considered. We recover a second order ac-
curacy when employing a quadratic interpolation of the domain deformation. This result is
not surprising; indeed, when a linear interpolation of the domain deformation is considered,
expression (2.3.2) is only a linear approximation of the real domain velocity wy(£*1!) which
should be employed in both (2.2.12) and (2.2.24), whereas, when a quadratic interpolation
is considered, th corresponding expression {2.3.4) provides a second order approximation of
wh(t““).
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BDF (2) finear displacement BDF (2) - quadratic displacement

n
h

3
i

N ®y-of
3

Hu() -y

10 w—= BDF-nc

BDF-c-noGCL

BDF-c-GCL1
BOF-c-GCL2

-3 -2 : . — . 10 = -2 * * — -1
10 10 10
Figure 2.8: Test case 2 : error in the L? norm as a function of the time step At for the

BDF(2). Interpolation in time of the domain deformation : linear on the left and quadratic
on the right.

Finally, we remark that the BDF(2) scheme that satisfies the GCL, applied to the conservative
formulation, preserves the second order accuracy even though the domain deformation is only
linearly interpolated in time.






Chapter 3

Incompressible Navier-Stokes
equations on moving domains

3.1 Introduction

In this chapter we will extend the Arbitrary Lagrangian Eulertan formulation to the Navier-
Stokes equations for incompressible Newtonian fluids. The analysis that we are going to carry
out will be used in Chapter 4 which deals with the fluid-structure interaction problem.

Let ©; ¢ R? be a bounded domain, whose movement is described by a function g: x>
R4 which identifies the position of the boundary 8%, at each t € I (i.e. 9§ = g(d9)).
We denote by u(x,¢), (with x € §;, ¢ € I), the fluid velocity and p(x,#) the fluid pressure.
Then the Navier-Stokes equations read

pou + pu - Veu — dive(2uDy(u) — pI) =
inQ, tel (3.1.1)
divyu=10

where D is the strain tensor

Vyeu + Viu
2 Y

I is the identity tensor, p the fluid density and p the dynamic viscosity, which is here taken

as a (positive) constant. Equations (3.1.1) must be supplied with initial conditions for the
velocity field

Dx(u) - (31A2)

u(x,0) =g, in Qg (3.1.3)

and suitable boundary conditions.
Let the boundary 9, be split into two non-overlapping parts 0§, = FP UT'Y. In this Chapter
we will consider the boundary conditions

u=®, onl? (3.1.4)
—pn+2uD,(u)-n=0  onTy, (3.1.5)

where n is the unit outward normal vector to 9. A typical situation occurs when $og = d,g
onTP, i.e. the fluid has the same velocity as the moving boundary on I'P. This will be always

79
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the case when dealing with a fluid-structure interaction problem where T'? corresponds to the
interface between fluid and structure. Other types of boundary conditions, more suited than
(3.1.5) for hemodynamics applications, may be considered as well on I')Y. An account will be
given in Section 5.2.2 of Chapter 5.

Several theoretical results concerning equations (3.1.1) on moving domains can be found in
the literature. In [33] existence of a weak solution for the non-homogeneous Dirichlet problem
is proved by a penalty method, while in [49] equations (3.1.1) are recast on a cylindrical space-
time domain introducing a suitable diffeomorphism. An result of existence of a weak solution
is obtained also in [84, 85] through an elliptic regularization, under weaker hypotheses on
the regularity of the domain boundary than in the previously cited papers. In those works a
regularity result is presented as well.

3.2 Energy inequality for the Navier-Stokes equations on mov-
ing domains

We wish to point out that the fluid equations (3.1.1) defined on a moving domain maintain
the same stability properties that they feature on a fixed domain. We derive here an energy
inequality for the problem (3.1.1)+(3.1.5) with homogeneous Dirichlet boundary conditions
(® = 0). By standard techniques this result can be extended to the case of non-zero Dirichlet
boundary data, by resorting to a suitable extension of the function ® to the interior of the
domain €2; (see e.g. [87]).

We first recall the important inequality (see e.g. [14, Theorem 6.3-4]), which holds for all
u € [H'(€)}¢ vanishing on a measurable portion I'? of the domain boundary :

/Q Dy(u) : Dy(u) d2 > Co() | Vull3zq,) (3.2.1)

where Cy(§;) is a positive constant, depending eventually on ;. This inequality is a con-
sequence of the well-known Korn ineguality, whose demonstration can be foung e.g. in [21).
We here suppose that the domain deformation is such that Co(€;) is uniformly bounded from
below with respect to ¢ and we indicate with Cp the more restrictive constant such that (3.2.1)
holds for all t € I.

We multiply the first of (3.1.1) by u and integrate over the current domain ;. Proceeding
as in Chapter 1 for the treatment of the time derivative, we have

611 _1ld 2 4 1 2,
[ Giwar=gg [ wrang [ upgonar,

where we have noted § = 0,g. After integration by parts of the convective, viscous and
pressure terms, and observing that

Dy (u) : Vxudf2 =/ Dy (u) : Dx(u)df,
o, [N
thanks to the symimetry of the strain tensor Dy(u), we obtain

/[u|2d9 /divxu|u|2d9+£/ ]ulz(u—-g)~ndF+n/ | Vxu[? d2
Zdt Q, 2 F{V Q,

—/ divyupdQ = f'udQ+/ o-udl. (322)
o Jry

@ !
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where we have used (3.2.1) and we have set k£ = 2uCp. Using the constraint divx u = 0, the
previous equation simplifies in

P2 L 2u—g). 2 _ [ f. .
ST hallf, @, + 3 ./rg" [uf*(u - g) - ndl + & | Vxull; yq,) = /m f ud+ /F;VU udl.
(3.2.3)

The right hand side (r.h.s.) can be bounded as follows :

rhs. < il -1 0, 10l o, + o lzemy lull 2oy
< V1+Califllg-1q,) IVxullny@,) + 7V E+ Calloliagyy 1 Vxull @,

< UGy o, DO,

2 K 2
1, Wzaqepy + 5 1¥xullny )
where we have employed the Poincaré incquality (1.3.7) and a trace inequality |lulj yryy <
Yllull1(q,)- Finally, by putting this estimate in (3.2.3) and integrating in time, we obtain

Pl ay+o [ [ 1Pt =) ndrds [ 10l 0,

2(1+ Ca)

< pluoll} 00 + -

/1 [”f(s)”%-lm,) +72]|0(3)||§,2(rgv)] ds (3.24)
If T = 0, the previous inequality provides an a-priori stability for the solution of the Navier-
Stokes equations on a moving domain which is analogous to the one holding on a fixed domain.
On the contrary, if I'V # 8, the term p [} [rv [u|?(u—g) -ndl'ds does not have a definite sign
and does not allow to obtain the desired stat)ility result. However, this drawback appears also
on a fixed domain and it is not strictly related to the domain deformation. We remark, yet,
that if (u — &) - n > 0, ¥x € TN, this boundary term is positive and a global stability is thus
recovered. This occurs when I‘év is an outflow section; indeed, u — g represents the relative
fluid velocity with respect to the moving boundary and if (u — &) - n > 0 the fluid actually
exits the domain through '),

An existence and stability result for problem (3.1.1) with non-homogeneous Neumann bound-
ary conditions on a fixed domain can be found in [46] under the hypotheses that o, f and ug
are small enough.

3.3 ALE formulation of Navier-Stokes equations
Let Qg be the reference configuration. We introduce a family of ALE mappings
At CRE 5, x(Y,t) = A(Y), Viel

as illustrated in Chapter 1. Then, equations (3.1.1) can be rewritten in ALE form as

p—| +p(u-w) - Viu—dive(2uDy(u) - pI) =f
at |y ( ) ) in®, tel (3.3.1)

div,u=20
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In order to write a weak formulation of (3.3.1), we introduce the following functional spaces :

V() = [H (@))%, Vro() = [Hio(@)]* = (¥ € V(), ¥ =0on TP}, (332)

Q(Q) = L* (), Qo() = {G € Q), /Q qdQ =0} (3.3.3)
and

V() ={v: U xIT >R, v=vod ', v V() (3.3.4)

Q) ={g: UxI=R, g=§oA", §e Q()} (3.3.5)

Similar definitions hold for Vo ({2;) and Qu(€2;). As done in the previous Chapters, we can
introduce either a non-conservative or a conservative formulation.

Non-conservative formulation

The non conservative formulation reads : for almost every t € I find t — u(t) € V(§,), with
u(t) = ®(2) on T'P, u(0) = ug in Dy and t — p(t) € Q() such that

p/ du de+p/ [(u~w)- Vi]u-vdQ
a Oty oA

+2u/ Dx(u) : Vxvd§2 —/ divy vpdQ = f-de+/ o-vdl Vv € Vo (§)
Q Q Q Y

t
A diveugdQ =0 Vg € Q()
‘ (3.3.6)

If Y = @, the space Vo (§2) coincides with [H}((2,)]%. In this case the functional space
Q(£;) in (3.3.6) should be replaced by Qo{€2;) (i.e. the pressure is defined up to a constant)
and the non-homogeneous Dirichlet boundary datum ®(¢) must satisfy the compatibility
condition

/ ®(t) ndl =0, Vvtel
a0y

Conservative formulation

In a very similar way as done in Chapter 1 for a generic conservation law, we can rewrite the
weak problem (3.3.6) in conservative form

pif u~de+p/ divg [(u — w) ®u]- vdQ
dt Qt nf

+2p/ Dy(u) : VuvdQ — [ divgvpd2 = f-de+/ o-vdl Vv € Vo ($)
Qe o2 (o1 ry
divxugdQ =90 Vg € Q)
Q¢
(3.3.7)

where, we have coherently written also the convective term in conservative form.
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3.4 Finite element discretisation

A finite element approximation of problem (3.3.6), or equivalently (3.3.7), involves at the
same time the discretisation of the fluid cquations and that of the domain movement, which
can be chosen, for instance, as an harmonic extension of the boundary deformation g (see
problem (1.4.2) in Chapter 1). As pointed out in section 1.5, the two discretisations are
closcly related.
Let us consider a triangulation T g of the reference domain Qg which, for simplicity, we
suppose made up of elements with straight edges, and the space of Lagrangian finite elements
Fo1{Trp) of degree n and mapping of degree 1 (since we have taken a mesh of straight
elements).
Whenever the fluid problem is defined on a fixed domain, say €y, many finite element spaces
V(%) and Q(), approximating V(§2) and Q(f) respectively, have been introduced in
the literature, that satisfy the well known inf-sup {or LBB) condition (sce e.g. [9]) :

inf sup M—— >p (3.4.1)

GnEQR(0) 9, eV () ”vh”H‘(Qn) ”‘1h||L2(no)

where the constant 8 > 0 is independent of h. We remind that this property is necessary for
the well posedness of the discrete problem.
We will focus here on continuous approximations of the pressure. Among the choices that
satisfy (3.4.1) we mention the Taylor-Hood finite elements P, — Py or their generalisation to
higher order polynomials P, — P,_{ introduced in [8] which corresponds to take

Vi{€0) = Fia(Tho), Qn(®) = Fie11(Thp), k> 1,

and provides an optimal convergence rate for a Stokes problem, i.e.

lu = wnll 10y + 1P = Pallz0) < CHF (”“||nk+l(no) + ||7'”nk(no)) ) (34.2)

whenever the solution is regular enough.

Another admissible choice is P} — Py where a piecewise linear approximation for the pressure
is employed (i.e. Qh(Qo) = F1,1(Tnp)) while the velocity is approximated by piecewise linear
functions suitably enriched with bubble functions which are element-based polynomials that
vanish on the clement boundary. These finite elements provide a linear convergence with
respect to h for a Stokes problem, i.c.

o = whllirsgagy + 1P = Prll oy < C (Nalliaay + Wollman)» (34.3)

provided the solution is regular enough.

Finally we mention the so called (PiisoP2) — IP; elements where, again, the pressurc is
piecewise lincar, while the velocity has the same number of degrees of freedom as in the Py
case but it is piecewise linear over a suitable decomposition of each triangle K. In the 2D
case the decomposition is shown in figure 3.1, while in 3D the decomposition consists of 8
tetrahedra. For these finite elements, error estimate (3.4.3) holds as well.

We consider now the case of a moving domain. The proper ALE extension of the finite element
spaces for the velocity and the pressure to a moving domain are

V(@) ={vi : Qe x T 5 B, vy =¥ 0 474, ¥y € Vi(0)} (3.4.4)
Q) ={an : Qe x I 5 R, gn=dno Ay}, dn € Qn()}
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Figure 3.1: (PyisoPy) — P elements: degrees of freedom for the velocity components (on the
left) and for the pressure (on the right)

where ,; = Ay () and we have used the discrete ALE mapping Ay, in the definition of
the finite element spaces (3.4.4). In the sequel we will drop the subscript h to indicate the
computational domain Q.

Whenever the mesh problem is solved using Py finite elements, each triangle with straight
edges in Tj 4 is transformed in a triangle with straight edges in 7, It can thus be easily
verified that if Vh(ﬂo) and Qy () are either P! — P, or (PyisolP2) — P finite element spaces
on Th g, then V,(Q;) and Qx(8), as defined in (3.4.4), are finite element spaces of the same
kind on the mesh 73;. Moreover, using piccewise linear functions for the mesh problem, the
boundary 89, will be, in general, only linearly interpolated, which is enough, yet, to recover
the error estimate (3.4.3).

When considering the Taylor-Hood clements, we can choose, a-priori, between solving the
mesh problem with Px_; or P finite elements.

In the former case, that means to take a discrete ALE mapping Ap; € Fir_y,1, which implies,
thanks to Proposition 1.5.1, that the functional spaces V,(§2;) and Qn(£2;) can be identified
with

Vi() = Fep-t, Qn() = Fr—14-1-

In other words, pressure belongs to the isoparametric finite element space of degree k — 1,
while the velocity to the sub-parametric finite element space of degree & and mapping degree
k — 1. On the other hand, the boundary ), is interpolated only with polynomials of degree
k — 1 and this might cause a loss of accuracy with respect to the error estimate (3.4.2).

The second possibility consists in taking the discrete ALE mapping Ay € Fi,;. We have in
this case :

Vi) =Fip,  Qn(Q) = Fi—1k-

In other words, the velocity belongs to the isoparametric finite element space of degree k,
while the pressure to the super-parametric finite element space of degree k — 1 and mapping
degree k.

Whatever finite element spaces V() and Q,(Q:) we choose, the finite element semi-
discretisation of the non-conservative problem (3.3.6) reads : for almost every t € I find
t— Uh(t) € Vh(Qg), with uh(t) = ‘I’h(t) on FtD, uh(O) =ugp in Qo and t — ph(t) € Qh(Qt)
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such that

p/ B_u,i vy, dQ +p/ [(up, = wp) - V], - vth+2p/ Dy (up) : Vevy, d2
Q o Y Q 2
- / divy vy pp dQ2 = / f-vpdQ+ / o vydl Vv € Vp(2) N Vo (§2)
0 o TN
/ divyx up gpdQ =0 Van € Qn(S)
Q
(34.5)

where ®;, and ug, are suitable approximations of ® and ug respectively.

In the case I') = @ and & = 0, as pointed out in section 3.2, the convective torm f, (-
Vy)u-v dSQ does not contribute to the energy of the system at the differential level in (3.3.6).
Indeed, by taking v = u we have

1 1
/(u-Vx)u-udQ=—/ u‘VxluI("dQ=——/ divy, ulul?dQ
o o 2 Ja,

2
Thanks to the second equation in (3.3.6) and the fact that |u|? € Q(f2), the last term is zero.
This property is not true anymore at, the discrete level in (3.4.5); indeed, in this case, we have

(uh - Vie)up - up df2 = _1/ dive wp [un? dS2
Q: 2 Qe

and, in general, fup|® € Qn(€2%). Nonetheless, we can modify problem (3.4.5) in a consistent
way, by adding to the first equation the term % fnt divy up upv dS?, so as to recover the
same stability property featured at the differential level. We underline the fact that this
modification is consistent since the exact solution satisfies divy, u=20.

In the sequel, we will consider always this modified problem that we rewrite hereafter for the
sake of clarity :

non-conservative formulation
for almost cvery t € I find t = up(t) € Vp(), with up(t) = Bx(t) on TP, un(0) = ugy in
Qo and t — pp{t) € Qn(2y) such that
( a
p/ —“’ll -vhdsz+p/ [(up —-wh)-Vx]uh-vth+£/ divx up up - vy dQ
40 ot Y Q 2 Q,

+2/,t/ Dy (uy) : vah(lﬂ—[ divy vy pp A =/ f~vhd9+/ o -vpdl
o o N ¥

VVh € Vh(Q[) ﬂVpD(QL)

/n divye uy, grdQ2 =0 Van € Qu(l)
t
(3.4.6)

Let, now, {¢; }ﬁ”] be the Lagrange basis associated to the space Qx(€:) and {(,oj}?/:"1 the one

associated to V() N Vo (€). Moreover, we denote {cpi}ﬁzl the set of basis functions
corresponding to the nodes on I'P, such that {¢;} @ {#t} is a basis of V().
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We set
Ny N Ny
uh(x7 t) = Z Uj(t)‘P] (x7 t) + Z U}:(t)‘PZ(xv t)7 ph(x: t) = Z })i(t),‘/)i(xa t)'
i=1 k=1 i=l

The nodal values U} are known form the boundary datum &, while the other values {U;}
and {F;} are the unknowns of the problem.
We introduce the following matrices and vectors :

Mi~(t>=/rztvi-¢jd9, 1< <A,
Ktt)= [ Dulp): Vag;d = i Dalp):Dxle)d0, 1505 SNy
Bij{t;wp,up) = /ﬂz [(up —wp) - Vi) ;- <p,-dQ+%/m divyup @ - 0; d2, 1 <4,5 <M,
D)) == [ divepyid® 15N 1SISN,

,

F,(t):/ f-zpidﬂ+/ o g dl, 1<iSN,.
Q, vy

t

Then, problem (3.4.6) can be written in algebraic form as :

{pM(t)%U T pB(t wiwh)U + 20K (U + DT@)P = B(2) + b (1), 4

D(t)U = by()

where U = [Uj] and P = [P;] are the unknown vectors while by and by account for the
non-homogeneous Dirichlet boundary condition.

The semi-discretisation of the conservative problem (3.3.7) reads instead :

conservative formulation

for almost every t € I find t — up(t) € Vi(2), with up(t) = 4(t) on TP, up(0) = ugy in
Qg and t — pr(t) € Qu(2) such that

d
p—/ uh~vth+p/ divx[(uh—wh)®uh]~vhd9—£/ divyx up up - v dQ2
dt 0, 0, 2 [¢P

+2p/ Dx(uh):vath—/ divxvhphd9=/ fvvhdﬂ+/ o vy dl
Q Q Q¢ Jry

t

Yvi € Vi{S) N Vo ()

dive up gnd2 =0 Yan € Qn(h)

Qe
(3.4.8)
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where, as for the non-conservative formulation, the term —% fm divy up up, - v, d2 has been
added for stability purposes. We observe that

1
/ divy [(up — wp) @ up) - vy dQ — 5/ divx upup - vpdQ =
o

Q
dlvx(llh —wp)up - vpdQ+ / (up — wp) - Vi]up VRdQ — = / divx upup - vpdQ =
/ [(up — wp) - VJup - v d + = / divye upup - v dQ — / div, wp, up, - v 49,
so that, the algebraic counterpart of (3.4.8) is
d
rg (M(£)U) + pB(t; wy; up)U — pC(t; wy)U + 2uK (1)U + DT(1)P = F(t) + by (),
D()U = by(t)
(3.4.9)

where the matrix C(t; wy) is defined as

C,‘]'(t;wh) = / divy wp, ®i-Pi aQ, 1<4,5 <N,
Q

3.5 Temporal discretisation

All the temporal schemes proposed in the previous Chapters can be easily exiended to sys-
tems (3.4.7) and (3.4.9). Thus, for instance, the Implicit Euler scheme applied to the non-
conscrvative formulation (3.4.5) will read

p / at v dQ-p / ul - vy d2 + pAt / [(u} - Wiy V] uft! - vi dQ
275 Dty L
pAt n+1 +1
+— divi up u ™ v, dQ -+ 2pAt Dy(up™) : Vevp d
2 Qpi Qe iy
—At divy vp pp T d = At / £l v, dO + At / o™ty dl’
7 Qypy F{i-;—l
Yy, € Vh(Ql) n vrr)(ﬂl)
/ diveuft! gr d2 =0 Yan € Qn{)
@,

tntl

(3.5.1)

and in algebraic form :

LM (b YU o pB (b WU U™ 4 20K (s JU™H 4 D (1 )P
= M (ta)U" + E(tin) + b (i),
D(tn+1)U™ = bo(tni1)-
(3.5.2)
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System (3.5.2) is fully implicit and non-linear when u;, = u;:“. Otherwise, it can be linearized

by taking uj = u} which is an approximation of the same order as the Implicit Euler scheme.

About the conservative formulation (3.4.9), we limit ourselves to a 2D domain and a linear

in time interpolation of the domain deformation. Then, the Implicit Euler discretisation that

satisfies the GCL reads

p/ ut v, dQ - p/ up v, d+ pAt/ divy [(u,: T ugﬂ} vy dQ
Qepy tn Dop1s2

—p—At divy uj, u;:'"l -V dQ + 2ulrt Dx(u’,:'H) : Vxvp dQ

2 ﬂzn“ﬂ Q‘n+1/2

—At/ divg vy it dQ = At/ 2y, d0 + At/ gty dT
s 2 11{\1‘;+-1/2

Yvp € Va(Q) N Vo ($)

nt1/2 n+1/2

/ divxy uftl g, d2 =0 Yan € Qn(Cl)
Q
\

n+1/2

(3.5.3)

To be consistent with the chosen discretisation, we have taken both the constraint /Q divyk u,’f“ qn
and the pressure term fn divy vy p;:“ on the intermediate configuration €, ,.

By taking v, = u}:'“ and gp = -p’,:“, it can be casily verified, by combining the derivation of
the energy estimate presented in Section 3.2 with the stability analysis for the Implicit Euler
scheme carried out in section 1.8.4, that for a fully homogeneous Dirichlet problem (T = ¢
and @ = 0) scheme (3.5.3) is unconditionally stable whatever linearization u}, is employed.
We summarise the result in the following

Lemma 3.5.1 Scheme (8.5.3) applied to a fully homogeneous Dirichlet problem is uncondi-
tionally stable and the discrete solution u} satisfies the inequality

”
2 : 2
pllupt! ”Lg(Qt"_H) + At"; [ Vxupt! ”L;(Qt,-“/g)
par

. 2
f‘+1/2” i (3.5.4)
H=1(Q,i41/2)

14+ Co) &
< pluoallZ a0 + At‘(—nﬂ—) >
i=0

Remark 3.5.1 With that choice of test functions, the pressure term in the first equation of
(2.5.3) is identically zero thanks to the second equation. It is thus important to compute those
two terms on the same domain in order to recover the stability result of Lemma 3.5.1.

System (3.5.3) can be equivalently written in algebraic form as

LMt YU 4 pBtngrys Wi 20 U = pC(t s w2y U

+2pK (tny12) UM + DT(tn+1/2)P"+1 = ﬂM(t")U" + F(turiy2) + Drltagi)2),

Dty p172) U™ = by(tyy1/)-
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A second order discretisation can be achieved, for instance, with the Crank-Nicolson scheme
proposed in Section 2.2.1. We consider here only the conservative formulation in a 2D domain.
Then, the Crank-Nicolson discretisation will read

n+1 n B * "'*“;‘ “Z + u;:-H
] ut v dQ-p uj - v dQ + pAt divy |(u —w), )®—2-—-—— SV dQ
Qg Qun Q”n+1/z .
n n+1 n n+
—”T‘M diveuy W40 4 2uAe / Dx(ﬂ'%) : Vevp A0
Q,p1/2 Ly
7 741
—At/ divx vy ”"%dn = At/ 2 v, d0 + At/ o™ /2 vy dr
Q‘n+1/2 Q’n+1/z Ft":.ﬁ/g
Yvi € V(@) NVipo ()
.oul 4yttt
/ divy —"2—" grdt =0 Van € Qn(f)
Q”n+1/2

n . ntl
Here uj, can be taken as EHL;"-— for a fully implicit non-linear discretisation or as %uﬁ - %uﬁ‘l

to obtain a second order linearisation of the equations.
For the same stability rcasons as for the Implicit Euler scheme (3.5.3), we have discretised

n n+1
the continuity equation as fn, divy Eﬁ+—;h— gn. In this way, when taking v; = uj + uz“

fnt1/2 :
and g, = pj + pﬁ“, the pressure term in the first equation is identically zero and a stability

result analogous to the one obtained for an advection diffusion equation can be established.
The following Lemma holds :

Lemma 3.5.2 The discrete solution u}, of scheme (3.5.6) applied to a fully homogeneous
Dirichlet problem, satisfies the inequality

At 2
Al SR w L AT o] .

_At n+1/2

dive wh Clult +ul 2dQ < p|u?
jeh

fat1/2

(1+Cqa)

2
2 +1/2
Lz(“an)""At £ Hn—l(

D ny1/2)
(3.5.7)

wit!? <0 for all

We observe that we recover a global stability result only in the case divy
n > 0, while in the more genéral case only a conditional stability can be obtained.
The algebraic counterpart of (3.5.6) reads

12, Un+l + unr
R MU 4 Bt o oy % )
Un+1 +yn Un-H + U Pn—H +P"
_Pc(tn+1/2§ w:+1/2)_'2"‘"‘_ + 2ﬂK(tn+l/2)—2" + DT(tn-H/?)—z‘
= ME)U" +Fltnp0) + b1t ),
yn+t e 5
D(tn+1/2)—2— = ba(tny1/2)-
(3.5.8)
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3.5.1 Inexact factorization schemes

Since the simultaneous computation of velocity and pressure is frequently unfeasible particu-
larly in a 3D problem, several techniques have been developed to decouple the computation
of the velocity field from that of the pressure. Here we focus on techniques based on an
inexact factorisation of the problem matrix and particularly on the Yosida projection scheme
proposed in [78] and analysed in [77] for a fixed domain problem.

At each time step t*, both systems (3.5.2), (3.5.5) and (3.5.8) can be written in the general

Stokes-like form
A DT Un+1 f

In the case of the non-conservative formulation (3.4.7) we have

A= M(tn+l)+PB(tn+1: )-,, 17u2)+2/‘K(tn+l)7
fi = At Mt )U" + F(tn11) + bi(tni),
fa = by(tat)

For the conservative formulation (3.5.5) we have

A= At M(tn4) Jr/)B(thrl/z,"V;.+ sup) = pCltuyryz W, wit! 24 2uK (th172),

fi = ZEM( n)U™ + F(tn11/2) + bi(t,g1/2),
f2= ba(thyis2)-

Finally, for the Crank-Nicolson scheme (3.5.8) we have

2 1/2
A= M)+ pBltarayz i 00) = pCtaayai i ) + 2K (b o),

2 +1 2
fi = [KptM(t,,) PB(tn+1/2,W;. & Y )+PC(3n+1/2awh+ ! )= 2ﬂK(tn—H/2)}
= DT (tny1/0)P™ + 2P (ty11/2) + 2b1(tng12),s
f2= = D(tns1/2)U" + 2bz(tnp1/2)
In the following of this section we will always suppose to have linearized the equations
with uf = u} and u} = 2u? — Lu}™' for the implicit Euler and the Crank-Nicolson

scheme,respectively.
The matrix § = [A 27| can be factorized as

S_ADT_A 0 I A~'DT
D 0| |D —-DA'DT{ 0 1 ’

hence, system (3.5.9) can be solved exactly by the following three step algorithm :
(i) AU =,
(ii) DA=\DTPn+l = pUn+l — ¢,
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(iti) UnH = Trtl = -1 pTpnH,
or, equivalently, by its incremental variant
(i) AT™ = £ - DTP,
(it) DA™'\DTSP = DU — f,,
(i) UPH = Tn+l — 4-1DTsP.

where we have sct §P = P+l — pn,
Let, now, H() and H® denote two suitable approximations of A~!. We can write an ap-
proximate factorization scheme as

(i) AU = ¢ - DTP",
(i) DHODTSP = DU — fy,
(iis) Ut = Ut — A PTP.

which correspond to the inexact factorization

~ [A 0 I HOpT
S= [D —DH(')DT] [0 / ] (3.5.10)

of the matrix § in (3.5.9).

In this way we can recover many projection or quasi-compressibility methods for the Navier-
Stokes equations (see {67, 78]). In particular, the incremental Yosida projection scheme con-
sists in adopting H(') = AtM~"/p for the Implicit Euler scheme (similarly, H) = AtM~/2p
for the Crank-Nicolson one), while no approximation is made in step (i71), i.e. H®) = A~
The matrix M~! can be casily computed whenever the so-called mass-lumping technique is
adopted.

We remark that the generalisation of those algorithms based on an inexact factorisation to
the case of a moving domain is straightforward once the discrete system is written in the form
(3.5.9).

In [77] it has been shown that, for a fixed domain problem, the incremental Yosida projection
scheme is unconditionally stable and introduces a splitting error (with respect to the solution
of system (3.5.9)) which is O(At) both on velocity and pressure. This error is of the same
order than the one introduced by the Implicit Euler discretisation. On the contrary, when
considering the Crank-Nicolson scheme, the Yosida projection scheme might lead to a loss in
the time accuracy. The problem of how to obtain second order accurate projection schemes
based on inexact factorisations is still open.

In a recent paper [93], A. Vencziani suggested to use the incxact factorization (3.5.10) as
a preconditioner for system (3.5.9). He showed that, for a linear symmetric problem, p
Richardson iterations preconditioned with the Yosida inexact factorization are sufficient to
recover a splitting error O(A¢?). In the non symmetric case, he verified numerically that
three preconditioned iterations are sufficient to recover a second order accurate scheme. We
give some more details on this algorithm hereafter. Let us consider a Richardson method,
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with acceleration parameter equal to 1, to solve (3.5.9), preconditioned with the matrix S &t
may be written as follows : given the initial estimate [U5™, P37, solve for &k = 0,1,...

A 0 1 HODT| ([upf upt! fi A DT Jupt!
D -DHWDT| |0 I Pyt |Prtt]) e] D o (PPt

(3.5.11)
pit] o

We introduce the auxiliary variable

Wit I HADT
Pra| 0 T

Then, algorithm (3.5.11) can be written as
(i) A6Wiyy =i — AUR! - DTPIHL,
(it) DHODTSP | = D6Wyy — £ + DULH,

(iii) PRt = PRt + 6Py

(iv) Ut = URH + 6Wiyy — HPDT6Py.

We furtherly introduce the variable fI,'c‘Ill = UP*! + Wy (. Then, the previous algorithm
can be written in the final form : given the initial estimate [UZT!, PPH|T
g 0 0
e solve for k=0,1,...
AT Tpn+l
(i) AU = fi ~ DTPY,
(i) DHVDT6Py,, = DU - 5,

(iii) PRE] = P! 4 6Py,

e compute UZ::} = fJZLl —HODTP .

Observe that the correction on the velocity field can be computed only at the end of the
preconditioned iterations. Moreover, if we take as initial estimate UPH! = U™ and P2 =
P, the first iteration of the preconditioned algorithm coincides exactly with the incremental
Yosida projection scheme. It is natural to expect, then, that successive iterations of the
preconditioned Richardson method will improve the accuracy with respect to the incremental
Yosida scheme.

3.6 Numerical assessment

We have taken as a reference domain the 2D rectangle 2y = {(¥1,Y2) € [0,6]} x [0,1]} and a
domain deformation defined by

=Y, .
{zz =(1—-04sin(tr/5)) (Ya— ) +1 (3.6.1)
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i.e. the rectangle contracts and expands periodically in its shorter dimension, with a period
=10.

We have considered the Navier-Stokes equations (3.1.1) with p = 1, p = 1 and forcing term

f = 0. An exact solution (valid in all R?) is given by

2v
S A
2v
U= Tger (2 T 1/2), (3.6.2)

__“( v )2(:1' —6p?
P="\Tvat) ™ :

We have taken v = 0.2 and we have imposed the exact velocity on the upper, lower and left
edges of the rectangle and the exact Neumann condition associated to (3.6.2) on the right
edge.

The Navier-Stokes equations have been discretised in space with (IPyisolP2) — IP; finite elements
using a structured mesh of (61 x 21) Py nodes (4961 P2 nodes); observe that in this case the
velocity is interpolated exactly. To build the ALE mapping we have solved a Laplace equation
at each time step with IP| finite elements in space and a linear interpolation in time. Observe
that in this case the ALE mapping at each time instants " is computed exactly since the
domain deformation is linear in space.

We have then compared the solutions obtained with the Implicit Euler (3.5.3) and Crank-
Nicolson (3.5.6) schemes in conservative formulation and satisfying the GCL. In both cases,
to solve system (3.5.9) at each time step, we have implemented the incremental Yosida projec-
tion scheme (indicated hereafter with the suffix Yosida) and the preconditioned Richardson
algorithm with three iterations at each time step (indicated with Yos3). We have taken a
sequence of decreasing time steps At =1/2, 1/4, 1/8, 1/16, 1/32 and we have computed the
velocity error at " as

"= luy - u(t")”h(mn)

and the pressure error as

1

1 H
" (Z At]lpitt — p(e+) “L2(0¢.+1)) for the Implicit Euler scheme

1
n—1 2 2

ot = ZAt

pit! + i )
h_Th p(t”']/ 2y for the Crank-Nicolson scheme

La(Ri41/2)

Figures 3.2 and 3.3 show the velocity and pressure errors as a function of At at ¢ = 2 and

= 7. We observe that the Implicit Euler scheme converges linearly in time no matter
whether the Yosida factorisation is used as a solver or as a preconditioner. On the contrary,
in this test case the Crank-Nicolson scheme features a second order accuracy both on the
velocity and the pressure even if just the Yosida projection scheme is adopted. When the
Yosida factorization is used as a preconditioner, the error reduces furtherly in absolute value,
yet maintaining the same rate of convergence.
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pressure omor at t=2

I -u(e) i
norm 12 (1%)

Figure 3.2: Velocity (on the left) and pressure (on the right) errors as a function of At for
the Implicit Euler and Crank-Nicolson schemes at ¢ = 2.
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Figure 3.3: Velocity (on the left) and pressure {on the right) errors as a function of At for
the Implicit Euler and Crank-Nicolson schemes at ¢ = 7.
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Chapter 4

The fluid-structure interaction
problem

In this chapter, we consider the fluid-structure problem consisting of a thin elastic tube filled
with an incompressible fluid. This is the typical situation arising in the modelling of blood
flow in large arteries. However, many of the considerations carried out here may be applied
to other fluid-structure applications as well.

We account for quite large deformations of the vessel wall; the fluid equations are, then,
defined on a domain that changes in time and will be treated in ALE framework.

In Section 4.1 we will present the formulation for the 3D fluid-structure model. A simplified
onec-dimensional formulation for the structure is also addressed and used for the stability
analysis of the coupled problem. The main result of the section is an energy inequality which,
under a condition on the positivity of the kinetic energy flux at the outflow, provides a bound
of the global encrgy of the coupled problem in terms of initial and boundary data. This
result has already been published in the work by L. Formaggia, J-F. Gerbeau, F. Nobile and
A. Quarteroni On the Coupling of 3D and 1D Navier-Stokes equations for Flow Problems in
Compliant Vessels [29]. A simplified 2D problem will be introduced in Section 4.2 and used
for the mathematical analysis carried out in the sequel and for the numerical simulations.
In Section 4.3 we will derive a global weak formulation for the coupled problem that accounts
at the same time for the fluid and the structure equations. This formulation is well suited
to devise fully implicit coupled algorithms as those proposed in Sections 4.7+4.10. Then, in
Section 4.4 we will show how the fluid and structure sub-problems may be recovered from the
coupled weak formulation through a classical Domain Decomposition technique. The Finite
Element approximation of the coupled problem will be discussed in Section 4.5, in the general
case of a non conforming discretisation between fluid and structure. The algebraic formulation
will be derived in Subsection 4.5.1 and detailed for a particular choice of conforming Finite
Element spaces, which is indeed the one employed in the numerical simulations.

About time discretisation, we will focus on fully implicit coupled algorithms. Indeed, we have
experienced that only implicit schemes allow to solve effectively the fluid structure problem
arising in hemodynamic applications, when realistic physiological parameters are considered.
In Sections 4.7+4.10 we will propose three fully implicit coupled algorithms and we will
analyse their stability properties. We will prove for the first two an unconditional stability
result in the case of homogeneous Dirichlet boundary conditions and zero forcing terms. For
the third one, that uses an explicit structure solver, we will obtain a conditional stability
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result with a stability constant governed ounly by the structure discretisation (in other terms,
the proposed coupled algorithm does not engender a further condition on the time step).
Since all the proposed coupled algorithms are implicit, at each time step we are faced with a
coupled system, which is highly non-linear in those cases where the fluid domain is unknown.
We need thus to introduce sub-iterations to solve such a system at each time step. In Section
4.9, we describe a simple substructuring algorithm which consists in subiterating between
fluid and structure until the coupling conditions are satisfied within a fixed tolerance. This
algorithm is the one used in our numerical simulations.

Finally, in Section 4.11 several numerical results will be presented. On a test case we will
compare two coupled algorithms and we will carry out a numerical convergence analysis of
the time discretisation error.

4.1 Model description

Let us consider a portion of a blood flow vessel (otherwise called district) that occupies at
time ¢ a region denoted by 2, see Fig. 4.1. The vessel has a compliant wall denoted by T'{’.

Figure 4.1: Simple compliant tube.

The boundary of the vessel is completed by the sections S; and S., connecting the district to
the rest of the system. More precisely, S, is the upstream section, S the downstream section,
through which the fluid enters and leaves €, respectively.

Remark 4.1.1 In hemodynamic context, practitioners prefer to use the notation proximal
and distal sections, to indicate the section nearest and farthest to the hearth, respectively.

As usual, we will denote by u(x,t) (with x € Q;, ¢t > 0) the fluid velocity field, by p (x,1)
the pressure and by p the (constant) fluid density. We describe the fluid motion through the
classical Navier-Stokes equations

poyu+ pu- Vu — div T(u,p) =0
in (4.1.1)

divu=20

where T is the Cauchy stress tensor. Hereafter, we will consider the case of Newtonian fluids
where we can use the following constitutive relation

T(u,p) = —pIl + 2uD(u),
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1t being the (constant) fluid viscosity.

Remark 4.1.2 In large arteries (those whose diameter is roughly larger than 0.2cm) blood
can be assumed to behave as a Newtonian fluid ([60, 96]) while in small vessels and capillaries,
its rheology is more complex. An account in given in [16, 65, 96].

Whatever PDE model is considered for the vessel wall, it will provide the position of every
point on I'Y at any time ¢ > 0, typically by means of the displacement 7 with respect to a
reference position I'Y (see for instance [13, 47]).

Then, matching conditions at I'}’ may be provided as follows:

u=rn
on Ty, (4.1.2)
_T'n—pemtn =&

where pes; is a given external pressure, ® is the forcing term acting on the wall and n is the
outward unit vector to 'Y,

The first of (4.1.2) guarantces the perfect adherence of the fluid to the structure while the
second one states the continuity of the stresses at the interface (according to the action and
reaction principle).

Both fluid and structure equations must be supplied with initial conditions (resp. on £}y and
Ty ) and boundary conditions (resp. on S;,S; and 85, 8Sz).

About the structure model, we will limit ourselves to consider a very simple model (the
generalised string model; see [79]), derived for a cylindrical configuration . Let.

v={(r6,z): r=Ry,0<2z<L,0<8<2n}

be a cylindrical reference surface of radius Rg; we neglect the longitudinal and angular dis-
placement while the radial displacement 7, = n,(t,8, z) is given by

Eh 7, Pn
T Ve = 60,9 (4.13)

5? o?
p,,,hwzi — kGh a:;
Here, h is the wall thickness, Ry is the arterial reference radius at rest; k is the so called
Timoshenko shear correction factor; G the shear modulus; E the Young modulus, v the
Poisson ratio (which for an incompressible material is equal to 1/2); p, the wall volumetric
mass, 7y is a viscoclastic parameter and, finally f is an external forcing term.

Model (4.1.3) is basically derived from the equations of linear elasticity for a cylindrical tube
with small thickness, under the hypothescs of plane stresses and membrane deformations (i.e

0
negligible elastic bending terms). The term kGhWT]; accounts for shear deformations ([82])
&,

while the term y——- introduces a viscoelastic behaviour.
9220t

. . a?
Remark 4.1.3 We can give also another meaning to a term of the form « n,;,
(4.1.8), namely, it is a term that accounts for longitudinal pre-stress in the arterial wall at
the equilibrium position. In that case, the coefficient a represent the longitudinal tension at

rest. In physiological conditions, arteries experience a longitudinal pre-stress.

in equation
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Remark 4.1.4 Other, even simpler, wall models, which can be derived from (4.1.3) by ne-
glecting some other terms, have been employed in cardiovascular stmulations as well.

In particular, by neglecting the viscoelastic term and the term with second derivative in 2, we
obtain the so called independent ring model

6nr Eh 7y
puwh T TaRE =P Pt
w at2 I/ZR% €

(4.1.4)

where p is the fluid pressure. This model has been adopted, for instance in (63, 66, 50].
If we further neglect the inertia term, we obtain the simple algebraic relation
Eh 7,

1-v2R?
which is widely used in deriving simplified monodimensional or lumped models for the circu-
latory system (see e.g. [95, 83]; see also Chapter 5 for a brief account of a monodimensional
model of the circulatory system).
On the other hand, also shell models have been considered to simulate blood flow in complex
districts such as bifurcations. See e.g. [64, 3].

=P~ Peat (4.1.5)

4.1.1 Energy inequality for the coupled fluid-structure problem

Let us consider the 3D Navier-Stokes equations coupled with the structure model (4.1.3)
through the matching conditions (4.1.2). In eq. (4.1.3), the forcing term f(¢,6,2) is given
by the radial component ®, of the normal stress exerted by the fluid, recast in the reference
configuration ['y, that is

2
f(t,0,2)=2 —\/7 3"' 1128673) on Iy. (4.1.6)

Here we have noted R = Ry+ 1y, while the term under square root accounts for the change in
the surface measure passing from I'Y’ to I'y’. Clearly, with such a right hand side, eq. (4.1.3)
becomes non-linear and difficult to handle with. However, as we will show in Sec. 4.9, at the
numerical level we will decouple the fluid and structure problems, and the right hand side
will be computed at a previous step of the iterative algorithm.

Remark 4.1.5 Since, from (4.1.2), we have ®, = —(T +penI) -n-e, where T is the Cauchy
stress tensor field, we may note that

ony
0z

oy

with N = Re, — 50

ey — R

€,

N
N
and the right hand side of ({.1.3) becomes

R o\ (1on\*_ 1 _
@,E\/l-i-(E) +<EE§-) = E(T*‘Peztl)‘N'er—

1 on, i\ R
(_Trr — Pext + TrGR (97{0 T 'b'g‘) R—O’

which is now linear in n, provided we approzimate R by Ry. Moreover, under the same
approzimation, if T is an isotropic tensor field, i.e. T = —pl, we have (=T — perI)- N -
€:/Ry = P — Pext and the right hand side reduces simply to the pressure difference p — peg.
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We now analyse in more detail the coupled fluid-structure problem with the following initial

and boundary conditions:

for the fluid
u=1g fort =0, in Qq
u=0 on St (4.1.7)
T n=0 on&;

for the structure

N =10, re, =up fort=0, onT¥

=0 forz=0,z=1L (4.18)

For the sake of simplicity, and without loss of generality, we will put pey; = 0. Let us rewrite
equation (4.1.3) in the general form

~ aler 627]r 93% R onr 2 1 Ony 2
pww - a—5;2— + ’)T],- - (,m = @rR—O 1+ (a) + (RW) (419)

on I'Y and for £ > 0, where all the coefficients p,,, a, b, and ¢ are positive quantities. We wish
to derive an energy inequality for the conpled problem. The following Lemma holds

Lemma 4.1.1 Should a solution to the coupled problem (4.1.1), (4.1.9) with matching con-
ditions (4.1.2) and initial and boundary conditions ({.1.7) and ({.1.8) ezist, then it would
satisfy the following energy equality

g {0+ Aol G By + iy + Wl | +
'GHVUH%Z(QO + azgf”n(r wy + 2P/ lu’u-ndy=0 (4.1.10)
Moreover, if
A fulu-ndy >0, Vt>0, (4.1.11)
2

we obtain the a-priori energy estimate

. 0
DTz 0y + Bl G (D) R agrgy + Al (T) ey + bnm(rr)nmu) +
" 2 <
2 /0 V020 + 2 / ||(9 T aegydt < O, (4112)

where C is a constant which depends on the initial conditions ug and 1y and & is defined as
in Section 3.2.

Proof. We first multiply eq. (4.1.9) by % and integrate on the cylindrical surface I'f,

obtaining
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1d (. 002 M o o
35 { PG By + G gy + gy +
&y O O | O O\ |2=E
C|| ”L2 (ty) ~ ¢ Ty

“oz ot " “8z0t bt

aﬂr 1 8, zanr
/Fw RO\/1+ (Rao 0 Rodfds (4.1.13)

Thanks to the specific boundary conditions, the last term on the left side is identically zero,
while the right hand side, if computed on the actual configuration ['f’, becomes

on- 2 1 9y 37Ir Inr /
/g":I),H1+(aZ) +(R 30 athOd -—/m - —dy = :“( T -n) - udy

where in the last equality we have exploited the coupling conditions (4.1.2). Then, the
following energy equality holds for the structure problem

id an,
ot (I G ey + G B + ey | +

67,
el g g = / (-Tom)-udy (414)

Similarly, by multiplying the first of (4.1.1) by u and integrating over {; we can derive the
following energy estimate (see Section 3.2, Chapter 3)

1 .
gy + IVl — [ (Ten= olufn) cwdy= [ (2 udy
2 t
and, exploiting the boundary conditions, we have

d 2 2 1 2 _
3ol + K Vulsay + [ golutn-udy= [ (o) udv (4139

By summing equalities (4.1.14) and (4.1.15) the term fF;.,(T - n) - udy cancels out and we
obtain (4.1.10).

Finally, integrating (4.1.10) in time between 0 and T, under the hypothesis (4.1.11), we obtain
the desired inequality (4.1.12).

]

The hypothesis (4.1.11) is actually satisfied if S is an outflow section, i.e. u-n > 0 for all
x € §;. However, in vascular problems, this assumption is seldom true because the pulsating
nature of blood flow might induce a flow reversal along portions of an artery during the
cardiac beat.
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We may observe that the “viscoelastic term” in (4.1.3) allows to obtain the appropriate
regularity of the velocity field u on the boundary (see [79]).

In the derivation of energy inequality (4.1.12), we have considered homogeneous boundary
conditions both for the fluid and the structure. However, the conditions 7 = 0 at z = 0
and z = L, which correspond to hold the wall ends fixed, are not realistic in the blood flow
context. Since the model (4.1.3) for the structure is of propagative type, first order absorbing
boundary conditions are a better choice, i.e.

e [a On, _
: E . =0 at z=0 (4.1.16)
nT a nr —_— —

o + I—-—ﬁw o 0 at z=1L. (4.1.17)

In this case, the final estimate {4.1.12) is still valid. Indeed the boundary term which appears
in (4.1.13) now should read

o OneOne | O Oy
(“ 9z 0t 80t ot

L BLTE L)L

This term, integrated in time, would eventually appear on the left hand side of inequality
(4.1.12) and the latter becomes

oy, on,
plu(T )”m(m +Pw|| ( ) %Z(I‘w) +a||—( )”Lz(ru!) + blln, (T) %’(Fg’)

: T w | (O (0 T
+2n‘/0 ||Vu||izmt)dt+2/; iz afllLZ(rw)dt+2\/7[( 1 L) 0) +( (1)

+ \/Eu—a/oT [(% T)|z=0)2 ’ (aantr ™) z=L)2

Therefore, this additional term is positive and it depends only on the initial conditions.

Yet, conditions (4.1.16) and (4.1.17) are not compatible with the homogeneous Dirichlet
boundary conditions for the fluid; indeed, if 7|,~0 # 0 and u = 0 on 81, the trace of u (x,7)
on the boundary is discontinuous and thus not compatible with the regularity required on the
solution of (4.1.1) (see. e.g. [80]).

A possible remedy consists in changing the condition u = 0 on S; into

)]

dr < C.

u-e;,=g

T-n—(T:n)-e, =0 on &

with ¢ = 0 on 05). An encrgy inequality for the coupled problem can be derived also
in this case with standard calenlations, taking a suitable harmonic extension § of the non
homogencous data g such that

gls, =9 and glrp =0.

The calculations are here omitted for the sake of brevity.
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4.2 A 2D simplified problem

For the purpose of the mathematical analysis, we will consider a 2D model obtained by
intersecting the tube € of figure 4.1 with a plane 6 = 8 (see fig. 4.2). Correspondingly, we
will consider the 2D problem arising from the combination of the 2D Navier-Stokes equations
for the fluid with eq. (4.1.3) to describe the motion of the upper and lower boundary (with
a frozen value of the angle §). This model will be adopted in Section 4.11 to obtain some
numerical results.

i

Figure 4.2: Intersecting the cylinder with the plane @ = § we obtain a 2D geometry with a
1D compliant wall

Remark 4.2.1 Although not completely realistic for blood flow problems, this simplified 2D
analysis maintains all the mathematical aspects peculiar to the original coupled fluid-structure
problem and will therefore be adopted to test the numerical coupling algorithms we will present
in the next sections.

A 1more realistic two dimensional representation of the fluid structure model in hemodynamic
applications may be obtained from the 3D problem by supposing an axial symmetry. In this
case, we should consider the combination of the Navier-Stokes equations written in cylindrical
coordinates with the structure model (4.1.8). If we suppose that the data and the solution of
the coupled problem do not depend on the angular coordinate 8, the 3D problem can be reduced
to a 2D one. We will not investigate this azial symmetric model in the present work.

In order to analyse the finite element discretisation and the stability of some implicit coupling
algorithms, we furtherly simplify the problem by taking the lower boundary fixed. Thus, the
situation we will consider from now on consists of the 2D geometry depicted in figure 4.3 :
let Qg be the rectangle (0, L) x (0,D) C R?; the upper edge is identified by

Y={(e,r)€ER : r=Dand0<z<L}

In the following we will drop the subscript 7 from 7,. Thus, we indicate with n(z,t) : [0, L] x
Ry — R the vertical displacement of T'y. We introduce the transformation

eplmt) © [O,L1 xRy » R, @ (z,1) = (z,D +n(z,1) € B (421
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o

S, S,

Caw
Figure 4.3: 2D geometry considered for the mathematical analysis

which identifies the position of the actual boundary T, ie. Vt > 0, I'Y = {(2,7) =
Pylzt), 0 <2 < L}. On the contrary, Si, S; and T4, are kept fixed!. The fluid domain
is then delimited by the four boundary segments Sy, S, I'gy and TY. The fluid-structure
problem we are going to analyze reads

pAu + pu - Vu — div (2uD(u) — pI) = f, in

div u =0,

_ ¥y O &y an\? (4.2.2)
pww—aﬁ—kbn—cm—(br 1+(a), ZE(O,L)

ufp, 0@, = ey, on Ty

¢, = — [(T ry +[)gxtl) ‘n- e,] 0Py

supplied with initial conditions

{uzuo for t =0, in g (4.2.3)

n=1o, N =U for t =0, on T}
We will introduce two different boundary value problems: the former is the one used for the

numerical simulations that will be presented in Section 4.11 while the latter will be considered
in Sections 4.7+4.10 to study the stability of some implicit coupled algorithms.

Problem 4.2.1 (Neumann) We consider system (4.2.2) with initial conditions (4.2.3) and
boundary conditions

u=0 on Ugy, - %?— i?:ﬂ atz=0,
(fluid) { T -n=0, onS, (structure) 37l] p(:; 8; (4.2.4)
T-n=0; ons,, -6?+\/,Z$=0 atz=1L.

'When 5(0) # 0 (resp. n{L) # 0), section & (resp. Sz) is not really fixed since its upper end follows the
wall motion. Yet, section S; is kept vertical and its movement is not determined by a dynamic law but is a
mere conscquence of the motion of T'y.
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Problem 4.2.2 (Dirichlet) We consider system (4.2.2) with initial conditions (4.2.3) and
boundary conditions

u=0 on Ly,

(fluid) {u=®; on S, (structure) "
n=ay atz=1L,

= tz=0
ara ' (4.2.5)
u=%® onS,,
where the non-homogeneous Dirichlet data must satisfy the compatibility relations
Qilry’°¢ﬂ:d1"e“ i=1,2.

Observe that, due to the incompressibility constraint div u = 0, we have for Problem 4.2.2 :

0= div udQ = u-ndl = u-ndI‘+/ (I>1~nd1"+/ &, -ndl’.
Q i1 ry S Sy

On the other hand,

5 2
/r;” u-ndl = /Fo'” [(urer + ue;) - n] |I“:" ° ‘P”mdr
o /-
= — Uz g L=
/I;BJ (u, u . 'I‘;" o ¥, d ry TIdF

. . o
where we have exploited the fact that n = N/|N|, with N = e, ~ lez. Hence, we conclude
that in Problem 4.2.2, the displacement 7 satisfies the supplementary relation

i/ ndI‘:—/ & -ndl - [ & ndl (4.2.6)
at Jry 5 Sz

In particular, when ®; = ®; = 0, relation (4.2.6), integrated in time between 0 and T,
becomes

/mmﬂ=/mﬂ
Ty ¥

which is equivalent to require that the initial volume || is preserved in time.

In order to write the fluid equations in ALE form, we introduce an ALE mapping A, : Qg —
Q. Let Y = (Y1,Y2) be the reference coordinates in §2. The boundary position, identificd
by the function gy : 9Q — 0, depends on the wall displacement 7 and is given by

g, = Y+ne =¢, only
Ty, on Tyy,

and, on the fixed sections S| and Sy

g = Y) if ”(Oat) = W(Lv t) =0.
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Otherwise we may impose (arbitrarily) a linear deformation

0.4),
D Ty
ons; gy = Y+Yn(12)t)

on 8 g”-—Y+Yn

The ALE mapping may, now, be determined, for instance, by solving at each £ > 0 the Laplace
problem (harmonic extension)
AA; =0, in Qp,

) (4.2.7)
Ay =gy, on 0.

(z,7) =~AL(Y)7 {

As pointed out in Chapter 1, other problems different than the Laplace one may be considered
as well.

Remark 4.2.2 In this particular case we observe that we can butld an ALE mapping directly,
by considering the transformation

z=Y,
A (Y): { -Y, (1 + (Zt)) V("1,Yz) € Q. (4.2.8)

This mapping is invertible provided n(z,t) > —D, for all 2 € [0, L] and t > 0.

The fluid-structure system (4.2.2) written in ALE form reads then

du
P oty

divyu =0,

+ p(u —w) - Veu — divg(2uDx(u) — pI) = f, in

”

6 P P 2
ot — ‘;zz+bn— n__ g, 1+(£’ﬂ), 2€(0,L)

62
o2 20t 0z (4.2.9)
u]r;” ° @, =Tner, on 'y
P, =~ [(T ry + Peatl) -1+ er] 0 Py 7
AA =0 in Qg, Vi >0
Ay = gy on 9, YVt >0

4.3 Global weak formulation

Following the approach proposed by Le Tallec and Mouro in [55] we will consider a global
weak formulation for the fluid-structure problem that accounts at the same time for the fluid
and the structure part. This formulation is well suited to devise and analyze fully implicit
coupled algorithms. For the structure equation, we introduce the following spaces :

vy = HY(0,L),  V{(Ty) = Hy(0,L),
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while for the fluid equations we proceed as in Chapter 3 by introducing the spaces
VF (@) = {v e [H'(S0)]*, ¥ =00n T}
VE () = {0 € [H (%)), ¥ =00n T4y US| U 52}
and
VIQ)={v: & xI =R, v=voA!, + e VI(Q)}.

An analogous definition holds for Vg] , (). The spaces Q(€) and Qo(€2,) are defined as in
(3.3.3) and (3.3.5). Finally, let

V(t) = {(v,€) e VF () x VI(IY), sit. vo At|r.0u = fe,}. (4.3.1)

and Vy(t) = V()N (Vgl'2 (Q) x V(¥ )) be the spaces of test functions for the fluid/structure
problem. In (4.3.1) we are requiring that the fluid and structure functions match exactly
onTy.

In the following of this Chapter, we will consider only the conservative formulation of the
fluid equations in ALE framework. Moreover, we will indicate the problem used to determine
the ALE mapping in the general form

Pa(Anz) =0, Vze[HN Q). (4.3.2)

If we employ system (4.2.7) to build the ALE mapping, the form P4 (-, ) reads simply
Pa(Anz) = / VA, : Vadf.
20

Then, the weak formulation of the Neumann Problem 4.2.1 reads :

Problem 4.3.1 (weak-Neumann) for almost every t € I, find t — u(t) € VF(Q), t =
p(t) € Q) and t — n(t) € VS(TP) N Wheo(0, L) such that

([ . & gy I\ o (6w ( On &
/;bupwﬁﬁédz+/pgb"§dz+/pg(a$+68zat)5dz+ T(H—BT_H'W){

+pi/ vadQ+p/ divk [(u-w)@u] - vdQ+2u | Dy(u): VivdQ
dt Jg, (o

2=0,z=L

4 .
-—/ divxvpdﬂz/ f~de+Z/ a,-lvdI‘—/ Pentf dz V(v,£&) e V(1)

& e i=1,2 7S ry
/ divx ugdQ? =10 Vg € Q%)

Q
(P-FS)
uod: =sne, only (1co)
_ 1 d

Pal(A,z) =0 Vz E [Hg(26)]%, VE >0 and w = OA, oA i (P-ALE)

A =g, on 9, VE >0 ot

where u(t) and 7(t) satisfy the initial conditions (4.2.3).
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In Problem 4.3.1 we have highlighted the fluid/structure equations (P-FS), the interface cou-
pling condition (ICC) stating the continuity of the velocity between fluid and structure, and
the problem used to determine the ALE mapping (P-ALE). The second coupling condition,
stating the continuity of the stresses at the interface is hidden in the fluid structure problem
(P-F8) because of the choice of matching test functions on I'jy. This point will be clarified
later on in Proposition 4.3.1.

Similarly, the weak formulation of the Dirichlet Problem (4.2.2) reads :

Problem 4.3.2 (weak-Dirichlet) for almost every t € I, find t — u(t) € VF(), t —»
p(t) € Q(U) and t — n(t) € VS(T¥) N W1(0, L) that satisfy system

. 0%y an n\ 8¢
/I:wpmgtjﬁdz—&—/;wlmﬁdz+‘/rw (a§+c—6zﬁt) adz
0 o o
d
+p-——/ u~vd(2+p/ divx[(u—w)®u]-vd§2+2u/ Dy (u) : Vv d2
dt-ﬂz e 2 Q

—/ divxvde:/ f~de—/ Peutt d2 Y(v,£) € Vo(t)
o o I

/Q divxugdQt =0 Vg € Q(S)
E t
(P-FS)

supplied with the same interface coupling condition (ICC) and ALE mapping problem (P-
ALE) as in the weak-Neumann Problem 4.3.1, and initial and boundary conditions given by
(4.2.3) and (4.2.5), respectively.

Some remarks are in order. In the weak formulations here presented, we look for a displace-
ment n(t) € WH(0, L) which is a necessary condition to construct an ALE mapping that
belongs to {W"™(29)]? as well, and provide a correct weak formnlation for the fluid equa-
tions. On the other hand, the natural space in which to look for the solution 7(t) should be
L*®(0,T; H'(0, L)) with time derivative %Z— € L0, T; L*(0,L)) N L%(0,T; H'(0,L)) as we
can infer from the a-priori cnergy inequality (4.1.12). The well-posedness of both Problems
4.3.1 and 4.3.2 is still an open question.

Until now, at our knowledge, only a fcw and partial results are available for fluid structure
intcraction problems. A framework similar to the one considered in this section has been
studied in [43]; on the same geometry as in fig. 4.3, cxistence and uniqueness of weak solu-
tions has been proven for the stationary problem consisting of the coupling between Stokes
equations and a fourth order structural equation under the hypothesis of small data. Other
available results concern the motion in a fluid of rigid bodies or deformable ones, whose de-
formations are described by a linear combination of a finite number of elastic eigenmodes.
Existence of weak solutions has been proven in [18, 19] for all T > 0 provided there isn’t any
collision between the bodies. In [17] an alternative proof is given resorting to a penalization
technique, valid only for one rigid body.

Existence of strong solutions of the motion of a rigid body in a viscous incompressible fluid,
at least for a short time interval, has instead been proven in [40] under the hypothesis that
the mass and the inertia of the body is sufficiently large.

For a review of results concerning fluid structure interaction problems see also [41].
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In the following Proposition, we will show that a smooth solution of the weak problem is also
a solution of the strong coupled problem. This result will be presented only for the Dirichlet
Problem for the sake of brevity, yet it is valid for the Neumnann Problem as well.

Proposition 4.3.1 Any smooth solution of Problem 4.3.2 is also a solution of Problem 4.2.2.

Proof. We will show the equivalence between the weak Problem 4.3.2 and the strong Problem
4.2.2 written in ALE form, which is given by system (4.2.9) supplied with boundary conditions
(4.2.5) and initial conditions (4.2.3). The latter is, on its turn, equivalent to Problera 4.2.2
in Eulerian form.

Let us firstly introduce a linear continuous extension operator R : VF(T¥) — \Afgllz(ﬂo),
such that V¢ € V¥ (T¥), ﬁ({)lpbu = {e,; such an operator exists since the boundary datum
¢ extended by zero in 8 \ T¥ belongs to H'/2(80) (see e.g. [76])?. Let, moreover R :
vV (ry) —» Vg.,g(Qt) be defined as

VEEVF(TY), £ >0, R(E) =R(E) oA (43.3)

If we take in system (P-FS) of Problem 4.3.2 the test function as (v,0) we obtain the system

d
p—/ u-de+p/ divx[(u—w)®u]-de+2,u/ Dy(u) : VyvdQ
dt Jo, 0, 21

—/ divxvde:/ f-vdQ V(v,0) € V()
Q [
/ divxugdQ =0 Vg € Q(5%)
22
(4.3.4)

Then, integrating by parts the first equation and exploiting relation (1.2.8) we have

+ p{u —w) - Ve — dive(2uDy(u) — pI,v >=< £,v > V(v,0) € Vi(t)
Y

< divx u,¢ >=0 Vg € Q)

du
<p?9-t—

(4.3.5)

Thus, the first two equations of (4.2.9) are satisfied almost everywhere in ;, provided the
solution is sufficiently smooth.

Now, by taking the test function in the first equation of (P-FS) as (R(£),£) and integrating
by parts the structure terms we have

o & & -
< Pugg — A U= g € > = <P >+ <B(up)E >, VEEVITY)

where the functional ®(u,p) € (I/[]S(I‘{)”))’ is defined as

< B(u,p),€ >=< 2(u,p),R(E) >, V&€ VSTV (4.3.6)

2For the Neumann Problem the operator R should be defined as R : V(L) = VF(Q).
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1
and the functional ®(u,p) € (V"s'"1 2(Q¢)) is the residual of the first equation in (4.3.4) for

all fluid test functions v € V§| ,(€2t) non vanishing on I'Y, i.e.

< ®(u,p),v >=/ f~de—pi/ u-vdQ
o dt Jq,
—p/ divy [(u—-w)®u]‘vdﬂ—2u/ Dy (u): vadQ+/ divx vpdQ (4.3.7)
Q Q 0

Then, the equation

_ 6271 327' 337—, -
Pugp ~ 9% +bn - Cotpgr = Peat + @(u,p) (4.338)

is satisfied in the sense of V;¥(I'¥)". We are going now to show that right hand side in (4.3.8)
is noting else that

- an\?
~Pext + (u,p) = - [(Tlr;u +Ppend) - er] oppyf1+ (‘a‘g) (4.3.9)

and this will conclude the proof. Indeed, by integrating by part the right hand side in (4.3.7)
for v = R(£) and exploiting (4.3.5) we obtain

- Q
< —Pext + ‘I>(u,p),§ >=<f- 4 a_l: - p(u - W)qu + divx(2l‘l‘Dx(u) - pI)le‘(f) >

Y
< Pean >+ /F (pn — 2uDiy(u) - n) - R(€) dT

w
t

2
=-<pm.[,£>+/ [(T - n) 0 Ay - [R(E) 0 Al 1+(£’2> AT

w
0

= /I‘g’ (T - pexd) 'n°‘Pn] fery /14 (%)2dr

which gives exactly relation (4.3.9).
[ ]

‘We may observe that the normal stress exerted by the fluid on the structure, in Problem 4.3.2,
can be recovered in a weak form from the first equation of system (P-FS) as the residual of
the fluid equation for any test function non vanishing on I'Y’. This is exactly what will be
done at numerical level.

4.4 Two sub-problems decomposition

In practical applications it is useful to solve separately the fluid and the structure part.
Typically, this is the casc, when one disposes of two different codes solving the fluid and the
structure equations, respectively, and the objective is to couple them effectively in order to
carry out a fluid-structure simulation.
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By a standard Domain Decomposition technique (see e.g. [76]) we will show in this section
that both weak coupled Problems 4.3.1 and 4.3.2 can be split equivalently into two sub-
problems associated to the fluid and the structure part, respectively. Starting from this
splitting, different iterative algorithms can be set up which allow to solve the two subproblems,
separately. We first prove the following Lemma

Lemma 4.4.1 The space V(&) can be written as V(t) = Vip (£)®Vr, () (direct sum), where
Vine(t) = {(v,€) e V() : €=0} (4.4.1)
V) = (v, € V(e): v =R}, (44.2)
the operator R : VS(I'®) — VI () being defined as in (4.3.9).

Proof The inclusion Vi, (t) ® Vr (t) C V(t) is evident since both V;,(#) C V(t) and
Vr,(t) C V(t). Conversely, Vw = (v,£) € V(2), we can always define wp, = (R(£),) €
Vr, (t). It follows immediately that w — wr, € V;,(t) and we conclude that V() ®
Vr, (t) = V{(t). Finally, Viy(t) and Vr(¢) are clearly disjoint since, (v,&) € Vine(t) N
Vr,(t) = ¢ =0and then R(£)=0. MW

Keeping in mind this Lemma, the weak Neumann Problem can be easily split into two sub-
problems by taking either test functions w € Vi, () or w € Vr_(t). We have then the
following result :

Proposition 4.4.1 Problem 4.3.1 can be equivalently reformulated as :
fAluid sub-problem : find t — u(t) € VI (Q), t — p(t) € Q(R,) such that

pi/ u-de+p/ divx[(u—w)®u]~vd9+2u/ Dy (u) : VxvdQ
dt Jo, o Q

—/ divxvpdﬂz/ f~Vd-Q+Z/ o;-vdl V(v,0) € Vinu(t)
Qe @ i=1,275
divxuqdQ2 =0 Vg € QS)
Q
(4.4.3)
uo A, = ne,, on Ty (4.4.4)

and ALE mapping problem (P-ALE) as in Problem 4.5.1,
atructure sub-problem : find t — n(t) € VS(I'¥) N W0, L) such that

. 0%y on %\ 8¢
Agpw?@—{dz+AgM{dz+/rg (aa +c_323t) adz
pw (O P
Vo (“a“w ¢

where the operator & is defined as in (4.3.6)-({.5.7).

=< —Pext + ®(u, p), £ > Y(R(€),€) € Vi, (t) (4.4.5)

z=0,z=L
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Observe that, given a wall displacement () the fluid sub-problem is well defined and can thus
be solved; symmetrically, the structure displacement can be computed, if the fluid solution
(u,p) is available. This is the underlying idea of iterative algorithms.

When considering the weak Dirichlet Problem 4.3.2, it is a little more complex to devise a
good splitting from which iterative algorithms can be derived. Indeed, in this case, as we
have scen in Section 4.2 the displacement n(t) must satisfy the supplementary constraint
(4.2.6). Thus, when we split the coupled problem, we have to add this constraint to the
structure equation, for instance by means of a Lagrange multiplier. On the other hand, when
considering the fluid sub-problem on its own, since we are prescribing the velocity field on
all the boundary, we obtain a pressure defined only up to a constant while in the coupled
problem it is not so. As already pointed out in [43], this constant is related to the Lagrange
multiplier introduced in the structure equation. We formalize this aspect in the next

Proposition 4.4.2 Let us consider the following two sub-problem splitting for the weak-
Dirichlet Problem 4.3.2

fluid sub-problem : find 1 — u(t) € VI(Q), withu=®; on S;, i = 1,2, and t — p(t) €
Qo(SY), such that

P%/ u~de+p/ divx[(u—w)®u]-de+2p/ D, (u) : Vv dQ
v Sy Q

Q
- / divy vpdQ = f-vdQd Y(v,0) € Vi (1) N V(t)
o2 2
/ divy ugdQ =0 Vg € Qo()
Jo,
(4.4.6)
uo A, = ney, on Ty (4.4.7)

and ALE mapping problem (P-ALE) as in Problem 4.3.2,

structure sub-problem : find t — n(t) € VS(T¥) N WL(0,L), with = o at z =0 and
n=uoy at 2= L, and t > A(t) € R such that

. 9% on &\ o
/r(‘;'pw—(;)t—z_fdz-i-/w bquz+/x“';' (a£+c—azat) b;dz+A 1“:)uﬁdz

=< ~Peat + B(u,p), € > V(R(£),€) € Vr, (t) N Vo) (4.4.8)

/Fg,ndz=—/0t(/s] ‘1’1(3)-ndF+/52§2(s)~ndF)ds.

If (u,p), (0, A) is a solution of the two sub-problems, then (u,p — A1) is a solution of the
weak-Dirichlet Problem 4.3.2. Conversely, given a solution (u,p,n) of Problem 4.3.2, then
(u,p—po) and (n, —py), with py = m fmde , are the solutions of the fluid and structure
subproblems, respectively.

Proof. Let (u,p) and (7,) be the solutions of the fluid and structure sub-problem, respee-
tively. Observe that we can write

M tdz= / divy R(€) AdQ, V£ e VF(IY)

Ty o
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so that the first equation of the structure sub-problem can be rewritten equivalently as

_ 0%y an &y \ ot ~
/puu”’”ﬁf"”/pg br/fd2+/row (“a—z sl ) %€ e = < s+ blu,p - X6 >

Y(R(£),€) € V1, (1) N'Vo(t).

Hence, the solution (u,p — A, n) satisfies the first equation of (P-FS) in Problem 4.3.2 for all
(v,€) € Vp (t) N Vo(t). Moreover, since in the fluid sub-problem the pressure is defined up
to a constant, (u,p — A) is still a solution of the fluid sub-problem and (u,p — A, ) satisfies
the first equation of (P-FS8) also for all (v,£) € Vini(t) N Vo(t). Finally, we remind that the
constraint in the structure sub-problem comes out from condition

divxu =0.

We have then

/ divxug=0 Vge Qo(f%) andg=1 = divoug =0 Vge Q(y)
Q Q

and this concludes the first part of the proof.

We consider, now, the inverse implication. If {(u,p,7) is a solution of the weak-Dirichlet
Problem 4.3.2, then by taking (v,£) € Vin () N Vg(t), clearly (u,p) satisfies both equations
in (4.4.6). Yet, p does not belongs, in general, to Qo(£;). Nevertheless, if we take (u,p — py),
then, p — py € QoY) and the fluid sub-problem is still satisfied since

dive vpo 2 = / pov-ndl =0,  V(v,£) € Vinlt) N Vo(t)
Q an,

Moreover, it is clear from the previous considerations that the equation

) on %\ o¢
Lgpau?@fdz+/r\gb71§dz+ﬁ\g (a£+cazat)$dz—p0/rbu§dz

=< —Pext + &)(uap ‘])0);5 >

is satisfied for all (R(£),£) € Vr,(t)N'V(t) and that the displacement 7 satisfies the supple-
mentary constraint (4.2.6), since it is a solution of the weak-Dirichlet Problem. We conclude
that (n, —po) is a solution of the structure sub-problem (4.4.8) and this concludes the proof.
|

Remark 4.4.1 In Section 5.2.2 of Chapter 5, we will introduce other kinds of boundary
conditions for the fluid problem, which we will call defective since they provide information
only on averaged (and not pointwise) quantities on the boundary. Among the others, we will
consider the following condition that prescribes the flur on a portion S of the boundary:

/su-ndl"=Q.

Whenever o fluz condition is imposed on both 8y and S, let’s say

[u-ndl":Q,-, i=1,2,
S;



4.5. FINITE ELEMENT DISCRETISATION 115

the structure displacement n satisfies a supplementary constraint analogous to ({.2.6); pre-
cisely

G [ =-@i+aw.

The technique presented in Proposition 4.4.2, to split the coupled problem into two sub-
problems, extends immediately to that case as well.

4.5 Conforming and non-conforming finite element discretisa-
tion

Let us introduce a triangulation T of the reference configuration €. This triangulation
induces a partition Z,, on T'¥. Let Ty be an independent partition of I'§. In the case where
T, = Iy, we will speak of geometric conforming meshes while the more general case will be
addressed to as geometric non-conforming discretisation.

Let

VIR cvSIY),  VEQ) Vi),  Qn(f) C Q)

be the finite element spaces approximating the corresponding continuous ones. The fluid
finite element spaces may be chosen as in Chapter 3. The structural space, instead, may be
taken as the space of P, continuous finite elements.

In the general case of non-conforming meshes at the fluid-structure interface, we have to devise
a strategy to impose the continuity of displacement and velocity on the moving boundary.
As it will be shown in Sections 4.7+4.10, it is important for stability purposcs to preserve, at
the same time, the two constraints

"|I‘;“ o tp, = ey, and “lr;" =w

Ty
where w denotes, as usual, the mesh velocity, also at the discrete level. To this aim, we
introduce an opcerator

I, VY)W (ry) (4.5.1)

which associates to each {, € Vif (T¥) a function H:f ¢ Ty = R, approximating £, that
is an admissible trace for the radial component of a function ¥ € Vf ().

The best choice to preserve the accuracy of the fluid discretisation, consists in computing
the discrete ALE mapping Ap, with finite elements in Vf (€) and imposing the coupling
conditions

",
| 0 Ane = 1, 7, e (4.5.2)

Antlry =Y + 0y 7,e; (4.5.3)

In the particular case where the fluid finite element spaces are chosen either as P — P or
PiisoPy — P, the ALE mapping can be computed with Py finite elements without loss of
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accuracy, as pointed out in section 3.4. Consequently, the ALE finite element space coincides
with [@r(£20)]¢. The operator H: should then be defined as

H ; A
O, : VITY) - Qu(Ty)

and, since Qy(T¥) C V;F(T¥), the two relations (4.5.2) and (4.5.3) are still meaningful.
Typical choices for the operator H: are

¢ interpolation operator

I €, (x;) =€,(x;)  for all the nodes x; of Zy. (4.5.4)

o L? projection operator (mortar method)

/Fw (03¢, —£,) 9, d0 =0, Vg, € VF(T¥), and
o

I,6,(0) = £,(0), TE,(L) =&, (L),
where V;F(I'¥) is a sub-space of codimension 2 of V;F(T¥). For more details on the
mortar method see e.g. [6, 4, 1, 5].

In [43] it has been shown, on a very simple coupled problem, that the mortar method is
optimal® for any degree of the polynomials used for the discretisation of the fluid equations.
On the contrary, for a coupled problem with a second order differential structural cquation
(as it is in our case, indeed), the interpolation operator is optimal only when piecewise lincar
finite elements are employed for the fluid.

Once introduced the operator H,I: and the ALE mapping discretisation, the finite element
spaces for the fluid equations will read, as usual

VEQ) = {vi: U x T >R, v, =, oA;,;, Vi € VE(Q0)},
Qn(%) = {gn : e xI >R, g =dno Ay}, dn € Qn()}

and the space for the fluid-structure coupled problem is
Vaalt) = {(Vh€,) € VE(@) x VETE), st vaodnily =TE,e}.  (456)

Observe that this space is not contained in V(¢) because of the non-conformity of the meshes.
We are now in the position to introduce the semi-discrete coupled problem. We will detail
only the discretisation of the Neumann weak Problem 4.3.1, the extension to the Dirichilet
one being straightforward.

3in the sense that it does not degenerate the rate of convergence featured by the fluid and the structure
discretisation when taken separately.
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Problem 4.5.1 (semi-discrete Neumann) for almost every t € I, find t — () €
Vf(!lt), t - pp(t) € Qn($k) and t — n, (t) € V:(Fg’) such that

r l anli a nH 85”
/ Yot B on dz+/ W dz+/ (a +°3z6t ED de

o g
B (oG ) o

+p= / up - v dSE + p/ divy [(up — wp) @ up] - v, dQ2
2=0,L dt [oR 0

—g / divx up up - Vi dQ + 2 / Dy(up) : Vievy df2 — / divy va pr dS2
O, 0
/ fovpan+ 3 / os vl - / Peatty d V(Vhstn) € V()
i=1,2
/ dive up grdQ =0 Ya € Qn()
Q,
' (P-FS)
upody, =Tl n,e,  onT¥, (ICCh)
Pa(Ans,zn) =0 Vo, e VE(R), 24 =0 on 89, Vi>0
(Ph-ALE)

A=Y+ n,e. T¥,  Api=g, ond%\T¥ Vt>0.

where uy(t) and n,(t) satisfy suitable finite element approzimations of the initial conditions

(4.2.3).

In system (Ph-FS) we have added the consistent stabilizing term —% th divg up up - vy dQ as
in formulation (3.4.8) proposed in Chapter 3.

The two sub-problem splitting of Problem 4.5.1 is straightforward once we introduce the
following decomposition of V', y(#) :

int Vf{f;{(t) = {(vh,&,) € Vp,u(t), £, =0}
Viu(t) = Vit (t) @ Vi (t), -
V() = {(vh,€y) € Van(t), v = Ru(é,)}

and the discrete extension R, is defined as
VITE) = VE@),  Ra€)|, o Ane =TT, ¢,er (45.7)
t

The most natural extension consists in taking the finite element function v, = Rp(§,,) which
is zero on all the interior nodes of Q, and satisfies condition (4.5.7) on T'Y.
4.5.1 Algebraic formulation of the semi-discrete problem

We adopt here the qame notations as in Chaptcr 3. For the fluid equations we introduce
the Lagrange basis {1; ,ﬁl and {(pJ} e {‘Pk}k—l associated, respectively, to @,(;) and
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VE(€). Inparticular {p}} is the set of basis functions of V£ (1) corresponding to the nodes
on I'Y. We set

Ny NE Ap
un(x,1) = Y Ui(t)p;(x,t) + D UR()eh(x,1),  palx,t) = > Bi(th(x,t).
j=1 k=1 i=1

The nodal values U} depend, clearly, on the structure velocity 7,. The matrices M(t),
B(t;wp;up), K(t), D(t) and C(t; w},) are defined as in Section 3.4 while the vector F is now
given by

F,~(t)=/ £, d0+ Z/a’iwpidl“.
Q i

i=1,2

Concerning the structure equation, let {x; }lji"l be the set of Lagrange basis functions associ-
ated to V;f(I‘g’); we set

Ny
My = Z Tlxly
=1

and we indicate with Y the vector of nodal values; moreover, we define the matrices

- . v Ovi
iy = [ owdr, 1<ii<N,  Ry= [ 9% 1<ijcw,
ry ry 0z 0z

, 14,5 SN,

Beij = xjxi 0 eel

and the vector Peyy = [— fpow PextXi dFL_l N
T hyeedVy

The coupling condition (4.5.2) can be written in algebraic form in the following way : the
trace uy, lr;" depends only on the boundary values and can thus be expressed only as a function

of the basis {¢}}

Y
uhl]‘;" = ZUlgtpz rp°
k=1

Similarly, for each structure base function x;, the function H,': X1 e belongs to Vf (Ty) and
can thus be developed on the same basis {@!} expressed on the reference configuration. We
have then
NE
H
O oxier =Y Zx @8] w- 4.5.8
h Xi€r ; kl‘Pklpﬂ (4.5.8)

Thus, the matching condition (4.5.2) becomes

=1 =1

N . Ny Ny Y N [Ny
up ,r;u oAps = ZU&PHF&, =11, Z YTixier = Z T, (Hh xi er) _ Z (Z Tlslcl> ¢Z,w
k=l =t k=1
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which can be written in algebraic form as
U*=QY,  where @ = [Ex] (4.5.9)

Observe that the matrix (¢ does not depend on time since the matching condition is always
imposed on the fixed configuration T'§. A similar derivation holds for the imposition at the
algebraie level of the coupling condition (4.5.3).

The fluid sub-problem is then given by

Ut =QY

p% (M(£)U) + pB(t; wh; up)U — pClt; wp)U + 2pK (1)U + DT()P = F(t) + by (1),
D(t)U = by(t)
(4.5.10)

together with the computation of the ALE mapping. The vectors b; and by depend on U?
and ultimately on Y.
Let’s now come to the structure sub-problem. Its algebraic counterpart reads

(ﬂwM +ey/ %E’/L) T+ (ck + \/aﬁ,,,BVc) T+ (bM + af() T =Py + P. (4.5.11)

The vector & is given by
&"i =< &)n (upspr), Xi > =< ®(an,pn), Rulxi) >, 1<i< N’I (4.5.12)

where < ®(up,pp), vy > is defined as in (4.3.7).
Whenever we consider a discrete extension Ry(€,), V€, € V(T}), which vanishes on all the
internal fluid nodes, we can write the extension of a basis function x; as

N

Ru(a) =D Eu et
k=1

where the Z;; are the same of (4.5.8). Thus, we have

NY NE
< ®(up, pn), Ra(xs) > =< B(un,pn), 3 S >= Y St < B(un,pn), 0} >
k=1 k=1

and relation (4.5.12) can be written in algebraic form as
b =0QT®,  where & =< ®(up,pp)il >, k=1,... M

In other words, once the fluid solution is computed, we have to evaluate the residual of the
fluid equations tested on all functions 2. Then, by multiplying the vector & by QT we
obtain the right hand side for the structure equation.

This approach to exchange information between the fluid and the structure solver has already
been proposed in [25], with 1'[;: taken as the interpolation operator. It was shown that the
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coupled scheme thus obtained conserves the energy at discrete level. The scheme has been
applied to several large scale numerical simulations (see e.g. [23] and other related works).
In the last part of this section, we detail the discretisation we have adopted in our numerical
simulations. We have taken a conforming discretisation between fluid and structure. We have
used P1isoPy — PPy finite elements for the fluid sub-problem and P; finite elements to compute
the ALE mapping. In this way, the fluid mesh 75, at each time £ > 0 is made up of triangles
with straight edges. The structure equation has been discretised with P; finite elements
as well. In such a case, we have VS(T¥) C Qu(T¥) C VF(T'¥) and the discretisation is
completely conforming in both the geometry and the polynomial degree. A possible evolution
of the interface configuration and of the adjacent fiuid elements is shown in figure 4.4.

Figure 4.4: On the left: Py displacement of the structure; on the right: new domain configu-
ration computed with [P, finite elements. The bullets e denote the P; nodes while the crosses
x denote the P2 nodes on I'Y.

The operator H: has thus been taken as the identity operator, i.e. the coupling conditions
(4.5.2) and (4.5.3) simply read

Uh|[‘}u oAy =nyer Ahallr;;’ =Y+ My €r-

If we number the nodes on the interface as shown in fig. 4.4 (on the left), then the first
coupling condition is equivalent to

(“h|r;v ° -Ah,t) () =1y (zi)er, for each P; node z;
(Uhh‘;ﬂ o -Ah,t) (zip12) = ""—(zi)iz"igzi;l)er for each P, node 21,2

Conversely, let gbf =0, <ﬁ£’] be a fluid Lagrange radial basis function associated to the node z;.
Observe that a structure Lagrange basis function x; can be written as (see figure 4.5)

_ (1. by Los
Xi = 5Pi-12 T @it 5Pivp e

Figure 4.5: Lagrangian basis function x; written as a linear combination of fluid Lagrangian
radial basis functions cp';
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It follows that, once computed the vector ® of the stresses exerted by the fluid on the
structure, the right hand side of the structure equation is obtained simply as

= 1 1
®; = (5 < ®(up,pn), Pl g > + < B(un,pr), 0} > *3 < ®(un, ph), Pli1/2 >) :

4.6 Temporal discretisation and coupled algorithms

Many different strategies can be devised to discretise in time the coupled fluid structure
problem. A wide class of algorithms can be derived by taking an explicit temporal scheme
for the fluid (resp. the structure) and an implicit one for the structure (resp. the fluid).
In this way, at each time step, the solution of the fluid can be computed directly starting
from the solution at the previous time step and, once the fluid pressure and velocity have
been computed, the structure can be advanced in time providing the new position of the
interface. This simple iterative algorithm is often referred to as conventional serial staggered
(CSS) procedure (see e.g. [26, 24]). Many improvements have been proposed to the CSS
procedure such as sub-cycling the explicit solver in each time interval and/or introducing
a structure predictor. In the presence of sub-cycling, different strategies to exchange data
between fluid and structure solvers have been considered as well [26, 71]. These ideas have
been furtherly generalized to implicit/implicit coupled schemes. This family of algorithms,
known also as staggered or partitioned procedures or loosely coupled algorithms, have been
adopted for instance in [24, 23] and their stability properties have been investigated in {72, 73].
A scheme of a possible staggered algorithm is presented in fig. 4.6.

Figure 4.6: Example of staggered algorithm : at each time step we solve first the structure
equation, with forcing term given by the fluid solution at the previous time step, then the
fluid equation on the updated geometry and with a boundary velocity given by the recently
computed structure solution.
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However, we have verified numerically that these loosely coupled algorithms are unstable
when the structure is light, in particular when its density is comparable to that of the fluid,
as it happens in our application.

In the following part of this chapter we will focus on fully coupled implicit algorithms. In
particular, we will propose three coupling strategies which are unconditionally stable. Clearly,
at each time step, we have to solve a highly non-linear coupled system, since the fluid domain
is unknown and depends on the structure solution. The most simple strategy to solve such a
non-linear system consists in sub-iterating between fluid and structure, adding eventually a
relaxation step on the structure displacement. We will refer to this iterative solver as a block
Gauss-Seidel method. A representation of this algorithm is given in fig. 4.7.

Yone Mg Tig

initial guess of
n n+l a"d ﬁ‘;lol
0
T
i fixed point
l iterations
ul .'_l- = ‘rl
xr;-bl' w'n-o-l “"T:f

nel nel
wyep

Stress evaluation

oot Fnet
PR

s ap

Figure 4.7: Example of fully implicit coupled algorithm : at each time step we need to
subiterate between fluid and structure until the coupling conditions are satisfied within a
fixed tolerance. A relaxation step may be added on the structure displacement

As it will be shown in section 4.11, in those cases where the loosely coupled procedure is
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unstable, the block Gauss-Seidel method needs, in general, a small relaxation parameter and
features a slow convergence rate. The problem of how to accelerate subiteration conver-
gence is the subject of current research and will not be investigated in the present work. In
our numerical simulations we have limited ourselves to apply the simple block Gauss-Seidel
method.

In order to lighten the presentation of the coupled algorithms we introduce some additional
notations. For the semi-discrete structure sub-problem we introduce the forms

by =b [ ovdzta [ e, Vo, € VS(TY) (46.1)
T re 0z 0z
Op O s
oo [ 200 S(ry). 6.
V((P, 1/’)[‘., c Ty 9z 0z dZ, V(p7¢ eV ( 0) (4 6 2)

The first form groups the elastic terms of the structure equation, is bilinear and coercive and
can be taken as a scalar product on V5(I'¥) with associated norm

1
2 H
L’(F‘o”)) ‘

Similarly, the second form represents the viscoelastic structural term and is bilinear and
monotone, i.e.

Op
lelle = (b||80 |22y + @ ™

6(4)2

S(Tw
5 >0, VeeVSTy).

LTy

V(tp, ‘P)rg =c

Finally, we will denote by (-, -)ry the L? scalar product on T'§.
For the fluid equation we introduce the lincar and continuous forms

D(v,0)q, = - /n dive v g, Vv e VF(), g € Q) (46.3)
t
B(w,u",u,v)Q = p/ divy [(u* — W) Qu]- vdQ
13 Qt

- g / divew* u-vd2+2u | Dy(u): VevdQ  Vw,u*,u,ve VF(Q). (4.6.4)
S Q¢
Observe that, given a function u* such that u* = w on I'Y, we have for any u e VE (@,
t S1,2
_ 2 4 . 2
B(w, u*’u’u)ﬂt = & || Vxulg e, ~ 5 /m divy wiul{* d2. (4.6.5)

This relation will be useful for the stability analysis carried out in the next sections on the
coupled algorithms.

Thus, system {(Ph-FS) in the semi-discrete Neumann Problem 4.5.1 can be rewritten in a
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more compact form as

In [Pu ( On
Pw( atz 7§H)Fu +£(7lu7fu)l“o +W Hvﬁn)l“a pTu( 3t" te 3t2 )fu 2=0.L
+P2t-/ g -V A+ B(wh, up, u, Vi) + D(Vasprlg,
/ fovpd+ Y / oy v dlh - / Pexty; dz V(vh,€,) € Vi u(t)
i=1,2 ry
(P(un,an)g, = Yan € Qn(S)
(4.6.6)

In the following Sections, we will present the coupled algorithms for the Dirichlet Problem
4.2.2 since this allows us to obtain unconditional stability results. Indeed, as we have seen
in Chapter 3 and in Section 4.1.1, we are not able to get an a-priori energy estimate when
Neumann conditions are imposed in some parts of the boundary. As we have already observed,
this is not due to the fluid-structure interaction mechanism but is related uniquely to the
convective term in the Navier-Stokes equations. On the contrary, the Dirichlet Problem
allows to obtain unconditionally stable discretisations of the fluid and structure sub-problems
when taken separately and is well suited to focus on the stability properties of the coupled
algorithms.

4.7 A first order implicit coupled algorithm

We discretise the structure by a first order backward finite difference scheme and the fluid
by the Implicit Euler scheme which satisfies the GCL. Furthermore, the ALE mapping will
be computed at each ¢, by solving a suitable mesh problem P4 (Aps,2,) = 0 and will be
linearly interpolated in time in each time slab [tn,tn41]. Thus, in order to satisfy the GCL,
we integrate the fluid terms on the middle configuration. Let us denote by uf, p} and 7}, the
approximations of w,(i"), pn(¢") and 7, (¢*), respectively. The interface coupling condition
between fluid and structure velocities will be discretised as follows

'3
HNgt -
L__”e

u O-Ah.th !F‘” “‘n At T

The coupled problem reads then
Problem 4.7.1 (BDF1/Implicit Euler) Given the initial solution upg, 7,,, and 1,,, set
=gl — 24t
nl’ T’H T’HO’

and find u?t € VI (), p mtl e Qu() and e VI(TE) with

witt =@M on S, i =1,2, and
it =o't atz=0, 7 =at we=L,
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such that
n+1 — 9 71 n-H -
Ty + My e
w(—At’;—'—"»EH)I‘;‘ +5(7?,, aEu)Fo +W_—J'I'15n)
P n+l _ P n. 0 n+1/2  p+4l | nl
+At /Qthrl u, v dQ Ar /m,, up v dQ+ B(w, T ul T uf ’vh)ﬂt,.w,
Dy, = [ evda- [ e, de
batira LA Ty
Y(vi,€,) € Vi m(t) NVa(t)
D(up*, qr) =0 Van € Qn(0)
ntn+1/2
(Ph-FS)
Al o
utlo Ay, =T 1 < e, onTV (ICCh)
Pa(Antnyirzn) =0 Vzy, € VE (D), 25 =0on 9,
Antors =Y + T 7 e, on T8, Apg, =8, on 8 \TY, (Ph-ALE)
t
Apy = Ah tnes T "“ t A t € [tn, tns1]-

foralln > 0.

Since we are taking a piecewise linear in time ALE mapping, the mesh velocity is constant in
each time slab [t,,¢,41]. Moreover, thanks to the chosen coupling conditions, we have on I'Y

n+1

')
aly — My e

At TS

and this is an important condition in order to obtain an energy conservative scheme.

who Ay, = “h Lou, tmpr = 1y Vt € (tn, tnt1] (4.7.1)

4.7.1 Stability analysis of the coupled algorithm with zero forcing terms

We investigate now the stability of the coupled scheme, described in Problem 4.7.1, in the
case of homogeneous Dirichlet data and zero forcing terms. We begin with analysing the
stability properties of the discretisation of the structural equation for a given forcing term
fs, while the main result is postponed in Proposition 4.7.1.

Lemma 4.7.1 For any given forcing term f; € C%(0,T; (qu(l"g'))’), the following discreti-

sation of the structure equation

i (T/Z“" 2 + !
At?

Pu

n+1 _ T]
afn)r‘o +g(7’" 1£n)T““ +V(—H7§")F"‘ =< f _H’E" >,
Ve, € Vi(TY) NVETY)
7’2 = Nyos "1_;‘ = ﬂl, - 2Atnnn
(4.7.2)
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is unconditionally stable and the following inequality holds

O [t =
Oz At

o . t( +C]"|u
< 29w ol Z2gry) + Maollz + ZHf’“llH aryy (473)

nn+1 _ T[" 2 2
H H
At

w

+ Il e

L2(Ty) Lz(rw

Joralln > 0.

Proof. We take in (4.7.2) £, = n"*' ~ n7. Then,

7]n+1 _ 2nn + nn—l
. p“'(H—Atz—H’ z+1 —T]H)Fo

m—1
nu — Ny

At

2
it =2y, 4o

2
ot —n
At

= Pw
At

2

+
L2(Ty)

L¥(Ty) LA(ry)

1 B
o Syt = ey = 5 (I = + s =]

G 7’Z+l — H ’
Az At

LY Ty)

’I’]"+] nn
. v( H Il, ‘ni+l —TIH)rw cAt

+1 _
T Wy
At

o < f;H—l et nH > <At “fn+1||H yry)

HY(TF)

2
G A
0z At

< At(1 + Crow) CAt )
L2(ry)

n 2
S — = M ey + 5

g _ggn g1 2
. CH H and

where Cry is the Poincaré constant on I'y’. The terms 95'”—

Lary)
g || tt - 7 ”;‘: highlight the dissipation of the scheme. By putting together the previous

expressions we obtain forn > 1
1 2
O (" -y
0z At )
L¥(T)
At(1+ C]"g')
¢

2
1
P Tt =
w

2
= 2 + e

L3(ry)

2
. no_ In—l
<ho |l ol + 12 Wiy (4740)

LA(ry)
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For n=0 we have, instead, for the first term

1 0 4 1 ;
oo -2t 4y My = Mo — A8
P, - n?,)rw = 2o (0, — Wy )
2
- 77 7’ 77 "I .
=pu |||-E2 AL 2 ”nuo”L?(r‘w) + At = ~ Mo )
L2(ry) Lry)
- | 0 J|2
Pw ||y =T ~ . 2
25 |t = Pw o2 ey
L(ry)

while the other terms can be treated as before. Then, for n = 0 we obtain

2
3 ”}l — 7’?1
Oz At

LA(TY)
At(1 + pr)

2
1 0
My
At

b L fE + ca

LATy)

< 2B [0 72y + I + 1 gy 479)

By summing incqualities (4.7.4) over n, for » > 1, and inequality (4.7.5) we obtain the final
estimate (4.7.3).

]

We come back, now, to the coupled Problem 4.7.1 and we prove the following result :

Proposition 4.7.1 The solution of the coupled Problem 4.7.1 with homogeneous Dirichlet
boundary conditions and zero forcing terms (i.e. 7712 = 0 and ply = 0 for all n > 0),
provided it exists, is uniformly bounded with respect to n, and the following a-priori estimate

holds
: : 2
o [t —nj
At

L(ry)

nn+l —T]" 2
Svme IR (K

()

p w

+olor Ly,

ﬂ+l)

+ 2HAfZ ”Vx“h ||Iz(ﬂt +|/2) < 26w ””Hn"l’(l"") + ”"uo”s +p “uhO“I 2(Q) (4.7.6)
i=0

Jor alln > 0.

Proof. We take in (Ph-FS) as a test function (v, €, ) = (Atu}t! e — ). Observe that,
thanks to the coupling condition (ICCh), this is an admissible test function. As pointed out
n (4.7.1), wpo Ay, = u’,;"'] o Apy,,, on TY and then also on LY since both quantities
are transported on each configuration §2; by the same mapping. Thanks to relation (4.6.5)
we have

B(W;:+l/2,uz+l n+1 Afu"“)n
fnt1/2
2 pAt . +1/2
= Kkt ”V"“ZH”LQ(Q: o~ T/n divye w} ! 2 do.
) n tnt1/2
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On the other hand, the other fluid terms can be elaborated as in Section 1.8.4. We have

P / n+1 . Aty n n+1
— u, " dQ2 — £ uf - Atup ™ dQ
At Qeppr At Q. h A
P +19{2 pAt . n+1/2 112
2 5““2 “LZ(Q,"H) ”uh“Lz(Q:n)+ divx w fup ™ [ A€

tnt1/2

The structure terms can be treated as in the proof of Lemma 4.7.1. Thus we obtain the

inequality
2 2
I n+1((2 a (m —my ntl
w + {5t g + 2eAt ) = | At ol )
At L2y dz At Lary) 2(Dty 44

2
b -1
My — Mo

-3 +mz )z + o lupll,m,) @77

+ 264t ”quZ“ ”iz(ntwm) < w

L2(ry)

for » > 0 and the modification as in (4.7.5) for n = 0. Finally, by summing over n the
previous inequality we obtain the desired result.

Remark 4.7.1 In [42] a similar time discretisation is employed on a monodimensional fluid-
structure problem. More precisely, the structure terms are discretised as in (4.7.2); on the
contrary, the fluid equations are written in non-conservative form and solved on the previous
configuration instead of on the new (unknown) one. For this coupled problem, discretised in
time but not in space, the authors proved a stability result similar to the one presented in
Proposition 4.7.1.

Remark 4.7.2 A similar algorithm as in Problem 4.7.1 is proposed also in [54] for fluid-
structure problems in two or three dimensions, accounting both for compressible an incom-
pressible fluids. Yet, in this work, the authors do not introduce the Geometric Conservation
Law as we did; they rather propose a different discretisation of the mass conservation equation
for the fluid. Precisely, they write also the mass equation in ALE conservative form, i.e.

dJap
ot

+ J4, divg (p(u —w)) =0 (4.7.8)
Y

and they discretise both the momentum equation and (4.7.8) by a standard Implicit Euler
scheme. In particular that means for (4.7.8)

[, Artwans [ saanrar [ v (e - wi) ede=o, @70
D4y Dty Qpyy

Var € Qn(%). In the case of incompressible fluids, the density p is constant in time (it is not
an unknown of the problem) and (4.7.9) i3 equivalent to the following constraint on the fluid
velocity

o dvetgde=-L / ma+ £ [ dtep [ divowpt g
n‘n+l At +1 At Qs nln+l
(4.7.10)
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Observe that the velocity field u"+1 is not forced to be exactly divergence free at t,,1 and the
right hand side in (4.7.10) is preczs'ely the error in representing the domain deformation. For
this numerical scheme the authors obtained a stability result very similar to the one presented
in Proposition 4.7.1.

4.7.2 Some remarks on the stability of the coupled algorithm with non-zero
forcing terms

When considering non zero forcing terms £ # 0 and peg: # 0, » > 0, the following inequality,
that generalizes (4.7.7), can be easily obtained, following the same procedure as in the proof

of Proposition 4.7.1 :
2
o (myt —
8z At

LXry)

,”n+l _ nn 2
~ H H
At

Pw

i + et + el )

AT

2
!
At

+ kAt Hqu"

2
a0 S P + 3 7 + o IoRlZ o,

LAry)
L At Citl ”fn+1/2”2 LA Cry)
H=H{6,

n+1/2
Peat

(4.7.11)

K c ” H-Y(0Y)

n+l/1)

Observe that the Poincaré constant appearing in the term that contains the fluid force f7+1/2
depends on the domain @y /» and eventually on the structure displacement n"‘“ that is
the reason why we denoted it CS'H instead of simply Cq. Hence, we cannot derive straight-
forwardly from (4.7.11) an a-priori estimate by simply summing over n. In the geometry
considered up to now (see figure 4.3), the relation between the Poincaré constant and the
structure displacement can be easily found. The following Lemma fixes this point

Lemma 4.7.2 Given a displacement of the structure n € VZ(I'¥), with n(z) > —-D, ¥z €
(0,L), that identifies a domain configuration @y = {(z,r) : 0<z2< L, and 0 <r <
D +1n(2)}, then, for any function f € HY(R,) such that f =0 on Ty, the Poincaré constant

can be taken as
2
) (4.7.12)

L(ry)

an

_ 2
Ca, —S(D +Lj=

Proof. For any given f € C!($,) such that f = 0 on Ty, we have

r D4,
pen= [ 2Zeaseais [ 22

L pD+n(z) Dinlz) |5 f
2 —_—
190 [ [ (/0 I
L D+n(z) F)
< [apene) [ | L
0 0 S

<2 (D + @ esy)) 1l agan 19 naa)

(z, )| ds.

Hence,

|f(z, )| ds) drdz

|£(z,$)| dsd=
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Moreover, since V¥(T'¥) is continuously embedded in L°°(I‘g’ ), we have also

[In(2) | oo gy < VE|2

az Lx(ry)

and finally

o
1 < 4 (D +VE |3

2
) ||Vf||2L2(n,,)
(4.7.13)

2
vII? <8(D? L“Qn—
L2(\"'6’)) 1V liaian < ( bl

LAry)

Since the space of functions {v € C(Q,), v = 0 onTy,} is dense in Hll“,.w(ﬂn) ={fe
HY,), f =0 on [y}, relation (4.7.13) can be extended to all HE, (€2,) and this concludes

the proof.
|

n+1
The domain Q;,, | /22 iD inequality (4.7.11), is identified by the structure displacement H,’: M
and the critical term can be developed as

At(l + CS“) fn+1/2||2

K H_lmfnﬂ/z)

At , o (ot 4+ z a2
== |1+8D2 8L | o My ||f“+/ “ ,

£ L2(ry) T g1 2)

At ) 2LAt 2
< = 1+8D2 fn+1/2 = S CcH 2 1 n+1+ n i
R e » N 2 o+ 7 e

At asali? ALAt
< Zavspy el S o E (- ) e
tat1/2) H 1@y 2)

< CH~ ”77}1”[ 2Ty Then,

where C is the constant of the inverse inequality ||—

LAry)
inequality (4.7.11) can be rewritten as
2 2
n+l _ ,n . 9 n+i _ on
G Ny — " +0- ,Yn+l) “nn-(»l ”2 +eAt| < My Ny
At H 0z At
LYTy) LX(T¥)
2
1
+1712 +1)12 N e +1 2
+olju; ||Lz(m,,+,) +rAt ]|V ||L2(ﬂz"+l/2) < b || At" . +(1+") I 1l
u 0
n| 2 At(1 +8DZ) ” +1/2 2 At(1 + Cry) n+1/2
= e i =
+p “uh”Lz(Qz") K H_I(Q‘nﬂ/z) + P Pext -1(ry)
(4.7.14)
where we have set
,.Yn+1 4LAtCH~2“H N2 fn+1/2|| .
H- 1(Qt"+1/2)
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Then, by applying the discrete Gronwall lemma, we can obtain an a-priori estimate under
the stability condition

< b H?
4LC||TI} |2 ||f"+1/2|]z

, Vi > 0.
-l(nti+l/2)

This estimate might not be optimal; surely, if £ € C%(0,T; L?(Q,)), other estimates can
be obtained that avoid the use of the Poincaré inequality. What we wanted to point out
here, is that whenever we need to use the Poincaré inequality in the fluid domain, this
might induce restrictions on the time step and/or the spatial discretisation to have a stable
scheme. Similar considerations hold when considering the coupled Problem 4.7.1 with non-
homogencous Dirichlet boundary conditions.

4.8 Second order discretisation of the structure

An improvement to the previous coupled algorithm can be obtained by considering a better
and less dissipative discretisation of the structural equation. We focus, here, on the so called
mid-point scheme which can be seen as a particular case of the Newmark discretisation (see
also Remark 4.8.1 later on). Applied to the structure cquation it reads as follows. Let us
denote by 77 an approximation of 1, (t7) and by 57 an approximation of 5, (t*). Then, given
at each time t**1/2 a forcing term f"+'/ 2 on the structure, we solve for all n > 0

n+1

7 __,r,n n+1 +T]

(Far by = (——-—5—",ém, Ve, € Vi (TF) NVE(TE)
,,,n-H 7] " prtl 7

Pl BT )y T i gy T T gy e g, >,

Ve, € VTE) NV (DY)
Ty = Mho> 77?; = Te

(4.8.1)
This scheme is second order accurate in time. We will show that this structural solver coupled
with the Implicit Euler scheme for the fluid equations gives an unconditionally stable algo-
rithm. Clearly, in doing so, the fluid discretisation is only first order accurate. In a second
step, we will instead consider a Crank-Nicolson solver for the fluid. The coupled algorithm
thus obtained is “potentially” second order accurate since both the fluid and the structure
solvers feature a quadratic convergence rate when taken separately. Yet, this does not guar-
antee that the coupled algorithm is really second order accurate and a complete convergence
analysis should be carried out. At our knowledge, such an analysis is still missing though it
is very important for the future developments in this field. We do not dwell on this aspect
in the present work, but it is the subject of an ongoing research. Yet, in Section 4.11 we will
carry out a numerical analysis of the accuracy of this scheme and we will show on a test case
that this algorithms is indeed second order accurate.

4.8.1 Coupling with an Implicit Euler discretisation for the fluid equations

We consider now the coupling algorithm obtained by employing the mid-point scheme (4.8.1)
for the structure and the same discretisation as in Problem 4.7.1, for the fluid and ALE
mapping problems and the interface coupling condition. The formulation obtained reads
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Problem 4.8.1 (Mid-point/Implicit Euler) Given the initial solution wy, n,, and 7,
find ultt e VE(Q,), p Tt e Qu(), nitt € VHS(FO‘”), and 7"t e VI(E), with

u;: = <I>’7+1 onS;, i=1,2, and
it = otz =0, =™ atz=1,
At = af "t gtz =0, T/T'l AT atz=1L,
that satisfy, for alln >0,
77"+1 - 77 n+1 + 1, .
(H——ivgn) = (—‘iagu)l‘o VEH € V:( g') r‘]VOS(FS’
. 17n+l _ T] +1 + T] +1 + 77
pw(LK_H_7€H)FO +£("—y"7§11) +v( H»Eu)l“‘)"
P ntl / N
+— u de—— ~vp dQ+ B up ', v,
Y] /th b k AL h (wy, wt,uy, h)ﬂt"w2

p 1/2
+D(vi,py g, " =/ﬂ f"+1/2'vhdﬂ—/ Py % dz

tnt1/2
V(v €y ) € Vir(t) NVo(t)

Dt g, =0 Van € Qn()
(Ph-FS)

and interface coupling condition (ICCh) and ALE mapping problem (Ph-ALE) as in Problem
471

Observe that, for this algorithm, relation (4.7.1) is still valid since we have not changed
the ALE mapping problem and the interface coupling condition between fluid and structure

velocity.
The structure discretisation requires the forcing term at time $"*'/2. In the coupled problem,
this term is obtained as the residual of the fluid equation by taking as a test function (v, §, ) =

(’R'h(gy)»gu)a ie.
< VR E S o /F P2 do < S Y, Ru(E,) >, and (4.8.2)

<Q(upth gt ), Ri6y) >
=/n fn+l/2'Rh(€H)dQ—' é/ "+1 ’R‘h(fﬂ)dg*' At/ uﬁ ',R’h(fw)dQ

nt+1/2 tntd

- B(w] n+1/2 Jutty ZH»Rh(fu))Q —D(Rh(fu),llﬁ“) (4.8.3)

an+l/2

Observe that the term in (4.8.3) can be seen as a first order approxnnatlon of the fluid stress
on the structure at time $"t1/2,

4.8.2 Stability analysis of the coupled algorithm

We are going now to study the stability of this coupled scheme. As in the Section 4.7.1, we
investigate first the stability of the structure discretisation while the main result is postponed
in Proposition 4.8.1.
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Lemma 4.8.1 For any given forcing term f € C°(0,T; (Vos(l“d’))l), the mid-point discreti-
sation (4.8.1) of the siructure equation is unconditionally stable and the following inequality

holds :
2
(TIH + r’H )

LY(IY)

At(l+Cp )Z

o iy Wiy + Mo 2 +

f*“/?” (4.8.4)

Lo 2 2
< B lwo lz2(rgy + molle + H-(rw)

Jor all n > 0.

Akl
Proof. We take in the second equation of (4.8.1) £, = Afu Bearing in mind the first

relation in (4.8.1), we have
. , 2
] 7];1’+l + nZ
0z 2

LArg)

, . 1 :
20 (i gy = 1 gy )+ (I I = I ) e

ccat| s (n7,+1 +r’,;;> 2 L AH1+G o) anﬂ“
2 (')z 2 1) 2 -
and thus
2
- . p . F;] 7‘]"+1 + f]"
B gy + Wt 2 4 cae | 2 <__2_
LYTY)
S qen |12 2 A1+ pr
< bu I raqeey + Il + ._C___ fn+1/2”H )

Finally, by summing over n we obtain the desired result.

The main result of this section is given in the following

Proposition 4.8.1 The solution of the coupled Problem {.8.1 with homogencous Dirichlet
boundary conditions and zero forcing terms (i.e. £t1/2 = ¢ gnd p:;tl/ =0 for alln > 0),
provided it exists, is uniformly bounded with respect to n and the following a-priori estimate

holds
(i)
2

LA(ry)

P “nZ-H “i?(l“};‘) + “"HH “S + 2(’At§:

+pllup*! H2Lz(n,,,+,)
=0

+ 26t Z ||Vx 1+1“L2(m " /2) > pw ”nunllm(]‘w) + ||77Ho||g +p ”“hD”Lz(Qo) (4 8. 5)
=0

for alln > 0.

Proof. We proceed as in the proof of Proposition 4.7.1, by taking as a test function (vs,€,,) =
(Atu""’I , 7t —n ), which is an admissible test function. Observe that (Atupt! gitlogny =
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sntly on
(Atupt!, Atzﬂ—;—”i). Thus, the fluid terms can be manipulated as in Proposition 4.7.1 while
the structure terms as in Lemma 4.8.1, and we obtain the inequality

. 2
D (i
oz 2

L3(Ty)

+pfup* ||L2(!'l:"+1)

B 5 gy + I+ 7 + 288
+ 28| Vet o, < ol g, + e + o MRl 0,

Finally, by summing over n we obtain inequality (4.8.5) and this concludes the proof.
|

Remark 4.8.1 The Newmark scheme applied to the scalar second order differential equation
y(t) = f(t:y(t)’ y(t))’ t>0, y(O) = Yo, y(O) = 1]0

reads

{ ynt = =y" + Atg" + A2 [ﬂf tn+1 n+l n+l) + (_ —ﬁ) fary ,yn)] (4856)

YT =gt 4 At [y f (0 gt (1 - ) F(, 17, 57)]

It can be shown (see e.g. [81]) that this scheme is second order accurate for v = 1/2 and first
order accurate for v #£ 1/2. A typical choice consists in taking f = 1/4 and v = 1/2. In this
case, if we subtract the second equation in ({.8.6) multiplied by At/2 to the first equation, we
obtain the relation

n-+1 At s n+1

At
—_— — -
y 2y =Y +“—21/

and the Newmark scheme can be rewritten in the more familiar form

n+1 y —yn+1 +yn

At 2 (4.8.7)
yn+1 =" + % [f(tn+l’yn+l’yn+l) +f(t",y",])")] .

This last formulation, applied to the structure equation gives the following scheme

77"+1 — 7’ 1"n+1 + ,,',n w
(- = 7§u)I‘n = (& 9 = ’gn)FK, V¢, € VS(F ﬂVO (rs)
nn+l — n+l 7" a1 +
Pl ) + 8 ) e TP (489)
fn+1 fn w
=< >, V€, € V] (TY) NVF(TY)

which is basically the same as (4.8.1) apart from the forcing term in the second equation that,
here, is computed as < !5———5- €y > while in (4.8.1) is given by < f"“/?,f,, >. Scheme
(4.8.6) is widely used in stmctural analysis and fluid structure interaction problems. Yet, the
choice of (4.8.1) instead of (4.8.8) in the coupled Problem {.8.1 allows to obtain the stability

result presented in Proposition 4.8.1, while no similar results can be obtained with (4.8.8).
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4.8.3 Coupling with a Crank-Nicolson discretisation for the fluid equations

We present, now, the coupled algorithm obtained by taking the mid-point scheme for the
structure and the Crank-Nicolson discretisation (3.5.6), proposed in Chapter 3, for the fluid.
The ALE mapping is constructed as in Problems 4.7.1 and 4.8.1. Finally, the interface
coupling condition between the fluid and the structure velocity is taken as

uttody, = Hh itle,
Then, the coupled problem reads

Problem 4.8.2 (Mid-point/Crank-Nicolson) Given the initial solution upg, 23, 7,
and 7, find ulT € VE(), pit' € Qu(), int! € VI(TE), and M € VI(TY), with
boundary crmdztwns as in Problem 4.8.1, that safisfy, for alln > 0,

n+l _

7 T)” .r'n+l +nn
(At Ay = (550 Ve, € VT NV (TY)
Gl — g g gn i +Tl
p1‘}(,”__i7£”)l0 +£(L_‘—H7£ )'n +V( R )fu)l‘{;’
[ 1
+B/nt N ulth. v, d0 - —A—t—/ uj v, dQ
'dup ol g pp
B(w™/2, upt h h D h
+ ( 2 ’ 9 Vh)ﬂt,__“/, + (vhv 5 )nt,,“/,
:/n £rt1/2 Ly, do —/r i, dz V(vh,Ey) € Vi i (t) N Vo(t)
t"
n+1 + J’:/z ¢
D(-*Q—,QIL)QL W= 0 Vg, € Qu(fh),
Y a41{2
(Ph-FS)
interface coupling condition
u;,l+1 ° Ah a1 — I-[h, nTH-leT, on Fg’ (ICCh)

and ALE mapping problem (Ph-ALE) ns in Problem 4.7.1.

Observe that both the fluid and the structure scheres can be seen as an approximation of the
corresponding differential equations at #*11/2. Consequently, the global coupled algorithm,
as well, is an approximation of the coupled problem at time t"+1/2 and the two subproblems
arc perfectly compatible (there is not any temporal mismatch discretisation between fluid and
structure).

Besides, with the chosen coupling conditions, we have that

n+l n+t

o Ant,,, tufo At HH nn+l + 1 -’ My~ Ty
2 2 R A

uy,

=wp 0 Ap, t € (tnytnr1]

an !
which implies that also on 'y PR have w:'H/ 2 —“—ﬁh Thus, the kinetic energy flux
across the interface

2
+1 n+1
" +up _ w"+1/2 u,+ up
o 2 h
tnti/2

3 dr
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n+1 n n41 n 1 n
obtained from the integration by parts of the term B(w?1/2 2" Fui U~ Fuj " tu
h ] T T T,

is identically zero and this contributes to the stability of the coupled scheme. Moreover, by

taking as a test function (v3,£,) = (Atﬂf—;ﬂ,Atﬂ’:‘gﬂ-”-), which is an admissible test
function, the most of the fluid and structure terms can be estimated as in Lemmas 4.8.1
(for the structure) and 3.5.2 (for the fluid). However, as pointed out in Lemma 3.5.2, the
Crank-Nicolson scheme (3.5.6) is not unconditionally stable and we were not able to obtain,
for this coupled algorithm, an result analogous to the one stated in Proposition 4.7.1 or 4.8.1.

4.9 Substructuring iterations

All the coupling algorithms presented until now are fully implicit. As already mentioned
in Section 4.6, they should be solved at each time step by an iterative method. We detail
here the Block Gauss-Seidel strategy applied to Problem 4.8.1 since it is indeed the one
actually employed in the numerical simulations presented in Section 4.11. Furthermore, we
will consider Problem 4.8.1 with Neumann boundary conditions instead of the Dirichlet ones,
since it is more interesting for our application. The generalisation of this strategy to the other
two implicit coupled Problems 4.7.1 and 4.8.2 is straightforward.

Given the solution u}, p}, 0} and 77, of Problem 4.8.1 at time step t,,, we denote with u"+l ok

PPt WZH * and i +1¥ the solutions obtained at the k—th subiteration at time step 1.
With .A“ we will indicate the ALE mapping computed at the k—th subiteration. Keeping in
mind the decomposition into two sub-problems of the coupled problem, the block Gauss-Seidel

iterative method reads as follows :

n+1,0 on+1,0

compute a suitable extrapolation 77
instance by teking

and 7} of the structure displacement at t,,, for

"Z+l’0 =1y + At n”;“ O —gn (4.9.1)

I’
then, for k=1,2,...

1. compute the ALE mapping Aﬁ,t in [y, tn1] by

Pa (.A,’:,tﬂﬂ,zh) =0 Vzp € Vf(ﬂo), z;, = 0 on 89,
Ak doy = Y F an,"i“”“‘e, on ¥, Aﬁ,t“l =g, ondQ\TY, (4.9.2)

tnt1 —
'A A 'Ah i + n+ Ah tny te [tnytn-H]-
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2. compute the fluid solution uﬁ“’k and pz*'l’k by solving the fluid sub-problem

P n+lk P n n+1/2k  x  n+lk

-— u dQ ~ — up v, dQ4+ B u;,u

Al /Qtnﬂ " v A / bt Vh (wy , Up, Uy ,Vh)Qtw”2

+D(vi,pp ) / 172 Ly, dO + Z/ 22y dD
"“/2 Q’n+x/z i=1,2

V(vi,€y) € Viih (1)

1,k
D™ ag, =0 Van € Qu()
" nn—H k=1 nn
n+l k ° Ah ot = H i 7 He,, on Fg}
(4.9.3)
8. compute the structure solution n”“ o qn'H * by solving the structure sub-problem
. ~n+1.k .
,qn+l & _ "l ) 4+ nn
(“u—_"afn)l"’ = (_"___lL)EH)I‘;')" VEH € VHS(ng)
stk : n+l k
oy -7y +ny
Pm(”—A_’L’én)l w + g(_—__H'7§H)
n+l,k .n — n+1 k tn+Llk ‘n
My + Ty Puw + 7 Ma ~ Ny
M Ladrs + a 2 te At Lu 2=0,I,
+1/2 1k
-~/ Z,t Pg, dot < BuIMF R, RA(E, ) > Ve, € VS(TY)
[]
(4.9.4)

where the forcing term < ®(uj, ptbk n+l *y, Ru(€,) > is defined as in (4.8.3)

4. relaz the structure displacement and velocity by

{nn,-u k wﬁ?’:i: +(1- w)an»l k=t (495)
1, — Tn i
nz+ k — wn,, + (1 ) an+1,k—~ l
. go back to 1. and iterate until convergence of ntk, ALk, u:“’k and p"+1 o
The fluid equations in step 2. of the algorithm can be taken fully implicit if v} = u;l'“’k or
they can be linearised with uj = w1 In both cases, once convergence is reached, the
h h B

final solution uf*!, pit!, pit! and g7+t satisﬁes the coupled Problem 4.8.1. Observe that,
if we linearise (4.9.3) with u; = u} as suggested in Chapter 3, we do not recover the solution
of the coupled Problem 4.8.1 and thus the stability result of the Proposition 4.8.1.

This iterative strategy is very costly since at each sub-iteration the matrices corresponding
to the fluid discretisation (4.9.3) have to be recomputed on the new configuration and for the
new convective term w,':+l/ 2% and u} if taken equal to u"“ k-1

For the start up of the algorithm we can consider other extrapolatlons than the one proposed

in (4.9.1). We have verified numerically that the following strategy
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e take 7710 and 7"+ as the solution of the structural equation with forcing term
< ®(u},ph), Ru(,) > e

7]"+1 0 7’ +1 it + 7’
(L’—g"gn)f‘b” = (_—Jlgn)rb" Vgn € V:( By)
nz—HD_nH +10+T’H

- U
pw(_T_vgu)Fu + g(—'—Z—'—lgll)l‘b“

+W"H+lo+nh‘ § ) \/7)_17 ,,,H+l()+nH te 712440 r'ln 5
'SH Fo a 2 At H

z=0,L
= [ B e e < Bl aR), Ra(En) > ve, € Virg)
\ 0
(4.9.6)

provide a much better initial guess than (4.9.1) and allows to reduce by about a factor two
the number of sub-iterations.

4.10 A “semi-implicit” coupled algorithm

The last coupled algorithm that we present is obtained by taking a Leap-Frog discretisation
for the structure and an Implicit Euler (or a Crank-Nicolson) discretisation for the fluid. The
Leap-Frog scheme, applied to the structural equation with a given forcing term f;‘ at cach
time step ¢, reads

_ "n-H _271 +1]n 1 n+1 __nn 1
P2 Atz 7§H)l‘n +57’Hs§u)l‘o +W = WEdry =< fs’gll )

vs,,eV,f Y NVErY), w21

7)2 = Nhos 7’}; =Ty + Aty
(4.10.1)

Scheme (4.10.1) is explicit and second order accurate. The stability condition associated to
this discretisation will be derived in Lemma 4.10.1. If we consider an implicit discretisation
for the fluid equation with interface coupling condition as in Problems 4.7.1 or 4.8.1, i.c.

" 7/ _ 7]” H

uj o Ay lnl]‘w =11, '_H'—Eﬂ_ery (4.10.2)
we obtain a staggered algorithm. Indeed, given the structure displacement 7} at time step
tn, we compute first the fluid solution uj;, p! at time step ¢, with coupling condition (4.10.2),
then we advance in time and we compute the new structure solution 7);‘,“ at t,q1 (see also
fig. 4.6). Unfortunately, as already mentioned in Section 4.6, such a staggered algorithm is
unstable when applied to our fluid-structure interaction problem with realistic physiological
parameters. A possible remedy consists in making the coupling condition (4.10.2) implicit by
taking

- T,Z+l _ 7,:—1

Ter. (4103)

uj; oAhtn‘r\w =11,

We thus obtain the coupled algorithm
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Problem 4.10.1 (Leap-Frog/Implicit Euler) Given the initial solution upg, n,,, and 1,
set

My = Mo + Aty
and find u? € VI(Q), p} € Qu(Q) and g e VI(TY) with

up =87 onS;,i=12 and
it =aft et z=0, =t atz=1,
such that
Pa{Ang,,zn) =0 Yz, € VE($), 21 =0 on 88,
Ant =Y +Tynle, onl¥,  An, =8 ond%\I§, (Ph-ALE)
t—t,— t, —t
-Ah,t = Ail l-Ah,ll,. + nAf Ah,tn_w te [tn—l,tn]
and
B T[n+l _ 27]“ +nn—l nn-H — nn—l
Pw(—"‘—ﬁ‘*n—yfu)r;; + &,y e + V(‘"T“L,f,,)r;;
p P — —-1/2 _ «
+KE /(;l" uz sV a9 — E /{;t"_l uZ 1. Vi ds? +B(W;: / ’uh,uZ’Vh)Qt,._l/z
Dl = [ v [ g, de
tn—1/2 n‘n—|/2 an
Y(vh,€y) € Vi, (t) N'Vi(t)
D(uy, qn) =0 Ygn € Qn(€h)
12
n-1/2
{Ph-FS)
n+l _ ,on—1
ul o Ay, =TIy ﬂTfn”—-—e“ onT¥ (ICCh)

foralln > 1.

In the first cquation of {Ph-FS) we have let the possibility to lincarise the fluid terms with
an extrapolated velocity uj .

Observe that, once the structure displacement 57 at time step t" is available, the ALE
mapping problem (Ph-ALE) can be solved, providing the ALE mapping Ay, in the time
interval [t,-1,,]. Hence, at each time step, the computation of the ALE mapping is decoupled
from that of uf, p} and 7’2+1~ This implies that, once computed the mapping Ay, the fluid
domain configuration is no more an unknown in the sub-problem (Ph-FS). For this reason
we have addressed to Problem 4.10.1 as a “semi-implicit” algorithm, since we treat explicitly
the geometry and implicitly the interface velocity.

Moreover, if we linearise the fluid terms with a suitable velocity uj, system (Ph-FS) turns
out to be linear. It can be solved, for instance, by Block Gauss-Seidel subiterations of the



140 CHAPTER 4. THE FLUID-STRUCTURE INTERACTION PROBLEM

type shown in Section 4.9 with the great advantage that, at each subiteration, the fluid sub-
problem is solved on the same domain, thus avoiding the recomputation of all fluid matrices.
Moreover, we can apply in this case all the techniques to accelerate convergence that are well
suited for linear problems.

In the case where the linearised velocity uj, is taken in such a way that

n—1

0 -7
wo=w, onIP, e ujodn = A i (4.10.4)

we can prove, (see Proposition 4.10.1) a conditional stability result, for this coupled scheme,
similar to that holding for the implicit Problems 4.7.1 and 4.8.1, with a stability condition
governed only by the structure solver. In other terms, the fluid-structure coupling proposed
in Problem 4.10.1 does not engender a further condition on the time step.

This scheme is very attractive since it is linear and (conditionally) stable. Its investigation is
in progress. We will not present in this work any numerical result.

Remark 4.10.1 A linearised velocity uj, that satisfies condition (4.10.4) can be obtained, for
instance, by solving a supplementary fluid-problem with (4.10.4) as boundary condition; i.c.
we take uj, that satisfies

p . 14 —1 n—1/2 _p-1 _»

A vpd - L nl.y. 0+ B ,

AL /Q:n up - vpd s /ﬂt,.A, up v dQ 4 Blwy, T e vh)ﬂt,,_.,,

D), = /Q 172 v, d0 (V&) € VIR (1) N Vo(t)

n—1/2 ta_1/2

D(uj, an)g, - 0 Yan € Q) N Qo(<2)

n-1/2

n _ on—1

ui oA, =117 ﬂ'A—;’"—e,, on T

(4.10.5)
and uy = B} on S; as for the velocity uj,.

Remark 4.10.2 We will derive in Lemma 4.10.1 the stability condition for the Leap-Frog
discretisation (4.10.1). In hemodynamics applications, this condition might be too restrictive,
since the elasticity coefficient b of the arterial wall is much larger than the wall mass py. In
physiological applications the condition on the time step is normally of the order of At ~ 10~
but it may be much more restrictive whenever we want to simulate the presence in arteries of
stents or prostheses which may have a high Young modulus (see e.g. [31]).

In these cases, an implicit solver should be preferred for the structure as, for instance, the
mid-point one. Following the same philosophy which led us to build Problern 4.10.1, we can
easily obtain a “semi-implicit” version of coupled Problem 4.8.1 (which employs an implicit
structure solver) by taking a suitable extrapolation 'F/Z*’1 of the structure displacement r]:“ at
time step t**t\. Then we solve the fluid equations on the configuration identified by 1’]’,’,+1 and
with a linearised velocity uj, computed as in (4.10.5) while keeping implicit coupling conditions
between fluid and structure velocity at the interface.
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4.10.1 Stability analysis of the coupled algorithm

We present, now, the results concerning the stability of coupled Problem 4.10.1. We first
prove the following

Lemma 4.10.1 For any given forcing term f; € C°(0,T; (V¥ (T% )) ), the Leap-Frog discreti-
sation (4.10.1) of the structure equation is stable under the condition

[ 2%
At < ZEH—_'ZJB (4.10.6)

where C is the constant of the inverse inequality ”@1”1,3, < CH 2|jn,,|lrw. Moreover, the
following a-priori estimate holds

2
_ AtHaCH 2+ B\ {|Mt -} 1 12 2
(-5 ) b o a [l 2+ 2]
L2(ry)
2
g (it~ - . 1 s 1, .
+ (,Atz az ( H AT H_ < By ”7]”,;. Ifi,?(rbu) -+ 5 "71”0”2 -+ 5 ”Atnm)”g
LATY)
1 .2 At(l + pr
+ 5 ”nuu + Atnﬁolls Z ”fn“H 1(1’“" 4 10.7)
foralln > 1.
Proof. We take in (4.10.1) £, = 7+ — 77 Then,
1
("ZH _ 2"11 + 7" n+| 1) "
At? My nn re
(! —mp) = (m —m™h) _
( H HAtZ H H , nn+l 7],,)+(7IH _TIZ 1))1“0”
2 2
| My =T
LATY) LAy
2
T'n+1 nn 1 + - ] T,n+l ”n—l
. 1/(~—"—"’~—,r]2 =0y = 2cAt P _”_ZKtH_
L2(I‘37)
2
o [t —pn! At(1 + Cry) )
+1 _ i
o <SG =My > S et 5( v o nf:nn—l(r;,u)
LATY)
Putting together these estimates we obtain
2 2
~ T]"+I — ,]n ) 77n+1 - nn~l
Pu = At = +5(777,1,,777,+1)rg +0At E - 2Atﬂ_
LXry) L¥TY¥)
2
o N gt At(1+pr
< Pw = At" 5(71,,"17, l)rb" + “fn”H Lre) -
LZ(I—W:)
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Since the form £(-,-)ry is symmetric, by summing over n = 1,2,... we have

2 2
,,]n:-H nm :n+l _ T]" 1
N i Y U AR i oy g
L2(ry) L2(rw)
At(1+ Crw
O .
< Pw ”71H0”L7(I‘0'”) + &My + Bbiyg, Myo oy + ————— Z ”fn”H-l(r‘uJ) (4.10.8)

n+1

The elastic term E(n};, 77" )1y can be manipulated as

S(T,H’nll+l)r0 - 8(7’H7”Z+1 - "Z)rx + “7’2 “52,‘ [”"I +l“£ + ||T]H ”E - ||’/Z+l - 7111 “ ]
. 1 . .
© &y + Do, o)y < 5 [uollf + 18810l + 7m0 + At 12]

and (4.10.8) becomes

n+1 - 7711 1 +1 n+1
= k{3
w 5 ”T’H ”5 + ”ntl ”E ”71 - "’H ”s
At 2
L2(ry)
2
nn+l - 7'n 1 R ) 2 1 9 1 .
<—"—t—”— < bw “"no”L?(I‘g') + '2_ ”T/nollz + 5 ”At”lw”g
L2(Ty)
1 . (1 + pr
+ § “nﬂo + At"uo“i —_— Z "fn"n ry) (4 10. 9)
Finally, by applying the inverse inequality we have
2
1 2 _ 1 +1 2
= =l =~ w ) L) = bt “L"’(l"},")
[

1 2
> —AR(CH? 4 by || T

LXTy)

and the final inequality (4.10.7) is thus obtained.
]
We present now, the main result on the stability of Problem 4.10.1

Proposition 4.10.1 Let us consider a linearised velocity uj, in the first equation of (Ph-
FS), in Problem 4.10.1, that satisfies condition (4.10.4). Then, the solution of the coupled
Problem {.10.1 with homogeneous Dirichlet boundary conditions and zero forcing terms (i.e.
fr-1/2 = 0 gnd Port = 0 for all n > 1) is uniformly bounded with respect to n, under the
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stability condition (4.10.6), and the following a-priori estimate holds

n;l;l-l
At

n+l _ 2
+2cAt2n (’ i )
i=

L2(ry)

2
n
M

(ﬁw N At?(aCH s b))

w5 [+ s 2]

L2(ry)

_172)

n
+p0RlIZ 0, + 2008 Y [ Vauih T 0,
i=1

- AR | .
< Puw ”"71;(;”2[),2(1"(';1) + 3 ”nuollg + 3 ”Atnno”é + 5 ”77110 + At"no"g + P”Uho

Talg) (410.10)

foralln > 1.

Proof. We take as a test function in the first equation of (Ph-FS) (v4,€,,) = (2Atu}, 97! -
772_1). Observe that, thanks to the interface coupling condition (ICCh), this is an admissible
test function. Since we are considering a lincarisation velocity uj, that satisfies (4.10.4),

relation {4.6.5) is still applicable to the term B{w, e 1/2, u;, uh,v;,)Q . Manipulating the

n 1/2
other fluid terms as in the proof of Proposition 4.7.1 and the structure terms as in Lemma

4.10.1, we obtain the inequality
2
+1 _ -1
a (ny" -y
Bz 2A¢

L2(ry)

p)
1
_ et -
Pw ™5

A7 +£(7’”,7]H+1)['"' + 2¢At

+olluil? .,

L2(]—\8;)

2
n o gn—1
e~

2 -
+ 2kAt ||quz||L2(Qtn~‘/2) < Pw At

_ 1112
+5("127’72 l)r'o" +p||u7l: ]”LQ(ntn——!)

L2(ry)
’ (4.10.11)

Then, by summing over n (n = 1,2,...) and applying the inverse inequality as in Lemma
4.10.1, we obtain inequality (4.10.10).
|

4.11 Numerical results

We have considered the Neumann fluid-structure Problem 4.2.1 with zero forcing terms f and
Pezt. The initial domain is a 2D rectangle of height D = 1¢m and length L = 6 cm whose
upper and the lower edges are deformable in the vertical direction as shown in the picture on
the right of figure 4.2. The fluid and the structure are initially at rest and Neumann boundary
conditions have been imposed on the inflow and outflow sections; namely :

P, wt
T n=o0o _—T [l—me (2.5ms)]n on Sp,

T~n=a'2:0 0n82

We have uscd the following parameters:

o Fluid : viscosity u = 0.035 poise, density p = 1gr/cm3.
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e Structure : density p, = 1.1gr/cm?, thickness h = 0.1¢m, Young modulus E =
0.75 - 108 dyne/em? and Poisson coefficient v = 0.5.

Thus, the coeflicients appearing in the structure equation (4.1.9) are : g, = 0.11 gr fem?
and b = 4-10° dyne/cm®. The other two coefficients have been taken as a = 2.5-10% dyne
and ¢ = 10~2 dyne - sec.

This simulation would represent the propagation, in a straight artery of length L, of a pressure
pulse coming from the heart and traveling towards the peripheral vessels. The parameters
chosen for the fluid and structure models have been taken in the physiological range for
a human body. The amplitude P, of the pressure puise has been taken equal to P, =
2 - 10% dynes/em? (= 15mmHg) which is about 1/8 of the rcal amplitude in a cardiac beat.
On the contrary the time duration of the pulse (7" = 5ms) is much smaller than the one of
a cardiac beat (systolic phase: about 0.3 sec). The input profile o - n is shown in figure 4.8.
This choice has been made to amplify the propagative phenomena engendered by the fluid-

% 10* pressure input profile

T T

3

25

-1 " " " _

[+] 25 5 75 10
time in ms

Figure 4.8: Input profile of the inflow Neumann boundary condition & - n.

structure coupling and it allows to highlight many interesting aspects both in the modelling
and in the numerical approximation of the coupled problem.

We have considered a conforming space discretisation between fluid and structure, consisting
of (PyisoPs) — P, finite elements for the fluid and Py finite elements for the structure.

First test case. We have investigated first the stability/instability of some coupled algo-
rithms. In particular, we have considered an explicit staggered coupled algorithm obtained
by employing a Leap-Frog discretisation for the structure equation, an Implicit Euler for the
fluid and the explicit interface coupling condition (4.10.2). This algorithmn revealed to be
unstable for the chosen set of parameters regardless of the time step employed (provided the
stability condition (4.10.6) for the explicit structure discretisation is satisfied) . We have ver-
ified that the stability condition depends substantially on the ratio between the structure and
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Table 4.1: Stability /Instability of the explicit coupled algorithm for different choices of gy, /p
and L/D. Here we have taken p=1and D =1

L=2 L=¢6 L=10
Puw =50 | stable stable stable
Pw =10 stable stable | unstab.
Puw =95 stable unstab. | unstab.
fpw=1 stable | unstab. | unstab.
pPw = 0.5 | unstab. | unstab. | unstab.
pw = 0.1 | unstab. | unstab. | unstab.

fluid densities j,,/p and on the aspect ratio of the tube L/D but it seems almost independent,
of all the other parameter and (surprisingly) on Af. Table 4.1 summarizes these results.

We have considered then the implicit Mid-point/Implicit Euler coupled algorithm presented in
Problem 4.8.1 (in the following indicated briefly with MP/IE). We have solved the non-lincar
system arising at each time step by the iterative algorithm proposed in Section 4.9. We have
verified that in those cases where the explicit Leap-Frog/Implicit Euler algorithm is unstable,
a relaxation parameter w strictly less then 1 is needed for the substructuring iterations to
converge. The parameter w can be taken in this case as an index of the “stiffness” of the
fluid /structure coupling.

Table 4.2 shows the highest value of w under which we have convergence of the substructuring
iterations, as a function of the wall mass j,, = ph and the length L of the tube. Again this
value seems independent of the elastic constants of the structural model and of At.

Table 4.2: Values of w which guarantee convergence of the implicit MP/IE algorithm.

L=2 L=6 L =10
P =50 w<l w<l w<l
Puw =10 w<l1 w<l w<0.9
Py =25 w<l w<l w < 0.8
Puw =1 w<1 w<04 | w<0O0.1
Py =051 w<09| w<0.2 |w<0.09
pw=01]w<0.4]|w<0.05]w<0.01

Finally, we have tested the Mid-Point/Crank-Nicolson algorithm presented in Problem 4.8.2
(in the following indicated briefly with MP/CN). In this case the relaxation parameter should
be chosen a little smaller than the one needed for the MP/IE algorithm.

Second test case. We have solved the problem with the two algorithms MP/IE and MP/CN
on the structured mesh of 11 x 31 P; fluid nodes (1281 PyisoPs nodes) shown in fig. 4.9 and
with a time step At = 1074, In both cases we have solved the non-linear system arising
at cach time step through the fluid/structure substructuring algorithm presented in Section
4.9 with a first extrapolation of the structure displacement and velocity as in (4.9.6). The
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Figure 4.9: Structured mesh employed

stopping criterion adopted is

“nn,k+1 _ nn,k”Lm ” nk+1l f]"‘k||Lw B
ax{ N n,k+1 - ’ “ 27, k+1 - <10 47 n=12... (4-11~1)
|k e (75 Iz

Moreover, for the MP/IE algorithm we have solver the Navier-Stokes equations at cach time
step with the Yosida projection scheme while for the MP/CN one we have employed three
Richardson iterations preconditioned with the Yosida inexact factorisation as detailed in
Chapter 3.

The results obtained with the MP/CN algorithm are reported in figures 4.10 and 4.11. In
particular, figure 4.10 shows the fluid pressure together with the tube deformation every
2mms. Observe that the structure displacement is not negligible (it has not been magnified
in the figure!). Figure 4.11, instead, shows the axial fluid velocity inside the tube. The
propagation of the pressure pulse inside the tube is evident. Associated to the pressure pulse
we can observe also a wave of deformation of the vessel wall and a wave of flow rate. Quite
surprisingly, even if the fluid model consists of incompressible Navier-Stokes equations, the
coupled fluid/structure model behave like a propagative system. This is duc to the compliance
of the vessel wall. We will address again this phenomenon when discussing a reduced 1D model
for fluid flows in compliant vessels (see Chapter 5).

To better highlight the propagative phenomena and the performances of the numerical schemes
in capturing the wave velocity and shape, we have computed averaged quantities on each ver-
tical line §; of the mesh, corresponding to the position z; = ¢h, i =0,... ,30 and h = 0.2¢m,
on the axis (see fig. 4.9). In particular, we have computed the diameter of the tube, the
averaged pressure and the flux at each time step :

1
) =meas(S]), ) =g [ Q= [whed

i i

Figures 4.12 and 4.13 show these three quantities at different instants. We have compared
the solutions computed by the two algorithms with a solution obtained on the same mesh
with a mush smaller time step (At = 1076).

It is clear from these plots that a propagating pulse is associated to all these three quantities.
Moreover, the solution obtained with the MP/CN algorithm with At = 10~ is not distin-
guishable from that computed with a much smaller time step. On the contrary, the MP/IE
algorithm turns out to be quite dissipative.

Figure 4.14 shows the number of substructuring iterations needed by the two coupled algo-
rithms at each time step to satisfy the stopping criterion (4.11.1). As it can be scen in the
figure, the number of subiterations is dramatically high. We remind that we have not inves-
tigated any accelerating technique for the substructuring iterations; yet, this aspect becomes



411, NUMERICAL RESULTS "7

t=6ma
t=8mas

t= 10ms

L e ESSSS
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Figure 4.12: Averaged pressure (on the top) and flow rate (on the bottom) at different time
instants; comparison between the solutions computed by the MP/IE (blue/solid line) and the
MP/CN (red/dashed) algorithms with a time step At = 107 and a solution obtained with a
much smaller At (green/dash-dotted). The red and the green lines are almost indistinguish-

able.
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with a time step At = 107 and a solution obtained with a much smaller At (green/dash-
dotted). The red and the green lines are almost indistinguishable.
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Figure 4.14: Number of substructuring iterations needed at each time step to satisfy criterion
(4.11.1).
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mandatory to make these algorithms employable for real applications. The start up of the
simulation seems to be very critical and demands for a high number of subiterations. The
second peak in the number of subiterations, at about ¢ = 4ms, corresponds to the instant
of the steepest dccrease of the pressure pulse at the inflow. Yet, even once the pulse has
completely entered the tube, the number of subiterations is not negligible : about 28 for the
MP/IE algorithm and 40 for the MP/CN one.

Finally, to highlight the influence of the spatial discretisation on the numerical solution,
we have computed the solution on a finer mesh; precisely we have used a structured mesh
of 21 x 61 Py fluid nodes (4961 PiisoP; nodes). Figure 4.15 shows the averaged pressure
obtained with the MP/CN algorithm on the coarse and fine mesh and with a very small
time step of At = 107%. The behaviour of solution is essentially the same in both case. The

Averaged Pressure

time = 1ms

time = 3ms
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o 2tlme = 5ms4 € ° 2t|me = 7ms4 6
15000 15000
10000 10000
5000 5000
o 0 o]
° ime = ome’ 6 o Fme =11mé 6
15000 .’ 15000 p
10000 10000 d
5000 5000
O o
o 2 4 6 o 2 4 6

Figure 4.15: Averaged pressure : comparison between the solntion computed on the coarse
mesh of 11 x 31 Py nodes (blue/solid line) and the one computed on the finer mesh of 21 x 61
P, nodes (red/dashed line). In both cases the time step used is At = 1076,

solution computed on the fine grid seems to be slightly faster than the one computed on the
coarse grid.

Third test case. We aim at verifying the time accuracy of the two algorithms MP/IE
and MP/CN. To do that, we have taken a sequence of decreasing time steps : At = 2-
104,107%,5-1075,2.5-10~% and we have solved the problem on the mesh of figure 4.9 and for
the aforementioned time steps. Moreover we have taken a tolerance of 1078 in the stopping
criterion (4.11.1). We have then compared the solutions computed by the two algorithms
MP/IE and MP/CN at the different time steps, with those obtained using the same two
algorithms on the same mesh, but with a time step Af = 1076, We will address to these last
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solutions as the “exact” solutions. No remarkable difference has been observed in taking as
“exact” solution the one computed with the MP/IE algorithm rather then the MP/CN one.
Figure 4.16 shows the error on the fluid velocity field at the end of the simulation (i.e. for
t = 12ms), evaluated in the L? norm. Figure 4.17, on the other hand, shows the errors on

veloclty error at

- (Ot

n
n

iy

Figure 4.16: Error on the fluid velocity field in the L2 norm at ¢ = 12wms: difference be-
tween the solutions computed by algorithms MP/IE and MP/CN and the “exact” solution
computed with At =106,

the displacement 7, and the velocity 7, of the structure, always at time ¢ = 12ms. The
error on the structure displacement has been computed in the norm |-||; while the error
on the velocity in the L? norm. As it was expected, we recover a quadratic convergence

omor on the structure displacement at =12 ms

the structure

e, - 4, (7 I
1) = Vo (F) lhe

I
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woil—
=
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Figure 4.17: Error at time t = 12ms on the structure displacement in norm ||-||; (on the left)
and on the structure velocity in norm L2

for the MP/CN algorithm while algorithm MP/IE converges linearly. Morcover, at a given
time step, the MP/CN scheme is much more accurate than MP/IE. Clearly, it requires more
subiterations to converge and thus demands for a larger CPU time. Since the number of
subiterations slightly decreases by decreasing the time step Af, we may wonder whether it is
better, from the point of view of CPU time, to employ the second order algorithm MP/CN
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Figure 4.18: Function N(t): number of times the fluid equations are solved until time ¢.
For cach of the two algorithms (blue/solid or red/dashed lines) from the bottom to the top:
simulations at At =2.1074,1074,5-107%,2.5 . 1075.

with a larger time step or the first order algorithm MP/IE with a smaller time step to achieve
the same accuracy level. For each simulation which has been used in the convergence analysis
of figures 4.16 and 4.17, we have computed the total number of times the fluid equations are
solved until time # is reached. Let us call this quantity N{¢). Since the computational cost to
solve the structure problem is negligible with respect to that of the fluid, this quantity provides
a quite accurate estimate of the computational cost of each simulation. Figure 4.18 shows
the quantity N(t) associated to each simulation which has been used for the convergence test
(i.e. 4 simulations for algorithm MP/IE and as many for MP/CN) We may observe that
a simulation with algorithm MP/CN at time step At = 2 - 10~* is more expensive than a
simulation with MP/IE at At = 10~ and cheaper than the one at At = 5-107%. On the
other hand, the solution obtained with algorithm MP/CN at At = 2-107% is still slightly
more accurate than that obtained with MP/IE at At =5 -1075. Hence, at the moment, we
can conclude that the MP/CN solver is a little more efficient than the MP/IE one. Clearly,
these considerations might change greatly if a good accelerating technique will be devised.

Fourth test case. We have carried out again the simulation presented in the second test
case on a longer time interval; precisely until ¢ = 24 ms. Figure 4.19 shows the pressure and
the tube deformation at different instants between ¢t = 12ms and ¢t = 24 ms.

It is evident that the pressure pulse is reflected on the outflow section because of the homoge-
neous Neumann boundary conditions imposed. This poses another problem of how to devise
suitable boundary conditions capable of absorbing the outgoing waves. This problem will be
tackled in next chapter where the coupling between a fluid-structure model and a reduced
monodimensional model of fluid flows in a distensible tube is investigated. We propose to use
the reduced model as a far field condition for the 2D or 3D fluid-structure problem and we
will show the effectiveness of such a technique.
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Chapter 5

Boundary treatment through the
coupling with reduced models

One of the peculiar features of the fluid-structure problem considered in the previous chapter,
is the appearance of traveling pressure waves along the vessel, as it has been focused in the
numerical simulations of Scction 4.11.

In this chapter we tackle the problem of devising suitable “absorbing” boundary conditions
by coupling the 2D/3D fluid-structure model with a reduced one-dimensional model, which
acts as an “absorbing” device for the waves exiting the computational domain. This reduced
model is obtained by integrating the fluid equations over each section normal to the axis of
the vessel and describes the coupled system in terms of transversally averaged flow rate and
pressure.

We will first, present in Section 5.1 the 1D model for a fluid flow inside a straight compliant
vessel. Under suitable approximations, we derive a hyperbolic system of equations with source
term. A proper set of boundary conditions is derived by means of standard characteristics
analysis. Then the stability of the system is analysed for the sub-critical case, which is the
most relevant for our target applications. A bound on the energy of the system is found
in terms of the initial and boundary data, stating the stability of the 1D model. Finally,
in scction 5.1.4, we detail the adopted numerical discretisation based on a finite element
Lax-Wendroff scheme.

Next, in section 5.2, we present several strategies for coupling the two models and possible
related algorithms based on sub-domain iterations. A brief account of the possibility to impose
averaged quantities, such as the mean pressure of the flux, as boundary conditions for the
Navier-Stokes equations is given in Section 5.2.2. For a more detailed presentation we refer to
the work by L. Formaggia, J.F. Gerbeau, F. Nobile and A. Quarteroni Numerical treatment
of defective boundary conditions for the Navier-Stokes equations [28].

Finally, numerical resnlts are provided for the 2D-1D models coupling. We compare the
solution behaviour when a homogeneous Neumann boundary condition on the velocity is
prescribed at the outlet with the solution obtained by the coupling. The latter shows a
greatly reduced level of spurious reflections. A quantitative analysis on the error is also
provided by comparing the results with those obtained on a vessel of double length.

The ideas presented in this chapter have already been published in a paper by L. Formaggia,
J-F. Gerbeau, F. Nobile and A. Quarteroni On the Coupling of 8D and 1D Navier-Stokes
equations for Flow Problems in Compliant Vessels [29].

155
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5.1 The 1D model

We refer, in this section, to the situation depicted in figure 4.1 of Chapter 4, which we re-
produce hereafter for the sake of clarity. In the case where the boundary I'}{’ of the reference

Figure 5.1: A straight deformable pipe.

configuration € is a cylinder of radius Ry, a simplified 1D model can be obtained by integrat-
ing, at each time ¢ > 0, the Navier-Stokes equations (4.1.1) over each section S(t,z) normal
to the axis z of the cylinder. In the sequel, A(t, z) denotes the area of 8(t,2) and u,(t, z) the
axial velocity, while Q(t,2) and B(t, z) are the flow rate (or flux) and the mean pressure in
every section, given by

_ 1
o= [ wttain st =g [ peade
S(t,z) S(t,2)

Finally % = /A denotes the mean axial velocity.
The 1D model which is obtained reads

94, .9 _,

ot 0z (5.1.1)
09, 0 (&), AP . Q_ B
8t+6z(aA)+p6z+KRA_0'

Its derivation may be found in [75] (see also [32])
The constant Kp is a resistance parameter which accounts for fluid viscosity, while «, some-
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times indicated Coriolis coefficient, is defined as

o () (/)

and accounts for the fact that the flux of momentum computed with the averaged quantities
(i.e. Q*/A) is in general different from the actual one. Even if, in general, o is function of z
and ¢, we have taken it constant and equal to one, which corresponds to assume a flat velocity
profile.

System (5.1.1) is a system of two equations in three unknowns (7, A and Q). For its closure,
a third equation is provided by a suitable wall model relating the radial displacement (and
henceforth the area A) to the mean pressure p.

Here we consider a simple algebraic relation between pressure and area of the type

P = pext +¥(A), with j—ﬁ >0 and (Ag) =0, (5.1.2)

where pegy is a constant external pressure and Ay = ﬂ'R% is the reference arca. Then, by
setting

A dyP(A)
204y = 299\
ci(4) > A (5.1.3)
system (5.1.1) can be written in conservative form as :
au 8 _ .
T &F(U) =B(U), (5.1.4)

where

A Q 0
U = N F U = 2 L] B U = 3
[Q] © oL f A )y © -kad

Alternative one-dimensional models for blood flow in arteries, which adopt the non-conservative
variables p and @ (or P and %) as unknowns, have been used in the literature as well (see e.g.
[70, 74)).

System (5.1.4) may be written in quasi linear form

0 1
WU, 1% _pu), withH= :
- (%) +c(A) 204%

Bt Oz
and it turns out to be hyperbolic since it possesses two real distinct eigenvalues which, for
@ = 1, read simply

(5.1.5)

A=t =xc. (5.1.6)

and a complete set of eigenvectors. We now indicate by L and A = diag(\, Ag) the matrix
of left eigenvectors and that of the eigenvalues of H, respectively. Then, relation (5.1.5) may
be written as

L‘Z)U + AL%—U = LB(U). (5.1.7)
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At least for a = 1, it is possible to find a vector function W = W(U) = [W(U), Wy(U)]

IwW . . .
such that —— = L. The quantities W, and Wy are the characteristic variables of problem
(5.1.1) and their expression may be given as function of the average velocity & and the area
A (and eventually of A and Q) as follows

Wia =H:i:/A @dr = H(Q, A). (5.1.8)

Ao

They are not constant along the characteristic curves dz/dt = A\, i = 1,2 because of the
presence of a source term. By inverting relation (5.1.8) we may express the conserved variables
in terms of W) and Wo:

U=H" W) (5.1.9)

In the case B = 0, equations (5.1.7) decouple and may be written component-wise as

F) W,
—W1+)\1—3—1=0,
at 9z (5.1.10)
LRV LL
g2t =0

System (5.1.4) must be supplemented by appropriate boundary conditions at the two ends of
the interval (let’s say z = a and 2z = b).

In hemodynamics applications, the values attained by the mechanical parameters and blood
velocities in physiological conditions are such that ¢; > [u] (i.e. the eigenvalues have opposite
sign). Hence, a single boundary condition must be specified at both ends. In particular, we
may impose the entering characteristic variable, i.e., ¥Vt > 0

Wit) = gqi(t) at z=a, and Wal(t) = go(t) at z =b, (5.1.11)

where g; and gy are given functions of £. Alternative boundary conditions applied to the
primary variables @ and A (or P) can be devised as well, under suitable restrictions [39].
For the numerical discretisation of (5.1.4), the two boundary conditions above need to be
supplemented by two additional equations, one at each side, in order to allow the computation
of two vector unknowns U{a) and U(b). We will address this issue in more detail in Section
5.1.5.

5.1.1 Wall laws

An example of algebraic relation of type (5.1.2) has been given in equation (4.1.5) of Chapter
4. In such a case, we have

Since A = 7(Ry + 7-)?, we obtain

P = Dot = BVA - 7, (5.1.12)

0= cSm
where
p* = pVAo
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Henceforth, in view of (5.1.2), we have that
$(A) = BVA - p* (5.1.13)

The characteristic variables now are

P
Wi =ﬂ:l:2\/;(\/1_)—pezt+p* - \/p_) (5.1.14)

and this relation can be inverted as

4

1 W + W.

A== EW -w)+ vt , Q=412 (5.1.15)
B 32 2

In our simulations we have adopted this algebraic model. A presentation of other models that

make usc of differential laws linking  to A and its time derivatives is reported in the already

published article by L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani Multiscale

Modelling of the Circulatory System: a Preliminary Analysis [32]. Another example can be
found in [74].

Remark 5.1.1 In the blood flow context, other algebraic relationships between P and A, pos-
sibly featuring a better accordance with experiments, can be found in [45], [53] and [91].

When considering a 2D geometry like the one shown in Fig. 4.2 of Chapter 4, equations
(5.1.1) are still valid provided we now take A = 2(Ry + n,). The algebraic relation (5.1.13)
becomes

— _hE

T MRS

P =p4

P(A)=pA-p* where (5.1.16)

and the characteristic variables are W) =u + 2\/%(\/7) — Pext + P° ~ V/D¥).

The 1D model considered until now is valid for a straight pipe and constant elastic properties
of the wall. In the paper by L. Formaggia, F. Nobile and A. Quarteroni A One Dimensional
Model for Biood Flow: Application fo Vascular Prosthesis we have generalized this model
to the case of a varying clastic Young’s modulus E of the arterial wall in order to simu-
late the presence of a vascular prosthesis or a stent. Numerous numerical results are also
provided. The methodology adopted therein allows only for smooth variations of the elastic
parameter. Further immprovements of the 1D model accounting for instance for discontinuons
coefficients, more complex wall laws, tapering, curved pipes or branching are the subject of
current research.

5.1.2 Energy conservation for the 1D model

Here we derive an a priori estimate for the solution of system (5.1.1) in the interval I = [a, b]
under the hypotheses that V¢ > 0, A; > 0, Xy < 0 (sub-critical flow regime) and the area A
maintains positive.
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We will consider the following initial and boundary conditions
initial conditions A(0,2) = A%, Q(0,2) = Q° a<z<b (6.1.17)

Wi=g atz=a (5.1.18)

i
boundary conditions Wyo=gy atz=1b

We define the energy of the 1D model, for each ¢t > 0, as

b
E(t) = %p/b A(t, 2)T%(t, 2)dz +/ W (A(t, 2z))dz (5.1.19)

a

where
A
B(4) = ]A Y(C)de (5.1.20)

Owing to (5.1.2) we may observe that
T(Ap) = V'(A4) =0  and T'(A) >0 VA>O0.

Therefore U(A) is always positive and £(¢) is a positive function for all @ and A > 0 at each
t > 0. The following Lemma holds

Lemma 5.1.1 In the case o = 1, system (5.1.1), supplied with an algebraic pressure-area
relationship hke in (5.1.2), satisfies the following conservation property

T rb T b
5(T)+pKR/ / n2dzdt+/ Q(z_)—pmg—f-%pﬁ?)' dt = £(0). (5.1.21)
0 Ja 0 a

Obviously, £(0) depends only on the initial data A® and Q°.

Proof.
Let’s multiply the second equation of (5.1.1) by @ and integrate over I. We will analyse

separately the four terms.

o First term

b 9 Aw) 1 /" ou? * 94,
I = Tdz == | A——dz+ | —u°dz=
! /,, at 2/, Toe . Ot

a4
—2 —2
2dt/ APde + / Sedr (5122)

e Second term

b 50 A2 b
Iz:a/ AT iz = U 6(’4")—2(1 +/ A‘Zd—_dz} =
. 02 8
b
a[/B(Au2 /BA_sd 3/A —dz]:
2 a
0Q_, b 9(ATB) .
a [E/a 5. & dz+ 3] & dz| (5.1.23)
Now, using the first equation in (5.1.1) we obtain

L= % [_ /ab %—%HA )] ] (5.1.24)
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e Third term. Using (5.1.2) and the fact that pes is independent of z we have
1 8
L=| 2%, == 2= poy)udz =
3 /a > idz p/; Aaz(p Pezt)Tdz

b
L[ S + - peilt] 5229

Again, using the first of (5.1.1) we have

1{ 204 _ 3] _1fd [P _ b
=1 | [ Sstas + 5 -peiel] = 5 [ 5 [ 90tz+ - piel?)
(5.1.26)
¢ Fourth term
b Q b
I = / Kp~udz = Kp / wdz (5.1.27)
o A a

In the case @ = 1, by summing the four terms we obtain the following equality

1 d b, d [* b, _ 1 L\
=p= | Audz+ — | ¥(A)dz+pKr | Tdz+ Q| P — Pexr + 50U I =0 (5.1.28)
204t J, dt J, o 2 a

Integrating equation (5.1.28) in time between 0 and 7' we obtain the desired result.
]

In order to draw an energy inequality from (5.1.21), we need to investigate the sign of the
different terms. The first two of them are clearly positive. Concerning the third one let us
analyse the homogeneous case (i.e. the case where g) = go = 0).

We will rewrite the boundary term in (5.1.21) as a function of A, ¥(A) and ¢; (which, in its
turn, depends on A and ¥(A), see (5.1.6)).
If g1 = go = 0 in (5.1.18), then

atzn=a W|=n+/;ﬂé9dg=o . n(t,a):-/;ﬂdg
0

0 ¢
A
atz="h Wg:ﬂ—//:—cl%—)—dc= = E(t,b)=/AnﬂéQd§
Then, using (5.1.2)
Q (P pem+ 307 [ = FlAG.0) + F(AG0) (5.129)

where

A A 2
F(A) =4 /A %Qdc [w(A) +30 ( /A 125111() } (5.1.30)
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We recall that we are assuming Ay > 0 and Xy < 0 (sub-critical flow regime). Then, from
(5.1.6), we have @] < ¢; which implies at bothz=a and z = b

|/AA c—‘éﬁldq < ci(A) (5.1.31)

We are now in the position to conclude with the following result

Lemma 5.1.2 If the function y(A) is chosen in such a way that F(A) >0, for all A > 0
which satisfy (5.1.31), then the energy inequality

T pb
E(T) + pKr /0 / @dzdt < £(0) (5.132)

holds for system (5.1.1).

The pressure-area relationship given in (5.1.13) satisfies the hypotheses of Lemma 5.1.2. In
fact, in this case

Y4 = BVA-VR). =LA

o€ [* B tae - s [Boat 4t
/% dc—/Ao £ctac =/ B(at - )

Condition (5.1.31) becomes

|4\/-(A4 — AD)

On the other hand we have

F(4) = A4\/§(A% - 45) [3(A% — A%+ gmgmi 4 )‘2] -

1

4ﬂ[A(A4 - ) (At = aat 4 ad) +aca - afy?] -

4[3‘/%A(A;' - Adyr(sat - 34)

and

1 L
<y 2ﬂ and then %Ag <At < f;-Ag (5.1.33)

Then, condition F(A4) > 0 gives
31
A7 > =45,
whose satisfaction is a consequence of (5.1.33). Therefore, in that case the 1D model is stable.

More generally, under the same relation (5.1.13), we can prove an energy estimate also in the
case of non homogeneous boundary conditions. We have the following result
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Lemma 5.1.3 If the pressure-area relationship is given by (5.1.13), and the boundary data

satisfy
P p*
t) > 44— 44/ =— Vi >0 5.1.34
9i(t) > 4\/2,) and  go(t) < \/2,; t>0, (5.1.34)

then there exists a positive function G = G(g1, g2,p*) such that

T b T
E(T) + pKR/ / T2 dzdt < £(0) +/ G(g1(t), g2(t), p*)dt. (5.1.35)
0 Ja 0
Proof.
We will consider only the case where g, # 0 and gp = 0, since the most general case may be

derived in a similar fashion. We recall that relationship (5.1.13) satisfies the hypotheses on
F(A) of Lemma 5.1.2. Then from (5.1.28) we obtain the following inequality

LA P SN AT A /b*'d <
EE/G - dz E/a )z+pR_au z <
1 _ 1
Q (P pect+ o )| _, < (At + Gt )|, 130
zZ=a z=a
We have then at z = a (from {5.1.14) and (5.1.18))
2
T — n - e * * =
U+2\/;(\/p Pext +P \/p—) o
thus, from (5.1.2)
_ 2
T=g - 2\/; (\/w(A) - \/;?) . (5.1.37)
On the other hand, A\ =u + 7—12;\/[) — Dezt +p* > 0, and then

7> —% WA o (5.1.38)

Combining (5.1.37) and (5.1.38) we have
—— Y(A) +p* <q - 2\/? (\/1//(A) +p* - \/11‘)
Vv2p P

and then

VY(A) +p* < filgr,p") (5.1.39)
where
filgn,p") = @gl + %JIF.

The assumptions (5.1.34) arc necessary conditions for the eigenvalues of system (5.1.1) being
of opposite sign.
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Furthermore, we deduce from (5.1.13) that ¢/(A) > —p*. The following inequalities thus hold
atz=a

[%{A)] < max {p*,|fE(91,9") - p|}

[ut = ‘91 —2\/§(v¢(A) +p* = \/p-‘) , < gl +2\/§(\/[7+f1(y1,11'))

A= %(¢(A) +p%)? < El-;ff(yhp')

and the right band side in (5.1.36) may thus be expressed by a positive function of the
boundary data g; and the reference pressure at rest p* = 81/Ap, which we have indicate by
G(g1,p*). We obtain then the desired stability inequality.

]

5.1.3 Entropy function for the 1D model

If we take again the differential problem (5.1.1) and we carry out derivations similar to
those illustrated in (5.1.22)-(5.1.28), considering now the integrals over an arbitrary interval
[z, 2 +dz] C [a,}], we may derive a relation analogous to (5.1.28). Then, passing to the limit
as dz — 0, the following pointwise differential relation may be deduced

a1 d 1 .\ _ _g
e (EpAu + \II(A)) + M [Q <¢(A) + 508 )} = —pKgru (5.1.40)
which can be interpreted as an entropy balance equation for the hyperbolic system. Indeed,
the function
1
5(4,Q) = EpAﬁz + ¥(A4) (5.1.41)

is an entropy for system (5.1.1), with an associated flux
1
F(4,Q)=Q (¢(A) + yﬁﬁ) (5.1.42)
The term pK gl may be recognised as a dissipative term.

5.1.4 Numerical discretisation

The equations in conservation form (5.1.4) have been discretised by adopting a second or-
der Taylor-Galerkin scheme, which is the finite element counterpart of the well known Lax-
Wendroff scheme. We recall here, briefly, its derivation. We will use the abridged notation

OF 0B
H=50 T*=3w
By following the usual route to derive the Lax-Wendroff scheme, we write
au OF
. 5 =B 5, (5.1.43)
U 6B &F au 9 ou .
“ow =5 o= a3 (Vo) (5:1.44)

_ gF\ &(HB) 0 (. OF
—"B(B az)“ p +3_(Ha_>
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We note that, in contrast with what is usually done for the derivation of a Lax-Wendroff
scheme in standard cases, here we have not further developed the z derivative of the fluxes.
In this way, the discretisation presented hereafter is compatible with a variable coefficient 8
in the wall law (5.1.13). Indeed, if 8 is not constant, the relation

oF _9U

R
is not anymore true because of the dependence of F on z through 3.
For the time discretisation, we consider a time step At and indicate with the superscript n
quantitics computed at time t* = nAt. Using, as in a standard Lax-Wendroff procedure, a
truncated Taylor expansion in time around " and exploiting (5.1.43) and (5.1.44) we finally
obtain the following time-marching scheme

Urtl = U - At 4 [F" + %anB"} -

9z
2 n n
Az [J" x D (H"BF )] + At (1 + %J’f;) B". (5.145)

2 |'B 9z oz 0z
Space discretisation is carried out by using linear finite elements. To that purpose, let us
subdivide the interval [a,b] into N finite elements [z, 2i41], with i = 0,--- ,N and 2z = ih

being h the constant element size. We indicate by V}, = [V3]? the space of continuous vector
functions defined on [a, b}, linear on each element, and with Vg the set formed by functions
of V};, which are zero at z = a and z = b. Furthermore, we indicate by (u,v) = ]: n-vdz
the L? vector product.

Let us put

Frw =F + (At/2)HB  and
Biw = [I +(At/2)Ip]B.
A finite clement formulation of (5.1.45) is: for n > 0, find UZ“ € V;, which satisfics

oy, At?,_ OF"
(Ut ) = (UR, ¥) + At(Fly, o) " 5 B ¥n) -

‘ A2 OF" 9y,

T(HHW»W) + At(BRyw,¥y), Vb, € V). (5.1.46)
The boundary values of Uﬁ“ will be calculated using the preseribed boundary conditions
and following the technique described in Section 5.1.5. U will be taken as the finite clement
interpolant of the given initial data Ug.
A Von Neumann linear stability analysis for the proposed finite element scheme on a grid
with uniform spacing h, gives a stability condition of the type

At Supa<z<b(in__l?4’)§ !Axl) 1

R <
which is more restrictive than the classical CFL condition for finite difference or finite volume
Lax Wendroff schemes. This has been confirmed by our numerical experiments.
In (5.1.46) there is the need of integrating numerically the terms containing the fluxes and the
sources, i.e. F*, H*, B" and J5. We have used the technique of projecting each component
of these terms on the finite element function space V}, by interpolation.
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5.1.5 Computing the boundary data for the numerical scheme

In this section we detail two different choices of boundary conditions for the differential
problem (5.1.4) :

a. Wi(t) =gi(t) atz=a, Wat) = go(t) at 2 = b; (5.1.47)
b. A(t) =ai(t) atz=a, A(t) =ag(t) atz=1b; (5.1.48)

The numerical scheme (5.1.46) needs to have a complete boundary data U™*! at the boundary
nodes. However, for the well posedness of the differential problem only one condition at each
end, for instance either (5.1.47) or (5.1.48), has to be assigned.

In order to compute the complete boundary data we need an additional equation, which must
be compatible with the original differential problem. Here, we have adopted a technique based
on the extrapolation of the outgoing characteristics. The term Kg(Q/A) is normally of small
size, so that we feel legitimated to assume that the flow is essentially governed by equations
(5.1.10). Let us consider now the first end z = a {the case for z = b will be treated similarly),
and a generic time step of our numerical procedure. We assume that U" is known and we
linearise Az in the second equation in (5.1.10) by taking its value at time ¢* and at 2 = a.
The solution corresponding to this linearised problem at the time level " +1 gives

Wit (a) = WE(=23(a)At)

and is in fact a first order extrapolation of the outgoing characteristic variable Wy from the
previous time level; we will denote this value with WQ";‘" Higher order extrapolations can
be used as well.

In the case of boundary conditions (5.1.47), by combining the extrapolated value W;:zlt,

with the value of W; provided by the boundary condmon WPt = g, ("), we are able to
compute, the required boundary data U"*!(a) = H (g (t"“) 5’;’;1")

If boundary conditions (5.1.48) are considered, should we be able to express W) as a function
of A and Wy (W) = W, (4, Wa)), the required boundary data U™+! would be given, at z = a,
by

U () = 1 (Wi (), Wit ) Wi, (5.1.49)

Indeed, relation (5.1.49) guarantees that A%t!(a) = a; (#*1!) while Q" (a) is determined as
a function of a; (t**!) and W;,;;‘t,, At z = b, we need to express Wy as a function of A and W;

(Wp = Wy(4, Wh)); then we compute U™ (b) as UMt (b) = HHWEL, Walaa (87 ), WIEL)).
In the case where we employ algebraic relation 5.1.13 for the vessel wall, relation W, =

W, (A, W,) is given by
2
Wi =W, +4\/; (\/ﬂ\/Z— \/,T) .
A similar relation holds for Wy = Wy (A, W)).

Remark 5.1.2 The methodology just illustrated is not the only possibility to provide boundary
data for the discrete problem. Another possible approach is to adopt the so-called compatibility
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conditions [39, 76], namely

lg(ﬂJrHa_U_B(U)) =0, z=a,t>0,

ot 0z
(5.1.50)
17 (%%+H%—S—B(U)) =0, 2=0b1t>0.

1, and 1y being the eigenvectors of matriz H. A way to apply these conditions in a finite
element scheme is to rewrite the weak form (5.1.46) by letting ¥, € V, (beware that in
this case we cannot drop the boundary terms which originate from the integration by parts).
Now using as test function the finite element functions associated to the two boundary nodes
we obtain two relotions per boundary node. We may then form a linear combination of the
equations associated to node z = a (resp. z = b) with coefficients by (resp. 1,), thus producing
one equation for each boundary node. They effectively represent a discretisation of (5.1.50)
which conforms to the adopted numerical scheme. In fact, a linearisation is usually required to
this purpose, for instance by evaluating the eigenvectors L;, ¢+ = 1,2, in (5.1.50) at the previous
time step t". These two extra equations are then added to the ones produced by (5.1.46) and,
together with the assigned boundary conditions, allow to solve the discrete problem.

This technique has been tested as well, yet in this work we preferred the method based on the
eztrapolation of the characteristics, for its simplicity.

5.2 Coupling the 3D model with the 1D model

We consider now two domains 35 and Qip as in Fig. 5.2 and we solve, in the first, the 3D
fluid-structure model while in the second we consider the simplified 1D model.

Figure 5.2: Coupling a 3D model with a 1D model

On the right side of I’y the 1D model supplies the quantities A(a®), Q{a™), Bla™) = ¥(A)
and @(a™) = Q/A. We define, then, the same quantities also on the left side of I'; as

A@) =Nl w) = [

pla™ —-1— 7} a )= (e~
pa) =y [pder Q) = Inuda).

u-ndo

Moreover, we assume that at T', the wall displacement is a function of the section area,

1lr, =8(Ale7)), (5.2.1)

being g a given function. For instance, we can assume that ['; is a circle in which case

n|1“a = (\/ZW - Ro) er.
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It is a priori reasonable to look for the continuity of the following quantities at the interface
L,:

[A] area : A(a™) = Aa™)
[B] mean pressure : pla”) =p(a*)
(C] flux : Q™) =Q(a™)

[D] entering characteristic :  uw(a™) + 2\/7 (\/p(a ) = Pext +P* — /P ) Wi(a™)

Since in the 1D model viscous terms have been (partially) neglected, the variable § can be
either interpreted as a mean pressure or as a mean normal stress. The condition [B] may then
be replaced with the continuity of the averaged normal stress, i.e. @ = T - n- n. Analogously,
the characteristic variable on the left hand side can be calculated using the averaged normal
stress in place of the mean pressure. We have then two conditions alternative to B and D,
respectively. Namely,

[B1] averaged normal stress :  &(a”) = pla™)
{D1] char. entering variable : %@(a™) \/‘ (\/a(a } = Pext + P*) — /P ) Wi(a™)

In view of the splitting procedure that will be described in Section 5.2.1 to solve the coupled
3D-1D model, we are allowed to enforce, at the interface point a, only those conditions that
will generate well posed individual subproblems in Q3p and Qp.
To this aim, we advocate six different set of coupling conditions:

Interaction Model 1:  conditions A, B, D
We note that B and D imply the continuity of %@. With the further continuity of A we
obtain that of @. Thus also C is satisfied.

s Interaction Model 2: conditions A, C, D
We note that A and C imply the continuity of @. If we further add D we have the
continuity of p. Thus also B is satisfied.

Interaction Model 3: conditions A, B1, D1
We note that Bl and D1 imply the continuity of % and , with the continuity of A we
obtain that of Q. Thus also C is satisfied.

Interaction Model 4: conditions A, C, D1
We note that A and C imply the continuity of @. If we further add D we have the
continuity of 5. Thus also B1 is satisfied.

Interaction Model 5: conditions A, B, C
We note that A and C imply the continuity of @ and , with the continuity of B we obtain
that of W. Thus also D is satisfied.

Interaction Model 6: conditions A, B1, C
We note that A and C imply the continuity of % If we further add Bl we have the
continuity of W. Thus also D1 is satisfied.
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5.2.1 Sub-domain iterations between 1D and 3D models

Each Interaction Model presented above can be split into two subproblems:

A 1D problem with condition D (or D1) or B (B1), depending on which interaction
model we consider, as boundary condition at the interface and an absorbing condition
on the right end (i.e. zero entering characteristic variable). The first case (condition
D or D1) corresponds to impose the entering characteristic variable at the interface;
on the other hand, condition B (or B1) can be viewed as a condition on the area at
the interface since in the 1D model, the pressure and the area are related through an
algebraic relation. Both situations have been faced in Section 5.1.5.

A 3D fluid-structure problem with condition A as boundary condition for the structure
cquation and condition B (B1) or C, depending on which interaction model we consider,
as boundary condition for the Navier-Stokes equations. On the inflow section S we
might impose ordinary Dirichlet or natural conditions; for instance we could assign the
velocity profile for the fluid and the displacement of the wall.

With these choices the structure problem turns out to be well posed, while conditions
B or C as such are not sufficient to close the fluid equations since they only provide
averaged and not pointwise values on I'.

The problem of how to impose this kind of defective boundary conditions to the Navier-
Stokes equations has been deeply investigated in the paper by L. Formaggia, J.F. Ger-
beau, F. Nobile and A. Quarteroni Numerical treatment of defective boundary conditions
for the Navier-Stokes equations [28). The ideas proposed therein are briefly summarized
in Section 5.2.2.

We present, now, two possible iterative algorithms to couple the 3D and the 1D model. They
correspond to the Interaction Model 3 and 6 respectively and both have been used pro the
numerical simulations presented in Section 5.3 (sce also the numerical results in {29] and

(28)).

Observe that these two interaction models are equivalent in the sense they provide the

continuity of the same quantities at the interface.

Algorithm 1

Given the solution of the coupled problem at time t = t*, let’s say u®, p*, n™ for the 3D
model, and Q, A" for the 1D one, we look for the solution u»*!, pn+1, n»+! @™+ and A"
using the following iterative algorithm :

we set W) = u”, pgy =p", and 9 =" and for k=0,1,...

1.

we solve the 1D model (5.1.1) withat z=a

2
W ery(at) =Ty (a7) +2\/; (\/B(k)(a‘) — Pest +P*) — \/77) ,

where

: 1
Ty(e”) = —— ugy cndo  and
W) |Fa,(k)‘/[‘,,‘(k) ®)

1
Lok

Guyla™) = /r T(uy,pry) - 0 - ndo,
a,(k)
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and at z = b the absorbing boundary condition W2(b) = 0. We obtain Q) and
Agk1y in Qp;

2. we solve then the 3D fluid /structure problem by imposing for the structure at z = a

_ ( A(k+l)(a+) —Ro) e,
™

and for the Navier-Stokes equations, on Ty (1) the defective condition

1
II‘ * l)l ‘/F T(u(k+1)7p(k+1)) ‘n-ndo = Pegt + B A(k+|)((l+) - p*. (5'2.2)
a,(k+ k1) vV

On the inflow section we prescribe suitable boundary conditions. We obtain, thus,
U(kt1)s Pik+1)s Me41) it Qap.

We iterate until the coupling conditions are satisfied within a fixed tolerance and we finally set
the solution at time £2*! equal to the converged value. We may eventually add a relaxation
step on the variable W, )(a¥).

Algorithm 2
Given the solution of the coupled problem at time ¢ = £*, we look for the solution u™t!, pt!,
7"t Q7! and A" using the following iterative algorithm :

we set Uy = u”, p) = p", and ) =" and for £ =0,1,...
1. we solve the 1D model (5.1.1) with, at z = q,

Apy(a®) = (O’(k)(a ) = Peat + 1)’
where
gy (a” / Tuk Px)) -n-ndo
wla?) = IF,(k)I (ury: Pek)
and at z = b the absorbing boundary cx)mhtnon Wy(b) = 0. We obtain Q) and
Ay in Qup;
2. we solve then the 3D fluid/structure problem by imposing for the structure at z = a

Agyny(at)
71(k+1)|r,, = ( ST Ryler

T

and for the Navier-Stokes equations on Ty (1) the defective condition
/ V() ndo = Qinla’) (5.2.3)
Fo,(k+1)

We obtain u(k.t1), Pk-+1)s M(k41) 0 Qap-
We iterate until the coupling conditions are satisfied within a fixed tolerance and we finally set

the solution at time ¢**! equal to the converged value. We may eventually add a relaxation
step on the variable Ag,)(a™).

As we have already pointed out, in step 2. of both algorithmns we need to solve Navier-Stokes
equations with defective boundary conditions either on the flux through the interface T, or
on the averaged stress.
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5.2.2 Defective boundary conditions for the Navier Stokes equations

Let us consider the domain Q ¢ R?, d = 2 or 3 shown in figure 5.3. Its boundary 8¢ is

S

83
Figure 5.3: The partition of the boundary of the domain €.

decomposed into the union of I’ and several disjoint sections Sy, Sy,...,8, n > 1.
We formalize the problem of fluid equations with defective boundary conditions in the follow-
ing way : we are interested in solving the Navier-Stokes equations

Ju+u-Vu+Vp—vAu=1£f, t>0
divu =0, t>0 (5.2.4)
u = uy, f.=0,

in the domain Q whose boundary I' may be deformable or not. In the former case equations
(5.2.4) are supplemented by non-homogeneous boundary conditions

ulr =1, (5.2.5)

where 7 is the velocity at which the boundary moves; in the latter case, homogeneous bound-
ary conditions will be considered

ulp = 0. (5.2.5")
On sections S;, i = 0,... ,n we consider three possible defective conditions :
prescribed mean preséure problem
1 .
meas(S)) Sipds:P,—, i=0,...,n, (5.2.6)

where each P; is a prescribed function of the time ¢.

prescribed averaged normal stress

1 du )
meas(S;) /g (”“ - ”3—;) ‘nds=PF, i=0,..,n, (5.2.7)

where each P; is a prescribed function of the time £.
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prescribed flux problem

1)
-/S’u-ndo':Q,-, i=1,...,n, and (])n—ub%)

i

=0, (5.2.8)

Sa
where the ¢J;’s are assigned functions of time.

We could also have imposed the flux on every section S;, ¢ = 0,... ,n. In this case,
due to the incompressibility of the fluid, a compatibility relation must exist among the
fluxes ; and the pressure is defined up to a constant.

The initial-boundary value problem (5.2.4)-(5.2.5) with either (5.2.6) or (5.2.7) or (5.2.8) is
not well-posed from a physical point of view, since its solution is not unique. Indeed, on every
section S;, we are prescribing just one scalar condition rather than d conditions at every point
X € S;, as it should be.

To solve the prescribed mean pressure problem we follow the so-called do-nothing approach
proposed in [46] : let us introduce the functional spaces

V= {v e [H'®]*, vIr = o} and M =L%(Q).

We suppose that f € V' and we introduce the functional ¢; € V', i = 0,...,n which measures
the flux of a vector function through the surface S;. Precisely

<¢i,v>=/v-nds, VeV
S,

For this reason ¢; is called the fluz functional on S;. Then, the “do-nothing” formulation for
the prescribed mean pressure problem reads : find u € [H(92)]9, satisfying conditions (5.2.5)
(or (5.2.5')) and p € M such that, for allve V and g € M,

n
(Bu+u-Vu,v) +(Vu, Vv) = (p,div v) =<f,v > = 3 P < $;,v >,

pa (5.2.9)
(g,div u) =0,
for all £ > 0, with u =ug for £ = 0.
It follows easily, by using the Green formula, that the solution of (5.2.9) satisfies
Ouy, _ dur) .
(p—uan)&—— s »B—n—Si—O, fori=0,...,n,
where we have set u,, = u-n and u; = u — y,n.
Thus
1 v O
—— =P+ ——— | —2ds. 2.
meas(S;) /;ipda it meas(S;) /;v', on ds (52.10)

We conclude that the desired condition (5.2.6) is recovered exactly only in those cases where
the last integral in (5.2.10) vanishes. This occurs, for instance, when S; is a plane section
perpendicular to a cylindrical pipe.
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Otherwise, P; will be the mean value of the normal component of the normal stresses on S;.
Thus, the same approach can be used to impose conditions (5.2.7) as well.

At the moment we are not able to propose a formulation which allows to impose only the
averaged quantity (5.2.6) or (5.2.7) without resorting to a constant normal stress on each
section S;j.

The formulation of the prescribed mean pressure problem may be easily discretised as it can
be regarded as a classical Navier-Stokes problem with Neumann boundary conditions.

To solve the prescribed fluz problem, instead, we adopt an approach based on the use of
Lagrange multipliers. The formulation reads as follows : we look for u € [H!(2)}¢, satisfying
conditions (5.2.5) (or (5.2.5")), p € M and Ay,..., A\, € Rsuch that, forallv € V andge M,

n
(Bu+u-Vu,v) +v(Vu,Vv) +Z)\,~ < ¢, v >~ (p,divv) =< f,v >,

=1 5.2.11
(g,div u) =0, ( )

< ¢iyu >=Q;, i=1,.,n,

for all ¢ > 0, with u = ug for £t = 0.
It can be shown (sce [28]) that any smooth solution of (5.2.11) satisfies the additional boundary
conditjons

(,)-u%)‘g_:,\,«, and 38‘: =0, i=l-m (5.2.12)

: _— 0 o . .
In particular, this yields that both —Enl and p ~ v are indeed constant over S; fori =

1,.-- ,n. Moreover, the Lagrange multipliers represent the normal component of the normal
stress on each section S; and have then the dimension of a pressure.

In the cited paper, we have shown that, for a stationary Stokes problem, formulation (5.2.11)
is well posed. In the same paper, we proposed different strategies to solve efficiently problem
(5.2.11) discretised with finite elements. We recall, here, briefly the ones based on the Yosida
algebraic factorisation scheme.

We introduce a Galerkin approximation based on the finite dimensional spaces V;, C V and
M)y, C M, which we assume to satisfy the LBB condition

Vg € My 3vp € Vi, v #0 0 (g, div vin) 2 Bullanlizzlvallen. (5.2.13)

Let (s, pn, Ma, -« -, Mek) be the solution of the discrete problem. We denote by (u;)i=1.an
(resp. (p;)i=1.a) the components of u, (resp. pp) with respect to a basis {v;} of Vj (resp.
{qi} of My). Finally, we introduce the vectors U = (u1, .., uqn) € RN, P =(py,..,pm) € RM
and A = ()\]h,... 7/\nh) e R

Proceeding as in Chapter 3 to discretise problem (5.2.11) in time (see section 3.5.1), we will
obtain at each time step k a system of the form

A DT &T} [U* £k

D 0 o |PF| =]k}, (5.2.14)
@ 0 0] |Ak QF
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The matrix 4 € RIVX4N will have typically the form

=1 M+ C

T At
where C accounts for the convective and diffusive terms. D € RM*4¥ js the matrix associated
to the divergence operator and @ is the n X dN matrix whose lines are given by the vectors
¢ = (fs,vi-nds,... ’fs.» vgn -nds), i =1,... ,n. Finally ff and £f account for the forcing
term, the non-homogeneous boundary conditions and the solution at previous time steps,

while Q = [Q1("),..., Qu(t)]".
We present hereafter two possible algorithins to solve system (5.2.14) :

Reordering + fractional step I

System (5.2.14) can be reordered in a Stokes-like form as

A DT [o* £*
& 710
where
/i _ {g %T] c R(dN+n)X(dN+n)’ b — [D O] € RNIX(dN-Hl)’
. & - k
ok = [X’“] e RN+, B [3"] c RiN+n

By applying the Yosida factorisation scheme to (5.2.15) we obtain the three step algorithm
(i) AUk = g
(i) DHODTP = DUE.
(i) AUF = AUE — DTP*
where A is an approximation of A~!. In [28] a possible expression for H(!), preserving
the accuracy of the Yosida scheme, is proposed. Yet, this expression is not straightforward
to implement. On the other hand, step (%) in the algorithm allows to recover exactly the

constraints on the fluxes. Indeed, from step (i) we have ®U% = QF and in step (#i) we are
imposing ®U* = dUL.

Reordering + fmctibnal step I

System (5.2.14) can also be reordered in a different manner as

A DT [U* £k
[D 0 ] [ﬁk] = [;‘k] (5.2.16)
where
- . k . £
b= [g] e ROMinlxdN Pk [K"} eRMin fk o [3’:} € RM+n

The three steps Yosida algorithm reads then
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(i) AU§ = ff
(ii) DHODTPk = DUk — £*
(ii) AU* = AU — DTP*,

In this case, H(!) is an approximation of A~! and can be taken equal to H() = AtM ™!, as
in standard Yosida scheme.

This algorithm can be easily implemented starting from an existing Navier-Stokes solver which
uses factorization methods. Indeed, it suffices to add to the matrix D the few lines of matrix
&, and apply the chosen factorization method.

On the contrary, the constraints on the fluxes are not exactly satisfied. In [28] we have shown
that the error introduced, i.e. |®U¥ — Q| behaves as O(At?). This result has been confirmed
numerically in the cited paper.

5.3 Numerical results

First test case. We have considered again the second test case presented in chapter 4.
Precisely, we have solved the 2D fluid structure problem with the MP/CN coupled algorithm,
on the mesh given in figure 4.9, with the input pressure profile as in figure 4.8 and a time step
At = 107*. Yet, this time, instead of imposing homogeneous Neumann boundary conditions
at the outflow section, we have coupled the 2D fluid-structure problem with a 1D model as
shown in figure 5.2. :

The 1D model adopted here is the one derived from a 2D geometry, ie. system (5.1.1)
with algebraic wall law given by (5.1.16). The parameters characterizing the fluid and wall
dynamics both in the 2D and 1D models have been taken equal to those used in the simulations
of Chapter 4. Moreover, the Coriolis coefficient o in (5.1.1) has been taken equal to 1. We
have simulated the 1D model on the interval {6 cm, 12 cm] discretised with a uniform mesh of
30 intervals and with a time step Af = 107* cqual to the one adopted for the 2D simulation.
The initial solution is the equilibrium state @ = 0 and A = A4y and the CFL corresponding
to this equilibrium position is about 0.22. At the right end (z = 12¢m) we have imposed a
zero entering characteristic variable.

About the 2D/1D coupling, we have tested both Algorithms 1 and 2 presented in Section
5.2.1, corresponding to Interaction models 3 and 6, respectively.

In the first case, to get convergence of the iterative algorithm, we have introduced a relaxation
step on the entering characteristic variable Wi (a™)

Wik nteh) =W piple®) + (1 - )Wy 5y(a™)

with a relaxation parameter § = 0.75. The stopping criterion used for the 2D/1D sub-
iterations is

[W1 ern(a™) = Wy gy} < 5-107° (5.3.1)

We remind that we are employing two sub-structuring algorithms at the same time: one for
the fluid-structure problem and the other for the 2D/1D coupling. The strategy we have
adopted consists in making 10 fluid-structure sub-iterations each 2D/1D sub-iteration and
continuing until both stopping criteria (4.11.1) and (5.3.1) are satisfied.
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Concerning Algorithm 2, we have added a relaxation step on the variable Agyle™) with a
much smaller relaxation parameter than in the previous case, i.e. # = 0.02. The stopping
criterion in this case reads

Ay (6F) = Agy(a™)

<1077, 3.
i <10 (5.3.2)

The use of Lagrange multipliers to impose flux conditions influences the convergence of the
fluid-structure sub-iterations. In this case we have to take a relaxation parameter w for the
fluid-structure algorithm smaller that the one needed in Algorithm 1. We have verified that
the solutions obtained by the two Algorithms are very similar. Indeed, as already remarked,
these two algorithms provide the continuity of the same quantities at the 2D/1D interface.
The results presented in the following of this section refer to Algorithm 1.

In figure 5.4 we present at different time instants the solution obtained. In the 2D part we
visualize the pressure together with the structure deformation. On the other hand, the 1D
model has been represented with a thick line and the colors correspond to the mean pressure
computed. The color scale is the same as the one adopted in figures 4.10 and 4.19. Observe
that almost no spurious reflections are present now. These results should be compared with
those shown in figure 4.19 where homogeneous Neumann boundary conditions were imposed
at the outflow section.

We have computed in the 2D region, on each vertical section, the mean pressure, the flow
rate and the area, as it has been done in Chapter 4. In the 1D region, the same quantities
are naturally provided by the 1D model (precisely, the 1D model provides A and @, while the
mean pressure can be recovered from the algebraic relation (5.1.16}).

Figures 5.5 and 5.6 represent these three quantities in the segment [0, 12¢m)]. The blue/solid
line corresponds to the solution computed by the 2D model while the red/dashed line is the
solution of the 1D model. Observe that the flow rate @ and the area A computed by the
2D and the 1D model, respectively, glue perfectly thanks to the coupling conditions imposed
at the 2D/1D interface. On the contrary, the mean pressure P is not perfeetly continuous at
the interface, since in the adopted Interaction Model we are imposing the continuity of the
averaged normal stress & and not that of p.

Second test case. To better highlight the effectiveness of this technique to “absorb” outgoing
pressure and flow rate waves, we have compared the coupled 2D/1D solution of the previous
test case with the solution obtained by solving only the 2D model (without any coupling with
the 1D model) on a tube of length 12cm with homogeneous Neumann boundary conditions
on the outflow section. At those instants at which the pressure wave is still far away from
the outflow boundary, we can assume that this solution is not perturbed by the imposed
boundary conditions. Then, in left half of the tube (z € [0, 6]), this solution can be considered
the “exact” solution of the 2D model, i.e. not perturbed by any boundary condition.

In figure 5.7 we compare the pressure and the wall deformation in the two cases at different
time instants. It may be observed that the 1D model propagates the wave at a speed slightly
higher than the 2D model.

In figure 5.8 we have put on the same plot the averaged pressure in z € [0, 6] obtained with the
simulation of Chapter 4, i.e. with reflective boundary conditions, the one obtained with the
2D/1D coupling and the “exact” one obtained by solving the 2D model on the tube of double
length. In this figure it is really evident how the 2D/1D coupling allows to dramatically
reduce the spurious reflections at the outflow section with respect to the case considered in
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Figure 5.4; Coupling 2D simmlation with the 1D reduced model; solution every 4 ma, starting
form ¢ = Uma. Note how the pressure wave exits the domain with almost no spurions
reflections. These results should be compared with those shown o figure 4.19.
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Chapter 4. We may also observe that in the coupled 2D /1D simulation, the pressure wave is
slightly accelerated with respect to the “exact” solution obtained by the only 2D model. This
is due to the presence of the 1D model that, as already mentioned, features a wave speed a
little higher than that of the 2D model.

Third test case. We would like, now, to quantify the reflections introduced by the coupling
with the 1D model. Precisely, we aim at comparing the solution computed by the 2D/1D
coupling, with the solution (taken as the “exact” one) obtained by solving only the 2D model
on a tube of double length, as shown in the previous test case. To better highlight the spurious
reflections, we have taken a different input pressure profile at the inflow; precisely, we have
considered a pressure step of 5000 dyne/cm? i.e.

T -n =0, = 5000dynefcn®, on 8, ¥t > 0.

Let us denote with (u,p) the restriction of the “exact” solution to the left half of the tube
@, = [0,6] x [0,1] and with (u;,p;) the 2D solution in the same domain €, obtained with
the coupled 2D/1D algorithm (see also figure 5.7). Figurc 5.9 shows the relative error in the
L? norm between the two solutions, i.e.

. = llp — pillzay . = flu —wllp2a)

= y = ——

i lpllzz@y lullr2(q,)

The simulation has been stopped at t = 30ms, i.e. before the pressure wave reaches the

outflow at z = 12¢m. The error on the velocity is about 2.5% with a peak over 3% when the
wave crosses the 2D/1D interface. The pressure error, instead, is always less than 2%.




5.3. NUMERICAL RESULTS

Averaged Pressure

time = 8ms i
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Figurc 5.5: Averaged pressurc at different time instants; in the left part of each plot (z €
[0,6 en}), solution of the 2D model (bluc/solid line); in the right part (z € [6.cm, 12cm]),

solution of the 1D model (red/dashed line).
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Flow rate
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Figure 5.6: Flow rate (on the top) and Area of each section of the tube (on the bottom) at
different time instants; in the left part of each plot (2 € [0, 6cm]), solution of the 2D model
(blue/solid line); in the right part (z € [6cm, 12 em]), solution of the 1D model (red/dashed

line).
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Figure 5.7 Comparison between the solution abinined with the 2D/10 coupling and the
solution computed by the only 2D model on a tube of double length. In the plots we visualize
the pressure inside the tube
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Figure 5.8: Averaged pressure along the tube [0,6 ¢} at different time instants. Blue/solid

line: “exact” solution; red/dashed line: solution obtained by the 2D /1D coupling; green/dash-
dotted line: solution obtained with homogeneous Neumann conditions at the outflow.
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Figure 5.9: Relative error in L2 norm both for pressure and velocity field, between the solution
of the coupled 2D /1D model and the solution of the fluid-structure interaction problem on a
vessel of double length.



Conclusions

In this thesis we have investigated some aspects of the numerical approximation of the fluid
structure interaction problem appearing in the study of blood flow in large arteries.

In the first part, we have deeply investigated the ALE formulation for parabolic equations.
in the context of a finite element approximation.

We have analysed and compared two formulations, a conservative and a non-conservative one;
both have been proposed in the literature and employed for numerical simulations. They are
equivalent at the differential level but lead to different numerical schemes.

We have considered a few temporal discretisations (first and second order accurate), applicd to
both the conservative and the non-conservative formulation and we have derived the associated
Geometric Conservation Laws. We have analysed stability and convergence properties of these
schemes and their relation with the GCL.

We have obtained an unconditional stability result for the Implicit Euler scheme, that satisfies
the GCL, applied to the conservative formulation. On the contrary, we have shown that other
time discretisation schemes, which are unconditionally stable when applied to a differential
equation on a fixed domain, do not preserve the same stability properties when written in
ALE form, even though GCL are satisfied.

On the other hand, the accuracy of time discretisation schemes does not degrade when solving
problems on moving domains in ALE form; we have proved this theoretically for one scheme
and numerically for others. In this regard, GCL seem not to play any relevant role in the
accuracy of the numerical schemes.

Finally, we have generalised these results to the incompressible Navier-Stokes equations.
Morecover, we have shown how incxact factorisation schemes can be extended straightfor-
wardly to the ALE framework.

In the second part of this thesis we have studied the fluid-structure interaction model arising
in hemodynamic applications and we have proved an a priori stability result for the differential
model, under a condition on the positivity of the kinetic energy flux at the outflow.

We have then considered the quite general case of a non-conforming finite element approxima-
tion in space and fully implicit coupled discretisations in time. Indeed, we have experienced
that staggered algorithms are unstable when applied to the problem at hand with physiolog-
ical parameters. We have proposed three implicit coupled algorithms that make use of the
Implicit Euler scheme (indicated IE), satisfying the GCL, that has been proposed in Chapter
1. What changes among them is the structure discretisation, that has been taken as the first
order BDF (BDF), the mid-point (MP) and the Leap-Frog (LF) scheme, respectively, as
well as the coupling conditions between fluid and structure. For the first two coupled algo-
rithms we have proved an unconditional stability result. For the third one, we have proved
a conditional stability result where the stability constant is governed only by the structure

183
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discretisation. We have also proposed a fourth implicit coupled algorithm that employs a
Crank-Nicolson discretisation (CN) for the fluid and a mid point one for the structure. For
this algorithm we could not obtain an unconditional stablility result since the Crank-Nicolson
scheme, applied to the fluid equations in ALE form, is not unconditionally stable, as we
have shown in Chapter 3. Yet, we have proved that the encrgy exchange between fluid and
structure at the discrete level is perfectly balanced in this coupled algorithm.

We have also shown on a numerical test case that the algorithm MP/IE is first order accurate
and MP/CN is second order accurate in time.

To solve the non-linear system that arises at each time step, we have considered a simple Block
Gauss-Seidel iterative algorithm that consists in sub-iterating between fluid and structure
until the coupling conditions are satisfied within a fixed tolerance. We have used this iterative
algorithm for all the numerical simulations presented in Chapters 4 and 5. Yet, as we have
pointed out, this iterative algorithm needs a small relaxation parameter and demands for a
very large number of sub-iterations. Thus, at the moment, it can not be used for realistic
applications. The investigation of accelerating techniques in mandatory.

Strategies as Aitken extrapolations or non-linear GMRES itcrations may be considered in the
hope of dramatically reduce the number of fluid-structure sub-iterations and consequently the
CPU time. This aspect will be investigated in an ongoing research.

Another attractive idea might be that of using the simplified mono-dimensional model, pre-
sented in Chapter 5, as a “preconditioner” of the coupled fluid-structure problem. This
algorithm should be formalized as a non-linear multigrid/multimodel strategy. Since the 1D
model is well suited to describe propagative phenomena, we feel that it could provide a good
prediction of the solution of the coupled fluid-structure model. Preliminary numerical tests
(see [27]) gave very encouraging results. This idea will be furtherly investigated in an ongoing
rescarch.

Finally, in the last Chapter of this work we have proposed a technique to devise absorbing
boundary conditions for the fluid-structure problem, by the coupling with a reduced mono-
dimensional model and we have shown its effectiveness on a numerical test case.

This approach is motivated also by the prospect of implementing multi-scale models for
the human cardiovascular system (see [32]). It is clear that a realistic dctailed numerical
simulation of the flow in a segment of an artery (like, for instance, the carotid bifurcation or
a trait of a coronary) may not be fully accomplished without accounting for the interactions
with the remaining part of the cardiovascular system. One possibility to that direction is
offered by the coupling of the detailed 2D/3D simulation with a simplified 1D or even lumped
parameter modeling of the rest of the global system. The work carried out in this thesis
represents a necessary step towards the goal of setting up an accurate and robust solver of
the whole cardiovascular system.
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