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Abstract

2 he saddlepoint approximation was introduced into statistics in 1954 by Henry
E. Daniels. This basic result on approximating the density function of the
sample mean has been generalized to many situations. The accuracy of this
s approximation is very good, particularly in the tails of the distribution and
for small sample sizes, compared with normal or Edgeworth approximation methods.

Before applying saddlepoint approximations to the bootstrap, this thesis will focus
on saddlepoint approximations for the distribution of quadratic forms in normal vari-
ables and for the distribution of the waiting time in the coupon collector’s problem.
Both developments illustrate the modern art of statistics relying on the computer and
embodying both numeric and analytic approximations. Saddlepoint approximations are
extremely accurate in both cases. This is underlined in the first development by means
of an extensive study and several applications to nonparametric regression, and in the
second by several examples, including the exhaustive bootstrap seen from a collector’s
point of view.

The remaining part of this thesis is devoted to the use of saddlepoint approximations
in order to replace the computer-intensive bootstrap. The recent massive increases in
computer power have led to an upsurge in interest in computer-intensive statistical meth-
ods. The bootstrap is the first computer-intensive method to become widely known. It
found an immediate place in statistical theory and, more slowly, in practice. The boot-
strap seems to be gaining ground as the method of choice in a number of applied fields,
where classical approaches are known to be unreliable, and there is sustained interest
from theoreticians in its development. But it is known that, for accurate approximations
in the tails, the nonparametric bootstrap requires a large number of replicates of the
statistic. As this is time-intensive other methods should be considered. Saddlepoint
methods can provide extremely accurate approximations to resampling distributions.
As a first step I develop fast saddlepoint approximations to bootstrap distributions that
work in the presence of an outlier, using a saddlepoint mixture approximation. Then
I look at robust M-estimates of location like Huber’s M-estimate of location and its
initially MAD scaled version.

One peculiarity of the current literature is that saddlepoint methods are often used
to approximate the density or distribution functions of bootstrap estimators, rather than
related pivots, whereas it is the latter which are more relevant for inference. Hence the
aim of the final part of this thesis is to apply saddlepoint approximations to the con-
struction of studentized confidence intervals based on robust M-estimates. As examples
I consider the studentized versions of Huber’s M-estimate of location, of its initially
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Abstract

MAD scaled version and of Huber’s proposal 2.

In order to make robust inference about a location parameter there are three types
of robustness one would like to achieve: robustness of performance for the estimator of
location, robustness of validity and robustness of efficiency for the resulting confidence
interval method. Hence in the context of studentized bootstrap confidence intervals
I investigate these in more detail in order to give recommendations for practical use,
underlined by an extensive simulation study.

v




Version abrégée

a technique de point de selle a été introduite en statistique en 1954 par Henry
E. Daniels. A lorigine utilisé pour approcher la fonction de densité de la
moyenne, ce résultat a été généralisé a beaucoup de situations. Comparé aux
> méthodes normales et a 'approximation d’Edgeworth, I'exactitude de cette
approximation est tres bonne, en particulier dans les queues de la distribution et pour
des échantillons de petites tailles.

Avant d’appliquer les approximations de point de selle aux méthodes de bootstrap
ou de rééchantillonnage, cette these se concentrera sur des approximations de point
de selle pour la distribution des formes quadratiques de variables normales et pour la
distribution du temps d’attente dans le probleme du collecteur de coupons. Les deux
développements illustrent I'art moderne de la statistique se fondant sur I'informatique et
mélangeant des approximations numériques et analytiques. Les approximations de point
de selle sont extrémement précises dans les deux cas. Ceci est souligné dans le premier
développement au moyen d'une étude étendue et plusieurs applications a la régression
non paramétrique, et dans le second par plusieurs exemples, y compris le bootstrap
exhaustif dans le cas du probleme du collectionneur de coupons.

La partie restante de cette these est consacrée a l'utilisation des approximations
de point de selle afin de substituer le rééchantillonnage. Les récentes augmentations
massives de la puissance de calcul des ordinateurs ont mené a une croissance de l'intéréet
pour des méthodes statistiques dites ‘computer-intensive’. Le bootstrap est la premiere
‘computer-intensive’ méthode a devenir largement connue. Il a trouvé un champ d’appli-
cation immédiat dans la théorie statistique et, plus lentement, dans la pratique. Le
bootstrap semble gagner du terrain comme méthode de choix dans un certain nombre de
domaines appliqués, ou des approches classiques sont connues pour étre incertaines. De
plus, il y a un intérét soutenu des théoriciens dans son développement. Mais on sait que
pour des approximations précises dans les queues, le bootstrap non paramétrique exige
un grand nombre de répliques de la statistique. Comme ceci peut étre tres lent, d’autres
méthodes devraient étre considérées. Les méthodes de point de selle peuvent fournir des
approximations extrémement précises aux distributions de rééchantillonnage. Dans un
premier temps je développe des approximations de point de selle pour des distributions
de rééchantillonnage qui fonctionnent en présence d'une valeur aberrante, en utilisant
une approximation de point de selle mélangée. Ensuite, je considere des M-estimateurs
robustes de lieu comme le M-estimateur de lieu de Huber et sa version standardisée par




Version abrégée

le MAD.

Une particularité de la littérature actuelle est que des méthodes de point de selle
sont souvent employées pour approcher la densité ou la fonction de distribution des esti-
mateurs bootstrap, plutot que celles des pivots associés, tandis que ce sont ces derniers
qui sont plus appropriés pour faire de l'inférence. Par conséquent le but de la partie
finale de cette these est d’appliquer les approximations de point de selle a la construction
d’intervalles de confiance bootstrap studentisés basés sur des M-estimateurs robustes.
Les exemples que je vais considérer sont les versions studentisées du M-estimateur de
Huber, de sa version standardisée par le MAD et du ‘proposal 2’ de Huber — un M-
estimateur robuste de lieu et d’échelle.

Quand on veut faire de 'inférence robuste sur un parametre de lieu, il y a trois types
de robustesse dont on veut s’assurer : la robustesse de performance pour I'estimateur de
lieu, la robustesse de validité et la robustesse d’efficacité pour la méthode par intervalles
de confiance résultants. Par conséquent dans le contexte des intervalles de confiance
bootstrap studentisés, j’étudie ces derniers plus en détails afin de donner des recom-
mandations pour 'usage pratique, lesquelles seront soulignées par une étude étendue de
simulations.
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1. Introduction

‘Asymptopia. By all accounts, it’s a great place to visit. Of course, nobody
has ever been there, but it sure looks nice from a distance. Most visitors
stop at the outskirts — after all, many tour guides suggest that you really
don’t need to go too close (as if you could!) since after a certain point, not
much changes. Besides, it can be a long, lonely trip. That is not to say
that the journey is not worthwhile. ... The promise of saddlepoint methods
in particular seems to be that of bringing Asymptotics closer to us, with the
promise of excellent asymptotic approximations in even very small sample
situations. Asymptopia: How much is a one-way ticket?’

Michael A. Martin (1996, pages 239 and 241)

he term approximation refers, in general, to the representation of ‘something’
by ‘something else’ that is expected to be a useful replacement for the ‘some-
thing’. Approximations are sometimes needed because it is not possible to
s obtain an exact representation of the ‘something’; even when an exact repre-
sentation is possible, approximations may simplify analytical treatments. In scientific
work, approximations are in constant use. For example, much scientific argument, and
nearly all statistical analysis, is based on mathematical models that are essentially ap-
proximations.

Most statistical problems rely in some way on approximations to densities or distri-
butions functions derived from asymptotic theory. Exact answers are rarely available in
a form simple enough to be used directly. Typically, the approximations to be used are
based on results in the theory of probability. This theory can be usefully combined with
asymptotic techniques from analysis and the development of asymptotic expansions.
One such example is the saddlepoint approrimation, which was introduced in statistics
by Daniels (1954) for deriving a very accurate approximation to the density of the mean
of a sample of independent and identically distributed observations. This pioneering
article was reprinted in Springer’s ‘Breakthroughs in Statistics’ series (Daniels, 1997).
Saddlepoint approximations can be obtained for any statistic which admits a cumulant
generating function. If the cumulant generating function is known the moment gen-
erating function may be easily determined and the density and the distribution may
be computed by numerically evaluating the convolution formulae or by integrating its
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inversion formula. But, in practice the first approach may be time-consuming and inac-
curate. The second uses the Fourier inversion formula for the exact density and chooses
the contour of integration to pass through the saddlepoint of the integrand on the line
of steepest descent. In this form the argument is similar to the term-by-term inver-
sion used to obtain the Edgeworth expansion, but is based on the theory of asymptotic
analysis. The saddlepoint approximation to the distribution of a statistic is obtained
by integration of its density estimate. Daniels (1954) used the saddlepoint technique of
asymptotic analysis, for which general discussions can be found in Courant and Hilbert
(1950) or Bleistein and Handelsman (1975).

After Daniels’s paper, and up to the mid-1960s, saddlepoint techniques were applied
to several types of problem by Daniels and a few authors. The apparent loss of interest
in this area after the mid-1960s was followed by a strong revival at the beginning of the
1980s. Following Barndorff-Nielsen and Cox (1979), this method received a dramatic
surge in popularity in the literature, and several extensions of Daniels’ first formula have
been proposed; see for example Lugannani and Rice (1980) for tail probabilities, Field
(1982) for M-estimators, Robinson (1982) for permutation tests, Davison and Hinkley
(1988) for bootstrap distributions, Booth and Butler (1990) for randomization distri-
butions, and Gatto and Ronchetti (1996) for marginal densities of general statistics.
Overall, saddlepoint approximations have been shown to be an important and power-
ful tool for obtaining accurate expressions for densities and distribution functions. The
number of applications of the saddlepoint approximation is quite impressive, as warrants
this extremely powerful approximation. Thus, various techniques of accurate approx-
imations, relying on it in one way or another, have been developed since the seminal
article by Daniels (1954). Detailed references on the application of saddlepoint approxi-
mations in statistics can be found in the review articles by Reid (1988, 1991, 1996) and
in the books by Barndorff-Nielsen and Cox (1989), Field and Ronchetti (1990), Kolassa
(1994), Jensen (1995), Field and Tingley (1997), and Davison and Hinkley (1997) for
bootstrap analysis. More recently, the contributions of saddlepoint and related approx-
imations published in Biometrika are reviewed in Davison (2001). To get familiarized
with the theory underlying the saddlepoint approximation, I refer to Goutis and Casella
(1999), Huzurbazar (1999), or, more mathematically, to Daniels (1987). But, as noted
by Ronchetti (1997, page 175),

4

. it is impossible to enumerate all the applications of saddlepoint techniques
but the number, the diversity, and accuracy of the resulting approzimations
clearly show the great influence of Daniel’s paper in statistics.’

Ronchetti (1997, page 175) also provided an amusing explaination by Henry E. Daniels
on the spelling of the word ‘saddlepoint’.

‘“The reason is that in the original manuscript of my 1954 paper ‘saddlepoint’
appeared as a typist’s error, but the editor of the Annals of Mathematical
Statistics either didn’t notice or didn’t mind. So I decided to leave it as
it matched up rather nicely with the German form Sattelpunkt which also
appears as one word.’
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Unlike their direct Edgeworth counterparts, expansions based on the saddlepoint
method have relative rather than absolute errors, are nonnegative everywhere (for the
density function), and are almost uniformly superior to the former in the tails of the
distribution, where most of the statistical interest lies; see, for instance, Easton and
Ronchetti (1986), McCullagh (1987), Reid (1988), Barndorff-Nielsen and Cox (1989),
Field and Ronchetti (1990) or Pace and Salvan (1997). The relation between them has
already been discussed in Hampel (1974a) and in more detail in Field and Hampel (1978,
1982).

Note also that saddlepoint approximations fall into the class of so-called small sam-
ple asymptotics — an expression coined by Hampel (1974a). As mentioned previously,
asymptotic distributions form the basis of most statistical inferences, but it has long
been known that the usual large sample approximations — typically normal and chi-
squared — can provide poor or misleading inferences from samples of the sizes met in
practice. One reason for this is that the central limit theorem and related Edgeworth se-
ries corrections give density and distribution function approximations with poor relative
error properties and can be inaccurate in the region of most use for statistical purposes,
namely the tails. Thus, as illustrated above, the focus of asymptotic research has shifted
over the past 25 years to small sample asymptotics based on saddlepoint and related
approximations, which can provide very accurate answers even when the sample size n
is small. An important feature is that these methods have good relative error properties.
In this context, Henry E. Daniels (Whittle, 1993, page 350) noticed that

‘... the large deviation people, especially the pure mathematicians, are always
looking for rates. In this way they miss one of the essential aspects of the
saddlepoint approach, which is the extra factor, giving you the next level of
approzimation. Use of the rate term alone gives you something which s
wrong by a term of relative order n=Y2. It is this second saddlepoint factor
which gives you the astonishing accuracy.’

Small sample inference is one of the central problems of statistics, because samples
whose effective size is small or moderate arise very commonly in fields of application.
Traditional examples arise in epidemiology, medicine, and social science, but the same
issues appear also in established fields such as signal detection and those of emerging
interest such as population pharmacokinetics. Their usefulness is summarized by Field
(1997, page 39) underlining that

14

. small sample asymptotics are useful in determining when the asymptotic
results are good approximations and providing alternatives in the cases where
they are not.’

However there is a widespread misapprehension that these methods are so complicated
that they can only be used by the cognoscenti; see for example the discussion of Reid
(1995). It is perhaps for this reason that these methods are little used in applied work,
even in contexts where they are known to provide excellent approximations and con-
sequently greatly improved inferences. In this respect the asymptotics have been out-
stripped by competing approaches such as the bootstrap, Markov chain Monte Carlo,
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and Bayesian approaches to inference. Each of these approaches has a role to play, but
for parametric inferences in small samples each also has drawbacks that are not shared
by small sample asymptotics. This under-use of the parametric methods is made more
ironic by the fact that their routine application to the large class of generalized linear
models was already discussed in Davison (1988), and that some of the remaining difficul-
ties in applying them in curved exponential family models seem to have been overcome
(Skovgaard, 1996), opening the way to a more widespread use in applications. There
is also work on their application in general regression problems (DiCiccio et al., 1990;
DiCiccio and Field, 1991). Once again, it is impossible to enumerate all applications,
but I refer to Brazzale (2000) for further reading and implementation of such so-called
higher-order likelihood-based approximations, which, in one way or another, rely on
Daniels’ (1954) pioneering article.

Parallel to the application of small sample asymptotics in parametric problems has
been the realization that they can be applied also in non- and semi-parametric situa-
tions. Indeed, one of their earliest modern applications was in robust statistics (Hampel,
1974a), and there is now a large literature on their use in replacing simulation in resam-
pling (see Davison and Hinkley (1997), for a review). One peculiarity of the literature
is that these methods are often used to approximate density or distribution functions
of estimators (see Strawderman et al. (1996), for example), rather than related pivots,
whereas it is the latter which are more relevant for inference. This poses problems, be-
cause approximation of pivots seems to be intrinsically harder, except in special cases.
Two broad ways to estimate densities and distributions of pivots are a direct saddlepoint
approach using an approximate cumulant-generating function constructed using the von
Mises expansion of the pivot (Gatto, 1994; Gatto and Ronchetti, 1996), and an indirect
approach to the density of the pivot that generalizes Daniels and Young (1991) in using
Laplace approximation to marginalize the joint density of the estimator and its stan-
dard error. Again, saddlepoint methods can provide extremely accurate approximations
within these contexts.

Outline

The thesis is organized as follows. Chapter 2 serves as a review of basic saddlepoint
approximations. In Chapters 3 and 4 saddlepoint approximations will be successfully
applied as a prelude to their application to robust resampling inference presented in
Chapters 5, 6 and 7.

More precisely, I will illustrate in Chapter 3 that the saddlepoint approximation
is a method of calculating the distribution of quadratic forms in normal variates in
an extremely accurate way. The saddlepoint approximation to the distribution of the
waiting time in the coupon collector’s problem will be given in Chapter 4. Chapter 5
starts the intensive application of saddlepoint approximations to bootstrap distributions.
As examples I will consider in Chapter 5 Huber’s M-estimate of location and its initial
MAD scaled version, whereas in Chapter 6 I consider their studentized versions together
with the classical studentized statistic and the studentized version of Huber’s proposal
2. These studentized statistics form the basis of the bootstrap-t method discussed in
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/ Possible paths through the thesis \
Basic saddlepoint approximations Chapter 2
Quadratic forms in normal variables Chapter 3
The coupon collector’s problem Chapter 4
Bootstrap distributions Chapter 5
Studentized bootstrap distributions Chapter 6

KStudentized bootstrap confidence intervals Chapter 7/

Figure 1.1. Dependence chart. A solid arrow means that a chapter is pre-
requisite for a mext chapter. A dotted arrow means a natural continuation.
Vertical or horizontal position has no independent meaning.

Chapter 7. The aim of Chapter 7 is to identify a procedure which is preferable to use
in order to perform robust inference. Every chapter ends with a ‘Conclusion’ section.
These are meant to summarize its contents and give an outlook to open questions or
serve as bridge for the subsequent chapter. For the reader’s convenience Figure 1.1
indicates possible paths through the thesis.

The new contributions of this thesis are given in Chapters 3 and 4, in Section 5.2
and in the examples and comments given in Chapters 5 and 6. Especially, I would like
to mention Sections 5.3.2.2, 6.4.1, 6.4.2 and 6.5.2. The simulation study in Chapter 7,
together with additional remarks in Chapters 5 and 6, fill several gaps in the bootstrap
literature. The recommendation given in Section 7.3, summarising Chapters 5-7, can
also be seen as a contribution to robust resampling inference. To my knowledge the cur-
rent thesis is the only work so far which considered mainly saddlepoint approximations
to bootstrap versions of (un)studentized robust M-estimates of location. Much has been
done in the non-bootstrap context but not in the bootstrap context. I hope that this
thesis will stimulate further discussion and research.

Computing environment

When not mentioned otherwise, calculations were made on a Sun SPARC Ultra 60
workstation with 1Gb RAM using S-PLuUs or R. S-PLus is a value-added version
of S (Becker et al., 1988; Chambers, 1998) sold by Insightful Corporation (formerly
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Math Soft, Inc.). The S system was recently recognized with the prestigious ‘Associ-
ation for Computing Machinery (ACM) Software Systems Award’. The ACM citation
(www.acm.org/awards/ss_citations/1998.html) notes that S ‘forever altered the way
people analyze, visualize, and manipulate data’. The S language is often the vehicle of
choice for research in statistical methodology and R (Ihaka and Gentleman, 1996) pro-
vides a free software route to participation in that activity. R is also known as ‘GNU
S’ and is similar to the ACM award-winning S system. Please consult the R project
homepage (www.R-project.org) for further information. I have tried where possible to
use code that works in all versions of S-PLUS and R. Good reference books for S-PLUS
and R are Venables and Ripley (1999, 2000).

There are various tools available in S-PLUS to measure resources, but they differ
between versions. The principal resource considered in this thesis is the CPU time. It
is clear that more resources, like memory usage, should be considered but I found it
sufficient to simply consider the CPU time in order to illustrate the comments made
herein. To do so I used the S-PLUS function resources given in Venables and Ripley
(2000, pages 151 and 152).

Typesetting
The thesis was typeset using ITEX. The figures were generated in PostScript, and were
directly incorporated.

Notation and typographic conventions

Besides standard notation and the one introduced throughout the thesis, note that the
range of summation is not explicitly stated in the text but is implied by the range of the
index. For example, if the index i is known to vary between 1 and n the term > | will
be simple written as » . Throughout this thesis S-PLUS or R language constructs and
commands are set in typewriter font 1like this, or in using the S-PLUS or R prompt
>7 like

>

The end of each example or remark is marked with a [CJ.




2. Basic saddlepoint approximations

‘Roughly speaking, a higher order approximation around the center of the
distribution is replaced by local low order approximations at each point. The
unusual characteristic of these approximations is that the first few terms (or
even just the leading term) often give very accurate approxzimations in the far
tails of the distributions even for small sample sizes. Besides the theoretical
reasons, one empirical reason for the excellent small sample behavior is that
the saddlepoint approximations are density-like objects and do not show the
polynomial-like waves exhibited for instance by Edgeworth approximations.’

Christopher A. Field and Elvezio M. Ronchetti (1990, page 1)

oz addlepoint approximations to density and distribution functions are the basis

5
(@‘\‘: of many highly accurate small sample methods. In this chapter the ideas un-
Q;@, derlying the saddlepoint approximations are informally described for further
=% use in subsequent chapters. I will not sketch detailed derivations of the ap-
proximations stated as there are plenty of authors who did this very carefully; see the
references given in Chapter 1. Especially, concerning mathematical rigour, I refer to
Jensen’s (1995) book.

Section 2.1 recalls some statements made in Chapter 1. As saddlepoint approxima-
tions can be obtained for any statistic which admits a cumulant generating function I
discuss moments and cumulants and their relationship briefly in Section 2.2. Section 2.3
reviews the saddlepoint approximations for the mean stated in the seminal article by
Daniels (1954). These basic approximations will be generalised in Section 2.4 and used
in subsequent chapters.

2.1. Introduction

ost statistical problems rely in some way on approximations to densities or
S distributions functions derived from asymptotic theory. Exact answers are
rarely available in a form simple enough to be used directly. It has long been
known that the usual large sample approximations — typically normal and
chi-squared — can provide poor or misleading inferences from samples of the sizes met
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in practice. A first alternative is Edgeworth expansion. For a general review of the
Edgeworth expansion see Easton and Ronchetti (1986) and the references therein. In
general, the Edgeworth expansion provides a good approximation in the centre of the
density, but can lead to inaccurate tail probabilities. Moreover, they contain absolute
errors, and can be negative. A second alternative is saddlepoint approximations, intro-
duced by Daniels (1954) using the saddlepoint technique of asymptotic analysis. The
saddlepoint approximation can be more accurate than Edgeworth expansion, especially
in the distribution tails and for small sample sizes. Saddlepoint methods can be derived
analytically from an Edgeworth expansion of the density of the statistic of interest. Eas-
ton and Ronchetti (1986) presented a technique for converting an Edgeworth expansion
into a saddlepoint approximation. Moreover, they mentioned a theoretical advantage of
the saddlepoint approximation: the leading term of the saddlepoint approximation is of
the same order as the first two terms of the Edgeworth expansion. As already outlined
in Chapter 1, saddlepoint approximations contain relative rather than absolute errors,
are nonnegative everywhere, and are almost uniformly superior to the former in the tails
of the distribution, where most of the statistical interest lies.

As saddlepoint approximations require the entire cumulant generating function, it
should be mentioned that Easton and Ronchetti (1986) provide a general method for
deriving saddlepoint approximations for very general statistics. The method involves
using only the first few terms in a Taylor expansion of the cumulant generating function
and then applying the usual saddlepoint technique; see also Gatto (1994) and Gatto and
Ronchetti (1996). Since the tail area probability of a distribution critically depends on
the behaviour of its cumulant generating function around the origin, truncating the cu-
mulant generating function could have some potentially dramatic effect on the resulting
saddlepoint approximation. Furthermore, the saddlepoint equation obtained from the
truncated cumulant generating function may not have a unique solution, though there
are some suggestions to overcome this difficulty (Wang, 1992).

2.2. Cumulant generating functions

S o his section deals with the elementary theory of cumulants, or more precisely,
gives the definition of the cumulant generating function, which is the basis of
the saddlepoint approximation. For a thorough discussion of moments and
s cumulants and the relationship between them, I refer to McCullagh (1987).
Let M({) be the moment generating function of the random variable X,

M(C) = E{exp(¢X)},

Qw

("\ )

provided M ({) < oo. For statistical purposes it is often more convenient to work with
the cumulant generating function of X. If the random variable X has a density function
f(z) defined over —oo < x < 00, then the cumulant generating function is

[e.e]

K(C) = log M(C) = log { /

—00

" f(x)dx} :
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If the distribution of X is discrete, the integral is replaced by a sum over the discrete
values. More generally, to take care of both the discrete and the continous case simul-

taneously, we may use
K(¢) = log {/ ecxdF(:E)} ,

where F(+) is a probability measure. As noticed for instance in McCullagh (1987, page
25) it is often simpler to work with cumulants rather than with moments. The rth
cumulant is k, = K (0), so K(¢) has power expansion

K@) =) (/1)

provided all the cumulants exist. The first and second cumulants of X are its mean and
variance. The third and fourth cumulants of X, the skewness, k3, and the kurtosis, k4,
are often used as simple measures of how close a random variable is to normality.

Example 2.1. Consider n independent random variables X7, ..., X, with respective cu-
mulant generating functions Ky, (¢),..., Kx,(¢). Then X; 4+ --- + X,, has cumulant
generating function

K(¢) = log {M(0)} = log {H MXZ.<<>} =3 Kxl0)

It follows that the rth cumulant of a sum of independent random variables is the sum
of their rth cumulants. [l

Example 2.2 (Binomial distribution). Let X,..., X, be a random sample from a bi-
nomial distribution B(n,p). Following Example 2.1, the cumulant generating function

of =5 X, is given by K(() = nKx((), where Kx({) =log[l+p{exp(()—1}]. O

Example 2.3 (Multinomial distribution). Suppose that a vector random variable X =
(X1,...,X,) has the multinomial distribution with denominator n and probabilities
,... ,Tm. This distribution arises when n independent observations take values in
one of m categories, each falling into the rth category with probability =, 7. > 0 and
> m = 1. Then X, is the total number falling into the rth category. Its mass function
is

m
n!
Pr( Xy =xz1,...,. Xpn=2p) = Tt X e X E T, =n.
1! X oo X Ty,! -
r=

The moment generating function of X is

T n'
E(BC X) — § ﬂ.iﬁl VTR, 7T717'lm61'1<1+ +xnCn’
! X oo X !

where the sum is over all integer vectors z such that z, > 0 and »_ x, = n. Thus the
cumulant generating function of the vector random variable X is

K(¢) = log E{exp(¢TX)} = nlog {Z m; exp(Cz-)} :

i=1
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It follows that E(X,) = nnr,, var(X,) = nn.(1 — 7,.), and cov(X,, X;) = —nm,7s for
r#s. O

2.3. Saddlepoint approximations for the mean

: r\\v"\m he first statistical application of the saddlepoint approximation was derived
«,,j/bg\\{a by Daniels (1954). He approached the problem of finding a density approxi-
é}%@* mation through the inversion of a Fourier transform. As shown below, such
O an approach makes us deal with complex integration.

Let X be a scalar random variable distributed according to the density function f(x).

We define the moment generating function,

M) = [ e pays

—00

and the cumulant generating function,

K(r) = log { / Z e f(x)dx} .

To restore f(x) we can apply the Fourier inversion formula,

flz) = % /_OO M (ir)e”"*dr.

Let Xi,..., X, be a sample of independent and identically distributed scalar variables
distributed according to the density function f(-), and let 7= X denote their average.
Following Examples 2.1 and 2.2, its density function fr(t) is therefore

fr(t) = % OOM"(ir)e’"mdr
- % " expn(K (7) — v)}dr. (2.3.1)

—100

By Cauchy’s closed curve theorem of complex variables the value of the integrand is
unchanged if we integrate along any line parallel to the imaginary axis,

e e}

Fr(t) = 5= [ esln{K(C-+ i) - (¢ + i)l 2.32)

o
To evaluate the integral we will expand the contents of the exponential as a power series

in y about 7 = ¢ + 70,

K(C+iy) — (C+iy)t = K(Q) — ¢+ i{K'(Q) — thy+ > KV(Q(iy) /4, (2.3.3)

Jj=2

10
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where K'(¢) and KY)(¢) are the first and jth derivatives of K({) with respect to (.
Then, combining (2.3.3) and (2.3.2) yields

fr(t) = eXp (n[ — (t+i{K'({) —t}y—i—ZK )(1y) /]])
= 2—exp[n{K() (t}]/_ exp (n [Z{K/ —t}y+ZK 23/ /]])

Next, we separate the first two terms in the exponential, and then expand the remaining
terms as a product of power series:

fr(t) = %exp[n{mc)—a}] / " exp (n [iK(C) — thy — K"(Q)y?/2)
x [T exp [n {KV(C)(iy)’/3'}] dy

j=3
o

= % exp [n{ K (¢) — Ct}] / exp (n [i{K"(C) — thy — K"(C)y*/2])
<11

j=3

1+ {nK(j)(O(iy)j/j!}k /k!] dy.

k>1

Multiplying out the product of summations, we get

Frlt) = e (KO —ctl] [ e (n[i{K'(Q) — thy - K"(Q)s?/2])
X <1 + ZAjﬂyf> dy. (2.3.4)

The A; correspond in some extent to the coefficients A; in Daniels (1954, equation (4.3)),
and hence are not given here. We now apply the standard integral, true for Re(p) > 0:

/ R (2) Vap P exp(q? /4p) Haia/2 /D). (2:3.5)

[e.e]

where H;(-) is the Hermite polynomial of degree j. Note that Hox(0) = (—1)(2k)!/k!
and Ho41(0) = 0. Applying (2.3.5) to (2.3.4) yields

; 1 i/2 K/(C)
”;AJ(_” {QWK”(O} H{ 2K"(C )/n}]

When ¢ = 0 this reduces to the Edgeworth series for fr(¢). The formal proof of con-
vergence of the series requires a number of other results and hence will not be given

11
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~

here. However, when K’(¢) = t, the arguments of the Hermite functions become zero,
thus terms of all odd orders disappear and only the terms of even orders contribute; see
also Daniels (1954, page 636). It is certainly reasonable that this should be the best
estimate of the integral. This is underlined by the fact that the integrand of (2.3.1) is
of the form exp{ng(-)}, where g(x) = K(x) — xt, and hence the major contribution to
this integrand for large n will come from a neighborhood of the saddlepoint f , a zero of

~

9(:), as K'(¢) = t.

This approach can also be motivated from a purely analytic point of view, by recourse
to saddlepoint integration techniques. Pick ¢ along the real axis minimizing K (¢) — Ct,
and pick the path through f along which the real part of K({)— (t decreases the fastest
as one moves away from the real axis. This path is called the path of steepest descent;
see also Kolassa (1994, Section 4.4) or Field and Ronchetti (1990, Sections 3.2 and 3.3)
for more evidence and figures of the resulting steepest descent curves. Another nice
application of the method of steepest descent is given in the context of random walk
and random flights problems in Hughes (1995, Section 2.7). In addition, note also that
f = f (t), viewed as a point in the complex plane, is neither a maximum nor a minimum
but, as stated above, a saddlepoint of K(({) — (t, as the function is constant in the
imaginary direction and has an extremum in the real direction.

Hence, the so-called saddlepoint approximation (Daniels, 1954) to fr(t) is

—1/2
fult) = {#@} exp {n [K(O)~ &t} (236)

where é = é (), known as the saddlepoint, is the value of ( satisfying the saddlepoint
equation K'(() = t, where K'(¢) and K”(¢) are the first and second derivatives of K (¢)
with respect to (.

Daniels (1954) discussed the existence and properties of the real roots of the sad-
dlepoint equation K'(¢) = ¢, upon which the saddlepoint approximations depend. He
noticed that the saddlepoint approximation can be used whenever t lies within a re-
stricted range of values assumed by K'({) in order to have a unique real root. For values
of ¢ near the bounds of its admissible range, where the approximation might be ex-
pected to fail, he noticed that the approximation is very accurate, whereas the accuracy
of the normal approximation, and of the Edgeworth expansion generally, deteriorate as
t approaches the ends of its range.

Note that the expression (2.3.6) is always positive, but will not usually integrate to
exactly one, so in practice it is renormalized. The renormalized version improves the
relative order of the approximation to O(n~%/2), it has been O(n~') without renormal-
ization. Calculation of these error terms often requires detailed technical arguments, and
I do not include them; see Field and Ronchetti (1990) or Kolassa (1994). Note that the
notation O(n~!) denotes a function that satisfies lim, .., nO(n~') = constant, where
for a random sample of size n standard large sample techniques typically give approx-
imations of absolute errors of order O(n~'/?). The property of having a relative error
of order at worst O(n~!) for approximating the density is a major advantage compared
to Edgeworth expansions. And as the error is relative the ratio of the true distribution

12
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to its saddlepoint approximation is bounded over the likely range of t. Daniels (1954,
Section 7) showed that the coefficient of the term of order O(n~') does not depend on ¢
for a wide class of underlying densities. Thus, in such cases the relative error is of order
O(n™1) even uniformly (Jensen, 1988, 1995, Chapter 6). The approximation (2.3.6) can
also be derived from the Edgeworth expansion; see Barndorff-Nielsen and Cox (1979) or
Barndorff-Nielsen and Cox (1989, Section 4.3). In the latter, (2.3.6) is called the tilted
Edgeworth expansion.

It turns out that the saddlepoint approximation (2.3.6) is exact or exact up to renor-
malization for the normal, the gamma and the inverse normal distributions (Daniels,
1954, 1980). An analogous approximation for the distribution of the sample mean of
discrete variables has the same form as (2.3.6) with n in the left-hand term replaced by
1/n; see Daniels (1983, 1987).

Finally, Daniels (1954, Section 4) showed that saddlepoint approximations can also
be viewed probabilistically by means of the method of conjugate densities. Following
Reid (1988, page 214) this leads to a ‘more statistical version of the derivation’ of the
saddlepoint approximation given in (2.3.6). This technique had been used by Esscher
(1932), but is attributed to Cramér (1938), whereas Efron (1981) and others call this
operation exponential tilting. Although not shown in this thesis, Ronchetti (1997, page
173) noted that:

‘By proving that the method of steepest descent and the technique based on
conjugate density lead to the same approximation, Daniels gave new in-
sight into the properties and in particular the accuracy of the approximation.
Whereas Daniels (and this author) shows a clear preference for the derivation
by means of the method of steepest descent, we can arque that it is the com-
bination of both which really leads to a deep understanding of the properties
of the approximation.’

So far, we only have seen the saddlepoint approximation to the density of the mean,
derived in Daniels (1954) and reviewed in Reid (1988). There are essentially three
methods of calculating saddlepoint approximations to the cumulative distribution func-
tion of T = X in common use: the numerically integrated saddlepoint density, usu-
ally renormalized for additional accuracy; the indirect Edgeworth expansion; and the
Lugannani-Rice formula. The latter two were compared in Daniels (1987) in the case of
the mean, for exponential and inverse normal distributions, examples where the density
approximation (2.3.6) is exact. He found that the indirect Edgeworth expansion, not
given herein (see Daniels (1987, equation (3.4)), for instance), performs slightly better
than the Lugannani-Rice formula (2.3.8), shown below. However, the Lugannani-Rice
formula is much easier and simpler to apply than the indirect Edgeworth expansion,
which was studied intensively in Robinson et al. (1990) or in Jing and Robinson (1994,
Section 2). See also, Robinson (1982), who showed that the indirect Edgeworth expan-
sion as given in equation (3.4) in Daniels (1987) is actually the Laplace approximation
to the integrated saddlepoint density.

The approximation to the cumulative distribution function used throughout this the-
sis, originally due to Barndorff-Nielsen (1986, 1990), is an alternative to the Lugannani—

13
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Rice approximation, and is defined as

Fi(t) :cb{w+$1og(”)}, (2.3.7)

w
where ®(-) denotes the standard normal cumulative distribution function, and

w=sign(@) {2 (G- x©O)}", w={m@)"

Both w and v are functions of ¢. Calculation of (2.3.7) and (2.3.6) requires knowledge of
the cumulant generating function K (¢) and computation of f , the saddlepoint, for each
t of interest. The relative error in (2.3.7) is also O(n=3/2). The derivation of (2.3.7) is
reviewed in Jensen (1995), and uniformity properties of the approximation are discussed
in Jensen (1988).

As mentioned, (2.3.7) is an alternative to the Lugannani-Rice approximation (Lu-
gannani and Rice, 1980),

FIR() = d(w) + o(w) (1 _ 1) , (2.3.8)

w v

where ¢(-) is the standard normal density function. For a detailed review and discus-
sion see Daniels (1987). More recently, Routledge and Tsao (1997a) proved that the
Lugannani-Rice approximation may be differentiated to obtain Daniel’s expansion for
the corresponding density function.

Approximations (2.3.7) and (2.3.8) are usually indistinguishable in practice. More
precisely, (2.3.8) has similar, often identical, asymptotic properties to (2.3.7); see, for
example, Barndorff-Nielsen (1991, Section 5). Jensen (1995, Theorem 5.1.1) proved that
(2.3.7) is equivalent to (2.3.8). The main advantage of the approximations (2.3.7) and
(2.3.8) over the numerically integrated saddlepoint density is that they are much simpler
to use; they only require the evaluation of one saddlepoint, and no numerical integration.
The first could be avoided in the integrated saddlepoint approach by means of the
transformation given in Daniels (1983, Section 6), but numerical integration still would
be needed to get the distribution approximation. See Robert and Casella (1999, Example
6.3.4) for an illustration of the use of the Metropolis—Hastings algorithm to do such a
calculation. Routledge and Tsao (1997b) introduced two numerical quadrature methods
for computing distributions, being complements to asymptotics. They concluded that
the saddlepoint approximation will in general be uniformly more accurate, especially in
the extreme tail.

In rewriting approximations (2.3.7) and (2.3.8) as 1 — F}(t), one notices the ap-
pearence of the term 1 — ®(-). As noted by Daniels (1987, page 45), the calculation of
very small tail probabilities may lead to numerical instability and he found it helpful to
express the formulae in terms of Mill’s ratio R(-) = {1 — ®(-)}/¢(-) rather than 1 — ®(-)
itself. Fortunately, I did not encounter such instabilities for the applications in this
thesis.

14
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Both approximations (2.3.7) and (2.3.8) are often surprisingly accurate throughout
the range of T = X (see Daniels (1983, 1987) or Davison and Hinkley (1988), for
example), except when ¢ is close to E(T), or similarly é ~ 0, where the approximations
can become numerically unstable, and are best avoided. The approximation should then
be replaced by its limit as ¢ — 0 (Daniels, 1987, equation (4.10)),

1 1 _1/9
FAR(T)} = 5 — 5(2m) 225(0),
with A3(0) = K"(0)/{K"(0)}3/2, where K”(-) and K"(-) are the second and the third
derivatives of the cumulant generating function with respect to .

With slight modifications similar formulae are available when the Xy,..., X, are a
sample of independent and identically distributed discrete variables, taking values on
a lattice with probabilities Pr(X; = j) = p;, ¢ = 1,... ,n. Following Daniels (1987,
Section 6) the coefficient v used in the approximations (2.3.7) and (2.3.8) needs to be
changed and a continuity correction to the saddlepoint equation is needed. Indeed, f *
denotes the value of ( satisfying K'({) =t — 1/2, and v is defined as

v = 2sinh {é* {K"(é*)}lﬂ] :

See also Kolassa (1994, Section 5.5).

Finally, note that the above approximations are based on the normal distribution and
are the most common saddlepoint approximations. However, derivations based on other
distributions are also possible using bases such as the gamma and the inverse normal
distributions. The resulting generalized approximations are presented and discussed in
Wood et al. (1993) for the Lugannani-Rice approximation (2.3.8), and in Booth and
Wood (1995) for (2.3.7).

2.4. Generalisation

. r\\v\, he saddlepoint approximations for the mean discussed in the previous section
\ ‘%%\

o
2 {g will be generalised in this section in order to enable their use in subsequent
. ‘:{%@ chapters. First of all, Daniel’s (1954) saddlepoint approximation to the density
O\ s function, (2.3.6), contains already the basic elements needed to go beyond the
case of the mean. Indeed (2.3.1) holds for an arbitrary statistic, 7', having cumulant gen-
erating function Kr(-), provided K(7) is replaced by Kr(n7)/n. As an application, the
saddlepoint approximations for sums of independent and identically distributed variates,
for instance, is reviewed in Davison and Hinkley (1988, Section 2). Although typically
unknown, an approximation for Kr(-), for example, by Taylor expansion could be used
in (2.3.1). Easton and Ronchetti (1986) showed that the other steps remain the same.
The basic approximations could be generalized in various ways. But, for the purpose
of this thesis, the most useful situation is as follows. Let Xi,..., X, be a sample of
independent identically distributed scalar random variables. Similar to Example 2.1,
the cumulant generating function of a d x 1 statistic 7', which may be expressed as
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a linear combination of independent random variables, say T = > a;X;, is Kr(¢) =
K(¢) = >  Kx,(¢"a;), where the a; are constant d x 1 vectors, and ( is a d X 1 vector.
For additional invariance properties of the cumulant generating function see McCullagh
(1987, Section 6.2.4). Another way to express T is as A" X, where A" is the d x n matrix
whose ith column is a;, and X is the n x 1 vector with ¢th element X;. The saddlepoint
approximation to the density of T at t becomes

0y = { k@) e {K (G~ ¢t} (24.1)

where ¢ = ¢ (t), the saddlepoint, satisfies the d x 1 saddlepoint equation 0K (¢)/0¢ =t
and K”(C) is the d x d matrix with elements 2K (¢)/0¢A¢T, and |-| denotes determinant;
see also Davison and Hinkley (1997, Section 9.5.2).

When d = 1, i.e. T is scalar, an approximation to its cumulative distribution function
at t is

Fi(t) :<I>{w+$log<v)}, (2.4.2)

where
w=sign(Q) {2(&-kO)} . we=e{xO}"

See Barndorff-Nielsen and Cox (1994, Section 6.7). When ¢ is close to E(T"), approxi-
mation (2.4.2) can become numerically unstable, and is best avoided. For the general
case the explicit expression is rather complicated. Fortunately such values of ¢ are not
of interest in practice.

As we will see in Section 5.3, this approximation generalizes easily when the quantity
of interest is the scalar solution of estimating equations as in the context of robust
inference.

2.5. Conclusion

n this chapter, saddlepoint approximations were reviewed. It was stated that

the saddlepoint method yields extremely accurate approximations to density

and distribution functions. This accuracy will be underlined with the ap-

plications shown in subsequent chapters. Saddlepoint approximations have
widespread applicability, far beyond that illustrated in this chapter; see the review arti-
cles by Reid (1988, 1991, 1996), and more recently Davison (2001).

One of the limitations of saddlepoint approximation is the requirement that the cu-
mulant generating function exists. Although this may appear to be rather limiting, the
list for commonly used distributions with cumulant functions is already large. Further-
more this limitation can be bypassed in some instances by using the empirical cumulant
generating function. Examples include applications to resampling methods such as the
bootstrap (see Davison and Hinkley (1988) and Chapters 5-7 of this thesis) as well as
applications to density estimation (Feuerverger, 1989).
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2.5. Conclusion

As a final note, concerning the writing style of Daniels’ pioneering article, Ronchetti
(1997, page 172) wrote the following:

‘Daniels writes the first part in the style of a good applied mathematician and
this allows him to focus on the ideas. ... Fortunately, the paper was written

in 1954 for I suspect such a style would not be acceptable nowadays in the

‘Annals of Statistics’.’

But, fortunately, it was accepted for publication.
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‘... there is also this interesting fact about saddlepoint approximations: they
always seem to be more accurate than one should expect. In fact, they seem
to embody the truth of the matter far better than the exact formula, which is
itself often difficult to comprehend. The saddlepoint approximation somehow
seems to capture the essence, which is why I pursue it. One does feel that
there is some underlying reason why the approximation is so much better
than expected.’

Henry E. Daniels (Whittle, 1993, page 350)

n this chapter a saddlepoint approximation is used for the distribution of
quadratic forms in normal variates. It is comparable in speed with exact
methods, almost as accurate and is much easier to program. After stating
the problem in Section 3.1, a review of exact and approximate methods for
computing the distribution of quadratic forms in normal variates, presented in Section
3.2, is given in Section 3.3. The exact cumulant generating function is easily derived.
Extensive study in Section 3.4 shows that this approximates the distribution extremely
accurately. This is underlined in Section 3.5 by means of several applications to non-
parametric regression.
The main results of this chapter appeared in Biometrika (Kuonen, 1999). The appli-
cation to nonparametric regression in Section 3.5.2 was presented at Prague Stochastics
'98 (Kuonen, 1998¢), and a review was given at the SRSS meeting (Kuonen, 2000e).

3.1. Introduction

et X = (Xj,...,X,)" be arandom vector following a multivariate normal dis-
tribution with mean vector p = (p1, ..., 1n)" and variance-covariance matrix
Q). The quadratic form associated with the n x n matrix A is

i=1 j=1
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Without loss of generality we can assume the matrix A to be symmetric: if not, then
one may take the symmetric matrix (A + A")/2 as the matrix of the quadratic form
since XTAX = XTA"X = X"{(A+ A")/2}X.

Quadratic forms enter into many statistics associated with normally distributed ran-
dom variables, so we may want to calculate the distribution of Q(X) or the probability

Pr{Q(X) > q}, (3.1.2)

where ¢ is a given scalar. In the simplest case, A = Q = I, and Q(X) = Y X? is a
noncentral chi-squared variable with n degrees of freedom and noncentrality parameter
€2 =" u? (Scheffé, 1959, Appendix IV).

As in general the matrix A is neither assumed to be idempotent (i.e. AA = A) nor
to be positive definite (i.e. the quadratic form X" AX is positive definite, X" AX > 0
for all X # 0), classical results such as Cochran’s theorem (Scheffé, 1959, Appendix VI)
implying a chi-squared distribution for the quadratic form do not apply, and another
approach to the calculation of (3.1.2) is needed.

Imhof (1961) gives exact methods to compute this distribution using real arithmetic,
whereas Ruben (1962, 1963) restricted his considerations to non-negative quadratic
forms in providing a simplified expression for (3.1.1) as an infinite linear combination of
(noncentral) chi-square distribution functions. An exhaustive discussion of representa-
tions of the exact distributions of quadratic forms is given in Johnson and Kotz (1970,
Chapter 29). Imhof’s method has been programmed in Fortran by Koerts and Abra-
hamse (1969) and in Pascal by Farebrother (1990). Moreover, as any quadratic form
in independent normal variables can be reduced to a linear combination of chi-squared
random variables, the Algol algorithm of Davies (1980) can also be used; a C version is
available.

3.2. The general quadratic form

e first consider a central quadratic form in which p; = --- = u,, = 0. Since
the variance-covariance matrix 2 is positive definite and symmetric, it can
be factored by Choleski decomposition as I'T'”, where I' is a non-singular
lower triangular matrix. It follows that I'"AD' is symmetric and therefore
its eigenvalues are all real. Let A be the diagonal matrix of eigenvalues of I'" AI' and
V' the associated matrix of eigenvectors. It may be interesting to make a non-singular
orthogonal linear transformation of the variables such that (3.1.1) is particularly simple
when expressed in the new variables. Suppose we transform X = (Xi,...,X,)" to
Y = (Y1,...,Y,)" by the transformation Y = P~'X  so X = PY, where P = T'V. Then
X" =Y"P" hence X"TAX =Y"PT"APY. As P"AP = V'T"AT'V = A, the distribution
of XTAX is the same as that of YTAY = > \;Y;?, where the Y; are independent standard
normal variables and A; > --- > )\, denote the eigenvalues of I'""AI" (Scheffé, 1959,
Appendix IT). Hence in the central case our attention can be focused on the distribution
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of
=> AV (3.2.1)
=1

For the general noncentral case (1 # 0) a similar reduction is possible. Imhof (1961)
expressed the general quadratic form (3.1.1) as

=> A} 02 (3.2.2)
1=1

where the h; are the orders of multiplicity of the A;, the Xi > are independent chi-

squared variables with h; degrees of freedom and noncentrahty paranleter o2, and they
are defined by the relation

hi
Xnor = M+ 0:)* + ) V7,

r=2

where the Y; are independent standard normal deviates. One remarks that the Xi_,a_g are

functions of Y; and that the distribution of (3.2.2) depends on puyq, ..., i, only through

2

o?. Moreover, in setting all h; to one and all o7 to zero, we obtain equation (3.2.1).

Imhof (1961, equation (2.3)) gives the exact characteristic function of (3.2.2),

n n AN
Elexp{iQ(Y H (1 —2i¢A;) "% exp {z Z %} : (3.2.3)
=1 !

J=1

Johnson and Kotz (1970, page 152) give an equivalent definition. The corresponding
cumulant generating function is

K(¢) = log Elexp{¢Q(Y)}] = —= Z hilog(1 — 2C\;) + Z — 20 (3.2.4)
assuming 1 — 2¢\; to be positive, i.e.
1
Note that for the central case (3.2.4) reduces to
== Zlog —20N). (3.2.5)

One remarks that the explicit determination of the eigenvalues \q, ..., A, is needed.
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3. Quadratic forms in normal variables

3.3. Computing methods

n this section the problem of calculating the distribution function of the general

quadratic form (3.2.2) is examined. For a detailed account on the methods

discussed in the Sections 3.3.1 and 3.3.2, I refer to Kotz and Johnson (1970,

Chapter 29) and more recently to Mathai and Provost (1992) who give an
extensive mathematical discussion of quadratic forms in real normal random vectors
and matrices.

3.3.1. Numerical methods

The existing numerical methods are mainly concerned with the problem of calculating
the distribution of (3.2.2) by using numerical integration to invert the characteristic
function (3.2.3), which is the Fourier transform of the density function.

Imhof (1961, Section 3) showed that the distribution of the general quadratic form
(3.2.2) can be obtained by numerical integration of a modified inversion formula and
gives detailed information on the resulting degree of accuracy. Imhof’s technique gives
excellent results in comparison with other methods, and it can almost be regarded as
exact. This method has been programmed in Fortran by Koerts and Abrahamse (1969,
pages 155-160); see also Koerts and Abrahamse (1969, pages 76-87) for details. It has
been translated by Farebrother (1990) into Pascal using Simpson’s rule for the numerical
integration. Farebrother’s translation (AS 256) can be downloaded from the ‘Applied
Statistics algorithms’ section of the Statlib web site (1ib.stat.cmu.edu/apstat/).

Two additional numerical integration methods for inverting the characteristic func-
tion (3.2.3) have been proposed by Rice (1980). Both make use of paths of integration
that pass through or near a suitable saddlepoint. The first method is used when the
integrand decreases rapidly, using a trapezoidal rule for the numerical integration. The
second method is used when the integrand decreases slowly, as when ¢ is small. Examples
illustrating these two methods and information regarding the computation are given in
Rice (1980). But the first method is known to not work well for general quadratic forms
when ¢ is small, 7.e. in the center of the distribution, and is very costly, and the second
method becomes similar to the one proposed by Davies (1973). In the context of the
ratio of quadratic forms in normal variables, Lugannani and Rice (1984) expressed the
probability density function of the ratio as a multiple integral and proposed a numerical
integration method for its evaluation, which has similar drawbacks to the method of
Rice (1980).

As any quadratic form in independent normal variables can be reduced to a linear
combination of chi-squared random variables, the algorithm of Davies (1980), based on
the method of Davies (1973), can be used. The original program was written in Algol,
but I received an updated C version from Robert B. Davies.

Simulations have shown that Imhof’s method (as implemented by Farebrother) and
Davies’s methods do not differ much. This result is very satisfying and was expected
as both calculate the distribution exactly. Therefore, only Davies’s method will be
considered in what follows.
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3.3.  Computing methods

3.3.2. Existing approximations

The various methods for computing the exact distribution of quadratic forms in normal
variables require in general extensive numerical computations. Numerical integration
methods, though sufficiently accurate in solving the general problem, require a consid-
erable amount of computer time. Several approximation methods have been proposed
to reduce those difficulties.

The elementary approximation first presented is of historical interest. The sim-
plest approximation proposed by Patnaik (1949) consists of replacing the distribution of
(3.2.1) by that of ay;, where a and b are determined to match the first two moments.

For the distribution of (3.2.2) an improvement might be expected using Pearson’s
(1959) three-moment central chi-squared approximation, which basically corresponds to
use axi + c instead of ax;, matching the first three moments. Pearson (1959) noticed
that such distribution will never differ greatly from that of a chi-squared distribution
having appropriately chosen parameters. Johnson (1959) showed that this approxima-
tion can be remarkably accurate in the tails of the distribution. Imhof (1961) extended
Pearson’s (1959) three-moment central chi-squared approximation to the distribution
of non-central chi-squared variables. As can be seen in Imhof (1961), Pearson’s ap-
proximation, which requires little more work, gives a much better fit than is achieved
with Patnaik’s approximation, particularly in the upper tail. As a special case of the
generalisation due to Imhof (1961), we obtain the following approximation

Pr{Q(X) > q} = Pr{xj > r},

where X7 denotes a chi-squared variable with b = ¢3/c2 degrees of freedom, r = (¢ —
c1)(b/e)'? + b and ¢, = S Ai(hy + s02), s = 1,2,3. For the case where the quadratic
form is non-positive one has to assume that c3 > 0. Otherwise, one must approximate
the distribution of —Q(X). As I'"AI" and QA have the same eigenvalues, for the central
case, where 0? =--- =02 =0and h; = --- = h, = 1, we obtain

s = Z XS = tr{(TTAD)*} = tr{(QA)*}.

Azzalini and Bowman (1993) fitted the Johnson family of frequency curves to the dis-
tribution of the central quadratic form, matching the first four moments. Fitting by
moments is not always a desirable procedure, therefore in using the exact expression for
the cumulants (Johnson and Kotz, 1970, page 153),

ke =251 (s — Dtr{(QA)*} =257 (s — 1)le,,

Bowman and Azzalini (1997, page 88) rewrite the Pearson approximation in the central
case in terms of the first three cumulants. They fit a distribution of the type ax? + c,
where a = |k3|/(4k2), b = (8x3)/Kk2 and ¢ = k1 — ab. The absolute value for k3 in
a should prevent from the case where the quadratic form is non-positive, assuming
that k3 = 8cz3 > 0. The advantage in the central case is that the eigenvalues only
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3. Quadratic forms in normal variables

enter through tr{(2A4)*} and therefore need not be calculated explicitly, whereas in the
general noncentral case explicit calculation is required.

Additional methods to approximate noncentral distributions using central distribu-
tions are given in Cox and Reid (1987); see also Jensen and Solomon (1972) and Solomon
and Stephens (1977) for other approximations via variable transformation. Jensen and
Solomon (1994) noticed that such transformations give superior accuracy throughout
the range of each distribution in comparison with other approximations, including Edge-
worth series (Buckley and Eagleson, 1988).

Nevertheless, given the importance of statistics involving quadratic forms associ-
ated with normally distributed random variables, including their frequent use in applied
statistics, there is undoubtedly a need for tractable, fast and accurate approximations
to their distribution function.

3.3.3. Saddlepoint approximation

Saddlepoint methods give highly accurate approximations to density and distribution
functions. By contrast with Pearson’s approximation they use the entire cumulant gen-
erating function (3.2.4). As illustrated in Section 2.4 the saddlepoint approximation to
the distribution of (3.2.2) can easily be obtained by means of (2.4.2). Setting d = 1,
T=QY), a =X and X; = Xi,-;afv the saddlepoint approximation to the distribution

of Q(X) or Q(Y) at ¢ is

1 v
Pr{QX)>ql=1—Fy(g)=1— {w +—log (5)} , (3.3.1)
where
w=sig(@ [2{- kO] v={xQ}"
and ¢ = ((q), the saddlepoint, is the value of ¢ satisfying the equation K’'({) = ¢, where
K'(¢) and K”(() are the first and second derivatives of K ({) with respect to ¢,
n n G2\2
O Z 1 —2@ 22 (1—20N)?
and

- hi\2 - 0-2(/\3—2C/\2+)\-)
K// — 2 1% 1 7 7 1
© {Z (Erenhd P e ov &
i=1 i=1
which in the central case reduce to

/ - >‘i " -
K<O:;1—2<Ai’ K 22 1-2@

The existence and uniqueness of ¢ follow from Daniels (1954). Calculation of (3.3.1)
requires computation of ¢ for each ¢ of interest. Even as Q(X) is not in general a sum
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Table 3.1. Mean CPU time in seconds (over 100 attempts) of the calcula-
tion of the eigenvalues of the covariance matrix of a random multivariate
standard Gaussian variate of size n.

n Time
10 0.008
50 0.034

100 0.158
200 0.935
300 3.291

400 6.752

of n independent identically distributed variables, it can be shown that under additional
conditions (3.3.1) gives a relative error of O(n=%2) for the distribution (Jensen, 1995,
Section 6.5). Remark also, though not of interest in the present chapter, that the
saddlepoint approximation to the density of Q(X) or Q(Y) at ¢ is a straightforward
application of (2.4.1).

For the central case a similar result was obtained by Lieberman (1994) by means of
a Lugannani-Rice approximation to the tail probability of a ratio of central quadratic
forms in normal variables, which is usually indistinguishable in practice for this special
case. The saddlepoint method’s merits and its superiority over Edgeworth series have
been extensively studied; see also Chapter 1. Therefore, there will be made no com-
parison between Buckley and Eagleson’s (1988) Edgeworth expansion and the stated
saddlepoint approximation.

Recall that (3.3.1) requires the explicit determination of all eigenvalues Aq, ..., A, of
the n xn matrix QA or, equivalently, ' AI". One may think that this step is numerically
burdensome, and this already for sample sizes n = 200 (quite an ordinary situation) as
all n = 200 eigenvalues must be evaluated. I agree that there is some additional cost in
computational time due to the evaluation of all eigenvalues. But as Table 3.1 illustrates
this additional cost in CPU time is negligible for small n. Simulations were made using
S-PLuS 3.4 Release 1. Moreover, I would like to emphasise on the fact that the proposed
saddlepoint approach is very easy to implement: in the statistical packages S-PLUS and
R it takes only several lines of commands.

3.4. Comparison

n this section a numerical comparison between several methods discussed pre-
viously is given: Davies’s method, Pearson’s three-moment central chi-squared
approximation and the saddlepoint approximation. Note that from the meth-
ods given in Section 3.3.2 I restrict consideration to Pearson’s three-moment
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3. Quadratic forms in normal variables

central chi-squared approximation as this is the most widely used approximation in the
statistical literature.

In an intensive numerical comparison study, I considered 39 different quadratic forms.
For the 18 most interesting of them, Tables 3.2-3.4 record the values of (3.1.2) found by
Davies’s method. For the approximations the relative error compared to this method is
given. The quadratic forms ()1 to (Jg are represented in the first column of Tables 3.2
and 3.3 by the triplet \;, h;, 0%, whereas Qg to Q15 in Tables 3.3 and 3.4 are represented
by the triplet A, u, Q. These triplets determine the quadratic forms explicitly. Fj, is the
symmetric banded n x n matrix with bandwidth one, the diagonal is (1,2,...,2,1) and
the sub-diagonal consists of —1’s (Farebrother, 1990),

1 -1
-1 2 -1

-1 2 -1
-1 1

The n xn matrix 9, is a positive definite symmetric banded n xn matrix with bandwidth
two, 7’s on the diagonal, 2’s in the first band and 1’s in the second band,

7 02 1
2 7 2
Sn=11 2
T2
1 2 7

Finally, D,, is a positive definite symmetric banded n x n matrix with bandwidth one:
10’s on the diagonal, —1’s in the sub-diagonal, in the n-th line and in the n-th column,

10 -1 —1

-1 10 -1 :

D, = o e 1
-1 10 -1

-1 .-~ -1 -1 10

The quadratic forms @7 to Q4 were already used by Imhof (1961, Table 1) and @5 and
Q)¢ were used by Farebrother (1990, Table 1).

The values of (3.1.2) given in Tables 3.2-3.4 are rounded to six decimal places.
Pearson’s three-moment central chi-squared approximation (ii) encounters problems for
negative definite or indefinite quadratic forms, such as @7, Q19, Q12, Q14, Q16 and Q1s,
and its relative error can be large. The saddlepoint approximation (iii) yields very ac-
curate approximations, even for non-positive quadratic forms. Even with n large, as in
13, Q14, Q17 and Q1s, the saddlepoint approximation (iii) is more precise than (ii). In
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3.5.  Application to nonparametric regression

recapitulating one remarks that the saddlepoint approximation (iii) outperforms Pear-
son’s three-moment central chi-squared approximation (ii) and nears Davies’s method
(i) quite well, and this over the entire range of the distribution.

A summary of Tables 3.2-3.4, including the quadratic forms Q)5 to Q19, Q12, Q14 and
()15 for chosen values of ¢, is given in Table 1 of Kuonen (1999).

As mentioned previously, the saddlepoint approximation (3.3.1) is very easy to com-
pute: in the statistical package S-PLUS it takes only about 20 lines of commands,
whereas Davies’s method requires more than 200 lines of C code, and to have an esti-
mate of desired accuracy one has to adjust all the input variables. Thus the saddlepoint
approximation can be applied more easily, though there is some additional cost in CPU
time because of the use of an interpreted language like S-PLUS, and to the evaluation
of all the eigenvalues; this is of the order of a few seconds for small n; see Table 3.1.

3.5. Application to nonparametric regression

SRS Uppose that n data points (z1,¥1),. .., (Zn, yn) of dimension (d+ 1) have been
@4‘3 collected. Their regression relationship can be modelled as
Nl

. yi=m(z;) +e, 1=1,...,n, (3.5.1)

where m(-) is an unknown function and the ¢; are the observation errors with mean zero
and variance o2. The idea of local regression is to fit locally a low-order polynomial at
grid points of interest, with observations receiving different weights. The resulting local
least squares estimator of m(z) is

() = €N (XTW, X,) " XT Wy, (3.5.2)

where H is a d x d symmetric positive matrix (H'/? is known as the bandwidth matrix),
e; is the (d + 1) x 1 vector having one in the first entry and zeros otherwise, y =
(Y1, yn)", We = diag{Kg(z1 — 2),..., Kg(x, — )} is the kernel weight matrix,
where Ky (u) = |H|7Y2K(H~'/?u) is a d-variate normalised kernel, and
1 (xg—2)”

1 (x, —x)"
Note that XJW,X, is assumed to be non-singular. Equation (3.5.2) can be rewritten
as my(x) = Spy, where Sy is the n X n smoothing matrix. Multivariate local regres-
sion estimators have proved to be very useful in modelling real data (Cleveland and
Devlin, 1988). General expressions for the bias and the variance of my(-) can be found
in Ruppert and Wand (1994). Useful overviews of different approaches to the construc-
tion of nonparametric regression estimators are given by Hastie and Tibshirani (1990,
Chapter 2) and Fan and Gijbels (1996, Chapter 2). For the local regression approach in
particular, recent discussions are provided by Hastie and Loader (1993) and Cleveland
and Loader (1995). An introductory account of these methods is given in Bowman and

Azzalini (1997).
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3. Quadratic forms in normal variables

Table 3.2. Probability that the quadratic form exceeds q.

(i) Davies’s

method with accuracy 0.0001; (i) relative error (%) for Pearson’s three-
moment central chi-squared approzimation; (i) relative error (%) for the
saddlepoint approzimation. The relative error (%) is 100[{ Approximation—

)}/ )]

Quadratic form q

(i)

(i)

(iii)

;1 =06,1,0;0.3,1,0; 0.1,1,0 0.01

Q. =0.6,2,0; 0.3,2,0; 0.1,2,0 0.2

@3 =0.6,6,0; 0.3,4,0; 0.1,2,0

Q4 =0.6,2,0: 0.3,4,0; 0.1,6,0 0.

CO I DNH=Tt OO0 WN -

Qs =30,1,0; 1,10,0 )

25
20
75
100

Qs = 30,1,0; 1,20,0 10
25
40
75
100
125

0.99804
0.94579
0.50644
0.23445
0.12397
0.05469

0.99356
0.76039
0.37177
0.18697
0.05561
0.01612

0.99732
0.95056
0.81562
0.28154
0.10051
0.03112

0.99829
0.96664
0.72331
0.21154
0.01986
0.00872

0.98461
0.70813
0.48918
0.25007
0.14181
0.08366

0.99508
0.71362
0.42675
0.17789
0.10357
0.06192

0.1967
5.7321
—3.1917
—2.2070
1.9861
3.4496

0.6477
—0.9564
—0.7521

0.8949

2.2458

0.7627

0.1106
0.1138
—0.1934
0.1684
0.6378
0.3858

0.1716
1.0412
—1.2231
0.9924
1.3567
—1.8485

1.5633
—4.5825
—1.7642

0.2658

0.6307

0.6854

0.4949
—6.2191
—1.9818

1.0506

1.3484

1.2832

—0.0028
—0.0915
—1.3575
—0.5923
—1.8681
—0.5205

—0.0072
—0.2445
—0.6872
—0.7273
—0.1369

0.7094

0.0010
—0.0096
—0.0314
—0.0548

0.0080

0.1319

0.0001
—0.0258
—0.2742
—1.2604
—0.6259
—0.0419

—0.0576
—2.8621
—1.0212
0.1553
0.1861
0.2657

—0.0098
—1.3132
—0.9419
0.9676
1.1522
1.0701
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Table 3.3. Probability that the quadratic form exceeds q. (i) Davies’s
method with accuracy 0.0001; (i) relative error (%) for Pearson’s three-
moment central chi-squared approzimation; (i) relative error (%) for the
saddlepoint approximation. The relative error (%) is 100[{ Approximation—

1)}/ ()]

Quadratic form q (1) (ii) (iii)
Q7 =—-0.6,2,0; 0.3,4,0; 0.1,6,0 —4 0.99002 1.0084 —0.0262
-2 0.94714 4.1574 —0.1305
—1 0.87836 —1.2578 —0.3127
1 0.40199 —12.3782 3.1172
2 0.14065 20.0263 3.6625
4 0.00979 168.4783 1.8132
Qs =0.6,1,0.1; 0.3,2,0.2; 0.1,1,0.2  0.01 0.99983 0.0169 0.0038
0.1 0.98834 1.1796 0.0006
0.4 0.86944 1.1434 0.3374
0.7 0.71109 —1.7122 1.1808
3.2 0.07751 3.3471 1.3629
4 0.03751 3.9922  24.9562
Qo = Fs;05; I 0.1 0.99945  0.0553  0.0004
0.5 0.98811 1.2037 —0.0171
5 0.59487 —1.7681 —0.5186
15 0.12843 1.3698 —1.6413
25 0.02692 2.1819 —1.8041
50 0.00061  —11.7038 1.5783
Qo = —F; 05; I —95  0.97308 27667  0.0499
—15 0.87157 13.6302 0.2418
—10 0.71949  —29.7161 0.4482
-5 0.40513  —40.7814 0.7615
—1 0.04101 217.4345 1.3391
—0.5 0.01189 913.4563 1.4228
Qu = S 0717 1.5 0.99998 0.0021 —0.0022
15 0.94309 0.7716 —0.0231
25 0.80876 —0.4857 —0.1226
50 0.40241 —0.8474  —0.7777
100 0.05669 2.6029 —2.3044
200 0.00071  —11.2303 2.8844
Q1o = —S7; 0+ I —200  0.99932 0.0702 —0.0021
—100 0.94331 6.0094 0.1385
—50 0.59759 —28.684 0.5229
—25 0.19124 —9.2208 0.5186
—15 0.05691 105.7646 0.3833
=5 0.00226 3,341.0644 —0.7139
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Table 3.4. Probability that the quadratic form exceeds q. (i) Davies’s
method with accuracy 0.0001; (i) relative error (%) for Pearson’s three-
moment central chi-squared approzimation; (i) relative error (%) for the
saddlepoint approzimation. The relative error (%) is 100[{ Approximation—

)}/ )]

Quadratic form q (1) (ii) (iii)
Q13 = S15; 0155 I15 15 0.99993 0.0068  —0.0009
35 0.98913 0.2732  —0.0010
55 0.91428 0.0467  —0.0258
80 0.69765 —0.5486  —0.1200
100 0.48937 —0.4479  —0.2407
200 0.02778 0.8413 —0.7076
Q14 = —515;015; 115 —300 0.99924 0.0761 0.0022
—200 0.97222 2.8572 0.0259
—150 0.86284 1.9381 0.0951
—100 0.51063 —22.9427 0.2311
—50 0.05801 77.4904 0.2815
—20 0.00045  8,624.5016 2.0988
Q15 = Ds; 05; I 1 0.99988 0.0202 0.0032
15 0.91098 0.0867  —0.0039
30 0.69616 —0.2007 0.0003
100 0.07701 0.4541  —0.0539
130 0.02482 0.3833  —0.0752
200 0.00152 —2.7739 —0.803
Ow = —Ds:05: s —300 0.99998 0.0020 —0.0003
—200 0.99848 0.1523 0.0012
—100 0.92299 8.3439 0.0045
—30  0.30390 —27.2578  —0.0007

—10 0.03852 188.2950 0.1021
—1 0.00020 39,624.7886 —15.8028

Q17 = D1o; 010; 110 10 0.99983 0.0073  —0.0013
20 0.88761 —0.0118  —0.0002

75 0.67286 —-0.1223  —0.0023

125 0.25378 0.0810  —0.0263

150 0.13450 0.2427  —0.0497

200 0.03134 0.2260  —0.1196

Q18 = —D10;010; 1o —300  0.99891 0.1087  —0.0001
—200 0.96866 3.2351 0.0039

—150 0.86550 2.5433 0.0077

—-50 0.11239 19.9697 0.0020

—=30 0.01958 294.6736 0.0708
—10 0.00017 24,457.3681 0.0078




3.5.  Application to nonparametric regression

3.5.1. Testing for no effect

Suppose that one wants to compare the hypotheses

Hy: E(yi) = p,
Hy: E(y:) = m(x),

known as usual hypotheses for ‘testing for no effect’, i.e. Hgy posits no effect. The
standard approach from classical linear models was extended by Azzalini et al. (1989)
to the nonparametric setting. The residual sums of squares offer a natural means of
quantifying the extent to which these models explain the data. These are, under the
hypothesis Hy,

n

RSS, = Z(yz -9

i=1

and, under the hypothesis Hy,
RSS1 = > {yi — i (i)}
i=1

Azzalini et al. (1989) were then led to the so-called pseudolikelihood ratio test statistic,

_ RSS; — RSS,

T = .
RSS, (3.5.3)

which is proportional to the usual F' statistic, but the fact that the test statistic is
derived from a likelihood argument does not imply that its distribution is approximately
chi-squared. A selected review on the pseudolikelihood ratio test approach is given in
Azzalini (1998). It is useful to express the structure of 7" in terms of quadratic forms as

RSSy = 4", —L)" (I, — L)y =y"(I, — L)y,
RSS; = y"(I, — Su)" (I, — Su)y,

where L is the n x n matrix with all its entries equal to one (Bowman and Azzalini,
1997, Section 5.2). An explicit form of (3.5.3) in terms of quadratic forms is

y" By
T = , 3.5.4
yTCy ( )

where C' = (I, — Sg)" (I, — Sy) and B is the matrix I,, — n~'L — C. Unfortunately,
standard results from linear models do not apply because the matrices C' and B do not
have the necessary properties, such as positive definiteness. The corresponding p-value
can be written as

Pr(T >t| Hy) =Pr(y"Uy > 0) =Pr(e'Ue > 0), (3.5.5)

where U = B —tC, t is the observed value of T" and € = (e, ..., €,)" is the error vector.
If the ¢; are normally distributed one can set 02 = 1 without loss of generality as T
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2.0

15

1.0

Catch score

0.5

0.0
|

T T T T
10 20 30 40

Bottom depth

Figure 3.1. A plot of the relationship between bottom depth and catch score
in a subsample of the Great Barrier Reef data. The nonparametric regres-
ston curve with h = 8, dashed line, and the curve of no effect, solid line,
have been superimposed.

is scale-invariant. Hence, setting A = U and Q = [, the covariance matrix of €, the
p-value (3.5.5) can be calculated easily in using one of the methods discussed in Section
3.3.

In order to compare their performances, consider as an application a subsample of
the Great Barrier Reef data (Bowman and Azzalini, 1997, page 52). These data refer
to a survey of the fauna on the sea bed lying between the coast of northern Queensland
and the Great Barrier Reef. The sampling region covered a zone which was closed to
commercial fishing in 1993. Two of its variables are the bottom depth, =, and the catch
score, y. For details of the survey and an analysis of the data see the references given
in Bowman and Azzalini (1997). For these data we have d = 1, therefore H becomes
the scalar smoothing parameter h. The following calculations were simplified in using
the S-PLus library sm associated with Bowman and Azzalini (1997). A plot of the
relationship between these two variables is given in Figure 3.1. The figure also displays
the nonparametric regression curve with A = 8 and the curve of no effect. Note that
Kuonen (1999, Figure 1) used h = 5. Table 3.5 gives the p-value (3.5.5) as function of
the smoothing parameter h. The values in column (ii) correspond to the ‘significance
trace’ given in Bowman and Azzalini (1997, Figure 5.1), reproduced in Figure 3.2 by
superimposing Davies’s method and the saddlepoint approximation. A plot of the type
shown in Figure 3.2 was introduced by Azzalini and Bowman (1991). Its usefulness
depends on the essential stability of the p-value as a function of h.  Bowman and
Azzalini (1997) stated that their approach is sufficiently accurate to approximate the
p-value. But, Table 3.5 and Figure 3.2 indicate that Pearson’s three-moment central
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3.5.  Application to nonparametric regression

Table 3.5. The p-value as a function of the smoothing parameter h for
testing a relationship between catch score and bottom depth in the Great
Barrier Reef data. (i) Davies’s method with accuracy 0.0001; (i) relative
error (%) for Pearson’s three-moment central chi-squared approzimation;
(1) relative error (%) for the saddlepoint approximation. The relative error

(%) is 100[{ Approximation — (i)}/(i)].

R @) (i)

3 0.0604 5.433 0.028
5 0.0633 7.737 0.135
7 0.0516 7.545 0.019
9 0.0407 6.765 0.738
11 0.0334 5.890 1.192

13 0.0289 4.867 1.288
15 0.0258 4.164 0.240
17 0.0234 3.460 1.431
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Figure 3.2. The significance trace to assess the evidence between bottom
depth and catch score in the Great Barrier Reef data.

chi-squared approximation overestimates the exact p-value and therefore the rejection
region of Hy decreases compared to the exact computations given by Davies’s exact
method. The saddlepoint approximation to the p-value is extremely accurate. In fixing
a significance level of 5%, the p-values recorded in Table 3.5 suggest that there exists
a relation between bottom depth and catch score for A > 7, whereas for h < 7 there is
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3. Quadratic forms in normal variables
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Figure 3.3. Reference band for the relationship between bottom depth and
catch score in a subsample of the Great Barrier Reef data. The nonpara-
metric regression curve with h = 8 has been superimposed.

no significance for a relation. This may result from the fact that when h increases the
nonparametric local regression curve becomes smoother and differs from the fitted linear
regression curve significantly. In addition to this formal model comparison, providing a
useful global assessment, variability bands as described in Bowman and Azzalini (1997,
pages 89 and 90) can be used in this context to provide a helpful graphical follow-up.
Figure 3.3 displays a reference band for the relationship between bottom depth and
catch score. One remarks that the nonparametric regression curve with h = 8 exceeds
the band at each end of the bottom depth range, illustrating that there is some evidence
for a relationship between the two variables.

In practice it is useful to have some idea of the power of a test. Hence, it may
be interesting to carry out a small power study to compare the performances of the
approximation in more details. To do so the observables y;, © = 1,...,n, are assumed
to be generated from y; = ™y (x;) + e;, where my(z;) is the local least squares estimate
(3.5.2) evaluated at z;, the e;’s are drawn independently from the normal distribution
N(0,7?%). Various combinations of h and 7 were considered and in each case 500 samples
were generated. Tables 3.6 and 3.7 present the percentages of times H, was rejected for
significance level 5% and some selected values of h and 1. A summary of these tables is
given in Table 3 of Kuonen (1999). First of all one remarks that the pseudo-likelihood
ratio test is very powerful in the context presented in this section and did not have any
difficulties to check the hypotheses — even in generating under H;. This was already
suggested by Table 3.5, where Hy has been rejected by a significant factor. Moreover,
one notices that the power decreases when 7 gets large. This may result from the fact
that large n’s imply relevant noise and therefore difficulties in distinguishing the two
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3.5.  Application to nonparametric regression

Table 3.6. The simulated power as a function of h and n for testing a
relationship between catch score and bottom depth in the Great Barrier
Reef data. (i) Davies’s method with accuracy 0.0001; (i) Pearson’s three-
moment central chi-squared approximation; (iii) saddlepoint approxzimation.

h no (1) () (i)

0.1 2 0958 0.958 0.958
1 0946 0.940 0.946

0.5 0.932 0.928 0.932

0.25 0.940 0.936 0.940

0.1 0.942 0.942 0.942

0.5 2 0958 0.956 0.958
1 0940 0.940 0.940

0.5 0.960 0.960 0.960

0.25 0.940 0.936 0.940

0.1 0.966 0.964 0.966

1 2 0946 0.944 0.946
1 0934 0934 0.934

0.5 0946 0.944 0.946

0.25 0.954 0.950 0.954

0.1 0.954 0.954 0.954

3 4 0.956 0.954 0.956
2 0934 0930 0.934

1 0940 0.938 0.940

0.5 0934 0.934 0.934

0.25 0.948 0.944 0.948

0.1 0.950 0.950 0.950

0.01 0.930 0.926 0.930
0.0001 0.944 0.942 0.944

models. The saddlepoint approximation (iii) gives exactly the same power as for the
exact approach (i), whereas Pearson’s three-moment central chi-squared approximation
(ii) gives slightly smaller estimated power.

3.5.2. Testing for a linear relationship

The objective of nonparametric smoothing is to relax assumptions on the form of an
unknown function of interest and to ‘let data speak for themselves’. These approaches
can be combined with parametric methods to yield a sensible data analysis as in the
problem of testing a linear relationship between a single covariate x = (z1,...,x,)" and

35




3. Quadratic forms in normal variables

Table 3.7. The simulated power as a function of h and m for testing a
relationship between catch score and bottom depth in the Great Barrier
Reef data. (i) Davies’s method with accuracy 0.0001; (i) Pearson’s three-
moment central chi-squared approximation; (iii) saddlepoint approxzimation.

heoomo () ) (i)

7 2 0940 0.938 0.940
1 0946 0.946 0.946

0.5 0934 0.934 0.934
0.25 0.932 0.928 0.932
0.1 0954 0.954 0.954

9 2 0948 0.948 0.948
1 0946 0.946 0.946

0.5 0.950 0.948 0.950
0.25 0.956 0.952 0.956
0.1 0.928 0.924 0.928

11 2 0944 0.938 0.944
1 0.950 0.942 0.950

0.5 0.960 0.958 0.960

0.25 0.942 0.940 0.942

0.1 0932 0.930 0.932

15 2 0950 0.944 0.948
1 0944 0.940 0.944

0.5 0.942 0.940 0.940

0.25 0.958 0.956 0.958

0.1 0.934 0.930 0.934

a response variable y = (y1,...,y,)", related by (3.5.1). Eubank and Spiegelman (1990)
discuss some general issues of using nonparametric smoothing in the context of checking
a linear relationship. Suppose that one wants to compare the hypotheses

Hy: m(z;) = o+ Py,
H;: m(z;) is a smooth function.

The pseudolikelihood ratio test statistic (3.5.3) becomes

y"'Vy—y'Cy
r=———+71—7,
y"Cy
where C' = (I, — S)"(I, — S) and V = [, — P, where P denotes the least squares
projection matrix. Since (I, — S)"1, is the null vector, the distribution of 7" is free

from «, but this does not hold for 3 . Therefore the dependence of the distribution of
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3.5.  Application to nonparametric regression

T on the unknown value of 3 makes T unsuitable for hypothesis testing. In denoting
by e = (eq,...,e,)" the residual vector from the fitted simple linear regression model,
Azzalini and Bowman (1993) represent the data by the residual vector e = Vy. The
formal hypotheses can be written as

HO . E(e) = O,
H, : E(e) is a smooth function of x.
Hence
_ €"Be
e’Ce’

where B = I, — C' and C' as before. The corresponding p-value becomes
Pr(T >t | Hy) =Pr(e"Ue > 0),

where U = B —tC = I, — (1 + t)C and t is the observed value of the statistic 7. In
the present setting the e; are correlated, whereas in the previous section independence
was assumed. But, the methods discussed still apply as one remarks that the problem
is again reduced to the computation of the distribution of a central quadratic form in
normal variates.

As a first application, consider another example from Bowman and Azzalini (1997),
dealing with the relationship between longitude and catch score for the subsample of
the Great Barrier Reef data, where longitude is an additional variable denoting the
longitude of the sampling position. A scatter plot of longitude against catch score is
shown in Figure 3.4, together with the nonparametric regression curve using h = 0.1
and a fitted linear regression curve. The corresponding p-values are recorded in Table
3.8. Once again one remarks that the values obtained by the saddlepoint approximation
are closer to the exact ones, whereas Pearson’s approximation underestimates the exact
p-value; see also the corresponding significance trace in Figure 3.5. Apart from very
small values of the smoothing parameter 0.02 we have strong evidence against the linear
model for all four methods. This seems to underline the feeling one gets in looking at
Figure 3.4.

To conclude this section, consider the radiocarbon data (Bowman and Azzalini,
1997). These data record high precision measurements for the range of ages between
3000 and 5000 years of radiocarbon on Irish oak, used to construct a calibration curve.
As covariate, x, consider the true calendar age and as response variable, y, the age
predicted from the radiocarbon dating process. Once again, the aim is to test a linear
relationship between the two variables. A plot of their relationship is given in Figure
3.6. Superposed are the fitted regression line and a nonparametric smoother with h = 6.
From the significance trace in Figure 3.7 one notes that in considering the exact and the
saddlepoint approach there is a convincing evidence of non-linearity at all values of h.
But, Pearson’s three-moment approximation produces insignificance for small values of

h.
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Figure 3.4. A plot of the relationship between longitude and catch score in
a subsample of the Great Barrier Reef data. The nonparametric regression
curve with h = 0.1, solid line, and a fitted linear regression curve, dotted
line, have been superimposed.

Table 3.8. The p-value as a function of the smoothing parameter h for
testing a linear relationship between longitude and catch score in the Great
Barrier Reef data. (i) Davies’s method with accuracy 0.0001; (i) Pearson’s
three-moment central chi-squared approximation; (i) saddlepoint approxi-
mation.

L) (id) (i)

0.02 0.11289 0.11838 0.11288
0.04 0.00905 0.01756 0.00905
0.06 0.00351 0.00633 0.00351
0.08 0.00305 0.00374 0.00305
0.10 0.00427 0.00284 0.00427
0.12  0.00612 0.00225 0.00613
0.14 0.00824 0.00178 0.00826
0.16 0.01096 0.00144 0.01099
0.18 0.01474 0.00119 0.01476
0.20 0.02006 0.00102 0.02006

3.5.3. Other applications

The approach presented in Sections 3.5.1 and 3.5.2 can be applied easily to a number of
other cases; see Azzalini (1998, Section 2.3 and Chapter 3). A further application is a
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Figure 3.5. The significance trace to assess a linear relationship between
longitude and catch score in the Great Barrier Reef data.
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Figure 3.6. A plot of the relationship between the true calendar age and the
age predicted from the radiocarbon dating process in the radiocarbon data.

The nonparametric regression curve with h = 6, solid line, and a fitted linear
regression curve, dotted line, have been superimposed.

test for constant residual variance in a linear regression scheme (Diblasi and Bowman,
1997).
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Figure 3.7. The significance trace to assess a linear relationship between the

true calendar age and the age predicted from the radiocarbon dating process
in the radiocarbon data.

3.6. Conclusion

t has been illustrated in this chapter that the saddlepoint approximation is a
method of calculating the distribution of quadratic forms in normal variates in
an extremely accurate way; see also Kuonen (1999). This statement has been
underlined in considering as example the distribution of the pseudolikelihood
test statistic in nonparametric regression analysis. Moreover, the saddlepoint approx-

imation is very easy to implement compared to the exact methods and outperforms
existing approximations significantly.
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4. The coupon collector’s problem

‘“There was a free gift in my breakfast cereal this morning. I just called the
manufacturers and they told me that the gift comes in ten different colors,
and they encouraged me to collect all ten, and so eat lots of their cereal.
Assuming there is an equal chance of getting any one of the colors, how
many boxes I must consume to be 95% sure to get all ten gifts?’

n this chapter I show that a saddlepoint approximation to the distribution

of the waiting time in the coupon collector’s problem is very accurate. This

nice application of the saddlepoint approximation illustrates the modern art of

statistics relying on the computer and embodying both numeric and analytic
approximations.

The main results derived in this chapter appeared in The American Statistician
(Kuonen, 2000a), and a review was given at the SRSS meeting (Kuonen, 2000¢e). The
example on gene transfer in Section 4.5 results from a collaboration with the Laboratory
of Cellular Biotechnology, EPFL.

4.1. Introduction

standard combinatorial problem is to estimate the number of coupons, drawn

at random with replacement, needed to complete a collection. This problem,

known as the coupon collector’s problem or the classical occupancy problem,

- has been investigated intensively; see Feller (1970), Johnson et al. (1994),

Port (1994) or Read (1998). Attention is given to the special case where all sampling

probabilities are equal. For the general case, some results and ideas will be provided as
well.

Section 4.2 summaries the underlying basic theory, including existing approximations
to the distribution of the waiting time until all coupons are sampled. A saddlepoint
approximation to its distribution is derived in Section 4.3, and in Section 4.4 several
examples are considered, including the exhaustive bootstrap for symmetric statistics
seen from a collector’s point of view. An additional example in the context of gene
transfer in order to introduce several genes into cells is given in Section 4.5.
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4. The coupon collector’s problem

4.2. Basic theory

220> uppose there are n distinct coupons in a collection, and a series of independent
(@“v draws is made from these. At each draw a coupon is drawn with replacement
ood I with probability n~! from the collection. Because of repetitions a random
OW=%) sample of size n will in general contain fewer than n distinct coupons. As the
sample size increases, new elements will enter the sample more and more rarely. The
interest is in the number of draws, W, needed for all n coupons to have been drawn at
least once.

For w > n, as before it is not possible to have all n coupons, the distribution function
of the waiting time W is (Feller, 1970, pages 59 and 61; Port, 1994, pages 301-304; Read,
1998, equation (5))

Pr(IV < w) = i CL) (1) (1 _ %)w (4.2.1)

1=0

Good (1957, 1961) provided a recursion formula for (4.2.1). A direct numerical evalu-
ation of (4.2.1) is limited to the case of relatively small n and w, due to the successive
additions and subtractions in (4.2.1), and due to computational limits. But (4.2.1) is an
immediate consequence of Bonferroni’s inequalities (Feller, 1970, pages 110 and 111) and
therefore enjoys the property that the error incurred by truncating the sum after any
number of terms has the sign of the first omitted term and is smaller in absolute value.
Nevertheless, to overcome such difficulties, approximate methods have to be considered.
Baum and Billingsley (1965) observed that W has the same distribution as a sum of
independent geometric random variables. By adapting an argument used by Baum and
Billingsley (1965), Dawkins (1991) showed that asymptotically

Pr(W < w) = exp[—nexp(—w/n)]. (4.2.2)

Read (1998) gives a log-normal approximation to the distribution of W, matching the
first three moments of W.
Another method is given by the multinomial occupancy probability

Pr(W <w)=Pr(c; > 1,...,¢, > 1), (4.2.3)
where (c1,...,¢,) has a multinomial distribution with denominator w and probability
vector (n1, ..., n1), and ¢; denotes the number of times coupon ¢ appears in the sample

of size w. Levin (1981) discussed how to calculate multinomial cumulative distribution
functions in general and showed that for (4.2.3) in the equiprobable case,

1 — exp(—v/n)"
Pr(clzl,...,cn>1):w[ exp(—v/n)]

Pr(S = w), (4.2.4)

v@exp(—v)

where the parameter v is a tuning parameter which may be chosen for convenience and
stable computation, and S is a sum of n independent left-truncated Poisson variables
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4.3. Saddlepoint approximation

each taking values j = 1,2, ... with probability {exp(—v/n)/[1 —exp(—v/n)]}(v/n)?/;!.
The untruncated Poisson variables have mean equal to v/n, and the truncated variables
have mean u = (v/n)/[1 — exp(—v/n)]. Levin (1981) found that the choice v = w to
be generally satisfactory and very natural in this context as w/n are the expected cell
frequencies. Moreover, he noticed that the exact value of (4.2.4) can be stably computed
by obtaining the convolution Pr(S = w), and Levin (1981, 1992) gave for v = w the
Edgeworth approximation to order n=! for Pr(S = w),

- g (w—nu 1
Pr(S=w)~1 ( ot ) — (4.2.5)

where

l(x) = (2m)"Pexp[=1/(22)][1 + (11/6)(a® = 3w) + (72/24)(¢" — 6% + 3)
(77 /72)(2% — 152" + 452* — 15)],

and where the skewness, v, = n~'2u3/0®, and the kurtosis, v, = n=[(us/c*) — 3],

are defined in terms of the moments of the truncated Poisson distribution: p = pq) =
(w/n)/[1 —exp(—w/n)], 0 = pz) + (1 — 1?), s = pu) + 1) (3 — 3p) + (0 — 3p +20%),
and fug = fua) + pig3)(6 — 4p0) + pe) (7 — 120+ 64%) + (1 — 4p® + 6p* — 3p*), using the
rth factorial moments ji() = (— w/n) /Il — exp(—w/n)]. Combining (4.2.5) and (4.2.4)
yields Levin’s Edgeworth approximation for v = w,

Pr(W < w) ~ L= epw/m" (w — "“) L (4.2.6)

wrexp(—w) no? no?

where [(+), u and o2 as before. Levin (1992) made a comparison of (4.2.6) with (4.2.1)
and (4.2.2).

4.3. Saddlepoint approximation
\V’\m he waiting time W has the same distribution as a sum of n independent geo-
@ metric random variables with probabilities (n — i+ 1)/n, i =1,...,n. Hence

Gy
l‘!n

w the exact cumulant generating function of W is (Read, 1998, equation (8))

_ i log {1 _rll- e’;p(_m } . (4.3.1)

The saddlepoint approximation to the distribution of W can easily be obtained by means
of the results illustrated in Section 2.4. Setting d =1, T =W, a; = 1 and X; being the
geometric random variates it yields that the saddlepomt approximation to the distribu-
tion of W at w, Pr(W < w), is given by (2.4.2). The saddlepoint ¢ = {(w) is the unique
value of ( satisfying the equation K’ (f ) = w, where prime denotes differentiation with
respect to (. The first two derivatives of K(() are

n

K(¢) = nexp(-0) S - !

<= [l — exp(—0)]

1=
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and

" n—i
O = nepl= Z i all— (Ol
This approximation has a relative error up to O(n~%2) and as the error is relative
the ratio of the true distribution to its saddlepoint approximation is bounded over the
likely range of w. If w is close to E{W} = nY 1/i (Read, 1998, equation (6)), or
similarly C ~ 0, the approximation (2.4.2) is replaced by its limit as Q — 0, which as a
straightforward application of the results in Jensen (1995, Section 3.3) yields

Pr(WW < w) ~ ®{\3/6},

where
n

(2n* — 3ni +i%) /i3
K”’(O) B ;

{K”(O)}3/2 o n 3/2°
a {Zm - z'>/z'2}

i=1

)\3:

The existence of a solution to K’(C) = w has been demonstrated by Daniels (1954), and
the uniqueness of é will be demonstrated in what follows. There exists an unique solution
to K'(¢) = w, or equivalently an unique minimum to the function ¢(¢) = K({) — w(, as
the function g(-) is strictly convex: ¢”(¢) = K”(¢) > 0. This proves the uniqueness of a
solution, ¢, to K’ (f ) = w; provided that the cumulant generating function exists. The
cumulant generating function (4.3.1) can be written as

=n( — Zlog{ TZin(C) } :

which is defined only if [n —iexp(()]/(n—1i) > 0,i=1,...,n— 1, or similarly exp(¢) <
n/i, i = 1,...,n — 1. This last condition yields that { < log{n/(n — 1)}, which for
example with n = 3 becomes ¢ < 0.4054, and tends to 0 as n — oo. Moreover, when
¢ < log{n/(n — 1)}, the moment generating function (Read, 1998, page 176) is also
defined,

n—1 -1

M) = (n— 1)l exp(nc) {Hm - z’exp<<>>} .

i=1
Hence, one must only consider values of ¢ for which the cumulant generating function
exists. In considering only the values where K (() exists, ¢ < log{n/(n—1)}, uniqueness
and existence of C are guaranteed. For example, using n = 3 and w = 4.5, the equation
K'(C) = w is solved for ¢; = —0.2253 and (, = 0.8821, but as (, > 0.4054 only (; is an
admissible solution.

Since the distribution of W, (4.2.1), is discrete, and the saddlepoint approximation is

continuous, a better approximation is given by writing Pr(W = w) as Pr(w—1/2 < W <
w+1/2). This continuity correction implies that Pr(IWW < w) = Pr(W < w+1/2). Read
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(1998) made the same correction for his log-normal approximation, as well as Dawkins
(1991) for (4.2.2).

The calculation of (4.2.1) requires computation of ¢ for each w of interest. As noted
previously, solving the saddlepoint equation K’ (é ) = w is equivalent to finding the min-
imum of the function K (f) — wé . This can be done using packaged routines such as
the S-PLUS function nlmin, which finds a local minimum using a general quasi-Newton
optimizer, with starting value near zero and smaller than log{n/(n —1)}. The resulting
function saddle.collector, which takes only a few lines of code in the statistical pack-
age S-PLuUS, is given in Table 4.1. Consider the first example of Section 4.4: n = 365

and w = 1900. For Pr(W < 1900) we get

> saddle.collector (n=365, w=1900+.5)
[1] 0.1338624

This computation may appear intensive and perhaps it was some decades ago, but this
obstacle is eliminated by the computing power available today. This fact illustrates
the inelegant drawback of saddlepoint approximations: they embody both numeric and
analytic approximations. As an example, the mean CPU time in seconds (over 20
attempts) of the calculation of Pr(W < 1,088,812) with n = 92,378 was 5.92 seconds
using S-PLUS 3.4 Release 1. For Pr(W < 4) with n = 3 the mean CPU time in seconds
(over 20 attempts) was 0.02 seconds.

In the next section, the saddlepoint approximation (2.4.2) will be applied to several
examples, and compared to (4.2.1), (4.2.2), to the log-normal approximation (Read,
1998) and to Levin’s Edgeworth expansion (4.2.6).

4.4. Examples

s a first example, consider the problem proposed by Feller (1970, page 105): ‘in

a village of 1900 people, what is the probability of finding no days of the year

which are not birthdays? In assuming the year as consisting of 365 days and

- that the birthdays occur randomly and independently, we can take n = 365

and w = 1900, implying Pr(1W < 1900) to be the desired probability. The exact distri-

bution (4.2.1) needed to be computed by means of Bonferroni’s inequalities and delivers

0.1323, Feller’s (1970, page 106) Poisson approximation gives 0.1353, Levin’s approxi-

mation (4.2.6) yields 0.1323, and the saddlepoint approximation (2.4.2) delivers 0.1339.

For this example Levin’s Edgeworth expansion is more accurate than the saddlepoint

approximation, whereas the Poisson approximation overestimates the exact value con-

siderably.

Read (1998) observed that his log-normal approximation overestimates probabilities

in the tails and underestimates those in the center of the distribution. Read’s (1998)

Table 2 for n = 2, 3 is shown in Table 4.2. For n = 2 the eight tabulated values of his log-

normal approximation do not agree for three quantile points (5%, 50%, 75%), whereas

the saddlepoint approximations completely agree with the exact values. As illustrated
in Table 4.2 the same holds for n = 3 and the two quantile points (95%, 99%).
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Table 4.1. The S-PLus function saddle.collector (Kuonen, 2000a, Ap-
pendizx).

saddle.collector <- function(n, w, init=0) {
if (w<n) stop("w < n")
if (init>=log(n/(n-1))) stop("init > log(n/(n-1))")
if (w==(n*sum(1/(1:n)))) {
lambda3 <- sum((2*n~2-3*n*(1:n)
+(1:0)72)/(1:0)"3)/((sum((n-(1:n))
/(1:n)"2))"(3/2)*sqrt(n))
tmp.res <- lambda3/6
}
else {
assign("para", list(n, w), frame = 1)
fct2min <- function(zeta) {
K <- -sum(log(1-(paral[[1]]
*x(1-exp(-zeta)))/(1:paral[1]])))
K - paral[[2]]*zeta
}
tmp.min <- nlmin(fct2min, init,
max.iter=100, max.fcal=200)
if (!tmp.min$converged) stop("nlmin not converged")
saddlepoint <- tmp.min$x
tmp.fct <- fct2min(saddlepoint)
tmp.num <- (1:n)-n*(l-exp(-saddlepoint))
K.prime <- n*exp(-saddlepoint)*sum(1/tmp.num)
K.primeprime <- n¥exp(-saddlepoint)
xsum((n-(1:n))/(tmp.num~2))
u <- sign(saddlepoint)*sqrt(-2*tmp.fct)
v <- saddlepoint*sqrt(K.primeprime)
tmp.res <- u+log(v/u)/u
}
pnorm(tmp.res)

¥
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4.4. Examples

Table 4.2. Comparison of exact and approrimate o quantiles for n = 2,3.
The row labelled Read is taken from Read’s (1998) Table 2.

a (%)
n 5 10 25 50 75 90 95 99
2  Exact 2 2 2 2 3 5 6 8
Read 1 2 2 3 4 5 6 8
Saddlepoint 2 2 2 2 3 5 6 8
3 Exact 3 3 4 5 7 9 11 15
Read 3 3 4 5 7 9 10 14
Saddlepoint 3 3 4 5 7 9 11 15
n==~6 n=13
@ @
o o
z 9 | Z2 92 4
2 2
£ £
R A R
A o A o
Exact Exact
,,,,,,,,,,,, Dawkins Dawkins
2 A Saddlepoint 2,’ I S A Saddlepoint
———- Levin ——— Levin
o o |
© T T T T T © T T T T T T
0 10 20 30 40 0 20 40 60 80 100
Number of draws, w Number of draws, w

Figure 4.1. Ezact and approximate distribution functions of W for n =
6,13. Three of the lines are indistinguishable to plotting accuracy.

As another example consider the case n = 6, throws of a die until all six sides have
appeared, and n = 13, draws of cards from a complete set of cards until all 13 ranks have
appeared. Figure 4.1 shows the exact distribution function of W (solid), Dawkins’s ap-
proximation (dotted), Levin’s approximation (long-dashed) and the saddlepoint approx-
imation (dashed). Dawkins’s approximation is inaccurate for small n, whereas Levin’s
approximation and the saddlepoint approximation are extremely accurate, matching the
theoretical distribution.

An additional example corresponds to n = 10, random generation of digits 0-9 until
all have occurred. The exact and approximate distribution functions are given in Figure
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4. The coupon collector’s problem

1.0

Probability
0.6

0.4

0.2

— Exact
"""" Dawkins
--- Saddle

Levin

10

I I
20 30

I
40

I I
50 60

Number of draws, w

70

Figure 4.2. Exact and approzimate distribution functions of W for n = 10.
Three of the lines are indistinguishable to plotting accuracy.

Table 4.3. Ezact and approximate probabilities for n = 10 and selected
The column labelled Levin

values of w, computed to four decimal places.
is taken from Levin’s (1992) Table 1.

100[(Approximation — Exact)/Exact].

The relative error (%) is Re =

w Exact Dawkins Re (%) Levin Re (%) Saddlepoint Re (%)
10-19 0.1732 0.2411 -39.20 0.1729 0.17 0.1754 1.27
20-29 0.4216 0.3515 16.63 0.4223  —0.17 0.4237 0.49
30-39 0.2483 0.2324 6.40 0.2481 0.08 0.2458 —1.01
40-49 0.1004 0.1068  —6.37 0.1003 0.10 0.0989 —1.49
50-59 0.0366 0.0427 —16.67 0.0365 0.27 0.0363 —0.84

>60 0.0199 0.0257 —29.15 0.0199 0.00 0.0200 0.50

4.2. Except Dawkins’s approximation (dotted) all approximations are indistinguishable
graphically from the exact distribution function of W (solid). Using the saddlepoint
approximation (2.4.2), Levin’s (1992) Table 1 can be augmented. The resulting Table
4.3 indicates that both saddlepoint and Edgeworth approximations are very accurate,
outperforming Dawkins’s by a significant factor.

In order to know how these approximations behave in the lower tail of W consider
the case n = 26, generating letters of the alphabet until all have occurred, and n =
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n =26 n =45
2 o
© (=}
o — Bxact ° ——  Exact
4 Dawkins S 4 Dawkins
e > o
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2 2
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— —
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o o
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Number of draws, w Number of draws, w

Figure 4.3. Exact and approximate distribution functions for the lower tail
of W for n = 26,45. Three of the lines are indistinguishable to plotting
accuracy.

45, draws of numbers from a total of 45 numbers in the Swiss lottery until all have
appeared. The lower tails of W are shown in Figure 4.3. One notices the accuracy of
Levin’s approximation (long-dashed) and the saddlepoint approximation (dashed), and
the failure of Dawkins’s approximation (dotted) in the lower tails.

In what follows, I try to explore Levin’s Edgeworth approximation (4.2.6) and the
proposed saddlepoint approximation (2.4.2) in more detail. The saddlepoint method’s
superiority over the Edgeworth series was briefly discussed in Chapter 1. Levin’s Edge-
worth expansion (4.2.6) has absolute error of order O(n~1), whereas the proposed sad-
dlepoint approximation (2.4.2) achieves a relative error of order O(n~%/2). But, as seen
in Table 4.3, we can expect Levin’s approximation to be more accurate than O(n~1)
in the center of the distribution of W. Indeed, as mentioned in Section 4.2, Levin’s
approximation depends on a free parameter v, which can be chosen for convenience
and computational stability. Levin (1981) recommended the value v = w, which led to
the approximation (4.2.6). But Levin (1983) suggested centering the distribution of S,
the sum of independent and identically distributed left-truncated Poisson variables, and
noted that his approximation could be improved by choosing v > n. Note that when-
ever v/n is large, the truncation to positive integers is negligible, in which case v = w is
already near the center of the distribution of S. Furthermore, Butler and Sutton (1998)
showed that Levin’s simple choice of v leads to a different saddlepoint approximation,
illustrating the connection between Edgeworth and saddlepoint approximations. An ad-
ditional saddlepoint approximation could be obtained by taking Levin’s (1981) result
given in (4.2.4) and using a saddlepoint approximation to the distribution of S. The
latter variable, S, is a sum of independent and identically distributed truncated Poisson
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4. The coupon collector’s problem

Table 4.4. Ezact, computed by means of Bonferroni’s inequalities, and ap-
prozimate o quantiles of the distribution of the number of resamples needed
to obtain the exact bootstrap distribution. The relative error (%) is abbre-
viated to Re = 100[(Approximation — Exact)/Exact].

a (%)
90 95
m n Exact Saddlepoint  Re (%) Exact Saddlepoint Re (%)
7 1,716 16,638 16,612 —0.1563 17,873 17,856 —0.0951
8 6,435 70,909 70,811 —0.1382 75,540 75,476 —0.0847
9 24,310 300,199 299,830 —0.1229 317,698 317,459 —0.0752
10 92378 1,264,006 1,262,691 —0.1111 1,330,592 1,329,679 —0.0686

variables, which may be already approximately normal for large v/n, whereas W is a
sum of independent but non-identically distributed, skewed, geometric variables.

As last example, consider the exhaustive bootstrap for symmetric statistics. The
bootstrap is a general technique for estimating sampling distributions. Davison and
Hinkley (1997) give an accessible account of bootstrap and its applications with exten-
sive references. To approximate the ideal situation of sampling from the underlying
unknown population distribution, resampling with replacement from the data, say of
size m, is performed by putting equal probabilities m~! at each data value. Repeating
this procedure R times provides R nonparametric bootstrap samples, and hence R ob-
servations of the statistic of interest, 7. When T is symmetric in the data values, there
are up ton = (i’;fll) possible values for the statistic, each having probability n=! to
be sampled (Davison and Hinkley, 1997, page 27). The values for n corresponding to
m =17,8,9 and 10 are recorded in the second column of Tables 4.4 and 4.5. One remarks
that n increases very fast as m increases. Knowing all n values, exact computation
of the bootstrap distribution of T" could be carried out. As one can only hope to enu-
merate completely for moderate sample sizes, one may want to know the distribution of
the waiting time of such a procedure. To do so, the exhaustive bootstrap can be seen
as a coupon (bootstrap statistic sample) collector’s problem, where W is the number
of samples needed to obtain all n different possible values of T'. For a given value of
n and «, the approximate a quantile is defined as the smallest value of w such that
Pr(W < w+1/2) > a. The exact and approximate 90%, 95%, 97.5% and 99% quantiles
are tabulated in Tables 4.4 and 4.5 for different n. A summary is given in Table 3 of
Kuonen (2000a). For n =1,716 (m = 7) one would need 17,873 bootstrap samples to
be 95% sure to have the exact bootstrap distribution, whereas for n =24,310 (m = 9)
317,698 are needed. The relative error of the saddlepoint approximation decreases when
we go further into the tail of the distribution of W. This example reflects a feature of
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4.5. Gene transfer into cells

Table 4.5. Exact, computed by means of Bonferroni’s inequalities, and ap-
prozimate o quantiles of the distribution of the number of resamples needed
to obtain the exact bootstrap distribution. The relative error (%) is abbre-
viated to Re = 100[(Approximation — Exact)/Exact].

a (%)
97.5 99
m n Exact Saddlepoint  Re (%) Exact Saddlepoint Re (%)
7 1,716 19,093 19,078 —0.0786 20,669 20,676  0.0339
8 6,435 80,106 80,059 —0.0587 86,028 86,054  0.0302
9 24,310 334,983 334,770  —0.0636 357,321 357,420  0.0277

10 92,378 1,396,194  1,395467 —0.0521 1,481,162 1,481,536 0.0253

the bootstrap distribution of a statistic, the total numbers of replicates increases rapidly
with increasing sample size. Hence, for small values of m it is often feasible to calculate
a bootstrap estimate exactly, by computing all bootstrap replicates, but as in practical
applications data sets are usually larger than m = 10, it seems to be impossible to com-
pute the exact bootstrap distribution by random sampling within a reasonable amount
of time and effort, though other methods could be used (Diaconis and Holmes, 1994).

4.5. Gene transfer into cells

% he example in this section results from a collaboration with the Laboratory of
Cellular Biotechnology, DC-IGC, EPFL. They use gene transfer to introduce
several genes into cells. Gene transfer is an essential tool in modern biology
. s touching all domains from basic research to industrial application. From earlier
studies they know that per cell w genes are randomly added to the genome. Different
genes are present in the transfer mixture. The number of each gene present in the
transfer mixture is the same, and each gene has identical probability to be added to
the genome. One of their interests was to know the probability that a modified cell
has at least one copy of each of the n genes (n < w). This can be seen as a coupon
collector’s problem, i.e. estimating the number of coupons (genes), drawn at random
with replacement, needed to complete a collection (at least one copy of each gene is in the
modified cell). In their experiments n is generally between 2 and 10, and w is between
10 and 100. In a concrete experiment, w = 20 and n = 7, the probabilities are 0.7038
for the exact distribution (4.2.1), 0.6877 for Dawkins’s approximation (4.2.2), 0.7045
for Levin’s approximation (4.2.6), and the saddlepoint approximation (2.4.2) delivers
0.7069. Dawkin’s approximation is not so accurate as the others are as n is small,
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4. The coupon collector’s problem

whereas the others are very accurate.

4.6. Conclusion

n this chapter several examples were used to show that a saddlepoint ap-
proximation to the distribution of the waiting time in the coupon collector’s
problem is very accurate. The proposed saddlepoint approximation only cov-
ers the case of equal sampling probabilities, whereas the approach proposed
by Levin (1981, 1983, 1992) also covers the case of unequal sampling probabilities. For
example, it would be interesting to know what the median number of poker hands is to
be dealt before one has at least one of each kind of poker hand? A referee of Kuonen
(2000a) kindly calculated the median number to be 451,617.
Finally, note that the consumation of 51 breakfast cereal boxes would be needed to
be 95% sure to get all ten gifts.
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5. Bootstrap distributions

‘“The bootstrap allows the data analyst to assess the statistical accuracy of
complicated procedures, by exploiting the power of the computer. The use of
the bootstrap either relieves the analyst from having to do complex mathemat-
1cal derivations, or in some instances provides an answer where no analytical
answer can be obtained. The bootstrap can be used either nonparametrically,
or parametrically. In nonparametric mode, it avoids restrictive and some-
times dangerous parametric assumptions about the form of the underlying
populations. In parametric mode, it can provide more accurate estimates of
error than traditional Fisher information-based methods.’

Bradley Efron and Robert J. Tibshirani (1993, page 394)

2 he bootstrap (Efron, 1979) found an immediate place in statistical theory and,
more slowly, in practice; see Young (1994). But it is known that, for accurate
(’ «'e,é@ approximations in the tails, the nonparametric bootstrap requires a large num-
O) ber of replicates of the statistic. As this can be time-intensive other methods
should be considered. A first alternative is Edgeworth expansion. But although Edge-
worth expansion provide good approximations in the centre of the density, it can lead
to inaccurate tail probabilities; see the references given in Chapter 1. A second alterna-
tive is saddlepoint approximation as reviewed in Chapter 2. Indeed, bootstrap analysis
presents an important application of saddlepoint approximation. Davison and Hinkley
(1988) used saddlepoint approximations to replace Monte Carlo simulation for bootstrap
means and related statistics. The method of Davison and Hinkley (1988) requires the
statistic of interest to be linear in the observations. Extensions to nonlinear statistics
are discussed in Daniels and Young (1991) for the studentized bootstrap mean, and in
DiCiccio et al. (1992a, 1992b, 1994) using the approximation developed in DiCiccio
and Martin (1991). Davison and Hinkley’s technique is justified in Wang (1990a) and
extended to certain nonlinear statistics by a different method in Wang (1990b). In the
latter the approximation established is similar to that of Skovgaard (1987). Further
results in the general context of so-called empirical saddlepoint approrimation, when
the required cumulant generating function is obtained empirically (as for the bootstrap
approximation, for instance), are given in Feuerverger (1989) and Jing et al. (1994).
More recently, Robinson and Skovgaard (1998) derived error rates for two cases where
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5. Bootstrap distributions

the empirical saddlepoint approximation is just the saddlepoint approximation to the
bootstrap approximation: the univariate standardized mean and in the general case of
tests based on smooth functions of means. The empirical saddlepoint approximation
also provides an alternative to empiricial likelihood techniques. Their relationship was
discussed by Monti and Ronchetti (1993) for multivariate M-estimators using the empir-
ical saddlepoint approximation given by Ronchetti and Welsh (1993). The general case
of this empirical saddlepoint approximation will not be considered within this thesis but
I refer to the references given above.

The implementation of saddlepoint approximations for bootstrap distributions, as
used in this chapter, is discussed in Davison and Hinkley (1997, Section 9.5), Canty
and Davison (1996, 1999) or Kuonen (1998a). The importance of such implementa-
tions is underlined by Rudolf Beran’s (1994, page 149) comment on the practical use of
approximations in bootstrap computations:

4

FEdgeworth expansions suffer from relative inaccuracy in their tails as
well as algebraic cumbersomeness. Saddlepoint approzimations to bootstrap
distributions ... appear to be more accurate, but currently lack convenient
implementation outside the simplest cases.’

I recall the basic notions of the nonparametric bootstrap, of the nonparametric delta
method and of the saddlepoint approximation as applied to resampling in Section 5.1.
Daniels and Young (1991, Section 6) noticed that saddlepoint approximations to boot-
strap distributions may fail if data contain outliers. Therefore, I propose in Section
5.2 a saddlepoint mixture approximation for the case of the average. In Section 5.3 I
look at the application of saddlepoint approximations for bootstrap statistics defined by
estimating equations. As applications I consider Huber’s M-estimate for location and
the standardized M-estimator of location with initial MAD scaling.

5.1. Introduction

n this section I review the basic notions of the nonparametric bootstrap, of

the nonparametric delta method (von Mises expansion) and of the saddlepoint

approximations to bootstrap statistics. A more complete survey on bootstrap

methods and their applications can be found in Shao and Tu (1995) or Davison
and Hinkley (1997).

5.1.1. Nonparametric bootstrap

The bootstrap method is a simulation procedure to obtain an approximation to the
distribution of a statistic. Consider a sample 1, ..., z,, thought of as the outcome of n
independent and identically distributed random variables X1, ..., X,, whose probability
density function (PDF) and cumulative distribution function (CDF) are denoted by f
and F. Let 6 be the parameter of interest which is estimated by a statistic T" whose
value is t. Since the distribution F' is unknown in the context of the nonparametric
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5.1. Introduction

bootstrap, so is the distribution of T'. Thus, if we are to use T to estimate 6, then we
need to have some idea of the variability of T'. Therefore we can use resampling of the
data set z1,...,x, to estimate the distribution of an estimator. This is the essence of
the bootstrap. Let

ﬁ’(az) = %Z[(SCZ <)

be the empirical distribution function (EDF) based on the sample, where I(-) denotes the
indicator random variable. The EDF can be used to estimate the unknown cumulative
distribution function F'. Let {p; : i = 1,...,n} denote an array of weights (or resampling
probabilities) for x1,...,x,, which satisfy p; > 0 and > p; = 1 for i = 1,...,n. The
generalized empirical distribution function (GEDF) is

Fo(x) = ZP:‘I(% <z).

Note that E{ Fg(x) | 21, ...,2,} = F(z) only if E(p;) = n!, and that in taking p; = n!,
Fg(z) equals F(x). In the generalized bootstrap process the GEDF is used to estimate
F; consistency is shown in Mason and Newton (1992).

Denote by z7,...,z; a random sample of size n from the GEDF. This is equivalent
to simple random sampling with replacement from the original sample, z1, ..., x,, and
applying the same statistic to the resampled data as to the original data. The resam-
pled data are called the bootstrap sample, and the conditional distribution of the statistic
applied to the bootstrap sample (given x1, ..., x,) is referred to as the bootstrap distri-

bution. Each bootstrap sample, x7,..., 2}, consists of elements from the original data

) n’

set sampled with probability vector (pi,...,p,). Let

f,::ZI(xf:xk), k=1,...,n,
i=1

denote the number of x;’s in the bootstrap sample. Then (f7,..., f) has a multinomial
distribution with denominator n and probabilities pq, ..., p,. The marginal distribution
of f*is B(n,p;), so E*(f}) = np; and var*(f*) = np;(1 —p;), i = 1,...,n. Following
Example 2.3 the cumulant generating function of (ff,..., fr) is

K(¢) :nlog{ZpieXp(Q)} . (5.1.1)

Remark 5.1. To apply simulation with the EDF is very straightforward. Because the

EDF puts equal probabilities on the original data values z1, ..., z,, each T* consists of a
independent copy of 7" applied to the bootstrap sample z7, ..., x;. Therefore we obtain
a simulated sample 77, ...,T%. The observed values t7,...,t} are called the bootstrap
replicates. Note that the letter R is reserved for the number of replicate simulations.

O
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5. Bootstrap distributions

Remark 5.2. The basic bootstrap confidence interval, of approximate coverage (1 —2a),
is defined to be the central (1 — 2«) range of the ordered bootstrap replications. In
Fhe usual order-statistic notation, this int'erval is [tfa( Rt1))> tf(y—a)( R +1))]. As mentioned
in Remark 5.1, each bootstrap sample gives a bootstrap replication of 7', namely ¢,
r=1,..., R. We assume that R, the number of bootstrap replicates, is chosen so that
a(R+1) and (1 —a)(R+ 1) are integers. O

5.1.2. Nonparametric delta method

The delta method is one of the oldest techniques for assessing the standard errors of
complicated statistical estimators. We consider real-valued statistics T' as estimators
of the parameter of interest #, and consider estimators which are functionals, so T
can be represented as T = t(F’ ). We assume that the functionals under study are
Fisher consistent, so the estimator asymptotically equals § = ¢t(F'). The key idea of the
nonparametric delta method, also known as von Mises expansion, is to extend series
extension to statistical functions. If some distribution G is ‘near’ F', then the linear
form of the first-order von Mises expansion of T" at F' evaluated in G is

HG) =t(F)+ /Lt(:c; F)dG(z) + remainder, (5.1.2)

where L;(+; F), the first derivative of ¢(-) at F', also known as the influence function, see
Hampel (1974b) and Hampel et al. (1986), is defined by

L&mﬁj:hmfﬂl—dF+fA3_¢ug
7 N0 ¢ ,

where A, is the point mass 1 at . The influence function describes the effect of an
infinitesimal contamination at the point x on the estimate, standardised by the mass of
the contamination. It is a measure of the asymptotic bias caused by contamination in
the observations. From (5.1.2) we see that the derivative satisfies [ L(z; F)dF(z) = 0.
We call the empirical approximation I(z) = L(x; F ) the empirical influence function,
and the particular values [; = [(x;) the empirical influence values.

Let us now look at the relationship between the influence function and the asymptotic
variance. Evaluating (5.1.2) at G = F yields the linear nonparametric delta method
approximation:

t(F) = t(F)+ /Lt(x; F)dF(z) + remainder

:twwii@mmy (5.1.3)

By the central limit theorem the second term on the right-hand side of equation (5.1.3)
is asymptotically normal. In most cases the remainder becomes negligible for n — oo,
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5.1. Introduction

so t(F) itself is asymptotically normal. Hence, (T —6) /vy (F)'/? tends to N(0,1), where
the asymptotic variance equals

v (F) = %/Lf(m; F)dF (z). (5.1.4)

In practice vy (F) is approximated by substituting F for F in (5.1.4), that is by using
the sample version

vp = v (F) = = Z 12, (5.1.5)

which is known as the nonparametric delta method variance estimate. Note also that
(5.1.3) implies that > 1, = 0.

Example 5.1 (Bootstrap estimate). The linear delta approximation (5.1.3) can be ap-
plied to the bootstrap statistic 7 in the following way: let F* be the EDF of the
bootstrap sample. Then (5.1.3) shows that

. R 1 — .
tHF*) =t(F) + — L(x* F
(F) =) + 3 Luais F)
or
1 n
" =t+ = *1;.
+ni§1fz

which is the linear approximation to 7™, say 17. In the case of the average, where the
empirical influence values [; are given by x; — Z, it follows that the linear approximation

1S
1 Zn 1 Zn
T* *7. *

as > f¥ = n. In the context of the generalized (weighted) bootstrap, where the un-
known distribution F is estimated by the GEDF, the linear delta approximation becomes
tFg) = t(Fe) + > pila(ay; Fo). O

Remark 5.3. If the estimator 7T is defined by an estimating equation of the form ¢ (x;,t) =
0 such that [ (z,t)dF(z) = 0, its influence function is

(@)
E{—v/(z.0)}

under the assumption that the denominator is nonzero, where prime denotes differenti-
ation with respect to #. The nonparametric delta method variance estimate is

L(z)

An example is the classical M-estimator, where ¢ represents Huber’s function. Il
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5. Bootstrap distributions

5.1.3. Saddlepoint approximations

Suppose that the statistic T can be expressed as a linear combination of Xy,..., X,
say T = > b;X;, where the b; are scalars. The bootstrap statistic is T* = > b;X* =
> fra;, where a; = b;x; and f is the bootstrap frequency of X;. The f* have a joint
multinomial distribution with denominator n and probabilities (p1,...,pn), so T* has
cumulant generating function

K(¢) =nlog {sz GXP(C%)} : (5.1.6)
i=1
As illustrated in Section 2.4, setting d = 1, a; = b;z; and X; = f/, the saddlepoint
approximation to the PDF and CDF of T can easily be obtained by means of (2.4.1)
and (2.4.2). Here, the saddlepoint ¢ is the solution of

K'(¢) = nZaipi exp(Ca;) {sz eXp(Cai)} =t. (5.1.7)

No solution exists for ¢ < min(a;) and ¢t > max(a;).

Although the nonparametric bootstrap statistic is discrete, there are generally no
problems in approximating it in a continuous way, because usually T* takes so many
values that continuity corrections do not make a big difference. Indeed, in considering
a data set of size n, the maximal number of distinct points is (2"7:1); see Hall (1992,
Appendix I). For example, n = 5 and 10 yield 126 and 11,628 points.

If an estimate of the entire distribution of 7* is needed, the values of Fi(t), given
in (2.4.2), for m evenly spaced values of ¢t between min(a;) and max(a;) are calculated
and a cubic B-spline is fitted to the values of ®~1{F;(¢)} by means of the S-PLUS or R
function smooth.spline. Hesterberg (1994) recommended the use of a cubic spline with
some boundary conditions (using the S-PLUS or R function spline), but in practice
they have little effect here.

Saddlepoint approximations are not easy to implement in a efficient way. Two main
problems may arise: the calculation of the cumulant generating function and the com-
putation of the saddlepoint. Daniels and Young (1991, Section 6) remarked another
limitation of the saddlepoint approximation itself when applied to an empirical distri-
bution and hence to the bootstrap. They considered a data set containing an outlier
and noticed that the usual saddlepoint approximation to the density of the studentized
mean breaks down. In the next section I propose a saddlepoint mixture approximation
for the average in this situation.

5.2. Saddlepoint mixture approximations

utliers are observations far removed from the pattern set by the majority of
the data. They are mainly due to gross errors or legitimate extreme observa-
tions. Outliers typically inflate classical estimates of the error variance, and
the decision of a classical hypothesis test may completely change on removing

c%f‘*\‘\\\
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5.2.  Saddlepoint mixture approximations

a single distant point. The proportion of contamination can affect the choice of statistical
techniques. In order to make them more stable, the need to bound the influence of
outliers on estimates in the bootstrap context may lead us to ideas like the weighted
bootstrap. Barbe and Bertail (1995) investigated the weighted bootstrap of statistical
functionals. They showed that from the point of view of the adequacy of the whole
distribution, we can do as well as the classical bootstrap. But, it seems to be logical that
even in putting a small weight on a outlier, the saddlepoint approximation of a classical
statistic may break down, as the bootstrap distribution in the presence of an outlier may
be multi-modal, whereas the classical saddlepoint approximation is unimodal. In this
section, I propose a saddlepoint mixture approximation giving a multi-modal distribution
estimate. A major problem is to know the critical value of an outlier for which the
saddlepoint approximation may fail. A classical method of outlier detection consists
of the use of a boxplot. But, practice showed that the outlying values in the usual
boxplot do not correspond to values for which the saddlepoint approximation breaks
down. This results from the fact that the aim is to approximate a bootstrap statistic for
which the breakdown point of the original estimator is not preserved. Stromberg (1997)
pointed out that the bootstrapped sample covariance matrix can have a breakdown point
of nearly zero regardless of the breakdown point of the estimator itself. Singh (1998)
studied breakdown properties of bootstrap quantiles, and Hu and Hu (2000) applied
them to some second-order accurate bootstrap methods. In Chapter 6, some remarks
on this will be made in the context of studentized bootstrap statistics. In this section
I propose a practical method for detecting an outlier in the context of the saddlepoint
approximation for the average.

5.2.1. The average

Let xq,...,x, be a sample of size n. Suppose that the parameter of interest 6 is the
true mean of the unknown distribution F. The statistic used to estimate 0 is T = X =
n~' 3" X;. Hence the bootstrap statistic of the average is T* = X* = Y fra; with
a; = x;/n and f} as before. To apply the saddlepoint approximations (2.4.1) and (2.4.2)

we need only the cumulant generating function, which is given by (5.1.6), using p; = n™'.

Example 5.2 (Daniels and Young's data). To illustrate the saddlepoint approxima-
tions of the average I consider Daniels and Young’s data (1991, Section 6):

—0.4621, —0.4608, —0.4492, —0.3830, —0.3109, —0.2282, —0.0896, 0.0927, 0.2183, 2.0723.

S-PLus functions to calculate the needed saddlepoint approximations for standard boot-
strap statistics are included in the library boot written by Angelo J. Canty (Davison
and Hinkley, 1997); the corresponding R library is available as well. It seems plausible
that the extreme outlier at 2.0723 may cause problems for the saddlepoint approxima-
tion. This belief is justified by Figure 5.1. In the left panel the 49,999 replicates of the
bootstrapped statistic and the corresponding saddlepoint approximation to the density
of the average are shown. As the saddlepoint approximation is generally unimodal the
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Daniels and Young’s data
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Figure 5.1. Saddlepoint approximations for Daniels and Young’s data. Left
panel: histogram of R = 49,999 replicates of the average. The solid line
represents the saddlepoint approxzimation to the bootstrap density of the av-
erage. Right panel: bootstrap and saddlepoint approximation estimates of
the CDF.

multi-modality of the replicates is not captured. The outlier at 2.0723 generates varia-
tion in the density of the average. This clearly reflects a limitation of the saddlepoint
approximation. In the right panel the estimated CDF of the bootstrap approach and the
saddlepoint approximation are shown. One could think falsely from this figure that the
saddlepoint approximation works quite well when compared to the bootstrap distribu-
tion estimate. It is interesting to know if there is a structure in the modes shown in the
histogram. Figure 5.2 shows the histogram of the bootstrap estimates with superposed
density estimates corresponding to the frequency of the outlying value, found from the
bootstrap output. The resampling weights are p; = n~! for i = 1,...,n and r represents
the number of times the outlier is resampled. One remarks that the multi-modality has
been captured very well. As mentioned before, a weighted bootstrap may not help as
the average breaks down in taking a single outlier. The weighted bootstrap may reduce
the variability and hence the number of modes, but saddlepoint approximations would
still break down. Hence, the idea of computing a saddlepoint mixture approximation
comes to mind. In considering each mode separately the approximation should be more
accurate.

I also tried to change the extreme value in order to find out the critical value for
which the saddlepoint approximation to the bootstrap density of the average fails for the
first time. In taking as criterion the standard boxplot with span equal to 1.5 times the
interquartile range (IQR), the upper extreme of the boxplot is 0.2183, and in considering
a value larger than 0.2183 the saddlepoint approximation should break down. In practice
we do not see multi-modality of the histogram until the value is not larger than 1.4048,
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Daniels and Young’s data
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Figure 5.2. Mode checking for Daniels and Young’s data. Histogram of
R = 49,999 replicates of the average with superposed density estimates
corresponding to the frequency of the outlying value, r.

and therefore the saddlepoint approximation works well. This value corresponds to a
span of cIQR with ¢ = 2.83. Therefore, I conclude that for Daniels and Young’s data
values larger than 1.4048 indicate a failure for the saddlepoint approximation. Hence, the
span of the boxplot with ¢ = 3 would be more appropriate for our purposes. Moreover,
as a boxplot displays the variability of the median such a rule seems to be very stable
to outliers. 0

In the previous example the idea of saddlepoint mixture approximations came up.
Let us now explore this idea and test their accuracy in the context of the average. Note
that the calculations below are valid only for the simple case where a single outlying
value is considered, say the jth observation. Let us split the bootstrap statistic as

n n
X5 =Y flai=fla;+ Y fla,
= %
where a; = z;/n for i = 1,...,n. Let r be the number of times the outlier has been
resampled. Given [ = r, we have

X* =ra; + Z fra.
=1

i#]
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The CDF of the average may be written as

Pr(X* <) =) Pr(X*<az|ff=r)Pr(ff=r) (5.2.1)

r=0

Since the marginal distribution of fF is B(n, p;), we have

n T n—r
Hence to approximate (5.2.1) only an estimate of Pr(X* < z | f; = r) is needed. We
use the saddlepoint approximation, and define the saddlepoint mizture approximation to
the bootstrap CDF of the average as

Pr(X* <z)= ZFS(X* x| ff=r)Pr(ff=r), (5.2.2)

r=0

where Fi(- | f; = r) is the saddlepoint approximation to the conditional bootstrap
CDF given fr = r. To calculate the approximation, the values of Fy(t | f; = r) for m
evenly spaced points are calculated using (2.4.2) and a spline is fitted to the values of
O YF,(t | fr =r)}. In practice, m = 50 seems to be a good choice. To obtain the
approximations one has to know the cumulant generating function, K(¢), of the average
given f* = r, and furthermore we need to know the range of values for which the
conditional bootstrap density is non-zero. To find a local minimum of K (¢) — ¢ I used
a general quasi-Newton optimiser, which is already implemented in S-PLUS (function
nlmin) or R (function nlm). The saddlepoint mixture approximation to the PDF of the
average is calculated in the same way. To improve the accuracy of the approximations
the saddlepoint approximation for the density is integrated and rescaled so that the
density integrates to one. To integrate the approximation, whose value is known at
equally spaced points, I use the classical trapezoidal rule. This quadrature method is
based on the device of adding up the value of the integrand at a sequence of abscissas
within the range of integration.

Remark 5.4. For n large and p; small, the binomial distribution of f; may be approxi-
mated by a Poisson distribution with parameter np;. To have an idea of Pr(f; = r) we
can calculate (np;)"/rlexp(—np;). On setting p; = n~! we get

T 0 1 2 3 4 )

Pr(ff=r) 03678 0.3678 0.1839 0.0613 0.0153 0.0030
Pr(f;y <) 0.3678 0.7356 0.9195 0.9808 0.9961 0.9991

From this table we see that the probability that the outlier will be resampled five times
is small. This suggests that the sum in (5.2.2) needs only be taken up to r = 4. [
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Let us now calculate the cumulant generating function of the average given [ = r.
It is defined as

K(¢) = log E {exp(¢X") | £ = r} = Gra; + (n — ) log { }_ arexp((a) },
i

where ¢; = Pr(f} | f =) = pi/(1 —p;) for i # j and a; = x;/n. Note that if p; = n~",
we have ¢; = 1/(n — 1). Furthermore,

K(Q) = (=) loglexp{¢ra/(n— )} + (n— ) log { D asexp(Car) }

i=1
i#]

— (0= r)log (Y wexp[C {ar/n 1) + )

=1
i#]

= flog {Z@ exp((di)} , (5.2.3)

where 7 = n —r, p; equals ¢; = p;/(1 — p;) for i # j and otherwise p;, = 0, and
a; = a;r/(n—r)+a;. We remark that formula (5.2.3) is of the same form as (5.1.6). To
apply the saddlepoint approximation we also need the second derivative of K () with
respect to (,

n n n 2
> aipiexp(Cas) Yy piexp(Ca) — { aipi exp(@-)}
=1 j i

Hence (5.1.7) yields

-1

K" = nZa Di €XP Cal {Zp, exp Cal } —

Finally, let me define the grids on which the saddlepoints should be computed. This
clearly depends on r, and therefore the idea is the following: for a fixed r I calculate a
sort of confidence interval for the bootstrap statistic 7% given f; = r. I work out the
expectation and the variance of T} —t given f; = r. In Example 5.1 I applied a linear
delta approximation to such a statistic in the following way:

=1
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where [; are the empirical influence values. As ¢ is the observed value of the statistic the
variance of 17 equals that of 77 — ¢, and for the expectation one only has to add ¢. For
the conditional expectation one gets

n-—r -
E(T;—t|ff=r)= —l + E* Y it pili (5.2.4)
n(1—p;) 2_1:
z;ﬁ] i#]

as EX(f) = (n —r)p;i = (n — r)pi/(1 — p;) for i # j. Moreover the conditional variance
is

var(Ty —t | fi=r) = ZZCOV (f7, Ll
e
n—7 = . n—r
= n2 pz( pz)l2 Z szpkl Iy
7 :g o

n—r = 2

= r[ Rz ZW ZPQF { 2wt}
Z#J Z#J 22

(5.2.5)

When p; = n~!, (5.2.4) and (5.2.5) reduce to

T n—r r—1

E(TZ\fj*:'r’):E(TE—t\f;:T)+t:Elj—7n<n_1)l jrt= gl
as > l; =0, and
* * n - 2
var(T7 | f; =71) = (7”5—12712[”_1 17 — ZF {le}]
1#1 Z#J 22

_ (n(n_;an[n—Q 212—1}
175]

Let us denote E(T7 | f; =) by p, and var(T7 | ff = r) by o;. For a fixed 7 we calculate
the saddlepoint approximations at m evenly spaced points from pu, — co, to p,. + co,,
where ¢ is constant. In practice we took ¢ equal to the 97.5% quantile of the standard
normal distribution.

Example 5.3 (Daniels and Young's data). In Example 5.2 I remarked the limitation
of the classical saddlepoint approximation in the presence of an outlier, as in Daniels
and Young’s data. In this example I compare the saddlepoint mixture approximation
to the classical saddlepoint approximation and to the nonparametric bootstrap. In
the left panel of Figure 5.3 the saddlepoint mixture approximation to the density of
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Daniels and Young’s data
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Figure 5.3. Saddlepoint mixture approximations for Daniels and Young’s
data. Left panel: histogram of R = 49,999 replicates of the average. The
solid line represents the saddlepoint mixture approrimation to the density
of the average. Right panel: bootstrap, saddlepoint and saddlepoint mixture
approzimation to the CDF.

the average is shown. The multi-modal structure has been captured very well. In
the right panel of Figure 5.3 approximations to the CDF are shown. The saddlepoint
mixture approximation (dashed) is closer to the bootstrap approximation than the simple
saddlepoint approximation (dotted) is. O

Example 5.4 (Rosner’s data). These data are given in Rousseeuw and Leroy (1987,
page 165) and represent a sample containing ten monthly diastolic blood pressure mea-
surements:

40, 75, 80, 83, 86, 88, 90, 92, 93, 95.

A glance at these measurements, which originally appeared in Rosner (1977), reveals
that 40 stands out compared to the other values. The corresponding saddlepoint ap-
proximations are shown in in the left panel of Figure 5.4. The usual saddlepoint ap-
proximation (solid) fails in the centre, whereas the saddlepoint mixture approximation
(dotted) to the density of the average works very well over the entire range of possible
values. For the distribution approximation, the right panel of Figure 5.4 suggests that
both approximations work well. O

Example 5.5 (Artificial data). Let us consider a data set with one extreme value. We
consider a data set containing 50 observations: 49 from an uniform distribution U(0, 1)
and an outlier at 10. In the left panel of Figure 5.5 the saddlepoint approximations
to the density are superposed on the histogram of R = 49,999 bootstrap replicates
of the average. Once again the saddlepoint mixture approximation (dotted) to the
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Figure 5.4. Saddlepoint mixture approximations for Rosner’s data. Left
panel: histogram of R = 49,999 replicates of the average. The solid line rep-
resents the saddlepoint mizture approrimation to the density of the average.
Right panel: bootstrap, saddlepoint and saddlepoint mixture approrimation
to the CDF.
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Figure 5.5. Saddlepoint mizture approximations for the artificial data of
Example 5.5. Left panel: histogram of R = 49,999 replicates of the aver-
age. The solid line represents the saddlepoint mizture approximation to the
density of the average. Right panel: bootstrap, saddlepoint and saddlepoint
mixture approximation to the CDF.

density is very accurate, whereas the usual saddlepoint approximation (solid) fails. For
the approximation to the distribution given in the right panel of Figure 5.5 the same
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conclusions can be drawn. O

5.2.2. Miscellany

In Example 5.2 the usual boxplot with a span of 3 times the interquartile range was
used as an outlier detection rule. In order to develop a more general identification rule
for outliers in the context of saddlepoint approximations one may find interesting ideas
in the extensive statistical literature on the detection of outliers in a univariate sample;
see, for instance, Rousseeuw and Leroy (1987), Davies and Gather (1993) or Barnett and
Lewis (1994). One should also take into account the fact that the bootstrap statistic
does not inherit the breakdown point of the original estimator. Moreover, Young and
Daniels (1990) showed by means of two simple situations, involving the mean, that the
bootstrap can be noticeably biased for small sample sizes.

The technique presented in this section is only valid if the data set contains a sin-
gle outlier. But, it should be feasible to extend it to data sets containing two or more
outliers. In this case the technique would consist in calculating a saddlepoint mixture ap-
proximation given f; = r and f; = s, where the jth and the kth observations are outliers.
This involves intensive calculations for the cumulant generating function. Moreover to
get the mixture approximations more individual saddlepoint approximations are needed.
The identification of the modes on the histogram of the bootstrap replicates is another
unsolved problem. In considering a data set containing two extreme outliers, I noticed
that an individual mode on the histogram of the replicates does not correspond to the
case where both outliers have been resampled the same number of times. Finally, in
considering data sets containing outliers, there may also be a masking effect, e.g. in
considering an extreme outlier on the left and one on the right, it may be possible for
the histogram not to show multi-modality. This is discussed in Barnett and Lewis (1994,
Section 4.1.4), together with the related phenomenon of swamping.

One needs to question whether the saddlepoint mixture approximation is worth the
trouble. First, who uses the average when data contains an extreme outlier? Having
detected an extreme outlier, one would immediately use a robust estimate of location,
or check if it is due to a measurement error and therefore omit it. Second, as the main
advantage of saddlepoint approximations for bootstrap statistics is to deliver very accu-
rate approximations far into the tails of the distribution, it seems to be interesting to
know whether the saddlepoint mixture approximations outperforms the classical saddle-
point approximations in the tails. This is very important to know prior to any further
generalization of the proposed method.

Let us consider Daniels and Young’s data containing a single outlier, and the aver-
age as statistic of interest. As illustrated in Example 5.2 the mixture approximation
works extremely well in the centre of the distribution, where the classical one fails (see
Figures 5.1 and 5.3). In comparing the approximations to the PDF of the bootstrap
distribution to the density of the average, these figures clearly illustrate the accuracy
of the saddlepoint mixture approximation. But in considering the CDF approximation,
one does not remark any big difference between them. Similar conclusions are suggested
by other examples (Figures 5.4 and 5.5). As one is mostly interested in the distribution
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Figure 5.6. CDF approxzimations for Daniels and Young’s data. Left panel:
bootstrap (R = 49,999), saddlepoint and saddlepoint mizture approzima-
tion to the CDF for values between 0.9 and 1. Right panel: relative errors
(Approximation — Bootstrap) /Bootstrap.

in the tails (e.g. for computing confidence intervals, or upper and lower quantiles), I try
to answer this question in what follows.

The left panel of Figure 5.6 compares the bootstrap, saddlepoint and saddlepoint
mixture approximation to the CDF for values between between 0.9 and 1. The sad-
dlepoint approximation (dotted) is closer to the bootstrap distribution (solid) than the
mixture approximation (dashed) is. The variability of the saddlepoint mixture approxi-
mation seems to be larger. This fact was not reflected by the right panel of Figure 5.3,
which suggested that the saddlepoint mixture approximation works better. The reason
for this may be that the saddlepoint mixture approximation does not go as far into the
tails as the saddlepoint approximation does. This may lie in the fact that for each r —
the number of times the outlier has been resampled — a sort of confidence interval is
calculated. As mentioned in Remark 5.4 it should be sufficient to consider a maximal
value of » = 4. But the figure suggests that with » = 4 the value of the correspond-
ing upper bound of the interval is not sufficiently far away in the tail. This was also
reflected by the fact that in the present context the range of the saddlepoint mixture
approximation was always included in that of the saddlepoint approximations — even
for larger r. Moreover, if r is chosen too big we may get computational problems.

As another advantage of saddlepoint approximations is that they deliver relative
and not absolute errors, it also may be interesting to compare the relative errors of the
approximations. In the right panel of Figure 5.6 the CDF is plotted versus the relative
errors of the approximations (computed by means of 100 evenly spaced points between
0.9 and 0.999). For the saddlepoint approximation (dashed) the variation of the relative
error around zero is smaller than with the saddlepoint mixture approximation (solid).

68




5.2.  Saddlepoint mixture approximations

Artificial data
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Figure 5.7. CDF approximations for the artificial data of Example 5.5. Left
panel: bootstrap (R = 49,999), saddlepoint and saddlepoint mizture ap-
prozimation to the CDF for values between 0.9 and 1. Right panel: relative
errors (Approximation — Bootstrap)/Bootstrap.

Let us now perform the same analysis in the upper tail of the artificial data of
Example 5.5; see Figure 5.7. In this case the saddlepoint mixture approximation seems
to be more accurate in the extreme upper tail of the CDF. A possible explanation for
this may be found in Young and Daniels (1990). They showed that for small sample
sizes the bootstrap is biased. Note that Daniels and Young’s data consist of n = 10
observations, whereas we have n = 50 for the artificial data set. Hence the sample size
may be too small to compare both saddlepoint approximations appropriately, as already
the underlying bootstrap distribution may be biased. As a result of this, a sample
of size n = 50 should be sufficiently large to judge over the performance of the two
approximations. Moreover, Jun Shao and Dongsheng Tu (1995, page 206) noted that

‘“The accuracy of various approximations to the bootstrap estimators is im-
portant. However, since the bootstrap estimators have their own errors in
estimating the sampling distribution of a given statistic, it may not be worth-
while to reduce the error of the approrimation to the bootstrap estimator much
below the error of the bootstrap estimator.’

But, is the saddlepoint mixture really worth the trouble? Remember that having
extreme outliers in the data would clearly lead us to use robust estimates of location
and not the average. Robust statistics have been in use for hundreds of years (Stigler,
1973). More recently, a review of robust inference is given by Hampel (2000). Nowadays,
robust statistics, described by Hampel (2001, page 1) as ‘the stability theory of statistical
procedures’, have been proven to be very useful, and are widely used. For a discussion
of the place of robustness (and statistics in general) in the field of tension between pure
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mathematics and scientific applications, see Hampel (1997, 1998).

In the next section we look at the application of saddlepoint approximations for
bootstrap statistics defined by scalar estimating equations. As applications we con-
sider robust M-estimates of location. The generalization of the presented technique to
studentized bootstrap statistics will be given in Chapter 6.

5.3. Estimating equations

SR

his section illustrates how the saddlepoint approximations can be applied to
the case in which the statistic is determined implicitly as the solution to esti-
,‘3‘5‘.’5 mating equations. As a nonlinear transformation is involved difficulties arise.
' Daniels (1983) compared two distinct ways of doing this which lead to differ-
ent approximations of similar accuracy. He remarked that the one proposed in the next
section appears to be the most convenient for approximating tail probabilities. Davison
and Hinkley (1988, Section 4) applied this approximation method to the nonparametric
bootstrap. They showed that saddlepoint approximations to bootstrap distributions of
estimates based on monotone estimating equations can often replace simulation with
excellent results; see also Davison and Hinkley (1997, Section 9.5).

The saddlepoint approximation to the density of an estimator defined by a scalar
estimating equation (see Section 5.3.1 and Daniels (1983, Section 4) in more detail) is
directly related to Field and Hampel’s (1982) work. Indeed, Daniels (1983, Appendix)
proved that his density approximation is the integrated form of Field and Hampel’s ap-
proximation, ¢.e. by numerically integrating his saddlepoint density approximation we
get directly their approximation; see also Field and Hampel (1982, Section 8). They ex-
tended the applicability of Hampel’s (1974a) asymptotic expansion from the arithmetic
mean to M-estimators of location with monotone estimating equations. Already Ham-
pel (1974a) noted that integration of his approximation for the average gave precisely
Daniel’s (1954, page 633) saddlepoint approximation. That this is possible is indicated
by the close relationship between the saddlepoint approximation and conjugate distribu-
tions (Daniels, 1954, page 639). In fact both approximations may yield identical results.
A similar technique for densities of multivariate M-estimates was derived by Field (1982)
as an adaptation of the saddlepoint technique of Daniels (1954) and the small sample
method of Hampel (1974a). This can be seen also as a generalization of Field and
Hampel (1982). Further details are given in Field and Ronchetti (1990, Chapters 4 and
6).

5.3.1. Saddlepoint approximations

The usual saddlepoint approximations can be extended to the case where the scalar
statistic T' is defined by an estimating equation of the form

iz/}(Xi,T) =0, (5.3.1)
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where (z,0) is assumed to be a monotonic decreasing function in @ for all x, and

E{y(X,0)} =0 for all 6.
Let us write U(t) = > u(x;,t). The corresponding bootstrap statistic 7* based on
sampling from the data zq,...,z, is the solution of

U*(t) =D w(wi t)f =0,
i=1
where f7 denotes the bootstrap frequency of ;. Since U*(t) is monotone in ¢ we have

Pr(T* < t) = Pr{U*(t) < 0}.

Indeed, if each ¢(x;,t) is monotonically decreasing in ¢, then

Pr(I" < 1) = Pr {fjw<xi,T*>f; > fjw<xi,t>f;} Py {Z Do t)f < o} |
=1 i=1 =1

Hence, the saddlepoint approximation to the CDF of T can be approximated by that
of U*(t) by means of (2.4.2). Settingd =1, T =U*,t =0, a; = ¥(x;,t) and X; = f
the approximation simply becomes F;(0). The cumulant generating function of U*(t) is
given by (5.1.6),

K(¢,t) = nlog [Z piexp{Ce(xi,t)} (5.3.2)

To calculate the saddlepoint approximation to the density of 7* we need the Jacobian of
the transformation from U* to T*. This Jacobian is denoted by J((, ) and is | K((,t) /],
where K ((,t) is the first derivative of K((,t) with respect to t. In our context we have

sz' exp{Ce(a, 1)} (24, 1)
J((,t)=n =l

, (5.3.3)

Zpi exp{C(z;, 1)}

where t(z;,t) is the first derivative of ¢(z;, t) with respect to t. The saddlepoint ¢ is the
solution to K'({,t) = 0, where prime denotes differentiation with respect to . Thus the
saddlepoint approximation to the density of 7 at ¢ is (Daniels, 1983, equation (4.2))

£.(6) = J(E ) {27T|K"<§,t)\}_” * exp [K(n}. (5.3.4)

This approximation can also be found by multiplying the saddlepoint approximation to
the PDF of U*(t) evaluated at 0, and given in (2.4.1), by the Jacobian evaluated at
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f , (f ,1). To compute the approximation we need the first and second derivatives of
K (¢, t) with respect to ¢, which are

> (s, t) exp{C¥ (i, 1)}
K'(Gt) = ==
Zpi exp{Ce (i, 1)}

and
ZPﬂ/JQ(J?z‘,t)eXP{Cw(Q?i,t)} )
K"(¢,t) =n=— —E{K’(C,t)}Q. (5.3.5)
sz' exp{Cy(zi, 1)}

The saddlepoint ¢ is the unique solution of K’(¢,¢) = 0, hence at ¢ (5.3.5) becomes

Zmbz(:ci, t) exp{Ct(w;, t)}
K”(é,t) —n i=1 _
sz‘ eXp{éw(Iz‘a t)}
i=1

Apart from the derivatives of the cumulant generating function, the only other quantity
required is the derivative of v (-,¢) with respect to ¢, which can generally be obtained
easily from the definition of (-, -).

Remark 5.5. As the advantage of saddlepoint approximations is that they are very
accurate far into the tails of the distribution, it is very important to use an appropriate
range of values of ¢ to estimate the entire distribution of 7. Recall that the quantiles of
the distribution of T are estimated by obtaining the CDF approximation at m evenly
spaced values of £, and then interpolating the CDF using a spline smoother. The range
of values of ¢ used is determined using a binary search (BS). Our modified version starts
at the original value of the statistic and considers a value of t far away. Let A denote
a sorted set of user defined requirements for the upper bound, for example that the
saddlepoint approximation to the CDF at the upper bound is very close to 1. Now, we
can check the midpoint of this interval against A and eliminate half of the interval from
further consideration. The BS repeats this procedure, halving the size of the remaining
portion of the interval each time. The algorithm stops if there is no significant difference
between two consecutive values. Similarly, a BS is applied to find the lower bound with
for example as requirement that the CDF approximation is very close to 0. Thus we find
the effective range of ¢ values needed to calculate the entire saddlepoint approximation.
In practice, the effective range computed using the BS does not differ much from the
range of the bootstrap replicates for data without outliers. More insight on the range
of values of ¢ will be given in Section 6.5.2.3 in the context of studentized bootstrap
statistics. U
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5.3.2. M-estimates

An estimator defined by (5.3.1) is called an M-estimator. The name ‘M-estimator’
(Huber, 1964) comes from ‘generalized maximum likelihood’. A frequently used function
W is Huber’s function

U(x) = { o if o] < &, (5.3.6)

ksign(x), otherwise,

where the cutoff point k& is called the tuning parameter. The Huber estimators were
motivated by studies in robust statistics concerning the influence of extreme data points
on the estimate. Note that Huber’s v is a monotone function, and that the resulting
M-estimators have excellent properties (Hampel et al., 1986, Section 2.4b).

For further details on M-estimates see, for example, Huber (1981, Chapter 3). There
is a vast range of possible M-estimators. Many theoretical, numerical and simulation
studies have been made. Some key references are the large-scale study by Andrews et al.
(1972) resulting from the so-called Princeton robustness year and completed by Hampel
(1995), see also Huber (1964), Hampel (1974b) and Hogg (1974) for additional studies.
An important general treatment is given in Hampel et al. (1986).

Remark 5.6. The most common value of the tuning parameter in practice is k = 1.345.
It is justified by the fact that the resulting M-estimate is about 95% as precise as the
maximum likelihood estimate for Gaussian data. U

5.3.2.1. Huber’s M-estimate of location

When estimating location it seems natural to use ¥-functions of the form ¥ (x,0) =
Yr(x — 0). We assume that (5.3.1) holds in order that T is Fisher consistent. To
calculate the saddlepoint approximations to the CDF and PDF of Huber’s M-estimate
for location we only need

0 s -1, itz —6] <k,

%wk(x —0) =vr(r—0) = { 0, otherwise.

Using ¢(x;,t) = Yx(z — 0) the saddlepoint approximation to the density of Huber’s
M-estimate of location can easily be obtained by means of (5.3.4), and the one for the
CDF by calculating F;(0) in (2.4.2); see Section 5.3.1 for details.

Example 5.6 (Tuna data). Table 5.1 gives data from an aerial survey of schools of
Southern Bluefin Tuna in the Great Australian Bight (Davison and Hinkley, 1997, Table
4.5). One interesting thing with this data set (n = 64) is that that there are four extreme
values: 13.21, 13.27, 14.39 and 16.26. As our interest lies in location a robust estimate
of location seems to be appropriate. The left panel of Figure 5.8 shows the histogram of
the 49,999 bootstrap replicates. The figure also shows the saddlepoint approximation
to the bootstrap density of Huber’s M-estimate with & = 1.345. In considering the
data set we may have expected a multimodal structure, but as the figure clearly shows,
the saddlepoint approximation works well when we use a robust estimate of location.
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5. Bootstrap distributions

Table 5.1. The tuna data come from an aerial line transect survey of South-
ern Bluefin Tuna in the Great Australian Bight. An aircraft with two spot-
ters on board flies randomly allocated line transects. FEach school of tuna
sighted is counted and its perpendicular distance from the transect mea-
sured. The survey was conducted in summer when tuna tend to stay on the
surface.

0.19 028 029 045 0.64 065 0.78 0.85
1.00 1.16 1.17 1.29 131 134 1.55 1.60
1.83 191 197 205 210 217 228 241
246 251 289 289 290 292 3.03 3.19
348 379 383 394 395 411 414 419
4.36 453 497 5.02 513 575 6.03 6.19
6.19 645 713 735 7.7 780 881 9.22
9.29 9.78 10.15 11.32 13.21 13.27 14.39 16.26

Tuna data
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Figure 5.8. Saddlepoint approximations for the tuna data. Left panel: his-
togram of R = 49,999 replicates of Huber’s M -estimate of location. The
solid line represents the saddlepoint approximation to the bootstrap density
of Huber’s M -estimate of location. Right panel: bootstrap and saddlepoint
approzimation estimates of the CDF.

The right panel of Figure 5.8 illustrates that the saddlepoint approximation is very
accurate far into the tails of the distribution. It took 21,031 seconds (about 5.8 hours)
in CPU time to get the bootstrap distribution and 5 seconds to get the saddlepoint
approximation. 0]
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5.3.  Estimating equations

Table 5.2. Newcomb’s measurements of the passage time of light to traverse
a known distance. The given values multiplied by 1073 plus 24.8 give the
time in millionth of a second for light to traverse a known distance.

—-44 -2 16 16 19 20 21 21 22 22 23
23 23 24 24 24 24 24 25 25 25 25
25 26 26 26 26 206 27 27 27 27 27
27 28 28 28 28 28 28 28 29 29 29
29 29 30 30 30 31 31 32 32 32 32
32 33 33 34 36 36 36 36 37 39 40

5.3.2.2. Huber’s M-estimate of location with initial MAD scaling

In many statistical models the parameter splits naturally into a main part and a nuisance
part. It is intuitively clear that the maximal bias of the main part in a contamination
model (as is usually the case with real data) depends on the maximal bias of the nuisance
part. Therefore it would be interesting to treat both parameters. This problem can be
solved by defining T" through ¢ (x,0) = ¥x{(x — 0)/S} where S is a robust estimator
of scale. Hampel et al. (1986, page 105) recommend the use of MAD scaling for M-
estimators — MAD stands for ‘median absolute deviation about the median’. The
estimator is

S = PMAD(zy,...,2z,) = fmed{|z; —med(zy,...,z,)|,..., |z, —med(xy,...,z,)|},
(5.3.7)

where med(+) denotes the median and 3 equals 1/®71(3/4) to obtain Fisher consistency
for a Gaussian sample. Throughout the rest of this thesis the estimator (5.3.7) will be
simply referred to as MAD. The corresponding bootstrap statistic 7 solves

& ap =T\
;m( 5 )—0,

where S is the MAD of the original data set x1,...,x,. Hence the saddlepoint approxi-
mations for this standardized M-estimator of location with MAD estimator of scale can
be obtained with (z;, t) = tp{(z; —t)/s} and ¢(z;,t) = —I{|(x; —t)/s| < k|}/s, where
dot denotes the derivative of ¥ with respect to t.

Example 5.7 (Newcomb’s data). Newcomb’s measurements of the passage time of light
are given in Table 5.2 (Stigler, 1977, Table 5, Data Set 23). This data set has n = 66
and contains two outliers: —44 and —2. In the left panel of Figure 5.9 the saddlepoint
approximation to the PDF of Huber’s M-estimate of location with initial MAD scaling
is shown. The saddlepoint approximation works very well. And the CDF approximation
given in the right panel of Figure 5.9 underlines the accuracy of the approximation.
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Newcomb’s data
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Figure 5.9. Saddlepoint approzimations for Newcomb’s data. Left panel:
histogram of R = 49,999 replicates of Huber’s M -estimate of location with
initial MAD scaling. The solid line represents the saddlepoint approximation
to the bootstrap density of Huber’s M -estimate of location with initial MAD

scaling. Right panel: bootstrap and saddlepoint approzimation estimates of
the CDF.

Moreover, the saddlepoint approximations are much faster in CPU time (about 3 sec-
onds compared to the 3,786 seconds (about 63 minutes) to get the R = 49, 999 bootstrap
replicates). O

Additional examples of the approach presented in this section can be found in Kuo-
nen (1998a, Examples 3.1 and 3.3) and Kuonen (1998b, pages 15 and 16) for Huber’s
M-estimate of location, and in Kuonen (1998a, Examples 3.4 and 3.5) and Kuonen
(1998b, pages 18 and 19) for Huber’s M-estimate of location with initial MAD scaling.
The conclusions remain the same, illustrating that the advantage of saddlepoint approx-
imations is twofold: they deliver very accurate approximation, and they outperform the
‘brute-force’ bootstrap by a significant factor.

5.4. Conclusion

0% xample 5.2 illustrated a limitation of the saddlepoint approximation presented
NGy i Section 5.1.3 in the case where the data set contains outliers. Therefore in
",,)%ﬁ Section 5.2 I generalized the classical approach by introducing a saddlepoint

SN mixture approximation in conditioning on the number of times the outlier has
been resampled. I showed in examples that this approach delivers very accurate approx-
imations. Nevertheless, one may question the use of a statistic like the average when
data contain outliers. To enable the use of robust estimates of location a technique

¢
f’\
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5.4. Conclusion

was presented in Section 5.3. As applications Huber’s M-estimate of location and its
initial MAD scaled version were considered. In the next chapter the approach will be
generalized to give approximations for studentized bootstrap statistics, which are very
important in the bootstrap context.
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‘At present, some of the most interesting and at the same time most promis-
ing new methods and open problems have to do with small sample situations.

. In small sample situations simulation is indispensable. ... On the other
hand, it was noted by Hampel that a variant of the saddle point method can
give fantastically accurate approximations down to very small sample sizes.
... I hope that in the near future these approaches will bring to a close sev-
eral open problems in the area of small samples: studentization, confidence
intervals, and testing.’

Peter J. Huber (1996, page 62)

ny estimate of any parameter should be accompanied by an estimate of its own
variability. Together they form the basis for the construction of confidence in-

tervals. There are several ways of using bootstrap results in this context. The

- simplest consists in using a normal approximation to the distribution of a pivot

and hence to derive normal confidence intervals. Another, more accurate and general
device is the studentized bootstrap or bootstrap-t method; see Efron (1982) or Hall (1988).
This method will be described briefly in Section 6.1 and in more detail in Chapter 7,
whereas the corresponding saddlepoint approximations in order to replace the computer-
intensive bootstrap computations will be presented in Section 6.2. These can be seen as
a generalisation of the ones seen in Section 5.3.1, as in the studentized context the statis-
tic of interest is the solution of a system of equations. The first such example (Daniels
and Young, 1991) generalised Davison and Hinkley’s (1988) saddlepoint approximations
for the unstudentized bootstrap mean to the studentized bootstrap mean. Daniels and
Young (1991) first obtained a bivariate saddlepoint approximation, then, after a non-
linear transformation, integrated out an unwanted variable either numerically or by
Laplace approximation to obtain the marginal distribution of the statistic of interest.
This approach was extended by Davison et al. (1995, Section 3) and is summarised in
Davison and Hinkley (1997, Section 9.5.3). This method is also known as the integration
approach and will be discussed in more detail in Section 6.2. Concerning the accuracy
and coverage of bootstrap confidence intervals Jing et al. (1994), based on results from
Jing and Robinson (1994), used saddlepoint approximations in order to study relative
errors in much the way Hall (1988) used Edgeworth methods. Based on these works
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Feuerverger et al. (1999) showed the second-order relative accuracy, on bounded sets,
of the studentized bootstrap by exploiting connections between Edgeworth expansions
obtained by DiCiccio and Romano (1990) and saddlepoint approximations.

In the context of robust inference, related work started with Field’s (1982) saddle-
point approximation to the joint density of multivariate M-estimates. Their relation
was already discussed briefly in Section 5.3. To overcome the substantial computational
requirement, of numerical integration in order to obtain the marginal density Fan and
Field (1995) derived saddlepoint approximations to marginal densities for M-estimators,
which are based on Field (1982) and Tingley and Field (1990). A more general form
and justifications of the regularity assumptions required in the derivation of their ap-
proximations can be found in Field and Ronchetti (1990, Chapter 6). In addition, Fan
and Field (1995) computed the marginal distribution using formulae given in DiCiccio
et al. (1991) and DiCiccio and Martin (1991). A review of saddlepoint approximations
for marginal distributions in this context is given by Ronchetti (1996). More recently,
an additional extension is provided by Almudevar et al. (2000).

After stating the integration approach in Section 6.2 I will consider in Section 6.3
the classical studentized statistic, and in Section 6.4 the studentized versions of Huber’s
M-estimate of location, of Huber’s M-estimate of location with initial MAD scaling
and of Huber’s proposal 2. Finally, additional remarks on implementation and related
problems are given in Section 6.5. This chapter forms the basis of Chapter 7, where the
resulting studentized confidence intervals will be discussed in detail.

6.1. Introduction

ivotal quantities play a crucial role in the theory of confidence intervals. Much
of the bootstrap literature concerns the construction of approximate confidence
intervals in nonparametric settings. This raises the question: what is a good
pivot in nonparametric estimation problems? The answer to this question is
nicely illustrated in Efron (1992, Section 5); see also Davison and Hinkley (1997, Section
2.4).

Let T be an estimator of the parameter 6. The quantity T — 6 is a poor choice in
most situations as its distribution usually depends on unknowns. A second guess is a
t-like statistic, say

t\?‘,ﬁ"

T—140
V12’
where 7' is the estimator of location and V' is a consistent estimator of its variance. The
quantity Z is called an approzimate pivot, whose distribution is approximately the same
for each value of 6. This property enables the use of Z to construct accurate confidence
intervals. Throughout the rest of this thesis I use Z to denote a studentized statistic.
One simple approximation is to take Z to be N(0,1). This is often valid as n — oo and
is only an approximation for finite samples. A slightly better approximation is given by
Student’s t distribution on n — 1 degrees of freedom. One can expect that Z will be
behave like a t-statistic, but there is no guarantee of having n — 1 degrees of freedom.

7 = (6.1.1)
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Huber (1981, Section 6.8) noted that (6.1.1) works remarkably well for M-estimates;
see also the extensive simulation study by Shorack (1976), inspired by the Princeton
study (Andrews et al., 1972). But the use of Student’s ¢ distribution as an approximation
does not adjust the resulting confidence interval to account for skewness in the underlying
population or other errors; see Efron and Tibshirani (1993, Section 12.4). Recently, Boos
and Hughes-Oliver (2000) tried to derive rules of thumb for the value of n needed for
normal and ¢ intervals in order to give appropriate coverage probabilities. By means of
examples they illustrated that it depends mostly on the underlying skewness than on
the kurtosis. For the ¢ intervals this was already discussed in Johnson (1978).

A procedure which is known to be accurate is to estimate the distribution of Z from
replicates of the studentized bootstrap statistic,

T —t

z7" = VA2

(6.1.2)
where t denotes the observed value of the statistic T, and T* and V* are based on a
simulated sample, X7, ..., X . Hence we can obtain accurate intervals without having to
make normal or Student theory assumptions. This procedure estimates the distribution
of Z directly from the data. Following Remark 5.2 a (1 — 2«) basic bootstrap confidence
interval has limits

Ha(RiD))  Z((1-a)(RH1)-

Using (6.1.1) the (1 —2a) studentized bootstrap confidence interval limits for § have the
form

1/2 _x 1/2
t— 022yt — 0 2 amey); (6.1.3)
where 27, g, 1) is the a(R+ 1)th order statistic of the simulated values 27, ... , zj. Note

that this method, also known as bootstrap-t method, gives second-order accurate and
correct intervals in a wide variety of situations; see Hall (1988, 1992), Abramovitch and
Singh (1985), and DiCiccio and Efron (1992, 1996). Bradley Efron (1992, page 120)
concluded his investigations with:

‘The Z statistic (6.1.1) is a reasonable answer to the question
‘what is a good nonparametric pivotal quantity?”

In summary, studentization yields a stable pivotal that circumvents many problems.

Remark 6.1. Hu and Kalbfleisch (2000) proposed a bootstrap procedure which esti-
mates the distribution of an estimating function by resampling its terms using boot-
strap techniques. Their method concentrates attention on the estimating function and
equation from which the estimator is obtained. Studentized versions of their so-called
estimating function bootstrap yield methods which are invariant under reparametriza-
tions. But, especially using M-estimates this may be difficult to compute in the presence
of nuisance parameters (Léger, 2000). Additional drawbacks of this procedure were also
illustrated by Canty and Davison (2000). O
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6.2. Saddlepoint approximations

n this section the saddlepoint approximations of Section 5.3.1 are extended to
enable the computation of studentized statistics. Suppose that the statistic of
interest, 7', and some nuisance statistics, S = (51, ...,S4-1)", are the solution
to the d estimating equations

Ult,s) = Zw(xi, t,s) =0, (6.2.1)

where 1(x;,t,s) is a d x 1 vector. The bootstrap quantities 7% and S* are the solutions
of the equation

U(t,s) = Y _(xi,t,8)ff =0, (6.2.2)
i=1
where the frequencies (f7, ..., f¥) have a multinomial distribution with denominator n

and probability vector (pi,...,p,); typically p; = n~!. We assume that there exists an
unique solution to (6.2.2). Following (5.3.2) the cumulant generating function of U*(t, s)
for fixed ¢ and s is

K(¢,t,s) =nlog [Zpi exp{(" (s, ¢, S)}] (6.2.3)

and the saddlepoint approximation to the PDF of U*(¢,s) is given by (2.4.1) using
T =U* a; = ¥(x;,t,s) and X; = fr. To get the saddlepoint approximations to the
marginal PDF and CDF of T* we need the Jacobian for the transformation from U* to
T* and S*. This is hard to obtain exactly, but following the arguments by Spady (1991,
Section 2) a good approximation is given by

J(Ct,s) = |n zn:w(xi, (ot s) {aw(”gét’ 3. 81#(;;& 5>} , (6.2.4)
i=1
where
’UJ(ZCZ', <7 t, S) _ npl eXp{CT,le)(xia tv S)} (625)

> prexp{CTY (1, 5)}
k=1

The Jacobian (6.2.4) reduces to the Jacobian (5.3.3) when s is not present. Thus, similar
to the arguments in Section 5.3.1 one can use the fact that

Pr(T*=t, S* =s)=J((,t,s) Pr{U*(t,s) = 0}.

Hence using (2.4.1) the saddlepoint approximation to the joint density of 7% and S* is

Frose(t,s) = J(C, 1, $)(2m) V2 K" (1, 8) V% exp {K(é, t, s)} , (6.2.6)

82




6.2. Saddlepoint approximations

where ¢ = ((t, s) is the solution of the d equations K ((,t,5)/d¢ = 0, and K"((,t, s)
is the d x d matrix with elements 82K(é, t,s)/0CAC". We now apply Laplace’s method
to the integral of (6.2.6). Laplace’s method is described in most books on asymptotic
techniques; see for example Barndorff-Nielsen and Cox (1989, Sections 3.3 and 6.2). It
is usually preferable to use the Laplace method instead of numerical integration; see
also Section 6.5.2. Provided that the matrix 02K (C,t,s)/0s0s” is negative definite, the
Laplace approximation to the integral of (6.2.6) with respect to s = (s1,...,5841) at t
can be obtained in the following way. Let us write

fr«(t) = /fT*7S*(t, s)ds = (27T)d/2/7’<8) exp{—nh(s)}ds, (6.2.7)

where 7(s) = J(C,t,s)|K"(C,t,s)| "2 and h(s) = —K((,t,s). Then the approximation
to fr«(t) is

fro(t) = (2m)~2(2m) @D 20(3) [ ho(3)| 2 exp {~h(3)} ,
where § = §(t) solves the (d —1) x 1 system of equations Oh(s)/0s = 0 and |ho(5)| is the
determinant of the (d — 1) x (d — 1) matrix of second derivatives of h(s) with respect
to s evaluated at s, which is assumed to be positive definite. Hence, the approximate
marginal density of T at ¢ is

K ((,t,3)

—-1/2
Ds0s" } eXP{K(f,tyé)}, (6.2.8)

fo(t) = J(,t,38) {QﬂK”(f, t,35)]

where ¢ = ((t) and § are functions of ¢ that simultaneously satisfy the dx 1 and (d—1) x 1
systems of equations

aK(C7t> 8) aK(C7t> 8)

— =0, — =0. 6.2.9
¢ 0s ( )
These 2d — 1 equations can be solved using packaged routines. In practice, I used the
S-PLus function nlmin, which finds a local minimum using a general Newton optimiser.
The R function nlm could be used as well. To do so one can minimise the sum of squares

OK (¢, t,s)" 0K (¢, t,s)  OK((,t,8)" 0K ((,t,s)
¢ o T s 0s

and ensure that the minimum value is zero. For starting values, note that when ¢ equals
its sample value, say ty, we have approximately that 5 = 0 and that s takes its values
from the original data. Davison et al. (1995) noticed that this choice of initial values
is about equally fast as one-step approximations to ¢ and § (DiCiccio et al., 1992a).
Moreover, the same initial values for the particular case of the studentized mean were
already used by Daniels and Young (1991).

Furthermore, 92K (¢, t, s)/0s9s™ in (6.2.8) denotes the (d—1) x (d — 1) matrix whose
elements are

PK(C,t,s) K, t,s) {82K(C,t,s)}1 PK(C,t,s)

dsdsT  0sOCT dCOCT O™

(6.2.10)
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K((,t,s) is given by (6.2.3), we have
OK (¢ t,s) -

8< - nzw(xi’g7t7 S)¢($i7t78)7 (6211)
i=1
IK(G 1, s) _niw(” .t S)MC
Os o — 55y by Js .
In applying this to (6.2.9) we get ¢ and . Moreover,
PK n 1 (0K )
PHOLD 3 o bt oo oy — L {0

i=1

In the same way, we obtain

PK(C,t,s) _ ”Z (20.C. 15 {81/1(:cl,t ,S) —i—w(xl-,t,s)CTaw(xi’t’S)}

0C0s™ 0s”
0K ((,t,s) OK((,t,s)
n { ¢ ds } '

Hence at ¢ and § the matrices in (6.2.10) become

M = niw('xhC?t? S)w(x%tu S)w(‘r“t’ S)T’

0Cco¢T
K35 0 (i, t, 5) 2 OU(i,, 3)
Tocost nz w(@;, C,t, 3 {TﬂLw(%,t’S)C T}
and
PK( 18 - (i, t,5) L OU(w, t,8) 00, §)
83185k n n; U)(.Ti, C’ t7 S) {C 88[88k + C 881 C 85k } ’

where s; and s, denote the [th and kth elements of s. The saddlepoint approximation
to the CDF of T* at t is Fi(t) given in (2.4.2) with

w = sign(t — to) {2[((5, t, g)}l/z, (6.2.12)
1/2

PECGH I e v (6.2.13)

aK gatﬂg s ~
v = - LS gy | TR

ot

The only additional quantity needed is

0K ~,t,~ a z ~ Ta i7t7~
% :nzw(ﬂfi,g,t,S)C %

i=1
One remarks that the problems in this approach may mainly be computational. The
only analytical work that is required consists in the knowledge of the estimating equation
function ¢ (z;,t,s) and its derivatives, which define the statistic of interest 7* and the
nuisance statistics S*.
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6.3. Classical studentized statistic

3, 0 illustrate the ideas in the previous section I first consider the classical stu-
VIR dentized statistic, which consists in using (6.1.1) with T = X and V = S =
Wn > (X; — X)?2. The resulting studentized bootstrap statistic is given in
§ 5 (6.1.2), where the variance of the bootstrap sample is V* = S* =n~! Y (X7 —
X*)2=n"13" X2 — X*2 the average of the bootstrap sample is T* = X* and t denotes
the observed value of the statistic T given by t = Z = n™1>_ ;. As this studentized
statistic is location-invariant we can replace x; with x; — z, and therefore we have t = 0.
Thus (6.1.2) reduces to

L X

which is the studentized mean for the bootstrap sample. This application was already
treated by Daniels and Young (1991) and in Davison and Hinkley (1997, Example 9.19).
It can be shown that Z and S are the solutions of the d = 2 estimating equations given
in (6.2.1) with

x; — 281/2
1/’(%'7275) - ( 'TzZ - 8(1+22) ) :

Indeed, U(z,s) = 0 splits up in Y z; = 28"2n and Y 1?2 = s(1 + 2%)n, which yield
z/s'? = zand n7! Y a2 — 7% = s.

Using T'= Z and S = S the marginal saddlepoint approximations of Z* are given in
(6.2.8) for the PDF and in (2.4.2) for the CDF using (6.2.12) and (6.2.13). The required
2 x 1 matrices of derivatives are

Wlyizs) (=2 Wlyzs) ([ —zs712)2
0z o\ —2sz )7 s I\ —(1+42?)

and

PU(yi,z,s) 257%%/4
Os? B 0 '

Example 6.1 (Cushny and Peebles’ data). Let us look at the data by Cushny and
Peebles (1905) on the prolongation of sleep by means of two drugs. The original data
set was bivariate: for ten subjects, two different values were recorded (one for each
drug). These data are cited in numerous books as an example of a normally distributed
sample; see Hampel et al. (1986, Section 2.0). The n = 10 pairwise differences, i.e. the
differences between drug effects per subject, are the following:

0.0,0.8,1.0,1.2,1.3,1.3,1.4,1.8,2.4, 4.6.

However, a glance at these numbers reveals that the normality assumption is question-
able, due to the occurrence of 4.6 which appears to be an outlier. As seen in Section 5.2
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Cushny and Peebles’ data
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Figure 6.1. Saddlepoint approrimations for Cushny and Peebles’ data. Left
panel: histogram of R = 49,999 replicates of the classical studentized statis-
tic. The solid line represents the saddlepoint approximation to the bootstrap
density of the classical studentized statistic. Right panel: bootstrap, saddle-
point, normal and Student-t approzimation estimates of the CDF.

Table 6.1. Short’s determinations of the parallax of the sun.

735 7.68 T.75 7.7 792 807 823
8.23 835 842 843 850 850  8.50
8.60 8.65 890 9.09 9.61 10.15 10.33

the saddlepoint approximation to the unstudentized average would break down. One
might hope that using the studentized average this phenomenon does not occur. Indeed,
the left panel of Figure 6.1 illustrates that the saddlepoint approximation to the PDF
of the classical studentized statistics works reasonably well. The saddlepoint approxi-
mation (dotted) to the CDF given in the right panel of Figure 6.1 is also very accurate,
whereas standard normal (dashed) and Student’s to approximations (long-dashed) would
fail in this context. This is underlined by the normal Q-Q plot of the R = 49,999 repli-
cates of the classical studentized bootstrap statistic in the left panel of Figure 6.2, where
the saddlepoint approximation (dotted) and the normal approximation (dashed) are su-
perposed. O

Example 6.2 (Short’s data). Table 6.1 contains Short’s 1763 determinations (n = 21)
of the parallax of the sun (in seconds of a degree), based on the 1761 transit of Venus
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Cushny and Peebles’ data Short’s data
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Figure 6.2. Approximations for the classical studentized statistic for Cushny
and Peebles’ data (left panel) and for Short’s data (right panel). Q-Q plot of
the R = 49,999 replicates, with the saddlepoint approximation and normal
approzximation.

(Stigler, 1977, Table 4, Data Set 4). These data for which we have ¢ = 8.525 issue from
a larger study. But already using this small subset one notes an amazing fact: although
they were published in 1763 the precision of the measurements is incredible as ‘recent
radar determinations would lead to a value of 8.794 (Stephen M. Stigler, 1977, page
1072). The values 9.61,10.15 and 10.33 can be seen as extreme and as the left panel of
Figure 6.3 indicates studentization does a great job . The saddlepoint approximation
to the PDF of the classical studentized bootstrap statistic is very accurate. A normal
approximation to the CDF may not be as accurate as desired; see the dashed lines in
the right panels of Figures 6.3 and 6.2. The same holds for the t5, approximation which
is superposed in the right panel of Figure 6.3 (long-dashed). From both figures we see
that the saddlepoint approximation (dotted) to the CDF works well. O

Additional examples of saddlepoint approximations to the bootstrap PDF and CDF
of the classical studentized statistic can be found in Kuonen (1998a, Examples 4.1-4.4),
Kuonen (2000b, page 9), Kuonen (2000c, pages 9 and 10) and Kuonen (2000d, page 9).

6.4. Studentized )M -estimates

‘Perhaps the most immediate problem now is the exploration
(theoretical and empirical) of studentizing procedures. This
should then satisfy the most important practical needs with
regard to a location parameter.’

Frank R. Hampel (Andrews et al., 1972, page 242)
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Short’s data
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Figure 6.3. Saddlepoint approrimations to Short’s data. Left panel: his-
togram of R = 49,999 replicates of the classical studentized statistic. The
solid line represents the saddlepoint approximation to the bootstrap density
of the classical studentized statistic. Right panel: bootstrap, saddlepoint,
normal and Student-t approximation estimates of the CDF.

obust M-estimators for a location parameter 6 play an important role in robust
inference. As a first example Huber’s M-estimate of location was considered,
but being not scale invariant I then considered the standardised M-estimator
of location with initial MAD scaling. In this section we consider their stu-
dentized versions together with the studentized version of Huber’s proposal 2, which is
especially appropriate when both location and scale parameters are of interest.

For the classical studentized statistic the variance of the estimator of location was
available, but in the context of M-estimators we need to use the nonparametric delta
method estimate (5.1.5) as an approximation to the unknown variance. What follows
holds for all three statistics considered in this section. Denote by ¢ a scale estimate
whose value depends on the statistic in use. Following Remark 5.3 the nonparametric
linear delta method estimate of the variability of the estimator 6 becomes

n A n A —2
v =06 W <x2;0> {Z% <xlg_9>} : (6.4.1)
=1 i=1

where 94 (-) denotes Huber’s function (5.3.6) and prime denotes differentiation with
respect to x;. Indeed, we have

/ _ 1, if ‘SC| < k,
(@) = { 0, otherwise.

Note also that S ¢{(z; — §)/} is an integer, namely the number of observations
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contained in the interval (§ — k6, 0 + k&), and thus all derivatives of 1, (+) with respect
to x; beyond the first equal zero.
Using T'= 0, V = vy, and 0 = 0, the studentized statistic (6.1.1) can be rewritten as

~ ~ n ~ -1/2 ~
0—00 0—00 2 xl—Q ’ xl—Q
Z = = {lek ( . )} ;wk — | (6.4.2)

L

I will use k£ = 1.345 throughout this thesis.

6.4.1. Huber’'s M-estimate of location

Let 6 be Huber’s M-estimate of location as introduced in Section 5.3.2.1. Setting o =1
in (6.4.2) yields the studentized version of Huber’s M-estimate of location. Thus its
bootstrap version is

n

n -1/2
7= (6"~ o) {Z (e = 9*)} > il =07, (6.4.3)
i=1 i=1

where 6* is Huber’s M-estimate issued from the bootstrap sample, and 6, is its value
on the original data zy,...,z,. For our purposes we now simply use (6.2.1) with the
following d = 2 estimating equations

Yr(zi — 8)

_ n 1/2
banzs)=| {szm _S>} et —s) | (6.4.4)

where s = 0 is the nuisance statistic and z is the statistic of interest, 7.e. the studentized
version of Huber’s M-estimate of location. Indeed the first estimating equation defines
Huber’s M-estimate of location and the second becomes

z {ng(% - 5)} = (s — ) Z%(fcz’ —s),

which at s = 6 gives (6.4.3). To calculate the marginal saddlepoint approximations of
Z*, (6.2.8) and (2.4.2) using (6.2.12) and (6.2.13), we can get from (6.4.4) the needed

matrices of derivatives. For ease of notation denote ¢;(x; — s) by ¢y, i = 1,...,n.
Hence
0 0
_w(l‘iaza S) - _ 1/2 5 (645)
0z n~! {Z @Z)gz} /

Vi

0
%w(:ﬂi,z, s) = ( - {Zﬁ,ﬁ}_l/gzwk,i%,i—i/f;'m ) (6.4.6)
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6. Studentized bootstrap distributions

Table 6.2. Pedigree of EMTG6 cell lifetimes in hours.

7778 82 84 85 87 88 89 9.0 9.1
91 95 98 103 104 104 104 10.5 10.9 222

EMT6 data
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Figure 6.4. Saddlepoint approzimations for the EMT6 data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s M -
estimate of location. The solid line represents the saddlepoint approximation
to the bootstrap density of the studentized version of Huber’s M -estimate of
location. Right panel: bootstrap, saddlepoint, normal and Student-t approz-
imation estimates of the CDF.

and 0%(x;, 2z, 5)/0s0sT is

0
< —en ST - SR (St {0k} ) - (647)

Example 6.3 (EMTG6 data). Table 6.2 lists a typical pedigree of n = 20 EMT6 cell
lifetimes in hours (Staudte and Sheather, 1990, page 98). One notes the outlier at 22.2,
hence a statistic like the studentized version of Huber’s M-estimate of location seems
appropriate. The accuracy of the saddlepoint approximation to the bootstrap PDF
of the studentized version of Huber’s M-estimate of location is illustrated in the left
panel of Figure 6.4, whereas the approximations to the CDF are given in its right panel.
All approximations to the CDF seem to work reasonably well far into the tails of the
distribution. 0

Example 6.4 (Shrimp data). Table 6.3 lists the results of n = 18 different collaborators
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Table 6.3. Percentage of shrimp in shrimp cocktail.

26.6 30.3 30.7 30.7 30.8 31.2 31.2 31.7 31.7
32.2 322 323 324 325 33.0 333 338 35.7

Shrimp data
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Figure 6.5. Saddlepoint approximations for the shrimp data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s M -
estimate of location. The solid line represents the saddlepoint approximation
to the bootstrap density of the studentized version of Huber’s M -estimate of
location. Right panel: bootstrap, saddlepoint, normal and Student-t approz-
imation estimates of the CDF.

applying one method of determining the amount of shrimp in the same size container
of shrimp cocktail (Staudte and Sheather, 1990, page 134). There are two observations
which are outlying, namely 26.6 and 35.7. Except a small underestimation of the boot-
strap density in the lower tail the saddlepoint approximation to the PDF given in the
right panel of Figure 6.5 is accurate. For the bootstrap distribution all approximations,
including the saddlepoint approximation (dotted) to the CDF, work reasonably well
(right panel of Figure 6.5). O

Remark 6.2. Further applications to additional data sets suggest that bootstrapping
the studentized version of Huber’s M-estimate of location may be questionable. For
data sets containing several outliers the saddlepoint approximation to the bootstrap
density of the studentized version of Huber’s M-estimate of location breaks down by not
capturing the multi-modal structures on the histogram of the bootstrap replicates. For
instance, this is the case with Newcomb’s data (n = 66, Table 5.2). The saddlepoint
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Newcomb’s data

[Te) o
S = ~
—— Bootstrap Y
rrrrrrrrrrrr Saddlepoint 4/
< @ Vi
S s 1 - Normal
™ | ©
o o
3 3
A A
A~ O
o <
o o
- N
o o
o | e
o o
[ T T T 1 T T T T T
4 2 0 2 4 -4 2 0 2 4
z* 2%

Figure 6.6. Saddlepoint approzimations for Newcomb’s data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s M -
estimate of location. The solid line represents the saddlepoint approximation
to the bootstrap density of the studentized version of Huber’s M -estimate of
location. Right panel: bootstrap, saddlepoint, normal and Student-t approz-
imation estimates of the CDF.

approximations are given in Figure 6.6. One notes in the left panel the multi-modality
of the bootstrap density. Nevertheless the CDF approximations work well. Second,
the bootstrap may break down by delivering extreme bootstrap values in the tails of the
distribution. For illustration, the boxplot of the R = 49,999 replicates of the studentized
version of Huber’s M-estimate of location applied to Rosner’s data (Example 5.4) is given
in Figure 6.7. Moreover, using highly skewed data estimates of both location and scale
are desired in order to overcome these problems. For example, this is the case with the
studentized versions of Huber’s M-estimate of location with initial MAD scaling, and
with Huber’s proposal 2. Both will be treated separately in the following sections. [

6.4.2. Huber's M-estimate of location with initial MAD scaling

In the previous section the idea to use a scale estimate together with a location es-
timate came up. An example of an estimator which merges both is the standardised
M-estimator of location with initial MAD scaling as seen in Section 5.3.2.2. Denot-
ing this estimator by 6 and the MAD as defined in (5.3.7) by &, (6.4.2) delivers the
studentized version of Huber’s M-estimate of location. Its bootstrap version is

. n . -1/2 , .

0 — 0, Tr — 0% Tr — 0%
7 = § 2| E i , 6.4.8
%0 {z‘l " ( %0 ) } i=1 . ( %0 ) ( )
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Rosner’s data

o

Figure 6.7. Boxplot of R = 49,999 replicates of the studentized version of
Huber’s M -estimate of location using Rosner’s data. QOutliers are repre-
sented by circles and the whiskers and staples by dashed lines.

where 6* is Huber’s M-estimate of location with initial MAD scaling issued from the
bootstrap sample, 6, is its observed value and o( the observed MAD. Using o9 = 1 in
(6.4.8) reduces to (6.4.3). This connection can be exploited in what follows. First, it
can easily be verified that the d = 2 estimating equations are

Ui (@ —1/5;)/00}
(a2, 5) = Zn_l{zﬁ <xi—8)} _s=fy, <xi—s) . (64.9)
i—1 0o 0o 0o

where the nuisance statistic is s = 6 and z is the studentized version of Huber’s M-
estimate of location with initial MAD scaling. Second, the derivatives needed to get the
saddlepoint approximations of Z* can derived from those in the previous section. Indeed,
denote (6.4.5) by =,, (6.4.6) by =g, (6.4.7) by Zs and, for fixed k, ¥ {(x; — s)/o0} by
Yri. The derivatives of (6.4.9) are then

9 a2y s) = By Lanzs) = 07IEs and —2— (s, 2, 5) = o7
5, V@i, 2, 8) = Esy 5o(i,2,8) = 0g Zs and o ndp(@i, 2, 5) = 0

—_
—
—igg-.

Hence the saddlepoint approximation for the PDF of T* = Z* and S* = ST = 6* can be
obtained by means of (6.2.8), and for the CDF approximation one needs to apply (2.4.2)
with (6.2.12) and (6.2.13).

Remark 6.3. In Remark 6.2 some limitations of the studentized version of Huber’s M-
estimate of location were illustrated. Concerning the multi-modal structure of the boot-
strap density, shown for example in the left panel of Figure 6.6 using Newcomb’s data,
one remarks in the left panel of Figure 6.8 that this phenomenon does not occur when
initial MAD scaling is applied. Moreover for Newcomb’s data all CDF approximation
shown in the right panel of Figure 6.8 work remarkably well; see also Kuonen (2000c,
pages 18 and 19). Furthermore, in Figure 6.7 the failure of the bootstrap for the studen-
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Newcomb’s data
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Figure 6.8. Saddlepoint approzimations for Newcomb’s data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s M -
estimate of location with initial MAD scaling. The solid line represents the
saddlepoint approzimation to the bootstrap density of the studentized version
of Huber’s M -estimate of location with initial MAD scaling. Right panel:
bootstrap, saddlepoint, normal and Student-t approximation estimates of the

CDF.

Table 6.4. Michelson’s determinations of the velocity of light in air, made in
1882. The given values +299,000 are Michelson’s determinations in km/s.

573 578 599 611 682 696 711 723
748 T4A8  TT2 774 778 781 796 796
797 809 816 820 851 883 1051

tized M-estimator of location was shown. By means of initial MAD scaling Figure 6.9
suggests an improvement of the range of the bootstrap replicates. Initial MAD scaling
also provided a remedy for additional data sets where the non-scaled versions did not
work properly. ([l

Example 6.5 (Michelson’s data). Table 6.4 gives Michelson’s n = 23 supplementary
determinations of the velocity of light in air, made in 1882 (Stigler, 1977, Table 7). The
value 1051 is an outlier. The first scientific study on the speed of light was carried out
by Michelson in 1879. A careful and interesting examination of this study is given by
MacKay and Oldford (2000, Sections 3 and 4) in the broader context of defining what
a statistical method is. The left panel of Figure 6.10 shows the saddlepoint approxima-
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Rosner’s data

@®DO O

Figure 6.9. Bozxplot of R = 49,999 replicates of the studentized version
of Huber’s M -estimate of location with initial MAD scaling using Rosner’s
data. Outliers are represented by circles, the whiskers and staples by dashed
lines and the median by the filled octagon in the boz.

Michelson’s data
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Figure 6.10. Saddlepoint approximations for Michelson’s data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s M -
estimate of location with initial MAD scaling. The solid line represents the
saddlepoint approzimation to the bootstrap density of the studentized version
of Huber’s M-estimate of location with initial MAD scaling. Right panel:
bootstrap, saddlepoint, normal and Student-t approximation estimates of the
CDF.

tion to the density of the studentized version of Huber’s M-estimate of location with
initial MAD scaling. The saddlepoint approximation overestimates its lower tail and
underestimates its upper tail slightly. In the right panel of Figure 6.10 the estimated
CDF of the bootstrap approach (solid) and the saddlepoint approximation (dotted) are
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Michelson’s data Moriori data
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Figure 6.11. Approzimations for Huber’s M -estimate of location with initial
MAD scaling for Michelson’s data (left panel) and for the Moriori data
(right panel). Q-Q plot of the R = 49,999 replicates, with the saddlepoint
approximation and normal approrimation.

Table 6.5. Capacities of a sample of seventeen male Moriori skulls in cc.

1,230 1,260 1,318 1,348 1,360 1,364 1,378 1,380 1,380
1,410 1,410 1,420 1,445 1470 1,540 1,545 1,630

shown together with the normal (dashed) and the ¢y (long-dashed) approximations.
All three approximations deliver similar performance. To get a better impression of
the approximation in the tails, it is interesting to look at them graphically by means
of a normal Q-Q plot of the bootstrap replicates, which for Michelson’s data is given
in the left panel of Figure 6.11. One notes that the saddlepoint (dotted) and normal
approximations (dashed) are not as accurate as desired in the lower and upper tails.

OJ

Example 6.6 (Moriori data). The data in Table 6.5 give the capacities of n = 17 male
Moriori skulls (Barnett and Lewis, 1994, page 40). Due to the value 1,630 the data
are skewed. The saddlepoint approximation to the PDF of the studentized version of
Huber’s M-estimate of location with initial MAD scaling overestimates the upper tail
of the bootstrap density; see the left panel of Figure 6.12. The CDF approximations,
given in the right panel of Figure 6.12, underestimate the upper tail of the bootstrap
distribution. This is underlined by the normal Q-Q plot in the right panel of Figure
6.11. O

The previous examples illustrated that the saddlepoint approximation to the boot-
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Moriori data
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Figure 6.12. Saddlepoint approximations for the Moriori data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s M -
estimate of location with initial MAD scaling. The solid line represents the
saddlepoint approximation to the bootstrap density of the studentized version
of Huber’s M -estimate of location with initial MAD scaling. Right panel:
bootstrap, saddlepoint, normal and Student-t approximation estimates of the

CDF.

strap PDF or CDF of the studentized version of Huber’s M-estimate of location with
initial MAD scaling delivered over- or underestimation in the tails. This was confirmed
in considering additional data sets. Moreover, note that the scale estimate 6 was fixed to
the one from the original data set. This corresponds to assuming that the true variance
is known. One may prefer to take a bootstrap version of the scale estimate, which also
seems to be more natural as this would take into account a separate scale estimate for
each bootstrap sample, and not only a single (overall) scale estimate. Finally, it is well
known that location M-estimators are usually not scale-invariant. This problem can be
solved by using an estimator like Huber’s proposal 2.

Remark 6.4. One may also think that the problem could be resolved by using (6.4.8)
with og = 6*, where ¢* is the MAD obtained from the bootstrap sample. But nonpara-
metric resampling of the median, which forms the basis of the MAD defined in (5.3.7), is
known to only work when n is quite large and the data do not contain too many outliers;
see Davison and Hinkley (1997, Example 2.16). Hence the median does not have the
property of being bootstrappable (Brown et al., 2001). Bootstrappability is the ability to
accurately estimate sampling characteristics. Remarks about the bootstrap performance
of the median can also be found in Hall and Martin (1991) or Hall (1992, Appendix IV).
Brown et al. (2001, Sections 3 and 6) suggested a smoothed median with a breakdown
point of 0.341. Their results in favour of the smoothed median look promising but I
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doubt that the use of the smoothed median will outperform Huber’s proposal 2. O

6.4.3. Huber’s proposal 2

In analogy to the Huber estimator for the location problem, a natural idea is to ‘bring in’
the observations which are too far from the estimated location, and to determine these
estimates implicitly by the requirement that they should be the classical estimators
taken from the transformed observations. More precisely, we suppose that 0 and ¢ are
M-estimates found by simultaneous solution of the equations

> (xig_e) =0, > 4 <xi;9) — n, (6.4.10)
=1 =1

where 1, (+) denotes Huber’s function. One noticed that in taking k = oo and v =1 we
obtain the classical estimates § = z and 62 = n~* 3 (2; — z)2. Huber (1964, 1981) treats
questions of existence and uniqueness of solutions to (6.4.10), as well as the derivation
of their influence functions. Moreover, he noticed that these equations result in an
underestimation of ¢ for standard normal observations and set therefore (Huber, 1981,
page 137)

v =2®(k) — 1 — 2k (k) + 2k*[1 — (k)]

in his proposal 2 (Huber, 1964, page 96) in order to get Fisher consistency. For this
choice we have v < k? whenever k > 0. Huber (1964) remarked that his proposal 2 is
not sensitive to a ‘wrong’ choice of k. In practice, I considered k = 1.345, thus v = 0.71.
Note that the resulting M-estimate of location, é, is already scale invariant prior to
studentization as it has been coupled with an estimate of scale, &.

Using 0 and &, the simultaneous solutions of (6.4.10), the studentized version of
Huber’s proposal 2 is given by (6.4.2). Its bootstrap version is

- n ~ -1/2 n -

0 — 0, rr— 0 xr—0*
Z* — 2 7 / 1

Sz () 2 ()

~

0* — 0 e zr — 0
- — % (ny) 1/221/;;( ~ ) (6.4.11)
i=1

where 6% and 6* are based on the bootstrap sample z7,... 27, and 6, is the location
estimate of the original data set.

To approximate the bootstrap CDF and PDF of Z* we need to apply the marginal
saddlepoint approximations defined in Section 6.2. The most natural choice would be to
use T = Z and S = (S, 5;) = (6, 6), being solutions to the d = 3 estimating equations

Ve{(zi — 0)/0}
¢(xi727070) = @/)13{(902 _0)/0} -7
Uid(zs = 0)/o} — 2(v/n)?a(0 — 6p) "
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But Kuonen (1998a, Section 4.4.1) remarked that then the five equations in (6.2.9) can
not be satisfied simultaneously. This is due to the violation of an assumption introduced
by Huber (1964, page 97), which is needed to get unique solutions 0 and 6 to (6.4.10).

An alternative approach is given in Davison and Hinkley (1997, Example 9.20).
They used a different set of estimating equations and simplified them in order to get the
marginal saddlepoint approximations to the studentized bootstrap version of Huber’s
proposal 2. Their approach will be illustrated in what follows. Note that equation
(6.4.11) can also be written as

I Ny
- /2. —1 / i )
Y=
In denoting n~' S0t {(xF — 6*)/6*} by s3 we have at Z* = z that

6%z = (6" — 0y)(y/n) "2,

It yields that 6* equals 6 + z(v/n)*/26*/s5 and therefore

~

T =0 _ai—0  2(y/n)' 6 s)
€i = = - -

= ooc} /st — 2(v/n)'?/s3,

where st denotes 6*, ef = (] — 6y) /0 are the studentized bootstrap values and 6y, oy
are the observed values of the location and of the scale estimate, respectively. Hence we
can apply the marginal saddlepoint approximations (6.2.8) and (2.4.2), using (6.2.12)
and (6.2.13), with T = Z, S = (S1,52) = (6, n ™' > ¢\ {(x; — 0)/5}) and

o* o* o*

V(&)
(i, z,81,80) = | V&) —v |- (6.4.12)
%{3(5@') — S2

Note that ns} is the number of observations contained in the interval (é*—k:&*, é*+k&*),
and thus it would be unwise to treat s; as continuous. Hence the sampling version of s,
is fixed to its observed value, i.e. s5 = sy =n 1> U {(z; — 0y)/00}, and (6.4.12) can
be modified by dropping off its third component. Therefore, T'= Z and S = S| = & are
the solutions to the remaining d = 2 estimating equations. By denoting v (¢é;) for fixed
k by ¥y, the derivatives needed to calculate the saddlepoint approximation are given

by
(@i, 28) ( ~Upi(7/n)'? /52 )

0z B —2¢k,i¢//§,i(’7/n>1/2/52
oP(wy,2,8) —o0eity, i/ 51
Os B —200€i0k % i/ 51
and
Prolwnzs) 2o0eitl /!
0s0s” 400€iwk,iw]/§,i/5%+408€z2w122,i/5% .
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Table 6.6. Determinations of copper in whole meal flour.

220 220 240 240 250 2770 280 290
3.03 3.03 3.10 3.37 3.40 340 3.40 3.50
3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95

Copper data
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Figure 6.13. Saddlepoint approzimations for the copper data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s pro-
posal 2. The solid line represents the saddlepoint approzimation to the boot-
strap density of the studentized version of Huber’s proposal 2. Right panel:
bootstrap, saddlepoint, normal and Student-t approximation estimates of the
CDF.

Example 6.7 (Copper data). The copper data (Analytical Methods Committee, 1989)
contain n = 24 determinations of copper in whole meal flour. The data set given in
Table 6.6 is highly asymmetric with one value, 28.95, that appears to be out by a
factor of ten. The saddlepoint approximation to the studentized bootstrap statistic
of Huber’s proposal 2 is given in Figure 6.13. As one can see in the left panel the
approximation to the PDF is very accurate. The CDF approximations are shown in
the right panel. The saddlepoint approximation (dotted) is very accurate, whereas the
normal (dashed) and the 93 (long-dashed) approximations fail in the upper tail of the
distribution. The left panel of Figure 6.14 shows the normal Q-Q plot of the bootstrap
values for the copper data. Superposed on this plot are the quantiles of the saddlepoint
(dotted) and normal approximations (dashed). Normal approximation is poor, whereas
the saddlepoint approximation is good. 0]
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Figure 6.14. Approximations for Huber’s proposal 2 for the copper data (left
panel) and for the EMTG6 data (right panel). Q-Q plot of the R = 49,999

replicates, with the saddlepoint approrimation and normal approximation.

Example 6.8 (EMT6 data). The EMT6 data are given in Table 6.2. The left panel of
Figure 6.15 shows the saddlepoint approximation to Z* onto the histogram of the boot-
strap replicates. One remarks that the saddlepoint approximation performs very well
for the PDF as well as for the CDF (dotted line in the right panel of Figure 6.15). The
normal (dashed) and the t19 (long-dashed) approximations to the CDF underestimate
the bootstrap distribution in the lower tail. The approximations to the quantiles are
given in the right panel of Figure 6.14. One clearly sees a large deviation from normality
in the tails, suggesting that the normal approximation (dashed) would fail, whereas the
saddlepoint approximation (dotted) performs very well. O

Additional examples of the application of saddlepoint approximations to the studen-
tized bootstrap statistic of Huber’s proposal 2 can be found in Kuonen (1998a, Examples
4.5-4.10), Kuonen (2000b, page 13), Kuonen (2000c, page 19) and Kuonen (2000d, page
13). All examples I considered convinced me that it is preferable to use the studentized
version of Huber’s proposal 2 instead of the studentized version of Huber’s M-estimate
of location with initial MAD scaling. This recommendation will be underlined in the
next chapter in comparing the resulting studentized confidence intervals, hopefully.

6.5. Miscellany

n this section I will illustrate the problems that may occur by applying the

integration approach presented in Section 6.2 and applied in Sections 6.3 and

6.4. The described problems may affect the accuracy of the saddlepoint ap-

proximations. As far as feasible I will present remedies to overcome these
problems.
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Figure 6.15. Saddlepoint approzimations for the EMT6 data. Left panel:
histogram of R = 49,999 replicates of the studentized version of Huber’s pro-
posal 2. The solid line represents the saddlepoint approximation to the boot-
strap density of the studentized version of Huber’s proposal 2. Right panel:
bootstrap, saddlepoint, normal and Student-t approximation estimates of the
CDF.

6.5.1. Diagnostics

Daniels and Young (1991, Section 5) noticed that care is needed when using a Laplace
approximation in (6.2.7) in order to obtain the marginal approximation to the density
of T* given in (6.2.8). This problem occurs because to apply a Laplace approximation
we assume the matrix 92K (C,t,s)/0sds” to be negative definite, i.e. the cumulant
generating function K(é, t,s) to be concave. But, there is no guarantee that K(é, t,s)
is a concave function of ¢ and s. Daniels and Young (1991, page 171) and Davison and
Hinkley (1997, page 482) noticed that fortunately this difficulty is much rarer in large
samples. This is something I can confirm as well. The only times I encountered non-
concavity of K (é ,t,s) was when I considered highly-skewed data sets with moderate
values of n. This is for instance the case with Darwin’s data using the studentized
version of Huber’s proposal 2. The data are given in Table 6.7 (Hand et al., 1994, page
130). For fixed values of t = z, namely z = —2 and 1, Figure 6.16 shows K(f, z,8) as a
function of s. The left panel illustrates that there does not exist an unique maximum of
K(C, =2, s) or similarly an unique minimum of h(s) = —K({, =2, s) as defined in (6.2.7).
The unique minimum of h(s), § say, should exist within the interior of the domain of
integration for s. Uniqueness of § is needed in order to apply the Laplace approximation
and to ensure that the major contribution of the integral of (6.2.6) with respect to s
is interior to the region of integration. Using the classical studentized statistic Davison
and Hinkley (1997, Example 9.19) noted a bimodality in the contour plot of K (C, z, s),
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Table 6.7. Observations issued from an experiment to examine the superior-
ity of cross-fertilised plants over self-fertilised plants. The 15 pairs of plants
were measured at a fived time after planting and the difference in heights
between the cross- and self-fertilised plants are recorded in eights of an inch.
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Figure 6.16. The cumulant generating function (6.2.3) as a function of s,
for z = =2 (left panel) and z = 1 (right panel), using the studentized version
of Huber’s proposal 2 applied to Darwin’s data.

but they also remarked that the resulting marginal saddlepoint approximation to the
density of the studentized average Z* remains accurate. This results from the fact that
the bimodality in the cumulant generating function did not deliver a multi-modal joint
density as its second peak adds little (Davison and Hinkley, 1997, Figure 9.11). This
is nicely illustrated by the wireframe plot of the joint density (6.2.6) in Figure 6.17.
One notes the unimodal structure of the joint density. The level plot of the joint density
(6.2.6) is given in Figure 6.18 and shows that only values of z between about —2 and
4 need to be considered to get the entire marginal approximation to Z*. Davison and
Hinkley (1997, page 481) remarked the bimodality at z = —3.5 which lies outside this
range.

It is always wise to use diagnostic plots like the ones given in Figures 6.16-6.18. The
drawback is the CPU time needed. For example to compute the joint density (6.2.6)
using the classical studentized statistic on a 50 x 50 grid it took about 16 minutes by
means of the method to be described in Section 6.5.2.1. This clearly slows down the
integration approach and thus may not be suggested for routine use. Nevertheless, let
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Figure 6.17. Wireframe plot for the joint density (6.2.6) using the classical
studentized statistic applied to Darwin’s data.
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Figure 6.18. Level plot for the joint density (6.2.6) using the classical stu-
dentized statistic applied to Darwin’s data.

us consider what will happen when we apply the studentized version of Huber’s proposal
2 to Darwin’s data. Wireframe plots under different viewing angles are given in Figure
6.19. The multi-modality of the joint density (6.2.6) is shown and underlined in the
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Viewing.angle: 157.5 Viewing.angle: 247.5

A2
AN
‘fiii‘s‘
7100

0
N\
DO
O\
\ W\

‘\\\\‘

 0.025

~ 0.020

0.015

\
{
N

It
AN
N
G
’llll."

z S

0.010

0.005

0.000

Figure 6.19. Wireframe plots for the joint density (6.2.6) using the studen-
tized version of Huber’s proposal 2 applied to Darwin’s data. Left panel:
using a viewing angle of 157.5. Right panel: using a viewing angle of 247.5.
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Figure 6.20. Level plot for the joint density (6.2.6) using the studentized
version of Huber’s proposal 2 applied to Darwin’s data.

level plot given in Figure 6.20. Computation using a 50 x 50 grid took about 42 minutes
in CPU time. The peaks shown in these figures would result in an inaccurate marginal
approximation as the Laplace approximation only accounts for the dominant centre
peak.

Another approach to diagnose a possible failure of Laplace’s method is to check the
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signs of the eigenvalues of the real symmetric (d—1) x (d—1) matrix 92K (C, z, s)/s0s”
at a range of values of s: if all eigenvalues are negative Laplace approximation can be
used, as this fact ensures the convexity of h(s), the matrix —92K(C, z, 5)/0sds™ being
then positive definite, and hence the uniqueness of s.

Nevertheless, note that an approximation can always be found by a numerical inte-
gration of the joint density (6.2.6) with respect to s; especially if there exists at least a
positive eigenvalue of 92K (C, z,s)/9sds” .

In the examples considered in Sections 6.3 and 6.4 this behaviour did not occur, so I
always considered a Laplace approximation. Moreover, if the difficulty is thought to have
arisen one could simply jitter the values of interest and recalculate the quantities needed
for the integration approach. But, in order to stay as general as possible numerical
integration of (6.2.6) should be used to find the marginal distribution of T* = Z*.

6.5.2. Numerical integration

The safest procedure to apply to the joint density (6.2.6) would be to integrate it numer-
ically with respect to s = (s1,...,84-1). Computationally such numerical integration
is most conveniently performed using direct function evaluation of (6.2.6) on a regular
grid. Numerical integration methods for use in S-PLUS and R are discussed in detail in
Appendix A. Following the notations therein, to get the approximation to the PDF of
T* the evaluation of the following multi-dimensional integral is needed

fT* (t) = / s / fT*75*(t, Slyeeny sd_l)dsl te de_l, (651)

Ry
where the (d — 1)-dimensional integration region Ry ; is usually [—oo, co]¢ L.
In order to get the approximation to the CDF of T* at ¢, say, we need to integrate
(6.5.1) with respect to t,

Fr.(t) =Pr(T* < t) = /t~ fr-(t)dt, (6.5.2)

o0

where fr«(t) is as in (6.5.1). Hence this corresponds to a d-dimensional integration.

To apply the various quadrature methods given in Appendix A effectively we need
to solve several problems prior to their use. First, I will describe in Section 6.5.2.1 how I
implemented the computation of the joint density of 7* and S*, (6.2.6), which is needed
to calculate the function evaluations in order to perform the numerical integration.
Second, by default the integration region in (6.5.1) and the lower integration bound in
(6.5.2) are infinite. Depending on the choice of the statistic of interest this domain may
be finite with well-defined upper and lower limits of the intervals. If not, transformations
need to be used. This will be discussed in Section 6.5.2.2. Especially for (6.5.2) we may
need to have an idea of the effective range of T*; see Section 6.5.2.3. Finally, examples
will be given in Section 6.5.2.4.
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6.5.2.1. Computation of the joint density

From the definition of the joint density fr« s«(¢,s) in (6.2.6) one sees that it depends on
¢ = é(t, s), the saddlepoint, which is the solution of the d equations 0K ((,t,s)/9¢ =0
with 0K ((,t,s)/0¢ given in (6.2.11). Replacing in (6.2.11) the w(z;, (,t,s) by their
definition (6.2.5) the left-hand system of equations in (6.2.9) becomes

OK(C.t:5) = Z (x4, t, s) exp {logp; + ("(xz;,t,s)} = 0. (6.5.3)
s i=1

In the notation introduced in Section 2.4 equation (6.5.3) can be written for fixed ¢ and
s as A"Y = 0, where A" is the d x n matrix whose ith column is a; = (2,1, s), and
Y is the n x 1 vector with ith element y; = exp {log p; + ("a;}. The problem of solving
the d saddlepoint equations A™Y = 0 can be solved by existing software for fitting a
generalised linear model (GLM) as mentioned by Booth and Butler (1990) and used in
Canty and Davison (1996, 1999). Indeed, this can be simply done by fitting a Poisson
GLM with covariate matrix A and offset logp, where p = (p1, ... ,p,). The calculation
can easily be performed using the S-PLUS or R function glm as follows

> fit.glm <- glm(rep(0,n) ~ A + offset(log(p)) - 1, family=poisson)
The saddlepoint f is then returned as the parameter estimates,
> zeta.tilde <- coef(fit.glm) [1:d]

Practice showed that using glm instead of the minimiser functions nlmin in S-PLUS or
nlm in R resulted in a significant speed-up in the computation of the saddlepoint ¢ in
this context.

Remark 6.5. One could also use a GLM fit to solve the 2d — 1 equations (6.2.9) needed
to calculate (6.2.8) at ¢t. An algorithm which I tried starts by fixing s at §, say, and
solving the left-hand equations in (6.2.8) using glm which gives ¢ (t,8). The latter is now
fixed to ¢ and used in the equations in the right-hand side of (6.2.8) to get § by means of
the Newton optimisers nlmin or nlm. If both sets of equations in (6.2.8) bracket zero the
solutions to the 2d — 1 equations (6.2.9) are given by ¢ = ¢ and § = % and the resulting
approximation to the PDF of T* can then easily be computed. If not, iteration on §
is needed until convergence occurs. But the convergence of this algorithm can be very
slow. It is outperformed by direct use of nlmin or nlm to solve (6.2.9). U

6.5.2.2. Transformations

Integrals over infinite domains, like (6.5.1), should be transformed to a finite region
in view of the accuracy and convergence of the quadrature method in use. This is
especially true for adaptive integration algorithms (see Appendix A.3) which require
repeated subdivision of the integration region. When the integration is infinite, the
point along the axis where the current subregion is to be cut is not clearly defined.
Hence it is convenient to consider some appropriate transformations from the infinite
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integration region in (6.5.1) to a finite region. Then quadrature can be applied directly
on the transformed integrand over the finite integration region.

There are a number of simple one-variable transformations that have been used for
integration problems; see Davis and Rabinowitz (1984, Chapter 3) or Genz (1992, Section
3.2) for further discussion and examples. Care must be taken in the selection of the
transformation. As a check on consistency and efficiency I used several transformations
for different computations of the same integral, and I compared their results. The
transformations listed below performed best and the other transformations which I tried
will not be listed here.

The four studentized bootstrap statistics Z* considered in Sections 6.3 and 6.4 all
use as statistic of interest T* = Z*. Concerning the nuisance statistics S* they can
be split up into two groups. The first group (the scale group) consists of the classical
studentized statistic (6.3.1) with the classical variance of the bootstrap sample, and of
the studentized version of Huber’s proposal 2 (6.4.11) with the M-estimate of scale as
defined in (6.4.10). The second group (the location group) consists of the studentized
version of Huber’s M-estimate of location (6.4.3) and of its initially MAD scaled version
(6.4.8), both using Huber’s M-estimate of location as S*. For the scale group (6.5.1)
reduces to

fr-(t) = /000 frs+(t, 8)ds

as scale estimates are non-negative by definition. Transforming this half-infinite region
of integration to the finite interval [0, 1] using the change of variables s = r/(1—r) yields

fre(t) :/0 fres(t,r)(1 —r)"2dr. (6.5.4)

For the location group a change of variables is not necessary as for both group members
the nuisance statistics is a robust estimate of location, i.e. an estimate of the centre
of the distribution and hence its range certainly is defined by the finite range of the
underlying data. Therefore (6.5.1) becomes

max(1,... ,n)
fT*(t) = / fT*“S‘*(t’ S)dS. (655)

min(z1,... ,Zn)

For the CDF approximation (6.5.2) all four statistics are treated in the same way.
Using the change of variables t = {f — #(1 +#)}/(1 — #) the integral in (6.5.2) can be
written as

Fpe(F) = — /0 (DL — B2, (6.5.6)

where fr«(-) is given in (6.5.4) for the scale group and in (6.5.5) for the location group.

Remark 6.6. An important point to realize is that when using quadrature methods, like
the Gauss—Legendre rule (see Appendix A.2), the only information such a method has
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about the integrand is a sequence of numerical values for it. To get a definite result for
the integral, such a procedure then effectively has to make certain assumptions about the
smoothness and other properties of the integrand. If a sufficiently pathological integrand
is given, these assumptions may not be valid, and as a result, we may simply obtain the
wrong answer. This problem may occur, for example, if one tries to integrate numerically
a function which has a very thin peak at a particular position. The numerical integration
routine samples the function at a number of points, and then assumes that the function
varies smoothly between these points. As a result, if none of the sample points come
close to the peak, then the peak will go undetected, and its contribution will not be
correctly included. Therefore it is very important to get an idea of the effective range
of the studentized statistic 7* = Z* in (6.5.2). O

6.5.2.3. Range of the studentized statistic

Consider the studentized statistic (6.1.1) and represent the estimators as functionals,
ie. Z=2z(F),T=t(F)and V =v(F). Then (6.1.1) becomes

HF) — 0

z(F) = S

Based on Section 5.1.2 and following Hinkley and Wei (1984, Section 2.1) and Davison
and Hinkley (1997, Section 2.7.2 and Example 9.18) it can be shown that the influence
function for the studentized statistic Z = 2(F) is L,(z; F) = v(F)"Y2L,(z; F), where
L.(+; F) is the influence function of T" = #(F'). The corresponding empirical influence
values for the studentized quantity Z(F ) are l; = v=1/2[;, where v is the observed value
of Vand [,... I, are the empirical influence values of the statistic 7.

For the classical studentized statistic defined in Section 6.3 we have

L=v(z;—7), i=1,...,n, (6.5.7)

with v =s=n"1>(2; — 7). .
Using Remark 5.3 one sees that the [; for a M-estimate of location are given by
—nooe{(z;—00)/00}/ > Vi{(xi—6y) /00 }, where 6y and oy are the values for the original

data xq,...,x,. Hence the empirical influence values of the studentized versions of the
M-estimates given in Section 6.4 are

—1
_ ;— 0 - i — 0
I, = —nUole/Z@/)k (fETOO) {ZQ/J;/C <x o0 0)} , (6.5.8)
=1

where vy, is the nonparametric linear delta method estimate (6.4.1) evaluated at 0 =0,
and ¢ = 0. Substituting (6.4.1) in (6.5.8) yields

a9l e
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For the studentized version of Huber’s M-estimate of location (6.4.3) equation (6.5.9)
reduces to l; = —nig(z; — 0y)/ > wi(x; — bp), whereas the ones for the studentized
version of Huber’s M-estimate of location with initial MAD scaling are (6.5.9) using as
oo the observed MAD, and the ones for the studentized version of Huber’s proposal 2
are (6.5.9) using as #y and o, the solutions to (6.4.10).

A linear delta method estimate of the variability of the studentized statistic can
now easily be obtained by means of equation (5.1.5) with [/; defined in (6.5.7) for the
classical studentized statistic and in (6.5.9) for the studentized M-estimators. Moreover,
these empirical influence values can be used to get an estimate of the effective range of
the studentized statistics. Denote by [,,;, the smallest empirical influence value of the
studentized statistic and by [,,,4. its largest value. One may hope that all possible values
of the studentized bootstrap statistic lie in the interval [L,in, lmaz). If S0, no change of
variables would be needed in (6.5.2) and one could approximate the CDF (6.5.2) by
means of

Fre(f) = /lg, Fr(t)dt. (6.5.10)

Let us consider Newcomb’s data (Table 5.2) and the shrimp data (Table 6.3). Be-
sides [lmin, lmaz] I calculated for each of the four studentized statistics the range of the
R = 49,999 bootstrap replicates and the one resulting from the saddlepoint approx-
imation using the Laplace approximation (see Section 6.2). Note that the latter was
determined as in Section 5.3.1 (Remark 5.5) using a binary search (BS). But, depending
on the statistic of interest, this BS is very time-intensive and hence the investigations in
this section are two-fold: we need an appropriate range of possible values not only for
performing the numerical integration in (6.5.2) but also for the case when the Laplace
approximation is used in order to replace the BS. Each of these ranges is represented
by a shingle in Figure 6.21 for Newcomb’s data and in Figure 6.22 for the shrimp data.
From Figure 6.21 we see that for all four statistics the range of the empirical influence
values covers the range of the bootstrap replicates and the one of the saddlepoint ap-
proximation. But, one also notices that the range of the empirical influence values is
significantly larger than the other two. This is especially true for the classical studen-
tized statistic due to the extreme outlier —44 in Newcomb’s data (Table 5.2). Hence the
use of (6.5.10) would not overcome the problems of the numerical quadrature methods
mentioned in Remark 6.6.

A similar pattern can be seen in Figure 6.22 for the shrimp data. For the studentized
versions of Huber’s M-estimators of location all ranges are about the same. But, for
Huber’s proposal 2 the range of the bootstrap replicates is larger than the ones from the
saddlepoint approximation and the one of the empirical influence values. This illustrates
another limitation of this approach. Additional examples lead me to the conclusion that
by means of the interval [l;,in, lmaz] One gets a sort of idea where the effective range could
be, and hence the [l,in, lmae] are very useful for replacing the BS, but not for performing
an optimal numerical integration. Nevertheless, I applied to (6.5.10) the adaptive inte-
gration schemes outlined in Appendix A.3 and noticed a slight improvement in speed,
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Figure 6.21. Ranges using Newcomb’s data of the classical studentized statis-
tic (Classic), of the studentized versions of Huber’s M -estimate of location
(Hub), of its initially MAD scaled version (Hubmad) and of the studen-
tized version of Huber’s proposal 2 (Hp2). The type of range is given in the
brackets, where ‘emp’ denotes empirical influence values, ‘spa’ stands for
saddlepoint approximation and ‘boot’ denotes bootstrap.

but the lack of accuracy discussed in Remark 6.6 still remained in several examples.
But, for such cases one could bypass these problems using the split-¢ transformations
proposed in Genz and Kass (1997) prior to the use of adaptive numerical integration
algorithms. Fortunately this does not occur often.

6.5.2.4. Examples

To illustrate the comments made so far I considered Darwins’s data (Table 6.7) and
Short’s data (Table 6.1). As studentized statistics I took the studentized version of
Huber’s proposal 2 for Darwins’s data and the classical studentized statistic for Short’s
data.

PDF approximation

For both studentized bootstrap statistics I computed, besides the R = 49,999 bootstrap
replicates, the following PDF approximations: the saddlepoint approximation based on
Laplace’s method (see Section 6.2) with the interval [l,in, lmaz| as the range of possible
values, and approximations obtained through numerical integration of (6.5.4). Based on
the comments in Appendix A.5 I used as quadrature methods the default S-PLUS func-
tion integrate, which implements uni-dimensional adaptive 15-point Gauss-Kronrod
quadrature, and a 128-point Gauss—Legendre (GL) rule, as implemented in the S-PLuUS
function GL.integrate.1D (Table A.1). Note that to calculate an entire quadrature
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Shrimp data
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Figure 6.22. Ranges using the shrimp data of the classical studentized statis-
tic (Classic), of the studentized versions of Huber’s M -estimate of location
(Hub), of its initially MAD scaled version (Hubmad) and of the studen-
tized version of Huber’s proposal 2 (Hp2). The type of range is given in the
brackets, where ‘emp’ denotes empirical influence values, ‘spa’ stands for
saddlepoint approximation and ‘boot’ denotes bootstrap.

approximation, the values of (6.5.4) for 50 evenly spaced points between [l , lmaz] Were
calculated and a spline was fitted to these values. To improve the accuracy of the ap-
proximations the resulting approximation for the density was integrated by means of the
trapezoidal rule and rescaled so that the density integrates to one. Remark also that
for the 128-point GL rule 128 evaluations of the joint density (6.2.6) with each time the
numerical minimisation of the 2d — 1 equations (6.2.9) are needed.

For Darwin’s data the results are shown in the left panel of Figure 6.23. The saddle-
point approximation (solid) underestimates the lower tail and overestimates the centre.
The same happens with integrate (dotted), whereas the 128-point GL rule (dashed)
seems to perform best, being the only approximation that captured the multi-modality
in the centre and the behaviour in the lower tail. The approximate CPU time for these
computations are given in the first row of Table 6.8. The default S-PLUs function
integrate is very slow compared to the other approximations, but it still is signifi-
cantly faster than the brute-force bootstrap computation which took about 12 hours.
The PDF approximations for Short’s data are shown in the right panel of Figure 6.23.
The saddlepoint approximation (solid) and the approximation obtained by means of a
128-point GL rule (dashed) seem to work very well, whereas the use of the S-PLUS func-
tion integrate is very inaccurate. As shown in the second row of Table 6.8 the latter
is about 10 times slower in CPU time than the direct simulation of the R = 49,999
replicates. Only the saddlepoint approximation outperforms the bootstrap simulation

112




6.5. Miscellany

PDF

0.4

0.3

0.2

0.1

0.0

Darwin’s data

Saddlepoint
integrate 7
GL (128);

AR
{ K
: \
I " i)
i | |
| |
I B
| \
1
I \
I \
|y \
i |
b \
l
1 .
! "
/ N
4 N
7/
7/
2l \
PN [T
T T

=

PDF

0.4

0.3

0.2

0.1

0.0

Short’s data

- —— Saddlepoint -~

\

integrate M\
GL(128) ik

Figure 6.23. PDF approzimations. Left panel: histogram of R = 49,999
replicates of the studentized version of Huber’s proposal 2 for Darwin’s data
with saddlepoint, integrate and 128-point Gauss—Legendre (GL) approzi-
mations of the PDF. Right panel: histogram of R = 49,999 replicates of the
classical studentized statistic for Short’s data with saddlepoint, integrate
and 128-point Gauss—Legendre (GL) approzimations of the PDF.

Table 6.8. Approximate CPU time in minutes of the PDF calculation using
the bootstrap, the saddlepoint approximation, integrate and a 128-point
Gauss—Legendre (GL) quadrature method.

Bootstrap Saddlepoint integrate GL

(R = 49,999) (128)

Darwins’s data 712 39 184 37
Short’s data 15 3 117 22

in CPU time in this example, being about 5 times faster.

Additional examples showed me that one should not use integrate as the compu-

tation may then become very time-intensive and may lead to inaccurate PDF approxi-
mations. But, a GL rule with 128 points seems to be a good choice in practice.
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CDF approximation

The use of quadrature methods for the CDF approximation results in integrating nu-
merically (6.5.10). In order to approximate the entire CDF of Z* the values of Fr«(t) are
calculated for 50 values of ¢t equally spaced between [,,,;, and [,,., and a spline is used to
interpolate between these values. It is important to note that the use of a 128-point GL
rule (S-PLus function GL. integrate.2D, Table A.3) implies 16,384 function evaluations
solving each time the equations (6.2.9), which is very computer-intensive. For instance,
at t = z* = 1, using Darwin’s data and the studentized version of Huber’s proposal
2, the approximation of Frpr«(1) given in (6.5.10) using a 128-point GL rule took about
1,238 minutes in CPU time. The use of a 64-point GL rule decreases this to about 36
minutes but increases the inaccuracy. Hence the time needed to get the approximation
for the entire range of the 50 values between [,,,;, and l,,,4, is clearly outperformed by
the bootstrap running time given in the first column of Table 6.8. Applying a 128-point
GL rule to Short’s data for the classical studentized statistics in order to get Fr«(1)
took about 87 minutes, whereas the computation in this context for the R = 49,999
bootstrap samples took about 15 minutes (see Table 6.8)! Besides a 128-point GL rule I
suggested in Appendix A.5 also the use of adaptive integration schemes, like the S-PLUS
functions dcuhre and adapt described in Appendix A.3. But simulation showed that
dcuhre is extremely slow. For example, already for the classical studentized statistic
as applied to Short’s data it took about 33 minutes to get a single estimate of (6.5.10).
And for Darwin’s data using the studentized version of Huber’s proposal 2 about 1,649
minutes were needed! The function adapt was a bit faster: about 66 minutes were
needed to get the entire approximation to the CDF of the classical studentized statistic
for Short’s data. The resulting adapt approximation is represented in Figure 6.24 as the
dashed line, together with the saddlepoint approximation (dotted). The latter was al-
ready represented in the right panel of Figure 6.2. The saddlepoint approximation based
on Laplace’s method (dotted) works extremely well and the one obtained by means of
adapt (dashed) is accurate in the lower tail but underestimates slightly the upper tail.
For Darwin’s data using the studentized version of Huber’s proposal 2, adapt needed on
average about 51 minutes for the computation of a single estimate of (6.5.10)!

The examples in this section clearly illustrate the drawbacks of numerical integration
for the computation of the CDF of T*. They become useless in practice as their running
time is outperformed by direct simulation of the R = 49,999 bootstrap replicates. One
may think that this is due to the use of interpreted languages like S-PLUS or R, but I
do not think that this is the case as numerical integration in statistics and especially in
multi-dimensional problems still raises many open questions.

6.6. Conclusion

n this chapter I considered saddlepoint approximations to studentized boot-
strap distributions. As examples I used in Section 6.3 the classical studentized
statistic, and in Section 6.4 the studentized versions of Huber’s M-estimate of
location, of Huber’s M-estimate of location with initial MAD scaling and of
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Figure 6.24. CDF approximations for the classical studentized statistic for

Short’s data. @Q-Q plot of the R = 49,999 replicates, with the saddlepoint
approzimation and the adapt approximation.

Huber’s proposal 2. Their accuracy and their effectiveness for reducing the computa-
tional expense was illustrated by several examples. The saddlepoint approximations of
Section 6.2 are based on a Laplace approximation and hence care is needed with their
application. Fortunately, experience shows that the problems described in Section 6.5 do
not occur often. Therefore the need to perform a very computer-intensive numerical inte-
gration as in Section 6.5.2 disappears. Especially concerning these numerical integration
methods it was made clear that questions on convergence and efficient implementation
remain. Some future approaches stated in Appendix A are promising.

Finally, note that Hampel et al. (1986, page 105) recommended the use of MAD
scaling for M-estimators instead of Huber’s proposal 2, and noted that the latter is less
reliable. More recently, Thomas (2000) used the bootstrap to get an idea of the precision
of various robust estimates of location. He noted that Huber’s proposal 2 seems to be a
preferable measure of location which is not unduly affected by outliers or asymmetry in
the data. This is also what I observed in the bootstrap context when the estimators are
in their studentized form. Even if the saddlepoint approximations to the studentized
version of Huber’s proposal 2 are more time-intensive, the resulting approximations are
more accurate. Hence the hope is that the resulting studentized confidence intervals are
very accurate as well and will deliver coverages that are close to nominal levels. This
will be investigated in the next chapter.
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intervals

‘Confidence intervals have become familiar friends in the ap-
plied statistician’s collection of data-analytical tools. They
combine point estimation and hypothesis testing into a sin-
gle inferential statement of great intuitive appeal. Recent ad-
vances in statistical methodology allow the construction of
highly accurate approximate confidence intervals, even for
very complicated probability models and elaborate data struc-
tures.’

Thomas J. DiCiccio and Bradley Efron (1996, page 189)

2 he major application for distributions and quantiles of an estimator, like the
studentized statistic Z, is in the calculation of confidence intervals. Confidence
intervals or, more generally, confidence regions form an important class of
. s statistical methods. In these methods, the outcome of the statistical analysis
is a subset of the set of possible values of unknown parameters. Confidence procedures
are directly related to other kinds of standard statistical methods, in particular to point
estimation and to hypothesis testing.

It was mentioned in Section 6.1 that through the use of the bootstrap we can obtain
accurate confidence intervals without having to make normal or Student theory assump-
tions. One way to get such intervals is by means of the bootstrap-t method, which was
described briefly in Section 6.1. Moreover, it was stated that the studentized statistic Z
is a good approximate pivotal quantity. The remainder of Chapter 6 was then concerned
with getting accurate saddlepoint approximations to the bootstrap PDF and CDF of the
studentized bootstrap statistic Z*, which forms the basis of the studentized bootstrap
confidence intervals. The aim of this chapter is to know whether the use of the sad-
dlepoint approximations of Section 6.2 yields robust confidence intervals with coverages
close to the nominal level and this with a short interval.

After an introduction in Section 7.1 the results of an extensive simulation study are
given in Section 7.2. Finally, concluding remarks are given in Section 7.3.
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7.1. Introduction

n many estimation situations it is of substantial interest to compute reliable

confidence intervals for parameters of interest. A reliable confidence interval

method is one giving intervals whose actual coverages are close to the nominal

level. The aim is to construct a random interval C'I;_,, with nominal coverage
(1 — 2«) such that

Pr(0 € Cli_9,) =1 — 20, (7.1.1)

where 6 is the true parameter value of the estimator of location T'. The coverage proba-
bility (1 —2a) is the relative frequency with which the confidence interval would include,
or cover, the true parameter value in repetitions of the process that produced the data
x1,...,Z,. Then the interval C'I;_s, has probability exactly (1 — 2«) of contamlng the
true Value of 6. More precisely, denoting the confidence interval C'I;_5, by [Qa, 6,_ o), the
probability that € lies below the lower limit of C'I;_», is exactly «, as is the probability
that 6 exceeds the upper limit,

Pr(f <0,) =a and Pr(0>0,_,)=a. (7.1.2)

A (1 —2a) confidence interval [0,,0;_,] with property (7.1.2) is called equi-tailed. This
refers to the fact that the coverage error 2« is divided up evenly between the lower
and upper ends of the interval. Confidence intervals are almost always constructed to
be equi-tailed and hence I will restrict attention to equi-tailed intervals in this chapter.
Note that property (7.1.2) implies (7.1.1), but not vice-versa. That is, (7.1.2) requires
that the one-sided coverage error is o on each side, rather than just an overall coverage
of (1 —2a).

Unfortunately, it is not possible in general to find a confidence interval to satisfy
(7.1.1) exactly. Hence approximate confidence intervals are needed which involve a dis-
crepancy between the nominal coverage (1 —2a) and the actual coverage probability. By
far the most favourite is the standard confidence interval based on a normal approxima-
tion. Such standard intervals are useful tools, but they are based on an approximation
that can be quite inaccurate in practice. Thomas J. DiCiccio and Bradley Efron (1996,
page 223) underlined this well-known fact by stating that

‘If the standard intervals were invented today, they might not
be publishable.’

Not only the choice of an approximate confidence interval is important but also the
choice of an appropriate pivotal quantity. It has been illustrated in Section 6.1 that a
good choice is provided by the t-like statistic (6.1.1),

T—60
7 = iz (7.1.3)
where 7" is an estimator of location and V' is an estimator of its variance. The resulting
(1 — 2ar) studentized confidence interval for 6 has limits

0,=t—v"%z , and 60, ,=1— 0?2, (7.1.4)
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where v is the estimated variance, ¢ denotes the observed value of T" and z, is the a-
quantile of the distribution of Z. As the distribution of Z is usually unknown in practice,
approximate methods based on approximations to the quantiles of Z are needed. The
simplest method is a normal approximation by use of z;_, = ®~}(1 — a). Since then
Zo = —Z1-a, the confidence limits (7.1.4) reduce to

tF 020711 - ), (7.1.5)

which are known as the limits of the standard confidence interval. Another approxima-
tion is given by the use of z, = ¢,_1(«) in (7.1.4) with ¢,_;(a) denoting the a-quantile
of Student’s t distribution on n — 1 degrees of freedom. As nice as it is to be able to
assume an underlying normal or a Student distribution, there are problems. Perhaps the
studentized statistic does not follow a normal or a Student distribution. In that case,
the resulting inference may well be wrong.

Bootstrap procedures are an alternative. One way to look at them is as procedures for
handling data when one is not willing to make assumptions about the parameters of the
populations from which one sampled. The most that one is willing to assume is that the
data are a reasonable representation of the population from which they came. One then
resamples from the data and draws inferences about the corresponding population and its
parameters. The resulting confidence intervals have received the most theoretical study
of any topic in the bootstrap analysis. A full discussion of this theory would go beyond
the scope and intent of this chapter. Therefore I refer to the following overviews. The
state of research into bootstrap confidence intervals is given and discussed by DiCiccio
and Efron (1996). A brief introduction is also given in Davison and Hinkley (1997,
Section 2.4) and a more thorough discussion of such methods in Davison and Hinkley
(1997, Chapter 5); see also Efron and Tibshirani (1993, Chapters 12-14 and 22). More
recently, an illustrative review is given by Carpenter and Bithell (2000).

Following Section 6.1 consider the studentized bootstrap statistic Z* given in (6.1.2),

T —t

z7" = V12

(7.1.6)

where 7" and V* are based on a simulated bootstrap sample, X7,..., X. The R
simulated bootstrap values of Z* are ordered and the a-quantile of Z, z,, is estimated
by the a(R + 1)th value of these. The approximate confidence limits for the (1 — 2a)

studentized bootstrap confidence interval for 6 are then given in (6.1.3) or (7.1.4),

t— 0220y, =0 2 ame)- (7.1.7)

These are often also called bootstrap-t limits. The studentized bootstrap confidence
intervals are approximate as well but they are theoretically much more accurate than
the standard intervals and than the basic bootstrap intervals defined in Remark 5.2.
Indeed, the standard or basic bootstrap methods are all first-order accurate in the sense
that

Pr(0 > 6,_o) = a+ O(n""?),
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where 6,_o =t + v/2071(1 — a) or 0,_, = 2t — tlo(r11y (Davison and Hinkley, 1997,
equation (5.6)). The latter is based on the assumed pivotality of T'— 6. The studentized
bootstrap intervals improve on this by making

Pr(0 > 60,_) = a+0(n™?)

with 6, =t — v/ 22(*a(R +1))- The latter is referred to as second-order accuracy (Hall,
1988). Furthermore, DiCiccio and Efron (1992) showed that the bootstrap-¢ limits are
also second-order correct in the sense that the asymptotic expansions of 6;_. and the
‘correct’ limit 6;_, = t —v'/2%,, where Z, is the a-quantile of the true sampling distribu-
tion of Z, agree up to the second-order term, i.e. 010 —01_0 = O(n=3/?); see also Efron
and Tibshirani (1993, Section 22.3), DiCiccio and Efron (1996, Section 8), Davison and
Hinkley (1997, Section 5.4) or van der Vaart (1998, Chapter 23). Moreover, Hall (1988),
DiCiccio and Romano (1988), Beran (1987) and DiCiccio and Efron (1992) have shown
that the various methods of construction confidence limits are equivalent to first-order or
second-order to bootstrap-t methods. A comparison of their behaviour to second order
is given by Bickel (1992).

Unfortunately, these are asymptotic results which are not always an useful guide
for performance in practice. Hence simulation studies were conducted to compare the
performance of the intervals especially on small samples. Empirical studies, like the
ones in Shao and Tu (1995, Section 4.4.4), by Canty et al. (1996) and in Davison
and Hinkley (1997, Example 5.7 and Section 5.7), have revealed that the bootstrap-t
method performs well in terms of coverage error, even for small samples. However, the
same studies typically show that the endpoints of these intervals can be highly unstable
and wide, particularly in moderate samples. Moreover, Efron and Tibshirani (1993,
footnote on page 160) remarked that the bootstrap-t method can be heavily influenced
by outliers in the data. Bickel (1992) gave also some robustness remarks, which strongly
mandate a robust estimate for scale as classical standard error estimates can be unstable.
In order to guarantee reasonable solutions for small sample sizes one could also use a
variance stabilizing transformation; see Tibshirani (1988), Efron and Tibshirani (1993,
Section 12.6) and Polansky (2000). DiCiccio and Efron (1996) and Canty et al. (1996)
argued that the superior coverage of the bootstrap-t method for small sample sizes is
due to the fact that bootstrap-t confidence intervals tend to be long and highly variable.
But Polansky (2000, Section 3) showed that this is not always the case.

What is most surprising is that in my knowledge none of the existing bootstrap-t
simulation studies, expect the small one in Davison and Hinkley (1997, Table 9.10),
considered robust estimators for 7* and V* in (7.1.6), but most of them noted that the
bootstrap-t method may be influenced by outliers. Hence an aim of the present chapter
is to fill this gap by considering the studentized bootstrap versions of the M-estimates
given in Section 6.4, together with the classical studentized statistic given in Section
6.3. To overcome the cruel computational burden of the bootstrap the saddlepoint
approximations to these studentized bootstrap statistics as given in Section 6.2 will be
considered.

Remark 7.1. As already mentioned in Section 5.3 and at the beginning of Chapter 6,
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the sadddlepoint approximations based on Daniels (1954, 1983) are related to the ones
of Field and Hampel (1982) or Field (1982). Using the latter Tingley and Field (1990)
constructed confidence intervals, which are second-order correct in terms of coverage;
see also Field and Ronchetti (1990, Section 6.3). Tingley and Field’s (1990) use of M-
estimates was motivated by the desire to have robust confidence intervals. Field and
Ronchetti (1985) showed that the test procedures based on robust M-estimates will be
robust as well; see also Hampel et al. (1986, Section 3.2) or Field and Ronchetti (1990,
Section 7.3). O

7.2. Simulation study

AES
i)

Gt

he advantages of the use of simulation, particularly in robustness studies,
fei:’. o are well-known: one can mimic a sample from any mathematically definable
@@ probability distribution. It results a great flexibility in the specification of
O) s distributions and one has the advantage of knowing exactly what mechanism
produced the data and hence one can easily evaluate the performance of statistical pro-
cedures. But, it is clear that there is no guarantee that the pseudo-samples in simulation
studies are representative of real data. This drawback is underlined by Stigler (1977,
Section 1). In order to settle the question of whether robust estimators are necessary
he then performed a study on real data sets and remarked that real data do exhibit
somewhat different behaviour from that of the simulated data used in most robustness
studies. Clearly this affects the consequent recommendations for the choice of an esti-
mator and the assessments of the relative performance of estimators. Stigler’s (1977)
study is reviewed and extended by Rocke et al. (1982).

Following Hampel (2000, page 2) ‘robust inference is the inference which is insensi-
tive to (smaller or larger) deviations from the assumptions under which it is derived’.
Commonly used assumptions in statistics, like normality or symmetry, are only ap-
proximations to the reality and the questions arise what deviations tend to occur in
practice, what effects they have on known statistical procedures, and how to develop
better procedures. For answering these questions the bootstrap-t method using studen-
tized M-estimators seems to be useful. But before giving any recommendations it is
important to check if the procedure is robust when standard assumptions are not met.
Suppose that one wishes to make inferences regarding a location parameter 6 based on
the studentized statistic Z as given in (7.1.3). Basically, there are two types of robust-
ness we would hope to achieve. First, robustness of performance for T, and to then
match 7 with an estimated standard error V=2 yielding robustness of validity over a
range of possible distributions for the sample.

In the non-bootstrap context studentized location estimators have been studied in-
tensively in the statistical literature; see Barnett and Lewis (1994, pages 170-174) for
a selective review. An extensive study is reported by Gross (1976) who studied a wide
variety of confidence intervals procedures based on studentized statistics. Other stud-
ies of this nature have been proposed by Shorack (1976) and Gross (1977). Shorack
(1976) remarked that studentized robust statistics outperform the classical studentized
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statistic. Gross (1976) measured robustness of performance by the expected confidence
interval length, and robustness of validity by the level of the conservative confidence
interval based on the distributions examined. Already Leone et al. (1967) examined
the sampling behaviour of studentized forms of robust location estimators for normal
mixture models. Although not considering studentized statistics, the Princeton study
(Andrews et al., 1972) needs to be mentioned as well.

But the problem with all these studies is that asymmetry has been neglected. Given
an asymmetric distribution any (robust) confidence interval, devised for symmetric dis-
tributions, will contain a fixed bias and the resulting inference will be wrong when no
adjustment for this bias will be done. What is most surprising is that all studies noted the
importance of asymmetry as symmetry is plainly unrealistic, but none of them consid-
ered it. Andrews et al. (1972, pages 109-111), for example, listed two tables containing
the bias of two asymmetric distributions but they did not perform any analysis of these.
This regrettable omission was explained by Hampel (1995, page 6): ‘when it came to
the analysis, the computer outputs for these cases arrived in Zurich after the deadline
of the manuscript’. Hampel (1995, Section 4) then completed the Princeton study for
these two asymmetric cases.

An interesting generalization of (7.1.3) for the case of the classical studentized statis-
tic (Section 6.3) is proposed by Johnson (1978), which corrects the resulting standard
confidence interval for the asymmetry of the sampling distribution. Some additional tests
and confidence intervals giving specific protection against outliers in normal samples are
described in Barnett and Lewis (1994, Section 5.4).

Except Johnson (1978), Hampel (1995, Section 4) and Davison and Hinkley (1997,
pages 484 and 485) I did not find additional studies were asymmetric distributions were
used. All other studies only considered (heavy-tailed) symmetric distributions. This
fact is very regrettable and strange as the aim of robust procedures is to systematically
investigate the effects of deviations from modelling assumptions on known procedures,
as this is the case with asymmetric distributions, and, if necessary, to develop new and
hopefully better procedures.

Considering asymmetric distributions and the (1 — 2a) studentized bootstrap confi-
dence interval for @ given in (7.1.7) one may think that one needs to add an empirical bias
adjustment in the numerator of Z, for example based on the empirical second deriva-
tives of ¢(F'). But Davison and Hinkley (1997, page 194) stated that ‘an empirical bias
adjustment could be incorporated, but this is usually not worthwhile, because the effect
1s implicitly adjusted for in the bootstrap distribution’ of Z*. This well-known fact was
underlined by their good coverage results of (7.1.7) in considering an asymmetric distri-
bution. Simulation under asymmetric distributions confirmed that it is not necessary to
add such a bias adjustment in the numerator of Z, as I remarked that the studentized
bootstrap accounts for this automatically.

7.2.1. Description of the study

Suppose that Xi,..., X, are independent and identically distributed random variables
whose PDF and CDF are denoted by f and F. Then x,...,x, can be thought of
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as their outcomes. In this simulation study samples will be generated from F and as
studentized statistics I consider the classical studentized statistic (Section 6.3) and the
three studentized versions of the M-estimates of location (Section 6.4).

For the classical studentized statistic (6.3.1) we have T'= X and its variance v can
be approximated by (5.1.5), v;, = n=2 Y ? with [; = x; — T (see Example 5.1). Note that
vy, = n~'s, where s is the observed value of the classical variance, s = n=1 > (z; — 7).
Using (7.1.7) this yields the classical (1 — 2a) studentized bootstrap confidence interval
limits for 6,

z— n’l/Qsl/Qz(*(l_a)(RH)) and 7 — n’l/Qsl/Qz(*a(RH)). (7.2.1)

For the studentized versions of the M-estimates of location the variance of T, v, can
again be estimated by the delta method variance estimate vy, given in (6.4.1). For the
studentized version of Huber’s M-estimate of location (6.4.3) the latter reduces to

v = Ziﬁﬁ(fﬁi —0) {Z%(% - é)} ;

where 6 is Huber’s M-estimate of location issued from the simulated sample x1, ..., T,.
For the studentized version of Huber’s M-estimate of location with initial MAD scaling
(6.4.8) the variance estimate of 7" is

~ N —2
UL:UgE @Di(xao ){E @Z)k<x00 )} )
=1 i=1

where oq is the observed MAD as defined in (5.3.7) and 0 is Huber’s M-estimate of
location with initial MAD scaling. Finally, using the studentized version of Huber’s
proposal 2 (6.4.11) gives

n A n A —2
o) e ()
=1 =1

where 6 and 6 are the simultaneous solutions of (6.4.10). Hence using (7.1.7) the robust
(1 — 2a) studentized bootstrap confidence interval limits for § become

2 / 4) /2

1/2 1
0— vy Z(*(1—a)(R+1))7 0 — vy Z(*Q(RH))- (7.2.2)

The studentized bootstrap confidence intervals (7.2.1) and (7.2.2) are based on the
a(R+1)th and (1 — «)(R+ 1)th ordered values of the R simulated bootstrap replicates
of Z*. To replace the computer-intensive bootstrap simulation in order to approximate
the quantiles of Z I will use the saddlepoint approximations to the bootstrap CDF of Z*
as seen in Section 6.2. For example, z(*a( R+1)) will then be replaced with the approximate
a-quantile of Z* issued from the use of the saddlepoint approximation, z,, say. More
detail will be given in Sections 7.2.3 and 7.2.4.
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Table 7.1. The distributions and their standardized skewness o3 and stan-
dardized kurtosis o4 (taken from Kokoska and Nevison (1989, Table 2)).
The ‘—’ indicates that the corresponding cumulant does not exist. The
italic-faced values are the estimated standardized cumulants obtained by av-
eraging over 100 sample cumulants from samples of size 10°. The chosen
values for n are given in the last column.

Distribution 03 04 n
I N(0,1) 0 3 5,10,15,20,40,80
Fy t3 — — 10, 15, 20, 40
Fs t5 0 3.24 10, 15, 20, 40
F Cauchy — — 10, 15, 20, 40
Fs 09N(0,1)+0.1N(0,16) 0.0005 12.7109 10, 15, 20, 40
Fs 0.8N(0,1)+ 0.2N(10,1) 1.3696 3.2215 10, 15, 20, 40
F; Slash —/7.5133 521,156.5000 10, 15, 20, 40
Fy X2 0.04 0.054 10, 15, 20, 40
Fy Folded t- 1.7962 9.4404 10, 15, 20, 40
Fi Folded N(0,1) 0.9956 3.8698 10, 15, 20, 40

Table 7.1 lists the distributions used in the simulation study. The corresponding
standardized skewness g3 = K3/ /ig/ ? and standardized kurtosis 04 = k4 /K3 are listed as
well as the different sample sizes n considered. Recall from Section 2.2 that ko is the
second cumulant of the random variable X, the skewness k3 its third cumulant and the
kurtosis k4 its fourth cumulant. The skewness and the kurtosis are used as measures
of how close a random variable is to normality. Skewness can be seen as a measure of
asymmetry of a distribution and the kurtosis as a measure of its flatness or peakedness.
Small values of their standardized versions suggest that X is close to normal; see also
McCullagh (1987, Section 2.6). The symmetric distributions are F}—F%. Distributions
F\—Fy are all standard. Distributions F5 and Fg are obtained by taking a N (0, 1) variate
with probability 0.9 or 0.8 and taking a N (0, 16) or a N (10, 1) variate with probability 0.1
or 0.2. Distribution F7 is the distribution of a N(0, 1) variate divided by an independent
U(0,1) variate. The asymmetric distributions are Fg—Fjo. Distribution Fy is standard
and distribution Fiq is the limiting form of distribution Fy as the number of degrees of
freedom tends to infinity. Other distributions were studied as well. The conclusions for
these distributions were generally the same as the distributions I study here and hence
have not been included.
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Table 7.2. The S-PLUS and R function qghnorm to produce half-normal
plots.

qghnorm <- function(x, line=F, xlab="Half-normal quantiles",
ylab=deparse(substitute(x)), ...)

{

x <- abs(x[!is.na(x)])

y <= gnorm((1 + ppoints(length(x)))/2) [order (order(x))]
plot(x=y, y=x, xlab=xlab, ylab=paste("|",ylab,"|"), ...)

if (is.numeric(line)) abline(0, line)

invisible()

}

7.2.2. Pivotal distributions

The first thing to check is to look whether or not a normal approximation method as
used in (7.1.5) would work. This can be assessed by making a normal Q-Q plot of the
sampled values of Z. By such a plot one gets an idea of how the pivotal distribution
of Z appears. It is clear that if the Q-Q plot suggests that a normal approximation is
poor then the latter should be replaced completely. This would also clearly justify the
use of studentized bootstrap confidence interval methods. For distributions symmetrical
about zero, this seems to be the case with the studentized statistics applied to symmetric
distributions, I found it more appropriate to use a half-normal plot instead of a normal
Q-Q plot. This can easily be done using the function qghnorm given in Table 7.2. By
means of a half-normal plot any information on symmetry will be lost and hence it is
not suited for asymmetric distributions. The half-normal plot reveals the presence of
outliers as outliers appear at the top right of the plot as distinct points, and departure
from the straight line means that the normal model is not satisfactory.

I generated 20, 000 samples from the distributions listed in Table 7.1 and on each of
the samples I calculated the value of Z for all four statistics, namely for the classical stu-
dentized statistic and for the three studentized statistics based on robust M-estimates.
The half-normal plots of the 20,000 simulated values of (7.1.3) using F} with n = 5 are
shown in the top panels of Figure 7.1 and the ones for F; with n = 80 in the bottom
panels of Figure 7.1. The patterns in using the other symmetric distributions (Fo—F%)
are about the same. One notes that independent of the statistic there seems to be a
convergence to normality if n increases. When n = 5 (Figure 7.1, top panels) there are
significant departures from normality in the pivotal distributions. Hence for moderate n
a normal approximation clearly would fail. In using n = 80 (Figure 7.1, bottom panels)
a normal distribution seems to provide a reasonable fit to the pivotal distribution of the
studentized statistics. This illustrates in some sense the asymptotic normality of the
studentized statistics when symmetry is assumed.

In considering the asymmetric distribution Fg the Q-Q plots in Figure 7.2 illustrate
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Figure 7.1. Half-normal plots of 20,000 simulated values of the classical
studentized statistic (Classic), of the studentized versions of Huber’s M-
estimate of location (Hub), of its initially MAD scaled version (Hubmad)
and of the studentized version of Huber’s proposal 2 (Hp2) (from left to
right). Top panels: underlying N(0,1) distribution (Fy) withn = 5. Bottom
panels: underlying N(0,1) distribution (Fy) with n = 80.

that something similar is going on. In the top panels of Figure 7.2 (n = 10) normality
seems to be not reasonable, whereas for n = 40 (Figure 7.2, bottom panels) the quantiles
of Z are getting closer to the fitted normal approximation (solid line). Nevertheless
one notes that the pivotal distributions are shifted to the right (on the vertical axes)
compared to the ones of Figure 7.1 as a result of the underlying asymmetry of Fg. Similar
patterns resulted from the use of Fy and F}g and hence are not reproduced here.

In summary, one notes that the assumption of normality is unrealistic when sample
sizes are small. One could try to improve the normal approximation in some way, or
replace it completely. For the latter the studentized bootstrap can be used. From my
point of view, studentized bootstrap methods as presented here have an important point
in common with robust statistics: both deliver accurate results when standard methods
work, but also when the standard methods fail. Furthermore, the use of the studentized
bootstrap avoids restrictive parametric assumptions about the form of the underlying
populations.
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Figure 7.2. Q-Q plots of 20,000 simulated values of the classical studen-
tized statistic (Classic), of the studentized versions of Huber’s M -estimate
of location (Hub), of its initially MAD scaled version (Hubmad) and of the
studentized version of Huber’s proposal 2 (Hp2) (from left to right). Top
panels: underlying x2 distribution (Fg) with n = 10. Bottom panels: un-
derlying X2 distribution (Fg) with n = 40.

7.2.3.

Coverage is the most important property of a confidence interval. In this section I will
describe how I simulated the coverages of the nominal (1 — 2«) studentized bootstrap
confidence intervals with limits (7.2.1) and (7.2.2). For the most interesting cases of
Table 7.1 T will then list the results.

The actual coverages were obtained by using the relationship between confidence
intervals and test of hypotheses. Namely, for a (1—2a) studentized bootstrap confidence
interval one includes the values of # at which one would not reject the null hypothesis
at the two-sided significance level a. To be more precise, suppose one wants to test the
null hypothesis Hy : 8 = 6, versus the alternative that 6 differs from 6, at the two-sided
significance level a. Using the fact that Z is a pivot, meaning that its distribution is the
same for all relevant F', the p-value can be written as

Robustness of validity: actual coverages

p=Pr(Z>z2|Hy)=Pr(Z>z2|F), (7.2.3)
where
t— 0,
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is the observed studentized test statistic under Hy. The p-value (7.2.3) can now be easily
approximated by means of the saddlepoint approximation to the CDF of the studentized
statistic,

p=1—Fy(z), (7.2.5)

where Fy(-) is given in (2.4.2) with (6.2.12) and (6.2.13).

Recall that 6y is the theoretical true value of the parameter 6 under Hy,. When
F' is symmetric the bias of T" as an estimator of # is zero. In functional notation this
translates to ¢(F') = 0 and therefore 6y = 0 as 6 is an approximation for the expectation
of the location estimator T'. More precisely, we have that E(T) = 6y + O(n™!). Care is
needed when F' is asymmetric. For the classical studentized statistic with 7 = X the
fact that 8y = 0 holds as we have t(F') = 0 independent of the type of symmetry of
F. But when considering an asymmetric F' and the robust studentized statistic 6y does
not equal zero anymore. To illustrate what then needs to be done I consider the case
where T is Huber’s M-estimate of location given in Section 5.3.2.1. The applications
for its initially MAD scaled version given in Section 5.3.2.2 and for Huber’s proposal 2
M-estimate of location as defined in (6.4.10) are straightforward. The functional derived
from (5.3.1) using ¥ (+) for ¢(-) defines 6 uniquely by

/wk(l’ —00) f(x)dz = 0.

Following Huber (1981, Section 3.2) the value 6y defined implicitly by the equation

N

> ilwi — 0) =0 (7.2.6)

i=1

is consistent at F, i.e. 6y — 6, in probability and almost surely (Huber, 1981, Corol-
lary 2.2). Using N = 10° the values for 6y are listed in Table 7.3 for the asymmetric
distributions Fg—F}g given in Table 7.1.

By replacing in (7.2.4) the 6y by 0, the saddlepoint approximation to the p-value
(7.2.5) can easily be computed. To get a reasonable empirical estimate of coverage I
repeated this whole procedure on M = 1,000 independent samples of size n. Denoting
by pi1,...,pa the resulting approximate p-values the actual coverage of the nominal
(1 — 2«r) studentized bootstrap confidence interval for § can be calculated by means of

#{(pi > a)N(p;i <1-a)}

pu— -2-

where #{-} represents the number of times the event - occurs and ¢ = 1,... , M. The
latter simply counts how many of the M hypotheses have been accepted, i.e. how many
times the 6y was inside the (1 — 2«) studentized bootstrap confidence interval for 6.
As our aim is to estimate the probability (1 — 2«/), the nominal coverage, we want
to know how close the estimate w, the actual coverage, is. To do so we can consider
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Table 7.3. The values of by as defined in (7.2.6) using N = 10° for the
asymmetric distributions Fg—Fi9 of Table 7.1 in considering Huber’s M -
estimate of location (Hub), its initially MAD scaled version (Hubmad) and
Huber’s proposal 2 estimate of location (Hp2).

Distribution Hub Hubmad Hp2

Iy 4.40066 4.66068 4.66507
Fy 0.85309 0.80164 0.80028
Fio 0.78570  0.74423  0.74099

a simple two-sided 95% normal confidence interval for the simulation error, which has
approximate limits

w £ 2y/w(l —w)/M. (7.2.8)

What is nice with this approach is that one needs for each sample only to calculate
one single saddlepoint approximation, namely F;(z). But as we will see in Section 7.2.4
one needs to compute the entire saddlepoint approximation to the CDF of Z over a likely
range of values for z in order to get the limits of the studentized bootstrap confidence
interval.

For the symmetric distributions F}—F3 and Fy (given in Table 7.1) the actual cov-
erages w for nominal coverages of 90% and 95% and for different sample sizes n are
presented in Table 7.4. The actual coverages of the (1 —2«) studentized bootstrap confi-
dence interval based on the studentized version of Huber’s proposal 2 are not significantly
different from the nominal coverages (1 —2«), whereas the other three studentized statis-
tics may deliver significantly different coverages. The latter can be easily seen by the
italic-faced values which represent the actual coverages outside the 95% normal confi-
dence interval for the simulation error (7.2.8). The studentized bootstrap confidence
interval based on the classical studentized statistic encounters problems especially with
distributions F» and Fg. For the intervals based on the studentized versions of Huber’s
M-estimate of location and on its initially MAD scaled version one notes that the use of
Fy with n = 20 results in significantly smaller coverages. Overall one remarks that the
studentized bootstrap confidence interval based on the studentized version of Huber’s
proposal 2 delivers the best coverages independent of the underlying distribution.

The previous statement is underlined by considering additional examples shown in
Figure 7.3. The top panels of Figure 7.3 show the actual coverages as a function of
the sample size n in considering the symmetric distributions Fy and F;. In the top
left panel of Figure 7.3 one notes that the studentized bootstrap confidence interval
based on the classical studentized statistic completely fails to estimate the true nominal
coverage of 80%, whereas the intervals based on the robust studentized statistics perform

129




7. Studentized bootstrap confidence intervals

Table 7.4. Actual coverages w (%) of the (1—2a) studentized bootstrap confi-
dence intervals for chosen distributions and sample sizes n (Table 7.1) based
on the classical studentized statistic (Classic), on the studentized versions
of Huber’s M -estimate of location (Hub), of its initially MAD scaled version
(Hubmad) and on the studentized version of Huber’s proposal 2 (Hp2). Cov-
erages which are not included in the confidence interval for the simulation
error (7.2.8) are italic-faced.

Nominal coverage (1 — 2«)

Distribution n 90% 95%
Classic Hub Hubmad Hp2 Classic Hub Hubmad Hp2

20 89.7 86.8 83.2 90.5 945 91.9 88.6 95.7
40 91.2 90.6 88.1 89.6 95.1 94.5 93.5 95.3
Fy 10 86.5 87.5 85.8 90.9 93.5 91.6 92.5 94.7
15 85.6 88.8 86.5 89.3 92.9 93.0 91.9 94.9
F5 20 87.8 85.9 877 914 93.5 91.5 91.1 95.6
40 904 86.8 88.7 89.9 94.8 91.8 94.7 94.4
s 20 83.6 85.6 87.1 89.9 91.6 91.0 92.7 96.2
40 86.0 87.9 88.3 89.4 92.2  92.5 93.6 94.5

reasonable well. The actual coverages obtained using Fj (Figure 7.3, top right panel)
illustrate that the studentized bootstrap confidence interval based on the studentized
version of Huber’s proposal 2 is the only one giving accurate estimates of the nominal
coverage of 99% throughout the range of n. The actual coverages in considering the
asymmetric distributions Fy and Fy are represented by the bottom panels of Figure
7.3. As illustrated in both panels the studentized bootstrap confidence interval based
on the studentized version of Huber’s proposal 2 performs well. For the distribution
Fy (Figure 7.3, bottom right panel) only the one based on the studentized versions of
Huber’s M-estimate of location seems to compete with the latter. All other methods
fail to achieve the claimed coverages of 95% (Figure 7.3, bottom left panel) and 90%
(Figure 7.3, bottom right panel).

Another informative graphic can be obtained as follows. If T is continuous the p-
value p defined in (7.2.3) has under Hy a U(0, 1) distribution. Hence the corresponding
random variable P has distribution

Pr(P < p | Hy) = p.

This fact can now be used by plotting the quantiles of an uniform distribution on [0, 1],
which represent the nominal coverages, against the ordered values of the M actual
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Figure 7.3. Actual coverages for different sample sizes n of the (1 — 2«)
studentized bootstrap confidence intervals based on the classical studentized
statistic (Classic), on the studentized versions of Huber’s M -estimate of
location (Hub), of its initially MAD scaled version (Hubmad) and on the
studentized version of Huber’s proposal 2 (Hp2). The nominal coverages
are represented by the solid lines and the limits of the confidence interval
for the simulation error (7.2.8) by dotted lines. Top left panel: using the
Cauchy distribution (Fy) and a nominal coverage of 80%. Top right panel:
using a normal mixture distribution (Fs) and a nominal coverage of 99%.
Bottom left panel: using the x2 distribution (Fs) and a nominal coverage
of 95%. Bottom right panel: wusing the folded t; distribution (Fy) and a
nominal coverage of 90%.
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coverages obtained through (7.2.7). This plot is very useful as one gets an overall idea
of the coverage performance over the entire range of possible nominal levels. For the
symmetric distributions Fi, Fy and F; and for the asymmetric distribution I}y these plots
are given in Figure 7.4. For I} and the moderate value n = 15 (Figure 7.4, top left panel)
all four methods seem to perform reasonably well. For F; with n = 40 (Figure 7.4, top
right panel) and F; with n = 20 (Figure 7.4, bottom left panel) the studentized bootstrap
confidence intervals based on the classical studentized statistic (dotted) undercover in the
bottom left of the plot and overcover in the top right of the plot. In both situations the
studentized bootstrap confidence intervals based on the studentized versions of Huber’s
M-estimate of location, of its initially MAD scaled version and on the studentized version
of Huber’s proposal 2 deliver similar accuracy. Finally, in considering the asymmetric
distribution Fjy with n = 40 (Figure 7.4, bottom right panel) one remarks that the
intervals based on the classical studentized statistic (dotted) completely fail. The ones
based on the studentized version of Huber’s M-estimate of location with initial MAD
scaling (dashed) undercover significantly throughout the entire range of the nominal
level. The studentized bootstrap confidence intervals based on the studentized version
of Huber’s M-estimate of location (large dashes) and on the studentized version of
Huber’s proposal 2 (small dashes) deliver similar accuracy.

Additional tables like Table 7.4 can be found in Kuonen (2000b, page 15) and Kuonen
(2000c, page 22) and additional plots like Figure 7.4 in Kuonen (2000b, page 16), Kuonen
(2000c, pages 23 and 24) and Kuonen (2000d, pages 20 and 22). The conclusions of the
excellent coverage performance of the studentized bootstrap confidence intervals based
on the studentized version of Huber’s proposal 2 remain.

7.2.4. Robustness of efficiency: confidence interval lengths

So far I only measured robustness of validity by assessing whether the actual coverage
is close to the nominal coverage. As mentioned at the beginning of Section 7.2 it is very
important to also measure the robustness of efficiency of a method once the robustness
of validity has been achieved. The aim of a good method for robust inference is to
achieve the claimed confidence with a short interval as one would expect, given good
coverage properties, that a good approximate confidence interval method tracks the
correct endpoints closely.

To do so we need to calculate the lower limit 6, and the upper limit 0, o of the
(1 — 2av) studentized bootstrap confidence intervals (7.2.1) and (7.2.2) given in Section
7.2.1. Following the notation therein the confidence interval length (CIL) becomes

1o — O =01 (251-0 — 2sa), (7.2.9)

where vy, is the nonparamametric delta method estimate of the variance of the location
estimator 7" as defined in Section 7.2.1 and z, , denotes the a-quantile of Z* issued from
the use of the saddlepoint approximation to the CDF of Z* as given in Section 6.2. To
get z; o | approximated the entire bootstrap CDF of Z* by calculating the values of F(2)
given in (2.4.2), using (6.2.12) and (6.2.13), for 50 values of z equally spaced between
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Figure 7.4. Nominal against actual coverages of the studentized bootstrap
confidence intervals based on the classical studentized statistic (Classic), on
the studentized versions of Huber’s M -estimate of location (Hub), of its
ingtially MAD scaled version (Hubmad) and on the studentized version of
Huber’s proposal 2 (Hp2). The solid line is the line x = y. Top left panel:
using the N(0,1) distribution (Fy) with n = 15. Top right panel: using the
Cauchy distribution (Fy) with n = 40. Bottom left panel: using the slash
distribution (Fr) with n = 20. Bottom right panel: using the folded N(0,1)

distribution (Fio) with n = 40.
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lmin and ... The latter are the smallest and largest empirical influence values of the
studentized statistic as defined in Section 6.5.2.3. Then I used a spline smoother to
interpolate between the corresponding values of ®~1{F(2)} and the needed quantiles,
Zs.o aNd 2514, Were then read off from the fitted curve.

Remark 7.2. To overcome the drawback of the calculation of the entire saddlepoint
approximation to the CDF of Z* one could also use the so-called significance test method
as reviewed in Davison and Hinkley (1997, Section 5.5) and by Carpenter (1999). The
idea is as follows. As in Section 7.2.3 assume that the associated test of Hy : 8 = 6, versus
the alternative that 6 differs from 6 is based on the statistic Z(6y). The corresponding
p-value can be approximated by p(fy) by means of a saddlepoint approximation as in
(7.2.5). The lower confidence limit 6, can be seen as the smallest solution to p(6y) = a.
Hence one could evaluate p(6) for a grid of possible values of 6, and interpolate between
these values to get f,. The same interpolation method needs to be applied in order to
get the upper confidence limit 01_o. An efficient algorithm to do so is presented by
Garthwaite and Buckland (1992). In the latter a separate sequential search is conducted
for the lower and upper limits of the confidence interval. This approach seems promising
and interesting but for each needed quantile a separate algorithm needs to be used.
Moreover, in the context of this chapter we consider several values for the nominal level
so this significance test method may become very time-intensive, whereas the entire
saddlepoint approximation to the CDF of Z* needs only to be computed once and one
can then use the resulting spline fit to predict whatever quantile one wants. 0

A similar approach to measure robustness of efficiency based on the expected confi-
dence interval lengths (ECIL) has been proposed by Gross (1976). The use of ECIL can
be criticized on various grounds, including the valid remark that ECIL is an average
and it is well-known how poorly averages estimate location in long-tailed or asymmetric
distributions. Nevertheless in his unpublished PhD thesis he found that ECIL can be
used to compare the efficiency of the methods; see also the comments by Gross (1976,
Section 7) and by Gross (1977, Section 7). Gross (1976) also introduced the concept of
deficiency of a method A, say, having ECIL 4. Its deficiency can be calculated relative
to the shortest confidence interval under study, i.e. the interval with the smallest ECIL
(ECIL,in), as the ratio

deficiency = 1 — ECIL,,;,/ECIL 4.

These deficiencies should be close to zero, hopefully.

As mentioned before robustness of validity should be achieved prior to any investiga-
tions on the efficiency of a confidence interval method. Following the coverages results
in Section 7.2.3 the number of possibilities for distributions and studentized bootstrap
confidence intervals drops significantly. For instance the only situation where the stu-
dentized bootstrap confidence intervals based on all four studentized statistics delivered
actual coverages close to nominal level is when the N(0,1) distribution (F;) has been
considered. This is illustrated in the first two rows of Table 7.4 with n = 20,40 and in
the top left panel of Figure 7.4 with n = 15. For the case when n = 40 the boxplots
of the confidence interval lengths of the resulting 95% studentized bootstrap confidence
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Figure 7.5. Bozplots of confidence interval lengths (CIL) of the 95% studen-
tized bootstrap confidence intervals based on the classical studentized statis-
tic (Classic), on the studentized versions of Huber’s M -estimate of location
(Hub), of its initially MAD scaled version (Hubmad) and on the studentized
version of Huber’s proposal 2 (Hp2). The N(0,1) distribution (F1) with
n = 40 was used.

intervals are shown in Figure 7.5. The simulations were based on 1,000 samples from the
underlying distribution and for each of the simulated datasets I computed the entire sad-
dlepoint approximation to the CDF of all four studentized statistics. Figure 7.5 shows
that the variance of the CIL seems to decrease when the robust studentized statistics
are used, and that the CIL based on the studentized versions of Huber’s M-estimate
of location and on its initially MAD scaled version have a smaller CIL range compared
to the others. The corresponding expected confidence interval lengths are given in the
first row of Table 7.5. The 95% studentized bootstrap confidence intervals based on
the studentized version of Huber’s M-estimate of location with initial MAD scaling has
the smallest ECIL and its deficiency compared to the other methods equals zero (Table
7.6, first row). The small deficiency of the intervals based on the studentized versions
of Huber’s M-estimates of location underline the small variability of the CIL seen in
Figure 7.5. Recall also from the second row of Table 7.4 that the ones based on initial
MAD scaling was the only of the four methods that had its actual coverage lying outside
the confidence interval of the simulation error. Unfortunately using F} was the only sit-
uation in this simulation study where all four methods performed similarly. Moreover,
for obvious reasons I will not consider studentized bootstrap confidence intervals based
on the classical studentized statistic in the examples to follow.

A situation where all studentized bootstrap confidence intervals based on the robust
studentized statistics delivered good coverage is given in the bottom left panel of Figure
7.4 when the slash distribution (F%7) with n = 20 was used. In considering F; with
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Table 7.5. Expected confidence interval lengths (ECIL) of the (1 —2a) stu-
dentized bootstrap confidence intervals for chosen distributions, sample sizes
n and nominal levels (1 — 2a) based on the classical studentized statistic
(Classic), on the studentized versions of Huber’s M -estimate of location
(Hub), of its initially MAD scaled version (Hubmad) and on the studentized
version of Huber’s proposal 2 (Hp2).

Distribution n Nominal level Classic Hub Hubmad Hp2

I 40 95% 0.64440 0.62635 0.61954 0.67317
I 40 99% — 1.96347 2.13412  3.04439
Ey 20 90% — 0.47255 — 0.53345

Table 7.6. Deficiencies (%) of the (1 — 2«) studentized bootstrap confi-
dence intervals for chosen distributions, sample sizes n and nominal levels
(1—2a) based on the classical studentized statistic (Classic), on the studen-
tized versions of Huber’s M -estimate of location (Hub), of its initially MAD
scaled version (Hubmad) and on the studentized version of Huber’s proposal
2 (Hp?2).

Distribution n Nominal level Classic Hub Hubmad  Hp2

F 40 95% 3.80  1.08 0.00 7.96
Fr 40 99% — 0.00 7.99 35.50
Fy 20 90% — 0.00 — 11.41

n = 40 the resulting CIL are represented in Figure 7.6. The CIL of the 99% studentized
bootstrap confidence interval based on the studentized version of Huber’s proposal 2 are
larger than the others. This is underlined by its ECIL and its deficiency given in the
second rows of Table 7.5 and 7.6. These large values of CIL seem to account for the
good coverage performance of the studentized bootstrap confidence intervals based on
the studentized version of Huber’s proposal 2. One notes also that the 99% studentized
bootstrap confidence interval based on the studentized versions of Huber’s M-estimate
of location seems to be most efficient in using F7 with n = 40.

As last example consider the situation given in the bottom right panel of Figure 7.3
which is Fy with n = 20 and a nominal level of 90%. For this asymmetric distribution
only the studentized bootstrap confidence intervals based on the studentized versions of
Huber’s M-estimate of location and on the studentized version of Huber’s proposal 2
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Figure 7.6. Bozxplots of confidence interval lengths (CIL) of the 99% stu-
dentized bootstrap confidence intervals based on the studentized versions of
Huber’s M-estimate of location (Hub), on its initially MAD scaled version
(Hubmad) and on the studentized version of Huber’s proposal 2 (Hp2). The
slash distribution (F7) with n = 40 was used.

delivered accurate actual coverages. Figure 7.7 shows the CIL of both methods. Their
ECIL (Table 7.5, last row) are similar. However, as illustrated in Figure 7.7 the variance
of the interval based on the studentized version of Huber’s proposal 2 is larger than the
one using Huber’s M-estimate of location. Their deficiencies are given in the last row
of Table 7.6 but are less informative in this situation as only two methods have been
compared.

Additional examples showed that the CIL of the (1 — 2«) studentized bootstrap
confidence interval based on the studentized version of Huber’s proposal 2 tend to be
longer and more variable than the ones based on the other studentized statistics. This
seems to account for being the method which worked best in Section 7.2.3, by delivering
two-sided coverages only slightly less than nominal.

7.3. Conclusion

n this chapter I applied the saddlepoint approximations to studentized boot-

strap distributions studied in Chapter 6 to the resulting studentized bootstrap

confidence intervals. The latter are known to be very accurate without needing

standard theory assumptions. The performance of the studentized bootstrap

confidence intervals in considering various studentized statistics was then illustrated in
Section 7.2 in the context of a simulation study.

In order to make robust inference about a location parameter ¢ there are three types

of robustness one would like to achieve: robustness of performance for the estimator of
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Figure 7.7. Bozxplots of confidence interval lengths (CIL) of the 90% stu-
dentized bootstrap confidence intervals based on the studentized versions of
Huber’s M-estimate of location (Hub) and on the studentized version of

Huber’s proposal 2 (Hp2). The folded t; distribution (Fy) with n = 20 was
used.

0, robustness of validity and robustness of efficiency for the resulting confidence inter-
val method. These together form the necessary condition to enable robust inference.
The robustness of performance for estimators of location was illustrated in Chapter 5
for the unstudentized versions and in Chapter 6 for the studentized versions. In both
chapters it was shown by means of examples that the ones based on robust M-estimates
performed best. This is especially true in Chapter 6 where in the bootstrap context
Huber’s proposal 2 seems to be the preferable measure of location (robustness of per-
formance). In the present chapter I then considered the resulting studentized bootstrap
confidence intervals. Their robustness of validity was measured by means of their actual
coverages (Section 7.2.3) and their robustness of efficiency by their confidence interval
lengths (Section 7.2.4). With similar actual coverage probabilities procedures that pro-
vide shorter intervals are better, being less deficient. In order to study the robustness of
efficiency of a procedure it is preferable and necessary to compare intervals with nearly
the same actual coverage. Hence for a method, like the bootstrap-t method, it is neces-
sary that its robustness of validity is checked prior to any concerns about its robustness
of efficiency. It was illustrated in Section 7.2.3 that the studentized bootstrap confidence
intervals based on the studentized version of Huber’s proposal 2 delivered actual cover-
ages closest to the nominal ones (robustness of validity). Section 7.2.4 showed that these
intervals were wider and more variable than the others, explaining the good coverage
performance.

In summary, my recommendation is the following: if you want to make robust infer-
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ence based on the very suitable candidate which is the studentized bootstrap then you
should use the studentized version of Huber’s proposal 2. It was the only statistic which
delivered robustness of performance, robustness of validity and a sufficient robustness of
efficiency — the three necessary ingredients for a robust inference.
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‘We shall not cease from exploration
and the end of all our exploring

will be to arrive where we started

and know the place for the first time.’

Thomas S. Eliot (1943, ‘Little Gidding’, Part V)

he present thesis can be split up into three parts. The first part consists of
! ‘\ Chapter 3, the second of Chapter 4 and the third part of Chapters 5, 6 and 7.
*‘*“5&@" Their detailed dependencies were given in Figure 1.1. All three parts rely on
9) s Chapter 2. In the latter the ideas underlying the saddlepoint approximations
were informally described for further use in the subsequent chapters.

Note that each of the chapters contained already a ‘Conclusion’ section, which were
meant to summarize its contents and give an outlook to open questions or serve as
bridge for the subsequent chapter. Nevertheless, I will here summarize the conclusions
and provide a short list of possible further work.

In the first two parts of my thesis I focused on two of my developments in this
area, namely on saddlepoint approximations for the distribution of quadratic forms in
normal variables (Chapter 3) and for the distribution of the waiting time in the coupon
collector’s problem (Chapter 4).

Chapter 3 was concerned with quadratic forms, which enter into many statistics as-
sociated with normally distributed random variables. As in general quadratic forms are
not positive definite, classical results such as Cochran’s theorem implying a chi-squared
distribution for the quadratic form do not apply, and another approach to the calculation
of its distribution is needed. The various methods for computing the exact distribution of
quadratic forms in normal variables require in general extensive numerical computations.
Numerical integration methods, though sufficiently accurate in solving the general prob-
lem, require a considerable amount of computer time. Several approximation methods
have been proposed to reduce those difficulties. However, it was illustrated in Section
3.4 that these approximate methods may be inaccurate. Hence I proposed a saddle-
point approximation for the distribution of quadratic forms in normal variates. It was
shown to be comparable in speed with exact methods, almost as accurate and much
easier to program. This was underlined by several examples, including applications to
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nonparametric regression in Section 3.5. For example, in Section 3.5.2 I applied it to the
assessment of significance when comparing the fit of a linear model with that of a local
smoother. Other workers have noted that the corresponding pseudo-likelihood ratio test
leads to a type of generalized F-statistic, and then have proposed chi-squared approxi-
mations to its distribution, based on the first few cumulants. The proposed saddlepoint
approximation gives appreciably more accurate tail probabilities for the associated sig-
nificance tests, which are then essentially exact. In Section 3.5.3 I listed a number of
other cases to which the presented approach could be applied easily. Furthermore, one
obvious direction in which this work could be extended is towards the application of
saddlepoint approximations to the distributions of general quadratic forms, ¢.e. not nec-
essary in normal variates as in Chapter 3. As the exact cumulant generating function is
not known, one would need to derive some of its cumulants. The idea then would be to
approximate the cumulant generating function by the leading four, say, terms and then
to apply the saddlepoint approximation.

In Chapter 4 a standard combinatorial problem was considered, namely the estima-
tion of the number of coupons, drawn at random with replacement, needed to complete
a collection. This problem, known as the coupon collector’s problem or the classical
occupancy problem, has been investigated intensively. In Section 4.4 I used several ex-
amples to show that a saddlepoint approximation to the distribution of the waiting time
in the coupon collector’s problem is very accurate. Attention is given to the special case
where all sampling probabilities are equal. An extension for the general case of unequal
sampling probabilities is still missing.

The third part of this thesis was devoted to the use of saddlepoint approximations
in order to replace the computer-intensive bootstrap. In Chapter 5 saddlepoint approx-
imations for standard bootstrap distributions were presented. The basic notions of the
saddlepoint approximation as applied to resampling were recalled in Section 5.1. Other
workers have noted that the saddlepoint approximations to bootstrap distributions may
fail if data contain outliers. Therefore, I proposed and studied in Section 5.2 a saddle-
point mixture approximation for the case of the average in conditioning on the number
of times the outlier has been resampled. I showed in several examples that this ap-
proach delivers very accurate approximations. Nevertheless, one may question the use
of a statistic like the average when data contain outliers. To enable the use of robust
estimates of location defined by scalar estimating equations a technique was presented
in Section 5.3. As applications I considered Huber’s M-estimate for location and the
standardized M-estimator of location with initial MAD scaling. I showed in several ap-
plications to real data that in both cases the saddlepoint approximations delivered very
accurate approximations to their density and distribution functions. A possible future
work resulting from Chapter 5 could be as follows. The saddlepoint mixture approxi-
mation presented in Section 5.2 is only valid if the data contain a single outlier. I think
that it should be feasible to extend it to data containing two or more outliers; see also
the comments given in Section 5.2.2. However, questions about its usefulness remain.
Having detected an extreme outlier, one would immediately use a robust estimate of
location, or check if it is due to a measurement error and if so omit it.

The natural continuation of Chapter 5 was then given in Chapter 6 by extending
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the approach to studentized statistics. The method discussed in Section 6.2 is known as
the integration saddlepoint approximation. The latter considers marginal saddlepoint
approximations for studentized statistics, involving calculation of the joint cumulant
generating function of the estimating equations that determine the bootstrapped esti-
mator of interest and some nuisance statistics, followed by a saddlepoint approximation
to their joint distribution. To get the marginal density of the studentized version of the
estimator of interest, a Laplace approximation to the integral of the joint distribution
is then used to avoid numerical integration. I considered in Section 6.3 the classical
studentized statistic and in Section 6.4 the studentized versions of Huber’s M-estimate
of location, of Huber’s M-estimate of location with initial MAD scaling and of Huber’s
proposal 2 estimate of location. The examples considered convinced me that it is prefer-
able, in the bootstrap context, to use the studentized version of Huber’s proposal 2
instead of the studentized version of Huber’s M-estimate of location with initial MAD
scaling. Actually the opposite is recommended by the main workers of robustness in
the unstudentized and non-bootstrap context. Remarks on implementation and related
problems resulting from the use of the integration saddlepoint approximation were given
in Section 6.5. Care is needed with its application as it is based on a Laplace approxima-
tion, which fails when the joint cumulant generating function is concave. As illustrated
in Section 6.5.1 it may be always wise to use diagnostic plots like the ones given therein.
But they suffer from the drawback of being too time-intensive. Nevertheless, it was also
noted that an approximation can always be found by numerical integration. Numerical
integration methods for use in S-PLUS and R were discussed in detail in Appendix A,
and were applied in Section 6.5.2. Integrals over infinite domains should be transformed
to a finite region in view of the accuracy and convergence of the quadrature method in
use. Hence in Section 6.5.2.2 I listed the transformations which performed best, and in
Section 6.5.2.3 I presented a method which can be used to get an idea of the range of
the studentized statistics, namely by using the range of their empirical influence values.
All these ideas where then used in Section 6.5.2.4 in order to perform the numerical
integration. However, the examples considered clearly illustrated the drawbacks of nu-
merical integration: it becomes useless in practice as their running time is outperformed
by direct simulation of the bootstrap replicates. Fortunately, my experience shows that
the problems described in Section 6.5 occur rarely. Therefore the need to perform a
very computer-intensive numerical integration as in Section 6.5.2 disappears. Especially
concerning these numerical integration methods it was made clear that questions on
convergence and efficient implementation remain. Some future approaches stated in Ap-
pendix A are promising. Chapter 6 ended then with the recommendation that Huber’s
proposal 2 seems to be a preferable measure of location, being not unduly affected by
outliers or asymmetry in the data.

Through the use of the bootstrap we can obtain accurate confidence intervals without
having to make normal or Student theory assumptions. One way to get such intervals
is by means of the bootstrap-t method. Chapter 6 underlined the fact that the stu-
dentized statistic is a good approximate pivotal quantity. The latter forms the basis
of the studentized bootstrap confidence intervals. The aim of Chapter 7 was then to
know whether the studentized statistics presented in Chapter 6 yield robust confidence
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intervals with coverages close to nominal and this with short intervals. In robustness
notations this can be translated into the following wish: knowing the robustness of
performance of a location estimator one is interested to know whether the resulting con-
fidence intervals are able to achieve robustness of validity and robustness of efficiency.
All three concepts form the basis to enable the practitioner to make robust inference. To
do so I listed in Section 7.2 the results of an extensive simulation study. More precisely,
the robustness of validity of the bootstrap-t method was measured in Section 7.2.3 by
means of the actual coverages, and its robustness of efficiency in Section 7.2.4 by the
use of the confidence interval lengths. The best robustness of validity of the studentized
bootstrap confidence intervals was achieved when they were based on the studentized
version of Huber’s proposal 2. T then stated in Section 7.2.4 that the resulting intervals
were wider and more variable than the others in order to account for the good coverage
performance. Finally, my recommendation in order to make robust inference based on
the studentized bootstrap was then to use the studentized version of Huber’s proposal 2,
being the only estimator considered which delivered robustness of performance (Section
6.4.3), robustness of validity (Section 7.2.3) and robustness of efficiency (Section 7.2.4).

There are several directions in which the work presented in Chapters 5-7 may be ex-
tended. One possibility may be to extend the methods to inference in robust regression.
Furthermore, I hope that the results, remarks and recommendations given in Chapters
5-7 may fill several gaps in the current literature and stimulate further discussion and
research within the presented context.
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A. Numerical integration

‘Numerical analysis is an art, not a science.’

Herman Rubin (1999)

A.1. Introduction

umerical integration, which is also called quadrature, is the study of how the

numerical value of an integral can be found. The purpose of this appendix is

to discuss quadrature methods for approximate calculation of integrals within

S-PLus or R. All are based, in one way or another, on the obvious device
of adding up the value of the integrand at a sequence of points within the range of
integration. Hence, most of the approximations I consider have the form

M
//w(xla 7$m)f(x17 7$m)d$1dxm ~ ZVVZf(yZ,la 7yi,m)7 (All)
R =1

where R, is a given region in a m-dimensional Euclidean space F,, and w(z1,... ,Z;,)
is a given weight function. The (y;1,... ,vyim) lie in E,, and are called the points of the
formula. The W; are constants which do not depend on f(xy,...,z,) and are called
the coefficients of the formula. We say that formula (A.1.1) has degree r (or degree of
exactness r) if it is exact for all polynomials in zq, ... , x,, of degree < r and there is at
least one polynomial of degree r + 1 for which it is not exact. See also Stroud (1971) or
Evans (1993, Chapter 6).

The theory of integration formulae for functions of one variable (m = 1) is well
developed. A great deal of this theory can be found in the books by Engels (1980),
Davis and Rabinowitz (1984), Evans (1993) or Press et al. (1993, Chapter 4). For
m = 1 equation (A.1.1) can be written as

/Rw(:c)f(:c)d:c :/ w(x) f(z)dx ~ ZWZf(yl) (A.1.2)
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In the classical formulae the integral of a function is approximated by the sum of its
values at a set of equally spaced points, multiplied by certain aptly chosen coefficients
of the formula. Examples include the trapezoidal and Simpson’s rules. Hence only the
W, are free to be used to force the quadrature rule to have a certain degree of exactness.
The freedom to fix the points y; has been thrown away, presumably in the interests of
getting nice linear equations for the W,. If the y; are also left free, the result is a set
of non-linear equations which can be shown to have solutions based on the zeros of the
associated sets of orthogonal polynomials for the given interval [a, b] and weight function
w(z). This leads to the elegant theory of Gaussian quadrature, which will be discussed
in Section A.2. Gaussian quadratures are formulae which are said to be progressive as
the points for any point-number M are in general quite different from those for any
other point-number. Another term used to describe quadrature rules is adaptive. A rule
is adaptive if it compensates for a difficult subrange of an integrand by automatically
increasing the number of quadrature points in the awkward region. As we will see in
Section A.3 adaptive rules are usually based on a standard underlying quadrature rule,
often a progressive one. For very high dimensionality Monte Carlo or random sampling
methods (Section A.4) can begin to be competitive, though in this regime all methods
tend to be very inaccurate for a reasonable computer effort. Finally, a comparison of
the presented methods is given in Section A.5.

A.2. Gaussian quadrature

. r\\n‘ S % he idea of Gaussian quadratures is to give ourselves the freedom to choose
(‘,.,\@ not only the coefficients W, but also the location of the points at which
w the function is to be evaluated. Moreover, the formula (A.1.2) is forced to
) s have degree of exactness 2M — 1. Because of the computational expense of
generating a new Gaussian formula, only commonly used combinations of the interval
and weight functions are normally tabulated, see Evans (1993, Section 2.3). Of these
the most commonly used is the Gauss—Legendre rule with interval [—1, 1] and weight
function w(z) = 1.

Neither S-PLUS or R offer the Gauss—Legendre rule, nor any other standard Gaus-
sian quadrature rule, by default. Nevertheless, the integrate2 library for S-PLUS
(1ib.stat.cmu.edu/S/integrate2) contains the function intgauss, which performs
the numerical integration of a function over a given region using a classical 10 point
Gaussian formula. In order to enable more flexibility for the choice of M and the wish
to extend it to higher dimensions, I wrote a S-PLUS function GL. integrate. 1D to com-
pute (A.1.2) by means of the Gauss—Legendre rule and based on a modified version of
the C function GAULEG given in Press et al. (1993, page 151). The function is en-
tirely written in S-PLUS; a C version is available. I used the fact that any finite range
quadrature on the interval [a, b], can be transformed using the linear transformation

l

b—at+b+a
r =
2 2
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Table A.1. The S-PLUS function GL.integrate. 1D.

GL.integrate.1D <- function(fct, low=-1, upp=1, order=10)

{

if (low==upp) stop("low = upp")

name.YW<-paste("GL.YW", abs(low), abs(upp), order, sep=".")

if (lexists(name.YW)) {

assign(name.YW, GL.YW(order, xrange=c(low,upp)),

where=1, immediate=T)

}

YW<- get(name.YW)

approx<-numeric(order)

for (i in l:order) approx[i] <- YW[i,2] * fct(YW[i,1])

sum (approx)

b

to the standard interval [—1,1]. The function GL.integrate.1D is given in Table A.1.
It uses the function GL.YW which computes, if needed, the points y; and the weights W;
for the interval [low,upp], for i = 1,... , M, where M = order. The function GL.YW is
given in Table A.2.

For the multi-dimensional case we reduce the multiple integral in the left-hand side
of (A.1.1) into the repeated integrals over [—1, 1], namely

1 1 1
/ dzy / dzsy - / f(x1, ..., op)dey,. (A.2.1)
-1 -1 -1

Then we can apply a classical quadrature formula to each integral in (A.2.1), which
yields using the right-hand side of (A.1.1) a product rule of the form

M M
D> Wi W f Wi Yin), (A.2.2)

im=1 i1=1

where the weights W, and the points y;., j = 1,... ,m, are chosen to be appropriate
for the specific dimension to which they are applied; see also Evans (1993, Chapter 6).
The number of function evaluations using the M™ integration points may be quite large.
For m = 2 this is illustrated by the S-PLUS function GL.integrate.2D given in Table
A.3 using the fast version of the S-PLUS function outer, namely outer2, given in Table
A.4 and also included in the latest R version (> 1.3.0) as a replacement of the initial R
function outer. For example

> tmp.fct <- function(x,y) {1/(1-xx*y)}
> GL.integrate.2D(tmp.fct, low=c(0,0), upp=c(1l,1), order=128)
[1] 1.644886
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Table A.2. The S-PLUS function GL.YW.

GL.YW <- function(M, xrange=NULL, epsilon=NULL)
{
if (is.null(epsilon)) epsilon <- .Machine$double.eps
if (M)%2 ==1) stop("M needs to be an even number")
MM <- (M + 1) / 2
Y <~ W <- numeric(M)
for (i in 1:floor(MM)) A
ok<-F
z <- cos( pi * (i-0.25)/(M + 0.5) )
while (ok == F) {
pl <- 1.0
p2 <- 0.0
for (j in 1:M) {
p3 <- p2
p2 <- pl
pl <= ((2.0%j - 1.0)*z*p2 - (j - 1.0)*p3)/j
}
pp <- Mx(z*pl - p2)/(z"2 - 1.0)
zl <- z
z <-z - pl/pp
if (abs(z - z1) < epsilon) ok<-T
}
Y[i] <- -z
Y[M+1-i] <- z
Wli] <= 2.0 / (( 1 - 2z72) % pp~2)
WM+1-i] <- W[i]
}
if ('is.null(xrange)) {
xL<- (xrange[2]-xrange[1])/2.0

W<-xL xW
Y <- xL * Y + (xrange[1]+xrange[2])/2.0
}
cbind (Y, W)

¥

took 5.48 seconds in CPU time to perform 16,384 function evaluations when the calcu-
lation of the array containing the points and the weights was needed, and 0.09 seconds

in CPU time when previously tabulated values were taken.

Multi-dimensional Gaussian quadrature up to m = 20 over hyper-rectangles could
also be computed with the subroutine DOIFBF from the commercial NAG Fortran li-

148




A.2. Gaussian quadrature

Table A.3. The S-PLUS function GL.integrate.2D.

GL.integrate.2D <- function(fct, low=c(-1,1), upp=c(1,1),
order=10)
{
YW.list<-as.list(1:2)
for(i in 1:2) {
name.YW<-paste("GL.YW", abs(low[i]), abs(uppli]), order,
sep=".")
if ('exists(name.YW)) {
assign(name.YW, GL.YW(order,
xrange=c (low[i] ,upp[il)),
where=1, immediate=T)
}
YW.list[[1]]<- get(name.YW)
}
fcteval <- outer2(YW.list[[1]1]1[,1], YW.list[[2]]1[,1]1, fct)
sum(YW.1ist [[1]1][,2] * apply(YW.list[[2]]1[,2] *
fcteval, 2, sum))

brary (www.nag.co.uk), and loaded dynamically into S-PLUS or R. But, for our pur-
poses this will not be needed. It also may be interesting to notice that there is an ongoing
development for a free software library of routines for numerical computing: the ‘GNU
Scientific Library’” (GSL) available at sources.redhat.com/gsl/. Preliminary releases
look promising.

There are many different ways in which the Gaussian quadrature has been ex-
tended. An example are the Gauss—Kronrod formulae; see, for instance, Davis and
Rabinowitz (1984, Section 2.7.1.1). An optimal extension can be found for Gauss—
Legendre quadrature, giving a degree of exactness of 3M + 1. This is for instance the
case with the S-PLUS or R function integrate, which implements uni-dimensional
adaptive 15-point Gauss—Kronrod quadrature based on the Fortran functions DQAGE
and DQAGIE from QUADPACK (Piessens et al., 1983; www.netlib.org/quadpack/).
This function is the only numerical integration function implemented in the S-PLUS or
R standard packages. A similar function, gkint from the S-PLUS library integrate?2
(1ib.stat.cmu.edu/S/integrate2) uses a (7-15)-point Gauss—Kronrod pair by means
of the routine DQAG from QUADPACK.

As mentioned, for M quadrature points in each dimension the sum in (A.2.2) is over
M™ terms. Therefore the numerical effort of Gaussian quadrature techniques increases
exponentially with the integral dimension. Hence when m is large this method is nearly
useless. Furthermore, the trouble with Gaussian quadrature is that you have no real
idea of how accurate the answer is. You can always increase the accuracy by using a
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Table A.4. The S-PLUS function outer?2.

outer2 <- function (X, Y, FUN="x",6 ...)

{
no.nx <- is.null(nx <- dimnames(X <- as.array(X)))
dX <- dim(X)
no.ny <- is.null(ny <- dimnames(Y <- as.array(Y)))
dY <- dim(Y)

if (is.character(FUN) && FUN=="x*") {
robj <- as.vector(X) %xJ t(as.vector(Y))
dim(robj) <- c(dX, 4Y)
} else {
match.fun <- function(FUN) return(FUN)
FUN <- match.fun(FUN)
Y <- rep(Y, rep(length(X), length(Y)))
X <- rep(X, length.out = length(Y))
robj <- array(FUN(X, Y, ...), c(dX, dY))
}
if (no.nx) nx <- vector("list", length(dX))
else if (no.ny) ny <- vector("list", length(dY))
if (!(no.nx &% no.ny)) dimnames(robj) <- c(nx, ny)
robj

higher order Gauss method or by applying it piecewise over smaller periods but you
still do not know the accuracy in terms of correct decimal places. To get a prescribed
accuracy one needs to look at adaptive integration, which keeps reducing the step size
until a specified error has been achieved.

A.3. Adaptive methods

daptive algorithms are now used widely for the numerical calculation of multi-

ple integrals. These algorithms have been developed for a variety of integration

regions, including hyper-rectangles, spheres and simplices. A globally adap-

- tive algorithm for integration over hyper-rectangles was first described by van

Dooren and de Ridder (1976) and programmed as a Fortran function HALF. It was
improved by Genz and Malik (1980). Implementations of the Genz and Malik modified
algorithm (programmed as a Fortran function ADAPT) have appeared in the NAG For-
tran library (www.nag.co.uk, subroutine DO1FCF). The routine operates by repeated
subdivisions of the hyper-rectangular region into smaller hyper-rectangles. In each sub-
region, the integral is estimated using a rule of degree seven, and an error estimate is
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obtained by comparison with a rule of degree five which uses a subset of the same points.
These subdivisions are designed to dynamically concentrate the computational work in
the subregions where the integrand is most irregular, and thus adapt to the behaviour
of the integrand. Genz (1991) gives a detailed description in the context of adaptive
numerical integration for simplices.

Berntsen et al. (1991a) improved the reliability of previous algorithms, and developed
a new algorithm for adaptive multidimensional integration. Tests (Berntsen et al. 1988)
of a Fortran implementation, DCUHRE (Berntsen et al., 1991b), have shown that their
goal has been achieved.

Both DCUHRE and ADAPT can be dynamically loaded into S-PLUS or R. The
Fortran routine DCUHRE is implemented in the S-PLUS function dcuhre, which is
contained in the integrate2 library (1ib.stat.cmu.edu/S/integrate2), and ADAPT
comes with the S-PLUS function adapt included in the S-PLUS library adapt (1ib.stat.
cmu.edu/S/adapt). Note that for R the function adapt is in the package integrate,
which is available on CRAN (cran.r-project.org).

Genz (1992) suggested that such subregion adaptive integration algorithms can be
used effectively in some multiple integration problems arising in statistics. The key to
good solutions for these problems is the choice of an appropriate transformation from
the infinite integration region for the original problem to a suitable finite region for the
subregion adaptive algorithm. Genz (1992, Section 3.2) also discussed different types
of such transformations; see also Davis and Rabinowitz (1984) for further examples of
possible transformations.

Traditional quadrature methods (even newer adaptive ones) have been almost for-
gotten in the recent rush to ‘Markov Chain Monte Carlo’ (MCMC) methods; Evans and
Swartz (1995) provided a nice recent summary focusing on these methods. They indi-
cate that significant progress has been made using five general techniques: asymptotic
methods, importance sampling, adaptive importance sampling, multiple quadrature and
Markov chain methods. More recently, Genz and Kass (1997) argued that the rea-
son why existing quadrature methods have been largely overlooked in statistics, even
though they are known to be more efficient than Monte Carlo methods for well-behaved
problems of low dimensionality, may be that when applied they are poorly suited for
peaked-integrand functions. Hence they proposed transformations based on split-t dis-
tributions to allow integrals to be efficiently computed using a subregion-adaptive nu-
merical integration algorithm. Fortran routines are already available (BAYESPACK at
www.sci.wsu.edu/math/faculty/genz/genzhome/software.html) and work on con-
structing a version for use with S-PLUS is underway.

A.4. Monte Carlo methods

umerical methods that are known as Monte Carlo (MC) methods can be
loosely described as statistical simulation methods. For a complete intro-
duction to MC integration I refer to Stroud (1971, Chapter 6), Kalos and
Whitlock (1986) or Robert and Casella (1999, Chapter 3). The classical MC
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method for approximating a multiple integral as given in the left-hand side of (A.1.1)
with w(zy,...,2,) = 1, denoted by Z(f), is as follows. We choose M set of points
{vi1,--syim}s- - s {ysma, -, Ysm} at random, uniformly distributed in R,,. The in-
tegral is then estimated using W; = V/M in the right-hand side of (A.1.1),

M

T(F) ~T(F) = 37 3 s i), (A41)
i=1
where V' = Z(1) is the m-dimensional volume of R,,. One notes that the basic MC
method iteratively approximates a definite integral by uniformly sampling from the
domain of integration, and averaging the function values at the samples. The integrand
is treated as a random variable, and the sampling scheme yields a parameter estimate of
the mean, or expected value of the random variable. Since 7 (f) in the right-hand side of
(A.4.1) estimates Z(f) the absolute error € in this mean can be evaluated by considering
the corresponding standard error of the mean,

o
M1/2’

€ =

() - T(f)| ~ (A4.2)
where o2 is VZ(f?) — Z*(f). If the {y11,--- s Y1m}ts--- > {Ynm1s--- , Yrnm} are regarded
as independent random variables then Z(f) is a random variable with mean Z(f) and
variance 02/M, which can also be estimated from the random sample through

% Z;{f(ym, e Yim) — j(f)}Q

Furthermore, the error estimate (A.4.2) may be inverted to show the number of samples
needed to yield a desired error, M = 0%/¢?. For m = 1 this is illustrated by the S-PLUS
function MC.integrate.1D given in Table A.5, and by MC.integrate.2D in Table A.6
for the two-dimensional case. An example of their use is

> MC.integrate.1D(function(z) sqrt(z), 0, 1, 1000, 2/3)
To achieve an error of 0.0001 you need at least 314516 points.
[1] 0.6670135

This clearly reflects the slow convergence of the MC methods; the absolute error (A.4.2)
has an average magnitude of O(M~'/2). Hence to reduce the error, for example, by a
factor of 10 requires a 100-fold increase in the number of sample points. In the previous
example one would need M = 314,516 points to get an accuracy of 0.0001. Therefore,
other methods have been studied for decreasing the error. Such approximations are
called ‘Quasi Monte Carlo’ (QMC) methods. The QMC method uses a formula which is
formally identical to that of the MC method, except that the points used for evaluating
the function are generated deterministically. Unlike the MC method, the QMC method
has a deterministic error bound, and the accuracy of the integral is generally significantly
better than in the MC method. Many different QMC methods are known. One method
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Table A.5. The S-PLuUS function MC.integrate.1D.

MC.integrate.1D <- function(fct, low=-1, upp=1, npoints=100,
exact.value=NULL)
{
points <- runif(n=npoints, min=low, max=upp)
approx.tmp <- apply(as.matrix(points), 2, fct)
V.tmp <- diff(c(low, upp))
approx <- mean(approx.tmp) * V.tmp
varapprox <- var(approx.tmp) * V.tmp
if (!is.null(exact.value)) {
cat("To achieve an error of 0.0001 you need at least",
floor(varapprox~2/(0.000172)), "points.\n")
}
approx

}

Table A.6. The S-PLUS function MC.integrate.2D.

MC.integrate.2D <- function(fct, low=c(-1,1), upp=c(1,1),
npoints=100, exact.value=NULL)
{
points.x<-runif (n=npoints, min=low[1], max=uppl[1])
points.y<-runif (n=npoints, min=low[2], max=uppl[2])
approx.tmp <- fct(points.x, points.y)
V.tmp <- diff(c(low[1], upp[1]))* diff(c(low[2], upp[2]))
approx <- mean(approx.tmp) * V.tmp
varapprox <- var(approx.tmp) * V.tmp
if(!is.null(exact.value)) {
cat("To achieve an error of 0.0001 you need at least",
floor(varapprox~2/(0.000172)), "points.\n")
}
approx

b

makes use of results from the the theory of numbers and is called the number-theoretic
method; see Stroud (1971, Section 6.3), Fang and Wang (1994) or Fang et al. (1994).
Additional methods have been employed to reduce the error of the MC method,
such as importance sampling, stratified sampling, antithetic variates and non-random
sequences (Press et al., 1993, Sections 7.6-7.8, Evans and Swartz, 1995). These meth-
ods are mostly concerned with finding point sets that yield smaller integration errors.
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Importance sampling concentrates samples in the area where they are more effective by
using a priori knowledge of the function. Stratified sampling tries to distribute samples
evenly by subdividing the domain into subregions such as grids. It is possible to combine
some of these techniques, or to apply them adaptively (Press et al., 1993, Section 7.8).
For example, uniformly distributed samples generated by stratification can be employed
for importance sampling.

As described above, MC integration draws samples from the required distribution,
and then forms sample averages to approximate expectations. MCMC methods draw
these samples by running a constructed Markov chain for a long time. An example of a
way to construct such a chain is the Gibbs sampler. An introduction to MCMC methods
and their applications is given in Gilks et al. (1996) or Robert and Casella (1999). But
questions on convergence of the chains and efficient implementation are still to be solved
(Cappé and Robert, 2000).

It is well known that for high-dimensional integrals MC techniques should be pre-
ferred to the standard quadrature methods given in Sections A.2 and A.3 since the sum
in (A.4.1) is only over M terms instead of the M™ terms in (A.1.1). Nevertheless, I
do not feel so comfortable using the MC methods mentioned in this section for mainly
two reasons: first, one needs too many function evaluations to get a certain accuracy
and second, as in Chapters 5-7 of this thesis saddlepoint approximations are used to
replace bootstrap simulation I do find it a little strange to use MC methods to get the
saddlepoint approximations. So I will consider their simplest versions (Tables A.5 and
A.6) in the next section only for purposes of illustration.

A.5. Comparison

. r\ S % he testing of numerical quadrature methods involves the practical realization
(‘a}\ of the theoretical claims, and is well illustrated by applying a method to a
&Q set of well-designed examples. For m = 1 two extensive sets of test integrals
) s which appear in the numerical analysis literature have been used to make a
comparative computation. The first set is due to Casaletto et al. (1969) and contains
50 functions ranging from polynomials up to degree 20 through functions with discon-
tinuities; see also Evans (1993, Table 2.3). The second set of 21 examples is due to
Kahaner (1971) which includes in addition some harder examples (Evans, 1993, Table
2.4). These 71 test examples have been integrated using the various S-PLus func-
tions described in the previous sections. Namely, from Section A.2 the default S-PLus
function integrate, the function intgauss using a 10-point Gaussian formula, the (7—
15)-point Gauss—Kronrod method implemented in gkint and GL.integrate. 1D given in
Table A.1 which uses the Gauss-Legendre (GL) rule with M points. And from Section
A4 the function MC.integrate.1D (Table A.5).

In an extensive comparative study I applied them to the 71 test examples. I used
GL with 4, 8,16, 32,64 and 128 points, and MC with 102,104, 10> and 10® points. The
polynomials were easily integrated with lower order (> 4) GL rules. For the other
examples it appeared that a 64-point GL procedure is necessary to get reliable results.
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Table A.7. A selection of test integrals used in the comparison study.

Integrals Analytic values
Cy = [} (2% — 22 +3) dx 2.333333
Cos = [ 2/{2 + sin(107z)} d 1.154700
Cag = [7 asin(30z) cos = dx —0.209672
Csy = fozﬂ x sin(30z) cos(50z) dx 0.117809
Css = [;°7{(1007)? — 22} sin & da 298.435716
1 1/(x4+2), 0<z<e—2
Cus = fo cas(x) do, cus(w) = { 0, e—2<z<1 0.306852
! 0, 0<z<03
K2 = fO k?g(l‘) dl‘, k?g(l‘) = { 17 0.3 §< x S 1 0.7
K; = fol Y% dx 2
K5 = folo 25 exp(—25x) dz 1
K = [,°50/{m(1 + 250022)} dx 0.499363

Koy = [} kar(2) dv, Kor(2) = [1/ cosh{10(z — 0.2)}]?
+[1/ cosh{100(x — 0.4)}]*

+[1/ cosh{1000(x — 0.6)}]° 0.210802
E, = fol fol 1/(1 — zy29) dzydxsy 72/6
B3 = f,ll f,ll(Q — xy — 29) " ? day dir 16(2 —v/2)/3
Ey=[1 [1(3 =21 — 22y)"V? dayds 42(3v3 —2v2-1)/3
Ee = f_ll f_ll |22 + 23 — 0.25| dz1dws 5/3 +7/16
Er=[1, [1, oy — 22]'/? duydas 8/15

For the MC methods choices of the number of points below 10, 000 were unsatisfactory.

The most interesting of the 71 test functions are given in the upper and middle blocks
of Table A.7, where C; denote the selected test integrals from Casaletto et al. (1969)
and K; the ones of Kahaner (1971). Note that ¢ = 3,26, 29, 30,34,48 or j = 7,15, 16, 21
correspond to n in Evans’ Tables 2.3 or 2.4 respectively. The resulting absolute errors of
the procedures compared to their analytical values (right column of Table A.7) are given
in Figure A.1 for C5, Csg, Cog, Cys, Ko and K7, and in Table A.8 for Csg, Csy, K15, K16
and Ko. As illustrated in Figure A.1 the polynomial C3 was easily found, as well as
Cy which contains an oscillation in the denominator (Figure A.2, top middle panel).
Integrals Cog and Csp, C34 (Table A.8), represented in the top right, bottom left and
bottom middle panels of Figure A.2, all exhibit oscillatory behaviour which gives only
very high order methods any chance of success. This is especially true with Cs, when
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Figure A.1. Plot of absolute integration errors for Cs,Cag, Cag, Cyg, Ko, K7
(given in Table A.7) using the S-PLUS functions integrate, intgauss,
gkint, GL.integrate.1D (GL) and MC.integrate.1D (MC) with the num-
ber of points in brackets.

Table A.8. Absolute integration errors for Csg,Csy, K15, K16, K21 (given
in Table A.7) using the S-PLUS functions integrate, intgauss, gkint,
GL.integrate.1D (GL) and MC.integrate.1D (MC) with the number of
points in brackets. The values are rounded to three decimal places.

integrate intgauss gkint GL GL MC MC
(64) (128) (10,000) (100,000)
Cs 0.000 3.186  0.000 0.239 0.176 0.228 0.064
Csy 0.000 5,476.455 0.000 3,425.142 0.000 886.795 131.527
Kis 0.000 0.681  0.000 0.000 0.000 0.022 0.024
Kig 0.000 0.362  0.000 0.001 0.000 0.061 0.047
Ko 0.211 0.211  0.210 0.211 0.211 0.210 0.210

MC integration and orders inferior to 128 are used. Similarly the discontinuities in Cyg
and K did not cause surprising results in Figure A.1. Remark that an oddity occurred
with K9 (Table A.8) which appears to defeat all the methods due to its nature shown
in the bottom right panel of Figure A.2.

In summary, I noticed that the default S-PLUS function integrate, which imple-
ments uni-dimensional adaptive 15-point Gauss-Kronrod quadrature, and a 128-point
GL rule, as implemented in GL.integrate. 1D, performed best, and this within the en-
tire comparative computation of the 71 test examples. The S-PLUS function intgauss
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Figure A.2. Plot of the integrands of Cs3, Cag, Cag, Csg, C34 and Koy (clock-
wise from top left) given in Table A.7.

and the MC rules were less accurate.

In order to enable the testing of the other adaptive methods described in Section A.3
I considered the two-dimensional test integrals listed in Evans (1993, Table 6.2). A selec-
tion is given in the lower block of Table A.7, where E; denote the I; in Evans’ Table 6.2 for
i=1,3,4,6,7. I considered the following adaptive rules: the ADAPT routine (Genz and
Malik, 1980) using the S-PLus function adapt and DCUHRE (Berntsen et al., 1991b)
by means of the S-PLUS function dcuhre. 1 compared both with GL.integrate.2D
(GL) and MC.integrate.2D (MC), given in Tables A.3 and A.6, using several choices
for the number of points per dimension. For example the use of a 32-point GL would
result in 1024 function evaluations. The performance of these methods is illustrated in
the left panel of Figure A.3. The maximal absolute error achieved over all integrals was
0.0326 with E; using adapt. This illustrates that all methods work reasonably well when
applied to E;, i = 1,3,4,6,7. Nevertheless, adapt and the MC methods (even with one
million points) perform slightly worser than the others, whereas dcuhre and a 128-point
GL seem to be the most accurate methods under consideration. But the right panel of
Figure A.3 illustrates that the use of dcuhre results in significantly larger CPU times.
This fact is not surprising for the MC methods as the number of points and hence the
number of function evaluations is impractically large.

Once again, the use of a 128-point GL rule (GL.integrate.2D) delivered very ac-
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Figure A.3. Integration of Ei,FEs, E4, Eg, E7 (given in Table A.7) us-
ing the S-PLUS functions adapt, dcuhre, GL.integrate.2D (GL) and
MC.integrate.2D (MC) with the number of points in brackets. Left panel:
Absolute integration errors. Right panel: CPU times in seconds.

curate results within small CPU times as well as did adapt. Moreover, I noticed that
dcuhre outperformed adapt in accuracy, but used much more CPU time. This was
underlined with additional examples which are not given here.
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Oct. 1999 — Febr. 2000

Oct. 1999

April 1999 — Febr. 2001

March 1999 — June 1999

Oct. 1998 — March 2000

March 1997 — May 1997

Sept. 1996 — Febr. 1997

Sept. 1995 — Febr. 1998

Sept. 1995 — Febr. 1997

Research experience

1999 — present

2000 - 2001

Lecturer for ‘Statistical Methods for Engineers’ given in the context of
the ‘Postgraduate Course in Electrical Power Engineering’, LRE, EPFL.

Lecturer for ‘Probabilités et Statistique’, DE and DMT, EPFL.

Lecturer for a one-day course ‘Introduction to S-PLus for UNIX’ given in
the context of the ‘Postgraduate Course in Mathematical Engineering’,
DMA, EPFL.

Instructor (joint with Professor S. Morgenthaler and R. Furrer) for ‘Prob-
abilités & Statistique’ given in the context of the ‘2001 Postgraduate
Cycle in Biomedical Engineering’, LGM, EPFL.

Teaching Assistant for ‘Probabilités et Statistique I’ given by Professor
A. C. Davison, DMA, EPFL.

Instructor for a one-day course ‘Introduction to S-PLus for UNIX’ given
in the context of the ‘Postgraduate Course in Mathematical Engineering’,
DMA, EPFL.

Supervision of the semester projects ‘Revisiting statistical applications
in soccer’ (B. Emonet, DMA, EPFL) and ‘Statistical analysis of the
serverlog of a website’ (T. N. T. Ho, DMA, EPFL).

Instructor for a one-day course ‘Introduction to S-PLus for UNIX’ given
in the context of the ‘Postgraduate Course in Mathematical Engineering’,
DMA, EPFL.

Organizer and Instructor for a two-day course ‘Introduction to S-PLUS
for UNIX’, DMA, EPFL. Dates: April 8-9, 1999; Oct. 18-19, 1999; Oct.
10-11, 2000 and Febr. 13-14, 2001.

Teaching Assistant for ‘Monte Carlo Inference’ given by Professor A. C.
Davison, DMA, EPFL.

Teaching Assistant for ‘Algebre Linéaire’ given by Professor A. C. Davi-
son, DMA,| EPFL.

Teaching Assistant for ‘Applied and Computational Statistics’ given by
Professor A. Marazzi, Faculty of Medicine, University of Lausanne.

Student Assistant for ‘Probabilités et Statistique’ given by Dr J. M. Hel-
bling, DMA, EPFL.

Student Assistant for ‘Probabilités et Statistique I et II’ given by Pro-
fessor S. Morgenthaler, DMA, EPFL.

Student Assistant for ‘Analysis I und II’ (in German) given by Professor
A. Wohlhauser, DMA, EPFL.

Statistics, gene transfer and DNA. Joint work with Dr M. Jordan, Lab-
oratory of Cellular Biotechnology, IGC, DC, EPFL.

Analysis of T-cell immune activation in children with vertically trans-
mitted hepatitis C virus infection. Joint work with Dr A. Giovannetti,
Universita degli Studi di Roma ‘La Sapienza’, Dipartimento di Medicina
Clinica, Roma, Italy.
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1999 - 2000 Predicting wolf (Canis lupus) presence and reproduction sites, and simu-
lation of spreading movements from different arrival points in the south-
ern part of Switzerland (Canton of Valais). Joint work with C. Glenz,
GECOS, DGR, EFPL.

1999 — 2000 Analysis of the effects exerted by highly active antiretroviral therapy on
the immune system of HIV-1 infected individuals. Joint work with Dr A.
Giovannetti, Universita degli Studi di Roma ‘La Sapienza’, Dipartimento
di Medicina Clinica, Roma, Italy.

Practical experience

1999 — present Ezpert in Computers and Programming for the TESS (Testing Engineers
Skills in Statistics) project, which was developed by the SEFI (Euro-
pean Society for Engineering Education) in partnership with the CRE
(Association of European Universities).

1999 — present Webmaster of the common web server of the Chairs of Statistics
(statwww.epfl.ch), DMA, EPFL.

1999 — present Webmaster of the Chair of Statistics of Professor A. C. Davison, DMA,
EPFL.

1999 - 2001 IT Responsible of the Chair of Statistics of Professor A. C. Davison,
DMA, EPFL.

1996 — 1997 Creation of web pages for the EPFL: ‘The EPFL in 1996, annual report’,

‘The EPFL in 1995, annual report’ and ‘Postgraduate programmes and
further education’.

Referred publications

Glenz, C., Massolo, A., Kuonen, D. & Schlaepfer, R. (2001). A wolf habitat suitability prediction study
in Valais (Switzerland). Landscape and Urban Planning, 55, 55—65.

Giovannetti, A., Mazzetta, F., Coviello, R., Casadei, A. M., Mattia, S., Marziali, M., Pierdominici,
M., Kuonen, D., Pesce, A. M., Fiorilli, M., Aiuti, F. & Quinti, I. (2001). T-cell immune activation
in children with vertically transmitted hepatitis C virus infection. Viral Immunology, 14, 169-179.

Giovannetti, A., Pierdominici, M., Mazzetta, F., Salemi, S., Marziali, M., Kuonen, D., Iebba, F., Lusi,
E. A., Cossarizza, A. & Aiuti, F. (2001). T cell responses to highly active antiretroviral therapy
defined by chemokine receptors expression, cytokine production, T cell receptor repertoire and anti-
HIV T-lymphocyte activity. Clinical and FExperimental Immunology, 124, 21-31.

Kuonen, D. (2000). A saddlepoint approximation for the collector’s problem. The American Statisti-
cian, 54, 165-169.

Giovannetti, A., Pierdominici, M., Mazzetta, F., Salemi, S., Marziali, M., Kuonen, D., Iebba, F.,
Lusi, E. A. & Aiuti, F. (2000). Contemporary evaluation of T cell subsets, chemokine receptors
expression, cytokine production, anti-HIV cytotoxic activity and TCR V-beta repertoire in HIV-1-
infected individuals during HAART. Journal on Biotechnology and Molecular Biology, 12, 196.

Kuonen, D. & Roehrl, A. S. A (2000). Was France’s World Cup win pure chance? Student, 3, 153-166.

Kuonen, D. (1999). Saddlepoint approximations for distributions of quadratic forms in normal vari-
ables. Biometrika, 86, 929-935.

Kuonen, D. & Roehrl, A. S. A (1998). Identification of key steps to evaluate statistical software.
InterStat, [Online|, October, 2. (interstat.stat.vt.edu/InterStat/)

Kuonen, D. (1998). Saddlepoint approximations for bootstrap distributions. Undergraduate Thesis,
Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.
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Other publications

Furrer, R. & Kuonen, D. (2001). GRASS GIS et R: main dans la main dans un monde libre. Flash
Informatique Spécial Eté, 51-56.

Kuonen, D. & Furrer, R. (2001). Data mining avec R dans un monde libre. Flash Informatique Spécial
Eté, 45-50.

Kuonen, D. (2001). Introduction to S-PLUS for UNIX (with Exercises) (4th ed.). Department of
Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D. & Chavez—Demoulin, V. (2001). R — un exemple du succeés des modeles libres. Flash
Informatique, 2, 3-7.

Kuonen, D. (2000). Introduction to S-PLUS for UNIX (with Exercises) (3rd ed.). Department of
Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D., Roehrl, A. S. A., Schmiedl, S. & Verasani, T. (2000). WAPux — der moderne Pinguin:
Auch Pinguine wollen mit WAP-Handys spielen! Coverstory of ‘Linux Magazin’, 5, 36—43.

Kuonen, D. (1999). Introduction to S-PLus for UNIX (with Exercises) (2nd ed.). Department of
Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Furrer, R., Kuonen, D. & Picasso, M. (1999). La rédaction de documents scientifiques avec IATEX.
Coverstory of ‘Flash Informatique’; 2, 1, 16-17.

Kuonen, D. (1999). Introduction to S-PLUS for UNIX (with Exercises) (1st ed.). Department of
Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Proceedings

Kuonen, D. (2000). Saddlepoint approximations of studentized bootstrap confidence intervals based on
M-estimates. Abstracts of the International Conference of the Royal Statistical Society, September
11-15, 2000, University of Reading, United Kingdom, 66.

Giovannetti, A., Kuonen, D., Mazzetta, F., Iebba, F., Lusi, E. A., Rosso, P., Pierdominici, M. & Aiuti,
F. (2000). Improvement of CD4, but not CD8, TCR BV repertoire after HAART. Proceedings of the
Xllle International AIDS Conference, July 9-14, 2000, Durban, South Africa.

Giovannetti, A., Pierdominici, M., Mazzetta, F., Salemi, S., Marziali, M., Kuonen, D., Iebba, F., Lusi,
E.A. & Aiuti, F. (2000). T cell responses to highly active antiretroviral therapy defined by chemokine
receptors expression, cytokine production, T cell receptor repertoire and anti-HIV T-lymphocyte
activity. Proceedings of the Conference Highlights in Immunology, Oncology and Virology. AIDS,
Cancer and Hepatitis: Scientific and Ethical Challenges, June 14-17, 2000, Republic of San Marino.

Giovannetti, A., Pierdominici, M., Mazzetta, F., Salemi, S., Marziali, M., Kuonen, D., Iebba, F.,
Lusi, E. A. & Aiuti, F. (2000). Contemporary evaluation of T cell subsets, chemokine receptors
expression, cytokine production, anti-HIV cytotoxic activity and TCR V-beta repertoire in HIV-1-
infected individuals during HAART. Proceedings of the Joint Symposium SI-SIIIC, BCG and EAACI,
June 7-10, 2000, Ferrara, Italy.

Kuonen, D. (2000). Intervalles de confiance bootstrap studentisés basés sur des M-estimateurs robustes
utilisant des approximations de point de selle. Proceedings of the XXXIle Journées de Statistique,
Mai 15-19, 2000, Fez, Marocco, 501-502.

Kuonen, D. (1998). Saddlepoint approximation for testing a linear relationship. Abstracts of Prague
Stochastics ’98: Joint Session of 6th Prague Symposium on Asymptotic Statistics and 13th Prague
Conference on Information Theory, Statistical Decision Functions and Random Processes, August

23-28, 1998, Charles University, Prague, Czech Republic, 52.

Technical reports

Emonet, B. & Kuonen, D. (2000). Revisiting statistical applications in soccer. Technical Report 2000.2,
Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.
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Kuonen, D. & Roehrl, A. S. A (2000). Lessons learnt from current statistics packages and a proposal
for a new system for the new millennium. Technical Report 2000.1, Department of Mathematics,
Swiss Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D. (1999). Analysis of the effects exerted by highly active antiretroviral therapy on the immune
system of HIV-1 infected individuals. Technical Report 1999.9, Department of Mathematics, Swiss
Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D., Chavez—Demoulin, V., Roehrl, A. S. A. & Chavez, E. (1999). La France, championne
du monde de football: qui l’edt cru? Technical Report 1999.1, Department of Mathematics, Swiss
Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D. (1998). Notes on saddlepoint mixture approzimations. Technical Report 1998.8, Depart-
ment of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D. (1998). Saddlepoint approximations for bootstrap distributions. Technical Report 1998.1,
Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D. (1997). Statistical models for knock-out soccer tournaments. Technical Report 1997.3,
Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D. & Marazzi, A. (1997). Robust testing between two asymmetric distributions: a simulation
study. Technical Report 1997.2, Department of Mathematics, Swiss Federal Institute of Technology,
CH-1015 Lausanne.

Kuonen, D. (1996). Modelling the success of soccer teams in European championships. Technical Report
1996.1, Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Kuonen, D. (1995). Pluie acide et racines des arbres. Technical Report 1995.1, Department of Math-
ematics, Swiss Federal Institute of Technology, CH-1015 Lausanne.

Book reviews

Kuonen, D. (2000). Review of ‘Medical Statistics at a Glance’ by A. Petrie and C. Sabin, Blackwell
Science. To appear in Journal of Applied Statistics.

Kuonen, D. (2000). Review of ‘Stochastic Processes for Insurance and Finance’ by T. Rolski et al.,
New York: Wiley. To appear in Journal of Applied Statistics.

Kuonen, D. & Roehrl, A. S. A. (2000). Review of ‘Introductory Statistics with Applications in General
Insurance (2nd ed.)” by I. B. Hossack et al., Cambridge: Cambridge University Press. Journal of
Applied Statistics, 27, 133.

Kuonen, D. & Roehrl, A. S. A. (1999). Review of ‘Frontiers of Research in Economic Theory: The
Nancy L. Schwartz Memorial Lectures, 1983-1997’ by N. L. Schwartz et al. (Eds.), Econometric
Society Monographs, No. 29, Cambridge: Cambridge University Press. To appear in Journal of
Applied Statistics.

Kuonen, D. & Roehrl, A. S. A. (1999). Review of ‘Computer Assisted Survey Information Collection’
by Mick P. Couper et al. (Eds.), Wiley Series in Probability and Statistics, New York: Wiley. To
appear in Journal of Applied Statistics.

Kuonen, D. & Roehrl, A. S. A. (1999). Review of ‘Applied Regression Analysis’ (3rd ed.) by N. R.
Draper and H. Smith, Wiley Series in Probability and Statistics, New York: Wiley. To appear in
Journal of Applied Statistics.

Presentations
November 3, 2000 Elements of data visualization. Invited speaker, Swiss Research Students
in Statistics Meeting 2000, University of Bern, Switzerland.

November 3, 2000 Fun with saddlepoint approximations. Invited speaker, Swiss Research
Students in Statistics Meeting 2000, University of Bern, Switzerland.
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September 13, 2000

August 21, 2000

July 14, 2000

May 16, 2000

August 27, 1998

May 11, 1998

March 16, 1998

Posters

May 29 — June 3, 1999

Conferences and workshops

November 20-21, 2000

November 8-10, 2000

September 17-19, 2000

September 11-15, 2000

August 16, 2000

July 9-14, 2000

May 15-19, 2000
September 1-3, 1999

May 7, 1999

Saddlepoint approximations of studentized bootstrap confidence intervals
based on M -estimates. International Conference of the Royal Statistical
Society, University of Reading, United Kingdom.

The best and worst of statistical graphics and what we learn from them.
Invited speaker, Serono Pharmaceutical Research Institute (SPRI), Plan-
les-Ouates, Geneva, Switzerland.

Studentized bootstrap confidence intervals using saddlepoint approzima-
tions. Workshop on Inference and Asymptotics, Ascona, Switzerland.

Intervalles de confiance bootstrap studentisés basés sur des M-
estimateurs robustes utilisant des approximations de point de selle.
XXXIlIe Journées de Statistique, Fez, Marocco.

Saddlepoint approzimation for testing a linear relationship. Prague
Stochastics ’98 — Joint Session of 6th Prague Symposium on Asymptotic
Statistics and 13th Prague Conference on Information Theory, Statistical
Decision Functions and Random Processes, Charles University, Prague,
Czech Republic.

Estimation d’une densité: une introduction. Department of Mathemat-
ics, Swiss Federal Institute of Technology, CH-1015 Lausanne

Saddlepoint approximations for bootstrap distributions. Presentation of
the Diploma Report, Department of Mathematics, Swiss Federal Insti-
tute of Technology, CH-1015 Lausanne.

Predicting wolf (Canis lupus) presence and reproduction sites, and sim-
ulation of spreading movements from different arrival points. Glenz, C.,
Massolo, A., Kuonen, D. & Schlaepfer, R., 3rd European Congress of
Mammalogy, Jvskyla, Finland.

International Symposium on Data Mining and Statistics. University of
Augsburg, Germany.

Statistics Culture and the Statistics Market in Switzerland, Swiss Days
of Statistics. St. Gallen, Switzerland.

Ecole d’Eté du 3e Cycle Romand de Statistique et Probabilités Ap-
pliquées. Crans-Montana, Switzerland.

International Conference of the Royal Statistical Society. University of
Reading, United Kingdom.

Computational Methods in Decision-Making and Finance. One-day
meeting held within the ‘International Workshop on Parallel Matrix Al-
gorithms and Applications’, Neuchéatel, Switzerland.

Workshop on Inference and Asymptotics. Ascona, Switzerland.
XXXlIle Journées de Statistique. Fez, Marocco.

Engineering Education: Rediscovering the Centre — SEFI Annual Con-
ference 1999. Ziircher Hochschule Winterthur (ZHW) and Swiss Federal
Institute of Technology Ziirich (ETHZ), Switzerland.

European Plan for Research in Official Statistics — Information-
Workshop. Swiss Federal Statistical Office, Neuchtel, Switzerland.
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March 23-26, 1999

August 23-28, 1998

July 26-30, 1998

Committees

2001 — present
1999 — present
1996 — present

Professional memberships

2001 — present

2000 — present
1999 — present
1998 — present
1998 — present
1996 — present

1998 - 2001
1998 - 2001
1998 - 1999

Other memberships

2001 — present
2000 — present

1997 — present

1995 - 1997

Certificates

December 2000

September 2000

September 1998

State of the Art in Probability and Statistics — Symposium on the Oc-
casion of the 65th Birthday of Willem van Zwet. University of Leiden,
Leiden, Netherlands.

Prague Stochastics ‘98 — Joint Session of 6th Prague Symposium on
Asymptotic Statistics and 13th Prague Conference on Information The-
ory, Statistical Decision Functions and Random Processes. Charles Uni-
versity, Prague, Czech Republic.

Warwick Randomised Algorithms and Stochastic Simulation — Tutorial
and Workshop (WRASS). University of Warwick, United Kingdom.

Member of the ‘Free Software’ working group of EPFL’s IT 2001 project.
Member of the ‘Conseil du DMA’.

Member of the ‘Commission d’informatique du DMA’.

Association for Computing Machinery Special Interest Group on Knowl-
edge Discovery in Data and Data Mining (ACM SIGKDD).

‘Association des Mathématiciens de 'EPFL’ (AME).

Institute of Mathematical Statistics (IMS).

Swiss Statistical Society (SSS).

‘Association amicale des anciens éleves de 'EPFL’ (A3E2PFL).
American Statistical Association (ASA).

European Mathematical Society (EMS).

Swiss Mathematical Society (SMS).

‘Association du personnel de la Confédération’ (APC).

Founder and President of the organization ‘Alumni der D’OBRU’.

Founder and Vice President of the ‘Linux User Group Oberwallis’
(LUGO).

Honorary President of the student organization ‘Oberwalliser Studenten
in Lausanne’ (D’OBRU).

Founder and President of the student organization ‘Oberwalliser Studen-
ten in Lausanne’ (D’OBRU).

Entrepreneurship Course. A 14-week evening course for pre-selected can-
didates given by CREATE (‘The Branco Weiss Chair of Entrepreneur-
ship and Innovation’), EPFL.

Statistics in Finance. A two-day short course as part of the ‘International
Conference of the Royal Statistical Society’ held at the University of
Reading, United Kingdom.

‘ Programmation en Langage C’. A five-day course (No. 3216) at the
‘Service Informatique Centrale’ of the EPFL.
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Miscellany

2001 — present
June 12, 2001

2000

Language skills
German
English

French

Ttalian

Computing skills

Softwares

Programming languages

Operating systems

Strong points

Hobbies

Chief of the care service of the civil protection in Zermatt, Switzerland.

Invited participant in the round table ‘Free Software at the EPFL’
(elle.epfl.ch), salle Polyvalente, EPFL.

Referee for Student.

Mother tongue.
Fluently spoken, read and written.
Fluently spoken, read and written.

Spoken and read.

S-Prus, R, BTEX , XGobi, Xlisp-Stat, XploRe, BUGS, Matlab, Mathe-
matica, Maple.

S, C, C++, Pascal, BASIC, shell scripts, Perl, CGI, HTML, XML, WML,
JavaScript, SQL.

Linux, UNIX (Solaris, IRIX), DOS, Microsoft Windows 3.11, 95, 98, NT,
2000, ME and XP.

Excellent control of the tools of the Linux and UNIX systems. Very good
knowledge of the Internet applications. Skills in administrating Linux
and UNIX systems.

Music, Soccer, Salsa, Golf, Linux operating system.
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