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Résumé

L’imagerie digitale enrichit le champ des ressources de la photographie traditionelle, notam-
ment grâce à la disponibilité immédiate des images, et aux possibilités de traitement de ces
images. La présente thèse expose certaines questions du traitement de l’image. En partic-
ulier, elle couvre les principaux aspects de la création d’images panoramiques et énonce une
technique de rendu de l’image se basant sur des propriétés du système visuel humain. Le
premier sujet traité est l’alignement d’un panorama de 360 degrés, qui soulève la difficulté de
l’alignement de la dernière image sur la première. Dans la suite, il s’agit de la correction de
la parallaxe. La parallaxe apparaît lorsque les photographies ne sont pas toutes prises depuis
le même endroit. Une méthode qui consiste à segmenter la scène en plusieurs plans de pro-
fondeur est proposée pour reconstruire la scène de manière cohérente. Tout un chapitre est
ensuite consacré à la couleur, ou comment corriger les incohérences de couleurs qui survien-
nent entre plusieurs prises de vues d’un même paysage. La partie suivante aborde le problème
des discordances entre deux images, généralement causées par l’apparition ou la disparition
d’un objet d’une photographie à l’autre. Contrairement à l’approche classique qui suppose
que ces parties de la scène générent, lorsque deux images sont comparées points-à-points, des
valeurs de comparaison totalement arbitraires, la méthode proposée caractérise ces valeurs de
comparaison par une distribution calculée sur la base des histogrammes des images. Ceci re-
streint le problème et permet la création d’estimateurs de mouvement plus robustes que ceux
utilisés jusqu’à présent. Le dernier chapitre traite la question de l’affichage d’une image de
grande dynamique. Ce type d’image contient à la fois des zones très claires et des zones très
sombres qui ne peuvent être reproduites à l’écran - ou sur papier - sans pertes notables de
qualité : soit les zones claires apparaissent brûlées, soit les zones sombres apparaissent en
noir. La méthode présentée se base sur un modèle de perception de contraste et permet de
comprimer la dynamique de l’image tout en maintenant les petits détails visibles dans l’image
finale.
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Abstract

Digital imaging brings a new set of possibilities to photography. For example, little pictures
can be assembled to form a large panorama, and digital cameras are trying to mimic the
human visual system to produce better pictures. This manuscript aims at developing the
algorithms required to stitch a set of pictures together to obtain a bigger and better image.

This thesis explores three important topics of panoramic photography: The alignment of
images, the matching of the colours, and the rendering of the resulting panorama. In addition,
one chapter is devoted to 3D and constrained estimation.

Aligning pictures can be difficult when the scene changes while taking the photographs. A
method is proposed to model these changes—or outliers—that appear in image pairs, by com-
puting the outlier distribution from the image histograms and handling the image-to-image
correspondence problem as a mixture of inliers versus outliers. Compared to the standard
methods, this approach uses the information contained in the image in a better way, and leads
to a more reliable result.

Digital cameras aim at reproducing the adaptation capabilities of the human eye in cap-
turing the colours of a scene. As a consequence, there is often a large colour mismatch
between two pictures. This work exposes a novel way of correcting for colour mismatches
by modelling the transformation introduced by the camera, and reversing it to get consistent
colours.

Finally, this manuscript proposes a method to render high dynamic range images that
contain very bright as well as very dark regions. To reproduce this kind of pictures the
contrast has to be reduced in order to match the maximum contrast displayable on a screen or
on paper. This last method, which is based on a complex model of the human visual system,
reduces the contrast of the image while maintaining the little details visible the scene.
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Chapter 1

Introduction

Digital photography is a domain in full expansion and is likely to replace the analog camera
business at a consumer level. In the beginning, having a digital camera was a convenient way
of putting images on the World Wide Web. For the user, a big advantage of the digital camera
over the analog counterpart is the ability to view the image on the little screen in the back of
the device. Until very recently, digital cameras were much more expensive than the analog
ones, and to get the same quality, are still more expensive, although this is likely to change in
a near future. The quality of the picture has never been an issue for the average user until he
was able to print the pictures on paper. Right now, printing services are available on the net,
and the digital revolution has clearly begun.

Digital imaging has many advantages over its analog counterpart: The most obvious is the
immediate availability of the picture. Another advantage is that a digital camera can behave
like a camera with a slow film or with a fast film, with a daylight or with a tungsten film,
through its analog gain and white balancing capability. Finally, digital images offer a wide
spectrum of post-processing capabilities. For the camera manufacturer, using a digital sensor
allows any transformation between the data read by the sensor and the final image. Nowadays,
the camera manufacturers are trying to mimic the human visual system in this way. For the
user, the most appealing post-processing feature is the ability to combine several images
together. For example, one can place a beautiful landscape around a picture of himself.
The combination of images can be used to get a larger picture, to decompose the motion of
someone into several appearance of him in a single image, or more generally to introduce a
chronological aspect in the image. Combinations of images can also be used to construct an
image of better quality.

The goal of this thesis is to cover the topic of panoramic photography. An example of
panoramic photograph is given in Figure 1.1. Traditionally, this kind of picture was created
using roundshot camera, depicted in Figure 1.2. This camera rotates around a vertical axis
and takes the image through a vertical split. The film translates behind the split, and captures
the full 360 degrees scene. It delivers the equivalent of taking a huge amount of pictures by
rotating a camera on a tripod, keeping only the central column of each picture, and assembling
them side by side to create the final scene. The camera delivers very high quality pictures,
but is reserved to professionals because of the costs involved. One of our goal was to develop
the algorithms that mimic the behaviour of the roundshot camera using a set of pictures taken
with a hand held digital camera.

1



2 Introduction

Figure 1.1: Example of panoramic picture. This pictures has been assembled using
25 pictures taken with a digital camera.

In order to assemble the pictures of a panorama, one has first to determine the relationship
between a picture and its neighbour. Then, a global relationship among the pictures of the set
is computed, such that the little errors in the picture-to-picture relationships do not alter the
global panorama in a significant way. Then, the pictures are blended together: the transition
from one picture to the next is done carefully to give the impression that the final panorama
has not been taken with several pictures. Finally, the panorama is rendered as a single picture.
The procedure is summarised in the chart of Figure 1.3. Most of our effort will be focused
on computing the picture-to-picture relationships. Two kind of relationships are handled :
geometrical relationships that define the alignment of a picture with the next, and colorimetric
relationships that specify how the colour in an image relates to the colour in the next. Colour
relationships are developed in Chapter 5. Two subtopics of the images alignment have been
chosen: the alignment in presence of parallax in Chapter 3, and the alignment in presence of
perturbations, or outliers, in Chapter 4. Blending considerations have been left out from the
presentation.

The thesis explains how to reconstruct a panorama when the scene does not change during
the shooting of the pictures. Chapter 2 introduces the geometrical relations of image pairs,
several models of cameras and reviews the standard method to stitch two images together.
Chapter 3 explains how to handle a set of picture as a whole by starting with an image-to-
image comparison, and illustrates the problem by aligning a 360 deg panorama. In addition,
it introduces a method to decompose the scene into several planes in space. This allows to
reconstruct a panoramic image when the photographer moves between the captures instead of
staying still and turning the camera, that is when parallax is present in the pictures. Chapter
4 presents a new way of handling outliers in the process of comparing images. An outlier
is, for example, something that appears in an image and is absent in the others, for example
a pedestrian that passes by in front of the camera. This allows to align pictures even if a
large part of the images are covered by the outlier. Chapter 5 exposes how a camera handles
colour and explains how to correct for colour mismatches between images. Finally, Chapter
6 exposes a technique to render high dynamic range images. High dynamic range images
contain very bright and very dark regions. If these images are rendered on paper (or on the
screen) using traditional techniques, there will be a loss of details either in the dark or in the
bright region of the image. The technique uses some aspects of the human visual system in
order to preserve the details in the whole image as best as possible.

If I had to read only one single chapter of the thesis, I would pick Chapter 4, which, I
think, is the most original contribution to the field. It is simple and works well. If I had to
read the whole thesis, I would leave the multi-planar model as well as the 360 deg panorama
alignment of Chapter 3 for the end, in order to keep the motivation for the remaining chapters.
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Figure 1.2: roundshot camera. This analog camera captures full panoramic images
by rotating around a vertical axis.

The first is, in my opinion too complex to be practical, and the second is somehow counter-
intuitive, but works in practice.



4 Introduction

Set of Pictures Picture-to-Picture
relationship Global positioning

Blending

Rendering

Geometrical 
alignement Colour equalization

Alignment in presence
of parallax

Alignment in presence
of perturbations

Figure 1.3: Global procedure to create a panorama. Starting from a set of pic-
tures, the picture-to-picture relationship is computed. Then, the picture positions
are determined globally, the picture get blended and finally rendered.



Chapter 2

Geometric Transformations and
Motion Estimation

The fundamental idea behind image mosaicking is to use the information that appears in sev-
eral images simultaneously to reconstruct a better or bigger image. The following chapter
exposes the basic theory of image formation from a geometric viewpoint, and reviews the
standard techniques used to align these pictures. The geometrical relations are used to com-
pute the motion that a camera undergoes between two captures and allow to put the images
in a common reference frame. Once the images are in the common reference frame, they
are compared pixel by pixel to see if the camera motion estimate is good enough. Figure 2.1
shows an example that takes image I1, transforms it such that it resembles image I0, does a
comparison of the pixel values, and updates the estimate of the motion of the camera until
the comparison of the pixel values reaches a satisfactory level.

Before doing any computation, it is necessary to choose a model for the camera, a model
for the camera motion and a model for the scene. In the choice of these models, there is
a trade-off between complexity and accuracy, and the final choice depends on the specific
situation. We will not try to formulate any computable criteria to choose among these models.
We will also make a basic assumption for the rest of the text, namely, that the scene is static,
i.e. nothing moves in the scene during the whole capturing process. In more pragmatic terms,
it means that moving objects will be considered as noise. Motion will refer to the camera
motion, unless stated otherwise.

Among the estimation methods to align the pictures, we can distinguish two groups: Fea-
ture based method, and methods based on optical flow. In the former, the correspondence
between some points in the images are supposed to be known. For example, in Figure 2.2,
the position of the church is supposed to be known in the left and in the right image. In meth-
ods based on optical flow, an initial overlap position for each image pair suffices to solve
the estimation problem. This work focuses on parametric method based on optical flow. The
methods using correspondences are nonetheless presented here, because most of the problems
related to them will appear in the parametric methods as well.

The chapter starts by presenting a camera model - the pinhole model - that is used to
project a scene from three dimensional space onto an image. Then, given an image pair, it
studies where a point in space can appear on the pair, i.e., it derives some rules that relate the
position of the point in one image with respect to its location on the other image. Then, these

5
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+ -
+

Warping

reconstruction

OK?
No

Yes

Still Warping

I1I0

Figure 2.1: Principle of motion estimation: image I1 gets transformed according to
the motion parameters, and compared to image I0. If the comparison is satisfactory,
then a mosaic can be reconstructed, otherwise the motion parameters have to be
corrected. In some situations, for example when correcting for lens distortion or for
colour mismatch, I0 also gets transformed, but this transformation does not involve
the motion of the camera.
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rules gets restricted to the case where all the points in space are confined on a plane. A couple
of camera motion models are presented that relate the position of a point in an image directly
to its location on the other image, without computing its position in the scene. These models
make the assumption that the scene is confined to a plane, to several planes, or to the plane
at infinity. These models are referred to as camera motion models, because some of them
express in an explicit way the motion that the camera undergoes during the capture process.
To conclude the camera model section, an extension to the pinhole model is presented. The
feature-based motion estimation methods are reviewed in a following section, followed by the
parametric methods based on optical flow. Compared to the standard ones, these parametric
methods have been extended to be used in the context of Chapter 5, that deals with colour
correction.

2.1 Notations and terminology

Let us first define the notation used in the text:

� Capital letters (X;T) are used to denote matrices and vectors in three dimensional
(3D) space. Lower-case letters (p;q) are used to denote two dimensional (2D) vec-
tors, or vectors in 2D projective coordinate space. Boldface (p;R) is used for vectors
and matrices, and normal typeface (X1; X2; u; f ) is used for numbers and vector com-
ponents.

� X refers to the 3D coordinate of a point. See Figure 2.2

� (u; v) is used to denote the pixel coordinate in the image.

� f refers to the focal length of the image.

� q refers to the normalised 2D projective coordinates of a point in the image, hence
q1 = u=f; q2 = v=f; q3 = 1:

� p refers to the 2D projective coordinates of a point in the image: p = q � f , thus
p1 = u; p2 = v; p3 = f: For convenience, we will sometimes use p instead of (u; v)
to denote the 2D Euclidean coordinate in the image.

Most of the techniques presented here work with an image couple: image I 0 and image
I1. Image I0 is called the still image or target image. Image I1 gets transformed into the
warped image that resembles - if the estimation is correct - the target image I0. In other
words, the warping process tries to compute how would the part of the scene in image I 1 look
like, if it would have been taken by the camera in the position of image I 0. Since the scene
did not change between the time image I0 and I1 were taken, the warped image should be
identical to image I0 in the part of the scene that is contained in both images.

In some situations, for example when correcting for lens distortion or for colour mis-
match, the still image I0 gets also transformed and becomes the target image. The reason we
refer to it as still image is that this last transformation does not involve any motion parameters
of the camera.
U� : p ! p0 denotes the image-to-image coordinate transformation, also referred to as

the motion model. By definition, the pixel at coordinate p in the warped image is the same
as the pixel at coordinate p0 in image I1 - up to a possible interpolation if p and p 0 have real
valued coordinates.
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X
X'

p
image 1 image 2

Scene

Camera position 1
Camera position 2

p'

Figure 2.2: Illustration of the image capture process. The scene is depicted in the
background and is pictured into two images using a camera at two different position.
X denotes the 3D coordinate of the points in space, expressed in the coordinate
system of the camera.
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Figure 2.3: 2D coordinates transformation illustration. (a) target image I 0 (b) im-
age to be warped I1 (c) warped image. The object in position p in the target image
is the same as the object in position p0 in the image to be warped. The warping
process puts both images in the same coordinate system, and allows a pixel-wise
comparison.
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2.2 The pinhole camera model

An ideal camera - or pinhole camera - creates a projective mapping of the scene onto a plane.
In a well chosen coordinate system, the mapping can be described by

p =f �

"
X1

X3

X2

X3

#
; (2.1)

where the vectorX contains the 3D coordinates of a point and p contains the corresponding
coordinates in the image (see Figure 2.2). f is, by definition, the focal length of the camera
and should be expressed in pixel units. For example, if the focal lens f of the camera is
equal to 75 mm, in a 35 mm camera that outputs an image that is 1000 pixels wide, then
f = 1000 � 75=35 pixels.

The pinhole model applies to cameras with good quality and fixed focal lenses. If the
focal length is too small (for example a 24mm lens), or if the camera uses a tele-objective
lens (with a variable focal length), and also if the lens is cheap, like on most of the off-the-
shelf digital cameras, then the pinhole model becomes approximate. In such a case, distortion
should be taken into account, as presented in Section 2.4.6.

2.3 Coordinate constraints on the points in the scene

Using a pinhole camera model, it is possible to express a constraint on the position that a
particular object of the scene has in an image pair. Section 2.3.1 expresses a constraint on
a point with arbitrary location in the scene, and Section 2.3.2 focuses on the relations of
co-planar points.

The image pair is taken by a camera that undergoes an arbitrary motion between the
first and the second capture. This motion can be expressed by a rotation 1 followed by a
translation. We can relate the coordinates of a single pointX in 3D space expressed from 2

different viewpoints as2 [Faugeras, 1993; Maybank, 1992]

X0
= RX+T (2.2)

where T;X;X0
2 R

3;R 2 R
3�3. R and T describe the rotation and translation of the

camera andX0 represents the same pointX in space expressed in the other coordinate frame
of the image pair.

2.3.1 The epipolar constraint of points in image space

If the camera motion between two images is known, a point in one of the image can only
be on a certain line in the other image: namely on the epipolar line. This rule is known as
the epipolar constraint [Faugeras, 1993; Maybank, 1992]. The epipolar constraint can be
explained as follow: Consider Figure 2.2: the optical centresC andC 0, the church positions

1The rotation denotes a 3D rotation defined by three angles: pan, tilt and roll.
2Half of the textbooks use equation X0 = R(X+T), thus leading to slightly different equations.
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p and p0 in the images as well as the church position X orX 0 in space are co-planar. Thus,
expressing every point in the coordinate system of image I 0,

RTX0

� (T�X)
 = 0 (2.3)

where � denotes the cross product (defined in equation 2.4) and � denotes the inner product.
R is the rotation of the camera, and T is the translation of the camera. Rewriting equation
(2.3) using only matrix multiplications leads to

X0TRTsX = 0,

where Ts is the 3� 3 skew symmetric matrix such that

TsX , T�X 8X 2 R
3 : Ts =

2
4

0 �T3 T2
T3 0 �T1
�T2 T1 0

3
5 : (2.4)

By rescaling the equation by X3X
0

3
we get

q0TEq = 0; (2.5)

where E = RTs is called the essential matrix. E is a 3� 3 matrix of rank 2 and its span has
dimension 8 (see [Maybank, 1992] for the details). The rank deficiency comes from a scale
indetermination in the motion problem [Faugeras, 1993], as illustrated in Section 2.4.4.

2.3.2 Geometrical relations of planes in space

This section describes the geometry of a plane in space pictured from two locations and
defined by a set of the two-dimensional correspondences (p;p 0). It has been extensively
studied in the literature, and we refer the reader to [Longuet-Higgins, 1986; Weng et al.,
1991; Kanatani, 1995]. The difference with the previous Section 2.3.1 lies in the fact that all
the pointsX are now confined on a plane. The goal is to retrieve the rotationR and translation
T defined in equation (2.2). Rigid motion can be described using the fundamental matrix,
also called essential matrix when the coordinates are normalised3. If the scene is composed
of a single plane, the span of the elements of E in equation (2.5) has a lower dimension (see
Section 2.5.1), so that the estimation techniques will differ from the general case. Let us
define a plane with

NTX = 1 (2.6)

where X is the point coordinate in space and N a vector orthogonal to the plane. Thus,
equation (2.2) becomes

X0 = (R+TNT )X (2.7)

or equivalently
X0 = HX:

It has been shown that the matrixH can be determined by 4 points correspondences, if no 3
points are co-linear to each other [Hu and Ahuja, 1995].

3The coordinates are normalised when the focal length is equal to one.
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2.3.3 Ambiguity

If a dense set of correspondences is available, there is in general not a unique solution to the
motion equation (2.7), namely:

� If the camera translation is perpendicular to the plane, the solution is unique, up to a
scale factor [Maybank, 1992].

� If there is no translation in the motion (T = 0 in equation 2.7), then the plane is
undetermined but the motion is unique.

� Otherwise there are always two solutions to the motion. Knowing one solution, we can
easily determine the other one [Maybank, 1992].

� There is still a very peculiar case where there is an infinite number of solutions. This
situation arises when one of the pictures is taken through a mirror, leading to det(H) <
0 (in equation 2.7) [Hu and Ahuja, 1995]. We will not consider this situation.

2.4 Camera motion models

This section exposes the modelling used to transform or warp the images. As exposed on
Figure 2.1, the warping process is the operation that allows to put two images into the same
reference frame, and thus, allowing a pixel-wise comparison between these images. The
motion model defines the set of all possible images that can be obtained from a single image
through the warping process. This set of images is also sometimes referred to as the orbit of
the reference image [Mann and Picard, 1995]. The motion model is chosen according to how
the images have been taken.

2.4.1 The rotation model

The rotation model is the appropriate model to describe the transformation that an image
undergoes when the camera is rotating around its optical centre (i.e. the camera is not trans-
lating). In practice this is the model used to stitch a 360Æ panoramic image. The relation
between the points in two images is given by

X
0 = RX; (2.8)

where X;X0
2 R

3;R 2 R
3�3. X and X0 are the coordinates of a single point in space

expressed in two different coordinate systems, as shown on Figure 2.2. R is the rotation
matrix of the camera and can be written as the product of three rotation angles: Tilt, Pan and
Roll [Craig, 1998, chap. 2]:

R
0 = Rr�Rp�Rt

Rt =

2
4

1 0 0
0 cos t � sin t
0 sin t cos t

3
5 ; Rp =

2
4

cos p 0 sin p

0 1 0
� sin p 0 cos p

3
5 ;

Rr =

2
4

cos r � sin r 0
sin r cos r 0
0 0 1

3
5 ;
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whereRt represents a tilting,Rp represents a panning, andRr a rolling transformation. The
image coordinates p ofX are described by equation (2.1). More explicitly:

p0

1
= f 0

R11 � p1 +R12 � p2 +R13 � f

R31 � p1 +R32 � p2 +R33 � f
;

p0

2
= f 0

R21 � p1 +R22 � p2 +R23 � f

R31 � p1 +R32 � p2 +R33 � f
;

where f and f 0 are the focal lengths of the camera while taking the images.

2.4.2 The roto-translation model

This model is used to describe an arbitrary motion of a pin-hole camera. The most general
description of the motion can be modelled as a rotation followed by a translation. If the
camera motion and the positions of the objects in the scene are known, their relative positions
with respect to the camera as well as their positions in the images can be computed. We can
relate these coordinates in 3D space expressed from 2 different viewpoints as

X0 = RX+T

where T;X;X0
2 R

3;R 2 R
3�3. R and T describe the rotation and translation of the

camera. The image coordinates p ofX are described by equation (2.1). More explicitly:

p0
1
=

R11 �X1 +R12 �X2 +R13 �X3 + T1

R31 �X1 +R32 �X2 +R33 �X3 + T3
(2.9)

p0
2
=

R21 �X1 +R22 �X2 +R23 �X3 + T2

R31 �X1 +R32 �X2 +R33 �X3 + T3
:

Thus, p depends on the depth of each point (X3) that is actually not contained in the im-
ages. To be able to put an image in the same reference frame as the reference image, some
suppositions about the depth of each pixel are to be made, that is, a model of the scene is
needed.

2.4.3 The roto-translation planar model

This model is equivalent to the roto-translation model restricted to planar surfaces. In oppo-
sition with the roto-translation model, it does not require explicitly to know the depth of each
point (i.e. coordinate X3 in equation 2.9) to warp an image. As described in Section 2.3.2,
the relations of two planes in space can be expressed as

X0 = (R+TNT )X

whereR is the camera rotation matrix, T the camera translation andN the perpendicular to
the plane. Using the roto-translation planar model, the coordinates of a point p 0 in image I0
can be computed as
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p0

1
= f 0

R11 � p1 +R12 � p2 +R13 � f + T1 � (N
T �P)

R31 � p1 +R32 � p2 +R33 � f + T3 � (NT �P)

p0

2
= f 0

R21 � p1 +R22 � p2 +R23 � f + T2 � (N
T �P)

R31 � p1 +R32 � p2 +R33 � f + T3 � (NT �P)
(2.10)

where f and f 0 are the focal lengths of both images, P , [p1; p2; f ]
T . Because of the

scale indetermination of the problem, T is defined up to a scale factor, and its norm can be
arbitrarily set to kTk = 1. ThusT can be rewritten as

T =

0
@

cos(�) cos(�)
sin(�) cos(�)

sin(�)

1
A : (2.11)

The whole motion can be described with 3 rotation angles for matrixR, 3 parameters forN,
2 parameters forT and the 2 focal lengths, making a total of 10 parameters. This description
is redundant since the same transformation can be described using only 8 parameters, as
suggested by equation (2.12). This suggests that a straight forward implementation of this
model will lead to poor results (see Section 2.6.2).

2.4.4 The homography model

An homography can be described by a 3� 3 matrix:

X0 = KX; (2.12)

where X;X0 2 R
3;K 2 R

3�3. X and X0 are the coordinates of a single point in space
expressed in two different coordinate systems, as shown on Figure 2.2. The image coordinates
p ofX are described by equation (2.1). More explicitly:

p0
1
= p

0

3

K11 �X1 +K12 �X2 +K13 �X3

K31 �X1 +K32 �X2 +K33 �X3

p0
2
= p

0

3

K21 �X1 +K22 �X2 +K23 �X3

K31 �X1 +K32 �X2 +K33 �X3

: (2.13)

K can be defined by 8 parameters (k1:::k8), by setting arbitrarilyK33 = 1: This last setting is
allowed because of the scale indetermination property of the problem. Indeed, if everything
is scaled by a factor S in the scene, i.e. ~X = SX; ~X

0

= SX
0

, the resulting image does not
change, or equivalently, the coordinated p 0

1
and p0

2
of equation (2.13) remain the same. For

the same reason, we can set - somehow arbitrarily - X3 = f and p0
3
= 1. Finally, equation

(2.13) becomes

p0
1
=

K11 � p1 +K12 � p2 +K 0

13

K31 � p1 +K32 � p2 + 1

p0
2
=

K21 � p1 +K22 � p2 +K 0

23

K31 � p1 +K32 � p2 + 1
: (2.14)
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The homography model is able to exactly capture all the transformations of a planar
surface pictured by a pin-hole camera in an arbitrary position. Indeed, by comparing equation
(2.14) to equation (2.10) that describes explicitly the relation of a planar surface pictured from
an arbitrary position, we can see that they can be equivalent.

The difference between this formulation and the roto-translation planar model rests in
the way the parameters are expressed: the roto-translation planar model is composed of the
physical motion parameters of the camera and allows to distinguish the camera motion from
the plane position, whereas the homography is composed by the K ij parameters of equation
(2.12) that have no specific physical meaning. Having to deal with the physical parameters
has one advantage: It allows to impose a constraint on the parameters related to a physical
constraint - for example when one wants to express the motion of two planes in the scene,
having the same camera motion associated to it. This argument is further developed in Section
3.3.2.

2.4.5 The affine model

The affine model is an approximation of the homography model, where some of the terms of
the matrixK in equation (2.12) are set to zero. It is expressed as

�
u0

v0

�
=

�
A11 A12

A21 A22

�
�
�
u

v

�
+

�
T1
T2

�
; (2.15)

where Aij are the scale parameters of the model and T i are the translation parameters of
the model. The affine model is a pure 2D model, since no depth terms are involved in the
equation. It is presented here because it is still widely used in practice, and has several
advantages. The first is its ease of implementation. The second is that it is a linear model
in terms of the image coordinates: The motion estimation algorithm of Section 2.6.2 does a
first order approximation that does not affect the affine model. This gives the affine model
excellent convergence properties. The affine model is an approximation of an homography
for small motions, and has been extensively used in video applications. As for photographic
application, is has only little impact, except for intermediate estimation steps where its good
convergence properties are used.

2.4.6 Lens distortion modelling

Until now, it has been assumed that the camera behaves like a pinhole camera, i.e. following
equation 2.1. In practice, there is a little distortion in the geometry of the image formation.
Fundamentally, the image formation process is governed by Maxwell equations [Saleh and
Teich, 1991]. From there, two interesting analytical results can be derived [Walther, 1995, p.
26]. One is that a perfect projective image is a solution to Maxwell equations (i.e. an image
where each point of a planar scene is pictured in a single point of the image plane following
the pin-hole model). The other is that if the imaging system is symmetric around a plane
perpendicular to the optical axis, and provided that the system produces a perfect image, then
the mapping of the points in the scene follow:

p =f �

2
4

X1p
X2

1
+X2

3

X2p
X2

2
+X2

3

3
5 (2.16)
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Focal plane
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(a) (b)

Figure 2.4: (a) Illustration of a symmetrical optical system. The axis of symmetry is
perpendicular to the optical axis. (b) The two solutions of a perfect imaging system:
If the camera follows the pin-hole model, the incoming ray generates a point at
location P, whereas if the camera is a symmetrical optical system, the ray falls on
point S.

In other words, the rays are mapped to the sinus of the incoming ray angle rather than to the
tangent, as illustrated in Figure 2.4.

In practice, there is no such perfect imaging system, i.e., each point of the scene is mapped
on a small surface of the image plane. Furthermore, the optical systems are not symmetric,
because the distortion introduced by equation (2.16) would be unacceptable. Some distortion
is unfortunately present in an image. The only thing we can say about it is that the distortion
tends to be symmetric around the optical axes. The common way to model the distortion
is through a Taylor series expansion around the origin of the unknown distortion function.
Since the function is symmetric, the simplest distortion model leads to:

p=f �

"
X1

X3

X2

X3

#
� (1 + � � r2)

r2 ,
X2

1
+X2

2

X2

3

� f2;

where � is the unknown parameter. In two dimensions, the same distortion correction can be
expressed as

V� :

�
u

v

�
7�!

�
u

v

�
�

�
1 + � �

�
u2 + v2

��
:

This last equation is the one that is used to correct for lens distortion in Section 2.6.2. It has
a single parameter: �.
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2.5 Estimation methods based on correspondences

2.5.1 General linear methods

The first aim of the estimation method is to determine the various camera positions and ori-
entation that have been used to take the pictures. Given the image correspondences (p;p 0),
Longuet-Higgins [Longuet-Higgins, 1981] proposed a linear method to find the essential ma-
trix E of equation 2.5:

q0TEq = 0;

where (q;q0) are the normalised correspondences (p;p 0). E is a 3 � 3 matrix, has rank 2
and is solved using the following (equivalent) system of equations

Q � [E]
9�1

= 0; (2.17)

whereQ is a 9�n matrix composed by the elements qiq
0

j . [E]
9�1

has the elements of matrix
E re-ordered on a single column. The rank of Q is equal to 8 in general, and a singular
value decomposition (SV D) [Golup and van Loan, 1996] is used to solve the system. [E]

9�1

is given by the eigenvector of Q associated with the smallest eigenvalue. This algorithm is
known as the eight points algorithm. Eight correspondences are required to solve the system,
but in practice more of them are used in order to filter out the noise

From E, it is then possible to retrieve the rotation and the translation up to a scale factor.
Hartley [Hartley, 1992] extended the method for estimating the focal lengths using a similar
approach.

Stability of the linear estimation

Among the critiques of the 8 points algorithm, the most relevant is its sensitivity to noise
in the feature location. A multitude of algorithms have been proposed to be more robust to
noise. Most of these algorithms perform a non-linear optimisation on the feature location
using some robust metric; see [Luong et al., 1993] and [Zhang, 1996] for a comparison of
these techniques. Then, Hartley [Hartley, 1997] presented a modified version of the eight-
points algorithm, denoted as the normalised eight points algorithm. Without entering in
the gory details, the normalised algorithm performs a change of coordinate system prior to
the essential matrix computation. This change of coordinate system avoids that any given
coordinate takes arbitrarilly more importance than the others in the approximations involved
in the motion computation. The result of Hartley lead to a simple algorithm which is nearly
as accurate as the best non-linear technique.

Retrieving the motion parameters from the essential matrix

The essential matrix should have one eigenvalue equal to zero and two other non-zero equal
eigenvalues. The first step of the computation finds a matrix Ê that match these criteria and
is “as close as possible” to the matrix found by solving (2.17). Somehow arbitrarily, and for
ease of computation, the distance criterion used to find Ê is the Frobenuis norm, i.e. the sum
of the squares of the elements of the matrix. In other words, Ê is found by solving

Ê = argmin(Êij �Eij)
2
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provided that Ê has one eigenvalue equal to zero and two other non-zero equal eigenvalues.
This choice is discussed in [Hartley, 1997; Kanatani, 1991].

Let R and T be, respectively, the rotation and translation of the camera between two
pictures, as presented in Section 2.4. Since E = RTs and TsX = T �X, then ET = 0.
T can be retrieved by taking the cross-product of any two columns of E, by keeping in mind
that T can only be retrieved up to a scale factor because of the scale indetermination related
to any two-pictures correspondence problem. R can be found using

R = URsV
T or R = URT

s
VT ; Rs =

2
4

0 1 0

�1 0 0

0 0 1

3
5 ; Ê = UDVT ;

where UDVT is the Singular Value Decomposition (SVD) of the essential matrix Ê. This
leads to 4 possible solutions to the motion of the camera (2 different rotations, and two possi-
ble signs for the translation). Sometimes, it is possible to discriminate between the solutions
by imposing that the scene is in front of the camera (and not behind).

2.5.2 Linear method for planar motion

In the planar case, the space spanned by the elements of matrix E has dimension 6. Thus,
the usual linear methods cannot be applied. Tsai [Tsai and Huang, 1981] and equivalently
Longuet-Higgins [Longuet-Higgins, 1986] proposed an algorithm similar to the eight points
algorithm adapted to the planar motion estimation problem, using a set of linear techniques.
Weng [Weng et al., 1991] added an error estimation to a similar motion estimation technique,
in order to measure the uncertainty on the motion parameters. Kanatani [Kanatani, 1995]
proposed a normalisation technique that differs from the straight-forward MMSE criterion in
parameter space used in [Tsai and Huang, 1981; Longuet-Higgins, 1986; Weng et al., 1991]
so that the error criterion corresponds to the euclidian distance of the feature points to the
computed plane. Lee [Lee, 1990] proposed a technique to recover the plane information
when only 4 points are available.

In general, the techniques used in the planar case estimate the matrixK of equation (2.7).
To perform the estimation, a coplanarity condition is used:

X0
�KX = 0;

thus, by doing a rescaling by X3 and X 0

3

q0
�Kq = 0:

From there, the estimation of the camera motion and plane orientation is computed [Longuet-
Higgins, 1986; Weng et al., 1991]. Unfortunately, the estimation of K is quite sensitive to
measurement noise, as it was for the essential matrix.

2.5.3 Feature extraction methods

The feature extraction is a mean to find “interesting” points p i in an image in order to be able
to find the corresponding points p 0

i
in the other image (i.e. the location in the other image

where the same object of the scene is pictured). There are fundamentally two strategies to
extract some features from the images: the first extracts some edges with a corner detector
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and then retain the feature according to a criterion based on these edges (for example the
points at intersections). The second group of methods work directly with image luminance.
The criterion of selection is generally based on the image derivatives, see Deriche [Deriche
and Giraudon, 1993] for a review.

Zhang [Zhang et al., 1994] proposed a technique to find some feature points matches
between two images. It first finds the points with a big curvature using the operatorR(x; y) =
det(C)� k � trace2(C) whereC2�2 is the second derivative matrix of the image luminance.
Then, for each point of interest, it looks for the corresponding match in the other image, using
a search window whose sizen is based on some a-priori knowledge about the motion. The
score of the match is computed using the cross-correlation of a window around the feature,
normalised by the intensity variance of the square patch. In order to see if a match is correct,
there should be a couple of other matches close to the one found whose distance to it is equal
in both images (i.e. consistent with the image motion). The algorithm makes a weighted
sum of these matches around the main match to keep or reject the current match, by using a
threshold value.

2.5.4 Non-linear methods

Non-linear methods estimate the motion parameters directly, without estimating the essential
matrixE or matrixK. They use a gradient descent algorithm - for example the Gauss-Newton
or the Levenberg-Marquardt algorithm [Seber and Wild, 1989] - applied to the parameters of
equations (2.7) and (2.6), which are non-linear with respect to the image coordinates. The
rotation R can be described by 3 angular parameters; T is defined up to a scale and can
be described with only 2 parameters, as shown on equation (2.11). The 2 focal lengths are
necessary to get the image coordinates. If the method converges, it leads to a more accurate
result than a linear method. To be able to apply the method, it requires an initial parameter
set which, in general, is computed with a linear method.

2.6 Featureless estimation methods

In practice, the correspondences (p;p 0) are not available. The correspondences can be com-
puted as in Section 2.5.3, but the result is often noisy, and the final motion will be highly
dependent on the image content. The advantage of a feature-based method is that it allows
to compute the motion without any prior information but is less precise than the type of al-
gorithm presented in this section. Furthermore, a feature-based method is not well suited for
segmentation; a problem discussed in Section 3.3.2. Nevertheless, this kind of method is a
very efficient tool to perform an initialisation for the algorithms presented in what follows,
mainly because it allows the motion computation without any a-priori information about the
motion.

2.6.1 Optical flow

Traditionally, optical flow techniques have been developed by Horn and Schunk [Horn, 1986]
to solve the problem of translational motion between several frames in a video sequence. It
assumes that each point p in image t is a translated version of the corresponding point in
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image t+�t. The image luminance is described as

I(p; t) = I(p+�p; t+�t); 8(p; t); (2.18)

where p is a two-dimensional position vector. By setting the flow velocity up = �p

�t
, and

computing the Taylor expansion of equation (2.18) around point (p; t) by keeping only the
first order terms leads to the well known optical-flow equation

uT
p

@I

@p
+

@I

@t
' 0: (2.19)

This equation has two unknowns (the two components of vector up), and has as many equa-
tions as there are pixels in the image overlap. Now, the flow up might not be constant over
the whole image. If the flow is allowed to have an arbitrary value for every pixel, the sys-
tem would have twice as many unknowns as equations. There are two approaches to solve
the problem: the first considers that the motion over the whole image can be described by a
single motion model, which leads to the single parametric approaches of section 2.6.2. The
second approach considers the motion to belong to one out of many motion models, which
introduces the problem of mixed motion estimation and segmentation described in Section
3.3.1.

Remark. The first order approximation of the optical flow equation (2.19) assumes that
the motion between two frame is small. This assumption is not valid in photography. Thus,
photography applications always need an initial parameter estimate that can be set either by
hand, or by other techniques like a feature point algorithm or an extensive initial search on a
coarse version of the images.

2.6.2 Parametric methods

We will reformulate the problem introduced in Section 2.6.1 in a slightly different and more
general, way: Let I0(p); I1(p

0) be an image pair. By assuming that both images can be
perfectly super-imposed by a warping process, we can write

I0(p) = I1(p
0);

where p and p0 denote the matching positions in the images. This supposes that the scene is
static and that a particular object of the scene is mapped into the same luminance values on
image I0 and I1. This last assumption cannot be made in photographic applications, so that
the equation has to be corrected to

G� [I0(p)] = S� [I1(p
0)] : (2.20)

S and G are the functions that relate the pixel value to the scene radiance, and � is the
parameter set of the system. These function will extensively be discussed in Chapter 5. Now,
let us introduce the function

U� : p 7�! p0

to describe the rigid motion model that tells the system where an object of image I 0 appears
in image I1. The motion model is controlled by the set of parameters � (that also accounts
for the colour parameters of Chapter 5). Consequently, equation (2.20) becomes

G� [I0(p)] = S� [I1(U� [p])] :
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Now, if lens distortion has to be taken into account, it is more convenient to describe the
“motion” with two function: U andV. V transforms the image into an undistorted image, but
does not contain any of the motion parameters of the camera. Finally, the equality becomes:

G� [I0(V� [p])] = S� [I1(U� [p])] :

In practice, this means that I0 is transformed into an undistorted image by function V and
I1 is transformed into an undistorted image AND warped by function U on the undistorted
version of image I0. At any point of the two resulting image the radiance values should be
equal.

If we suppose some smoothness in the images I0;1 as well as in the functions U and
V, we can find an updating rule for � with a standard descent algorithms [Seber and Wild,
1989] by minimizing an objective function h, which is, for example, the mean squared error
function:

h(�) =
1

n

nX

i=1

�[ri(�)] =
1

n

nX

i=1

kri[�]k
2 (2.21)

ri(�) , fG� [I0(V� [pi])]� S� [I1(U� [pi])]g

where pi are the pixel locations on the overlapping parts of the images, n the number of
pixels, and ri the error at each pixel location, also called residual. From a geometrical point
of view, I1(U� [pi]) is the image that has been transformed such as to resemble the other
- undistorted - one; in figure 2.1 it is the image that comes out of the warping black box.
We will come back to the choice of the function �(�) in Chapter 4. This last equation (2.21)
gives the same importance to every pixel of the image. Now, because some pixels might get
saturated, we add a factorWi that allows to lower the influence of potentially saturated pixels.
equation (2.21) becomes

h(�) =
1

n

nX

i=1

Wi � �[ri(�)] =
1

n

nX

i=1

Wi � kri[�]k
2 (2.22)

Wi ,W [I0(V� [pi]); I1(U� [pi])]

ri(�) , fG� [I0(V� [pi])]� S� [I1(U� [pi])]g :

The choice of Wi is discussed in Chapter 5, but note that it depends only on the pixel values
and not on the radiance value. The minimum of function h(�) satisfies

@h(�)

@�
= 0: (2.23)

Equation (2.23) is a non-linear system of equations, and is most of the time too complex to
be solved analytically. Therefore, a recursive solution is applied: by assuming that an initial
parameter set �0 is available, the goal is to find an updating rule such that h(� + Æ�) < h(�),
where Æ� is the correction applied to the parameter set. By expanding function h(�) by Taylor
series, and keeping only the second order terms, we get:

h(� + Æ�) ' h(�) +
@h(�)

@�T
Æ�+

1

2
Æ�T

@2h(�)

@�T@�
Æ� (2.24)

, h(�) + J(�)T Æ�+
1

2
Æ�TH(�)Æ�;
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where J(�) is the jacobian matrix and H(�) the hessian matrix. According to this approxi-
mation, the correction Æ� is found by setting the derivative @h(�+Æ�)

@Æ�
to zero, hence

J(�)T +H(�)Æ� = 0: (2.25)

The correction to the parameter set � leads to a minimum if the matrixH is positive definite.
To rewrite equation (2.25) in terms of I0; I1 and �, Let us first give a few definitions:

U�i , U� [pi]

V�i , V� [pi]

rG� [I0(V�i)] ,
@Gu [I0(x)]

@x

���
u=�;x=V�[pi]

rS� [I1(U�i)] ,
@Su [I1(x)]

@x

���
u=�;x=U�[pi]

_G� [I0(V�i)] ,
@Gu(v)

@u

���
u=�;v=I0(V�i)

_S� [I1(U�i)] ,
@Su(v)

@u

���
u=�;v=I1(U�i)

In other words, rG� [I0(V�i)] is the derivative along the lines and the columns of the radi-
ance image computed from an undistorted version of image I 0. rS� [I1(U�i) ] is the deriva-
tive along the lines and the columns of the radiance image that has been warped according
to the motion function U. _G� [I0(V�i)] and _S� [I1(U�i)] are the derivative of the camera
characteristics with respect to the parameters that control the characteristics (which might be
different for image I0 and I1). Appendix A details the math involved to replace the elements
in equation (2.25). The iteration to solve the motion estimation problem becomes

�i+1 = �i + �Æ�

Wi �
_�(ri)

ri

�
rG� [I0(V�i)]

@V�i

@�
+ _G� [I0(V�i)]�

�rS� [I1(U�i) ]
@U�i

@�
� _S� [I1(U�i)]

�
Æ� = �Wi �

_�(ri)

ri
� ri (2.26)

where only line i of the equation system is shown here. Thus, at each iteration step, a linear
system of equations has to be solved. Then, an iteration, or line search, is performed in order
to determine the factor �, by starting with � = 1. Without being too specific about the details
in An important fact to keep in mind is that equation 2.26 is more approximate than a second
order approximation, and the more complex the motion modelU, the worse the convergence
of the algorithm. For more details about the approximation involved, we refer the reader to
Appendix A.

When reconstructing a mosaic composed of more than two pictures, the common practice
consist in combining the two first images using the techniques presented so far, and regis-
tering the remaining pictures to the former image combination iteratively. This implies that
from the third picture and on, the target picture is already distortion free and colour corrected,
i.e. function G(�) and V (�) are set to identity.

2.7 Evaluation of featureless estimation methods

By applying the recursion described in the previous section by equation 2.26 on the four
models presented in Section 2.4, namely the affine, homography, rotation and roto-translation
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planar model, we notice that the convergence properties differ drastically from one model to
another. Although an extensive study of the convergence properties is out of the scope of
this thesis, here are some hints: The most obvious cause for bad convergence are the set of
approximations that are used to linearise the models. The importance of these approximations
varies with the model chosen. Indeed, replacing the model by its first order approximation
does not affect the affine model. Another problem can come from the conditioning of the
equations involved in the problem, in particular equation (2.26). A particularly frequent
problem is the confusion between the focal length and the lens distortion in rotational models.

2.8 The use of multi-resolution

The parametric motion estimation algorithm outlined in Section 2.6.2 is always applied using
a multi-resolution approach. The multi-resolution approach consists of first estimating the
motion on a coarse version of the images, and then refine the result by increasing the res-
olution step by step. The reason is twofold: first, using smaller images saves computation
time. Second, the estimation is more likely to converge toward the global minimum. This last
statement is crucial; in practice, most of the examples shown in this thesis would have ended
in a local minimum if multi-resolution was ignored. To illustrate the point, Figure 2.5 shows
a mosaic that is reconstructed using a translational model (i.e. the affine model of equation
(2.15) with matrix A set to identity). The error is computed for a set of possible translations
around the solution at three different resolutions, and is plotted on a graph. The graph shows
that when the resolution decreases, the error surface becomes smoother and contains fewer
local minima. It also shows that on the high resolution image, the location of the global
minimum is defined with greater precision. The images in this example have been high-pass
filtered to accentuate the regularisation phenomenon. If we start a motion estimation algo-
rithm with the biggest translation error shown in the graph as initial estimate, the algorithm
is likely to converge if it is started at the coarsest resolution, but would certainly fail if it is
started at the highest resolution.

This regularisation phenomenon can be easily formalised by considering the correlation
between the image, which is a similar measure to the mean squared error used so far. Let
I0 (z) and I1 (z) be the z-transform of a two images (for simplicity, we are considering only
one dimensional signals). Let F (z) be a low-pass filter. The correlation between the two
images is given by

C = I0 (z) � I1 (z) :

Now, if we filter the image prior to computing the correlation, we get a new correlation
surface

Cf = [F (z) � I0 (z)] � [F (z) � I1 (z)] ;

which is equal to
Cf = F (z)2 � C;

thus, the correlation surface is equal to the initial correlation surface C filtered (twice) with
the low-pass filter. In other words, filtering the images with a low-pass filter is equivalent to
filtering the correlation surface with the low-pass filter. Thus, the surface becomes smoother.
The same holds approximately for the mean squared error surface of Figure 2.5; the images
at lower resolution being a low-pass version of the original image.
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2.9 Conclusions

This chapter presented the geometry used to relate the position in an image pair of an object,
pictured from arbitrary locations. It presented the pinhole model of a camera, as well as an
extension that deals with the distortion introduced by the lens of the camera. The points in
space are first considered in arbitrary locations, and then restricted to be on a planar surface.
This restriction allows to build models that enable to compute the location of an object in an
image, given its location on the other image as well as the camera motion, without explicitly
computing the position of the object in space. Several models are presented, the most useful
being the rotation model that allows to build full panoramic images, as will be seen in Chapter
3.

This chapter also reviewed the fundamental method to align images. It described the
method based on correspondences, followed by the parametric methods based on optical
flow. These last method have been extended to better suit the modelling of Chapter 4 and
Chapter 5. The purpose of using a multi-resolution approach in the motion estimation has
also been been discussed and illustrated by an example.
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Figure 2.5: Using multi-resolution helps converging toward the global minimum.
(a)(c)(e) images used to compute the error for a set of different translation param-
eters. (b)(d)(e) Corresponding error surfaces. The error surface is more regular if
the resolution is coarse. Prior filtering on the images was used to emphasise the
phenomenon.



Chapter 3

Constrained and Multiple Motion
Estimation

Two major issues are addressed by this chapter: closing the gap in a 360 degrees panorama,
and dealing with parallax.

To construct a 360 degrees panorama, or more generally, a mosaic where the last image
overlaps with the first one, the standard methods compare an image to its neighbour, and
compute the rotation of the camera. By doing it for every picture, the total estimate of the
camera rotation should give 360 degrees. Nevertheless, because of small errors, this is not
true in practice, and an algorithm is proposed to solve the problem. More generally, the chap-
ter presents a way of going from an image-to-image estimation toward a global estimation
method, which deals with more than two pictures simultaneously.

By taking pictures, a photographer often has to move between captures, and this results
in the presence of parallax, i.e. the objects of the scene close to the camera, for example
the floor, move more in the field of vision than the objects far away. The second part of
the chapter addresses this problem by proposing an algorithm that sub-divides the scene into
several planes.

3.1 Global estimation methods

Until now, we confined our analysis to the estimation of an image with respect to its neigh-
bour. But what about the estimation of a whole mosaic? Any estimation technique will start
with an image-to-image estimation, as exposed in the preceding sections. The purpose of this
section is to address the issue of redundant estimations. For example, in a panoramic image,
the camera rotation can be computed between all the image couples. If the image represents a
360

Æ panoramic image, then the composition of all the camera rotation estimates should add-
up to the identity (modulo 2�). In practice, it will not be the case, because of the cumulative
estimation errors. The answer to these question is given by constrained estimation methods.

There are fundamentally three alternatives to apply a constraint: The first performs an op-
timisation by adding a cost which accounts for the the divergence from the constraint [Sawh-
ney et al., 1998; Shum and Szeliski, 1997]. The second alternative uses the constraint to
reduce the parameter set size, and the third adds some equations to the system by means of

25
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Lagrange Multipliers [Fua and Brechtbuehler, 1996]. The first alternative does not guaran-
tee that the constraint is satisfied and needs to carefully control the cost function in order to
end-up “close enough” to the constraint. The second is better from a precision point of view,
but increases the complexity and needs a starting parameter set to find iteratively a better
solution. We did not consider the third alternative.

The following section presents a method that applies a constraint by reducing the param-
eter set size. The algorithm has two parts: the first part finds a set of parameters that meet the
constraint using a linear approximation, and the second part refines the result iteratively. The
key idea behind these techniques is to use a criterion that measures the change in the overlap-
ping part of the image. The idea is to keep the overlap region of the pictures unchanged, if
possible. This is done by taking a set of positions in the image overlaps, and measure how far
they have to be moved in order to fulfil the constraint. Conversely, the constraint is enforced
by moving this set of positions as little as possible.

The first application improves a full panoramic image. The ill-posed parameter is the
focal length that is estimated by imposing that the camera rotates by 360 degrees. The sec-
ond example measures the position of two planes in space. The ill-posedness comes from
an inherent ambiguity between translation and rotation [Daniilidis and Nagel, 1993]. The
constraint imposes a single camera motion between the two images.

3.1.1 A simple analogy

We will explain our approach with a simple example: Let us suppose that a panorama is
constructed using an image-to-image estimation, as illustrated in Figure 3.3(a). Now, let us
consider an image pair from this panorama, schematised in Figure 3.1(a). On the image
overlap, we choose a set of uniformly distributed points - also present in Figure 3.1(a). Now,
we will try to fulfil a constraint - that tells us that the total rotation of the camera for shooting
the panorama is 360 deg - by keeping the overlap part of the image unchanged, if possible.
We will assume that by fulfilling the constraint, the new image pair configuration is like in
Figure 3.1(b) : the right image had to be tilted slightly. The error criterion to measure how
much change occurred in the overlap area is given by the displacement of the set of points in
the overlap area, i.e. the mean of the distances between pointsP � and P� in Figure 3.1(b). The
fulfilment of the constraint is performed by finding a new set of parameters that minimises
this last distance for every overlap region of the panorama; this ensures that the overlap part
of the images change as little as possible. In other words, this is like if we place some springs
to attach the set of points to their original locations, and force the first and last image of the
panorama to overlap, letting the springs distribute the displacement on every image.

3.1.2 Notations

Two frameworks are used in the context of constrained estimation. The first uses independent
and unconstrained measurements - as used until now - and will be denoted by the letter �.
The parameter set under the constraint will be denoted by the letter � or r i. It is important to
notice that �i and �i represent the same parameters expressed in two different spaces.
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Pθ Pξ Pθ

(a) (b)

Figure 3.1: Illustration of the error criterion used to enforce a constraint on the
overall picture locations. (a) Shows the original picture overlap; a set of points is
chosen on the overlap. (b) Final picture location, after enforcing the constraint.
The distance measure between configuration (a) and (b), is given by mean of the
distances between p� and p� .

3.1.3 Linear optimisation on a simple constraint

Let us consider a motion model described by the two-dimensional functionU � which defines
a mapping between two images (as presented in Section 2.6.2):

U� : p! p0

�

where p and p0

� denote the matching pixel positions and � stands for the motion parame-
ters. The pixel value at position p in the warped image is the same as the one at position
p0

� in the still image. In this context, the mismatch in luminance as well as lens distortion
considerations are left out. Let us suppose there are 2 parameter sets � 1 and �2 on which
a constraint has to be imposed. The simplest constraint is the one that enforces equality of
some parameters of �, implying that they measure the same physical entity. For example, in
a scene composed of two planes, one can measure the camera displacement between the two
images and the plane position in space, using an algorithm designed to work with a single
plane [Longuet-Higgins, 1986; Weng et al., 1991]. Applying the algorithm twice: once for
plane 1, and once for plane 2, will result in parameter sets �1 and �2. The parameter sets can
be rewritten in two parts: a common part �c and an autonomous part �a. In the planar motion
case, the �c denotes the camera motion (rotation, translation and focal length), � a

1
the position

of plane 1 and �a
2

the position of plane 2. Rewriting the expression in a new framework gives:

�1 = [�c
1
; �a

1
;0]T

�2 = [�c
2
;0; �a

2
]T ;

�i = � +wi;

where wi represents the measurement - or estimation - noise and � the “true” parameter set.
Note that both �1 and �2 are expressed in what is called the constrained parameter space, and
are considered as being two noisy samples of the same physical entity � . In theory � c

1
= �c

2
.

Where the parameter is independent of the measurement, the value is arbitrarily set to 0 - this
value having no influence on the remaining computations. Now, given a set of overlapping
positions p1i and p2i , we propose to take the average position displacement in the image space
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as a measure of the distance between �1 and �2. The goal is to find the parameter set � that
minimises this distance

D (�) = D(�1; �) +D(�2; �) (3.1)

D(�i; �) ,
1

ni

niX

j=1

kUi(pj ; �i)�Ui(pj ; �)k
2: (3.2)

Ui(�; �i) is the function that performs the warping according to parameter set i, and n i is
the number of pixels in the overlap area1. Using a first order approximation, (3.2) can be
rewritten as

D(�i; �) �
1

n

nX

j=1

k
@Ui

@�

���
(pj ;�i)

(�i � �)k2: (3.3)

Thus, the distance between the parameter sets is

D (�) =

2X

i=1

1

ni

(�i � �)TET
i Ei(�i � �) (3.4)

Ei ,
@Ui

@�

���
�=�i

;

where Ei has 2ni rows, containing the derivatives along the x and y axis of the image for
each pixel. To find the value of � that minimises the distance in (3.4), we set the derivative
with respect to � to zero and we get

(ET
1 E1 +E

T
2 E2)� = ET

1 E1�1 +E
T
2 E2�2; (3.5)

where � is obtained by solving the linear system of equation (3.5).

3.1.4 An example similar to a panoramic constraint

Let us start with a small example that is similar to the full panorama problem. Consider
the triangle of Figure 3.2. Let us suppose that we are measuring the angles �, �, and 

with some measurement device. These values are accompanied by noise, and the result of the
measurement gives � : �1 = 40deg, � : �2 = 50deg, and  : �3 = 80deg. We know that the
sum of the angles in a triangle is equal to 180 deg. We rewrite the three angle measurements
in a global system where the constraint - the 180 deg angle sum constraint - is embedded, i.e.
we specify the state of the triangle by giving the values of angle � and �, provided that the
sum of the angle is equal to 180 deg. In other words, we define the state of the triangle with
variable �:

� = [�1; �2];

where �1 is the value of angle � and �2 is the value of angle �, provided that the value of
angle  is equal to 180 � �1 � �2. Now, we rewrite the initial measurements in this new
framework: The first measurement �1, which measures angle �, is rewritten as

1U1(pj ; �) makes the correspondences between the two images of the pixels of plane 1 in the former example.
This function extracts the parameters of plane 1 from �.
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50°β =

80° γ = 

40°α =

Figure 3.2: This triangle illustrates a similar problem to the alignment of a full
panoramic image: The sum of the angles of the rectangle should give 180 deg. Now
what is the strategy to adopt if the measurements of the angles do not give 180 deg?

�1 = [�1; ?] = [40; ?]:

The measurement of angle � does not define the value of angle �, thus we left it unspecified.
It turns out that the computation that follows will annihilate this value, so by convention we
put a 0 instead, i.e.

�1 = [�1; 0] = [40; 0]:

Similarly, we can rewrite the measurement of angle � as

�2 = [0; �2] = [0; 50]:

Finally, the third measurement has to be taken into account. We have to express the mea-
surement �3 of angle  in this new framework. In practice, we have to find (� 1; �2), such
that �3 = 180 � �1 � �2. Since there are two unknowns, and only one equation, there is
an infinite number of solutions to this problem. But remember, the goal is to find the three
angles of the triangle out of the noisy measurements. Our intuition tells us that the “real”
values of the angles should be close to the measured ones. Since the remaining computation
does a first order approximation at some point, we should express the third angle � 3 using a
representation (�1; �2) that is as close as possible to the final solution. As a guess, we choose
to express it as

�
(1)
3 = [�

(1)
1 ; �2] = [50; 50]

�
(2)
3 = [�1; �

(2)
2 ] = [40; 60];

by modifying only one of the angles, and leaving the other equal to a former measurement.
We opt to retain two solutions from this last measurement �3. Note that both description �

(1)
3

and �
(2)
3 describe a triangle with the angle  equal to 80 deg. At this point the state � of the

triangle is defined by four noisy measurement:
n
�1; �2; �

(1)
3 ; �

(2)
3

o
. Finally, the three angles

of the triangle are found by minimizing an error criterium D between the “optimal” state b�
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and the set of measurements, i.e.

b� = argmin
�

�
D(�; �1) +D(�; �2) +

1

2
D(�; �

(1)
3 ) +

1

2
D(�; �

(2)
3 )

�
:

Note that the last measurement �3, which is represented by two samples (� (1)3 ; �
(2)
3 ) has been

weighted by a factor 1=2 in order to influence the final result in the same way than � 1 and �2.
The alignment of the panoramic image is very similar to the triangle case, except that

there is one of the parameter that is common to every measurement, namely the focal length.
The remaining parameters are the angles of rotation of the camera that can be measured with
each image pair. The constraint of 360 deg is embedded by suppressing the last rotation from
the description, as was done in the triangle example. Similarly, the last rotation is expressed
as a combination of the former ones, in the same way it is done in the triangle example.

3.1.5 Linear optimisation on a panoramic constraint

For full panoramic images, the combination of all rotations along the panorama reduces to
identity:

R
(1)(�) � : : : �R

(m�1)(�) �R
(m)(�) = I; (3.6)

whereR(i)(�) is the rotation matrix representing the motion between image i and image i+1.
Note that equation (3.6) holds also for an arbitrary motion of the camera. As previously, the
individual estimations �i can be written in the constrained parameter space, that is

�i = [�ci ;0; ::; �
a
i ;0; :::]

T ;

where �c represents the focal length of the camera, and �ai the rotation angles of each camera
motion. � only contains the parameters of the m � 1 first rotations. In order to meet the
constraint, the rotation between the last and the first image (R (m)(�m) or R(�m)), has to be
expressed as a combination of all the other rotations:

�m = [�cm; �a1 ; �
a
2 ; :::; �

a
m�1]

T ; (3.7)

where �ai are rotation parameters that are computed in Section 3.1.5 and that verify

R(�m) = R
T (m�1)(�m) � : : : �RT (1)(�m): (3.8)

In other words, the rotationR(m)(�m) should be equal to the one found in the unconstrained
estimation. There are several ways to find �m that are discussed in Section 3.1.5 that computes
�m in the same way as in the example of Section 3.1.4 and finds m� 1 different solutions for

�m:
n
�
(1)
m ; :::; �

(m�1)
m

o
. Now the goal is to find � that minimises the distance sum of equation

(3.3), corrected to handle the m� 1 solutions for �m :

D(�) =

m�1X
i=1

D(�i; �) +
1

m� 1

m�1X
k=1

D(�(k)m ; �) (3.9)

where

D(�i; �) '
1

ni

niX
j=1

k
@Ui

@�

���
(pj ;�i)

(�i � �)k2:
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Each of the solution of �m has been weighted by a factor 1
m�1 in order to give �m the same

importance in the computation of the error criterion. The solution is found like in (3.5) by
solving the linear system

(

mX

j=1

E
T
j Ej)� =

mX

j=1

E
T
j Ej�j ; (3.10)

Ei ,
@Ui

@�

���
�=�i

: (3.11)

Expressing the last rotation

The computation of �m in equation (3.7) is not unique. Indeed, we are trying to express a
rotation (�m) as a combination of m � 1 rotations (remember that �m and �m represent the
same rotation expressed in a different way). We will proceed exactly as in the small example
of Section 3.1.4, where the goal was to express one angle as a combination of two angles. To
compute �m, we propose to keep the estimate of m� 2 rotations unchanged, and recompute
one of the rotations (�ak) such that the combination of the m� 1 rotations is equal to �m. In
other words

�(k)m = [f; �a1 ; :::; �
a
k�1; �

a
k ; �

a
k+1; ::; �

a
m�1];

where �(k)m verifies (3.8). There are m�1 different ways of doing the computation (depending

on where �ak is placed in the vector �(k)m ) leading to m�1 solutions for �m:
n
�
(1)
m ; :::; �

(m�1)
m

o
.

The computation of the distance (3.9) requires the computation of @Um
@�

���
�=�m

. It can be

computed using
@Um

@�
=

@Um

@�m

@�m

@�
:

To compute @�m
@�

, we use the inverse function theorem [Marsden, 1974, chap. 7]: letM (�) be
the function that transforms the rotation angles into a rotation matrix, which for convenience
is represented by a vector of 9 elements. LetRm =M(�m) be the rotation matrix associated
to the rotation angles of �m (also organised as a vector of 9 components). We can write

Rm =M
�
M
�1 (Rm)

�
:

Now, by taking the derivative with respect toRm at both sides gives

I =
@M (u)

@u

���
u=M�1(Rm)

@M�1 (Rm)

@Rm

;

where I is the identity matrix. Since �m =M�1 (Rm),

@�m

@Rm

=

�
@Rm

@�m

�
�1

:

where [�]
�1 denotes the generalised inversion. Finally @Um

@�
is computed using

@Um

@�
=

@Um

@�m

@�m

@Rm

@Rm

@�

=
@Um

@�m

�
@Rm

@�m

�
�1

@Rm

@�
:
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3.1.6 Non-linear optimisation

So far we have based our global optimisation task on the first order approximation expressed
in equation 3.3. The purpose was to have a good parameter set that satisfies a constraint.
Now the next step is to optimise globally the picture alignment. At this point, we have
a set of point correspondences (p;p 0

�
) resulting from the first individual and non-coherent

motion estimation. From the new coherent parameter set �, one can recompute a new set of
correspondences (p;p0

�).
An unconstrained optimisation produces a good alignment of the image overlaps. There-

fore, we want to minimize the distance between the point correspondences of the uncon-
strained method and the point correspondences of the coherent parameter set, by solving

min

mX

j

�(p0

�j
� p

0

�); (3.12)

where in general � (�) is the squared norm or any other function used in robust estimation
[Ayer, 1995; Fua, 1999], defined in Chapter 4. The optimisation can be performed using a
standard descent algorithm, like the Gauss-Newton algorithm [Seber and Wild, 1989], pre-
sented in Section 2.6.2.

3.2 Panoramic images

For constructing a panoramic view of several images, the camera motion can be estimated
on each pair of overlapping images. We estimated the motion using the method described in
Section 2.6.2. We can see in Figure 3.3(a) that an accumulation of little registration errors
caused the last picture to be out of alignment with the first one. The images have been
projected onto a cylinder for rendering . The gap represents the mis-alignment with respect
to the 360 degrees constraint. By solving (3.10), we obtained the image in Figure 3.3(b).
We can see that the error has been spread out over each rotation, and the focal length has
been adjusted to keep the overlaps between the images. The next optimisation step using
criterion (3.12) did not produce any significant change to the result. This suggests that the
approximation used in equation (3.3) is accurate enough for this particular example.

It is worth pointing out that the constraint expressed in equation (3.6) is not exactly a
360 degrees constraint but rather a 0 modulo 360 degrees constraint. The side effect is that
the initial estimate should be close enough to 360 in order to produce a good result. It may
happen that the solution of equation (3.10) will lead to a 720 degrees panorama or to an
identity panorama, which superimposes every image onto each other. The singularity of the
method is easily detectable, but is not easy to correct in the case of an identity result.

3.3 The multi-planar system

Until now, we assumed that the camera undergoes only a rotation, so that the mosaic can be
reconstructed using a single rotational model. In practice, however, the photographer often
has to move between captures, and this results in the presence of parallax, i.e. the objects of
the scene close to the camera, for example the floor, move more in the field of vision than the
objects far away. Our goal is to be able to reconstruct a mosaic in presence of parallax. The
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method chosen uses a description of the scene by several planes in space, as was also done
by Torr [Torr et al., 1999] and Baker [Baker et al., 1998]. The planes provide a simple way
to handle parallax and can be extended to the parts of the image where no 3D information
is available. Moreover, in everyday scenes, a lot of objects are nearly planar (walls, floors,
etc.). The choice of not expressing a 3D meshed model, like Koch [Koch et al., 1998], is
motivated by the fact that we want to be able to reconstruct the mosaic with few images only.
But, in contrast to Shum [Shum and Szeliski, 1997] who handles parallax in a 2D manner, we
introduce 3D parameters to attempt to achieve better precision, and thus better quality. The
novelty of our approach lies in handling parallax without a complete overlap of the scene on
several images. The segmentation of the scene into several planes is performed by means of
a mixture model.

3.3.1 Mixture of models formulation of an image model

The mixture of models is a statistical framework that allows to handle data that has several
distinct behaviours. As presented by Lindsay [Lindsay, 1995], the simplest mixture model
arises when one samples from a population composed of several sub-populations that are
called the components of the mixture. Each component is characterised by a probability
model

Pr[X = x j J = j] = P (x; �j) (3.13)

where j indicates from which model the random variable X is sampled. P represents a
known density function called the component density and � j are the unknown component
parameters. The proportion of the total population that is in the j th component is called the
component weight and is denoted by �j . The variables (Xi; Ji) are random samples of the
joint density function

Pr[X = x; J = j] = Pr[X = x j J = j] Pr[J = j] (3.14)

= P (x; �j) � �j :

The mixture model arises when the component label j is missing, that is when we do not
know to which model a random variable belongs. Since � i are the proportion of each model,
we have

P
i �i = 1 and �i > 0.

In our framework, the models are the different planes of the scene, � j are the unknown
motion parameters and the plane positions. The component label j describes a segmentation
of the image into the different motions. This formulation has been used in the past [Torr et al.,
1999; Wang and Adelson, 1993; Jepson and Black, 1993; Weiss and Adelson, 1996; Ju et al.,
1996; Sawhney and Ayer, 1996; McLachlan and Basford, 1988; Black and Anandan, 1996]
to segment the image according to several motion models.

3.3.2 The multi-planar motion model

In this section, the planar motion model of Section 2.4.3 is adapted to handle several planes in
the scene. The parameter set is composed of the seven parameters of the camera, as in Section
2.4.3, to which 3 parameters per plane are added, resulting in a motion parameter vector �
with 7+3M components, where M is the number of planes in the scene. In this formulation,
we will segment the pixels into the different planes, regardless of the fact that they might
represent an outlier (the outlier are treated in a sub-sequent step). We formulate the joint
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problem of a multi-planar motion estimation and image segmentation as the optimisation of
a single objective function: Let Îj be the prediction for image I0, obtained by warping I1

using parameter set j. The conditional probability density function for I 0 can be expressed
as [McLachlan and Basford, 1988]

f(I0(p) j I1(p);�) =
MX

j=1

�j f(1� �Oj) � p [ej(p; �) j �j ] + �Oj � pO[ej(p; �)]g (3.15)

ej(p; �) , I0(p)� Îj(p; �)

M is the number of planes of the scene, �j is the component weight associated to plane j (i.e.
the proportion of the image covered by plane j), pO is the outlier probability distribution, and
�Oj is the outlier proportion in plane j. � represents the complete parameter set (the motion
parameters �, the model variances �j and the model weights �j). Equation (3.15) is a mixture
of models where each component is a mixture of inlier and outliers. We assumed that every
model belongs to the same parametric family, in particular:

p
h
I0(p) j Îj(p; �); �j

i
� N (Îj(p; �); �j)

where N (Îj(p; �); �j) are the set of Gaussian random variables with spatially varying mean
Îj . This is equivalent to the following formulation, which uses the pixel-to-pixel error

p
h
I0(p)� Îj(p; �) j �j

i
� N (0; �j):

The outlier distribution pO is computed as outlined in Chapter 4. We are looking for the
maximum likelihood estimate of �, the complete parameter set. For each pixel location p i

the posterior probability �ji of the population membership can be computed as

�ji = Pr[pi 2 Îj j I0;�] =
Pr[I0 j pi 2 Îj ;�]Pr[pi 2 Îj j �]

Pr[I0 j �]

=
f(1� �Oj) � p [ej(p; �) j �j ] + �Oj � pO[ej(p; �)]g � �jPM

k=1 �k f(1� �Ok) � p [ek(p; �) j �k] + �Ok � pO[ek(p; �)]g
(3.16)

In practice, for every model a warping is performed, and an error value is computed for
each model at a particular location p. Equation (3.16) is the probability of the error times
the proportion of the image covered by the plane, normalised over all the models. To get a
segmentation of the image into the different layers, we introduce a binary indicator variable
zji:

zji =
n

1; pi 2 Îj
0; else

(3.17)

zij takes value 1 if �ji > �ki 8k and 0 otherwise. In Section 3.4.2 zij will be modified to
take into account the dependence between neighbouring pixels. The model proportions � j

are computed using

�̂j =

NX
i

zji

N
: (3.18)
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3.4 Estimation algorithm

The estimation can be performed in a recursive way using the Expectation-Maximisation
algorithm [Moon, 1996; Dempster et al., 1977] to solve the problem.

The algorithm needs an initial estimate of all the parameters, which is given by the ini-
tialisation technique described in Section 3.4.3. The algorithm starts by computing the error
value at each pixel location, and then a sequence of expectation and maximisation steps is
performed.

Expectation:

� The single memberships �ji are computed using (3.16).

� The memberships are specialised to binary values, using either (3.17) or the morpho-
logical version in (3.21).

� The component weights are computed by applying equation (3.18).

� For each model, the outlier proportion �Oj is computed as described in Chapter 4. The
error histogram on which the estimation of �Oj is based is constructed using the error
values in the region belonging to plane j.

Maximisation:

� In the Maximisation step, a robust motion estimation is performed, as described in
Section 2.6.2 and Chapter 4, by considering for each model only the pixels that have
been assigned to it.

After each E-M iteration, there is an attempt to merge or suppress some planes based on
a criterion explained in the following section.

3.4.1 Estimating the number of planes

By trying to estimate the number of planes, there is a trade off between complexity and
goodness of fit: the more planes are used, the smaller the registration error, but the more
complex the model. Moreover, an over-parametrised model might fit the noise and would
not explain the scene properly. Roberts [Roberts et al., 1998] addresses the question in a
more general framework, he looked for the maximum likelihood 2 value for M , the number
of models. By making some assumptions on the priors (the a-priori value of the parameters),
he derives an expression that accounts for the goodness of fit and complexity at the same
time. The method studies the uncertainty as a whole: The uncertainty of the parameters (e.g.
the Cramer-Rao lower bound) increases with the number of parameter estimated, whereas
the uncertainty of the data (the inverse of the goodness of fit) decreases with the parameter
number. Minimizing the whole uncertainty is a trade off between the two. It is then shown
that the Minimum Description Length (MDL) [Rissanen, 1978] criterion gives similar results
than the global maximum likelihood estimator in estimating the number of models. These
results also match those found in Barron [Barron and Cover, 1991] and Takeuchi [Takeuchi,
1997]. Although Torr [Torr et al., 1999] used the full evidence to determine the number

2He refers to it as “full evidence”.
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of planes in his multi-planar description, we use the MDL criterion like in Liang [Liang
et al., 1992] and Ayer [Sawhney and Ayer, 1996], mainly because of reduced computational
complexity.

The Description Length counts the amount of information needed to code a particular
state of the estimation model. We compute the encoding length of the mis-registration be-
tween fÎjg, the image obtained by warping image I1 according to the equation of plane j,
and I0. We have to code the model parameters �, the model scales � j , the weights �j , the er-
ror values at each pixel location and the segmentation information. The expression for coding
the error values for each pixel is given by [Cover and Thomas, 1991]

Le = �

NX

i=1

logP (e)

= �

NX

i=1

log

2
4 MX
j=1

zji((1� �
Oj) � PIj(e) + �

OjPO(e))

3
5 (3.19)

To code the segmentation information, a first order Markov Model is used, where the seg-
mentation of each pixel is coded according to the state of its left neighbour. In practice, the
method counts the number of transition from state k to state l 3 (and vice-versa) by scanning
the image line-wise, and builds a transition matrix Tkl: The encoding cost is given by

LT = �
MX
k=1

MX
l=k+1

Tkl log (Tkl)�

 
MX
k=1

Tkk

!
log

 
MX
k=1

Tkk

!
(3.20)

where T has been normalised such that
PM

k=1

PM

l=k Tkl = 1. The diagonal elements of T
have been grouped in equation (3.20) because it is only necessary to know that a pixel has
the same label than its neighbour, without specifying which one, to be able to reconstruct the
segmentation image. The coding lengths of the models parameters � as well as the model
scales �j can be neglected.

On complexity

To evaluate equation (3.19), the algorithm constructs a matrix EM�M whose element Ekl

count the encoding length of the error if model l is replaced by model k. This requires about
M �N operations, where M is the number of models, and N the number of pixels (M � N ).
The construction of the matrix T requires about N operations. Then, to test if a model is a
candidate for deletion, the Description Length can be computed using only matrix E and T,
and thus representing a negligible amount of computation.

On the order of deletion

In the beginning, the number of models is largely over-estimated. This has the effect of mak-
ing the final result sensitive to the order in which the models get pruned, similar to motion
estimation where the model can be trapped in a local minimum. To prevent this, the algo-
rithm first deletes the models that can be replaced by a similar one. Formally, the similarity

3By state k we mean that the pixel belongs to the plane k.
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between two models can be defined as the minimum average amount by which the correspon-
dences fpi;p

0

ig have to be moved in both models to be described by a single one of the same
family, which then has correspondences fp i;p

00

i g, as described in Section 3.1.3 or in [Hasler
et al., 1999]. The distance is expressed as

P
i kp

0

i � p
00

i k
2. In more pragmatic terms, to

find the similarity between two models, the two models are merged into a single one and the
displacement of the correspondences caused by the merging is taken as a similarity measure.

The algorithm starts by ranking the models by similarity. Then, in the set composed by
each model and its closest neighbour, it prunes the one that reduces the Description Length
the most, and recomputes the similarity ranking. If no pruning in this set reduces the Descrip-
tion Length, the algorithm considers the set composed of each model and its second closest
neighbour, until the minimum of the Description Length is reached.

3.4.2 The segmentation algorithm

This section presents a way to use the dependence between the pixels in an image with a
morphological algorithm inspired by the watershed algorithm [Beucher and Meyer, 1993;
Wang, 1998; Gatica-Perez et al., 1999].

The algorithm starts with a set of raw membership probability images � ji of equation
(3.16) and an initial segmentation image, where some regions are assigned to the different
models of the mixture and some other regions are left unspecified. The aim of the algorithm
is to make these regions grow until every pixel of the image is assigned to a model. For a
given model j, a point in its segmentation mask zji will be added if

(zj � k) (pi) = 1;

zj(pi) = 0 8j;

�j(pi) > �; (3.21)

where k is a morphological filter kernel. Here we used a 3� 3 matrix made out of ones. �
denotes the binary morphological addition operation [Haralick and Shapiro, 1992]. z j(pi)
and zij represent the same variable; the first notation is used to emphasise the fact that the
measure takes place at position pi. � is a threshold that is iteratively updated as follow

�(k+1) = min(�(k); � � �� )

where �� is the mean of the �j(pi) values that have been added by the algorithm at the
preceding iteration computed over all models, and � is a value that accounts for the speed of
the flood in the watershed algorithm, or in other words, a parameter that represents the a priori
assumption on the smoothness of the segmentation. Typically, � is set to 0:7 (0 � � � 1),
although a heuristic can be used on � to speed up the segmentation. In practice, � has some
influence on the speed of convergence, but rather little influence on the final result.

To update the segmentation at each E-M iteration, the algorithm starts with an erosion
operation to shrink the segmented region followed by the growing operation described in
(3.21). This is similar to what was proposed by [Baker et al., 1998] but in reverse order. The
amount of erosion allowed at each iteration depends on the minimum size an object in the
scene can have.
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3.4.3 The initialisation phase

The algorithm described so far is quite sensitive to initial conditions, hence a good initialisa-
tion is crucial to its success. Because it is aimed at the reconstruction of a mosaic composed
out of a number of images, we want to avoid an initialisation performed by hand. Indeed, if
the images were segmented by hand, then nothing would be left to the algorithm, since, in
contrast to video applications, we cannot use the result of the segmentation to treat the next
image.

The algorithm starts with

� A set correspondences fpi;p
0

ig, either set by hand or computed automatically using
some well known techniques [Deriche and Giraudon, 1993].

� The a priori uncertainty D of the position of these correspondences (measured in pix-
els).

� The resolution at which the algorithm should start.

� A parameter � that accounts for the smoothness of the scene segmentation.

� An a priori minimum size of the object of the scene.

The algorithm begins with a 3D estimation using feature points, then goes down to 2D
using a mixture of homographies, to finally come back to 3D with the multi-planar model.

Camera motion and initial planes in space

From the set of features fpi;p
0

ig, the algorithm computes the pose of the camera [Hartley,
1997] (in our case, we assumed a fixed and known focal length). Then, for each feature point
pi in image I1, it finds the 2 closest features in the image, and builds a plane in space that
crosses the 3 points fpi;pj ;pkg. The equations of the plane, as well as the camera motion
define all the parameters of the planar motion model described in Section 2.4.2. At this stage
of the computation there are as many planes (or parameter sets) as there are features in the
initial correspondences set. Note that at least 2 planes are already redundant at this stage.

Merging the planes

Next, given a plane, the algorithm tests if a feature p l is part of that plane or not. The
algorithm runs 2 or 3 steps of the gradient descent method on the plane parameters (i.e. N
in equation 2.10) by including feature p l in the feature set of the plane. If that feature can
be included in the plane by moving it less than a given distance D - and by also moving the
other features of the plane less than D from their original location - the feature is accepted
and the plane parameters are updated. Formally, the plane is updated if we can find N =
[N1N2N3]

T such that

max
8i:pi2plane

min
N

(kp0i �UN(pi)k) < D;

whereUN(�) is defined by equation (2.10).
Finally, the algorithm suppresses the redundant planes from the list.
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Going to 2D

From the set of planes, a set of homographies are built, by determining the components
of matrix K in equation (2.12). We chose to use this intermediate step with a mixture of
homographies because the homography has better convergence properties than the planar
model due to the reasons pointed out in Section 2.6.2.

Improving the initial motion estimates

With the features belonging to each homography, the algorithm builds the convex hull of the
features in the image, and use the pixels inside this hull to perform a single motion estimation,
as described in Section 2.6.2. This last step improves the alignment for each model.

Initial segmentation

Finally, it computes the binary membership weights for each pixel in the image, in itself
creating an image zj for each model, and performs a morphological erosion on each z j image,
to get rid of casual zero-crossings (the amount of erosion used is adjusted according to the
minimum size of the object of the scene). At this point, each pixel belongs to one model of
the list, unless it has been eroded by the filtering. The result of the erosion is used to trigger
the segmentation algorithm of Section 3.4.2.

Back to 3D

Once the mixture of homographies has reached stability, the initialisation of the 3D multi-
planar model is computed using artificially generated correspondences fp i;p

0

ig by using the
motion parameters of the homographies, and picking uniformly the feature points fp ig in the
regions assigned to each homography. One plane is built per homography, and the algorithm
continues with the same segmentation than before. This last step into the 3D world enables
to get rid of the models that are inconsistent with the single camera motion constraint, and
improves slightly the alignment.

3.5 Experiments with two planes

This example illustrates how a constraint on the camera motion can improve the estimate of a
plane location in space. This constraint enforcement is used in the multi-planar system when
going from a 2D scene description toward a 3D description. The algorithm used to merge
the planes was presented in Section 3.1.3.

We start with two photographs of two scribbled blackboards taken in a classroom. The
blackboards are both parallel to the wall of the room, and can slide one over the other. The
top blackboard is the one that is the furthest away from the camera. There is a distance of
3 metres from the lower blackboard to the camera, and the camera moved 2m to the left
parallel to the blackboard. The planar motion model of Section 2.3.2 is used to model the
warping of the blackboards. By making the correspondences of some points in the image, we
calculated the motion parameters using the feature points techniques of Section 2.5.2. The
segmentation is supposed to be known. Here we present the most relevant results from the
computation, namely a measure of the distance between the 2 blackboards. This measure
depends on the camera translation which is indeed one of the ill-posed parameter of the
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type of computation distance error
Independent planes 19,7 cm 8.1 cm

Coherent motion 8.7 cm 2.9 cm
Joint optimisation 11.2 cm 0.4 cm

Measured 11.6 cm -

Table 3.1: Improvement of the position estimate of two planes in space. The table
compares the estimate of the distance between two planes computed with different
methods to the real one

problem [Daniilidis and Nagel, 1993]. Another reason for choosing this parameter is that it
can easily be measured with a precision of 1 mm. Three computations have been done: The
first using two independent planes (two independent use of the planar motion model); The
second by calculating one single camera motion using (3.5); and the last performing a joint
optimisation for one motion and two planes by solving equation (3.12) and using the result
of the second computation as a starting parameter set for an iterative algorithm.

The results are summarised in Table 3.1 and show that there is a step-wise improvement
in precision. The distance computed using the 2 independent estimation (that gave 2 differ-
ent camera motion) is measured along the optical axis from the first camera position. By
imposing a single camera motion, using first the linear approximation of equation (3.3), and
the non-linear optimisation, lead to an improved result. The distance between parameter set
1 and 2 (or �1 and �2) gave 4.6 “pixels” using (3.3) and 1.3 “pixels” using the more precise
(3.2), e.g. the correspondences p 0

�
have to be moved by 1.3 pixels in average in order to get

a coherent parameter set. This makes the hypothesis of a single camera motion quite rea-
sonable from the data point of view. Note that in order to get to the joint optimisation, it is
necessary to compute the coherent motion first.

3.6 The Multi-planar reconstructions

3.6.1 Image of ’Le Louvre’ in Paris

In this section, we applied the multi-planar motion model to reconstruct a mosaic from an
image pair. The images have been taken by walking around an obstacle, and therefore some
parallax is present. Starting with 43 feature points, the system computed 13 planes to start
with, ended up with 4 homographies, and then 3 planes in space. During the motion estima-
tion process we considered that the focal lengths were known in order to keep the conditioning
of the system at an acceptable value. The result is shown in Figure 3.5. Once the 3 warpings
with the parameters of the 3 models have been done, the choice of the segmentation was
left to the user. To illustrate the point, we first did an automatic segmentation, which takes
the plane that is the closest to the camera. This generates the tilted biker and the distorted
pedestrian. The pedestrian on the right has been corrected by hand, by choosing it to be part
of the wall (instead of half in the wall and half on the floor). The apparent simplicity of the
mosaic is somehow misleading: first, an illumination change occurred between the captures
(due to a cloud). Then, the picture was taken with a 24 mm lens which has some severe
vignetting in the borders. Finally, the homography (or the plane if we are in 3D) describing
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the floor does not follow the approximations of Section 2.6.2 as well as the wall or the tree in
the Flower Garden sequence. Figure 3.7 shows the segmentation obtained using the mixture
of homographies, and the mixture of planes in space. The images have been colour corrected
according the algorithm outlined in Chapter 5 and the different results of the segmentation
are shown for the original and corrected image pair.

3.6.2 Flower Garden Image

In order to compare our approach to previous ones [Torr et al., 1999; Baker et al., 1998],
we applied our algorithm to 2 images of the Flower Garden sequence. The comparison is
somewhat biased because we only use two images of the sequence and these images do not
need any of the colour correction technique. Figure 3.8 shows the segmentation obtained,
and the outlier mask. The model started with 55 features resulting in 6 planes, and ended up
with 3 planes.

3.6.3 Images of Lausanne

A third mosaic is presented in Figure 3.9. In the background, the roofs present a lot of
occlusions and de-occlusions and where just treated as outliers by the system.

3.7 Conclusions

This chapter presented a novel technique to go from an unconstrained toward a constrained
estimation system. It allows to generalise the techniques that use image-to-image estimation
toward a system that performs a global optimisation over several pictures. The method is
successfully applied to close the gap of a 360 degrees panorama. An other example shows
how to merge two estimates of a camera motion that are obtained by registering independently
the images of two planes. By imposing that the two planes are taken with the camera at the
same location, the example shows an improvement in the location of the planes in space. This
last example is used in the second topic of the chapter where the scene was decomposed into
several planes in space.

The second part of the chapter presents an algorithm to segment an image pair into several
regions that correspond to planes in the scene. The algorithm is able to segment the image
and to determine how many planes are in the scene. The final goal is to reconstruct scenes that
contain parallax, and where the image do not necessarily overlap everywhere in the mosaic.
Although the method showed to work on a few examples, with little initial information, the
algorithm is computationally expensive and lacks robustness. The algorithm is based on a
strategy using mixtures of models that suffers from some fundamental limitations that are
outlined in Chapter 4. Intuitively, when there are many models in the scene, for a particular
pixel, it is probable that at least one of the models generates a small registration error, even if
this model has nothing to do with the pixel considered.
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(a) (b)

Figure 3.4: Image of the two blackboards (separated by the white line): The warped
image has been subtracted from the original one. Perfect registration is represented
by grey colour. (a) The original image that gets warped in image (b). (b) Warping
using the parameters for the upper blackboard. The upper blackboard is almost
cancelled (e.g. uniformly grey).
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Figure 3.6: Images used to produce the mosaic of Figure 3.5.

(a) (b)

(c) (d)

Figure 3.7: Segmentation of the mosaic of Le Louvre. (a) using the algorithm with-
out colour correction (b) Segmentation using the mixture of homographies (c) Final
segmentation (d) Outlier mask: the probability of being an outlier is represented
by the gray value. By using 3D estimation between images (b) and (c), one model
which was not coherent with the camera motion got pruned. In (a) we can see that
the segmentation without doing any colour correction is far from representing the
scene in a satisfactory manner.
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(a) (b)

(c) (d)

Figure 3.8: The segmentation algorithm applied to the Flower Garden sequence.
(a)(b) Input images (c) segmentation image (d) outlier mask. The method found 3
planes in space: the floor, the tree and the background. The sky having no texture
has been segmented randomly in one of the planes. The outlier mask is made of
greyscale values where the greyscale defines the probability of a pixel to belong to
the outliers.
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(a) (b) (c)

(d) (e)

Figure 3.9: Example of mosaic with parallax. The church position with respect to
the foreground is quite different in the two input images. (a) and (b) Input images.
(c) Segmentation. (d) Reconstructed mosaic. (e) Outlier mask.
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Chapter 4

Modelling Outliers

In the other chapters, various methods are presented to stitch images together, provided that
the scene is static. This assumes that the camera captures the exact same scene, but from
a different viewpoint. In practice, however, the estimation of the motion parameters can be
perturbed if some objects appear in an image and are absent in an other. We address the
question of how to characterise the outliers that may appear when matching two views of the
same scene. The match is performed by comparing the difference of the two views at a pixel
level, aiming at a better alignment of the images. When using digital photographs as input,
we notice that an outlier is often a region that has been occluded, an object that suddenly
appears in one of the images, or a region that undergoes an unexpected motion. By assuming
that the error in pixel intensity levels generated by the outlier is similar to an error generated
by comparing two randomly picked regions in the scene, we can build a model for the outliers
based on the content of the two views. The matching problem is then expressed as a mixture
of inliers versus outliers, and defines a function to minimise for improving the matching. Our
model has two benefits: First, it delivers a probability for each pixel to belong to the outliers.
Second, our tests show that the method is substantially more robust than traditional robust
estimators (M -estimators) used in image stitching applications, with only a slightly higher
computational complexity.

4.1 Introduction

Outlier rejection and robust motion estimation in computer vision applications is a subject
that has been investigated for many years. The current techniques are based on optimisation
or statistics and are applied to the imaging domain without taking proper advantage of the
knowledge that can be extracted from the images. In order to use the information contained
in an image, we first characterise an outlier in a (photographic) image pair as a region that
has been occluded, an object that suddenly appears in one of the images, or a region that
undergoes an unexpected motion. The key idea of this paper is to predict the outlier statistical
characteristics as follows: We assume that by comparing two arbitrary parts of each image,
we get an error pattern similar to the one generated by an outlier. From that, we can compute
the expected error distribution generated by the outliers. Finally, we express the motion
estimation problem as a mixture of inlier versus outliers, and handle outlier rejection like a
standard mixture problem [Lindsay, 1995].

49
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The performance of the model is demonstrated using two different types of experiments:
The first experiment shows two aligned pictures, one of them containing an outlier. The
proportion of the image covered by the outlier is varied by framing the images of the pair
differently. The goal is to see when the model breaks down. The second experiment compares
the motion estimator derived from our outlier model—which is an M -type estimator—to a
standard robustM -estimator.

The chapter starts with a brief review of the principles of robust motion estimation 1,
followed by a section defining the inliers, and finally a section describing the outlier model.
Then, the two types of experiments and their results are shown. Finally, the model is extended
to fit in a competitive mixture of models framework, like the multi-planar motion in Section
3.3.2. This extension points out some fundamental limitations associated to this family of
motion estimation techniques.

4.2 State of the art

The state of the art can be approached from two different points of view: On the one hand,
there is a general literature on robust estimation and outlier removal from the standpoint of
statistics [Huber, 1981] that will not be further discussed here. On the other hand, there is the
literature on robust motion estimation, for which [Ayer, 1995, chap. 3] and [Rousseeuw and
Leroy, 1987] give an extensive review.

When handling images, outliers are detected by specifying a distribution for the inliers
and using a threshold scheme if an observation diverges too much from the inlier data, as in
[Sawhney and Ayer, 1996; Hager and Belhumeur, 1998; Park et al., 1994; Brailovsky, 1996].
More sophisticated methods [Netanyahu and Weiss, 1994; Schroeter et al., 1998; Torr et al.,
1999] use a uniform distribution for the outliers and approach the estimation problem in the
context of mixture modelling. In general, there is very little difference between the general
statistical approach and the solutions that are applied to images.

4.2.1 A review ofM -estimators

To discount the influence of outliers when matching two views of the same scene, M -
estimators are applied along with a recursively reweighted least squares approach (See chap-
ter 3 for the details). In this regression, theM -estimator weights the influence of each pixel
by a different amount. Formally, this is justified by assuming that the error distribution has a
different shape than the usual normal distribution, like for example a Lorentzian or a Geman-
McClur shape [Ayer, 1995, chap. 3].

Let P� (�) be the (discrete) assumed error distribution, which has one parameter: �. The
likelihood of parameter � is defined by

L(� j P�) =
Y

r

P�(r)
n(r) (4.1)

where n(r) is the number of occurrences of the error r. The maximum likelihood value of �
is found by solving

�̂ = argmax
�

L(� j P�):

1By motion estimation, we refer to the motion of the camera between two pictures.
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Since the logarithm is a monotonic and increasing function, the maximum likelihood of pa-
rameter � can be found by maximizing the log-likelihood

�̂ = argmax
�

X

r

n(r) log [P�(r)] ;

that allows to use a sum instead of a product. This is also equivalent to minimizing the
negative log-likelihood

�̂ = argmin
�

X

r

n(r) (� log [P�(r)]) :

We call the negative log-likelihood the objective function ��

�� (r) = � log [P�(r)] , �
� r
�

�
: (4.2)

To return to the motion estimation problem, finding the Maximum Likelihood estimate for the
given error distribution is equivalent to finding the minimum of the objective function

�̂ = argmin
�

MX
i=1

�(
ri
�
); (4.3)

where ri is the error of a pixel-wise comparison of the images, � is the unknown parameter of
the system (often a vector containing the motion parameters of the camera), M is the number
of pixels being compared, and � is the standard deviation of the error.

The most frequently used approach consists in assuming that the error distribution is
Gaussian, which leads to the usual (non-robust) minimum mean squared error estimate. In
addition to the Gaussian distribution, we will use two distributions: the Lorentzian and the
Geman-McClur distribution. The objective functions associated to these distributions (their
negative log) is given, for the Gaussian2 (�N ), Lorentzian (�L) and the Geman-McClur (�G)
distributions by

�N (
r

�
) =

r2

2�2
(4.4)

�L(
r

�
) = log(1 +

r2

2�2
) (4.5)

�G(
r

�
) =

r2=�2

1 + r2=�2
: (4.6)

The weight W used by the M -estimators in the motion estimation iteration [Hasler, 2001,
app. A] is given by W (r) =

_�( r
�
)

r
, that is

WN (r) = const; (4.7)

WL (r) =
2

2�2 + r2
; (4.8)

WG (r) =
2�2

(�2 + r2)
2 ; (4.9)

2The N subscript stands for Normal distribution.



52 Modelling Outliers

for the Gaussian (WN ), Lorentzian (WL), and Geman-McClur (WG) distributions, respec-
tively. The robustness of various estimators is illustrated by an example in Figure 4.9, where
all estimators used in this paper are compared. For an extensive discussion on standard robust
estimation, we refer the reader to [Ayer, 1995, chap. 3] and [Rousseeuw and Leroy, 1987].

Note that in order to use the Lorentzian or Geman-McClur estimator, we need to know
the error scale �, which is in general computed using the median of the error.

4.3 The outlier model

Considering a photographic image pair, we believe that outliers generate an error pattern
similar to the error generated by comparing two random regions of the scene. Thus, we
define the outliers as being the result of a random superposition of the images of a pair. The
idea is then to characterise the outliers by computing their error distribution and handle the
motion estimation problem as a mixture of inliers and outliers in a statistical framework.

Let I be the part of the scene that appears as I0 in image 0 and as I1 in image 1. We then
compute the statistics of a random superposition of I0 and I1. Let us suppose that images 0
and 1 are the result of warping the scene I with two independent random variables � 0 and
�1 that are used as motion parameters: I0 = I(�0) and I1 = I(�1). We are interested in
the error distribution P(r) = PrfI0(p) � I1(p

0) = rg, where p and p0 denote the matching
positions in the images. Thus,

P(r) =
X

8u

PrfI0(p) = u; I1(p
0) = u� rg; (4.10)

where u denotes all possible values contained in the images, and r is the error value. Since
�0 and�1 are independent, so are I0(p) and I1(p0), thus

P(r) =
X

8u

PrfI0(p) = ugPrfI1(p
0) = u� rg: (4.11)

By making some assumptions about the image and the comparison process (detailed in Ap-
pendix B), the intensity probability distribution of a single pixel in the image is equal to the
image histogramH, normalised such that

P
u
H(u) = 1. Equation (4.11) becomes

P(r) =
X

8u

H0(u)H1(u� r): (4.12)

In other words, the outlier distribution is equal to the cross-correlation of the two image his-
tograms, computed on the overlapping portion of the image pair. An experimental evaluation
of (4.12) is presented in Figure 4.1 and 4.2, verifying the validity of this model. The main
assumption behind this result is that the expectation of the error histogram is equal to the
error histogram delivered by a single image match. Further details can be found in Appendix
B.

Note that this formulation does not take advantage of the correlation between neighbour-
ing pixels and assumes that the statistics of the part of the image that contains outliers is equal
to the statistics of the whole image.
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Figure 4.1: Evaluation of the outlier model. (a) The predicted outlier distribution.
(b) The error histogram. (c) Comparison of (a) and (b). The model and error his-
togram are super-imposed and can hardly be distinguished. Therefore, the model
works well in this case. (d) The image superposition used to generate the data: a
white noise image has been compared to a real image (the images are rendered using
a transparent blending).
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Figure 4.2: Evaluation of the outlier modelling. (a) The predicted outlier distribu-
tion (b) The error histogram. (c) Comparison of (a) and (b). We can see that the
model explains the data fairly well. The histograms are computed without taking
the sky in one of the pictures into account. (d) The image superposition used to
generate the data (the images are rendered using a transparent blending).
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4.4 The inlier model

In an ideal situation, an inlier is an object that appears at the exact same location in the image
pair, and has the exact same pixel value. In practice, the pixel values may differ because of
acquisition noise, and the image might not be perfectly aligned. This slight misalignment is
perfectly normal in the context of motion estimation and it is crucial to consider the slightly
displaced objects as inliers; surely enough, these misaligned pixels are the ones that help the
motion estimation algorithm achieve a better registration.

In order to characterise the inliers, we conduct the following experiment: we take two
images of a scene and make sure that nothing changes neither in the scene, nor in the camera
pose and settings, and compute the error histogram—the difference in the two pictures is due
solely to the acquisition noise. Then, we slightly misalign one of the pictures, and recompute
the error histogram. We repeat the experiment for different misalignment amplitudes and try
to fit a model to the error histogram. The error histograms of an image pair are shown in
Figure 4.3, for 0, 5 and 20 pixels of misalignment, respectively.

Figure 4.4 shows a comparison of the inlier histogram with a Laplacian distribution with
zero mean3. The Laplacian distribution (L) is defined by [Leon-Garcia, 1994]

L(0;�)(r) =
1

2�
� e�

jrj
� ; (4.13)

where r is the residual (the registration error) and � is the standard deviation. Although a
generalised Gaussian distribution [Aiazzi et al., 1999] would deliver a better fit, we disre-
garded this option because of the increased complexity that such a choice would bring: the
generalised Gaussian distribution requires the estimation of two parameters instead of only
one for the Laplacian. We chose to use the Laplacian distribution to model the inliers, which
requires us to find its standard deviation � that will differ with each estimation.

4.5 The OutlierMix model

By combining the results of the two previous sections, we can build a new model for matching
two images; we call it the OutlierMix model. This model is a mixture of the outlier model of
Section 4.3 with the inlier model of Section 4.4.

Given the outlier distribution PO; we can describe the error generated by matching two
images as a mixture of inliers and outliers:

P(r) = �PI(r) + (1� �)PO(r) (4.14)

Hm = �HI(�) + (1� �)HO; (4.15)

where PI stands for the inlier probability density, PO is the outlier probability density, � is
the proportion of inliers, and r the error value. Equation (4.15) is equivalent to (4.14) but us-
ing vector notation, whereHm denotes the model histogram,HI(�) the inlier histogram and
HO the outlier histogram. As discussed in Section 4.4, we assume that the inlier distribution
is a Laplacian distribution with zero mean: PI � L(0;�). The model parameters � and � are

3If the settings of the camera are varying (even slightly), then the registration model should compensate for these
changes to ensure that the inliers are zero mean.
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Figure 4.3: Measuring inlier distributions. Two images looking like (a) are super-
imposed. (b) The error histogram for a perfect alignment, an alignment 5 pixels
apart, and an alignment 20 pixels apart.
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Figure 4.4: Error distribution versus a Laplacian distribution. (a) 3 different Lapla-
cian distribution computed to match the error distribution of Figure 4.3(b). (b) Com-
parison of the Laplacian models in (a) with the error distribution in 4.3(b). In (b),
the histogram showing a misalignment of 5 pixels has been suppressed for clarity
reasons.
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computed by fitting the model error distribution P(r) to the error histogramH e, according to
Section 4.6.

Note that the outlier distribution depends only on the image histograms and not on the
error. In other words, we can compute the outlier distribution without doing any image su-
perpositions or any error computation. Nevertheless, to compute the outlier proportion (and
the inlier standard deviation) we need to compute the error by superimposing the images.

4.5.1 The UniformMix model

A common practice is to model the outliers with a uniform distribution [Netanyahu and Weiss,
1994; Schroeter et al., 1998; Torr et al., 1999]. To compare this approach to the OutlierMix
model, we introduce the UniformMix model, which is a mixture of the inlier model of Section
4.4 with a uniform distribution.

Given the outlier distribution PO; we can describe the error generated by matching two
images as a mixture of inliers and outliers:

Hm = �HI(�) + (1� �)HU ; (4.16)

HU (r) ,
1

N
; 8r (4.17)

where Hm denotes the model histogram, HI(�) is the inlier histogram, HU is the uniform
histogram, � is the proportion of inliers, and N is the number of possible error values r that
an image matching can produce. The model parameters � and � are computed using the same
procedure than for the OutlierMix model.

Note that this formulation differs from the one proposed in [Torr et al., 1999] by setting
the inlier proportion � according to the image content.

4.6 Fitting the model to the error distribution

Given the error distribution, the inlier model and the outlier distribution, we can find the inlier
scale (�) and the inlier proportion (�) by fitting the model mixture to the measurements.
The inlier scale is the standard deviation of the error generated by the inliers, and is also
called the error scale. Three methods are proposed: the first method computes the maximum
likely parameters, the second method minimises the Kullback-Leibler distance between the
OutlierMix model and the error distribution4, and the third method minimises the L2-norm
between the OutlierMix model and the error distribution. This last choice is motivated by
computational complexity reasons. The experiments are then repeated using the UniformMix
model.

To compare the OutlierMix model to the standard M -estimators presented in Section
4.2.1, we compute the inlier scale using the median of the error value. The inlier scale can be
derived from the median m by solving

R
m

0
L(0;�)(r)dr = 1=4, i.e. � = m= ln (2).

4The Kullback Leibler distance is chosen because of its relation to the Minimum Description Length (MDL)
criterium that is often used in the context of mixture modelling [Rissanen, 1978].
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4.6.1 Maximum likelihood computation

The likelihood L of the inlier scale parameter � (defined in (4.1)) and the inlier proportion �
is given by [Lindsay, 1995, chap. 1]

L(�; � j PO) =
Y

r

P(r)n(r);

where P(r) is the OutlierMix model distribution given by (4.14), PO is the outlier distribu-
tion, and n(r) is the number of occurrence of the error r. Using the histogram notation of
Section 4.5, the likelihood can be rewritten as

L(�; � j PO) =

"Y
r

Hm(r)He(r)

#�
;

whereHm denotes the model histogram,He the error histogram and � a constant factor due
to the normalisation ofHe. To find the maximum likelihood estimate of the inlier scale � and
of the inlier proportion �, we maximise the log-likelihood function l(�):

l(�; � j PO) , � � log

"Y
r

Hm(r)He(r)

#

= � �
X
r

He(r) log [Hm(r)] ;

(�; �) = argmax
X
r

He(r) log [Hm(r)] ; (4.18)

which is equivalent to maximizing the likelihood function. Equation (4.18) is solved numer-
ically.

4.6.2 Kullback-Leibler distance fit

By using the Kullback-Leibler distance D [Cover and Thomas, 1991, chap. 9], the inlier scale
and inlier proportion are found using

(�; �) = argminD (He k Hm) (4.19)

= argmin
X

He(r) log

�
He(r)

Hm(r)

�
:

The Kullback-Leibler distance expresses the error in coding length obtained by coding a ran-
dom variable distributed like He by assuming it has distribution Hm. Consequently, it is
closely related to the MDL criterion and is thus a “natural” metric for distributions compari-
son. Equation (4.19) can be solved numerically.

4.6.3 L2-norm fit

We used the L2-norm because of its low computational complexity. The optimal parameter
in the L2 sense is computed using a simple line search on the inlier scale parameter �, while
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Method Median L2-norm Max-likelihood Kullback-Leibler
Parameter � 1� � � 1� � � 1� � �

Whole image (c) 0.028 22% 0.024 27% 0.020 27% 0.020
sub-image (d) 0.039 37% 0.024 42% 0.019 42% 0.019
sub-image (e) 0.061 52% 0.023 56% 0.018 56% 0.018
sub-image (f) 1.192 97% 0.021 98% 0.014 98% 0.014

Table 4.1: Inlier scale (�) and outlier percentage (1 � �) estimation. The table
compares three methods that use the OutlierMix model to determine the inlier scale
and the outlier percentage of the images in Figure 4.5. The inlier scale, which
should be approximately constant, is also compared to a standard method that uses
the median estimator. The three methods deliver similar results and are superior to
the median based estimator.

the Kullback-Leibler distance and the maximum likelihood estimator require the computation
of a logarithm for each error value, and require a two-variable regression to find the optimal
parameters. Unfortunately, the L2-norm approach does not guarantee that the inlier propor-
tion � is contained in the [0; 1] interval, and is not, in general, a “natural” measurement for
distributions.

The optimal parameters in the L2 sense are found by solving the following equation:

(�; �) = argmin kHe �Hmk2

under the constraint
� 2 [0; 1]:

If the inlier scale parameter � is known, the inlier proportion � can be found by taking the
minimum mean squared solution of the following equation system:

He = � �HI + (1� �) �HO;

i.e.

� =
(HI �HO)

T
(He �HO)

kHI �HOk
2

:

In practice, � is found using an exhaustive search given a maximum a-priori value, which in
our case is set to 20% of the image’s dynamic range5.

4.6.4 Results

To illustrate the behaviour of each fitting method, two pictures of a pedestrian street are
shown. The outliers are the pedestrians along with their shades, and the inliers are the back-
ground regions of the scene. The outlier proportion is varied by extracting from the image
in Figure 4.5(a) and 4.5(b) several sub-images, which contain less and less background in-
formation, as illustrated in Figure 4.5(c) to 4.5(f). Table 4.1 shows the result of fitting the

5Special care has to be taken in finding � because of possible local minima.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: (a)(b) Original pictures used to perform outlier detection tests. (c) to
(f) Ghost pictures used to perform the outlier tests. The images are super-imposed
using transparency, hence the outliers appear as a ghost image. (c) Whole image
(d) Region of picture (c), (e) Region of picture (d),(f) Region of picture (e). The
sub-images are chosen such that the part of the image covered by the outliers is
increasing.



4.7 Motion model based on the OutlierMix model 61

Method L2-norm Max-likelihood
Parameter 1� � � 1� � �

Whole image (c) 19% 0.025 20% 0.025
sub-image (d) 37% 0.024 34% 0.023
sub-image (e) 42% 0.026 45% 0.024
sub-image (f) 98% 0.013 98% 0.012

Table 4.2: Inlier scale (�) and outlier percentage (1��) estimation. The table com-
pares 2 methods that use the UniformMix model to determine the inlier scale and
the outlier percentage of the images in Figure 4.5. The inlier scale estimate, which
should have approximately a constant value, is not as robust as in the experiment in
Table 4.1.

OutlierMix model to the error histogram. The sensitive parameter is the inlier scale; since the
background is similar for every image pair, the inlier scale value should not change within the
table6. The estimator based on the Kullback-Leibler distance gives the same result than the
maximum likelihood estimator (less than 1% in difference). The L 2 estimator differs slightly
from the other two, but gave also very satisfactory results. Although the relative differences
between the estimates of the inlier scale appears to be large, its absolute value is very small
compared to the dynamic range of the error ([�1; 1]).

The outlier modelling is also compared to the UniformMix model, which assumes that
the outliers can be represented by a uniform distribution. The results shown in Table 4.2 are
not as good as the ones using the OutlierMix modelling, but are still better than the traditional
median-based approach.

The modelling fit is shown in Figure 4.6 for the OutlierMix model using the maximum
likelihood estimator. The fit is only shown for the maximum likelihood estimator because,
graphically, there is hardly a difference with the L2 estimator. Figure 4.7 shows the outlier
mask. The outlier mask represents, for each pixel, the probability to belong to the outliers—
defined by (4.14)—where the greyscale is linearly related to the probability to be an outlier
(black is used for high probability of outliers). We can see that the mask is able to discriminate
the inliers from the outliers even in the presence of more than 95% outliers.

4.7 Motion model based on the OutlierMix model

From the OutlierMix model, we can derive a newM -estimator by associating a weightW (r)
to the error value r of each pixel, according to whether the pixel is an outlier or not. Specifi-
cally, we set W (r) equal to its probability to belong to the inliers:

W (r) = P(inlier j r) =
P(inlier) � P(r j inlier)

P(r)

=
�HI(�; r)

�HI(�; r) + (1� �)HO(r)
: (4.20)

6Strictly speaking, some little changes could occur since it is not exactly the same background due to the different
framing.
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Figure 4.6: Fitting the OutlierMix model to the error histogram with a maximum
likelihood approach. (a) 27% outliers. (b) 42% outliers. (c) 56% outliers (d) 98%
outliers. The graphs correspond to the images of Figure 4.5, and are shown on a
logarithmic scale, except for (d). The smooth (blue) curve shows the OutlierMix
model.
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(a) (b)

(c) (d)

Figure 4.7: Outlier masks associated to the images in Figure 4.5. The grey scale is
proportional to the probability to be an outlier; black is used for high probability of
outliers (a 2:2 gamma correction is used to render the images).
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In the context of motion estimation, the weight factor is introduced by the derivative _�(ri)
ri

of
the objective function defined in Section 4.2.1. We set this derivative equal to the weight of
Equation (4.20):

_�(ri)

ri
= W (r);

and compute an objective function from it:

�(r) =

Z r

0

_�(e)de

=

Z r

0

_�(e)

e
� e � de

=

Z r

0

W (e) � e � de: (4.21)

The objective function is set to 0 at the origin: �(0) = 0, and is computed numerically.
Finally, the motion estimator using the OutlierMix model minimises the objective function in
Equation (4.21). Note that this function is often asymmetric.

4.8 Robustness of the OutlierMix model

The traditional robustness computation approach evaluates the robustness of an estimator
provided that a certain amount of samples are replaced by arbitrary values [Huber, 1981].
Unfortunately, it is not possible to characterise the performance of the OutlierMix model
using this approach, because our model knows a priori all the possible values that the error can
take. Consequently, it does not fit in the traditional framework of robustness characterisation.
Nevertheless, in our context, we can argue that the model can handle an arbitrary percentage
of outlying data, since the outlier detection is just a matter of choosing the proportion among
two distributions. Hence, we propose two experiments to measure the performance of the
OutlierMix model.

The first experiment evaluates the robustness of the scale estimate (�) to outliers. Table
4.1 shows the estimate of the error scale for the pictures of Figure 4.5. The error scale
should remain approximately constant. We can see that the estimate derived from the error
median—the method generally used by the standard estimators—is stable for the cases of
less than 50% outliers. Above 50%, it becomes unstable and totally fails in presence of 98%
of outliers. The same phenomenon is illustrated in Figure 4.8, where the weighting factor
of the Lorentzian model, defined in (4.5) is shown for every pixel. The figure shows the
result obtained considering images 4.5(e) and 4.5(f). The first column of Figure 4.8 shows
the weight based on the scale found with the OutlierMix model fit with the L 2-norm and the
second column shows the weight based on the scale computed with the error median. More
details are visible in the outlier of Figure 4.8(b) than in Figure 4.8(a), thus, the M -estimator
gives a variable weighting to the pixels of the outlier, instead of rejecting them uniformly, as
in Figure 4.8(a). More striking is the difference between images 4.8(c) and 4.8(d), where the
traditional estimator is unable to distinguish the inliers from the outliers. This shows that the
scale estimate using the OutlierMix model is more robust.

The second experiment compares the performance of a translation estimation with an
M -estimator using a Lorentzian and Geman-McClur distribution (see Section 4.2.1) to the
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(a) (b)

(c) (d)

Figure 4.8: Comparison of outlier masks for the OutlierMix model in (a) and (c)
and a traditionalM -estimator using the median to compute the error scale in (b) and
(d). We can see in (d) that the traditional estimator fails to distinguish the outliers
from the inliers. These masks are computed from the images in Figure 4.5, and are
rendered using a 2:2 gamma correction.
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Figure 4.9: Comparison of different estimators measured for two initial conditions.
(a) 15 pixels of initial misalignment—median result for 5 tests. (b) 1.5 pixels of
initial misalignment. A translation is estimated between 2 pictures, and the final
translation error is shown. The OutlierMix model is the most robust of the set,
handling up to 90% outliers in the first case and 98% in the second. There is some
randomness associated with the test: for example the outlier-based model is able to
handle 90% of outliers but fails with 88%.
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motion estimator using the OutlierMix and the UniformMix models. Two pictures of the
same scene are taken in the same conditions with a fixed camera. One of the pictures has been
corrupted, by taking the left part of the picture and copying it to the right, as illustrated in
Figure 4.10(b). By extracting a sub-image pair from these images, we can control the amount
of outliers present in the pair. Then, for a whole set of image pairs, a motion estimation is
performed7, starting from a misalignment of 15 pixels in amplitude. The results—shown in
Figure 4.9(a)—are binary: either the algorithm converges and the error is insignificant, or
it does not converge and the resulting error is large. The misregistration is measured as the
distance between the real position of the image (known a priory) and the one delivered by the
motion estimation. Five tests are conducted8 and the graph shows the median of the results.
The model using the OutlierMix model clearly outperforms the traditional ones, and is able to
handle 86% to 90% outliers in this particular example9. For the same example, the Gaussian
M -estimator handles up to 32% outliers, the Lorentzian M -estimator handles up to 60%

outliers and the Geman-McClurM -estimator handles up to 64% outliers. The UniformMix
model handles up to 86% outliers and is therefore better than the traditionalM -estimators but
worse than the OutlierMix model. We want to emphasize that this model is sometimes used
[Torr et al., 1999] without estimating the outlier proportion (1� �), which is one of the key
elements in the success of this implementation. The experiment is reproduced for an initial
misalignment of 1:5 pixels in amplitude, showing similar results.

In general, the performance of the OutlierMix model depends on the image content: the
more the outlier data differs from the inlier data, the better the OutlierMix model performs
compared to a traditional approach.

4.9 Computational complexity and estimation efficiency

The OutlierMix model is approximately as complex, in terms of computation cost, as the
usual M -estimators. In addition to the computation required by the M -estimators, the Out-
lierMix model has to compute two image histograms (once), and requires an extensive search
on the scale parameter of the inlier model. Nevertheless, the extensive search is based on
histograms that contain in practice around 500 samples, which is very small in comparison to
the number of pixels in an image. Additionally, a better estimate of the scale parameter leads
to faster convergence, hence, the algorithm needs fewer steps to converge to the solution. The
UniformMix model has the same complexity than the OutlierMix model, if we do not take
the two initial image histograms into account.

A nice property of the OutlierMix estimator is its relative efficiency: The relative effi-
ciency is defined as the ratio between the lowest achievable variance for the estimated pa-
rameters (i.e. the Cramer-Rao lower Bound) and the actual variance provided by the given
method [Ayer, 1995]. In the absence of outliers, the outlier-based model reduces to a stan-
dard least square estimation which reaches the Cramer-Rao lower bound. In other words, the
OutlierMix motion model achieves a relative efficiency of 1 in absence of outliers. Indeed,

7The estimation is performed using a two parameter translation model and a Gaussian multi-resolution pyramid
with 4 levels.

85 different initial conditions are used, each of them with the same misalignment amplitude.
9The randomness of the experiment made the estimator fail at 88% 4 times out of 5, but succeeded at 90% 3

times out of 5.
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the probability to be an inlier becomes 1 in this case, leading to a weight W (r) = 1 in (4.21)
that generates an objective function �(r) = r2.

4.10 Limitations

In the examples shown so far, the outlier model of Section 4.3 has proven to explain the
data quite well. There is, however, a particular case where the model does not fit the data
very well, which occurs when the image contains a large uniform area. For example, in
Figure 4.2(d), more than 1=3 of the image is covered by a uniform blue sky. To get the
result of Figure 4.2(a), (b) and (c), we discounted the influence of the sky. If we take the
sky into account, the error histogram exhibits a peak value that is not as accentuated in the
outlier model. In this case, the expectation of the error distribution is not equal to the error
distribution of a single realisation of the comparison process. Indeed, when the areas of the
pictures are too uniform, the error distribution tends to be sensitive to the way the pictures are
compared. Nevertheless, except for the peak values, the model still fits the data quiet well,
as shown in Figure 4.11. This also explains why the fit in Figure 4.1 is better than the fit
in Figure 4.2. Now, if we conduct several experiments with the images of Figure 4.2(d) and
take the average of the resulting error histograms, then the error histogram tends to approach
the outlier model, showing that the divergence observed in Figure 4.11(a) is indeed due to an
expectation problem. Figure 4.11(b) shows the average of 10 error histograms obtained using
10 independent random superpositions.

4.11 An outlier model for a model mixture

In Section 4.3, we proposed to compute the outlier distribution based on the assumption that
an outlier comes from a random superposition of an image pair. Now, if we consider the
multi-planar algorithm of Section 3.3.2, and more generally the family of motion models
based on mixtures [Torr et al., 1999; Wang and Adelson, 1993; Jepson and Black, 1993;
Weiss and Adelson, 1996; Ju et al., 1996; Sawhney and Ayer, 1996; Black and Anandan,
1996], we notice that there is not one, but several image superpositions that come into play.
Out of these superpositions, for each pixel value, the algorithm chooses the one that best fits
one of the models. Now, let us suppose there are 10 models in the mixture. The pixel value
is compared to 10 pixel values in the other image of the pair, whose locations are defined by
the 10 motion models of the mixture. In the presence of an outlier, these 10 locations are
not consistent with the image and can as well be considered as being random. So, in our
example, the outlier distribution can be computed by assuming that a pixel of the image is
compared to 10 pixel values whose positions are chosen at random in the image, and that for
each comparison, we pick the best one (the one whose error is minimum).

More specifically, the “outlier situation” occurs by supposing that every motion estimate
is completely wrong. The obtained error value is the minimum absolute error value out of
every random superposition. For two models, it can be written as follow:

p
(2)
O

(") = Pr
�
min

n���I0(p)� I1(p
(1))

��� ;
���I0(p) � I1(p

(2))
���
o
= "

�
;

where I1(p
(j)) is the part of the scene I that is projected on the image using the random

motion parameters �j , like in Section 4.3 (i.e., I1(p(j)) = I(�j)), which, in practice, can
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(a) (b)

Figure 4.10: Images used to measure the robustness to outliers of different esti-
mators, shown in Figure 4.9. The right part of (b) is corrupted, and the outlier
percentage is chosen by extracting a sub-image pair and carefully controlling the
framing of the extraction.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
Error versus outlier histogram, single test

Error value

Error histogram
Outlier histogram

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
Error versus outlier histogram averaged over 10 tests

Error value

Mean error histogram
Mean outlier histogram

(a) (b)

Figure 4.11: Comparison between the predicted outlier histogram—smooth (blue)
curve—and the measured error distribution of the superposition of the pictures de-
picted in Figure 4.2(d). The whole figure is used to compute the histograms. (a)
In some locations, the data exhibits some peak values that are not present in the
modelling. These peak values are generated by the uniform areas contained in the
images. Because of the uniformness of these areas, the matching does not, in gen-
eral, lead to the expectation of the matching, thus explaining the divergence of the
model from the data. (b) Shows the average over 10 experiments, showing that the
error histograms tends toward the outlier model.
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be computed from image I1. Now let rj =
��I0(p)� I1(p

(j))
��. Since the parameters�j are

considered random and independent, the location p and p (j) are independent and finally, the
error values rj are independent. The cumulative distribution of the error for the two plane
situation can be expressed as

p
(2)
O

(") = Pr [min(r1; r2) = "]

= Pr [r1 = "; r2 > "] + Pr [r2 = "; r1 > "] + Pr [r1 = "; r2 = "] :

Since the outliers have all the same distribution, and the models are independent, we get

p
(2)
O

(") = 2 � Pr [r = "] � Pr [r > "] + Pr [r = "]
2

= 2 � Pr [r = "] � (1� Pr [r � "]) + Pr [r = "]2 :

By introducing the cumulative absolute error distribution FO, we get

FO(") ,

"X
u=0

pO(u) = Pr [r � "]

p
(2)
O

(") = 2 � pO(") � [1� FO(")] + pO(")
2: (4.22)

Now considering M models by applying (4.22) in a recursive manner, gives

p
(M)
O

(") =
MX
j=1

�
M

j

�
pO(")

j [1� FO(")]
M�j

= � [1� F (")]
M

+

MX
j=0

�
M

j

�
pO(")

j [1� FO(")]
M�j

= (pO(") + [1� FO(")])
M
� [1� FO(")]

M
: (4.23)

This formula can be shown by induction. It shows that the outlier distribution tends to get
more and more energy around 0 by increasing the number of models. In other words, it shows
that if there are too many models present in the scene, it will be very difficult to distinguish
the inliers from the outliers and consequently it will be hard to segment the image using a
competitive mixture of models approach. The evolution of the outlier distribution is shown
in figures 4.13 and 4.12.

4.11.1 Experimental evaluation

To verify experimentally the multi-outlier model of Equation (4.23) we repeat the experiment
of Section 4.3 by super-imposing randomly two images. This time, the second image is super-
imposed n times, and for each pixel the best value is kept to construct the error histogram.
The two image pairs of Figure 4.1 and 4.2 are used. The superposition of the model histogram
and the error histograms are shown in figures 4.13 and 4.12. The result shows a close match
between the model and the measurements. The histograms are symmetric around the origin
because the model considers only the absolute error value.

The most important fact to retain from this experiment is the evolution of the variance of
the outliers with the number of models. The first observation is that the outlier distribution
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Figure 4.12: Evolution of the outlier distribution with the number of models in a
mixture, by comparing an image made of noise with a real image. (a) 2 models
(b) 3 models, (c) 5 models, (d) 10 models. The plots show that the probability that
an outlier generates a low registration error increases with the number of models.
It also shows a very close match between the theory and the measurements, since
each of the plot contains two curves - the measured and the modelled one - that can
hardly be distinguished.
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Figure 4.13: Evolution of the outlier distribution with the number of models in a
mixture, by comparing two real images. (a) 2 models (b) 3 models, (c) 5 models,
(d) 10 models. The plots show that the probability that an outlier generates a low
registration error increases with the number of models. It also shows a very close
match between the theory and the measurements, since each of the plot contains two
curves - the measured and the modelled one - that can hardly be distinguished.
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tends to have the same Laplacian shape as the inlier distributions of Section 4.4. Additionally,
the variance of the outlier distribution for a mixture of 10 models is about the same than
the variance of the inlier distribution for a mis-alignment of 20 pixels in Figure 4.4(a). In
this case, it would be very difficult - if not impossible - to distinguish the inliers from the
outliers. This points to a fundamental limitation of the motion models based on mixtures.
This is why, in general, the segmentation algorithms [Torr et al., 1999; Weiss and Adelson,
1996; Ju et al., 1996; Sawhney and Ayer, 1996; Black and Anandan, 1996] consider in some
way the relationship between neighbouring pixels. In the latter situation the multi-outlier
model restriction does not apply anymore. Although the need of taking the neighbourhood
relationships into account to segment an image seems obvious, the multi-outlier description
is able, is some sense, to give a bound on the necessary conditions for a mixture model
algorithm, which considers each pixel individually, to converge.

4.12 Conclusions

In this chapter, we present a new way of calculating outliers in image pairs. The method dif-
fers from the traditional approach by characterising the outliers with a distribution computed
from the initial images. This restriction in the outlier characterisation allows the description
of a new motion estimator that treats the motion problem as a mixture of inliers versus out-
liers, and is able to handle outlier percentages that exceed 50% of the image. The model has
been tested using two kinds of experiments: The first experiment tests the ability of the model
to discriminate the outliers from the inliers using two pictures taken with a fixed camera. The
second experiment tests the performance of the motion estimator derived from the Outlier-
Mix model. Both experiments show a substantial improvement compared to the standard
techniques in use.

The outlier modelling is also extended to the class of motion estimators based on com-
petitive mixture models. This extension allows to point out some limitations associated to the
family of problems based on competitive mixtures, by giving some (experimental) conditions
under which the mixture-based algorithms is likely to fail.

These results can also serve different purposes: For segmentation applications, or coding
applications, the OutlierMix model can be used to separate the moving objects from the back-
ground without using arbitrary thresholds on the error values. The overall outlier proportion
in an image pair can also be used to perform change detection.

Further research will investigate the extension of this modelling to colour images. An
interesting extension would also be to consider the relationships of neighbouring pixels in
this model.
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Chapter 5

Equalising Colour across Pictures

5.1 Introduction

Until now, we considered the geometric aspects of image mosaicking, or how to properly
align the images of a mosaic. To get a good panoramic image, it is also necessary that the
colours in the images are matched. Indeed, if the colours do not match, then the boundary
between the pictures will be clearly visible. To get consistent colours in the mosaic, an
object of the scene should be represented by the same colour, regardless in which pictures it
appears. This would be the case if the colour in the image represents the physical properties
of the objects in the scene. In reality, this is not the case, because the mapping of the colours
in an image has been developed by the photographic community with the only goal of getting
the “best looking picture”1. Consequently, the colours in the different pictures do not match
in most of the cases. There are two approaches to deal with the problem : the one is to take
the pictures in such a way that the images will match in colours, the other is to find a way to
correct for the colour mismatch.

To get a series of pictures that are consistent from a colorimetric point of view, it is
necessary to keep the exposure settings of the camera constant during the whole capturing
process. With an analog camera loaded with a transparency film, it should be sufficient.
When using a negative film, the printed pictures go through an image dependent process,
and a colour mismatch will occur. With a digital still camera, in addition to the exposure,
the white point should also be kept constant, and the camera itself should not do any image
dependent processing. All these conditions for matching the colours motivated the develop-
ment of algorithms to perform the colour matching. Being able to choose the settings for
every picture has the advantage of getting the best possible picture for every part of the scene.
Indeed, if the exposure has to be kept constant over the whole mosaic, then there will be some
under-exposed and some over-exposed pictures in the range, affecting the final image quality.

To match the colours in a panoramic image, our approach retrieves the physical properties
of the objects in the scene and then renders the scene as single picture. Since the physical
properties of an object do not depend on the picture it appears in, this approach gets rid of the
mismatch in colours. The physical properties that are needed are the Red, Green and Blue

1Why a linear picture - the one that best represent the physical entity of the scene - looks unsatisfactory in practice
is related to the way our visual system works, and will not be discussed here.
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Figure 5.1: Overall spectral sensitivity of the human eye : V (�).

reflectance components of each entity in the scene. The emphasis is put on the estimation of
these physical properties.

This chapter exposes, in Section 5.2, the general model that describes how the camera
maps the scene to the pixel values of an image. Section 5.3 exposes several models for
the camera tone mapping transfer functions, for digital or analog cameras, which are part
of the more general modelling of Section 5.2. Then follows a description of the vignetting
phenomenon that is inherent to any camera, and that can be corrected in some cases. Section
5.5, explains how the modelling can be applied for estimation, in the context of mosaicking.
Finally, some results are shown for each of the proposed method.

5.1.1 Definitions and units

There are two kinds of terms and units related to the light: radiometric and photometric terms.
Radiometric units consider each wavelength with the same importance. Photometric units
use a weighting function V (�) for evaluating the amount of light in a mixture of radiations
of different wavelength. The function V (�) represents the spectral sensitivity of the human
eye to achromatic light under photopic light conditions, and is depicted in Figure 5.1. Below
follow some photometric quantities, taken from [Hunt, 1998]:

Photopic vision : Vision by the normal eye when it is adapted to levels of luminance of
at least several candelas per square metre. (The cones are the principal photoreceptors that
are active in photopic vision).

Scotopic vision : Vision by the normal eye when it is adapted to levels of luminance less
than some hundreds of candela per square metre. (The rods are the principal photoreceptors
that are active in scotopic vision)

Luminous flux Power emitted, transferred or received in the form of radiation, weighted
by the V (�) function.

Lumen, [lm] : unit of luminous flux. The luminous flux of a beam of monochromatic
radiation whose frequency is 540 � 1012 hertz, and whose radiant flux is 1=683 watt. The
frequency of 540�1012 is closely equal to a wavelength of 555 nm, the wavelength for which
the V (�) function has its maximum value of 1:0.

Intensity I : Luminous flux per unit solid angle.
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Candela, [cd] : Unit of luminous intensity. The luminous intensity, in a given direction,
of a point source emitting 1 lumen per steradian.

Illuminance E : luminous flux per unit area incident on a surface.
Lux, [lx] : Unit of illuminance. The illuminance produced by a luminous flux of 1 lumen

uniformly distributed over a surface area of 1 square metre.
LuminanceL: In a given direction, at a point in the path of a beam, the luminous intensity

per unit projected area (the projected area being at right angles to the given direction).
Candela per square metre, [cd=m2] : Unit of luminance. The luminance produced by a

luminous intensity of 1 candela uniformly distributed over a surface of 1 square metre.
Troland, [Td] : Unit used to express a quantity proportional to retinal illuminance pro-

duced by a light stimulus. When the eye views a surface of uniform luminance, the number of
trolands is equal to the product of the area in square millimetres of the limiting pupil, natural
or artificial, times the luminance of the surface in candelas per square metre.

Remark. A CCD measures illuminance. The difference between luminance and illumi-
nance is of two kinds: First illuminance is light falling on an object, whereas luminance is an
entity to characterise light sources, which have a certain (non-zero) surface. Now, if we place
a sensor right next to a perfect diffusing material, the illuminance of the sensor is equal (up
to a constant factor) to the luminance of the surface.

Here are some basic formulas to handle these photometric quantities: The inverse square
law

E =
I

d2

relates the illuminance E to the intensity I and to the distance d from the light source. The
luminance L is related to the illuminance through

L =
E � R

�
;

where R is the reflection or the transmission factor of the illuminated surface, depending on
the position of the light source. The luminous WL flux is related to the radiant flux W (i.e.
the spectral power) through

WL =
1

683

Z
�

W (�)V (�) d�:

Figure 5.2 illustrates the photometric units. A point source of 1 lm illuminates a sphere
portion seen with an angle of 1 steradian. The sphere portion has a surface of 1 m 2 and has a
luminance of 1 cd/m2, by assuming it is made out of perfect diffusing material (i.e. there is
no energy loss). The illuminance on the sphere is equal to 1 lx. By redrawing the portion of
the sphere with twice its radius, but with the same angular size, one would get an illuminance
of 1=4 lx but still a luminance of 1 cd/m2.

5.2 From the scene to the pixels

Technically, photography is all about light. The light is generated by a light source (the sun
or a lamp), hits a particular object of the scene, is reflected and transformed by the object,
and reaches the sensor of the camera after passing through the lens. The way the light is
transformed by an object depends on the spectral reflectance properties of the object. The
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Figure 5.2: Illustration of the photometric units : A source of 1 lm illuminates the
sphere portion, which has a surface of 1 m2. The illuminance falling on the sphere is
1 lx, and the sphere has a luminance of 1 cd/m2, by assuming it is a perfect diffuser.

light is then recorded by the camera sensor (CCD) that measures for each pixel three light
components : the Red, Green and Blue component. For a given point in the scene, the
response of the camera is given by the scalar product of the spectrum of the light and the
sensitivity of the camera, i.e.

[R;G;B]T =

Z
�

E(�) �R(�) � [SR(�); SG(�); SB(�)]T d� (5.1)

where E(�) � R(�) is the spectrum of the incoming light, R(�) is the spectral reflectance of
the point in the scene, E(�) is the spectrum of the light source, SR(�), SG(�) and SB(�)
are the sensitivities of the three types of receptors in the camera and � is the wavelength. For
any point in space, E(�) � R(�) is assumed to be constant. A CCD has a linear behaviour
and the value for each pixel is proportional to the illuminance E(�) � R(�) at the sensor
location. At this level, the data is called raw data. Then, the camera usually performs a white
balancing followed by a non-linear mapping, described by the Opto-Electronic Conversion
Function (OECF), also sometimes referred to as gamma correction. It also performs some
transformations to get a “better looking image” - for example a gain in the colour saturation
- that are ignored here. We will assume, for the rest of the chapter, that the final pixel value
only depends on the value read by the CCD (and not on the surrounding pixels like in Chapter
6) and that the OECF does not change from picture to picture. This assumption is not correct
for high end digital cameras.

5.2.1 Generalities on colour spaces and transformations

The three types of cones that are present in the retina enable the human eye to perceive
colour. Each cone type has a particular spectral sensitivity, thus generating three different
stimuli when exposed to a light source. The response of the eye to a light stimulus can be
characterised with the CIE colour matching functions [Hunt, 1998; Stockman et al., 1993]
depicted in Figure 5.3(a) - which are a linear combination of the actual response of the cones
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Figure 5.3: (a) CIE colour-matching functions for a 10 degrees standard observer.
These functions are used to compute the response of the eye to an incident light
spectrum. (b) Sensitivity of the Nikon D1 digital still camera, measured with a
spectro-radiometer. The two sets of curves differ, and span a different spectral sub-
space.

in the eye. A digital camera is composed of light sensitive cells, covered with three types
of light filters, each having a specific spectral sensitivity. For practical reasons, the spec-
tral sensitivity of the three types of cells in the camera differs from the sensitivities of the
cones, mainly because of noise considerations. An example of spectral sensitivity of a dig-
ital camera sensor is depicted in Figure 5.3(b). As a consequence, the camera Red, Green
and Blue (RGB) values are not the same as the tri-stimuli of the eye if the eye would have
been exposed to the same scene. Once the scene has been described in terms of RGB values,
some information is lost and it is not possible to exactly know what the cone tri-stimuli for
the same scene would be, because, technically, the RGB values of the camera live in another
spectral sub-space than the tri-stimuli of the eye. To get from RGB space to a colour space
defined in a spectral sense some approximations have to be done, thus leading to a multitude
of techniques that are out of the scope of this thesis [Hunt, 1998; Fairchild, 1998; Wandell,
1995]. In the simplest case, a 3 � 3 matrix is applied to the RGB raw data of the camera.
The component of this 3 � 3 matrix are found by minimizing an error measure between the
spectral sensitivities of the target colour space and a linear combination of the spectral sen-
sitivity of the camera. Again, depending on the error criterion chosen, the results will differ.
But, since multiplying the RGB values of the camera by a matrix is equivalent to having a
camera with a different spectral sensitivity, we will ignore this transformation for the rest of
the chapter. If the transformation is more complex, for example if the camera applies a 3� 3

matrix after having applied a curve to the image, then the transformation will have a certain
influence on the colour mismatch between several pictures, but we will assume that it does
not affect the mismatch in a significant way.
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Figure 5.4: Illustration of the white balancing using the von Kries adaptation model.
The white balancing is performed by multiplying the colours of the image by a
diagonal matrix, which depends on the colour of the light that illuminates the scene
and on the colour of the light used to view the image (the observer adapted white
point). (*) Note that we assumed that the white point of the standard colour space
is the same as the output white point.

5.2.2 White balancing

The colour of an object depends on its spectral reflectance properties, on the lighting condi-
tions and on the local state of adaptation of the human observer. The adaptation of the human
observer is a complex mechanism, but for our purpose, the only transformation that we are
considering is the white balancing [Fairchild, 1998].

The purpose of white balancing can be explained by an example: a white piece of paper
appears to be white under sunlight as well as under incandescent light. From a physical
point of view, the power spectrum coming from the white piece of paper is equal to the
spectrum of the illuminant2, and differs in the two situations. Nevertheless, it will appear
white to an observer, because of chromatic adaptation. Chromatic adaptation is the ability
of the human visual system to discount the colour of the illuminant, and to approximately
preserve the appearance of an object. If the white balancing is done properly in the camera,
the colour of the white piece of paper (i.e. the RGB values) will be the same when it is
taken under sunlight or under incandescent light 3. Most of the current cameras apply the
Von Kries adaptation model [Von Kries, 1902][Hunt, 1998, p. 125], schematised in Figure
5.4. Given the R0

w
G0

w
B0

w
values of the light source, and R00

w
G00

w
B00

w
the observer adapted

white point, expressed in a given colour space, a gain factor is applied to the three colour
channels independently, while the image is still in linear space. In other words, R 00

w
G00

w
B00

w
is

2We assume that the white piece of paper is a perfect reflector
3Here, we are not considering incomplete adaptation.
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the ”colour” of the light used to view the image and the transformation is applied to the raw
data:

[R;G;B]
T
7!MDM

�1
� [R;G;B]

T

D , diag

�
R00

w

R0

w

;
G00

w

G0

w

;
B00

w

B0

w

�
:

In practice the green channel is often left unchanged ( G
00

w

G0

w

= 1). Several chromatic adaptation
of this kind are used in practice and differ in the choice of the colour space where the adapta-
tion is performed. In other words, the chromatic adaptation transforms differ in the choice of
the matrixM. In current digital cameras, we found out that the white balancing is performed
directly in RGB space, i.e. the matrix M is the identity matrix. For the rest of the chapter,
we will assume that the chromatic adaptation is performed in camera RGB space, thus

M = I:

For a comparison of different chromatic adaptation models, see [Süsstrunk et al., 2001].

5.2.3 Black point estimation

The camera is able to output values of 0 for some very dark points. Nevertheless, none of the
sensor cells output a value of 0. This is first due to the presence of dark current in a CCD
that generates a non-zero value even if there is no light at all. In addition to that, the darkest
point in an image might generate a substantial amount of light that in turn generates a positive
output of the CCD cell. The dark current value has to be subtracted from any CCD output.
Additionally, we will assume that the camera is able to adapt the value it subtracts from every
pixel depending on the image content. This ability allows the camera to capture the whole
dynamic range of the image, and also allows the system to handle a certain amount of flare.

Flare is generated by the scattering of light in the image optics [Kingslake, 1983]. This
will, in a first approximation, add a constant value to every pixel of the image. To get rid
of the flare, it would be sufficient to subtract this value from every pixel, but in practice it is
difficult to know the exact amount of flare, and there is no guarantee that this flare is uniform.

5.2.4 Mapping the pixels

The model used to get a pixel value from the value read by the sensor is as follow: for each
colour channel, let E be the illuminance read by the sensor. The camera chooses a black
point (EkR; EkG; EkB) and a white point (EwR; EwG; EwB) and normalises the output in-
between these two values. Finally, it applies a curve G�1(�) to the data:

2
4 ER
EG
EB

3
5 7!

2
6664
G�1

�
ER�EkR
EwR�EkR

�
G�1

�
EG�EkG
EwG�EkG

�
G�1

�
EB�EkB
EwB�EkB

�

3
7775 : (5.2)

G�1(�) is the Opto-Electronic Conversion Function (OECF). The models of the OECFs are
given in the next section (5.3).
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5.3 Opto-Electronic Conversion Function models

As a convention, we will assume that the camera outputs values ranging from 0 to 1. The
Opto-Electronic Conversion Function inverse is designated by the letter G (�) and is also
supposed to output values in the range [0; 1]. In some cases, if an exposure difference has to
be taken into account, the camera system transfer function will be designated by letter S (�),
which is equal to G (�) up to a linear transformation.

This section is about Opto-Electronic Conversion Functions, the functions that relate the
digital camera sensor illuminance to the pixel value of the output image. The term Opto-
Electronic Conversion Function is reserved for digital cameras. The more general term tone
mapping transfer function is used whenever there is an analog camera involved in the pictur-
ing process. This last function also relates the camera sensor illuminance to the final pixel
value, but may involve more processes to get the final image, like for example a development
and scanning process.

The following sub-sections describe three models of a tone mapping transfer function.
These models aim at the same goal, i.e. how to get back the sensor illuminance from the
pixel value, but differently. One is for an analog system, and two are for digital cameras. The
performance of each model is illustrated in Section 5.6.

5.3.1 The transfer function of a slide and scanner system

Because film photography is still the best way to get high quality pictures at a decent price,
we also use scanned diapositives as our input pictures. The film characteristics are given
by a function called the D-logH curve that relates film density to the log Exposure, as illus-
trated in Figure 5.5. The scanner illuminates the diapositive and integrates the ratio of light
that goes through the diapositive at a given photosite. The scanner is characterised by its
Opto-Electronic Conversion Function (OECF). The OECF can be characterised using a cali-
bration slide containing patches of known density [ISO16067 WD : 1999, 1999]. The use of
a conventional scanner introduces all the problems associated to a digital camera, described
in Section 5.2, so that ideally we should use a professional scanner that can output raw data.
Nevertheless, in our case, it turns out that a good approximation of the scanner is given by
the following formula: Let I be the pixel value normalised such that I � [0; 1]: We assume
that I is related to the lightness L� of the pixel through the relation I = 1

100
(L�)

1

 ; where
gamma  is a parameter that can be set on the scanner. Setting  = 1; gives

I =
1

100
� L�

L� is related to the relative luminance Y

Yn
of the original illuminated by the light source of

the scanner through [Hunt, 1998, p. 63]

L� = 116 � 3

r
Y

Yn
� 16;

Y

Yn
> 0:008856

L� = 903:3 �

�
Y

Yn

�
; otherwise:

Then, Y

Yn
is related to the film density D by

D = log
10

�
Y

Yn

�
;
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Figure 5.5: D-logH curve of the Kodachrome 64 slide film. This curve relates the
film density to the illuminance hitting the film surface. This curve can be obtained
on the manufacturer Web site.

and finally, the Exposure (i.e. light power) is given by the D-logH curve of the film, which
enables to build the Slide and Scanner tone mapping transfer function inverse

R = G(I):

R is what we call raw data. The function G(I) relates the illuminance entering the camera
to the pixel values read in the image I .

5.3.2 An exponential model for the OECF of the camera

Here we consider pictures that are taken with a digital still camera. The digital still camera
converts the light falling onto its sensor (CCD) directly into digital values, and is charac-
terised by its Opto-Electronic Conversion Function (OECF) [ISO 14524:1999, 1999]. Nowa-
days, an OECF is considered as highly confidential data by the camera manufacturers and is
not available to the common user. We will assume that the OECF of a camera is similar to the
gamma correction curve applied in the video standards, such as the ITU-R BT.709 [ITU-R
Recommendation BT.709-3, 1998], that has the following form:

I = 1:055 � R
1

2:4
� 0:055 if R > 0:0031308

I = 12:92 � R else

where R is the raw data delivered by the CCD (R � [0; 1]) and I is the output pixel value.
It is an exponential function extended by its tangent (when R � 0:0031308) to make it pass
through zero. In our model, we make the assumption that the OECF of the camera can be
described by

I = (1 + a) �R
1

b � a; (5.3)

where a and b are the two unknown parameters of the model. This function is also extended
by its tangent to make it pass through the origin, which is a straight forward task to accomplish
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numerically. We did not express it explicitly in Equation (5.3) because the intersection point
between the exponential and its tangent that crosses the origin has no closed form. Since the
algorithms needs to compute the raw data pixel value R out of the pixel value I , the function
it tries to estimate has the form

G(I) = R =

�
I + a

1 + a

�b
: (5.4)

Even if it is not true for a high end digital camera, we will assume that this function is the
same for every picture.

5.3.3 A polynomial model for the OECF of the camera

In order to give more flexibility to the shape of the Opto-Electronic Conversion Function, we
adapt a model proposed by Mitsunaga and Nayar [Mitsunaga and Nayar, 1999] to describe
the OECF. We will assume that the curve applied by the camera has the following shape

G (I) = c1I + c2I
2 + :::+ cNI

N (5.5)

and the goal is to find the parameters ci, under the constraint

NX
d=1

cd = 1;

that restricts the output in the [0; 1] range (G(1) = 1).
The advantage of this model compared to the exponential model of Section 5.3.2 is dis-

cussed in the result section 5.6.

5.4 Vignetting

Vignetting is responsible for the image being darker in the borders. On a high quality camera,
this phenomenon is mainly due to a geometric effect: the cos4 effect [Kingslake, 1983, p.
121]. Indeed, if the camera pictures a scene of constant luminance, the illuminance hitting
the sensor varies according to the cosine to the fourth power of the viewing angle. Thus,

Em = Eo � cos4 �

tan(�) =
rp

f
; (5.6)

where Em is the illuminance measured by the sensor, rp the distance of the pixel from the
optical centre of the image, f is the focal length of the camera and E o is the illuminance that
would have been measured if the light would have hit the sensor in the optical centre. By
computing Eo for each pixel, we get an image without vignetting. Other phenomena related
to vignetting, like its dependence on the aperture have been ignored here.

The cos4 vignetting can be derived using geometrical relations: let a ray of light go
through a pin-hole camera, illustrated by the black rectangle in position 1 in Figure 5.6 4.

4All the variables used in this section are depicted in Figure 5.6.
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Then, the camera is rotated by an angle A and is illustrated by the blue rectangle in position
2. Let D1 be the (infinitely small) diameter of the pin-hole. Let us consider the camera in
position i and let Pi be the energy of the light ray entering the camera. The proportion of the
ray that reaches the camera sensor is proportional to the surface of the hole “seen” by the ray,
i.e.

P1
�

4
� D2

1

=
P2

�

4
� D1 � D2

:

Since D2

D1

= cos(A), we get
P2 = P1 � cos(A):

The illuminance Ei caused by the ray on the sensor in position i is equal to the energy of the
ray divided by the surface Si of the light spot on the sensor:

Ei =
Pi

Si
:

To get the relationship between the pixel values read by the camera in position 1 and 2 (i.e.
E1 versus E2), we introduce the surface S3:

S1 = S3 � cos(A);

S3

S2
=

�
L3

L2

�2

= cos2(A):

Finally,
E2

E1

=
P2

P1
�

S1

S2
= cos (A) �

�
cos2(A) � cos(A)

�
= cos4(A):

5.5 Estimation methods

5.5.1 State of the art

There has been little work on colour registration in image mosaics, probably because the
mosaicking techniques have been developed by the computer vision community who tradi-
tionally worked on greyscale values by assuming that the pictures are linear with respect to
illuminance. The colour has been used to improve the registration algorithm, for example
in [Johnson and Kang, 1997; Guestrin et al., 1998], but without trying to modify it. Colour
is also used to identify regions of interest in image sequences to perform replacements, for
example in weather news broadcast (chroma-keying), as explained in [Hanna et al., 1999].
We should also mention the work of Majumder et al. [Majumder et al., 2000] who addressed
the opposite problem of achieving colour uniformity across multi-projector displays. Closer
to our problem is the work of Rushmeier and Bernardini [Rushmeier and Bernardini, 1999]
who equalised the colours in a 3D model of a statue, in a controlled environment, by com-
pensating for illumination changes and white point changes, using light spectra techniques.
Nevertheless, the most relevant papers for the colour correction problem are the one that
compute radiance maps from several differently exposed photographs, mostly to get high
dynamic range images. Mann and Picard [Mann and Piccard, 1995] (followed by [Mann,
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Figure 5.6: Computation of the vignetting phenomenon. The same ray of light is
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the back of the camera in position 2 is bigger than the spot for position 1, thus the
value read by the sensor is smaller - i.e. darker - in position 2.
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2000]) used an exponential model to enhance the dynamic range of an image. Debevec and
Malik [Debevec and Malik, 1997] proposed a method to estimate an OECF of arbitrary shape,
from pictures with known exposures. The only constraint needed is smoothness. Robertson
et al. [Robertson et al., 1999] modified slightly Devebec’s method to give more weight to
more reliable pixels. Finally, Mitsunaga and Nayar [Mitsunaga and Nayar, 1999] proposed
a polynomial model - similar to the one of Section 5.3.3 - to describe the OECF that can be
deduced from a set of differently exposed pictures with only an approximate knowledge of
the exposure time.

5.5.2 Avoiding bad pixels

Chapter 4 exposes the various methods used to discount the influence of outliers, that is, the
elements in an image that might confuse an algorithm. These elements are, for example, the
moving objects in the scene. Here, we are interested in knowing how much information is
contained in a pixel pair about the lighting conditions, about the camera settings, etc. For
example, if a pixel appears saturated in one of the images of the pair (i.e., it has a value of
0 or 255 with an 8 bits per channel camera), this pixel will only give an upper- or lower-
bound information about the exposure difference of the image pair. If this pixel is used in
the same way than the “good” ones, that is, the pixels that have values in the middle range of
the camera, then the estimation will fail. By writing the motion estimation equation (2.26),
the reliability of a pixel pair is embodied by the factor W i, who multiplies each line of the
equation system by a different amount. This factor depends on the two values delivered by
the camera: for each image j of the pair, in each pixel location p i, we can compute a weight
value wj;i that tends toward 0 in the border of the dynamic range of the camera, and take
values of 1 in the middle range of the camera, thus giving less weight to potentially noisy
pixels. Since we need one single weight value for each pixel of the image pair, the two
weights w0;i and w1;i have to be combined into a single one. The resulting weight for the
pixel pair is computed as

1

Wi

=
1

w0;i

+
1

w1;i

: (5.7)

The underlying assumption is that w
�;i is the inverse of variance of a Gaussian random vari-

able. Indeed, if the pixel value is a random variable distributed as N (�
�;i; 1=w�;i) ; - where

1=w
�;i is the variance - then the residual is also a Gaussian random variable distributed as

N

�
�0;i � �1;i;

1

w0;i
+ 1

w1;i

�
, leading to Equation (5.7).

An example of the function we used is depicted in Figure 5.7. This weight is computed
independently for each colour channel. In practice, the weight never reaches 0, but a value of
10�5 is used instead in order to avoid rejecting every pixel of the image pair if the pair has
very different exposure parameters.

Remark

Although the function of Figure 5.7 seems somewhat arbitrary, an attempt to precisely mod-
elling the noise as the variance of a gaussian random variable has been tried, but did not
succeed. The modelling involves the use of the exposure parameters of each picture, and
makes the approximation @Wi

@�
' 0 of Section 2.6.2 questionable. The added complexity

of the motion estimation makes the approach computationally more expensive and, unless
precise estimates of the noise variance are available, is not worth the effort.
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Figure 5.7: Weight values used to get rid of saturated pixels. The influence of
each pixel in the registration process is decreased in the border of the image range.
Possible pixel value range from 0 to 1.

5.5.3 Detecting mis-alignments

The next section (5.5.4) presents a method to compute the camera OECF from two aligned
pictures. In practice the pictures are never perfectly aligned, and to make an OECF estima-
tion robust, the method should be able to discount the mis-aligned pixels in the image. The
camera OECF and the camera settings, do not affect in a significant way the relationship be-
tween a pixel and his neighbours, except for the difference in exposure. In other terms, the
difference in colours between the two images is an information of the low-pass kind and can
be annihilated by passing a high-pass filter on the images 5. The two filtered images should be
equal where they are well aligned. If there is a slight mis-alignment, then the images differ
only if there is high frequency information at that location (for example an edge). On the
other hand, the higher the local frequency of the image, the better the alignment has to be
to compare the colour information. The comparison of the high-pass images provide a good
way to determine what part of the image is a good candidate for a pixel-wise comparison.

In practice the images are filtered with the derivative of a gaussian filter (with � = 1:25
pixels) and normalised such that the variance of the images in the overlap area are equal. The
alignment weight is computed as

W
(a)
i

=
1

jf(I0(p)) � f 0(I1(p0))j+Q
;

where f(I0(p)) is the filtered image I0 and f 0(I1(p
0)) is the filtered image I1 with normalised

variance. Q is a small positive number equal to the quantisation step of the image (Q = 1=255
for an 8 bit image). The quantisation step is used so that the weights used for two arbitrarily
close error values - which might be separated by an amount Q - are not too dissimilar. The
mis-alignment weight is combined to the one used in Section 5.5.2, using the same approach,

5Strictly speaking, we should not talk about low- and high-pass information since there are some non-linearities
involved.
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that is, (by borrowing the notations of Section 5.5.2)

1

Wi

=
1

W
(a)
i

+
1

w0;i
+

1

w1;i
:

We want to emphasise that this weight is only used to estimate the OECF in Section 5.5.4, and
is not used in the context of Section 2.6.2. The reason is that, in the last case, the algorithm
needs the mis-aligned pixels to get a better alignment.

Another question that appears now is: Why not use the high-pass images to perform the
motion estimation and do the colour correction once the pictures are aligned? The reason we
did not proceed in that way is related to the shape of the error surface. The motion algorithm
performs a gradient descent that, given an error surface (in n-dimensional space), finds a path
that follows the surface downwards. If the surface is irregular, and contains local minima,
the algorithm is likely to fail. By filtering the image with a high-pass filter, the error surface
gets also high-pass filtered and becomes irregular, consequently, the system requires to have a
better initial estimate to converge to the right solution (see Section 2.8 for the details). This is
illustrated in Figure 5.8 where the error surface is shown for a translational model, for colour
matched images and for filtered images.

5.5.4 Estimating a polynomial OECF

The polynomial model of Equation (5.5) requires a different estimation technique than the one
described in Section 2.6.2. We adapt the model proposed by Mitsunaga and Nayar [Mitsunaga
and Nayar, 1999]. The idea is to make iterations between motion estimation, and OECF
estimation. In the easiest case, we can consider that the images are already aligned. Let
Gj(p) be the illuminance that falls on the camera sensor at position p while taking picture
j. From (5.5), we have Gj(p) =

PN

d=1 cdIj(p)
d. Now, we can express the ratio T01 of the

exposure settings between image I0 and image I1 with the following relation:

G0(p)

G1(p0)
= T01; (5.8)

where p and p0 are the matching positions in the two images (an object of the scene that
appears in image I0 at location p appears at location p0 in image I1). Now, if the camera
moves between the two pictures (i.e. p 6= p

0), Equation (5.8) has to take the vignetting
phenomenon into account, and becomes

V (p) � G0(p)

V (p0) � G1(p0)
= T01;

where V (p) is the vignetting correction factor defined in Section 5.4 (V (p) = cos�4 �).
Furthermore, to fit the model described in Section 5.2.4, the system has to take the flare (or
the black point compensation) into account, hence

V (p) � G0(p) +K01

V (p0) � G1(p0)
= T01:

The factor K01 accounts for the flare difference in the two image, but does not explicitly
express the flare difference. The variables K01 and T01 are related to the variables of Section
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Figure 5.8: De-regularising the error surface by filtering. (a) Shows an image su-
perposition and (b) the associated error surface for a translational motion model. (c)
Shows the same image superposition, but using filtered images, and (d) shows the
associated error surface. We can notice that by filtering the images, the error surface
becomes irregular and makes a motion estimation algorithm more sensitive to initial
conditions.
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5.2.4, through

K01 =
Ek;0 �Ek;1

Ew;0 �Ek;0

;

T01 =
Ew;1 �Ek;1

Ew;0 �Ek;0

;

for each colour channel independently. E �;i designate the illuminance variable of Section
5.2.4 for one of the colour channels associated to image i.

The estimation of the OECF inverse (i.e. parameters fc1; :::; cNg) and the exposure pa-
rameters (K01 and T01) is done in an iterative way. The OECF is found by computing the
mis-registration h between the images in the overlap area

h(c1; :::; cN ) =
1

n

nX

i=1

Wi � kri[c1; :::; cN ]k2 ;

ri(c1; :::; cN ) , fV (pi) �G0(pi) +K01 � T01 � V (p0

i) �G1(p
0

i)g �Wi;

and set its derivative to zero:
@h([c1; :::; cN ]T )

@[c1; :::; cN ]T
= 0: (5.9)

The factor Wi allows to put more weight on reliable pixels, and is computed according to
Section 5.5.3. There are n pixels in the overlap area fp i;p

0

ig. The system of equation in
(5.9) is a linear system that is solved under the constraint that function G (�) outputs values
in the range [0; 1], i.e.

NX

d=1

cd = 1:

Once the OECF is found, the factors K01 and T01 are found using either a linear regression,
or during a motion estimation iteration described in Chapter 2.

5.6 Results

In this section, the colour correction method are evaluated on image pairs. The image pair
is blended using a checkerboard-like technique: the overlap area can be considered as a
checkerboard; the black cells of the checkerboard contain the pixels from image I 0 and the
white cells of the checkerboard contain the pixels from image I 1. In terms of quality, the
checkerboard-like blending is about the worst that can be done to render the final mosaic and
is solely aimed at emphasising the mismatch in the registration.

5.6.1 Stitching images from a digital still camera

The images are taken with a digital still camera. The camera Opto-electronic conversion
function (OECF) is supposed to follow the polynomial model of Section 5.3.3 with 5 coeffi-
cients: G (I) = a1I + a2I

2 + a3I
3 + a4I

4 + a5I
5. The characteristics of the camera (the

OECF inverse) has been computed using the two images of Figure 5.9. The result is shown
in Figure 5.10.
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(a) (b)

Figure 5.9: Images used to fit a polynomial OECF model of the camera. The images
have the same white point but different exposures.
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Figure 5.10: Opto-Electronic Conversion Function Inverse of the olympus C-2500L
camera obtained by fitting a polynomial model of order 5 to the images of Figure
5.9.
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The first example shows an old building, taken with the camera set on automatic mode.
The camera used a shutter speed of 1=60 sec for the lower building and a speed of 1=200
sec for the top. The aperture was kept constant, and the white point changed. Figure 5.11(a)
shows the mosaic of this building without any colour correction. Figure 5.11(b) shows a
correction that assumes a fixed white point and a varying exposure. Figure 5.11(c) assumes
a varying white point and 5.11(d) corrects for the flare or the mismatch in the black point.
The images were aligned using a rotational model with lens distortion correction, and the
alignment parameters used to render these images are the ones found by computing image
5.11(c). It is worth mentioning that the colour correction improves the alignment of the
pictures, as illustrated in Figure 5.12, where one picture has been computed by assuming a
fixed white point and the other by assuming a varying white point. We should also mention
that a multi-resolution pyramid has been used and the complexity of the model is adapted
to the resolution. This means, for example, that to get the image of Figure 5.11(d), we first
assume a fixed white point, and do not adapt the focal length nor the distortion parameter
at the lowest resolution. Then, while the resolution of the pictures increases, we allow the
white point, the focal length and the distortion to vary. Finally, at the lowest level, we allow
the black point to be adapted. If we would have adapted every parameter from the start, the
system would have landed in a local minimum, and the result would not have been as good.

Another mosaic estimated with the exact same procedure is depicted in Figure 5.13. The
focal length used is about half as big (i.e. 45mm versus 110mm), making the alignment
more tricky. Aligning pictures taken with a wide angle lens is more difficult because of the
increased distortion of the image, especially when using a lens with a zoom, and because of
the greater impact that a bad alignment of the optical centre can have on the image. Figure
5.13(a) shows the mosaic of the original pictures, without any colour adjustments, 5.13(b)
shows the mosaic adjusted with the nominal shutter speed given by the camera, 5.13(c) shows
the white point corrected mosaic, and 5.13(d) shows the black and white point corrected
image. In the original pictures, shown in Figure 5.14, there is a big difference in the white
point. The mosaic has been rendered with the motion parameters of Figure 5.13(c). The
mosaic shows a gradual improvement with the complexity of the model, except at the end:
this time, the black point adjustment did not improve the final result, and in some sense, the
result is worse when trying to adapt for the black point.

In the third example, depicted in Figure 5.15, the OECF has been estimated on the picture
overlap. Here, the method is quiet sensitive to the order of estimation: The images have first
been aligned by assuming a certain shape of the OECF (the sRGB shape presented in Section
5.3.2), and then an iteration between OECF and image alignment has been performed. The
result is shown in Figure 5.15(c). For the sake of comparison, Figure 5.15(d) contains the
mosaic processed like in the former two examples. Figure 5.15(b) shows the result of using
the exponential OECF of Section 5.3.2. There, the result is not as good as in 5.15(c), but
the method is less sensitive to the order of estimation. We should also mention that by only
working on image pairs and not globally on a whole mosaic, it is not possible to estimate the
exposure parameters and the polynomial OECF simultaneously. At least one of the two has
to be fixed, because a slight change in the OECF can compensate for a shutter speed change,
given that noise is present in the images. If the white point changes between the image, then
one has to estimate the OECF using the achromatic channel and estimate the white point like
in the former example. If the change in white point is not important, it will be compensated by
the shape of the OECF. When working with more than two pictures at a time, [Mitsunaga and
Nayar, 1999] showed that on still images (where there is no camera motion involved), only
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(a) (b)

(c) (d)

Figure 5.11: Illustration of the colour correction process. (a) original mosaic with-
out correction. (b) Shutter speed compensation (b) shutter speed and white point
compensation (d) shutter speed, white point and black point (or flare) compensa-
tion. The mosaic shows a gradual improvement of quality (although the difference
between (c) and (d) may not appear if the quality of the print is not good enough).
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(a) (b)

Figure 5.12: Improving the alignment using colour correction. (a) shows the align-
ment of the picture for a fixed white point assumption; notice the mis-alignment of
the window in the middle-right. (b) Alignment using a varying white point. This
example illustrates that the colour correction helps the motion estimation algorithm
on the ill-posed problem of the focal length and the lens distortion parameter esti-
mation.
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(a) (b)

(c) (d)

Figure 5.13: Illustration of the colour correction process. (a) original mosaic with-
out correction. (b) Shutter speed compensation with parameters given by the camera
(b) shutter speed and white point compensation (d) shutter speed, white point and
black point (or flare) compensation. The mosaic shows a gradual improvement of
quality until (c) (although the difference between (c) and (d) may not appear if the
quality of the print is not good enough).

(a) (b)

Figure 5.14: original pictures used to build the mosaic of Figure 5.13.
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(a) (b)

(c) (d)

Figure 5.15: Comparison of OECF models and estimation techniques. (a) Original
- not corrected. (b) White point estimation with exponential OECF. (c) polynomial
OECF estimated on image overlap. (d) White point estimation with polynomial
OECF (estimated off-line).

an approximate knowledge of the exposure parameter is necessary to get back the OECF. To
apply the algorithm in a global way, we would need to use the technique described in Section
3.1.3, but unfortunately, we did not have the time to test this hypothesis on a real mosaic,
because of the heavy implementation cost that such an algorithm requires.

The exponential model of Section 5.3.2 does not perform as well as the polynomial model.
Nevertheless, its behaviour is more predictable, in the sense that it never goes totally out of
control. Again, if the exposure settings of the camera is unknown, then it is advisable to keep
the gain parameter a in (5.3) constant and estimate only the exponential term b along with the
exposure parameter of the images.

The polynomial OECF model, and its estimation method has the particularity of either
working quite well or failing totally. An example of failed estimation is given in figures
5.16(b) and 5.17(c). In the example we tested, when the estimation failed, it delivered a non
monotonic curve. This makes a failure easy to detect and in the case when only one or two
curve failed (out of the three colour channels) it is possible to use the curve that succeeded
and apply it to the other channels. This has been done to compute Figure 5.16(c) where the
red curve has been computed from the blue and green ones. The curves found for 5.16(b)
are depicted in Figure 5.16(d). In the case of Figure 5.17(c), since every curve failed, this
method cannot be applied. By carefully examining Figure 5.17(b), we can see that, since
the sky matches more or less and the cathedral colour is in total mismatch, there was an
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illumination change in the scene that occurred between the two pictures, which violates one
of our basic assumptions (to be more specific, E (�) in Equation (5.1) is not the same in both
pictures). In other words, the light in the scene changed, and caused a colour change, which
is strictly speaking not reversible. To handle this kind of situation in an exact fashion, we
would need to know the spectral content of the image for each pixel, and not just an RGB
value.

5.6.2 Stitching images from slides

In the first example, we use two pictures that have been scanned from slides. The slides are
on Kodachrome 64 film, whose characteristics can be found on the manufacturer Web site.
The slide characteristics is given by the D-LogH curve of Figure 5.5, which relates the film
density to the log-exposure. Then, the slide is passed through a scanner whose OECF has
been computed by the characterisation process of Section 5.3.1. The result of the mosaicking
is shown in Figure 5.18. The picture have been taken using a fixed exposure and focal length.
Figure 5.18(a) shows the original mosaic without any colour correction. The pixel values are
the one originally delivered by the scanner. This results shows what any standard mosaicking
algorithm would do. Figure 5.18(b) shows the mosaic processed with colour correction,
but without taking vignetting into account. The estimated photometric parameters are the
exposure difference between the images, measured independently in the Red, Green and Blue
channel. This accounts for the difference in white balancing and gain that may occur in the
scanner. In this example, it is not clear to us whether the change in exposure occurred in
the scanner or because of the camera shutter imperfections. Figure 5.18(c) shows the final
mosaic, with vignetting correction. The only difference between 5.18(b) and 5.18(c) is the
vignetting correction.

5.7 Conclusions

This chapter presented a set of technique that enable to recover the raw data out of a picture,
i.e. a radiance map of the scene, and render the final picture according to the radiance of the
scene.

We want to emphasise that this chapter presents some examples of parametric models that
are used to retrieve the raw data from the pictures. The important matter are not the models
themselves, but rather the approach that is used. Ideally, a good colour correction algorithm
should use all the information available from the camera manufacturer, and estimate only the
parameters that may change between the pictures.

Among the different techniques used to correct the colours, we preferred the one that
uses a set of still pictures to compute the camera characteristics, like in Figure 5.11. This
technique gave very satisfactory results, and did not require as much effort as the example
using slides in Figure 5.18. Estimating an Opto-Electronic conversion function (OECF) on
an image overlap using a polynomial model can be unpredictable, as shown in Figure 5.17.
The exponential model of the OECF did not give very good results, but still improved the
quality of the mosaic. Nevertheless, in the example we tested, it always gave an improvement
compared to the uncorrected mosaic, and has a more predictable behaviour.

Chapter 4 that deals with outliers, can be combined with this chapter by applying the
outlier detection techniques to the raw data output by the algorithms outlined in this chapter.
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Figure 5.16: Simultaneous OECF and motion estimation. The OECF is estimated
on the image overlap. (a) Original mosaic. (b) Correction with OECF estimation -
the estimation of the red curve failed. (c) The red curve is computed from the blue
and green ones. (d) OECF plot of image (b).
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Figure 5.17: Simultaneous OECF and motion estimation. The OECF is estimated
on the image overlap. (a) Original mosaic. (b) Exposure Compensation - a change
in the lighting of the scene occurred: the sky matches in a region right next to a huge
mismatch on the wall of the church. (c) Failed correction with OECF estimation (d)
OECF plot of image (c).
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(a)

(b)

(c)

Figure 5.18: Colour correction using slides with prior calibration. (a) Original
mosaic (b) Exposure correction (c) Exposure and vignetting correction. The figure
shows a step-wise improvement with the model complexity.
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Chapter 6

On the Rendering of High
Dynamic Range Images

This chapter presents a new algorithm for rendering high dynamic range images, captured
with a digital still camera. It is image dependent, takes spatial information into account,
and tries to maintain local perceived contrast as best as possible. If the dynamic range of
the starting image is much to high for the capabilities of the output device, a compression
of the perceived contrast will be performed. The calculation of the perceived contrast at
each position within the image is based on a complex model of the human visual system
taking the contrast sensitivity function as well as the contrast discrimination function into
account. Naturally, those functions depend on luminance, frequency, and viewing conditions.
The algorithm has been applied on raw images (12 bits per colour channel) captured with a
professional camera and produces 8 bits per channel images, displayable on a conventional
monitor.

6.1 Introduction

Examining a natural outdoor scene on a bright sunny day, one can easily observe huge lumi-
nance differences between areas in the shadow and areas in bright sunlight. The ratios can
easily be in a range of 1 to 1’000. If we want to capture an image of that scene with a digital
still camera and display it on a monitor, we will observe that no matter which camera settings
we choose we will either loose the details in the dark area or the details in the bright areas.

In order to overcome that problem, two issues have to be considered: the first one is the
capturing of the high dynamic range scene. The raw data, which is captured by the CCD and
delivered by the A/D converter, consists currently of 12 to 14 bits per colour channel, which
is certainly not enough. The second problem is the rendering of a high dynamic range image,
i.e. the transformation of a 14 bit per channel image to an 8 bit per channel image, which is
a common number for the final output of a digital still camera. The first problem can either
be solved through the combination of several images of different exposures or via improved
CCD’s. It is an interesting problem, but it will only briefly be discussed in Section 6.2.

The core of this chapter deals with the second problem, how to transform a broad range
of luminance values present in a high dynamic range scene into luminance values displayable

103
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Figure 6.1: Image of a high dynamic range scene captured and rendered with tradi-
tional techniques. The details under the arches are totally lost whereas the observer
who took the picture was able to see them.

at a monitor. The goal of this transformation is to compress the dynamic range while main-
taining the perceived similarity between the original scene and the corresponding image, as
best as possible. Sections 6.4 to 6.8 will discuss features of the human visual system that
will be used in our new rendering algorithm, proposed and extensively discussed in Section
6.9. Unlike other approaches, our algorithm uses a fairly complex model of the human visual
system, which ensures accuracy, robustness and extendibility. Images demonstrate the results
of our approach.

6.2 Acquisition of high dynamic range images

Current digital cameras have a poor dynamic range capturing capability. To get high dynamic
range pictures, several differently exposed images can be merged together into a single high
dynamic range radiance image. An example of differently exposed images is given in Figure
6.2. To merge the images together, one has to use the exposure parameters of each image and
the camera Opto-Electronic Conversion Function (OECF), i.e. the function that relates the
scene illuminance hitting the sensor to the pixel value (see Chapter 5). Methods for comput-
ing a high dynamic range image have been proposed by Mitsunaga [Mitsunaga and Nayar,
1999], Debevec [Debevec and Malik, 1997], Robertson [Robertson et al., 1999] and Mann
[Mann and Piccard, 1995; Mann, 2000]. Additionally, The ISO standard [ISO 14524:1999,
1999] contains all the information needed to measure an OECF with laboratory equipment.
Once a high dynamic range image has been computed, a rendering of that image has to be
performed taking the contrast ratio of the individual devices into consideration. In order to
separate the generation of a high dynamic range image from the rendering step, a profes-
sional camera, which has the capability to output 12 bits raw data pixels was used in our
experiments. The use of raw data, i.e. pixel values that are proportional to the scene radiance,
avoids most of the artifacts introduced by an OECF. Furthermore, we will assume that the
images output by the camera are flare corrected.
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(a) (b)

Figure 6.2: Input images to the acquisition of high dynamic images algorithm. (a)
Contains the details in the bright region, whereas (b) contains the details in the dark
areas. Merging the two images together results in a high dynamic range image.

6.3 State of the art

There are two major trends in the research for dynamic range compression: The first tries to
mimic the behaviour of the retina at a very early stage in the vision process and is based on the
retinex theory, a technique developed by Land and McCann [Land and McCann, 1971] (see
McCann [Funt et al., 2000] for implementation details). The second trend uses the properties
of the human visual system at a higher stage, by means of the psycho-physical measure-
ment on contrast sensitivity. The more traditional techniques use image dependent lightness
rescaling functions, like in Braun [Braun and Fairchild, 1999] or make these function spatially
varying, like in Moroney [Moroney, 2000] or in Kobayashi [Kobayashi and Kato, 1999]. Tra-
ditional techniques are problematic if they are applied to images with high contrast levels.
Other techniques used in computer graphics increase the perceived dynamic range of an im-
age by reproducing the effect of scattering in the eye lens that occurs when there is an strong
source of light in the scene [Spencer et al., 1995]. The emphasis of this chapter is on the use
of the contrast sensitivity functions of the human visual system to render high dynamic range
scenes.

Tumbling [Tumbling et al., 1997] proposed a method to render a scene which varies
according to where the observer is supposed to look in the picture. Pattanaik [Pattanaik et al.,
1998] and Ferwerda [Ferwerda et al., 1996] proposed an interesting method that applies the
contrast sensitivity function of the eye to each frequency subband of an image separately. It
also models the response of the 2 types of receptors present in our eyes - the rods and the cones
- and is able to reproduce the decrease in colour perception with decreasing illuminance.
Their method also adapts to illumination conditions by means of an incomplete chromatic
adaptation based on a grey world assumption. Nevertheless, it does not specifically address
the question of dynamic range compression: it builds a very general model that computes the
contrast perception out of a scene, but does specify how to handle the contrast if it results
to be too large to be displayed on the output device. More specifically, the algorithm leaves
the reader with two choices to handle the lowest frequency subband and claims that the real
solution should lie in-between the two following extremes: one of the method does a lot of
range compression, whereas the other leaves the range unchanged, letting the user find the
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right balance in-between the two solutions.
The method presented in this chapter extends a part of the work of Pattanaik [Pattanaik

et al., 1998], by introducing some new concepts: It is based on a model of vision proposed
by Barten [Barten, 1999] that merges the measurement on sub- and supra-threshold vision
of several authors. It also explicitly defines a way of compressing the dynamic range of an
image, by leaving the just-noticeable details unchanged and influencing only the big contrast
regions of a scene. Finally, it is able to map a large field of view image into the fields of view
of a regular image in a way that is consistent with the perceptual model. The description
starts with a review of the human visual system properties that are relevant to the perception
of a scene. It then summarises the model of contrast perception proposed by Barten [Barten,
1999]. Finally, it explains how to use this model to render a scene.

6.4 Performance of the human visual system

The human eye contains two types of photo sensors: the rod and the cones. The cones
are responsible for the vision at high luminance level, or photopic vision, and are capable of
colour perception, whereas the rods are more sensitive at low luminance levels, i.e. at scotopic
vision, and are not capable of distinguishing colours. The distinctions among the colours is
enabled by the three types of cones present in the retina [Stockman et al., 1993], whose
sensitivities are depicted in Figure 5.3. The human visual system can handle scenes that have
luminance values that range from 10’000 to 1 from highlights to shadows, while a single
cone is only able to handle a dynamic range of about 100 to 1. This apparent contradiction
can be explained by assuming that the human visual system responds to contrast rather than
to absolute luminance values. It is believed that it locally adapts to the current luminance.
From now on, we will focus our attention on contrast perception, and our goal is to produce
an image whose perceived contrast is as close as possible to the contrast perceived in the
original scene.

The relationship between a contrast present in a scene and the contrast perceived by a
human being is often described by a contrast sensitivity function (CSF). More specifically,
the contrast sensitivity measures the smallest noticeable contrast - or threshold - in a given
situation, but does not define how much contrast is perceived in an image. A more gen-
eral description of contrast perception is given by the contrast discrimination function, which
measures the smallest perceivable difference between two similar contrasts. The contrast sen-
sitivity is a function that depends on luminance, spatial frequency, temporal frequency, noise
and field of view. Unfortunately, it is often presented as a function of two variables in the
literature, leading to apparently contradictory results. Nevertheless, the published measure-
ments can be consistently merged into a single multi-variable model, as was done by Barten
[Barten, 1999], for monochromatic signals. Even if this last author managed to merge the
different contrast sensitivity measurements of a large set of authors into a single model, this
model contains many variables that have to be tuned to match each individual measurement,
leaving a doubt on what is the right perceptual parametrisation for our purposes.

Since we are dealing with photography, we will assume that the temporal frequency will
not come into play for the rest of the chapter, even if it still could play a role because of the
eye swapping across an image and generating patterns on the retina varying over time.

Remark. Unless stated explicitly, contrast sensitivity refers to the contrast sensitivity to
achromatic light.
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6.5 Contrast definitions and measurement

Psycho-physical experiments measure the sensitivity of an observer to the contrast of a set of
patterns. These patterns are very simple stimuli, for example a square pattern on a uniform
background, a sinusoidal pattern, or a Gabor patch [Watson and Solomon, 1997]. In order
to characterise the contrast of these patterns, very basic contrast definitions are used: One of
these is the Weber contrast, defined as

CW =
�L

L
;

where �L is the variation in luminance, and L is the background luminance. This defini-
tion suits well the stimulus composed of a square patch on a uniform background: �L is
the difference in luminance of the square and the background, and L is the background lumi-
nance. In the case of a sinusoidal pattern, a more suitable definition is given by the Michelson
contrast [Michelson, 1927]

CM =
Lmax � Lmin

Lmax + Lmin
;

where Lmax and Lmin are the maximum and the minimum luminance that can be found in
the sinusoid. These definitions are not equivalent and do not even share the same range of
values: Weber contrast can range from�1 to1, whereas Michelson contrast can range from
0 to 1. For natural images, none of these definition is suitable: there is a need to know the
contrast locally in the image. Peli [Peli, 1990] addressed the issue and proposed a band-
limited contrast, given by

CPj (x; y) =
 j � I(x; y)

�j � I(x; y)
; (6.1)

where  j is a band-pass filter, �j is a low-pass filter and I(x; y) is the image. Peli’s contrast
defines the contrast value for each pixel of the image. Note that in order to be well defined,
and given that I(x; y) and �j are positive real valued (integrable) functions (and  j is inte-
grable as well), it is sufficient that the support of  j is contained in the support of �j , and
that �j exhibits no zero-crossings. This prevents the contrast from going to infinity. If the
conditions are fulfilled, �j � I(x; y) = 0 implies CPj (x; y) = 0.

When implementing an algorithm using a pyramidal decomposition, the band-pass filter
used to compute the contrast can be found by subtracting two low-pass filters at different
scales. Equation (6.1) can be rewritten as

CPj (x; y) =
(�j � �j+1) � I(x; y)

�j+1 � I(x; y)
;

where �j+1 is the low-pass filter used to compute the image of lower frequency in the pyra-
mid.

Lubin [Lubin, 1995] modified this contrast measure by subtracting the band-pass band by
the next lower low-pass band in the pyramid, leading to the following contrast definition:

CLj (x; y) =
(�j � �j+1) � I(x; y)

�j+2 � I(x; y)
:

Peli and Lubin definitions of contrast are very similar except that Peli’s contrast tend to exhibit
more overshoot around edges. Nevertheless, both definitions suffer from the same drawback
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(a) (b)

(c) (d)

Lmax

Lmin

contrast = (Lmax-Lmin)/(Lmax+Lmin)

(e)

Figure 6.3: Illustration of contrast (a) High contrast, low frequency (b) High con-
trast, high frequency (c) Low contrast, low frequency (d) Low contrast, high fre-
quency (e) Michelson contrast definition.

that can be understood by studying the response to a sinusoidal stimulus: The response oscil-
lates at the same frequency than the stimulus. More generally, when there is an edge in the
image, the value of contrast is equal to zero at the exact location of the edge, which is a very
undesirable property of these contrast measures. This property is visible in Figure 6.5(f).

To circumvent these problems Vandergheynst [Vandergheynst and Gobbers, 2001; Win-
kler and Vandergheynst, 1999] proposed a contrast measure, which, if used on one-dimensional
signals, uses the envelope of the signal. In the case of a sinusoidal signal, the envelope of the
signal is equal to the amplitude of the sinusoid; thus the response to a sinusoid is a constant
value. The envelope of a signal is illustrated in Figure 6.4, and can be computed using a
Hilbert transform [Haykin, 1994]. In two dimensions, there is no single Hilbert transform,
and the envelope has to be computed using a set of analytic filters [Vandergheynst and Gob-
bers, 2001; Winkler and Vandergheynst, 1999].

6.5.1 Notations

The functions used throughout the chapter are often described in Fourier - or frequency -
domain [Oppenheim and Schafer, 1989]. Whenever a function is in frequency domain, it will
be denoted by a “ ^ ” , for example if �j(x; y) is a function in spatial domain, then �̂j (!; ')
denotes its Fourier transform.

6.5.2 Isotropic local contrast

A method proposed by Vandergheynst [Vandergheynst and Gobbers, 2001; Winkler and Van-
dergheynst, 1999] defines a local contrast measure, which is isotropic and exhibits a flat
response when confronted to a sinusoidal signal. For each frequency band j, the method uses
N oriented filters  jk , which are defined by their Fourier Transform  ̂jk [Oppenheim and
Schafer, 1989]. The system is expressed in Fourier domain and in polar coordinates:

 ̂jk (!; ') = �̂j(!)�k (') ;
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Figure 6.4: Plot of a signal and of its envelope. The envelope measures the ampli-
tude of the signal modulation and can be used to compute the contrast.

where ! is the spacial frequency and ' is the angle in the Fourier plane. �̂ (�) is the radial
frequency response and � (�) is the angular frequency response. A simple constraint on �̂ (�)
and � (�) is given by

N�1X

k=0

�

�
'�

2�

k

�
= 1;

P�1X
j=0

�̂j(!) = 1: (6.2)

where P is the number of subbands contained in the multi-resolution pyramidal decompo-
sition of the original image. These function cover the whole frequency plane, and allow a
reconstruction of the image I (expressed in polar coordinates)

I(r; ') =

N�1X
k=0

P�1X
j=0

�

�
'�

2�

k

�
� �j(r) � I(r; ');

where � denotes the convolution operation. The radial band-pass function �̂j(!) is given by
the difference of the the scaling functions �̂ used to build the multi-resolution pyramid

�̂j(!) = �̂j (!)� �̂j (2!) , �̂j (!)� �̂j+1 (!) :

In our implementation, the pyramid is a difference-of-Gaussians multi-resolution pyramid,
where �̂j (!) is given by

�̂j (!) , �̂
�
2j!

�
�̂ (!) = e�

!
2

2�2 : (6.3)



110 On the Rendering of High Dynamic Range Images

In order to avoid aliasing when sub-sampling the different bands of the pyramid, � is set to
� = 0:45. The angular frequency response is given by a combination of Schwarz functions,
which are described in Appendix C.

Finally, the contrast is computed as a sum of the in-phase and quadrature components
[Haykin, 1994] of each filtered image

Cj (x; y) =

q
2
PN=2

k=0 j jk � I (x; y)j
2

�j+1 � I (x; y)
; (6.4)

divided by a low-pass version of the image �j+1 � I (x; y). Figure 6.5 shows an example of
contrast computation along with the different filters involved. We must say that the isotropic
contrast measure exhibits an artefact where there are edges of big amplitude, as can be seen
in Figure 6.7. The contrast decreases smoothly across the edge and shows some bleeding. At
the present time, we are unable to say if these artifacts are due to an implementation problem,
a numerical problem or are more fundamental.

6.5.3 Yet another contrast measure

The contrast measure of Section 6.5.2 has all the properties needed to describe the contrast,
nevertheless it has one major drawback: it is difficult to implement efficiently. Our goal is
not to measure the contrast in the image, but to modify the image in order to maintain the
contrast, a task that, in some cases, can be performed without measuring the contrast, as will
be seen in Section 6.9.1. For our purposes, the contrast should exhibit a maximum at the
edge locations, should decreases monotonically away from the edge, and should not exhibit
any zero crossings. This can simply be done by taking the derivative amplitude of the image,
which can be computed by combining the derivatives along the lines and the columns of the
image:

D̂
(x)
j (!x; !y) = j!x � �̂j � Î (!x; !y)

D̂
(y)
j (!x; !y) = j!y � �̂j � Î (!x; !y)

Dj(x; y) =

r�
D
(x)
j (x; y)

�2
+
�
D
(y)
j (x; y)

�2
where Dj is the amplitude of the derivative of the image in the j-th level of the multi-
resolution pyramid, and �̂j the low-pass filter (expressed in Fourier domain) used to get the
j-th level of the multi-resolution pyramid from image I . If the cutoff of the low-pass filter is
small enough compared to the Nyquist sampling rate, the derivative can be computed using a
very simple difference operator:

Dj(x; y) ' 2j�1
q

[Dj (x+ 1; y)�Dj (x� 1; y)]2 + [Dj (x; y + 1)�Dj (x; y � 1)]2 :

Finally the contrast CD
j (x; y) is obtained by dividing the derivative by a low-pass image:

CD
j (x; y) =

(
Dj(x;y)

�j+1�I(x;y)
; Dj(x; y) > 0

0; else
: (6.5)
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(a) (b)

(c) (d)

(e)

Figure 6.5: Illustration of the isotropic contrast computation (a) Horizontal filter.
(b) Horizontal contrast. (c) Vertical filter. (d) Vertical contrast. (c) Isotropic contrast
Gj .
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Figure 6.6: Contrast estimator evaluation. (a) Step response of the contrast estima-
tors. Peli’s contrast is equal to 0 at the edge location. The derivative contrast is more
centred around the edge than the isotropic contrast. (b) Frequency responses of the
contrast estimators. Peli’s and the isotropic contrast live in the subband region. ! I

denotes the Nyquist frequency of the image [Oppenheim and Schafer, 1989].

This estimate of contrast has its maximum at the edge locations, and has no zero cross-
ings. Nevertheless, with a sinusoidal input, it oscillates with the same frequency of the si-
nusoid. Furthermore, when considering all the frequency components, it is not normalised
like the isotropic contrast through Equation (6.2). Nevertheless, it is perfectly suitable for the
application that follows.

Figure 6.6 shows the responses of the contrast measures for a sharp edge; it shows the
edge that passed through the low-pass filter �̂j , along with Peli’s contrast and the isotropic
contrast. The curves in the figure have been obtained without dividing by the low-pass func-
tion, i.e. if C is the contrast, the plot shows C ��j+1 � I (x; y). We can see that the derivative
based contrast is more centred around the edge, and fails to completely catch the support of
the subband. Figure 6.7 shows the contrast of an image, estimated with Peli’s contrast, the
isotropic contrast and the derivative-based contrast.

Remark. The derivative based contrast could be extended by adding Peli’s contrast to
it; that would be approximately the in-phase and quadrature sum of the signal. Nevertheless,
such a measure of contrast would have other problems like, for example, zero-crossings.

6.6 Threshold model of vision

The threshold model of vision describes the just noticeable differences in luminance that the
eye is able to perceive in a given situation.

To give some intuition about contrast sensitivity, here are some rules:

� The contrast perception does not depend on luminance. This applies at very high lu-
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Contrast metric comparison. (a) and (d) Peli’s contrast (absolute value).
(b) and (e) Isotropic contrast. (c) and (f) Derivative-based contrast. Peli’s contrast
is equal to 0 at the edge location, that appears as a black line in the middle of two
side-lobes.
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(a) (b) (c)

Figure 6.8: Contrast sensitivity function of the eye. (a) Sensitivity at different
retinal illumination levels (b) sensitivity for a monochromatic signal [circles] and
a red-green signal [squares]. (c) sensitivity for two different temporal frequencies
plotted against the mean luminance of the display. Adapted from [Pattanaik et al.,
1998].

minance and/or at low spatial frequency and is known as the Weber’s Law 1.

� The contrast perception and the colour saturation increases with luminance. This is
generally true, except at very high luminance or very low frequency. This rule is some-
times referred to as sub-Weber behaviour.

� At low spatial frequency, the contrast sensitivity increases linearly with frequency.

Figure 6.8(a) shows an example of measured contrast sensitivity functions. It has been
measured for an achromatic signal, at different frequencies and luminance levels. The con-
trast sensitivity increases with increasing luminance level, thus showing a sub-Weber be-
haviour, until it reaches a particular value and stays constant. Figure 6.8(b) shows the con-
trast sensitivity function for a monochromatic signal and a red-green opponent colour signal,
at a particular luminance level. The figure shows that, at high spatial frequency, the contrast
sensitivity of the eye is better for monochromatic signals. It also shows that the sensitiv-
ity to monochromatic signals shows a band-pass behaviour, whereas the contrast sensitivity
to colour signals shows a low-pass behaviour. Figure 6.8(c) shows the detection threshold
against time. Time issues come into play when our eye swaps across an image, inducing
timely varying patterns on the retina. The figure shows that if the exposure time to a pattern
is short, the contrast sensitivity increases with luminance level. The lower curve tends to a
slope equal to 1, and thus follows Weber’s law - i.e. contrast perception is independent of
luminance. The upper curve shows a sub-weber behaviour, and has a slope of 0.85.

In his book, Barten [Barten, 1999] tries to build a contrast sensitivity function by mod-
elling the various physical phenomena that affect our perception. These phenomena are:

� The photon noise of the light.

� The neural noise.

1Weber’s law is valid in the range of luminance where the curves of Figure 6.9(a) overlap.
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� The lateral inhibition process in the retina.

� The optical point spread function or optical modulation transfer function.

� The signal-to-noise ratio of the photo-receptors.

Photon noise occurs because of the discrete nature of light, and its effects disappears at
high luminance levels. Photon noise causes Weber’s law to fail at low luminance. Neural
noise is generated by the statistical fluctuation in the signal transported to the brain. Lateral
inhibition is a mechanism that is generated by the neural inter-connection. The optical point
spread function is determined mainly by the eye lens and by the structure of the retina 2.

Barten gives a model for the contrast sensitivity function of the eye with the following
formula:

CT (!;L; Lpup) =
Mopt(!;Lpup)

k �

vuut 2

T

�
1

X2
o

+ 1

X2
max

+ !2

N2
max

� 
1

�pE(L;Lpup)
+ �0

1�e
�( !

!0
)
2

! (6.6)

where ! is the spatial frequency. Mopt(!;Lpup) is the modulation transfer function of
the eye optics. k is the detection signal-to-noise ratio of the photo-receptors in the eye.

1
�pE(L;Lpup)

is the photon noise. �0

1�e
�( !

!0
)
2 models the lateral inhibition in the retina and

2
T

�
1
X2
o

+ 1
X2
max

+ !2

N2
max

�
models the spatio-temporal integration volume (measured in the

eye) over which the noise has an influence.
The modulation transfer function is assumed to be Gaussian and can be computed using

Mopt(!;Lpup) = e�2�
2�2!2

� =

q
�20 + [Cabd (Lpup)]

2 (6.7)

where d (Lpup) is diameter of the pupil, ! the spatial frequency in cycles=deg, �0 is the point
spread function basic width andCab describes the increase of the point spread function width
at increasing pupil size. Typical values for these parameters are given in Table 6.1. The pupil
diameter d can be deduced from the mean luminance L pup using [Le Grand, 1969, p. 99]

d (Lpup) = 5� 3 tanh(0:4 log10 Lpup) [mm]: (6.8)

To compute the photon noise 1
�pE(L;Lpup)

, � is the quantum efficiency, p a conversion fac-
tor to keep the unit system coherent and E (L;Lpup) the retinal illuminance. The retinal
illuminance can be computed using [Moon and Spencer, 1944; Jacobs, 1944]

E (L;Lpup) =
�d2

4
L

"
1�

�
d (Lpup)

9:7

�2

+

�
d (Lpup)

12:4

�4
#

(6.9)

where d is the pupil diameter expressed in mm and L is the luminance. The retinal illu-
minance is expressed in Trolands (Td). The volume over which the noise is integrated (in

2It is believed that diffraction effects are negligible.
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Figure 6.9: (a) Contrast sensitivity function of the human eye to achromatic light,
plotted as a function of spatial frequency and mean luminance. Time considera-
tions are left apart - the stimulus is assumed to be static (b) Illustration of contrast
sensitivity: one can see that the height at which the pattern disappears varies with
frequency. Adapted from [Nadenau, 2000].

p = 1:24� 106 photons

sec �deg2 �Td
k = 3:0 Nmax = 15 cycles

�0 = 0:0083 deg T = 0:1 sec Xmax = 12 deg

Cab = 0:0013 deg =mm � = 0:03 X0 = 60 deg

�0 = 3� 10�8 sec deg2 !0 = 7 cycles= deg

Table 6.1: Typical values for the parameters of the contrast sensitivity function

the eye) is given by the scene: Xmax is the maximum angular size over which the eye can
integrate, X0 is the angular size of the object the observer is looking at (i.e. the size of the
screen), Nmax is the maximum number of cycles that the eye is capable of integrating and T
is the integration time of the eye. The sizes are measured in degrees and we assume that the
objects of the scene have more or less the same height and width. Typical values for all these
parameters are given in Table 6.1, and the contrast sensitivity function is plotted in Figure
6.9.

6.7 Supra-threshold model of vision

In opposition to threshold models of vision that specify if there is any contrast to be seen,
supra-threshold model of vision try to quantify how much contrast is perceived in an image.
The experiment used to measure the contrast discrimination capability has been carried out
by asking people to distinguish between two sinusoidal patterns of different contrasts. For
a given contrast, it measures how much contrast has to be added to the other pattern until
the difference becomes apparent to the observer. This leads to the contrast discrimination
function.
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It turns out that the contrast discrimination function for monochromatic signals and pho-
topic vision can be approximated by

4Ct(m) =

s
C2

t + 0:04 k2m2

1 + 0:004 k m=Ct
+m2 �m; (6.10)

wherem is the current contrast, Ct is the contrast threshold in the current viewing conditions
and 4Ct is the amount of contrast that has to be added to m in order that an observer notices
a difference3. k is the signal-to-noise ratio whose value can be found in Table 6.1. The beauty
of this expression lies in the fact that once the contrast threshold has been computed, it only
depends on the real contrast (k has to be known to compute the contrast threshold). The
expression can be refined in order to account for noise, which can affect the perception by
masking the contrast

4Ct(m) =

s
C2

t + k2C2
n + 0:04 k2m2

1 + 0:004 k m=Ct
+m2 �m; (6.11)

where Cn is the average modulation of the noise component, i.e. the standard deviation of
the noise at the considered spatial frequency. This last equation can be used in presence of
viewing flare, whereCn represents the amount of flare compared to the local luminance of the
displayed image. By integrating this equation, we can compute how much contrast there is in
a signal in the sense of how many different distinguishable contrast levels there are between
a particular signal m and the contrast threshold:

C (m) = a �

Z m

m0=0

1

4Ct(m0)
� dm0: (6.12)

where 4Ct can be computed using either Equation (6.10) or Equation (6.11) and a is a
correction used to enforce CP (Ct) = 1 for Cn = 0 (a = 0:61). We will refer to C as the
perceived contrast (or psyco-metric contrast to get a better mnemonic for the exponent  ).
In perceived contrast space, a value of 1 means a just noticeable contrast, and a difference of
1 between any two values means a just noticeable contrast difference. This is independent of
the viewing conditions, i.e. independent of the luminance level, noise, field of view, etc. An
illustration of the perceived contrast function can be found in Figure 6.10.

6.8 Contrast sensitivity function for chromatic channels

The model presented so far is valid for achromatic light. The sensitivity of the eye to chro-
matic stimuli has been measured by Van der Horst [Van der Horst and Bouman, 1969],
Granger [Granger and J.C., 1973], Kelly [Kelly, 1983], Mullen [Mullen, 1985], Sankeralli
[Sankeralli and Mullen, 1996], Poirson [Poirson and Wandell, 1993, 1996], and Nadenau
[Nadenau, 2000]. The measure of the sensitivity to chromatic light is more challenging than
for achromatic light: It requires the creation of patterns of uniform luminance and a proper
alignment of the opponent colours in play. As a consequence, most of the measurements
have been done in the range of luminance of a CRT screen. The sensitivity to chromatic light

3
m stands for modulation.



118 On the Rendering of High Dynamic Range Images

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

N
b 

of
 d

is
tin

gu
is

ha
bl

e 
co

nt
ra

st
 le

ve
ls

Input contrast ratio Contrast/Contrast threshold

Integrated contrast discrimination function

no Flare         
flare ratio = 0.5
flare ratio = 1  

Figure 6.10: Perceived contrast function C  . The perceived contrast function is
a measure of how much contrast is perceived in a signal. The function is plotted
against the contrast relative to the just-noticeable-contrast, for different values of
flare. Flare masks our perception of contrast, and more contrast has to be present to
get the same impression.

varies with the colour space chosen, leading to differences in the published results. Poirson
and Wandell [Poirson and Wandell, 1993, 1996] defined an opponent colour space where the
sensitivity in the red-green channel and in blue-yellow channel are uncorrelated, which is a
very interesting property for our purposes. Nevertheless, to our knowledge, the chromatic
sensitivity for high luminance levels has not been measured yet. In addition, there is little
knowledge about supra-threshold models of vision in chromatic channels. Since the mea-
surement of such data is out of the scope of our work, we decided not to use the contrast
sensitivity function for chromatic light. Thus, the algorithm will only modify the luminance
channel of an image. The colour space used is the opponent colour space defined by Poirson
and Wandell [Poirson and Wandell, 1993].

6.9 Rendering algorithm

The goal of this algorithm is to produce an image that, given an output device, tries to preserve
the perceived contrast of the scene, defined by (6.12), as much as possible. The algorithm
works as follow:

Given a radiance image of the scene, it converts it into a opponent colour space, with
one achromatic channel, and two opponent colour channels defined in [Poirson and Wandell,
1993]. Only the achromatic channel is processed by the algorithm. The algorithm uses two
parallel work-flows: On the one hand it uses the contrast of Section 6.5.2 or Section 6.5.3,
coupled with the perceptual model of Section 6.7 in order to measure the contrast in the image
and to determine how this contrast has to be changed in the final image. On the other hand,
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it uses a subband decomposition of the image to apply the changes in contrast and finally
reconstruct a new image. The global algorithm is depicted in Figure 6.11, and the details
applied to each subband is shown in Figure 6.12.

Let I
R
j (x; y) be the reconstructed image, let j be the subband index and let N be the

number of subbands used. The reconstruction of the image starts with the band of lowest
frequency IRN (x; y), which in our case is an image composed of one single pixel 4. This
image is set to a value Lmout, which is derived from the mean luminance of the output
device: IRN (x; y) = Lmout. Then, each subband is added iteratively :

IRj�1(x; y) = IRj (x; y) + (�j�1 � �j) � I(x; y) �Gj(x; y); (6.13)

up to the final image IR
1
(x; y). I(x; y) is the original image, �j is the Gaussian low-pass filter

defined in Equation (6.3) and Gj(x; y) is a gain image derived from the contrast and from
the model of the eye. In practice, some down-sampling and up-sampling are involved, but
are not explicit in Equation (6.13) to simplify the notation 5. Once, the final image IR

1
(x; y)

is obtained, it can be transformed into a standard colour space for rendering. If the dynamic
range of the final image does not fit the output device, the parameter that controls the dynamic
range companding is modified accordingly, and the whole iteration of Equation (6.13) is run
once again to get to the desired image.

6.9.1 Simple gain image computation

To compute the gain image Gj(x; y), we need to know the contrast of the subband, the
contrast thresholds for the original viewing conditions, and the contrast thresholds for the
output viewing conditions.

For each pixel of the image, a contrast threshold value T j (x; y) for the original viewing
conditions is computed using

Tj (x; y) = Ct (!;L; Lpup) ;

! = ! [(�j � �j+1) � I ] ;

L = �j+1 � I (x; y) ;

Lpup = �p � I (x; y) ; (6.14)

where Ct (!;L; Lpup) is defined by Equation (6.6), ! is the centre frequency of the image,
and L is the adaptation luminance of the eye, which is assumed to be equal to the local
luminance around the pixel and is read from the low-pass image pyramid one level underneath
the current image. Lpup is the luminance used to compute the pupil diameter, which is
assumed to adapt to a frequency of 1

5
[cycles=deg], i.e. p is the index of the subband of

1

5
[cycles=deg]. The centre frequency of the image ! can be computed from the Nyquist

frequency !I of I(x; y) and from �j :

! [(�j � �j+1) � I ] = !I � argmax
!

�
�̂j � �̂j+1

�
;

' !I � 2
�j

� 0:96 � �: (6.15)

4To get a single pixel image, the original image is extended to a size of a power of 2 by mirroring across the
borders.

5Fundamentally, there is no need of using up- and down-sampling, but it makes the algorithm run faster and with
less memory.
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Figure 6.11: Rendering algorithm scheme. The image is decomposed into fre-
quency subbands. Each subband is processed by the algorithm described in Figure
6.12. The low frequency subband, i.e. the single pixel image, is set equal to the
mean output luminance. The companding function is adapted iteratively such that
the output dynamic range converges to the desired value.
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Figure 6.12: Rendering algorithm for one particular subband. The subband is mul-
tiplied by a gain image. The gain image is computed using the adaptation of the eye
by viewing the original scene, and the adaptation of the eye in the output conditions
by assuming that the user watches the image on the computer screen. The gain im-
age also involves a companding function that reduces the contrast by maintaining
the little details and affecting the important ones.
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The frequency of the image !I can be either derived from the focal length of the image (if it
is known), or by assuming the observer looks at the image from a distance equal to the image
diagonal. The frequency should be expressed in cycles/deg.

The contrast thresholds for the output viewing conditions T R
j (x; y) can be obtained sim-

ilarly be using

TRj (x; y) = Ct (!;L; Lpup) ;

! = !
�
IRj (x; y)

�
;

L = max
�
IRj+1(x; y); Fj+1

�
;

Lpup = Lmout; (6.16)

where IRj+1(x; y) is the image reconstructed at the previous iteration, and !
�
IRj (x; y)

�
is the

frequency of the image being reconstructed 6, computed using the same approach as in (6.15).
Fj+1 is the output flare value (if any), and Lmout is the mean value of the reconstructed
image.

In order to reproduce the perceived contrast (without compressing it) by ignoring flare
issues, the gain image is computed using

Gsj(x; y) =
TRj (x; y) � IRj+1(x; y)

Tj (x; y) � �j+1 � I (x; y)
: (6.17)

In this expression, the contrast gain is equal to T R
j (x; y) =Tj (x; y). Note that the contrast

image is absent from the expression. Unfortunately, the image generated by Equation (6.17)
cannot be displayed on the output device and some compression has to be introduced. Funda-
mentally, this is due to the fact that our perception is more accurate at high luminance, thus,
by decreasing the luminance of the scene while rendering it on a screen, its contrast has to be
amplified; TRj (x; y) =Tj (x; y) being in general bigger than 1.

6.9.2 Compressing gain image computation

This subsection introduces a method that compresses the dynamic range of the image by
maintaining the little details: Every detail visible in the scene should be visible in the final
image.

Let Cj (x; y) be the isotropic contrast defined by Equation (6.4). By using the contrast
thresholds Tj (x; y) of Equation (6.14), one can compute how much contrast is perceived
in Cj (x; y) by using the perceived contrast C 

j (x; y) given by Equation (6.12) - flare is

supposed to be absent in the input image, i.e. Cn = 0. Recall that a value of C 
j (x; y) = 1,

means that there is a just-noticeable-contrast at location (x; y). In order to prevent loosing
details in the final image, the companding function should leave the small values unchanged,
and is allowed to alter only the large values of contrast. In other words, the companding
function should have a derivative equal to 1 at the origin, and should introduce a compression
that smoothly increases with increasing inputs. The chosen companding function S (�) is
given by

S (C) = Cmax �

2

�
arctan

�
C

Cmax
�

�

2

�
; (6.18)

6Note that it is not necessary to know the current image content in order to know its frequency.
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Figure 6.13: (a) Companding function used to reduce the contrast of each subband.
The small contrast are left untouched whereas the big contrast values are reduced
by the function. (b) Companding function used at the very end of the algorithm.
The function tries to maintain the mid-tones and the shadows. The dashed line is
the identity function.

where Cmax is the maximum output of the function. The initial estimate of Cmax is set to
Cmax = 50; a plot of this function is depicted in Figure 6.13. By assuming that there is no
flare in the output device (Cn = 0), the gain image is given by

G
c
j(x; y) =

8><
>: Gsj(x; y) �

(C j )
�1

(
S

"
C
 

j
(x;y)

���
Cn=0

#)���
Cn=0

Cj(x;y)
; Cj (x; y) > 0

Gsj(x; y); else

; (6.19)

Where Gsj is given by Equation (6.17). The computation of C  as well as the computation

of its inverse
�
C j

�
�1

is done numerically and is applied using a lookup table, see Appendix

C for the implementation details. Equation (6.19) computes the perceived contrast, applies
a companding to it, recomputes the contrast from the companded perceived contrast and
evaluates the gain introduced by this whole procedure.

Finally, if flare is present in the output device, the gain image becomes

Gfj (x; y) =

8><
>: Gsj(x; y) �

(C j )
�1

(
S

"
C
 

j
(x;y)

���
Cn=0

#)���
Cn=Cout

Cj(x;y)
; Cj (x; y) > 0

Gsj(x; y); else

;

(6.20)
where Cout is the output flare contrast. The output flare contrast is given by

Cout(x; y) =

(
Fj

IR
j+1

(x;y)
; IRj+1(x; y) > 0

0; else
;

where IRj+1(x; y) is the output image reconstructed at the previous iteration, and F j is the

flare value (expressed in cd=m
2).
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(a) (b)

Figure 6.14: Contrast measurements (a) Isotropic contrastG j (b) Isotropic contrast
G�

j , with small details removed.

6.9.3 Selective compressing gain image computation

To compress the dynamic range of the image, the algorithm compresses the regions of big
contrast in the image. This has the undesirable side-effect of reducing the perceived contrast
in the image, and gives an impression of haziness to the picture. Compressing details that are
localised in a small region of the image does not contribute much to the overall dynamic range
compression, but impairs the final image quality. Ideally, the companding function should
affect only the edges whose influence span an important part of the image. These edges are
present in the high frequency contrast images - if the edge is sharp - as well as in the lower
frequency contrast images, whereas a small detail is only present in the high frequency images
of the contrast pyramid (see [Dragotti and Vetterli, 2000] for a more formal approach to this
statement). From this observation, it is tempting to get rid of the companding of the small
details, by comparing the different contrast images: since the contrast images are built on
an L1 normalisation, introduced by Equation (6.2) with the isotropic contrast, a strong edge
should generate the same contrast value in different subbands. Following this reasoning, a
very simple - but not very consistent - method of suppressing the companding of the small
details consists in replacing the contrast images by the minimum between the contrast in the
current subband and the one in the lower subband. This is performed up to the frequency
where the details are not considered to be small anymore. In other words, the new contrast
images are given by

C�

j (x; y) =

�
min

�
Cj (x; y) ; C

�

j+1 (x; y)
�
; j < Jdet

Cj (x; y) ; else
:

In practice, we chose to perform this transformation up to the band J det corresponding to 0:5
cycles=deg. The result of this transformation is shown in Figure 6.14(a) and 6.14(b). Then,
if flare is disregarded, the gain image can be computed exactly as previously by replacing
Cj (x; y) by C�

j (x; y) in Equation (6.19):

G�

j (x; y) =

8><
>: Gs

j(x; y) �

(C j )
�1

(
S

"
C
 �

j
(x;y)

���
Cn=0

#)���
Cn=0

C�

j
(x;y) ; C�

j (x; y) > 0

Gs
j(x; y) else:

; (6.21)
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where C �j (x; y) is the perceived contrast computed using C �

j (x; y). If flare is considered,
then the gain image is computed using

Gf�j (x; y) =

8>>>>>><
>>>>>>:

Gsj(x; y) �

8>>>><
>>>>:

(C j )
�1

(
S

"
C
 �

j
(x;y)

���
Cn=0

#)���
Cn=0

C�

j
(x;y) �

�

C
 �1

j

(
C
 

j
(x;y)

���
Cn=0

)���
Cn=Cout

Cj(x;y)

9>>>>=
>>>>;

C�

j (x; y) > 0

Gsj(x; y) else

:

Figure 6.15 illustrates the use of this last expression. The drawback of the algorithm in
Equation (6.21) is that the small details close to big edges do not get enhanced like the ones
distant from the edges.

6.9.4 Flare

Flare is supposed to be absent in the raw data image used by the algorithm. Furthermore, it is
assumed that no flare is involved if observing the real scene. The algorithm is able to account
for the viewing flare on the screen. Ideally, the algorithm should compute the input viewing
flare from the raw data, i.e. the flare caused by the scattering of the light in the lens and
the cornea of the eye. Then, use the function C  defined in Equation (6.11) to compute the
perceived contrast under the viewing flare conditions, and then process the image as before.
Unfortunately, we do not have a model for the input viewing flare, so we just ignored it, and
hope that the flare present in the raw data compensates for this approximation.

The scattering of the light in the eye is responsible for the reduced sensitivity of the eye
at very high luminance levels. This decrease in sensitivity is not modelled by Equation (6.6),
thus the algorithm does not take it into account. It is important to keep this fact in mind when
fitting the dynamic range of the image to the dynamic range of the output device.

6.9.5 Fitting the dynamic range

The game of fitting the dynamic range of the image to the range of the output device consists
in choosing the right output mean luminance Lmout and the right companding factor Cmax.
By assuming that the user is looking at the picture on the screen, the output luminance will ap-
proximately range between 0 and 80 cd=m

27. The mean output luminance Lmout should be
chosen such that the image histogram is well centred in the output luminance range. Lmout is
found by computing the histogram of the original radiance image and applying the following
formula:

Lmout = LSmax �

Lm � L2%
L98% � L2%

(6.22)

whereLSmax is the screen maximum luminance (i.e. 80 cd=m2),Lm is the mean value of the
original image, L98% and L2% are the luminance values at 2% and at 98% of the histogram
data. If the shape of the histogram does not change significantly through the perceptual map-
ping, this ensures that the output image is properly centred in the screen dynamic range. The

7In our case, we use a calibrated screen whose range is known.
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Figure 6.15: Rendering algorithm for one particular subband, using a modified
contrast image to maintain the details of high contrast but of small size. The subband
is multiplied by a gain image. The gain image is computed using the adaptation of
the eye by viewing the original scene and the adaptation of the eye in the output
conditions by assuming that the user watches the image on the computer screen.
The gain image also involves a companding function, based on a modified contrast
image, that reduces the contrast by maintaining the little details and affecting the
important ones.
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use of the 2% and 98% bounds has been preferred to the image amplitude bounds (0% and
100%) to avoid that a single noisy pixel can influence the value Lmout

8. In practice, the im-
age histogram shape changes, and there is some trial-and-error involved in the determination
of Lmout. The value of Cmax is found by iterating the rendering until the dynamic range of
the image fits the output device.

If the dynamic range is too important, then the artifacts due to the companding function
become disturbing. In practice, the companding factor Cmax of Equation (6.18) is always
bigger than 30. If the output dynamic range is still too big, several possibilities can be used:
One is to clip the image, a solution that is not recommended if the clipped regions are bigger
than a fraction of degree in size (no more than 0:2 deg). Another is to linearly reduce the
perceived contrast, but this is unadvisable, since some details will be lost in the procedure.
The remaining solution is to compress the highlights in the picture, as it is done by traditional
rendering algorithm [Braun and Fairchild, 1999]. It is a way of introducing the decrease in
contrast perception at very high luminances, a phenomenon that is not modelled by Equation
(6.6). The transformation should reduce the highlights, but should leave the shadows and mid-
tones unchanged. Let Lo be the image output by the algorithm, bounded by [L o

min
; Lo

max
] and

LSmax be the maximum screen luminance; the final output Lf of the highlights compression
is defined by

Lf = Lo � � (Lo)
N
� Lo

min

� ,
(Lo

max
� Lo

min
)� LSmax

(Lomax � Lo
min

)
N

N ,
(Lo

max
� Lo

min
)

(Lo
max

� Lo
min

)� Lextr

: (6.23)

This function ensures that the output Lf fits in the output device dynamic range (if Lextr �

LSmax), and also that the darkest point in the image is black, which in practice is already true
(i.e. Lo

min
usually does not exceed 1% of Lo

max). The function exhibits a slope equal to 1 at
the origin, tends to follow the identity for small values, and has a maximum at L o = L

extr
.

L
extr

controls the slope of the function at Lo = LSmax, and in our implementation L
extr

=
1:1 � LSmax. A plot of Equation (6.23) is found in Figure 6.13(b). This function is applied
once on the luminance information, and again on each colour channel in the final image, if
these channels exceed the output device capability.

6.9.6 Remarks

The image that the algorithm outputs is expressed in units of luminance, i.e. in Cd=m 2. In
other words, the image has to be considered as raw data. To display it on a monitor, it is
necessary to process the image in order to invert to transformation induced by the monitor.
This kind of processing is fairly common and is described by the standards of digital imaging.
We opted for the sRGB Standard [ITU-R Recommendation BT.709-3, 1998] to view the
image, i.e. we applied the transformation defined in (5.3) after having transformed the image
into the appropriate colour space.

By applying the companding function independently in each subband, the method shows
some bleeding around regions of huge contrast. This is visible on Figure 6.16, where the

8Note that this does not mean that the 2% of the pixels in the extremity of the image will be saturated.
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bright sunny area bleeds under the arches. Although we should mention that most of this
bleeding is already present in the original image, due to bleeding in the sensor of the cam-
era or due to the input flare. This bleeding phenomenon is known by the signal denoising
community as the pseudo-Gibbs effect [Mallat, 1998, chap. 10]. An illustration of this bleed-
ing effect can be found in a paper by DiCarlo and Wandell [DiCarlo and Wandell, 2000].
In the case of one dimensional signals, the problem may be solved using wavelet footprints
[Dragotti and Vetterli, 2000], but to our knowledge, no solution has been found yet for two
dimensional signals (edgeprints). A tempting solution is given by performing a companding
of the image derivative, and then reconstruct the image from the derivative. This approach
implies a regularisation of the derivative to recompute the image, for which we were unable
to find a computationally tractable solution. This problem is extensively discussed in a book
by Borre [Borre, 2001], who treats the problem of determining a terrain height from altitude
difference measurements.

Flare dependence is introduced only when the dynamic range is not too important, like for
example in Figure 6.17, although, we must admit that we did not experiment a lot with flare
dependence, also because we were unable to exactly know the flare value of the output device
(the standard define a mean value for the flare, but does not specify its spatial frequency). We
assumed (by trial and error) that the flare has a gaussian spacial frequency distribution equal
to

F (!) = F0 � e�
!

2�2

� = 10�1 cycles=deg

where F0 is the fare value given by the standard used to render the image. To conclude, we
would like to point out that the preferred equation for rendering is (6.21).

6.10 Results

The results of our algorithm are shown on figures 6.16 to 6.21. In general, it gave very
satisfactory results, even if it was only applied to the luminance information, leaving the
colours unchanged. The image in Figure 6.16 has been computed using several differently
exposed pictures, whereas the image in figures 6.17 and 6.18 have been computed out of a
single raw image of 12 bits of depth. In Figure 6.17, the part of the pictures that is very dark
in the image generated by the standard algorithm shows a big amount of noise on the image
processed by the our algorithm. This noise is caused by the limited dynamic range of the
camera.

More specifically, Figure 6.19 compares the rendering using both the isotropic contrast
measure and the derivative-based contrast measure. The derivative-based contrast measure
exhibits less pseudo-Gibbs effect than the isotropic measure. Figure 6.20 shows the influence
of adding a flare term to the rendering. We must admit that the flare parameter did not improve
the image rendering in the experiments we conducted. Figure 6.22 shows the influence of the
companding function on the image, by using two different values for the parameter C max of
Equation (6.18).
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(a)

(b)

Figure 6.16: Output of the dynamic range compression algorithm: The details un-
der the arches are now visible - provided that the output device is well calibrated.
The image is closer to what the user sees of the scene (a) Original (b) Processed.
The noise in the upper left corner of the image is caused by the acquisition system
and is not due to the rendering algorithm. The blue cast under the arch is due to lens
flare at the input.
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(a)

(b)

Figure 6.17: Output of the dynamic range compression algorithm (a) Original (b)
Processed.
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(a)

(b)

Figure 6.18: Output of the dynamic range compression algorithm (a) Original (b)
Processed.
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(a)

(b)

Figure 6.19: Differences in using two different contrast metrics (a) is rendered with
the isotropic contrast measure (b) is rendered using the derivative-based contrast.
The isotropic contrast delivers a hazy picture.
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(a)

(b)

Figure 6.20: Effect of modelling viewing flare (a) is rendered with derivative-based
contrast, no flare. (b) is rendered using the same parameters, but with a flare value
of 5:57 Cd=m2. (b) exhibits more contrast in the dark regions, but the consequence
is that the dark area appears darker
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(a)

(b)

Figure 6.21: Effect of using contrast reduction to render the image (a) is rendered
with derivative-based contrast (Equation 6.19). (b) is rendered using a contrast mea-
sure that has modified to avoid the companding of small areas (Equation 6.21). We
should notice - if the quality of the reproduction allows it - that (b) is slightly sharper.
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(a)

(b)

Figure 6.22: Effect of companding the image in perceptual space versus applying
the companding on the final image. (a) Image rendered with Cmax = 50. (b) Image
rendered with Cmax = 30. (b) looks a bit hazy and (a) shows some overshoot
around sharp edges.
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6.11 Remarks

Several assumptions have been made for designing the algorithm. The main assumption is
that the contrast sensitivity of the eye has a linear behaviour across frequencies. We assumed
that, given the contrast sensitivity at each frequency, we can apply the sensitivity function
to each frequency component separately and add the results, i.e. we assumed that the sum
of the sensitivity to each frequency component is equal to the sensitivity to the sum of the
all frequency components together. This last assumption is probably wrong, nevertheless, in
practice it seems to work quite well.

The contrast sensitivity model has been designed for photopic vision, and the images
shown are also seen under photopic vision conditions. The model gives only approximate
results for scotopic vision. This brings up the question of whether the image should reproduce
the perception in these kind of situation, i.e, when rendering night pictures. In practice, the
image ’looks better’ if it reproduces more details than the one that are theoretically visible
on site; this is accomplished by simply setting the input mean luminance of the image to an
arbitrary high value. This also illustrates the limitation of the approach: All the efforts have,
until now, been focused in reproducing what an observer sees in a scene, but we never asked
ourselves what the observer would want to see in the image. If, for example, the illumination
conditions are not ideal, then what the user wants to have on the picture is usually not what
he sees in the field. In practice we found that taking the output of the algorithm and applying
a simple curve to it, which emphasises either the highlights or the shadows, gives excellent
results. The choice of the curve is left to the user.

6.12 Possible improvements

Several methods can be used to improve or complete the algorithm proposed in this chapter.
Here is a small list of them:

� Extend the vision model to the chromatic channels. This is possible for the luminance
levels of a CRT screen, but would require new measurements of high luminance de-
pendance.

� Change the method of companding the contrast such that is does not produce any
pseudo-Gibbs artifact.

� Measure the spatial frequency adaptation of the pupil size.

� Use a model for the scattering of the light in the eye at very high luminance (>
5000cd=m

2) to compute the input viewing flare, or -equivalently - introduce the de-
crease in contrast sensitivity at very high luminance in the contrast perception model.

� Render the scattering of the light in the eye on the final image, as was done by Spencer
[Spencer et al., 1995].

6.13 Conclusion

In this chapter, a new algorithm for rendering of high dynamic range images has been pre-
sented. It is based on a complex model of the human visual system. Local perceived contrast
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values are calculated using the contrast sensitivity and contrast discrimination function are
maintained as best as possible. If the dynamic range of a local area of a scene is too high to
be displayed on a particular output device, an adequate compression is applied maintaining
the small details and compressing the large contrast values. The compression functions de-
pend on the actual image and on the spatial information. The algorithm also considers the
different viewing conditions between perceiving an outdoor scene and perceiving an image
of a scene on a monitor. Our work is based on work by Pattanaik [Pattanaik et al., 1998],
but has further been improved by using a more complete model of the human luminance con-
trast perception. Images presented in this chapter show that the results are very encouraging.
Extension to this work should be concerned with the reduction of the Pseudo-Gibbs-Effect,
which can occur in particular situations and the inclusion of chromatic contrast sensitivity
functions.
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Chapter 7

Conclusions

This thesis addresses several aspects of image stitching to create a seamless panorama from
several pictures. It covers one aspect of parallax correction, global estimation techniques,
colour equalisation across pictures, outlier modelling and detection, and finally the rendering
of high dynamic range images.

Chapter 3 presents a technique that enable to estimate the three dimensional structure of
a scene, by assuming the scene is composed of piece-wise planar surfaces.This model en-
ables to reconstruct an picture from a set of images that contain parallax, a phenomenon that
arises when the pictures are not taken from the same location. An example showing “Le
Louvre” in Paris is reconstructed using this technique: The floor and the walls of the building
are assigned to different planes in space. In general, the technique is computationally very
expensive, and lacks of some robustness. There is a fundamental reason for the lack of ro-
bustness that is related to the family of method used to perform the estimation. This argument
is developed in Chapter 4. The method innovates by introducing shared 3D parameters on a
problem using mixtures of models that were, until now, solely based on 2D relationships.

Chapter 3 also presents a method to close the gap in a panorama. The gap occurs when
stitching the images of a full panoramic image - an image that covers an angle of 360 deg -
between the last and the first picture of the panorama. This gap is due to the accumulation
of little errors in the stitching that add up to a large absolute error in the last picture location.
The problem is solved with a linear system of equations, and has shown to work well. More
generally, the method enables to get from an image-to-image relationship problem toward
a global estimation of the mosaic. Solving the image-to-image relationship and solving the
mosaic as a whole are standard problems; this method enables to compute a good initial
estimate of the global problem given the initial image-to-image relationships. The method
can be applied whenever there is a circular relationship among the picture in an image set.

Chapter 4 exposes a method to deal with outliers in image pairs. An outlier is a portion
of image that is not consistent in the image pair. Usually, it is an object (or a person) that
appears in one image and that is absent in the other, because it simply moved away. The
novelty of the approach lies in the outlier distribution characterisation that is assumed to be
the result of comparing pixels picked randomly in the two images. By “ outlier distribution ”
we refer to the error distribution in a pixel-wise comparison of the part of the image pair that
contains the outlier. From this new concept, the outlier detection problem can be formulated
as a standard mixture of models problem: the inliers and the outliers, both characterized by
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a distribution. The performance of the model is demonstrated using two different types of
experiments. The first experiment shows two aligned pictures, one of them containing an
outlier. The proportion of the image covered by the outlier is varied by framing differently
the images of the pair, and the goal is to see when the model is not able to distinguish the
outlier from the inlier anymore. In this example, our model showed to be able to handle an
arbitrary amount of outlying pixels. The standard methods that base their computation on a
median operator tend to fail whenever the outlier proportion exceeds 50% of the image. The
second experiment compares the motion estimator derived from the outlier model - which is
an M-type estimator - to a standard robust M-estimator. Here, again, the outlier-based model
clearly outperforms the standard estimator and has a computational complexity that is very
close to the standard model.

Chapter 5 explains how to equalize the colours across the pictures of a panorama. To
get consistent colours, the algorithm inverses the transformation introduced by the camera,
equalizes the pictures, and renders the mosaic as a single image in the end. When the trans-
formation of the camera is undone, the relationship among the pictures can be modelled by a
linear transformation that considerably simplifies the equalisation problem. Different models
are presented to reverse the camera transforms, and an example is shown to deal with scanned
analog transparencies. In the analog case, because of the large number of transforms that oc-
cur between the light entering the camera and the final picture, the process is reversed using
a calibration procedure and the film characteristics (that is publicly available for most of the
films on the market). Examples of pictures taken with a digital as well as with an analog cam-
era are shown and give very satisfactory results. In addition, the colour equalisation enables
a better geometric registration of the pictures. The method fails when there is an illumination
change in the scene. Very little has been published in the field so far.

Chapter 6 addresses the issue of rendering pictures of high dynamic range. These pic-
tures contain very bright and very dark areas, and the ratio of luminance between the very
bright and very dark area is (much) bigger than the ratio of luminance of a white and a black
spot on a computer screen. A complex model of the human visual system, based on contrast
perception is used to render the image. On the one hand, the perceptual model tells how to
modify the contrast of the image such that the perception of the contrast in the image on the
screen is the same than when looking at the real scene. On the other hand, the algorithm
proposes a way of compressing the dynamic range of the image in such a way that is affects
the big contrast regions, but leaves the tiny details unchanged. The method showed excellent
results for middle-to-high dynamic range scenes (bright sunlight with shade areas), but shows
some artifacts with very high dynamic range scenes (bright sunlight and interiors), that come
from applying a non-linearity in the contrast compression. The method differs from previous
ones by using a more complex measure of contrast that has been shown to be more appro-
priate in natural images. It also explicitly defines a way of compressing the contrast which
is consistent with the perceptual model. In the literature, one can find methods that use a
model of perception to compute how an image should ideally be rendered on the screen, but
are very vague in specifying how to compress the contrast in order to bring the image in the
displayable range of the screen. One can also find methods to compress the dynamic range
of an image to bring it down to the displaying capabilities of the screen, but these method do
not specify what effect this compression will have on the final image perception, even if they
are all based on some properties of the human visual system.

Chapters 4, 6 and 5 can be merged in one consistent way of building a mosaic. The equal-
isation of colours technique brings the images in linear space, and compensate for changes
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in the camera settings. The outlier detection and robust comparison of the images has to be
performed in linear space and also enables a better colour equalisation and registration. Fi-
nally, the image is transformed from linear space toward a displayable image on the screen
using the technique described in the chapter about rendering. In general, all the method de-
scribed in the computer vision literature about stitching should be applied in linear space.
The alignment of a 360 deg panorama, as well as the segmentation of the scene into planes
are less intimately related to the other subjects, although the multi-planar model showed to
work much better when applied in linear space.

As a conclusion, we can say that the methods exposed in this thesis allow to build a very
high quality picture out of images taken with variable exposure parameters, and containing
big luminance changes from bright to dark areas.
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Appendix A

Motion estimation equations

In this appendix, the details of the motion estimation equation (2.26) are developed. It starts
by settling the notations. Then, the general motion estimation algorithm is developed, fol-
lowed by a the specialization of the general model to the formulation of Chapter 2, which
handles changes in the camera settings.

A.1 Definitions

Let r be a vector with N components, � a vector with M components and f (�) be a scalar
function, which takes a vector r as input parameter. The gradient of f (�) with respect to its
component is denoted as:

rf ,
@f(r)

@r
,

�
@f(r)

@r1
; :::;

@f(r)

@rN

�
;

which is a matrix of size 1�N (i.e. a line vector).
The transposed gradient, is written as

rfT ,
@f(r)

@r

T

,
@f(r)

@rT
,

�
@f(r)

@r1
; :::;

@f(r)

@rN

�T
;

which is a vector of size N � 1 (i.e. a column vector). Now, if r is a function of � : r , r(�),
the chain rule for derivatives is

@f(r)

@�
=

@f(r)

@r

@r

@�

where @r
@�

is a Jacobian matrix of size N �M , which is defined by�
@r(�)

@�

�
i;j

=
@ri(�)

@�j
;

where [�]i;j denotes the component at the i-th row and j-th column. Conversely, when the
vectors are transposed, the chain rule becomes

@f(r)

@�T
=

@r

@�

T @f(r)

@r

T

:
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A.2 General motion estimation computation

We want to solve Equation (2.25):

J(�)T +H(�)Æ� = 0;

where

H(�) =
@2h(r; �)

@�T @�

J(�) =
@h(r; �)

@�
:

The objective function h, which is written as h(r; �), h(r) or h(�); is defined as

h(r) =
1

N

NX

i=1

Wi � �[ri(�)]

where N is the number of pixel on the image overlap, r i the error value of the pixel pair at
location i and � (�) a function defined in Chapter 4. W i is a weight factor defined in Chapter
5, we further assume
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' 0:

The Jacobian is computed using
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diagi
�
Wi �

::
�(ri)

�
, diag

�
W1

@2�(r1)

@r21
; :::;WN

@2�(rN )

@r2
N

�
:

The term @h(r)
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@
2
r
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has been neglected in the computation. The term @

2
h(r)

@rT@r
has only di-

agonal elements, because by assumption, there are no inter-dependence between neighboring
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pixels. The Hessian is further approximated by using a secant approximation of the second
derivative:

::
�(ri) '

1

ri

@�(ri)

@ri
,

_�(ri)

ri
;

in order to get a positive definite matrix. Finally, the Hessian becomes

H(�) '

�
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@�

�T
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�
Wi �

_�(ri)

ri

��
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�
: (A.1)

Now, let us expand the motion estimation equation (2.25)

H(�)Æ� = �J(�)T;

which becomes:�
@r

@�

�T

diagi

�
Wi �

_�(ri)

ri

��
@r

@�

�
Æ� = �

�
@r

@�

�T
@h(r)

@r
:

Then setting @h(r)
@r

= diagi

h
Wi �

_�(ri)
ri

i
� r, gives

�
@r

@�

�T

diagi

�
Wi �

_�(ri)

ri

��
@r

@�

�
Æ� = �

�
@r

@�

�T

diagi

�
Wi �

_�(ri)

ri

�
� r: (A.2)

Equation (A.2) is of the formATWAx = ATWb, which corresponds to the weighted least
square solution of a classical linear system given byWAx =Wb, or
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Rewriting the i-th line of this equation system leads to

Wi �
_�(ri)

ri

@ri

@�
Æ� = �Wi �

_�(ri)

ri
� ri; (A.3)

which is the system that is solved using a minimum mean square error criterion at each
iteration of the motion estimation algorithm.

A.3 Specialisation to Colour Images

To get more specific, we can further develop (A.3), according to the formulation presented
in Chapter 2. The weighting term _�(ri)

ri
is defined in Chapter 4. The residual is defined in

Chapter 2, by (2.21):

ri(�) , fG� [I0(V� [pi])]� S� [I1(U� [pi])]g :

The derivative of the residual gives
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+ _G� [I0(V�i)]�rS� [I1(U�i) ]
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where, by definition,

rG� [I0(V�i)] ,
@Gu [I0(x)]

@x

���
u=�;x=V�[pi]

_G� [I0(V�i)] ,
@Gu(v)

@u

���
u=�;v=I0(V�i)

U�i , U� [pi]

V�i , V� [pi]

In other words, rG� [I0(V�i)] is the derivative along the lines and the columns of the radi-
ance image computed from an undistorted version of image I 0. rS� [I1(U�i) ] is the deriva-
tive along the lines and the columns of the radiance image that has been warped according
to the motion function U. _G� [I0(V�i)] and _S� [I1(U�i)] are the derivative of the camera
characteristics with respect to the parameters that control the characteristics (which might be
different for image I0 and I1). Finally, we get to the desired equation:
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Appendix B

Outlier model computations

This appendix details the assumptions involved in the OutlierMix model of Chapter 4.
Let �0 and �1 be two independent discrete random variables. Let I0 and I1 be two

injective functions (I0 and I1 are the images that are compared).
We are interested in the probability of error P(r) when comparing two images:

P(r) = Pr fI0 (�0;p)� I1 (�1;p) = rg ;

where p is the position in the image (p is not random), and r the error (or residual). Let H
be the error histogram

H (r; �0; �1) ,
1

M

X

8p

1fI0(�0;p)�I1(�1;p)=rg;

where M is the number of pixels and 1f�g is the indicator function (1fbg is equal to 1 if b is
true, 0 otherwise). The expectation (E) of the error histogram is equal to

E�0;�1
[H (r;�0;�1)] = E�0;�1

2
4 1

M

X
8p

1fI0(�0;p)�I1(�1;p)=rg

3
5 :

Since the expectation is a linear operator and the sum is finite, we can switch the expectation
and the sum:

E�0;�1
[H (r;�0;�1)] =

1

M

X
8p

E�0;�1

�
1fI0(�0;p)�I1(�1;p)=rg

�
:

The expectation can be expressed as

E�0;�1

�
1fI0(�0;p)�I1(�1;p)=rg

�
=
X
8�0

X
8�1

1fI0(�0;p)�I1(�1;p)=rgP (�0; �1) ;

but the indicator function of the error can be expressed as a cross-correlation,

1fI0(�0;p)�I1(�1;p)=rg =
X
8u

1fI0(�0;p)=ug1fI1(�1;p)=u�rg;
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hence, the expectation is expressed as

E�0;�1

�
1fI0(�0;p)�I1(�1;p)=rg

�
=

=
X
8�0

X
8�1

P (�0; �1)
X
8u

1fI0(�0;p)=ug1fI1(�1;p)=u�rg

=
X
8u

X
8�0

X
8�1

P (�0; �1) 1fI0(�0;p)=ug1fI1(�1;p)=u�rg;

by assuming that every sum is finite.
Because �0 and �1 are independent, we can separate the probabilities of �0 and �1:

P (�0; �1) = P (�0) P (�1) ;

thus, the expectation can be expressed as a cross-correlation:

E�0;�1

�
1fI0(�0;p)�I1(�1;p)=rg
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=
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X
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#
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=
X
8u

[Pr fI0 (�0;p) = ug � Pr fI1 (�1;p) = r � ug] :

Finally,

E�0;�1
[H (r;�0;�1)] =

1

M

X
8p

X
8u

[Pr fI0 (�0;p) = ug � Pr fI1 (�1;p) = r � ug] :

Now, by assuming that the statistics of the pixel in an image does not depend on the
position (p) where the pixel is located in the image, the expectation of the error histogram is
equal to the cross-correlation of the pixel value distribution:

E�0;�1
[H (r;�0;�1)] =

X
8u

[Pr fI0 (�0) = ug � Pr fI1 (�1) = r � ug] :

By further assuming that the probability density function of the pixel is given by the image
histogram

1

M

X
8p

1fI0(�0;p)=ug = PrfI0 (�0) = ug ;

the expectation of the error histogram (H) is equal to the cross-correlation of the histograms
(H0; H1) of the images:

E�0;�1
[H (r;�0;�1)] =

X
8u

H0 (u) �H1 (r � u) :

Finally, by assuming that the comparison process is constant (or that the error histogram does
not depend on the image positioning), we get

E�0;�1
[H (r;�0;�1)] = H (r; �0; �1) ; 8�0; �1; (B.1)
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which finally leads to

H (r; �0; �1) =
X

8u

H0 (u) � H1 (r � u) :

The error histogram is equal to the cross-correlation of the image histograms. In Practice, if
the images contain large uniform areas, Equation (B.1) tends to be approximate.
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Appendix C

Contrast computation details

C.1 Angular frequency response

The angular frequency response �(') is computed as a combination of Schwarz’s functions.
We summarise the construction proposed by [Vandergheynst and Gobbers, 2001]. Let us
consider the C1, compactly supported function

ga(') =

(
e
�

1

2

a
2

a2�'2 ; if � a < ' < a
0; otherwise:

Let da(') be the periodisation of ga

da(') =
X
n2Z

ga('� na):

Note that, because of the way ga is defined, this sum is composed of at most two non-zero
terms. Let us define

wa(') =
ga(')

da(')
;

a function who satisfies X
n2Z

wa('� na) = 1; 8' 2 R:

Finally, by choosing to subdivide the complex plane into K angular regions, with K > 2, the
angular frequency response is given by

�(') =
X
n2Z

w�=K('� 2n�)

and satisfies

K�1X
k=0

�('� k�=K) = 1:
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C.2 Perceived contrast computation

Here are some numerical implementation details about the perceived contrast integral of Sec-
tion 6.7. The perceived contrast integral has to be computed numerically, and is implemented
with a 2D lookup table. The equations of the integral are reproduced here for convenience:

4Ct(m) =

s
C2

t + k2C2
n + 0:04 k2m2

1 + 0:004 k m=Ct
+m2 �m

C (m) = a �

Z m

m0=0

1

4Ct(m0)
� dm0:

where m is the current contrast, Ct is the contrast threshold in the current viewing conditions
and 4Ct is the amount of contrast that has to be added to m in order that an observer notices
a difference. Cn is the average modulation of the noise component, i.e. the standard deviation
of the noise at the considered spatial frequency. C  is the perceived contrast.

By pre-computing the integral for Cn = f0; 0:1; 0:2; :::; 0:9; 1g and using a lookup table,
we guarantee that the resulting error of a linear interpolation in the lookup table is less than
1%. This holds true also when computing the inverse function; In other words, we compute a
lookup table C (Cn;m) with 11 lines and N columns, and we perform the computation of
the perceived contrast by linearly interpolating C  as if it was an image. We do the same for
the inverse function.

A possible approximation of the perceived contrast with flare is given by

C (Cn;m) ' C (0;m)� Cn:

The error introduced by this approximation is of the order of 2%� 3% for large (perceived)
contrast values (> 5) and may be around 20% to 30% for small contrast values.
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