
THÈSE NO 2388 (2001)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE AU DÉPARTEMENT D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES

PAR

Ingénieur en systèmes électroniques, Ecole Universitaire de Mondragon, Espagne

de nationalité espagnole

acceptée sur proposition du jury:

Prof. A. Wegmann, directeur de thèse
Prof. K. Aberer, rapporteur

Dr A. Fabri, rapporteur
Prof. H. Kirrmann, rapporteur
M. A. Moertlseder, rapporteur

Lausanne, EPFL
2001

REMOTE DATA ACQUISITION OF EMBEDDED SYSTEMS
USING INTERNET TECHNOLOGIES: A ROLE-BASED

GENERIC SYSTEM SPECIFICATION

Txomin  NIEVA



 ii



 

 iii

 

 

 

À Nathalie 



 

 iv



 

 v

Acknowledgments 

First, I express my deepest thanks to my thesis supervisor Prof. Alain 
Wegmann for his support during this work. He offered me the unique opportunity to 
learn and experiment and he guided me from the deep black hole up to the light. I 
extend my deepest thanks to the rest of the members of the jury Prof. Karl Aberer 
(EPFL-LSIR), Dr Andreas Fabri (INRIA, Sophia Antipolis, France), Prof. Hubert 
Kirrmann (ABB Corporate Research, Baden, Switzerland), and Alfred Mörtlseder 
(BBV Software Services, Lucern, Switzerland) for accepting the evaluation of my 
thesis and their invaluable contributions to this work. I also thank Prof. Roger D. 
Hersch (EPFL-LSP) for his assistance as president of the jury. 

During more than three years I had the rare chance of working in both a 
prestigious university and in a research center of one of the largest industrial 
companies in the world. I am thankful for the EPFL-ICA and for ABB Corporate 
Research for this great experience. I am also sincerely thankful for the University of 
Mondragon to give me the opportunity to come to the EPFL under the frame of the 
GOIER program. I am grateful toward the people at EPFL-ICA and at ABB 
Corporate Research, particularly toward Andrey Naumenko, Gil Regev, Pavel 
Balabko, Guy Genilloud, and Pierre Castori, from EPFL-ICA, and toward Andreas 
Fabri, Hubert Kirrmann, and Otto Preiss, from ABB Corporate Research. I express 
my eternal gratitude also toward Holly Cogliati for spending such a long time 
improving my writing English and making my technical articles more readable. I 
thank also Danielle Alvarez, Angela Devenoge and Jean-Pierre Dupertuis for their 
administrative and technical support. 

As part of my work at ABB Corporate Research I was involved in two major 
projects. I am deeply grateful to all the members of the WP4 of the ROSIN European 
project; they brought a real framework to the discussions and the implementation of 
our hypotheses. I am thankful for the members of the DaVinci project of the railway 
manufacturer Adtranz, particularly for the members of the System Architecture sub-
project. 

The work of this thesis could not haven done without the invaluable 
contributions of my diploma students Monica Perez (the railway equipment modeling 
expert), Jan Ellerbrock (the XML/XSL expert), Abdendi Benammour (the Jini 
expert), Jose Carpio (the “roles” expert), Ramzi Bouzerda (the SOAP expert), 
Alessandro Specchia (the DAS expert) and my semester students Fabrice Wohnrau 
(the LDAP and WAP expert) and Felix Jaeger (another WAP expert). We made a 
great team together! I extend my most sincere and deepest thanks to all of them. 



 

 vi

Besides the technical and administrative support and the friendship and the 
collaboration framework of my colleagues at EPFL-ICA and ABB Corporate 
Research, I had the chance of having many good friends in Lausanne and in Rentería 
(my original village in Spain). They supported me psychologically during the work of 
my thesis, giving to me their friendship and company. It is sure that I could have not 
achieved the work of this thesis without this invaluable support. I will be eternally 
grateful toward all of them. 

A special thanks goes to my family, to my father, mother, brother and sister. I 
have missed them a lot of times but I always had the warm feeling that they were 
there all the time, ready to listen to me, to help me and looking forward seeing me 
again. I feel really lucky to have such a wonderful family. 

Finally, my greatest and eternal gratitude goes to my beloved Nathalie. She 
was my inspiration, my motivation, my expectation, my patience, my desire, …my 
everything! Actually, the work of this thesis is not my own work but the work of the 
great team that we form together and that, I firmly believe, we will form forever. 



 

 vii

Abstract 

Data Acquisition Systems (DAS) are the basis for building monitoring tools 
that enable the supervision of local and remote systems. DASs are complex systems. 
It is difficult for developers to compare proprietary generic DAS products and/or 
standards, and the design of a specific DAS is costly. In this thesis we propose an 
implementation independent specification, based on conceptual and role-based use 
case modeling, of a generic architecture for DASs. This generic DAS specification 
gives DAS developers an abstraction of DASs; it enables them to compare existing 
DAS products and standards; and it provides the DAS developers that aim to develop 
a specific DAS with a starting point for the design of a specific DAS. A generic 
system specification has many advantages. We propose patterns and techniques that 
are useful for the development of specifications of generic systems. Additionally, the 
generic DAS specification provides a case study on the development, based on 
conceptual and role-based use case modeling, of implementation independent 
specifications of generic systems that demonstrates, by means of an industrial 
example, the advantages of these techniques for the development of specifications of 
generic systems. 

The work of this thesis has been sponsored by the FNRS (Swiss National 
Science Foundation)1, ABB Corporate Research Ltd. (Switzerland), EPFL, and the 
University of Mondragon. 

Keywords: Information System Engineering; Conceptual Modeling; Role-
based Use Case Modeling; Data Acquisition Systems; Remote Monitoring Systems; 
Embedded Systems 

                                                 
1 In the frame of the NePESM (New Paradigms for Embedded Systems Management) project of the 
SPP-ICS (Swiss Priority Programme for Information and Communications Structures, 1996-1999) 
programme. 



 

 viii



 

 ix

Version Abrégée 

Les systèmes d’acquisition de données (DAS) sont à la base des outils 
informatiques qui permettent la surveillance locale et à distance des systèmes. Les 
DASs sont des systèmes complexes. Il est difficile, pour les constructeurs de DASs, 
de comparer les différents produits propriétaires et génériques et/ou les différentes 
normes de DASs. En plus, le design d’un DAS spécifique est coûteux. Dans cette 
thèse nous proposons une spécification d’une architecture générique pour des DASs. 
Cette spécification générique est indépendante des choix d’implémentation et elle est 
basée sur la modélisation conceptuelle et la modélisation des cas d’utilisation basée 
sur des rôles. Cette spécification générique donne aux constructeurs de DAS une 
abstraction de DASs; elle leur permet de comparer les produits et normes existants; et 
elle donne aux constructeurs qui veulent concevoir des DAS spécifiques un point de 
départ pour leur design. Une spécification d’un système générique a plusieurs 
avantages. Nous proposons quelques patrons et techniques utiles pour la conception 
des spécifications de systèmes génériques. En outre, notre spécification d’un DAS 
générique fournit un cas d’étude sur la conception, basée sur la modélisation 
conceptuelle et la modélisation des cas d’utilisation basée sur des rôles, des 
spécifications de systèmes génériques. Ce cas d’étude démontre, en utilisant un 
exemple industriel, les avantages de ces techniques pour la conception des 
spécifications de systèmes génériques. 

Le travail de cette thèse a été financé par le FNRS (Fonds National Suisse de 
la Recherche Scientifique)2, ABB Corporate Research Ltd. (Suisse), l’EPFL, et 
l’Université de Mondragon. 

Mots-clé: Conception de Systèmes d’Information; Modélisation Conceptuelle; 
Modélisation des Cas d’Utilisation basée sur des Rôles; Systèmes d’Acquisition des 
Données; Systèmes de Surveillance à Distance; Systèmes Embarqués. 

                                                 
2 Dans le cadre du projet NePESM (Nouveaux Paradigmes pour la Gestion des Systèmes Embarques) 
financé par le programme SPP-ICS (Programme Prioritaire de Recherche pour les Structures 
d'Information et de Communication, 1996-1999) 



 

 x



 

 xi

Contents 

Acknowledgments .......................................................................................................v 

Abstract .....................................................................................................................vii 

Version Abrégée.........................................................................................................ix 

Contents ......................................................................................................................xi 

List of Figures ...........................................................................................................xv 

List of Tables ...........................................................................................................xvii 

Glossary ....................................................................................................................xix 

 

1. Introduction .......................................................................................................1 
1.1 Research Context ........................................................................................1 
1.2 Problem Statement, Goals, and Major Contributions.................................1 
1.3 Organization of this Thesis.........................................................................3 

2. Context................................................................................................................5 
2.1 Introduction.................................................................................................5 
2.2 Embedded Systems.....................................................................................5 
2.3 Maintenance, Asset Management, and Condition Monitoring...................6 
2.4 Monitoring and Data Acquisition Systems.................................................7 
2.5 Measurement...............................................................................................8 
2.6 Summary.....................................................................................................8 

3. Method................................................................................................................9 
3.1 Introduction.................................................................................................9 
3.2 Conceptual Modeling..................................................................................9 
3.3 Role-based Use Case Modeling..................................................................9 
3.4 Patterns, Frameworks and Architectures ..................................................10 

3.4.1 Patterns .........................................................................................10 
3.4.2 Frameworks ..................................................................................11 
3.4.3 Architectures.................................................................................11 
3.4.4 Patterns vs. Frameworks vs. Architectures...................................12 

3.5 External Specification...............................................................................13 
3.6 UML .........................................................................................................14 



 

 xii

3.7 Catalysis....................................................................................................15 
3.8 Method Overview .....................................................................................16 
3.9 Summary...................................................................................................17 

4. State of the art of Data Acquisition Systems .................................................19 
4.1 Introduction...............................................................................................19 
4.2 Software Patterns for Data Acquisition Systems......................................19 
4.3 OMG’s DAIS RFP....................................................................................20 
4.4 Data Acquisition Standards ......................................................................21 

4.4.1 OPC ..............................................................................................22 
4.4.2 IVI.................................................................................................23 
4.4.3 ODAS ...........................................................................................24 

4.5 Summary...................................................................................................26 

5. Case Study – The RoMain System: A Remote Data Acquisition System 
Applied to Railway Equipment ......................................................................27 
5.1 Introduction...............................................................................................27 
5.2 The GLASS System..................................................................................27 
5.3 The RoMain System .................................................................................28 
5.4 RoMain Java: Monitoring of all Devices on a Single Train.....................30 
5.5 RoMain XML: Monitoring of all Devices on a Fleet of Trains ...............31 
5.6 Plug&Play.................................................................................................33 

5.6.1 System Plug&Play........................................................................33 
5.6.2 Network Plug&Play......................................................................36 

5.7 Summary...................................................................................................38 

6. External Specification of a Generic Architecture for Data Acquisition 
Systems..............................................................................................................39 
6.1 Introduction...............................................................................................39 
6.2 Data Acquisition Conceptual Model ........................................................39 

6.2.1 Device Models ..............................................................................40 
6.2.2 Device Items .................................................................................41 
6.2.3 Device Model Monitoring Criteria ...............................................41 
6.2.4 Device Item Monitoring Criteria ..................................................42 
6.2.5 Observations & Monitoring Reports ............................................43 
6.2.6 Detailed Concepts.........................................................................44 
6.2.7 Complete DAS Conceptual Model ...............................................47 

6.3 Data Acquisition Role-based Use Case Model.........................................49 
6.3.1 Discover........................................................................................52 
6.3.2 Define Data Access.......................................................................55 
6.3.3 Access Data ..................................................................................59 
6.3.4 Notify Data Availability ...............................................................60 
6.3.5 Upload Data ..................................................................................61 

6.4 Summary...................................................................................................62 

7. Discussion .........................................................................................................63 
7.1 Introduction...............................................................................................63 
7.2 Conceptual Model.....................................................................................63 

7.2.1 Device Models vs. Device Items ..................................................63 
7.2.2 Naming Management....................................................................64 
7.2.3 Composition Management............................................................64 



 

 xiii

7.2.4 Plug&Play.....................................................................................66 
7.2.5 Physical Values vs. Sampled Values ............................................66 

7.3 Role-based Use Case Model.....................................................................67 
7.3.1 Elementary Roles vs. Actors.........................................................67 
7.3.2 Representation of the System .......................................................68 
7.3.3 System Behavior Modeling ..........................................................69 
7.3.4 Broker Pattern...............................................................................71 
7.3.5 Administrator-Manager Pattern ....................................................72 
7.3.6 Specification of Role-based use cases ..........................................73 
7.3.7 Specification of Roles...................................................................73 

7.4 Development Process................................................................................74 
7.5 Summary...................................................................................................75 

8. Application and Validation.............................................................................77 
8.1 Introduction...............................................................................................77 
8.2 Issuing/Replying a RFP ............................................................................77 
8.3 Evaluation of Existing Systems or Proposals ...........................................78 

8.3.1 OMG’s DAIS RFP vs. DAS Standards vs. RoMain.....................78 
8.4 Design of a New System...........................................................................87 

8.4.1 Development of a DAS for Railway Equipment ..........................87 
8.5 Summary...................................................................................................91 

9. Conclusion ........................................................................................................93 
9.1 Introduction...............................................................................................93 
9.2 Major Contributions..................................................................................93 
9.3 Major Findings .........................................................................................93 

9.3.1 Conceptual Model.........................................................................93 
9.3.2 Role-based use case Model...........................................................94 
9.3.3 Development Process....................................................................94 

9.4 Future Work..............................................................................................95 

 

Appendix A RoMain Java vs. RoMain XML ................................................97 

Appendix B DAS Role-based Use Cases ......................................................105 

Appendix C DAS Elementary Roles .............................................................143 

Bibliography............................................................................................................169 

Curriculum Vitae....................................................................................................175 

 



 

 xiv



 

 xv

List of Figures 

Figure 1 The DAS Nightmare......................................................................................1 
Figure 2 And there was Light … in the DAS World ...................................................2 
Figure 3 Specific DAS Development ..........................................................................2 
Figure 4 Maintenance and Asset Management............................................................7 
Figure 5 Monitoring and Data Acquisition System.....................................................8 
Figure 6 Pattern vs. Framework vs. Architecture ......................................................12 
Figure 7 External Specification .................................................................................14 
Figure 8 The Catalysis Approach ..............................................................................15 
Figure 9 Method Overview........................................................................................16 
Figure 10 OPC Data Access Model ...........................................................................22 
Figure 11 IVI-MSS Model.........................................................................................24 
Figure 12 ODAS Model.............................................................................................26 
Figure 13 The GLASS System ..................................................................................28 
Figure 14 The RoMain System..................................................................................29 
Figure 15 Monitoring of all Devices on a Single Train.............................................30 
Figure 16 Monitoring of all Devices on a Fleet of Trains .........................................32 
Figure 17 Maintenance Information Metadata Structure...........................................34 
Figure 18 System Initialization..................................................................................35 
Figure 19 Jini-enabled System Architecture..............................................................36 
Figure 20 Jini-enabled System...................................................................................37 
Figure 21 Data Acquisition Main Packages ..............................................................39 
Figure 22 Device Models...........................................................................................41 
Figure 23 Device Items..............................................................................................41 
Figure 24 Device Model Monitoring Criteria............................................................42 
Figure 25 Device Item Monitoring Criteria...............................................................43 
Figure 26 Observations & Monitoring Reports .........................................................44 
Figure 27 Measurement Type ....................................................................................44 
Figure 28 Mapping Policy .........................................................................................45 
Figure 29 Time Trigger Condition.............................................................................45 
Figure 30 Device Model Event Trigger Condition....................................................46 
Figure 31 Device Item Event Trigger Condition .......................................................47 
Figure 32 Data Qualifiers ..........................................................................................47 
Figure 33 Complete DAS Conceptual Model............................................................48 
Figure 34 Device Lifecycle........................................................................................49 
Figure 35 Data Acquisition Use Cases ......................................................................50 
Figure 36 Data Acquisition Activity Diagram...........................................................51 
Figure 37 Discover Use Case.....................................................................................53 
Figure 38 Discover Activity Diagram .......................................................................54 



 

 xvi

Figure 39 Define Data Access Use Case ...................................................................56 
Figure 40 Define Data Access Activity Diagram ......................................................58 
Figure 41 Access Data Use Case ...............................................................................59 
Figure 42 Access Data Activity Diagram ..................................................................60 
Figure 43 Notify Data Availability Use Case............................................................61 
Figure 44 Upload Data Use Case...............................................................................61 
Figure 45 Device Models vs. Device Items...............................................................63 
Figure 46 Example of Model Composition without Functional Model ....................65 
Figure 47 Model Composite Pattern..........................................................................65 
Figure 48 Example of Model Composition with Functional Model..........................66 
Figure 49 Physical Values vs. Sampled Values.........................................................67 
Figure 50 Elementary Roles vs. Actors .....................................................................68 
Figure 51 Representation of the System in the Use Case ..........................................69 
Figure 52 Example of Modeling of the Interactions across Use Cases .....................70 
Figure 53 Example of Modeling of the Scenarios of Use Cases ...............................71 
Figure 54 Example of Representation of the System Broker in the Use Cases.........71 
Figure 55 Example of (Un)Registration of Services in the System Broker...............71 
Figure 56 Example of Comm. between Roles using the System Broker...................72 
Figure 57 Example of Simplified Comm. between Roles using the System Broker.72 
Figure 58 Administrator-Manager Pattern.................................................................73 
Figure 59 Traditional Development Process .............................................................74 
Figure 60 Followed Development Process ................................................................75 
Figure 61 Issuing/Replying a RFP.............................................................................77 
Figure 62 RFP vs. Standard vs. Application..............................................................78 
Figure 63 OPC Conceptual Model.............................................................................81 
Figure 64 IVI Conceptual Model...............................................................................82 
Figure 65 ODAS Conceptual Model .........................................................................83 
Figure 66 RoMain Conceptual Model .......................................................................84 
Figure 67 Railway Equipment DAS Conceptual Model ...........................................88 
Figure 68 Railway Equipment DAS System Use Case Model ..................................90 
Figure 69 Communication Performance Comparison ...............................................99 
Figure 70 One Update vs. Ten Updates Comparison ..............................................100 
 



 

 xvii

List of Tables 

Table 1 Software Patterns for Data Acquisition Systems..........................................20 
Table 2 Generic DAS Concept Comparison ..............................................................86 
Table 3 Generic DAS Functionality Comparison ......................................................87 
 



 

 xviii



 

 xix

Glossary 

AMS Asset Management System 
API Application Programming Interface 
COTS Commercial Off-The-Self 
COM Component Object Model 
CORBA Common Object Request Broker Architecture 
DAIS Data Acquisition from Industrial Systems 
DAS Data Acquisition System 
DCOM Distributed Component Object Model 
DSC Communication Systems Department 
DTD Document Type Definition 
EPFL Swiss Federal Institute of Technology Lausanne 
FNRS Swiss National Science Foundation 
GLASS Global Access for Service and Support 
GSM Global System for Mobile communications 
GUID Global Unique IDentifier 
HTML HyperText Markup Language 
HTTP HyperText Transfer Protocol 
HVAC Heating, Ventilation and Air-Conditioning system 
ICA Institute for computer Communications and Applications 
IEC International Electrotechnical Commission 
ISO International Standards Organization 
ITU International Telecommunications Union 
IVI Interchangeable Virtual Instrument 
JLS Jini Lookup Service 
JVM Java Virtual Machine 
LAN Local Area Network 
MTTF Mean Time To Failure 
NePESM New Paradigms for Embedded Systems Management) 
ODAS Open Data Acquisition Standard 
ODP Open Distributed Processing 
OLE Object Linking and Embedding 
OMG Object Management Group 
OPC  OLE for Process and Control 
PC Personal Computer 
PLC Programmable Logic Controller 
PnP Microsoft’s Plug&Play 
PPM Preventive/Predictive Maintenance 
QoS Quality of Service 



 

 xx

RFP Request For Proposal 
RMI Remote Method Invocation 
RM-ODP Reference Model for Open Distributed Processing 
RoMain Railway Open Maintenance tool 
ROSIN Railway Open System Interconnection Network European project 
RPC Remote Procedure Call 
SGML Standard Generalized Markup Language 
SI International System of Units 
SPP-ICS Swiss Priority Programme for Information and Communications 

Structures, 1996-1999 
SSL Secure Socket Layer 
TCN Train Communication Network 
TCP/IP Transmission Control Protocol/Internet Protocol 
TNM Train Network Management 
UIC Union Internationale des Chemins de fer 
UML Unified Modeling Language 
UPnP Universal Plug&Play 
UTC Universal Coordinated Time 
W3C World Wide Web Consortium 
WLAN Wireless Local Area Network 
XML eXtensible Markup Language 
XSL eXtensible Style Language 
 



 

 1

1. Introduction 

1.1 Research Context 

In the last few years, companies from many business areas have become 
increasingly interested in maintenance and asset management. A management 
technique that can be applied for improving maintenance and asset management is 
condition monitoring. The access to utility data source is essential. Remote 
monitoring systems have been developed in many business areas such as building [1], 
power engineering [2] and transportation systems [3] to provide condition-monitoring 
systems with information about the state of equipment. The kernel of any remote 
monitoring system is a data acquisition system (DAS), which enables the collection 
of relevant data. There are many standards for DASs such as OLE for Process and 
Control (OPC) [4], Interchangeable Virtual Instrument (IVI) [5] and Open Data 
Acquisition Standard (ODAS) [6], among others. Additionally, the Object 
Management Group (OMG) has recently issued a Data Acquisition from Industrial 
Systems (DAIS) Request For Proposal (RFP) [7]. Based on DAS standards, there are 
many commercial generic DAS products that DAS developers can buy and customize 
for their specific DAS application. DAS developers have to choose between buying a 
commercial DAS product and customizing it for their specific requirements or 
designing from scratch a specific DAS. 

1.2 Problem Statement, Goals, and Major Contributions 

However, DASs are complex systems. It is difficult for DAS developers to 
understand DAS standards and/or generic DAS products. As each standard or product 
uses a different idiom it is also difficult for DAS developers to compare them. 
Additionally, the development of a specific DAS from scratch is a difficult task that 
requires high development costs. 

DAS
Standards

Generic
DAS

Products

 

Figure 1 The DAS Nightmare 

The main problems are: 

(i) Understanding DAS standards and/or generic DAS products is difficult. 



 

 2

(ii) Comparing DAS standards and/or generic DAS products is difficult. 
(iii) Designing a specific DAS requires high development costs 

 
We found that a high-level generic abstraction of DASs may help DAS 

developers to understand and compare the different standards and/or generic 
products. Therefore, we propose a conceptual model and a role-based use case model 
of a generic DAS. These models give DAS developers a high level abstraction of 
DASs. They also provide DAS developers with an implementation independent 
specification of a generic architecture for DASs. This generic DAS specification 
enables the comparison of existing standards and products. 

DAS
Standards

Generic
DAS

Products

Generic DAS Specification

 

Figure 2 And there was Light … in the DAS World 

Additionally, this generic DAS specification provides the DAS developers 
that aim to develop a specific DAS with a starting point for the design of a specific 
DAS. The specification of a generic architecture for DASs reduces the development 
costs of a specific DAS.  

Specific DASSpecific DAS
Requirements

Generic DAS Specification

 

Figure 3 Specific DAS Development 

Therefore, the main benefits of this generic DAS specification are: 

(i) Reduction of the time and the costs needed to understand a DAS standard 
and/or generic DAS product. 

(ii) Enabling of the comparison of the different products and standards 
(iii) Reduction of the time and the costs needed to implement a specific DAS. 

 
We have found that an implementation independent specification of a generic 

system has many advantages. We propose patterns and techniques to facilitate the 
development of specifications of generic systems. Additionally, our generic DAS 
specification provides a case study on the development, based on conceptual and role-
based use case modeling, of the specifications of generic systems that demonstrates, 
by means of an industrial example, the advantages of these techniques for the 
development of specifications of generic systems. 



 

 3

To summarize, the major contributions of this thesis are: 

(i) We provide an implementation independent specification of a generic 
architecture for DASs. 

(ii) We propose patterns and techniques to develop, based on conceptual and 
role-based use case modeling, implementation independent specifications 
of generic systems. 

(iii) We provide a case study on the development, based on conceptual and 
role-based use case modeling, of specifications of generic systems. 

 

1.3 Organization of this Thesis 

This thesis is organized as follows:  

Chapter 2. Context 

In this chapter we define relevant concepts related to the problem domain of 
DASs. We define embedded systems. We define maintenance, condition monitoring 
and asset management, which are techniques that managers have found give 
substantial benefits to companies. We define remote monitoring and data acquisition 
systems, which are the core pieces to enable the application of such techniques. 
Finally, we define measurement, which is one of the principal processes performed by 
a DAS. 

Chapter 3. Method 

In this chapter we explain concepts and techniques regarding the methodology 
that we followed to obtain an implementation independent specification of a generic 
architecture for DASs. We describe conceptual and role-based use case modeling as 
useful techniques for the development of specifications of generic systems. We define 
the concepts of pattern, framework, and architecture in the software domain, 
establishing a clear distinction between these terms to avoid any confusion. We 
introduce the concept of external specification, which is the term used from now on 
to refer to an implementation independent specification. We present the Unified 
Modeling Language (UML) as the modeling language used in our research work. We 
give an overview of the Catalysis development process, which is an object-oriented 
methodology based on UML. Finally, we give an overview of the methodology that 
we followed to obtain an external specification of a generic architecture for DASs. 

Chapter 4. State of the art of Data Acquisition Systems 

In this chapter we review the state of the art of DASs. First, we give a list of 
analysis and design patterns related to the domain of DASs. Second, we give an 
overview of the OMG’s Data Acquisition from Industrial Systems (DAIS) Request 
for Proposal (RFP), which solicited proposals for standard interfaces to access data 
within industrial systems by other applications. Third, we describe the most important 
data acquisition standards: OLE for Process and Control (OPC), Interchangeable 
Virtual Instrument (IVI) and Open Data Acquisition Standard (ODAS). 



 

 4

Chapter 5. Case Study – The RoMain System: A Remote Data Acquisition 
System Applied to Railway Equipment 

In this chapter we describe the RoMain system, which is a web-based 
monitoring tool for trains to support maintenance work that we developed. This 
system is based on the GLASS system, which is a generic system to provide remote 
monitoring capabilities to a large range of industrial facilities based on Internet 
technologies. We used the development of the RoMain system as a case study to 
acquire the required knowledge about DASs. In one sense, the external specification 
of a generic architecture for DASs is a generalization of the model build for the 
RoMain system with some extensions and improvements. Part of the work described 
in this chapter appeared in [3, 8, 9]. 

Chapter 6. External Specification of a Generic Architecture for Data Acquisition 
System 

In this chapter we describe an external specification of a generic architecture 
for DASs. This generic DAS specification enables the comparison of existing DAS 
products and standards. Additionally, it provides the DAS developers that aim to 
develop a specific DAS with a starting point for the design of a specific DAS. The 
generic DAS specification is composed of a conceptual model and a role-based use 
case model of a generic DAS. These models give DAS developers a high-level 
abstraction of DASs. Parts of the work described in this chapter appeared in [10]. 

Chapter 7. Discussion 

In this chapter we discuss key issues about the conceptual and role-based use 
case models. We also discuss the development process that we followed in this thesis 
and we explain the benefits of this development process versus traditional 
development processes. Parts of the work described in this chapter appeared in [10]. 

Chapter 8. Application and Validation 

In this chapter we explain the applications of an external specification of a 
generic system. The most direct application of a generic system specification is for 
the writing of a RFP for a new standard. Another potential application of a generic 
system specification is for the evaluation of existing systems, standards or RFP 
responses. We illustrate this by using our generic DAS specification to compare the 
OMG’s DAIS RFP, the different DAS standards and the RoMain system. Finally, a 
generic system specification can be applied in the development of a particular system. 
This will significantly reduce the development costs of a specific system. We 
illustrate this by means of an example of development of a DAS for railway 
equipment based on our generic DAS specification. 

Chapter 9. Conclusion 

In this chapter we summarize the major findings and contributions from the 
actual work. We also point out some future work in this field. 



 

 5

2. Context 

2.1 Introduction 

In this chapter we define relevant concepts related to the domain of DASs. We 
define embedded systems. We define maintenance, condition monitoring and asset 
management, which are techniques that managers have found give substantial 
benefits to companies. We define remote monitoring and data acquisition systems, 
which are the core pieces to enable the application of such techniques. Finally, we 
define measurement, which is one of the principal processes performed by a DAS. 

2.2 Embedded Systems 

The U.K. Institute of Electrical Engineers defined embedded systems as: 

“A general-purpose definition of embedded systems is that they are devices 
used to control, monitor or assist the operation of equipment, machinery or plant. 
Embedded reflects the fact that they are an integral part of the system. In many cases 
their embeddedness may be such that their presence is far from obvious to the casual 
observer and even the more technically skilled might need to examine the operation 
of a piece of equipment for some time before being able to conclude that an 
embedded control system was involved in its functioning.” [11] 

In fact, an embedded system is nothing but a specialized computer system. 
Embedded systems differ from desktop PCs in the following aspects: 

(i) Embedded systems often do not have user displays or keyboards. 
(ii) Embedded systems are usually embedded within larger systems or 

machines. 
(iii) Embedded systems may not include any operating system. 
(iv) Embedded systems usually have hard constraints (small memory, slow 

CPU, real-time response and so on). 
 

There are many more – to the order of several magnitudes - embedded 
systems than desktop PCs. We can find embedded systems almost anywhere: home 
(microwaves, TVs, etc.), power substations (switches, control systems, etc.), 
buildings (HVAC, alarm systems, etc.), transportation systems (HVAC, door 
controllers, brakes, etc.), etc. just to mention a few examples. 

This thesis is about remote data acquisition from embedded systems. 
However, there are no constraints that impede the application of the results of this 



 

 6

thesis to non-embedded systems. This is possible because embedded systems have 
tighter constraints than non-embedded systems. Additionally, non-embedded systems 
may provide advanced features that could be used to optimize the acquisition and 
transmission of data from these systems to consumers of this data such as 
maintenance management systems, condition monitoring systems and asset 
management systems. 

2.3 Maintenance, Asset Management, and Condition 
Monitoring 

Maintenance improves the reliability and availability of equipment and 
therefore the quality of service (QoS), which managers have found provides 
substantial benefits. Maintenance management however makes up anywhere from 15 
to 40% of total product cost [12]. Consequently, improving maintenance management 
can also represent a substantial benefit to companies. Traditionally, there are two 
major maintenance approaches: Corrective Maintenance and Preventive/Predictive 
Maintenance (PPM). Corrective Maintenance focuses on efficiently repairing or 
replacing equipment after the occurrence of a failure. Corrective Maintenance aims to 
increase the maintainability of equipment by improving the speed of repair, or return 
to service, after a failure. PPM focuses on keeping equipment in good condition in 
order to minimize failures; repairing components before they fail. PPM aims to 
increase the reliability of equipment by reducing the frequency of failures. 

Substantial benefits can also be obtained by the intensive use of Asset 
Management Systems (AMS). Asset Management is defined in [14] as: 

“The process of guiding the acquisition, use and disposal of assets to make the 
most of their service delivery potential (i.e., future economic benefit) and manage the 
related risks and costs over their entire life.” 

Asset management is a task complementary to maintenance. It provides 
support for the planning and operation phases. Similar to maintenance tasks, in AMSs 
access to utility data source is essential. 

A management technique that can be applied for improving maintenance and 
asset management is the on-line supervision of the health of the equipment, which is 
usually known as condition monitoring. Condition Monitoring is defined in [13] as: 

“Condition monitoring is a management technique that uses the regular 
evaluation of the actual operating condition of plant equipment, production systems 
and plant management functions, to optimize total plant operation.” 

Condition monitoring, applied to maintenance tasks, provides necessary data 
in order to schedule preventive maintenance and to predict failures before they 
happen. Condition monitoring is based on direct monitoring of the state of equipment 
to estimate its Mean Time To Failure (MTTF). AMSs will propose or update PPM 
plans based on the information provided by the condition monitoring systems. 

DASs and remote monitoring systems build the infrastructure, shown in 
Figure 4, to provide condition-monitoring systems with information about the state of 
equipment. 



 

 7

 Improve Equipment Reliability/Availability 
Reduce Costs 

Remote 
Monitoring 

Architecture 

Maintenance and 
Asset Management 

Architecture 

System Monitoring 

Data Acquisition 

Preventive & 
Predictive 

Maintenance 

Condition Monitoring 

Asset 
Management 

 

Figure 4 Maintenance and Asset Management 

2.4 Monitoring and Data Acquisition Systems 

Data Acquisition System (DAS) is defined in [15] as: 

“A DAS is a set of hardware and software resources designed to compute the 
internal representation and then, to deliver to the user the external representation.” 

Although this definition is appropriate, it does not reflect certain important 
aspects of a DAS. We postulate that a DAS is a system that provides: 

• Means to discover knowledge-level data and access operational-level 
system data 

• Means to interpret and process operational-level system data, in order to 
generate system information 

• Means to publish system information 
 

In order to clarify this definition we adopted the following definitions 
according to [16]: 

• Discovering: “to obtain sight or knowledge of for the first time” 
• Access: “to get at” 
• Interpret: “to explain or tell the meaning of” 
• Data processing: “the converting of raw data to machine-readable form 

and its subsequent processing” 
• Publish: “to produce or release for distribution” 

 
Therefore, our definition of a DAS is: 

“A DAS is a set of hardware and software resources that provides the means 
to obtain knowledge-level data of a system, provides the means to access operational-
level system data, converts operational-level system data to more useful system 
information and distributes this information to the user.” 

Additionally, we define a monitoring system as a system that gives a (client 
specific) view of the data obtained from a DAS. 



 

 8

Industrial
System

Manufacturer /
Designer /  Operator

Business
Information

Business Logic
Application

System Data System
Metadata

Business
Meaning

Access
System Data

System
Data

Process
System Data

Publish
System

Information

System
Information

Enrichment Publication

Render
Information

Client
Information

View

Presentation
Format

Presentation

Presentation
Application

DATA ACQUISITION SYSTEM

MONITORING SYSTEM

Gathering

 

Figure 5 Monitoring and Data Acquisition System 

2.5 Measurement 

One of the most important processes performed by a DAS is the process of 
measurement. Measurement is a fundamental method in science that enables one to 
obtain knowledge of a system. Measurement is informally defined in [17] as: 

“Measurement is the process of empirical, objective assignment of numbers to 
the properties of objects and events of the real world in such a way as to describe 
them.” 

A property is a quality, aspect, or attribute common to all members of a class 
of objects that may be subject to measurement. From the previous definition it is 
convenient to highlight that measurement is an empirical process and that this process 
must be objective. 

2.6 Summary 

In this chapter we defined relevant concepts related to the domain of DASs. 
We defined embedded systems. We defined maintenance, condition monitoring and 
asset management, which are techniques that managers have found give substantial 
benefits to companies. We defined remote monitoring and data acquisition systems, 
which are the core pieces to enable the application of such techniques. Finally, we 
defined the concept of measurement, which is one of the principal processes 
performed by a DAS. 

 



 

 9

3. Method 

3.1 Introduction 

In this chapter we explain concepts and techniques regarding the methodology 
that we followed to obtain an implementation independent specification of a generic 
architecture for DASs. We describe conceptual and role-based use case modeling as 
useful techniques for the development of specifications of generic systems. We define 
the concepts of pattern, framework, and architecture in the software domain, 
establishing a clear distinction between these terms to avoid any confusion. We 
introduce the concept of external specification, which is the term used from now on 
to refer to an implementation independent specification. We present the Unified 
Modeling Language (UML) as the modeling language used in our research work. We 
give an overview of the Catalysis development process, which is an object-oriented 
methodology based on UML. Finally, we give an overview of the methodology that 
we followed to obtain an external specification of a generic architecture for DASs. 

3.2 Conceptual Modeling 

A conceptual model is a formal description of a system, from the object 
perspective, that shows the relevant concepts and relationships that make up this 
system. Using a conceptual model of a system makes it easier to understand the 
system, because the model only focuses on the main aspects of the system by hiding 
low-level details that render it difficult to understand. Boman et al. noted in [28] that: 

“An effective approach to analyzing and understanding a complex 
phenomenon is to create a model of it. By a model is meant a simple and familiar 
structure or mechanism that can be used to interpret some part of reality. A model is 
always easier to study than the phenomenon it models, because it captures just a few 
of the aspects of the phenomenon.” 

3.3 Role-based Use Case Modeling 

But a conceptual model only specifies the static concepts of a system. We 
used use case modeling to specify the expected behavior of a system. The artifacts of 
use case modeling are actors and use cases. The terms actor and use case are defined 
in [29]: 

“An actor is an idealization of an external person, process, or thing interacting 
with a system, subsystem, or class. An actor characterizes the interactions that outside 
users may have with the system.” 



 

 10

“A use case is a coherent unit of externally visible functionality provided by a 
system unit and expressed by sequences of messages exchanged by the system unit 
and one or more actors of the system unit. The purpose of a use case is to define a 
piece of coherent behavior without revealing the internal structure of the system.” 

Fowler gives a simpler definition of these terms in [30]: 

“An actor is a role that a user plays with respect to the system.” 

“A use case is a typical interaction between a user and a computer system.” 

Thus, a use case represents an interaction between actors, typically external 
users or parts of the system, to carry out a functionality of the system as seen from the 
external point of view. 

We used elementary roles rather than actors in the use cases, because this 
allows us to specify the system independently of architectural choices, requirements, 
QoS, and/or available technologies specific for a particular system. 

3.4 Patterns, Frameworks and Architectures 

In this thesis we propose an external specification of a generic architecture for 
DASs. This generic DAS specification is inspired by several software patterns. 
Additionally, we extend some of the existing patterns to the domain of DASs and we 
propose new domain-specific patterns for DASs. We found that the terms framework 
and architecture are very often used interchangeably in the industry. In this section 
we define the concepts of pattern, framework, and architecture in the software 
domain. We also establish a clear distinction between these terms to avoid any 
confusion. 

3.4.1 Patterns 

Patterns, in this context, have their origin in the architectural domain. The first 
person that used the term of pattern was the architect Christopher Alexander [18, 19] 
who defined a pattern as: 

“A recurring solution to a common problem in a given context and system of 
forces.” 

Software architects and designers found patterns in the software domain very 
useful, creating the concept of software pattern. In the patterns definition section of 
the Patterns Home Page [20], Richard Gabriel provides a clear and concise definition 
of software pattern: 

“Each pattern is a three-part rule, which expresses a relation between a certain 
context, a certain system of forces which occurs repeatedly in that context, and a 
certain software configuration which allows these forces to resolve themselves.” 

Software patterns can be classified according to many criteria. Brad Appleton 
gives a non-exhaustive major classification of patterns, and a good overview of the 
essential concepts and terminology of software patterns, in [21]. According to this 



 

 11

classification, software patterns can be classified as: 

• Software Design Patterns. Software design patterns describe, usually 
object-oriented, patterns in software designs. Buschmann et al. [22] 
classified software design patterns, according to the level of abstraction 
they are intended for, into: Architectural Patterns, which are high-level 
patterns that express fundamental structural organizations or schemas for 
software systems; Design Patterns, which are middle-level patterns that 
provide schemas for refining the subsystems or components of a software 
system, or the relationships between them, describing commonly recurring 
structures of communicating components that solve a general design 
problem within a particular context; and Idioms, also called coding or 
programming patterns, which are low-level patterns, specific to a 
programming language, that describe how to implement particular aspects 
of components or the relationships between them using the features of a 
given language. 

• Software Analysis Patterns. Software analysis patterns describe a common 
construction in business modeling. 

• Organization Patterns. Organization patterns describe patterns for the 
structuring of organization or projects. 

• Process Patterns. Process patterns describe patterns in the process of 
software design. 

• Domain-Specific Patterns. Domain-specific patterns describe patterns in a 
specific domain. 

 

In this thesis we are concerned with software analysis patterns, software 
design patterns and DAS domain specific patterns that are independent from a 
specific programming language. 

3.4.2 Frameworks 

A framework defines a basic generic structure of things and their relationships 
within a particular domain that can be instantiated to the creation of many similar 
systems. The concept of frameworks in software is closely related to patterns and 
object-oriented technology. Ralph Johnson [23] defined software framework as: 

“A framework is a reusable design expressed as a set of abstract classes and 
the way their instances collaborate. It is a reusable design for all or part of a software 
system.” 

A software framework provides a reusable mini-architecture, within an 
application domain, of a generic system that may be applied to the development of 
many specific systems. 

3.4.3 Architectures 

Architecture is a concept that originally comes from the creation of building 
structures. Today, this term is also employed to refer to the creation of the structure of 
any kind of system, including software systems being then called software 
architecture. 



 

 12

Shawn and Garland [24] defined software architecture as: 

“The architecture of a software system defines that system in terms of 
computational components and interactions among those components.” 

In this context a component is anything that can be used as a part of software 
systems such as databases, communication middlewares, client-servers, application 
servers and so on. In some communities, people use interchangeably the terms of 
framework and architecture. However, in the object-oriented community these 
concepts have different meanings, as pointed out by Jean-Philippe Martin-Flatin in 
[25]. Software architecture refers to the collection of models devised at the analysis 
and high-level design phases of an application. A software architecture is abstract and 
independent of a specific programming language. A software framework can be seen 
as an implementation of a software architecture that provides a set of programming 
language specific template classes. Software developers can use a software 
framework by instantiating its template classes into specific classes as part of the 
development of a specific system. 

3.4.4 Patterns vs. Frameworks vs. Architectures 

From now on we will refer to the terms software patterns, software 
frameworks and software architectures as simply patterns, frameworks and 
architectures respectively. The major differences between patterns, frameworks and 
architectures are: 

  

  

  

  

Pattern

Framework

Architecture

  

  

 

Architectural-size

G
en

er
ic

n
es

s

Pattern

Framework

Architecture

 

Figure 6 Pattern vs. Framework vs. Architecture 

• Patterns are more abstract than Architectures and Frameworks. A design 
pattern describes a solution that may be applied in many application 
domains, whereas architectures and frameworks are domain specific. 

• Architectures are more abstract than Frameworks. Frameworks can be 
seen as an implementation of architectures. Frameworks are programming 
language specific whereas architectures are independent of a specific 
programming language. 



 

 13

• Architectures and Frameworks are bigger structures than Patterns. 
Patterns describe solutions to small parts of a system. Architectures and 
frameworks describe solutions to entire (or significant parts of) systems. 
Actually, architectures and frameworks may be composed of many 
software patterns. 

 

3.5 External Specification 

In this thesis we propose an implementation independent specification of a 
generic architecture for DASs. In this section we introduce the concept of external 
specification, which is the term that we will use from now on to refer to an 
implementation independent specification. 

The term specification is defined in [26] as: 

“An essential technical requirement for items, materials, or services, including 
the procedures to be used to determine whether the requirement has been met.” 

A more software-oriented definition of this term is given by Alain Wegmann 
in [27]: 

“The set of constraints satisfied or to be satisfied by the system of interest. 
The system of interest can be a whole business, an IT application, a software 
component, etc… A specification is a set of models used for a detailed and precise 
presentation of a specific context.” 

An external specification is the specification of a system from the external 
point of view. It specifies in detail what the system will do, but not how the system 
will implement such a functionality. An external specification is therefore 
independent of a certain technology of a specific implementation. Our external 
specification of a generic architecture for DASs includes (see Figure 7): 

• A conceptual model of the system. This model specifies the high-level 
concepts the system deals with. It specifies a business/domain context for 
the system. 

• A role-based use case model of the system. This model specifies the 
functions the system will perform. It specifies the expected behavior of the 
system. It specifies a contract between the system and outside users. 

• A collaboration model. This model includes activity diagrams that 
describe the interactions across use cases, and sequence diagrams that 
illustrate example scenarios of use cases. 

• A specification of the roles of the system. This specification presents the 
interfaces of the roles of the system and the set of concepts and 
relationships of the system that the role has to now to carry out its 
expected behavior. 

 



 

 14

Conceptual Model

A

B D

C

Use Case Model

  

  

  

  

A

msg1
msg3

B

msg2

C

Collaboration Model Interfaces

D

:A :B :C

m1
m2

m3

 

Figure 7 External Specification 

An external specification neither specifies the low-level structure of the 
system, nor how the system internally performs the functions described in the use 
cases. An external specification of a system remains invariant and independent of 
specific implementations issues.  

An external specification of a system is similar to the information viewpoint 
of the Reference Model for Open Distributed Processing (RM-ODP). RM-ODP [35] 
is an ISO/IEC standard and an ITU-T recommendation for the modeling of large 
distributed systems. RM-ODP provides a rich set of modeling concepts, and five 
viewpoint languages (enterprise, information, computational, engineering, and 
technology). To avoid misunderstanding, RM-ODP provides a rigorous definition of 
the concepts (object, class, interface, template, type, action, behavior, role and so on) 
commonly encountered in object-oriented models. The Information Viewpoint of 
RM-ODP focuses on the semantics of the information of a system and the processing 
of this information. RM-ODP defines information as any kind of knowledge (things, 
facts, concepts and so on) that is exchangeable among users in a universe of 
discourse. The result of the information viewpoint is a specification of the system 
from the point of view of “what the system does”, rather than “how the system 
implements it”. Therefore, this specification is independent of how a system is built 
[36]. 

3.6 UML 

In the last few years, many efforts have been made toward developing a 
single, unified language for the modeling of concepts in software engineering and 
business domains. The Unified Modeling Language (UML) [29] is mainly the result 
of the fusion of the concepts from the Booch [31], OMT [32] and OOSE [33] 
methods.  

“The Unified Modeling Language (UML) is a language for specifying, 
visualizing, constructing, and documenting the artifacts of software systems, as well 
as for business modeling and other non-software systems. The UML represents a 
collection of best engineering practices that have proven successful in the modeling 



 

 15

of large and complex systems.” [34] 

A preliminary version of UML appeared in middle 1996. After that, 
continuous improvements have been made with feedback from the general 
community and many industrial partners. In the late 1997, the OMG adopted UML 
1.1 as standard modeling language for object-oriented analysis and design. 

3.7 Catalysis 

Catalysis [38] is a standards-based methodology for the systematic 
development of object and component-based systems. Catalysis unifies the concepts 
of objects, frameworks and components. It provides methods and techniques for 
component-based development, high-integrity design, object-oriented design and 
reengineering. Catalysis uses the UML as notation. 

The basic concepts in Catalysis are the object, which represents a cluster of 
information, and the action, which represents anything that happens. Catalysis places 
both concepts on an equal footing. 

The Catalysis approach supports three levels of description, as shown in 
Figure 8: 

Domain /
Business

Model

External
Specification

Internal Design

Model
Design
Implement
Test

Model
Design
Implement
Test

Model
Design
Implement
Test

Level of Description Process Goal

� Understand the context
� Identify the problem
� Analize requirements
� Propose a solution

� Specify the solution

� Define the internal
architecture of the
solution

 

Figure 8 The Catalysis Approach 

• Domain/Business Model. The main goals are to understand the context 
(domain terminology, business processes, roles and collaborations), 
identify the problem, analyze the business requirements, and propose a 
solution. A business model is a model that describes the business through 
real-world objects and their interactions. An “as-is” business model 
describes the context of the business as it is currently (this model makes 
sense only if the business currently exists). A “to-be” business model 
describes the context of the business as it has to be in the future. 

• External Specification. The main goal is to specify the solution, specify 
the scope of the different components, define their responsibilities, define 
the component/system interfaces and specify the desired component 
operations. 



 

 16

• Internal design. The main goal is to define the internal architecture of the 
solution, define internal components and collaborations and design the 
insides of the system. 

 
For each level of description Catalysis proposes a recursive, non-linear, 

iterative and parallel process consisting of the modeling, designing, implementation 
and testing. Depending on the sequence of deliverables best suited for a specific 
project, different routes though the method can be taken. 

3.8 Method Overview 

To obtain the external specification of a generic architecture for DASs we 
carried out the following steps, shown in Figure 9: 

OMG’s 
DAIS RFP

OMG’s 
DAIS RFP

Remote 
Monitoring Systems 
(GLASS, RoMain, …)

Remote 
Monitoring Systems 
(GLASS, RoMain, …)

DAS Standards
(OPC, IVI, ODAS)

DAS Standards
(OPC, IVI, ODAS)

DAS 
Conceptual Model 

DAS 
Conceptual Model 

DAS
{Generic} 
External
Specification

Software Patterns
(Gamma, Fowler, Hay, …)

Software Patterns
(Gamma, Fowler, Hay, …)

DAS 
Use Case Model

DAS 
Use Case Model

 

Figure 9 Method Overview 

(i) We analyzed some remote monitoring systems. We analyzed several 
remote monitoring systems from different business domains such as 
building, power engineering, and transportation systems. We also 
analyzed a DAS for railway equipment that we developed. During the 
development of such a system we used our own variation, which puts 
emphasis on role-based use case modeling, of the Catalysis development 
process. 

(ii) We analyzed some DAS standards. We analyzed different DAS standards 
such as such as OLE for Process and Control (OPC), Interchangeable 
Virtual Instrument (IVI) and Open Data Acquisition Standard (ODAS). 

(iii) We analyzed the OMG's Data Acquisition from Industrial System (DAIS) 
RFP. This RFP solicited proposals for standard interfaces to access data 
within industrial systems by other applications. 

(iv) We enhanced this specification with several software patterns. We found 
that some existing software patterns (e.g. Composite and Broker) give an 
effective proven solution to some problems that appeared in the 
specification of DASs. Additionally, we proposed new patterns (e.g. 
Model Composite and Administer-Manager) for DASs. 



 

 17

(v) We generalized this specification to allow its use in different domains. 
Any domain specific concept was generalized to generic concepts in order 
to allow its use in different domains. Domain specific details have been 
removed from the specification. 

 

3.9 Summary 

In this thesis we propose an external specification of a generic architecture for 
DASs. In this chapter we explained concepts and techniques regarding the 
methodology that we followed to obtain an external specification of a generic 
architecture for DASs. We described conceptual and role-based use case modeling as 
useful techniques for the development of specifications of generic systems. We 
defined the concepts of pattern, framework, and architecture in the software domain, 
establishing a clear distinction between these terms to avoid any confusion. We 
introduced the concept of external specification. We presented the Unified Modeling 
Language (UML) as the modeling language used in our research work. We gave an 
overview of the Catalysis development process, which is an object-oriented 
methodology based on UML. Finally, we gave an overview of the methodology that 
we followed to obtain an external specification of a generic architecture for DASs. 



 

 18

 



 

 19

4. State of the art of Data Acquisition 
Systems 

4.1 Introduction 

In this chapter we review the state of the art of DASs. First, we give a list of 
analysis and design patterns related to the domain of DASs. Second, we give an 
overview of the OMG’s Data Acquisition from Industrial Systems (DAIS) Request 
for Proposal (RFP), which solicited proposals for standard interfaces to access data 
within industrial systems by other applications. Third, we describe the most important 
data acquisition standards: OLE for Process and Control (OPC), Interchangeable 
Virtual Instrument (IVI) and Open Data Acquisition Standard (ODAS). 

4.2 Software Patterns for Data Acquisition Systems 

In this thesis we propose an external specification of a generic architecture for 
DASs that gives developers analysis and design patterns for the development of such 
systems. Analysis patterns are high-level patterns that describe a common 
construction in business modeling. Design patterns are intermediate level patterns that 
describe design solutions to build a specific system. In this section we compile some 
analysis and design patterns related to the domain of DASs. We classified these 
patterns according to the following classification: 

• Architectural Patterns. Architectural patterns describe high-level 
partitions of a system into subsystems and their dependencies. 

• Behavioral Patterns. Behavioral patterns describe how objects interact and 
distribute responsibility. 

• Diagnostic Patterns. Diagnostic patterns describe how diagnostic 
messages are represented and processed. 

• Input and Output Patterns. Input and Output patterns describe issues 
related to the gathering of data and its processing. 

• Knowledge Management Patterns. Knowledge patterns describe how 
knowledge can be represented in a system. 

• Naming Patterns. Naming patterns define how to identify objects. 
• Observations and Measurements Patterns. Observations and measurement 

patterns describe how to represent observations and measurements of a 
system. 

• Structural Patterns. Structural patterns define how to compose objects. 



 

 20

• Temporal Patterns. Temporal patterns define how to deal with objects that 
change over time. 

 
We include the original source of the patterns; additionally, a brief description 

of them and their applicability can be found in [39]. 

 

Table 1 Software Patterns for Data Acquisition Systems 

Category Related Patterns 
Architectural Two-Tier Architecture, Three-Tier Architecture, Presentation 

and Application Logic [40] 
Behavioral Observer, Mediator, Iterator, Chain of Responsibility [41]; 

Broker, Client-Dispatcher-Server, Forwarder-Receiver, 
Publisher-Subscriber [22]; Reactor [42] 

Diagnostic Diagnostic Logger, Diagnostic Context, Typed Diagnostic [43]; 
Whole Value, Exceptional Value, Diagnostic Query [42] 

Input and 
Output 

MML, IO Gatekeeper, Mind Your Own Business, IO Triage, 
Timestamp, Who Asked?, George Washington Is Still Dead, 
Bottom Line, Five Minutes of No Escalation Messages, Shut Up 
and Listen, Pseudo-IO, Beltline Terminal, Audible Alarm, 
Alarm Grid, Office Alarms, Don’t Let Them Forget, String a 
Wire, Raw IO [44] 

Knowledge 
Management 

Knowledge Level [45] 

Naming Name, Identification Scheme [40] 
Observations & 
Measurements 

Quantity, Conversion Ratio, Compound Units, Measurement, 
Observation, Subtyping Observation Concepts, Protocol, Dual 
Time Record, Rejected Observation, Active Observation / 
Hypothesis / Projection, Associated Observation, Measurement 
Protocol, Range, Phenomenon with Range [40] 

Structural Facade, Proxy, Bridge, Composite [41]; Whole-Part [22] 
Temporal Temporal Property, Temporal Association, Snapshot [44] 

 
 

In our generic DAS specification we used some of these patterns (such as 
Composite and Broker). Most of the patterns listed in Table 1 may be used in the 
design phase of a specific system. 

4.3 OMG’s DAIS RFP 

In this section we give an overview of the Data Acquisition from Industrial 
Systems (DAIS) Request For Proposal (RFP) [7], issued by the OMG in January 
1999. This RFP solicited proposals for standard interfaces to access data within 
industrial systems by other applications. The goal of this RFP is to provide 
operational-level and knowledge-level data in a common format to applications 
running in a heterogeneous, distributed computing environment. This RFP solicited 
proposals of standard interfaces covering the following functionalities: 



 

 21

• Discovery of Remote System and Device Schema. “Mechanisms for 
discovering accessible remote devices, measurements, 
discrete/incremental information, permissible ranges and/or sets of values, 
alarms and industrial system sourced events. The requests for discovery 
could be triggered on-demand, or based on time, exception and/or event. A 
client system could register to receive notifications of changes of the 
composition from the device…A means shall be provided for a client 
system to determine the data types and quantities (i.e. cardinality) of data 
elements available from a particular entity within an industrial system, as 
well as the identifiers and some of the semantics associated with those 
data elements.” 

• Defining Data Access Request. “Mechanisms for defining (and deleting) a 
set of data and how the set of data should be retrieved. Data sets are 
collections of data, defined by the client, by a third party, or pre-existing 
data on the device, that are transferred in response to an event or single 
read request. The request for data retrieval can be triggered on-demand, or 
based on time, exception and/or event. A client could register to receive 
event notifications for the availability of the data requested.” 

• Data Access/Retrieval. “Mechanisms to define immediate data access 
retrieval upon request. The data elements transferred may be simple or 
structured types. A client could define a set of data to be retrieved at a 
time.” 

• Event Notification for Availability of Data. “Mechanisms to allow the 
industrial system broadcasting events outside itself to which clients can 
subscribe in order to receive a notification that new data is available to be 
accessed.” 

• Event Driven Data Upload. “Mechanisms to define event driven data 
retrieval sequence, by which data delivery can be done automatically upon 
the occurrence of a notification for availability of data.” 

 
This RFP also requested proposals for standard data types to record 

information such as: 

• Measurements. “A measurement is a specific value or set of values 
measured at a specific time and/or associated with a specific context 
within an activity.” 

• Discrete and incremental information. “Discrete information can take one 
value of an enumerated set of values. Incremental information is used to 
indicate a variation from a reference value.” 

• Alarms. “Alarms are indications of a certain state of the system.” 
• Timestamps. “Timestamps record the time when, e.g., a measurement has 

been taken.” 
• Identifiers. “Unique identifiers unequally identify entities on the system.” 

4.4 Data Acquisition Standards 

In this section we describe the most important standards related to data 
acquisition systems. 



 

 22

4.4.1 OPC 

The OLE for Process Control (OPC) standard provides clients with a common 
way to access heterogeneous data sources from the plant floor, and/or from databases 
in a control room, enabling the integration of data, in a transparent way, into their 
information systems. 

The first draft version of the OPC specification was released in December 
1995. Since 1996, the development of the OPC standard has been led by the OPC 
Foundation [4], a non-profit industry consortium of major players in the process 
control industry (Siemens, Fisher-Rosemount, Rockwell, and others) working in 
cooperation with Microsoft that currently has over 220 members around the world. 

OPC draws a line between hardware providers and software developers. It 
provides a mechanism to provide data from a data source and communicate the data 
to any client application in a standard way. A vendor can develop a highly optimized 
proprietary server to communicate to the data source, and provide the server with an 
OPC interface to allow OPC clients to access their devices. 

The OPC specification is based on Microsoft COM/DCOM [46, 47] 
technology. OPC defines a set of standard COM interfaces to provide the following 
functionalities: 

• Access to Online Data. Mechanisms that allow OPC clients to efficiently 
read/write data from/to an OPC server. 

• Handling of Alarms and Events. Mechanisms that allow OPC clients to 
subscribe to be notified of the occurrence of specified events and alarm 
conditions. 

• Access to Historical Data. Mechanisms that allow OPC clients to read, 
process and edit historical data. 

 

name: String

OPC Client

name: String
active: Boolean
refreshRate: Long

OPC Group

ItemID: String
active: Boolean

OPC Item

OPC Public
Group

OPC Private
Group

  

  

name: String

OPC Server

Device Data
Source

OPC DataAccess Server

Device

Device
Group

Simple
Device Group

Complex
Device Group

  

  

communicate with* *
manages

* *

define1

*
manages

1

*
access

1

*

*

*

access

manages
1

*

manages

1

*

manages

1

*

composed of
0..1

*

represents

value: Variant
time: TimeStamp
quality: QualityMark

OPC Item State

has
1

*

* 1

 

Figure 10 OPC Data Access Model 



 

 23

Other functionalities such as security, batch and historical alarm and event 
data access will be addressed in future releases of the OPC standard. 

The OPC standard gives the following benefits: 

• Reduction of manufacturing costs. Hardware manufacturers only have to 
develop a set of software components (the OPC server) to allow 
heterogeneous clients to access data in a common way. They do not have 
to provide customers with different drivers to access their devices from 
many platforms. 

• Simplification of the development of client applications. Client 
applications developers may write applications easily regardless of 
proprietary drivers.  

• Interchangeability of devices. We may exchange a device for another 
device if the OPC interface remains the same. 

 
The OPC Data Access model is described in Figure 10. An OPC Server object 
manages a set of OPC Groups. Each OPC Group is a logical container that manages a 
set of OPC Items, each of one represents a single Device Data Source with a value, a 
timestamp and a quality mark. A Device Data Source belongs to a Device and is 
physically grouped with related data sources within a Device Group. An OPC Server 
can manage several Devices. An OPC Client communicates with one or several OPC 
Servers. The client is responsible for defining in the server side the OPC Groups and 
the refreshing rate. A client can define a Public Group that can be shared by several 
clients. If the group is only defined by and for a client, then it is called Private Group. 

4.4.2 IVI 

The Interchangeable Virtual Instrument (IVI) standard provides clients with 
standard drivers to access instruments such as oscilloscopes or digital multimeters, 
enabling the interchangeability of instruments from different vendors. 

The development of the IVI standard is led by the IVI Foundation [5], a non-
profit organization that was established, as an initiative of National Instrument, in the 
spring of 1997 by a consortium of large manufacturers of test instruments (The 
Boeing Company, GDE Systems, GEC Marconi, GenRad, Lockheed Martin 
Aeronautical Systems, Lucent Technologies, National Instruments, Northrop 
Grumman ESSD, Raytheon TI Systems, and Vektrex). 

The IVI Foundation defines instrument classes, called IVI drivers, based on 
the most common functionalities and configurations available in instruments today. 
Currently available IVI classes include Oscilloscope (IviScope), Digital Multimeter 
(IviDmm), Function Generator (IviFGen), Switch (IviSwtch), and Power Supply 
(IviPower) classes. In the future, additional classes will be identified and new IVI 
drivers will be defined. 

The IVI standards are built upon the VXIplug&play standard. VXIplug&play 
is a standard for instrument drivers that defines a set of common functions that drivers 
should support, and also defines an I/O communication library called VISA. The IVI 
Foundation took some of these concepts and incorporated them into the IVI standard. 
The IVI standard defines both ANSI C and Microsoft COM interfaces for instrument 



 

 24

drivers. 

IVI instrument interfaces give the following benefits:  

• Reduction of programming time and complexity. IVI instrument interfaces 
provide a consistent programming approach for instruments. 

• Reduction of down-time and reduction of maintenance costs. IVI 
instruments allow instruments to be swapped with minimal or no test code 
modifications. 

• Acceleration of the introduction of new products to market. IVI 
instruments facilitate the rehost of test code from R&D to manufacturing 
regardless of instrumentation hardware used. 

IVI Measurement and Stimulus System (IVI-MSS) 

Besides IVI drivers, the IVI Foundation is also defining a standard to allow 
the definition of complex measurement systems composed of many instruments. This 
standard is called IVI Measurement and Stimulus System (IVI-MSS) [48]. The IVI-
MSS model is described in Figure 11. An IVI-MSS Server may implement many Role 
Interfaces, each of them representing a functionality implemented by a Conceptual 
Asset (a real asset, also called synthetic instrument, or a set of instruments in the case 
of legacy instruments). A Conceptual Asset is controlled by a Role Control Module. 
Typically, an IVI-MSS Servers will group a set of functionalities. However, a single 
Event Server is used to record events, a single IVI Class Factory is used to create IVI 
Classes, and a single IVI Configuration Store is used to configure the system. 

IVI-MSS Client IVI Class
Factory

IVI Config
Store

Event Server

IVI-MSS
Server

Role InterfaceRole Control
Module

Conceptual
Asset

1

1

uses

*

0..1

used
by

1

*

controls implements

implements

controls*

*

*

* *

*

* *

controls1..* *

uses

*
1

used by

used by

used
by

1

* *

1

*1

uses

*
*

uses

*

1

used by1 *

used by

1

*

 

Figure 11 IVI-MSS Model3 

4.4.3 ODAS 

The Open Data Acquisition Standard (ODAS) standard provides a set of 
standard interfaces for PC plug-in (PCPI) data acquisition cards. 

                                                 
3 Thanks to Roger P. Oblad, from Agilent Technologies, Inc., for the discussions about the IVI-MSS 
conceptual model 



 

 25

The development of the ODAS standard is led by the ODAA (Open Data 
Acquisition Association) [6], a non-profit organization that was formerly established 
in the summer of 1998 by a consortium of companies (ComputerBoards, Data 
Translation, Hewlett-Packard, LABTECH, OMEGA Engineering, and Strawberry 
Tree). 

The goal of ODAS is to provide users of data acquisition systems with a 
universal, open standard that allows interoperability between PC-based data 
acquisition hardware and software solutions from multiple vendors. The hardware 
products include, but are not limited to: plug-in boards, PC cards, parallel port 
systems, USB devices, serial devices and networked systems. The ODAS standard 
support simultaneous high speed streaming of multiple channels of data at very 
extremely high speed, sophisticated counter/timer functionality and the capability to 
perform very high speed control applications. 

The ODAS standard is based in Microsoft COM technology. ODAS defines a 
set of standard COM interfaces to provide the following functionalities: 

• Analog In/Out. It defines methods to read and write analog inputs and 
outputs, respectively. It supports multiple channels, 
synchronous/asynchronous operation, A/D conversions, internal/external 
clocking capabilities, notification of events, and so on. 

• Digital In/Out. It defines methods to read and write digital inputs and 
outputs respectively. It supports high-speed timed input/output, 
simultaneous reads/writes, bi-directional lines, and so on. 

• Counter/Timer. It defines methods used for counting/timing. Currently, 
the specification is under development. 

 
The ODAS standard gives the following benefits: 

• Faster time to market, cost savings. The ODAS standard allows vendors to 
develop a single version of their driver that communicates with all other 
compliant hardware and software. The costs of developing multiple I/O 
drivers disappear and products can be delivered faster to market. 

• Focus on value-add functionalities. Vendors can focus their efforts on 
adding value to their hardware and software products, rather than on 
implementing many drivers for the same products. 

• More robust & reliable products. By making use of a single, well-
designed standard, vendors will be assured of a high quality, reliable, 
robust interface to all compliant products. 

 
The ODAS model is described in Figure 12. An ODAS Manager manages 

many ODAS Drivers. An ODAS Driver manages many ODAS Subsystems. An ODAS 
Subsystem is an abstract representation for ODAS Analog Input, ODAS Digital Input, 
ODAS Counter/Timer, ODAS Analog Output, and ODAS Digital Output. An ODAS 
Subsystem accesses an I/O Device, which represents a real input/output device. 



 

 26

ODAS
Driver

ODAS
Subsystem

ODAS
Manager

I/O Device

manages
1 *

manages
1

*

accesses
* 1

ODAS
Analog
Output

ODAS
Digital
Input

ODAS
Digital
Output

ODAS
Counter /

Timer

ODAS
Analog
Input

1ODAS
Client uses

* *

 

Figure 12 ODAS Model 

4.5 Summary 

In this chapter we reviewed the state of the art of DASs. We gave a list of 
analysis and design patterns that are commonly used in the design and development 
of DASs. In this thesis we propose an external specification of a generic architecture 
for DASs. An external specification of a generic system can be seen as a large 
domain-specific analysis pattern. Additionally, in this thesis we propose new patterns 
for DASs. We also explained the OMG’s Data Acquisition from Industrial Systems 
(DAIS) Request for Proposal (RFP). We found this RFP very useful. We used this 
RFP as a guideline to specify a generic DAS. Our generic DAS specification is not a 
response to this RFP as it does not provide, as requested by this RFP, CORBA 
interfaces for DAS. Rather, our generic DAS specification is complementary to the 
OMG’s DAIS RFP, as our specification describes the concepts related to any DAS 
and the DAS functionalities by means of conceptual and role-based use case 
modeling. Our specification remains at a high level of abstraction, being possible to 
specify the OMG’s DAIS RFP and its responses using such a specification. We 
described the OPC, IVI and ODAS standards. We put forth that most standards have 
similar concepts and provide similar functionalities. However, they use different 
naming conventions and they describe their functionalities in different ways. This 
makes it rather difficult to compare them. 



 

 27

5. Case Study – The RoMain System: A 
Remote Data Acquisition System 
Applied to Railway Equipment 

Parts of this work appeared in [3, 8, 9]. 

5.1 Introduction  

In this chapter we describe the RoMain system, which is a web-based 
monitoring tool for trains to support maintenance work that we developed. This 
system is based on the GLASS system, which is a generic system to provide remote 
monitoring capabilities to a large range of industrial facilities based on Internet 
technologies. We used the development of the RoMain system as a case study to 
acquire the required knowledge about DASs. In one sense, the external specification 
of a generic architecture for DASs is a generalization of the model build for the 
RoMain system with some extensions and improvements. 

5.2 The GLASS System 

The Internet, having caused a revolutionary impact on office automation, is 
currently heavily influencing the industrial automation and information systems. The 
emergence of the Internet provides a framework for communication with any piece of 
hardware or software, independently of where it is physically located. Heterogeneous 
distributed embedded systems, which were commonly isolated in the past, are 
increasingly connected to networks and integrated within information systems. The 
management of distributed embedded systems is becoming an immense task for 
embedded systems providers, operators, and service organizations that want to offer 
their customers a high quality of service. The interconnection of distributed 
embedded systems and information systems brings significant benefits and offers new 
business opportunities. One of the applications of the Internet in the industry is for the 
remote monitoring of embedded systems. Some examples of these applications can be 
seen at [1-3, 52-54]. 

The Global Access for Service and Support (GLASS) system provides remote 
monitoring capabilities to a large range of industrial facilities, from unmanned 
substations to large plants or devices on mobile platforms like trains or ships [2]. The 
GLASS system, developed by ABB Corporate Research Ltd. in Switzerland, is based 
on Internet technologies and uses Common Off-The-Self (COTS) technology 



 

 28

wherever possible. It was initially developed for power substations and then 
generalized to almost any industrial facility. We closely collaborated in the 
application of the GLASS system in the railway domain, as part of the ROSIN 
European project.  

The GLASS system, shown in Figure 13, consists of a server and many clients 
interconnected through a secure TCP/IP network (typically the Internet or an 
Intranet). The server is a PC connected to a proprietary fieldbus that retrieves raw 
data from the devices of the industrial facility. The TCP/IP link allows clients to 
retrieve the monitoring information of the industrial facility from the server. The 
clients are standard web browsers with applets that visualize the data in the 
appropriate way. The server and the client applications have been developed in Java. 

Secure
TCP/IP

Network

DeviceDevice

 proprietary
fieldbus

GLASS
 Server

Web
Client

 

Figure 13 The GLASS System 

The GLASS server is responsible for the management of the so-called Proxy 
objects. A proxy object is a representative of a real world object, that means, of an 
industrial device. A proxy object is responsible for gathering the real data from the 
device it represents. Additionally, a proxy object can extend a device, e.g., with 
sophisticated algorithm for the prediction of maintenance related events. In the 
GLASS system, a specific proxy class is implemented for each type of device. 

5.3 The RoMain System 

We developed, in the frame of the Railway Open System Interconnection 
Network (ROSIN) European project, a web-based monitoring tool for trains that 
supports maintenance work. This monitoring tool was called Railway Open 
Maintenance tool (RoMain) [3, 8]. The objective of this tool was not to replace the 
existing control network, but rather to enhance it with a parallel, low-cost, on-line 
data network for railways, in order to support maintenance work. This data network 
allows maintenance staff to supervise railway equipment from anywhere at anytime. 
It also enables experts at different locations to collaborate and to anticipate 
maintenance tasks. The user requirements for such a tool were: (i) ubiquitous access 
to the information; (ii) low cost; (iii) user-friendly interface with textual and graphical 
views of the information; and (iv) easy update of equipment documentation. Taking 
into account all these requirements, we decided to take an approach based on the 
Internet. The Internet has had a revolutionary impact on office automation, and now 



 

 29

there is a clear trend towards using Internet technologies for industrial automation. 
The introduction of Internet technologies for accessing embedded systems is mostly 
cost driven, thus bringing significant benefits: 

• Reduction of the development costs of an application, by enabling the use 
of Common Off-The-Shelf (COTS) software components. 

• Elimination of the costs of a proprietary communication network, by using 
the common Internet network. 

• Reduction of the costs of development of a client application for each 
different platform, by using a standard web-browser as a single client 
interface for heterogeneous platforms. 

• Elimination of the costs of installing proprietary client applications, as the 
client interface is a standard web browser usually pre-installed on the 
client machine. 

• Reduction of the costs of maintaining up-to-date equipment 
documentation, by offering a simple way (hyperlinks) to publish 
documents accessible immediately from anywhere in the world. 

• Reduction of maintenance personal travel costs, by the possibility of 
ubiquitous access to the information. 

• Reduction of maintenance scheduling costs, by the possibility of 
ubiquitous access to the information at any time. 

Ground Station

Internet
(Wireless
Network)

Train Gateway

Internet

Client Machine

 

Figure 14 The RoMain System 

The architecture of the RoMain system, shown in Figure 14, is composed of: 

(i) Train Gateways - connected to the train network gather actual train data. 
(ii) Ground Stations - automatically establish connections to Train Gateways 

over wireless networks. 
(iii) Client Machines - run a standard web browser to access train data. 

 
Additionally, Name and Directory Servers may provide information about the 

train component models and train directory, and Manufacturer Servers may provide 
on-line information (e.g. fact sheets, user manuals, or installation instruction) about 
train components. All these systems are interconnected by means of a secure, wired 
or wireless, TCP/IP Network; usually the Internet, or eventually an Intranet or Virtual 
Private Network. 

In the following sections, we describe two prototypes that we developed of the 
RoMain system. 



 

 30

5.4 RoMain Java: Monitoring of all Devices on a Single 
Train 

The first prototype has a 2-tier architecture and is based on Java technology 
and Java Remote Method Invocation (Java RMI) [60-62] as communication protocol. 
Java, promoted by Sun Microsystems, is basically a programming language and a 
running platform. The Java language is an easy to learn but quite efficient object-
oriented programming language; the Java Virtual Machine (JVM) enables platform 
independence; and the Java Application Programming Interface (API) provides 
software developers with a rich library of classes. The Java API provides many ways 
to enable network connectivity. One of them is Java RMI, which is a communication 
middleware that enables the communication between objects running in different 
locations. Java RMI brings a Remote Procedure Call (RPC) like mechanism to 
execute methods of object located remotely.  

The main goal of this prototype was to specify an API for a Data Acquisition 
System (DAS) on-board a train. This API defines the interface between client and 
server, and it therefore enables the implementation of new client applications. As the 
API is object-oriented and as the applications are distributed, we had a choice 
between different middleware products: DCOM [63, 64], CORBA [63, 65, 66], or Java 
RMI. We opted for the latter as we strived for a 100% pure Java solution. Therefore, 
we developed the on-board DAS as a Java RMI server. It offers remote interfaces for, 
discovering train configuration, and accessing train, vehicle and equipment data - to 
give just two examples. Based on the API we developed a client system, as a Java 
RMI client within a Java applet, that uses these remote interfaces to display the 
current state of a train within a web browser. 

Two different updating mechanisms were implemented based on pull and 
push technologies. Using push technology the update of data is triggered by the 
server, if and only if, there are changes in that data. Hence a GSM connection is only 
open during notification subscription and notification, even if there is an arbitrary, 
long time span in between. 

Client

Train Gateway
Java enabled
web browser

RMI
Registry

Ground Station

Equipment
Monitoring

Applets

Equipment
Monitoring

HTML Pages

W
eb

 S
er

ve
r

Train
Directory

Routing Services

Remote
Access

Services
Wireless
Network

Internet Data
Acquisition

System
[RMI Server]

Monitoring
Applet

[RMI Client]

Monitoring
HTML Page

 

Figure 15 Monitoring of all Devices on a Single Train 



 

 31

The architecture of the system is shown in Figure 15. The remote Train 
Gateway is usually reachable by means of a wireless network, in our case by GSM. A 
Ground Station is responsible for transparently establishing a TCP/IP connection to 
the remote Train Gateway via this wireless network. As the bandwidth of GSM is still 
relatively low, the downloading of the monitoring HTML page, plus the downloading 
of the associated monitoring Java applet, is slow. In order to improve the performance 
of this download, we investigated an alternative: The monitoring HTML page and the 
Java applet were moved from the remote Train Gateway to a ground based web 
server, in our case to the Ground Station. The Train Gateway then became a pure data 
server. 

In this prototype we also investigated security issues. As the user must grant 
the client Java applet certain privileges for stepping out of the sandbox (the restrictive 
security policy implemented by the browser), he must be able to check whether this 
Java applet is trustworthy or not. Therefore, the developer of the Java applet must 
sign it with a digital signature obtained from a certificate authority. We use the same 
technology that is used to make e-commerce applications more secure. 

The main problem with this prototype is the problem of accessing data for a 
client behind a firewall. This can be partially overcome with HTTP tunneling, but this 
slows down the communication and the use of server side push technology is no 
longer possible.  

During two years we run a demonstration of this prototype. In this 
demonstration a Train Gateway was connected to a train network installed in a 
laboratory at the CAF (a Spanish train manufacturer) facilities in Beasain (Spain). 
This train network was exactly the same as the network that was installed on a real 
train for a demonstration in February’99. The data was collected from real devices, 
which were interconnected via the Train Communication Network (TCN) [67]. The 
Ground Station was installed at the ICA institute. The only difference with the real 
demonstration was that the connection of the Ground Station with the Train Gateway 
was not done by a wireless network but by an Internet wired connection. This was 
done in order to reduce costs. However, this was totally transparent for any client 
using the application. 

5.5 RoMain XML: Monitoring of all Devices on a Fleet of 
Trains 

The second prototype has a 3-tier architecture and is based on XML/XSL [64, 
68-70] technology and HTTP as communication protocol. The eXtensible Markup 
Language (XML) is the “de facto” standard for data exchange over the Internet. This 
new standard was specified, similarly to the Hypertext Markup Language (HTML), 
by the World Wide Web Consortium (W3C) from a subset of the historical Standard 
Generalized Markup Language (SGML). XML data looks very much like HTML. 
However, XML allows developers to define a specific grammar for a specific 
application. This grammar can be specified by the means of a Document Type 
Definition (DTD). There are already many standard DTDs that were agreed upon by 
companies working in the same business domain. These standards enable data 
exchange among heterogeneous systems. XML data is easy to create, parse, combine 
and transform into other formats. The eXtensible Style Language (XSL) is an 



 

 32

advanced style sheet language designed for the use with well-formed XML 
documents. XSL documents contain a series of XSL elements that apply to particular 
patterns of XML documents. When a particular XML pattern is found, the XSL 
element outputs a combination of text. The HyperText Transfer Protocol (HTTP) is 
an application protocol that defines a set of rules for exchanging data over the 
Internet. HTTP is based on TCP/IP, the transport and session standard protocols of 
the Internet. 

In this prototype we implemented a system with a three-tier architecture to 
investigate how data from an entire fleet of trains can be integrated, but also to 
overcome the problem we had with the previous prototype. This allows a component 
manufacturer to supervise, for example, all door controllers, regardless on which 
trains they are. We investigated technologies that allow the client to choose among 
different views, and to receive data combined from Train Gateways on a single page. 
Choosing among different views means that we need a way to separate what is data 
and what is presentation format. Combining data from different sources means that 
we have to parse the data and create new data. All these features are easily 
implemented by the use of XML. As XML also enables the definition of new domain 
specific markup languages, data can be transmitted together with some metadata that 
describe them. This makes it easy to parse and combine XML documents. Moreover, 
the presentation format can be added by means of a separate XSL file, which defines 
how an XML document should be displayed. Therefore, it is easy to implement 
different views of the same XML document by providing different XSL files. 

Client

Train GatewayWeb browser
with XML

direct browsing
capabilities

RMI
Registry

Ground Station

W
eb

 S
er

ve
r

Train
Directory

Routing Services

Remote Access Services

Data Acquisition
System [RMI Server]

Web Server

 Data Server

Internet
Document Server

[ASP]

[RMI Client]
[Java Servlet]

XSL
files

Train
Monitoring
XML Pages Wireless

Network

 

Figure 16 Monitoring of all Devices on a Fleet of Trains 

The architecture of the system is shown in Figure 16. It has a three-tier 
architecture composed of:  

(i) A Java servlet [71] on-board a train that gathers data from the Java RMI 
server developed for the second prototype and that replies to an HTTP 
request of data with XML documents giving the requested information 

(ii) A middle tier that receives data from different sources in XML format, 
combines them into a single XML document and adds the style sheet 



 

 33

corresponding to the client view 
(iii) A thin client, which is like in the previous prototype, a web browser. Note 

that in the first prototype the Java applet also is loaded from the Ground 
Station, but then it connects directly to the data server on the train; this 
means in the first prototype we had a two-tier architecture. 

 
As in the previous prototype, a Ground Station is used in order to access, via a 

wireless network, the remote Train Gateway. In this prototype there is no monitoring 
HTML page or Java applet. Instead there is a document server on the middle-tier, 
which is responsible for integrating data from different Train Gateways and for 
adding the corresponding style sheet to make the output readable by the client. In our 
case, the entire middle-tier is on the Ground Station. 

This architecture is scalable, extensible and adaptable for future evolution, and 
it runs over firewalls. The main drawback is that it is not possible to use server side 
push technology. 

During two years we run a demonstration of this prototype. In this 
demonstration the train data source was the same as in the demonstration of the 
previous prototype. The Ground Station was installed at ICA. The communication 
with the Train Gateway was done by means of an Internet wired connection. 

5.6 Plug&Play 

One of the most relevant issues of the RoMain system was the development of 
a fully Plug&Play system. We differentiate between two kinds of Plug&Play. We 
used the term System Plug&Play to refer to the functionality that allows that a 
system, in our case a DAS, configures itself and gets ready to run without human 
intervention. We used the term Network Plug&Play to refer to the functionality that 
allows that a system, in our case a DAS, intercommunicate spontaneously with other 
systems by offering some services and using services offered by other systems in a 
network community. 

5.6.1 System Plug&Play 

Maintenance staff does not want to spend time installing or configuring 
anything in order to monitor their systems. They just want to perform maintenance. 
Consequently, our idea was to have an automatic configuration, which enables the 
maintenance system to configure itself when it is attached to a new vehicle. To enable 
this automatic configuration, some “extra” configuration information for maintenance 
must be stored in the vehicle itself. We refer to this information as maintenance 
information metadata. This information will enable: 

• The retrieval of the vehicle and equipments documentation from 
somewhere on the Internet. 

• The automatic generation of the vehicle and equipments proxies on the 
Train Gateway. These proxies allow the Train Gateway to access the 
equipments through the specific fieldbus (e.g. TCN in our case) and 
update their web pages with the actual value of their properties. 



 

 34

Maintenance Information Metadata 

The most flexible solution is to store, on the vehicle, the smallest dataset 
sufficient to identify the different components. It must contain enough information to 
automatically build component proxies. This dataset should be defined by equipment 
manufacturers and vehicle assemblers during the vehicle building process, and it is 
stored on a dedicated device, usually the train bus node, located in every vehicle. The 
maintenance information metadata structure is graphically shown in Figure 17 and 
described briefly as follows: 

Vehicle Identification

Configuration Parameters

Process Variables

Equipment
List

UIC

Manufacturer Name
Model Name

Hardware Version
Software Version

Description

Equipment Identification

Configuration Parameters

Process Variables

Equipment #1
Equipment #2

Equipment #n

Serial Number

Manufacturer Name
Model Name

Hardware Version
Software Version

Description

Serial Number

 

Figure 17 Maintenance Information Metadata Structure 

• Vehicle Identification. Information about how to identify a vehicle (e.g. 
the last revision date). A vehicle is identified through: 

 
§ UIC Number. Unique identifier for the vehicle, which is universally 

assigned by the Union Internationale des Chemins de Fer (UIC) 
international association. 

§ Serial Number. Serial number of the vehicle. This field typically 
identifies a vehicle inside a manufacturer company. 

§ Manufacturer Name. Name of the vehicle manufacturer. 
§ Model Name. Name of the model of the vehicle. 
§ Description. Textual field that describes the vehicle. 
§ Hardware Version. Version of the hardware where the vehicle software 

is installed. 
§ Software Version. Version of the software that implements the vehicle. 

 
• Configuration Parameter. Specific information about the vehicle (e.g. the 

last revision date). A configuration parameter is described through: 
 

§ Name. Name of the parameter. 
§ Type. Type of the parameter. 
§ Description. Textual field that describes the configuration parameter. 
§ Value. Actual value with free format and length. 

 
• Process Variables. The list of network variables exported by this vehicle, 

which corresponds to the internal application variables useful for 
maintenance. Each process variable is described with the following fields: 



 

 35

 
§ Name. Logical name for the variable on the bus. 
§ Type. Type of the process variable. 
§ Description. Textual field that describes the process variable. 
§ Address. Network address of a process variable. 

 
• Equipment List. The list of equipments installed on the vehicle with, for 

each equipment, the following fields: 
 

§ Equipment Identification. Similar to the Vehicle Identification. There is 
not a unique identifier for an equipment, thus we built it with a 
combination of Manufacturer Name, Model Name, Hardware Version 
and Software Version fields. This unique identifier is analogous to the 
UIC Number on a vehicle. 

§ Configuration Parameters. The same as in a vehicle. 
§ Process Variables. The same as in a vehicle. 

 

System Initialization 

When a Train Gateway is connected to a new vehicle the initialization process 
is started. After this process, the Train Gateway presents to the maintenance staff the 
vehicle and equipment web pages with actual values. The initialization of the Train 
Gateway is shown in Figure 18 and consists of the following steps: 

Train
Gateway

Proxy 1
Proxy 2

Proxy i
Proxy n

equipmentp

devicen

vehicle
nodex

devicem

equipmentq

deviceo

MVB

Server

1 2

3

Vehiclex

TNMTNMTNM

TNM

 

Figure 18 System Initialization 

1. The Train Gateway asks the vehicle node for its maintenance information 
metadata. This is made through a Train Network Management (TNM) message 
called Call_Read_Maintenance_Information4. 

2. The vehicle node replies to the Train Gateway with its maintenance 
information metadata using a Train Network Management (TNM) message 
called Reply_Read_Maintenance_Information4. 

3. The Train Gateway generates a local component proxy, which is responsible 
for obtaining the actual state of the variables running on the real component. 

                                                 
4 Call_Read_Maintenance_Information and Reply_Read_Maintenance_Information have been 
formally specified, using a data representation and notation specified in [55] and proposed as an 
extension to the TNM standard [56]. 



 

 36

 

5.6.2 Network Plug&Play 

The administrator of the system is responsible for updating, removing or 
adding services on the Train Gateway and Ground Station machines. Due to the 
distributed nature of the system, this is a complex and tedious task, especially when a 
service must be installed on hundreds of trains. Another problem is that as trains are 
mobile systems, remote on-board services may be available only during certain 
periods of time, e.g., when a train enters a train station with a WLAN. It is difficult 
for a Ground Station to manage this dynamic behavior of services. In addition, the 
clients’ perception of the quality of service of the application server is poor because 
Ground Stations may offer services that are not currently available. 

Jini, a new paradigm for the development and management of distributed 
services promoted by Sun Microsystems, provides a possible solution for the efficient 
management of train services. The Jini technology [57-59] provides a simple 
infrastructure for providing services in a network. It enables the spontaneous 
interactions between applications. The result is a network of services connected 
together dynamically. Services can join or leave the network in a robust manner. 
Clients can rely upon the availability of visible services. The purpose of Jini is to 
federate groups of hardware and/or software components into a single, dynamic, 
distributed system. The resulting federation provides the simplicity of access and ease 
of administration. It guarantees the reliability and scalability of the whole system. 

In order to be able to run Jini enabled services, it is necessary to introduce at 
least one machine, running a Jini Lookup Service (JLS), connected in the same LAN 
to the Ground Station. Eventually, we could also run the JLS on the same machine as 
the Ground Station. Additionally, some other JLSs all over the Internet, train stations 
and garages may be used. These JLSs would forward service subscriptions and other 
events to each other by tunneling. Tunneling is just an optimization mechanism that, 
for simplicity, is not described. The Jini-enabled system architecture is shown in 
Figure 19. 

Ground Station

LAN

Jini
Lookup
Server

Train Gateway

Jini
Lookup
Server

Jini
Lookup
Server

Internet
(Wireless
Network)

Internet

Client Machine
 

Figure 19 Jini-enabled System Architecture 

In this system the JLS replaces the system administrator. The JLS allows us to 
automate the actions that were manually performed by a system administrator. The 
JLS allows on-board services to automatically register within the Jini community. 



 

 37

On-board services are lease based and they must renew periodically their lease in 
order not to be removed from the community. A Ground Station acts as a Jini client. 
It subscribes to receive notifications when on-board services appear or disappear from 
the community. The new Jini-enabled system is shown in Figure 20. 

Client
Machine

request

response

request

response

Ground Station Train Gateway

JLS

lookup/subscribenotify

discover/join
Wireless
Network

1

4

2

3

5

67

 

Figure 20 Jini-enabled System 

The new sequence of actions is the following: 

1. A Ground Station registers in the JLS for a particular remote event, namely an 
on-board DB service joining the federation. This registration enables the 
Ground Station to be notified when trains take part in the Jini community. 

2. After startup, a Jini service on-board a train discovers and joins the JLS. 
3. The Ground Station receives a notification in form of a remote event that 

contains a reference to the proxy object of the service.  
4. Clients contact the Ground Station and request access to an on-board service 

on a particular train, which figures in the set of registered trains. This set of 
trains is up-to-date as trains that do not renew the lease of their joint operation 
are removed from the system. 

5. The Ground Station searches for the corresponding proxy, which in turn 
contacts the on-board service on the associated train. 

6. The on-board service processes the request and sends the response back to the 
proxy in the Ground Station. 

7. The Ground Station sends the response back to the client. 
 

The use of Jini technology simplifies the development of distributed systems 
because Jini forces distributed systems developers to deal with the network in early 
stages of development. Jini is not just a programming library to implement distributed 
systems, but a new paradigm for distributed system development. Using Jini, 
distributed systems developers can automate the, usually tedious, configuration 
process of such systems. Jini enables the searching for particular services based on 
complex attributes. Jini provides self-healing communities of services as it uses the 
concept of leases. Regardless of minor problems with the current implementation of 
Jini and the lack of standardization of services, Jini offers an efficient approach for 
developing distributed applications. However, Jini is not yet a mature technology. 
Even if the concepts are well defined, currently there are few Jini services available. 
Jini will have real success when service developers can dispose of a large number of 
standardized services all over the world. Before Jini becomes ubiquitous, it will be 
found in distributed applications where the application is a service provider and, at 



 

 38

the same time, the only user of these services. 

5.7 Summary 

In this chapter we described the RoMain system, which is a web-based 
monitoring tool for trains to support maintenance work that we developed. The main 
conclusion from the RoMain system is that cost-effective maintenance of globally 
distributed devices, which is an important issue in industrial applications, can be 
achieved by using Internet technology. Internet technology here means, the world 
wide TCP/IP network, protocols as HTTP and PPP, markup languages as HTML and 
XML, Internet browsers capable of downloading and running Java applets, web 
servers and application servers, etc. We also described two prototypes of the RoMain 
system. We compared these prototypes in order to evaluate their advantages and 
disadvantages. The results from this evaluation, described in Appendix A, 
demonstrated that when a high performance remote monitoring system is required, 
Java and Java RMI are the right technologies and that if flexibility on evolution is a 
strong requirement, a three-tier system, which is rather simple to develop using 
technologies such as HTTP and XML, may be a better choice. We used the 
development of the RoMain system as a case study to acquire the required knowledge 
about DASs. In one sense, the external specification of a generic architecture for 
DASs is a generalization of the model build for the RoMain system with some 
extensions and improvements. 



 

 39

6. External Specification of a Generic 
Architecture for Data Acquisition 
Systems 

Parts of this work appeared in [10]. 

6.1 Introduction 

In this chapter we describe an external specification of a generic architecture 
for DASs. This generic DAS specification enables the comparison of existing DAS 
products and standards. Additionally, it provides the DAS developers that aim to 
develop a specific DAS with a starting point for the design of a specific DAS. The 
generic DAS specification is composed of a conceptual model and a role-based use 
case model of a generic DAS. These models give DAS developers a high-level 
abstraction of DASs. 

6.2 Data Acquisition Conceptual Model 

In this section we present a conceptual model of a generic DAS. We show the 
main concepts that make up any DAS and their relationships. For a better 
understanding of the model, we group the concepts into five main packages. These 
packages and their inter-dependencies are shown in Figure 21. 

Device Items Device Models

Device Item
Monitoring

Criteria

Observations &
Monitoring

Reports

Device Model
Monitoring

Criteria

 

Figure 21 Data Acquisition Main Packages 

• Device Models. This package groups all the concepts regarding device 
models. A device model represents a model that characterizes a set of 
device items. 



 

 40

• Device Items. This package groups all the concepts regarding device 
items. A device item represents a real world device that satisfies a device 
model. 

• Device Model Monitoring Criteria. This package groups all the concepts 
regarding the definition of monitoring criteria, for generating monitoring 
reports, predefined in a device model and common for all the 
corresponding device items. 

• Device Item Monitoring Criteria. This package groups all the concepts 
that allow for the definition of monitoring criteria, for generating 
monitoring reports, specific for a device item. 

• Observations & Reports. This package groups all the concepts regarding 
observations and reports taken on a system. Observations are classified as 
quantitative (measurements) or qualitative (category observations), 
according to the Observations and Measurements analysis pattern 
described by Fowler in [40]. Monitoring reports are classified as reports 
that record a change in the composition of the system (composition 
reports), reports that record a snapshot of the system at a specific time 
(status reports), and reports that indicate a certain state of the system 
(event reports). 

 
In the following sub-sections we describe each of these packages. In the 

models, we distinguish between operational and knowledge-level concepts. We adopt 
this idea from Fowler [40]. At the operational-level the model records the day-to-day 
events of the domain, whereas at the knowledge-level the model records the general 
rules that govern this structure. We represent knowledge-level concepts by using a 
box with a thick border, and a box with a thin border represents operational-level 
concepts. 

6.2.1 Device Models 

The Device Models model is shown in Figure 22. A device model is an 
instance of Device Model that represents a model, created in the design process, that 
characterizes a set of real world devices. A device model can be composed of many 
device models, each of them implementing a specific function on the parent device 
model. We used our own variation of the Composite pattern, named Model Composite 
(further discussed in chapter 7), to manage the composition of device models. A 
device model defines many measurement points. An instance of Measurement Point 
defines a measurement point associated with a phenomenon type and a measurement 
type. An instance of Phenomenon Type represents something that can be 
quantitatively (e.g. temperature), or qualitatively (e.g. door_status), 
observed. A phenomenon type defines the units on which observations of this 
phenomenon type are expressed. We adopt the convention of using standard SI 
(metric) units, as proposed in [1], for phenomenon types. A phenomenon type also 
specifies the range within which a value is qualified as “normal”. Eventually, a 
phenomenon type records the set of potential qualitative values that a measurement of 
such a phenomenon type can take (e.g. temperature_low, 
temperature_medium, and temperature_high). Each of these values is an 
instance of Phenomenon. Phenomenon records the range of quantitative observations 
of a phenomenon type that corresponds to a qualitative observation. This enables the 
automatic recording of an occurrence of this phenomenon upon a quantitative 



 

 41

observation, of the corresponding phenomenon type, with a value within the range of 
the phenomenon. An instance of Measurement Type is associated with a measurement 
point to give some semantic information about the measurements taken at this 
measurement point. 

physicalNormalRange : Range
phenomenonTypeUnits : Unit

Phenomenon Type

qualitativeRange : Range

Phenomenon

Device Models

    

Complex
Device Model

Single
Device Model

designer : Designer
modelID : ModelID

Device Model

1 has

1..*

1composed of

*
has1

child

parent

Measurement
Point

has*1

sampleRange : Range
physicalRange : Range
mapping : MappingPolicy
measurementUnits : Unit

Measurement Type

has
* 1

function : Function

Functional
Device Model

*

  

 

Figure 22 Device Models 

6.2.2 Device Items 

The Device Items model is shown in Figure 23. A device item is an instance of 
Device Item that represents a real world device created in the manufacturing process. 
A device item is characterized by a device model. As specified by its device model, a 
device item can be composed of many device items, which are also characterized by 
the associated device models. We organize device items using the Composite pattern. 
The association class Device Address allows us to record the address within a 
complex device item where a child device item, characterized by an instance of 
Functional Device Model, is installed. Each device item defines many measurement 
addresses. An instance of Measurement Address defines the actual location in a 
device item associated with a measurement point, where observations of a 
phenomenon type are taken. 

Measurement
Address

Device Items

Device Model
(from "Device

Models" package)

    

Complex
Device Item

Single
Device  Item

manufacturer : Manufacturer
serialNumber: SerialNumber

Device Item

1

1characterized by*

has
*

0..1

1..*

composed of

*

1

parent

child

Measurement Point
(from "Device

Models" package)

installed
inDevice

Address

Functional Device Model
(from "Device Models"

package)

1*

defined by

 

Figure 23 Device Items 

6.2.3 Device Model Monitoring Criteria 

The Device Model Monitoring Criteria model is shown in Figure 24. The 



 

 42

ability to define reports, with a consistent status, of a set of data is one of the 
requirements of any DAS. The OMG's DAIS RFP [7] refers to this as Dataset, and 
OPC [4] as OPC Group. Our approach for defining monitoring criteria for recording 
monitoring reports is inspired by Mansouri-Samani and Sloman [72]. In the design 
process of a device model, a designer can define certain monitoring criteria specific to 
this device model and common to all the device items characterized by this device 
model. Device Model Trigger Condition enables the definition of conditions in order 
to automatically trigger the recording of monitoring reports at a specific time or when 
the system is in a certain state. We distinguish three kinds of Device Model 
Monitoring Criteria: Device Model Composition Monitoring Criteria enables the 
recording of changes on the composition of the system. A device model composition 
monitoring criteria is associated with a set of device models; Device Model Status 
Monitoring Criteria enables the recording of a snapshot of the system at a specific 
time. Status monitoring criteria are associated with a set of measurement points; and 
Device Model Event Monitoring Criteria enables the recording of a certain state of 
the system. 

Phenomenon
(from "Device

Models" package)

Device Model Monitoring Criteria

Device Model
(from "Device

Models" package)

Measurement
Point

(from "Device
Models" package)

<<abstract>>
Device Model

Monitoring Criteria has
1*

**

*

*

related
to

time : TimeCondition

Device Model
Time Trigger

Condition

isTrue : Boolean

Device Model
Event Trigger

Condition

    

groups

*

<<abstract>>
Device Model

Trigger Condition

Device Model
Dataset

*

has

has

*

1

*
1

related
to

Device Model
Event

Monitoring Criteria

Device Model
Status

Monitoring Criteria

  

  

Device Model
Composition

Monitoring Criteria

  

related to

*

*

has

1

*

has

1

*  

Figure 24 Device Model Monitoring Criteria 

6.2.4 Device Item Monitoring Criteria 

The Device Item Monitoring Criteria model is shown in Figure 25. In the 
installation and maintenance phases administrators administer datasets, trigger 
conditions and monitoring criteria for device items. The DAS system will record 
monitoring reports corresponding to device item monitoring criteria. Device item 
datasets, trigger conditions and monitoring criteria can be predefined, meaning that 
there are already defined in the corresponding device model, or custom, meaning that 
there are defined in the device item. A custom monitoring criteria may use any 
combination of custom or predefined datasets and trigger conditions. Device item 
monitoring criteria can be public, meaning that any supervisor of the system can 
access monitoring reports of such monitoring criteria, or private, meaning that only 
the creator of the monitoring criteria is allowed to access monitoring reports 
corresponding to such monitoring criteria. 



 

 43

Custom
Monitoring Criteria

creator : Creator

<<abstract>>
Device Item

Monitoring Criteria

Device Model
Monitoring Criteria

(from "Device
Model Monitoring
Criteria " package)

subscribers : SubscriberList

Public Criteria

subscriber : Subscriber

Private Criteria

    

  

Predefined
Monitoring Criteria

  * 1
defined

by

Device Item
(from "Device

Items" package)
1

*

has

Phenomenon
(from "Device

Models" package)

Measurement Address
(from "Device  Items"

package)

*
*

*

*

related to

time : TimeCondition

Device Item
Time Trigger

Condition

isTrue : Boolean

Device Item
Event Trigger

Condition

    

*

<<abstract>>
Device Item

Trigger Condition

<<abstract>>
Device Item

Dataset

*

has

has

*

1

*

1

related to

Device Item
 Event Monitoring

Criteria

Device Item
Status Monitoring

Criteria

  

  

Custom
Trigger Condition

Predefined
Trigger Condition

  

  

Custom
Dataset

Predefined
Dataset

    
Device Model

Dataset
(from "Device

Model Monitoring
Criteria " package)

* 1
defined

by

Device Model
Trigger Condition

(from "Device
Model Monitoring
Criteria" package)

* 1
defined

by

Device Item Monitoring Criteria

Device Item
 Composition

Monitoring Criteria   related to

*

groups

1

has

*

1

*

has

*

 

Figure 25 Device Item Monitoring Criteria 

6.2.5 Observations & Monitoring Reports 

The Observation and Monitoring Reports model is shown in Figure 26. In this 
package we present concepts that allow us to record observations and monitoring 
reports taken on a device item. Our observation model is inspired by the Observations 
and Measurements analysis pattern described by Fowler in [40]. In a measurement 
address we can record many observations with different timestamps. Observation is 
an abstract concept that represents both quantitative and qualitative observations. An 
observation records a timestamp corresponding to the time an observation was taken. 
Measurement represents quantitative observations. A measurement records the 
physical value corresponding to the measurement, which is represented by the value 
attribute. A measurement is associated with a phenomenon type, and a phenomenon 
type can have many measurements. A Category Observation represents a qualitative 
observation. A category observation is associated with a phenomenon, and a 
phenomenon can have many category observations. Sometimes recording that a 
phenomenon is absent is as important as recording its presence. The isPresent 
Boolean attribute of category observation is added to enable recording the absence or 
presence of a phenomenon. Monitoring Report enables the recording of an occurrence 
of fulfilled monitoring criteria. A monitoring report is always associated with 
monitoring criteria of a device item. A monitoring report is also associated with the 
observations that generate the monitoring report. 



 

 44

Measurement
Address

(from "Device
Items" package)

Phenomenon
(from "Device

Models" package)isPresent: Boolean

Category
Observation

value : Number

Measurement

time : TimeStamp
quality : DataQualifier

<<abstract>>
Observation

    

Observations & Monitoring Reports

time : TimeStamp

Monitoring
Report

*
*

1

1has*

taken at

Device Item
Monitoring Criteria
(from "Device Item
Monitoring Criteria"

package)

*1

*

has

characterized by

 

Figure 26 Observations & Monitoring Reports 

6.2.6 Detailed Concepts 

In this section we explain some detailed concepts of the conceptual model. 
These concepts are: Measurement Type, Mapping Policy, Time Condition, Device 
Model Event Trigger Condition, Device Item Event Trigger Condition, Timestamp 
and Data Qualifier. 

Measurement Type 

The Measurement Type model is shown in Figure 27. A measurement type 
defines the permissible ranges of sampled and physical values, a mapping policy 
between sampled and physical values, and the units of the measurement. This 
information could have been embedded in a phenomenon type, but measurement type 
allows us to reuse the same information for several phenomenon types. The 
measurement type information depends on how measurements are actually measured 
in a measurement point. Consequently it may happen that the measurement units are 
not the same as the phenomenon type units, being then necessary to transform the 
physical value in measurement type units to the physical value in phenomenon type 
units, which will be recorded in the system. 

Measurement Type

Unit

has *
1

1 Mapping
Policy

from

to*

*

upperValue : Number
lowerValue : Number
upperIsInclusive : Boolean
lowerIsInclusive : Boolean

Range

1

has *
sampleRange

*
physicalRange

has

1

*

1

mapping

has
measurementUnits

 

Figure 27 Measurement Type 

Mapping Policy 

The Mapping Policy model is shown in Figure 28. An instance of Mapping 
Policy defines the conversion between two numerical values. Linear Mapping Policy 
represents a mapping policy with a linear function (y=Ax+B); where x corresponds 
to the original value and y to the calculated value. Function Mapping Policy 
represents a mapping policy with a more complex function (y=f(x)). Function 
Mapping Policy seems to be a good scenario for applying mobile code [73]. In this 
way device designers could easily upload the code corresponding to this function. 



 

 45

f (sampledValue : Number) : Number

Function Mapping Policy

Mapping Policy y = Ax + B
where
x = SampledValue
y = PhysicalValue

y = f(x)
where
x = SampledValue
y = PhysicalValue

A: Number
B: Number

Linear Mapping Policy

 

Figure 28 Mapping Policy 

Time Condition 

The Time Condition model is shown in Figure 29. Time Condition enables the 
definition of periodical or scheduled time conditions to record monitoring reports. 
Period enables the definition of a time condition as a period of time in milliseconds. 
Schedule enables the definition of a schedule when a monitoring report will be 
recorded. A Schedule is composed of a Recurrence Time, a Recurrence Pattern and a 
Recurrence Range. Recurrence Time enables the definition of a 24-hour time when a 
monitoring report will be recorded. Recurrence Pattern enables the definition of 
many time patterns to record recurrently monitoring reports: Daily, Weekly, Monthly 
and Yearly allow us to define monitoring criteria to record monitoring reports every 
certain number of days, every certain number of weeks on some specific days of a 
week, every certain number of months on a specific day of a month, and every certain 
number of years on a specific day of a month, respectively. Finally, Recurrence 
Range enables the definition of a Begin Time (just a Begin Date) to start recording 
monitoring reports and an End Time to stop recording monitoring reports. End Time 
enables the definition of an end time by a number of occurrences, by a specific end 
date or with no end (meaning that monitoring reports will be generated “forever”). 

<<abstract>>
Recurrence

Pattern

everyNbDays : Integer

Daily

everyNbWeeks : Integer
onMonday : Boolean
onTuesday : Boolean
onWednesday : Boolean
onThursday : Boolean
onFriday : Boolean
onSaturday : Boolean
onSunday : Boolean

Weekly

everyNbMonths : Integer
Day : Integer

Monthly

everyNbYears : Integer
month : Integer
day : Integer

Yearly

hour : Integer
minute : Integer
second : Integer
miliSecond : Integer

Recurrence Time

year : Integer
month : Integer
day : Integer

Begin Date No End

nbOfOccurrences : Integer

EndByNbOccurrences

year : Integer
month : Integer
day : Integer

End Date

<<abstract>>
End Time

<<abstract>>
Begin Time

Recurrence
Range

Schedule

1

has *

1

has*

1has *

1
has

*

1

has

*

periodInMs : Long

Period

<<abstract>>
Time Condition

 

Figure 29 Time Trigger Condition 

Device Model Event Trigger Condition 

The Device Model Event Trigger Condition model is shown in Figure 30. The 
Device Model Event Trigger Condition model enables the definition of conditions, 
common to all the device items characterized by a device model, to trigger an event. 
In order to explain device model event trigger conditions, we make use of a Boolean 



 

 46

algebraic notation5. Device Model Event Condition enables the recording of X=A and 
X=A'; where A means that a certain condition has been satisfied. There are two kinds 
of Device Model Event Conditions. Device Model Boolean Event Condition enables 
the recording of a condition that is satisfied when a certain phenomenon has been 
observed in a measurement point. Device Model Function Event Condition enables 
the recording of a condition that is satisfied when the result of applying a certain 
function in a measurement point returns true. Device Model Function Event 
Condition seems to be a good scenario for applying mobile code [73]. In this way 
device designers and/or administrators could easily upload the actual code 
corresponding to the function to be satisfied. Device Model Event Condition Set 
enables the recording of conditions such as X=A.B and X=(A.B)'; where A, B are 
Device Model Event Conditions. Device Model Event Trigger Condition allows us to 
record trigger conditions such as X=A+B and X=(A+B)'; where A, B are Device 
Model Event Condition Sets. This enables the recording of any device model event 
trigger condition, because any device model event trigger condition can be expressed 
by means of an algebraic combination of device mode event conditions with the AND 
logical operator and an algebraic combination of device model event condition sets 
with the OR logical operator. A transformation of any algebraic expression into these 
terms is possible by applying one of De Morgan's laws6. 

Phenomenon
(from "Device

Models" package)

Measurement
Point

(from "Device
Models" package)

1

*

1
applied

to

isTrue : Boolean

Device Model
Event Trigger

Condition

isTrue : Boolean

Device Model
Event

Condition Set triggered
by

*

*
* Device Model

Boolean Event
Condition

f(): Boolean

 Device Model
Function Event

Condition

isTrue : Boolean

Device Model
Event Condition

  

  

triggered by

*

*
applied to

 

Figure 30 Device Model Event Trigger Condition 

Device Item Event Trigger Condition 

The Device Item Event Trigger Condition model is shown in Figure 31. The Device 
Item Event Trigger Condition model enables the definition of conditions, specific to a 
device item, to trigger an event. The reasoning is analogous to the device model event 
trigger condition, but the difference is that the condition is applied to a specific 
measurement address of a device item rather than to a measurement point of a device 
model. 

                                                 
5 “ . ” corresponds to the AND logical operator; “ + ” corresponds to the OR logical operator; and 
“ ' ” corresponds to the NOT logical operator 
6 The two laws, known as De Morgan's, are: (A+B)'=A'.B' ; and (A.B)'=A'+B' 



 

 47

Phenomenon
(from "Device

Models" package)

Measurement
Address

(from "Device
Items" package)

1
*

1
applied

to

isTrue : Boolean

Device Item
Event Trigger

Condition

isTrue : Boolean

Device Item
Event

Condition Set triggered
by

*

*
* Device Item

Boolean Event
Condition

f(): Boolean

 Device Item
Function Event

Condition

isTrue : Boolean

Device Item
Event Condition

  

  

triggered by

*

*
applied to

 

Figure 31 Device Item Event Trigger Condition 

Timestamps 

Recording the time an observation is taken is a key issue for enabling a 
subsequent analysis of observations. In order to avoid anomalies due to inconsistent 
time formats (e.g., because of different time zones), we adopted the convention of 
storing all timestamps using Universal Coordinated Time (UTC) format. This, further 
discussed by Olken et al. [1], is a common practice in DASs. 

Data Qualifiers 

In DASs it is also a common practice to include a data qualifier (see Figure 
32) with an observation. According to [7] a Data Qualifier includes information about 
the Validity (valid, held from a previous value, suspect, not_valid or 
substituted manually), the Current Source (metered, calculated, 
entered, or estimated) and the Normal Value (normal or abnormal) of an 
observation. 

Data Qualifier

Normal Value Current SourceValidity

has

hashas *

*

*

1 11

 

Figure 32 Data Qualifiers 

6.2.7 Complete DAS Conceptual Model 

The complete conceptual model of a generic DAS is shown in Figure 33. To 
simplify the model we only show the main attributes of a concept and some concepts 
have been intentionally designed as attributes of higher-level concepts. 

 



 

 48

ph
ys

ic
al

N
or

m
al

R
an

ge
 : 

R
an

ge
ph

en
om

en
on

T
yp

eU
ni

ts
 : 

U
ni

t

P
h

en
o

m
en

o
n

 T
yp

e

qu
al

ita
tiv

eR
an

ge
 : 

R
an

ge

P
h

en
o

m
en

o
n

D
ev

ic
e 

M
o

d
el

s

  
  

C
o

m
p

le
x

D
ev

ic
e 

M
o

d
el

S
in

g
le

D
ev

ic
e 

M
o

d
el

de
si

gn
er

 : 
D

es
ig

ne
r

m
od

el
ID

 : 
M

od
el

ID

D
ev

ic
e 

M
o

d
el

1
ha

s

1.
.*

1

co
m

po
se

d 
of

*
ha

s
1

ch
ild

pa
re

nt

ty
pe

 : 
M

ea
su

re
m

en
tT

yp
e

M
ea

su
re

m
en

t 
P

o
in

t

ha
s

* 1

fu
nc

tio
n 

: F
un

ct
io

n

F
u

n
ct

io
n

al
D

ev
ic

e 
M

o
d

el

*

D
ev

ic
e 

It
em

s   
  

C
o

m
p

le
x

D
ev

ic
e 

It
em

S
in

g
le

D
ev

ic
e 

 It
em

m
an

uf
ac

tu
re

r 
: M

an
uf

ac
tu

re
r

se
ria

lN
um

be
r 

: S
er

ia
lN

um
be

r

D
ev

ic
e 

It
em

1

1
ch

ar
ac

te
riz

ed
 b

y
*

ha
s

*

0.
.1

1.
.*

co
m

po
se

d 
of

*

1

pa
re

nt

ch
ild

in
st

al
le

d 
in

D
ev

ic
e

A
d

d
re

ss
1

*

de
fin

ed
 b

y

1 * *

1

*

is
P

re
se

nt
: B

oo
le

an

C
at

eg
o

ry
O

b
se

rv
at

io
n

va
lu

e 
: N

um
be

r

M
ea

su
re

m
en

t

tim
e 

: T
im

eS
ta

m
p

qu
al

ity
 : 

D
at

aQ
ua

lif
ie

r

<<
ab

st
ra

ct
>>

O
b

se
rv

at
io

n  
  

O
b

se
rv

at
io

n
s 

&
 M

o
n

it
o

ri
n

g
 R

ep
o

rt
s

tim
e 

: T
im

eS
ta

m
p

M
o

n
it

o
ri

n
g

R
ep

o
rt

**

1

1
ha

s

*

*

ha
s

C
us

to
m

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

cr
ea

to
r 

:  
C

re
at

or

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

su
bs

cr
ib

er
s 

: S
ub

sc
rib

er
Li

st

P
u

b
lic

 C
ri

te
ri

a

su
bs

cr
ib

er
 : 

S
ub

sc
rib

er

P
ri

va
te

 C
ri

te
ri

a

  
  

  

P
re

d
ef

in
ed

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a
  

*

1

de
fin

ed
 b

y

*

ha
s

**
re

la
te

d 
to

tim
e 

: T
im

eC
on

di
tio

n

D
ev

ic
e 

It
em

 T
im

e
T

ri
g

g
er

 C
o

n
d

it
io

n

is
T

ru
e 

: B
oo

le
an

D
ev

ic
e 

It
em

 E
ve

n
t

T
ri

g
g

er
 C

o
n

d
it

io
n

  
  

gr
ou

ps

*

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

T
ri

g
g

er
 C

o
n

d
it

io
n

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

D
at

as
et

*

ha
s

ha
s

* 1

* 1

re
la

te
d 

to

D
ev

ic
e 

It
em

 E
ve

n
t 

M
o

n
it

o
ri

n
g

C
ri

te
ri

a

D
ev

ic
e 

It
em

S
ta

tu
s 

M
o

n
it

o
ri

n
g

C
ri

te
ri

a

    

C
u

st
o

m
T

ri
g

g
er

 C
o

n
d

it
io

n

P
re

d
ef

in
ed

T
ri

g
g

er
 C

o
n

d
it

io
n

    

C
u

st
o

m
D

at
as

et

P
re

d
ef

in
ed

D
at

as
et

    
*

1
de

fin
ed

 b
y

*

1

de
fin

ed
 b

y

D
ev

ic
e 

It
em

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

D
ev

ic
e 

It
em

 C
o

m
p

o
si

ti
o

n
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

  

re
la

te
d 

to **

D
ev

ic
e 

M
o

d
el

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

<<
ab

st
ra

ct
>>

D
ev

ic
e 

M
o

d
el

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

ha
s

*

*

*re
la

te
d

to

tim
e 

: T
im

eC
on

di
tio

n

D
ev

ic
e 

M
o

d
el

 T
im

e
T

ri
g

g
er

 C
o

n
d

it
io

n

is
T

ru
e 

: B
oo

le
an

D
ev

ic
e 

M
o

d
el

 E
ve

n
t

T
ri

g
g

er
 C

o
n

d
it

io
n

  
  

gr
ou

ps

*

<<
ab

st
ra

ct
>>

D
ev

ic
e 

M
o

d
el

T
ri

g
g

er
 C

o
n

d
it

io
n

D
ev

ic
e 

M
o

d
el

D
at

as
et

*

ha
s

ha
s

* 1

* 1

re
la

te
d

to

D
ev

ic
e 

M
o

d
el

E
ve

n
t

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

D
ev

ic
e 

M
o

d
el

S
ta

tu
s

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

    

D
ev

ic
e 

M
o

d
el

C
o

m
p

o
si

ti
o

n
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

  

re
la

te
d 

to

*

*

ta
ke

n 
at

*
1

ch
ar

ac
te

riz
ed

 b
y

1

*

ha
s

1 *

ha
s

**

1 1

*

*

ha
s

ha
s

M
ea

su
re

m
en

t
A

d
d

re
ss

 

Figure 33 Complete DAS Conceptual Model 



 

 49

6.3 Data Acquisition Role-based Use Case Model 

In this section we present a role-based use case model for a generic DAS. This 
role-based use case model specifies the common functionalities of any DAS. To give 
a context to the data acquisition process we begin by positioning this process as a part 
of the device lifecycle. Then, we describe in detail all the use cases corresponding to 
the acquisition of data. Finally, we refine all of these use cases using role-based use 
case modeling. The role-based use cases are specified in Appendix B. The elementary 
roles are specified in Appendix C. 

In Figure 34, we show the main use cases corresponding to the device 
lifecycle. We use an activity diagram to specify the sequence in which these use cases 
are carried out. 

Designer

Manufacturer

Device
Model

 Design
Device *part

model

1
whole
model

 Produce
Device

part
item

model

Device
Item

 Install
Device

whole
item

1

parent
item

0..1

Supervisor

Acquire
Data

child
item 1

Uninstall
Device

parent
item 0..1

1

Operator

1

item

*

*

*

0..1

part model

whole
model

part item

whole
item

1

*

description

item

1

model

*

1

child
item

 

Design Device

Produce
Device

Install Device

Acquire Data

Uninstall
Device

H

H

 

Figure 34 Device Lifecycle 

In a device lifecycle, a Designer designs a Whole Model, which is an instance 
of Device Model. Whole Model can be composed of zero to many Part Models, which 
are also instances of Device Models, forming a part-whole hierarchy of instances of 
Device Models. A Manufacturer produces a Whole Item, which is an instance of 
Device Item that satisfies a device model, which is an instance of Device Model. A 
Whole Item can be composed of zero to many Parts Items, which are also instances of 
Device Item, forming a part-whole hierarchy of instances of Device Items. An 
operator installs a Child Item, which is an instance of Device Item, into a Parent Item, 
which is another instance of Device Item, forming a child-parent hierarchy. In fact, 
this hierarchy is analogous to the part-whole hierarchy of instances of Device Item 
formed during the production of an instance of Device Item. A child is to its parent 
the same as a part to its whole. The only difference is the nature of the link between 
each other: in the case of part-whole hierarchy the link is established during the 
creation of an instance, whereas in the case of child-parent hierarchy the link is 
established during the installation of an instance. A Supervisor acquires data from an 
instance of Device Item. Operational data is acquired from a device item. However, 



 

 50

knowledge-level data and some other information can be distributed and provided by 
Designers, Manufacturers, and/or Operators. An operator uninstalls Child Item, 
which is an instance of Device Item from its Parent Item, which is another instance of 
Device Item.  

In this thesis we focus on the use case corresponding to the acquisition of data 
(Acquire Data). In Figure 35, we show the refined use cases corresponding to the 
acquisition of data. We mapped each of the functional requirement defined by the 
OMG in the DAIS RFP [7] into a use case. We have two additional actors: the DAS, 
which represents the system (the representation of the system in the use cases is 
further discussed in Chapter 7); and the Administrator, which takes care of the 
administration of the system. 

Discover

Define
Data

Access

Access
Data

Notify
Data

Availability

Upload
Data

Device Item

Supervisor

ManufacturerOperator

DAS

Device Model

Designer

Administrator

 

Figure 35 Data Acquisition Use Cases 

We use an activity diagram, shown in Figure 36, to specify the sequence in 
which these use cases are carried out: 

(a) Discover device items, device models, their composition and related 
information until all the information has been discovered. Then, go to b), to 
define data access; to c), to access data; to d), to notify availability of new 
data; or to e), to upload new data. 

(b) Define data access for the device items until all information has been 
defined. Then, go to a), to discover new data; to c), to access data; to d), to 
notify availability of new data; or to e), to upload new data. 

(c) Access data until all the information to be accessed has been accessed. 
Then, go to b), to define data access; to d), to notify availability of new 
data; or to e), to upload new data. 

(d) Notify availability of new data until all the notifications have been notified. 
Then, go to b), to define data access; to c), to access data; or to e), to 
upload new data. 

(e) Upload new data until all the data has been uploaded. Then, go to b), to 
define data access; to c), to access data; or to d), to notify availability of 
new data. 



 

 51

 
These uses cases can be carried out many times, therefore there is not an 

explicit end point. 

Discover
Define
Data

Access

Notify
Availability

Upload
Data

Access
Data

[undiscoveredEntities==null &
unadministeredEntities!=null]

[unadministeredEntities==null &
undiscoveredEntities!=null]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess!=null &
((dataToNotify==null &
dataToUpload==null) |
((dataToNotify!=null |
dataToUpload!=null) &
env. AccessData))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToNotify!=null &
((dataToAccess==null &
dataToUpload==null) |
((dataToAccess!=null |
dataToUpload!=null) &
env. NotifyAvailability))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToUpload!=null &
((dataToAccess==null &
dataToNotify==null) |
((dataToAccess!=null |
dataToNotify!=null) &
env. UploadData))]

[undiscoveredEntities!=null]

H

[undiscoveredEntities!=null]
[unadministeredEntities!=null]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess!=null &
((dataToNotify==null &
dataToUpload==null) |
((dataToNotify!=null |
dataToUpload!=null) &
env. AccessData))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToNotify!=null &
((dataToAccess==null &
dataToUpload==null) |
((dataToAccess!=null |
dataToUpload!=null) &
env. NotifyAvailability))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToUpload!=null &
((dataToAccess==null &
dataToNotify==null) |
((dataToAccess!=null |
dataToNotify!=null) &
env. UploadData))]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify!=null &
(dataToUpload==null |
(dataToUpload!=null &
env. NotifyAvailability))]

[dataToAccess==null  &
unadministeredEntities!=null]

[dataToUpload==null  &
unadministeredEntities!=null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify!=null &
(dataToUpload==null |
(dataToUpload!=null &
env. NotifyAvailability))]

[dataToAccess!=null]

[dataToNotify!=null]

[dataToUpload!=null]

H

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[dataToNotify==null  &
unadministeredEntities!=null]

 

Figure 36 Data Acquisition Activity Diagram 

In the following sections we describe in detail each of the use cases 
corresponding to the data acquisition process. We also refine all of these use cases 
using role-based use case modeling. 



 

 52

6.3.1 Discover 

This use case implements the “discovery of remote system and device 
schema” functional requirement, which is defined by the OMG in DAIS RFP [7] as: 

“Mechanisms for discovering accessible remote devices, measurements, 
discrete/incremental information, permissible ranges and/or sets of values, alarms and 
industrial system sourced events. …A means shall be provided for a client system to 
determine the data types and quantities (i.e. cardinality) of data elements available 
from a particular entity within an industrial system, as well as the identifiers and 
some of the semantics associated with those data elements.” 

Discovering allows supervisors to obtain, by request, the current composition 
of an instance of Device Item, the different kinds of data values that can be acquired 
from this instance and their types and semantics. During the discovering process 
supervisors discover knowledge-level information such as the composition of 
instances of Device Items installed on the systems, the instances of Device Models 
associated with them, the phenomenon types and measurement types of these 
instances of Device Model, and so on. 

We refined the Discover use case into the following role-based use cases, 
shown in Figure 37:  

(i) Discover Item. An Item Information Requester obtains, by request, the 
information specific to a device item (e.g. its manufacturer or serial 
number). 

(ii) Discover Item Composition. An Item Information Requester obtains, by 
request, the current composition of an instance of Device Item. 

(iii) Discover Model. A Model Information Requester obtains, by request, the 
device model of a device item. Together with the device model some 
knowledge-level information such as phenomenon types, measurement 
types, and so on, may be discovered. 

(iv) Discover Model Composition. A Model Information Requester obtains, by 
request, the composition of an instance of Device Model. 

(v) Discover Datasets. A Dataset Information Requester obtains, by request, 
the datasets defined on device item. 

(vi) Discover Trigger Conditions. A Trigger Condition Information Requester 
obtains, by request, the trigger conditions defined on a device item. 

(vii) Discover Monitoring Criteria. A Monitoring Criteria Information 
Requester obtains, by request, the monitoring criteria defined on a device 
item. A Monitoring Criteria Information Requester not being the creator of 
such monitoring criteria can discover only monitoring criteria defined as 
public. Monitoring criteria predefined on the corresponding device model 
are considered public and therefore they are accessible for any Monitoring 
Criteria Information Requester. 

 
In these use cases we introduced, for the first time, the DAS Broker role. This 

role allows us to decouple the rest of the roles allowing us to remain independent of 
design choices. All the messages between roles pass through the DAS Broker. 
Typically, the same actor (e.g., the Supervisor of the system) will implement all the 
roles X Information Requester, being X any entity that can be discovered 



 

 53

(device item, device item composition, device model, device model composition, 
datasets, trigger conditions and monitoring criteria). But, there may be systems where 
only certain users with special privileges (e.g., the Administrator of the system) are 
allowed to discover certain entities (e.g. monitoring criteria). The use of different 
elementary roles for any entity that can be discovered makes our specification more 
independent from decisions that should be taken later, in the design phase of a 
particular DAS.  

Item
Information
Requester

DAS Broker

Discover
Item

Device Item
Manager

Discover
Item

Composition

Device Model
Manager

Discover
Model

Discover
Model

Composition

Device Item
Dataset
Manager

Device Model
Dataset
Manager

Discover
Datasets

Device Item
Trigger Condition

Manager

Device Model
Trigger Condition

Manager

Discover
Trigger

Conditions

Device Item
Monitoring Criteria

Manager

Device Model
Monitoring Criteria

Manager

Discover
Monitoring

Criteria

Model
Information
Requester

Dataset
Information
Requester

Trigger Condition
Information
Requester

Monitoring Criteria
Information
Requester

 

Figure 37 Discover Use Case 

We introduced a manager role, X Manager, for each entity X that can be 
discovered, as we consider that we have to offer DAS developers the choice of 
implementing the management of all these entities independently. We wanted to 
make explicit the discovery of device item composition as we consider that this is a 
sufficiently different use case from the use case corresponding to the discovery of 
device item information. However, we did not consider necessary to use different 
roles for the roles that discover or manage the device items and their composition, as 
this information is always discovered or managed by the same entities. The same 
thinking applies to device models and their composition. 



 

 54

Discover
Item

Composition

Discover
Item

H

[undiscoveredItems!=null]

Discover
Model

[undiscoveredItems!=null] [undiscoveredIModels!=null]

Discover
Model

Composition

[undiscoveredIModelCompositions!=null]

Discover
Monitoring

Criteria

Discover
Dataset

Discover
Trigger

Condition

H

[undiscoveredIDatasets!=null]

[undiscoveredItemCompositions==null]

[undiscoveredItems==null &
undiscoveredItemCompositions!=null &
(undiscoveredModels==null |
(undiscoveredModels!=null &
env. DiscoverItemComposition))]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
(undiscoveredDatasets!=null |
undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null)]

[undiscoveredModels==null &
undiscoveredModelCompositions!=null &
(undiscoveredItemCompositions==null |
(undiscoverdIModelCompositions!=null &
env. DiscoverModelComposition))]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
(undiscoveredDatasets!=null |
undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null)]

[undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
(undiscoveredDatasets!=null |
undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null)]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredMonitoringCriteria==null &
undiscoveredTriggerConditions!=null &
(undiscoveredDatasets==null |
(undiscoveredDatasets!=null &
env. DiscoverTriggerConditions))]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredMonitoringCriteria!=null &
((undiscoveredDatasets==null &
undiscoveredTriggerConditions==null) |
((undiscoveredDatasets!=null |
undiscoveredTriggerConditions!= null) &
env. DiscoverTriggerCondition))]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredMonitoringCriteria==null &
undiscoveredDatasets!=null &
(undiscoveredTriggerConditions==null |
(undiscoveredTriggerConditions!=null &
env. DiscoverDataset))]

[undiscoveredDatasets==null &
undiscoveredMonitoringCriteria!=null &
(undiscoveredTriggerConditions==null |
(undiscoveredTriggerConditions!=null &
env. DiscoverMonitoringCriteria))]

[undiscoveredIMonitoringCriteria!=null]

[undiscoveredModelCompositions==null]

[undiscoveredItems==null &
undiscoveredModels!=null &
(undiscoveredItemCompositions==null |
(undiscoveredItemCompositions!=null &
env. DiscoverModel))]

[undiscoveredModels==null &
undiscoveredItemCompositions!=null &
(undiscoverdIModelCompositions==null |
(undiscoverdIModelCompositions!=null &
env. DiscoverItemComposition))]

[undiscoveredDatasets!=null &
((undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null) |
((undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null) &
env. DiscoverDataset))]

[undiscoveredTriggerConditions!=null &
((undiscoveredDatasets==null &
undiscoveredMonitoringCriteria==null) |
((undiscoveredDatasets!=null |
undiscoveredMonitoringCriteria!= null) &
env. DiscoverTriggerCondition))]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions!=null &
(undiscoveredMonitoringCriteria==null |
(undiscoveredMonitoringCriteria!=null &
env. DiscoverTriggerConditions))]

[undiscoveredTriggerConditions==null &
undiscoveredDatasets!=null &
(undiscoveredMonitoringCriteria==null |
(undiscoveredMonitoringCriteria!=null &
env. DiscoverDataset))]

[undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria!=null &
(undiscoveredDatasets==null |
(undiscoveredDatasets!=null &
env. DiscoverMonitoringCriteria))]

[undiscoveredItemCompositions!=null]

[undiscoveredTriggerConditions!=null]

 

Figure 38 Discover Activity Diagram 



 

 55

We use an activity diagram, shown in Figure 38, to specify the sequence in 
which these use cases may be carried out: 

(a) Discover device items until all device items have been discovered. Then, 
go to b), to discover device models; to c), to discover device item 
composition; to e), f), g) to discover datasets, trigger conditions or 
monitoring criteria respectively; or to the end, if all the information has 
been discovered. 

(b) Discover device models until all device models have been discovered. 
Then, go to c), to discover device item composition; to d), to discover 
device model composition; to e), f), g) to discover datasets, trigger 
conditions or monitoring criteria respectively; or to the end, if all the 
information has been discovered. 

(c) Discover device item composition until all device item composition has 
been discovered. Then, go to a), to discover device items. 

(d) Discover device model composition until all device model composition has 
been discovered. Then, go to b), to discover device models; to c), to 
discover device item composition; to e), f), g) to discover datasets, trigger 
conditions or monitoring criteria respectively; or to the end, if all the 
information has been discovered. 

(e) Discover datasets until all datasets have been discovered. Then, go to f) or 
g) to discover trigger conditions or monitoring criteria respectively; or to 
the end, if all the information has been discovered. 

(f) Discover trigger conditions until all trigger conditions have been 
discovered. Then go to e) or g) to discover datasets or monitoring criteria 
respectively; or to the end, if all the information has been discovered. 

(g) Discover monitoring criteria until all monitoring criteria has been 
discovered. Then go to e) or f) to discover datasets or trigger conditions 
respectively; or to the end, if all the information has been discovered. 

 

6.3.2 Define Data Access 

This use case implements the “defining data access request” functional 
requirement, which is defined by the OMG in DAIS RFP [7] as: 

“Mechanisms for defining (and deleting) a set of data and how the set of data 
should be retrieved. Data sets are collections of data, defined by the client, by a third 
party, or pre-existing data on the device, that are transferred in response to an event or 
single read request. The request for data retrieval can be triggered on-demand, or 
based on time, exception and/or event. A client could register to receive event 
notifications for the availability of the data requested.” 

Defining data access allows supervisors to define monitoring criteria of a 
device item. There are three kind of device item monitoring criteria: composition, 
event and status monitoring criteria. A composition monitoring criteria enables the 
definition of interest on the change on the composition of a set of device items. 
Composition monitoring criteria make it possible to implement a Plug&Play 
functionality. A status monitoring criteria enables the specification of snapshots of the 
system to be taken at a specific time or upon the occurrence of an event. A status 
monitoring criteria is always associated with a dataset, which represents the set of 



 

 56

measurement points where to take the observations. The values of a dataset must be 
collected and sent at the same time to ensure consistency of data. A status monitoring 
criteria is typically associated with a time trigger condition, which represents the 
condition when the observations must be taken. Eventually, a status monitoring 
criteria can be associated with an event trigger condition instead of a time condition. 
In this case the observations will be taken upon the occurrence of an event. An event 
monitoring criteria enables the recording of the occurrence of an event. An event 
monitoring criteria is always associated with an event trigger condition. 

There are two ways a supervisor can retrieve data: based on the pull model or 
based on the push model. The pull model is based on the request/response paradigm; 
a client sends a request to the server, then the server answers. This is functionally 
equivalent to the client pulling the data off the server. The push model is based on the 
publish/subscribe/distribute paradigm; a client subscribes for receiving updates of 
data from a server, later the server takes the initiative to push the data to the client. 
Martin-Flatin discusses in detail these two paradigms, applied to web-based 
management, in [74]. Defining data access must allow to a supervisor to define data 
access requests based on both models. 

We refined the Define Data Access use case into the following role-based use 
cases, shown in Figure 39: 

Administer
Dataset

Device Item
Dataset
Manager

Dataset
Administrator

DAS Broker

Device Model
Dataset
Manager

Administer
 Trigger

Condition

Device Item
Trigger Condition

Manager

Trigger Condition
 Administrator

Device Model
Trigger Condition

Manager

Monitoring Criteria
 Administrator

Device Item
Monitoring Criteria

Manager

Device Model
Monitoring Criteria

Manager

Administer
Monitoring

Criteria

Monitoring Criteria
Subscription
Administrator

Administer
Monitoring Criteria

Subscription

Device Item
Monitoring Criteria

Subscription
Manager

Device Item
Manager

 

Figure 39 Define Data Access Use Case 



 

 57

(i) Administer Datasets. A Dataset Administrator administers (creates, 
modifies or removes) a set of data of interest of a device item. A dataset 
consists of a set of measurement points to observe. Dataset Administrators 
can define an entirely new dataset for a device item (custom datasets), or 
define a dataset for a device item from a dataset predefined on a device 
model (predefined datasets). All Datasets are public. 

(ii) Administer Trigger Conditions. A Trigger Condition Administrator 
administers (creates, modifies or removes) a trigger condition of a device 
item. A trigger condition can be based on time or based on an event. A 
Trigger Condition Administrator can define an entirely new trigger 
condition for a device item (custom trigger condition), or define a trigger 
condition from a trigger condition predefined on a device model 
(predefined trigger condition). All Trigger Conditions are public. 

(iii) Administer Monitoring Criteria. A Monitoring Criteria Administrator 
administers (creates, modifies or removes) monitoring criteria of a device 
item. Monitoring criteria allow for the recording of the status of a system at 
a specific time, the occurrence of an event or the recording of the change 
on the composition of a device item. Monitoring Criteria Administrators 
can define entirely new monitoring criteria for a device item (custom 
monitoring criteria), or define monitoring criteria from monitoring criteria 
predefined on a device model (predefined monitoring criteria). Monitoring 
Criteria Administrators can define monitoring criteria as public, meaning 
that any supervisor of the system can access monitoring reports of such 
monitoring criteria, or private, meaning that only the creator of the 
monitoring criteria is allowed to access monitoring reports corresponding 
to such monitoring criteria. 

(iv) Administer Monitoring Criteria Subscription. A Monitoring Criteria 
Subscription Administrator administers (creates, modifies or removes) 
subscriptions of interest on certain monitoring criteria. The subscriber can 
chose between being automatically uploaded with monitoring reports 
corresponding to such monitoring criteria when available, or receiving a 
notification of the availability of monitoring reports corresponding to 
subscribed monitoring criteria. 

 
In all these use cases, we used the term administer as a generic term to refer to 

create, modify and remove. Typically, the Administrator of the system will implement 
the roles corresponding to the administration of datasets, trigger conditions, 
monitoring criteria, and subscriptions to monitoring criteria. But, there may be 
systems where a Supervisor is allowed to administer some things such as its 
subscriptions to monitoring criteria, for instance. The use of different elementary 
roles for the administration of datasets, trigger conditions, monitoring criteria, and 
subscriptions to monitoring criteria makes our specification more independent from 
decisions that should be taken later, in the design phase of a particular DAS. 

We use an activity diagram, shown in Figure 40, to specify the sequence in 
which these use cases may be carried out: 



 

 58

(a) Administer datasets until all datasets have been administered. Then, go to 
b), to administer trigger conditions; to c), to administer monitoring criteria; 
to d), to administer monitoring criteria subscriptions; or to the end, if all the 
datasets, trigger conditions, monitoring criteria and monitoring criteria 
subscriptions have been administered. 

(b) Administer trigger conditions until all trigger conditions have been 
administered. Then, go to a), to administer datasets; to c), to administer 
monitoring criteria; to d), to administer monitoring criteria subscriptions; 
or to the end, if all the datasets, trigger conditions, monitoring criteria and 
monitoring criteria subscriptions have been administered. 

(c) Administer monitoring criteria until all monitoring criteria have been 
administered. Then, go to d), to administer monitoring criteria 
subscriptions; or to the end, if all the datasets, trigger conditions, 
monitoring criteria and monitoring criteria subscriptions have been 
administered. 

(d) Administer monitoring criteria subscriptions until all monitoring criteria 
subscriptions have been administered. Then, go to the end. 

 

Administer
Monitoring

Criteria

Administer
Datasets

Administer
Trigger

Condition

H

[unadministeredDatasets!=null] [undiscoveredTriggerConditions!=null]

[unadministeredMonitoringCriteria!=null]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria!=null]

Administer
Monitoring

Criteria
Subscription

[unadministeredMonitoringCriteria!=null]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions!=null ]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions!=null ]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null ]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null ]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions!=null ]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null ]

[unadministeredDatasets==null  &
unadministeredTriggerConditions!=null]

[unadministeredTriggerConditions==null  &
unadministeredDatasets!=null]

[unadministeredDatasets!=null &
(unadministeredTriggerConditions==null |
(unadministeredTriggerConditions!=null &
env.AdministerDataset))]

[unadministeredTriggerConditions!=null &
(unadministeredDatasets==null |
(unadministeredDatasets!=null &
env.AdministerTriggerCondition))]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null ]

[unadministeredDatasets==null  &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria!=null]

 

Figure 40 Define Data Access Activity Diagram 



 

 59

6.3.3 Access Data 

This use case implements the “data access/retrieval” functional requirement, 
which is defined by the OMG in DAIS RFP [7] as: 

“Mechanisms to define immediate data access retrieval upon request. The data 
elements transferred may be simple or structured types. A client could define a set of 
data to be retrieved at a time.” 

Data accessing allows supervisors to obtain the current value (a quantitative or 
qualitative measurement) of a measurement point or the current monitoring reports 
corresponding to a certain monitoring criteria (e.g. the current values of a full 
dataset). 

We refined the Access Data use case into the following role-based use cases, 
shown in Figure 41: 

(i) Access Observations. An Observation Requester obtains, by request, 
observations corresponding to the values of one or more measurement 
points. The system may offer Observation Requesters ways to specify 
filters to access specific observations of measurement points (e.g. the last 
observations, the observations within a specific interval of time, the 
observations that exceed certain values). 

(ii) Access Monitoring Reports. A Monitoring Report Requester obtains, by 
request, monitoring reports taken on a device item. The system may offer 
Monitoring Report Requesters ways to specify filters to access specific 
monitoring reports. (e.g. the last monitoring report of a certain monitoring 
criteria, the monitoring reports of a certain monitoring criteria within a 
specific interval of time). 

 

Observation
Requester

Access
Observations

Observation
Manager

DAS Broker

Monitoring Report
Requester

Access
Monitoring

Reports

Monitoring Report
Manager  

Figure 41 Access Data Use Case 

In these use cases we introduced a manager role for observations and a 
manager role for monitoring reports, as we consider that we have to offer DAS 
developers the choice of implementing the management of observations and 
monitoring reports independently. Typically, the same actor (e.g., the Supervisor of 
the system) will implement the roles Observation Requester and Monitoring Report 
Requester. But, there may be systems where supervisors are only allowed to access 
observations of the systems, and certain users with special privileges (e.g., the 
Administrator of the system) are allowed to access monitoring reports of the systems. 
In other systems, users might be only allowed to access monitoring reports. Again, 



 

 60

the use of different elementary roles for anything that can be accessed makes our 
specification more independent from decisions that should be taken later, in the 
design phase of a particular DAS. 

We use an activity diagram, shown in Figure 42, to specify the sequence in 
which these use cases may be carried out: 

Access
Observations

Access
Monitoring

Reports

H

[observationsToAccess!=null] [monitoringReportsToAccess!=null &
observationsToAccess==null]

[monitoringReportsToAccess==null &
observationsToAccess==null]

[observationsToAccess==null &
monitoringReportsToAccess==null]

[observationsToAccess==null &
monitoringReportsToAccess!=null]

[observationsToAccess!=null] [monitoringReportsToAccess!=null]

H

[monitoringReportsToAccess==null &
observationstoAccess!=null]

 

Figure 42 Access Data Activity Diagram 

(a) Access observations until all the observations to access have been 
accessed. Then, go to b), to access monitoring reports; or to the end, if all 
observations and monitoring reports to access have been accessed. 

(b) Access monitoring reports until all the monitoring reports to access have 
been accessed. Then, go to a), to access observations; or to the end, if all 
observations and monitoring reports to access have been accessed. 

 

6.3.4 Notify Data Availability 

This use case implements the “event notification for availability of data” 
functional requirement, which is defined by the OMG in DAIS RFP [7] as: 

“Mechanisms to allow the industrial system broadcasting events outside itself 
to which clients can subscribe in order to receive a notification that new data is 
available to be accessed.” 

This use case allows supervisors to be notified when relevant data is available. 
The notification process is based on the push model. Monitoring criteria and 
subscriptions for receiving notifications for availability of them are defined by means 
of the Define Data Access use case. The DAS will notify supervisors of monitoring 
reports corresponding to monitoring criteria subscribed by them. 

We refined the Notify Data Availability use case into a single role-based use 
case, shown in Figure 43: 

(i) Notify Data Availability. A Monitoring Criteria Subscriber receives a 
notification that new data is available. Data are monitoring reports 
corresponding to monitoring criteria subscribed by the Monitoring Criteria 
Subscriber. The notification process is based on the push model. 

 
Typically, the Supervisor of the system will implement the role Monitoring 

Criteria Subscriber. But, there may be systems where supervisors are not allowed to 
receive notifications, and only certain users with special privileges (e.g., the 



 

 61

Administrator of the system) are allowed to receive notifications of monitoring 
reports of the systems. Again, the use of a role for the subscriber of monitoring 
reports makes our specification more independent from decisions that should be taken 
later, in the design phase of a particular DAS. 

Monitoring Criteria
Subscriber

Notify
Data

Availability
DAS Broker

Monitoring Report
Manager

Device Item
Monitoring Criteria

Subscription
Manager  

Figure 43 Notify Data Availability Use Case 

6.3.5 Upload Data 

This use case implements the “event driven data upload” functional 
requirement, which is defined by the OMG in DAIS RFP [7] as: 

“Mechanisms to define event driven data retrieval sequence, by which data 
delivery can be done automatically upon the occurrence of a notification for 
availability of data.” 

This enables the automatic sending of relevant data to supervisors when 
available. The upload process is based on the push model. Monitoring criteria and 
subscriptions for receiving uploads of data are defined by means of the Define Data 
Access use case. The DAS will upload to supervisors monitoring reports 
corresponding to monitoring criteria subscribed by them. 

We refined the Upload Data use case into a single role-based use case, shown 
in Figure 44: 

(i) Upload Data. Monitoring Criteria Subscribers receive monitoring reports 
corresponding to monitoring criteria subscribed by them. 

 

Monitoring Criteria
Subscriber

Upload
Data

DAS Broker

Monitoring Report
Manager

Device Item
Monitoring Criteria

Subscription
Manager  

Figure 44 Upload Data Use Case 

As with the notification of availability of data, typically, the Supervisor of the 
system will implement the role Monitoring Criteria Subscriber. But also there may be 
cases where only certain users with special privileges (e.g., the Administrator of the 
system) are allowed to receive uploads of monitoring reports of the systems. Again, 



 

 62

the use of an elementary role for the subscriber of monitoring reports makes our 
specification more independent from decisions that should be taken later, in the 
design phase of a particular DAS. 

6.4 Summary 

In this chapter we described a conceptual model and a role-based use case 
model of a generic DAS. These models give DAS developers an abstraction of DASs. 
They also provide DAS developers with an external specification of a generic 
architecture for DASs. This generic DAS specification enables the comparison of 
existing DAS products and standards. Additionally, it provides the DAS developers 
that aim to develop a specific DAS with a starting point for the design of a specific 
DAS. We based our specification on conceptual and role-based use case modeling, 
which makes it quite generic and independent from design and implementation 
decisions for a particular DAS. The role-based use cases are specified in Appendix B. 
The elementary roles are specified in Appendix C. 

 



 

 63

7. Discussion 

Parts of this work appeared in [10]. 

7.1 Introduction 

In this chapter we discuss key issues about the conceptual and role-based use 
case models. We also discuss the development process that we followed in this thesis 
and we explain the benefits of this development process versus traditional 
development processes. 

7.2 Conceptual Model 

In this section we discuss the relationship between device models and device 
items; we define how to assign a Global Unique Identifier (GUID) for device models 
and device items; we discuss the composition of device models and device items 
introducing a new pattern, called Model Composite, for the management of the 
composition of models; we explain how our conceptual model supports the notion of 
Plug&Play; and finally we explain the mapping between sampled and physical 
values. 

7.2.1 Device Models vs. Device Items 

We refer as device to a generic concept for any industrial system or sub-
system. In our model, we represent a real world device as an instance of Device Item. 
We represent the type of a device, commonly known as its model, as an instance of 
Device Model. The relationships between instances of Device Item and instances of 
Device Model are shown in Figure 45. 

Device Item

:Device Item

instance of

Device Model

:Device Model

instance of

characterized by

Type
Domain

Instance
Domain

 

Figure 45 Device Models vs. Device Items 



 

 64

An instance of Device Item is always characterized by an instance of Device 
Model. An instance of Device Model characterizes a set of instances of Device Item. 

7.2.2 Naming Management 

A Global Unique Identifier (GUID) must be assigned to each device model 
and device item. In this section we define how to assign a GUID for device models 
and device items. 

Device Model Identifier 

Device model designers are responsible for assigning a designer specific 
model identifier to their device models. This identifier, which we named modelID, 
enables the distinction between two different device models belonging to the same 
designer. A designer identifier, which we named designerID, enables the distinction 
between two different device model designers. As a result, a deviceModelGUID is 
obtained from the concatenation of designerID and modelID. 

deviceModelGUID = designerID & modelID 

Device Item Identifier 

Device manufacturers are responsible for assigning a unique identifier, which 
is named serialNumber, to each device item. serialNumber uniquely identifies device 
items of the same device model manufactured by a manufacturer. In order to be able 
to globally identify a device item, it is necessary to include the deviceModelGUID. 
As a result, a deviceItemGUID is obtained from the concatenation of its 
corresponding deviceModelGUID, the manufacturerID and a serialNumber. 

deviceItemGUID = deviceModelGUID & manufacturerID & serialNumber 
deviceItemGUID = designerID & modelID & manufacturerID & serialNumber 

7.2.3 Composition Management 

Device Items Composition Management 

In DASs, tree structures allow us to efficiently define an industrial system. An 
industrial system is usually composed of many parts, which can also be composed of 
many other parts in a part-whole hierarchy. For example, an HVAC (heating, 
ventilation and air conditioning) system is composed of subsystems such as heating 
coil, cooling coil, supply fan, etc., that can be composed of other subsystems such as 
temperature sensors, ventilation sensors and so on. Part-Whole relationships are 
commonly used to model the construction of composite objects out of individual 
parts. Part-Whole relationship categories and their application in object-oriented 
analysis are further discussed by Motschnig-Pitrik and Kaasboll in [75]. One way to 
represent part-whole relationships of systems is by using the Composite [41] pattern. 
We used this pattern to organize device items. 

Device Models Composition Management 

An instance of Device Item is characterized by an instance of Device Model. 
As a result, there is an analogous relationship between pairs of device models and 



 

 65

pairs of the corresponding device items. But, in the case of device models, the same 
device model may be used many times as part of the same complex device model. 
This impedes the use of the Composite pattern for the management of device models, 
as it would be not possible to distinguish between the different instances of the same 
Device Model. 

Example: as shown in Figure 46, an instance of VehicleModelA is 
composed of two instances of DoorModelB. This is typically the case of vehicles 
with a left door and a right door of the same model. The problem is that 
there is no way to distinguish between the two instances of the same model 
DoorModelB, which are both part of VehicleModelA. 

modelID = modelDoorB

:DoorModelB

modelID = vehicleModelA

:VehicleModelA

modelID = vehicleModelA : ModelID

VehicleModelA

modelID = doorModelB : ModelID

DoorModelB

is composed of
2
*

modelID = modelDoorB

:DoorModelB

Type Domain Instance Domain

parent
child

 

Figure 46 Example of Model Composition without Functional Model 

An elegant manner to solve this problem is to use the Model Composite 
pattern. The Model Composite pattern, shown in Figure 47, is our own variation of 
the Composite pattern, to represent part-whole hierarchies of models. Model 
implements default behavior for a model. Complex Model defines behavior for a 
model that is composed of other models. Functional Model is a specialization of 
Model that represents a model that is part of a complex model. We called it functional 
because it implements a function within a complex model. Using this pattern we may 
have many different instances of Functional Model that inherit from the same 
instance of Model, but each of them implements a different function on a complex 
model. 

    

Complex
Model

Single
Model

Model

1..*
1

is
composed of

child

parent

function : Function

Functional Model

  

 

Figure 47 Model Composite Pattern 

Example: as shown in Figure 48, a VehicleModelA is composed of a 
VehicleModelALeftDoorDoorModelB, implementing the function of 
leftdoor and a VehicleModelBRightDoorDoorModelB, implementing the 
function of rightdoor, which inherit both from DoorModelB. In this way we can 
distinguish between the two instances of the same model DoorModelB. 



 

 66

modelID = doorModelB
function = leftDoor

:VehicleModelA
LeftDoor

DoorModelB

modelID = vehicleModelA

:VehicleModelA

modelID = vehicleModelA : ModelID

VehicleModelA

modelID = doorModelB : ModelID
function = leftDoor : Function

VehicleModelA
LeftDoor

DoorModelB

is composed
of 1

modelID = doorModelB
function = rightDoor

:VehicleModelA
RightDoor

DoorModelB

modelID = doorModelX : ModelID

DoorModelB

modelID = doorModelB : ModelID
function = rightDoor : Function

VehicleModelA
RightDoor

DoorModelB

is composed
of

1
1

1

Type Domain Instance Domain

parent parent
child child

 

Figure 48 Example of Model Composition with Functional Model 

7.2.4 Plug&Play 

Plug&Play indicates that a system has the ability to automatically configure 
itself. The system must be able to detect changes in its composition to adapt its 
configuration to the new composition. One of the most known Plug&Play initiatives 
is Microsoft's Plug&Play (PnP) [76], which is a framework architecture for PCs to 
enable the automatic configuration of expansion cards and other devices. Other 
initiatives, such as Universal Plug&Play (UPnP) [77] and Jini [58], enable the 
Plug&Play of systems, or services, in a network. 

A Plug&Play DAS would allow supervisors of devices to register to be 
notified when changes in the composition of the system happen. A Plug&Play DAS 
automatically detects changes in the composition of the system and notifies to 
interested supervisor of such changes. If the real world devices support the 
Plug&Play functionality, a Plug&Play DAS may subscribe itself in the devices to 
receive notifications when changes on the composition of such devices happen. 
Otherwise, a Plug&Play DAS may check periodically the composition of device 
items to detect eventual changes on their composition. 

Our conceptual model supports the notion of Plug&Play through the concepts 
of Device Model Composition Monitoring Criteria and Device Item Composition 
Monitoring Criteria; these concepts allow for the definition of composition 
monitoring criteria, predefined in a device model or defined specifically in a device 
item, respectively. A composition monitoring criteria groups a set of devices. A 
supervisor may subscribe to receive a notification, by means of a monitoring report, 
when a change in the composition of, at least, one of the devices of such monitoring 
criteria happens. Our conceptual model defines the concepts that are necessary to 
enable the development of a Plug&Play DAS, but it does not force developers the use 
a specific technology. In an actual implementation, developers will chose the 
Plug&Play technology that fits better with their specific requirements. 

7.2.5 Physical Values vs. Sampled Values 

In DASs, it is very common for the value actually measured (we refer to this 
value as sampled value) to not correspond to the physical value. We need a way to 



 

 67

record a mapping policy that makes it possible to calculate the physical value from 
the sampled value. Eventually, the units in which a measurement is taken could not 
correspond to the measurement of the associated phenomenon type. This could 
happen because the measurement units depend on the sensor uses to acquire the 
measurement and not on the phenomenon type. Thus, we also need to record the units 
of the measurement in order to makes it possible to calculate the physical value in 
phenomenon type units from the physical value in measurement units. In order to 
record this information we introduced the concept of measurement type and mapping 
policy, shown in Figure 49. 

physicalNormalRange : Range

Phenomenon Type

Measurement
Point

has
*

1

sampleRange : Range
physicalRange : Range

Measurement Type

has
* 1

Unit

has
*

1

1 Mapping
Policy

from

to *

*

*

1mapping

has

measurementUnits
has*

phenomenonTypeUnits

 

Figure 49 Physical Values vs. Sampled Values 

7.3 Role-based Use Case Model 

In this section we discuss the possible representations of the system in the use 
cases; we discuss the use of elementary roles rather than actors; we give some 
techniques to specify the interactions across use cases and the scenarios of use cases; 
we explain the use of the Broker pattern in the use cases; we describe a new pattern, 
called Administrator-Manager; and finally, we present the templates that we used for 
specifying role-based use cases and elementary roles. 

7.3.1 Elementary Roles vs. Actors 

We used actors to represent not only outside users but also the system itself. 
Additionally, actors can play several elementary roles in use cases. Therefore, an 
actor can be seen as a composition of elementary roles, each of them playing a single 
function in a use case. We used elementary roles rather than actors in the use cases, 
because this allows us to specify the system independently of architectural choices, 
requirements, QoS, and/or available technologies specific for a particular system. The 
resulting specification can, then, be reused in different implementations of similar 
systems by mapping roles into actors according to the requirements of a specific 
system. This process is illustrated with an example in Figure 50. In this process we 
first identify the use cases using real world actors that cooperate to realize a use case. 
Then, we focus on the elementary roles that cooperate to realize a use case. After that 
we can specify the use case by means of sequence diagrams using elementary roles. 
As a result of this specification, we obtain the interfaces of the elementary roles. 
Consequently, this specification is generic and we can map each elementary role to 
actors depending on the requirements of particular systems. 



 

 68

Use Case

Actor 3

Actor 1

Actor 2  
(a) Use Cases with Actors 

Use Case

Role 5

Role 1

Role 2

Role 4

Role 3  
(b) Use Cases with Roles 

:Role1 :Role2 :Role5

msgY msgZ
msgZ_ResponsemsgY_Response

Role1's msgX
specification

 
(c) Scenario Specification with Roles 

msgX
msgY_Response

Role1

msgY
msgZ_Response

Role2

msgZ

Role5

 
(d) Roles Interfaces 

Actor 3Actor 1 Actor 2

Role 2Role 1 Role 3 Role 5Role 4  
(e) Mapping of Roles into Actors 

Figure 50 Elementary Roles vs. Actors 

7.3.2 Representation of the System 

People use different approaches to represent the system in the use cases. 
These approaches are mainly: 

(i) Not to represent the system in the use cases. The system does exist in the 
use cases but it does not appear explicitly in the design of the use cases. It 
is implicit. 

(ii) Represent the system as a box containing the use cases. The system 
appears explicitly in the design of the use cases. 

(iii) Represent the system itself in the use cases. The system appears as another 
actor who takes part in the use case. 

 
We found it very useful to represent the system itself in the use cases, because 

in this way it is easier to define the role of the system on each use case and to find out 
the interfaces that the system has to provide to other participants in the use case in 
order to carry out this use case. Therefore, we adopted the approach described in (iii), 
shown in Figure 51. 



 

 69

Use Case

Actor1

System

Actor2  
(a) Use Case with the System 

Actor 1
System

System Specification

Actor2
Interface

Actor1
Interface

Actor 2
 

(b) System Specification 

Figure 51 Representation of the System in the Use Case 

7.3.3 System Behavior Modeling 

An external specification of a generic system must allow the specification of 
different system behaviors depending on specific execution constraints and types of 
control flow. In this section we give some techniques to specify the interactions 
across use cases and the scenarios of use cases in such a way that the specification 
enables the implementation of systems with different execution constraints and types 
of control flow. 

Modeling of the Interactions across Use Cases 

We propose the use of UML activity diagrams to specify the interactions 
across use cases. An activity diagram is the UML notation for an activity graph, 
which is a special form of state machine intended originally to model computations 
and workflows. According to the UML notation [29] of activity diagrams stick 
arrowheads represent control flow; dashed arrows with stick arrowheads represent 
object flow; and labels in the arrows represent conditions to be satisfied to pass from 
one state to another state (or eventually a pseudo-state). 

An external specification of a generic system must be able to specify many 
particular systems with different interactions across use cases depending on particular 
execution constraints. To achieve this, we propose to: 

(i) Represent each use case as an action (or state) in the activity diagram. 
(ii) Use stick arrowheads to represent the interactions across use cases. 

(iii) Define the transitions across use cases depending on the actual values of 
environment variables. We represented environment variables with the 
“env.” prefix. Depending on the actual values of these environment 
variables a particular system will implement a behavior or another. 

 
Example: as shown in Figure 52, we specified that from the UseCase1, if 

condition1 is false, and condition2 and condition3 are true, we can go 
either to the UseCase2 or to the UseCase3. Both transitions are possible. The 
actual behavior of the system depends on the env.UseCase2 and 
env.UseCase3 environment variables. 



 

 70

Use Case 1 Use Case 2

Use Case 3

[!condition1 &
condition2 &
(!condition3 |
    (condition3 & env. Use Case 2))]

[condition1]
[!condition1 &
!condition2 &
condition3]

[condition1]

H

[!condition1 &
(!condition2 |
    (condition2 & env. Use Case 3)) &
condition3]

[!condition3 &
condition2]

H

[!condition1 &
!condition2 &
!condition3] [!condition1 &

!condition2 &
!condition3]

[!condition1 &
!condition2 &
!condition3]

[!condition1 &
condition2]

[condition3]

 

Figure 52 Example of Modeling of the Interactions across Use Cases 

Modeling of the Scenarios of Use Cases 

We propose the use of sequence diagrams to specify scenarios of use cases. A 
sequence diagram is a UML notation for an interaction graph that focuses on time 
sequences. According to the UML notation [29] of sequence diagrams filled solid 
arrowheads are used to represent procedure calls or other nested flows of control; 
stick arrowheads are used to represent flat flows of control; half stick arrowheads are 
used to represent asynchronous messages; and dashed arrows with stick arrowheads 
are used to represent “return” messages from procedure calls. 

An external specification of a generic system should be independent of a 
specific type of control flow, enabling the design of systems with nested or flat flows 
of control. To achieve this, we propose to: 

(i) Use stick arrowheads to represent any kind of message msgX. 
(ii) Use msgX_Response as a convention to name the return message 

corresponding to msgX. 
 

Example: as shown in Figure 53, we specified that Role1 sends the msgX 
message to Role2, and Role2 replies with the msgX_Response message. If the 
implemented system is an asynchronous system Role1 can continue performing 
processes, msgX_Response being sent later asynchronously by Role2. If the 
implemented system is a synchronous system msgX blocks Role1 until Role2 
replies with msgX_Response. Normally, the interface of Role2 implements a 
function that handles the msgX message, and Role1 implements a function that 
handles the msgX_Response. However, in synchronous systems implemented by 
means of procedural calls, the interface of Role2 implements a function that handles 
the msgX message, but Role1 does not implement a function that handles the 
msgX_Response, as msgX_Response corresponds to the return of the msgX 
message. 



 

 71

:Role1 :Role2

msgX (msgX_Parameters)

msgX_Response (msgX_Response_Parameters)
 

Figure 53 Example of Modeling of the Scenarios of Use Cases 

7.3.4 Broker Pattern 

The Broker pattern is defined in [22]: 

“The Broker pattern can be used to structure distributed software systems with 
decoupled components that interact by remote service invocations. A broker 
component is responsible for coordinating communication, such as forwarding 
requests, as well as for transmitting results and exceptions”. 

We made a wide use of this pattern in our specification of a generic DAS. Due 
to the genericness of our specification we cannot predict if a role will be implemented 
internally by a component of the system, or an outside user or system. The System 
Broker allows us to decouple roles allowing us to remain independent of design 
choices. The System Broker adds an extra level of indirection that allows roles to 
ignore whether other roles are implemented internally or externally. We introduce the 
System Broker as another role that takes part on all the use cases, as shown in Figure 
54. 

Use Case Z

Role Y

Role X System
Broker

 

Figure 54 Example of Representation of the System Broker in the Use Cases 

Roles register on the System Broker to handle certain messages, as shown in 
Figure 55. 

:RoleX :SystemBroker

registerServices (aRoleX, aRoleXServer,
    aRoleXServiceList)

addServices (aRoleX, aRoleXServer,
    aRoleXServiceList)registerServices_Response

    (acknowledgment)

unregisterService (aRoleX,
    aRoleXServiceList)

removeServices (aRoleX,
    aRoleXServiceList)

unregisterServices_Response
    (acknowledgment)  

Figure 55 Example of (Un)Registration of Services in the System Broker 

All the messages between roles pass through the System Broker. The System 
Broker is responsible for establishing a communication between a particular role 



 

 72

(RoleX) and another particular role (RoleY). The System Broker finds the server of 
a certain role that implements a certain service and forwards the request to it. 
Eventually, an asynchronous response would pass through the System Broker in the 
same way. In Figure 56 we show an example of communication between roles using 
the System Broker. 

:RoleX :SystemBroker :RoleY

forward (RoleY,  msgP,
    msgP_Parameters)

callService (msgP,
    msgP_Parameters)

forward (RoleX, msgP_Response,
    msgP_Response_Parameters)

findService (RoleY, msgP)
     : RoleYServer

findService  (RoleX, msgP_Response)
     : RoleXServercallService (RoleX, msgP_Response,

    msgP_Response_Parameters)

callService_Response
    (acknowledgment)

forward_Response
    (acknowledgment)

callService_Response
    (acknowledgment)

forward_Response
    (acknowledgment)  

Figure 56 Example of Comm. between Roles using the System Broker 

For simplicity in the sequence diagrams, we represent the communication 
between roles through the System Broker in the simplified way shown in Figure 57. 

:RoleX :SystemBroker :RoleY

msgP (msgP_Parameters)

msgP_Response
    (msgP_Response_Parameters)

msgP (msgP_Parameters)

msgP_Response
    (msgP_Response_Parameters)

 

Figure 57 Example of Simplified Comm. between Roles using the System Broker 

7.3.5 Administrator-Manager Pattern 

The so-called Administrator-Manager use case pattern is shown in Figure 58. 
This new pattern concerns the administration of instances of a particular type X. With 
the term Administer X we refer to the creation of new instances of X, and the 
modification or deletion of existing instances of X. There are always two roles that 
take part in an Administer X use case. The X Administrator is responsible 
for administering instances of X, that means, for creating new instances of X or for 
modifying or removing existing instances of X. The X Administrator is 
typically an outside user with special privileges. The X Manager is responsible for 
managing instances of X, that means, recording them into a persistent data support, 
check duplication of instances and so on. The X Manager may typically be an 
interface to an internal or external database. 



 

 73

Administer
X

X
Administrator

X
Manager  

Figure 58 Administrator-Manager Pattern 

Some examples of the utilization of this pattern can be found in the refined 
use cases, specified in Appendix B, of the Define Data Access use case. 

7.3.6 Specification of Role-based use cases 

In our external specification of a generic architecture for DASs we used the 
following template to specify role-based use cases: 

 
Use Case  The name of the use case 
Roles The names of the roles that take part in the use case. In the high-level 

use cases we use actors whereas in the logical use cases we use roles. 
Type We categorized use cases according to the criteria defined by Larman 

in [78]. By one way, use cases are classified as primary, secondary or 
optional: primary use cases represent major common processes, 
secondary use cases represent minor processes and optional use cases 
represent processes that many not be tackled. By other way, use cases 
are classified as essential or real: essential use cases are expressed in 
an ideal form that is implementation independent, whereas real use 
cases describe the process in terms of a specific design. In this thesis 
we focused only on primary and essential use cases. 

Description A short description or overview of the use case. 
Pre-
conditions 

Some conditions that must be fulfilled before running the use case. 

Post-
conditions 

Some conditions that must be fulfilled after having run the use case. 

Use Case 
Diagram 

The diagram corresponding to the use case. 

Known 
Concepts 

The set of concepts and relationships of the system that the roles that 
take part in the use case have to know to carry out the use case. We 
represent the roles in the conceptual model to specify the relationships 
and cardinalities among roles, and between roles and concepts. We 
used the stereotype object in the concepts to specify that these 
concepts correspond to a generic representation of objects of the 
system and not to an internal representation of concepts in the context 
of a particular role.  

Example 
Scenario 

A sequence diagram that specifies a possible scenario, as an example. 

 

7.3.7 Specification of Roles 

In our external specification of a generic architecture for DASs we used the 
following template to specify roles: 



 

 74

 
Role The name of the role 
Description A short description or overview of the role. 
Policies Some policies that dictate the role behavior. 
Interfaces The interfaces that the role offers. 

Known 
Concepts 

The set of concepts and relationships of the system that the role has to 
now to carry out its expected behavior. We represent the role concept 
in the conceptual model as Myself. This allows us to specify the 
cardinalities between the role and some concepts. The concepts 
correspond to the representation of concepts of the system in the 
context of the role. For simplicity, we used the same names to 
represent the same concepts of the system in different roles, but these 
concepts correspond to different representations as they correspond to 
different role contexts. 

 

7.4 Development Process 

In this section we discus the development process that we followed in this 
thesis and we explain the benefits of this development process versus traditional 
development processes. 

Traditional development processes have the following phases: 

• Analysis. The main objectives of this phase are to understand the 
business/domain, understand the problem(s) to solve, collect the client 
requirements, find possible solutions, choose the solution that fits better 
with the client requirements and specify this solution. 

• System Design. The objective of this phase is to design the solution. 
• System Implementation. The objective of this phase is to implement the 

solution. 
 

Many development processes, such as Catalysis, go throughout these phases 
recursively, non-linearly, iteratively and in parallel. 

Development of a 
{Particular} System

{Particular}
Analysis

{Particular}
Analysis

{Particular}
System Design

{Particular}
System Design

{Particular}
System Implementation

{Particular}
System Implementation

 

Figure 59 Traditional Development Process 

In this thesis we propose to develop an external specification of a generic 
system from the analysis of multiple systems and/or standards, and to apply such a 
specification to the development of many particular systems. The development 
process followed is shown in Figure 60. 



 

 75

Analysis  nAnalysis  n

Development of a 
{Generic} External Specification 

Development of a 
{Particular} System

…Analysis 2Analysis 2
Analysis 1Analysis 1

{Particular}
Analysis

{Particular}
Analysis

{Particular}
System Design

{Particular}
System Design

{Particular}
System Implementation

{Particular}
System Implementation

Conceptual Model Conceptual Model 

{Generic} 
External
Specification

Use Case ModelUse Case Model

 

Figure 60 Followed Development Process 

An external specification of a generic system is independent of particular 
design decisions. A generic system specification can be applied in the analysis phase 
of a particular system to better understand the problem and to easier specify the best 
solution, depending on the specific requirements of a particular system. A generic 
system specification can also be used as a starting point for the design phase of a 
particular system. As a result, a generic system specification will save time and 
reduce the costs of the development of a specific system. As a generic system 
specification can be applied to the development of many particular systems, the 
number of particular systems developed multiplies the benefits. 

The drawback of the followed development process is the complexity of the 
design of an external specification of a generic system. This makes that this 
development process gives only real benefits when designers have to develop many 
similar systems. In this thesis it was impossible for us to quantify the savings on the 
development costs of systems by the application of this development process. 
However, we strongly believe that this development process gives substantial benefits 
when developers have to develop at least two similar systems. 

7.5 Summary 

In this chapter we discussed key issues about the DAS conceptual model and 
the DAS role-based use case model. We also discussed the development process that 
we followed in this thesis and we explained the benefits of this development process 
versus traditional development processes. 



 

 76

 



 

 77

8. Application and Validation 

8.1 Introduction 

In this chapter we explain the applications of an external specification of a 
generic system. The most direct application of a generic system specification is for 
the writing of a RFP for a new standard. Another potential application of a generic 
system specification is for the evaluation of existing systems, standards or RFP 
responses. We illustrate this by using our generic DAS specification to compare the 
OMG’s DAIS RFP, the different DAS standards and the RoMain system. Finally, a 
generic system specification can be applied in the development of a particular system. 
This will significantly reduce the development costs of a specific system. We 
illustrate this by means of an example of development of a DAS for railway 
equipment based on our generic DAS specification. 

8.2 Issuing/Replying a RFP 

This is probably the most direct application of a generic system specification. 
RFP Issuers may use a generic system specification as a guide to specify the static 
concepts that a proposal of standard in request for a new RFP must support and the 
functionalities that such a standard must deal with, creating and writing down a 
specific RFP. RFP Repliers may use a generic system specification to easier 
understand and analyze the requirements of this RFP. Additionally, RFP Repliers can 
use a generic system specification to describe their proposal of standard in request to 
this RFP. In this way a generic system specification acts as an efficient 
communication mechanism between RFP Issuers and RFP Repliers, facilitating the 
creation, writing, understanding and replying of a RFP. A generic system 
specification can be seen as an actor that actively collaborates in all these actions, as 
shown in Figure 61. 

:RFP Issuer
2: write

RFP

3: understand
RFP

:RFP Replier
4: reply to

RFP

:Generic
System

Specification

1: create
RFP

 

Figure 61 Issuing/Replying a RFP 



 

 78

8.3 Evaluation of Existing Systems or Proposals 

Another potential application of a generic system specification is the 
evaluation of existing systems or standards. Developers may use a generic system 
specification to check the concepts and functionalities that these systems or standards 
support. 

8.3.1 OMG’s DAIS RFP vs. DAS Standards vs. RoMain  

In this section, as an example, we use the external specification of a generic 
architecture for DASs that we developed to compare the OMG’s Data Acquisition 
from Industrial Systems (DAIS) RFP, many DAS standards (OPC, IVI and ODAS) 
and the RoMain application. 

RFP vs. Standard vs. Application 

We do not intend to compare RFPs, standards and applications between each 
other. RFPs, standards and applications have different scopes and purposes, and they 
exist at different levels. A standard is a specification of concepts and functionalities 
describing how applications based on this standard should be. An application is a real 
implementation of a system. If an application is built based on the requirements 
specified by a standard then we say that this application “supports” the standard. A 
RFP is a request to the industrial community for proposals to write a new standard. A 
RFP is more generic, but also less explicit, than a standard. A standard is more 
explicit, and at the same time less generic, than a RFP. An application is the most 
explicit of them because in an application there is no ambiguity; it does what it does 
and no less and no more. These different levels of genericness and explicitness, 
shown in Figure 62, make it not fair to compare RFPs, standards and applications 
among each other. Rather than comparing them among each other, we compare each 
of them to the generic DAS specification. For each of them, we checked whether they 
have the concepts specified in the generic DAS specification and whether they 
implement the functionalities described in this specification. The results of these 
comparisons are shown in Table 2 and Table 3. We have to take in account that when 
we say that RFPs, standards or applications have a certain concept or implement a 
certain functionality, it does not mean exactly the same thing. When we refer to an 
application, it means that the application has this concept or implements this 
functionality. When we refer to a standard, it means that the standard specifies this 
concept or functionality. When we refer to a RFP, it means that the RFP introduces 
this concept or functionality even if not directly. 

Explicitness

G
en

er
ic

n
es

s

RFP

Standard

Application

 

Figure 62 RFP vs. Standard vs. Application 



 

 79

OMG’s DAIS RFP 

The conceptual model with the concepts the OMG’s DAIS RFP supports 
corresponds to the complete conceptual model shown in Figure 33. The OMG’s 
DAIS RFP requests standard interfaces to access data from heterogeneous industrial 
systems. As any RFP, it is quite generic and the specification rather ambiguous. This 
RFP does not refer directly to Device Models but information regarding model may 
be considered part of the device schema that describes the knowledge-level data of a 
device. A Measurement Point is called measurement variable, point, data source or 
data element. Measurement Type, Phenomenon Type and Phenomenon may be part of 
the semantics associated with data elements. This RFP does not speak directly about 
complex devices but it may support such systems. This RFP aims to enable a 
Plug&Play functionality, so a concept similar to Composition Monitoring Criteria 
may be implemented. Data can be triggered based on exception or event, so a concept 
similar to Event Monitoring Criteria may be implemented. Data can also be triggered 
as a self-consistent dataset at a specific date/time, so a concept similar to Status 
Monitoring Criteria may be implemented. The RFP does not make any reference to 
public or private monitoring criteria, but the RFP does not avoid implementing such 
monitoring criteria. Finally, similar concepts to Measurement, Category Observation 
and Monitoring Report may be implemented to allow recording measurements and 
monitoring reports taken on a system. The OMG’s DAIS RFP specifies Discover, 
Define Data Access, Access Data, Notify Data Availability and Upload Data as the 
core functionalities of any DAS. 

OPC 

The conceptual model with the concepts OPC supports is shown in Figure 63. 
OPC is a standard for process control in the automation field. In an OPC Server there 
are many OPC Items. An OPC Item is quite similar to a Measurement Point. It also 
provides some semantic information such as that corresponding to Measurement Type 
(data type, units, ranges and scales), Phenomenon Type and Phenomenon (implicit 
within the data type). As OPC does not support the concept of model, this semantic 
information of an OPC Item is duplicated in all OPC Items corresponding to the same 
kind of Measurement Point. Additionally, it is not possible to define Monitoring 
Criteria predefined in a device model. We can say that OPC supports partially the 
notion of composition because an OPC Server can manage a flat list of devices. 
However, OPC does not deal with complex hierarchical structures of devices. OPC 
allows clients to define custom trigger conditions and custom datasets. knowledge-
level are called OPC Groups, which group a set of OPC Items to be retrieved at the 
same time. However, OPC does not allow clients to define Composition Monitoring 
Criteria to enable the detection of changes on the composition of the system. 
Therefore, OPC does not enable a Plug&Play functionality. OPC specifies all the 
functionalities defined in the generic DAS specification except, obviously, Discover 
Model, as OPC does not support the notion of model. 

IVI 

The conceptual model with the concepts IVI supports is shown in Figure 64. 
IVI is a standard for instrumentation to enable the interchangeability among 
instruments of different vendors. In the IVI specification they refer to instrument or 
assets rather than devices. IVI defines many instrument classes such as Oscilloscope 



 

 80

(IviScope), Digital Multimeter (IviDmm), Function Generator (IviFGen), Switch 
(IviSwtch), and Power Supply (IviPower) classes. An IVI Class can be considered a 
similar concept to a generic Device Model. IVI classes only deal with single devices. 
Additionally, IVI specifies the IVI Measurement and Stimulus System (IVI-MSS), 
which allows building complex virtual instruments composed of many real 
instruments. Thus, we can state that IVI supports somehow the composition of 
devices through IVI-MSS. IVI is a standard defined to enable not only the 
interchangeability among instruments but also the Plug&Play of instruments. IVI is 
based on the VXIPlug&Play standard to enable a Plug&Play functionality. IVI 
classes specify predefined trigger conditions and predefined datasets. These trigger 
conditions may be enabled or disabled on a specific device item. Additionally, IVI 
MSS allows the definition of custom trigger conditions and custom datasets. 
Monitoring criteria defined in an IVI instrument class or IVI MSS system is always 
public to any IVI client, as IVI does not support the notion of private. IVI specifies all 
the functionalities defined in the generic DAS specification. 

ODAS 

The conceptual model with the concepts ODAS supports is shown in Figure 
65. ODAS is a standard for PC-based data acquisition systems. ODAS defines 
standard interfaces for analog/digital inputs and outputs. The scope of ODAS is 
single devices. ODAS does not support the notion of model. It does not support either 
the notion of composition. Only custom datasets and custom event-based trigger 
conditions may be defined by an ODAS client application. This allows clients to 
define status monitoring criteria. Monitoring Criteria defined by a client is always 
private for this client, as ODAS does not support the notion of public monitoring 
criteria. ODAS specifies all the functionalities defined in the generic DAS 
specification except, obviously, Discover Model, as ODAS does not support the 
notion of model.  

RoMain 

The conceptual model with the concepts the RoMain system supports is 
shown in Figure 66. RoMain is a simple application for the remote monitoring of 
railway equipment. RoMain deals with three kinds of devices: trains, vehicles and 
equipments. RoMain supports the notion of model, so there are train models, vehicle 
models and equipment models. These models record some semantic information 
common to all the device items associated with a device model, for instance, the list 
of properties (similar to Measurement Point) of a device. RoMain also supports the 
notion of composition; a train item is composed of vehicle items that are also 
composed of equipment items. RoMain neither supports the Plug&Play of devices nor 
the reporting of events. A client application may want to receive the current values of 
the full set of properties of a device. This is the only predefined status monitoring 
criteria a client application is allowed to subscribe. Monitoring criteria are private to 
a client application, as RoMain does not support the notion of public monitoring 
criteria. A client of the RoMain system is neither allowed to define custom datasets, 
nor custom trigger conditions, nor custom monitoring criteria. RoMain specifies all 
the functionalities defined in the generic DAS specification except the functionalities 
regarding the definition of custom datasets, custom trigger conditions and custom 
monitoring criteria, and the notification of availability of data. 



 

 81

ph
ys

ic
al

N
or

m
al

R
an

ge
 : 

R
an

ge
ph

en
om

en
on

T
yp

eU
ni

ts
 : 

U
ni

t

P
h

en
o

m
en

o
n

 T
yp

e

qu
al

ita
tiv

eR
an

ge
 : 

R
an

ge

P
h

en
o

m
en

o
n

D
ev

ic
e 

M
o

d
el

s *
ha

s
1

M
ea

su
re

m
en

t
A

d
d

re
ss

D
ev

ic
e 

It
em

s   
  

C
o

m
p

le
x

D
ev

ic
e 

It
em

S
in

g
le

D
ev

ic
e 

 It
em

m
an

uf
ac

tu
re

r 
: M

an
uf

ac
tu

re
r

se
ria

lN
um

be
r 

: S
er

ia
lN

um
be

r

D
ev

ic
e 

It
em

1

ha
s

*

0.
.1

1.
.*

co
m

po
se

d 
of

*
1

pa
re

nt

ch
ild

D
ev

ic
e

A
d

d
re

ss

ha
s

1

1

is
P

re
se

nt
: B

oo
le

an

C
at

eg
o

ry
O

b
se

rv
at

io
n

va
lu

e 
: N

um
be

r

M
ea

su
re

m
en

t

tim
e 

: T
im

eS
ta

m
p

qu
al

ity
 : 

D
at

aQ
ua

lif
ie

r

<<
ab

st
ra

ct
>>

O
b

se
rv

at
io

n  
  

O
b

se
rv

at
io

n
s 

&
 M

o
n

it
o

ri
n

g
 R

ep
o

rt
s

tim
e 

: T
im

eS
ta

m
p

M
o

n
it

o
ri

n
g

R
ep

o
rt

**

1

1
ha

s

*

*

ha
s

<<
ab

st
ra

ct
>>

C
u

st
o

m
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

cr
ea

to
r 

:  
C

re
at

or

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

su
bs

cr
ib

er
s 

: S
ub

sc
rib

er
Li

st

P
u

b
lic

 C
ri

te
ri

a

su
bs

cr
ib

er
 : 

S
ub

sc
rib

er

P
ri

va
te

 C
ri

te
ri

a

  
  

  

*

ha
s

* *
is

 r
el

at
ed

 to
tim

e 
: T

im
eC

on
di

tio
n

D
ev

ic
e 

It
em

 T
im

e
T

ri
g

g
er

 C
o

n
d

it
io

n

is
T

ru
e 

: B
oo

le
an

D
ev

ic
e 

It
em

 E
ve

n
t

T
ri

g
g

er
 C

o
n

d
it

io
n

  
  

gr
ou

ps

*

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

T
ri

g
g

er
 C

o
n

d
it

io
n

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

D
at

as
et*

ha
s

ha
s

* 1

* 1

is
 r

el
at

ed
 to

D
ev

ic
e 

It
em

 E
ve

n
t M

o
n

it
o

ri
n

g
C

ri
te

ri
a

D
ev

ic
e 

It
em

S
ta

tu
s 

M
o

n
it

o
ri

n
g

C
ri

te
ri

a

    

<<
ab

st
ra

ct
>>

C
u

st
o

m
T

ri
g

g
er

 C
o

n
d

it
io

n
  

C
us

to
m

D
at

as
et

  

D
ev

ic
e 

It
em

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

ta
ke

n 
at

*

1
ch

ar
ac

te
riz

ed
 b

y

1

*

ha
s

1 *

ha
s

**

sa
m

pl
eR

an
ge

 : 
R

an
ge

ph
ys

ic
al

R
an

ge
 : 

R
an

ge
m

ap
pi

ng
 : 

M
ap

pi
ng

P
ol

ic
y

m
ea

su
re

m
en

tU
ni

ts
 : 

U
ni

t

M
ea

su
re

m
en

t 
T

yp
e

 

Figure 63 OPC Conceptual Model 



 

 82

ph
ys

ic
al

N
or

m
al

R
an

ge
 : 

R
an

ge
ph

en
om

en
on

T
yp

eU
ni

ts
 : 

U
ni

t

P
h

en
o

m
en

o
n

 T
yp

e

qu
al

ita
tiv

eR
an

ge
 : 

R
an

ge

P
h

en
o

m
en

o
n

D
ev

ic
e 

M
o

d
el

s

  
  

C
o

m
p

le
x

D
ev

ic
e 

M
o

d
el

S
in

g
le

D
ev

ic
e 

M
o

d
el

de
si

gn
er

 : 
D

es
ig

ne
r

m
od

el
ID

 : 
M

od
el

ID

D
ev

ic
e 

M
o

d
el

1
ha

s

1.
.*

1

co
m

po
se

d 
of

*
ha

s
1

ch
ild

pa
re

nt

ty
pe

 : 
M

ea
su

re
m

en
tT

yp
e

M
ea

su
re

m
en

t 
P

o
in

t

ha
s

* 1

fu
nc

tio
n 

: F
un

ct
io

n

F
u

n
ct

io
n

al
D

ev
ic

e 
M

o
d

el

*

D
ev

ic
e 

It
em

s   
  

C
o

m
p

le
x

D
ev

ic
e 

It
em

S
in

g
le

D
ev

ic
e 

 It
em

m
an

uf
ac

tu
re

r 
: M

an
uf

ac
tu

re
r

se
ria

lN
um

be
r 

: S
er

ia
lN

um
be

r

D
ev

ic
e 

It
em

1

1
ch

ar
ac

te
riz

ed
 b

y
*

ha
s

*

0.
.1

1.
.*

co
m

po
se

d 
of

*

1

pa
re

nt

ch
ild

in
st

al
le

d 
in

D
ev

ic
e

A
d

d
re

ss
1

*

de
fin

ed
 b

y

1 * *

1

*

is
P

re
se

nt
: B

oo
le

an

C
at

eg
o

ry
O

b
se

rv
at

io
n

va
lu

e 
: N

um
be

r

M
ea

su
re

m
en

t

tim
e 

: T
im

eS
ta

m
p

qu
al

ity
 : 

D
at

aQ
ua

lif
ie

r

<<
ab

st
ra

ct
>>

O
b

se
rv

at
io

n  
  

O
b

se
rv

at
io

n
s 

&
 M

o
n

it
o

ri
n

g
 R

ep
o

rt
s

tim
e 

: T
im

eS
ta

m
p

M
o

n
it

o
ri

n
g

R
ep

o
rt

**

1

1
ha

s

*

*

ha
s

C
us

to
m

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

cr
ea

to
r 

:  
C

re
at

or

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

su
bs

cr
ib

er
s 

: S
ub

sc
rib

er
Li

st

P
u

b
lic

 C
ri

te
ri

a

  

  

P
re

d
ef

in
ed

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a
  

*

1

de
fin

ed
 b

y

*

ha
s

* *
re

la
te

d 
to

tim
e 

: T
im

eC
on

di
tio

n

D
ev

ic
e 

It
em

 T
im

e
T

ri
g

g
er

 C
o

n
d

it
io

n

is
T

ru
e 

: B
oo

le
an

D
ev

ic
e 

It
em

 E
ve

n
t

T
ri

g
g

er
 C

o
n

d
it

io
n

  
  

gr
ou

ps

*

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

T
ri

g
g

er
 C

o
n

d
it

io
n

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

D
at

as
et

*

ha
s

ha
s

* 1

* 1

re
la

te
d 

to

D
ev

ic
e 

It
em

 E
ve

n
t 

M
o

n
it

o
ri

n
g

C
ri

te
ri

a

D
ev

ic
e 

It
em

S
ta

tu
s 

M
o

n
it

o
ri

n
g

C
ri

te
ri

a

    

C
u

st
o

m
T

ri
g

g
er

 C
o

n
d

it
io

n

P
re

d
ef

in
ed

T
ri

g
g

er
 C

o
n

d
it

io
n

    

C
u

st
o

m
D

at
as

et

P
re

d
ef

in
ed

D
at

as
et

    
*

1
de

fin
ed

 b
y

*

1

de
fin

ed
 b

y

D
ev

ic
e 

It
em

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

D
ev

ic
e 

It
em

 C
o

m
p

o
si

ti
o

n
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

  

re
la

te
d 

to **

D
ev

ic
e 

M
o

d
el

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

<<
ab

st
ra

ct
>>

D
ev

ic
e 

M
o

d
el

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

ha
s

*

*

*re
la

te
d

to

tim
e 

: T
im

eC
on

di
tio

n

D
ev

ic
e 

M
o

d
el

 T
im

e
T

ri
g

g
er

 C
o

n
d

it
io

n

is
T

ru
e 

: B
oo

le
an

D
ev

ic
e 

M
o

d
el

 E
ve

n
t

T
ri

g
g

er
 C

o
n

d
it

io
n

  
  

gr
ou

ps

*

<<
ab

st
ra

ct
>>

D
ev

ic
e 

M
o

d
el

T
ri

g
g

er
 C

o
n

d
it

io
n

D
ev

ic
e 

M
o

d
el

D
at

as
et

*

ha
s

ha
s

* 1

* 1

re
la

te
d

to

D
ev

ic
e 

M
o

d
el

E
ve

n
t

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

D
ev

ic
e 

M
o

d
el

S
ta

tu
s

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

    

D
ev

ic
e 

M
o

d
el

C
o

m
p

o
si

ti
o

n
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

  

re
la

te
d 

to

*

*

ta
ke

n 
at

*
1

ch
ar

ac
te

riz
ed

 b
y

1

*

ha
s

1 *

ha
s

**

1 1

*

*

ha
s

ha
s

M
ea

su
re

m
en

t
A

d
d

re
ss

 

Figure 64 IVI Conceptual Model 



 

 83

ph
ys

ic
al

N
or

m
al

R
an

ge
 : 

R
an

ge
ph

en
om

en
on

T
yp

eU
ni

ts
 : 

U
ni

t

P
h

en
o

m
en

o
n

 T
yp

e

qu
al

ita
tiv

eR
an

ge
 : 

R
an

ge

P
h

en
o

m
en

o
n

D
ev

ic
e 

M
o

d
el

s *
ha

s
1

M
ea

su
re

m
en

t
A

d
d

re
ss

D
ev

ic
e 

It
em

s

  

S
in

g
le

D
ev

ic
e 

 It
em

m
an

uf
ac

tu
re

r 
: M

an
uf

ac
tu

re
r

se
ria

lN
um

be
r 

: S
er

ia
lN

um
be

r

D
ev

ic
e 

It
em

1

ha
s

*
*

1
ha

s

1

1

is
P

re
se

nt
: B

oo
le

an

C
at

eg
o

ry
O

b
se

rv
at

io
n

va
lu

e 
: N

um
be

r

M
ea

su
re

m
en

t

tim
e 

: T
im

eS
ta

m
p

qu
al

ity
 : 

D
at

aQ
ua

lif
ie

r

<<
ab

st
ra

ct
>>

O
b

se
rv

at
io

n  
  

O
b

se
rv

at
io

n
s 

&
 M

o
n

it
o

ri
n

g
 R

ep
o

rt
s

tim
e 

: T
im

eS
ta

m
p

M
o

n
it

o
ri

n
g

R
ep

o
rt

**

1

1
ha

s

*

*

ha
s

<<
ab

st
ra

ct
>>

C
u

st
o

m
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

cr
ea

to
r 

:  
C

re
at

or

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

su
bs

cr
ib

er
 : 

S
ub

sc
rib

er

P
ri

va
te

 C
ri

te
ri

a

  

  

*

ha
s

**
is

 r
el

at
ed

 to
tim

e 
: T

im
eC

on
di

tio
n

D
ev

ic
e 

It
em

 T
im

e
T

ri
g

g
er

 C
o

n
d

it
io

n

is
T

ru
e 

: B
oo

le
an

D
ev

ic
e 

It
em

 E
ve

n
t

T
ri

g
g

er
 C

o
n

d
it

io
n

  
  

gr
ou

ps

*

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

T
ri

g
g

er
 C

o
n

d
it

io
n

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

D
at

as
et*

ha
s

ha
s

* 1

* 1

is
 r

el
at

ed
 to

D
ev

ic
e 

It
em

S
ta

tu
s 

M
o

n
it

o
ri

n
g

C
ri

te
ri

a
  

<<
ab

st
ra

ct
>>

C
u

st
o

m
T

ri
g

g
er

 C
o

n
d

it
io

n
  

C
us

to
m

D
at

as
et

  

D
ev

ic
e 

It
em

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a
ta

ke
n 

at

*
1

ch
ar

ac
te

riz
ed

 b
y

1

*

ha
s

1

*

ha
s

**

sa
m

pl
eR

an
ge

 : 
R

an
ge

ph
ys

ic
al

R
an

ge
 : 

R
an

ge
m

ap
pi

ng
 : 

M
ap

pi
ng

P
ol

ic
y

m
ea

su
re

m
en

tU
ni

ts
 : 

U
ni

t

M
ea

su
re

m
en

t T
yp

e

 

Figure 65 ODAS Conceptual Model 



 

 84

ph
ys

ic
al

N
or

m
al

R
an

ge
 : 

R
an

ge
ph

en
om

en
on

T
yp

eU
ni

ts
 : 

U
ni

t

P
h

en
o

m
en

o
n

 T
yp

e

qu
al

ita
tiv

eR
an

ge
 : 

R
an

ge

P
h

en
o

m
en

o
n

D
ev

ic
e 

M
o

d
el

s

  
  

C
o

m
p

le
x

D
ev

ic
e 

M
o

d
el

S
in

g
le

D
ev

ic
e 

M
o

d
el

de
si

gn
er

 : 
D

es
ig

ne
r

m
od

el
ID

 : 
M

od
el

ID

D
ev

ic
e 

M
o

d
el

1
ha

s

1.
.*

1
co

m
po

se
d 

of

*
ha

s
1

ch
ild

pa
re

nt

ty
pe

 : 
M

ea
su

re
m

en
tT

yp
e

M
ea

su
re

m
en

t 
P

o
in

t

ha
s

* 1

fu
nc

tio
n 

: F
un

ct
io

n

F
u

n
ct

io
n

al
D

ev
ic

e 
M

o
d

el

*

  

M
ea

su
re

m
en

t
A

d
d

re
ss

D
ev

ic
e 

It
em

s   
  

C
o

m
p

le
x

D
ev

ic
e 

It
em

S
in

g
le

D
ev

ic
e 

 It
em

m
an

uf
ac

tu
re

r 
: M

an
uf

ac
tu

re
r

se
ria

lN
um

be
r 

: S
er

ia
lN

um
be

r

D
ev

ic
e 

It
em

1

1
ch

ar
ac

te
riz

ed
 b

y
*

ha
s *

0.
.1

1.
.*

co
m

po
se

d 
of

1

pa
re

nt

ch
ild

in
st

al
le

d 
in

D
ev

ic
e

A
d

d
re

ss
1

*

is
 in

st
al

le
d 

in

1 * *

1

is
P

re
se

nt
: B

oo
le

an

C
at

eg
o

ry
O

b
se

rv
at

io
n

va
lu

e 
: N

um
be

r

M
ea

su
re

m
en

t

tim
e 

: T
im

eS
ta

m
p

qu
al

ity
 : 

D
at

aQ
ua

lif
ie

r

<<
ab

st
ra

ct
>>

O
b

se
rv

at
io

n  
  

O
b

se
rv

at
io

n
s 

&
 M

o
n

it
o

ri
n

g
 R

ep
o

rt
s

tim
e 

: T
im

eS
ta

m
p

M
o

n
ito

ri
n

g
R

ep
o

rt

**

1

1
ha

s

*

*

ha
s

cr
ea

to
r 

:  
C

re
at

or

<<
ab

st
ra

ct
>>

D
ev

ic
e 

It
em

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

su
bs

cr
ib

er
 : 

S
ub

sc
rib

er

P
ri

va
te

 C
ri

te
ri

a

  

P
re

d
ef

in
ed

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a
  

*

1
de

fin
ed

 b
y

*ha
s

D
ev

ic
e 

It
em

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

D
ev

ic
e 

M
o

d
el

 M
o

n
it

o
ri

n
g

 C
ri

te
ri

a <<
ab

st
ra

ct
>>

D
ev

ic
e 

M
o

d
el

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a

ha
s

*

*

tim
e 

: T
im

eC
on

di
tio

n

D
ev

ic
e 

M
o

d
el

 T
im

e
T

ri
g

g
er

 C
o

n
d

it
io

n

  gr
ou

ps

D
ev

ic
e 

M
o

d
el

T
ri

g
g

er
 C

o
n

d
it

io
n

D
ev

ic
e 

M
o

d
el

D
at

as
et

*

ha
s

ha
s

* 1

* 1

D
ev

ic
e 

M
o

d
el

S
ta

tu
s

M
o

n
it

o
ri

n
g

 C
ri

te
ri

a
  

ta
ke

n 
at

*

1
ch

ar
ac

te
riz

ed
 b

y

*

1 1 *

*

ha
s

ha
s

 

Figure 66 RoMain Conceptual Model 

 



 

 85

Comparison Summary 

In this section we summarize the information that we draw out from the 
comparisons. The results of these comparisons are shown in Table 2 and Table 3. 

(i) Lack of Models. Some systems (such as OPC, IVI and ODAS) do not 
support the notion of model. This implies that many of the concepts 
regarding models (Device Model from the Device Model package; all the 
concepts defined in the Device Model Monitoring Criteria package; 
Predefined Monitoring Criteria, Predefined Trigger Condition and 
Predefined Dataset from the Device Item Monitoring Criteria package) do 
not exist either. This means that information (such as instances of 
Measurement Point, Measurement Type, Phenomenon Type and 
Phenomenon) that is common to all the instances of Device Item associated 
with the same instance of Device Model must be repeated for each instance. 
This duplication of knowledge-level data is rather inefficient and error 
prone. As there is not the notion of model, the Discover Model 
functionality has no sense, as there is no model to discover. 

(ii) Lack of Composition. Some systems (such as ODAS) do not support the 
notion of composition. This means, they do not deal with complex devices 
composed of other (single or complex) devices, neither in the domain of 
models nor in the domain of device items. They only deal with single 
devices. This is typically the case of a DAS that acquires data from a single 
device item. Even if there are no complex devices, we cannot state that 
these systems do not support the Discover Composition functionality, in 
fact they do because they can provide the composition of devices, even if 
this composition is just one single device. 

(iii) Plug&Play. Some systems (such as OMG’s DAIS RFP and IVI) support 
the notion of Plug&Play. In these systems it is possible to define 
predefined, or custom, Composition Monitoring Criteria. Then, a client can 
subscribe to receive notifications when changes on the composition of 
certain devices happen. Systems that do not support the notion of 
Plug&Play (such as OPC, ODAS and RoMain) do not have concepts 
regarding Composition Monitoring Criteria (Device Model Composition 
Monitoring Criteria from the Device Model Monitoring Criteria package 
and Device Item Composition Monitoring Criteria from the Device Item 
Monitoring Criteria package). 

(iv) Predefined versus Custom Monitoring Criteria. Some systems (such as 
OMG’s DAIS RFP, OPC, IVI and ODAS) allow client applications to 
define custom datasets, trigger conditions or monitoring criteria specific to 
certain device items. Other systems (such as RoMain) only allow clients 
working with predefined datasets, trigger conditions and monitoring 
criteria. Systems that do not allow clients to define custom datasets, 
trigger conditions or monitoring criteria specific to certain device items do 
not support the Administer Dataset, Administer Trigger Condition and 
Administer Monitoring Criteria functionalities.  

(v) Public Monitoring Criteria versus Private Monitoring Criteria. Some 
systems (such as IVI) allow clients to define only public monitoring 
criteria. Other systems (such as ODAS and RoMain) allow clients to 
define only private monitoring criteria. Other systems (such as OMG’s 
DAIS RFP and OPC) allow clients to define both monitoring criteria. 



 

 86

Table 2 Generic DAS Concept Comparison 

Generic DAS Concept 
OMG’s 
DAIS 
RFP 

OPC 
(v2) IVI ODAS RoMain 

Device Models      
Single Device Model P O P O P 
Complex Device Model P O P O P 
Functional Device Model P O P O P 
Measurement Point P O P P P 
Measurement Type P P P P P 
Phenomenon Type P P P P P 
Phenomenon P P P P P 
Device Items      
Single Device Item P P P P P 
Complex Device Item P P P O P 
Device Address P P P O P 
Measurement Address P P P P P 
Device Model Monitoring Criteria      
Device Model Composition Monitoring Criteria P O P O O 
Device Model Event Monitoring Criteria P O P O O 
Device Model Status Monitoring Criteria P O P O P 
Device Model Time Trigger Condition P O P O P 
Device Model Event Trigger Condition P O P O O 
Device Model Dataset P O P O P 
Device Item Monitoring Criteria      
Public Monitoring Criteria P P P O O 
Private Monitoring Criteria P P O P P 
Device Item Composition Monitoring Criteria P O P O O 
Device Item Event Monitoring Criteria P P P O O 
Device Item Status Monitoring Criteria P P P P O 
Predefined Monitoring Criteria P O P O P 
Device Item Time Trigger Condition P P P O O 
Device Item Event Trigger Condition P P P P O 
Predefined Trigger Condition P O P O O 
Custom Dataset P P P P O 
Predefined Dataset P O P O O 
Observations & Monitoring Reports      
Measurement P P P P P 
Category Observation P P P P P 
Monitoring Report P P P P P 

 



 

 87

 

Table 3 Generic DAS Functionality Comparison 

Generic DAS Functionality 
OMG’s 
DAIS 
RFP 

OPC 
(v2) IVI ODAS RoMain 

Discover      
Discover Composition P P P P P 
Discover Model P O P O P 
Discover Datasets P P P P P 
Discover Trigger Conditions P P P P P 
Discover Monitoring Criteria P P P P P 
Define Data Access      
Administer Dataset P P P P O 
Administer Trigger Condition P P P P O 
Administer Monitoring Criteria P P P P O 
Administer Monitoring Criteria Subscription P P P P P 
Access Data      
Access Observations P P P P P 
Access Monitoring Reports P P P P P 
Notify Data Availability      
Notify Data Availability P P P P O 
Upload Data      
Upload Data P P P P P 

 

8.4 Design of a New System 

A generic system specification can be applied in the analysis phase of a 
particular system to better understand the problem and to easier specify the best 
solution, depending on the specific requirements of a particular system. A generic 
system specification can also be used as a starting point for the design of a particular 
system. As a result, the use of a generic system specification will save time and 
reduce the costs of the development of a particular system. In order to validate this 
hypothesis we developed a DAS for railway equipment based on our generic DAS 
specification. In this section we summarize the major results and conclusions from 
the development of this DAS. 

8.4.1 Development of a DAS for Railway Equipment 

The main objective of this development was to validate our generic DAS 
specification by means of an example. The development of this DAS also gives 
developers a case study on the development of a particular system based on a generic 
system specification. Additionally, as part of the development of the DAS for railway 
equipment, we implemented a generic library, independent from the context of 
railway equipment, that can be reused and/or extended for the implementation of 
another DAS based on our generic DAS specification. 



 

 88

ph
ys

ic
al

N
or

m
al

R
an

ge
 : 

R
an

ge
ph

en
om

en
on

T
yp

eU
ni

ts
 : 

U
ni

t

P
h

en
o

m
en

o
n

 T
yp

e

qu
al

ita
tiv

eR
an

ge
 : 

R
an

ge

P
h

en
o

m
en

o
n

R
ai

lw
ay

 E
q

u
ip

m
en

t 
M

o
d

el
s

  fu
nc

tio
n 

: F
un

ct
io

n

T
ra

in
 M

o
d

el

de
si

gn
er

 : 
D

es
ig

ne
r

m
od

el
ID

 : 
M

od
el

ID

R
ai

lw
ay

 E
q

u
ip

m
en

t
M

o
d

el

1
ha

s

1.
.*

1

co
m

po
se

d 
of *

ha
s

1

ch
ild

pa
re

nt

ty
pe

 : 
M

ea
su

re
m

en
tT

yp
e

M
ea

su
re

m
en

t 
P

o
in

t

ha
s

* 1

fu
nc

tio
n 

: F
un

ct
io

n

V
eh

ic
le

 M
o

d
el

*  

M
ea

su
re

m
en

t
A

d
d

re
ss

R
ai

lw
ay

 E
q

u
ip

m
en

t 
It

em
s

  E
q

u
ip

m
en

t I
te

m

m
an

uf
ac

tu
re

r 
: M

an
uf

ac
tu

re
r

se
ria

lN
um

be
r 

: S
er

ia
lN

um
be

r

R
ai

lw
ay

 E
q

u
ip

m
en

t 
It

em

11

ch
ar

ac
te

riz
ed

 b
y

*

ha
s

*

*

1

in
st

al
le

d 
in

1

de
fin

ed
 b

y

*

1

*

is
P

re
se

nt
: B

oo
le

an

C
at

eg
o

ry
O

b
se

rv
at

io
n

va
lu

e 
: N

um
be

r

M
ea

su
re

m
en

t

tim
e 

: T
im

eS
ta

m
p

qu
al

ity
 : 

D
at

aQ
ua

lif
ie

r

<<
ab

st
ra

ct
>>

O
b

se
rv

at
io

n  
  

O
b

se
rv

at
io

n
s 

&
 M

o
n

it
o

ri
n

g
 R

ep
o

rt
s

tim
e 

: T
im

eS
ta

m
p

M
o

n
it

o
ri

n
g

R
ep

o
rt

**

1

1
ha

s

*

*

ha
s

cr
ea

to
r 

:  
C

re
at

or

<<
ab

st
ra

ct
>>

T
ra

in
 It

em
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

su
bs

cr
ib

er
s 

: S
ub

sc
rib

er
Li

st

T
ra

in
 It

em
P

u
b

lic
 C

ri
te

ri
a

su
bs

cr
ib

er
 : 

S
ub

sc
rib

er

T
ra

in
 It

em
P

ri
va

te
 C

ri
te

ri
a

  
  

*

ha
s

* *
re

la
te

d 
to

tim
e 

: T
im

eC
on

di
tio

n

T
ra

in
 It

em
 T

im
e

T
ri

g
g

er
 C

o
n

d
it

io
n

is
T

ru
e 

: B
oo

le
an

T
ra

in
 It

em
 E

ve
n

t
T

ri
g

g
er

 C
o

n
d

it
io

n

  
  

gr
ou

ps

*

T
ra

in
 It

em
 T

ri
g

g
er

C
o

n
d

it
io

n

<<
ab

st
ra

ct
>>

T
ra

in
 It

em
 D

at
as

et

*

ha
s

ha
s

* 1

* 1

re
la

te
d 

to

T
ra

in
 It

em
 E

ve
n

t
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

T
ra

in
 It

em
 S

ta
tu

s
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

    

T
ra

in
 It

em
C

u
st

o
m

 D
at

as
et

T
ra

in
 It

em
P

re
d

ef
in

ed
 D

at
as

et

    
*

1

de
fin

ed
 b

y

R
ai

lw
ay

 E
q

u
ip

m
en

t 
It

em
 M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

R
ai

lw
ay

 E
q

u
ip

m
en

t 
M

o
d

el
M

o
n

it
o

ri
n

g
 C

ri
te

ri
a

ha
s

gr
ou

ps

T
ra

in
 M

o
d

el
 D

at
as

et

*

ta
ke

n 
at

*
1

ch
ar

ac
te

riz
ed

 b
y

1

*

ha
s1

*

ha
s

**

1

*

1.
.*

1
co

m
po

se
d 

of
ch

ild

pa
re

nt

fu
nc

tio
n 

: F
un

ct
io

n

E
q

u
ip

m
en

t 
M

o
d

el

  

  

V
eh

ic
le

 It
em

0.
.1 1.

.*
co

m
po

se
d 

of
pa

re
nt

ch
ild

*

  

T
ra

in
  I

te
m

0.
.1

1.
.*

co
m

po
se

d 
of

pa
re

nt

ch
ild

T
ra

in
 A

d
d

re
ss

* V
eh

ic
le

 A
d

d
re

ss

in
st

al
le

d 
in

1

 

Figure 67 Railway Equipment DAS Conceptual Model



 

 89

Although our generic DAS specification was partially obtained from the 
analysis of the RoMain system, this system is not compliant with the generic DAS 
specification. This is reasonable as our generic DAS specification comes also from 
the analysis of many DAS standards, the OMG’s DAIS RFP, and some software 
patterns. The objective of the development of a DAS for railway equipment was to re-
design the RoMain system by using our generic DAS specification. We considered 
the re-design of the RoMain system as a good and fast way – as we already have 
some knowledge of the domain of railway equipment - to obtain a first validation of 
our generic DAS specification. 

Railway Equipment DAS Conceptual Model 

We analyzed the generic DAS conceptual model to obtain a DAS conceptual 
model specialized in the context of railway equipment. This railway equipment DAS 
conceptual model is shown in Figure 67. We analyzed the generic concepts beginning 
with the packages with fewer dependencies continuing through the packages that 
have more dependencies: 

1. We analyzed the Device Models package in the context of railway equipment. 
The result of this analysis was a partial conceptual model of the system that 
consists of a three-level hierarchy of device models: at the top level there are 
train models that are composed of vehicle models that are composed of 
equipment models. Railway Equipment Model is a specialization of Device 
Model; Train Model and Vehicle Model are specializations of Complex Device 
Model; and Equipment Model is a specialization of Single Device Model and 
Functional Device Model. 

2. We analyzed the Device Items package in the context of railway equipment. 
From this analysis we included, in the conceptual model of the system, a three-
level hierarchy of items: at the top level there are train items that are composed 
of vehicle items that are composed of equipment items, each of these items 
being characterized by its corresponding train, vehicle or equipment model. 
Railway Equipment Item is a specialization of Device Item; Train Item and 
Vehicle Item are specializations of Complex Device Item; and Equipment Item 
is a specialization of Single Device Item. 

3. We analyzed the Device Model Monitoring Criteria package in the context of 
railway equipment. One of the requirements of the system was to be able to use 
datasets predefined in a model of train to record status monitoring reports of 
particular train items. Therefore, we included the concept of Train Model 
Dataset, which is a specialization of Model Dataset that groups measurement 
points corresponding to a train model or to one of its vehicle models or 
equipment models. 

4. We analyzed the Device Item Monitoring Criteria package in the context of 
railway equipment. The requirements of the system were: (i) to enable the 
recording of status monitoring reports and event monitoring reports 
corresponding to a train item, such reports being triggered either by a time 
trigger condition or by an event trigger condition; (ii) to enable the definition 
of both private and public monitoring criteria; and (iii) to enable the definition 
of custom and predefined train datasets. Therefore, we introduced the concepts 
of: Train Item Monitoring Criteria, Train Item Public Monitoring Criteria, 
Train Item Private Monitoring Criteria, Train Item Status Monitoring Criteria 
and Train Item Event Monitoring Criteria, which are specializations of Device 



 

 90

Item Monitoring Criteria, Public Monitoring Criteria, Private Monitoring 
Criteria, Device Item Status Monitoring Criteria and Device Item Event 
Monitoring Criteria, respectively; Train Item Trigger Condition, Train Item 
Time Trigger Condition and Train Item Event Trigger Condition, which are 
specializations of Device Item Trigger Condition, Device Item Time Trigger 
Condition and Device Item Event Trigger Condition, respectively; and Train 
Item Dataset, Train Custom Dataset and Train Predefined Dataset, which are 
specializations of Device Item Dataset, Custom Dataset and Predefined 
Dataset, respectively. 

5. Finally, we analyzed the Observations and Monitoring Reports package in the 
context of railway equipment. The requirements of the system were that both 
measurements and category observations could be recorded. Additionally, 
status and event monitoring reports could also be recorded. Therefore, we 
introduced the concepts of Observation, Measurement, Category Observation 
and Monitoring Report to the conceptual model of the system. 

 

Railway Equipment DAS Use Case Model 

Once we had the railway equipment DAS conceptual model, we analyzed the 
generic use case model and generic elementary roles taking into account that the DAS 
system should enable: (i) the discovery of train, vehicle and equipment metadata by 
supervisors of trains; (ii) the definition, by administrators of the system, of pull and 
push based access to train data by supervisors of trains; (iii) the access of train data by 
supervisors of trains; and (iv) the upload of data to supervisors that are subscribed to 
certain monitoring criteria. Additionally, an architectural requirement of the system 
was to implement the DAS system using a three-tier architecture composed of a Web 
Interface to users of the system and a Ground Station in the middle tier responsible 
for the wireless communication with many Train Gateways, each of them on-board a 
particular train. In Figure 67, we present the resulting high-level system use cases. 

Discover

Define
Data

Access

Access
Data

Upload
Data

DAS
Ground Station

Supervisor DAS
Train Gateway

DAS
Web Interface

Administrator

 

Figure 68 Railway Equipment DAS System Use Case Model 

We designed the system iteratively starting from the use cases with fewer 
dependencies to the use cases that have more dependencies: first, the Discover use 
case; second, the Define Data Access use case; third, the Access Data use case; and 
finally, the Upload Data use case. For each of these use cases we analyzed the 
elementary roles that take part in the use case and we designed components that 
implement such elementary roles. Due to the architecture of the system, a role may 



 

 91

eventually be implemented as a combination of many components distributed in the 
three-tier architecture that intercommunicate to fulfill the role functionality. In any 
case, the elementary roles made it easier the identification and design of the required 
components. 

Railway Equipment DAS Summary 

The generic DAS specifications had a significant role in the design of the 
DAS railway equipment. We used the use case model to clearly specify the 
functionalities that the system should implement. We used the elementary roles to 
specify some of the components of the system. We used the conceptual model to 
better organize the data that will be used by the components of the system. The 
conceptual model also made it easier the design of some of these components of the 
system. As a result, we had an implementation where a significant amount of the 
designed classes represent concepts specified in the conceptual model and elementary 
roles specified in the use case model of the generic DAS specification. The 
development of this particular DAS demonstrated, by means of an industrial example, 
the usefulness of a generic system specification for the development of a particular 
system. 

8.5 Summary 

In this chapter we explained the applications of the external specification of a 
generic system. We showed that the most direct application of a generic system 
specification is for the writing of a RFP for a new standard. Another potential 
application of a generic system specification is for the evaluation of existing systems, 
standards or RFP responses. As an example, we showed a comparison of the OMG’s 
DAIS RFP versus the most important DAS standards and the RoMain application. 
Finally, a generic system specification can be applied in the development of a 
particular system. This will significantly reduce the development costs of a specific 
system. We illustrated this by means of an example of development of a DAS for 
railway equipment based on our generic DAS specification. The development of this 
particular DAS for railway equipment validates the usefulness of our generic DAS 
specification for the development of particular DASs. Additionally, the development 
of this particular DAS for railway equipment provides developers with a case study 
on the development of particular systems based on generic system specifications. 



 

 92

 



 

 93

9. Conclusion 

9.1 Introduction 

In this chapter we summarize the major findings and contributions from the 
actual work. We also point out some future work in this field. 

9.2 Major Contributions 

The major contributions of this thesis are: 

(i) We provide an external specification of a generic architecture for DASs. 
This generic DAS specification enables the comparison of existing DAS 
products and standards. Additionally, it provides the DAS developers that 
aim to develop a specific DAS with a starting point for the design of a 
specific DAS. 

(ii) We propose patterns and techniques to facilitate the development, based on 
conceptual and role-based use case modeling, of external specifications of 
generic systems. A generic system specification is independent of design 
choices and it can be applied to the development of many similar systems 
giving substantial benefits saving time and reducing the costs of the 
development of a specific system. 

(iii) We provide a case study on the development, based on conceptual and 
role-based use case modeling, of external specifications of generic systems. 
This case study demonstrates, by means of an industrial example, the 
advantages of conceptual and role-based use case modeling for the 
development of external specifications of generic systems. 

 
We also contributed to the TCN standard as part of our work for the ROSIN 

European project. 

9.3 Major Findings 

We classify the findings into: findings regarding the conceptual model, 
findings regarding the role-based use case model, and findings regarding the 
development process. 

9.3.1 Conceptual Model 

We described the static concepts of the external specification of a generic 
system by means of a conceptual model. We found that conceptual modeling is a 



 

 94

useful technique to represent the static concepts that make up a system. The major 
contributions regarding the conceptual model are: 

(i) We explain how to represent and identify device models and device items. 
We represent a real world device as an instance of Device Item. We 
represent the type of a device, commonly known as its model, as an 
instance of Device Model. An instance of Device Model characterizes a set 
of instances of Device Item. An instance of Device Item is always 
characterized by an instance of Device Model. A GUID is assigned to each 
device model and device item. 

(ii) We propose a new pattern: the “Model Composite” pattern. This pattern is 
used to represent part-whole hierarchies of device models. This pattern is 
our own variation of the well-known Composite pattern. 

(iii) We describe how to enable a Plug&Play functionality in a system. We 
enable this functionality by means of the definition of composition 
monitoring criteria and the recording of composition monitoring reports. 

(iv) We define the mappings between sampled and physical values. We define 
concepts that allow the representation of complex mappings of sampled 
values into physical values. 

 

9.3.2 Role-based use case Model 

We used use cases to describe the functionalities of a system. We found that 
use case modeling is a useful technique to represent the dynamic behavior of a 
system. The major contributions regarding the use case model are: 

(i) We propose to represent the system itself in the use cases. In this way it is 
easier to define the role of the system on each use case and to find out the 
interfaces that the system has to provide to other participants in the use 
case in order to carry out this use case. 

(ii) We propose the use of elementary roles rather than actors in the use cases. 
This enables the specification of a generic system independently of 
architectural choices, requirements, QoS, and/or available technologies 
specific for a particular system. The resulting specification can, then, be 
reused in different implementations of similar systems by mapping roles 
into actors according to the requirements of a specific system. 

(iii) We propose techniques to model the system behavior. An external 
specification of a generic system must allow the specification of different 
system behaviors depending on specific execution constraints and types of 
control flow. We give some techniques to specify the interactions across 
use cases and the scenarios of use cases in such a way that the specification 
enables the implementation of systems with different execution constraints 
and types of control flow. 

(iv) We present a useful pattern: the “Administrator-Manager” pattern. This 
pattern concerns the administration of a particular entity X. 

 

9.3.3 Development Process 

In this thesis we propose patterns and techniques to develop, based on 



 

 95

conceptual and role-based use case modeling, external specifications of generic 
systems. The external specification of a generic system is obtained from the analysis 
of multiple systems and/or standards. This specification can be applied to the 
development of many particular systems. We strongly believe that this development 
process provides substantial benefits by saving time and reducing the costs of the 
development of a specific system. As a generic system specification can be applied to 
the development of many particular systems, the number of particular systems 
developed multiplies the benefits. 

The drawback of this development process is the complexity of the design of 
an external specification of a generic system. This development process provides real 
benefits when designers have to develop many similar systems. 

9.4 Future Work 

In this thesis it was not possible to quantify the savings on the development 
costs of systems by the application of an external specification of a generic system. 
We would have had to apply this method to the development of many systems in 
various domains. The analysis of multiple systems and standards requires much time 
and effort, especially to non-experts on the domain. Additionally, it is rather difficult 
to measure and/or evaluate the savings. For these reasons, we considered the 
quantification of the savings as a future work out of this thesis. To quantify the 
savings on the development costs of systems by the application of our development 
process researchers would need to: (i) develop a method to measure objectively the 
savings; (ii) apply the same development process to several systems in various 
domains; and (iii) measure the savings and interpret the results. 



 

 96



 

 97

Appendix A RoMain Java vs. RoMain 
XML 

In this appendix we present and discuss a comparison of the RoMain Java 
prototype versus the RoMain XML prototype, under the following criteria: 

• Communication Performance 
• Client Interface 
• Scalability 
• Security 
• Reliability 
• Availability 
• Evolvability 

 

Communication Performance 

In both prototypes, in order to compare the communication performance, we 
measured the response time to obtain, for each equipment, the current values of all the 
properties. A property of an equipment is an attribute that gives some information 
about it and its current state. In both prototypes the data source is a train network 
installed in a laboratory at the CAF facilities. The Ground Station and the clients are 
installed in the same machine at ICA. This is because we wanted to compare the 
communication performance of Java RMI versus HTTP in a single client-server 
communication. The overhead of the three-tier communication of the RoMain XML 
prototype is not taken into account. The real Internet is used as communication 
network. We used Java 1.1.7 to develop the Java RMI server and the performance 
clients for this evaluation. These clients use the pull mechanism to obtain the current 
values of the properties. 

To obtain more reliable results we did one hundred essays of each 
measurement. We represent the average and standard deviation of the results into a 
chart diagram. The X-axis represents the different equipment, with the number of 
properties in brakes. The Y-axis represents the time in milliseconds. A column bar 
represents the average time in milliseconds to obtain all the properties of an 
equipment. A line appended to a column represents the standard deviation of the 
measurements. 

The first evaluation consisted in measuring the time to obtain, for each 
equipment, one update of all its properties. The results of this evaluation are shown in 



 

 98

Figure 69a. These results demonstrated that, with one update of the properties, the 
performance of Java RMI is generally much better than the performance of HTTP. 
Only in the case of an equipment with few properties (that is the case of 
Euskotren) the performance of HTTP is slightly better than the performance of 
Java RMI. The more properties an equipment has, the longer the difference is 
between the performances of Java RMI against HTTP. In the case of an equipment 
with a large quantity of properties (this is the case of T.MMI and M.MMI) the 
performance of Java RMI is substantially higher than the performance of HTTP. 
Therefore, we can conclude that the RoMain Java prototype demonstrated a better 
communication performance than the RoMain XML prototype. 

In the RoMain XML prototype, a client application has to perform a new 
request for update the properties of an equipment. Therefore, we presume that the 
cost of a second and subsequent updates will be the same as the cost of the first 
update. However, in the RoMain Java prototype, in the first update a client 
application initially obtains a local reference (a proxy object) to the remote object, 
and then it invokes a remote call to this object to obtain all the properties of an 
equipment. In successive updates of the properties, it no longer needs to obtain the 
proxy object. It has only to invoke a remote call to obtain all the properties again. 
Thus, in Java RMI the cost of a second and subsequent updates should be lower than 
the cost of the first update. In order to corroborate this we performed a second 
evaluation. This evaluation consisted in measuring the time to obtain, for each 
equipment, ten updates of all its properties. The results of this evaluation are shown in 
Figure 69b. 

These results demonstrated that with ten updates of the properties, the 
performance of Java RMI is always much better than the performance of HTTP. Even 
more, the differences between the performance of Java RMI and HTTP have 
increased substantially. This is because the time to obtain ten updates of all properties 
in the HTTP based prototype is, on average, about ten times longer than the time to 
obtain the first update. This comparison is shown in Figure 70a. However, in the Java 
RMI based prototype, the time to obtain ten updates of all properties is, on average, 
less than four times longer than the time to obtain the first update. This comparison is 
shown in Figure 70b. The reason for these differences between Java RMI and HTTP 
is that in Java RMI the cost of successive updates is lower than the cost of the first 
update. However, in HTTP the time to obtain “n” updates corresponds approximately 
to “n” times the time to obtain the first update. 

Therefore, we can state that the difference between the performances of Java 
RMI against HTTP will increase as we increase the numbers of updates. In 
conclusion, Java RMI will perform even better than HTTP when numerous updates 
are required. 

 



 

 99

 

0

10,000

20,000

30,000

Eus
ko

Tre
n (

0)

T. 
Veh

. (6
)

T. 
Doo

r C
on

tr. 
(11

)

T. 
Drive

r C
ab

 (2
3)

T. 
Hea

ter
 Sys

. (1
1)

T. 
Lig

ht 
Sys

. (9
)

T. 
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sys

. (1
4)

M. B
rak

e S
ys.

 (1
1)

M. D
oo

r C
on

tr. 
(11

)

M. D
rive

r C
ab

 (2
3)

M. H
igh

 Vol. 
Sys

. (1
2)

M. L
igh

t S
ys

. (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sy

s. (
10

)

M. S
tat

ic C
on

v. 
(10

)

Eq
uip

men
t

Time (ms)
RMI
HTTP

 

(a) One Update 

0

100,000

200,000

300,000

Eu
sko

Tre
n (

0)

T. 
Veh

. (6
)

T. 
Doo

r C
on

tr. 
(11

)

T. 
Drive

r C
ab

 (2
3)

T. 
Hea

ter
 Sys

. (1
1)

T. 
Lig

ht 
Sys

. (9
)

T. 
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sys

. (1
4)

M. B
rak

e S
ys.

 (1
1)

M. D
oo

r C
on

tr. 
(11

)

M. D
rive

r C
ab

 (2
3)

M. H
igh

 Vol. 
Sys.

 (1
2)

M. L
igh

t S
ys

. (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sys.

 (1
0)

M. S
tat

ic C
on

v. 
(10

)

Eq
uip

men
t

Time (ms)
RMI
HTTP

 

(b) Ten Updates 

Figure 69 Communication Performance Comparison 



 

 100

0

100,000

200,000

300,000

Eus
ko

Tre
n (

0)

T. 
Veh

. (6
)

T. 
Doo

r C
on

tr. 
(11

)

T. 
Drive

r C
ab

 (2
3)

T. 
Hea

ter
 Sys

. (1
1)

T. 
Lig

ht 
Sys

. (9
)

T. 
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sys

. (1
4)

M. B
rak

e S
ys.

 (1
1)

M. D
oo

r C
on

tr. 
(11

)

M. D
riv

er 
Cab

 (2
3)

M. H
igh

 Vol. 
Sys

. (1
2)

M. L
igh

t S
ys

. (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sys.

 (1
0)

M. S
tat

ic C
on

v. 
(10

)

Eq
uip

men
t

Time (ms)
1 Update
10 Updates

 

(a) RoMain XML 

0

1,000

2,000

3,000

4,000

Eus
ko

Tre
n (

0)

T. 
Veh

. (6
)

T. 
Doo

r C
on

tr. 
(11

)

T. 
Drive

r C
ab

 (2
3)

T. 
Hea

ter
 Sys

. (1
1)

T. 
Lig

ht 
Sys

. (9
)

T. 
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sys

. (1
4)

M. B
rak

e S
ys

. (1
1)

M. D
oo

r C
on

tr. 
(11

)

M. D
rive

r C
ab

 (2
3)

M. H
igh

 Vol. 
Sys

. (1
2)

M. L
igh

t S
ys.

 (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sy

s. (
10

)

M. S
tat

ic C
on

v. 
(10

)

Eq
uip

men
t

Time (ms)
1 Update
10 Updates

 

(b) RoMain Java 

Figure 70 One Update vs. Ten Updates Comparison 



 

 101

Client Interface 

In both prototypes, clients use Internet browsers to access the current state of 
the properties of a train. But the mechanisms to present this data to clients are very 
different. 

In the RoMain Java prototype, the client interface is implemented as a Java 
applet. Java applets run on many standard browsers (such as Netscape Communicator 
and Microsoft Internet Explorer) without any pre-installation. We made use of a 
graphical library, called Swing, to present graphically the current state of the 
properties of a train. This library is an extension to the standard Java API, and it may 
not be locally installed with a specific version of a browser. In this case a client 
would need to pre-install locally this library before running the Java applet. Java 
applets and Swing offer a very powerful set of graphical components to design 
graphical interfaces. In order to save wireless communication bandwidth, the Java 
applet is downloaded from a Ground Station and not from the Train Gateway. Once 
the Java applet is running on the client browser, the client-server communication is 
established directly between the client Java applet and the Train Gateway. A security 
restriction of Java applets in Java 1.1 allows a Java applet to establish communication 
only with the server it was downloaded from. To overcome this problem we used 
special classes that allow us to give special privileges (such as the communication 
with any server) to Java applets. The problem is that the classes we used are specific 
to the Netscape Communicator browser. Hence, the RoMain Java prototype only 
works using this browser. Similar mechanisms exist for Microsoft Internet Explorer 
but there is no cross browser compatibility. The problem of the security restriction of 
Java applets is currently solved with Java 1.2. This new version of Java provides a 
policy-based, easily configurable, fine-grained access control. 

In the RoMain XML prototype, we used XML direct browsing to generate on 
the client side the view with an XSL file. XSL has demonstrated to be a powerful 
means to combine and transform XML files into another XML file or another 
presentation format (such as HTML). XML/XSL direct browsing capabilities offer an 
elegant manner to generate an XML presentation directly on the client side. 
Unfortunately, direct browsing of XML files is currently only possible by using 
Microsoft IE5 as an Internet browser. A possible solution to enable clients with 
browsers without XML direct browsing capabilities is to transform, on the server 
side, the XML data into plain HTML. In this way the data could be displayed on any 
standard browser. 

Using Java applets instead of XML direct browsing for the client view brings 
significant benefits. A Java applet is an application running on a web browser. 
Therefore, a Java applet can make possible the implementation of complex features 
such as receiving notifications of server side updates of data. However, the cost of 
downloading a Java applet is always significantly higher than the cost of direct 
browsing of XML. Additionally, direct browsing of XML enables the efficient 
switching between different client views at the client side, without performing a new 
communication. An important advantage of Java applets is that they can be displayed 
on many browsers, whereas direct browsing of XML is only possible, today, using 
Microsoft IE5. 



 

 102

Scalability 

In both prototypes the bottleneck is obviously the Train Gateway, which is 
implemented as a Java RMI server. Java RMI servers can support efficiently a few 
hundred simultaneous clients, but they are not scalable for large systems. 
Additionally, the performance slows down as the number of clients increase. In the 
case of our application -the remote monitoring of railway equipment - we do not 
expect a large amount of simultaneous clients. Therefore, the limitation on the 
scalability of Java RMI servers does not cause any real problems. 

In the RoMain Java prototype, the communication is established directly 
between client Java applets and the Java RMI server. If scalability had been an 
important requirement of our system, we would have designed the application in a 
different way. One solution to designing scalable systems using Java RMI is to 
implement a middle tier with many application servers, each of them handling 
requests from many client Java applets. Each application server establishes a single 
Java RMI communication with the Java RMI server on the Train Gateway. A load-
balancing manager would be responsible for assigning, at runtime, an application 
server with enough resources to a client Java applet. In Java RMI there is not a pre-
defined load balancing manager, but it should not be too much complicated to 
develop such a system. 

In the RoMain XML prototype, it is easier to scale the system because it is 
implemented in a three-tier architecture. In the middle tier an application server 
handles requests from Internet clients and dispatches the requests to a data server 
installed on the same machine as the Java RMI server. If we need a very scalable 
system, we have only to deploy the data server on many machines. Then, a load-
balancing manager on the application server would decide, at run-time, which data 
server to contact to dispatch the request to the Java RMI server on the Train Gateway. 

Security 

In both prototypes standard mechanisms for authentication of users can be 
easily implemented. In the RoMain Java prototype, the authentication of the user can 
be done by a Java applet that is downloaded from the Ground Station before 
downloading the monitoring Java applets. Once a user has been authenticated, the 
user is allowed to download the monitoring Java applets. In the RoMain XML 
prototype, the authentication mechanisms can be implemented in the Ground Station 
as well, as part of the application server. 

Both Java RMI and HTTP support the Secure Socket Layer (SSL) for 
encryption of the information before transmitting it over the Internet. SSL provides 
simple but efficient mechanisms to encrypt the information in ways that render 
hacking difficult. Despite other more complex and efficient mechanisms for security, 
SSL has become the de-facto standard over the Internet for encryption of data. 

Reliability 

Both prototypes depend heavily on the network. Therefore, the reliability of 
such systems depends very much on the reliability of the network itself. In our 
experiment we used the Internet as a communication network. Due to the nature of 



 

 103

the Internet and its fluctuant bandwidth, this network cannot be considered reliable.  

Analyzing the results of the evaluations we noticed that the differences 
between the same measurements in the RoMain XML prototype are larger than the 
differences between the same measurements in the RoMain Java prototype. This is 
due to the fact that the RoMain XML prototype requires more use of the network than 
the RoMain Java prototype, to obtain the same information. Additionally, as the 
RoMain XML prototype is implemented in a three-tier architecture it makes even 
more use of the network than the RoMain Java prototype. Effectively, two HTTP 
calls are needed to obtain the current values of the properties of an equipment and 
send these values back to a client application. However, in the RoMain Java 
prototype an update of the properties of an equipment needs only a Java RMI remote 
call.  

In conclusion, we can state that the RoMain Java prototype is more reliable 
than the RoMain XML prototype. 

Availability 

The RoMain XML prototype proposes a three-tier architecture, whereas the 
RoMain Java prototype proposes a two-tier architecture. Therefore, in the RoMain 
XML prototype there are more agents that interact within the system than in the 
RoMain Java prototype. Effectively, in the RoMain XML prototype we have a data 
server that obtains data from a DAS in the Train Gateway, a document server in the 
Ground Station and a client running Microsoft IE5.  

In the RoMain Java prototype, there is only one Java RMI server that obtains 
data from a DAS in the Train Gateway and the Java RMI client running within a Java 
applet in the client’s browser. The probability of failure in the RoMain XML 
prototype is increased by the inclusion of a middle tier. 

In conclusion, the RoMain Java prototype has a greater availability than the 
RoMain XML prototype. 

Evolvability 

This is the point that makes the RoMain XML prototype really interesting. 
The RoMain XML prototype is based on XML. XML is easy to create, parse and 
transform. It is very simple to integrate data coming from different sources, using 
XSL style sheets. In the RoMain XML prototype the integration of data coming from 
different trains is easily done at the middle tier. The RoMain XML prototype offers 
an architecture that allows a high flexibility in evolution.  

The RoMain Java prototype provides a good example of client-server 
computing. However, it is more complicated to integrate data coming from different 
trains and to process the data of a train in different ways as is done in the current 
prototype - just to give some examples. 

In conclusion, the RoMain XML prototype brings a higher evolvability than 
the RoMain Java prototype. A solution to increase the evolvability of the RoMain 
Java prototype is to re-design this system with a three-tier architecture. As in the 
RoMain XML prototype, a middle tier would be responsible for establishing 



 

 104

connections and retrieving data from different trains. Furthermore, it would be 
responsible for integrating this data and sending it back to a client. 

Summary 

The RoMain Java prototype demonstrated a better communication 
performance than the RoMain XML prototype. The prototype based on Java RMI has 
the additional advantage that it can use server side push technology. This can 
optimize data communication by only transmitting data that has been changed on the 
monitored system. The main drawback of this prototype is that clients within 
firewalls cannot efficiently use it. It is possible to use Java RMI over firewalls by 
using the concept of HTTP tunneling, but the efficiency of the communication slows 
down considerably. The HTTP based prototype enables clients to use the prototype 
even within firewalls. However, the communication performance is low. Eventually, 
this performance can be improved by compressing the XML formatted data (using an 
algorithm as ZIP) on the server and by uncompressing it again on a client. The client 
interface offered by the RoMain Java prototype enables the implementation of 
complex features such as receiving notifications of server side updates of data. The 
client interface of the RoMain XML prototype is much more simple but it enables the 
switching between different client views at the client side. The scalability and 
reliability of both prototypes are acceptable for systems like RoMain. The reliability 
and availability of the RoMain Java prototype are higher than in the RoMain XML 
prototype. This is mainly due to the fact that the RoMain XML prototype proposes a 
three-tier architecture, whereas the RoMain Java prototype proposes a, much simpler, 
2-tier architecture. For the same reasons, the RoMain XML prototype is also much 
more flexible in evolution than the RoMain Java prototype. 

The conclusion of these experiments is that when a high performance remote 
monitoring system is required, Java and Java RMI are the right technologies. If 
flexibility in evolution is a strong requirement, a three-tier system, which is rather 
simple to develop using technologies such as HTTP and XML, may be a better 
choice. 



 

 105

Appendix B  DAS Role-based Use 
Cases 

In this appendix we present the role-based use cases corresponding to a data 
acquisition system: 

Error! No table of contents entries found. 



 

 106

 
Use Case Discover 
Roles Item Information Requester, Model Information Requester, Dataset 

Information Requester, Trigger Condition Information Requester, 
Monitoring Criteria Information Requester, Device Model Manager, 
Device Item Manager, Device Item Dataset Manager, Device Model 
Dataset Manager, DAS Broker 

Type Primary and essential. 
Description An Item Information Requester obtains, by request, the information 

specific to device items; their current composition; and their device 
models. A Model Information Requester obtains, by request, the 
information specific to device models. A Dataset Information 
Requester obtains, by request, the information specific to datasets 
defined in device items. A Trigger Condition Information Requester 
obtains, by request, the information specific to trigger conditions 
defined in device items. A Monitoring Criteria Information 
Requester obtains, by request, the information specific to monitoring 
criteria defined in device items. 

Pre-
conditions 

The Device Item Manager can provide the information specific to a 
device item, its composition information and its device model. The 
Device Model Manager can provide the information specific to the 
corresponding device model and its composition. The Device Model 
Dataset Manager can provide the datasets predefined in the device 
model, and the Device Item Dataset Manager can provide the 
datasets defined in the device item. The Device Model Trigger 
Condition Manager can provide the trigger conditions predefined in 
the device model, and the Device Item Trigger Condition Manager 
can provide the trigger conditions defined in the device item. The 
Device Model Monitoring Criteria Manager can provide the 
monitoring criteria predefined in the device model, and the Device 
Item Monitoring Criteria Manager can provide the monitoring 
criteria defined in the device item. 

Post-
conditions 

An Item Information Requester has discovered the information 
specific to device items; their current composition; and their device 
models. A Model Information Requester has discovered the 
information specific to device models. A Dataset Information 
Requester has discovered the information specific to datasets defined 
in device items. A Trigger Condition Information Requester has 
discovered the information specific to trigger conditions defined in 
device items. A Monitoring Criteria Information Requester has 
discovered the information specific to monitoring criteria defined in 
device items. 



 

 107

Use Case 
Diagram 

Discover

Device Item
Manager

Device Model
Manager

DAS Broker

Device Item
Dataset
Manager

Device Model
Dataset
Manager

Device Item
Trigger Condition

Manager

Device Model
Trigger Condition

Manager

Device Item
Monitoring Criteria

Manager

Device Model
Monitoring Criteria

Manager

Item
Information
Requester

Model
Information
Requester

Dataset
Information
Requester

Trigger Condition
Information
Requester

Monitoring Criteria
Information
Requester

 

 



 

 108

 
Use Case Discover Item 
Roles Item Information Requester, Device Item Manager, DAS Broker. 
Type Primary and essential. 
Description An Item Information Requester obtains, by request, the information 

(serial number, manufacturer, device model, list of measurement 
addresses, and the measurement points associated to each 
measurement address) specific to a device item. 

Pre-
conditions 

The Device Item Manager can provide the information specific to a 
device item. 

Post-
conditions 

An Item Information Requester has discovered the information 
specific to a device item. 

Use Case 
Diagram 

Item
Information
Requester

DAS Broker

Discover
Item

Device Item
Manager  

Known 
Concepts 

<<object>>
Measurement

Address

<<object>>
Device Modelmanufacturer : Manufacturer

serialNumber : SerialNumber

<<object>>
Device Item

1

1

characterized
by*

has
*

*

1

<<object>>
Measurement

Point

defined by

Item
Information
Requester

DAS Broker

Device Item
Manager

discovers

manages

*

*

*

1
*

1

1

*communicates
with

communicates
with

 
Example 
Scenario 

Item
Information
Requester

DAS Broker Device
Item

Manager

getSerialNumber
(deviceItem)

getSerialNumber
(deviceItem)

getSerialNumber_Response
(serialNumber)

getSerialNumber_Response
(serialNumber)

getManufacturer
(deviceItem)

getManufacturer
(deviceItem)

getManufacturer_Response
(manufacturer)

getManufacturer_Response
(manufacturer)

getModel (deviceItem) getModel (deviceItem)
getModel_Response (deviceModel)getModel_Response (deviceModel)

getMeasurementAddressList
(deviceItem)

getMeasurementAddressList
(deviceItem)

getMeasurementAddressList _Response
(measurementAddressList)

getMeasurementAddressList_Response
(measurementAddressList)

getMeasurementPoint
(deviceItem, measurementAddress)

getMeasurementPoint
(deviceItem, measurementAddress)
getMeasurementPoint _Response
(measurementPoint)

getMeasurementPoint _Response
(measurementPoint)

 
 



 

 109

 
Use Case Discover Item Composition 
Roles Item Information Requester, Device Item Manager, DAS Broker. 
Type Primary and essential. 
Description An Item Information Requester obtains, by request, the current 

composition (parent device item, child device items, and functional 
device model) of a device item. 

Pre-
conditions 

The Device Item Manager can provide the device item composition 
information. 

Post-
conditions 

An Item Information Requester has discovered the current 
composition of a device item. The Item Information Requester has 
obtained a list of device items that compounds a complex device 
item. 

Use Case 
Diagram 

Item
Information
Requester

Discover
Item

Composition
DAS Broker

Device Item
Manager  

Known 
Concepts 

    

<<object>>
Complex

Device Item

<<object>>
Single

Device  Item

manufacturer : Manufacturer
serialNumber: SerialNumber

<<object>>
Device Item

0..1

1..*

composed of

parent

child

installed
in<<object>>

Device
Address

function : Function

<<object>>
Functional

Device Model
1*

Item
Information
Requester

DAS Broker

Device Item
Manager

discovers
composition of

manages

*

*

*

1
*

1

1

*
communicates

with

communicates
with

 

Example 
Scenario 

Item
Information
Requester

DAS Broker Device
Item

Manager

getParentItem
(deviceItem)

getParentItem
(deviceItem)

getParentItem_Response
(parentDeviceItem)

getParentItem_Response
(parentDeviceItem)

getChildItemList
(deviceItem)

getChildItemList
(deviceItem)

getChildItemList_Response
(chidDeviceItemList)

getChildItemList_Response
(chidDeviceItemList)

getFunctionalModel
(deviceItem)

getFunctionalModel
(deviceItem)

getFunctionalModel_Response
(functionalDeviceModel)

getFunctionalModel_Response
(functionalDeviceModel)

 
 



 

 110

 
Use Case Discover Model 
Roles Model Information Requester, Device Model Manager, DAS Broker. 
Type Primary and essential. 
Description A Model Information Requester obtains, by request, the information 

(modelID, designer, measurement points, measurement type and 
phenomenon type associated with a measurement point, and the 
phenomenon list of a phenomenon type) of a device model.  

Pre-
conditions 

The Device Model Manager can provide the information specific to a 
device model. 

Post-
conditions 

A Model Information Requester has discovered the device model and 
its associated information. 

Use Case  
Diagram 

Model
Information
Requester

DAS Broker

Device Model
Manager

Discover
Model

 
Known 
Concepts 

physicalNormalRange : Range
phenomenonTypeUnits : Unit

<<object>>
Phenomenon Type

qualitativeRange : Range

<<object>>
Phenomenon

designer : Designer
modelID : ModelID

<<object>>
Device Model

1 has

*

has

1

<<object>>
Measurement

Point

has*
1

sampleRange : Range
physicalRange : Range
mapping : MappingPolicy
measurementUnits : Unit

<<object>>
Measurement Type

has
* 1

*

Model
Information
Requester

DAS Broker

Device Model
Manager

discovers

manages

*

*

*

1
*

1

1
*communicates

with

communicates
with

 
Example 
Scenario 

Model
Information
Requester

DAS Broker Device
Model

Manager

getModelID
(deviceModel)

getModelID
(deviceModel)

getModelID _Response
(modelID)

getModelID _Response
(modelID)

getDesigner
(deviceModel)

getDesigner
(deviceModel)

getDesigner_Response
(designer)

getDesigner_Response
(designer)

getMeasurementPointList
(deviceModel)

getMeasurementPointList
(deviceModel)

getMeasurementPointList _Response
(measurementPointList)

getMeasurementPointList _Response
(measurementPointList)

getPhenomenonType
(deviceModel, measurementPoint)

getPhenomenonType
(deviceModel, measurementPoint)
getPhenomenonType_Response
(phenomenonType)

getPhenomenonType_Response
(phenomenonType)
getPhenomenonList
(deviceModel, phenomenonType)

getPhenomenonList
(deviceModel, phenomenonType)
getPhenomenonList_Response
(phenomenonList)

getPhenomenonList_Response
(phenomenonList)

getMeasurementType
(deviceModel, measurementPoint)

getMeasurementType
(deviceModel, measurementPoint)

getMeasurementType_Response
(measurementType)

getMeasurementType_Response
(measurementType)

 



 

 111

 
Use Case Discover Model Composition 
Roles Model Information Requester, Device Model Manager, DAS Broker. 
Type Primary and essential. 
Description A Model Information Requester obtains, by request, the composition 

of an instance of Device Model. 
Pre-
conditions 

The Device Model Manager can provide the device model 
composition information. 

Post-
conditions 

A Model Information Requester has discovered the composition of a 
device model. The Model Information Requester has obtained a list 
of device models that compounds a complex device model. 

Use Case 
Diagram 

Model
Information
Requester

DAS Broker

Discover
Model

Composition

Device Model
Manager  

Known 
Concepts 

    

<<object>>
Complex

Device Model

<<object>>
Single

Device Model

designer : Designer
modelID : ModelID

<<object>>
Device Model

1..*

1

composed of

child

parent

function : Function

<<object>>
Functional

Device Model   

Model
Information
Requester

DAS Broker

Device Model
Manager

discovers
composition of

manages

*

*

*

*
1

1

1

*

communicates
with

communicates
with

 
Example 
Scenario 

Model
Information
Requester

DAS Broker Device
Model

Manager

getParentModel
(deviceModel)

getParentModel
(deviceModel)

getParentModel_Response
(parentDeviceModel)

getParentModel_Response
(parentDeviceModel)

getChildModelList
(deviceModel)

getChildModelList
(deviceModel)

getChildModelList_Response
(chidDeviceModelList)

getChildModelList_Response
(chidDeviceModelList)

getFunctionalModel
(deviceModel)

getFunctionalModel
(deviceModel)

getFunctionalModel_Response
(functionalDeviceModel)

getFunctionalModel_Response
(functionalDeviceModel)  

 



 

 112

 
Use Case Discover Datasets 
Roles Dataset Information Requester, Device Item Dataset Manager, Device 

Model Dataset Manager, DAS Broker 
Type Primary and essential 
Description A Dataset Information Requester obtains, by request, the datasets 

defined on a device item. 
Pre- 
conditions 

The Device Item Dataset Manager can provide the datasets defined in 
a device item. The Device Model Dataset Manager can provide the 
datasets predefined in a device model. 

Post- 
conditions 

A Dataset Information Requester has discovered the datasets of a 
device item. 

Diagram 

Dataset
Information
Requester

Device Item
Dataset
Manager

DAS Broker

Device Model
Dataset
Manager

Discover
Datasets

 
Known 
Concepts 

<<object>>
Device Model

<<object>>
Measurement

Point

<<object>>
Measurement

Address

<<object>>
Device Item

* *
groups

<<object>>
Device Item

Dataset

*
<<object>>

Custom
Dataset

<<object>>
Predefined

Dataset

  

  * 1defined by

has

groups

<<object>>
Device Model

Dataset

*

1

*

has

11 * *
1

hashas

characterizes by 1*

defined by
* 1

*

Dataset
Information
Requester

DAS Broker Device Model
Dataset
Manager

discovers

manages

*

* *

1*1

1

*

communicates
with

communicates
with

Device Item
Dataset
Manager

11 *

communicates
with

* *

discovers

manages

*

 



 

 113

Example 
Scenario 

Dataset
Information
Requester

DAS Broker Device
Item

Dataset
Manager

getItemDatasetList
(deviceItem)

getItemDatasetList
(deviceItem)

getItemDatasetList_Response
(itemDatasetList)

getItemDatasetList_Response
(itemDatasetList)

getModelDatasetList
(deviceModel)

getModelDatasetList_Response
(modelDatasetList)

Device
Model

Dataset
ManagergetItemDatasetMeasurementAddressList

(deviceItem, itemDataset)
getItemDatasetMeasurementAddressList
(deviceItem, itemDataset)
getItemDatasetMeasurementAddressList_
Response (measurementAddressList)

getItemDatasetMeasurementAddressList_
Response  (measurementAddressList)

getModelDatasetMeasurementPointList
(deviceModel, modelDataset)

getModelDatasetMeasurementPointList
(deviceModel, modelDataset)

getModelDatasetMeasurementPointList_Response
 (measurementPointList)

getModelDatasetMeasurementPointList_
Response (measurementPointList)

getPredefinedModelDataset
(deviceItem, predefinedDataset)

getPredefinedModelDataset
(deviceItem, predefinedDataset)

getPredefinedModelDataset_Response
(modelDataset)

getPredefinedModelDataset_Response
(modelDataset)

getModelDatasetList
(deviceModel)

getModelDatasetList_Response
(modelDatasetList)

 



 

 114

 
Use Case Discover Trigger Conditions 
Roles Trigger Condition Information Requester, Device Item Trigger 

Condition Manager, Device Model Trigger Condition Manager, DAS 
Broker. 

Type Primary and essential. 
Description A Trigger Condition Information Requester obtains, by request, the 

trigger conditions defined on a device item. 
Pre-
conditions 

The Device Item Trigger Condition Manager can provide the trigger 
conditions defined in a device item. The Device Model Trigger 
Condition Manager can provide the trigger conditions predefined in a 
device model. 

Post-
conditions 

A Trigger Condition Information Requester has discovered the 
trigger conditions of a device item. 

Diagram 

Trigger Condition
Information
Requester

Device Item
Trigger Condition

Manager

DAS Broker

Device Model
Trigger Condition

Manager

Discover
Trigger

Conditions

 
Known 
Concepts 

<<object>>
Device Model

<<object>>
Device Item

1

time : TimeCondition

<<object>>
Device Item Time
Trigger Condition

isTrue : Boolean

<<object>>
Device Item Event
Trigger Condition

    

<<object>>
Device Item

Trigger Condition

<<object>>
Custom

Trigger Condition

<<object>>
Predefined

Trigger Condition
  

  

* 1
defined

by

time : TimeCondition

<<object>>
Device Model Time
Trigger Condition

isTrue : Boolean

<<object>>
Device Model Event
Trigger Condition

    

<<object>>
Device Model

Trigger Condition

1
*

has

*
has

1* characterized by

<<object>>
Phenomenon

<<object>>
Measurement

Point 1

1

isTrue : Boolean

<<object>>
Device Model

Event
Condition Set

triggered by

*

*

*

<<object>>
Device Model
Boolean Event

Condition

f(): Boolean

<<object>>
 Device Model
Function Event

Condition

isTrue : Boolean

<<object>>
Device Model

Event Condition

    

triggered by

*

*

<<object>>
Measurement

Address1

1

isTrue : Boolean

<<object>>
Device Item

Event
Condition Set

triggered by

*

*

*

<<object>>
Device Item

Boolean Event
Condition

f(): Boolean

 <<object>>
Device Item

Function Event
Condition

isTrue : Boolean

<<object>>
Device Item

Event Condition

    

triggered by

*

*

applied
to

1*

defined
by

applied
to

*

applied
to

applied
to

*

Trigger Condition
Information
Requester

DAS Broker Device Model
Trigger Condition

Manager

discovers

manages

*

*

*

1*1

1

*
communicates

with

communicates
with

Device Item
Trigger Condition

Manager

11 *

communicates
with

*

*

discovers

manages

*

 



 

 115

Example 
Scenario 

Trigger
Condition

Information
Requester

DAS
Broker

Device
Item

Trigger
Condition
Manager

getItemTriggerConditionList
(deviceItem)

getItemTriggerConditionList
(deviceItem)

getItemTriggerConditionList_
Response (itemTriggerConditionList)

getItemTriggerConditionList_
Response (itemTriggerConditionList)

getModelTriggerConditionList
(deviceModel)

getModelTriggerConditionList
(deviceModel)

getModelTriggerConditionList _Response
(modelTriggerConditionList)

getModelTriggerConditionList _
Response (modelTriggerConditionList)

Device
Model
Trigger

Condition
Manager

getModelTimeCondition
(deviceModel, modelTimeTriggerCondition)

getModelTimeCondition
(deviceModel, modelTimeTriggerCondition)

getModelTimeCondition_Response
(timeCondition)

getModelTimeCondition_Response
(timeCondition)

getModelEventConditionSetList
(deviceModel, modelEventTriggerCondition)

getModelEventConditionSetList
(deviceModel, modelEventTriggerCondition)
getModelEventConditionSetList_Response
(modelEventConditionSetList)

getModelEventConditionSetList_
Response  (modelEventConditionSetList)

getItemTimeCondition
(deviceItem,itemTimeTriggerCondition)

getItemTimeCondition
(deviceItem, itemTimeTriggerCondition)

getItemTimeCondition _Response
(timeCondition)

getItemTimeCondition _Response
(timeCondition)

getItemEventConditionSetList
(deviceItem, itemEventTriggerCondition)

getItemEventConditionSetList
(deviceItem, itemEventTriggerCondition)
getItemEventConditionSetList _
Response (itemEventConditionSetList)

getItemEventConditionSetList _
Response  (itemEventConditionSetList)

getItemEventConditionList
(deviceItem, itemEventConditionSet)

getItemEventConditionList
(deviceItem, itemEventConditionSet)

getItemEventConditionList _Response
(itemEventConditionList)

getItemEventConditionList _Response
(itemEventConditionList)

getItemEventConditionFunction
(deviceItem, itemFunctionEventCondition)

getItemEventConditionFunction
(deviceItem, itemFunctionEventCondition)

getItemEventConditionFunction_
Response (function)

getItemEventConditionFunction_
Response (function)

getItemEventConditionPhenomenon
(deviceItem, itemBooleanEventCondition)

getItemEventConditionPhenomenon
(deviceItem, itemBooleanEventCondition)

getItemEventConditionPhenomenon_
Response (phenomenon)

getItemEventConditionPhenomenon_
Response (phenomenon)

getModelEventConditionList
(deviceModel, modelEventConditionSet)

getModelEventConditionList
(deviceModel, modelEventConditionSet)
getModelEventConditionList _Response
(modelEventConditionList)

getModelEventConditionList _Response
(modelEventConditionList)

getModelEventConditionFunction
(deviceModel, modelFunctionEventCondition)

getModelEventConditionFunction
(deviceModel, modelFunctionEventCondition)
getModelEventConditionFunction_Response
(function)

getModelEventConditionFunction_
Response (function)

getModelEventConditionPhenomenon
(deviceModel, modelBooleanEventCondition)

getModelEventConditionPhenomenon
(deviceModel, modelBooleanEventCondition)

getModelEventConditionPhenomenon_Response
(phenomenon)

getModelEventConditionPhenomenon_
Response (phenomenon)

getModelEventConditionMeasurementPoint
(deviceModel, modelEventCondition)

getModelEventConditionMeasurementPoint
(deviceModel, modelEventCondition)
getModelEventConditionMeasurementPoint_
Response (function, measurementPoint)

getModelEventConditionMeasurementPoint_
Response ( measurementPoint)

getItemEventConditionMeasurementAddress
(deviceItem, itemEventCondition)

getItemEventConditionMeasurementAddress
(deviceItem, itemEventCondition)
getItemEventConditionMeasurementAddress_
Response (measurementAddress)

getItemEventConditionMeasurementAddress_
Response (measurementAddress)

getPredefinedModelTriggerCondition
(deviceItem, predefinedTriggerCondition)

getPredefinedModelTriggerCondition
(deviceItem, predefinedTriggerCondition)
getPredefinedModelTriggerCondition_
Response (modelTriggerCondition)

getPredefinedModelTriggerCondition_
Response (modelTriggerCondition)

 
 



 

 116

 
Use Case Discover Monitoring Criteria 
Roles Monitoring Criteria Information Requester, Custom Monitoring 

Criteria Manager, Predefined Monitoring Criteria Manager, DAS 
Broker. 

Type Primary and essential. 
Description A Monitoring Criteria Information Requester obtains, by request, the 

monitoring criteria defined on a device item. A Monitoring Criteria 
Information Requester not being the creator of such monitoring 
criteria can discover only monitoring criteria defined as public. 
Monitoring criteria predefined on the corresponding device model are 
considered public and therefore they are accessible for any 
Monitoring Criteria Information Requester. 

Pre-
conditions 

The Device Item Monitoring Criteria Manager can provide the 
monitoring criteria defined in a device item. The Device Model 
Monitoring Criteria Manager can provide the monitoring criteria 
predefined in a device model. 

Post-
conditions 

A Monitoring Criteria Information Requester has discovered the 
monitoring criteria of a device item. 

Diagram 

Monitoring Criteria
Information
Requester

Device Item
Monitoring Criteria

Manager

DAS Broker

Device Model
Monitoring Criteria

Manager

Discover
Monitoring

Criteria

 
Known 
Concepts 

<<object>>
Device Model

<<object>>
Device Item

*

1

creator :  Creator

<<object>>
Device Item
Monitoring

Criteria

subscribers :
SubscriberList

<<object>>
Public Criteria

subscriber :
Subscriber

<<object>>
Private Criteria

    

  

<<object>>
Predefined
Monitoring

Criteria

  *

1

defined
by

*

has

<<object>>
Device Item

Trigger
Condition

<<object>>
Device Item

Dataset

has

has

*
1

*
1

<<object>>
Device Item

 Event
Monitoring

Criteria

<<object>>
Device Item

Status
Monitoring

Criteria

  

  

<<object>>
Device Item

 Composition
Monitoring

Criteria

  

related to*
*

<<object>>
Device Model

Monitoring
Criteria

*

<<object>>
Device Model

Trigger
Condition

<<object>>
Device Model

Dataset

has

has

*
1

*

1

<<object>>
Device Model

Event
Monitoring

Criteria

<<object>>
Device Model

Status
Monitoring

Criteria

  

  

<<object>>
Device Model
Composition
Monitoring

Criteria

  

related to
*

1has

<<object>>
Custom

Monitoring
Criteria

Monitoring Criteria
Information
Requester

DAS Broker Device
Model

Monitoring
Criteria

Manager

discovers

manages

*

**

1*1

1

*

communicates
with

communicates
with

Device
Item

Monitoring
Criteria

Manager

11 *

communicates
with

**

discovers
manages

*

 



 

 117

Example 
Scenario 
(1/2) 

Monitoring
Criteria

Information
Requester

DAS Broker Device
Item

Monitoring
Criteria

ManagergetItemMonitoringCriteriaList
(deviceItem)

getItemMonitoringCriteriaList
(deviceItem)

getItemMonitoringCriteriaList_Response
(itemMonitoringCriteriaList)

getItemMonitoringCriteriaList_Response
(itemMonitoringCriteriaList)

getItemPublicMonitoringCriteriaList
(deviceItem)

getItemPublicMonitoringCriteriaList
(deviceItem)

getItemPublicMonitoringCriteriaList _
Response (itemPublicMonitoringCriteria
List)

getItemPublicMonitoringCriteriaList _
Response (itemPublicMonitoringCriteria
List)

Device
Model

Monitoring
Criteria

Manager

getItemPrivateMonitoringCriteriaList
(deviceItem, creatorList)

getItemPrivateMonitoringCriteriaList
(deviceItem, creatorList)

getItemPrivateMonitoringCriteriaList _
Response (itemPrivateMonitoringCriteria
List)

getItemPrivateMonitoringCriteriaList _
Response (itemPrivateMonitoringCriteria
List)

getItemCompositionMonitoringCriteria
ItemList (deviceItem,
itemCompositionMonitoringCriteria)

getItemCompositionMonitoringCriteria
ItemList (deviceItem,
itemCompositionMonitoringCriteria)
getItemCompositionMonitoringCriteria
ItemList_Response (itemList)

getItemCompositionMonitoringCriteria
ItemList_Response (itemList)

getItemStatusMonitoringCriteriaDataset
(deviceItem, itemStatusMonitoringCriteria)

getItemStatusMonitoringCriteriaDataset
(deviceItem, itemStatusMonitoringCriteria)
getItemStatusMonitoringCriteriaDataset_
Response (itemDataset)

getItemStatusMonitoringCriteriaDataset_
Response (itemDataset)

getItemCompositionMonitoringCriteria
List (deviceItem)

getItemCompositionMonitoringCriteria
List (deviceItem)
getItemCompositionMonitoringCriteria
List_Response (itemComposition
MonitoringCriteriaList)

getItemCompositionMonitoringCriteria
List_Response (itemComposition
MonitoringCriteriaList)

getItemEventMonitoringCriteriaList
(deviceItem)

getItemEventMonitoringCriteriaList
(deviceItem)

getItemEventMonitoringCriteriaList_
Response (itemEvenMonitoringCriteriaList)

getItemEventMonitoringCriteriaList_
Response (itemEvenMonitoringCriteriaList)

getItemStatusMonitoringCriteriaList
(deviceItem)

getItemStatusMonitoringCriteriaList
(deviceItem)
getItemStatusMonitoringCriteriaList_
Response (itemStatusMonitoring
CriteriaList)

getItemStatusMonitoringCriteriaList_
Response (itemStatusMonitoring
CriteriaList)

getItemMonitoringCriteriaCreator
(deviceItem, itemMonitoringCriteria)

getItemMonitoringCriteriaCreator
(deviceItem, itemMonitoringCriteria)

getItemMonitoringCriteriaCreator _
Response (creator)

getItemMonitoringCriteriaCreator_
Response (creator)

getItemMonitoringCriteriaSubscriberList
(deviceItem, itemMonitoringCriteria)

getItemMonitoringCriteriaSubscriberList
(deviceItem, itemMonitoringCriteria)
getItemMonitoringCriteriaSubscriberList_
Response (subscriberList)

getItemMonitoringCriteriaSubscriberList_
Response (subscriberList)
getItemMonitoringCriteriaTriggerCondition
(deviceItem, itemMonitoringCriteria)

getItemMonitoringCriteriaTriggerCondition
(deviceItem, itemMonitoringCriteria)

getItemMonitoringCriteriaTrigger
Condition_Response (itemTrigger
Condition)

getItemMonitoringCriteriaTrigger
Condition_Response (itemTrigger
Condition)

getPredefinedModelMonitoringCriteria
(deviceItem, predefinedMonitoringCriteria)

getPredefinedModelMonitoringCriteria
(deviceItem, predefinedMonitoringCriteria)

getPredefinedModelMonitoringCriteria_
Response (modelMonitoringCriteria)

getPredefinedModelMonitoringCriteria_
Response (modelMonitoringCriteria)

getModelMonitoringCriteriaList
(deviceModel)

getModelMonitoringCriteriaList
(deviceModel)

getModelMonitoringCriteriaList _Response
(modelMonitoringCriteriaList)

getModelMonitoringCriteriaList _
Response (modelMonitoringCriteriaList)

getModelCompositionMonitoringCriteria
ModelList (deviceModel,
modelCompositionMonitoringCriteria)

getModelCompositionMonitoringCriteriaModelList
(deviceModel, modelCompositionMonitoringCriteria)

getModelCompositionMonitoringCriteria
ModelList_Response (modelList)getModelCompositionMonitoringCriteria

ModelList_Response (modelList)

getModelCompositionMonitoringCriteria
List (deviceModel)

getModelCompositionMonitoringCriteriaList
(deviceModel)
getModelCompositionMonitoringCriteria
List _Response (modelComposition
MonitoringCriteriaList)

getModelCompositionMonitoringCriteria
List_Response (modelComposition
MonitoringCriteriaList)

getModelMonitoringCriteriaTrigger
Condition (deviceModel,
modelMonitoringCriteria)

getModelMonitoringCriteriaTriggerCondition
(deviceModel, modelMonitoringCriteria)

getModelMonitoringCriteriaTriggerCondition_
Response (modelTriggerCondition)

getModelMonitoringCriteriaTrigger
Condition_Response (modelTrigger
Condition)

 



 

 118

Example 
Scenario 
(2/2) Monitoring

Criteria
Information
Requester

DAS Broker Device
Item

Monitoring
Criteria

Manager

Device
Model

Monitoring
Criteria

Manager

getModelStatusMonitoringCriteriaDataset
(deviceModel, modelStatusMonitoring
Criteria)

getModelStatusMonitoringCriteriaDataset
(deviceModel, modelStatusMonitoringCriteria)
getModelStatusMonitoringCriteriaDataset_
Response (modelDataset)

getModelStatusMonitoringCriteria
Dataset_Response (modelDataset)

getModelEventMonitoringCriteriaList
(deviceModel)

getModelEventMonitoringCriteriaList
(deviceModel)

getModelEventMonitoringCriteriaList_Response
(modelEvenMonitoring
CriteriaList)

getModelEventMonitoringCriteriaList_
Response (modelEvenMonitoring
CriteriaList)
getModelStatusMonitoringCriteriaList
(deviceModel)

getModelStatusMonitoringCriteriaList
(deviceModel)

getModelStatusMonitoringCriteriaList _Response
(modelStatusMonitoringCriteriaList)

getModelStatusMonitoringCriteriaList _
Response (modelStatusMonitoring
CriteriaList)

 

 



 

 119

 
Use Case Define Data Access 
Roles Dataset Administrator, Device Item Dataset Manager, Device Model 

Dataset Manager, Trigger Condition Administrator, Device Item 
Trigger Condition Manager, Device Model Trigger Condition 
Manager, Monitoring Criteria Administrator, Device Item 
Monitoring Criteria Manager, Device Model Monitoring Criteria 
Manager, Monitoring Criteria Subscription Administrator, Device 
Item Monitoring Criteria Subscription Manager, DAS Broker. 

Type Primary and essential. 
Description Dataset Administrators administer datasets for a device item. Trigger 

Condition Administrators administer trigger conditions for a device 
item. Monitoring Criteria Administrators administer monitoring 
criteria for a device item. Monitoring Criteria Subscription 
Administrators administer monitoring criteria. We used the term 
administer as a generic term to refer to create, modify and remove. 

Pre-
conditions 

The device items have been previously discovered. 

Post-
conditions 

Datasets, trigger conditions, monitoring criteria and monitoring 
criteria subscriptions have been administered. 

Diagram 

Define
Data

Access

Device Item
Dataset
Manager

Dataset
Administrator

DAS Broker

Device Model
Dataset
Manager

Device Item
Trigger Condition

Manager

Trigger Condition
 Administrator

Device Model
Trigger Condition

Manager

Monitoring Criteria
 Administrator

Device Item
Monitoring Criteria

Manager

Device Model
Monitoring Criteria

Manager

Monitoring Criteria
Subscription
Administrator

Device Item
Monitoring Criteria

Subscription
Manager

Device Item
Manager

 

 



 

 120

 
Use Case Administer Dataset  
Roles Dataset Administrator, Device Item Dataset Manager, Device Model 

Dataset Manager, Device Item Manager, DAS Broker. 
Type Primary and essential. 
Description A Dataset Administrator administers (creates, modifies or removes) a 

dataset of a device item. A dataset consists of a set of measurement 
points to observe. Dataset Administrators can define an entirely new 
dataset for a device item (custom datasets), or define a dataset for a 
device item from a dataset predefined on a device model (predefined 
datasets). All Datasets are public. 

Pre-
conditions 

The Dataset Administrator has discovered a device item and its 
corresponding device model. The Device Model Dataset Manager 
can provide the datasets predefined in the device model, and the 
Device Item Dataset Manager can provide the datasets already 
defined in a device item. 

Post-
conditions 

A dataset of a device item has been administered. 

Diagram 
Administer

Dataset

Device Item
Dataset
Manager

Dataset
Administrator

DAS Broker

Device Model
Dataset
Manager

Device Item
Manager

 
Known 
Concepts <<object>>

Device Model

<<object>>
Measurement

Point

<<object>>
Measurement

Address

<<object>>
Device Item

* *
groups

<<object>>
Device Item

Dataset

*
<<object>>

Custom
Dataset

<<object>>
Predefined

Dataset

  

  * 1defined by

has

groups

<<object>>
Device Model

Dataset

*

1

*

has

11 * *
1

hashas

characterizes by 1*

defined by
* 1

*

Dataset
Administrator

DAS Broker Device Model
Dataset
Manager

manages

*

1*1
1

*

communicates
with

communicates
withDevice Item

Dataset
Manager

11 *

communicates
with

* *

administers

manages

1

communicates
withDevice Item

Manager

1

1 *
manages

*

 



 

 121

Example 
Scenario 

Dataset
Administrator

DAS Broker Device
Item

Dataset
ManagercreateCustomDataset

(deviceItem,
measurementAddressList)

createCustomDataset
(deviceItem,
measurementAddressList)

createCustomDataset_Response
(customDataset)

createCustomDataset_
Response (customDataset)

createPredefinedDataset
(deviceItem, deviceModel,
modelDataset)

getModelDatasetMeasurementPointList
(deviceModel, modelDataset)

getModelDatasetMeasurementPointList_
Response (measurementPointList)

Device
Model

Dataset
Manager

createPredefinedDataset_Response
(predefinedDataset)

createPredefinedDataset_
Response
(predefinedDataset)

createPredefinedDataset
(deviceItem, deviceModel,
modelDataset)

Device
Item

Manager

getMeasurementAddressList
(deviceItem, measurementPointList)

getMeasurementAddressList_Response
(measurementAddressList)

createPredefinedDataset
(deviceItem, deviceModel,
modelDataset,
measurementAddressList)
: predefinedDataset

getModelDatasetMeasurementPoint
List (deviceModel, modelDataset)

getModelDatasetMeasurementPoint
List_Response
(measurementPointList)
getMeasurementAddressList
(deviceItem, measurementPointList)

getMeasurementAddressList_
Response
(measurementAddressList)

 

 



 

 122

 
Use Case Administer Trigger Condition 
Roles Trigger Condition Administrator, Device Item Trigger Condition 

Manager, Device Model Trigger Condition Manager, Device Item 
Manager, DAS Broker. 

Type Primary and essential 
Description A Trigger Condition Administrator administers (creates, modifies or 

removes) a trigger condition of a device item. A trigger condition can 
be based on time or based on an event. A Trigger Condition 
Administrator can define an entirely new trigger condition for a 
device item (custom trigger condition), or define a trigger condition 
from a trigger condition predefined on a device model (predefined 
trigger condition). All Trigger Conditions are public. 

Pre-
conditions 

The Trigger Condition Administrator has discovered a device item 
and its corresponding device model. The Device Model Trigger 
Condition Manager can provide the trigger conditions predefined in 
the device model, and the Device Item Trigger Condition Manager 
can provide the datasets already defined in a device item. 

Post-
conditions 

A trigger condition of a device item has been administered. 

Diagram 
Administer

Trigger
Condition

Device Item
Trigger Condition

Manager

Trigger Condition
 Administrator

DAS Broker

Device Model
Trigger Condition

Manager

Device Item
Manager

 



 

 123

Known 
Concepts 

<<object>>
Device Model

<<object>>
Device Item

1

time : TimeCondition

<<object>>
Device Item Time
Trigger Condition

isTrue : Boolean

<<object>>
Device Item Event
Trigger Condition

    

<<object>>
Device Item

Trigger Condition

<<object>>
Custom

Trigger Condition

<<object>>
Predefined

Trigger Condition
  

  

* 1

defined
by

time : TimeCondition

<<object>>
Device Model Time
Trigger Condition

isTrue : Boolean

<<object>>
Device Model Event
Trigger Condition

    

<<object>>
Device Model

Trigger Condition

1
*

has

*
has

1* characterized by

<<object>>
Phenomenon

<<object>>
Measurement

Point 1

1

isTrue : Boolean

<<object>>
Device Model

Event
Condition Set

triggered by

*

*

*

<<object>>
Device Model
Boolean Event

Condition

f(): Boolean

<<object>>
 Device Model
Function Event

Condition

isTrue : Boolean

<<object>>
Device Model

Event Condition

    

triggered by

*

*

<<object>>
Measurement

Address1

1

isTrue : Boolean

<<object>>
Device Item

Event
Condition Set

triggered by

*

*

*

<<object>>
Device Item

Boolean Event
Condition

f(): Boolean

 <<object>>
Device Item

Function Event
Condition

isTrue : Boolean

<<object>>
Device Item

Event Condition

    

triggered by

*

*

applied
to

1*

defined
by

applied
to

*

applied
to

applied
to

*

Device Item
Manager

DAS Broker Device Model
Trigger Condition

Manager

manages

*

1*1

1

*

communicates
with

communicates
with

Device Item
Trigger Condition

Manager

11 *
communicates

with

*

*

administers

manages

1
Trigger Condition

Administrator

1

manages
*

1

*

communicates
with

 



 

 124

Example 
Scenario 
(1/2) 

Trigger
Condition

Administrator

DAS Broker Device Item
Trigger Condition

Manager

createCustomTimeTrigger
Condition (deviceItem,
timeCondition)

createCustomTimeTrigger
Condition (deviceItem,
timeCondition)

createCustomTimeTrigger
Condition_Response
(customTimeTriggerCondition)

createCustomTimeTrigger
Condition_Response
(customTimeTriggerCondition)

Device
Model

Trigger
Condition
Manager

createPredefinedTimeTrigger
Condition
(deviceItem, deviceModel,
modelTimeTriggerCondition)

getModelTimeCondition
(deviceModel,
modelTimeTriggerCondition)

getModelTimeCondition_Response
(timeCondition)

createItemBooleanEventCondition
(deviceItem, isTrue,
measurementAddress,
phenomenon)

createItemBooleanEventCondition
(deviceItem, isTrue,
measurementAddress,
phenomenon)

createItemBooleanEventCondition_
Response
(itemBooleanEventCondition)

createItemBooleanEventCondition_
Response
(itemBooleanEventCondition)

createPredefinedTimeTrigger
Condition
(deviceItem, deviceModel,
modelTimeTriggerCondition)

createPredefinedTimeTrigger
Condition_Response
(predefinedTimeTriggerCondition)

createPredefinedTimeTrigger
Condition_Response
(predefinedTimeTriggerCondition)

createPredefinedEventTrigger
Condition
(deviceItem, deviceModel,
modelEventTriggerCondition)

getModelEventConditionSetList
(deviceModel,
modelEventTriggerCondition)

getModelEventConditionSetList_Response
(modelEventConditionSetList)

createPredefinedEventTrigger
Condition
(deviceItem, deviceModel,
modelEventTriggerCondition)

getModelEventConditionList
(deviceModel, modelEventConditionSet)
getModelEventConditionList _Response
(modelEventConditionList)

Device
Item

Manager

createItemFunctionEventCondition
(deviceItem, isTrue,
measurementAddress, function)

createItemFunctionEventCondition
(deviceItem, isTrue,
measurementAddress, function)

createItemFunctionEvent
Condition_Response
(itemFunctionEventCondition)

createItemFunctionEvent
Condition_Response
(itemFunctionEventCondition)
createItemEventConditionSet
(deviceItem, isTrue,
itemEventConditionList)

createItemEventConditionSet
(deviceItem, isTrue,
itemEventConditionList)

createItemEventCondition
Set_Response
(itemEventConditionSet)

createItemEventCondition
Set_Response
(itemEventConditionSet)

createCustomEventTrigger
Condition (deviceItem, isTrue,
itemEventConditionSetList)

createCustomEventTrigger
Condition (deviceItem, isTrue,
itemEventConditionSetList)
createCustomEventTrigger
Condition_Response
(customEventTriggerCondition)

createCustomEventTrigger
Condition_Response
(customEventTriggerCondition)

getModelTimeCondition
(deviceModel,
modelTimeTriggerCondition)

getModelTimeCondition_
Response (timeCondition)

getModelEventConditionSetList
(deviceModel,
modelEventTriggerCondition)

getModelEventConditionSetList_
Response
(modelEventConditionSetList)

getModelEventConditionList
(deviceModel,
modelEventConditionSet)

getModelEventConditionList_
Response
(modelEventConditionList)

createPredefinedTime
TriggerCondition
(deviceItem, deviceModel,
modelTimeTriggerCondition,
timeCondition)
: predefinedTime
TriggerCondition

 



 

 125

Example 
Scenario 
(2/2) Trigger

Condition
Administrator

DAS Broker Device Item
Trigger Condition

Manager

Device
Model

Trigger
Condition
Manager

getModelEventCondition
Function (deviceModel,
modelFunctionEventCondition)
getModelEventCondition
Function_Response (function)

getModelEventConditionPhenomenon
(deviceModel,
modelBooleanEventCondition)
getModelEventConditionPhenomenon_
Response (phenomenon)

getModelEventConditionMeasurement
Point (deviceModel,
modelEventCondition)
getModelEventConditionMeasurement
Point_Response (function,
measurementPoint)

createPredefinedEvent
TriggerCondition_Response
(predefinedEventTriggerCondition)

createPredefinedEvent
TriggerCondition_Response
(predefinedEventTriggerCondition)

Device
Item

Manager

getMeasurementAddressList
(deviceItem, measurementPointList)

getMeasurementAddressList_Response
(deviceItem, measurementPointList)

createItemBooleanEvent
Condition
(deviceItem, isTrue,
measurementAddress,
phenomenon)
: itemBooleanEvent
Condition

createItemFunction
EventCondition
(deviceItem, isTrue,
measurementAddress,
function)
: itemFunctionEvent
Condition

createItemEvent
ConditionSet
(deviceItem, isTrue,
itemEventConditionList)
: itemEventConditionSet

createPredefinedEvent
TriggerCondition
(deviceItem, deviceModel,
modelEventTriggerCondition,
isTrue,
itemEventConditionSetList)
: predefinedEventTrigger
Condition

getModelEventCondition
MeasurementPoint
(deviceModel,
modelEventCondition)

getModelEventCondition
MeasurementPoint_Response
(function, measurementPoint)

getModelEventCondition
Function (deviceModel,
modelFunctionEventCondition)

getModelEventCondition
Function_Response (function)
getModelEventCondition
Phenomenon (deviceModel,
modelBooleanEventCondition)

getModelEventCondition
Phenomenon_Response
(phenomenon)

getMeasurementAddressList
(deviceItem,
measurementPointList)

getMeasurementAddressList_
Response (deviceItem,
measurementPointList)

 



 

 126

 
Use Case Administer Monitoring Criteria  
Roles Monitoring Criteria Administrator, Device Item Monitoring Criteria 

Manager, Device Model Monitoring Criteria Manager, Device Item 
Dataset Manager, Device Item Trigger Condition Manager, Device 
Item Manager, DAS Broker. 

Type Primary and essential 
Description A Monitoring Criteria Administrator administers (creates, modifies 

or removes) monitoring criteria of a device item. Monitoring criteria 
allow for the recording of the status of a system at a specific time, the 
occurrence of an event or the recording of the change on the 
composition of a device item. Monitoring Criteria Administrators 
can define entirely new monitoring criteria for a device item, such 
monitoring criteria being called custom, or define monitoring criteria 
from monitoring criteria predefined on a device model, such 
monitoring criteria being called predefined. 

Pre-
conditions 

The Monitoring Criteria Administrator has discovered a device item. 
The datasets and the trigger conditions required have been previously 
defined. 

Post-
conditions 

Monitoring criteria of a device item have been administered. 

Diagram 

Monitoring Criteria
 Administrator

Device Item
Monitoring Criteria

Manager

DAS Broker

Device Model
Monitoring Criteria

Manager

Administer
Monitoring

Criteria

Device Item
Dataset
Manager

Device Item
Trigger Condition

Manager

Device Item
Manager

 



 

 127

Known 
Concepts 

<<object>>
Device Model

<<object>>
Device Item

*

1

creator :  Creator

<<object>>
Device Item
Monitoring

Criteria

subscribers :
SubscriberList

<<object>>
Public Criteria

subscriber :
Subscriber

<<object>>
Private Criteria

    

  

<<object>>
Predefined
Monitoring

Criteria

  *

1

defined
by

*

has

<<object>>
Device Item

Trigger
Condition

<<object>>
Device Item

Dataset

has

has

*
1

*
1

<<object>>
Device Item

 Event
Monitoring

Criteria

<<object>>
Device Item

Status
Monitoring

Criteria

  

  

<<object>>
Device Item

 Composition
Monitoring

Criteria

  

related to*
*

<<object>>
Device Model

Monitoring
Criteria

*

<<object>>
Device Model

Trigger
Condition

<<object>>
Device Model

Dataset

has

has

*
1

*

1

<<object>>
Device Model

Event
Monitoring

Criteria

<<object>>
Device Model

Status
Monitoring

Criteria

  

  

<<object>>
Device Model
Composition
Monitoring

Criteria

  

related to
*

1has

<<object>>
Custom

Monitoring
Criteria

Monitoring Criteria
Administrator

DAS Broker
Device Model

Monitoring
Criteria

Manager

manages

*

1

*1

1

*

communicates
with

communicates
withDevice Item

Monitoring
Criteria

Manager

1

1

*

communicates
with

**

administers

manages

1

Device Item
Manager

Device Item
Dataset
Manager

Device Model
Dataset
Manager

communicates
with

1

* communicates
with

1

*

communicates
with

*

manages 1

*

*

manages 1

*

1 manages

 



 

 128

Example 
Scenario 
(1/3) Monitoring

Criteria
Administrator

DAS Broker Device
Item

Monitoring
Criteria

Manager

createCustomComposition
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceItemList,
itemTriggerCondition)

createCustomComposition
MonitoringCriteria_Response
(customComposition
MonitoringCriteria)

createCustomComposition
MonitoringCriteria_Response
(customComposition
MonitoringCriteria)

Device
Item

Dataset
Manager

createCustomComposition
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceItemList,
itemTriggerCondition)

createCustomEventMonitoring
Criteria
(creator, isPublic, deviceItem,
itemEventTriggerCondition)

createCustomEventMonitoring
Criteria_Response
(customEventMonitoringCriteria)

createCustomEventMonitoring
Criteria_Response
(customEventMonitoringCriteria)

createCustomEventMonitoring
Criteria
(creator, isPublic, deviceItem,
itemEventTriggerCondition)

createCustomStatusMonitoring
Criteria
(creator, isPublic, deviceItem,
itemDataset,
itemTriggerCondition)

createCustomStatusMonitoring
Criteria
(creator, isPublic, deviceItem,
itemDataset,
itemTriggerCondition)
createCustomStatus
MonitoringCriteria_Response
(customStatus
MonitoringCriteria)

createCustomStatus
MonitoringCriteria_Response
(customStatus
MonitoringCriteria)

createPredefinedComposition
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelComposition
MonitoringCriteria)

createPredefinedComposition
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelComposition
MonitoringCriteria)

getModelCompositionMonitoring
CriteriaModelList (deviceModel,
modelCompositionMonitoringCriteria)

getModelCompositionMonitoring
CriteriaModelList_Response
(deviceModelList)

getModelMonitoringCriteriaTrigger
Condition (deviceModel,
modelMonitoringCriteria)

getModelMonitoringCriteriaTrigger
Condition_Response
(modelTriggerCondition)

createPredefinedTimeTriggerCondition
(deviceItem, deviceModel,
modelTimeTriggerCondition)

createPredefinedTimeTriggerCondition_Response
(predefinedTimeTriggerCondition)

Device
Item

Manager

getChildItemList
(deviceItem, deviceModelList)

getChildItemList_Response
(deviceItemList)

getModelCompositionMonitoring
CriteriaModelList
(deviceModel, model
CompositionMonitoringCriteria)

getModelCompositionMonitoring
CriteriaModelList_Response
(deviceModelList)

getChildItemList
(deviceItem, deviceModelList)

getChildItemList_Response
(deviceItemList)

getModelMonitoringCriteria
TriggerCondition (deviceModel,
modelMonitoringCriteria)

getModelMonitoringCriteria
TriggerCondition_Response
(modelTriggerCondition)

createPredefinedTimeTrigger
Condition
(deviceItem, deviceModel,
modelTimeTriggerCondition)

createPredefinedTimeTrigger
Condition_Response
(predefinedTimeTrigger
Condition)

Device
Model

Monitoring
Criteria

Manager

Device
Item

Trigger
Condition
Manager

 



 

 129

Example 
Scenario 
(2/3) Monitoring

Criteria
Administrator

DAS Broker Device
Item

Monitoring
Criteria

Manager

Device
Item

Dataset
Manager

createPredefinedComposition
MonitoringCriteria_Response
(predefinedComposition
MonitoringCriteria)

createPredefinedComposition
MonitoringCriteria_Response
(predefinedComposition
MonitoringCriteria)

Device
Item

Manager

createPredefinedEvent
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelEvent
MonitoringCriteria)

createPredefinedEvent
MonitoringCriteria_Response
(predefinedEventMonitoring
Criteria)

createPredefinedEvent
MonitoringCriteria_Response
(predefinedEventMonitoring
Criteria)

createPredefinedEvent
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelEvent
MonitoringCriteria)

getModelMonitoringCriteria
TriggerCondition (deviceModel,
modelEventMonitoringCriteria)
getModelMonitoringCriteria
TriggerCondition_Response
(modelEventTriggerCondition)

createPredefinedEventTriggerCondition
(deviceItem, deviceModel,
modelEventTriggerCondition)

createPredefinedEventTriggerCondition_Response
(predefinedEventTriggerCondition)

createPredefinedEvent
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelEvent
MonitoringCriteria,
predefinedEventTrigger
Condition) : predefinedEvent
MonitoringCriteria

createPredefinedStatus
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelStatus
MonitoringCriteria)

createPredefinedStatus
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelStatus
MonitoringCriteria)

getModelStatusMonitoring
CriteriaDataset (deviceModel,
modelStatusMonitoringCriteria)

getModelStatusMonitoring
CriteriaDataset_Response
(modelDataset)

getModelMonitoringCriteria
TriggerCondition (deviceModel,
modelEventMonitoringCriteria)

getModelMonitoringCriteria
TriggerCondition_Response
(modelEventTriggerCondition)

createPredefinedEvent
TriggerCondition
(deviceItem, deviceModel,
modelEventTriggerCondition)

createPredefinedEvent
TriggerCondition_Response
(predefinedEvent
TriggerCondition)

getModelStatusMonitoring
CriteriaDataset (deviceModel,
modelStatusMonitoringCriteria)

getModelStatusMonitoring
CriteriaDataset_Response
(modelDataset)

Device
Model

Monitoring
Criteria

Manager

Device
Item

Trigger
Condition
Manager

createPredefinedComposition
MonitoringCriteria
(creator, isPublic,
deviceItem, deviceModel,
modelCompositionMonitoring
Criteria,  deviceItemList,
predefinedTimeTrigger
Condition): predefined
CompositionMonitoringCriteria

 



 

 130

Example 
Scenario 
(3/3) Monitoring

Criteria
Administrator

DAS Broker Device
Item

Monitoring
Criteria

Manager

Device
Item

Dataset
Manager

Device
Item

Manager

createPredefinedStatus
MonitoringCriteria_Response
(predefinedStatus
MonitoringCriteria)

createPredefinedStatus
MonitoringCriteria_Response
(predefinedStatus
MonitoringCriteria)

getModelMonitoringCriteriaTrigger
Condition (deviceModel,
modelMonitoringCriteria)

getModelMonitoringCriteriaTrigger
Condition_Response
(modelTriggerCondition)

createPredefinedTimeTriggerCondition
(deviceItem, deviceModel,
modelTimeTriggerCondition)

createPredefinedTimeTriggerCondition_Response
(predefinedTimeTriggerCondition)

createPredefinedStatus
MonitoringCriteria
(creator, isPublic, deviceItem,
deviceModel, modelStatus
MonitoringCriteria,
predefinedDataset, predefined
TimeTriggerCondition)
: predefinedStatus
MonitoringCriteria

createPredefinedDataset
(deviceItem, deviceModel, modelDataset)

createPredefinedDataset_Response
(predefinedDataset)

createPredefinedDataset
(deviceItem, deviceModel,
modelDataset)

createPredefinedDataset_
Response (predefinedDataset)
getModelMonitoringCriteria
TriggerCondition (deviceModel,
modelMonitoringCriteria)

getModelMonitoringCriteria
TriggerCondition_Response
(modelTriggerCondition)
createPredefinedTime
TriggerCondition
(deviceItem, deviceModel,
modelTimeTriggerCondition)

createPredefinedTimeTrigger
Condition_Response
(predefinedTime
TriggerCondition)

Device
Model

Monitoring
Criteria

Manager

Device
Item

Trigger
Condition
Manager

 

 



 

 131

 
Use Case Administer Monitoring Criteria Subscription 
Roles Monitoring Criteria Subscription Administrator, Device Item 

Monitoring Criteria Manager, Device Item Monitoring Criteria 
Subscription Manager, DAS Broker. 

Type Primary and essential 
Description A Monitoring Criteria Subscription Administrator administers 

(creates, modifies or removes) subscriptions of interest on certain 
monitoring criteria. The subscriber can chose between being 
automatically uploaded with monitoring reports corresponding to 
such monitoring criteria when available, or receiving a notification of 
the availability of monitoring reports corresponding to subscribed 
monitoring criteria. 

Pre-
conditions 

The monitoring criteria of a device item have been previously 
defined. The Monitoring Criteria Subscription Administrator has 
discovered the device item and its associated monitoring criteria.  

Post-
conditions 

The Monitoring Criteria Subscription Administrator has administered 
certain monitoring criteria. 

Diagram 

Monitoring Criteria
Subscription
Administrator

DAS Broker

Device Item
Monitoring Criteria

Manager

Administer
Monitoring Criteria

Subscription

Device Item
Monitoring Criteria

Subscription
Manager  

Known 
Concepts 

creator :  Creator

<<object>>
Device Item

Monitoring  Criteria

subscribers : SubscriberList

<<object>>
Public Criteria

subscriber : Subscriber

<<object>>
Private Criteria

  

  

<<object>>
Device Item

1 *

has

Monitoring Criteria
Subscription
Administrator

DAS Broker

Device Item
Monitoring Criteria

Subscription
Manager

manages
subscriptions to

*

1

*

1

1

*

communicates
with

communicates
with

Device Item
Monitoring Criteria

Manager

1

1

*

communicates
with

**

administers
subscriptions to

manages

1

 



 

 132

Example 
Scenario 

Monitoring
Criteria

Subscription
Administrator

DAS Broker Device
Item

Monitoring
Criteria

Subscription
Manager

subscribeMonitoringCriteria
(subscriber, deviceItem,
itemMonitoringCriteria)

subscribeMonitoringCriteria
(subscriber, deviceItem,
itemMonitoringCriteria)

subscribeMonitoringCriteria _
Response (monitoringCriteria
Subscription)

subscribeMonitoringCriteria _
Response (monitoringCriteria
Subscription)

Device
Item

Monitoring
Criteria

Manager

addSubscriber
(subscriber, deviceItem,
itemMonitoringCriteria)

addSubscriber_Response  (ok)

createMonitoringCriteria
Subscription (subscriber,
deviceItem, itemMonitoring
Criteria) : monitoringCriteria
Subscription

unsubscribeMonitoringCriteria
(subscriber, deviceItem,
itemMonitoringCriteria)

unsubscribeMonitoringCriteria
(subscriber, deviceItem,
itemMonitoringCriteria)

unsubscribeMonitoringCriteria_
Response (monitoringCriteria
Unsubscription)

unsubscribeMonitoringCriteria_
Response (monitoringCriteria
Unsubscription)

removeSubscriber
(subscriber, deviceItem, itemMonitoringCriteria)

removeSubscriber_Response  (ok)

removeMonitoringCriteria
Subscription (subscriber,
deviceItem, itemMonitoring
Criteria) : monitoringCriteria
Unsubscription

addSubscriber
(subscriber, deviceItem,
itemMonitoringCriteria)

addSubscriber_
Response  (ok)

removeSubscriber
(subscriber, deviceItem,
itemMonitoringCriteria)

removeSubscriber_
Response  (ok)

 

 



 

 133

 
Use Case Access Data 
Roles Observation Requester, Monitoring Report Requester, Observation 

Manager, Monitoring Report Manager, DAS Broker. 
Type Primary and essential. 
Description An Observation Requester obtains, by request, observations 

corresponding to the values of one or more measurement points. A 
Monitoring Report Requester obtains, by request, monitoring reports 
taken on a device item. 

Pre-
conditions 

The Observation Requester has discovered the device item. The 
Monitoring Report Requester has discovered the device item. 

Post-
conditions 

The Observation Requester has obtained the requested observations. 
The Monitoring Report Requester has obtained the requested 
monitoring reports. 

Diagram 

Monitoring Report
Requester

Access
Data

DAS Broker

Monitoring Report
Manager

Observation
Requester

Observation
Manager  

 



 

 134

 
Use Case Access Observations 
Roles Observation Requester, Observation Manager, DAS Broker. 
Type Primary and essential 
Description An Observation Requester obtains, by request, observations 

corresponding to the values of one or more measurement points. The 
system may offer Observation Requesters ways to specify filters to 
access specific observations of measurement points (e.g. the last 
observations, the observations within a specific interval of time, the 
observations that exceed certain values). 

Pre-
conditions 

The Observation Requester has discovered the device item. 

Post-
conditions 

The Observation Requester has obtained the requested observations. 

Diagram 

Observation
Requester

Access
Observations

Observation
Manager

DAS Broker

 
Known 
Concepts 

<<object>>
Phenomenon

Type

<<object>>
Phenomenon

<<object>>
Device Model

1
has

*
has

1

<<object>>
Measurement

Point

has

*

1

*
<<object>>

Measurement
Address

<<object>>
Device Item

1

1characterized by*

has
*

*

1

defined by

isPresent: Boolean

<<object>>
Category

Observation

value : Number

<<object>>
Measurement

time : TimeStamp
quality : DataQualifier

<<object>>
Observation

  

  

1

1

has
*

* taken at

Observation
Requester

DAS Broker Observation
Manager

accesses manages
*

* *

1
1

11

*

communicates
with

communicates
with

 



 

 135

Example 
Scenario 

Observation
Requester

DAS Broker Observation
Manager

getObservations
(measurementAddressList, timeInterval)

getObservations
(measurementAddressList, timeInterval)
getObservations_Response
(observationList)

getObservations_Response
(observationList)

getObservationTimeStamp
(observation)

getObservationTimeStamp
(observation)

getObservationTimeStamp_Response
(timeStamp)

getObservationTimeStamp_Response
(timeStamp)

getObservationQuality
(observation)

getObservationQuality
(observation)

getObservationQuality_Response
(dataQuality)

getObservationQuality_Response
(dataQuality)

getMeasurementValue
(measurement)

getMeasurementValue
(measurement)

getMeasurementValue_Response
(value)

getMeasurementValue_Response
(value)
getCategoryObservationPresence
(categoryObservation)

getCategoryObservationPresence
(categoryObservation)

getCategoryObservationPresence_
Response (isPresent)

getCategoryObservationPresence_
Response (isPresent)

getMeasurements
(measurementAddressList,
valueRangeList, timeInterval)

getMeasurements
(measurementAddressList,
valueRangeList, timeInterval)
getMeasurements_Response
(measurementList)

getMeasurements_Response
(measurementList)

getLastObservations
(measurementAddressList)

getLastObservations
(measurementAddressList)

getLastObservations_Response
(observationList)

getLastObservations_Response
(observationList)

getCategoryObservations
(measurementAddressList ,
phenomenonList, timeInterval)

getCategoryObservations
(measurementAddressList ,
phenomenonList, timeInterval)

getCategoryObservations_Response
(categoryObservationList)

getCategoryObservations_Response
(categoryObservationList)

 
 



 

 136

 
Use Case Access Monitoring Reports 
Roles Monitoring Report Requester, Monitoring Report Manager, DAS 

Broker.  
Type Primary and essential 
Description A Monitoring Report Requester obtains, by request, monitoring 

reports taken on a device item. The system may offer Monitoring 
Report Requesters ways to specify filters to access specific 
monitoring reports. (e.g. the last monitoring report of a certain 
monitoring criteria, the monitoring reports of a certain monitoring 
criteria within a specific interval of time). 

Pre-
conditions 

The Monitoring Report Requester has discovered the device item. 

Post-
conditions 

The Monitoring Report Requester has obtained the requested 
monitoring reports. 

Diagram 

Monitoring Report
Requester

Access
Monitoring

Reports
DAS Broker

Monitoring Report
Manager  

Known 
Concepts 

time : TimeStamp
quality : DataQualifier

<<object>>
Observation

time : TimeStamp

<<object>>
Monitoring

Report

*

*
has

creator :  Creator

<<object>>
Device Item

Monitoring Criteria

<<object>>
Device Item

Trigger Condition

<<object>>
Device Item

Dataset has

has
*1

*
1

<<object>>
Device Item

 Event Monitoring
Criteria

<<object>>
Device Item

Status Monitoring
Criteria

  

  

<<object>>
Device Item

 Composition
Monitoring Criteria

  

*1

characterized
by

Monitoring Report
Requester

DAS Broker Monitoring Report
Manager

accesses

manages

*

* *

1
1

11

*

communicates
with

communicates
with

<<object>>
Device Item

1

*

related to
*
*

has

subscribers :
SubscriberList

<<object>>
Public Criteria

subscriber :
Subscriber

<<object>>
Private Criteria

    

 



 

 137

Example 
Scenario 

Monitoring
Report

Requester

DAS Broker Monitoring
Report

Manager

getMonitoringReports
(monitoringCriteriaList, timeInterval)

getMonitoringReports
(monitoringCriteriaList, timeInterval)
getMonitoringReports_Response
(monitoringReportList)

getMonitoringReports_Response
(monitoringReportList)
getMonitoringReportTimeStamp
(monitoringReport)

getMonitoringReportTimeStamp
(monitoringReport)

getMonitoringReportTimeStamp_
Response (timeStamp)

getMonitoringReportTimeStamp_
Response (timeStamp)

getMonitoringReportObservationList
(monitoringReport)

getMonitoringReportObservationList
(monitoringReport)
getMonitoringReportObservationList_
Response (observationList)

getMonitoringReportObservationList_
Response (observationList)

getMonitoringReportCriteria
(monitoringReport)

getMonitoringReportCriteria
(monitoringReport)

getMonitoringReportCriteria_Response
(monitoringCriteria)

getMonitoringReportCriteria_Response
(monitoringCriteria)

getLastMonitoringReports
(monitoringCriteriaList)

getLastMonitoringReports
(monitoringCriteriaList)

getLastMonitoringReports_Response
(monitoringReportList)

getLastMonitoringReports_Response
(monitoringReportList)

 

 



 

 138

 
Use Case Notify Data Availability 
Roles Monitoring Criteria Subscriber, Monitoring Report Manager, Device 

Item Monitoring Criteria Subscription Manager, DAS Broker. 
Type Primary and essential 
Description A Monitoring Criteria Subscriber receives a notification that new 

data is available. Data are monitoring reports corresponding to 
monitoring criteria subscribed by the Monitoring Criteria Subscriber. 
The notification process is based on the push model. 

Pre-
conditions 

A monitoring report corresponding to certain monitoring criteria 
subscribed by a Monitoring Criteria Subscriber has been recorded. 

Post-
conditions 

The Monitoring Criteria Subscriber has received a notification of 
availability of data. 

Diagram 

Monitoring Criteria
Subscriber

Notify
Data

Availability
DAS Broker

Monitoring Report
Manager

Device Item
Monitoring Criteria

Subscription
Manager  

Known 
Concepts 

manages

<<object>>
Device Item

1

time : TimeStamp

<<object>>
Monitoring

Report

creator :  Creator

<<object>>
Device Item

Monitoring Criteria

*

<<object>>
Device Item

Trigger Condition

<<object>>
Device Item

Dataset has

has
*1

*

1

<<object>>
Device Item

 Event Monitoring
Criteria

<<object>>
Device Item

Status Monitoring
Criteria

  

  

<<object>>
Device Item

 Composition
Monitoring Criteria

  

related to
*
*

*1

characterized
by

has

subscribers :
SubscriberList

<<object>>
Public Criteria

subscriber :
Subscriber

<<object>>
Private Criteria

  

Monitoring
Criteria

Subscriber

DAS Broker

Monitoring
Report

Manager

*

1

*

1

1

*

communicates
with

communicates
with

Device Item
Monitoring

 Criteria
Subscription

Manager

1

1

*

communicates
with

**

is notified of

manages
subscriptions to

*

  



 

 139

Example 
Scenario 

Monitoring
Criteria

Subscriber

DAS Broker Device
Item

Monitoring
Criteria

Subscription
Manager

notify (subscriber,
monitoringCriteriaList)

notify (subscriber,
monitoringCriteriaList)
notify _Response (ack) notify _Response (ack)

Monitoring
Report

Manager

getMonitoringReports
(monitoringCriteriaList, timeInterval)

getMonitoringReports_Response
(monitoringReportList)

checkSubscribedMonitoring
Criteria  (subscriber,
monitoringReportLists)
: monitoringCriteriaList

getMonitoringReports
(monitoringCriteriaList, timeInterval)

getMonitoringReports_Response
(monitoringReportList)

 

 



 

 140

 
Use Case Upload Data 
Roles Monitoring Criteria Subscriber, Monitoring Report Manager, Device 

Item Monitoring Criteria Subscription Manager, DAS Broker. 
Type Primary and essential 
Description Monitoring Criteria Subscribers receive monitoring reports 

corresponding to monitoring criteria subscribed by them. 
Pre-
conditions 

A monitoring report corresponding to certain monitoring criteria 
subscribed by a Monitoring Criteria Subscriber has been recorded. 

Post-
conditions 

The Monitoring Criteria Subscriber has received the monitoring 
report. 

Diagram 

Monitoring Criteria
Subscriber

Upload
Data

DAS Broker

Monitoring Report
Manager

Device Item
Monitoring Criteria

Subscription
Manager  

Known 
Concepts 

manages

<<object>>
Device Item

1

time : TimeStamp

<<object>>
Monitoring

Report

creator :  Creator

<<object>>
Device Item

Monitoring Criteria

*

<<object>>
Device Item

Trigger Condition

<<object>>
Device Item

Dataset has

has
*1

*

1

<<object>>
Device Item

 Event Monitoring
Criteria

<<object>>
Device Item

Status Monitoring
Criteria

  

  

<<object>>
Device Item

 Composition
Monitoring Criteria

  

related to
*
*

*1

characterized
by

has

subscribers :
SubscriberList

<<object>>
Public Criteria

subscriber :
Subscriber

<<object>>
Private Criteria

  

Monitoring
Criteria

Subscriber

DAS Broker

Monitoring
Report

Manager

*

1

*

1

1

*

communicates
with

communicates
with

Device Item
Monitoring

 Criteria
Subscription

Manager

1

1

*

communicates
with

**

is uploaded with

manages
subscriptions to

*

  



 

 141

Example 
Scenario 

Monitoring
Criteria

Subscriber

DAS Broker Device
Item

Monitoring
Criteria

Subscription
Manager

upload (subscriber,
monitoringReportList)

upload (subscriber,
monitoringReportList)

upload_Response
(ack) upload_Response (ack)

Monitoring
Report

Manager

getMonitoringReports
(monitoringCriteriaList, timeInterval)

getMonitoringReports_Response
(monitoringReportList) checkSubscribedMonitoring

Criteria (subscriber,
monitoringReportLists)
: monitoringReportList

getMonitoringReports
(monitoringCriteriaList, timeInterval)

getMonitoringReports_Response
(monitoringReportList)

 

 



 

 142



 

 143

Appendix C DAS Elementary Roles 

In this appendix we present the elementary roles that take part in a data 
acquisition system: 

 

Error! No table of contents entries found.



 

 144

 
Role Item Information Requester 
Description An Item Information Requester obtains, by request, the information 

(serial number, manufacturer, device model, list of measurement 
addresses, and the measurement points associated to each 
measurement address) specific to device items and their current 
composition (parent device items, child device items, and functional 
device models). 

Policies The device item composition may be discovered only if the device 
item is a complex device item. 

Interfaces 

getSerialNumber_Response (SerialNumber)
getManufacturer_Response (Manufacturer)
getModel_Response (DeviceModel)
getMeasurementAddressList_Response (MeasurementAddressList)
getMeasurementPoint _Response (MeasurementPoint)

<<interface>>
IDiscoverItemResponse

getParentItem_Response (DeviceItem)
getChildItemList_Response (DeviceItemList)
getFunctionalModel_Response (FunctionalDeviceModel )

<<interface>>
IDiscoverItemCompositionResponse

 

Known 
Concepts 

    

Complex
Device Item

Single
Device  Item

manufacturer : Manufacturer
serialNumber: SerialNumber

Device Item

0..1

1..*

composed of
parent

child

installed
inDevice

Address
Functional

Device Model
1*

Measurement
Address

Device Model

1

1
characterized by

*

has
*

*

1

Measurement
Pointdefined by

Myself

discovers
1 *

discovers
composition of

1
*

 

 



 

 145

 
Role Model Information Requester 
Description A Model Information Requester obtains, by request, the information 

(modelID, designer, measurement points, measurement type and 
phenomenon type associated with a measurement point, and 
phenomenon list of a phenomenon type) specific to device models 
and their composition information. 

Policies The device model composition may be discovered only if the device 
model is a complex device model. 

Interfaces 

getModelID _Response (ModelID)
getDesigner_Response (Designer)
getMeasurementPointList _Response (MeasurementPointList)
getPhenomenonType_Response (PhenomenonType)
getPhenomenonList_Response (PhenomenonList)
getMeasurementType_Response (MeasurementType)

<<interface>>
IDiscoverModelResponse

getParentModel_Response (DeviceModel)
getChildModelList_Response (DeviceModelList)
getFunctionalModel_Response (FunctionalDeviceModel)

<<interface>>
IDiscoverModelCompositionResponse

 

Known 
Concepts 

physicalNormalRange : Range
phenomenonTypeUnits : Unit

Phenomenon Type

qualitativeRange : Range

Phenomenon

designer : Designer
modelID : ModelID

Device Model

1

has

*

has
1

Measurement
Point

has
*

1

sampleRange : Range
physicalRange : Range
mapping : MappingPolicy
measurementUnits : Unit

Measurement Type

has
* 1

*

    

Complex
Device Model

Single
Device Model

1..*

1composed of

child

parent

function : Function

Functional
Device Model

  
Myself

discovers

1*

discovers
composition of

1
*

 

 



 

 146

 
Role Dataset Information Requester 
Description A Dataset Information Requester obtains, by request, the datasets 

defined on device items and device models. 
Policies All device model datasets and device item datasets are public. 

Therefore, a Dataset Information Requester may discover all of them. 
Interfaces 

getModelDatasetList_Response (ModelDatasetList)
getModelDatasetMeasurementPointList_Response (MeasurementPointList)

<<interface>>
IDiscoverModelDatasetResponse

getItemDatasetList_Response (ItemDatasetList)
getItemDatasetMeasurementAddressList_Response  (MeasurementAddressList)
getPredefinedModelDataset_Response (ModelDataset)

<<interface>>
IDiscoverItemDatasetResponse

 

Known 
Concepts Device Model

Measurement
Point

Measurement
Address

Device Item

* *
groups

<<abstract>>
Device Item

Dataset

* Custom
Dataset

Predefined
Dataset

  

  * 1defined by

has

groups

Device Model
Dataset

*

1

*

has

11 * * 1
hashas

characterizes by 1*

defined by
* 1

*

Myself
discovers

1

*

1

*

discovers  

 



 

 147

 
Role Trigger Condition Information Requester 
Description A Trigger Condition Information Requester obtains, by request, the 

trigger conditions defined on device items and device models. 
Policies All device model trigger conditions and device item trigger 

conditions are public. Therefore, a Trigger Condition Information 
Requester may discover all of them. 

Interfaces 

getItemTriggerConditionList_Response (ItemTriggerConditionList)
getItemTimeCondition _Response (TimeCondition)
getItemEventConditionSetList _Response (ItemEventConditionSetList)
getItemEventConditionList _Response (ItemEventConditionList)
getItemEventConditionMeasurementAddress_Response (MeasurementAddress)
getItemEventConditionFunction_Response (Function)
getItemEventConditionPhenomenon_Response (Phenomenon)
getPredefinedModelTriggerCondition_Response (ModelTriggerCondition)

<<interface>>
IDiscoverItemTriggerConditionResponse

getModelTriggerConditionList _Response (ModelTriggerConditionList)
getModelTimeCondition_Response (TimeCondition)
getModelEventConditionSetList_Response (ModelEventConditionSetList)
getModelEventConditionList _Response (ModelEventConditionList)
getModelEventConditionMeasurementPoint_Response (MeasurementPoint)
getModelEventConditionFunction_Response (Function)
getModelEventConditionPhenomenon_Response (Phenomenon)

<<interface>>
IDiscoverModelTriggerConditionResponse

 
Known 
Concepts 

Device ModelDevice Item

1

time : TimeCondition

Device Item Time
Trigger Condition

isTrue : Boolean

Device Item Event
Trigger Condition

    

<<abstract>>
Device Item

Trigger Condition

Custom
Trigger Condition

Predefined
Trigger Condition  

  

* 1

defined
by

time : TimeCondition

Device Model Time
Trigger Condition

isTrue : Boolean

Device Model Event
Trigger Condition

    

<<abstract>>
Device Model

Trigger Condition

1
*

has

*
has

1* characterized by

Phenomenon

Measurement
Point 1

1

isTrue : Boolean

Device Model
Event

Condition Set

triggered by

*

*

*

Device Model
Boolean Event

Condition

f(): Boolean

 Device Model
Function Event

Condition

isTrue : Boolean

<<abstract>>
Device Model

Event Condition

    

triggered by

*

*

Measurement
Address1

1

isTrue : Boolean

Device Item
Event

Condition Set

triggered by

*

*

*

Device Item
Boolean Event

Condition

f(): Boolean

 Device Item
Function Event

Condition

isTrue : Boolean

<abstract>>
Device Item

Event Condition

    

triggered by

*

*

applied
to

1*

defined
by

applied
to

*

applied
to

applied
to

*

Myselfdiscovers 1

*

1

*

discovers

 
 



 

 148

 
Role Monitoring Criteria Information Requester 
Description A Monitoring Criteria Information Requester obtains, by request, the 

monitoring criteria defined on device items and device models.  
Policies Only the creator of a device item monitoring criteria defined as 

private can discover such monitoring criteria. Device model 
monitoring criteria, and device item monitoring criteria defined as 
public, can be discovered by anyone. 

Interfaces 

getItemMonitoringCriteriaList_Response (ItemMonitoringCriteriaList)
getItemPublicMonitoringCriteriaList _Response (ItemPublicMonitoringCriteriaList)
getItemPrivateMonitoringCriteriaList _Response (ItemPrivateMonitoringCriteriaList)
getItemMonitoringCriteriaCreator _Response (ItemMonitoringCriteriaCreator)
getItemMonitoringCriteriaSubscriberList_Response (ItemMonitoringCriteriaSubscriberList)
getItemMonitoringCriteriaTriggerCondition_Response (ItemTriggerCondition)
getItemCompositionMonitoringCriteriaList_Response (ItemCompositionMonitoringCriteriaList)
getItemCompositionMonitoringCriteriaItemList_Response (DeviceItemList)
getItemEventMonitoringCriteriaList_Response (ItemEvenMonitoringCriteriaList)
getItemStatusMonitoringCriteriaList_Response (ItemStatusMonitoringCriteriaList)
getItemStatusMonitoringCriteriaDataset_Response (ItemDataset)
getPredefinedModelMonitoringCriteria_Response (ModelMonitoringCriteria)

<<interface>>
IDiscoverItemMonitoringCriteriaResponse

getModelMonitoringCriteriaList _Response (ModelMonitoringCriteriaList)
getModelMonitoringCriteriaTriggerCondition_Response (ModelTriggerCondition)
getModelCompositionMonitoringCriteriaList _Response (ModelCompositionMonitoringCriteriaList)
getModelCompositionMonitoringCriteriaModelList_Response (DeviceModelList)
getModelEventMonitoringCriteriaList_Response (ModelEvenMonitoringCriteriaList)
getModelStatusMonitoringCriteriaList _Response (ModelStatusMonitoringCriteriaList)
getModelStatusMonitoringCriteriaDataset_Response (ModelDataset)

<<interface>>
IDiscoverModelMonitoringCriteriaResponse

 

Known 
Concepts 

Device ModelDevice Item

*

1

creator :  Creator

<<abstract>>
Device Item
Monitoring

Criteria

subscribers :
SubscriberList

Public Criteria

subscriber :
Subscriber

Private
Criteria

    

  

Predefined
Monitoring

Criteria

  *

1

defined
by

*

has

<<abstract>>
Device Item

Trigger
Condition<<abstract>>

Device Item
Dataset

has

has

*
1

*

1

Device Item
 Event

Monitoring
Criteria

Device Item
Status

Monitoring
Criteria

  

  

Device Item
 Composition

Monitoring
Criteria

  

related to
*

*

<<abstract>>
Device Model

Monitoring
Criteria

*

<<abstract>>
Device Model

Trigger
Condition

Device Model
Dataset

has

has

*
1

*

1

Device Model
Event

Monitoring
Criteria

Device Model
Status

Monitoring
Criteria

  

  

Device Model
Composition
Monitoring

Criteria

  

related to
*

1has

Custom
Monitoring

Criteria

Myself
discovers

1

*

1

*

discovers

 

 



 

 149

 
Role Device Item Manager 
Description A Device Item Manager manages device items. It provides the 

information (serial number, manufacturer, device model, list of 
measurement addresses, and the measurement points associated to 
each measurement address) specific to a device item. 

Policies A Device Item Manager provides the composition information of 
only complex device items. 

Interfaces 

getSerialNumber (DeviceItem)
getManufacturer (DeviceItem)
getModel (DeviceItem)
getMeasurementAddressList (DeviceItem)
getMeasurementPoint (DeviceItem, MeasurementAddress)
getMeasurementAddressList (DeviceItem, MeasurementPointList)

<<interface>>
IDiscoverItem

getParentItem (DeviceItem)
getChildItemList (DeviceItem)
getFunctionalModel (DeviceItem)
getChildItemList (DeviceItem, DeviceModelList)

<<interface>>
IDiscoverItemComposition

 

Known 
Concepts 

    

Complex
Device Item

Single
Device  Item

manufacturer : Manufacturer
serialNumber: SerialNumber

Device Item

0..1

1..*

composed of
parent

child

installed
inDevice

Address
Functional

Device Model
1*

Measurement
Address

Device Model

1

1
characterized by

*

has
*

*

1

Measurement
Pointdefined by

Myself
manages
1 *

 

 



 

 150

 
Role Device Model Manager 
Description A Device Model Manager manages device models. It provides the 

information (modelID, designer, measurement points, measurement 
type and phenomenon type associated with a measurement point, and 
the phenomenon list of a phenomenon type) specific to a device 
model and its composition information. 

Policies A Device Model Manager provides the composition information of 
only complex device models. 

Interfaces 

getModelID (DeviceModel)
getDesigner (DeviceModel)
getMeasurementPointList (DeviceModel)
getPhenomenonType (DeviceModel, MeasurementPoint)
getPhenomenonList (DeviceModel, PhenomenonType)
getMeasurementType (DeviceModel, MeasurementPoint)

<<interface>>
IDiscoverModel

getParentModel (DeviceModel)
getChildModelList (DeviceModel)
getFunctionalModel (DeviceModel)

<<interface>>
IDiscoverModelComposition

 

Known 
Concepts 

physicalNormalRange : Range
phenomenonTypeUnits : Unit

Phenomenon Type

qualitativeRange : Range

Phenomenon

designer : Designer
modelID : ModelID

Device Model

1 has

*

has
1

Measurement
Point

has*
1

sampleRange : Range
physicalRange : Range
mapping : MappingPolicy
measurementUnits : Unit

Measurement Type

has
* 1

*

    

Complex
Device Model

Single
Device Model

1..*

1composed of

child

parent

function : Function

Functional Device
Model

  Myself
manages

1*

 

 



 

 151

 
Role Device Item Dataset Manager 
Description A Device Item Dataset Manager manages datasets defined on device 

items. It provides the information corresponding to these datasets. 
Policies All device item datasets are public. 
Interfaces 

getItemDatasetList  (DeviceItem)
getItemDatasetMeasurementAddressList (DeviceItem, ItemDataset)
getPredefinedModelDataset (DeviceItem, PredefinedDataset)

<<interface>>
IDiscoverItemDataset

createCustomDataset (DeviceItem, MeasurementAddressList)

<<interface>>
ICreateCustomDataset

getModelDatasetList_Response (ModelDatasetList)
getModelDatasetMeasurementPointList_Response (MeasurementPointList)

<<interface>>
IDiscoverModelDatasetResponse

createPredefinedDataset (DeviceItem, DeviceModel, ModelDataset)
createPredefinedDataset (DeviceItem, DeviceModel,  ModelDataset, MeasurementAddressList)

 :  PredefinedDataset

<<interface>>
ICreatePredefinedDataset

getSerialNumber_Response (SerialNumber)
getManufacturer_Response (Manufacturer)
getModel_Response (DeviceModel)
getMeasurementAddressList_Response (MeasurementAddressList)
getMeasurementPoint _Response (MeasurementPoint)

<<interface>>
IDiscoverItemResponse

 

Known 
Concepts Device Model

Measurement
Point

Measurement
Address

Device Item

* *
groups

<<abstract>>
Device Item

Dataset

* Custom
Dataset

Predefined
Dataset

  

  * 1defined by

has

groups

Device Model
Dataset

*

1

*

has

11 * * 1
hashas

characterizes by 1*

defined by
* 1

*

Myself

manages
1

*

 
 



 

 152

 
Role Device Model Dataset Manager 
Description A Device Model Dataset Manager manages datasets defined on 

device models. It provides the information corresponding to these 
datasets. 

Policies All device model datasets are public. 
Interfaces 

getModelDatasetList  (DeviceModel)
getModelDatasetMeasurementPointList  (DeviceModel, ModelDataset)

<<interface>>
IDiscoverModelDataset

 

Known 
Concepts Device ModelMeasurement

Point

*
has

groups Device Model
Dataset

*

1

* 1
has

*

Myself

manages
1

*

 

 



 

 153

 
Role Device Item Trigger Condition Manager 
Description A Device Item Trigger Condition Manager manages trigger 

conditions defined on device items. It provides the information 
corresponding to these trigger conditions. 

Policies All device item trigger conditions are public. 
Interfaces 

getItemTriggerConditionList (DeviceItem)
getItemTimeCondition (DeviceItem, ItemTimeTriggerCondition)
getItemEventConditionSetList (DeviceItem, ItemEventTriggerCondition)
getItemEventConditionList (DeviceItem, ItemEventConditionSet)
getItemEventConditionMeasurementAddress (DeviceItem, ItemEventCondition)
getItemEventConditionFunction (DeviceItem, ItemFunctionEventCondition)
getItemEventConditionPhenomenon (DeviceItem, ItemBooleanEventCondition)
getPredefinedModelTriggerCondition (DeviceItem, PredefinedTriggerCondition)

<<interface>>
IDiscoverItemTriggerCondition

createCustomTimeTriggerCondition (DeviceItem, TimeCondition)
createCustomEventTriggerCondition (DeviceItem, Boolean, ItemEventConditionSetList)
createItemBooleanEventCondition (DeviceItem, Boolean, MeasurementAddress, Phenomenon)
createItemEventConditionSet (DeviceItem, Boolean, ItemEventConditionList)
createItemFunctionEventCondition (DeviceItem, Boolean, MeasurementAddress, Function)
createItemBooleanEventCondition (DeviceItem, Boolean, MeasurementAddress, Phenomenon)

: ItemBooleanEventCondition
createItemFunctionEventCondition (DeviceItem, Boolean, MeasurementAddress, Function)

: ItemFunctionEventCondition
createItemEventConditionSet (DeviceItem, Boolean, ItemEventConditionList)

: ItemEventConditionSet

<<interface>>
ICreateCustomTriggerCondition

getModelTriggerConditionList _Response (ModelTriggerConditionList)
getModelTimeCondition_Response (TimeCondition)
getModelEventConditionSetList_Response (ModelEventConditionSetList)
getModelEventConditionList _Response (ModelEventConditionList)
getModelEventConditionMeasurementPoint_Response (MeasurementPoint)
getModelEventConditionFunction_Response (Function)
getModelEventConditionPhenomenon_Response (Phenomenon)

<<interface>>
IDiscoverModelTriggerConditionResponse

getSerialNumber_Response (SerialNumber)
getManufacturer_Response (Manufacturer)
getModel_Response (DeviceModel)
getMeasurementAddressList_Response (MeasurementAddressList)
getMeasurementPoint _Response (MeasurementPoint)

<<interface>>
IDiscoverItemResponse

createPredefinedTimeTriggerCondition (DeviceItem, DeviceModel, ModelTimeTriggerCondition)
createPredefinedTimeTriggerCondition (DeviceItem, DeviceModel, ModelTimeTriggerCondition,

TimeCondition) : PredefinedTimeTriggerCondition
createPredefinedEventTriggerCondition (DeviceItem, DeviceModel, ModelEventTriggerCondition)
createPredefinedEventTriggerCondition (DeviceItem, DeviceModel, ModelEventTriggerCondition,

Boolean, ItemEventConditionSetList) : PredefinedEventTriggerCondition

<<interface>>
ICreatePredefinedTriggerCondition

 



 

 154

Known 
Concepts Device ModelDevice Item

1

time : TimeCondition

Device Item Time
Trigger Condition

isTrue : Boolean

Device Item Event
Trigger Condition

    

<<abstract>>
Device Item

Trigger Condition

Custom
Trigger Condition

Predefined
Trigger Condition  

  

* 1

defined
by

time : TimeCondition

Device Model Time
Trigger Condition

isTrue : Boolean

Device Model Event
Trigger Condition

    

<<abstract>>
Device Model

Trigger Condition

1
*

has

*
has

1* characterized by

Phenomenon

Measurement
Point 1

1

isTrue : Boolean

Device Model
Event

Condition Set

triggered by

*

*

*

Device Model
Boolean Event

Condition

f(): Boolean

 Device Model
Function Event

Condition

isTrue : Boolean

<<abstract>>
Device Model

Event Condition

    

triggered by

*

*

Measurement
Address1

1

isTrue : Boolean

Device Item
Event

Condition Set

triggered by

*

*

*

Device Item
Boolean Event

Condition

f(): Boolean

 Device Item
Function Event

Condition

isTrue : Boolean

<abstract>>
Device Item

Event Condition

    

triggered by

*

*

applied
to

1*

defined
by

applied
to

*

applied
to

applied
to

*

Myself

manages

1

*

 



 

 155

 
Role Device Model Trigger Condition Manager 
Description A Device Model Trigger Condition Manager manages trigger 

conditions defined on device models. It provides the information 
corresponding to these trigger conditions. 

Policies All device model trigger conditions are public. 
Interfaces 

getModelTriggerConditionList (DeviceModel)
getModelTimeCondition (DeviceModel, ModelTimeTriggerCondition)
getModelEventConditionSetList (DeviceModel, ModelEventTriggerCondition)
getModelEventConditionList (DeviceModel, ModelEventConditionSet)
getModelEventConditionMeasurementPoint (DeviceModel, ModelEventCondition)
getModelEventConditionFunction (DeviceModel, ModelFunctionEventCondition)
getModelEventConditionPhenomenon (DeviceModel, ModelBooleanEventCondition)

<<interface>>
IDiscoverModelTriggerCondition

 

Known 
Concepts Device Model

1

time : TimeCondition

Device Model Time
Trigger Condition

isTrue : Boolean

Device Model Event
Trigger Condition

    

<<abstract>>
Device Model

Trigger Condition

*
has

Phenomenon

Measurement
Point 1

1

isTrue : Boolean

Device Model
Event

Condition Set

triggered by

*

*

*

Device Model
Boolean Event

Condition

f(): Boolean

 Device Model
Function Event

Condition

isTrue : Boolean

<<abstract>>
Device Model

Event Condition

    

triggered by

*

*

applied
to

applied
to

*

Myself
manages
1 *

 

 



 

 156

 
Role Device Item Monitoring Criteria Manager 
Description A Device Item Monitoring Criteria Manager manages monitoring 

criteria defined on device items. It provides the information 
corresponding to these monitoring criteria. 

Policies Device Item Monitoring Criteria Managers provide device item 
monitoring criteria defined as public to anyone, and device item 
monitoring criteria defined as private only to the creators of such 
monitoring criteria. 

Interfaces 

getItemMonitoringCriteriaList (DeviceItem)
getItemPublicMonitoringCriteriaList (DeviceItem)
getItemPrivateMonitoringCriteriaList (DeviceItem, MonitoringCriteriaCreatorList)
getItemMonitoringCriteriaCreator (DeviceItem, ItemMonitoringCriteria)
getItemMonitoringCriteriaSubscriberList (DeviceItem, ItemMonitoringCriteria)
getItemMonitoringCriteriaTriggerCondition (DeviceItem, ItemMonitoringCriteria)
getItemCompositionMonitoringCriteriaList (DeviceItem)
getItemCompositionMonitoringCriteriaItemList (DeviceItem, ItemCompositionMonitoringCriteria)
getItemEventMonitoringCriteriaList (DeviceItem)
getItemStatusMonitoringCriteriaList (DeviceItem)
getItemStatusMonitoringCriteriaDataset (DeviceItem, ItemStatusMonitoringCriteria)
getPredefinedModelMonitoringCriteria (DeviceItem, PredefinedMonitoringCriteria)

<<interface>>
IDiscoverItemMonitoringCriteria

createCustomCompositionMonitoringCriteria (MonitoringCriteriaCreator, AccessType, DeviceItem,
DeviceItemList, ItemTriggerCondition)

createCustomEventMonitoringCriteria (MonitoringCriteriaCreator, AccessType, DeviceItem,
ItemEventTriggerCondition)

createCustomStatusMonitoringCriteria (MonitoringCriteriaCreator, AccessType, DeviceItem, ItemDataset,
ItemTriggerCondition)

<<interface>>
ICreateCustomMonitoringCriteria

createPredefinedCompositionMonitoringCriteria (MonitoringCriteriaCreator, AccessType, DeviceItem,
DeviceModel, ModelCompositionMonitoringCriteria)

createPredefinedEventMonitoringCriteria (MonitoringCriteriaCreator, AccessType, DeviceItem,
DeviceModel, ModelEventMonitoringCriteria)

createPredefinedStatusMonitoringCriteria (MonitoringCriteriaCreator, AccessType, DeviceItem,
DeviceModel, ModelStatusMonitoringCriteria)

<<interface>>
ICreatePredefinedMonitoringCriteria

getParentItem_Response (DeviceItem)
getChildItemList_Response (DeviceItemList)
getFunctionalModel_Response (FunctionalDeviceModel)

<<interface>>
IDiscoverItemCompositionResponse

getModelMonitoringCriteriaList _Response (ModelMonitoringCriteriaList)
getModelMonitoringCriteriaTriggerCondition_Response (ModelTriggerCondition)
getModelCompositionMonitoringCriteriaList _Response (ModelCompositionMonitoringCriteriaList)
getModelCompositionMonitoringCriteriaModelList_Response (DeviceModelList)
getModelEventMonitoringCriteriaList_Response (ModelEvenMonitoringCriteriaList)
getModelStatusMonitoringCriteriaList _Response (ModelStatusMonitoringCriteriaList)
getModelStatusMonitoringCriteriaDataset_Response (ModelDataset)

<<interface>>
IDiscoverModelMonitoringCriteriaResponse

createPredefinedTimeTriggerCondition_Response (PredefinedTimeTriggerCondition)
createPredefinedEventTriggerCondition_Response (PredefinedEventTriggerCondition)

<<interface>>
ICreatePredefinedTriggerConditionResponse



 

 157

createPredefinedDataset_Response (PredefinedDataset)

<<interface>>
ICreatePredefinedDatasetResponse

addSubscriber (MonitorinCriteriaSubscriber, DeviceItem, ItemMonitoringCriteria)
removeSubscriber (MonitorinCriteriaSubscriber, DeviceItem, ItemMonitoringCriteria)

<<interface>>
IManageMonitoringCriteriaSubscriber

 

Known 
Concepts 

Device ModelDevice Item

*

1

creator :  Creator

<<abstract>>
Device Item
Monitoring

Criteria

subscribers :
SubscriberList

Public Criteria

subscriber :
Subscriber

Private
Criteria

    

  

Predefined
Monitoring

Criteria

  *

1

defined
by

*

has

<<abstract>>
Device Item

Trigger
Condition<<abstract>>

Device Item
Dataset

has

has

*
1

*

1

Device Item
 Event

Monitoring
Criteria

Device Item
Status

Monitoring
Criteria

  

  

Device Item
 Composition

Monitoring
Criteria

  

related to
*

*

<<abstract>>
Device Model

Monitoring
Criteria

*

<<abstract>>
Device Model

Trigger
Condition

Device Model
Dataset

has

has

*
1

*

1

Device Model
Event

Monitoring
Criteria

Device Model
Status

Monitoring
Criteria

  

  

Device Model
Composition
Monitoring

Criteria

  

related to
*

1has

Custom
Monitoring

Criteria

Myself
manages

1

*

 

 



 

 158

 
Role Device Model Monitoring Criteria Manager 
Description A Device Model Monitoring Criteria Manager manages monitoring 

criteria defined on device models. It provides the information 
corresponding to these monitoring criteria. 

Policies All device model monitoring criteria are public. 
Interfaces 

getModelMonitoringCriteriaList (DeviceModel)
getModelMonitoringCriteriaTriggerCondition (DeviceModel, ModelMonitoringCriteria)
getModelCompositionMonitoringCriteriaList (DeviceModel)
getModelCompositionMonitoringCriteriaModelList (DeviceModel, ModelCompositionMonitoringCriteria)
getModelEventMonitoringCriteriaList (DeviceModel)
getModelStatusMonitoringCriteriaList (DeviceModel)
getModelStatusMonitoringCriteriaDataset (DeviceModel, ModelStatusMonitoringCriteria)

<<interface>>
IDiscoverModelMonitoringCriteria

 

Known 
Concepts Device Model

*

<<abstract>>
Device Model

Monitoring
Criteria

*

<<abstract>>
Device Model

Trigger
Condition

Device Model
Dataset

has

has

*
1

*

1

Device Model
Event

Monitoring
Criteria

Device Model
Status

Monitoring
Criteria

  

  

Device Model
Composition
Monitoring

Criteria

  

related to
*

1has

Myself
manages
1 *

 

 



 

 159

 
Role Dataset Administrator 
Description A Dataset Administrator administers (creates, modifies or removes) 

datasets of device items. A Dataset Administrator can define an 
entirely new dataset for a device item (custom dataset), or define a 
dataset for a device item from a dataset predefined on a device model 
(predefined dataset). 

Policies All device item datasets are public 
Interfaces 

createCustomDataset_Response (CustomDataset)

<<interface>>
ICreateCustomDatasetResponse

createPredefinedDataset_Response (PredefinedDataset)

<<interface>>
ICreatePredefinedDatasetResponse

 

Known 
Concepts Device Model

Measurement
Point

Measurement
Address

Device Item

* *
groups

<<abstract>>
Device Item

Dataset

* Custom
Dataset

Predefined
Dataset

  

  * 1defined by

has

groups

Device Model
Dataset

*

1

*

has

11 * * 1
hashas

characterizes by 1*

defined by
* 1

*

Myself

administers
1

*

 

 



 

 160

 
Role Trigger Condition Administrator 
Description A Trigger Condition Administrator administers (creates, modifies or 

removes) trigger conditions of device items. A trigger condition can 
be based on time or based on an event. A Trigger Condition 
Administrator can define an entirely new trigger condition for a 
device item (custom trigger condition), or define a trigger condition 
from a trigger condition predefined on a device model (predefined 
trigger condition). 

Policies All device item trigger conditions are public. 
Interfaces 

createCustomTimeTriggerCondition_Response (CustomTimeTriggerCondition)
createItemBooleanEventCondition_Response (ItemBooleanEventCondition)
createItemFunctionEventCondition_Response (ItemFunctionEventCondition)
createItemEventConditionSet_Response (ItemEventConditionSet)
createCustomTimeTriggerCondition_Response (CustomEventTriggerCondition)

<<interface>>
ICreateCustomTriggerConditionResponse

createPredefinedTimeTriggerCondition_Response (PredefinedTimeTriggerCondition)
createPredefinedEventTriggerCondition_Response (PredefinedEventTriggerCondition)

<<interface>>
ICreatePredefinedTriggerConditionResponse

 

Known 
Concepts Device ModelDevice Item

1

time : TimeCondition

Device Item Time
Trigger Condition

isTrue : Boolean

Device Item Event
Trigger Condition

    

<<abstract>>
Device Item

Trigger Condition

Custom
Trigger Condition

Predefined
Trigger Condition  

  

* 1

defined
by

time : TimeCondition

Device Model Time
Trigger Condition

isTrue : Boolean

Device Model Event
Trigger Condition

    

<<abstract>>
Device Model

Trigger Condition

1
*

has

*
has

1* characterized by

Phenomenon

Measurement
Point 1

1

isTrue : Boolean

Device Model
Event

Condition Set

triggered by

*

*

*

Device Model
Boolean Event

Condition

f(): Boolean

 Device Model
Function Event

Condition

isTrue : Boolean

<<abstract>>
Device Model

Event Condition

    

triggered by

*

*

Measurement
Address1

1

isTrue : Boolean

Device Item
Event

Condition Set

triggered by

*

*

*

Device Item
Boolean Event

Condition

f(): Boolean

 Device Item
Function Event

Condition

isTrue : Boolean

<abstract>>
Device Item

Event Condition

    

triggered by

*

*

applied
to

1*

defined
by

applied
to

*

applied
to

applied
to

*

Myself

administers

1

*

 



 

 161

 
Role Monitoring Criteria Administrator 
Description A Monitoring Criteria Administrator administers (creates, modifies 

or removes) monitoring criteria of a device item. Monitoring Criteria 
Administrators can define entirely new monitoring criteria for a 
device item, such monitoring criteria being called custom, or define 
monitoring criteria from monitoring criteria predefined on a device 
model, such monitoring criteria being called predefined. Monitoring 
Criteria Administrators can define device item monitoring criteria as 
public, meaning that any supervisor of the system can access 
monitoring reports of such monitoring criteria, or private, meaning 
that only the creator of the monitoring criteria is allowed to access 
monitoring reports corresponding to such monitoring criteria. 

Policies A Monitoring Criteria Administrator can administer all device item 
monitoring criteria. 

Interfaces 

createCustomCompositionMonitoringCriteria_Response (CustomCompositionMonitoringCriteria)
createCustomEventMonitoringCriteria_Response (CustomEventMonitoringCriteria)
createCustomStatusMonitoringCriteria_Response (CustomStatusMonitoringCriteria)

<<interface>>
ICreateCustomMonitoringCriteriaResponse

createPredefinedCompositionMonitoringCriteria_Response (PredefinedCompositionMonitoringCriteria)
createPredefinedEventMonitoringCriteria_Response (PredefinedEventMonitoringCriteria)
createPredefinedStatusMonitoringCriteria_Response (PredefinedStatusMonitoringCriteria)

<<interface>>
ICreatePredefinedMonitoringCriteriaResponse

 

Known 
Concepts 

Device ModelDevice Item

*

1

creator :  Creator

<<abstract>>
Device Item
Monitoring

Criteria

subscribers :
SubscriberList

Public Criteria

subscriber :
Subscriber

Private
Criteria

    

  

Predefined
Monitoring

Criteria

  *

1

defined
by

*

has

<<abstract>>
Device Item

Trigger
Condition<<abstract>>

Device Item
Dataset

has

has

*
1

*

1

Device Item
 Event

Monitoring
Criteria

Device Item
Status

Monitoring
Criteria

  

  

Device Item
 Composition

Monitoring
Criteria

  

related to
*

*

<<abstract>>
Device Model

Monitoring
Criteria

*

<<abstract>>
Device Model

Trigger
Condition

Device Model
Dataset

has

has

*
1

*

1

Device Model
Event

Monitoring
Criteria

Device Model
Status

Monitoring
Criteria

  

  

Device Model
Composition
Monitoring

Criteria

  

related to
*

1has

Custom
Monitoring

Criteria

Myself
administers

1

*

 

 



 

 162

 
Role Monitoring Criteria Subscription Administrator 
Description A Monitoring Criteria Subscription Administrator administers 

(creates, modifies or removes) subscriptions of interest on certain 
monitoring criteria. 

Policies Device item monitoring criteria defined as public can be subscribed 
by anyone, and device item monitoring criteria defined as private can 
be subscribed only by the creator of such monitoring criteria. 

Interfaces 

subscribeMonitoringCriteria_Response (MonitoringCriteriaSubscription)
unsubscribeMonitoringCriteria_Response (MonitoringCriteriaUnsubscription)

<<interface>>
IAdministerMonitoringCriteriaSubscriptionResponse

 
Known 
Concepts 

creator :  Creator

<<abstract>>
Device Item

Monitoring  Criteria

subscribers : SubscriberList

Public Criteria

subscriber : Subscriber

Private Criteria

  

  

Device Item
1 *

has

Myself

administers
subscriptions to

1

*

 
 



 

 163

 
Role Device Item Monitoring Criteria Subscription Manager 
Description A Device Item Monitoring Criteria Subscription Manager manages 

subscriptions of interest on certain monitoring criteria. 
Policies Device item monitoring criteria defined as public can be subscribed 

by anyone, and device item monitoring criteria defined as private can 
be subscribed only by the creator of such monitoring criteria. 

Interfaces 

subscribeMonitoringCriteria  (MonitoringCriteriaSubscriber, DeviceItem, ItemMonitoringCriteria)
unsubscribeMonitoringCriteria  (MonitoringCriteriaSubscriber, DeviceItem, ItemMonitoringCriteria)

<<interface>>
IAdministerMonitoringCriteriaSubscription

createMonitoringCriteriaSubscription (MonitoringCriteriaSubscriber, DeviceItem, ItemMonitoringCriteria)
: MonitoringCriteriaSubscription

removeMonitoringCriteriaSubscription (MonitoringCriteriaSubscriber, DeviceItem, ItemMonitoringCriteria)
: MonitoringCriteriaUnsubscription

<<interface>>
IManageMonitoringCriteriaSubscription

addSubscriber_Response  (Acknowledgement)
removeSubscriber_Response  (Acknowledgement)

<<interface>>
IManageMonitoringCriteriaSubscriberResponse

getLastMonitoringReports_Response  (MonitoringReportList)
getMonitoringReports_Response (MonitoringReportList)
getMonitoringReportTimeStamp_Response (TimeStamp)
getMonitoringReportObservationList_Response  (ObservationList)
getMonitoringReportCriteria_Response (MonitoringCriteria)

<<interface>>
IAccessMonitoringReportResponse

checkSubscribedMonitoringCriteria  (MonitoringCriteriaSubscriber,  MonitoringReportLists)
: MonitoringCriteriaList

<<interface>>
ICheckMonitoringCriteria

notify _Response (Acknowledgement)

<<interface>>
INotifyMonitoringReportResponse

upload _Response (Acknowledgement)

<<interface>>
IUploadMonitoringReportResponse

 

Known 
Concepts 

creator :  Creator

<<abstract>>
Device Item

Monitoring  Criteria

subscribers : SubscriberList

Public Criteria

subscriber : Subscriber

Private Criteria

  

  

Device Item
1 *

has

Myself

manages
subscriptions to

1

*

 

 



 

 164

 
Role Observation Requester 
Description An Observation Requester obtains, by request, observations 

corresponding to the values of one or more measurement points of a 
device item. 

Policies The system may offer Observation Requesters ways to specify filters 
to access specific observations of measurement points (e.g. the last 
observations, the observations within a specific interval of time, the 
observations that exceed certain values). 

Interfaces 

getLastObservations_Response (ObservationList)
getObservations_Response (ObservationList)
getObservationTimeStamp_Response (TimeStamp)
getObservationQuality_Response  (DataQuality)

<<interface>>
IAccessObservationResponse

getMeasurements_Response (MeasurementList)
getMeasurementValue_Response (Value)

<<interface>>
IAccessMeasurementResponse

getCategoryObservations_Response (CategoryObservationList)
getCategoryObservationPresence_Response (Boolean)

<<interface>>
IAccessCategoryObservationResponse

 

Known 
Concepts 

Phenomenon
TypePhenomenon

Device Model

1 has

*
has

1

Measurement
Point

has

*

1

*
Measurement

Address

Device Item

1

1characterized by*

has*

*

1

defined by

isPresent: Boolean

Category
Observation

value : Number

Measurement

time : TimeStamp
quality : DataQualifier

<<abstract>>
Observation   

  

1

1

has
*

*
taken at

Myself

accesses
1

*

 

 



 

 165

 
Role Monitoring Report Requester 
Description A Monitoring Report Requester obtains, by request, monitoring 

reports taken on a device item. 
Policies The system may offer Monitoring Report Requesters ways to specify 

filters to access specific monitoring reports. (e.g. the last monitoring 
report of a certain monitoring criteria, the monitoring reports of a 
certain monitoring criteria within a specific interval of time). 

Interfaces 

getLastMonitoringReports_Response  (MonitoringReportList)
getMonitoringReports_Response (MonitoringReportList)
getMonitoringReportTimeStamp_Response (TimeStamp)
getMonitoringReportObservationList_Response  (ObservationList)
getMonitoringReportCriteria_Response (MonitoringCriteria)

<<interface>>
IAccessMonitoringReportResponse

 
Known 
Concepts 

time : TimeStamp
quality : DataQualifier

<<abstract>>
Observation

time : TimeStamp

Monitoring
Report

*

*
has

creator :  Creator

<<abstract>>
Device Item

Monitoring Criteria

<<abstract>>
Device Item

Trigger Condition

<<abstract>>
Device Item

Dataset has

has
*1

*
1

Device Item
 Event Monitoring

Criteria

Device Item
Status Monitoring

Criteria

  

  

Device Item
 Composition

Monitoring Criteria
  

*1

characterized
by

Myself

accesses
1

*

Device Item
1

subscribers :
SubscriberList

Public Criteria

subscriber :
Subscriber

Private
Criteria

    

has

related to
*

*

*

 

 



 

 166

 
Role Observation Manager 
Description An Observation Manager manages observations recorded on device 

items. 
Policies An Observation Manager may offer Observation Requesters ways to 

specify filters to access specific observations of measurement points 
(e.g. the last observations, the observations within a specific interval 
of time, the observations that exceed certain values). 

Interfaces 

getLastObservations (MeasurementAddressList)
getObservations (MeasurementAddressList, TimeInterval)
getObservationTimeStamp (Observation)
getObservationQuality (Observation)

<<interface>>
IAccessObservation

getMeasurements (MeasurementAddressList,  ValueRangeList,  TimeInterval)
getMeasurementValue (Measurement)

<<interface>>
IAccessMeasurement

getCategoryObservations (MeasurementAddressList , PhenomenonList, TimeInterval)
getCategoryObservationPresence (CategoryObservation)

<<interface>>
IAccessCategoryObservation

 
Known 
Concepts 

Phenomenon
TypePhenomenon

Device Model

1 has

*
has

1

Measurement
Point

has

*

1

*
Measurement

Address

Device Item

1

1characterized by*

has*

*

1

defined by

isPresent: Boolean

Category
Observation

value : Number

Measurement

time : TimeStamp
quality : DataQualifier

<<abstract>>
Observation   

  

1

1

has
*

*
taken at

Myself

manages
1

*

 
 



 

 167

 
Role Monitoring Report Manager 
Description A Monitoring Report Manager manages monitoring reports recorded 

on device items corresponding to item monitoring criteria. 
Policies A Monitoring Report Manager may offer Monitoring Report 

Requesters ways to specify filters to access specific monitoring 
reports. (e.g. the last monitoring report of a certain monitoring 
criteria, the monitoring reports of a certain monitoring criteria within 
a specific interval of time). 

Interfaces 

getLastMonitoringReports (MonitoringCriteriaList)
getMonitoringReports (MonitoringCriteriaList, TimeInterval)
getMonitoringReportTimeStamp (MonitoringReport)
getMonitoringReportObservationList (MonitoringReport)
getMonitoringReportCriteria (MonitoringReport)

<<interface>>
IAccessMonitoringReport

 

Known 
Concepts 

time : TimeStamp
quality : DataQualifier

<<abstract>>
Observation

time : TimeStamp

Monitoring
Report

*

*
has

creator :  Creator

<<abstract>>
Device Item

Monitoring Criteria

<<abstract>>
Device Item

Trigger Condition

<<abstract>>
Device Item

Dataset has

has
*1

*
1

Device Item
 Event Monitoring

Criteria

Device Item
Status Monitoring

Criteria

  

  

Device Item
 Composition

Monitoring Criteria
  

*1

characterized
by

Myself

manages
1

*

Device Item
1

subscribers :
SubscriberList

Public Criteria

subscriber :
Subscriber

Private
Criteria

    

has

related to
*

*

*

 

 



 

 168

 
Role Monitoring Criteria Subscriber 
Description A Monitoring Criteria Subscriber subscribes for receiving uploads 

with monitoring reports, or notifications of availability of monitoring 
reports, corresponding to certain monitoring criteria. A Monitoring 
Criteria Subscriber receives uploads with monitoring reports, or 
notifications of availability of monitoring reports, corresponding to 
monitoring criteria subscribed previously by this subscriber.  

Policies The upload and notification processes are based on the push model. 
Device item monitoring criteria defined as public can be subscribed 
by anyone, and device item monitoring criteria defined as private can 
be subscribed only by the creator of such monitoring criteria. 

Interfaces 

notify (MonitoringCriteriaSubscriber, MonitoringCriteriaList)

<<interface>>
INotifyMonitoringReport

upload (MonitoringCriteriaSubscriber, MonitoringReportList)

<<interface>>
IUploadMonitoringReport

 

Known 
Concepts 

time : TimeStamp
quality : DataQualifier

<<abstract>>
Observation

time : TimeStamp

Monitoring
Report

*

*
has

creator :  Creator

<<abstract>>
Device Item

Monitoring Criteria

<<abstract>>
Device Item

Trigger Condition

<<abstract>>
Device Item

Dataset has

has
*1

*
1

Device Item
 Event Monitoring

Criteria

Device Item
Status Monitoring

Criteria

  

  

Device Item
 Composition

Monitoring Criteria
  

*1

characterized
by

Myself

is
notified

of

1

*

Device Item
1

subscribers :
SubscriberList

Public Criteria

subscriber :
Subscriber

Private
Criteria

    

has

related to
*

*

*

is
uploaded

with

1

*

 

 



 

 169

Bibliography 

[1] F. Olken, H. A. Jacobsen, C. McParland, M. A. Piette, and M. F. Anderson, 
“Objects lessons learned from a distributed system for remote building 
monitoring and operation” presented at Conference on Object-oriented 
Programming, Systems, Languages and Applications, Vancouver, Canada, 
October 18-22, 1998, http://www.lbl.gov/~olken/rbo/rbo.html. 

[2] R. Itschner, C. Pommerell, and M. Rutishauser, “GLASS: Remote Monitoring 
of Embedded Systems in Power Engineering” in IEEE Internet Computing, 
vol 2, 1998. 

[3] A. Fabri, T. Nieva, and P. Umiliacchi, “Use of the Internet for Remote Train 
Monitoring and Control: the ROSIN Project” presented at Rail Technology 
'99, London, UK, September 7-8, 1999, 
http://icawww.epfl.ch/nieva/thesis/Conferences/RailTech99/article/RailTech9
9.PDF. 

[4] OPC Foundation, “OLE for Process and Control Standard”, 1997, 
http://www.opcfoundation.org. 

[5] IVI Foundation, “Interchangeable Virtual Instruments Standard”, 1997, 
http://www.ivifoundation.org/. 

[6] ODAA, “Open Data Acquisition Standard”, 1998, http://www.opendaq.org/. 

[7] OMG, “Data Acquisition from Industrial Systems (DAIS)”, Request for 
Proposal (RFP), OMG Document: dtc/99-01-02, 1999, 
http://www.omg.org/techprocess/meetings/schedule/Data_Acquisition_RFP.ht
ml. 

[8] T. Nieva, “Automatic Configuration for Remote Diagnosis and Monitoring of 
Railway Equipment” presented at IASTED International Conference - Applied 
Informatics, Innsbruck, Austria, February 15-18, 1999, 
http://icawww.epfl.ch/nieva/thesis/Conferences/ai99/article/ai99.pdf. 

[9] T. Nieva, A. Fabri, and A. Benammour, “Jini Technology Applied to Railway 
Systems” presented at 2nd International Symposium on Distributed Objects 
and Applications (DOA'00), Antwerp, Belgium, September 21-23, 2000, 
http://icawww.epfl.ch/nieva/thesis/Conferences/DOA00/article/DOA2000.pdf. 



 

 170

[10] T. Nieva and A. Wegmann, “A Conceptual Model for Remote Data 
Acquisition Systems” presented at 19th International Conference on 
Conceptual Modeling (ER'2000), Salt Lake City, Utah, USA, October 9-12, 
2000, 
http://icawww.epfl.ch/nieva/thesis/Conferences/ER00/Article/ER2000.pdf. 

[11] IEE, “The Millennium Problem in Embedded Systems”, 2000, 
http://www.iee.org.uk/2000risk/. 

[12] T. Wireman, “Computerized Maintenance Management Systems”, Industrial 
Press, Inc, 1994. 

[13] A. Davies, “Handbook of Condition Monitoring  - Techniques and 
Methodology”, Kluwer Academic Publishers, 1997. 

[14] Victorian Government, “Asset Management Series: Principles, Policies and 
Practices”, November, 1995, 
http://home.vicnet.net.au/~assetman/welcome.htm. 

[15] J. Ehrlich, A. Zerrouki, and N. Demassieux, “Distributed Architecture for 
Data Acquisition: a Generic Model” presented at IEEE Instrumentation and 
Measurement Technology Conference - IMTC'97, Ottawa, Canada, May 19-
21, 1997. 

[16] Merriam-Webster, “WWWebster Dictionary”, 2000, http://www.m-w.com/. 

[17] P. H. Sydenham, “Handbook of Measurement Science: Vol. 1 - Theoretical 
Fundamentals”, John Wiley & Sons, 1982. 

[18] C. Alexander, “The Timeless Way of Building”, Oxford University Press, 
1979. 

[19] C. Alexander, S. Ishikawa, and M. Silverstein, “A Pattern Language : Towns, 
Buildings, Construction”, Oxford University Press, 1977. 

[20] Hillside Group, “Patterns Home Page”, October, 1999, 
http://hillside.net/patterns/. 

[21] B. Appleton, “Patterns and Software: Essential Concepts and Terminology”, 
November 20, 1997, http://www.enteract.com/~bradapp/docs/patterns-
intro.html. 

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, “Pattern 
- Oriented Software Architecture: A System of Patterns”, Wiley, 1996. 

[23] R. Johnson, “Frameworks Home Page”, September, 1997, http://st-
www.cs.uiuc.edu/users/johnson/frameworks.html. 

[24] M. Shaw and D. Garlan, “Software architecture : pespectives on an emerging 
discipline”, Prentice Hall, 1996. 

[25] J. P. Martin-Flatin, “Web-based Management of IP Networks and Systems”, 



 

 171

PhD Thesis, EPFL, Lausanne, Switzerland, 2000, 
http://ica2www.epfl.ch/~jpmf/papers/phd.pdf. 

[26] ITS, “Telecommunications: Glossary of Telecommunication Terms”, Federal 
Standard, 1037C, Institute for Telecommunication Sciences, 1996, 
http://www.its.bldrdoc.gov/fs-1037/. 

[27] A. Wegmann, “Object-Oriented Analysis and Design”, Course Material, 
EPFL, Lausanne, Switzerland, 2000. 

[28] M. Boman, J. A. Bubenko Jr., P. Johannesson, and B. Wangler, “Conceptual 
Modelling”, Prentice Hall, 1997. 

[29] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modelling Language 
Reference Manual”, Addison Wesley, 1999, http://www.rational.com, 
http://www.omg.org. 

[30] M. Fowler and K. Scott, “UML Distilled: Applying the Standard Object 
Modeling Language”, Addison Wesley Longman, 1997. 

[31] G. Booch, “Object-oriented analysis and design with applications”, 2nd ed, 
Benjamin/Cummings Pub. Co., 1994. 

[32] J. Rumbaugh, “Object-oriented modeling and design”, Prentice Hall, 1991. 

[33] I. Jacobson, “Object-oriented software engineering : a use case driven 
approach”, Addison-Wesley, 1992. 

[34] OMG, “UML Resource Page”, September, 2000, http://www.omg.org/uml/. 

[35] ISO/IEC and ITU-T, “Open Distributed Processing - Part1: Overview”, 
Standard 10746-2, Recommendation X.901, 1995. 

[36] G. Genilloud, “Common Objects in the RM-ODP Viewpoint Languages” in 
Computer Standards and Interfaces vol. 19 (7), pp. 361-374, 1998. 

[37] J. Miller, “Relationship of the UML to the Reference Model of Open 
Distributed Computing”, September, 1997, http://enterprise.shl.com/uml-
odp/uml-odp.html. 

[38] D. F. D'Souza and A. C. Wills, “Objects, Components, and Frameworks with 
UML - The Catalysis Approach”, Addison-Wesley, 1999. 

[39] L. Rising, “The Pattern Almanac 2000”, Addison-Wesley, 2000. 

[40] M. Fowler, “Analysis Patterns: Reusable Object Models”, Addison-Wesley, 
1997, http://www2.awl.com/cseng/titles/0-201-89542-0/apsupp/index.htm. 

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns - 
Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995. 

[42] J. O. Coplien and D. C. Schmidt, “Pattern Languages of Program Design”, 



 

 172

Addison-Wesley, 1995. 

[43] R. C. Martin, D. Riehle, and F. Buschmann, “Pattern Languages of Program 
Design 3”, Addison-Wesley, 1998. 

[44] N. Harrison, B. Foote, and H. Rohnert, “Pattern Languages of Program 
Design 4”, Addison Wesley, 2000. 

[45] J. M. Vlissides, J. O. Coplien, and N. L. Kerth, “Pattern Languages of 
Program Design 2”, Addison-Wesley, 1996. 

[46] Microsoft, “The Component Object Model (COM)”, 2000, 
http://www.microsoft.com/com/tech/com.asp. 

[47] Microsoft, “Distributed COM (DCOM)”, 2000, 
http://www.microsoft.com/com/tech/dcom.asp. 

[48] IVI Foundation, “IVI Measurement and Stimulus Subsystems (IVI-MSS)”, 
2000, http://www.ivifoundation.org/groups/MSS/. 

[49] Digital Inc., “EPFL Supervision - Information for the Superuser”, Technical 
Manual, 1996. 

[50] Compaq Inc., “BASEstar Product Suite - Real-time Factory Floor Data 
Integration Middleware”, 2001, 
http://www5.compaq.com/products/software/solutions/basestar/index.html. 

[51] Gensym Inc., “A Strategic Choice for Improving Business Operations”, 2000, 
http://www.gensym.com/expert_operations/products/G2.htm. 

[52] M. P. de Albuquerque and E. Lelievre-Berna, “Remote Monitoring over the 
Internet” in Nuclear Instruments & Methods in Physics Research vol. 412 (1), 
pp. 140-145, 1998. 

[53] K. Kusunoki, I. Imai, H. Ohtani, T. Nakakawaji, M. Ohshima, and K. 
Ushijima, “A CORBA-based Remote Monitoring System for Factory 
Automation” presented at First International Symposium on Object-Oriented 
Real-time Distributed Computing - ISORC'98, Kyoto, Japan, April 20-22, 
1998. 

[54] T. Lumpp, G. Gruhler, and W. Küchlin, “Virtual Java Devices: Integration of 
Fieldbus Based Systems in the Internet” presented at Annual Conference of 
the IEEE Industrial Electronics Society - IECON'98, Aachen - Germany, 
August 31 - September 4, 1998. 

[55] H. Kirrmann, “ROSIN Data Representation and Notation”, Part of the ROSIN 
WP4 Deliverable, 1996. 

[56] IEC, “Train Communication Network - Part5: Train Network Management”, 
IEC-61375-5, 1998. 

[57] K. Arnold, B. O'Sullivan, R. W. Scheifler, and J. Waldo, “The Jini 



 

 173

specification”, Addison-Wesley, 1999. 

[58] Jini User Group, “Jini Home Page”, 2000, http://www.jini.org. 

[59] Sun Microsystems, “Jini Connection Technology Homepage”, 2000, 
http://www.sun.com/jini/. 

[60] Sun Microsystems, “The Java Tutorial”, February, 2000, 
http://java.sun.com/docs/books/tutorial/index.html. 

[61] D. Flanagan, “Java in a Nutshell”, O'Reilly & Associates Inc., 1996. 

[62] Sun Microsystems, “Java Remote Method Invocation White Paper”, 1999, 
http://java.sun.com/marketing/collateral/javarmi.html. 

[63] R. Orfali, D. Harkey, and J. Edwards, “The Essential Client/Server Survival 
Guide”, 2nd ed, John Wiley & Sons Inc., 1996. 

[64] Microsoft, “Microsoft Developer Network (MSDN) Online”, 2000, 
http://msdn.microsoft.com/. 

[65] A. Vogel and K. Duddy, “Java Programming with CORBA”, John Wiley & 
Sons Inc., 1997. 

[66] OMG, “OMG Home Page”, 2000, http://www.omg.org/. 

[67] IEC, “Electric Railway Equipment - Train Bus - Part 1: Train Communication 
Network”, IEC 61375-1, 1999. 

[68] W3C, “eXtensible Markup Language (XML) Home Page”, 1997, 
http://www.w3.org/XML/. 

[69] C. F. Goldfarb and P. Prescod, “The XML Handbook”, Prentice Hall Inc., 
1998. 

[70] N. Bradley, “The XML Companion”, Addison-Wesley Longman Limited, 
1998. 

[71] J. Hunter and W. Crawford, “Java Servlet Programming”, O'Reilly & 
Associates Inc., 1998. 

[72] M. Mansouri-Samani and M. Sloman, “Monitoring Distributed Systems” in 
Network and Distributed Systems Management, Addisson-Wesley, 1994. 

[73] A. Carzaniga, G. P. Picco, and G. Vigna, “Designing Distributed Applications 
with Mobile Code Pararadigms” presented at 19th International Conference 
on Software Engineering (ICSE'97), Boston, Massachusetts, USA, 1997. 

[74] J. P. Martin-Flatin, “Push vs. Pull in Web-based Network Management” 
presented at 6th IFIP/IEEE International Symposium on Integrated Network 
Management (IM'99), Boston, MA, USA, May, 1999. 

[75] R. Motschnig-Pitrik and J. Kaasboll, “Part-Whole Relationship Categories 



 

 174

and Their Application in Object-Oriented Analysis” in IEEE Transactions on 
Knowledge and Data Engineering vol. 11 (5), pp. 779-797, 1999. 

[76] MSDN, “Microsoft Windows and the Plug and Play Framework 
Architecture”, 1994, 
http://msdn.microsoft.com/library/backgrnd/html/msdn_pnp.htm. 

[77] UPnP Forum, “Universal Plug and Play Home Page”, 2000, 
http://www.upnp.org/. 

[78] C. Larman, “Applying UML and Patterns”, Prentice Hall, 1997. 



 

 175

Curriculum Vitae 

Txomin Nieva 

Professional Address: 
 
EPFL/DSC-ICA 
1015 - Lausanne 
Switzerland 
E-mail: txomin.nieva@epfl.ch  
Web: http://icawww.epfl.ch/nieva 
 

Personal Address: 
 
Ch. du Mottey 14 
1020 - Renens 
Switzerland 
E-mail: nieva@ieee.org 
 

Date of birth: 31.01.1972 
Place of birth: San Sebastian (Spain) 
Citizenship: Spanish 

Gender: Male 
Civil status: Single 

 

EDUCATION 

1997 - 2001 PhD on the topic “Remote Data Acquisition of Embedded Systems 
using Internet Technologies: a Role-based Generic System 
Specification” at the Institute for computer Communications and 
Applications (ICA) at the Swiss Federal Institute of Technology 
Lausanne (EPFL), Lausanne (Switzerland). 

1996 -1997 Graduate Thesis titled "Ladder Diagram Monitoring for the PLC of 
Fagor 8050 CNC" completed in the "R+D Software" department of 
Fagor Automation S.Coop., Mondragon (Spain). 

1994 - 1996 Systems Engineering degree from the Mondragron University, 
Mondragon (Spain). Major studies on Systems Control, Signal 
Processing, Computer Science and Electrical Engineering. 

1991 - 1994 Computer Science Engineering degree from the Mondragron 
University, Mondragon (Spain). 

1986 - 1991 Electrotechnis Specialist degree from the I.P.C.L.Don Bosco technical 
school, Renteria (Spain). 

 

TECHNICAL PUBLICATIONS 

& T. Nieva, A.Wegmann. “A Conceptual Model for Remote Data Acquisition 
Systems”. Proceedings of the 19th International Conference on Conceptual 
Modeling - ER'2000, Salt Lake City, Utah, USA, October 2000. 



 

 176

& T. Nieva, A.Fabri, A.Benammour. “Jini Technology Applied to Railway 
Systems”. Proceedings of the 2nd International Symposium on Distributed 
Objects and Applications - DOA'00, Antwerp, Belgium, September 2000. 

& T. Nieva. “NePESM: New Paradigms for Embedded Systems Management”. 
Proceedings of Swiss Priority Programme for Information and Communications 
Structures – SPP-ICS Closing Conference, Fribourg, Switzerland, March 2000. 

& T.Nieva, A.Fabri, P.Umiliachi. “The Use of the Internet for Remote Train 
Monitoring and Control: the ROSIN Project”. Proceedings of Rail Technology 
'99, London, UK, September 1999. 

&  T.Nieva. “NePESM: New Paradigms for Embedded Systems Management”. 
Informatik/Informatique, Volume 4, August 1999, pp. 38-39. 

& T.Nieva. “Automatic Configuration For Remote Diagnosis And Monitoring Of 
Railway Equipments”. Proceedings of 17th IASTED International Conference - 
Applied Informatics, Innsbruck, Austria, February 1999, pp. 93-97. 

 

WORK EXPERIENCE 

1998 - 2000 System-Engineer (at 25%) in the Information Technologies Dept. at 
ABB Corporate Research Ltd., Baden (Switzerland). Specially focused 
on web-based remote monitoring and diagnosis of embedded devices. 

1997 – 1998 Stage at ABB Corporate Research Ltd., Baden (Switzerland). Work 
related to the RoMain project (WP4 of ROSIN European Project). 

1997 - 2001 Research-Assistant (at 75%) at the Institute for Computer 
Communications and Applications (ICA) at the Swiss Federal Institute 
of Technology Lausanne (EPFL), Lausanne (Switzerland). 

1996 - 1997 Computer-Assistant (at 50%) in the "R+D Software" department of 
Fagor Automation S.Coop., Mondragon (Spain). 

 

SKILLS IN COMPUTER SCIENCE 

Languages: Java, UML, C/C++, HTML, XML/XSL, WML, VBScript, JavaScript, 
ASP, etc ... 

OSs: Windows 95/NT, MS-DOS, UNIX. 
Software:  Symantec Cafe, Ms Office, Ms Visual C++, Ms Visual Interdev, 

Rational Rose , etc... 

 

LANGUAGES 

Spanish: Native language. 
Basque: Fluent. 
French: Fluent. 
English: Fluent. 
German: Beginner. 

 

HOBBIES 

Mountain bike, trekking, ski, traveling. 




