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Abstract

Sampling theory has prospered extensively in the last century. The elegant
mathematics and the vast number of applications are the reasons for its popu-
larity. The applications involved in this thesis are in signal processing and com-
munications and call out to mathematical notions in Fourier theory, spectral
analysis, basic linear algebra, spline and wavelet theory. This thesis is divided
in two parts. Chapters 2 and 3 considers uniform sampling of non-bandlimited
signals and Chapters 4, 5, and 6 treats different irregular sampling problems.
In the first part we address the problem of sampling signals that are not ban-
dlimited but are characterized as having a finite number of degrees of freedom
per unit of time. These signals will be called signals with a finite rate of innova-
tion. We show that these signals can be uniquely represented given a sufficient
number of samples obtained using an appropriate sampling kernel. The number
of samples must be greater or equal to the degrees of freedom of the signal; in
other words, the sampling rate must be greater or equal to the rate of innovation
of the signal. In particular, we derive sampling schemes for periodic and finite
length streams of Diracs and piecewise polynomial signals using the sinc, the
differentiated sinc and the Gaussian kernels. Sampling and reconstruction of
piecewise bandlimited signals and filtered piecewise polynomials is also consid-
ered. We also derive local reconstruction schemes for infinite length piecewise
polynomials with a finite ”local” rate of innovation using compact support ker-
nels such as splines. Numerical experiments on all of the reconstruction schemes
are shown.

The first topic of the second part of this thesis is the irregular sampling problem
of bandlimited signals with unknown sampling instances. The locations of the
irregular set of samples are found by treating the problem as a combinatorial
optimization problem. Search methods for the locations are described and nu-
merical simulations on a random set and a jittery set of locations are made.
The second topic is the periodic nonuniform sampling problem of bandlimited
signals. The irregular set of samples involved has a structure which is irregu-
lar yet periodic. We develop a fast scheme that reduces the complexity of the
problem by exploiting the special pattern of the locations. The motivation for
developing a fast scheme originates from the fact that the periodic nonuniform
set was also considered in the sampling with unknown locations problem and
that a fast search method for the locations was sought. Finally, the last topic is
the irregular sampling of signals that are linearly and nonlinearly approximated
using Fourier and wavelet bases. We present variants of the Papoulis Gerchberg
algorithm which take into account the information given in the approximation
of the signal. Numerical experiments are presented in the context of erasure
correction.
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Résumé

La théorie de I’échantillonage s’est grandement épanouie au courant du dernier
siecle. L’élégance des notions mathématiques et les divers domaines ot elle peut
étre appliquée sont les raisons de sa popularité. Les applications envisagées
dans cette thése sont le traitement du signal et les communications. Les outils
mathématiques comprennent la théorie de Fourier, analyse spectrale, I’algebre
linéaire, la théorie des splines et des ondelettes. La présente these est divisée en
deux parties. Les chapitres 2 et 3 traitent le probléme d’échantillonage régulier
pour des signaux a bande non-limitée. Les chapitres 4, 5, et 6 traitent trois
problémes différents de I’échantillonage irrégulier.

Dans la premiére partie, nous échantillonons des signaux qui ne sont pas a bande
limitée mais qui ont la propriété d’avoir un nombre fini de degrés de liberté par
unité de temps. Ces signaux seront appelés des signaux a taux d’innovations
fini. Nous montrons comment ces signaux peuvent étre représentés de fagon
unique a partir d’'un nombre suffisament grand d’échantillons obtenu par un
noyau d’échantillonage approprié. Pour cela, le nombre d’échantillons doit étre
supérieur ou égal au nombre de degrés de liberté du signal; c’est & dire, le taux
d’échantillonage doit étre supérieur ou égal au taux d’innovation du signal. En
particulier nous établissons des schémas d’échantillonage et de reconstruction
pour des signaux & taux fini d'innovation tels que le peigne de Diracs et les
signaux polynomiaux par morceaux avec des noyaux tels que le sinc, la dérivée
du sinc et la Gaussienne. Des signaux composés d’un polynomial par morceaux
et d’un signal & bande limitée ainsi que des signaux polynomiaux par morceaux
filtrés sont aussi exposés. Nous présentons aussi des schémas de reconstruction
locale pour des signaux polynomiaux par morceaux de longueur infinie ayant
un taux local d’innovation fini avec des noyaux & support compact tels que les
splines. Des résultats numériques sont donnés pour chaque schéma de recon-
struction.

Le premier sujet de la deuxieme partie de cette thése est le probléme de ’échant-
illonage irrégulier des signaux a bande limitée ou les positions des échantillons
ne sont pas connues. Ces positions sont trouvées a 1’aide des méthodes utilisées
pour des problemes d’optimisation combinatoire. Des simulations ont été fait
pour des ensembles irréguliers dont les positions sont aléatoires et dont les posi-
tions ont du ”jitter”. Le deuxiéme sujet est un cas particulier du probleme
d’échantillonage irrégulier des signaux & bande limitée ou les positions des
échantillons sont irréguliers mais périodiques. Nous développons un schéma
qui reduit la complexité du probléme en exploitant la structure particuliére
des positions. Enfin, le dernier sujet est 'échantillonage des approximations
linéaires et nonlinéaires d’un signal avec des bases de Fourier et d’ondelettes.
Nous présentons des variantes de ’algorithme de Papoulis-Gerchberg qui tien-
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nent compte des informations dans les approximations. Des tests numériques
ont été effectués dans le cadre de la correction des effacements.
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Chapter 1

Introduction

The beauty of sampling lies in the wide spectrum of applications it co-involves
in the engineering and the life sciences. For example processing audio signals
and digital images, processing information in a communication channel, ana-
lyzing and restoring medical images. It also brings to the surface some elegant
mathematics such as harmonics analysis, wavelet and spline theory, and ap-
proximation theory. An extensive tutorial on sampling and all of its aspects
appeared in 1977 by Jerri [40] and a more recent one by Unser [76]. The latest
advances in sampling theory and applications can be found in [5] as well as in
the Sampling Theory and Applications (SampTA) workshop proceedings.
What is sampling?

Sampling is all about being able to represent a continuous-time signal z(t),t € R
by a discrete set of values z[n],n € Z. If the time instances at which these sam-
ples are taken are equidistant, for example every T seconds, z[n] = z(nT'), then
the signal is uniformly sampled. If the time instances are not equidistant, that
is, the samples are taken at arbitrary points ¢, € R, z[n] = z(t,,) then this is
known as nonuniform or irregular sampling. Examples are illustrated in Fig-
ure 1.1.

In both types of sampling the questions of interest are:

¢ Under what conditions is a signal z(t) perfectly recovered from a set of
samples z[n]?

e What are the methods of reconstruction?
e Are the numerical reconstruction methods stable?

¢ What types of sampling kernels are most appropriate for the different
types of signals?

In this dissertation, these questions are investigated for different sampling prob-
lems. Sections 1.1 and 1.2 give a brief introduction to uniform and irregular
sampling. Section 1.3 introduces the notations and definitions that will be used
throughout the whole thesis. Section 1.4 gives the outline of the thesis.

1
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Figure 1.1: (a) Uniformly sampled signal with samples z[n] = z(nT),n =
0,...,7,T = 32. (b) Irregularly sampled signal with samples z[n] = z(t,), with
t, € {2,8,19,63,79,194,196,231} .

1.1 Uniform sampling

The fundamental result in sampling theory is the well-known theorem by Whit-
taker [83], Kotel'nikov [43, 44] and Shannon [66] which states: A continuous-
time signal z(t) is completely defined by a set of samples z[n]| taken at T
seconds apart, that is, z[n] = z(nTs), if the sampling frequency w, = 2m7/T,
radians/second is greater than two times the maximum frequency' component
wm, of the signal

Wws > Wy OF  wp < 7/Ts. (1.1)

The reconstructed signal z,(¢) is obtained by interpolating the samples z[n] =
z(nT,) with a sinc interpolator

z,(t) = Y z(nTy) sinc(t/Te — n) (1.2)
nezZ

where sinc(t) = sin(at)/nt. The interpolating function or the reconstruction
filter h,(t) = sinc(t/T.) is an ideal lowpass filter with cutoff frequency w, =
w/T,, that is, its Fourier transform H, (w) is equal to zero for frequencies outside
of the band [—w,,w,]. The sampling and reconstruction scheme is illustrated in
Figure 1.2. In order to perfectly recover the original signal the cutoff frequency
w, of the lowpass reconstruction filter h,.(¢), must be greater than the maximum
frequency, wy,, and it must be less than the difference between the sampling
frequency and the maximum frequency, ws; — wy,, that is,

Wm < We < Wg — Wn- (1.3)

Figure 1.3 shows the different steps in the sampling and reconstruction process

1The maximum frequency component is the bandlimit of the signal, that is, the Fourier
transform of the signal X(w) is zero outside the interval [—wm ,wm].
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Figure 1.2: Sampling and reconstruction scheme. The continuous-time signal

z(t) is multiplied by a stream of Diracs ) d(t — nT}) leading to the sampled
nez
signal z,(t) = > z(nT,)6(t — nTs). The reconstructed signal z.(t) is obtained
nEZ
by interpolating the samples z[n] = z(nT,) with the reconstruction filter h,(t) =

sinc(t/T.) whose cutoff frequency is w, = 7/T,.

in the frequency domain.

The sampling theorem relies on the fact that the signal is bandlimited, but
what if the signal is not bandlimited? How can the signal be sampled and re-
constructed? One way is to make it bandlimited, in other words, we take a
lowpass approximation of the signal and then apply the previous sampling and
reconstruction scheme, see Figure 1.4.

By filtering the signal with a lowpass filter ¢(t) = sinc(¢/T;) whose cutoff fre-
quency is w. = n/Ts we obtain a lowpass approximation

y(t) = z(t) x p(=1). (1.4)

The sample values obtained after sampling the lowpass approximation are given
by

2[n] =< (t), p(t — nTs >= / o(8) ot — nTy) dt. (1.5)

The question of interest here is how does the reconstruction of the lowpass ap-
proximation compare with the original non-bandlimited signal? This is treated
in [12]. Take for example a bilevel signal which is commonly found in mod-
ulation. The bilevel signal and the reconstructed lowpass approximation are
illustrated in Figure 1.5. It is evident that the sampling and reconstruction
scheme in Figure 1.4 is far from being satisfactory. Therefore the questions that
are pursued in what follows are:

1. How can we perfectly reconstruct non-bandlimited signals from a uniform
set of samples z[n] =< 2(t), p(t — nT) >?

2. For what type of non-bandlimited signals is this possible?

3. What type of sampling kernels o(t) are most appropriate?
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A
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— Wy, Wi >w
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AXS(U))
—w, — W, Wy, W, ;w
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Figure 1.3: Sampling in the frequency domain. (a) Fourier transform of the signal
z(t). (b) Fourier transform of sampled signal z;(t). Original spectrum repeated at
every ws. (c) Reconstruction filter H,(w) with different cutoff frequencies, w,, <
Wey < Wey-

Going back to bandlimited signals, these are completely determined by sampling
the signal at a rate of 1 sample every T seconds, that is, the signal has 1/T
degrees of freedom per unit of time. So it is interesting to see if we can sample
and reconstruct non-bandlimited signals that are characterized as having a finite
number of degrees of freedom per unit of time. These signals are defined as
signals with a finite rate of innovation. Formally,

Definition 1.1 The rate of innovation p is the average number of degrees of
freedom per unit of time, or, with Cy(a,b) giving the number of degrees of free-
dom of z(t) over the interval [a,b],

1
= lim ~Cy(~=, =)
p=tim 2C:(=53)

(1.6)

In Chapter 2, periodic signals that have a finite rate of innovation are considered,
in particular discrete-time and continuous-time streams of Diracs and piecewise
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Figure 1.4: Sampling and reconstruction scheme for non bandlimited signals. The
continuous-time signal z(t) is first filtered by an ideal lowpass filter followed by the
usual sampling/reconstruction scheme.

" Diievet signal
= = band-bted signd)

Figure 1.5: Bilevel signal and lowpass approximation.

polynomials. These signals are uniformly sampled using the periodized sinc and
differentiated sinc sampling kernels and reconstruction schemes are presented.

In Chapter 3, finite length streams of Diracs are sampled using infinite sup-
port sampling kernels such as the sinc and Gaussian kernels. Since these signals
are finite they have a finite rate of innovation. The dual problem is also con-
sidered, that is, infinite length piecewise polynomial signals are sampled with
a compact support sampling kernel, such as spline kernels. Since these signals
are infinite, they may be uniformly sampled when they have a finite local rate
of innovation with respect to a moving window. Formally,

Definition 1.2 Given o window of size T, the local rate of innovation at time
tis

1
prit) = £Calt ~ T/2,6+T/2) (17)
and the mazimal local rate pn,(T) is defined by
pm(T) = max pr(t). (1.8)

For example the bilevel signal illustrated in Figure 1.5 is completely determined
by the set of transitions in a given window.
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1.2 Irregular sampling

Irregular sampling is commonly found in practice since the set of samples are
most likely not uniformly spread. A review of the literature on nonuniform
sampling theory and applications can be found in [52]. The author also narrates
a brief history which dates back the first theoretical works in 1934 by Paley and
Wiener, followed by Levinson in 1940, and Duffin and Schaeffer in 1952 [60, 48,
18]. One important theorem which pairs up to the uniform sampling theorem
is the Kadec’s ”One Quarter” theorem [41]. It states that if the irregular set of
sampling points {¢,} is taken close to the uniform set {nT'}

lta =T} <D< T/4, neZ (1.9)

then we can recover a bandlimited signal from the irregular set of samples using
Lagrange’s interpolation. An instance of such an irregular set occurs when the
sampling device is not precise. For example, instead of taking a sample at every
T seconds, it may very well be that this sample corresponds to time T + €. This
is called jitter and may be remedied if the jittery locations are known or are
modeled correctly. For theoretical work on jittered and random sampling see
[2, 11, 7, 46, 42, 49]. If the jitter locations are unknown (which is usually the
case in practice) then it is more difficult to recover the signal. Irregular sam-
pling with unknown sampling locations is investigated in Chapter 4. A similar
problem has been treated in the context of error correction where the locations
of the errors in the received signal are unknown [24, 25).

In certain applications the sampling locations may have a certain pattern. For
example suppose one wants to improve the resolution of a digital image by
taking multiple shots of the same scene but each differing by a vertical and
horizontal shift. If the multiple copies are put on a finer grid according to the
shifts then a periodic nonuniform set of samples are obtained and an image with
a better resolution can be recovered. In practice the shifts are unknown and
this is another example of the irregular sampling with unknown locations prob-
lem. In Chapter 5 a fast reconstruction scheme that exploits the nice periodic
nonuniform structure of the problem is given. Periodic nonuniform sampling
for multiband signals has been studied in [22, 33, 65]. In [27] the problem is
considered in terms of an M-channel filter bank and is solved using a projection
onto convex sets (POCS) method. In [22] a well-conditioned universal sampling
pattern is determined for the reconstruction of multiband signals. An overview
on pattern sampling can be found in [64].

In the last decade an important number of publications have been put forth
by the Numerical Harmonic Analysis Group (NuHAG) in Vienna and this is a
first stop for anyone interested in sampling. Their contribution is not only the-
oretical but also considerably practical [31, 19, 73]. Grochenig and Feichtinger
have introduced the adaptive weights method which compensates for the irreg-
ularities in the irregular sampling set, for example when there are big gaps or
bunched samples. Along with Strohmer they developed the ACT or the ” Adap-
tive weights Conjugate gradient Toeplitz” method which is a fast and compu-
tationally efficient iterative reconstruction method for one and two dimensional
bandlimited signals, [72, 19, 20]. The fast methods rely on the fact that the
matrices involved are Toeplitz and this is due to the bandlimited property of
the signal. If the signals do not belong to Fourier subspaces but for example
to wavelet subspaces as treated in [14, 84, 85] then slower iterative methods
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are used. One of the first iterative methods that recover irregularly sampled
bandlimited signals is the Papoulis Gerschberg algorithm which is based on the
POCS method [67, 86]. The algorithm is described in greater detail in Chapter 6
where we consider recovering irregularly sampled signals that are Fourier-based
and wavelet-based approximations.

1.3 Notations and definitions

In this section first the notation and definitions found in the discrete-time world
are stated, then in a similar fashion those in the continuous-time world.

In both discrete and continuous-time, matrices will be denoted by bold upper
case letters, for example F. A submatrix of F will be denoted by F(N, M) where
N and M are index sets containing the rows and columns of F, respectively.

1.3.1 Discrete-time

Discrete-time signals and vectors will be denoted by bold lower case letters, x,
except for the discrete-time Fourier series coefficients which will be denoted by
bold upper case letters X.

o x = (2[0],z[1],... ,2[N — 1]) is a discrete-time periodic signal z[n + N] =
z[n], z[n] € C.

e N is the period of a discrete-time periodic signal, N € N.

e N = {0,1,...,N — 1} is the index set of locations of a discrete-time
periodic signal.

e Nk ={no,n1,...,nk_1}is an irregular set of locations of a discrete-time
periodic signal, Nk CN,K < N and K € N.

o x(Nk) = (z[no],z[n1],... ,z[nk_1]) is an irregular set of sample values
of a discrete-time periodic signal.

o /2(Z) = {x: ) |z[n]|> < oo} is the space of square summable discrete-
nez
time signals.

Definition 1.3 Discrete-time Fourier transform (DTFT) .
Consider a discrete-time signal x € £2(Z). The discrete-time Fourier transform
of x 1s defined by

X(e) = Zax[n] e“n  weR (1.10)
nez

where z[n] is synthesized by

1 j o
afn] = - /X(e“")e'“’" dw, nez. (1.11)
-7
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Definition 1.4 Discrete-time Fourier series (DTF'S).
Consider o discrete-time periodic signal X with period N. The discrete-time
Fourier series coefficients of x are defined by

N-1
X[m]= Y zln]e”®™™/N, meN={0,...,N -1} (1.12)

n=0

or in matriz/vector form

X=F x (1.13)
where F = DFT y with components Fr,, = W™, m,n € N and Wy = e 27/N,
Alternatively,
] Nt ‘
z[n] = N Z X[m)e*m™ /N pe N (1.14)
m=0

or in matriz/vector form

x=F1.X (1.15)

where F~1 = -1%]— F* and * is the conjugate transpose.

Definition 1.5 Discrete-time bandlimited signal (M-BL).
A discrete-time periodic signal x of period N is bandlimited to M if there are
M nonzero contiguous and N — M zero contiguous DTF'S coefficients, that is,

N-1

X[m) = { X, olnlem T m e Ny (1.16)
0 m g Ny

where Ny is a contiguous set of M indices.

1.3.2 Continuous-time
Continuous-time signals will be denoted by lower case letters, z(t).
e z(t) is a continuous-time signal, t € R.
e 7 is the period of a continuous-time periodic signal, z(t +7) = z(t),t € R.

o Tk = {to,t1,...,tx—1} C [0,7] is an irregular set of locations of a
continuous-time periodic signal.

L2(R) = {z(t) : [ |=(t)|*dt < oo} is the space of square integrable
teR
continuous-time signals.

Definition 1.6 Continuous-time Fourier transform (CTFT).
Consider a continuous-time signal z(t) € L*(R). The continuous-time Fourier
transform of x(t) is defined by

X(w)= / z(t)e ™tdt, wek (1.17)
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Alternatively,
1 T twt
z(t) = 5 X(w)e*dw, teR (1.18)
-0

Definition 1.7 Continuous-time Fourier series (CTFS).
Consider a continuous-time periodic signal z(t) € L*([0,7]). The continuous-
time Fourier series coefficients of x(t) are defined by

T

X[m] = %/z(t) e 2™/ gt m e Z. (1.19)
0
Alternatively,
o(t) = > X[m]e?™™, tel0,7]. (1.20)
mezZ

Definition 1.8 Continuous-time bandlimited signal (w,, — BL).
A continuous-time signal z(t) is bandlimited to wy, if the continuous-time Fourier
transform is zero outside the band [—wp,,wn], that is,

[ 0]

X(w) = _{ox(t)e‘i“’tdt W € [~Wm,wWm] ‘ (1.21)

0 W & [~Wm, W)

1.4 Thesis outline

Following the structure of the Introduction this dissertation is divided in two
parts. The first part concerns uniform sampling of a newly defined set of non-
bandlimited signals. In Chapter 2 periodic streams of Diracs and piecewise
polynomial signals with a finite rate of innovation are sampled using a periodic
sinc and a differentiated sinc sampling kernel, respectively. In Chapter 3 finite
streams of Diracs are sampled using an infinite length sampling kernel such as
the sinc and Gaussian kernels. The dual problem is also investigated. It con-
cerns sampling infinite length bilevel signals with a finite local rate of innovation.
These are sampled using finite length support kernels such as splines.

The second part addresses three different irregular sampling problems: the ir-
regular sampling problem with unknown sampling locations is introduced in
Chapter 4. A particular sampling pattern is considered in Chapter 5 where
the irregular set of sampling locations form a periodic nonuniform set. A fast
reconstruction scheme is derived by exploiting the special structure of the data
set. An application involving superresolution is also given. Finally, Chapter 6
concerns irregular sampling of signals that are Fourier- and wavelet-based linear
and nonlinear approximations. The reconstruction methods are variants of the
Papoulis Gerchberg algorithm and take into account the information given by
the approximations.






Chapter 2

Sampling periodic signals with
finite rate of innovation

Sampling theory has been extensively developed for bandlimited signals. In this
chapter' non-bandlimited signals are investigated in particular periodic signals
with a finite rate of innovation. Recall that in Section 1.1 signals with a finite
rate of innovation p are characterized by having a finite number of degrees of
freedom per unit of time. For example take a periodic signal of period N with
Diracs at K locations. This signal is not bandlimited and has K degrees of
freedom in an interval of length N thus its rate of innovation is p = K/N.

In Sections 2.1 and 2.2 of this chapter, sampling theorems for discrete-time and
continuous-time periodic streams of weighted Diracs and piecewise polynomial
signals are derived. Both of these type of signals are not bandlimited and have
a finite number of degrees of freedom per period. By taking an appropriate
sampling kernel and a sufficiently high sampling rate that captures these de-
grees of freedom, the signals can be perfectly reconstructed. Section 2.3 derives
applications of the above results, in particular to piecewise bandlimited signals,
and to filtered piecewise polynomials. In all of the proofs of the aforementioned
sampling theorems a method that is commonly used in spectral analysis is em-
ployed, namely the ”annihilating filter method” {69]. For those unfamiliar with
this method it is described in Appendix 2.A.

2.1 Discrete-time periodic signals

The discrete-time periodic signals we consider are streams of weighted Diracs
and piecewise polynomials. Through appropriate differentiation, piecewise poly-
nomials can be reduced to streams of Diracs, so we begin with these.

2.1.1 Stream of Diracs

Consider a discrete-time periodic signal, with one period given by

x = (z[0],z[1],...,z[N -1)T (2.1)

1This chapter includes research conducted jointly with Martin Vetterli and Thierry Blu
(82, 81, 80].

11
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and containing K weighted Diracs at locations {ng,n1,... ,ng_1}, nx € [0, N —
1] and K < [N/2],

K-1
z[n] = Z ¢k O[n — ng), (2.2)
k=0

where é[n] is the Kronecker delta and equal to 1 if n =0 and 0 if n # 0.
Denote by X = (X[0], X[1],...,X[N — 1])T the discrete-time Fourier series
(DTFS) coefficients of x where

K-1
Xm] = Y aWp™, m=0,...,N-1 (2.3)
k=0

and Wy = e~ 27/N

Consider filtering the signal z[n] with a lowpass filter $[n] = ¢[—n] with band-
width [- K, K] then the sample values y,[l] are simply a subsampled version (by
M) of the filtered signal y[n] = z[n] * $[n]. The DTFS coefficients of y[n] are
given by

Y[m] ={ Apm] i m e [-K, K] (2.4)

and those of the subsampled signal y;[l] = y[{M] are given by the subsampling
formula [79]

M-1
Yy[m] = ]1[- Y Yim +IN)/M). (2.5)
=0

With appropriate re-indexing it follows that
1
Yim] = o-X[m], m € [-K,K]. (26)

Figure 2.1 illustrates that we can recover 2K spectral values X [m] of the original
signal from the subsampled spectra of the lowpass approximation Y;[m] as long
as there is no overlapping in the spectra of the lowpass approximation Y [m] and
this occurs only if N/M > 2K. This leads us to

Proposition 2.1 Consider a discrete-time periodic signal z[n] of period N
containing K weighted Diracs. Let M be an integer divisor of N satisfying
N/M > 2K + 1. Consider the discrete-time periodized sinc sampling kernel

K
oln] = ¥ ZKWA—,"‘", that is, the inverse DTFS of the Rect|_k k). Then the
m=—

N/M € N samples defined by
ysfil] = <zn),¢oln —IM] >cre, 1=0,...,N/M -1 (2.7
are o sufficient representation of the signal.

Proof: We start by showing that the DTFS coefficients X [m],m € [-K, K]
are sufficient to determine the stream of K weighted Diracs . Then we show that
the N/M samples y;|[l] are a sufficient representation of X[m],m € [-K, K].
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.M

Figure 2.1: (a)DTFS of stream of Diracs, X[k],k € [0,N]; (b) DTFS of low-
pass approximation Y[k] = X[k],k € [-K, K], 0 otherwise; (c) DTFS of lowpass
approximation subsampled by M = 3, Y,[k] = 1/M X[k}, k € [- K, K]. '

1. Since X[m] is a linear combination of K complex exponentials, u}*, with
ur = Wg*, the locations ny of the Diracs can be found using the annihi-
lating filter method described in Appendix 2.A. It suffices to determine
the annihilating filter H(z) whose coefficients are (1, H[1],... ,H[K]) or

H(z)=1+4+ H[1]z '+ H[2] 272 +---+ HK] 2% (2.8)
which factors as
K-1
H(z)= [ -2"'wgn) (2.9)
k=0
and satisfies
K
> H[k| X[m-k]=0, m=0,...,N-1 (2.10)
k=0

Since H[0] = 1, K equations (2.10) will be sufficient to determine the K
unknown filter coefficients H[k],k = 1,...,K. Let m = 1,... ,K then
the system in (2.10) is equivalent to

K
> HIK X[m-k]=-X[m], m=1,...,K. (2.11)
k=1
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For example take N = 8, K = 3 and let m = 1,2, 3 then in matrix/vector
form the system is

X[0] X[-1] X[-2] HI[1] X[1]
x[ xp] xi-1 |- H2 | = - X121 |. @12
[XP] X[1]  X][0] } (H[Iﬂ) (X[3] )

Given that there are K sinusoids the matrix in (2.12) is full rank (= K)
and thus there is a unique solution H[1],..., H[K]. The set of locations
{ng,n1,... ,nK—1} are given by the the zeros of H(z).

The weights of the Diracs are obtained by solving K equations in (2.3),
let m =0,...,K — 1, this leads to the following Vandermonde system

1 1 . 1 co X[0]
W W L. Wk C1 X[1]

WﬁO(K—l) W;l(K_l) W]"’\I;K—l(K—l) CK -1 X[K—l]
(2.13)

and has a unique solution since the ny # ny, Vk # [.
Therefore, given 2K contiguous DTFS coefficients

(X[-K +1,X[-K +2],...,X][0],... , X[K]}

we have found a unique set of locations {nk}fz_ol and a unique set of

weights {cx } 2t

. We need to show that 2K spectral values X[m],m € [-K, K] can be

obtained from the N/M sample values y;[l] defined in (2.7).
We substitute the discrete-time periodized sinc kernel in the expression of
the sample values and we obtain the following:

ysfl] = <znl,¢ln—IM]>4c 1=0,...,N/M -1 (2.14)
N-1
= z{n] pln — IM] (2.15)
n=0
N-1 K
= sz[n] S owymi (2.16)
n=0 m=—K
| N1 K
= 5 2 ¢l > wymnwit (2.17)
n=0 m=—K
1 K N-1
= 5 S WR Dzl W™ (2.18)
m=—K n=0
X[-m]
1 X
= ¥ > X[-m]WTy,. (2.19)

m=—K
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If we calculate the DTFS coefficients of the sample values y,[l] we obtain
an expression in terms of the DTFS of the signal,

N/M-1
Yokl = Y wllWiy, k=0,...,N/M-1 (2.20)
=0
1 N/M-1 K
= 5 2 2 XEmWE Wi (2.21)
1=0 m=—K
1 K N/M-1
= % > X[-m] S ow™ (2.22)
m=—K =0

| N/M ifk+m=0
- 0 otherwise

= X[, k=0,..,min{K,N/M-1} (223
= X[ = MYk, k=0,... K (2.24)

by hypothesis, N/M > 2K +1 > K. Since we are dealing with real
signals the DTFS is Hermitian, that is, X[—k] = X*[k], ¥ =0,...,K, so
we have the 2K + 1 spectral values X[k], k € [-K, K] obtained from the
N/M DTFS coefficients of the sample values y,[l]. Therefore we have a
sufficient number of spectral values which uniquely define the stream of
weighted Diracs.

|
Figure 2.2 illustrates in time and frequency domain the sampling of a discrete-
time periodic stream of Diracs with period N = 256 and K = 15 weighted

Diracs. The signal is perfectly reconstructed within machine precision, MSE =
1071,

Note that in the proof of Proposition 2.1 the locations of the Diracs are deter-
mined by finding the roots of the annihilating filter H(z). If the locations are
bunched up or there are a large number of Diracs then finding the roots of the
polynomial is numerically unstable. An alternative method that is commonly
used in error correction coding [8] involves extrapolating the N — K spectral
values of the signal using K first spectral X[k],k = 1,..., K components and
the error locating polynomial which in our case corresponds to the annihilating
filter H(k,k=1,... K,

K
Xkj=-Y HNXk-1, k=K+1,...,N-K. (2.25)
=1

Consider a signal of length N = 64 where there are K = 16 Diracs in an interval
of size 2K, see Figure 2.3. Figure 2.4 compares the relative reconstruction error
between the root finding method and the spectral extrapolation method for
different values of K.

2.1.2 Piecewise polynomials of degree R

The previous result on the stream of Diracs is extended to piecewise polynomi-
als. Consider a discrete-time periodic piecewise polynomial of period N with
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Figure 2.2: (a) Periodic discrete-time signal with K = 15 weighted Diracs with
period N = 256; (b) DTFS X[m)]; (c) Discrete-time periodized sinc sampling kernel,
@[n]; (d) DTFS Rect|_k k), K = 15; () Sample values y,[l] =< z[n], p[n—IM] >
,0=0,...,31 with M =8; (f) DTFS Y,.

K polynomial pieces each with maximum degree R and R + 1 zero moments.
Suppose a discrete-time difference operator d[n] = é[n]—d[n—1} is applied R+1
times to the piecewise polynomial signal. The differentiated signal z%+1[n] ob-
tained is a stream of Diracs, that is, in frequency domain

X®HD[m] = (D)) Xml, m=0,...,N -1 (2.26)

where Dim] = 1 — W} is the DTFS of the discrete-time difference operator.
This results in putting to zero all the polynomial pieces. Assume there are
discontinuities between pieces (but no Diracs), then K transitions can lead to
at most K (R + 1) weighted Diracs and thus the rate of innovation is

p=2K(R+1)/N.

From Proposition 2.1 we can uniquely recover the K (R+1) Diracs from 2K (R+
1) DTFS coefficients of the differentiated signal X (F+1)[k]. The piecewise poly-
nomial signal is reconstructed by applying the inverse discrete-time difference
operator R + 1 times on the stream of weighted Diracs. Note that the discrete-
time difference operator d[n] is a singular operator (since D[0] = 0) and so we
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|

d 1

Figure 2.3: Stream of K = 16 bunched Diracs with period N = 64.

Pt st
0

Figure 2.4: Comparison between the root finding method and the spectral extrap-
olation method on a signal of length N = 64, K varying between 2 and 16 on
interval 2K, 100 simulations.

define the inverse discrete-time difference operator as

-1 = 0 form=0
b [m]_{ Q-wm?t form=1,...,N-1 ~ (2.27)

Hence instead of using the sinc sampling kernel ¢[n] we will use the derivative
sinc sampling kernel defined by

Yn] = (dxdx*---*x dxp)[n] (2.28)
R+1

which has at least R + 1 zeros at the origin z = 1. Then the DTFS of ¢[n] is
Um] = 1-WHEHem], m=0,...,N-1 (2.29)

where ®[m] is the Rect|_x(r+1),x(r+1)) function. This brings us to the following
theorem.

Theorem 2.1 Consider a discrete-time periodic piecewise polynomial signal of
period N with K pieces of degree R and with R+ 1 zero moments. Let M be an
integer and a divisor of N such that N/M > (2K(R+ 1)+ 1). Take a sampling
kernel ¢[n] with DTFS coefficients defined in (2.29). Then we can recover the
signal from the N/M € N samples

yoll] = <znl,¥n—IM]> 1=0,...,N/M—1. (2.30)

Proof: First we show that 2K (R + 1) DTFS coefficients of the signal,
X[m],m € [-K(R + 1),K(R + 1)] are sufficient to determine the piecewise
polynomial signal, z[n]. Then we show that the N/M samples y,[l] are suffi-
cient to determine the (2K(R + 1) + 1) values X[m)].
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1. If we have the DTFS coefficients X[m],m € [-K(R + 1), K(R + 1)] then
from (2.26) we have the DTFS coefficients of the (R + 1)th discrete-time
differentiated signal, X #+1)[m]. From Proposition 2.1 these are sufficient
to reconstruct the stream of K (R + 1) Diracs. Thus, the signal is recov-
ered by applying R+ 1 times the inverse discrete-time difference operator,
d~1[n], on the stream of Diracs, that is,

ofo] = (¢t rd™! 5 o d 7L ua D)),
R‘-;-l

2. Similar to the second part in the proof of Proposition 2.1 we expand the
inner product between the piecewise polynomial signal and the differenti-
ated sinc sampling kernel:

ysil] = <z, Yp-IM]> 1=0,... N/M-1 (2.31)
N-1
= 3 z[n] gl — IM] (2.32)
n=0
1 V=l K(R+1)
m —-m(n—IM
= < Staln] Y. a-wpRwmM (2.33)
n=0 m=—~K(R+1)
1 V=l K(R+1)
= & 24l > Q-wpEPtwmr WM (2.34)
n=0 m=—K(R+1)
K(R+1) N-1
= = Y. (-WRETWRL D elr] Wyt (2.35)
m=—K(R+1) n=0
X[-m]
, K&
= = Y. (-WRFTX[-m] W, (2.36)
m=—K(R+1)
Taking the DTFS of the sample values y;[{] we obtain
N/M—-1
Yokl = > wllWRn, k=0,...,N/M-1 (2.37)
=0

N/M-1 K(R+1)

1
= ¥ > > A-WRE X[-m) Wiy WA (2.38)
=0 m=-K(R+1)
1 K(R+1) N/M-1
= = Y Q-WHRT X[-m| > W™ (2.39)
m=—K(R+1) 1=0

[ N/M ifk+m=0
- 0 otherwise
1
= (1-WHHR X[K), k=0,...,min{N/M,K(R+1)}
(2.40)

N X[k] _ { M[(l _ W]GkO)R_‘_l:l_ }’;[k] g)); ]]: : (])., ces ,K(R+ 1) (241)
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Since N/M > (2K (R + 1) + 1) we have a sufficient representation for the
spectral values of the signal. This completes the proof.

|
Figure 2.5 illustrates the reconstruction of a discrete-time periodic piecewise
linear signal of period N = 1024 with K = 6 pieces.

o

(a) (b)

Tt il
S LRI R I
B I 1 i

Figure 2.5: (a) Discrete-time periodic piecewise linear (R = 1) signal of period
N = 1024 with K = 6 pieces. Note that the vertical lines are not pieces but
jumps; (b) Differentiated sinc sampling kernel,i[n] = d[n] * d[n] * ¢[n] with DTFS
Dim] - Rect|_k(r+1),k(r+1)] (€) Sample values y.[l] =< z[n],¥[n ~ [M] >,1 =
0,...,31 with M = 32; (d) Stream of K(R + 1) = 12 Diracs obtained from
X[m],m € [-K(R+1),K(R+1)].

2.2 Continuous-time periodic signals

We derive now the equivalent results but for continuous-time periodic signals,
again building up from a stream of Diracs to piecewise polynomials. We will
put in evidence the common points.

2.2.1 Stream of Diracs

Consider a continuous-time periodic signal z(¢) of period 7 containing A" weighted
Diracs at locations {tx }/,' with 5 € [0,7), or

o(t) = Y cad(t—tn)
neN
K-~-1
= 3 Y erd(t— (t +n7)) (2.42)

neN k=0



20 Chapter 2.

since tp4x =tn + 7 and ¢y x = ¢, for alln € N
The continuous-time Fourier series (CTFS) coefficients of z(t) are defined by

X[m] = 1 z(t)e 2™/ dt, melZ
T
0

K

Z e e 1Tt/ T (2.43)
k=0

N =
—-

If the signal z(t) is convolved with a sinc filter of bandwidth [-K, K] then we
have a lowpass approximation y(t) given by

K
yt) = Y, X[m]e?mim, (2.44)

m=—K

Suppose the lowpass approximation y(t) is sampled at multiples of T', we obtain
7/T € N samples defined by

K
yll=y(T) = D Xm)e®™™ /7, 1=0,...,7/T-1. (245)

m=—K

Similar to the discrete-time case as long as the number of samples is larger
than the number of values in the spectral support of ﬁhe lowpass signal, that is,
% > 2K +1, (2.45) can be used to recover 2K + 1 values of X[m]. Thus we can
state:

Proposition 2.2 Consider a continuous-time periodic stream of K weighted
Diracs with period 7 and a continuous-time periodic sinc sampling kernel p(t)
with bandwidth [—K, K]. Taking o sampling period T such that 7/T € N and
7/T > 2K + 1. Then the samples defined by

ys[l] = <z@®),et-1T)>, 1=0,...,7/T -1 (2.46)
are a sufficient representation of z(t).

Proof: Similar to the discrete-time case first we show that 2K + 1 CTFS
coefficients X [m] are sufficient to find the locations and the weights of the Diracs.
From (2.43) we have that the CTFS coefficients X[m] are linear combinations
of complex exponentials. Thus to find the locations t; we need to find the
annihilating filter H = (1, H[1], H[2],... , H[K]) such that

HxX = 0. (2.47)

This is the same Toeplitz system as in (2.10) considered in Sec. 2.1.1 and there-
K

fore a solution exists. Factoring the z—transform of H, or H(z) = Y. H[k]z7F,
k=0

into

K-1

Hez) = JJ0-2""w), (2.48)

k=0
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we then find the K locations {tg,%1,... ,tx—1} from the zeros of H(z), that is,
from

up = e @/ (2.49)

Given the locations {t;}£ ' and K values X[m],m =0,... ,K — 1, we find the
weights {ck}kK;Ol of the Diracs by solving the Vandermonde system in (2.43).
Since the locations t; are distinct, tr # #;,Vk # [, the Vandermonde system
admits a solution.

The second part of the proof consists in showing that the 7/T samples y,[!] are
sufficient to determine the CTFS coeflicients X [m],m € [-K, K|. We substitute
the continuous-time periodic sinc function ¢(t) with bandwidth [~ K, K] defined
by

K

(t) = Z g2 mt, (2.50)
m=—K
in (2.46) and we obtain
ys[l] = <z(t),pet-IT)>, 1=0,...,7/T-1 (2.51)
T K
= / o(t) Y emm=tD/T gy (2.52)
0 m=—K
K T
— Z e—i27rml/(T/T)/z(t)ei%rmt/r dt (253)
meK 0 )
'rXr—m]
K
= 7 Z X[—m) e 2mmiT/T, (2.54)
m=—K

Note that y[l] is periodic with period 7/T, thus the DTFS coefficients are
Y;lk] = TX[k],k=0,...,7/T — 1. Since /T > 2K + 1, we have a sufficient
number of samples that determine the CTFS X[m],m € [-K, K]. u

2.2.2 Piecewise polynomials of degree R

Here we consider continuous-time periodic piecewise polynomial signal of period
7, containing K polynomial pieces of maximum degree R and R — 1 continuous
derivatives, CF~1. We differentiate the signal R + 1 times and we obtain a
continuous-time stream of K weighted Diracs, z(E*1(t). The CTFS of the
derivative operator is defined by D[m] = i2rm, m € Z and therefore the CTFS
coefficients of the differentiated signal z(F+1)(¢) are equal to

X B[] = (i27m)® X[m], m € Z. (2.55)

From Proposition 2.2 we can recover the continuous-time periodic stream of
K Diracs from the CTFS coefficients, X (B+Y[m],m € [-K, K]. Therefore we
can sample the signal with the differentiated sinc sampling kernel whose CTFS
coeflicients are defined by

Tm] = (i2rm)* T ®[m], meZ (2.56)
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where ®[m] = Rect|_k k) is the CTFS of the continuous-time periodized sinc
sampling kernel.

Theorem 2.2 Consider a continuous-time periodic piecewise polynomial signal
z(t) with period T, containing K pieces of mazimum degree R, belonging to
CR~! and having zero mean. Consider a sampling kernel ¥(t) with its CTFS
coefficients defined in (2.56). Let 7/T € N and 7/T > 2K + 1. Then z(t) can
be uniquely recovered from the /T samples

ys[l] =< z(t), ¥t —IT) >, 1=0,...,7/T —1. (2.57)

Proof: Similar to the proof of Theorem 2.1, we first show that CTFS coef-
ficients X [m],m € [-K, K] are sufficient to determine the piecewise polynomial
signal, z(¢). Then we show that the 7/T samples y;[!] are sufficient to determine
the values X[m],m € [-K, K].

1. If we have the CTFS coeflicients X[m],m € [—K, K| then from (2.55)
we have the CTFS coeflicients of the (R + 1)th differentiated signal,
X (E+1)[m]. From Proposition 2.2 these are sufficient to reconstruct the
stream of K Diracs. Thus, the signal is recovered by integrating R + 1
times the stream of Diracs, that is,

z(t)=//---/z(“‘)(t)dtdt.--dt
——

or in frequency domain from (2.55)
Xm] = (D7Um)R XFHm], mez/fo)  (258)
= (i27m)”(F*D x(B+D[m] m e 2/{0} (2.59)
with D~![m] = 0 for m = 0 and thus
z(t) = Y X[m]e2™m™/.

meZ

2. Similar to the second part in the proof of Proposition 2.2 we expand the
inner product between the piecewise polynomial signal and the differen-
'\. .,
tiated sinc sampling kernel defined by v(t) = Y. (i2wm)ftlei2mmt/T,
m=—-Hk
That is, the sample values are

ys[l] = <z),v@¢-1T)> 1=0,....7/T~1 (2.60)
T K
= /:c(t) Z (i2mm) B e2mm =1/ gy (2.61)
0 m=—K
K T
= Z (i2mm) i+ e‘iQ"mlT/T/z(t) 2T gt (2.62)
m=—K 0
T)T’['—m]
K .
= 7 Y X[-m](2rm)ftt e/ (7/T), (2.63)

m=—K
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Since y,[!] is periodic with period 7/T', the DTFS coefficients of y,[l] are

given by
7/T-1
Yik] = Z ysll] e~ i2mkl/(/T) (2.64)
1=0
T/T-1 K
= 7 Z Z X[—m] (i27rm)R+1 e—i21rml/(r/T) e—z’27rlcl/(r/T)
=0 m=—K
(2.65)
K r/T-1
= 7 Y X[-m]@2rm)® " em@rAml//T) (2 .66)
m=—K N =0 D
_{ /T ifk+m=0
0 otherwise
72
= = (—i2mk)® X [k] (2.67)
Therefore the CTFS coefficients of the signal are obtained by the DTFS
coefficients of the samples values Ys[m],m =0, ... ,7/T—1 and are defined
by

TY,[m)/(7? (=i2zem)R+Y) form=1,...,7/T -1
0

for m = 0 . (2.68)

Xl = {
Since 7/T > 2K + 1 the sample values are a sufficient representation of
the spectral values of the signal. This completes the proof.

n
Note that removing the restriction z(t) € C*~! leads to the same result as
in Theorem. 2.1.

2.3 Applications

The applications we consider involve the discrete-time periodic stream of Diracs
and piecewise polynomial signals. It is well known that a bandlimited signal can
be perfectly recovered from its samples by sampling it at twice the maximum
frequency. But if the bandlimited signal has a jump or a discontinuity then the
signal is no longer bandlimited and the usual method is not valid. These are
what we call piecewise bandlimited signals. Another type of non-bandlimited
signal which we may come across in nature is a signal which is obtained from
a system with a certain frequency response. The output of the system is a
filtered signal. We will look at filtered stream of Diracs and filtered piecewise
polynomials.

2.3.1 Piecewise bandlimited signals

A discrete-time periodic piecewise bandlimited signal is the sum of a bandlim-
ited signal with a stream of Diracs in the simplest case or with a piecewise
polynomial signal. An example is illustrated in Figure 2.6(e) and is obviously
not bandlimited from Figure 2.6(f). Formally, we have the following
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Definition 2.1 Piecewise bandlimited signals.

Let xp1 be a discrete-time periodic L—bandlimited signal of period N with cor-
responding DTFS coefficients Xpr such that Xpr[m]| =0 Vm g [-L,L]. Let
xpp be a discrete-time piecewise polynomial signal of period N with K poly-
nomial pieces each of mazimum degree R and R + 1 zero moments. Then a
piecewise bandlimited signal x is defined by

X = XpL + Xpp (2.69)

with corresponding DTFS coefficients X defined by

ximj= { O Gmetin e
o e
o I _..,—.._,j.. . " — ,.l.‘, = ,
M(g)____ i (d)
] L
(e) ()

Figure 2.6: (a) Bandlimited signal of length N = 256; (b) |[ DT F'S| of Bandlimited
signal, L = 15; (c) Piecewise constant signal with K = 3 pieces; (d) |DTF'S| of
piecewise constant signal; (e) Bandlimited piecewise constant signal; (f) |[DTFS|
of bandlimited piecewise constant signal.

First consider a stream of K weighted Diracs, xpp. From Section 2.1.1, we
can recover the K weighted Diracs from 2K contiguous frequency values Xpp.
Since the DTFS coefficients of the bandlimited signal, Xp;,, are equal to zero
outside of the band [—L, L], we have that the DTFS coefficients of the signal
outside of the band [—L, L] are exactly equal to the DTFS coeflicients of the
piecewise polynomial, that is, X[m] = Xpp[m], V|m| > L. Therefore it is
sufficient to take the 2K DTFS coefficients of the outside of the band [-L, L],
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for instance in [L + 1, L + 2K]. Suppose we have the DTFS of the signal X[m],
with m € [—(L + 2K), L + 2K] then the DTFS of the bandlimited signal are
obtained by subtracting Xpp[m] from X [m] for m € [-L, L].

Recall that the piecewise polynomial has 2K (R + 1) degrees of freedom and
the bandlimited signal has 2L + 1. It follows that we can sample the signal
using a discrete-time periodized differentiated sinc sampling kernel bandlimited
to2K(R+ 1)+ L.

Corollary 2.1 Consider a piecewise bandlimited signal x as defined in Defi-
nition. 2.1. Let v[n] be the (R + 1)th differentiated sinc sampling kernel with
DTFS

@[m] = (D))" Recti_(ax(r+1)+L) 2K (R+1)+L]- (2.71)

Let M be an integer divisor of N, and let N/M > 2(2K(R+ 1) + L) then the
samples

ysll] =< z[n},¥[n - IM]>, 1=0,...,N/M -1 (2.72)
are a sufficient representation of x.

Proof: The proof is exactly the same as in Theorem 2.1 until equation
(2.40)

Y,[k] = %(1 - WS X[k, k=0,... ,2K(R+1)+ L (2.73)
B {ﬁ(l—WJ;")RH (XgLlk] + Xpp[k]) ifk=0,...,L 2.74)
- (1 — Wk P+ Xpplk] ifk=L+1,...,2K(R+ 1)5rL7

Therefore 2K (R + 1) values of

M

Xerl = Gy

Y,[k], kelL+1,2K(R+1)+1I] (2.75)

are sufficient to recover the piecewise polynomial xpp. From these we can
recover the L spectral components of the bandlimited signal since

1

el = TR

(Ys[k] — Xpplk]), k=0,...,L. (2.76)
This gives us the the bandlimited signal xp; and thus the piecewise bandlimited
signal as defined in Definition 2.1 is recovered x = xpr, + Xpp. [ ]

Figure 2.7 illustrates the reconstruction of a bandlimited plus a piecewise
constant signal using the following reconstruction scheme:

Algorithm 2.1 Reconstruction of piecewise bandlimited signals.

Require: NN M,N/M > 2(2K(R+1)+ L)+ 1;
Calculate the samples y,|l] =< z[n],¥[n —IM] >,1=0,... ,N/M - 1;
Calculate the DTFS X[m],m € [-(2K(R+1)+ L), 2K(R+1)+ L)] from the
DTFS of samples ys[l] — Xpp[m] = X[m],m € [L+1,(2K(R+1)+ L)];
Solve h* Xpp[m]=0,m € [L+1,(2K(R+ 1)+ L)] — Xpp;
Calculate Xpr[m] = X[m) — Xpp[m], m € [-L,L} — xpL;
The reconstruction is X = Xgr + Xpp.



26 Chapter 2.
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Figure 2.7: (a) Bandlimited piecewise constant signal, z[n], with K = 3, L =
15,R = 0,N = 256; (b) Differentiated sinc sampling kernel, ¥[n] = din] * ¢[n],
bandlimited to 2K (R+ 1)+ L = 21; (c) Sample values y;[l] =< z[n}, ¥[n —IM] >
,A0=0,...,N/M -1, M = 4; (d) |DTFS| of sample values; Reconstruction error
is 10713,

2.3.2 Filtered piecewise polynomials

Another application of sampling piecewise polynomial signals consists in sam-
pling their filtered output. Figure 2.8 illustrates that a filtered stream of Diracs
is not bandlimited. These signals are formally defined in the following

Definition 2.2 Filtered piecewise polynomials.

Let xpp be a zero mean discrete-time periodic piecewise polynomial signal of
period N with K pieces of maximum degree R. Let g be a filter with DTFS G.
Then a filtered piecewise polynomial x is defined by

X =g*Xpp (2.77)
and the corresponding DTFS coefficients X are defined by
X[m] = G[m]- Xpp[m], m=0,...,N—1 (2.78)

Suppose xpp is a stream of K Diracs. If the filter has 2K contiguous nonzero fre-
quency values G[m] then 2K frequency values of the signal X [m] will be enough
to determine 2K frequency values of the stream of Diracs, since Xpp[m] =
X [m]/G[m], and from Proposition 2.1 these are sufficient to recover the stream
of Diracs .

Corollary 2.2 Consider a filtered piecewise polynomial signal x as defined in
Definition. 2.2 with Gim] # 0,m € [-K(R+1),K(R+1)]. Consider an (R+1)
differentiated sinc sampling kernel y[n] with DTFS

¥[m] = (D[m])™*" Rect_k(r+1),k (R+1))- (2.79)
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Figure 2.8: (a) Stream of K = 4 Diracs with period N = 64; (b) |DTFS} of
stream of Diracs (c) Known filter g[n] = a™,n = 0,... ,N - 1, a = 04; (d)
|DTFS)| of filter; (e) Filtered stream of Diracs; (f) |DTFS| of filtered stream of
Diracs.

Let M be an integer divisor of N such that N/M > 2K(R+ 1)+ 1. Then the
filtered piecewise polynomial signal can be recovered from the N/M samples

ysll] =< z[n},¢[n —IM] >, 1=0,...,N/M -1 (2.80)

Proof: Similar to the proof of piecewise bandlimited signals, we have that
the DTFS coefficients of the samples y,[!] are equal to

Yik] = %(1 -WEE X[k], ke[-K(R+1),K(R+1)] (2.81)
= (1= Wgh)™ (GIK) XpplH). (2.82)

Since Glk] # 0 for k € [-K(R+ 1), K(R+ 1)] we have 2K (R + 1) values of the
DTFS of the piecewise polynomial
M
—k YS
(1 =Wy")FH GlR]

Xpplk] = k], ke[-K(R+1),K(R+1)] (2.83)
which are sufficient to recover xpp and which leads to the filtered signal by
Definition 2.2. [ ]

The reconstruction scheme is described in the following algorithm and an
example of the reconstruction is illustrated in Figure 2.9.
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Algorithm 2.2 Require: N,M,N/M >2K(R+1)+1;
Calculate the samples y;s[l] =< z[n],¥[n ~IM] >,1=0,... ,N/M - 1;
Calculate Y = DFTn/pr - ys — X[m],m € [-K(R+1),K(R+1)];
Calculate Xpp[m) = X[m]/G[m],m € [-K(R+1),K(R +1));
Solve h* Xpp[m] =0,m € [-K(R+ 1), K(R+1)] — xpp;
The reconstruction is X = g * Xpp.
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S b bdoows

&) )
5 i
| u
1 l 1 § N

(c) (d)

Figure 2.9: (a) Filtered stream of Diracs, z[n], N = 64; (b) Sinc sampling kernel
¢[n] bandlimited to K = 4; (c) Sample values y;[l] =< z[n],¢[n — IM] >,1l =
0,...,15, M = 4; (d) |DTFS| of sample values; Reconstruction error is 10713,

We have seen that the crux of the proof relies on the fact that the filter is
known and is invertible over the number of degrees of freedom of the problem.
What if the filter has a finite rate of innovation but is unknown? This is more
complex and remains to be investigated.



2.4,

Summary 29

2.4

Summary

We derived sampling theorems for periodic signals in particular streams
of weighted Diracs and piecewise polynomials. These signals have a finite
rate of innovation p which is equal to the number of degrees of freedom
per period.

The samples are obtained by taking the inner product of the signal with a
shifted version of the periodized sinc kernel or differentiated sinc kernels.
The bandwidth of these kernels must be greater or equal to the degrees of
freedom of the signal.

The discrete-time periodic signals are perfectly recovered when the sam-
pling rate 1/M is greater or equal to the rate of innovation p = 2K/N in
the case of streams of weighted Diracs or p = 2K (R + 1)/N in the case of
a piecewise polynomial signal with K pieces and maximum degree R.

The continuous-time periodic streams of Diracs and piecewise polynomial
signals are perfectly recovered when the sampling rate 1/T is greater or
equal to the rate of innovation p = 2K/7 since we assumed that the
piecewise polynomial signal belonged to CF~1.

The sampling and reconstruction scheme is illustrated in Figure 2.10.
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X -
dxdx---xd dlsdtx.--.xd?
S————— ™~ ~~ -
Y R+1 R+1
A
w xR-H
Annihilating
1 filter method
XFHE] k € [-K(R+1), K(R+1)]
DFTN/M r
ys[l] =< x,z/}[n — lM] > —- Ys[k],k (S [O,N/M — 1]

Figure 2.10: Sampling and reconstruction scheme for discrete-time piecewise poly-
nomial signals with K pieces of maximum degree R; N/M is the number of samples;
2K (R + 1) + 1 is the bandwidth of the sampling kernel.
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Appendix 2.A Annihilating filter method

The problem in spectral line analysis consists in estimating the frequencies of
a sinusoidal signal from a set of values. The methods used for estimating such
frequencies are known as high-resolution methods, for example MUSIC, ESPRIT
and can be found in [69]. We define the following as the annihilating filter
method:

Consider a filter h = (ho, h1,... , hk) characterized by its z-transform H(z) =

K

Z h z -t

=0

Definition 2.3 Annihilating filter.

A filter h is called an annihilating filter for a signal s[n] if and only if
(hxs)n] =0, VneZ. (2.84)

Proposition 2.3 The filter H(z) = 1 —u 2! annihilates the exponential signal
s[n) = u™.

Proof: Let y = h xs. Then in z— domain we have Y (z) = H(z) S(z) =
S(z) —uz~! 8(z) and thus y satisfies the difference equation

y[n] = s[n] —usn—1]. (2.85)
Substitute s[n] = u” in (2.85) we obtain
yln]=u" —uu1=0, VneZ (2.86)

|
Consider a signal s[n],n € Z defined as a finite linear combination of K
exponentials uy,

K-1
s[n] = Z Cr up (2.87)
k=0

where cj, are real and uy are real or complex valued. In the context of spectral
line analysis u, = e* where wy, is the kth frequency component of the signal
s[n].

Corollary 2.3 The filter
K-1
H(z) =[] -u2z?) (2.88)
k=0

annihilates the signal s[n] defined in (2.87).

Proof: Let y = h * 5. Denote the kth annihilating filter by

Hp(z) = (1 — uy z'l) (2.89)
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and let Si(z) be the z-transform of the kth exponential signal sg[n] = uf. Then
we have

Y(z) = H(2)5(2) (2.90)

K-1 K-1

= (1—wz"") ) e Sk(2) (2.91)
=0 k=0
K-1 K-1

= e ( H (1 —w 271) Sk(2)) (2.92)
k=0 =0
K-1 K-1

= el JI Q-wz™) (—upz!)S(2))  (2.93)

=0 1=0,l#k .

k
=0
= 0 from Proposition 2.3.

Therefore to find the values u; we need to find the filter coefficients h; in

K
H(z) = Z hyz™! (2.94)
=0
such that
hxs = 0 (2.95)
K
& Z hgsin—k] = 0, VYn. (2.96)
k=0

In matrix/vector form the system in (2.96) is equivalent to

0] sl1 - s|-K] ho

3[:1] 3[:0] sl=(K -1 | h:1 _ o0 @
K] sk -1 - 0] hic

| S : ]

Suppose a finite number of values s[n] are available. Since there are K + 1
unknown filter coefficients we need at least K + 1 equations, and therefore we
need at least 2K + 1 values of s[n] to find the filter coefficients.? Define S the
appropriate sub-matrix then the system S - h = 0 will admit a solution when

rank(S) = K. (2.98)

In pratice this system is solved using a singular value decomposition where the
matrix S is decomposed into S = UXV*. We obtain that h = V - ex; where
ek+1 is a vector with 1 on position K + 1 and 0 elsewhere [36]. The method
can be adapted to noise by minimizing ||S - h|| in which case h is given by the

2 Actually there are K unknown filter coefficients since hg = 1 and therefore we will need
at least 2K values of s[n]. The system to solve in this case is known as a Yule-Walker system
(30]
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eigenvector associated with the smallest eigenvalue of ST'S.

Once the the filter coefficients are found then the values uy are simply the roots
of the annihilating filter H(z).

To determine the weights ¢ it suffices to take K equations in (2.87) and solve
the system for cx. Let n =0,...,K — 1 then in matrix vector form we have the
following Vandermonde system

1 1 - 1 co s[0]
U Ui e UK -1 Ci S[l]
: : : ) = . (2.99)
WSED D K CK -1 s[K ~1]
and has a unique solution when
ug 7w, Vk # L (2.100)

This concludes the annihilating filter method.






Chapter 3

Sampling signals with finite
rate and finite local rate of
innovation

In this chapter! we go beyond periodicity in terms of the signals and the sam-
pling kernels. Section 3.1 investigates sampling finite length signals with a finite
rate of innovation using sampling kernels with infinite support. The signals in
question are streams of weighted Diracs sampled with the sinc and the Gaus-
sian kernel. These types of kernels are appealing to mathematicians. It will be
shown that if the critical number of samples is taken then a sampling theorem
can be derived. Section 3.2 considers the dual problem: infinite length piece-
wise polynomial signals and compact support sampling kernels. A particular
interest is given to bilevel signals with a finite local rate of innovation and spline
sampling kernels. Given that the signals have a finite local rate of innovation,
local reconstruction is possible and schemes are given in Section 3.2.3.

3.1 Finite length signals with finite rate of innova-
tion

A finite length signal with finite rate of innovation p clearly has a finite number

of degrees of freedom. The question of interest is: Given a sampling kernel with

infinite support, is there a finite set of samples that uniquely specifies the signal?

In the following sections we will sample signals with finite number of weighted
Diracs with infinite support sampling kernels such as the sinc and Gaussian.

3.1.1 Sinc sampling kernel

Consider a continuous-time signal with a finite number of weighted Diracs

K-1
o(t) = ) exO(t —tr) (3.1)

k=0

IThis chapter includes research conducted jointly with Martin Vetterli and Thierry Blu
(82, 80].
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and an infinite length sinc sampling kernel, see Figure 3.1.

Fere——g.

PESSE
-

s hor.
P—t—
: s
et

(a) (b)

Figure 3.1: (a) Example of a finite length continuous-time stream of K = 8
Diracs randomly spread on an interval [0, 7] with 7 = 8; (b) Sinc sampling kernel,
sinc(t/T),T = 2.

The sample values are obtained by filtering the signal with a sinc(t/T),t € R,
sampling kernel. This is equivalent to taking the inner product between the
signal and a shifted version of the sinc

Yn =< z(t),sinc(t/T — n) > (3.2)

where sinc(¢) = sin(nt)/7t. The question that arises is: How many of these
samples do we need to recover the signal? The signal has 2K degrees of freedom,
K from the weights and K from the locations of the Diracs and thus IV samples,
N > 2K, will be sufficient to recover the signal. Similar to the previous cases,
the reconstruction method will require solving two systems of linear equations:
one for the locations of the Diracs and the second for the weights of the Diracs.
These systems admit solutions if the following conditions are satisfied:

[C1 ] Rank(V) = K where vny = A¥ ((—1)" nk yn) and V e RWV-K)x(K+1),
[C2 ] Rank(A) = K where an; = %’%% and A € REXK

Theorem 3.1 Given a finite stream of K weighted Diracs and a sinc sampling
kernel sinc(t/T). If conditions [C1] and [C2] are satisfied then N samples with
N >2K

yn = < z(t),sinc(t/T —n) > (3.3)

are a sufficient representation of the signal.
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Proof: Taking the inner products between the signal and shifted versions
of the sinc sampling kernel yields a set of N samples

Yn = <z(t),sinc(t/T-n)>, n=0,...,N—-1 (34)
® K-1
= / ¢k O(t — tg) sine(t/T — n) dt (3.5)
oo k=0
K-1
= cx sinc(t /T — n) (3.6)
k=0
K-1

ey sin (wty /T — 7n)

= 2 /T —7) (3.7)
_ ! ¢ sin 7rtk/T)
= zz: T (3.8)
1 . 1
=4 (—1)” Yo = ; I;) Ck SINn (ﬂ'tk/T) . m (39)

The denominator of the previous expression (3.9) can be rewritten as follows:

1 _ st (t/T —n) _ Py (n)
@&/T-n) — [E @/T-n) P

(3.10)

where P(u) is an interpolation polynomial of degree K with zeros at all values
of /T,

K-1
P(u) = H (t/T —u) = Zpku (3.11)
=0

and the Py(u) is a polynomial of degree K — 1 and has zeros at all locations
except at location t;

P(w) = [[®/T~w), k=0,..., K1 (3.12)
1#£k

Therefore if the coefficients of the polynomial P(u) are determined then the
locations of the Diracs are simply the K roots of P(u). We can now find an
equivalent expression to (3.9) in terms of the interpolating polynomials:

x

Al

(-1)"P(n)y, = ck sin (mtx /T) Pr(n). (3.13)

0

~
i

Note that the right-hand side of (3.13) is a polynomial of degree K — 1 in the
variable 7, applying K finite differences makes the left-hand side vanish,? that

2Note that the K finite difference operator plays the same role as the annihilating filter in
the previous chapter.



38 Chapter 3.

is,

AKX ((=1)" P(n) yn) =0, n=K,...,N-1 (3.14)
& Yicope AF ((—1)n n* yn) =0 (3.15)
& V-p1w =0 (3.16)

where the matrix V is an (N — K) x (K + 1) matrix and admits a solution
when N — K > K and the rank(V) is less than K + 1, that is, condition [C1].
Therefore (3.15) can be used to find the K + 1 unknowns p; which lead to the
K locations tx. Once the K locations t; are determined the weights of the
Diracs ¢ are found by solving the system in (3.9) for n =0,... , K — 1. Since
ti # t;, Yk # 1, the system admits a solution from condition [C2]. [ |

Note that the result does not depend on T'. In practice if T is not chosen
appropriately then the matrices V may be ill-conditioned. Figure 3.2(a) illus-
trates the conditioning of the matrix V is the least for T close to 0.5 and that
the matrix A is well-conditioned on average.

o o -
9, bdbanrin)
o o3 % & 3

(a) | )

Figure 3.2: (a) Average condition number of the matrix that leads to the locations
of the Diracs, V, versus the sampling interval T, optimal T =~ 0.5; (b) Average
condition number of the matrix that leads to the weights of the Diracs, A, versus
the sampling interval T', optimal T = 1. Average is taken on 100 signals with 8
Diracs uniformly spread in the interval [0, 8].

By choosing more adequately the interpolating polynomials, for example by tak-
ing the Lagrange polynomials, we may reduce the conditioning of the matrix V,
but this remains to be investigated. The algorithm is as follows:

Algorithm 3.1 Finite length stream of Diracs sampled with an infinite sinc
sampling kernel
Given y, =< z(t),sinc(t/T —n) >, n=0,1,... N-1;
Calculate v, = AK ((-1)"n*y,), n=K,...,N-1, k=0,...,K;
Solve the linear system V-p =0 — {po,p1,--. , 0k };

K
Find the K roots of P(u) = 5. pruf — {to/T,t1/T,... ,tk-1/T};

k=0

sn(wte/T) 01 N-1;
w(tk/T_n), o , 7

Calculate Y, = (-1)" P(n)yn, n=0,1,... N-1;
Solve the linear system A -c =Y — {co,¢1,... ,CK_1}-

Calculate any, =
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This method can be extended to piecewise polynomials, similarly to Theo-
rem 2.2. Also, there is an obvious equivalent for discrete-time signals in ¢2(Z)
and discrete-time sinc kernels.

3.1.2 Gaussian sampling kernel

Consider sampling the same signal as in (3.1) but this time with a Gaussian
sampling kernel, ¢, (t) = e~*"/2* see Figure 3.3.

Camtrumir—tirs sroarn o4 Duase. ury

1
]
|

Cmmio syl ot
e o o s
[ ¢ .

(2) RS

Figure 3.3: (a) Example of a finite length continuous-time stream of K = 8 Diracs
randomly spread on an interval [0,7] with 7 = 8; (b) Gaussian sampling kernel,
vo(t) = e_t2/20270’ =2.

Similar to the sinc sampling kernel, the samples are obtained by filtering the
signal with a Gaussian kernel. Since there are 2K unknown variables we show
next that N samples with N > 2K are sufficient to represent the signal.

Theorem 3.2 Given a lim'tf stream of K weighted Diracs and a Gaussian sam-
pling kernel o, (t) = et /29", If N > 2K then the N sample values

Un =< z(t), 0, (t/T —n) > (3.17)
are sufficient to reconstruct the signal.

Proof: The sample values are given by

Yn = < .'lr:(t),e‘(t/T_")z/m’2 > n=0,...,N-1 (3.18)
0 K1
= / 3 cr 6t — ty) e W T2 gy (3.19)
~oo k=0
K-1
= 3 cpemt/Tmmi2e, (3.20)
k=0

We expand (3.20) and regroup the terms so as to have variables that depend
solely on n and solely on k. We obtain

K-1

Yn = (ck e—ti/2o’2T2) _entk/dzT R e""2/2”2 (3.21)
k=0
which is equivalent to
K-1
Yo = > aup (3.22)

k=0
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where we let Y, = e"/29” y. ap = ci e~ t/20"T* and uy, = */°°T . Note that
we reduced the expression Y;, to a linear combination of real exponentials. This
hints that the annihilating filter method described in the Section 2.1.1 seems
appropriate to find the K values ug. Let H(2) = hg+h1z ' +---+ hxg 2z ¥ be
an annihilating filter, that is, h is such that

h+Y =0 (3.23)
K

& S hyYer =0, n=K,...,N-1. (3.24)
k=0

Note that this is a Toeplitz system with real exponential components Y, =
en’/20° y» and therefore a solution exists when the number of equations is greater
than the number of unknowns, that is, N — K > K and the rank of the system
is less than K 4 1 which is the case by hypothesis. Furthermore ¢ must be
carefully chosen otherwise the system is ill-conditioned. If we factor H(z) =

K-1
IT (1 — 27 1ug) then we obtain the locations of the Diracs ¢ from the roots of
k=0
the polynomial H(z), that is,
ty = o*Tln Uf. (3.25)

Once the values of the Diracs t; are obtained then we solve for a; the Vander-
monde system in (3.22) for which a solution exists since uy # u;, vk # I. The
weights of the Diracs are simply given by

cr = ag ee/20° T (3.26)

[ ]
The reconstruction scheme is given in the following

Algorithm 3.2 Finite length stream of Diracs sampled with a Gaussian sam-
pling kernel
Given y, =< :z:(t),e_(‘t/T—")zﬂ'72 > n=0,...,.N-1;
Calculate Yy, = e™/2°* p=0,... N—1;
Solve the linear system h*Y =0 — {ho,h1,... ,hk};
K
Find the K roots of H(2) = Y hi 2¥ — {uo,u1,... ,uk—1}
k=0
— i = 0'2Tlnuk;
K-1
Solve the linear system Y, = 5 arup, n=0,...,K-1— {ap,01,... ,aK-1}
k=0
—> Cp = Qg eti/202 T .

Here unlike in the sinc case, we have an almost local reconstruction because of
the exponential decay of the Gaussian sampling kernel which brings us to the
next topic.

3.2 Infinite length signals with finite local rate of
innovation

In this section we consider the dual problem of Section 3.1, that is, infinite
length signals z(t),t € R* with a finite local rate of innovation and sampling
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kernels with compact support. In particular, the S—splines of different degree d
are considered [75]

pa(t) = (Pa-1*@o)(t), d€NF (3.27)
where ¢g(t) is the box spline defined by

1 ifo<t<1

0 else (3.28)

wo(t) = {
We develop local reconstruction algorithms which depend on moving intervals
equal to the size of the support of the sampling kernel.> The advantage of
local reconstruction algorithms is that their complexity does not depend on
the length of the signal. We begin by considering bilevel signals, followed by
piecewise polynomial signals.

3.2.1 Bilevel signals

Consider an infinite length continuous-time signal z(t),t € R* which takes on
two values, 0 and 1, with initial condition z(t)| +—o = 1 with a finite local rate
of innovation, p. These are called bilevel signals and are completely represented
by their transition values t;. For example, binary signals such as amplitude or
position modulated pulses or PAM, PPM signals [32], see Figure 3.4.

Figure 3.4: Bilevel signal with 6 transitions.

Suppose a bilevel signal is sampled with a box spline ¢g(t/T). Then the sample
values are given by the inner products between the bilevel signal and the box
function,

o

Yn =< 3(8), 0o (t/T — n) >= / 2(t) go(t/T — n) dt. (3.29)

—00

It can bee seen in Figure 3.5 that the sample value y,, corresponds to the area
occupied by the signal in the interval [nT, (n + 1)T]. Thus if there is at most
one transition per box then we can recover the transition from the sample. This
leads us to
Proposition 3.1 A bilevel signal z(t),t > 0, with initial condition x(t)l o =
1, is uniquely determined from the samples y, =< x(t),p0(t/T — n) > where
wo(t) is the box spline defined in (3.28) if and only if there is at most one
transition t in each interval [nT, (n + 1)T).

3The size of the support of ¢4(t/T) is equal to (d + 1)T.
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Figure 3.5: (a) Box spline sampling kernel, ¢o(t), T = 1. (b) Bilevel signal sampled
with the box sampling kernei.

Proof: For simplicity let T = 1. Consider an interval [n,n + 1] and suppose
z(n) = 1. First we show sufficiency followed by necessity .

< : If there are O transitions in the interval {n,n + 1] then the area under
the bilevel signal, or the sample value, is y, = 1 since we supposed that
z(t)|,_,, = 1. If there is one transition in [n,n + 1] then the sample value

is equal to
oo
yn = <z(t),po(t —n) >= / z(t) po(t — n)dt (3.30)
n+1 tr
= /z(t)dt:/ldt:tk—n (3.31)

This implies that t; = y, + n. Similarly if z(n) = 0 then we have t;, =
n+1-1y,. Therefore we can uniquely determine the signal in the interval
[n,n+1).

=: Necessity is shown by counterexample.
Suppose z(n) = 1 and there are two transitions t;,tz+; in the interval
[n,n + 1] then the sample value is equal to

n+1 tr n+1
Yn = / z(t) dt = / ldt + / 1dt (3.32)
n n thi1
= f—n+n+1—tpy1 =t —tgy1 + 1. (3.33)

That is, there is one equation with two unknowns and therefore insufficient
samples to determine both transitions. Thus there must be at most one
transition in an interval [n,n + 1] to uniquely define the signal.

u

Now consider shifting the bilevel signal by an unknown shift €, see Figure 3.6,
then there will be two transitions in the interval [5, 6] and one box function will
not be sufficient to recover the transitions. Suppose we double the sampling rate,
then the support of the box sampling kernel is doubled and we have two sample
values yp,, yn+1 covering the interval [nT, (n+ 1)T] but these values are identical
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OO SUR SO S S

Figure 3.6: Shifted bilevel signal with two transitions in the interval [5, 6].

(see their areas). Therefore increasing the sampling rate is still insufficient.
This brings us to consider a sampling kernel not only with a larger support but
with added information. For example, the hat spline function ¢; (t/T) defined
by

11—t if|¢<1
pi(t) = { |(l els!el (3.34)
leads to sample values defined by y, =< z(t), 1 (t/T —n) > or
nT (TL+1)T
Yo = / z(t)(1+t/T —n)dt + / z(t)(1 - (t/T —n)) dt.(3.35)
(n—1)T nT

From Figure 3.7 we can see that there are two sample values covering the interval
[nT, (n + 1)T).

Figure 3.7: (a) Hat spline sampling kernel,(¢/T"), T' = 1. (b) Bilevel signal with
two transitions in an interval [n,n + 1] sampled with a hat sampling kernel.

We will show next that we can uniquely determine a bilevel signal with a hat
sampling kernel.

Proposition 3.2 An infinite length bilevel signal x(t), with initial condition
z(0) = 1 is uniquely determined from the samples defined by

¥n = <z(t),¢1(t/T —n)> (3.36)

where 1 (t) is the hat sampling kernel if and only if there are at most two
transitions ty # t; in each interval [nT, (n + 2)T).
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Proof: Again, for simplicity let T = 1 and suppose the signal is known for
t <n and z(t)|t___n =1.
First we show sufficiency by showing the existence and uniqueness of a solution.
Then we show necessity by a counterexample.

<=: Similar to the box sampling kernel the sample values will depend on the
configuration of the transitions in the interval [n,n + 2]. If there are at
most 2 transitions in the interval [n,n+ 2] then the possible configurations
are

(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)

where the first and second component indicate the number of transitions
in the intervals [n,n + 1], [n + 1,n + 2] respectively, see Figure 3.8.

(0.1) (02)

15 15

1 1

0.5 05

0 0

05 -0.5

05 0 05 1t 15 5 -05 05 1 15
(1,0) 1,1

1.5 15

1 - 1 Pr———

0.5 0.5

0 0

-05 -05

05 0 0.5 1 15 2 25 -0.5 0 05 1 15
(2,0) 0.0)

1.5 15

1 s T—— 1

05 0.5

0 0

-0.5 -0.5

05 0 05 1 15 2 25 -0.5 0 05 1 15 2 25

Figure 3.8: Bilevel signal containing at most 2 transitions in the interval {0,2]: All
possible configurations.

Furthermore since the hat sampling kernel is of degree one we obtain for
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each configuration a quadratic system of equations with variables #g, ;.

n n+1
Yn = zt)(1+t—-n)dt+ | z()(1-(t—n))dt (3.37)
J /
n+1 n+-2
Ynt1 = ) (1+t—-(n+1)dt+ | z@)(1- (- (n+1))dt
/ J

(3.38)

First we show that the quadratic system of equations admits a solution
and then that it is unique.

(a) Existence.
Take n = 0 and so the moving interval is [0, 2].
The configuration (0,0) will lead to sample values yo = 1, y; = 1.
The configuration (0,1) will lead to sample values

to 1
Yo =1/2+ [(t—1)dt =§t02+1—t0 (3.39)
1
to 1
2
1

Sto=yo+mn=1+/-1+2y0=2—-+2-2y,.

The configuration (0,2) will lead to sample values

Yo = %to2 +1-to+1t - %h2 (3.41)
o= —%t02+1+2t0+%t12—2t1 (3.42)
- o = 2gpeppanh , - <Lttt
The configuration (1,0) will lead to sample values
Yo = —% to® +to (3.43)
y1 = %to2 (3.44)

Sto=yYo+v1=1—+1-—2y0=+2y;.

The configuration (1,1) will lead to sample values

Yo = —%t(f + 1o — %tlz +t (3.45)

yo= %t02+2+%t12—2t1 (3.46)

=ty = _ Yotyity/— y1—2yoy1+4y1 y2 = SW yo+4+\/—y, 2yoy1 +4y1 —y2
The conﬁguratlon (2 0) will lead to sample values

Yo = —%t02+1+to+%t12——t1 (3.47)

n = %to2 +1- %tf (3.48)
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57

Figure 3.9: Bilevel signal containing three transitions in an interval [4, 5], sampled
with the hat sampling kernel ¢ (2).

2-2y1+y]+2y0u1 95 —4y0 4 _ _ B=4yo—6y1+yi+2yoyi+ud
2(—2+y1+yo) 41 2(~2+y1+yo)

=ty =

(b) Uniqueness.
If y, =1 and yn41 = 1 then this implies configuration (0,0} .
If y» = 1 and 1/2 < yp41 < 1 then the possible configurations are
(0,1),(0,2). By hypothesis, there are at most two transitions in the
interval [n + 1,n + 3] therefore if y,+2 < 1/2 then the configuration
in the interval [n,n + 2] is (0,1) otherwise if y,1o > 1/2 then the
configuration is (0, 2).
If1/2 <y, <1and 1/2 < y,y1 < 1 then this implies configuration
(2,0).
If1/2 <y, <1and 0 < ypt1 < 1/2 then this implies configuration
(1,0).

=: Necessity is shown by counterexample.
Consider a bilevel signal with three transitions in the interval [0,2] but
with all three in the interval [0, 1], see Fig. 3.9. Then the sample values
in this case are are equal to

to t2
Yo = 1/2+/(1~t)dt+/(1—t)dt (3.49)
0 t1
= 1/2+to—ti+t —t5/2+t2/2—5/2 (3.50)
to i
n = /tdt+/tdt (3.51)
0 t1
= t2/2-t3/2+t2/2. (3.52)

There is no unique solution for this quadratic system of equations. There-
fore there must be at most 2 transitions in an interval [0, 2].

|

Once again if there is an unknown shift in the bilevel signal then there may

be three transitions in an interval [nT, (n+ 2)T] and so we increase the number

of samples by sampling with 1 (¢/(T/2)). The pseudo-code for sampling bilevel

signals using the box and hat functions are given in full detail in Section 3.2.3.

When going to higher order splines, necessity carries over. Sufficiency is more
tedious since we must solve a system of higher order polynomial equations.
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3.2.2 Piecewise polynomials

Similar to bilevel signals we consider sampling piecewise polynomials with the
box sampling kernel. Consider an infinite length piecewise polynomial signal
z(t) where each piece is a polynomial of degree R and defined on an interval
[tk—l; tk], that is,

4

R
iI:o(t) = E Com t™ (= [O,to]
m=0

R
ClJl(t) = Z Cim t™ te [to,tl]

m=0

2(t) =1 - : (3.53)

R
z(t)= 3 ckmt™ tE€[tk-1,tk]

m=0

\ -

Each polynomial piece zy(t) contains R + 1 unknown coefficients cgm. The
transition value ¢ is easily obtained once the pieces zy_;(t) and zx(t) are
determined, thus there are 2(R + 1) + 1 degrees of freedom. If there is one
transition in an interval of length 7' the maximal local rate of innovation is
pm(T) = (2(R+1) 4+ 1)/T. Therefore in order to recover the polynomial pieces
and the transition we need to have at least 2(R + 1) + 1 samples per inter-
val T. This is achieved by sampling with the following box sampling kernel
wo(t/ W) For example if z(t) is a piecewise linear signal with 2 pieces,
as illustrated in Figure 3.10, then to recover the signal it is sufficient to take
5 samples: two before the transition, two after the transition and one sample
covering the transition.

L LT
“’.‘f/ /

Figure 3.10: Piecewise linear signal sampled with a box sampling kernel.

We can generalize by noting that the Rth derivative of a piecewise polynomial of
degree R is a piecewise constant signal. The pseudo-code for sampling piecewise
constant signals with the box sampling kernel is found in Section 3.2.3 .

3.2.3 Local reconstruction algorithms

The following algorithms have been implemented in Maple”. In all of the
algorithms k is the index of a transition value and n is the index of the current
interval [n,n + 1]. We suppose that z(t) = 1,Vt < 0.
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Bilevel signals
Suppose N sample values y,, =< z(t), po(t — n) > are available.

Algorithm 3.3 Bilevel signal with box sampling kernel.
Require: k+ 0, n <+ 0
whilen < N -1 do

ify, =1 then

z(t) =1 Vten,n+1].
end if
if yp = 0 then

z(t) =0 Vten,n+1]
end if

if0<y, <1 then
ifz(nt) =1 then
tk < Yn+n
else
tren+1-y,
end if
k—k+1
end if
nen+1
end while

Next we give the pseudo-code for bilevel signals sampled with a hat sampling
kernel. Suppose N sample values y, =< x(t),1(t — n) > are available. The
variable tncode is a set whose last component indicates the number of transitions
in the interval [n — 1,n].

Algorithm 3.4 Bilevel signal with hat sampling kernel.

Require: tncode < 0, k + 0, n « —1
whilen < N~-1 do
ify, =1 then
tncode + 0
z(t) =1 Vie[n—-1,n+1]
end if
if y, = 0 then
tncode < 0
z(t) =0 Vie[n—-1,n+1]
end if
if 0 <yn <1 then
if 0 transitions in the interval [n — 1,n] then
if yn = 0.5 then
i < n
tncode < 0
else
sol = solve for configuration (1,0) € [n,n + 2]
if sol # () then
tncode + 1,0
if z(nt) =1 then

tke—n+1—-.2-2y,
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else
tp —~n+1-— \/5\/1/_71
end if
n+<n+2
k—k+1
solfound + True
else
sol = solve for configuration (1,1) € [n,n + 2]
if sol # 0 then
tncode + 1,1
if z(n*) =1 then
tk —n+1-—+2-2y,
ther € n+2—/-34+2y,11+2vV2 = 2yn +2yn
else

tr 4—n+1—\/§w/yn,

tht1 &N +2— \/1+2\/§\/y_n—2yn+1 —2yn
end if
n<n+2
ke—k+2
solfound «— True
else
solfound + False
end if
end if
end if
if not solfound then
sol = solve for configuration (2,0) € [n,n + 2]
if sol # 0 then
tncode + 2,0
ifz(nt) =1 then
1 2-2Yn41=49a+2¥Unt1 Un+yi 02 L1 —4n+2yn nt2ynian

bk < P —24+Yn+1+Yn
1 6=6Ynt1+4n—4y0—2yn Ny +2Ynt1 Yn—2¥nt1 Dty
thy1 <« —2
k+1 2 —2+Ynt1tun
else . ,
ty — 1 72Ynt12Yn Ry H2Un+1 Yn =2 Yn 41 BFYn 40
2 Yn+Yn41 .
" 1 2Yn41+2Yn Y2 +2¥n11 Yn+2¥nr1 a1y
k+1 2 Yntynt1
end if
n+<n+2
k+—k+2
end if
end if

else if 1 transition in the interval [n — 1,n] then
sol = solve for configuration (1,0) € [n—1,n+1] given ty_y € [n—1,n]
if sol # 0 then
tncode + 0
nen+1
else
sol = solve for configuration (1,1) € [n — 1,n + 1] given ty_y €
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[n — 1,n]
if sol # 0 then
tncode + 1
ifz((n—1)*) =1 then
e < n+v/2=2Ynt1
else
th & n+ V2 a1
end if
n+<n+l1
k+—k+1
end if
end if
else
{ 2 transitions in the interval [n — 1,n]}
tncode + 0
end if
end if
end while

Piecewise constant signal

We consider sampling a piecewise constant signal with the box sampling kernel.
doubling the sampling rate is sufficient to recover the signal, thus we suppose
2N sample values y, are available.

Algorithm 3.5 Piecewise constant signal with box sampling kernel.
Require: , k+—0n+ 0y, n=0...2N -1
whilen <2N -2 do
if {Yn+1 — Yn| = 0 then
n=n+1
else
Ck = Yn—1

Ck+1 = Yn+1
te = Yntncg—(ntl)ert:
k= Ch —Ck+1

n+—n+2

k«~k+1

end if
end while
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3.3

Summary

A finite length stream of K Diracs can be recovered from N samples y,
obtained as the inner product between the signal and shifted versions of
the sinc and Gaussian sampling kernel, when N > 2K.

For both, sinc and Guassian, sampling kernels two systems of equations
must be solved: the first system is to find the locations of the Diracs and
the second is to find the weights of the Diracs.

When sampling a randomly spaced stream of Diracs with the sinc kernel
the system leading to the transitions may be ill-conditioned if the sampling
interval T is not chosen appropriately. It is illustrated that at critical
sampling, that is, when we have N = 2K sample values, the optimal
sampling interval obtained for these type of signals is T' = 0.5.

When sampling a randomly spread stream of Diracs with the Gaussian
kernel the conditioning of both systems depends also on the value of the
variance o2 in the Gaussian kernel.

In the same fashion as in Chapter 2, the sampling schemes using the sinc
and the Gaussian kernels can be generalized to both continuous-time and
discrete-time piecewise polynomial signals.

Infinite length signals were sampled using a compact support sampling
kernel.

Bilevel signals can be recovered using a Box sampling kernel @o(t/T) if
and only if there is at most one transition in each interval [n, (n + 1)T.

Bilevel signals can be recovered using a Hat sampling kernel ¢, (t/T) if
and only if there is at most two transitions in each interval [n, (n + 2)T.

In general, to recover the infinite length piecewise polynomials with K
pieces of of maximum degree R using a box sampling kernel, the sampling
rate must be greater than the maximum local rate of innovation

pm(T) = (2(R+ 1) + 1)/T.

Sampling and reconstruction algorithms were given for each problem in
their respective sections.






Chapter 4

Irregular sampling with
unknown locations

Irregular sampling addresses the problem of recovering a signal z(¢) from a set of
samples z[n] = z(t,) whose times instances {¢,} form an irregular set. Irregular
sampling of bandlimited signals has been extensively studied in the past and fast
iterative reconstruction methods do exist {67, 20]. Most of the reconstruction
methods require as input the following parameters: the bandlimit, the sample
values, the sampling instances or locations.

In this chapter! we consider irregular sampling of bandlimited signals with

unknown sampling locations. This problem arises in practice when a sampling
device is not accurate. The samples obtained are not uniform but, most impor-
tantly their time instances contain jitter, that is, their locations are unknown. A
similar problem is treated in the context of error correction when the locations
of the errors in the received signal are unknown [24]. The irregular sampling
problem with unknown bandlimit has also been investigated in [74].
A solution for the irregular sampling with unknown locations (ISUL) problem
for discrete-time band-limited signals is defined geometrically and algebraically
in Section 4.1. Four solving methods for the ISUL problem are proposed in
Section 4.2. In Section 4.3 numerical experiments are made on a random and
on a jittered sampling set of locations.

4.1 Problem description

Consider a discrete-time periodic signal x = ([0], z[1],... ,2[N — 1]) bandlim-
ited to M, that is, the DTFS coefficients X are such that X[m] = 0Vm ¢ Ny
where Ny = {0,1,...,M — 1}, M < N. Note that these signals are complex.
Real signals are obtained by taking a Hermitian spectrum. A real bandlimited
signal with NV = 32 and M =5 is illustrated in Figure 4.1.

The irregular sampling with unknown locations (/SU L) problem consists in re-
covering a discrete-time periodic M —bandlimited signal x from a set of sample

1This chapter includes research conducted jointly with Martin Vetterli [54, 56)].
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Figure 4.1: (a) Discrete-time periodic signal, N = 32 bandlimited to M = 5; (b)
Discrete-time Fourier series coefficients.

values
s = x(Nk) = (z[no), z[n1], - . . , z[nk 1)) (4.1)

whose locations N = {ng,n1,... ,nk_1} are unknown. Pictorially the prob-
lem is illustrated in Figure 4.2.

0.

o3

02|

04

Figure 4.2: Irregularly sampled periodic discrete-time signal of length N = 32 with
K = 7 unknown sampling locations.

4.1.1 Subspace approach

The first question that needs to be answered is: What subspace does the signal
belong to? Note that

x=F1.X (4.2)

where F = DFT is the discrete-time Fourier transform matrix. The signal
in question is bandlimited to M so from the synthesis formula in Definition 1.4
the signal values are

M—
z[n] = Z‘ X[m]e ™ /N pe N={0,1,...,N-1}  (4.3)



4.1. Problem description 55

or in matrix/vector form,

z[0] 1 1 1 X[0]
z[1] oWyt Wy X[1]
: B Vol I : : :
z[N - 1] 1 W&‘(N*l) o W];(N—l)(M—l) X[M -1]
(4.4)

where Wy = e~2"/N_ Equation (4.4) can be rewritten in shorter form as

X(N) = F" (N, Nar) - X(Ni) (4.5)

where Ay = {0,1,... ,M — 1}, M < N . It is clear that the signal belongs to
the subspace spanned by the M first column vectors of the matrix F*. This
signal subspace is denoted by

S(N7 NM) = span{F* (Ni m)}mENM . (46)

Consider an irregular set of locations Nx = {nk}fgol associated to the sample
values s, that is, s = x(N), then

s = < F* (Nie, M) - X(Ni) (4.7)

and consequently the irregular set of sample values
s € S(Nk,Nu). (4.8)

The subspace S(Nk, Nar) can also be seen as a projection of S(V, V) onto the
subspace spanned by the canonical base vectors associated to the irregular set
of locations Ny, that is, span{eny,€n,,... ;€nk_, }- Thus follows the definition
of a solution to the ISUL problem:

Definition 4.1 Consider a discrete-time periodic signal x with period N and
bandlimited to M. Let s = (z[no],z[n1),... ,z[nk-1]) be a set of K sample
values of x. If

SES(NK,NM) (4-9)

then Nk = {nk}sz_ol is the set of locations corresponding to the sample values
s.

Figure 4.3 illustrates when a set of locations is and is not a solution to the ISUL
problem.

The respective subspaces have been identified so it is now appropriate to find
the solution algebraically; this is the topic of the next section.

4.1.2 Algebraic approach

The ultimate goal is to determine the whole signal x(N) from the samples s.
Note that if the DTFS coefficients X [m],m € N are known then the signal x
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Figure 4.3: (a) N,((l) = {0,1} is a solution;(b) N2 = {0,2} is not a solution.

is determined by (4.4). The ISUL problem is difficult to solve because it is a
nonlinear system composed of K equations of the form

slk] = X[0) + X[UW ™™ + ..+ X[M - W™=V p—0 .. K-1
(4.10)

and M + K unknown variables {X[m]}men,, and {n;}5'. Table 4.1 summa-
rizes the known and unknown variables.

known unknown

s = (z[no), z[n1l, ... ,z[nk-1)) | X(WNa) = (X[0], X[1],. .., X[M — 1))

./VM:{O,].,...,M—l} ./\/Kz{no,nl,...,nK_l}

Table 4.1: Known and unknown information, M < K < N.

On the other hand, if the location set Nk is known then the values X[m],m €
N, can be determined by solving the system of K equations and M unknowns
defined in (4.7). It is supposed that the number of sample values is at least
equal to or greater than the bandlimit, that is, K > M, otherwise the system
is underdetermined. A least squares solution to the system in (4.7) is obtained

S(NK7NM) s S(NKyNM)

€g
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using the generalized inverse? of F*(Ng, ), that is,

1
s = —JVF*(.N’K,NM) - X(Nu)

& F(Ni, Nog) - 5 %F(NK,NM) T (N, Nar) - X(Vag)

= X(NMum) = N[FWi,Nu) F* Wi, Nar)] ™ - F(Ni, Nr) - s
(4.11)
Note that the expression for the DTFS of the signal X(Apy) in (4.11) depends

on the unknown location set Nx. If the location set is the correct one then
x(N) is given by

x(N) = F*(N,Nu) - [F(WVk, Nur) - F*(NK,NM)]—l -F(Ng,Nu) - s.

How can one verify algebraically that a given set of locations Nk = {ﬁk}k}‘:ol
is a solution to the ISUL problem? One way is to compare the corresponding
sample values, x(Nk), with the observed sample values s, that is, we verify if

x(NVk)=s (4.12)
or equivalently if
(B Wi, Nie) - [FVi, M) - F* (Wi, Nag)] ™ - F(Wie, Mag) = 1) -5 = 0.
(4.13)
Before presenting the numerical solving methods it is interesting to study the

different types of solutions.

4.1.3 Classification of the solution

In this section the uniqueness and multiplicity conditions of the solutions to the
ISUL problem are identified. Intuitively, if the intersection of the subspaces

associated to two sets of locations, N I((l ) and N }({2 ), is empty except for s = 0
then there is a unique set of locations that correspond to the sample values s.
Thus,

Theorem 4.1 IfS(NI((l),NM) ﬂS(NI(?),NM) = then N) = A7

Proof: Consider two distinct sets of locations N, I((l ) and NV, ,(‘?’ . The difference
between the reconstructed signals associated to these sets of locations is given
by

[(F*(N}é’,w [V M) B N) TR A - 1)

—(F WP, Nu) - [PV, Nar) - B W2 Nan)] ™ - VD, M) = 1)] s =0

(4.14)

2If K = M then the generalized inverse is the inverse of the matrix. The existence
of the generalized inverse or the inverse is assured due to the Vandermonde structure of

F*(Nk,Nu).
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If there are no common elements in the two subspaces then the system in (4.14)
is satisfied only if N = N2 since s # 0. |

Similarly if the intersection of two subspaces generated by different sets of
locations is not empty then there are multiple solutions to the ISUL problem
as illustrated in Figure 4.4.

€2

S, Nu)

€

€y

Figure 4.4: Example of multiple solutions: /\/}((1) = {0,1}. N,(f) = {0,2}. If the
sample values s belong to the intersection of the two spans then there is no way to
differentiate the two sets.

Corollary 4.1 If/\/}(g) # N_,(?) and s € S(J\/}({I),NM) ﬂS(NI(?),J\/'M) # 0 then
N NP are both solutions to the ISUL problem.

Proof: If the rank of the matrix on the left of s in (4.14) is greater than K

then the system may admit one or more solutions and therefore A%, N2 are
both solutions to the ISUL problem. |

Example 4.1 Consider a discrete-time signal x = (a,b,a,a,c,a,a,d)T and the
irregular set of sample values s = (a,b,a,c,a)”, that is, N = 8 K = 5. Then the
possible sets of locations are N&) = {0,1,2,4,5}, N2 = {0,1,2,4,6}, V& =
{0,1,3,4,5}, V) = {0,1,3,4,6}.

Furthermore, due to the shift property of the discrete-time Fourier transform

matrix DF Ty, if a set of locations is a solution to the ISUL problem then any
set of locations which is a shift of that set is also a solution.
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Theorem 4.2 If Nx = {nk}kK;O1 is a solution to the ISUL problem then N +
r= {ng +r} withr € {1,...,N — nk} is also a solution to the ISUL
problem.

Proof: Suppose Nk is a solution to the ISUL problem. Note that,

S(NK +"'aNM) = Span{F*(NK +7,m) e
span{Wxy " F*(Nk,m)}mern
span{F*(Ng,m)}meny
SNk, Nar).

From Definition 4.1, Mg + r is also a solution to the ISUL problem. |

4.2 Numerical solving methods

The ISUL problem is solved numerically in two steps: first the set of locations
corresponding to the given sample values need to be found and then the signal
is reconstructed. Define the mean squared error between the sample values s
and those associated to a given set of locations Nk by

ENk) = ” (F(NK,NM) . [F(NK,NM) 'F*(NK,NM)]—l -F(NK,NM) — I) S”
(4.15)

The first step is accomplished by verifying if E(Nk) is null. To evaluate E(Nk)
is computationally expensive for large values of K and M and therefore it is im-
portant to exploit the structure of the matrices involved in the calculation. First
it must be noted that F*(Nk, Ny ) is a Vandermonde matrix and the product
F(Nk,Nu) -F*(Nk,Nu), as well as its inverse (F(NK,NM)-F*(NK,NM))_I,
is a Toeplitz matrix. Therefore it is sufficient to calculate the first row and first
column of F(Ng,Nar) - F*(Nk,Nar), that is, K M operations. Consequently,
by fast Toeplitz methods it can be inverted in K M log M operations [20].

4.2.1 Exhaustive search

An elementary way to solve the ISUL problem is using an exhaustive search
approach. This method consists in verifying if E(Nx) = 0 for all (}) sets of
locations. From Theorem 4.2 since some sets of locations are just shifts of each
other, these sets are put in one class. The representative of each class satisfying
E(Nk) = 0is asolution of the ISUL problem. Clearly, this method can only be
used for small size problems because of the combinatorial explosion. Figure 4.5
shows the behavior of the cost function E(Nk) for the ISUL problem with
parameters N = 16, K = 8§, M = 4.

4.2.2 Random search method

The random search method is an iterative descent algorithm. Given is an initial
set of locations, N, 1((9 ). While the solution is not found, that is, E(N I({O )) > 0,
a component k of the location set is perturbed by A following a probability
distribution, P{-). If the cost value of the perturbed set decreases then the
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Figure 4.5: Distribution of the cost function E(Nk) (N = 16,K = 8, M = 4)
over all possible location sets, (g) = 12870.

latter becomes the new initial set and the same component is perturbed. If
the cost value increases then the next component of the initial set is perturbed.
The algorithm comes to halt when there is no change in the cost value from one
perturbation to the other, this is a local minimum, or when the cost value is
EW, I({O )) = 0, this is a global minimum. The random search method is described
in pseudo-code in Algorithm 4.1.

Algorithm 4.1 Random search method
NO = (n® 2 nl® }e=10"8k=0.
while k < K — 1 and EW) >0 do
N — N and 0V =20 + X, A~ P().
if EINY) < e then
Ng +— ./\/I({l) is a global minimum.
else
if IEWE) — EWE)| < e then
Nk +— N is a local minimum.
else
if ENY) < EWD) then
N «— N Goto perturbation step.
else
k =k +1. Goto next component .
end if
end if
end if
end while

Practicalities

The initial set as well as the distribution of the perturbations is chosen ade-
quately to the application. More on this is found in Section 4.3.
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4.2.3 Cyclic coordinate method

The cyclic coordinate method [3] is similar to the gradient descent in that it
descends in the best direction except that it does not require any derivative
information. It differs from the Random search method in that the perturbation
value A is not a random variable but belongs to a deterministic set A which is
chosen appropriately. Also there are at most K perturbations in this algorithm
as opposed to the RS method in which for a given component there can be more
than one perturbation. The cyclic coordinate method is described in pseudo-
code in Algorithm 4.2. ’

Algorithm 4.2 Cyclic coordinate method
0
N,({O) = {n§°),n§0’,... ,nf,{)_l )
k=0.
while k < K — 1 and EINY) > 0 do
NY — N9 gnanlV) = nfco) + Ay where Ay = arg I)‘IIEIIIXI{E(NI({O) + Adg)}

if BEWY) < ¢ then
Nk «— N is a global minimum.
else
if IEWND) — EWI)| < € then
Nk +— N is a local minimum.
else
if ENY) < EWLY) then
NO — N,
else
NO — N,
end if
k=k+1.
end if
end if
end while

Both the random search method and the cyclic coordinate methods do not
guarantee a global minimum. When stuck in a local minimum, a random set
of locations is generated and the methods are repeated. The tested algorithm
comes to a halt when a global minimum is attained or an upper bound on the
number of local minima is exceeded.

4.2.4 Tabu search method

The Tabu search method is used to avoid getting stuck in local minimum. Two
key elements are that: it constrains the search by classifying certain perturba-
tions as forbidden or tabu, and it contains a memory function which keeps a list
of perturbations that lead to local minima [29}.

4.3 Experiments

Here the methods described in Section 4.2 are tested on two types of irregular
sets: the first is a random set of locations and the second is a jittered set of
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locations. A third set- periodic nonuniform set- was also tested but this will be
discussed in detail in the next chapter.

4.3.1 Unknown random sampling set of locations

In this experiment a discrete-time signal with period N = 32 is considered with
K = 8 random samples and band-limited to M = 2. In Figure 4.6(a) the
convergence of the CC and RS methods are compared. The conclusion is that
the CC method converges faster. This is due to the deterministic nature of the
algorithm. The number of iterations required to find a global minimum varies
from one simulation to another as illustrated in Figure 4.6(b). The maximum
number of local minima was restricted to 30. Finally in Figure 4.7 it is shown

it RS meihod, T RS mwthod
== CC method == CC method|

0.002]

© 1 2 3 4 5 8 7 & © 1011 12 13 14 15 16 17 19 19 20 21 22 23 24 25
Rermtion

Figure 4.6: (a) Convergence VS iterations of the Cyclic Coordinate and Random
Search methods;(b) Total number of iterations to find the global minimum. Maxi-
mum number of local minima is 30.

that the probability of finding a global minimum depends on the smoothness of
the signal, that is, the smaller the band-limit M as compared to K the more
likely it is to find the right set of locations.

]

Figure 4.7: Success percentage of finding global minimum using the CC and RS
methods for random sampling set VS the bandlimit M. Average of 20 simulations
on 20 different signals.
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4.3.2 Unknown jittered set of locations

In this experiment samples are taken around multiples of a sampling interval

T, which forms an irregular set of locations Nx = {kT + fk}kK;ol where € is

the jitter. The assumed jitter follows a binomial distribution centered at € = 0

with parameters (2, p) where p is the probability of no jitter and € € {-1,0,1}.
| Figure 4.8 illustrates an example when N = 32, K = 8,7 = 4,p = 0.5. The RS
and CC methods are applied on the jittered data with p varying from 0.01 to
0.3. Figure 4.9 compares the two methods and illustrates that the percentage
of finding a global minimum using the CC method is on average 83%.

[X

Y ST

ozp
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Figure 4.8: Discrete-time signal of length N = 32 with a jittered set of unknown
locations of size K = 8 .

° 0.05 EX] ©.18 0.2
Jitter probadilty, p

Figure 4.9: Success percentage of finding global minimum using CC and RS meth-
ods for sampling with jitter in locations where the jitter follows a binomial probability
distribution with parameters (2, p) centered at € = 0. Average of 100 simulations
on 50 different signals with parameters N = 16, K =4, M = 2.
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4.4

Summary

The irregular sampling problem with unknown locations was described
and a solution was derived algebraically and using a subspace approach.

There is a unique set of locations N when the irregular set of sample
values is spanned by a unique set of vectors F(Ng,m),m € Ny

There are multiple solutions A 1(<1 ),./V' 1(<2 ) when the irregular set of sample
values belongs to the intersection of the two subspaces

SN, Nur) NS Nag) # 0.
This is the case when the locations are just shifts of each other.

The problem was set up as a mixed, real and integer, combinatorial opti-
mization problem.

Four solving methods were proposed. The first is an exhaustive search
method which tests all the possible sets of locations. Two other methods
are the random search and cyclic coordinate. These are descent algorithms
in which a solution set is obtained by perturbing a location in a determin-
istic or probabilistic manner. These methods are heuristic and therefore
do not guarantee a global minimum. The Tabu search method is proposed
to help avoiding local minima.

Two experiments were also described. The first consisted in finding a
random irregular set of locations. In the second one, the irregular set is
composed of a uniform set with a given jitter.

The cyclic coordinate method showed to be more successful than the ran-
dom search method in finding the sets of locations .
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Periodic Nonuniform
Sampling

Periodic nonuniform sampling addresses the problem of sampling a signal with
a certain periodic sampling pattern. Consider for instance a few uniform sets
where each set differs by a shift. The agglomerated set is nonuniform but in a
periodic fashion. For example, if we take many pictures of the same scene then
we obtain multiple overlapping pictures which differ by a vertical and horizontal
shift. This problem is a particular case of the irregular sampling problem and
80 it is important to exploit the special structure of the data.

Section 5.1 of this chapter! gives a formal definition of the periodic nonuniform
sampling problem for discrete-time bandlimited signals. Section 5.2 shows how
the problem can be simplified by exploiting the periodic structure of the sam-
ples and a fast direct reconstruction scheme is derived via an example. The
motivation in developing a fast reconstruction scheme is to speed up the search
methods described in Chapter 4 when the shifts in the superimposed uniform
sets are unknown. Finally Section 5.3 describes an application involving super-
resolution.

5.1 Problem definition

We begin by specifying the problem. How is a discrete-time periodic M —bandlimited
signal, x = (2[0], z[1],... ,z[IN — 1]), efficiently reconstructed from a periodic
nonuniform set of samples x(Ng)? A formal definition of the periodic nonuni-
form set follows.

Definition 5.1 Periodic nonuniform set.
A periodic nonuniform set of locations N of length K is the union of C
uniform sets Nk,

c
Nk = UNK,-- (5.1)

i=1

The variables involved in the problem are the following:

IThis chapter includes research conducted jointly with Martin Vetterli [55, 56].

65



66 Chapter 5.

N € N is the length of the signal;

e T ¢ N is the discrete-time uniform sampling interval;

C € N is the number of uniform sets;

K; = N/T € N is the size of one uniform set of locations, i = 1,... ,C;

Nk, = {kT + si}i=o,... k.-1 is the ith uniform set of locations;

si € [0,T — 1] is the ith shift from the uniform set {kT'};

¢ K = CK; is the size of the periodic nonuniform set;
e M = RK; is the bandlimit of the signal, 1 < R < C.

An example of a periodic nonuniformly sampled signal is illustrated in Fig-
ure 5.1. The length of the signal is N = 32 and the uniform sampling interval
is T = 8. Therefore there are K; = N/T = 4 values in each of the C = 3
uniform sets: N, = {3,11,19,27}, Nk, = {4,12,20,28}, Nk, = {6, 14,22, 30}
where the shifts are s; = 3,85 = 4, s3 = 6. Thus the periodic nonuniform set is
Nk ={3,4,6,11,12,14,19,20,22,27,28,30}.

Figure 5.1: Periodic nonuniformly sampled signal.

5.1.1 Direct solving method

The periodic nonuniform sampling problem is a special case of the irregular
sampling problem. In terms of the notation in Section 4.1.1 the M —bandlimited
signal can be recovered by solving for X (M) in the system of equations

SF" Wi, Ni) - X(Nar) = x(Ne) 2

where F = DFT y, Nk is the periodic nonuniform set and N = {0,... ,M—1}
and then substituting X(A}y) in

X(V) = S F° (N, Nar) - X(N). (5.3)

The matrix F*(Nk,Nar) is a Vandermonde matrix which assures the existence
of a solution. As in Section 4.1.2 a solution, in the least squares sense, is
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obtained using the generalized inverse. Some of the iterative methods mentioned
in Section 1.2 can also be applied but these do not take into account the periodic
structure of the samples.

5.1.2 Computational complexity

The calculation of the generalized inverse of F*(Nk, Ns) requires matrix mul-
tiplication and inversion and is costly for large values of K and M. The number
of operations are found on the left hand side of Table 5.1, more on this later.

5.2 Fast reconstruction scheme

In this section the goal is to exploit the periodic nonuniform sampling pattern
so as to reduce the dimension of the problem and speed up the direct method.

5.2.1 Derivation of fast scheme via an example

Consider a discrete-time signal x of length N = 8, bandlimited to M = 4,

1

x(V) = SFV,Nu) - X(Nr) (5.4)
z[0] Tl 1 1 17

z[1] 1wt Wyt owg?

z[2] 1 Wt wyt wyt X[0]

3 | _ 1|1 Wt owgt owgt | | X[ (5.5)
z[4] - 1wt 1 Wyt X[2] :
z[5] 1 Wyt Wyt owy T X[3]

z[6] 1 WS wyt Wyl

z[7] 1 W Wt Wt

where W5 = e~%27/8_ The minimal number of samples to recover the signal x is
equal to M = 4. Consider a discrete-time uniform sampling interval T = 4 then
the number of samples in the uniform set is K; = N/T = 2 which is less than
M = 4 and is insufficient to reconstruct the signal. Taking two uniform sets
would do the trick. For illustration purposes take C = 3 uniform sets of samples,
for example, at locations Ng, = {0,4}, Nk, = {1, 5} and Nk, = {2,6} then

the periodic nonuniform set of locations is Ng = U Nk, = {0,1,2,4,5,6}.

The problem is reformulated by partitioning the system in (5.5) according to
the three uniform sets Nk, (i = 1,2,3),

:1;[0] 1 1 1 1

z[4] 1wyt 1wt X|[o]

s | _1| 1 wgl owg? wgt | | X[ (5.6)
z[5] | T 1 Wt Wyt Wyt X[2] '
z[2] 1 Wt owgt wyt X[3]

(6] 1 Wt owyt wyg?
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The crux of the fast reconstruction scheme lies in the fact that the matrix in
(5.6) can be broken up as the product of the following two matrices

. . .|t .
where O, is a 2 x 2 zero matrix. Note that the matrix [ ] is equal to

1
1 Wit
1 1
1wt
by the following diagonal block matrix,

= DFT} = 2- DFT; . Therefore by multiplying (5.6) on each side

1 DFT, {0 0.
| o, DFT, o0, (5.8)
O, (02 DFT,
the following partitioned system is obtained
2[0] 10 10
DFT2 { sy [0 1 0 1 X[0]
8 {1 B 1 0 Wg? 0 X[1]
2| PPl o ) | = [0 W] [ o we* | || x12)
z[2] 1 0 Wgt 0 X[3]
DFT, (6] [0 Ws—2] [ 0 wg° )
(5.9

Each block of the partitioned matrix in (5.9) is a diagonal matrix whose values
are given by the rows associated to z{0], z[1], z[2] and columns {0,1},{2,3} of
the matrix in (5.6). The fact that the blocks are diagonal matrices hints that
the number of operations to calculate the generalized inverse of the partitioned
system will be less than the unstructured one.

5.2.2 Generalized fast scheme

The key step in the example of Section 5.2.1 which reduces the problem is the
multiplication of (5.6) by the diagonal block DFTy matrix in (5.8). This is

(5.7)

11 11
[1 W8_4] 1wt O, (62} 0O, 0O,
11 11
0O 0 1wt 1wt 0. 0:
11 1
i O, 0, 0O, 02 1wt 1wt
S 1o .
o] o
10
T P
1 0
A 0.
W2 0
02 [ (8) w3 ]
8
1 0
0 Wg? | 402
Wt 0
0 [ 0 WS—G}
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generalized by the following

DFT g, x(Nk,) Dy Dy, ... Dig X[0]
N | DFTk,x(Wk,) Dy; Dy ... Dap X[1]
K : R R :
DFTKCX(./VKC) DCl ch e DCR X[M - 1]
y = D-X(WNu) (5.10)

where D;; are diagonal matrices defined by

Di; = diag({Wx " he(i-1)Ki... jKi-1})s i=1,...,C,5=1,... R (5.11)

As described in Section 5.1.1 a solution in the least squares sense is obtained by
means of the generalized inverse of the partitioned matrix D in (5.10), that is,

X(Ny) = (D*D)"1D*y (5.12)

where y = [DFT(x(Nk,), ... , DFT(x(Nk,)]T and (D*D)~1D* is also a par-
titioned matrix whose blocks are diagonal matrices. The fast reconstruction
scheme is illustrated in Figure 5.2.

x(Nk,) —DFTg,

(D*'D)~'D* —— | LDFT}

X(NKC) —_DFTKC

Figure 5.2: Fast reconstruction scheme for periodic nonuniform sampling

5.2.3 Computational complexity

Here, the complexity of the fast reconstruction scheme is compared with the
direct unstructured one. The inverse of a partitioned matrix is obtained from
(5.14) in the Appendix 5.A where A = D*D. Note that A is a partitioned R x R
matrix where each block A,,, is a K; x K; diagonal matrix. Define opa (R) as
the number of operations required to invert A. Suppose that R is a power of 2
and use a divide and conquer approach to determine A~! = (D*D)~"' (that is,

let @ ={1,...,R/2}). The result is the following recurrence equation
opa(R) = 100pa(R/2) +12(R/2)°K; + 4(R/2)*K;
opa(l) = K;

and we conclude that opa (R) € O(R!9210K;). Table 5.1 summarizes the num-
ber of operations required for each scheme. The two schemes are compared in
Figure 5.3 where K = CK; and M = RK; in Table 5.1 and the parameters C
and R are constant and K; varies.
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Complexity
Direct scheme Fast scheme
F*F M*K D*D R2CK;

(F*F)—]_ M3 (D*D)—l Rlogg IOKi
F* - x(Wk) | MK D*y RCK;logK;

Table 5.1: Summary of complexity O(operations) for direct and fast scheme.

Comparison of the two schemes
x10° K=C K]. =R K.' C=64,R=32

25}

Oloperations)
o
T

0.5

Figure 5.3: Comparison of the unstructured direct method and the fast structured
scheme.

5.3 Application: super-resolution

The motivation for developing a fast reconstruction scheme is due to an ap-
plication of the irregular sampling with unknown locations problem described
in Chapter 4 . Suppose one wants to improve the resolution of an image. By
taking multiple copies of the image where each copy differs by a shift and then
placing the data on a finer grid one obtains a periodic nonuniform set of sam-
ples from which a better resolved image can be recovered. Usually these shifts
are unknown and need to be determined. By applying the fast reconstruction
scheme these shifts are found in a more efficient way.

5.3.1 Synthetic data

An exhaustive method is used to find the shifts. Thanks to the fast scheme
the number of possible locations is reduced to (g) which is much less than (}]g)
To extend the 1-D to the 2-D case we suppose that the spectrum is such that
the first M columns of the 2-D DFT are nonzero and the last N — M columns

are zero. Furthermore we suppose there are no vertical shifts. Hence only the
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shifts on one row of the image need to be found sgince it is supposed that they
are the same for the other rows. Figure 5.4 shows 3 images of "Lena” of size
256 % 32. Each of the three images were taken from a 256 x 256 image and
differ by a horizontal shift. The diserete uniform sampling period is T = 8 and
so the shifts must be between 0 and 7. Using the exhaustive method instead
of verifying [;‘2,5;_,) locations, the shifts are determined by verifying (1) = (§)
locations. Once the shifts are found each set of data is placed on a finer grid
of size 256 x 256 and the better resolved image is recovered. The periodic
nonuniform sampled image and the reconstruction are shown in Figure 5.5.

(a) (b)

Figure 5.4: Three copies (C' = 3) of Lena with low resolution. Each image is of
size N x Ko, with N = 256, K = 32

{a) (b)

Figure 5.5: (a) Periodic non-uniform sampling set obtained from three copies of
Lena put on a finer grid (N x K, - T\ N = 256, K = 32, T = 8) according to the
shifts found by the exhaustive method, N, = {kT + .w,};“__'l_'.i =11:2.3,8) =
1,85 = 3,53 = 5; (b) Reconstruction of Lena
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5.4 Summary

¢ The periodic nonuniform sampling problem for discrete-time bandlimited
signals has been described.

A fast reconstruction scheme was derived via an example and its complex-
ity was compared to the unstructured scheme.

e By exploiting the structure of the data the complexity of the problem is
reduced.

An application involving super-resolution of images has also been illus-
trated.
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Appendix 5.A Partitioned matrices

Suppose A is an R x R partitioned matrix,

Ay Ay ... Asp
Asy A ... Asp

A= ) (5.13)
Api Agpy ... Apggr

where A, are square matrices. The inverse B = A~! of a partitioned matrix
is given by [36]

B(a,a) = [A(a,0) - Afa,d)A(, ) 'A(d, )]

B(a,o/) = A(a,0) 'A(a,d) (5.14)
. [A(o/,Oz)A(a,oz)_lA(Oz,o/)A(a',a')]-1

where « is a subset of {1,..., R} and ¢’ is the complement index set of .
Note that if R =4 and a = {1,2}, &' = {3,4} then

_ A Agp n_ |A1z A
Alo,a) = [A21 A22] and A(a,a') = [A23 A24] .






Chapter 6

Irregular sampling in
approximation subspaces

In a communication channel data may be lost or corrupted: the receiving end ob-
tains only an incomplete set of data packets and recovering the lost or corrupted
packets can be cast as an irregular sampling problem. Under what conditions
can the packets/signal be recovered with minimum error? These conditions de-
pend on the signal subspace.

In this chapter! the signals of interest are linearly and nonlinearly approximated
signals using Fourier and wavelet bases. In Section 6.1 signal approximation
is reviewed and an iterative algorithm for recovering these signals is described,
namely the Papoulis Gerchberg (PG) algorithm. A signal that is nonlinearly ap-
proximated regardless of the expansion basis results in a smaller approximation
error than a linearly approximated one. This is the motivation for developing
the PG algorithm in nonlinear approximation subspaces. We study the different
cases and present PG variants in Fourier and wavelet subspaces in Section 6.2.
In Section 6.3 some numerical experiments are made on a 1D signal and a 2D
signal in the context of erasure correction.

6.1 Preliminaries

In this section first we recall some basic notions on signal approximation, fol-
lowed by the Papoulis Gerchberg algorithm.

6.1.1 Signal approximation

The goal in signal approximation is to determine the basis which will best ap-
proximate a given signal. Consider for instance a discrete-time periodic signal
x € £2(N), with N = {0,... ,N — 1}, and suppose the set {g; }men is an or-
thogonal basis for £2(N), then the signal can be expressed as linear combination
of the basis vectors, that is,

X = Z < X,Bm > Bm- (6.1)
meN

1This chapter includes research conducted jointly with Martin Vetterli [53].
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Furthermore the signal x can be approximated by a linear combination of an
arbitrary set of M basis vectors with M < N. The basis vectors may be a fixed
set in the case of linear approximation or a signal-dependent set in the case of
nonlinear approximation.

Linear approximation

A linear approximation X1 of a signal x is a projection of x onto a subspace
spanned by M fixed basis vectors. For example the M first, then

XL= Y <X8m> Bm (6.2)
meN M
where Ny = {0,... , M — 1}. The linear approximation error is
a=lx-aul= Y I<xgn>P (63)
meEN \Ny

Note that the basis set is fixed t0 {&m }men,, for all signals.

Nonlinear approximation

A nonlinear approximation Xy, of a signal x is a projection of x onto a subspace
spanned by M basis vectors which are not fixed but depend on the signal. The
M basis vectors are chosen such that the approximation error is minimized.
These correspond to the basis vectors to which are associated the M largest
expansion coefficients | < x, g, > |. Define the associating index set by

NM(X):{mi€N7i=O7"'7M_1:l<x>gmo>|Z'”Zl<xagmM-1 >l}
(6.4)

Clearly Mar{x) depends on the signal. The nonlinear approximation of x is
given by

XNL = Z <X,8m > Bm (6.5)
meNM (x)

with approximation error

v = lx-gwill= Y I<xga> [ (66)
meN\Nu (x)

Since the nonlinear approximation of a signal is defined by taking the basis
vectors which will minimize the approximation error, it is evident that the non-
linear approximation of a signal is always better than its linear approximation
since the respective errors satisfy

énL < €. (6.7)
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6.1.2 Papoulis Gerchberg algorithm

The PG algorithm is a special case of the projection onto convex sets method
[67] in that the convex sets are linear. It assumes that the signal belongs to two
convex sets with non empty intersection and involves two projections. At the
initialization step the algorithm puts the value zero on the locations where the
samples are unknown. Projection 1 then projects this signal into the bandlimited
subspace. Projection 2 substitutes the zeros with the sample values obtained
from Projection 1 and so forth, see Figure 6.1.

Figure 6.1: PG algorithm for M-BL signals. The first projection is onto a ban-
dlimited subspace and the second projection is onto the space of unknown samples,
H =DFT.

The algorithm is as follows:
Algorithm 6.1 PG algorithm for M-BL discrete-time periodic signal x.

x1) = x@ + Py x,e DFTR' P, DF Ty x
—— g

Projs Proj

where
e N={0,1,... ,N—1};
e Nk ={no,n1,... ,NK_1};
e Ny ={0,1,... ,M -1}
¢ Pyex= { x%n] iffnneej\ﬁ(\ Ni is a projection operator which puts to
0 all the values not belonging to the irregular set;

. DFT_lPNM -DFT - x is the projection of x onto the M-BL subspace.

We can modify the Papoulis Gerchberg algorithm by projecting the irregularly
sampled signal into the associating subspace. These variants are presented at
the end of Section 6.2.
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6.2 Reconstruction of approximated signals

One of the goals in approximation theory is to find the basis that will give
the best approximation of a given signal. In this section we investigate irreg-
ular sampling of four types of approximated signals and present the Papoulis
Gerchberg variants. In particular, we consider

o signals that are linearly approximated using a Fourier basis;
¢ signals that are nonlinearly approximated using a Fourier basis;
e signals that are linearly approximated using a wavelet basis;
¢ signals that are nonlinearly approximated using a wavelet basis.

The general superiority of the nonlinear approximation suggests extending the
Papoulis Gerchberg algorithm described for M —bandlimited signals in Sec-
tion 6.1.2 to nonlinearly approximated signals. We seek conditions for which
reconstruction in these ”approximation” subspaces is feasible. Throughout this
section a toy example on a signal of length N = 8 is used to illustrate these
conditions.

6.2.1 Fourier basis

Consider a discrete-time periodic signal x of length N which can be expressed
as a linear combination of Fourier basis vectors, g,[n] = —\/% eizmmn/N nc N

X = Z < X,8m > Em- (6.8)
mEN

Note that (6.8) is equal to the inverse discrete-time Fourier series coeflicients
defined in (1.14) where the expansion coefficients are equal to the discrete-time
Fourier series coefficients, that is, < X, g, >= _\}_I_VX [m]. For example, if N = 8,

(6.8) in matrix/vector form is equivalent to

z{0] Tl 1 1 1 1 1 1 1 1 /X[0]
z[1] 1 Wt owyt Wyt wyt Wt o wgt owgT X[
z[2] 1 Wg? wyt w1 wyt o owgt wg® X[2]
e8] | 11 wg? wyt wyt wyt wyT wg? owgt X[3]
4] | T8 1 wgt 1 wgt o1 Wyt 1wt || X[
z[5] 1 Wge Wyt Wyt wyt wgt Wt wgd X (5]
x(6] 1 Wgt Wit w1 wyt owyt wg? X([6]
z(7] L1 Wy oWt wet owgt Wit wet owgt |\ X
x(NV) = GW,N)-XWN) (6.9)

where G = DFT}' .

Fourier-based linearly approximated signals

A Fourier-based linear approximation X1 of a signal x is obtained by keeping
the first M, with M < N, discrete-time Fourier series coefficients and by putting




6.2. Reconstruction of approximated signals 79

the last N — M to zero. This is equivalent to lowpass filtering the signal or
bandlimiting the signal to M, that is,

xLr(N) = GV, Nu) - X(Nr) (6.10)

where My = {0,... ,M — 1}

Consider an irregular set of samples xzr(Nk) then the Fourier-based linear
approximation X, r can be reconstructed using a direct method such as find-
ing a least squares solution or using an iterative method such as the Papoulis
Gerchberg algorithm described in Section 6.1.2. The submatrix G(Nk,Nar)
associated to the system of equations is a Vandermonde matrix. Since all of the
columns of the Vandermonde matrix are linearly independent and the rank of
G(Nk, Nur) is equal to M, this guarantees the convergence of the PG algorithm.

Fourier-based nonlinearly approximated signals

A Fourier-based nonlinear approximation Xypr of a signal x is obtained by
keeping the M largest discrete-time Fourier series coefficients X [m] and putting
the least N — M to zero. This corresponds to

xnLr(N) =G(N,NM(X)) -X(NM(X)) (6.11)
where

Nux)={m; eN,i=0,...,M~1:|X[mo]| > -+ > |X[mar-1]l}-

The set N (x) is different for each signal and therefore the submatrix G (Ng, N (x))

is not necessarily a Vandermonde matrix. For example if Nx = {0,1,4,5} and
Nu(x) = {0,2,4} then the matrix involved in the system is

11 1
11 wg? wgt

GWNk,Nu(x)) = 3|1 is f . (6.12)
1 wg? Wit

It is evident that the matrix G (N, Ma(x)) is rank deficient which implies that
the system is not consistent and the PG algorithm will not converge to desired
signal.

6.2.2 Wavelet bases

Similarly to the Fourier basis, a signal can be linearly and nonlinearly approxi-
mated using an orthogonal wavelet basis. For signals belonging to wavelet sub-
spaces, the transform matrix becomes the discrete wavelet transform, DWT.
The DWT depends on the quadrature mirror filters (qmf) used in the decom-
position and the number of decomposition levels J [50, 71, 79]. Consider for
simplicity the Haar wavelet basis, the qmf’s are the lowpass %[1, 1] and the

highpass ——\};[1, —1]. Then a signal of length N = 8 in matrix/vector form is
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defined by
z[0] [1 -1 -2 0 -2 0 0 0] / sg
z[1] 1 -1 —/2 0 2 0 0 0 w30
z[2] 1 -1 V2 0 0 -2 0 0 Wao
z[3) _ ol J1 -1 V2 6 0 2 0 O w1
z[4] T2l 1 0 -v2 0 0 -2 0 wio
z[5] 1 1 0 -v2 0 0 2 0 w1y
z[6] 1 1 0 v2 0 0 0 -2 wi2
2[7] 1 1 0o v2 0 0 0 2] wis )
x(NV) = GWN,N) s(N) (6.13)

where G = DWT ! and sy is the scaling coefficient at level J = 3 and wmn
are the wavelet coefficients at level m, m = J,... ,1,n=0,...,2/~™ — 1.

Wavelet-based linearly approximated signals

In [84] the Papoulis Gerchberg algorithm is generalized to signals lying in wavelet
subspaces. Scale-time limited signals are considered which corresponds to say-
ing that the M first coefficients of the wavelet transform are nonzero. The PG
reconstruction algorithm for wavelet-based linearly approximated signals is sim-
ilar to Algorithm 6.1 except that the transform matrix is the DW'T. Since the
DWT matrix depends on the quadrature mirror filters the convergence of the
PG algorithm is not as straightforward as in the linear approximation Fourier
case where the submatrix was Vandermonde. This is perfectly shown by a sim-
ple example with samples whose indices are Nx = {0,1,2,3} and scalelimited
to M = 3, Ny ={0,1,2}, or,

z[0] 1 -1 —ﬁ 520

z[1] 1 1 -1 —V2

$[2] = m 1 -1 \/§ (w:;o) (6.14)
o(3] 1 -1 vz ]\

The rank of the matrix in (6.14) is equal to two which is less than M = 3.
Therefore the system will not admit a unique solution and the PG algorithm will
not converge to the desired signal. The convergence of the algorithm depends on
the rank of the associated submatrix which depends on the locations at which
the samples are taken as illustrated in the example.

Wavelet-based nonlinearly approximated signals

The reconstruction of a wavelet-based nonlinearly approximated signal is done
by taking the index set corresponding to the M largest scaling and wavelet co-
efficients, Ny (x) = arg maxm n{|Smnl, |wmn|}. Hence the submatrix associated
to the problem depends not only on the locations of the irregular set of samples
but also on the set Ns(x) which varies from one signal to another.

The variants of the PG algorithm are summarized in Table 6.1.
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Proj; «+— DWT ' Py, DWTx'")

PG variams Linear approximation Nonlinear approximation
Ny={0,1,... M-1) ANy (%) = maxi Fourier coefficients)
Fourier-based
Projy +— D!‘T“T’xu DFT x'" Proyy «+— DFT ' Py, (xDFT x'")
Ny =(0.1... M~-1} Nyr(x) = max{wavelet coefficients)
Wavelet-based

Projy «— DWT ' Py, o DWTx!)

Table 6.1: Variants of the Papoulis Gerchberg algorithm

6.3 Numerical experiments

Consider the problem of sending a signal or an image through a binary erasure
channel (BEC) with a probability of erasure equal to p. Figure 6.2 illustrates the
result of sending a 1D signal (upper left) and a 2D signal (lower left) through a
binary erasure channel (in the middle). The 1D signal received has two missing
segments (upper right) and the 2D signal has missing packets of size 2 x 2 (lower
right). In the following sections numerical experiments are effectuared on these
two signals and he sets Ay and Ay (x) are supposedly known,

A4 L 4 4 4 i

—r—r—— by

(a) (b)

Ip
(d) (e)

P T

(e)

Figure 6.2: (a) A 1D signal of length N' = 256 (column 128 of Lena image). (b)
Binary erasure channel (BEC) with probability of erasure p; (c) Received signal with
2 lost segments of size 4; (d) An image of size N x N with N = 32 (portion of
Lena’s eye) (e) BEC (f) Received image with 10% packet loss
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6.3.1 Erasure correction in 1D

Suppose the Fourier and wavelet-based linearly and nonlinearly approximated
1D signal illustrated in Figure 6.2(a) is sent through a binary channel. We then
apply the PG variants on the received signal which contains missing segments.
The difference between the reconstruction and the approximation is illustrated
in Figure 6.3

Figure 6.4 shows the convergence of the diverse reconstructions in the numeri-
cal experiment shown in Figure 6.3. The speed of reconstruction between linear
and non-linear approximations in both Fourier and wavelet subspaces are com-
pared and it is noticed that after the 15th iteration the reconstruction error of
the Fourier-based nonlinearly approximated signal is not less than the linearly
approximated signal which contradicts (6.7). This hints that the associated
system of equations is rank deficient and the PG algorithm will not converge
to the desired signal. The wavelet case agrees with the theory. Hence if the
system is not rank deficient then recovering the signal using the information
in the nonlinear approximation gives a better reconstruction than in the linear
one.

6.3.2 Erasure correction in 2D

We do the same experiment on an image, that is, we apply the respective PG
variants on the four approximations illustrated in the left column of Figure 6.5.
The respective reconstructions are illustrated in the middle column and the dif-
ference between the approximation and the reconstruction obtained with the
PG variant in the right column. Which approximation gives the best recon-
struction? The convergence of the PG variants is compared in Figure 6.6. It
shows that PG reconstruction error for the nonlinearly approximated image in
each Fourier and wavelet subspace is less than the linear approximation which
agrees with (6.7). It also shows that in this particular case the Fourier basis is
better than the wavelet basis. The advantage of recovering signals in Fourier
subspaces is that the information about the signal is spread throughout the
whole of the Fourier spectrum. Wavelets are well-known for their localization
property which in this case is a drawback if the signal has contiguous missing
samples or lost packets.
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| S S S T T 1

5 5 5.5 %

(8) (h)

Figure 6.3: (a) Fourier-based linear approximation; (b) Difference between ap-
proximation and reconstruction MSE=10""; (c) Fourier-based nonlinear approxi-
mation; (d) Difference between approximation and reconstruction MSE=10"* ; (e)
Wavelet-based linear approximation of signal; (f) Difference between approximation
and reconstruction MSE=10"1%; (g) Wavelet-based nonlinear approximation of sig-
nal; (h) Difference between approximation and reconstruction MSE=10""2. In all of
the approximations M = 64. The quadrature mirror filter used in the wavelet-based
approximation is the Daubechies length 6 filter and J=3 levels of decomposition.
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Convergence of PG and NLPG in Fourier and wavelet subspaces.
T T T T T

10 T T -

Figure 6.4: Convergence of Papoulis Gerchberg (PG) variants for Fourier (F) and
wavelet (W) based linear (L) and nonlinear (NL) approximation on the previous 1D
signal of length N = 256 with two missing segments of length 4.
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Figure 6.5: Erasure correction for 2D signals. (a) Fourier-based linear (FL) approx-
imation; (b) Reconstruction using the FL PG variant; (¢) Difference between the FL
approximation and the FL PG reconstruction; (d) Fourier-based nonlinear (FNL) ap-
proximation; (e) Reconstruction using the FNL PG variant, (f) Difference between
the FNL approximation and the FNL PG reconstruction; (g) Wavelet-based linear
(WL) approximation; (h) Reconstruction using the WL PG variant; (i) Difference
between the WL approximation and the WL PG reconstruction; (j) Wavelet-based
nonlinear (WNL) approximation; (k) Reconstruction using the WNL PG variant. (I)
Difference between the WNL approximation and the WNL PG reconstruction; Ap-
proximated images with lost packets of size 2 x 2, M = 24 x 24, gmf=Daubechies
length 4, J=4 levels of decomposition
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Figure 6.6: Convergence of Papoulis Gerchberg (PG) variants for Fourier (F) and
wavelet (W) based linear (L) and nonlinear (NL) approximation on a portion of
Lena's eye.
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6.4 Summary

o Extension of PG algorithm to linearly and nonlinearly approximated sig-
nals in Fourier and wavelet subspaces.

¢ The existence of a solution depends on the rank of the submatrix with rows
Nk and columns Npr(x) of the DFT or DWT. When the submatrix is
rank deficient then the PG variants do not converge to the approximated
signal.

e Upon convergence of the PG variant the reconstruction error of the non-
linearly approximated signal is less than the linear one.

e In the wavelet subspace the length and type of filter used in the decompo-
sition plays an important role due to the localization property of wavelets.
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