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ABSTRACT

Abstract

Excimer Laser Ablation isamicro-machining method which has undergone an important break-
through in the last twenty years. In contrast with most literature studies, dealing with Static Ab-
lation, this PhD work focuses on the study of Scanning Ablation of poly(ethylene terephthal ate)
(PET) at 193 nm, using relatively high fluences of about 1 Jcm?. Here, Static Ablation means
that the substrate is fixed with respect to the laser beam. In this way, the size of the machined
area per set of pulses does not exceed afew mm?. Movi ng the substrate under the laser beam
during the irradiation, i.e. using Scanning Ablation, enables to machine more easily and with a
better quality bigger surfaces. Thisis particularly interesting for micro-channel prototyping in
PET (typical cross-section of the channels; 40 x 40 um?, length: >1.5 cm), which wasthe aimed
application of thiswork.

The surface properties of the ablated micro fluidic channels were studied, comparing Static Ab-
lation to Scanning Ablation with different parameters. For this purpose SEM, TEM, XPS, water
condensation experiments and el ectroosmotic flow measurements in laminated micro-channels
were carried out. The properties of the ablated surfaces were shown to be modified, in terms of
chemical properties and in terms of morphology.

In order to explain the modified surface properties after Scanning Ablation, the angle between
the irradiated ramp, forming under the beam, and the non irradiated surface was shown to be
one key-parameter, the shape of the laser spot on the substrate being the other one.

The chemical composition of the ablated surfaces depends on the nature and amount of redepos-
ited debris. There are two types of debris:

* Indirect debris, which is produced by collision of the gected material with the ambient
atmosphere. After ablation in air, this debris is hydrophilic due to the oxygen and nitrogen
content. The geometry of the debris covered area, and thus the amount of indirect debrisin
the micro channels, depends on the geometry of the irradiated area.

 Direct debris, which is produced by a mechanism very similar to Pulsed Laser Deposition,
is only possible in Scanning Ablation. It is directly eected in the direction of the channel
surface and it is less influenced by the surrounding atmosphere. Condensation experiments
proved it to be more hydrophobic than indirect debris.

In Static Ablation, only indirect debrisis present, and the debris affected surfaces are therefore
hydrophilic. In Scanning Ablation, the amount of direct and indirect debrisvary differently with
the ramp angle and the shape of the irradiated spot. When increasing the ramp angle from 0° to
45°, a maximum electroosmotic flow velocity is measured around 4.3°, which is explained by
amaximum of the ratio indirect / direct debris for thisangle.

Electroosmotic flow velocity measurements in channels of the same width but with different
depths (polyethylene laminated), combined with a numerical implementation of an analytical
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formulafor the flow vel ocity profile, enabled to cal culate the {-potentials of the ablated the sur-
faces for different ramp angles and the -potential of the lamination.

Besides the chemical composition, Scanning Ablation also changes the morphology of the ab-
lated surfaces. At high ramp angles, the surface structure of the channel floor is determined by
the direct debris redeposition leading to a nanometric roughness. The micrometric roughness,
whichisknown to develop in stretched polymer substrates upon Laser Ablation, depends on the
ramp angle 9 during channel fabrication.

As the ramp is the only irradiated surface in scanning ablation, it was studied in detail. Three
different structures were observed on rampsin stretched polymer substrates, each in one of three
distinct ranges of ramp angles. On the basis of avector decomposition of the fabrication induced
stresses in the polymer, the different structures can be understood as a step wise suppression of
the Static Structure formation on the ramps. The stress component normal to the irradiated sur-
face acts as an inhibitor of the Static Structure formation. At ramp angles lower than 10°, the
structure on the ramps is identical to the structure on statically ablated surfaces. At 10° <9 <
30° the structure changes but is till present. At ramp angles higher than 30° the ramps are
smooth.

As the micrometric structure on the channel floor is given by the structure on the lower part of
the irradiated ramp, the channel floor structureis of the same type as the structure on the ramp.
However, it is not possible to obtain a smooth channel floor.

The angle ranges for the different structures do not depend on the laser fluence but vary from
one substrate material to another. The presence and the orientation of the micrometric structure
only have negligible influence on the electroosmotic flow in the micro channels.

In conclusion, the message of this work is that Scanning Ablation modifies drastically the ab-
lated surface properties. This must be taken into account when thinking about fabricating devic-
es for which properties such as wettability, adhesion, {-potential or micro/nano-roughness are
important.



RESUME

Résumé

L’ ablation laser est une méthode de micro-usinage qui connait un grand essor depuis une ving-
taine d’ année. Contrairement ala plupart destravaux delalittérature ayant trait al’ ablation sta-
tique de matériaux, ce travail de thése concerne I’ é&ude de I’ ablation scannée du polyéthyléne
téréphthal ate (PET) &193 nm, avec des fluences assez élevées (de |’ ordre de 1 Jcm?). En abla-
tion statique, le substrat est fixe par rapport au laser, et lataille des surfaces usinées par une serie
de pulses successifs n’ excede pas quelques mm?. L’ ablation scannée permet elle d’ usiner plus
aisément des surfaces plus grandes avec une meilleure qualité, en bougeant le substrat par rap-
port au laser. Ceci est particulierement intéressant pour |e prototypage de micro-canaux en PET
(section typique des canaux: 40 x 40 um?, longueur >1.5 cm), qui est I application visée pour
cetravail.

L es propriétés de surfaces des canaux micro-fluidiques produits ont été étudiées, en comparant
I’ ablation statique et I’ ablation scannée avec différents paramétres. Des mesures de SEM, TEM,
XPS, des expériences de condensation d’ eau et des mesures de flux électroosmotique dans des
micro-canaux laminés ont été réalisees dans ce but. 11 a été montré que les propriétés des surfa-
ces ablatées sont modifiées, alafois en termes de propriétés chimiques et en termes de morpho-
logie.

L’ angle entre larampe irradiée (qui se forme sous le faisceau laser) et la surface non irradiée a
été identifié comme |’ un des paramétres clé our expliquer la modification des propriétés de sur-
face apres ablation scannée, I’ autre étant la forme du spot laser sur le substrat.

La composition chimique des surfaces ablatées dépend de la nature et de la quantité de débris
qui sont redéposés. 1l existe deux types de débris:

» Les débris indirects, provenant de la collision des produits éectés avec |I’atmosphére
ambiante. Pour une ablation dans I'air, ces débris sont hydrophiles car ils incorporent de
I’ azote et de I’ oxygene. La géométrie de la surface sur laguelle ces débris se redéposent, et
donc la quantité de débris indirects présents dans le micro-canal, dépend de la géométrie de
lasurface irradiée.

* Les débris directs, provenant d’un mécanisme similaire a la “Pulsed Laser Deposition”
n’existent que pour I’ ablation scannée. Ils sont gectés directement dans la direction de la
surface du canal et sont donc moins influencés par I’ atmosphére ambiante que les débris
indirects. Des expériences de condensation ont montré qu'’ils sont plus hydrophobes que ces
derniers.

» En ablation statique, seuls les débris indirects sont présents, rendant les surfaces ou ils se
redéposent hydrophiles. En ablation scannée, les quantités de débris directs et indirects
varient différemment avec I’angle de la rampe et avec la forme de la surface irradiée. En
augmentant I’ angle de rampe de 0° a 45°, on observe un maximum pour la valeur du flux
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électroosmotique vers 4.3°, expliqué par un maximum du rapport débris indirects/débris
directs pour cet angle-la.

Des mesures de flux éectroosmotique moyens dans des canaux de méme largeur mais de pro-
fondeur différente (couverts d’ une lamination en polyéthylene), combinées al’implémentation
numeérique d une formule analytique décrivant le profil de flux ont permis de déterminer |es po-
tentiels ¢ des surfaces ablatées avec différents angles de rampe ainsi que le potentiel { delala
mination.

En plus de la composition chimique, |’ ablation scannée modifie aussi 1a morphologie des sur-
faces ablatées. Pour des angles de rampe elevés, la structure de la surface des canaux est déter-
minée par la redéposition des débris directs, qui génerent une rugosité nanométrique. La
rugosité micrométrique, dont on sait qu’ elle se développe par ablation laser dans les polymeres
étirés, dépend de I’ angle de rampe durant la fabrication des canaux.

Etant donné que larampe est |a seule surface irradiée en ablation scannée, sa structure a été étu-
diée en détails. Trois différentes structures ont été observées sur les rampes dans des polymeres
étirés, correspondant chacune aune gamme d’ angle de rampe. L es changements d’ une structure
al’ autre ont été expliqués par une décomposition vectorielle du stress existant dans|e polymere.
Il a été montré que la composante du stress normale ala surface irradiée agit comme un inhibi-
teur de formation de lastructure statique. Pour desanglesinférieursa10°, lastructure delaram-
pe est identique a celle d' une surface ablatée statiquement. Pour des angles de rampes compris
entre 0° et 30°, il existe toujours une structure, mais modifiée par rapport ala précédente. Pour
des angles de rampe supérieurs a 30°, larampe est lisse.

Comme la structure micrométrique du fond du canal provient de la structure de la partie infé-
rieure de larampe, le fond du canal ala méme structure que larampe. A la différence prés que
I”on ne peut pas obtenir un fond de canal lisse.

Les gammes d' angles dans lesguelles on obtient les différentes structures ne sont pas affectées
par la fluence, mais varient d’un matériau a I’autre. La présence et I’ orientation de la micro
structure n’ont qu’ une influence négligeable sur le flux electroosmotique dans les micro-ca-
naux.

En conclusion, le message de ce travail est que |’ ablation scannée et ses paramétres modifient
considérablement les propriétés des surfaces ablatées. Ceci doit étre impérativement pris en
compte dans I’ optique de lafabrication de devices pour lesquelsles propriétéstelles|amouilla-
bilité, I’adhésion, le potentiel ¢, lamicro-rugosité, etc. sont importantes.
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[. INTRODUCTION

I. Introduction

Excimer Laser Ablation was first described in 1982 [1,2]. In the following years, the research
activities in the field were rapidly growing because of the possibility to produce high quality
structures of micrometric dimensionsin al kinds of materials. Today, alot of fundamental and
practical knowledgeis available on Laser Ablation, and it is more and more widely used in the
prototyping of micro devices[3].

If the whole micro deviceis bigger than the laser beam area, which is determined by the neces-
sary intensity for machining, the best solution is often to scan the substrate or the beam, in order
to cover the whole micro device area. One domain of active research where such micro devices
are needed, is the micro fluidics research, which should once result in the fabrication of so-
called micro-total-analysis-systems (U-TAS) [4]. The use of these systems would be profitable
in many ways. For example, they would allow for massively parallel processing of analyses, one
of the aims of the pharmacological industry, in order to manage the big number of different ex-
periments associated with combined active substances in one medicine and also the human ge-
nome project. Another advantage of u-TASwould be thelow consumption of solventsand other
reagents per analysis. Using Excimer Laser Ablation as the standard mass production method
for the microfluidic chips would naturally be far to expensive. Other methods like injection
molding or hot embossing are much more adapted. However, for the rapid prototyping of those
micro channels, Excimer Laser Ablation is very advantageous because of its high flexibility
compared to other methods.

The micro channels in these micro fluidic devices usually have a diameter of some tens of mi-
crons and alength of some centimeters. In order to produce them by Laser Ablation, one hasto
choose between step by step fabrication (static irradiation) and scanning methods (irradiation
with continuous motion). Scanning methods result in higher quality of the final device, because
no care needs to be taken for perfect joints between two statically produced parts of the struc-
ture. Moreover, Rossier et al. [5] mentioned recently a drastic increase in the hydrophilicity of
ablated micro channelsin poly(ethylene terephthalate) (PET) after Scanning Ablation, with re-
spect to Static Ablation.

Hydrophilicity and other surface properties are important in these devices, because usually
agueous solutions are injected, pumped, separated and eventually analyzed by electrochemical
means. Methods which allow for controlling the surface properties of the micro channels are
particularly interesting, because they enable for an optimization of the final device[4,6]. Based
on alocalized control of the surface properties, one could also imagine new devices combining
chromatographic with electrophoretic separation.

Hence, based on the observation of Roberts and Rossier et al. [3,5], and in collaboration with a
research group at the Laboratory of Electrochemistry (EPFL), the aim of this work was to find
out about the particularities of Scanning Excimer Laser Ablation, concerning the surface prop-
erties of the ablated surfaces.



|. INTRODUCTION

The experimental results can be separated into two chapters:

A first part deals with changes in surface topography, occurring upon Scanning Ablation of
stretched poly(ethylene terephthalate) (PET) [7-9].

The second part is dedicated to the variations of the chemical composition of the ablated surfac-
es and the control of electroosmotic flow in the micro channels[10-12].

The importance of the results of the present investigation is not restricted to the field of u-TAS
prototyping. The message of this work is that both, the surface topography and the chemical
composition of the ablated surfaces, are dependent on the ablation mode and the scanning abla-
tion parameters. In consequence, anybody who is concerned about the surface properties of the
ablated surfaces (wettability, adhesion, roughness, conductivity) should mention if the sample
was scanned or not.
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I1. State of the art

1.1 Laser Ablation

Laser Ablation is localized and controlled removal of a substrate material by
high light intensities. The material removal occurs only if a certain threshold in
light intensity is exceeded. For the wavelength and the material s investigated in
this work (poly(ethylene terephthalate) (PET) and poly(ethylene naphthal ate)
(PEN)), the empirical theory, based on Beer’ s absorption law at high intensities
and the existence of an ablation threshold, gives satisfactory fits to the experi-
mentally measured ablation rate curves as a function of the laser intensity.
Some questions concerning multiple pulse ablation are subject to actual re-
search and the phenomena are not yet completely under stood.

11.1.1 Fundamentals

Removal of substrate material by light, without important heat induced damage in the non irra-
diated zones, is called Laser Ablation or sometimes also Ablative Photo Decomposition (APD).
To induce Laser Ablation, a high amount of light energy has to be deposited in a small volume
of the substrate material. Because of energy transport in the substrate, especialy heat diffusion,
thisisonly possibleif the energy is deposited within ashort time. For the ablation of most poly-
mers, nanosecond UV -lasers are well adapted for this purpose. When staying in the nanosecond
regime for the pulse duration of the lasers, it is more convenient to speak of fluence instead of
intensity. Here, fluence is defined as the intensity integrated over the whole pulse duration, i.e.
energy per pulse per area.

The successive stages following the irradiation of a polymer substrate with intense, ultrashort
UV -pulses can be imagined roughly as follows (Figure 11.1-1):

electronic ablation
excitation products
substrate |

substrate
a b

Figure I1.1-1: Schematic showing the different stages of the Laser Ablation process:
(a) The light is absorbed and generates electronic excitation. (b) Bond breaking took
place, leaving gaseous products at high pressure. (¢) The ablation products expand.

1. The light is absorbed in the substrate. At UV-wavelengths this leads in polymers to elec-
tronic excitation of the molecules.

2. A part of the electronic excitation relaxes, and is converted into heat. The heat induces
phase changes, and finally bond breaking, evaporation and desorption of the resulting small
molecules or atoms (“thermal” mechanism). The other part of the electronic excitation
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results directly, without the generation of heat, in bond breaking, evaporation and desorp-
tion (“photonic” mechanism). The relative importance of the two possible decomposition
pathways, was and is discussed controversially. Nevertheless, it is sure that the relative
importance of the two decomposition mechanisms differs for different materials and wave-
lengths.

3. The high pressure generated by the decomposition of the substrate, causes the removal of
the ablation products. They expand into the vacuum or the ambient atmosphere.

4. At the sametime, the recoil pressure sends a pressure wave into the substrate.

5. If the expansion of the ablation products takes place into an ambient atmosphere, a shock or
blast wave is formed.

If nanosecond pulses are used instead of ultrashort pulses, the removal of the ablation products

begins within the duration of the laser pulse. Hence, the “plume” of ablation products absorbs

light, which complicates the situation somewhat.

As mentioned, the ablation mechanism depends on the substrate material, the laser wavelength

and the pulse duration, just to quote the most important parameters. Nevertheless the experi-

mental ablation curve, i.e. the ablated depth per pulse h as a function of fluence ®, shows two

general features (Figure I1.1-2a).

1. The existence of athreshold value in fluence @ for ablation to occur (P).

2. The ablation rate h increases with increasing fluence ®.

4 light intensity /(z)
i Ehreshoi;l incident l(z) =1e™%*
uence %o intensity /
ablation
threshold

intensity /,

ablation rate per pulse 4

o
|

ARRRARARRARES ropagation coordinate z
Laser fluence @ prop g

Q

b abla‘tion rate h([)

Figure 11.1-2: (a) Schematic of a generalized ablation curve, showing the typical
features: ablation threshold and increasing ablation rate with laser fluence. (b)
Schematic showing Beer’'s absorption law applied to Laser Ablation (The reflectivity
of the sample is neglected). (z < 0 corresponds to the ambient atmosphere, z> 0 to the
substrate.)

The simplest possibility to fit ablation curves of highly absorbing polymersis based on Beer’s
absorption law (with the effective high intensity absorption coefficient ags) and on the exist-
ence of an ablation threshold (at fluence ®g) [13, p. 223]. When considering that material isonly
ablated if ®(z) = @, onefindswith Beer’s law (Figure I1.1-2b):
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®y = dxe @Y (1)
Hence, the expression for the ablation curve h(®) is:
-1 _1
h(®) = 3 In(®) 3 In(P,) 2

eff eff

This expression correctly describes the ablation curves of the substrates that were used in this
work for not too high fluences. At high fluences the measured ablation curves (section 111.3) sat-
urate because of shadowing effects caused by the gjected material [14]. In fact, in this case the
measured incident fluence ® is no longer equivalent to the fluence deposited in the substrate
material.

Modeling of the ablation curves h(®) is one of the possible ways to determine the detailed
mechanism, how the deposited energy causes finally the bond breaking, and a lot of work fo-
cussed on this subject in the past years. Today, the “thermal” approach [15] or a “mixed” ap-
proach [13, p. 209] seems to be better for the description of most substrate-wavelength
combinationsthan the early “photonic” proposition [16] of decomposition by direct bond break-
ing. A newer fundamental approach, mostly powered by the interest in nano particle formation,
are molecular dynamics calculations [17], which do not need macroscopic information on the
material at high temperatures (heat conductivity etc.). The therma models assume that the ab-
sorbed energy isfirst transposed to the lattice, then eventually phase changes happen, and final-
ly desorption or phase explosion removes the particles from the bulk material.

Laser Ablation of PET at 193 nm is expected to follow amainly thermal decomposition scheme
[18,19].

11.1.2 Problemsin multiple pulse ablation

Some aspects of multiple pul se ablation are not completely understood to the best of my knowl-
edge.

A study on the influence of the pulse repetition rate f on the ablation rate h was published [15].
The authors show that the ablation rate of high absorbing polymers (polyimide PI, PET, PEN)
isinsengitive to variations of the pulse repetition rate f up to some kHz. However, for low ab-
sorbing polymers like poly(methyl methacrylate) (PMMA), they measured already an ablation
rate enhancement of approximately 30% at f = 300 kHz with respect to f = 10 Hz.

The sensitivity of the ablation process to the pulse repetition rate is however dependent on the
form of the substrate (rather bulky, thin film, etc.). For example Bahners et al. irradiated PET
fabric, and found macroscopic melting already at f = 30 Hz [20]. For our 100 um thick samples,
no differences in the surface topography could be observed in the accessible range of
1 Hz<f<50Hz.

An important topic of multiple pulse ablation, that is not yet completely understood, is the de-
velopment of the borders of the ablated structures with the pulse number. Related works are
published on the drilling of deep holes at high laser fluences[21]. Nevertheless, atheory allow-
ing to predict the wall angle of a structure of width w, ablated with n pulses at fluence ® in ma-
terial x isnot yet available.
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A frequent problem in scanning ablation, the formation of “stairways’ instead of smooth ramps
(section1V.1), wasrecently solved by Braun et al. [22,23]. They use special masks, which cause
asharp intensity distribution transversal to the scanning direction and a smooth intensity distri-
bution in the direction of the scanning. In this way, the resulting structure shows well defined
borders, as with a standard binary mask, but no stairway at the beginning and the end.
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1.2 Surface modification

Laser Ablation resultsin a chemically and physically modified surface after ab-
lation. Especially for PET, a decrease in the O/C atomic ratio and an increased
hydrophobicity were detected by X-ray Photoel ectron Spectroscopy and contact
angle measurements respectively. Moreover, the laser modified layer is amor-
phous. A variety of topographical structures were also observed on irradiated
PET surfaces. In the order of increasing fluence, the structures appearing are:
(i) LIPSS which are caused by interferences. (ii) Dendrites, devel oping after ir-
radiation under pre-vacuum. (iii) Cones, originate from shielding effects. (iv)
Finally, the Nap-type and Wall-type Structures, which appear only upon irradi-
ation of stretched polymers. The orientation of the Wall-type Structure is per-
pendicular to the stretching direction. In this work the Nap-type and Wall-type
Sructureswill be referred to as“ Satic Sructure” .

In Figurell.1-2b it is visible that a part of the energy is deposited in layers of the substrate,
which will not be ablated. Thisis the main reason why Laser Ablation leads to a modified sur-
face of the substrate after ablation. The observed modifications are of both physical and chem-
ical nature. For PET they can be divided into two categories, i.e. modifications of the chemical
surface composition and modifications of the topography of the ablated surfaces.

The following sections summarize the literature reports on surface modifications of the clean
ablated surfaces, i.e. with negligible redeposited material (debris) on the surfaces. The available
information on the debris and debris covered surfaces are summarized in section 11.3. The re-
view focuses on PET, but reports on other polymers are mentioned as well, if no sufficient in-
formation was available on PET.

11.2.1 Chemical surface composition

Laser modified layer AsPET isathermoplastic polymer, aliquid layer existsduring the Laser
Ablation process [24]. Rapid cooling of the surface after the pulse results in an amorphous sur-
face layer, with lower molecular weight and lower density than the bulk polymer.
Thethickness of the amorphous layer formed was measured to be 85 nm by ellipsometry of PET
surfaces irradiated with one pulse at A = 193 nm at different fluences [25]. The conversion of
the ellipsometrical angles into layer thicknesses was performed according to asingle layer the-
oretical model. Also, TEM images of cross sections of the irradiated surface, show adark layer
at the surface [25]. The TEM measurement however, does not prove the modified layer to be
really amorphous, because the samekind of contrast resultsfrom the difference of oriented crys-
talline domains and unoriented crystalline domains (section V1.1.1). On the contrary, spectro-
scopic measurements show that the intensities of the IR absorption bands corresponding to
crystalline PET decrease and the intensities of the bands corresponding to amorphous PET in-
crease after Laser Ablation at 248 nm [26,27], proving that the observed contrast in TEM orig-
inates from amorphization and not from reorientation of crystallites.
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The materia in the laser modified layer is not only amorphous, but the polymer chains are also
of lower molecular weight compared to the bulk polymer, as concluded from a dissolution ex-
periment of a PET surface ablated at A = 193 nm [28].

“Surface” Modifications of the “surface” of the polymer are frequently probed by X-ray Pho-
toelectron Spoectroscopy (XPS). The sampling depth of this method at usual electron take-off-
anglesis approximately 5 nmin polymers. Mostly, the results are expressed as the devel opment
of the Oxygen to Carbon atomic ratio (O/C-ratio) of the surface after ablation, with respect to
theinitial polymer surface.

Nearly all authorsfound adecrease of the O/C-ratio, i.e. acarbonization of the PET surface after
ablation [26,28-33]. This can be explained by mass spectroscopic measurements, which show
that, already before ablation takes place, CO and CO, are released from the irradiated surface
[18]. The same conclusion can be drawn from Attenuated Total Reflection Infrared Spectrosco-
py (ATR-IR) measurements [34]. The extend of the decrease differs from publication to publi-
cation, what may be explained by the dependency of the decrease in O/C-ratio on the laser
fluence [26,29], on the electron take-off-angle [26] and on the irradiation wavelength [33].
Commonto al publications, speaking of an O/C-ratio decrease, isthat the irradiations were car-
ried out on a static substrate. Knittel et al., who reported twice an increase in the O/C-ratio, on
the contrary, scanned the substrate under the beam [19,27]. Due to the scanning, they measured
most probably an at least partially debris determined surface (see also section 1V .2).

XPS measurements are often parallel ed by contact angle measurements, which giveinformation
sensitive to the upper 7 atomic surface layers[35]. Usually, only water contact angles are mea-
sured. Contact angle measurements on ablated PET are difficult, because of the possible impor-
tant roughness (section 11.2.2).

Lazare et al. reported in afirst paper increasing “equilibrium” contact anglesy after Laser Ab-
lation of rough PET from 70° to 110° [28]. However, in asecond paper advancing Y, and reced-
ing Y, contact angles of rough and smooth ablated PET are given [36]. Assuming that the angles
published in the first paper are advancing contact angles on rough surfaces, the results are con-
sistent. The measurement of the advancing and receding contact angles on smooth ablated PET,
which gives indications on the chemical nature of the surface remaining after ablation, shows
only adlight increase in y, from 71° to 79° and a more distinct decrease in y, from 57° to 38°.
Watanabe et al. tested the hydrophilicity relative to untreated PET by a dynamic wettability
measurement, which indicated a hydrophilic surface for single pulse irradiation with fluences
below the ablation threshold, and a hydrophobic surface, if the fluence was above the ablation
threshold [26]. They also measured “equilibrium” contact angles by the sessile drop method,
giving the additional information, that the surface becomes hydrophobic after more than 10
pulsesat low fluence. Finally, Lippert et al. reported a decrease of the polar surface energy com-
ponent and an increase of the dispersive surface energy component after Laser Ablation, as con-
cluded from advancing and receding contact angle measurements [33]. The contact angle
measurements thus confirm the X PS results that the polarity and hence hydrophilicity of the ab-
lated surfacesis lower than for the untreated samples.
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Information on the functional groups at the surface is obtained from the fact that crystalline PET
surfaces show a different chain orientation than amorphous PET, and thus exposes other func-
tional groups at the surface [33]. This conformational change upon amorphization resultsin a
decrease of the number of OH-groups at the surface, and thus hydrophobicity increases.

UV laser irradiation of polymers also influences the adhesion properties of metal films to the
polymer substrates. Heitz et al. showed that irradiation of PET at A = 248 nm, below and dlightly
above the ablation threshold, drastically increased the adhesion of electron beam evaporated
metal films [37]. Niino et al. enabled for the metallization of poly(tetrafluoroethylene) (PTFE)
and a co-polymer by irradiating at A = 193 nm with fluences below the ablation threshold in re-
active hydrazine atmosphere. After theirradiation the surface was activated, and finally electro-
less nickel plating was carried out [38,39].

Remarks All of the above mentioned surface modifications are al so present in other polymers,
but quantitative and sometimes also qualitative differences exist even if the chemical structure
of the polymersis quite similar. For example the modified layer of PEN is cross-linked (amor-
phous, high molecular weight, high density), whereas the modified layer of PET is of low mo-
lecular weight [40]. The carbonization of the surface was aso observed on PI [41]. Special to
Pl isthefact that irradiation with fluences around the ablation threshold extremely enhancesthe
surface conductivity [42]. This effect can even be used for the production of conducting lines
[43].

When considering applications of the modified polymer surface, one should always keep in
mind that the treated polymer surfaces may be subject to important aging effects. Strobel et al.
studied aging effects of PET and poly(propylene) (PP) after air-coronatreatment, and found that
PET surfaces show particularly fast aging compared to PP [44]. According to the authors, the
main reason is the combination of the ester-groupsin PET with the relatively high chain mobil-
ity. In consequence, the polar groups, that are generated by the surface treatment, can diffuse
into the bulk in order to minimize the surface energy of the PET. The resulting decrease in wet-
tability was partially reversible by storing the already aged PET for one week in water. Thisre-
covery of the formerly induced hydrophilicity of the surface is consistent with observations on
the ablated micro channels[45].

11.2.2 Structureformation

Since the very beginning of research in Excimer Laser Ablation there has been interest in struc-
ture formation occurring in polymers upon Laser Ablation [2,46]. PET, being a frequently used
polymer where structures develop in a wide fluence range, was investigated in detail by many
authors. For PET, four types of polymer ablated surface structures are reported in literature:

LIPSS (Laser Induced Periodic Surface Structures) Although this kind of structure is not
the only laser induced periodic surface structure, thisnameis used for aspecia kind of coherent
structures, having aperiodicity of the order of the irradiation wavelength. LIPSS formation oc-
cursin arelatively small fluence window below the ablation threshold, ® = 3-5 md'cm? for ir-
radiation of PET at 193 nm [47], which depends on the polarization of the laser light [48]. They
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develop due to the interference of a surface scattered wave with the incident wave, and the re-
sulting structures are regular over surfaces, which are much larger than the spatial coherence of
the laser beam [48]. The structure formation itself is dueto periodic melting and resolidification
of the material at the locations of constructive interference and thermocapillarity [47]. Charac-
teristic for LIPSSis, besides their wavelength, the dependency of the wavelength on the angle
of incidence of thelight. Further, different orientations of the structures with respect to the plane
of incidence and different wavelengths are possible [13, section 28.2]. Finally, the material
properties of the irradiated substrate and the pulse length of the laser determine which kind of
LIPSS structure will develop [49]. With increasing pulse number n< 1000, the amplitude of
LIPSS increases until approximately 80 nm, and decreases again at n > 1000 [47].

Dendrites At fluences around the ablation threshold, fractal dendrite like structures develop
when the irradiation is carried out in ambient pressures ranging from 102 mbar to 100 mbar,
depending on the used ambient gas [50,51]. The structures grow laterally at velocities of ap-
proximately 100 nm/h during annealing at approximately 60° after the irradiation, and are less
than 60 nm high. Their growth can be stopped by evaporation of athin metallic film on the sub-
strate [51] or by storage at temperatures of less than 4°C [52]. The arms of the dendrites can
reach alength of up to 30 um. First, crystallization of the laser induced amorphous layer was
discussed as the driving force of the dendrite growth [51], but more recent results indicate that
debrisis also important, at least for the nucleation of the structures [52]. The dendrites get the
most pronounced if not more than three laser pulses are used, at higher pulse numbers other sur-
face structures are predominant [50].

Cones Cone like surface structures appear upon laser ablation with moderate fluences above
the ablation threshold, if the ablation is not carried out in vacuum. The cones can be as high as
the depth of the ablated hole, and their symmetry axes coincide with the direction of theincident
laser [13, p. 506]. Cones formation is due to shielding effects of debris [53], which redeposit
onto the irradiated surface, or impurities in the materia [54]. For the shielding to be effective,
the ablation threshold of the debris, or of the impurities, needs to be higher than the ablation
threshold of the substrate and higher than the applied fluence. For PET, cone formation was ob-
served at high pulse numbers at fluences below 300 mJcm? by irradiating a surface of 1 mm?
(FigureV .4-2a).

Nap-type and Wall-type Structures Finally, for fluences higher than the ablation threshold,
a“Nap-type” or “Wall-type” Structure developsin stretched PET films, depending on the pre-
treatment of the polymer films. The typical lateral structure sizes A range from A = 1 um [20]
to A = 8 um [55] (see also Figure V.1-4a). The orientation of the Wall-type Structure, which
develops in uniaxialy stretched substrates, is perpendicular to the stretching direction of the
filmsor filaments [56,57] (Figure V.1-1a). The Nap-type Structure (Figure V.1-4a) developsif
biaxially stretched substrates are used [56]. The lateral size and the height of the structuresin-
creases logarithmically with increasing pulse number and increasing fluence [55,58-60] (see
also Appendix A). On the contrary, the lateral size of the structure decreases with increasing ab-
sorption coefficient of the substrate [61]. Further, it was shown that in PET fibers, the period of
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the structure also depends on the extent of stretching of the fibers [55]. Nap and Wall-type
Structures can superposein biaxially stretched substrates, if the stretching isdifferent in thetwo
stretching directions. The appearance of the structure isthen similar to aligned mountain chains
(Figure V.1-2a and FigureV.1-3a). The structures are observed with identical features after
nanosecond and femtosecond excimer laser ablation [49]. All above described variations of the
Nap-type Structure, the Wall-type Structure and superpositions of both will be summarized in
this work under the name “ Static Sructure”, because it is the structure, that is observed after
Static Ablation.

A detailed investigation of the Static Structure was given by Hopp et al. [58]. Among other ef-
fects, they examined the structure changes occurring by variation of the angle of incidence of
the light. They found that the polygon borders, separating the naps, became longer in the direc-
tion of the incident light when the angle of light incidence exceeded 70°. For angles below 70°,
only minor structural changes were observed. The observed changes of the structure could be
explained by shadowing effects.

The reason for the Static Structure formation was discussed controversialy in literature. An-
drew et al. [46] and some other authors [36,62-64] proposed an explanation based on selective
etching of amorphous and crystalline domains in the polymer. However, for the explanation of
the Static Structure formation in PET the theory revealed wrong, even if differencesin the ab-
lation behavior of crystalline and amorphous PET could be measured [63]. Arenholz et al. ab-
lated unstretched PET samples with crystallinities from 4% to 35% and could not identify
structures larger than 0.1 um [56]. Complementary to this, Kesting et al. observed the Static
Structure on stretched poly(m-phenylene-2,2-bi5[4-(3,4-dicarboxy-phenoxy)] phenyl propanim-
ide) (PEI) fibers, a polymer which stays amorphous upon stretching [65]. Thus, it is confirmed
that, independently of the crystallinity, stretching of the polymer is necessary for the structure
formation to occur. Bahners et al. developed a synergetic model, which is based on Marangoni
convection in the liquid layer during ablation, in order to explain the structure formation [66].
The borders between the Naps, which are visible by both SEM (Figure11.2-1) and AFM [58],
are consistent with a self organizing mechanism, for which such polygonal structure shapes are
characteristic. Nevertheless, amodel using aliquid layer cannot be valid for al materials, be-
cause Arenholz et al. observed the same kind of structuresalso in Pl, amaterial that cannot melt
[60].

A " Sress Release Model” , which describes qualitatively the Static Structure formation in melt-
ing and non-melting polymers, has been proposed by Arenholz et al. in order to explain all ob-
served features of the Static Structure formation [13, p. 509,59]. The stresses that devel op under
theinfluence of therapid laser induced heating and cooling play an important role in thismodel.
The frozen stressesin the material, induced by substrate stretching prior to irradiation, only de-
termine the direction of the crazes, which appear in order to release the total stressin the surface
layer. The depth of the forming crazes is governed by the equilibrium between the decrease of
potential energy during the stress release, and the increase in surface energy by the formation
of new surfaces in the crazes. The results of a more fundamental theory, which can be applied
to laser irradiation of polymers, fit quite well with the Stress Release Model. In this work we
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Figurell.2-1: Static Ablation of commercial biaxially stretched PET with 200 pulses
a(@d=75 mJcm? (b) ® =300 mJcmZ. The black linein the middle of figure (b) is
one of the polygon shaped borders separating the naps (figure (a)).

will use the name “ Defect - Deformation Model” for this theory, which was developed by V. I.
Emel’ yanov [67]. The application of the Defect - Deformation Model to the Static Structurefor-
mation yields the right behavior of the structure periods with variations of the absorption coef-
ficient of the substrate [61]. (The higher the absorption coefficients the smaller the structures.)
Moreover, it predicts the right order of magnitude for the periods of the Static Structure, but
based on some roughly estimated numerical values, which are necessary for obtaining quanti-
tative information from the theory formulas. There is no obvious contradiction between the two
models, and hence the Defect - Deformation Model may describe the fundamental physical pro-
cesses, which leads to the self organization of the defects, and finally the crazes, developing
with the successive laser pulses as described by the Stress Release Model.

Remarks Asaready mentioned, most of the described structures are not limited to Laser Ab-
lation of PET, but can be observed in a variety of other polymers and other materials. For ex-
ample, besides in the already mentioned polymers (PET, Pl and PEI), the Nap and Wall type
Structures (Static Structures) were observed in poly(amid) (PA66) [20], poly(ethylene 2,6-
naphthalate) (PEN) [40], and a long series of other polymers [65]. LIPSS are known since the
first laser experiments and were first discovered on semiconductors [13, p. 482]. (The usage of
the name LIPS(S) in literatureis not strictly limited to the definition used in this work.)
Moreover, the above list of structure formation in polymers is not complete, because laser in-
duced swelling of surfaces at fluences around the ablation threshold was not mentioned [68].
In other materials other structure formation processes are possible upon excimer laser irradia-
tion. For example the up to 30 um high tips, that develop upon laser irradiation of silicon
[69,70].

12
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1.3 Ablation Products

The strong forward peaking of the density distribution of the gected ablation
productsin vacuum is even more pronounced for largeirradiated surfaces. The
ablation products, with initial velocities in the range of knvs, slow rapidly
down, when the ablation is carried out in an ambient atmosphere. This causes a
shock/blast wave in the ambient medium, and particulates form out of the abla-
tion products. The drag forces of the shock wave cause redeposition of the par-
ticulate ablation products, called debris. The amount of debris can be up to
43% of the ablated material (per shot). The extent of the sideways expansion of
the debris is higher, if more light molecules are produced, and can me mod-
elled. Debrisis difficult to remove and can be used as a surface modification. It
consists mainly of amorphous and graphitic carbon, and is, depending on the
atmosphere during ablation, charged, partially oxidized, hydrophilic and in-
cludes nitrogen moieties.

11.3.1 Expansion of ablation products

After the decomposition of the substrate material, the gaseous ablation products expand into the
vacuum or the ambient atmosphere forming the so-called plume (Figure I1.1-1c). The primary
decomposition products can only be observed under vacuum, because the confinement of the
ablation products to a small volume by the influence of the ambient pressure, and chemical re-
actions with the ambient atmosphere, influence the plume composition. Many publications are
available on the expansion of the ablation plume, because the controlled recondensation of the
ablation products on asupport in front of the ablated target, opens new possibilitiesfor thin film
production. The domain of Pulsed Laser Deposition (PLD) is today probably the biggest and
most active field of research in Laser Ablation.

According to Dyer et al., the ablation products of PET at low fluence (90 mJcm?) are mostly
CO, CO,, CgHg, CoH, and C,H, [18]. Watanabe et al. stated a decrease of the ethyleneyield at
higher fluences[30]. Small carbon clusters, mainly C,, arefrequently detected by L aser Induced
Fluorescence (LIF) [71]. If the ablation is carried out in presence of oxygen, the CO yield de-
creases and more CO, is produced, as it was shown explicitly for Pl [72]. At high fluences, as
used in this study (1000 mJ/cmZ), polymer fragments are al so expected to be ablated [30,71,73].
In general, the ablation products depend strongly on the ablated substrate, the laser fluence, the
ambient atmosphere and the laser wavelength.

The results on the density distribution and the velocity distribution of the g ected particles can
more easily be generalized. Lazare et al. [74] measured the angular density distribution p(¢)

of the ablation products after ablation of several polymers, and found that the experimental data
could be fitted independently of the angle of light incidence by:

p(d) = pgx cos"(d). 3)

Where ¢ is the solid angle measured from the normal of the surface (Figure 1V.2-2a). The pa-
rameter p, describing the directionality of the plume, depends on the applied fluence. For the
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combination PET / 193 nm, the parameter p ranges from 7 to approximately 30 when increasing
the fluence from 90 mJcm? to 1200 m¥cm?. Thus, the angular density distribution is strongly
forward peaked, when the irradiation is carried out in vacuum (5><10_5 mbar). The rotational
symmetry of Eq. 3isonly found for the ablation of a circular or point like surface. For the ab-
lation of rectangular surfaces the density distribution of the particles can also be described by
Eqg. 3, but the parameter p isdifferent for the two different axes. The sideways expansion of the
plume is more important in the direction of the short side of the irradiated rectangle, resulting
in a90° rotation of the shape of the deposited films with respect to the laser spot [75,76].

The velocity distribution of the particles can be measured by LIF [73] or Time Of Flight Mass
Spectrometry (TOF-MS) [77]. Two or three groups of molecules are detected [71,77]. The max-
imum of the measured velocity distributionsisin therange of 1 km/sto 10 km/s, i.e. highly su-
personic, for all molecule groups. The velocity distributions can be fitted by different models:
(i) Usualy the experimental data show deviations from the classical Maxwell-Boltzmann fit
[73,77]. (ii) Often, a Maxwell-Boltzmann fit with a single stream velocity, as in the case of su-
personic beams, is used [77]. However, these data analysis results in different “temperatures”
for thefit of the axial velocity distribution and the transversal velocity distribution. (iii) A better
modification of the Maxwell-Boltzmann distribution takes into account awhol e range of stream
velocities, corresponding to molecules gjected from different depthsin the polymer. The advan-
tage of this method is, that the temperatures resulting from fits of the axial and the transversal
velocity distributions are nearly identical [78].

When the ablation is carried out under ambient atmosphere, the formation of particles is en-
hanced, and the gected molecules and particles slow rapidly down as they leave the surface
[71]. The shock between the g ected molecules and the ambient gas results in the formation of
ashock wave [79], which might develop to ablast wave if the ambient pressure is not too high
[71]. After ablation with very high fluences, the blast wave can contain up to 80% of the energy
of the laser pulse [80]. Mainly because the shocked gas is ionized and the plasma absorbs the
laser radiation, which drives the blast wave by this means. The pressures at the surface of the
ablated substrate, right after the pulse, are in the range of 150 bar to 200 bar [80,81].

11.3.2 Redeposition of ablation products- debrisformation

As mentioned, particul ate products, also named “gjecta’ [82], are formed if the ablation is car-
ried out in ambient atmosphere. This results in a separation of the ablation products into fast
molecules, responsible for the formation of the shock/blast wave, and slow particulate products,
which might redeposit onto the substrate [82]. The drag forces, generated by the blast wave,
cause the redeposition of the slow particulate ablation products on the substrate, which are then
called debris. The fate of the particul ate ablation products, which are not redeposited onto the
substrate as debris, depends on the gas flow over the substrate [72].

The blast wave model was proposed in 1987 by Koren et al., in order to explain the strong de-
crease of the etch depth per pulse with increasing ambient pressure [83]. Kiper et al. measured
then the debrisring around an ablated surface of 1 mm diameter as afunction of the ambient gas
type and ambient gas pressure, and could perfectly explain their data by the blast wave theory
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[81]. By dividing the 3D-problem of the debris redeposition into a 2D-problem, i.e. the side-
ways expansion of the particulate ablation products, and a 1D-problem, i.e. the redeposition of
the particles on the substrate, Kelly et al. could calculate approximately which amount of the
ablation products redeposits on the substrate [84]. They concluded that preferentially large mol-
ecules are redeposited, and that up to 43% of the material ablated by one pul se redeposits. (28%
after 600 ns, with apulse duration of 20 ns.) The sideways expansion of the particulate products,
was described by a numerical simulation of a gas reservoir of the form of the ablated surface,
which expands into vacuum. In spite of the approximations, the results describe well the debris
patterns, observed around ablated surfaces. Figure 11.3-1 showsthe example of arectangular ir-
radiated zone, which isrelevant for thiswork [75,84,85].

/1= 0.32
Ap/py) = 0.01

y DIRECTION (arb. units)
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1 1 I 1 1 1 1 1 1 1 1 Il 1 1 1l 1
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Figurell.3-1: (a) Experimentally observed debris pattern around arectangular ablated
surface in Pl. (b) Calculated normalized density contours for the 2D-expansion of a
rectangular gas reservoir. (Both from [85].)

The results of these calculations, as well as the experiments, indicate that debris expands more
inthedirection of the short dimension of the rectangle, than inthelong one (Figure 11.3-1). Thus
the quantity of debriswhich redeposits near one side of the irradiated rectangle depends on the
length of the other side.

Nearly al published work on debrisisdone in Pl, because Laser Ablation of Pl leads to strong
debris redeposition, near the ablated area. Fast photographs of the expanding particul ate prod-
ucts have shown important differences between different polymers [82]. In PI, the particulate
products stay very close to the surface, and show a strong sideways expansion. In poly(methyl
methacrylate) (PMMA) however, the particulate products expand mainly normal to the surface.
This difference could be correlated to the different yields of production for light molecules and
particul ates upon ablation of the two materials. In the case of PI, 96% of the ablated massresults
in light particles, which hinder the expansion of the particulates normal to the surface. For
PMMA the light particles sum up to only 24% of the ablated mass [82]. (Singleton et al. report
82% of light products for Pl [72].) In the case of PET, no fast photographs with the right time
delay, or values for the yield of light molecule production compared to particulates are pub-
lished to the best of my knowledge. On the basis of its high absorption coefficient, the decom-
position of PET is expected to be more similar to Pl than to PMMA, athough it does not show
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such an important debris redeposition as Pl. On the basis of the polymer properties however,
PET ismore similar to PMMA than to PI, which cannot melt but decomposes upon heating. An-
other point is that the debris often decreases with increasing fluence [86], and thus the applied
fluence in the literature reports has to be considered for comparisons.

The debris quantity, which redeposits onto the substrate, depends on the size of the irradiated
region. This was shown directly for the debris redepositing on the ablated area, which causes
cone formation [53] (section I1.2.2). In the case of |arge area ablation, the evacuation of the ab-
lation products is more difficult. It is essentially 1-dimensional, compared to 2.5-dimensional
for small ablated spots. In consequence, the ablation productsin the center of the plume are con-
fined to asmall volume during a“long” time, which favors particle formation and redeposition.

Another factor, influencing the particul ate production yield, is the nature of the ambient atmo-
sphere. It was shown for Pl that the particul ate yield decreases drastically, when ablating in pure
oxygen atmosphere instead of air [72]. This can be explained by the particle formation compet-
ing with chemical reactions of the primary ablation products with the ambient atmosphere.

11.3.3 Surface modification by debris

In micro fabrication, debris is mostly seen as dirt, and strategies to remove it, or to avoid the
deposition, were devel oped. However, removing debrisisnot easy, because, once deposited, de-
brisis well adherent to the substrate. Knittel et al. reported that rinsing with organic solvents
does not completely remove the debris layer [19]. (Hiraoka et al. state on the contrary, that de-
brisisremoved by water spraying and drying from Pl [87].) In the case of well adherent debris,
laser cleaning seems to be successful on PI [88]. More frequently, one tries to avoid debrisre-
deposition. Thisis possible by ablation under vacuum (Figure V.4-2b and c), but ablation in at-
mospheres or streams of light gases as H, or He is also successful [81]. In vacuum, the
formation of the shock wave is avoided, and in He or H,, the properties of the shock wave are
modified, because of the low mass and the high speed of sound in these gasses. Another strategy
isimpregnation of the substrate by solvents prior to irradiation [19]. Ablation in reactive atmo-
spheres also decreases or avoids debris[72]. Finally, debris can efficiently be collected on plate
electrodes placed on the polymer surface. At transversal field strengths of more than 300 kV/m
no more debrisis observed on the polymer surface [89].

Because of its good adherence, debris can be regarded as a surface modification, which might
be useful. The chemical composition of debris was analyzed by various research groups: It has
for sure a high carbon content, as was concluded for Pl from the absence of a measurable IR-
spectrum [73]. Lippert et al. measured the composition of debris after laser ablation of Pl by
raman spectroscopy, and found it to be carbon with some crystalline graphitic features[41]. An-
other observation, that debris after aser ablation of polymersiselectrically conducting, also in-
dicates the graphitic nature of debris [19,89,90]. In the case of PET, cyclic oligomers were
detected at high fluence [30], but not at rather low fluence [27]. All this indicates that debris
determined surfaces, should be hydrophobic [19].

The influence of the ambient atmosphere reactivity on the production yield of particulate abla-
tion products proves however, that the chemical composition of particulatesisinfluenced by the
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ambient gas[72]. The observation of CN upon Laser Ablation of PET in air also shows that the
molecules of the ambient atmosphere can penetrate the plume of expanding ablation products
[71]. Rossier et al. reported that the capacitive currents of their carbon electrodes, made out of
debris of laser patterned poly(styrene) (PS), depends on the ambient atmosphere during the ab-
lation process [90]. Significantly higher capacitive currents were observed after ablation in air,
compared to argon and nitrogen, indicating a higher surface in contact with the electrolyte
and/or a higher surface charge in the case of ablation in air. These observations all point to hy-
drophilic debris determined surfaces, as they were observed on Pl by Hiraoka et al. [87], and
mentioned on PET by Rossier et al. [5]. Another observation, that was used for metal plating of
polymer substrates, is the charge of the remaining surface. After Scanning Ablation at 308 nm,
Niino et al. measured anet positive surface charge on PET with an electrostatic voltmeter [91].
The chargeisinduced by redeposited debris. In order to explain their finding, they measured the
yield for positive and negative ions when ablating in vacuum, and found an excess of positive
ions [92]. On the contrary, von Gutfeld et al. state that they collected approximately the same
amount of debris on anode and cathode, which were placed on the polymer surface [89].

XPS studies on debris determined surfaces are rare. Niino et al. mentioned a nitrogen signal on
PET, ablated in air or nitrogen atmosphere, but do not report on the O/C-ratio of their XPS mea-
surements[92]. Knittel et al. probably measured adebris determined surface and found the O/C-
ratio to increase [19]. The deconvolution of their spectra hasto be interpreted with caution, be-
cause their pure PET spectrum does not look like the spectrum in reference [93].

Some studies were performed in order to identify functional groups at the surface after Laser
Ablation [65,94,95, ch. 3]. In all cases selective color tests or other selective binding methods
are applied. The results are not very reproducible, but the authors agree, that, anong others,
COOH-groups and OH-groups are present on the PET surface after Laser Ablation.
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1.4 Wetting of liquids on solids

Theinteraction of liquids with a solid surface leads to the formation of a contact
angle, depending on the interfacial energies of the three interfaces. solid-vapor,
solid-liquid, and liquid-vapor. The contact angle is sensitive to the chemical
composition of the uppermost atomic layers. Measuring contact angles of dif-
ferent liquids on a solid, allows for an estimation of the total surface energy of
the solid, and its polar and dispersive components. Spreading of the liquid ap-
pears preferentially on high energy surfaces. On chemically heterogeneous or
rough surfaces the advancing and the receding contact angles are different. On
very rough surfaces the liquid is not in contact with the narrow “ valleys” be-
tween the* hills’ . In this case the contact angle hysteresisislow, and the behav-
ior of such surfaces is similar to the behavior of smooth surfaces hardly
interacting with the liquid.

[1.4.1 Fundamentals

The term “wetting” or “wetting properties’ describes the shape that a liquid volume assumes,
when placed on a solid. Thus, the wetting properties describe the interaction of the liquid with
the solid. The fundamental reason for wetting is the fact that a substance of given volume has
more potential energy if it has a higher surface. In consequence, liquid volumes change their
shape, in order to minimize the potential energy of the total system, composed of liquid, solid
and vapor. A simple atomistic reasoning for existence of interfacial energies is illustrated in
Figurell.4-1. In order to bring a particle out of the liquid bulk to the interface, work has to be
done against the resulting force acting on a particle at the surface (Figure 11.4-1).

a b
. \O
interface Vlipor contact Ly
k phase line
o o Ost Oy
[ ] . .
, _ e liquid —€ -
interaction forces h \
: ase
between particles re\sulting force p contact /
~d onparticle at angle \

()
(l\‘ the interface

Figurell.4-1: (a) Schemeillustrating asimple atomistic reasoning for the existence of
interfacial energies: because the interaction forces between two particles decrease with
the distance of the particles, aforce directed to the bulk of the liquid acts on particles
at theinterface [96]. (b) Scheme of across section of aliquid drop placed on a surface.

In the case of the interface between aliquid and its vapor, the interfacial energy o per surface
areais also called surface tension. Interfacial energies or surface tensions o are expressed in
unitiesof J/ m?=N/m.
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When placing aliquid volume on a solid, three different interfaces meet at the contact line, i.e.
the border of the drop and the solid (Figure 11.4-1b). The interfacial energies for solid-vapor,
solid-liquid and liquid-vapor are named 0, 09 , and g, respectively. The equilibrium contact
angleyisgiven by Youngs equation [97]:

Ogy—0gL = OLy X COSY 4

Naturally, the contact angle y cannot become smaller than 0°, corresponding to a thin film of
liquid on the solid, evenif og,—0g >0 ,. For the cases, where cosy< 1 one saystheliquid
is partially wetting the solid, whereas in the case of og,—0g > 0|, one speaks of spreading
of the liquid on the surface.

Often surfaces and liquids are separated into two categories, depending on their surface energies
in vacuum (a) [98]. Compoundswith high intermolecul ar forces, often ionic or polar materials,
have a high o® and their surfaces are called high energy surfaces. Correspondingly, compounds
with low intermolecular forces, like hydrocarbons, exhibit low energy surfaces. Often, low en-
ergy liquids spread on high energy solids (and liquids), for example fuel on water, and high en-
ergy liquids only partially wet low energy surfaces, for example water on most polymers.

For the case of partial wetting it isclear from Y oungs equation (EqQ. 4), that varying the chemical
composition of liquid or solid affects the contact angle. By measuring the contact angle y(o y/)
on a certain solid, using different liquids with known oy, it is then possible to conclude on
properties of the solid. For low energy surfacesthe pointson a“Zisman-plot”, i.e. aplot of cosy
asafunction of o\, al lieinanarrow rectilinear band [98]. (For ahomologous series of liquids
itisastraight line.) The lower value of theinterval in oy, where the band cuts the value cosy
=1, isthe “critical surfacetension”, which is commonly used to estimate the surface energy a®
of the solid. Using other plots, and knowing the dispersive and polar contributionto |\, allows
even for aseparation of the polar and the dispersive component of the surface energy of the solid
[99].

Thus, contact angle measurements yield valuable information on the chemical composition of
the solid surface. Additionally they are sensitive to the chemical composition of only thefirst 7
layers of atoms, thus being superior, in this sense, to many surface analysis methods [35].

11.4.2 Inhomogeneities

A drop of any liquid easily slides on a chemically homogeneous, atomically flat solid surface
[97]. No energy is necessary for “close-to-equilibrium” motion (slow motion, negligible fric-
tion). However it isdifficult to prepare such surfaces. Usual surfaces exhibit a certain degree of
chemical heterogeneities and/or a certain surface roughness. Both kinds of heterogeneities are
equivalent with the existence of “preferred sites” for the contact line on the surface [100]. Upon
dliding of the drop an activation energy has to be overcome for going from one preferred site to
the next. In other words, the heterogeneities cause “pinning” of the contact line, and thus the
advancing and receding contact angles, y, and y, respectively, are no longer identical
(Figure11.4-2a). The effect of different advancing and receding contact anglesis called contact
angle hysteresis [101].
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Figure 11.4-2: (a) Schematic cross section of a diding drop on an heterogeneous
surface. (b) Measured advancing and receding water contact angles on Tetrafluoro-
ethylene-methanol telomer wax surfaces of different roughness [102].

Special to roughness as surface heterogeneity is the fact, that the liquid is no longer in contact
with the whole surface, if the surface roughnessis very high. The liquid stays on the top of the
“hills” and the vapor phaseisfound in the“valleys’. This occurred in the experiments of Dettre
et al. for less than 6 smoothing heat treatments of their wax surface (Figure 11.4-2b) [102]. In
this case both, advancing and receding contact angles, are very high, similar to a homogenous
surface having very little interaction with the liquid. The preparation of thiskind of surfacesis
subject to actual research [103], and economically interesting, because of, for example, the “ self
cleaning effect” of these surfaces.

Thefact that only asmall number of surfaces are as smooth and as chemically homogeneous as
itisrequired for the absence of contact angle hysteresis implies that measurements of the equi-
librium contact angle y are nearly always affected by the way the drop is placed on the solid.
The range of possible measured values of the equilibrium contact angle yistheinterval [y, V;]-
In conclusion, the measurement of y, and y; givesin practice much more information on the sur-
face, than ssimply the value of the equilibrium contact angle y [103].
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1.5 Electroosmosis

Electroosmotic flow is caused by the movement of a thin charged layer of mo-
bile solvated ions close to the channel walls under the action of an electrical
field in the channel direction. The necessary charged layer (diffuse double lay-
er) builds up when an electrolyte isin contact with a charged surface. The layer
thicknessistypically lessthan 10 nm. The transversal electrical potential inthis
layer, at the position of the moving ions closest to the channel wall, is called (-
potential. If all walls are made out of the same material, the electroosmotic flow
velocity is constant over the whole channel cross section except in the electrical
double layer. In channels using different wall materials (composite channels)
the flow velocity profile is more complicated. Electroosmotic flow is important
in present micro fluidics analytic devices research, where the constant flow ve-
locity over the whole channel cross section is required for high separation effi-
ciency.

[1.5.1 Fundamentals

Electroosmotic flow isbased on the electrical double layer, which builds up when an electrolyte
solution is in contact with a charged surface. The charged surface attracts electrostatically the
counterions in the solution. Diffusion is the counter acting force, avoiding a complete charge
separation.

Usually”, two qualitatively different layers of ions build up when an electrolyte solution isin
contact with asurface of electrical potential W_, [104,105]. Both layers consist of solvated coun-
ter ions:

1

In thefirst layer, the solvated counter ions are electrostatically attracted by the charge of the
surface and do not move under the influence of an external electrical field ?Z This outer
Helmholtz layer acts like a capacitor, and the variation of the potential W(x) is linear
between the charged surface and the outer Helmholtz surface (Figure 11.5-1). (Here x is the
coordinate perpendicular to the surface.) The typical layer thickness is half the diameter of
the solvated ions, i.e. 0.3 nm [104].

In electroosmosis, thisfirst layer is often neglected because the ions cannot move, and only
the second one, the diffuse double layer is considered [6]. It builds up due to the balance of
electrostatic attraction and diffusion. This causes an exponential variation of
W(x) = W,y x exp(—K x) [6] (Figurell.5-1). Where W, is the potential at the outer Helm-
holtz surface and k the inverse Debye length.

A part of the ions forming this layer is only weakly bound and thus mobile under the influ-
ence of an electric field ?Z paralel to the charged surface. This movement is called elec-

* |n cases where specific adsorption of partially solvated ions to the electrode surface is possi-
ble, athird layer exists. It is called the inner Helmholtz layer and is mainly composed of neg-
atively charged ions, even for negatively charged surfaces [104]. The potential W(x) varies
linearly between the charged surface and the inner Helmholtz surface. The thickness of this
layer typically is half the diameter of the non solvated ions, i.e. 0.1 nm [104].
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Figurell.5-1: Schematic of the electrical double layer.

troosmotic flow. The potential at the shear plane, separating the mobile from the immobile
ions, is the {-potential (Figure I1.5-1). Thus, the potential, in the mobile part of the diffuse
double layer, which is important for the description of electroosmotic flow, is given by
W(X) = {xexp(—XK X).
The parameter k describes how fast the potential near the charged surface reaches the bulk po-
tential of the buffer solution. For a mono-monovalent buffer, it is given by

_ 2[ion]e(2)
K = /erOkBT [106]. (5)

Here [ion] designs the number density, or concentration, of the ions, e is the electron charge,
€ the dielectric vacuum permittivity, €, therelative dielectric permittivity of the electrolyte, and
kg the Boltzmann constant. The parameter 1/k is called the Debye length, i.e. the 1/e-thickness
of the diffuse double layer. Typical values for 1/k range from 0.3 nm for ion concentrations of
100 mMol/l to 9 nm for 1 mMol/I.

As mentioned above, electroosmotic flow is driven by the movement of the mobile part of the
diffuse double layer under the influence of an electric field ?Z parallel to the charged surface.
In the case of capillary electrophoresis, the charged surface is the capillary wall, and the {-po-
tential thus describes the charge density o of the shear plane in front of the capillary wall, and
indirectly the charge density of the capillary wall itself, both at the pH of the electrolyte solu-
tion. & can be expressed as.

& = kege,  [6]. (6)

Counteracting to the electrostatic force on the ions in the diffuse double layer is the viscosity n
of the buffer solution in the capillary. For pure electroosmotic flow in a capillary of homoge-
nous chemical wall composition, the flow velocity Vg, (X) is nearly independent of the radial po-
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sition xinthe capillary. The electroosmotic flow vel ocity profile vg,(X) approachesits saturation
value v, exponentialy

oE -
Veo¥) = S ¥ [ —€ ™)

with the same constant kK as the decay of the potential W(x) [6]. Hence the flow velocity in the
whole channel, except the 10 nm regions near the channel walls, has the value

OE, gy, CE, ,

vV, = m = T (Schmoluchowsky equation). (8
(InEqg. 7andEq. 8 E, ‘ﬁz‘ Isthe absolute value of the external electrical field ?Z neglegting
the direction of the flow.)
In the case of a homogenous chemical composition of the channel walls, v,, is approximately
identical to the average electroosmotic flow velocity [V, [1or simply Ve, which can be mea-
sured. However, this approximationisonly valid, if the channel dimensionsallow to neglect the
20 nm zone where the flow velocity varies exponentially.
In order to distinguish the flat electroosmotic velocity profile from the parabolically shaped ve-
locity profile of pressure driven flow, the electroosmotic velocity profile is often designed as

plug-profile.

11.5.2 Applicationsin microfluidics

Electroosmotic flow is frequently used for the manipulation of small liquid volumes in the do-
main of micro fluidics. The main advantage is the easy implementation of two electrodes com-
pared to a micro pump. A possible disadvantage is the influence of the relatively high electric
fields (tens of kV/m) on other parts of the micro fluidic system.

Capillary electrophoresisis another domain where electroosmoatic flow plays an important role
[107]. Electrophoresis is an analytical separation method for electrolyte solutions, which is
based on the different mobility of solvated particles exhibiting different charge ({-potential)
and/or different size. The electrophoretic motion of particlesin an electrical field is always su-
perposed by the electroosmotic motion of the solvent. The high separation efficiency of capil-
lary electrophoresis [108] is based on short separation times and the plug like shape of the
electroosmotic flow velocity profile (section 11.4.1) [6]. Short separation times minimize the
diffusion induced broadening of the group of acertain type of particles which wasin the sample
solution. The plug like shape of the flow velocity minimizes the broadening of such a group of
particles due to the absence of differencesin the flow velocity at different radial positionsin the
channel. The principal types of flow velocity dispersion, diffusion-induced-dispersion and Tay-
lor-dispersion, are thus minimized in capillary electrophoretic separations in homogeneous
channels.

Hence, using electrokinetic effects allowsfor the simple fabrication of micro fluidic systemsal-
lowing for efficient manipulation, separation and detection of electrolyte sample solutions
[108,109].
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11.5.3 Composite channels

As explained before, the plug shape of the electroosmotic flow velocity profile is akey factor
for the high separation efficiency of electrophoresis. However, the shape of the el ectroosmotic
flow velocity profilevg(X, Y) in composite channels, i.e. channelswhere different wall materials
are used, isno longer plug like[11,106,110]. Herr et al. investigated experimentally theflow in
round channels, where the first part of the channel was a pure fused silica capillary (high ¢-po-
tential), and the second part was a polymer coated fused silica capillary (low (-potential) [110].
Hence, they worked with achannel showing an axial differencein {-potential. In order to avoid
edge effects, the measurement was performed “far” away from the ends of the channel and “far”
away from the joint between the two parts of the channel. Their measurements confirmed
former theoretical investigations, that the flow velocity profilein this case is described by a pa-
rabola superposed to the plug profile. In other words, the axial differencein {-potentia induces
a “negative pressure” in the part of the channel, having the higher {-potential, and a “positive
pressure” inthe part of the channel, having the lower {-potential. Thisinfluence of the chemical
composition of the micro channel downstream or upstream on the flow velocity profile at the
actual position, is mainly induced by the conservation of the flow volume in the process. Thus
the use of such channelsintroduces Taylor-dispersion to the system, which may becomethelim-
iting factor for the resolution of the device [11].
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Figure 11.5-2: Schematic of the cross section of a rectangular channel composed of

walls with different {-potentials. The schematic defines the nomenclature of Eg. 9.
(The channel dimensions |, and |, are measured from shear plane to shear plane.)

Theuse of different materialsfor the different walls of rectangular micro channel isanother pos-
sibility of an heterogeneous {-potential distribution. Andreev and co-workers published in 1997
an analytical expression describing the electroosmotic flow velocity profile vg(X,y) in rectan-
gular channels, where each channel wall may have a different {-potential [106]. Based on the
channel geometry presented in Figure I1.5-2, the flow velocity profile in such channelsis:
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The micro channels produced by Laser Ablation are composed of three ablated wallsand alam-
ination (section 111.4), and the flow velocity profile is thus non-uniform, as described by Eq. 9.
The experimentally important measurable value is the average electroosmotic flow velocity
W L

Il

x'y
W 0= = x [ [Veolx )dyei. (11)
Ly
00
The electroosmotic flow profile vg(X,y) in channels corresponding to the laser ablated channels,
will be analyzed in section V1.4.2, according to Andreev’ sformula. The data given by Andreev
et al. concentrates on large channels, where the side walls have little influence (I, high, I, low).
In this case, the flow velocity v(1,/2, y) varies nearly linearly in the y-direction (except at the
borders) [106].
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III. Experimental

[11.1 Laser Ablation

A standard mask projection setup is used, where the sample is mounted on a
computer controlled trandation stage. “ Static Ablation” means ablation with-
out sample movement during the irradiation. It is difficult to produce high qual-
ity micro fluidic channels by Satic Ablation. “ Scanning Ablation” means
ablation where the sample is moved during the irradiation. Scanning Ablation
leads to high quality channels with ramps at both ends. Ramps can also be ab-
lated by other methods:. Opening Mask Ablation, Closing Mask Ablation, Satic
Grey-Level-Mask Ablation and Diffractive Mask Ablation. The angle of inclina-
tion of a given ramp with respect to the not irradiated surface can be deter-
mined directly by a stylus profilometer, or it can be calculated knowing the
relevant experimental parameters and the ablation curve h(®).

[11.1.1 Theablation setup

The standard ablation setup, which was used for Static and Scanning Ablation is shown sche-
matically in Figure 111.1-1. Theinstallation isintegrated in the Center of Microtechnology of the
EPFL and isinstalled in a class 100 clean room (Figure 111.1-2b).

A=

AT HOM M2

LASER D D
193nm, 20 ns

Video

PC
screen

BPRF

—— LENS
SAMPLE on X-Y-stage

Figurelll.1-1: Schematic of the standard setup, which is used for Static and Scanning
Ablation. M1: Aluminium mirror; BExp: Beam expander; LDM: Laser diode module
(visible); AT: attenuator; HOM: beam homogenizer; M2: dielectric mirror (HR
193nm); PD: photo diode; PC: The computer triggers the laser, drives the X-Y -stage
and serves also for beam profile analysis, BPRF: beam profiler.
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The laser is a standard ArF excimer laser from Lambda Physik (Germany, model: LPX 205)
emitting pulses of about 20 ns pulse length at awavelength of 193 nm in the deep UV. The laser
pulses are triggered by the computer and the maximum pulse repetition rate is 50 Hz. The atten-
uator (Excitech, England) directly after the laser output window serves to adjust pulse energy
in order to obtain the desired fluence on the sample. The following beam homogenizer (Ex-
citech, England) has two tasks: (i) it shapes the beam into a quadratic form and (ii) it creates a
flat-top intensity distribution on the mask. We usually use 50 um thick freestanding molybde-
num masks, which were high precision laser cut with ahome made Nd:Y AG-dlab laser running
in fundamental mode [111]. The mask is imaged onto the substrate by a refractive projection
lens (Excitech, England). The scaling of the mask projection is 10:1, and the resolution of the
image, in terms of edge definition, isabout 3 um (Figure 111.1-24).
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Figure I11.1-2: (a) Cross section through an AFM image of a hole ablated with 3
pulses at ® = 1200 mdJcm? in commercial PET. (b) Photo of the setup, attenuator and
laser are on the right, out of the image.

The sample holder is mounted on a computer controlled high precision X-Y -stage (Physik In-
strumente, Germany). For adjustment, there are also abeam profiler, showing the intensity dis-
tribution in the mask plane, and a photodiode, which triggers the beam profiler. The computer
also enables for spatial beam profile analysis.

The fluence was determined by inserting a 1 cm? mask and measuring the energy with a pyro-
electric joule meter (Gentec, Canada) directly after the projection lens, i.e. approximately 5 cm
in front of the sample. When the pulse energy was too low to trigger the display of the joule
meter, the calibrated beam profiler was used for the energy measurement. The investigated flu-
ences @ ranged from 37 mJ/cm? to 1500 mJ/cm?, leading to ablation rates per pulse h(®) up to
0.21 um. The ablation curves for the used substrates are presented together with the substrate
description in section 111.3.

As the micro fluidic channels, that are produced with the setup, are up to 40 um deep, one is
also interested in other features, i.e. the depth of focus of the mask projection and the material
response to multiple shot ablation. These two properties were evaluated in the following exper-
iment: A rectangular surface was statically ablated with 200 pulses at 1200 m¥cm? on asample
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inclined of 45° with respect to the incident beam (Figure I11.1-3a). The region of good structure
quality, i.e. good edge definition, was measured by SEM imaging to be 70 um long
(Figure I11.1-3b). Thus, for an optimum structure quality, the sample position in the direction of
light propagation has to be controlled within £25 um (= 35 pum cos(45°)) prior to each ablation
experiment.

AccY  Spot Magn Det WD Exp I
1.00kV 3.0 500x SE 21561

VAR A
Figurelll.1-3: Determination of the depth of focus. (a) Schematic of the experiment.
(b) SEM image of the obtained channel (Static Ablation, ¢ = 45°, 200 pulses,
1200 mJcm?).

111.1.2 Static Ablation

Most ablation experiments reported in literature are performed in the “ Static Ablation” mode,
i.e. the sample is not moved during the irradiation.

The micro channel production in this mode can be described by a cyclic repetition of the steps:
() Firen pulseson the substrate. (ii) Move the sample by the length of theirradiated spot a, such
that the next hole will be produced in contact with the previous one.

The resulting depth d;; of the channel will be

diot = NXD(P). (12

The geometry of the channels during fabrication isshownin Figure I11.1-4a Theirradiated area
isaways paralel to the origina sample surface.

In this mode the production of long high quality channels is particularly difficult, becauseit is
nearly impossible to avoid small holes or wallsin the channel floor dueto atoo big or too small
movement between the production of neighboring holes (Figure I11.1-43).

If not otherwise mentioned n = 200 pulses were used for statically ablated structures.

[11.1.3 Scanning Ablation

A better possibility to produce long high quality micro channelsby Laser Ablationisthe® Scan-
ning Ablation” mode, which has very recently be called “ Sample Dragging” [112].

In Scanning Ablation the substrate is simply scanned during theirradiation with avel ocity v per-
pendicular to the incident laser beam. Due to the scanning, a ramp forms under the beam
(Figure I11.1-4b). (For further explanations please refer to section 1V.1.)
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Figure I11.1-4: Sketch of the channel geometriesin Static Ablation (a) and Scanning
Ablation (b). The figures show a cross section in the channel direction. The grey line
represents the irradiated area.

The angled between the ramp and the original sample surfaceis given by thetotal depth dy; of
the channel and the length of the irradiated spot a:

x h(®

9 = aan(dy,/a) = atang 2 0O

(13)
Asthe existence of the ramp is a characteristic feature of Scanning Ablation (section 1V.1), we
usually produced series of channels at constant fluence ® and constant number of pulses per site
n, i.e. constant depth d,y;. The channels of one such series differ only in the ramp angle 9 and
theirradiated spot length a. The necessary scan speed v, at given pulserepetition rate f and given
spot length a, can be expressed as

V= —. (14

All channels, which were produced by Scanning Ablation, used n = 200 pulses per site. If not
otherwise mentioned, the pulse repetition rate was f = 50 Hz. The spot width, which determines
the channel width, was usually 40 um. The used spot lengths a and the resulting scan speeds v
at f =50 Hz are summarized in Table 111.1-1.

a(um):‘ 1000 ] 500 ] 200 ‘ 100 ‘ 50 ‘ 20
v(um/s):’ 250 ’ 125 ] 50 ‘ 25 ‘ 125 ‘ 5

Tablell1.1-1: Summary of the used spot lengths a and the resulting scan velocities v
(Eq. 14), supposing that n = 200 pulses per site and f = 50 Hz.

In order to obtain, theoretically, a rectangular cross section in channels produced in Scanning
Ablation the rectangular mask hasto be properly aligned with the scanning direction of the sub-
strate. A misalignment of the mask produces in general atrapezoidal shape of the cross section
of the channels. The reason is that for high pulse repetition rates f the transversal depth profile
is proportional to the length of the irradiated spot shape measured in the scanning direction
[23,112]. Thus, rotating the mask with respect to the scanning direction changes the channel
Cross section.

The experimental typical cross section of channels, produced with a properly aligned mask, was
measured to be, nearly independent of the used spot length, atrapezoid of the following dimen-
sions: upper width w; = 50 um, lower width wy, = 29 um, depth (at ® = 1000 mJcm?) Oiot =
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37 um. This corresponds to awall angle of 3 = 74°, whereas the optimum is 90° (Figure I11.4-
1). The deviation from the optimum rectangular shape is due to the limited resolution of the
mask projection and the material influences upon multiple pulse ablation. A possible slight mis-
alignment of the mask, and heat effects due to the 50 Hz pulse repetition rate have only minor
influence.

[11.1.4 Ramp ablation

Ramps can be ablated by different techniques. Besides the presented Scanning Ablation, Open-
ing Mask Ablation, Closing Mask Ablation, Static Grey-Level-Mask Ablation and Diffractive
Mask Ablation can be used. (Opening Mask Ablation and Closing Mask Ablation were very re-
cently called “Mask Dragging” [112].)

Opening Mask Ablation This technigue generates a “number-of-shots-gradient” on the irra-
diated surface without moving the sample. During the irradiation, one side of the freestanding
mask is moved in such away, that the irradiated surface on the sample increases linearly with
time. Using this method, the whole created ramp isirradiated at each shot, exactly astheirradi-
ated ramp in Scanning Ablation. Debris cannot accumulate on this kind of ramp.

The distance, which the moving spot border travels during the irradiation time, plays the same
role as the spot length a in Scanning Ablation and will also be called a. If, at the beginning of
the irradiation, the mask was already opened by a certain distance, a flat ablated surface forms
in contact with the ramp (Figure 111.1-5a). If the mask let no light pass at the beginning of the
irradiations, the resulting hole had atriangular shape (Figure 111.1-5b).

a LIGHT b LIGHT
mask > >
Mask opens mask Mask opens
during irradiation. during irradiation.
_I Iﬁ"#,v

a - —a
Figure 111.1-5: Schematic of Opening Mask Ablation and possible shapes of the
resulting structures. (a) With flat ablated surface, (b) triangular shape.

Closing Mask Ablation This method is very similar to the previous one, it also creates the
ramp by a* number-of-shots-gradient” on the sample. When the mask is closed during theirra-
diation, the irradiated surface on the sample decreases more and more, and the already created
parts of the ramp are no longer irradiated (Figure I11.1-6a). This is the reason why debris can
accumulate on thiskind of ramps, which correspondsto the ramp at the beginning of the channel
in Scanning Ablation.

Static Grey-Level-Mask Ablation and Diffractive Mask Ablation The irradiation through
an adapted grey-level-mask or a diffractive mask can also create ramps (Figure I11.1-6b). In
both cases the whole ramp isirradiated with the same number of pulses, but theincident fluence
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varies with the lateral coordinate. Thus, with increasing shot number, the ramp inclines more
and more. In order to obtain astraight ramp, i.e. alinear variation of the ablated depth with the
lateral coordinate, the generated intensity as a function of the lateral coordinate needs to take
into account the ablation curve of the substrate material.

When the image of abinary mask is out of focus, one also has arelatively smooth intensity dis-
tribution at the edge. In this way, the smooth edges of structures, produced by a not perfectly
focussed ablation, are of the same type of “ramp”. Moreover, even with a properly focussed
mask, multiple pulse ablation produces walls having a certain wall angle, which depends on the
material under investigation and the applied fluence (Figure 111.4-1). Asaready mentioned, this
wall angleis 74° in our case. Hence, the walls of the ablated structures are ramps of this type
(Figure V.2-3c).

LIGHT LIGHT
mask
< grey-level-mask
Mask closes [

during irradiation.

Figure l11.1-6: (a) Schematic of Closing Mask Ablation and (b) schematic of Satic
Grey-Level-Mask Ablation.

[11.1.5 Angle and ablation rate measur ements

The depth measurements for the determination of the ablation rates per pulse were carried out

by stylus profilometry (a-step 200, Tencor Instruments). The tip apex radius was 2 um and the

force on the tip was 50 mN.

The ramp angles were determined by two different methods:

1. Indirectly, it was calculated by Eq. 13, knowing the applied fluence &, the number of pulses
n, the ramp length a and the ablation curve h(®).

2. Directly, by scanning with the profilometer the upper part of the ramp and some tens of
microns of the unirradiated surface nearby.
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[11.2 Surface characterization

The Topography of the ablated surfaces was mostly investigated by Scanning
Electron Microscopy (SEM). The samples were not coated by an electrically
conducting layer. Atomic Force Microscopy (AFM) was used alternatively, al-
lowing for guantitative height information and high resolution images. Trans-
mission Electron Microscopy (TEM) images of prepared cuts, gave information
on the very high aspect ratio structures upon Satic Ablation. Filtering in the
transmission electron microscope allowed for visualization of the laser modi-
fied layer on the channel floor and for size estimation of the crystalline domains
in the polymer. X-ray Photoel ectron Spectroscopy (XPS) was used for the deter-
mination of the chemical composition of the ablated surfaces. The water wetting
properties of the debris affected surfaces were estimated qualitatively by water
condensation.

[11.2.1 Topography

Scanning Electron Microscopy (SEM) is in this work the most frequently used topography
investigation method. For this purpose the Philips XL 30 FE-SEM of the CIME (Central Facility
and Research Center in Electron Microscopy / EPFL) was used. All micrographs were taken
with the secondary electron detector.

The polymer substrates were looked at without any conductive coating in order to avoid a su-
perposition of the substrate structure with the coating structure. As PET is an electrical insula-
tor, it is necessary to use a low acceleration voltage, i.e. 1-2kV. Charging effects can
nevertheless not be completely avoided. A good and frequent adjustment of the astigmatism is
the key factor for submicron resolution, which allows for debris identification.

Besides the submicron lateral resolution, SEM has another advantage over optical microscopy,
i.e. the depth of field. The high depth of field in SEM allowsfor a sharp image of theupto 3 um
high Static Structure.

If not otherwise mentioned the sample was not tilted, i.e. the electron beam incidence was nor-
mal to the unirradiated sample surface. Thus, all distancesthat are measured in the micrographs
are directly the real dimensions on the sample, with an error of about 1%.

Atomic Force Microscopy (AFM) was used complementarily to SEM. It was applied to the
detection of structuresthat could not be resolved in SEM, i.e. the structure of small debris quan-
tities. The other application for AFM was the search for quantitative height information on the
the observed structures.

Especialy for the detection of small debris quantities, the PET substrates turned out to be diffi-
cult. Critical manipulation of the feedback parameters was necessary in order to obtain stick-
and-dlip free images. The debrisimages (Figure V1.2-3) were obtained with a Nanoscope 3A at
the Institute of Condensed Matter Physics (Physics Department / University of Lausanne), and
the AFM of the Static Structure (Figure V.1-3a) was taken with a Park Instruments Autoprobe
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CPinintermittent contact mode at the Polymer Laboratory (Materials Science and Engineering
Department / EPFL).

Transmission Electron Microscopy (TEM) of prepared cuts was used to observe the extreme

high aspect ratio tips, which characterize the Static Structure in biaxially stretched PET. The

principal aim of the TEM images was however to give a direct proof for the existence of an

amorphisized layer after Laser Ablation of PET. The sample preparation consisted in:

1. Moulding of the ablated samples in an epoxy resin (Aradite A, Ciba).

2. Contrasting the two polymers by staining with ruthenium-tetroxide (RuOy).

3. Microtome cutting of 50 nm thick slices of the sample in different directions, i.e. paralel
and perpendicular to the ablated surface.

The TEM images were taken on a Philips EM 430 operated at 300 kV at the CIME (Central Fa-

cility and Research Center in Electron Microscopy / EPFL).

For contrast creation between oriented crystalline domains and amorphous or unoriented crys-

talline domainsin the polymer, adark field filtering method was applied. A short description is

givenin section VI.1.1.

111.2.2 Chemistry

X-ray Photoelectron Spectroscopy (XPS) was used to determine the atomic composition of
the surface. It also allows for a general description of the chemical group composition of the
surface by analyzing the core spectraof the different elements. During deconvolution of the core
or multiplex spectra care hasto be taken, especially for non conductive substrates like PET, be-
cause charging effects during the acquisition cannot be excluded in spite of the electron shower
for charge compensation (parameters. E 16eV, | 123mA). If charging takes place, the peaks
get broader and the maxima may also shift from one run to the next. In consegquence the acqui-
sition time has to be kept low, resulting in quite noisy data. The absolute position of the spec-
trum is fixed approximately by the charge compensation during acquisition. After acquisition,
the spectra are then shifted in order to fix the aromatic C1s peak exactly to the literature value.

The acquisitions were performed on a Perkin ElImer PHI 5500 ESCA System at the Laboratory
of Metallurgical Chemistry (Materials Science and Engineering Department / EPFL). The ac-
quisition time was approximately 4 minutes. The take-of angle was 60° for both measurements,
and we used monochromated AlK, radiation (350 W) for the excitation. The pass energy for
core spectra acquisition was set to 23 eV. Due to the limited spatial resolution of the system
(500 x 500 pm?) the measurements were done in 1 mm large channels.

Water condensation was also used in order to get an idea of the water wettability (hydrophi-

licity) of the sample surface. Two different approaches were used:

1. In search of contact angle values in the standard channels, an experiment was performed in
an Environmental Scanning Electron Microscope (ESEM) at the Swiss Federal Laboratories
for Materials (EMPA). Unfortunately, it was not possible to obtain a clear image of a small
drop in the channel.
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2. In order to examine the influence of the debris on the wettability, water was condensed near
the irradiated region by exhaling onto the substrate. Depending on the hydrophilicity of the
substrate, the water condensed as droplets of different size or as athin film. The repeatabil-
ity of the experiment on the samples of one day was better than on samples of different
days. Thisindicates that the error in the condensing experiment originates from the sample
production and not from the measurement.

The condensing experiment gives valuable but only relative and qualitative information on the
water contact angle of the observed surfaces. As the images are taken from above, one directly
observesthe diameter of the forming dropletsfor partially wetting surfaces and the interference
colorsof the thin water film in the case of complete wetting (spreading of water on the observed
surface). In theinterpretation of the images, main emphasiswill be on the contrast between par-
tial and complete wetting.

Electroosmotic flow velocity measur ements were carried out in order to determine the {-po-
tentialsof the ablated surfacesin the channelsasafunction of theirradiation conditions. Besides
the fact that knowledge on the electroosmotic flow is interesting for applications of the micro
channels, the {-potential dataitself isvaluableinformation on the ablated surfaces (section 11.5).
Further information on the experimental procedureisgiven in section I11.5.
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111.3 Samples

Usually, a biaxially stretched commercial poly(ethylene terephthalate) (PET)
film is used. Due to the presence of UV-stabilizers, the ablation threshold of
these samplesis slightly higher than the literature value. For some experiments,
we stretched ourself an amorphous PET film, in order to obtain uniaxially
stretched PET with known stretching direction and stretching strength. The
stretching was carried out at room temperature and at Ty < T < Ty,. Commer-
cial, biaxially stretched Poly(ethylene naphthalate) (PEN) was also used. Its
ablation threshold at 193 nmis higher than the one of PET.

[11.3.1 Biaxially stretched PET samples

The usually used samples are pieces of acommercia Melinex S-grade film purchased from I Cl
(England) with athickness of 100 um. The samples were used “as received”’, i.e. the films are
biaxialy stretched. The extend of stretching was not equal in each direction. The data sheet
[113] givesdifferent tensile strengths and different coefficients of thermal expansion in the two
stretching directions. The fact that one stretching direction dominated over the other was also
visible in the Static Structure formation (section V.1.3). Figurelll.3-1 shows the chemical
structure and the measured ablation curve for the standard PET substrate. Thefit parameters ac-
cording to Eq. 2 are o, = 1.83 (+0.06)x10°cm and ®, = 35 (+2.3) mJcm?.

PET biaxially stretched
(Melinex S)

o
N
a1

0—CH,— CH,— o_ﬁ@(ﬁ_

o) o)

Ablation rate per pulse h (um)

10 100 1000
a b Fluence ® (mJ/cm?)

Figure I11.3-1: (a) Chemica structure of poly(ethylene terephthaate) (PET). (b) the
measured ablation curve of the used standard PET samples (at A = 193 nm, T = 20 ns).
(et = 1.83 (+0.06)x10° cmL and ®y = 35 (+2.3) m¥cm?)

Because of plume shadowing effects, which lower the ablation rate at high fluences, only the
measurements with ® < 900 mJcm? were used for the fit. The literature value for the ablation
threshold of the same Melinex S samples, determined from fluences between 20 mJcm? and
200 mJ/cm?, is somewhat lower (28 mdcm? [18]) indicating already at relatively low fluences
deviations from Eq. 2. Moreover, the error in the fluence measurement contributes to this devi-
ation.
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[11.3.2 Production of uniaxially stretched PET samples

Frozen stresses in the polymer substrates are the reason for the structure formation upon Static
Ablation. The standard PET substrate, which was used for nearly all experiments, represents a
complicated frozen stressfield. For more fundamental studies on the structure formation it was
necessary to produce samples with a known and simple frozen stress field.

For this purpose we started from acommercial amorphous unoriented PET film with athickness
of 500 um (Goodfellow) and prepared two types of samples.

Samples oriented at room temperature: Amorphous unoriented pieces of 3 x 5cm? were
uniaxialy stretched with constant bracket speed at room temperature in atraction test machine
(809 Axiad/Torsia Test System, MTYS) in the Laboratory of Applied Mechanics and Reliability
Analysis (Mechanica Engineering Department / EPFL). When stretching PET at room temper-
ature, the deformation of the polymer is not homogenous. Only the part of low mechanical re-
sistance at the border of original and stretched material is deformed (Figurelll.3-2). This
behavior is named “necking” [114].

stretched part,

aligned polymer neck —\/ —c original, unstretched
) substrate
chains )
\ polymer chains not
= T :
\’_\

Figure 111.3-2: Schematic of the neck, that appears upon drawing of PET at room
temperature. Upon stretching of the film the neck propagates to the right.

Samples that are stretched with necking always show a high degree of molecular orientation
[115]. The stretching process was slow enough to avoid compl ete crystallization, which can oc-
cur due to local heating in the neck [116]. However, after drawing, the samples exhibited a
slightly hazy appearance due to enhanced crystallinity (>20 vol.%). The draw ratio DR of these
samples (sample length after drawing divided by original sample length) was approximately
DR38.

Samplesoriented at 80°C: Sampleswith different degrees of chain orientation were prepared
at the Laboratoire de Physico-Chimie Structurale et Macromoléculaire (UMR 7615) ESPCI,
Paris (France) according to a recipe given by Chang et al. [117]. Pieces of 1 x 3cm? were
stretched at 80°C, i.e. above the glass transition temperature and bel ow the melting temperature
of PET. The draw ratios DR were 1.5, 2.0, 2.5, 3.0 and 4.0. For this purpose, atesting system
MTS 810 equipped with an interface MTS 458 and a temperature chamber regulated at 80 +
0.5°C by means of atemperature controller (Barber Coleman) was used. The deformation rate
was 0.003 s and the samples were quenched after fabrication in order to avoid crystallization,
which was not initiated by the chain alignment itself. The procedure resulted in transparent sam-
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ples with slightly enhanced crystallinity at draw ratios bigger than 2, according to the literature
[127].

111.3.3 poly(ethylene naphthalate) samples

For comparison, we used also commercial poly(ethylene naphthalate) (PEN) samples, which
were purchased from Goodfellow (England). The 75 um thick films were biaxially stretched.
The difference in chemical structure between PEN and PET is that the para-substituted phenyl
group of the PET-monomer is replaced by a 2-6-naphthalene unit (Figure I11.3-3a). The bigger
T-electron system leads to a red-shift of the absorption peaks, with respect to PET, and conse-
quently to alower low-intensity-absorption at 193 nm (30% of PET [40,62]). The high intensity
absorption coefficient o+ defined by Eq. 2 isonly slightly lower than the one for PET (86% of
PET). The measured ablation curve for the PEN substrateis given in Figure 111.3-3b. Thefit pa-
rameters according to Eq. 2 are ag = 1.57 (10.05)><105 cmt and ®, = 838 (+3.1)
mJcm?.

PEN biaxially stretched
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Figure 111.3-3: (a) Chemical structure of poly(ethylene naphthalate) (PEN). (b) the
measured ablation curve of the used PEN samples (at A = 193 nm, T = 20 ns). (g =
1.57 (+0.05)x10° cm™L and ®, = 83.8 (+3.1) mJ/cm?)
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[11.4 Micro fluidic channel production

Smple micro fluidic devices were produced for electroosmotic flow measure-
ments. They consist of a straight micro channel, having a reservoir at each end.
The channel s between the reservoirs were produced by Scanning Ablation with
different spot lengths and different scan vel ocities, leading to different ramp an-
gles while conserving a constant channel cross section. The ablated channels
are closed by a PE on PET lamination. The channelswere produced in biaxially
stretched and amor phous substrates. Depending on the substrate, the reservoirs
were drilled through the substrate or through the lamination.

[11.4.1 Channel types

In this section the production of the different types of channels, which were used for the elec-
troosmotic measurements, will be described. In contrast to injection and analysis experiments,
which require more complicated channels with at least one T-junction, the electroosmosis mea-
surements are carried out with ssmple straight channels. The channels have two reservoirs, one
at each end. In this subsection the ablation procedure of the channel between the reservoirsis
described, before addressing in the next subsection to the production of the reservoirs and the
lamination procedure, which is used to close the channels.

All channel types had approximately the same cross section, typically it isatrapezoid of thefol-
lowing dimensions: upper width w; = 50 pm, lower width wy, = 29 um, depth d;y; = 37 um. This
was achieved by fixing the fluence (® = 1000 m¥cm?) and the number of pulses per site
(n = 200). Usually the pulse repetition rate of the laser was (f = 50Hz). Figure I11.4-1 shows
a SEM micrograph of a cross section, which was produced at dightly higher fluence.

Magn Det WD Exp
1000x SE 15.0 1

Figurelll.4-1: SEM micrograph of a channel cross section, the parameters were @ =
1200 m¥em? and n = 200.

Different kinds of channels produced by Scanning Ablation were then made by varying the spot
length a and the scan speed v (see Table 111.1-1). This finally determines the ramp angle 9 to
thevaluesin Tablelll.4-1.
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a (um): ] 1000 ] 500 ‘ 200 ‘ 100 ‘ 50
19(°):‘ 2.0 ’ 43 ‘ 11 ‘ 2 ‘ 42

Table I11.4-1: Used spot lengths a for the different micro fluidic channels and
corresponding ramp angles 5.

Usually the closed part of the channel between the two reservoirs was 15 mm long. The depth
of the channels showed a slight dependence on the spot length due to the fact that the pul se rep-
etition rate was dlightly higher than 50 Hz.

[11.4.2 Channelsin thin substrates

The biaxially stretched standard substrate is 100 um thick. In these substrates the channel pro-

duction procedure was as follows:

1. Two holes (40 x 1000 umz) are drilled completely through the substrate. Free space
between them is 15 mm and they will be used asreservoirs.

2. The channel is ablated between the two reservoirs using the mask that generates the appro-
priate spot length.

3. The substrate is laminated on the ablated front side with a poly(ethylene) on PET lamina-
tion at 125°C (Morane Senator Lamination machine, Oxon, UK).

4. For the measurement the solutions drops are placed on the backside of the reservoirs.

A cross sectional view of the final structureisgivenin Figure l11.4-2a.

a I eservoir b F ESErVOr

PET (substrate) PET (lamination) :

P \_|_. channel l_'_/ ;

PET (substrate)

* PET (lamination)
PE (lamination) - PE (Iamination)/

Figurell1.4-2: Schematic cross sections in the channel direction of the micro fluidic
channels showing the channel, the reservoirs and the lamination. (a) Channels in
100 pum thick substrates. (b) Channelsin 500 um thick substrates.

111.4.3 Channelsin thick substrates

The unstretched amorphous substrate has a thickness of 500 um. It turned out, that traversing

reservoirsare not suitablefor thiskind of substrate, because theratio, reservoir volume/ channel

volume, became too big. In consequence the data of the electroosmotic measurements was

smoothed out and could not be evaluated. Thus the production procedure for channelsin the un-

stretched substrate is as follows:

1. A channel of at least 15 mm is ablated using the mask that generates the appropriate spot
length.

2. The ablated front side of the substrate is laminated.

3. The lamination is ablated using a spot size of 1 x 1mm? in order to generate surface reser-
VQirs.
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In the case of the surface reservoirsthe covered channel length between the reservoirs was cho-
sen to be 13 mm. The number of pulsesfor the ablation of the lamination was chosen to be suf-
ficient to ablate about a micron of the underlying PET. A cross sectional view of the fina

structureisgivenin Figure 111.4-2b.
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[11.5 Electroosmotic flow measurements

The electroosmotic flow velocity in the channels is measured by the “ current
monitoring technique” . The channel length divided by the time that is necessary
to replace the liquid in the channel by another one, yields the electroosmotic
flow velocity in the channel. The electrical current in the channel was approxi-
mately 4 pA.

[11.5.1 The current monitoring method

Before each measurement the channel wasfilled by placing 10 pl of buffer solution (phosphate
buffer pH = 7.2, 10 mMol/l) in one reservoir and pumping at the other side with awater pump.
Afterwards the channel was inspected under a microscope, and, if bubbles were detected, the
procedure was repeated. Once filled like this, the channel was rinsed by electroosmotic flow
with three volumes of buffer solution before beginning the measurement, in order to be surethat
the channel is properly rinsed.

The electroosmotic flow was then measured using Huang’ s current monitoring method [118].
We placed volumes (10 ul) of a buffer (phosphate buffer pH = 7.2, Sigma) in each reservoir.
The total salt concentration of the buffer in the two reservoirs differed dightly (10 mMol/l, 8
mMol/l). When applying the electric field that induced the electroosmotic flow, the resistivity
of the channel was measured. The resistivity of the channel at a given time depends on the per-
centage of the channel filled with the low resistivity (high concentration) buffer and the percent-
age of the channdl filled with the high resistivity (low concentration) buffer (Figure1l1.5-1a).
The measurement of the channel resistivity asafunction of time thus monitorsthe motion of the
interface formed by the two liquids (Figure 111.5-1Db).

For all measurements, we applied adriving electrical field of 20 kV/m and al quoted literature
values are converted to this value for better comparison. The resulting electrical current varied
around 4 YA (Figurelll.5-1b).

a | b 54, .
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= flow time
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Figure I11.5-1: (a) Setup of the current monitoring method for electroosmotic flow

measurements. (b) Example of raw data with linear fits, showing low concentration

buffer replacing high concentration buffer.

/
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[11.5.2 Datatreatment

From the raw data as shown in Figure I11.5-1b the flow time of the interface was extracted by
fitting straight lines to the stable values and the current ramp. The time difference between the
two intersection points of the three fitted lines was taken as one value for the flow time. Asthe
channel length and the driving field are known, the flow vel ocity and the el ectroosmotic mobil-
ity can be calculated.

One point in the electroosmotic data corresponds to one channel that was measured with usually
3 pairs of buffer volumes, each used to generate 4 to 6 current ramps. Thus avauein the graph
shows usually the mean of 12 measurements and the indicated error is the standard error

(c//N).



V. SCANNING ABLATION VERSUS STATIC ABLATION

IV. Scanning Ablation versus Static Ablation

V.1 The geometry of the channels

Scanning Ablation produces ramps at the beginning and the end of each chan-
nel. The end ramp isthe only irradiated surface, and its lowest part determines
the structure of the channel floor. Channels, which are produced with high
ramp angles (steep ramps), are expected to show the particularities of Scanning
Ablation better than channels with low ramp angles. For long enough channels,
the temporal development of a point on the ramp or on the channel floor can be
observed spatially by observing the ramp or the channel floor respectively. End
ramps can also be produced by Opening Mask Ablation. Beginning ramps cor-
respond to ramps produced by Closing Mask Ablation, except that the debris
contribution is lower after Closing Mask Ablation.

Asaready mentioned in section 111.1.3, Scanning Ablation produces adifferent geometry of the
channel during ablation, compared to Static Ablation. The characteristic feature of Scanning
Ablation isthe existence of the ramps at the beginning and the end of the channels. Figure IV.1-
1 shows schematically how the ramps develop during the first pulses. Only one of the ramps,
defined as the one at the end of the channel, is irradiated during channel production
(Figure 1V.1-1e). Hence, the structure on the channel floor is determined by the structure on the
lowest part of the end ramp. When thelight isnormally incident to the unirradiated surface, both
ramps have the same ramp angle 9, i.e. the angle formed by the ramp and the non-irradiated
surface (Figure 1V.1-1d). Comparing the irradiation conditions of the two ramps in Scanning
Ablation to the ramp production by Opening or Closing Mask Ablation (section 111.1.4), one
sees that the beginning ramp in the channel is of the same type as the ramps being produced by
Closing Mask Ablation. In both cases, the ramp forms due to a number-of-shots-gradient and
only the lowest part of theramp isirradiated. There is however adifferencein the observed sur-
face structures due to the different debris contributions (section 1V.2.2). Analogously, the end
ramp in the channel corresponds to a ramp produced by Opening Mask Ablation, the debrisis
similar in this case.

The ramp angle 9 can vary theoretically in the range © [1]0°, 90°[. (The limits cannot be
reached but they can be approached arbitrarily close.) Practically however, the upper limit is
given by thewall angle B = 74° (section 111.1.3). Upon Static Ablation, the irradiated surfaceis
aways paralld to the non-irradiated surface, independently from the angle of incidence of the
light (Figure I11.1-3d). In other words, Static Ablation is characterized by 9 = 0°. Hence, in
terms of the development of 3, we expect the particularities of Scanning Ablation to appear
more clearly at high ramp angles than at low ramp angles. Thisis true for the observations re-
ported in chapter V.

As already motioned in section 111.1.3, the irradiated area has in general the form of a stairway
rather than aramp (Figure 1V.1-1). However, if the width of the steps is comparable to the op-
tical resolution of the mask projection Ax, the steps melt one into the next and can no longer be
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Figure 1V.1-1: Ramp formation during Scanning Ablation for n = 3. The situation
pulse after pulse: (a) First pulse. (b) Second pulse. (c) Third (n-th) pulse, beginning
and end ramps are formed. (d) Forth (n+1-th) pulse, the channel floor begins to form.
(e) A small part of channel floor is produced with every pulse, while the end ramp
moves away from the beginning ramp.

distinguished. If structure formation occurs on theirradiated area, the width of the stepshasalso
to be bigger than the period A of the structure, for the stepsto be resolved. The condition for the
observation of a“smooth” ramp is then:

‘—f’ < max(AxA) (15)
(Where v is the scan velocity and f the pulse repetition rate of the laser.) In our setup, we have
f=50Hz, Ax = 2.7 um (section 111.1.1) and A = 3 um (section V.1), hence, the maximum al-
lowed scan velocity for obtaining smooth rampsisv = 150 um/s, according to Eq. 15. We used
however scan speeds of up to 250 pum/s without observing the stairway shape in the SEM. This
isdueto the fact that the ablation rate per pulse (< 0.2 um, section 111.3.1) is much smaller than
the height of the Static Structure (2 um, section V.1), thus the steps cannot be observed due to
the high roughness of the surface.

If we neglect the early times, where the beginning ramp may be reached by g ected material, we
can say that, dueto the scanning, the time domain istransposed to different placesin the channel
direction, i.e. space, and becomes accessible to simple observation in thisway. For example, it
is possible to see the development of the period of the Static Structure from O to n pulses on a
simple SEM of the irradiated ramp (Appendix A). Another example is how the temporal accu-
mulation of debris on a certain point on the channel floor isvisible as a debris gradient close to
the end ramp (Figure V .4-4).
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V. SCANNING ABLATION VERSUS STATIC ABLATION

V.2 Redeposition - Debris

“Indirect” debris redeposition, as described in section 11.3.2, is more homoge-
neous in Scanning Ablation than in Static Ablation. The quantity of indirect de-
bris depends on the shape of theirradiated spot (sections11.3.2 and VI.3.2), but
not on the scanning. In Scanning Ablation another PLD like redeposition mech-
anism exists. The quantity of this “direct” redeposition is important at high
ramp angles and negligible at small ramp angles. The total debris deposition in
Scanning Ablation isa mixture of direct and indirect redeposition.

IV.2.1 Redeposited debrisdistribution dueto scanning

When comparing Static and Scanning Ablation, one al so hasto consider the redeposition of par-
ticulate ablated material. This material is called debris and is redeposited on the substrate due
to the drag forces of the generated shock wave (section I1.3.2). On amolecular level, this means
that collisions of the particulate ablation products with the molecules of the ambient air and the
light ablation products occur, pushing some of the particulate ablation products back onto the
substrate surface, where recondensation occurs. Due to the collisions with molecules of the am-
bient atmosphere, the chemical composition of debris depends on the chemical nature of the gas
environment during the ablation process (section 11.3.3). Thisindirect redeposition mechanism
due to collisions with the surrounding gas takes place as well in Static Ablation asin Scanning
Ablation.

In Static Ablation each of the n pulses hits the same surface and thus debris cannot accumulate
on the ablated surface, if the fluence is high enough to ablate the debris of the preceding pulse
(no cone formation, section 11.2.2). Thus, for high enough fluences, only the debris of the last
pulseisin theirradiated channel section, whereas near the irradiated surface debris will accu-
mulate [84]. Thus, one expects a periodic, non homogenous, and perhaps discontinuous debris
layer on the channel floor of a statically ablated channel (Figure IV.2-1a).

In Scanning Ablation, every point of the forming channel floor is once near the irradiated sur-
face and only the end ramp is continuously cleaned from debris. Thus debris can accumulate
homogeneously inthewhole channel, because of the scanning of the substrate (Figure 1V.2-1b).
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Figure IV.2-1: Debris redeposition in Satic Ablation (a) and Scanning Ablation (b).
In Scanning Ablation debris can accumulate in the channel, in order to form a
homogenous layer.

The main difference between Static Ablation and Scanning Ablation, with the same shape of the
irradiated spot and a small ramp angle, isthe distribution of the debris. The quantity of indirect
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V.2 REDEPOSITION - DEBRIS

debrisin the channel does not depend primarily on the substrate scanning, even if reflections of
the shock wave at the channel floor might influence slightly the yield of indirect redeposition.
However, the quantity of indirect debrisin the channel isinfluenced by the shape of the ablated
spot (sections11.3.2 and V1.3.2).

1V.2.2 Enhanced redeposition dueto self PLD

In Scanning Ablation however, another mechanism exists resulting in the redeposition of ablat-
ed material. It becomes very important in Scanning Ablation with high ramp angles, and is neg-
ligible in Static Ablation. This mechanism, as explained below, will de named “direct
redeposition” and isakind of Pulsed Laser Deposition (PLD) with the target (irradiated ramp)
and the substrate (channel) in one piece.

In PLD, atarget material is laser ablated and the gjected ablation products (section 11.3.1) are
allowed to deposit onto a substrate, which is generally positioned facing the ablated target
(Figure IV.2-2a). Usually the Laser isfocussed to high fluences in this kind of experiment and
the ablation takes place under vacuum (< 10°3 mbar [13]). The angular density distribution
p(¢) in this conditions was measured by Lazare et al. [ 74] and can be expressed by:

p(d) = pgx cos"(¢) (16)

Here p, is a normalization factor, ¢ is the solid angle measured from the surface normal
(Figure1V.2-2a), and p is a parameter depending on the fluence, the material and the wave-
length. Asalready reported in section I1.3.1, thismeans that the material isejected preferentially
perpendicular to the irradiated surface.

focused vacuum chamber
laser pulse

substrate

Figure 1V.2-2: (a) Schematic PLD setup and visualization of the angular density
distribution of the egjected particles p(¢). (b) Beginning of a channel ablated in
Scanning Ablation with § = 32°. The gected particles (debris) are concentrated
around the normal to the ablated surface, i.e. the channel direction.

If arectangular surfaceisirradiated in air the smplerelation for p(¢) will clearly no longer be
valid. For example the rotational symmetry of Eq. 16 is not valid for rectangular ablated areas
[76]. A feature of Eq. 16 that persists, isthat material ismainly gected in directions closeto the
surface normal. Thisis clearly visible in Figure IV.2-2b, where a SEM image of the surround-
ings of abeginning ramp isshown. The observed “hump”, caused by the accumulation of debris,
is hardly larger than the ablated channel.
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V. SCANNING ABLATION VERSUS STATIC ABLATION

Thus, in Scanning Ablation a direct PLD-like deposition of material in the channel occurs,
whichisduetothetilt of theirradiated surface with respect to the channel floor. With increasing
9 the channel floor and the walls cover more and more solid angle, and thus more and more de-
bris deposits directly on them (Figure 1V.2-3). It is not trivial to give an expression for the de-
posited debris quantity, because the density distribution p of the gected particles will depend
on many parameters. Namely: (i) The position in space. (ii) The form and the size of the irradi-
ated area. (iii) The gas, in which the ablation is carried out.

LIGHT LIGHT

Figure IV.2-3: Scheme of ramp ablation, showing why direct redeposition on the
channel floor is more important at high ramp angles 9. An angular density distribution
of the gjected particles p(¢) = pg cos($)? isgiven in polar representation (curved
line). The surface of the filled part of the curved line is proportional to the quantity of
material, which would be gjected directly in the direction of the channel floor of along
channel. At high ramp angles (b) much more material is redeposited directly in the
channel than at low ramp angles (a).

Thetotal debrisdepositionin Scanning Ablationisamixture of direct andindirect redeposition.
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V. STRUCTURE CHANGES DUE TO SCANNING ABLATION

V. Structure changes due to Scanning Ablation

V.1 Satic Ablation

The Satic Structure develops only in stretched substrates. In uniaxially
stretched substrates, the main orientation of the resulting Wall-Type Sructure
is perpendicular to the stretching direction. In biaxially stretched substrates a
Nap-type Structure develops[56] . In our biaxially stretched standard PET sam-
ples, where the extent of stretching is different for the two stretching directions,
a superposition of Nap- and Wall-type Sructure is observed. The resulting
structure has a mountain chain like shape. The Satic Structure formation in
PEN upon Laser Ablation isvery similar to theonein PET [40]. At the usual ir-
radiation conditions in this work, the period of the Satic Structure is approxi-
mately 3 um, and its height approximately 2 um.

In this section, the specific appearances of the Static Structure found after Static Ablation of the
used substrates will be shown by SEM, AFM, and TEM, in order to serve as areference for the
observations in the following sections.

V.1.1 Unstretched PET

Laser Ablation of unstretched PET at alaser wavelength of 193 nmwith relatively high fluences
(75 m¥cm? - 1200 mJ¥cm?) leads to smooth etched surfaces, as reported in detail in section
[1.2.2 [56]. An example of an ablated hole in amorphous unstretched PET is given in
Figure V.1-1a. Only dlight ripples close to the walls can be observed, which are due to diffrac-
tion and/or reflection at the borders.
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Figure V.1-1: (a) Ablated structure in unstretched amorphous PET (n = 1000 pulses
and ® = 1200mJcm?, SEM observation under 30° tilt angle). By SEM no
micrometric structure, except diffraction fringes at the borders are observable on the
ablated surface. (b) SEM image of the Static Structure observed on the same material
asin () after uniaxial stretching. The irradiation was performed with n = 200 pulses
and ® = 1000 mJcm?.
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V.1.2 Uniaxially stretched PET

Asreported in section 11.2.2, the frozen stresses in the material are the key factor for the under-
standing of the shape and orientation of the Static Structure [56]. For some experiments, we
used self made uniaxially stretched samples (section 111.3.2). The Static Structure developing
after the standard irradiation (n =200, ® = 1000 mJ/cmz) wasinvestigated by SEM (Figure V.1-
1b). Asexpected, the samples show aWall-like Structure, with the main orientation of thewalls
perpendicular to the stretching direction.

V.1.3 Biaxially stretched PET

The Static Structure of the biaxially stretched PET samples was a mixture of the Wall-type
Structure (section 11.2.2) and the Nap-type Structure (section 11.2.2), because the films were bi-
axialy stretched but the extend of the stretching was not the same in the two directions. This
leads to a mountain chain like structure where the naps (mountains) are aligned preferentially
perpendicularly to the main stretching direction. This can be seen in Figure V.1-2a. At lower
fluences a pure Nap-type Structure develops at n = 200 shots per site (Figure V.1-2b).
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Figure V.1-2: SEM micrographs of the Static Structure in the biaxially stretched
standard samples. (a) Mountain chain like structure. The white dots are the tops of the
naps (® = 1200 mJcm?, n = 200). (b) Typica Nap-type Structure (P = 75 mJcm?, n
= 200).

The AFM picture in Figure V.1-3a and the TEM of a cross section of the channel floor in
Figure V.1-3b give a more detailed and quantitative view of the Static Structure shown in
Figure V.1-2a. Asthe AFM tip geometry limitsthe lateral resolution, when imaging high aspect
ratio structures, the sub-micrometric dimensions of the nap tipsare only visibleinthe TEM pic-
ture (Figure V.1-3b). Asreported in section 11.2.2, the amplitude and the period of the structure
depend on fluence and number of shots per site. For the usual irradiation conditions, the period
of the structure ranges from 2 to 5 um (Figure V.1-2a and Figure V.1-14a), whereas the ampli-
tude of the structure ranges from 1 to 3 um (Figure V.1-3aand b). The tip of the naps or moun-
tainsis about the same height as the base or even higher (Figure V.1-3b).

The two key experiments for the structure formation, which are already described in literature
[56,58], were also repeated:
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base f

"mountain"

Figure V.1-3: (a) AFM and (b) cross sectional TEM of the Static Structure in the
biaxially stretched standard samples. (Parameters: (a) ® = 1200 mJcm?, n = 50, and
(b) ® = 1200 mJcm?, n = 200.)

1. Inorder to verify that the orientation of the Static Structureisreally given by the orientation
of the stresses and not by the orientation of the channel, channelsin different directions with
respect to the main stress direction were ablated [56].

2. In order to verify that the Static Structure does not change significantly with the angle of
light incidence in the range from 0° to 70° [58], a Static Ablation with an angle of light inci-
dence of 45° was carried out (Figure 111.1-3).

In both cases, the results from the literature reports were confirmed.

V.1.4 Biaxially stretched PEN

The behavior of PEN upon Laser Ablation is similar to the one of PET (section 11.2.2). In the
case of the used biaxially stretched PEN films the stretching strength in the two directions was
approximately the same, because a pure Nap-type Structure was observed after Static Ablation,
both with high and low fluence (Figure V.1-4).

v Det WD Exp 1 10um

000x S 187 3

Figure V.1-4: SEM micrographs of the Static Structure in biaxialy stretched PEN
samples. At high and low fluence atypical Nap-type Structure develops. Parameters:
(2) ® = 1100 m¥cm?, n = 200, and (b) ® = 150 m¥cm?, n = 200
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V.2 Ramp ablation and Scanning Ablation

The structure on ablated ramps in stretched polymers depends on the ramp an-
gle, the orientation of the ramp with respect to the stretching direction, and the
fabrication mode. For fabrication modes, where the whole ramp is never irradi-
ated, no differences compared to Satic Ablation could be observed. For fabri-
cation modes, where the whole ramp is irradiated, the structure is the same as
in Satic Ablation, as long as the ramp angle is lower than approximately 10°.
Depending on the relative orientation of the ramp and the stretching direction,
the structure formation is partially or completely suppressed at higher ramp an-
gles. Vector decomposition of the stress in the polymer allows for a consistent
description of all observed effects. The limiting angles between the three possi-
ble structures (Static Sructure, Scanning Structure and Smooth Structure) de-
pend neither on the extend of stretching, nor on the laser fluence, but they are
different for different polymers.

V.2.1 Suppression of the structure formation

In 1998, we observed structure changes on ramps, that were ablated in biaxially stretched PET
films (section V.2.2) [8]. At ramp angles above a certain limiting angle 9', the orientation of
the Static Structure changed and the naps disappeared, and above a second limiting angle 9",
the ramps got completely smooth. The effect could only be observed on ramps, where the whole
inclined surface isilluminated, i.e. the end ramp in Scanning Ablation as well as ramps, which
are produced by Opening Mask Ablation or Grey-level Mask Ablation (walls: Figure V.2-3c).
This suppression of the Static Structure formation can be understood, when assuming that the
relaxation of the frozen stresses Sin a stretched polymer sample obeys the laws of vector addi-
tion [9]. We saw aready in section V.1 that this assumption fails in case of the building-up of
the frozen stresses by stretching: biaxial stretching of a polymer sample should be identical, ac-
cording to vector addition, to uniaxial stretching inthe diagonal direction, but the resulting Stat-
ic structures, reflecting the stress fields in the polymer, are very different.

Nevertheless, the decomposition of the stress Sin the polymer into different components S, S,
and S,, during the relaxation of the stress, leads to a consistent description of the observations.
Three experiments were carried out in PET, that was stretched uniaxially at room temperature
(section 111.3.2). In each of the experiments another orientation of the stresses Swith respect to
the ramp border was chosen (Figure V.2-1). In al cases ramps with different ramp angles 3
were ablated by Opening Mask Ablation, and the structure on the ramps was observed by SEM.

Experiment 1. The stresses were oriented perpendicularly to the ramp border, i.e. in the direc-
tion of theramp (Figure V.2-1 | eft side). Rampswith theramp angleslisted in Table V.2-1 were
ablated. SEM picturesof threeof theninedifferent rampinclinationsareshowninFigure V.2-2.
At ramp angles of less than 11° the Static Structure formed, exactly as in Static Ablation
(FigureV.2-2a). Ataramp angleof & = 9'=11° the structure formation was suppressed, al-
though a slight texture was still visible on the ramp (Figure V.2-2b). At ramp angles of more
than 11° the ramps were completely smooth (Figure V.2-2c).
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Experiment 1 Experiment 2 Experiment 3
5 e
P et
3D-view
not irradiated ramp not irradiated not irradiated
border
< =Y 7’_
Top-view S Sﬁ S
ramp ramp ramp
ablated ablated ablated

FigureV.2-1: Schematic of the relative orientations of frozen stress Sand ramp border
in experiments 1 to 3.

a (um) ‘ 1000 ‘ 500 ‘ 200 ‘ 150 ‘ 100 ‘ 75 ‘ 50 ‘ 30 ‘ wall
8(°)’2.2‘4.3‘11‘14‘21’27’37‘52‘>70
TableV.2-1: List of different spot lengths a and ramp angles 9 used in experiment 1.

Fluence was ® = 1000 mJ/cm? and number of shots n = 200 for all ramps.

Figure V.2-2: SEM micrographs of the ablated ramps (top-view). The dashed line
indicates the direction of the ramp border. Parameters: (a) @ = 2.2°, (b) 9 = 11°, (¢) 9
=27°.

Experiment 2. The stresses were oriented parallel to the ramp border (Figure V.2-1 center).
Ramps with the ramp angles listed in Table V.2-2 were ablated. Figure V.2-3 shows SEM mi-
crographs of three of the ten different ramp angles.

a(pm)‘lOOO‘ 500 ‘ 200 ‘ 150 ‘ 100‘ 75 ‘ 50 ‘ 30 ‘ 15 ‘wall
19(°)‘2.2‘4.3‘11‘14‘21‘27‘37‘52‘69‘>70

Table V.2-2: List of different spot lengths a and ramp angles 9 used in experiment 2.
Fluence was ® = 1000 mJcm? and number of shots n = 200 for all ramps.

No suppression of the Static Structure formation was observed, even at high ramp angles. In fact
the Static Structure could even be observed on thewalls of the ablated structure (Figure V.2-3c).
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Figure V.2-3: SEM micrographs of the ablated ramps (top-view). The dashed line
indicates the direction of the ramp border. Parameters: (a) 9 = 2.2°, (b) 9 = 11°, (¢) 9
> 70°.

Experiment 3. The stresses were oriented at an angle of 45° to the ramp border (Figure V.2-1
right side). Ramps with the ramp angles listed in Table V.2-3 were ablated. The SEM pictures
of three of the ten produced ramps with different inclinations are shown in Figure V.2-4.

a(um)‘lOOO‘ 500 ‘ 200 ‘ 150 ‘ 100‘ 75 ‘ 50 ‘ 30 ‘ 15 ‘Wall
8(°)‘2.2‘4.3‘11‘14‘21‘27‘37‘52‘69‘>70

Table V.2-3: Ligt of different spot lengths a and ramp angles 9 used in experiment 2.
Fluence was ® = 1000 mJcm? and number of shots n = 200 for all ramps.

Figure V.2-4: SEM micrographs of the ablated ramps (top-view). The dashed line
indicates the direction of the ramp border. Parameters: (a) 9 = 2.2°, (b) 9 = 11°, (¢) 9
= 37°.

At ramp angleslower than 8’ = 11° the Static Structure developed, asin Static Ablation, per-
pendicularly to the frozen stresses (Figure V.2-4a). At ramp angles 9, with 3’ <9 <30°=9",
the structure was aligned with the ramp direction and no longer perpendicular to the stress di-
rection (Figure V.2-4b). At high ramp angles 9 >3 ", the structure formation was suppressed
(Figure V.2-4c).

Conclusions from experiment 1-3: Only in experiment 2, the stress Sistangential to theramp
at all ramp angles (S= S, according to Figure V.2-5 and Figure V.2-1). In this case, Sis active
for the formation of the Static Structure at all ramp angles. In experiment 1, Sbecomesinactive
for the Static Structure formation at § =9 ’. This explains also the change in structure orienta-
tion, which is observed in experiment 3at 9 =9 . It is sufficient to decompose Sinto a compo-
nent S, parallel to the ramp border and a component § in the ramp direction (Figure V.2-53).
When considering § becoming inactive for structure formation at 9 29’, we end up with a
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structure being determined by S, and thus oriented in the direction of the ramp, as it was ob-
served (Figure V.2-4b).

S ramp
Sa| ;Zﬁp border

Si “\\ "8
y
SR ramp
a TOP VIEW b SIDE VIEW

Figure V.2-5: Decomposition of the stress vector S into components parallel and
perpendicular to the irradiated surface. (a) Top view, and (b) side view of the ramp. S,
and S, are parallel to the irradiated surface and S, isperpendicular toit. Itis S, + S+

S =S

The decomposition of Sinto S, and § is not yet adapted to the problem, because an instable sur-
face (asthe polymer surface during the laser pulse) reacts differently on stresses, which are per-
pendicular to the surface, compared to stresses being tangential to it. Figure V.2-5b defines the
decomposition of § in its components S, parallel to the irradiated surface, and S, perpendic-
ular to it. The adapted coordinate system for the description of the problem is composed by S,,
S and Sy (Figure V.2-5D).

Comparing experiment 2 with experiment 1 and 3, it is clear that S;# 0 needs to be fulfilled
for any structure change to occur. In other words, the stress component S, which is perpendic-
ular to the irradiated surface, suppresses the structure formation. With increasing 3, first, i.e.
from & =3" on, the stresscomponent S, whichis parallel to theramp and in the ramp direction,
is rendered inactive for structure formation by the influence of S. Then, from & =3" on, also
the stress component S,, which is paralel to the ramp and in the direction of the ramp border,
isno longer active for structure formation due to S.

Experiment 4. However, it isnot yet clear whether the threshold in S, which causes the sup-
pression of the Static Structure formation is an absolute or arelative threshold. In an attempt to
answer this gquestion, we determined the first limiting angle 9' in substrates, which were
stretched to different draw ratios DR (section 111.3.2). All ramps were ablated in the sensitive
configuration with the direction of the stresses and the ramp direction aligned (S= §). There-
sults of this experiment are summarized in Table V.2-4.

Draw ratio (DR) ‘ 1,15 ‘ 2,25,3, 4

no structure formation
at al

Table V.2-4: Results of experiment 4, using the samples that were stretched to
different draw ratios at a temperature between the glass transition temperature and
below the melting temperature of PET (section 111.3.2).

Limiting angle &' 13 (+£0.8)°
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Conclusions from experiment 4. Thefirst result, that at DR < 1.5 no Static Structure forma-
tion occurs, just quantifies in some way the finding of Arenholz et al., that sufficiently strong
frozen stresses in the material are necessary in order to induce the Static Structure formation.
However, giving avalue and aunity for the structure formation threshold in the tangential stress
(S + S isnot possible. The problem is to express the quantity frozen stresses S by means of
polymer properties like the statistical description of the chain alignment, the degree of crystal-
linity, or the parameters of the rubber network model.

The samples of experiment 4 were prepared, as already mentioned, following arecipe of Chang
etal.. Thus [P, cosBL], describing the polymer chain alignment as measured by birefringence,
and the degree of crystallinity are known as a function of the draw ratio DR, according to their
measurements (Figure V.2-6a and b). Additionally we measured the recovery ratio X of our
samples. Therecovery ratio X describes the extend to which a stretched polymer sample can re-
cover its dimensions before stretching by thermal annealing bel ow the melting temperature and
is defined as X = (Ig—1,)/(Is—1,) [119]. Here, |, is the length of the original unstretched
sample, | is the sample length after stretching and |, is the sample length after stretching and
successive annealing. For the annealing experiment the samples were kept for 5 h at the same
temperature as during stretching, i.e. 80°C, and quenched afterwards to 23°C in order to avoid
crystallization, which would cause brittleness. We measured the value of the relative retraction
RR = I/l and determined the recovery ratio X by Eq. 17.

_ - 1/RRy
X = DR g52—h (17)

The plot X vs. DRis shown in Figure V.2-6c.
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Figure V.2-6: (a) Plot of the chain alignment parameter [P,cosfl] vs. the draw ratio
DR [117]. (b) Plot of the crystallinity vs. the draw ratio DR [117]. (c) Plot of the
recovery ratio X vsthe draw ratio DR.

Thus, we know that the chain orientation [P,cos6 in our samples increases monotonously,
but it is not clear, if the frozen stress Sdoes so. (Defining S as the quantity that is responsible
for the structure formation upon Laser Ablation.) Argumentsfor a saturation of Sat DR > 2 are
the orientation induced enhancement of the degree of crystallization (Figure V.2-6b), and the
decrease of the recovery ratio (Figure V.2-6¢). Sis most probably related to the orientation of
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polymer chainsin amorphous domains. The formation of new crystallites, aswell asthe growth
of existing crystallites, both reduce the average length of the chainsin the amorphous domains
of the polymer. In consequence the capacity of the polymer to recover its shape before stretch-
ing decreases. One could then imagine that upon stretching, from draw ratio 2.2 to some higher
valueall further alignment of the chainsleadsto their crystallization and can in consequence not
be relaxed upon laser irradiation. On the other hand, Bahners et al. brought experimental evi-
dence against a saturation of Sby measuring adifference in the period of the static structure for
fiberswith DR = 2.8 and DR = 4.2, if they used more than 5 pulses [55]. This difference can
only beexplained, if thefrozen stressesin the two samplesare different. For thisreason, Kesting
et al. relate the frozen stress Swith the orientation of the molecules [P, cos6 [65].
Theconstancy of &' for DR = 2 thusindicates the magnitude of S, that isrequired for the sup-
pression of the structure formation, relative to the magnitude of S The relative suppression
threshold for S, evaluates to

S]/|Sy| = tan(8") = 0.23. (18)

With the data of experiment 3, such a relative suppression threshold can be calculated analo-
gously for S,.

. o
1S//S4 2%@2=05 , @ =45 (19)

It is however necessary to emphasize the importance of the heating induced stress for the struc-
ture formation, which is not included in the above considerations [59].

Finally, we can say that the structure formation threshold in the tangential stressis reached for
PET only at draw ratios higher than 1.5. Moreover, a relative threshold in the perpendicular
stress S with respect to the tangential stresses §, and S, can be given, from whereon S ren-
ders the tangential stresses inactive for structure formation.

Summary In this subsection different structures on ramps ablated in uniaxialy stretched PET
were presented. The observed structure changes can be understood as a step wise suppression
of the structure formation, due to the stress component S, which is perpendicular to the ramp.
Therelative suppression thresholds, perpendicular stress divided by tangential stress, are differ-
ent for the two different directions of tangential stress (S, and S;). Moreover, the structure gen-
eration threshold in tangential stressisreached in PET only at draw ratios higher than 1.5.

V.2.2 Thegeneral case

As aready mentioned, the suppression of the structure formation occurs also on biaxially
stretched samples. The samples are biaxially stretched, and the extent of stretching is different
in the two directions. The mountain chain like structure, resulting from Static Ablation, was al-
ready described in section V.1.3. The structure changes, found on ablated ramps in this sub-
strate, are very similar to those in the uniaxially stretched substrates with a 45° angle between
the stress and the ramp border (Experiment 3). Figure V.2-7 shows SEM micrographs of the
three structure types that were observed [8].
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Figure V.2-7: SEM micrographs of ramps, ablated in the biaxialy stretched PET
substrate by Opening Mask Ablation. The dashed line indicates the direction of the
ramp border. Parameters. (@) 9 <3’ (® = 290 mJ/cmZ, a = 200 pm, n = 200); (b)
3'<9 <3, (=290 mJcm?, a = 50 um, n=200); (¢) 8 >9", (P = 1000 mJcm?, a
=50 pum, n = 200).

The structures can now easily be understood by taking into account that for 9'< 39 <39" only
the component S, of the stresses in the material is active for structure formation. This means
that in this range of ramp angles, we have the same situation as in a uniaxially stretched sub-
strate with the stresses oriented in the direction of the ramp border. In consequence, the naps,
usually characterizing biaxially stretched substrates, disappear, and the orientation of the struc-
ture, normally determined by the main stretching direction, aligns with the ramp direction
(Figure V.2-7b). The structure with these characteristics, appearing at ramp angles between 9’

and 9", was named Scanning Structure [7]. This name will be used from now on, even if itis
clear now, that the Scanning Structureisjust aStatic Structure, where apart of the frozen stress-
esin the material is no longer active for structure formation.

Atrampangles & >9", the component S of the stresses, being perpendicular to theirradiated
surface, suppresses the structure formation completely. This leads to the smooth ablation of
stretched PET as shown in Figure V.2-7c.

Theangles, ' and 8", at which the structure changes occur, are known more precisely for this
substrate, because we produced ramps with different spot lengths at different fluences and also
with two methods, i.e. Scanning Ablation and Opening Mask Ablation. Figure V.2-8 shows a
map of the parameter space { a, ®} , where all ramps are marked according to their structure
and production method with adifferent symbol. All sampleswith the same structure are located
in adistinct range of ramp angles and the production method does not influence this. Thus, the
major results of these experiments are, that ' and 9" do not depend on the fluence, and that
the observations are identical for Scanning Ablation and for Opening Mask Ablation.

The values of the limiting angles that were determined indirectly and directly (section 111.1.5)
were dightly different. Most probably due to errors in the determination of the ablation curve
and/or errorsin the determination of the fluencein theindirect determination of the ramp angles.
The values for the biaxially stretched PET standard substrate are listed in Table V.2-5.

V.2.3 Material dependence of the limiting angles

When comparing the valuefor 9' in Table V.2-5 (10.5 £0.2 °) with the onein Table V.2-4 (13
+0.8°), itisevident that the deviation is bigger than the error in the measurement. However, the
corresponding experiments were carried out in different PET substrates. In order to see whether
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FigureV.2-8: All ramps ablated in the standard PET substrate are marked in this map
of parameter space {a, ®} . Boldffilled symbols indicate Opening Mask Ablation,
plain/open symbols stand for Scanning Ablation. The form of the symbol gives the
observed structure: Circles correspond to the Static Structure, triangles to the Scanning
Sructure and crosses to smooth ramps. The lines indicate the combinations of a and ®
resulting in the same ramp angle. The limiting angles 3’ and 3" areindicated by bold

lines.
A 9"
Indirect method 10(+0.5)° 25(+0.5)°
Direct method 10.5(+0.2)° not measured

Table V.2-5: Values of the limiting angles for the standard PET
substrate, and comparison of the indirect and direct angle
determination methods described in section 111.1.5.

the limiting angle is really material dependent, the same experiments as with the standard PET
substrate were carried out in commercial, biaxially stretched PEN. In the case of PEN only
Scanning Ablation was used for ramp production. The map of the samples in parameter space
{a, ®} isshownin FigureV.2-9.

The limiting anglesin PEN evaluateto 8’ = 7.7(x1.0)° and 9” = 20(£1.6)° as determined
by theindirect method. Table V.2-6 allows for a better comparison of the values obtained in the
three different substrates.

Thereis clearly a dependence of the limiting angles on the substrate material, but, based on the
availabledata, it isimpossible to separate the influences of the different material properties. The
problem is, that polymer stretching influences the crystallinity, hence also the absorption coef-
ficient [63] and the heat diffusion coefficient [113], as well as the Y oungs modulus [65] at the
same time. When comparing PET and PEN, not only these parameters change, but additionally
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Figure V.2-9: All ramps ablated in the PEN substrate are marked in this map of
parameter space { a, ®} . Theform of the symbol gives the observed structure: Circles
correspond to the Satic Sructure, triangles to the Scanning Structure and crosses to
smooth ramps. The lines indicate the combinations of a and ® resulting in the same
ramp angle. Thelimiting angles 9’ and 3" areindicated by bold lines. All ramps were
prepared by Scanning Ablation.

9 9"
PET uniaxial 85°C 13(x0.8)° not measured
PET biaxial 10.5(+0.2)° 25(+0.5)°
PEN biaxial 7.7(£1)° 20(+1.6)°

Table V.2-6: Vaues of the limiting anglesin the different substrate
materials.

the two materials may have different chain mobilities, different crystallite sizes and different
crystalization enthalpies. All these parameters probably influence the structure formation
[59,61].

V.2.4 Thestructure on the beginning ramp

Asalready illustrated in section I11.1.4, isal so possible to ablate ramps without irradiating more
than the lowest part of the ramp. This is the type of ramp, that forms at the beginning of a
scanned channel or in Closing Mask Ablation. During the Laser Ablation of those non-irradiat-
ed ramps, only the flat surface near the lowest part of the ramp isirradiated. Therefore the part
of the ramp formed by the preceding pulsesis left untouched by the following one. This means
that the whole ramp is never irradiated at once and the structure formation only takes place on
flat surfaces. For an illustration of the mechanism forming the ramp see Figure 111.1-6a or the
left sidesin Figure 1V.1-1ato c.
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With this formation mechanism in mind, it is not astonishing to find always the same type of
structure as in Static Ablation on non-irradiated ramps. The only difference to Static Ablation
isthe debris contribution, which varieswith the ramp angle. The debris contribution will be dis-

cussed in section V.4. For examples of beginning ramps after Scanning Ablation, see
Figure V.2-10.

beginning
ramp

AccV Spot Magn Det WD Exp
1.00kv 3.0 1000x  SE 183 1
P et Lo

e

AccVY SpotMagn Det WD Exp
1.00 kv 3.0 1000x SE 11.0 1

Figure V.2-10: SEM micrographs of non-irradiated ramps at the beginning of
channels produced by Scanning Ablation. (a) Static type structure on the non-
irradiated ramp with §'<8 <9”. (At the same angle, a Wall-Type Structure
(Scanning Structure) develops on the irradiated ramp.) Parameters: @ = 250 mJ/cmZ, a
=100 pm. (b) Static type structure on the non-irradiated ramp with an important debris
contribution 8 >8" (smooth irradiated ramp) Parameters. @ = 300 mJ/cm2, a=
50 pm.
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V.3 Thechannd floor

The micrometric structure on the channel floor is the same as on the irradiated
ramp, with the exception that the channel floor cannot become completely
smooth. A nanometric structure isadded at high ramp angles, because of the di-
rect redeposition of important amounts of debris.

For the application of Scanning Ablation to micro fluidic channel production, the structure on
the rampsis not very interesting, because the ramps do not exist in thefinal device (Figure 111.4-
2a), or they are in dead ends of the device (Figure 111.4-2b). Nevertheless, the end ramp is the
only irradiated surface in Scanning Ablation (Figure 111.1-4b), and thus determines the structure
on the channel floor.

If the structure on the end ramp is of the “static” type or of the “scanning” type the structure on
the channel floor is the same as the one on the end ramp (Figure V.3-1aand b). In the case of a
smooth end ramp, the channel floor does however not become completely smooth (Figure V.3-
1c¢). A kind of Scanning Structure is obtained for these high ramp angles on the channel floor.
This is probably due to the structure formation on the lower corner of the ramp, which is
smoothed, because of the limited optical resolution of the mask projection. In consequence,
there isasmall region where the local ramp angleislessthan 3" and thereis still enough light
intensity to cause stress relaxation.

channel
floor

| irradiated
ramp

+ channel
" floor
<

~

FigureV.3-1: (a) 9 <&’ Static Structure on the irradiated ramp, and Static Structure
on the channel floor (® = 300 mJ/cmz, a = 200pum). (b) 9'<9 <4” Scanning
Structure on the irradiated ramp and Scanning Structure on the channel floor (® =
600 mJ/cmz, a=100 um). (c) 9 >98" Smooth end ramp and Scanning Structure on the
channel floor (® = 600 mJ/cmZ, a =50 um).

The SEM pictures in Figure V.3-1 show the part of the channel floor, which is next to the end
ramp, without visible debris. Figure V.3-2 shows the structures that can be observed far away
from theirradiated ramp on the channel floor in the three different ranges of ramp angles. Inthe
case of Figure V.3-2c the micrometric structure is nearly hidden by the debris. The debris con-
tribution, increasing from Figure V.3-2ato c, will be discussed in section V .4.
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Figure V.3-2: Typica structures on the channel floor. (a) @ <9’ Static Structure on
the channel floor (® = 1200 mJ/cmz, a = 1000 um). (b) 9'<9 <8” Scanning
Structure on the channel floor (® = 1200 mJcm?, a = 100 pm). (c) 9 >39” dightly
rough channel floor because of a hidden Scanning Structure (® = 1200 mJ/cmz, a=

50 pm).
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V.4 Thedebriscontribution

In Scanning Ablation, debris adds a nanometer scale surface roughness on the
channel floor and the channel walls. This debris contribution to the surface
structure, which is principally caused by direct debris redeposition, can be
quite important and is directly observable by SEM. Rinsing the channels with
pressure driven flow and el ectroosmotic flow does not remove the debris. A gra-
dient of debris exists on the first 0.6 mm near the irradiated ramp in Scanning
Ablation, resulting fromthe “ projection range” of indirect debris. In Satic Ab-
lation, the debris causes no measurable modification of the surface structure in
the channel. Observation of debris near a statically ablated PET surfaceis par-
tially possible by optical microscopy. Charging SEM pictures give a good view
of the shape of the zone where debris redeposition occurs, and AFM allows for
detailed knowledge on the debris caused roughness on flat surfaces.

V.4.1 Debrisin Static Ablation

As described in section 11.3.2 the redeposition of debris upon Static Ablation is quite well un-
derstood and already described in literature. In this section, some of the reproduced results are
shown and possible observation methods are compared.

= 100 um

Figure V.4-1: Images of debris patterns near statically ablated surfaces. (a) Optical
microscope image of athrough drilled hole in polyimide [85]. (b) Optical microscope
image of a standard Static Ablation in PET (Parameters: @ = 1000 mJcm?, n = 200,
1000 x 50 pmz). (c) Charging contrast SEM image of an ablation comparable to (b)
(Parameters; PET, @ = 1200 mJcm?, n = 200, 1000 x 40 um?).

Figure V.4-1 shows a comparison of a SEM image and an optical microscope image of the de-
bris pattern around a surface, which was ablated staticaly. It is visible, that due to charging of
the samplein the SEM, the shape of the debris pattern can be easily detected. In optical micros-
copy only the main debris humps near the longer sides of the ablated rectangle arevisible (Zeiss
Epiplan HD objective with integrated dark field illumination). However, without the charging
effect, such a small quantity of debris is practically not detectable by SEM (Figure V.3-2a).
Atomic Force Microscopy (AFM) isagood tool for detailed analysis of the surface roughness,
whichiscaused by debris (Figure V1.2-3). For PET, it would be exaggerated to speak of adebris
contribution to the structure of the ablated surface itself during Static Ablation. This, because
only the indirect debris of one shot adds roughness to the irradiated surface at our irradiation
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conditions. Other polymers like Pl show more important indirect redeposition upon Static Ab-
lation (section 11.3.2). Depending on the ablation parameters, debris may neverthelessinfluence
the surface structure after Static Ablation by cone formation (section 11.2.2). This happens pref-
erentialy at relatively low fluences @ and high pulse numbers n. Figure V.4-2a shows an ex-
ample of cone formation in PET.

As mentioned before (sections 11.3.2, 1V.2.1), the indirect redeposition upon Static Ablation
only takes placeif collisions with the surrounding gas environment are possible. When ablating
in vacuum no redeposition of debrisisobserved. Figure V.4-2b and ¢ show theresultsfor Static
Ablation (1 mm?) of PET in air (1000 mbar) and in vacuum (5 x 102 mbar).

FigureV.4-2: (a) SEM micrograph of conesin amorphous PET (Static Ablation, @ =
150 mJ/cmz, n = 1000, 30° tilt angle in the SEM). (b), (c) Optical microscope images
of debris near statically ablated surfaces (highly enhanced contrast). (b) Ablationin air
(1000 mbar), (c) Ablation under vacuum 5 x 102 mbar.

V.4.2 Debrisin Scanning Ablation

The debris contribution to the surface structure in Scanning Ablation can be very important due
to the direct redeposition mechanism which has been explained in section 1V.2. At high ramp
angles, debris can completely cover the micrometric structure, presented in sections V.1-V.3.
An example of thisis shown in Figure V.3-2c (9 = 45°). This important debris contribution is
well adherent to the substrate and can thus determine the surface properties in microfluidic ex-
periments. No change in the debris contribution can be observed by SEM and optical microsco-
py after rinsing the laminated micro channels with an aqueous phosphate buffer solution (pH =
7), using pressure driven flow (2 x 20s, AP = 850mbar) and electroosmotic flow (11 min.,
E, = 20kV/m). FigureV.4-3 shows SEM micrographs of channels, which were ablated in
amorphous, unstretched PET with high ramp angles. In this material the micrometric structure
isabsent (section 11.2.2 and Figure V.1-1a) and the only surface structure is due to debris. Prior
to the SEM investigation, these channelswere laminated, used for electroosmotic flow measure-
ments, and finally delaminated directly before introduction in the SEM chamber. The images
show that the debrisis still present and that there is no significant difference between a part of
the channel where the flow passes, and adead end of the channel, which seesno flow (schematic
of channel configuration see Figure 111.4-2b).

Another consequence of the direct redeposition pathway is, that closeto theirradiated end ramp
very little debris is observed, due to the forward peaking of the ablation plume (section 11.3.1
and Figure IV.2-2b). However, sites on the channel floor, which are further away from the end
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FigureV.4-3: (a) Debrisin adead end of the micro channel (3 = 22°). (b), (c) Debris
at two different locations in the part of the micro channel that was rinsed during the
electroosmosis experiments (¢ = 40°). Small and big debris particles are still present.

ramp, correspond to direct redeposition along directions where more material is gected
(Figure IV.2-3). Moreover, the sitesfar away form the end ramp accumul ated already the debris
from the previous laser shots. Hence, adebris gradient is expected close to the irradiated ramp.
The amount of debris saturates at a distance from the irradiated ramp, which can be called the
“range of debris projection”. However, the analogy to a“projection range” isnot really correct,
because there is no ballistics, only gas dynamics. The debris gradient close to the end ramp was
observed by SEM and Figure V.4-4b to h show the micrographs taken at the locationsindicated
inFigure V.4-4a. In order to enable a comparison of theimages, special care wastaken to adjust
brightness and contrast to obtain approximately the same histogram of the zone, which isindi-
cated in Figure V .4-4c. In order to distinguish debrisfrom contrast enhanced noisein theimages
it isimportant to look at the evolution of the feature size.
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Figure V.4-4: The debris contribution in the channels as a function of the distance x
from the base of theirradiated ramp (® = 600 mJcm?, a = 100 pm).
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Figure V.4-4: The debris contribution in the channels as a function of the distance x
from the base of the irradiated ramp (® = 600 mJ/cmZ, a =100 um).

The evolution of the debris contribution to the surface structure can clearly be seen, and arange
of debris projection of about 600 pum can be estimated for the ramp angle of & = 17° and ® =
600 mJ/cm?. The same investigation was done for § = 32° and ® = 600 mJcm? and the esti-
mated range of debris projection is about 300 um.

When considering direct debris redeposition according to Eq. 3 at a point in the channel floor
having afixed distance from the end ramp, it isvisible from Figure IV.2-3 that, at a higher ramp
angle more debriswill be deposited at this point. Thisin turn means that the debris contribution
on the channel floor saturates closer to the end ramp for higher ramp angles. The fact, that the
angular density distribution is less forward peaked for shorter spot lengths a (corresponding to
higher ramp angles) further enhances the outlined tendency [76].
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V.5 Chapter summary

The surface structure of channels produced by Scanning Ablation was studied, in comparison
with channels produced by Static Ablation. Asin Scanning Ablation the channel floor structure
isidentical to the structure on the lower part of the irradiated ramp, the structure formation on
ablated ramps was studied in detail.

Using differently stretched substrates, three different structure types were evidenced and shown
to depend directly on the ramp angle. The different structureswere interpreted asthe result from
afirst partial, and then compl ete suppression of the Static Structure formation on the ramps. The
reason for the suppression of the structure formation is the component of the frozen stressesin
the material, which is perpendicular to the irradiated surface.

Additionally to this micrometric structure, the nanometric structure resulting from direct debris
redeposition was investigated. In Scanning Ablation the amount of debris that can accumulate
on the channel floor isimportant and depends on the ramp angle. As the debris was shown to be
well adherent, it will play an important role in electroosmotic applications of the micro chan-
nels. The wetting properties of the micro channels will be determined by the chemical nature
and the quantity of the debris. Further, it was shown that close to the end ramp, a gradient of the
debris contribution to the surface structure existsin alimited region. The order of magnitude of
the region, which isinfluenced by the debris gradient, was determined.

Hence, the surface structure of the micro channelsis drastically changed by Scanning Ablation
with respect to Static Ablation, especially at high ramp angles.
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V1. Chemical surface composition and microfluidics

VI.1 Chemical composition of the ablated area

A good contrast in the O/C atomic ratio of surfaces after Scanning Ablation and
Satic Ablation was observed by X-ray photoel ectron spectroscopy (XPS). Fresh
samples show after Scanning Ablation an oxidized surface, which contains car-
bon atoms in many different chemical environments. After Scanning Ablation
with a low ramp angle, nitrogen incorporation into the surface could be ob-
served, originating most probably from indirect debris redeposition. Aging in-
verses the contrast in O/C ratio between static and Scanning Ablation. The
presented data overestimates the debris contribution, due to the need of large
channels. Transmission electron microscopy of prepared cuts of the surface
confirmed the existence of an amorphous layer of approximately 80 nm thick-
ness. Please note that A. Schwarz from the Laboratory of Electrochemistry (EP-
FL), has investigated the chemical surface composition after Scanning Ablation
with low ramp angles, in terms of functional groups, with selective binding
methods [ 95, chapter 3].

VI.1.1 Transmission Electron Microscopy

Transmission Electron Microscopy (TEM) of channel cross-sections was carried out at the
Polymer Laboratory (Materials Science and Engineering Department / EPFL). The sample
preparation is described in section 111.2.1. Theinitial aim of the investigation was to measure
the thickness of the redeposited debrislayer in 40 um wide channels, produced by Scanning Ab-
lation. Unfortunately, it revealed impossible. Nevertheless, the obtained results are interesting,
because it was possible to give adirect measure of the laser modified layer thickness during ab-
lation. The TEM measurements were performed with channels in the biaxially stretched PET
standard substrate.

Substrate characterization Figure V1.1-1a shows the diffraction pattern of the bulk of the
unirradiated substrate and a filtered dark field image of the same region. A dark field filtering
method was applied in some of the following images, in order to obtain a contrast between ori-
ented crystalline regions of the polymer and amorphous or unoriented crystalline regions. The
diaphragm in the Fourier plane of the microscope, selecting the electrons used for the image re-
construction, was centered around one of the diffraction peaks as indicated in Figure VI1.1-1a.
Thetwo main diffraction peaks originate from the oriented crystallitesin the PET. Thus, select-
ing this light for the reconstruction of the image, causes the searched contrast, where oriented
crystalline parts of the sample appear bright and amorphous or unoriented parts appear dark
(Figure VI.1-1b). When considering that we used a biaxially stretched substrate, it is somewhat
surprising to see that nearly al crystallitesin our biaxially stretched substrates are oriented in
one direction. The dightly visible rings indicate only a small percentage of unoriented crystal-
lites. In the upper right corner of the image (grey ellipse), a second order diffraction of crystal-
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lites oriented in the perpendicular stretching direction can hardly be distinguished. The size of
the crystallites of about 5-10 nm in Figure V1.1-1b shows, as well as references [56] and [65],
that the early proposition explaining the Static Structure (A > 1 um) by selective etching of crys-
talline and amorphous domains in the polymer is wrong [36,62-64] (section 11.2.2). However,
this size comparison does not exclude the selective etching of spherulites as proposed by An-
drew et al. [46] and observed after plasma etching [120] (structure size 0.1 pm - 1 um).

diaphra

Figure VI.1-1: (a) Electron diffraction image of the biaxialy stretched PET sample
(bulk) showing the selected diffraction peak for image reconstruction in the following
dark field TEM images. (b) Dark field TEM image of the bulk showing the size of the
crystallites.

The ablated surface The TEM imagesin Figure V1.1-2aand b show filtered dark field images
of irradiated samples. One observes adark layer at the surface of both samples. ATR-IR spec-
troscopy measurements showed thislayer to be amorphous and not only unoriented [26,27]. The
thickness of the observed layer corresponds approximately to the melted layer during the abla-
tion process. In several high magnification images (Figure V1.1-2¢) the thickness of this layer
was measured to be 80(+20) nm, depending on the place on the structure where it was mea-
sured. Lazare et al. measured 85 nm by an ellipsometric method and subsequent conversion of
the ellipsometer data using a single layer model [25].

a

Figure VI.1-2: (a), (b) Filtered dark field TEM images of cross sections of the
irradiated surfaces. (Scanning Ablation, 3 = 1.8°, n = 200 shots per site, ® = 600
mJ/cmz.) (c) High magnification bright field image of the amorphous layer. (Scanning
Ablation, & = 2.3°, n = 200 shots per site, @ = 1100 mJ/cmZ.)
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By TEM analysis no difference could be found between Static Ablation and Scanning Ablation.
The amorphous layer has in both cases the same thickness. Thus, wettability differences be-
tween Static Ablation and Scanning Ablation cannot be attributed to a change in crystallinity,
as it was discussed by Lippert et al. for the observed difference in wettability between laser
treated and untreated PET [33]. As aready mentioned, it was impossible to measure the thick-
ness of the debris layer on the surface, at the investigated ramp angle of approximately 2°.

VI.1.2 X-ray Photoelectron Spectroscopy

X-ray Photo-electron Spectroscopy (XPS), also called Electron Spectroscopy for Chemical
Analysis (ESCA), was carried out at the Laboratory of Metallurgical Chemistry (Materials Sci-
ence and Engineering Department / EPFL). Two series of measurements were performed. Once
the sampleswere analyzed only some hours after production, and in the second experiment four
month old samples were used. We investigated surfaces on the channel floor of 1 mm wide
channels and statically ablated surfaces of 1 mm?inthe biaxially stretched PET substrate. Wide
channels were required, because of the limited spatial resolution of the used XPS-system (sec-
tion 111.2.2). Compared to the usually used 40 um channels, the measured debris influence is
overestimated, because the pattern for indirect debris redeposition changes in away that more
indirect debris is deposited onto the channel floor (section V1.3.2). The optical appearance of
the four month old samplesis shownin Figure VI1.1-3. The fresh samples|ooked identically: (i)
White and mat for the statically ablated surfaces, because of the Static Structure, which diffuses
thelight (Figure V1.1-3a). (ii) Slightly darkened and mat for the samples scanned with 9 = 2.3°.
Hereaalready visible debrislayer was present (Figure V1.1-3b). (iii) Black and mat for the sam-
ples scanned with 9 = 45°. A strong debris contribution due to enhanced indirect and important
direct redeposition was visible (Figure V1.1-3c).

; \ :

200 um

 ablated

non-irradiated (reference)

S m—— 200 tm
Figure VI.1-3: Optical transmission microscope images, at constant illumination
intensity, of samples used for XPS four months after production. (Identical ablated
depth d,, 040um.) (a) Staticaly ablated surface and reference. (b) Scanning
Ablation (® = 1250 mJcm?, a = 1000 pum, 8 = 2.3°). (c) Scanning Ablation (® = 1250
mJ/cmz, a=40 um, 9 = 45°).

Fresh samples These sampleswere analyzed on the same day asthey were produced, and they
were kept in dry air in between. Prior to ablation, the substrate was washed with isopropanol
and distilled water, and finally dried in air. Four types of irradiations were performed, each sev-
eral times. Four spectrawere acquired from different reference samples, i.e. non-irradiated sur-
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faces that were far from the ablation sites. Two spectra were taken from different statically
ablated samples, two from different scanned sampleswith 9 = 2.3°, four from different scanned
samples with 9 = 22°, and four from different scanned samples with & = 38°. Each spectrum
consists of a survey run and the multiplex runs for the Ols-region, the Cls-region and also the
N1s-region. As the samples charged, the acquisition time for each spectrum was kept low, re-
sulting in noisy spectrawith minimized peak broadening during acquisition. For comparison of
the spectra, the aromatic Cls peak wasfixed at 284.70 eV [93]. The same shift, asit was applied
for the C1s core spectra, was applied to the other elements of the same sample. However there
aretwo exceptions: first, the Ol1s spectra of the reference samples were not superposed after ap-
plying the C1s shift to them, indicating charging (or charge compensation adjustment) during
acquisition. The superposition of the spectra was obtained by fixing the peak of the doubly
bonded oxygen atoms to 531.26 eV [93]. Second, the same problem occurred (not so strong)
with the O1s spectra of the scanned samples with 8 = 38°. The reason is probably that two of
the four spectra were acquired after lunch and the other two were added in the evening. Here,
the four spectra were superposed by fixing the centers at the same position as the centers of the
spectra of the samples scanned with 9 = 22°, i.e. 532.78 V.

Figure V1.1-4 presents the total O/C ratio and the rel ative atomic concentrations of oxygen, car-
bon and nitrogen in all samples. The theoretical valuesfor the reference are marked by grey cir-
cles.

L. O/C ratio _ Oxygen (atom%)
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Figure VI1.1-4: XPS data of freshly prepared samples. (a) The O/C ratio and the
relative contributions of (b) oxygen, (c) carbon and (d) nitrogen. The theoretical
values for the reference are marked by the grey circles.
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Figure VI1.1-4: XPS data of freshly prepared samples. (a) The O/C ratio and the
relative contributions of (b) oxygen, (c) carbon and (d) nitrogen. The theoretical
values for the reference are marked by the grey circles.

First, concentrating on the O/C ratio graph (Figure V1.1-44), the first two points confirm several
literature reports speaking about adecrease of the O/C ratio of aPET surface upon excimer laser
irradiation [ 26,28-33] (section 11.2.1). However, after Scanning Ablation, the O/C ratio isfound
to be much higher compared to Static Ablation, and even slightly higher compared to the refer-
ence. An increase in the O/C ratio after laser irradiation was also reported in two (dependent)
publications [19,27]. Bahners et al. also scanned their samples under the beam [27].

In fact, the XPS signal after Scanning Ablation is given by the debris, as explained in section
IV.2.2. and visible in Figure V1.1-3. From the descriptions in references [19] and [27] it is not
clear, whether their XPS spectra were acquired from an impregnated scanned sample, from a
sample without impregnation, or from a statically ablated sample. Most probably they mea-
sured, as we did, a surface whose chemical properties are determined by the redeposited debris
layer.

The XPS measurements of the debris determined surfaces confirm that the particul ate ablation
productsreact withtheambient air [71,72,90] (section 11.3.3): Thedebrissignal showsasdlightly
higher oxygen contribution (FigureVI.1-4b) and a dlightly lower carbon contribution
(Figure VI.1-4c) than the original PET, thus suggesting that the debris is oxidized. Further, a
measurable amount of nitrogen is incorporated in the debris determined surfaces (Figure V1.1-
4d, Figure VI1.1-5 right side)

The nitrogen signal is very interesting, because it is the only one, showing a contrast between
Scanning Ablation with different ramp anglesd (and/or spot lengths a). According to the reflec-
tions in section 1V.2.2 and the SEM images in Figure V.3-2, channels with high ramp angles
show a much higher quantity of direct debris, compared to the ones with low ramp angles.
Figure VI.1-4d thus indicates, that the indirect debris reacts with the ambient nitrogen, whereas
the direct debris does not. However, this contrast between 9 = 2.3° and 9 = 22°, 38° isnot vis-
ible in the oxygen and the carbon signal, reflecting the relative reactivity of N, and O,. Niino
et al. already mentioned the presence of nitrogen moietiesin PET surfaces after Scanning Ab-
lation [92], but gave no details and no information on the O/C ratio. The value of 2 atom% of
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nitrogen has to be considered as quite high, because after Static Ablation of PET in 1000 mbar
of NH,OH, which is a much more reactive environment than 800 mbar of N,, Chtaib et al. de-
tected only 4 atom% of nitrogen in form of C=N bonds on the surface [29] (peak position not
mentioned).
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Figure VI.1-5: XPS multiplex data of freshly prepared samples. All spectra are
normalized and show the photoelectron intensity as a function of the binding energy in
€V. The Cls and Ols graphs show the shifted raw data. In the N1s graphs the shifted
raw datais shown in grey, and the smoothed data (FFT filter, 9 points) together with a
baselinein black. (All samples were ablated with n = 200 pulses of ® = 1200 mJ/cmZ.)
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Concentrating now on the normalized multiplex spectra, which are shown in Figure VI.1-5, we
seethat the nitrogen signal changes not only quantitatively but also qualitatively, when compar-
ing Scanning Ablation at low and high ramp angles (Figure V1.1-5 right side). The nitrogen at-
omsintheindirect debris (9 = 2.3°) are probably bound to two different chemical environments.
The approximate binding energies of the two nitrogen peaks are 401.9 eV and 400.1 eV. Inthe
direct debris however, the peak at lower binding energy has nearly disappeared, and the one at
higher binding energy decreased significantly. (The spectra in Figure VI1.1-5 are al normal-
ized). The chemical environments of the nitrogen atoms should consist of mainly carbon [19],
but, as the surface is charged [92], the XPS signal may also come from nitrogen atoms that are
included inions.

The multiplex spectra of carbon and oxygen after Static Ablation confirm once more literature
reports, that the oxygen bound carbon peaks decrease with respect to the aromatic carbon signal
[29]. The C1s spectra of the surfaces after Scanning Ablation show a broad shoulder at higher
binding energy indicating the coexistence of many different chemical environmentsfor the car-
bon atoms. This conclusion was also drawn from selective binding experiments of PET after
Scanning Ablation [95, ch. 3]. The shoulder of the C1s spectra meets the aromatic carbon peak
at arelative intensity of 0.4 for 9 = 2.3°, and at arelative intensity of 0.55 for & = 22° and 38°.
Thistendency ismost probably dueto the increased debris quantity at higher ramp angles, lead-
ing to an increased number of non aromatic carbon atoms. The O1s spectra after Scanning Ab-
lation all have a triangular shape, indicating the presence of at least 3 different chemical
environments for the oxygen atoms. No differences can be observed for the spectra correspond-
ing to different ramp angles.

Four months old samples The second series of XPS measurements was carried out on sam-
ples that were stored for four months in asimple sample box in the office. The sample box was
not air tight and was made out of an unknown polymer. The comparison of this measurements
with respect to the previously reported ones gives indications on the aging processes on the sur-
faces. In this case, only one measurement was performed per sample type, and the samples
were: Reference sample, statically ablated sample, scanned sample with 8 = 2.3°, and another
scanned sample with 3 = 45°. As before, the aromatic peak of the C1s spectra was fixed to the
literature value, and the spectra of all other elements were shifted by the offset, which was nec-
essary for the Cls peak. Due to the charging of the samples the spectra do not have the same
good resolution as the spectra of the fresh samples. This is evident when comparing the O1s
spectra of the reference samples (Figure V1.1-7 center top, and Figure VI1.1-5 center top). Ad-
ditionally the O1s spectrum shifted to lower binding energies between the acquisitions. In con-
sequence, the peak positions cannot be interpreted, but the shape and symmetry of the peaks
can.

Figure V1.1-6 showsthe O/C ratio and the rel ative contributions of oxygen, carbon, fluorine and
nitrogen of all samples. The origin of the unexpected fluorine signal is unknown, but the most
probable explanation is a contamination from the sample box by adsorption to the PET and the
nanoporous debris layer [121]. As the quantity of debris increases from the l€eft to the right on
the x-axes, the adsorbed fluorine quantity increases also.
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FigureVI.1-6: XPS data of four month old samples. (a) The O/C ratio and the relative
contributions of (b) oxygen, (c) carbon and (d) fluorine together with nitrogen. Only
one measurement per type was performed.

According to this measurement, the reported and reproduced decrease of the O/C ratio upon
Static Excimer Laser Ablation of PET has disappeared four months after sample preparation.
Assuming the statically ablated surface to be free of debris, our observation confirms the liter-
ature report on the aging of air-coronatreated PET films [44]. Strobel et al. reported that func-
tionalized PET surfaces, with polar groups at the surface, age much faster compared to PP, due
to the ester functionalities in the PET bulk, which interact with the surface functional groups.
Thisinteraction enhances the diffusion of the surface polar groupsinto the bulk. A first increase
in the water contact angle and decrease in XPS O/C ratio was already measured after 7 days of
storage in air at room temperature. The aging could be slowed down by storing the sample in
water.

Our measurements show still a contrast between the O/C ratio of the statically ablated sample
and the scanned samples. The contrast is inverted with respect to the measurements of freshly
prepared samples, indicating that the debris has become more graphitic. The measured nitrogen
content is more or less constant at 1.2%. Nevertheless we measured once more the highest ni-
trogen content for the sample where the most important contribution of indirect debrisis expect-
ed (8 =2.3°). Moreover, the N1score spectrum for the scanned samplewith 8 = 2.3°, conserved
its double peak shape, already observed on the fresh samples (Figure VI1.1-7 right side).
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Figure VI.1-7: XPS multiplex data four months after sample production. All spectra
are normalized and show the photoelectron intensity as a function of the binding
energy in eV. (All samples were ablated with n = 200 pulses of ® = 1200 mJ/cmz.)

Comparing the N1s core spectra of the two scanned samples it seems that aging inverted the
asymmetry of the nitrogen spectrum of the direct debris. For the fresh samples the contribution
at higher binding energy was more important, and for the aged sample the lower binding energy
peak is higher. The Cls spectrum after Static Ablation is nearly identical to the reference spec-
trum, in particular no decrease of the oxygen bound carbon peaksisvisible. After Scanning Ab-
lation with 9 = 2.3°, the carboxylic carbon peak in the spectrum still shows up, or better shows
up again, because for the fresh samples it was hidden in the shoulder at high binding energy.
This shoulder is still present in the sample with 9 = 45°, but meets the aromatic carbon peak at
arelative intensity of 0.3 compared to 0.55 for the fresh samples.

XPSsummary The measurements show a good contrast in the O/C ratio after Static Ablation
and Scanning Ablation, proving that substrate scanning strongly influencesthe chemical surface
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properties of the ablated surfaces. Thisisdueto the redeposited material, asexplained in section
IV.2. Thedifferencein surface properties after Scanning and Static Ablation possibly allowsfor
understanding of the contradictory literature reports on the surface properties after Excimer La-
ser Ablation of PET. (Increasing O/C ratio [19,27], decreasing O/C ratio [26,28-33].)

In detail we observed that the surface after Scanning Ablation is of an oxidized nature, compris-
ing many different chemical environments of carbon atoms. The XPS measurements also allow
to distinguish indirectly redeposited debris from directly redeposited debris by using the nitro-
gen signal, which is higher and composed of two peaks in the case of indirect debris. The aging
of the examined surfaces was shown to inverse the O/C contrast between Static Ablation and
Scanning Ablation. After four months, the statically ablated surface is hardly distinguishable
from the original PET surface and a carbonization of the debristook place. The relative impor-
tance of the aromatic carbon peak in the C1s spectrum of old debrisis higher, compared to the
one of fresh debris, indication that the debris becomes more graphitic.
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V1.2 Interaction of debrisand water

The hydrophilicity of indirect debris upon Satic Laser Ablation in ambient air
is demonstrated. The wettability of the debris affected surface is determined by
the chemical nature of the debris, and the existing nano scale roughness has no
measurable influence. An attempt to measure contact angles inside the 40 um
wide channels by means of an Environmental Scanning Electron Microscope
(ESEM) isreported and propositions for improving the contact angle measure-
ment are made.

VI1.2.1 Contact angle measurement in a channel

In literature, XPS measurements are often paraleled by water contact angle measurements
[28,44,122] in order to get an independent second information on the same surface properties.
Asdescribed in section V1.1.2, the width of the channels influences the quantity of indirect de-
bris on the channel floor. In order to avoid this overestimation of the indirect debris quantity in
wide channels, we tried to measure the water contact angle in 40 um wide channels.

The conditions for this measurement are extremely difficult. It might be even impossible to get
reproducible contact angle values in stretched samples, because the channel floor usually has a
width of 30 um and the period and amplitude of the Static Structure is about 3 um [33]. Never-
theless, an attempt for a direct contact angle measurement was done in an Environmental Scan-
ning Electron Microscope (ESEM) at the Swiss Federal Laboratories for Materials (EMPA).
The channels were prepared one day before the measurement in biaxially stretched PET, and
crossed the border of the substrate. Thus, the observation of the channel floor was possible not
only in top view but also in side view. Water was condensed in the ESEM chamber, during the
observation by increasing the water vapor pressure from 3 mbar to 6 mbar at 3°C. Unfortunate-
ly, it was not possible to obtain dropsin the channel, being stable for the acquisition time. First
the water condensed only outside the channel (Figure V1.2-1a), and then rushed in (Figure V1.2-
1b). Only on the side walls of the channel drops were more stable (Figure V1.2-1b).

channel floor
visible

drops on the channel floor
g covered by water

= 4 i 4

AccV Spot Magn Det WD Exp AccV pot Magn Det WD Exp

15.0kv 3.0 3200x GSE82 1 wet 51 Torr 150kV 3.0 1600x GSE 382 1 Wet 5.4 Torr
3 ok i P

Figure VI1.2-1: ESEM images of a40 um wide channel. (Scanning Ablation, 9 = 11°,
® = 1100 m¥cm?, a = 200 um.) (a) Wet sample, but with water condensed only
outside of the channel (Scanning Structure with little debris) (b) With water condensed
in the channel. The water moved in the channel during the acquisition of the image.
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A more serious investigation of contact angles in 40 um wide channels, needs to take into ac-

count the following points:

1. Use unstretched substrates, for reduced roughness.

2. Takeinto account the gravity. (The channel floor needs to be horizontal.)

3. Produce small drops as seeds by spraying.

4. Work aways close to thermodynamic equilibrium. (Measurement of advancing and reced-
ing contact angles.)

V1.2.2 Condensing experiment

A simple experiment was carried out, in order to show how the fresh debris changes the wetting
properties of the biaxially stretched PET substrate. A statically ablated sample was placed under
an optical microscope and water was condensed near the irradiated region by simply exhaling
onto the substrate. The condensation and evaporation of the water was filmed with acolor CCD
camera. The experiment could be carried out with excellent reproducibility many times on the
same irradiated area. The reproducibility for samples produced on different days was good, but
the ease of condensation depended on the weather (temperature of the sample, and relative hu-
midity).

Figure VI.2-2aleft side, and Figure V1.2-2b show awet sample at a moment where the contrast
between the different zones A, B, C was optimal. An image of the dry sample after complete
evaporation of the water is given at the right side of Figure V1.2-2a.

Figure VI1.2-2: Optical microscope images of the region near a staticaly ablated
surface D (n = 200, @ = 1000 mJ/cm2). (a) Direct comparison of the sample with
water condensed on it (left side) and without (right side). The indicated sitesi to iv
show where the AFM pictures in Figure V1.2-3 were taken. The indicated zones A, B,
C, D correspond to: D - irradiated area; A - unmodified PET; B,C - debris modified
PET. (b) Wet sample giving a better view of zone C.

Different zones were evidenced in Figure V1.2-2: Zone A is the native PET substrate without
debris. Small droplets (visible asdark dotsin the microscope images) form, because PET isonly
partially wetted by water (y, = 67(x4)°, y, = 56(+4)° [36]). Zone B and C are modified by the
debris redeposition (compareto Figure V.4-1), but they do not show the same wetting behavior.
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A thin film of water formed in zone B, whereas again small droplets are observed in zone C.
Zone D istheirradiated area.

A first result of thisexperiment isthat debris can be hydrophilic in spite of its carbonaceous na-
ture, leading to spreading of the water, or complete wetting, in zone B. However, not the whole
debris affected zone is wettable.
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FigureVI.2-3: AFM images of the sitesi toivindicated in Figure V1.2-2a. (i) Zone C.
(ii) Zone B, close to the border. (iii) Zone B, middle. (iv) Reference (zone A).

In general, the wettability depends on the chemical composition of the surface and its roughness
(section 11.4). Atomic Force Microscopy (AFM) images of the sitesindicated in Figure VI.2-2a
were taken at the Institute of Condensed Matter Physics (University of Lausanne), in order to
investigate the roughness of zones B and C compared to the original PET. Figure V1.2-2a aso
showsthat the limit between zone B and C, indicated by the dashed line, passes right on the mid-
dle of the main debris hump, which is visible in the dry image. In conclusion, a big roughness
difference between site i and site ii would be astonishing. The AFM images presented in
Figure V1.2-3 confirm this conclusion. Inspection of Figure V1.2-3i and ii confirmsthat thereis
no significant difference in roughness between zone B and C, close to their border line. How-
ever, comparison of Figure V1.2-3iii and ii shows that a much more remarkable difference in
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roughness is present inside zone B, but no difference in wetting behavior of the sitesii and iii
was observed.

In conclusion, the wetting contrast between zone B and C isnot caused by aroughnessvariation,
and is hence due to a difference in surface chemistry (section 11.4).

When comparing the experimental picture and the calculation from Miotello et al. (Figure I1.3-
1) [85], one can see that there are differences in aregion very close to the ablated surface, ap-
proximately corresponding to zone C. The trajectory of the debrisin thiszone is most probably
very short, because the expanding plume (high pressure) presses the debris rapidly down to the
surface. Thus the debris in this zone is comparable to the direct debris introduced in section
V.22

By XPS, the only difference between indirect and direct debris, zone B and C respectively, was
adifferencein the nitrogen content, which was higher in indirect debris. The condensing exper-
iment thus givesthe additional information that this differencein the chemical composition cor-
responds to a higher hydrophilicity of the indirect debris.

The influence of the ambient atmosphere on the chemical composition, and thus the wetting
properties, of the indirect debrisis demonstrated by the condensing experiment on samples ab-
lated in air, in argon, and in nitrogen (Figure V1.2-4).

Figure VI.2-4: Condensing experiment after Static Ablation in different ambient
atmospheres (¢ = 670 mJ/cmZ, n = 200, 1000 mbar). (a) Air. (b) Argon. (c) Nitrogen.
The amount of condensed water was approximately equal in (a) and (b), and dightly
lower in (c) as reflected by the luminosity of the pictures.

Itisclearly visiblethat only after irradiation in air awettable zone appears. Neither Figure V1.2-
4b nor Figure V1.2-4c show thethin film of water visiblein Figure V1.2-4a. Thisisin agreement
with the observation of Rossier et al. who stated a high capacitive current of indirect debris elec-
trodes from 193 nm ablation of PS only after ablation in air [90]. At approximately constant na-
nometric porosity a higher wettability of the electrodes resultsin a higher electrolyte surfacein
contact with the electrodes [102], and, in consequence, higher capacitive currents.

Comparing the exhibited hydrophobicity in Figure VI.2-4c to the results of the XPS measure-
ment of fresh debris, indicates that in the case of the ablation in air the nitrogen in the surfaceis
bonded to oxygen containing functional groups. This accounts for the double peak shape of the
XPS nitrogen signal, and explains also that in absence of oxygen the nitrogen (supposed that
there is some in Figure V1.2-4c) does not cause hydrophilicity. In fact the surface seemsto be
more hydrophobic after ablation in nitrogen than after ablation in argon. This is probably,
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caused by insufficient purging of the reaction chamber (ca. 25 liters) before performing the ar-
gon experiment. The nitrogen experiment was carried out after the argon experiment.
Comparing the size of the wettable zone in Figure VI1.2-4ato theonein Figure V1.2-2, it isvis-
iblethat the wettable zone is smaller after ablation with lower fluence. The fact that the samples
shownin Figure V1.2-4 were produced and analyzed on a hot and humid summer day, may also
be responsible for this difference.
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V1.3 Electroosmotic flow control

Electroosmotic flow control by variation of the Scanning Ablation parametersis
demonstrated. For this purpose, electroosmotic flow velocity measurements in
micro channels with identical cross sections were carried out. The channels
were produced using different spot lengths, leading to different ramp angles
during the fabrication. The electroosmotic flow velocity in the channels varied
by approximately 25% of the maximum value, and showed its maximum value at
a ramp angle of 4.3°. The existence of the maximum can be explained qualita-
tively by the competition of indirect and direct debris redeposition in the al-
ready ablated channel. Indirect redeposition in the channel is enhanced when
going to shorter spot lengths. Direct redeposition becomes most important at
high ramp angles. The presence or orientation of the micrometric structure on
the channel floor showed only slight or negligible influence on the electroos-
motic flow.

“For many applications it is desirable to be able to manipulate the magnitude of the electroos-

motic flow in order to optimize separation performance” (P. D. Grossman [6]).

Electroosmotic flow experiments were performed with laminated channel's, described in section

[11.4. The channelswere produced by Scanning Ablation with different ramp angles and showed

approximately the same cross section. Three types of samples series were produced, differing

in the micrometric structure, if 3 < 22° (section V.2):

1. The biaxialy stretched substrate was used, and the main stretching direction was aligned
perpendicularly to the scanning direction. Thus, the mountain-chain like, Static Structure
was aligned with the channel direction (section V.1.3) and the series is named longitudinal
series.

2. Once more the biaxialy stretched substrate was used, but this time the main stretching
direction was aligned with the scanning direction. Hence, the Static Structure was oriented
perpendicularly to the channel direction and the seriesis named transversal series.

3. In this case an amorphous, unstretched substrate was used, and hence no Static Structure
formed. The only change in structure within this series is due to the debris contribution to
the surface roughness (section V.4.2). The channels of this amorphous series had a dlightly
different production procedure, because the substrate was too thick to use through drilled
reservoirs (section 111.4.3).

The average electroosmotic flow velocity of the buffer solution in the ablated and laminated

channelswas measured by the current monitoring technique, as described in sections11.5.1 and

11.5.2.

VI1.3.1 Experimental results

The measured electroosmotic flow velocity v, IS reported as a function of the ramp angle 9 in
Figure VI1.3-1. All measurements were performed with the same phosphate buffer solution at
pH = 7.2, using the same salt concentrations of the buffer (8 and 10 mMol/l). The driving field
E, = 20 kV/m was also kept constant in all measurements. In the graphs of Figure V1.3-1 the
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different curves refer to samples, which were produced and/or analyzed on different days, and
the error bars indicate the standard error of the electroosmotic flow velocity measurement.
Figure VI1.3-1a, b and ¢ show each measurements of one series and Figure V1.3-1d shows all
measurements superposed.

a b
1054 Stretched, 1059 Stretched,
100 1 longitudinal structure 100 transversal structure
~ 095
Y
1S
o 0904 gfl"
o RN
:1, YEN
085 Vo
8 ".
- \
> 080 . —— T T—
075
oro4 + -4
1
T T T T T T T T T 1 T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
ramp angle 9 (degrees) ramp angle & (degrees)
c d 9 =43
105 105 : All measurements I
Unstretched, 100
no structure
= . o 095
kY
£ N €
o . . o 090 }\
o
:L \ _ - -Y S
< \ ~ 085 |
\ -
>°O’ \ _-7 ] >8 I/ |
0.80 «_ " 0.80
¥ |
075 ] 075 | .
I
0.70 0.70 I
T T T T T T T T T 1 T ' T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
ramp angle 9 (degrees) ramp angle 9 (degrees)

Figure V1.3-1: Electroosmotic flow velocity ve, as afunction of the ramp angle 9. (a)
Longitudinal series. (b) Transversal series. (¢) Amorphous series. (d) Superposition of
(@), (b) and (c). (The measurement in (c), indicated in grey is not reliable, because the
channel length was not sufficiently controlled.) 8 = 0° are cleaned scanned channels
(details see below).

Figure VI1.3-1 illustrates the possibility to control the electroosmotic flow in our channels by
varying the Scanning Ablation parameters. The flow velocity variesin arange of approximately
25% of the maximum value by varying the ramp angle 9 from 2° to 42°. For nearly al measure-
ments and substrates, the maximum flow velocity is observed at a ramp angle of 4.3°
(Figure V1.3-1d). The flow velocities can reach 2/3 of the electroosmotic flow in fused silica
capillaries, which generate under the same conditions a flow of v, = 1.4x107° m/s. (Value
converted from reference [118] using Eq. 5, Eq. 6 and Eq. 8.

All data presented in Figure V1.3-1 were obtained for laminated channels. The polyethylene
lamination isthe same for all channels and thus smooths the flow vel ocity data. This means that
the observed variations are lower than the variations that would be observed if all four walls of
the channelswere ablated surfaces. After the determination of the {-potential for the lamination
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(section V1.4.5), it is possible to compensate by calculations for this smoothing effect. We can
thus obtain information on the {-potential of the ablated surfaces (Figure V1.4-7).

The presented data al so show that the variations between channel s produced and/or analyzed on
different days are higher than the error of the measurement method (given by the error bars).
Themain parameters, which were not well controlled during the production of the micro devices
are: (i) Different times between channel production and electroosmotic measurements. (ii) The
homogeneity of the lamination. (iii) The atmosphere in which the ablation was carried out, i.e.
the composition and the flow of the clean room air. As functionalized PET surfaces are subject
to rapid aging, point (i) seems the most probable explanation [44]. The exact dynamics for the
aging of the debris are unknown, but it is clear from the XPS measurements in section VI.1.2,
that the surface properties of debris changed after four months, but not after six hours.

In spite of the rather fair reproducibility of the numerical valuesin Figure V1.3-1, acomparison
with the flow velocity values published by Roberts et al., who worked with very similar chan-
nels[3], yields good results. Roberts and co-workers produced their devices by Scanning Abla-
tion with 9 = 2° and reported avalue of v, = 12.6x107% m/s at E, = 30 kV/m, corresponding
to v, = 8.4x107* m/sat E, = 20 kV/m. They used the same biaxially stretched substrate and
the Static Structure was oriented at 45° with respect to the channel direction. Comparing this
with the average of the valuesin Figure V1.3-1 we find an excellent agreement for the longitu-
dinal series (v, = 8.3x10~* m/s) and the transversal series (v, = 8.5x10* m/s). However,
the reliable value of the amorphous seriesis 18% higher (v, = 9.9x10~* m/s). Thismay indi-
cate that the presence of the Static Structure slows down a little bit the electroosmotic flow.
However, to confirm this observation, further investigations are necessary. According to the
presented data, the orientation of the Static Structure has no influence on the electroosmotic
flow.

The data presented in Figure V1.3-1 were all acquired at adriving field of E, = 20 kV/m. Be-
cause the dependency of the electroosmotic flow velocity ve, on the driving field E, in agiven
channel is a complementary method to characterize the quality of the electroosmotic measure-
ments (EQ. 8), two typical examplesfor thisrelation are given in Figure V1.3-2.
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Figure V1.3-2: Electroosmotic flow velocity v, as a function of the applied driving
field E,.
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Astonishingly, compared to the report of Niino et al. [91], we observed a negative -potential
of the channels, i.e. the electroosmotic flow was aways in the direction of the negatively
charged electrode.

In an attempt to produce channels with good geometrical quality over the whole channel length,
exhibiting nevertheless the properties of statically ablated channels, we tried to clean scanned
channels from debris by a second scan. This means that first a digging scan was done with n =
199 or n = 198 pulses per site (8 = 2°) and then a cleaning scan withn =1 or n = 2 pulses per
site (“9” =0.02°) followed. In nearly al cases these channels showed the same el ectroosmotic
flow velocity as the channels which had ssmply been scanned with n = 200 and 9 = 2°
(Figure VI1.3-1, values at 9 = 0°). A possible explanation of this result, with the assumption that
the cleaning scan really did clean the channel floor and the walls from accumulated debris,
might be:

The amount of indirect debris redeposited after one pulse may be sufficient to explain the lim-
ited hydrophilicity of the ablated surface. The following estimation supports this thesis.

Up to 43% of the material, ablated by one shot, are redeposited on the substrate [84]. Asfor PET
the sideways expansion of the debris is not especially high, most of this debris will redeposit
onto the ablated surface. According to Kelly et al. [82] only particulate ablation products will
eventually form debris. Asno literature value for the yield of particulate ablation products from
PET isavailable, we use the value of Pl asalower estimation. Working at rather high fluences,
where disintegration of the particles in the plume by the laser light seems probable, we use the
lower of the two literature values, i.e. 4% [82]. Assuming the redeposition of 30% instead of
43%, of the particulate debris, because of sideways expansion, we end up with 1.2% of the ab-
lated material that is redeposited onto the ablated surface. Now, knowing the ablation rate of
200 nm, thus, say 1000 layers of atoms (polymer), we end up with aredeposited layer of 13 at-
oms thickness. This layer may in fact contain a sufficient number of polar groups for causing
the observed limited degree of hydrophilicity, but not enough to change the XPS signal, to an
increasing O/C ratio, with respect to unirradiated PET. Thisis supported by the observation of
Chtaib et al. who performed X PS measurements of PET after static irradiation of PET at 193 nm
with various fluences [29]. They observed an increase in the O/C ratio at fluences higher than
the ablation threshold, compared to the O/C ratio at fluences just below the threshold. This can
most probably be attributed to debris redeposition. Also, Lazare et al. measured an increasing
water contact angle hysteresis and decreasing receding contact angles on amorphous PET sam-
ples without micrometric roughness, after Static Ablation at 193 nm [36]. The same tendencies
were observed more pronounced after ablation of poly(phenylquinoxaline) (PPQ) films, and
particularly the decreasing receding contact angle was interpreted as an increase in hydrophilic-
ity [87]. Because of the higher sampling depth of XPS with respect to contact angle measure-
ments, these findings do not contradict the many reports of decreasing O/C ratio after ablation.
In the report of Chtaib et al., the O/C ratio also stayed below the level of the reference sample,
even at 200 mJcm?.
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V1.3.2 Explanation of the optimum

The main feature of all e ectroosmotic measurements shown in Figure V1.3-1 isthe existence of
an optimum ramp angle for fastest electroosmoatic flow. This can be understood when one con-
siders the changing relative contributions of indirect and direct debristo the total debris on the
channel floor and the channel walls.

In cases where indirect debris is predominant, i.e. at low ramp angles, the channel surface is
hydrophilic. This was shown directly by the results of the condensing experiment in section
V1.2.2. Further the surface contains not only polar oxygen-functional groups, but also nitrogen-
functional groups as shown by the results of the XPS measurements.

On the contrary, when direct debrisis most important, i.e. at high ramp angles, the channel sur-
face is relatively hydrophobic, which is also a conclusion of the condensing experiment. The
XPS measurements in section VI.1.2 showed, that direct debris also contains polar oxygen-
functional groups. Thisisthe reason for the relatively high level of electroosmotic flow at very
high ramp angles, being comparable to the electroosmotic flow at very low ramp angles where
only little indirect debris and no direct debrisis present Figure VI1.3-1d.

It was shown in section IV.2.2, the contribution of direct debris is expected to be negligible at
low ramp angles, but that it becomes dominant in the case of high ramp angles (Figure V.3-2).
The change between “low” and “high” ramp angles in this sense depends on the shape of the
density distribution p(¢), at the given parameters. Especially, the extent of forward peaking of
the plumeisimportant for the absolute value of the transition regime between “low” and *high”
ramp angles.

Concerning the contribution of indirect debris, it is known that the shape of the indirect debris
pattern upon Static Ablation depends on the shape of the irradiated surface (section 11.3.2). For
the channel production, rectangular masks with the same width and different lengths were used.
Therelative contribution of the indirect debrisin the channel upon Scanning Ablationisclosely
correlated to the quantity of indirect debris upon Static Ablation, which isredeposited in the 40
micrometer wide band, covered by the channel (Figure V1.3-3).

a / b C

— 40 pm — — 40 pm -—
—40 pm+— H H

Figure V1.3-3: Schematic of the region near the ablated surface, which is covered by
the channel. (a) Three dimensional view. (b) Top view for the case of a long spot
length a, i.e. small 9. (c) Top view for the case of a short spot length a, i.e. high 3.

Asit was pointed out and quantified by Miotello et al., the indirect redeposition is most impor-
tant near the long side of arectangle[75,85]. Anintuitive reason for thisbehavior, givesthefact
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that the yields of formation and redeposition of particulate ablation products are high, if the pri-
mary ablation products are confined for a*“long” time to a“small” space [81]. Sites where the
evacuation of the ablation productsis confined by the ablation products of neighboring site are
thus preferred for debris redeposition.

The dependence of therelative quantity of indirect debris, redeposited in the channel isillustrat-
ed by the charging SEM imagesin Figure V1.3-4. For channel production with higher ramp an-
gles 9 theirradiated spot length a was more and more decreased compared to the width of the
irradiated spot width (section 111.4). In consequence, it is sure that the indirect debris contribu-
tion also increases with increasing ramp angle.

V Spot Magn Det WD Exp F—— s500um 3 CC
kY 3.0 46x SE 2471 00kV 3.0 137 SE 247 1
2 T A TR e B -

Figure VI1.3-4: Charging SEM images showing debris patterns near statically ablated
regions with the masks used for channels with (a) 9 = 2.3° (a = 1000 um), and (b) 9 =
22° (a = 100 pm). In the case of short mask length (high ramp angle) more indirect
debris redeposits on the 40 pm wide band which is occupied by the channel
(Figure VV1.3-3). (1200 mJcm?, n = 200)

It is important to keep in mind, that the two tendencies, which were sketched in the last para-
graphs, for the direct and the indirect debris respectively, influence one another. For example
the channel walls will hinder the expansion of the ablation products at the lower part of the ir-
radiated ramp but not at the higher part. Nevertheless, free expansion of the ablation products
isthe basic assumption of the model of Miotello and co-workers. Also, the higher the contribu-
tion of the direct debris, the lower the input for the collision mechanism yielding indirect debris.
Further, it cannot be excluded that the chemica composition of the indirect debris changes with
the ramp angle. This because the dynamics of the ablation products and the surrounding atmo-
sphere are altered, giving probably rise to a change in the “average trgjectory” of material be-
coming indirect debris. (Number of collisions with O,/N>.)

Thetheoretical limit for the direct debris contribution, at 9 = 90°, is50% of the ablated material,
whereas the theoretical limit for the indirect debris contribution is more difficult to estimate.
Probably, it will not exceed half of the indirect debrisin Static Ablation.

In conclusion, indirect, hydrophilic debrisis most important at low ramp angles, and the quan-
tity, redeposited in the channel, increases with decreasing spot length a, i.e. increasing ramp an-
gle 9. Therefore, the hydrophilic behavior of the channel is enhanced by increasing the ramp
anglefrom 9 = 2.3° to 9 = 4.3°, which corresponds to a reduction of the mask length from a =
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1000 umto a =500 um. At higher ramp angles, the more hydrophobic contribution of the direct
debris determines the channel surface.

Debris quantity (arb. units)

Ramp angle 9 (Degrees)

Figure VI1.3-5; Schematic showing the competition between indirect and direct
redeposition leading to the existence of an optimum ramp angle for highest
electroosmotic flow.
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V1.4 Zeta potential determination

In order to get information on the ablated surface, a separation of the influences
of the laminated surface and of the ablated surface on the observed e ectroos-
motic flow was performed. Thisis possible as the heterogeneous el ectroosmotic
flow velocity profile in rectangular channels can be calculated (section 11.5.3).
Francois Bianchi from the Laboratory of Electrochemistry (EPFL) has per-
formed electroosmotic flow velocity measurements in channels with different
depth and constant composition. We implemented the analytical formula of An-
dreev et al. [106] numerically, in order to perform a fit of the experimental da-
ta, yielding the {-potential values for the ablated surface and the laminated
surface. Precise knowl edge about the -potential s of the channel wallsisimpor-
tant from an application point of view, because the heterogeneous flow vel ocity
profile gives rise to Taylor-dispersion, which may limit the separation resolu-
tion of electrophoresisin composite channels.

VI1.4.1 Experiments

The channels for the electroosmotic flow measurements were produced in two different sub-
strate materials (poly(ethylene terephthalate) and polycarbonate). For the production of chan-
nels with same width and length and different depths, F. Bianchi used Scanning Ablation with
constant spot length and varied the scan speeds. The resulting channels had a trapezoidal cross
section [11]. Their depth dy, their width at the top w;, and their width at the bottom w;, were
measured for each channel. Then the channels were laminated (poly(ethylene) on PET), and the
average electroosmotic flow velocity [V, [Jwas measured at pH = 4.6 as described in section
I1.5.1.

V1.4.2 Electroosmotic flow in laminated channels

The electroosmotic flow velocity profile vgo(X,y) in achannel, which is composed of materials
with different {-potentias, deviates from the classical plug profile (section 11.5.3), and can no
longer be described by the Schmoluchowsky equation (Eg. 8). An analytical infinite sum de-
scription of the electroosmoatic flow velocity profile in rectangular micro channels, where each
wall may have adifferent {-potential, was given by Andreev et al. (Eg. 9) [106]. Based on this
expression, it is possible to predict changes of the average electroosmotic flow velocity [V, ]
(Eg. 112) in rectangular laminated micro channels as a function of the channel cross section.
The channels are described by {4 and ;, the {-potentials of the substrate and the lamination re-
spectively, and thewidth |, and the depth |, of the channels (Figure V1.4-13). The numerical im-
plementation of Eq. 9 and Eq. 11 allows for visualization of the electroosmotic flow velocity
profile veo(x,y) in a quadratic channel (I, = 1y, = 50 um) with {g = -100mV and ¢; = -30 mV
(Figure V1.4-1b). The [V [, given by the numerical implementation, are preciseto +1 % ascan
be estimated from the numerical tests performed. For details on the numerical implementation
of Eq. 9 and Eqg. 11 and the convergence tests, please refer to Appendix B.

In the experiments, we measure the average of such flow profiles (grid 500 x 500 points) over
the whole channel cross section. (For the flow profilein Figure VI.4-1b the averageis. [V [1=
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Electroosmotic
flow velocity
V,o(X.y), (mm/s)

channel

lamination {-potential: {;

substrate
C-potential: {

Laminated
surface
y= Iy =50 um

b Ablated surface
x=1=50pm

Figure V1.4-1: (a) Schematic defining the parameters, which describe the channelsin
the calculations. (b) 3D-grey-level-plot of the electroosmotic flow velocity profile
Veo(Xy) in alaminated channel. The flow velocity close to the laminated surface (right
sidein front) is lower dueto the lower {-potential. Parameters defined below: |, =1y =
S0pm, {g = -100mV, ¢ = -30mV, )k = 0.1pm, E, = 20kV/m. Numerical
parameters defined in Appendix B: ky, = 200, grid 26 x 26 points.

1.092 mm/s.) Except close to the borders, the shape of the flow velocity profile does not depend
on the size of the channels, but only on the ratio of channel depth I, and channel width l,. Al-
ternatively, the relative contribution of the laminated surface relative to the whole channel sur-
facer=1,/(2l, + 2Iy) can be used as parameter. Thislamination ratio r, which can vary in the
range of 0to 0.5 for laminated channels, was chosen for the abscissain all viewgraphs describ-
ing the dependency of the average electroosmotic flow velocity [V [1onthe channel depth. The
independence of the velocity profile shape on the channel sizeisillustrated in Figure V1.4-2 by
cross sections of the flow velocity profiles for channels of the same geometry and different
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FigureV1.4-2: Cross sections through the flow velocity profiles of channels which are
four times deeper than large (r = 0.1). The different curves in one graph correspond to
different channel widths (500 pum, 50 pum, 5 um). (a) Shows cross sections along the y-
axes at x = 0.5 . (b) Shows cross sections aong the x-axes at y = 0.5 1. () Shows
cross sections along the x-axes at y = 0.951. ({s = -100mV, {; = -30 mV, 1k =
0.1 pm, ky, =200, E, = 20 kV/m, sampling step = 0.5 1/k).

However, the shape of the flow velocity profiles, and also the average flow velocity, both
change, when the depth of the channel is changed at constant channel width. Figure VI1.4-3a
shows cross sections of flow velocity profiles, which illustrate how the shape changes. In the
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limit of large and shallow channels the whole vel ocity profile can be approximated by a plane,
I.€. Veo(X,Y) is nearly independent of x and linearly dependent on y, with the values close to the
channel walls given by the Schmoluchowsky equation. Figure V1.4-3b shows the variation of
the average electroosmotic flow velocity [V, [Jasafunctionof r. For r JO.5, i.e. very shallow
channels, the electroosmotic flow decreases, because of the overlapping of the channel floor
double layer and the double layer of the laminated surface. This effect was artificially enhanced
in the generation of the data by using an unrealistic thick double layer (1/k = 0.1 um).
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Figure V1.4-3: (a) Cross sections along the y-axes at x = 0.51, through the flow
velocity profiles of laminated channels with different depth. (b) Typical dependency
of the average electroosmotic flow velocity [V, []on the lamination ratio r (channel
depth). Solid line: laminated channel ({g = -100mV, ¢, = -30 mV). Dashed line:
homogenous channel ({s = ¢; = -100 mV), Dotted line: Schmoluchowsky equation ({
=-100 mV).

Parameters: (a) {s=-100mV, {; =-30mV, 1/k = 0.1 um, E, =20 kV/m, k,, = 200, and
sampling step = 0.5 /K. (b) 1/k, E, see (a), grid 500 x 500 pointsfor all channel geom-
etries, kUIO =50for 0.034 < r < 0.466, and kup =200for r <0.034 Or = 0.466 .

V1.4.3 Linking model and experiment (approximations)

The cross section of the channels In the calculations, the trapezoidal cross section of the ab-
lated channels was approximated by a rectangular cross section.

The cross section of the ablated channels is trapezoidal with a nearly constant wall angle (3 of
about 74° (Figurelll.4-1). More precisely, the channels were 50 um wide, 20 mm long, and
their depth varied between 15 pum and 60 um. The corresponding channel in the calculation was
evaluated so that r, the relative contribution of the laminated surface with respect to the total
channel surface, was identical in both cases. The width of the channel in the calculation |, was
chosen to correspond to the width of the lamination w;. In consequence the depth of the channel
in the calculation |, was slightly lower than the measured depth, Iy <d,; (FigureVI.4-4). The
lamination ratio r of the ablated channelsis given by

-1

L v —wﬂ2 2%
r= WtXH\/t+Wb+2 0 7 O +diom - (20)
0 a
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And hence, the expressions for |, and |, of the modelled channel, as a function of the measured
values w;, W, and d;; of the experimental channel are:

O O
o= we = Ex O w o+ [adZ, + (g —wy) D, (21

2 0 0
Figure V1.4-4 shows schematically a cross section of an ablated channel together with the cor-
responding channel in the calculations. Theratio |,/ dy; only depends on thewall angle 3, lead-

ing to

1 1 _ 40
Iy/dtot = anp g [J0.75, for B = 74°. (22)

| w, =1 |

I B

'\ modelled I /

: channel : d,y, Y

I I

[ W, |

Wb | |

experimental channel

FigureVI.4-4: Schematic of an experimental channel cross section (solid line) and the
corresponding rectangular cross section, used in the calculations (dashed line).

The homogeneity of the (-potential of all ablated walls In the model calculations, we as-
sumed that all ablated surfaces (channel floor and side walls) exhibit the same {-potential, being
homogenous over the whole channel length, and being the same for all channels discussed in
this section.

The homogeneity of the -potential with the position along the channel can be concluded mostly
from the fact that a very thin layer of debrisis sufficient for a change of -potential. Thisisfor
examplevisiblein the X PS data, where the major changes occurred when going from Static Ab-
lation to Scanning Ablation with 8 = 2.3°, while only minor changes were observed for Scan-
ning Ablation with different ramp angles. However, direct observation of the debris
contribution on the channel floor in section V.4.2 showed that a gradient in debris quantity ex-
ists. For high ramp angles (3 = 17°, 32°) the determined projection lengths were less than
600 pm, i.e. < 3 % of the channel length of 20 mm. It is necessary to note however, that the ex-
istence of this gradient in debris quantity not necessarily causes a gradient in the {-potential of
the channel, because very thin layers of debris cannot be detected in SEM (without the charging
effect). Even if agradient in {-potential exists, it would be very weak because the situation is
nearly symmetrical during the production of the channels (3 = 0.85° to 3.4°). This means, that
nearly the same amount of debris is deposited before and behind the irradiated ramp. In sum-
mary one can say, that most probably no gradient of the -potential in the channel direction ex-
ists, if it exists nevertheless, it isweak and concerns less than 3% of the total channel length.
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In section V1.3 it was shown, that the ramp angle influences the {-potential of the ablated chan-
nels. Especialy, a strong dependency was found for low ramp angles (2.3° - 11°). Asexplained
before (section V1.3.2), this dependency is caused not so much by the inclination of the irradi-
ated ramp, but by the change in mask geometry. For the channels, which are discussed in this
section, F. Bianchi used always the same mask (50 x 1000 umz) at different scan speeds, in or-
der to produce channels with constant width and varying depth. The constancy of the spot ge-
ometry implies that the quantity and quality of indirect debrisis approximately identical for all
channels. The ramp angles during production, ranging from 0.85° to 3.4°, are small enough for
direct debris to be negligible in al cases. Thus, the assumption, that the ablated surfaces of all
channels exhibit the same {-potential, is reasonable.

Finally, the third reason for an heterogeneity of the {-potentia on the ablated surfaces could be
a difference of the {-potentials of the channel floor and the side walls respectively. As shown
in Figure I11.4-1 and discussed before, the cross section of the ablated channels is trapezoidal.
Consequently the redeposition of material, which is dragged back to the surface, is possible on
the channel floor and the channel walls. Though, the channel floor and the channel walls will
have roughly the same (-potential. The fact that debris redeposits well adherent not only on the
channel floor but also on the channel wallsisvisiblein Figure V.4-3.

VI1.4.4 Fit results

Figure VI1.4-5 shows the experimental data obtained in the two types of channels. ablated
poly(ethylene terephthalate) with the poly(ethylene) lamination (PET-PE), and ablated
poly(carbonate) with the poly(ethylene) lamination (PC-PE). The curves are generated from the
fitting coefficients showed in Table V1.4-1.
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Figure V1.4-5: Average electroosmotic flow velocity [V [ as a function of the
lamination ratio r (buffer pH = 4.6). Experimental data and fit with Eq. 9 and Eq. 11
(taking into account the relations of section V1.4.3). (a) PET-PE channels. (b) PC-PE
channels.

Table VI.4-1 also shows values, which are obtained using afitting function proposed by F. Bi-
anchi. Asthe electroosmotic flow is generated by the electrochemical double layer close to the
channel walls, alinear combination of the classical Schmoluchowsky equations of the two wall
materials (Eq. 23) is useful as an approximation, in order to explain [V [{r).

105



VI.4 ZETA POTENTIAL DETERMINATION

Andreev’'s formula

Linear combination

(Eg. 9 & Eq. 11) (Eq. 23)
PET-PE channel | SPET —84+3mV —87+2mV
(FigureVI.4-59) | 7, —32+4mvV —19+3mV
PC-PE channel | SPE — 44+ 3mV —48+2mV
(Figure V1.4-8b) | 7, _24+2mV _22+4mV

Table VI1.4-1: (-potential values (pH = 4.6) of the materials composing the
micro channels, determined by fitting the experimental data in Figure V1.4-5.
The numerical parameters for the fit with Andreev’s formula were: k, = 10 and

grid =

approximationsis 2.5% in this case (Appendix A)).

200 x 200 points (The estimated error due to the numerical

€&oE,

V0 x [rzl + (1—r)z5] (23)

The results of the different fitting methods in Table V1.4-1, both show a discrepancy between
the values for {pg obtained from the different data sets. The error of the average of the two val-

ues can be taken as a measure for the quality of the fitting method applied (Table V1.4-2).

Andreev'sformula | Linear combination
(Eq. 9 & Eq. 11) (Eq. 23)
{pe(PET-PE) —-32+4mV ~19+3mV
{pe(PC-PE) — 44+ 3mV —48+2mV
Simple average (pg ~-38+6mV ~335+145mV
Relative error 16% 43%
Weighted average {pg ~39.7+6mV ~39.1+145mV

TableV1.4-2; {-potential values for the PE-lamination (pH = 4.6).

For the fit with Eq. 23, the existence of this discrepancy is not astonishing, because [V [{r)

can be approximated as linear only in a certain range of r-values, and the borders of this range

depend on the {g and ¢, (Figure V1.4-5). However, for the fit with Andreev’s expression, the

samevaluefor {pg isexpected for both data sets. The reasonsfor thiserror, valid for both fitting

methods, are:

1. The error in the experimental data, which is estimated to approximately 10%, due to the
fabrication conditions of the channels (Figure V1.3-1).

2. The approximation of the trapezoidal cross section of the ablated channels by a rectangular
cross section of the modelled channels.
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V1.4.5 Discussion

The knowledge of the {-potential values of different materials, composing the micro fluidic
channels, allows to evaluate the contribution of the Taylor dispersion to the total dispersionin
the system [11]. Thisis very important, because in the case of PET-PE channels Taylor disper-
sion limits the separation efficiency of electrophoretic devices realized in this kind of micro
channels.

The performed determination of the {-potentials of the different materials composing a micro
channel may be easier by other means in cases where: (i) the {-potentias of the materials are
not influenced by the channel fabrication, and (ii) it is possible to produce two homogeneous
micro channels separately out of every wall material. In the case of micro channel fabrication
by Scanning Excimer Laser Ablation, it would be much more complicated to produce tight
channels out of ablated polymer only, and out of heated lamination only, than applying the pre-
sented fitting procedure.

Unfortunately, the {-potential of the lamination is known only at pH = 4.6 by the experiments
presented in this section, whereas the experiments in section V1.3.1 were carried out at pH =
7.2. Itistherefore difficult to transform the flow velocity curves as afunction of the ramp angle
during production (Figure V1.3-1) into {-potential curves of the ablated PET surfaces. Values
for the average flow velocities in PC-PE channels as a function of pH were published [3], but
no datais available on PET-PE channels.

However, thereisone hint that the ratio {pg / {pet = 0.38 is approximately constant in the range
frompH = 4.6 to pH = 9.2 [11]. Using this constancy, it is possible to cal cul ate the average flow
velocities for possible values of {pg in achannel having the cross section of the channelsin sec-
tion VI1.3.1 (Figure V1.4-6a). Each pair of {pg, {pg in Figure VI.4-6acorrespondsthen to adif-
ferent buffer pH value. Due to the irradiated spot shape of 1000 x 40 um2 and the low ramp
angles, the debrisin the channelsin section V1.4.1 is very similar to the debris in the channels
with & = 2° in section V1.3.1. Knowing this, we can determine the values for {pg and (pgr at
pH=7.2, ZZ,E and ZZ,ET respectively, for the channel with 9 = 2°, by looking up in Figure V1.4-
Gaat which {-potentials the measured value of [V, 1= 0.84 mm/swas calculated. The interpo-
lation yields {Jg = —29.8mV and {e (9 = 2°) = —78.4mV.

Using the constancy of Z;E = —29.8mV with respect to changes of the ramp angle 9 during
the ablation, it isnow possibleto determine the variation of the {-potential of the ablated surface
ZZ,ET asafunction of the ramp angle 9 during the ablation. For this purpose, the data presented
in Figure V1.4-6b was generated. It showsthe calcul ated average flow velocity [V, [, asafunc-
tion of the {-potential of the ablated surface (ZZ,ET), and uses the geometrical parameters of the
channelsin section VI.3.1 and the determined val ue of ZZ,E = —29.8mV. Using thelinear fit of
Figure V1.4-6b, it isfinally possible to find the value of ZZ,ET yielding a certain measured flow
velocity valuein Figure V1.3-1. Theresulting curves of ZZ,ET(S) for the different measurement
series are shown in Figure V1.4-7.

The linearity of the plots in Figure V1.4-6 is no approximation, but a fundamental feature of
Eqg. 9 and Eq. 11. In agreement with the Schmoluchowsky equation, the dependence of the av-
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Figure VI.4-6: (a) The average electroosmotic flow velocity [V, caculated as a
function of the (-potential of the ablated PET, assuming the ratio {pg/{pet to be
constant and using the cross section of the channels in section VI.3.1 (r = 0.32). (b)
Calculated average flow velocity [V [in ;he channels of section V1.3.1, asafunction
of the {-potential of the ablated surface ({pg). The cross section of the channels and
the {-potential of the lamination are constant (pH = 7.2).

erage electroosmotic flow velocity on variations of the -potentialsislinear, at constant channel
cross section. It is

Wedd = const (I, 1) x L+ congty(ly, 1) * (24)

The detailed expressions of const,(ly, ly) and constx(ly, ly), which cannot be evaluated symbol-
icaly, are givenin Appendix C.
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pH=7.2

r=0.32
-1004
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¢-potential of ablated surfaceq,_ (mV)
G

Figure V1.4-7: Figure V1.3-1d transposed to ZZ,ET(S) instead of [V 19 ).

The relative variation of the {-potential of the ablated surface ZZ,ET(S) is approximately 29%
of the maximum (absolute) value, compared to the 25% variation in vy () (section VI.3).
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VI.5 Chapter summary

The chemical composition of the ablated surfaces in the channels, and the electroosmotic flow
in the laminated channels were studied.

The presence of two chemically different types of debris, indirect debris and direct debris re-
spectively, was concluded from X PS measurements, the wetting behavior of debris determined
surfaces, and the existence of an optimum ramp angle for highest electroosmotic flow.

Indirect debris was shown to be predominant in channels with low ramp angles. The resulting
surfaces are hydrophilic and include oxygen and nitrogen functionalities. More indirect debris
is deposited in the channel if the spot length a is small compared to the channel width. Direct
debris, on the other hand, determines the channel surface at high ramp angles. Direct debrisis
more hydrophobic than indirect debris but includes also oxygen functionalities. The quantity of
direct debrisin the channel depends on the ramp angle and can be very important.

In consequence, changing the ramp angle changes the relative importance of the two types of
debrisin the channel. This explains the observed optimum ramp angle for maximum electroos-
motic flow at constant channel cross-section.

Since not all channel walls are ablated surfaces, the measured el ectroosmotic flow depends also
on the relative surface covered by the forth wall, i.e. the PE-lamination. This influence causes
avariation of the electroosmotic flow at constant debris composition in the channel, if the depth
of the channel ischanged. Thisvariation of the electroosmotic flow does not depend on the scale
of the channel but only on the ratio channel width / channel depth. A numerical fit to the exper-
imental data, using a complicated analytical expression for the electroosmotic flow [106], al-
lowed for separation of theinfluence of the ablated surfaces and the lamination on the measured
electroosmotic flow. After determination of the {-potentials of lamination and ablated surface
at constant debris composition, it is possible to determine the variation of the {-potential of the
ablated surfaces due to the different quantities of direct and indirect debris. Variation of the
ramp angle from 2° to 42° changes the (-potential of the ablated channel surface by approxi-
mately 30% of its maximum value.

Hence, controlled variations of the chemical surface composition of the micro channels are pos-
sible by Scanning Ablation.
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VII. Conclusion and outlook

The results of the present work clearly show that substrate scanning upon Excimer Laser Abla-
tion leads to important modifications in the topography and chemistry of the ablated surfaces
compared to Static Ablation. Thisisimportant for products and devices where the wettability,
the adhesion, the {-potential or the micro/nano roughness of the ablated surfaces are key fac-
tors.

Structure changes. The topographical structure changes, which were observed upon Scan-
ning Ablation of stretched polymers, were attributed to the changing geometrical orientation of
the irradiated surface with respect to the frozen-in stress field of the substrate.

In fact, upon Scanning Ablation theirradiated surface has the from of aramp, which isinclined
by the ramp angle with respect to the non-irradiated surface. It is the structure on the lower part
of this ramp, that determines the structure on the channel floor. For ramp angles lower than ap-
proximately 12°, the structure on the irradiated ramp is the same as on statically (flat) ablated
surfaces. The orientation of the structure changes at ramp angles between 12° and 30°. In this
range the structure orientation coincides with the channel direction, whereas the structure ori-
entation is normally perpendicular to the direction of the frozen stresses[56]. At very high ramp
angles, the ramps become smooth.

The two structure changes on the ramps can be described by a model, where the component of
the frozen stresses, which is perpendicular to the irradiated ramp, suppresses the structure for-
mation, first for tangential stress component down the ramp and then for the stress component
parallel to the ramp border. An experiment with differently stretched PET showed that the lim-
iting angles of the structure changes are independent of the total amount of frozen stressesin the
polymer. In other words, the ratio of the perpendicular stressto the tangential stress components
is the important value for the structure changes to occur. Experiments at different fluences and
in different substrates showed that the limiting angles for the structure changes do not depend
on the laser fluence, but do depend on the substrate material.

The channel floor cannot become completely smooth, but the orientation of its structure changes
as described above and at the same ramp angles. However the structure in the channel has a sec-
ond nanometric component in addition to the micrometric component just described. This na-
nometric structure is due to strongly enhanced redeposition of ablated material (debris) on the
channel floor and the channel walls. At high ramp angles, the debris can fill up the valleys of
the micrometric structure, and thus determines the structure on the channel floor. It consists of
porous material, which was shown to be strongly adherent to the channel floor and walls.

The orientation of the micrometric structure at ramp angles below 22° did not influence the av-
erage electroosmotic flow velocity of the buffer solution in the fabricated 40 micron deep chan-
nels. The presence of the structure may have a light influence, but further investigations would
be necessary in order to prove this effect.

Moreover, further investigations on the fundamental process underlying the formation of the
micrometric structure in polymers, would help improving the presented idea of vector decom-
position of frozen stresses upon their relaxation. Especially, the knowledge of the relative
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amounts of frozen stresses, compared to the laser heating induced stresses, in theinitial stage of
the structure formation, could confirm or contradict the idea of arelative suppression threshold
in the perpendicular stress component. This work can only be performed if it is possible to ex-
press the quantity “frozen stresses’ by polymer physico-chemical properties, as chain align-
ment, interaction between chains, crystallinity etc.. Qualitativeideasfor this purpose were given
in thiswork but the quantification is necessary, if knowledge on the relative importances of fro-
zen stresses and laser induced heating stressesis the aim. Another fundamental question, which
shows up is why the perpendicular stress component acts differently on the tangential compo-
nent down the ramp, than on the tangential component parallel to the ramp border. Most prob-
ably the answer lies aso in a better understanding of the relation between real polymer
properties and the concept of frozen stresses.

From the application point of view, the obtained results could be atool for attempts of spatially
patterned functionalization of the channel floor, which may be interesting in the domain of bi-
ological applications of micro fluidics. Producing flat channels in uniaxially stretched poly-
mers, with arbitrary orientation of the micrometric structure with respect to the channel
direction, could be also interesting in this domain. However, the know-how for thisisaready 9
years old [56].

Debris: The observed variationsin the chemical composition were only attributed to achange
in redeposition of well adherent debris. The total debris contribution was assumed to be a mix-
ture of two distinct types of debris: indirect debris and direct debris. This assumption certainly
simplifies the situation, but it was possible to explain al obtained data within this framework.
The quantity of the different debris types, which is redeposited in the micro channels, changes
when changing the shape of the irradiated spot and/or the ramp angle.

Indirect debrisisthe “classical” type of debris, which isobserved after Static Ablation near the
irradiated area. It redeposits due to the drag forces of the shock wave forming upon Laser Ab-
lation in ambient atmosphere [84]. The condensing experiment showed that the collisions with
the molecules of the ambient atmosphere give rise to chemica modifications of this kind of de-
bris. Compared to astatically ablated surface, surfaceswhich are covered by indirect debris con-
tain more oxygen and nitrogen, as detected by XPS. Also the surface is hydrophilic as shown
by the condensing experiment. The quantity of indirect debrisis determined by the shape of the
irradiated region, and only indirectly by the ramp angle.

Direct debrisredepositsdueto aPLD like process, i.e. the ablation products are directly ejected
in the direction of the channel floor, and no collisions with the molecules of the ambient atmo-
sphere are necessary for this kind of debris. Thiskind of debrisis specia to Scanning Ablation,
and isonly important at high ramp angles. Compared to indirect debris, direct debriswas shown
to be more hydrophobic. Nevertheless, it contains approximately the same amount of oxygen.
Real debrisisin general none of these two distinctly defined limiting cases of debris. The real
physical processis not the production of two types of debris, their mixing, and the redeposition
of the mixture. On the contrary, we should speak of a probability of the real debristo react with
oxygen or nitrogen, and its redeposition yield, which both depend on the ramp angle and the
shape of theirradiated spot. However, the experiments show, that the redeposition yield and the
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probability of reaction with the ambient atmosphere are correlated. Thisiswhy the chosen sim-
plified description is successful for the explanation of the observed effects. Some uncertainties
however remain, for example the following question: isthe indirect debris, which was observed
in the condensing experiment the same indirect debris as the one which was observed by XPS
in large channels? Further theoretical work should aim at giving a description of the observed
effects, staying closer to the physical process of the gjection of the ablation products, the possi-
ble reactions with the ambient atmosphere, and the possible redeposition.

Electroosmosis: The applied model of the changing ratio indirect / direct debris did neverthe-
less succeed to explain the observed maximum of the electroosmotic flow velocity.

Thefact that direct debrisis dominating at high ramp angles and negligible at low ramp angles,
explained the decrease of the observed electroosmotic flow velocity at ramp angles higher than
the optimum value of 4.3°. The increase at ramp angles lower than 4.3°, could be explained by
theincreasing redeposition of theindirect debris on the surface which is occupied by the already
fabricated channel, due to the shorter irradiated spot length at higher ramp angles. The variation
of the electroosmotic flow velocity with varying Scanning Ablation parameters corresponds to
avariation of the {-potential of the ablated surfaces in the channel.

This variation was determined based on a separate measurement, which allowed for the separa-
tion of the influences exerted by the ablated surfaces and the lamination, and thus yielded the C-
potentials of ablated surface and lamination at a buffer pH of 4.6. The obtained absolute values
for the {-potentials of the ablated surfaces at pH = 7 are based on the rather weak assumption
that the ratio {pet / {pE IS the same at pH = 4.6 and pH = 7. The result of the deconvolution
showed that the {-potentials of the ablated surfaces can be varied in a range of about 30% of
their maximum value by varying the Scanning Ablation parameters.

This special capacity of Scanning Ablation could be exploited in the future in order to produce
agradient of {-potentials somewhere in achannel. The practical solution of the problem isjust
aquestion of programming the computer controlled x-y-table, where the sample is mounted on,
and another motor which opens or closes the mask during the ablation. Thiswould allow to pro-
duce devices based on the combination of a chromatographic separation method and capillary
electrophoresis. For the production of long-living devices by Scanning Excimer Laser Ablation,
amore profound understanding of the aging processes of the debriswould be very useful. First
indicationswere given in thisreport, i.e. the debris becoming richer in carbon after four months,
but the dynamics of the aging on a time-scale of some weeks remains unknown. Because PET
isa“fast aging polymer”, the role of the substrate material in the aging process of the channel
surface would also be interesting and not too difficult to investigate.

In conclusion, Scanning Ablation changes all surface properties of the micro channels, except
the thickness of the amorphous layer.
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Appendix A: Development of the Static Structure
with the number of pulses

A.1 Asobserved by Satic Ablation

The development of the Static Structure with the number of incident pulses was reported and
analyzed in detaill by others [58,59]. Here, the interest of showing the SEM images in
Figure A.1-1 isto give a better impression of the different forms of the Static Structure, and to
demonstrate how the tempora development of the structure is resolved in space on ramps,
which are formed by a number-of-shots-gradient (section A.2).

Figure A.1-1: Static Ablation of the biaxially stretched substrate (® = 1200 mJ/cmz).
Series of different number of shots ng: (a) ng= 3, (b) ng = 10, (c) ng = 20, (d) ng = 50,
(e) ng =100, (f) ng=300.

A.2 Asobserved by Scanning Ablation

The ramps, forming at the beginning and the end of the channels in Scanning ablation, are
caused by a number-of-shots-gradient. In consequence, the increase of the structure size with
the number of pulses ng (Figure A.1-1) can be observed in therange ng O [1, n] on the ramps of
channels produced with n shots per site (Figure A.2-2). Thisistrue for both the scanning struc-
ture (Figure A.2-2b) and the static structure (Figure A.2-2a).
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Figure A.2-2: Variation of structure size due to shot number gradient on the end
ramps. (a) Static Structure. (Scanning Ablation, n= 200, ® =75 mJ/cm2, a=50pum,
=10°.) (b) Scanning Structure. (Scanning Ablation, n = 200, ® = 600 mJcm?, a = 100
pm, 8 =19°)
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Appendix B: Numerical implementation of Eq. 9 and
Eq. 11

B.1 Theimplemented equations (approximations)

As in the experiments the average electroosmotic flow velocity [V, [1in our composite chan-
nels is detected, it was necessary to implement the calculation of the velocity profile veg(X,y),
given by Eq. 9, and the average over the velocity profile, given by Eq. 11.

Theimplemented forms of Eqg. 9 and Eq. 11, which define the parameters, describing the preci-
sion of the numerical approximation of the value of [V [lare then

1 2 3 4
2 kup . [ OOk N N
_ 4by N osin(py)d sinh(p,x) sinh(q,x) N sinh(p,(l,—x))  sinh(q,(l,—x))
Veo(X ¥) = === H2k+1 7Y sinh(pdy) — smh(gly |© 2 T snh(p ) sinh(ay)
K=0 (B-1)
sin(mx)d {s’nh(mky) sinh(n,y) i| rjnh(mk(ly—y)) sinh(n,(l,—y)) OO
3| g T 4 i - i
2kl 07 sphimdy - Snhndy) | L Sy o o SPNOWy,  Bo
5 6 7 8
and
. N, N,
Ve = NN, X Z z Veo(Xi» ¥j), With X;, y; regularly spaced between O and |, Iy (B-2)
i=1j=1
respectively.

The numerical parameters are k;;,, the number of sum terms being considered in Eq. B-1 (in-
stead of infinity), and N, x Ny the grid size, giving the number of points, which are used for the
sampling of the velocity profile in Eqg. B-2 (instead of infinity).
One problem showed up in the implementation of EQ. B-1: when using the redlistic Debye
length 1/k of about 3 nm, numerical overflow occurred at high r-values, i.e. low ,/ly, during the
calculation of the sinh-expressions. In order to avoid this, the arguments of the sinh-functions
weretested before evaluation and the fractions of theform sinh(...)/sinh(...), which areindicated
by the numbers 1 to 8 in Eq. B-1, were approximated if necessary.
Thefractions 1, 2, 5and 6 in Eqg. B-1 are of the form
sinh(c;x)
sinh(c,c,)’
Using the definition of the sinh-function (sinhx
SiNh(C1X) ¢ (x—cy)
sinh(c,C,)
Thefractions 3, 4, 7 and 8 in Eq. B-1 are of the form
sinh(c,(c, —X))
sinh(c,c,)
Again using the definition of the sinh-function one obtains for high c;:

with ¢, ¢, = constant . (B-3)

(eX—eX)/2) oneobtains for high c;:

, with ¢4, ¢, = constant, and ¢, » C,, X. (B-4)

,  withcg, ¢, = constant. (B-5)
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sinh(c,(c, —X
_( 1(C2=X)) ~e ", withc,, c, = constant, and ¢, » C, X. (B-6)
sinh(c,c,)

B.2 Numerical tests, conver gence and precision

The convergence of the numerically calculated average flow velocity [V, [1was quantified by
the tests shown in Figure B.2-1. The convergence was evaluated independently for each param-
eter kyp and N (grid N x N), while keeping the second parameter constant at arather high value.
The graphs show the resulting curves for different channel depths (r-values).
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Figure B.2-1: (a) Dependence of the numerically calculated average flow velocity
W as a function of k, (grid size fixed to 500 x 500 points). (b) Dependence of
the calculated [V []asafunction of the symmetric grid size (k, fixed to 200).

The convergence of LV J]asafunction of k, was observed to be practically independent of r,
whereas [V [Jasafunction of N converged slightly faster for lower r-valuesthan for higher r-
values. Reasonable values for the considered sum terms and the grid are thus:

kyp = 50 and Nx N = 500 x 500. (B-7)
One might argue that a fixed number of grid points, as chosen here, is not adapted to the sam-
pling of channels of equal width and different depth, because the sampling step in the y-direc-
tion is different for the different channels. In order to estimate the development of the
numerically calculated [V, [1with decreasing sampling step, one has to consider the scales of
the channel dimensions (l,, Iy (050um) and the Debye layer thickness (1/k 003nm, for
[ion] O9mMoal/l). In order to resolve the Debye layer the sampling step hasto be less than half
of the Debye layer thickness (Figure V1.4-2), i.e. sampling step = 1.5 nm. For a channel with a
cross section of 50 x 50 um? thisresultsin agrid of N x N = 33333 x 33333 [J 1x10° points. In
other words, the Debye layer isin general not resolved in the numerical calculations of [V [l.
For very high values of r (r > 0.4926), i.e. very shallow channels, the debye layer isresolved in
y-direction, when working with agrid of 500 x 500 points.
However, the resolution of the Debye layer is not necessary for big enough channel cross sec-
tionsif asmall error isaccepted. In the calculation, all points at the border of the grid are set to
zero. Thus, the influence of the Debye layer is over-estimated for the situations where it is not
resolved. Table B.2-1 gives the relative number of the border points (2N + 2(N —2) ) with re-
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spect to the whole number of points (N x N) for symmetric grids. This value can be used as an
estimation of the error due to the fact that the Debye layer is not resolved. For comparison, the
relative channel surface, occupied by the Debye layer is< 1% for r < 0.494, when dealing with
50 um wide channels.

Grid size ‘ 30x 30 ‘ 100 x 100 ‘ 200 x 200 ‘ 300 x 300 ‘ 500 x 500 ‘ 1000 x 1000

I mportance

0,
of border 0.4%

12.9% 4.0% 2.0%

1.3% ‘ 0.8%

Table B.2-1: Estimation of the error in the numerical calculation of [V ], dueto the
use of afinite grid size for the averaging.

In consequence, the calculated [V [] are exact within 1% of precision, if the channels are
50 um wide, not to shallow (r < 0.49), and agrid of at least 500 x 500 pointsis used.

B.3 Software

The numerical implementations were performed in different environments. “Mathematica’ was
used for the first tests, because it increases the working precision until afixed precision of the
result is achieved. In consequence the approximations (Eg. B-4 and Eq. B-6) were not neces-
sary. The disadvantage of “Mathematica’, at least if it calculates with high precision, is that it
is very slow. For higher speed, Eq. B-1 and Eq. B-2 were implemented in “Delphi” (former
“Pascal”), using the 10 byte data type for highest possible precision (19-20 significant digits,
upper limit = 1.1x10%%% ). Thisimplementation was used to generate the plots presented in this
section. Finaly, for thefitting of the experimental datathe implementation wastrans ated to the
programming language of Igor Pro (Version 3.14).
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Appendix C: Linearity of Eq. 9 at constant channel
Cross section

C.1 Explicit form of const4(ly, ly) and consty(ly, ly) in Eq. 24

Andreev et al. [106] gave the following expression for the electroosmotic flow velocity profile

Vo iN arectangular micro channel (Eq. 9):
a2 oen(py) rsinh(px)  sinh(q,x) sinh(py(Ix=X))  sinh(qy(l,—x))70
] ]+ }

Voq (X, =-— X i T s
wo(%Y) w2 2k+1 7l sinh(p,l,) sinh(ql,) 0

sinh(pl,) sinh(ql,)

+sin(mkx)|] sinh(myy)  sinh(n.y) N sinh(mk(ly—y)) sinh(nk(ly—y)) o
[ } 4[ sinh(myl,) sinh(nyl,) J

2k+1 3| snh(mg,) ~ sinh(n) 98 (G
Here py, g, My and n are simple functions, depending only on the channel dimensionsly, Iy, the
Debye length k, and the sum counter k. Also, by, {4, {5, {3 and {, are constants, independent of
the sum counter k as well as the variables x and y. Especially for laminated channels, {3 = (|,
and {; = (5, = {4 = {, the {-potentials of the lamination and the substrate respectively.

One can thus rewrite Eqg. 9:

002 © o - -

4b, gsin(mx)rsinh(my) sinh(ny)

_ . 0% k W) K
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O

H 403 - %ﬁn(pkw[énh(pkx) sinh(q,x) +r§in(pky){9nh(Pk(|x—X)) Sinh(qk(|x—x))E

+ZSE‘? 2k+1 [snh(pl,) sinh(qly) P O2k+1 [ sinh(pl,) sinh(qyl,)
k=0
csin(magrsinh(my(l,—y))  sinh(n, (1, -v)) .
+D2k+l[ sinh(mily) - sinh(nzly) E (C-2)

Averaging of Vg (X, y) (Eqg. 11) yields:

_ gsin(mx)rsinh(myy)  sinh(ny) O O
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g 2 xly ® : : ; ; ; i
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00k=0
: . . u
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For agiven channel cross section, i.e. Iy, I, = constant, both expression in the parentheses fol-

lowing the {-potentials are constant. Thus we can write (Eq. 24):
e = consty (1, 1) x {g+ consty(ly, 1) x ¢ (C-4)
with
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APPENDIX C.1 EXPLICIT FORM OF CONST{(Ly, Ly) AND CONST,(Ly, Ly) IN EQ. 24
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and
Ix Iy © . . .
B 4b§ osin(mx)rsinh(myy)  sinh(ny)0 .
constplbe ) ==2 [ 3 Baken [sinh(mkly)_sinh(nkly)}g dyax . (C-6)
00k=0
In other words, the average electroosmotic flow velocity is linearly dependent on the different
(-potentials, as long as the cross section of the channel is constant. However the constants of

thislinear relationship (Eq. C-4) cannot be evaluated symbolically.

1,
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APPENDIX D: LIST OF SYMBOLS AND ABBREVIATIONS

Appendix D: List of symbols and abbreviations

D.1 Symbolsused (alphabetical order)

X

dtot

Explicit multiplication sign.
Approximately equal.
Defined as.

Spot length of light on the sample, measured in scanning direction.

Effective high intensity absorption coefficient in Beer’s law.

Constant in Andreev’s formula

Wall angle (vertical = 90°)

Multiple pulse structure depth, mostly channel depth.
Draw rétio of stretched polymer samples. DR= I/,

Pressure difference, inducing pressure driven flow.

Resolution of the mask projection.

Euler constant.

Electron charge.

Driving field of the electroosmotic flow (in channel direction).

Absolute value of ?Z (without sign).
Dielectric vacuum permittivity.

Relative dielectric permittivity of electrolyte.

Pulse repetition rate.

Solid angle in the density distribution of the gjected particles.
Angle between Sand S.

Laser fluence per pulse, usualy in mJcm? .

Ablation threshold fluence.
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APPENDIX D.1 SYMBOLS USED (ALPHABETICAL ORDER)

% Equilibrium contact angle.
Ya Advancing contact angle.
Ve Receding contact angle.

h(®) Ablation rate per pulse at fluence @.

n Viscosity of electrolyte.
Kg Boltzmann constant.
Kup Upper k-value (counter) in the numerical approximation of the infinite sums.

1k Debye length (Debye layer thickness).

I Polymer sample length after stretching and annealing.

lo Original polymer sample length.

lg Polymer sample length after stretching.

[y Width of the channel in the calculation (a in the Andreev’s paper).
ly Depth of the channel in the calculation (b in the Andreev’ s paper).
A Wavelength.

A\ Lateral size (period) of static structure.

my Simple function in Andreev’s formula.

n Number of pulses per site.

Nk Simple function in Andreev’s formula.

Ng Applied shot number (Appendix A).

p Exponent in the density distribution of the gected particles.

P Simple function in Andreev’ s formula.

[P,cosB Second momentum of the statistical chain orientation function. The higher
[P, cosBL], the better the chains are aligned.

Ok Simple function in Andreev’ s formula.

r Ratio of laminated surface and total channel surface (e/f in our paper).
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APPENDIX D: LIST OF SYMBOLS AND ABBREVIATIONS

RR Relative retraction of stretched polymer after annealing. RR= I/ 1

p(d) Density distribution of ejected particles. p(¢) = pg * cos(d))IO

Po Normalization factor in the density distribution of the gjected particles.

Frozen stress in the stretched polymer sample.

Stress component parallel to the ramp border and parallel to the sample surface.

Stress component in the direction of the ramp and parallel to the sample surface.

S
Sa
S
S Stress component in the direction of the ramp and parallel to the irradiated sur-
face.

Sy

Stress component in the direction of the ramp and normal to the irradiated sur-
face.

Oxy Interfacial energy per surface area (surface tension) of the interface formed by
compound X and Y.

T Absolute temperature (Kelvin).
Pulse duration.

T
) Ramp angle, usually in degrees
’ First [imiting angle. Between static and scanning structure.

" Second limiting angle. Between scanning structure and smooth ablation.

% Scanning speed.
Veo Electroosmotic flow velocity of the buffer solution in the channel.

W  Average electroosmotic flow velocity in the channel. (= Vi)

Veo(Xy)  Electroosmotic flow velocity profile.

W Channel width at the bottom (channel floor).

W Width of the channel at the top (lamination).

[X] Concentration: particles of species x, per volume.
X Recovery ratio of the stretched polymer after annealing.

(s Zeta-potential of the substrate.
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{| Zeta-potential of the lamination.

D.2 Abbreviations (alphabetical order)

AFM Atomic Force Microscopy

APD Ablative Photo Decomposition

ATR-IR Attenuated Total Reflection Infrared Spectroscopy
ESCA Electron Spectroscopy for Chemical Analysis
ESEM Environmental Scanning Electron Microscopy
FFT Fast Fourier Transform

IR Infrared

LIF Laser Induced Fluorescence

LIPSS Laser-Induced Periodic Surface Structures
U-TAS Micro-Total Analyzing System

PE Poly (ethylene)

PEI Poly (ether imide)

PEN Poly (ethylene naphthal ate)

PET Poly (ethylene terephthal ate)

Pl Poly (imide)

PLD Pulsed Laser Deposition

PMMA Poly (methyl methacrylate)

PP Poly (propylene)

PS Poly (styrene)

SEM Scanning Electron Microscopy

TEM Transmission Electron Microscopy

TOF-MS Time of Flight Mass Spectrometry

uv Ultraviolet

XPS X-ray Photoel ectron Spectroscopy
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