RATE-DISTORTION OPTIMAL MESH SIMPLIFICATION FOR
COMMUNICATIONS

THESE N©° 2260 (2000)

PRESENTEE AU DEPARTEMENT DE SYSTEMES DE COMMUNICATION
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES TECHNIQUES

PAR

Laurent BALMELLI

Ingénieur informaticien diplémé EPF
de nationalité suisse et originaire de Paradiso (T1)

acceptée sur proposition du jury:

Prof. M.Vetterli, directeur de thése
Prof.Y.Dodge, rapporteur
Prof. M. Gross, rapporteur
Dr J.Kovacevic, rapporteur

Prof. Th. Liebling, rapporteur

Lausanne, EPFL
2002

Abstract

The thesis studies the optimization of a specific type of computer graphic representation:
polygon-based, textured models. More precisely, we focus on meshes having 4-8 connectivity.
We study a progressive and adaptive representation for textured 4-8 meshes suitable for
transmission. Our results are valid for 4-8 meshes built from matrices of amplitudes, or given
as approximations of a subdivision surface. In the latter case, the models can have arbitrary
topology.

In order to clarify our goals, we first describe a transmission system for computer graph-
ics models (Chapter 1). Then, we review approximation techniques (Chapter 2) and study the
computational properties of 4-8 meshes (Chapter 3). We provide an efficient method to store and
access our dataset (Chapter 4). We address the problem of 4-8 mesh simplification and give an ef-
ficient @(n log n) algorithm to compute progressive and adaptive representations of 4-8 meshes
using global error (Chapter 5). We study the joint optimization of mesh and texture (Chapter 6).
Finally, we conclude and give future research directions (Chapter 7).

Resumeé de la these

Cette theése étudie I'optimisation d’un type spécifique de modele en graphisme: les
représentations basées sur polygones texturé€s. Plus précisement, nous nous concentrons
sur les meshes ayant une connectivité 4-8. Nous étudions une representation progressive et
adaptative pour les meshes de type 4-§, adéquate pour la transmission. Nos résultats sont
valables pour les meshes de type 4-8 construits a partir d’une matrices d’amplitudes ou donnés
comme approximations d une surface de subdivision. Dans le dernier cas, les modeles peuvent
avoir une topologie arbitraire.

Afin de clarifier nos buts, nous décrivons premiérement un syst¢tme de transmission pour
modeles graphiques (Chapitre 1). Ensuite, nous présentons une révision des techniques
d"approximations (Chapitre 2) et nous étudions les propriétés computationelles des meshes de
type 4-8 (Chapitre 3). Nous décrivons une méthode efficace pour stocker et accéder nos données
(Chapitre 4). Nous adressons le probléme de simplification de mesh de type 4-8 et nous don-
nons un algorithm en ©(n logn) pour calculer des représentations progressives et adaptatives
en minimisant I’erreur globale (Chapitre 5). Nous étudions 1'optimisation jointe des meshes et
textures (Chapitre 6). Finalement, nous donnons une conclusion, ainsi que de futurs directions
de recherche (Chapitre 7).

Contents

Abstract iii
Resumé de la thése v
1 Introduction 1
1.1 Motivation 1
1.1.1 Computer graphicseverywhere 2
1.1.2 Synthesis of images from computer graphics models 2
1.1.3 Scalable and adaptive graphics 3
1.1.4 Towards a transmission system for computer graphics 4
1.2 A transmission systemforgraphicmodels 4
1.21 Modelassumptions 4
1.2.2 Transmitted information L. 5
1.2.3 Renderingatthereceiver 6
1.2.4 Channel characteristics and networkmodel 6
1.2.5 Transmitter-receiverinteractions 7
1.2.6 Optimization problems and constraints 9
1.2.7 Proposal fora transmissionsystem. 10
1.3 Thesisplan e 12
1.3.1 A journey in piecewise-linear function approximation 12
1.3.2 Computational analysisof 4-8meshes 12

1.3.3 Quadtree data structure for efficient storage and access of 4-8
meshes e 12
1.3.4 Progressive meshes in an operational rate-distortion framework . 12
1.3.5 Joint geometry and texture optimization 13
1.3.6 Conclusion e e 14
Chapter appendix 14
1.A Thesis-at-a-glance oL 15

vii

viii CONTENTS
2 A journey in piecewise-linear function approximation 17
2.1 Introduction 17
2.1.1 The exact world of approximation 17
2.1.2 Optimizing the polylinemodel 17
21.3 Contributions e 19

2.1.4 Algorithm classification anddataset 20

2.2 Approachestoapproximation 21
2.2.1 Idea of successive approximations 21
222 Errordependency e 21
2.2.3 Monotonicity of solutionerrors 23
224 Progressiveness i i it e e e e 24

2.3 Best solutions using dynamic programming 25
2.3.1 Optimal algorithm usinga causalapproach 25
2.3.2 Dynamic programming complexity 27
2.3.3 Discussion of the multidimensionalcase 28

2.4 Reducing complexity usinggreediness 28
241 Greedystrategy 28
2.4.2 Greedy refinement and decimation 29
2.4.3 Complexity and results comparisons 31
2.4.4 Discussion of the multidimensionalcase 35

2.5 Tree-constrained approximation, 36
251 Introduction 36
2.5.2 Application of greedymethods 38
2.5.3 Multidimensional case: meshes obtained by subdivision 41
2.54 Usingaglobal errorestmate 43

2.6 Optimal tree-constrainedapproach 46
26.1 Introduction 46
262 Algorithm e e 47

2.7 Review of algorithm properties 51
2.8 SUMMATY . . . e et e e e e e e e 52
Chapter appendix 53
2.A Computational complexity model and notations 55
2.A.1 Random Access Machine (RAM)model 55
2.A.2 Notations for computational complexity 55
2.A.3 Computational optimality 56

2.B Pseudo-code foruoptimal, 57
2.C Pseudo-code forurefine 58
2.D Pseudo-code forudecimate 60

CONTENTS ix

3 Computational analysis of 4-8 meshes 61
3.1 Introduction 61
3.11 Motivation 61
3.1.2 Previous work on simplification algorithms 62
3.1.3 Contributionsandplan 63

3.2 4-8meshconstruction 64
3.2.1 Connecting a matrix of amplitudes 64
3.2.2 Arbitrary topologies and subdivision surfaces 65
3.2.3 Constraints when simplifying4-8 meshes 66

3.3 Analysis of simplification operations, 68
3.3.1 Decimation and insertionofavertex 68
3.3.2 Setsofancestorvertices 73

3.4 Mergingdomainintersections 77
3.4.1 Howtodescribeanintersection. 77
3.4.2 Modeling of the intersection between a pair of merging domains . 78
3.4.3 Computationalcost. 81
3.4.4 Algorithm computing all intersections 83

3.5 Application: cost of algorithms using localerror 84
3.8 SUMMAIY o e e e e e e 84
Chapter appendix 85
3A Proofs e e 87
3.A1 Proofof Proposition3.1 87
3.A.2 Proof of Proposition 3.2 89

4 Quadtree data structure for efficient storage and access of 4-8 meshes 91
4.1 Introduction e N
4.1.1 Design of an efficient data structure 91
4.1.2 Contributionandplan 92

4.2 Background materialandreview 93
4.2.1 Square quadtree and triangle quadtree 93
4.2.2 Overview of mesh storage using quadtrees 94
4.2.3 Restrictedquadtree 94
4.2.4 Linear quadtrees and neighbor finding techniques 96

43 Aquadireefor4-8meshes 97
4.3.1 Designofthelocationcode 97
4.3.2 Semi-linearquadtree Lo 98

4.4 Neighbor-finding technique 99
4.4.1 Aclosed formforindex differences 99
442 Recurrence equations for the relative level distance 100

4.4.3 Interleavedcoordinates 101

CONTENTS

X
444 Traversalsandtraversalpaths. 103
4.5 Efficient storageofthemesh 00, 106
4.6 Furtherconstructions, 107
4.7 Algorithmsfor4-8meshes oo, 110
4.8 SUMMAIY . . . o ot it i et e e e e e e e e e e 111
Chapter appendix 112
4.A Proofs e e e e 113
4.A1 Proofof Theoremd4.1 113
5 Progressive meshes in an operational rate-distortion sense 117
5.1 Introduction 117
51.1 Motivation e 117
5.1.2 Contributionsandplan. 118
5.2 Algorithmdescription. o 119
5.2.1 Key issues when processing large meshes 119
5.2.2 Central problemand soluton 120
53 Analysis e 123
5.3.1 Updateofglobalerror 123
532 Complexity e 128
5.4 Discussionofoptimality 128
541 Optimalchoice 129
5.4.2 Intersection between domains and optimal choice 130
5.4.3 Monotonicity e 131
5.5 Experimentalresults o 132
5.5.1 Terraindatasetandmeasures. 132
5.5.2 Comparison with methods using localerror 133
5.5.3 Decompositionofterraindata 134
B.B SUMMANY e e e e e e e 136
Chapter appendix 136
5.A Evaluationof meshfunctionals 137
6 Joint mesh and texture optimization 139
6.1 Introduction e 139
6.1.1 Motivation 139
6.1.2 Contributionsandplan. 140
6.1.3 Classical approaches to texture processing and encoding 141
6.2 Problemformulation 143
6.2.1 Joint mesh-texture optimization 143
6.22 Marginalanalysis. 144
6.3 Algorithmdescription o L 147

CONTENTS

xi

6.3.1 Space of solutions and complexity
6.3.2 Efficientgreedystrategy

6.4 Experiment
6.5 Summary

Chapter appendix

alresults

6.A Models on the nearoptimalpath

7 Conclusion

7.1 Introduction e e e e

7.2 Transmitter

characterization and module interplays

7.2.1 Review of approximation algorithms
7.2.2 Efficient, scalable geometryencoding
7.2.3 Model approximation under constraints
7.3 Future work and research directions
7.3.1 Mesh compression in an operational rate-distortion sense

7.3.2 Join
7.3.3 Join
7.4 Status and
7.5 Summary

Bibliography
Acknowledgments

Curriculum vitae

t approximation-compression
t encoding of meshandtexture.
availability o

147
148
149
150

151
155

157
157
157
157
158
158
160
160
160
160
161
161

162
171

173

Xii

CONTENTS

Chapter 1

Introduction

“A picture is worth a thousand words.”
— CHINESE PROVERB,

“Although this may seem a paradox, all exact science is dominated by the idea of
approximation.”

- BERTRAND RUSSELL,

1.1 Motivation

In this chapter, we introduce the reader to the background of the thesis. We delineate a concep-
tual transmission system for a specific type of computer graphics representation, i.e. textured
polygon-based models. We give short descriptions of the system main components. Our aim is
neither to give a precise specification, nor to describe an implementation of such system. We use
it as a context within which the results of this thesis can fit. Then, we give a plan for the thesis.

1

2 Chapter 1.

1.1.1 Computer graphics everywhere

Until the early 1980’s, computer graphics was a small and specialized field dealing with the
display of monochromatic and edgy graphic primitives on huge and heavy screens. Today,
even people who do not use computers encounter computer graphics in television commercials
and in cinematic special effects. Complete movies are generated using only computer graphics
techniques. Thus, computer graphics are no longer a rarity. It is part of all computer user
interfaces and is indispensable for visualizing two-dimensional and three-dimensional objects.

Computer graphics should not be confused with the related field of image processing. While
the former concerns the synthesis of real and imaginary objects from their computer-based model,
the latter treats the converse process: The analysis, or the reconstruction of models from their
picture. Subareas of image processing include, for example, computer vision, scene analysis or
pattern recognition. Today computer graphics are largely interactive. Static pictures are a good
means of communicating information (following the chapter epigraph), but dynamic pictures
convey a higher level of understanding - “a moving picture is worth a thousand static ones”
(Foley,1988) is more appropriate for computer graphics.

1.1.2 Synthesis of images from computer graphics models

A computer graphics model defines an object, or more generally a scene of objects as a set
of primitives. A choice for those primitives usually depends on the user’s needs. In practice,
primitives are defined in graphic languages or applications. For example, an object can be given
by its mathematical definition (when available), by a set of simpler entities (like cubes, spheres,
etc.) or more simply by a set of sample points, called vertices, and a method to interconnect
them. Additionally, a model specifies properties for its components such as colors or texture
specifications [26].

Assume a model defining a surface with a bivariate function. Different approaches exist to
synthesize an image from the specification. Ray tracing determines the visibility of the surface
by tracing imaginary rays from the viewer eyes. The image is a snapshot of the model from a
viewpoint. For each pixel in the window on which the image is rasterized!, an edge ray is fired
from the center of projection into the scene. The pixel color is set to that of the object part
at the closest point of intersection. This technique provides the most realistic representations,
but the complexity of casting one ray per pixel and computing its trajectory is, unfortunately,
computationally demanding and inapplicable for interactive graphics [38].

Consider now a surface model given by a set of vertices, possibly obtained by sampling its
mathematical description. Additionally, a set of polygons defined on these vertices is speci-
fied. Polygonal representations are more efficient since vertices are projected and their polygons

1 Rasterization names the process used to display an object on the screen. Today's computer screens are raster displays
and represent any graphic primitives, curved or straight, with a matrix of squares named pixels.

1.1. Motivation 3

rasterized on the window,, filling arbitrary large pixel areas (both steps, the projection and the ras-
terization, are part of a sequence of operations called rendering). Polygon rendering is the most
common synthesis technique for today’s computer graphics and is supported by computer hard-
ware. Its efficiency allows for rendering 20k polygon models at interactive rates, for example at
more than 30 frames (i.e. images) per second. Modern graphic hardware architectures include
a pipeline to render polygonal representations. More specifically, these architectures support
triangular meshes, rather than a model defined with arbitrary polygons. Triangles are generally
more convenient since they are defined with three coplanar vertices. The obvious requirement to
render planar facets is more difficult to verify for general polygons.

1.1.3 Scalable and adaptive graphics

As hinted in the previous section, the computational effort involved in polygon rendering is a
function of the number of triangles in the model, referred to as model complexity. Obviously, the
more triangles, the more intensive the rendering process. Even though graphic hardware systems
are efficient, interactive rates can only be sustained with relatively small number of triangles.
Rendering highly complex models is still a challenge for current architectures.

To cope with available computational resources, researchers have proposed multiresolution
decompositions of graphic models by investigating simplification algorithms. Using multireso-
lution techniques, models can be rendered at multiple levels of details. For each level, we obtain
an approximation using a limited number of vertices and triangles. The representation can then
be adapted to the computational resources of the host computer.

From another point of view, model compression has been studied to reduce storage require-
ments. Generally, compression does not aim at reducing models’ complexity, but at providing a
more compact description. Apart from vertices, polygonal representations provide connectivity
information, i.e. the description of a set of triangles. Works in compression attempt to minimize
connectivity information by exploiting the redundancy of connected sets of triangles [17, 85].
The vertex coordinates are subsequently encoded using, for example, predictive coding. Finally,
the remaining values are compressed using well-established quantization techniques [31].

Computational efficiency of optimization algorithms, either for simplifying or compressing
models, is crucial. The need to optimize highly complex models is inherent in many disciplines.
Geographical Information Systems (GIS) deal, for example, with large datasets [50}, mainly
terrain data and aerial photographs. Processing, storing and browsing these datasets requires
efficient algorithms and data structures.

4 Chapter 1.

1.1.4 Towards a transmission system for computer graphics

With increased use of the Internet, exponential growth of computer networks, and demand
for multimedia communications, the need for computer graphics fitting a connected world is
obvious. Applications of computer graphics in communications are rapidly appearing. For
example, the upcoming standard for low-bitrate video encoding MPEG4 [83] uses polygonal
meshes to improve compression and display quality. For GIS, efficiently accessing remote
databases of complex models is a must. Graphic models for communications must deal with
both the diversity of network characteristics and the heterogeneity of host computers with
varying storage and computational resources.

The optimization methods described in Section 1.1.3 (i.e. simplification and compression)
provide ways to adapt graphic models to the multiple constraints inherent to transmission sys-
tems. The field of transmitting graphic models is still in its infancy and many questions remain
open. Encoding methods must simultaneously provide compactness for model representation
(for example, to fit the available channel bandwidth) and also meet the rendering capacity at the
receiver. Also, they must deal with the heterogeneity of model components. For example, in
the case of GIS, consider jointly transmitting terrain data and related aerial photographs. Last
but not least, systems must be scalable to highly complex models and therefore provide with
algorithms that efficiently exploit the transmitter and receiver resources, both in computation
and storage.

These exciting issues provides a ground for this thesis and motivates our efforts to delineate
a conceptual transmission system for computer graphics models. Recall that our intention is
not to give the full specification of such a system, but to identify its main components and the
issues related to the transmission of graphic models. We only consider model with a specific
connectivity and propose several optimization techniques for these models. For images (e.g.
given as textures), we however assume having encoding methods. The results in this thesis give
solutions to the identified issues, according to our model assumptions. In the next sections, we
first define in detail the problems to address. Then, we introduce our solutions and give a plan
for the thesis.

1.2 A transmission system for graphic models

1.2.1 Model assumptions

We consider textured, polygon-based representations of graphic models. These representations
are mainly composed of:

o Geometry, connectivity information.

e Texture data.

1.2. A transmission system for graphic models 5

The geometry is formed by a set of vertices. The connectivity defines how the vertices are
connected to create a set of polygons. Both geometry and connectivity form a mesh, i.e. a
wireframe representation. We will assume a particular connectivity for our models and will give
details in later sections. Possible attributes for vertices such as colors and normal vectors > can
also be specified.

A texture can be given as an image to be mapped onto the polygons>. Texture images are
used to represent fine details and greatly increase the realism of polygonal models. Suppose,
for example, that you want to create a wooden box. Wood being subtle in detail, a tremendous
number of triangles would be necessary to faithfully reproduce its structure. Consider a simple
cube model (Figure 1.1a) and assume you own a picture of the face of a real wooden box, then
texturing is used to map the image on the polygons to create a “wood effect” (Figure 1.1b).
Identically, a small sample of wallpaper texture can be tiled on the object surface (Figure 1.1c).

Texture data is composed of a set of images, possibly a single one, as well as side information
describing how texturing is performed. For example, when multiple textures are given for the
model, one has to specify the relations between the texture elements (possibly replicated) and
the polygons. Current graphic hardware systems support rendering of textures at a much inferior
cost than the one required to render polygons. Texturing operates mainly as a low-cost geometry
replacement.

In order to describe realistic objects, our graphic representation is therefore composed of
two complementary types of information. Their respective storage sizes vary between models.
For example, a model can have simple geometry and high-resolution texture information (for
example the wood box in Figure 1.1b). In this case, texture data is much larger that geometry in-
formation. Conversely, a model can have high geometric complexity and low-resolution texture.
Both types of information are different in nature and are often optimized separately.

1.2.2 Transmitted information

In the previous section, we defined our graphic representation as composed of two types of in-
formation: geometry (along with connectivity) and texture. Consider now that these components
are gathered in a single source to transmit. Then, an appropriate definition for the source is

o The information to transmit in order to synthesize a view of the model at the receiver.
The source can be either
e Static when its definition (geometry, connectivity and texture) does not change in time.

o Dynamic when its definition is time-varying.

2We will later explain how normal vectors are used in the rendering process.
3Note that alternate definitions for texture exist, see [26) for more details.

6 Chapter 1.

(a) (h) (c)

Figure 1.1: increasing realism using textures: (a) A box modeled with a simple
cube. (b) The cube is mapped with a wood texture. (c) A wallpaper texture is tiled
on the cube.

For the case of a dynamic source, we can think about an input system generating a texture ac-
quired from a video camera and jointly sending geometry and connectivity information.

1.2.3 Rendering at the receiver

Recall that the source represents a portion of a tridimensional scene. Then. at the receiver an
image is rendered from the source given a viewpoint. The scene view is defined as

o Static when a change in viewpoint does not require new data to be transmitted in order to
render the scene.

Conversely, the view is defined as
e Dynamic when new data is required to render the scenc after a change in viewpoint.

For example. consider that the user visualizes only a small part of a large model and that the
transmitter restricts the transmission to currently visible information only. A significant change
in viewpoint uncovers new regions of the model and requires new data to be sent. In general,
we consider the rendering resources at the receiver as time-varying. For example, the resources
can be measured as the number of textured triangles rendered per second. denoted by rri/s. This
measure corresponds to typical characteristics of today's graphic hardware systems.

1.2.4 Channel characteristics and network model

We examine now the entity linking transmitter and receiver: the channel or more generally
the underlying network. The rate of the bitstream generated by the transmitter must meet the
bandwidth requirements of the transmission channel. Also, the design should assume that the
channel performances vary in time and the system is able to adapt to bandwidth variations. The
channel resources are expressed in rransmitted birs per second (b/s). Usually, performances are

1.2. A transmission system for graphic models 7

in the magnitude of kilobits or megabits per second, respectively denoted by Kb/s and Mb/s.

Figure 1.2 depicts the network model underlying our transmission system. For the moment,
we do not assume any particular protocol for the transmission. Each entity (transmitter, channel,
receiver) is represented, as well as the constraints. In the figure, a single transmitter supplies
three receivers bounded with different channel and resource characteristics. The arrows represent
transmitted bitstreams at different rates. The solid, dashed and dotted arrows depict bitstreams
at 128, 256, 512 Kb/s, respectively. Note that the values on the links in Figure 1.2 give the total
channel capacities and not the bitrate values. The receiver R.; is fed at the highest bitrate since
its downlink and rendering resources result in the greatest capacity combination in the network.
R acquires the lowest bitrate despite a 512Kb/s downlink: Its weak rendering performances
prevent a fast transmission. Finally, R 3 receives a 256Kb/s bitstream, hence maximizing the link
usage. In this example, we assume that the transmitter is computationally able to generate the
bitstreams.

transmitted bitrates
—m 512 Kb/s
~=—=m 256 Kb/s
~eeee- 128 Kb/s

: capacity

~ |512 Kb/s

o N

O
e >
BizRea,

2K tri/s

Figure 1.2: Network model and constraints: Each channel is
bandwidth-constrained. The limitations are expressed in megabits per second
(Mb/s) or kilobits per second (Kb/s). Additionally, each receiver has limited
rendering performances. The client resources are expressed as rendered textured
triangles per second (tri/s).

1.2.5 Transmitter-receiver interactions

This section describes the interaction between the transmitter and the receiver for each type of
source (i.e. static or dynamic) and each type of view (i.e. static or dynamic). This interaction is

8 Chapter 1.

typically implemented with a protocol. We have then four cases of interaction to examine. Each
type of interaction, depicted in Figure 1.3, are explained below:

source type receiver interaction

static source { static view l

dynamic source { dynamic view I

Figure 1.3: Interactions between the receiver and the transmitter for both types
of sources and receiver feedback. In the case of a dynamic view, an explicit
feedback from the receiver is needed.

o Static view of a static source (SVSS): In this case, no feedback from the receiver is
required. To cope with the rendering capabilities at the receiver side, the transmission can
be stopped when sufficient information has been transmitted . For example, the download
of a complete model fits this case.

o Static view of a dynamic source (SVDS): In this case, a feedback from the receiver
is necessary to adapt to the receiver resources and channel bandwidth variations. An
example for this case is a video-telephony system improved with geometry information.

¢ Dynamic view of a static source (DVSS): The case is very similar to the SVDS. Again,
feedback is needed from the receiver to adapt to the receiver resources and channel band-
width variations. Also, feedback is needed to report viewpoint motions. For example,
this type of interaction is needed when viewing very large models, i.e. only part of the
scene can be transmitted. Caching algorithms can be used in order to reduce transmission
requirements. Implementing caching in the SVDS case is indeed not obvious.

o Dynamic view of a dynamic source (DVDS): In this case, feedback is required to report
receiver resource and channel bandwidth variations and viewpoint motions. Information
on the viewpoint is required to know which part of the scene must be encoded by the
transmitter. For example, consider a model too large to be transmitted completely and that
only a subpart (ideally the visible part) is encoded. A new transmission is necessary when
the viewpoint is significantly changed (i.e. new parts of the scene are unveiled).

4We will later clarify under which constraints such assumption can be made.

1.2. A transmission system for graphic models 9

Finally, note that the source can be simplified taking into account the viewpoint (view-dependent
optimization, as in [44]). In the opposite case, methods are often called world-space optimiza-
tions. Since world-space based methods do not assume any viewpoint when optimizing the
model, there are lighter in transmission since they allow for a larger range of views with the
same information.

1.2.6 Optimization problems and constraints

In this section, we explain the main issues to address in our transmission system and examine
the constraints to solve in each case of interaction presented in Section 1.2.5. For the design of a
transmission system, we must consider the following problems:

1. The transmission time must be minimized such that scenes are rendered as fast as possible
at the receiver.

2. The frame rate (number of images displayed per second) must be sustained, according to
the receiver capabilities.

3. The quality of the rendering must be maximized according to the transmitter, channel and
receiver constraints.

The optimization problem for the transmission can be studied from a communication point of
view or from a computer graphics point of view. Hence, in the first case the encoding of the
source is bandwidth-constrained, and adapts to the channel capacity. In the second case, the
encoding is adapted to the rendering performances at the receiver.

¢ Problem 1 is solved with a joint source-channel coding of the scene. This problem is an
active area of research in communications and several solutions have been proposed for
the transmission of video [61].

s Problem 2 is solved with a joint source-rendering coding. This problem has been addressed
in the computer graphics community with multiresolution techniques for graphic models
[43, 30].

e Problem 3 is the general problem in a transmission system. In this case, a joint source-
channel-rendering coding has to be addressed.

We have described four types of interaction between the transmitter and the receiver in Sec-
tion 1.2.5. For each case, we explain which constraints have to be met:

e For the SVSS interaction, only the receiver constraints have to be met. The time to trans-
mit the model will depend on the available bandwidth, therefore a compact encoding of
the model will improve the performances. In the particular case of a static source, a pre-
optimization of the model can be computed in order to free the system from the computa-
tional constraints at the transmitter.

10

Chapter 1.

For the SVDS interaction, the constraints are: the transmitter computational resources, the
channel bandwidth and the receiver constraints. The system must be efficient to quickly
encode the time-varying source definition, and transmit at a rate coping with the channel
constraints. Additionally, The complexity of the transmitted scene must match the receiver
capabilities.

For the DVSS interaction, the constraints are similar to the ones in the SVDS case. How-
ever, as previously explained, caching algorithms can be used in order to lighten the trans-
mission. When sufficient parts of the scene are cached, then the interaction is reduced
to the SVSS case. Note that caching might be difficult to implement when the scene is
view-dependently encoded.

Finally, for the DVDS interaction, all constraints of the SD case have to be met. However,
in this case the receiver constraints are more involved since we must take into account the
motion of the viewpoint. This aspect implies a complex receiver-transmitter protocol in
order to adapt to the transmission rate.

1.2.7 Proposal for a transmission system

In the previous sections, we identified the elements of a transmission system, as well as their
interactions. Also, we explained the main issues and gave the constraints to be met for each type
of interaction. In this section, we propose a model for the system (Figure 1.4).

Scope of transmission system
Fommmmmmcmc—mmcmmmm———— o

Database ;

]
R Geometry Geometry
é T encoder network decoder
@, model
g System codecs System codecs
) J
E | Texture ' Texture
g‘ : encoder --:~ decoder :-.'_
< . |
| ! 1
] 1
+ L System Control) System Control | 53
' n ! 'stem Control 2
: ! > | =8
]
1

Figure 1.4: Scope and elements of our transmission system.

Our proposal for a transmission system is based on the recommendation for H.324, a low
bitrate system for videotelephony [66]. H.324 addresses and specifies a common method for
sharing video, data, and voice simultaneously using high-speed (V.34) modem connections over
a single analog telephone line. It also specifies interoperability under these conditions, so that
videophones, for example, based on H.324 will be able to connect and conduct a multimedia

1.2. A transmission system for graphic models 11

session. Of the three ITU standards that address videoconferencing —H.324, H.323 and H.320-
H.324 has the broadest impact in the marketplace. That is because H.324 incorporates the most
pervasive communication facility installed today, on a global basis. The proposal for H.324 is
very complete and takes into account several practical aspects of the infrastructure (for example
the network). Our system is inspired from the H.324 specification because it treats important
aspects of the transmission of heterogenous data (in this case video, voice and data). We reuse
its main components in our system. We explain now each relevant aspect of the system depicted
in Figure 1.4:

System codecs Following our graphic model assumptions, the transmission system ideally
contains one codec (encoder/decoder) per type of information. Specifically, a mesh codec op-
timizes and encodes the geometry and connectivity of the model, whereas an image codec pro-
cesses the texture data. The set of algorithms, as well as the data structures involved in the
processing and the transmission of the models, must be efficient and scalable. Their perfor-
mances are crucial in the case of a dynamic source, and they bound the system ability to process
large models.

System control This component is similar to the Multimedia System Control H.245 [67] de-
scribed in H.324. The system control configures the codecs parameters in order to generate a
bitstream at optimal rate. In the general DVDS case (Section 1.2.5), this component runs a com-
plex algorithm to determine the optimal bitrate according to the constraints of the system. It also
generates the control information, embedded in the protocol involved between the transmitter
and the receiver (Figure 1.6.

Multiplexer/demultiplexer A multiplexer creates an heterogenous bitstream containing
both geometry, connectivity and texture information, as well as control data. This component
operates as H.223 [68] in the specification of H.324. It transforms the codec outputs into a
single bitstream according to a pattern given by the system control. The pattern allocates a
fixed number of bits to each codec output and control data. The pattern definition is dynamic,
therefore bits are redistributed under constraint changes.

Finally, note that the interaction cases in Section 1.2.5 are used to define an application-
layer protocol [37] for the system. To transmit the bitstream, we assume that the use of existing
transmission protocols such as UDP, TCP or RTP [33] is sufficient. For example, in the case of a
SVSS interaction, TCP can be used since the transmission time is not bounded a priori. However
in the SVDS and DVDS cases, protocols like UDP or RTP should be considered.

12 Chapter 1.

1.3 Thesis plan

In this section, we give a plan for the dissertation and give comments for each chapters. Ap-
prendix 1.A also gives a short, more visual, plan for this thesis. It can be used by the reader to
quickly find important sections, such as contributions and chapter summaries. We explain now
each part of our solution.

1.3.1 A journey in piecewise-linear function approximation

In Chapter 2, we begin this thesis with a technical review of approximation algorithms in com-
puter graphics. We apply a set of algorithms to a simple graphical model: monodimensional
piecewise-linear functions, or polylines. We draw parallels with the multi-dimensional case,
namely mesh simplification, as often as possible. Polyline simplification is much simpler than
its multi-dimensional counterpart because it frees the study from several technical problems.
It provides an easy way to understand mesh simplification approaches. It gives the reader an
appropriate background for this thesis.

1.3.2 Computational analysis of 4-8 meshes

In Chapter 3, we introduce a class of meshes with subdivision connectivity known as 4-8 meshes.
The connectiviy of these meshes is built using a recursive procedure. We give a study in compu-
tational complexity of simplification operations. 4-8 meshes are also used to generate approxi-
mations of subdivision surfaces [86]. Our results are also valid for these meshes.

1.3.3 Quadtree data structure for efficient storage and access of
4-8 meshes

In Chapter 4, we propose a set of computationally efficient algorithms and tree-based data struc-
tures. Computational and storage efficiency is crucial to obtain a scalable system and to allow for
large datasets to be processed. In particular, we propose a quadtree data structure with a constant-
time node traversal property. The quadtree is linear in memory in the sense that it is stored as a
linear array of nodes, i.e. the tree does not use pointers. We take advantage of these properties to
state computationally optimal algorithms for 4-8 mesh optimization stored in quadtrees.

1.3.4 Progressive meshes in an operational rate-distortion frame-
work

In chapter 5, we address the joint optimization problems described in Section 1.2.6. We provide
an algorithm to compute progressive and adaptive representations of 4-8 meshes using global
error. The study is led in an operational RD framework. The distortion is generally a distance
measure between the original model and an approximation. The rate is defined according to the

1.3. Thesis plan 13

optimization problem: For example. a joint source-channel coding problem may define the rate
as the number of bits to encode the model. For a joint source-rendering problem, the rate may be
defined as the number of triangles fed 1o the rendering engine at the receiver. We explain that our
framework also allows us to address the general problem of the joint source-channel-rendering
coding of the model,

We apply our algorithm to terrain data, or equivalently smoothly parametrized surfaces. Conse-
quently, we avoid the issue of dealing with an explicit parameterization for the surface. However,
our results are valid for 4-8 meshes built on a control mesh having arbitrary topology.

1.3.5 Joint geometry and texture optimization

In Chapter 6, we explore how geometry can be optimized with texture and vice-versa, i.e. how
both entities interactions contribute to the quality of the rendered model.

Figure 1.5: Refinement of an aerial photography: Initially a coarse
approximation is obtained using a few transform coefficients. Then, the
approximation Is gradually refined (right to left).

Multiresolution techniques for images based on subband coding have been widely investi-
gated by the image processing community and many solutions have been proposed [51. 92, 60].
Embedded coding schemes are derived from subband decomposition and the encoding rate can
be adapted to bandwidth constraints, for example during transmission, Figure 1.5 depicts the
progressive refinement of an aerial photograph. Initially, a coarse approximation is obtained
using a few transform coefficients (right-hand side of the figure). Then, additional coefficients
are added to refine the approximation (from right to left).

In this chapter, we propose to study the interaction between the geometry and connectivity
of the model and the texture. We investigate a method to optimize jointly both model entities.
Specifically, for a fixed bit budget we determine the optimal amount of geometry and texture
information to maximize the rendered quality. Then, we give a computationally efficient greedy
method based on marginal analysis to approximate the optimal quantities.

14 Chapter 1.

1.3.6 Conclusion

protocol
headers |

texture data

Application layer

transmitted packets

Transmission layer

Network layer

protocol stack

Figure 1.6: The system control assigns bits for geometry, connectivity and
texture inside the packets generated for the transmission by the muitiplexer.

In Chapter 7, we explain how our results fit into our model for a transmission system. Note
that we do not address the modeling of a transmitter-receiver (TR) protocol. Instead, we explain
how our solutions can overcome the constraint issues in the TR interaction cases (Section 1.2.5).

Recall that the outputs of the encoders in our transmission system are multiplexed into
a single bitstream (Figure 1.6). A system control based on H.245 [67] sets the encoding
characteristics according to the constraints incurred by the system and generates a bit allocation
pattern to produce the outputs (see Section 1.2.7). We use our joint optimization method for
geometry and texture to determine a quasi-optimal bit allocation for geometry, connectivity and
texture information.

Finally, we propose several improvements for our transmission framework, as well as future
research directions.

1.A. Thesis-at-a-glance 15

Appendix 1.A Thesis-at-a-glance

Chapter 2: A journey in piecewise-linear function approximation

Topic Review of monodimensional approximation algorithms (technical background for the thesis).
This chapter reviews a series of monodimensional approximation algorithms applied to a simple

graphic model called polyline. The algorithms are compared in terms of computational performances,

solution errors, and properties. We draw parallels between the algorithms and their couterparts in R,

See also: Contributions (Section 2.1.3), Summary (Section 2.8)

Key elements: We show how to obtain a ©(nlog n) decimation algorithm using global error. Then,
we show how to conserve monotonicity of approximation errors across rate using variable-rate decimation.

Chapter 3: Computational analysis of 4-8 meshes

Topic Study of properties of 4-8 meshes in computational complexity.
We analyze a set of operations used in optimization algorithms for 4-8 meshes. These results are
important in order to understand the complexity of our approximation problem.

See also: Contributions (Section 3.1.3), Summary (Section 3.6)

Key elements: We give several computational results when processing 4-8 mesh. In particular, we
give an algorithm to find merging domain intersections.

Chapter 4: Quadtree data structure for efficient storage and access of 4-8 meshes

Topic Study of an efficient storage and access method for 4-8 meshes.

We build a quadtree data structure achieving minimal storage for the mesh. We propose an access
method allowing us to obtain computationally optimal implementations of the algorithms investigated in
Chapter 3.

See also: Contributions (Section 4.1.2), Summary (Section 4.8)
Key elements: We express the index differences between quadtree nodes in closed-form. We obtain a

generalization for neighbor-finding techniques, called traveral paths. Traversal paths are typically used in
quadtree algorithms, e.g. mesh simplification algorithms.

Chapter 5: Progressive meshes in an operational rate-distortion sense

Topic Construction of a simplification algorithm using global error with application to terrain data.
We use the results in Chapters 3 and 4 to build an algorithm to approximate 4-8 meshes under
constraints (e.g. storage, bandwidth, etc).

16 Chapter 1.

See also: Contributions (Section 5.1.2), Summary (Section 5.6)

Key elements: We generalize the global error estimate identified in the polyline case (Chapter 2) to
surface simplification. We obtain an efficient ©(nlogn) decimation algorithm to simplify 4-8 meshes
using global error.

Chapter 6: Joint mesh and texture optimization

Topic Investigation of the interplay between mesh and texture in a rendered model.

We address an important joint optimization problem: We propose to balance the amount of mesh and
texture information in order to maximize the rendered quality. Our algorithm fits in the system control and
multiplexing units of our tranmission system. We use it to compute the output rates of the geometry and
texture encoders feeding the multiplexing unit.

See also: Contributions (Section 6.1.2), Summary (Section 6.5)

Key elements: We identify a strong interplay between mesh and texture in the rendered image quality.

Chapter 7: Conclusion

Topic Concluding remarks and future research directions.

We close this thesis in two steps: first, we place our results in our transmission framework. Then, we
propose several improvements to the framework, as well as future research directions.

Chapter 2

A journey in piecewise-linear
function approximation

2.1 Introduction

2.1.1 The exact world of approximation

This chapter aims at giving a snapshot of the field of mesh approximation through the simplified
problem of piecewise-linear function approximation. We choose a geometric approach like in
[8, 3, 47, 18] to lead the study. A signal processing approach (i.e. using filters) is possible
[25], nevertheless our choice is coherent with the rest of this dissertation. We present a detailed
review and comparison of approximation algorithms for piecewise-linear functions. Through
the review, we will draw parallels with the related multidimensional problems (i.e. surfaces)
whenever possible. Hence, we hope that by investigating relatively simple questions, we will
provide the reader with a global picture of the research field of this thesis. Although this chapter
takes place as a technical training to the thesis, all the results are original and contribute to the
field. We give our contributions in Section 2.1.3.

2.1.2 Optimizing the polyline model

Model and metric Consider a set of samples, denoted by Jo = {k;} withj = 0...n —
1, where each sample k; is called a knot and corresponds to a couple (z;,y;) of coordinates.
The piecewise-linear function interpolating the data points is called a polyline. In Figure 2.1a,
Jo depicts the polyline interpolating the set of n = 8 knots. More generally, we call J; an
approximating polyline constructed on a subset of knots and constrains the subset to contain the
boundary knots k¢ and k,,_;. Consequently, the selection is performed in the set of internal knots
k1..kn—2. This later ensures that all the approximations share the same domain. Therefore, the

17

18 Chapter 2.

coarsest approximating polyline for Jy is J,,—» = {ko, kn—1}, as depicted by the dotted polyline
Jg in Figure 2.1a.

Figure 2.1: Polyline model: (a) This representation interpolates linearly a set of
sample knots. The polyline J, connects the full set of samples, whereas the
coarsest approximation Js (when having n = 8 knots) is formed by the minimal set
of knots (ko and k7) delimiting the domain boundaries. (b) The model assumes the
knowledge of the underlying function vaiues at the knots only, therefore the error
between the approximations Js and .J, is found by summing the squared
differences between the knots and their projections in the approximating segment.

From now on, we restrict the initial set of knots forming the polyline J¢ to be uniformly
distributed on the integer line N, i.e. z; € N. Moreover, the discrete representation gives no
information about the value of the underlying function in between the sample knots. Therefore, to
measure the distance between .Jy and any approximation J; we use the squared /> norm evaluated
at the sample points only. Specifically for each decimated knot k ;, its orthogonal projection l}j
in the approximating segment is computed, as depicted in Figure 2.1b. Assume that j is the index
set of the decimated knots for an approximation .J;, then the total distortion is defined as the
functional

D(J;) = (k; — k;)? (2.1)

JEJ

Additionally, we introduce the operator C(-) returning the cost of a polyline J;. A simple
functional for the cost counts the number of linear segments forming the polyline. We simply
call this number the rate of the polyline. In the example of Figure 2.1a, we have C(Jo) = 7 and
C(Js) = 1.

2.1. Introduction 19

Approximation problem The central problem addressed in this chapter is the following:
Assume a polyline Jy (i.e. at full rate), then given a budget of C'; segments, we are interested in
finding the approximation J; such that

;= i . 2
J; argC(I}l)IEC,-D(J) 2.2)

This journey through piecewise-linear function approximation aims at exploring several ap-
proaches to this problem. We will review a series of algorithms and evaluate their performances
on several important criteria. In the next sections, we first summarize our contributions. Then,
we introduce our metric and dataset. Finally, we explain how the different approaches can be
compared.

2.1.3 Contributions

In this section, we summarize our contributions:

Algorithm classification We give a classification for the algorithms solving the central
problem (2.2). It has the advantage of clearly differentiating the approaches. Also, it gives clues
about their performances. Our classification includes the main strategies explored in literature
(8, 3,47, 18].

Comparison in a computation, rate-distortion framework The algorithms are com-
pared in terms of computational cost and solution qualities in an operational rate-distortion
framework (more details follow).

Trellis approach for the optimal solutions We propose a trellis structure (usually used in
compression [78]) to obtain the optimal solutions to (2.2). Previous formalizations for piecewise-
linear approximation used a graph theory approach [47, 77].

Solutions properties We compare the algorithm solutions from a properties point of view.
In particular, we address the problem of monotonicity of the distortion across rates, which has
not been considered previously. The considered properties are important for our transmission
framework.

Global error estimate and variable-rate decimation We show that it is possible to build
a computationally inexpensive global error estimate in the tree-constrained case and use an algo-
rithm to update it. We include this technique in a variable-rate decimation algorithm, i.e. at each
optimization step, a set of knots is decimated. This method allows us to obtain the optimal con-
strained solution in an operational rate-distortion sense. Moreover, the constrained operational
rate-distortion curve is strictly monotonic.

20 Chapter 2.

2.1.4 Algorithm classification and dataset

Figure 2.2: Set of 257 curves used for the experiments, where each curve has
257 knots. The set is an elevation matrix representing real terrain data (region in
Valais, Switzerland) [16].

Consider an algorithm to solve (2.2), then its performances can be evaluated according to
three criteria:

1. the computational and storage cost to find all the solutions J; for1 < C; <n —1;

2. the distortion incurred by the solutions (represented by an operational rate-distortion curve,
see below); ’

3. the properties of the solutions.

Point (1) is evaluated given a model of computation. The cost is given as a function of the
input size n. We base the cost evaluations (computation and storage) on the random access
machine (RAM) model [82] and consider their asymptotic behavior. We measure the number
of comparisons and error computations (per knot) performed by the algorithm instead of
considering more basic operations, as described in the original model (see Appendix 2.A). We
assume that for our set of operations, each one has constant and roughly equal cost.

For point (2), we compare the distortions (2.1) incurred by the polyline approximations re-
turned by the algorithm. In this chapter, we use a set of 257 discrete curves, each having 257

2.2. Approaches to approximation 21

knots. The set is a 257 by 257 matrix of elevation data [16] representing a real terrain in Switzer-
land (region of Valais). The dataset has smooth as well as edgy regions and is adequate to obtain
a comparison of the algorithm performances. The set of curves is displayed in Figure 2.2. The
measured distortions are normalized between 0 and 10 in order to fix the maximum gain to 50
dB. The gain in dB is obtained with

e
E; =101 = dB), 2.3
OglO(ei+1) (dB) (2.3)
where eay = D(J,—2) and e; measures the error in squared /> norm at rate C;, i.e. e; = D(J;).
We plot the set of errors { F; } as a function of the rate r ranging 1 < C'; < n — 1. The represen-
tation is called the operational rate-distortion (RD) curve.

Finally for point (3), we review in Section 2.2 a set of important properties for the solutions
generated by the different approaches. We identified two properties relevant to our transmission
framework: error monotonicity across rate (Section 2.2.3) and progressiveness of the solutions
(Section 2.2.4).

2.2 Approaches to approximation

2.2.1 Idea of successive approximations

The smoothness of a polyline J; is a function of its number of segments, or equivalently of
the number of knots supporting the linear approximation. The more segments the smoother
the representation. This assertion is obviously also valid for surfaces, where unit elements are
triangles in general (see for example Figure 6.4). Given a polyline .J 3, successive approximations
are obtained by varying the constraint C; in (2.2). Then, each approximating polyline J; is
represented by a selection of knots in J, satisfying the constraint. Figures 2.3a-f represent a set
of successive approximations at increasing rate. In each figure, the selected knots supporting the
approximating polyline are represented by the white points.

The idea of successive approximations is the key to our transmission problem. The cost (in
storage, bandwidth or computational resources) of an approximation increases monotonically
with the rate of the model (whether we have a polyline or a surface). Therefore, the approxima-
tion of models (i.e. the reduction of unit elements, either segments or triangles) and the related
problems are at the core of this thesis.

2.2.2 Error dependency

Recall that we defined a polyline as a set of connected knots forming a planar approximation
of an underlying function for which only a set of discrete samples is known. Consider the
initial polyline Jy, then only in this particular case, the error incurred at each knot will also

22 Chapter 2.

(d)

Figure 2.3: Successive approximations using: (a) 3 knots, (b) 5 knots, (c) 9
knots, (d) 17 knots, (e) 28 knots, (f} 45 knots.

be the global error increase when the knot will be decimated. However, because of the error
dependency (Section 2.2.2), the global error through iterations is not equal to the sum of the
local errors of the decimated knots, as explained below.

The polyline representation is equivalent to the expansion of the knots on a linear spline
basis. Figure 2.4a shows the underlying spline basis functions and the element supporting knot
k; is put in evidence. Consider now the approximation J, = {kg, k1, ks, k4, k5 } in Figure 2.4b:
The domain of the &;’s basis element is now larger and vanishes at knot &3, instead of knot &,
as in Jy (Figure 2.4a). Consequently, the errors incurred when decimating k; or k3 in J; are
different from their respective values in Jy. The same observation can be made regarding knots
ki and k4 in Jo = {ko, k1, k4, ks} (Figure 2.4c). Therefore the errors incurred at the knots
depend on the polyline construction, meaning that, when applying an approximation scheme,
such as the successive decimation of .Jy, each approximation changes locally the knot errors. In
the particular case of linear spline basis, we can observe that the domain of each basis element
extends only to closest undecimated neighbor knots (see Figures 2.4a-c). As a consequence, only
the error at these two knots is modified by the decimation.

2.2. Approaches to approximation 23

Figure 2.4: lliustration of the error dependency due to the connected
representation of graphic models: (a) The underlying spline basis connecting the
knots in Jo. The support of knots k1’s basis is put in evidence. Parts (b) and (c)
show the changes of the support for two approximations of the polyline (/. and Ja,
respectively) in part (a).

The above observations for polylines also hold for higher dimensional models such as sur-
faces. The dependency of the error caused by the connected representation of graphic models has
important consequences on approximation algorithms. The first one is that after each optimiza-
tion step (for instance, inserting or decimating a knot), some errors in the model must be updated.
Tracking the outdated errors in the polyline case is simple, whereas in the case of surfaces this
problem becomes more complex as will be seen in Chapter 3. A second important consequence
of the error dependency is addressed in the next section.

2.2.3 Monotonicity of solution errors

Assume a polyline Jy with |Jo| = n and an algorithm to solve problem (2.2) using the squared
{> norm as distortion functional for a range of constraints 1 < C; < ... < C;—; < n —1 (the
corresponding solutions being denoted by J; respectively). Then, in general the distortion of the
solutions does not increase monotonically when the rate decreases.

Consider the simple example in Figure 2.5a: For a polyline Jg with 5 knots, the series of
optimal configurations (i.e. minimizing the square [, norm distance) are depicted in Figures
2.5b-d. The characteristics for each configuration, namely the costs in segments and the global
errors, are given in Table 2.1. This example shows that the monotonicity of the operational
RD curve is not conserved even in the optimal case. Monotonicity is an important property
for the solutions of an approximation algorithm. It ensures that, each refined approximation
decreases the global error. Although a norm conserving the monotonicity could be defined,
typical “interesting” norms such as [y, l> and [do not verify this property in general. We will
see, however, that it is possible to achieve monotonicity in a particular case, even using the above
nonmonotonic norms. Finally, note that the monotonicity is obtained on average.

24 Chapter 2.

J0 J1 I, J
k, k, k, k, k, k ko Pk
A A5 S Aps e O ks e 9k
w : O ? -O—>
-2 y 2 K -2 k3 2 k:é
a. b. c. d.

Figure 2.5: Optimal decomposition and global error: (a) The polyline J o, and the
optimal approximations (b) J; (with C1 = 3), (c) J: (with C2 = 2), (d) J5 (with
Cs = 1). For each approximation, the error incurred at the knots is depicted with a
dotted line.

| Configuration | Cost C(J;) | Distortion D(J;) | Figure |

Jo 4 0 2.5a
Ji 3 4 2.5b
Ja 2 8 2.5¢
Js 1 6 2.5d

Table 2.1: Global error D(j;) in squared I, norm and cost C(J;) in segments for
the configurations shown in Figures 2.5a-d.

2.2.4 Progressiveness

Recall that a polyline J; is simply defined as a set of knots. Progressiveness is achieved when
the successive approximations for Jg verify

Jp—a C...C J1 C Jy, (2.4)

i.e. the decomposition is given by a set of embedded knot configurations. Progressive descrip-
tions are particularly interesting for our transmission framework since, given a model J;, it
suffices to transmit the missing knots in order to reconstruct .J;_;. Therefore, the embedding of
solutions is an important property of an approximation algorithm.

In the polyline case, it suffices to sort the knots & ; by increasing index j to reconnect them
(i.e. forming the set of segments) without ambiguity. In the case of surfaces, the connectivity of
the vertex set (i.e. how the vertices are connected to form a set of triangles) might be harder to
reconstruct without jointly sending side-information. We will clarify how the connectivity in the
multidimensional case can be constructed in later sections.

2.3. Best solutions using dynamic programming 25

2.3 Best solutions using dynamic programming

2.3.1 Optimal algorithm using a causal approach

In this section, we start our exploration of piecewise-linear function approximation. In the
monodimensional case, there is an algorithm to obtain the optimal solutions to (2.2). The
well-known optimization method called dynamic programming (DP) is used to find these
optimal solutions. Unfortunately, this method does not generalize to higher dimensions and we
will discuss the multidimensional case in Section 2.3.3. DP solves problems by combining the
solution to subproblems. Here, “programming” refers to a tabular method and not to writing
computer code. The algorithm described here, which we named uoptimal, uses a causal
approach to retrieve the optimal solutions to (2.2).

The general idea about DP is that it solves subproblems exactly once and stores the resultin a
table for further look-up. There are two ingredients that a problem must have for DP to be appli-
cable: optimal substructure and overlapping subproblems. We explain below these requirements
and prove that our polyline approximation problem fulfills them.

Optimal substructure The problem should exhibit an optimal substructure. Such a property
is verified when an optimal solution contains within it optimal solutions to subproblems. Assume
that such a solution under constraint C; includes knot k;, then the polyline J; has the form

Ji={ko,. - ki, ka1l (2.5)

where the dots suggest additional knots. Consider now subpolylines J; ; and J; » defined as
Jia =Ako,-. . ki}, Jio=A{ki,... kn1}s (2.6)
then clearly D(J;) = D(J;1) + D(J;2), therefore both subsolutions J; ; and .J; » must also

be optimal in order for J; to be optimal as well. This proves that our problem shows optimal
substructure.

Overlapping subproblems In order to take advantage of DP, our problem must also exhibit
overlapping subproblems. Our algorithm based on DP takes a causal approach: Starting at knot
ko, the knots k; are successively examined (i.e. by increasing index j) and used to form tempo-
rary! subpolylines of increasing rate. We denote by .J; ; a subpolyline of rate i at step j of the
algorithm, with 0 < j < n — 2. Atstep 0, knot &, is considered and the solution

Jr,0 = {ko, k1} 2.7

1i.e. Temporary in the sense that they only cover a part of the domain.

26 Chapter 2.

is formed. At the next step j, the solutions obtained at the preceding stage are upgraded with
knot k; ;. Additionally, the “single segment” solution J ;41 is added, leading to

Jig ={ko,ko}, Joq = {ko, k1, k2}. (2.3)

We have a trellis approach to the problem (Figure 2.6a-b). Trellises are usually used in
compression [78]. Previous works [47, 77] formulated the problem in graph theory, however
our solution is more intuitive: The top row in the structure counts the algorithm steps and the
column shows the rate of the temporary subpolylines. Each point represents a configuration
Ji,j» whereas the lines in between show the upgrades of the solutions. The storage cost of the
algorithm is directly represented by the number of configurations (i.e. points) in the structure.
Therefore, it is easy to see that the algorithm requires quadratic storage.

The second step of the algorithm is represented by the trellis in Figure 2.6a. In this figure,
point A has two adjacent lines, corresponding to the upgrade of both {k ¢, k1 } and {kg, k2 } with
knot k3. Both temporary solutions have equal rate and reach the same knot, therefore it suffices
to choose the one having lowest distortion to obtain the optimal approximation between knots &
and k3 using 2 segments. This remark illustrates two overlapping subproblems. In our polyline
approximation problem, overlapping subproblems are temporary solutions of equal rate ending
at the same knot. These solutions can be compared without restriction since they fulfill the
optimal substructure condition described in the previous paragraph. Therefore, only the minimal
distortion solution will be stored at point A and used in the following steps of the algorithm. We
now quickly compute the size of the solution space and then continue our example.

Space of solutions Assume a polyline having m internal knots, then there are

m m!
(p) T m=p)p 2.9)

possible configurations using p of the mn internal knots, or equivalently having rate p + 1. Then,
at each step j, there are (]) solutions of rate 7 + 1, with 0 < ¢ < j. Fortunately, exploiting
overlapping subproblems avoids examining the exponential number of combinations. We now
continue our example and compute the algorithm complexity in Section 2.3.2.

Assume that Jp is built on 4 knots, and therefore that step 3 (Figure 2.6b) is the last step of
the algorithm. For point B in the figure, we must choose J2 3 as the lowest distortion solution
between the overlapping subproblems

{ko k1, ka}, {ko k2, ka}, {ko, k3, ka}. (2.10)
Assume now that the optimal solution at point A after step 2 is

']2,2 = {k07k17k3}a (2-11)

2.3. Best solutions using dynamic programming 27

then for point C in the figure, we have to choose for J3 3 between
{ko, k1, k3, ka}, {ko, k1, k2, ka}. (2.12)

The last column of points in the trellis therefore represents the optimal solutions for each rate.
The above example shows how, at each step, DP uses the results for overlapping subproblems in

order to retrieve the optimal solutions minimizing the global distortion. The algorithm pseudo-
code is given in Appendix 2.B.

step step
rate] 0 1 2 rate] © 1 2 3

k) k) | |t kg ko ko s} (ko)
OSIN

R N : {kk\’xo -
3 05 15 2\0 . 3 05 pkz} o oC.
{kok K, K, {k K, k, k, }

4 ° ° 4

{k07k];k2,k3’k4 }
a. b.

Figure 2.6: Trellis structure describing the causal algorithm using dynamic
programming: Each point represents a configuration. (a) Step 2 of the algorithm:
For the configuration at point A, we choose between {k o, k1, ka} and {ko, k2, k3}.
(b) Step 3 of the algorithm: At point B and C, we choose between three and twp
configurations, respectively. The choices are represented by the edges adjacent

to each point.

2.3.2 Dynamic programming complexity

With the algorithm review given in the preceding section, the computational complexity can
be easily evaluated: Without considering overlapping subproblems, we would have to examine
exactly

iy
J
;:0 (z> (2.13)

configurations at each step. Taking advantage of overlapping subproblems is well illustrated by
decomposing the binomial (7), i.e.

Jjoi=i 4.
- 1—1

28 Chapter 2.

where each element (’Zi‘lH) represents a set of overlapping subproblems of rate ;. Therefore, we

need to update and compare only j — ¢ + 1 configurations for each rate 7, yielding a total of

Jj
2 j-itl1=4+j (2.15)

=0

operations (update and comparisons) for step j. Additionally, for each step the error contributions
between knot &; and k;1, with ! = 0.. . j must be evaluated in order to perform all updates at
step 7, giving

. jG+1)
= = (2.16)
=1

errors to compute. Since the algorithm runs in n — 1 steps, the total computational complexity to
obtain the optimal solutions for all rates is given by

n-—2

o . JU+Y) 1 5 3,
Zy +j+ = = gn’ a4 @2.17)
7=0

The algorithm yields the optimal solutions in squared [, norm in ©(n?®) computational time
(2.17) and requires ©(n?) storage. However, the algorithm does not conserve the monotonicity of
solutions across rates, since its application on the polyline in Figure 2.5a leads to a nonmonotonic
operational RD curve. Since we cannot ensure that the configurations are embedded in general,
this scheme does not yield a progressive decomposition of the polyline.

2.3.3 Discussion of the multidimensional case

As said previously, approximation schemes based on DP do not generalize to the multidimen-
sional case. The problem of the optimal selection, i.e. minimizing the distortion metric, of a set
of vertices in the general setting (without assuming a hierarchy within the set) is known to be
NP-hard [2, 1].

2.4 Reducing complexity using greediness

2.4.1 Greedy strategy

Although solving (2.2) with uoptimal leads to the optimal solution, its computational and
storage complexities are rather dissuasive for large datasets. In this section, we continue our
journey by exploring greedy approximation techniques. Greedy techniques are computationally
and spatially efficient schemes attempting to reach a close to the optimal solution by making
choices based only on local considerations (i.e. the choice that seems the best at the current

2.4. Reducing complexity using greediness 29

iteration), hence choices that do not depend on future appraisals.

Although it is usually difficult to tell whether a greedy scheme can solve optimally a particu-
lar approximation problem, we can distinguish two ingredients exhibited by most problems that
lend themselves to a greedy strategy: optimal substructure and greedy-choice property. As ex-
plained in Section 2.3.1, the first requirement is verified for our problem. We explain the second
one below:

Greedy-choice property For a problem with this property, the globally optimal solutions
can be found by making locally optimal choices. In our polyline approximation problem, we
must prove that greedy choices at each step can lead to a global optimal solution. To do so,
we must show that such a choice reduces the problem to similar but smaller subproblems. In
other words, it suffices then to show that our problem exhibits optimal substructure! We gave an
example in Section 2.3.1 illustrating that this property actually holds for our problem. Although
a greedy strategy does not yield the optimal solutions in general, we will give an example that
can be optimally solved.

A final and important remark about greedy schemes is that, due to their shortsighted choices
based on local considerations, these methods tend to accumulate errors through the iterative
process.

2.4.2 Greedy refinement and decimation

The greedy algorithms presented here use a local error estimate to optimize the polyline. In
practice, at each iteration error criteria are computed only at the knots and the decimated knots
are not taken into account. In contrast, a global error estimate would take the decimated
knots into account. Expectedly, algorithms using a global approach are computationally more
intensive and usually have greater complexity magnitude than the ones using local criteria.
In the multidimensional case (e.g. mesh approximation), most approaches use local errors
because computational complexity is of greater concern. We will introduce a set of constrained
approximation approaches in Section 2.5. Interestingly, it is possible in this case to compute a
global error estimate (Section 2.5.4) by just using an update mechanism.

There are two ways to replace the optimal knot selection performed by uoptimal : We
can either iteratively refine the coarsest approximating polyline J,_» (i.e. the single segment
solution) by inserting knots, or the polyline J can be iteratively decimated until no internal
knot remains. Greedy refinement schemes have been popular in Cartography since the early
70’s [18, 10, 20, 72] and good results are reported using the [o, norm [89]. Greedy decimation
schemes have been investigated in computational geometry [8, 57, 62]. Figures 2.7a-d illustrate
the first scheme (greedy refinement): Figure 2.7a shows the coarsest approximation J 3. In Figure

30 Chapter 2,

2.7b, the knot incurring the highest distortion? (dotted line in the Figure 2.7a) is inserted. In
Figure 2.7¢ and 2.7d, the knots are iteratively inserted in the same manner. The pseudo-code for
the greedy refinement algorithm, named urefine, is given in Appendix 2.C.

Figure 2.7: Greedy refinement algorithm: (a) The coarsest, single-segment
solution. (b) Knot k1, incurring the highest distortion at this step, is inserted.
Similarly, (c) knot k2 and (d) knot k3 are inserted.

Figures 2.8a-d illustrate the second scheme (greedy decimation): Figure 2.8a shows the
initial polyline Jy. In Figure 2.8b, the knot incurring the minimal distortion is decimated
(k3) and the scheme is iterated similarly in Figures 2.8c-d. The pseudo-code for the greedy
decimation algorithm, named udecimate, is given in Appendix 2.D.

Figure 2.8: Greedy decimation algorithm: (a) The initial polyline .7 5. (b) Knot k3,
incurring the minimal distortion is inserted, then iteratively (c) knots k 2 and (d) &
are decimated.

2 As seen previously in Section 2.1.2, the error is computed using the knot projection into the approximating segment.

2.4. Reducing complexity using greediness 31

Both schemes, refinement and decimation, can be a replacement for uopt imal . In the next
section, we compare the properties of both greedy strategies and compare them to the optimal
algorithm using DP.

2.4.3 Complexity and results comparisons

An attractive aspect of greedy strategies is their simplicity: Both algorithms introduced in the
previous section operate in an iterative manner. Their computational time is spent into choosing
the best knot to insert/decimate at each step and updating knot errors after the new approximating
polyline has been constructed. In both cases, the storage complexity is linear, since they require
to store, at most, as many errors as knots in Jg. The computational complexities are given below:

Greedy refinement computational complexity Denote by m the number of internal
knots (i.e. m = n — 2), then initially we need 2m operations to compute and retrieve the
maximum error. On average, the middle knot is chosen, splitting the initial single segment ap-
proximation into 2 segments of equal size. Thus, we roughly need to recompute twice
m-—1

5 (2.18)
errors, one set on each side of the inserted knot. Note that we need as many comparisons to
obtain again the maximum error per segment. All maximum errors are sorted in a vector in
order to make the optimal choice. Since each refinement splits a segment into 2 parts, two
errors are inserted in the sorted vector at each step. We need approximately 2 log , j operations?
to perform this task at step j > 0. Moreover, at most 7 steps require new insertions. This
simple scheme suggests that the total number of operations to compute and retrieve the maximum
errors —yielding the factor 2 in front of the first sum in (2.19)—, in order to perform the complete
refinement, is given by

logy m~—1 m/2 log, m—1

m—27 41 , ; om
2 Z (2 =) +2 ZIOgQJ =2 Z (m =27 +1) + 2logy(5)). (219
=0 =1 7j=0
The sum corresponds to a geometric series* having solution
2mlog, m — 2m + 2log, m + 2. (2.20)

Pose ¢ = log, e and let’s approximate the factorial term using the Stirling formula. ie. Z! =
Vvrm(£)*% . Hence, we have

2log2(%1—!) ~ mlog, m + log, m — mlog,(2e) = mlogy m + log, m —m(1 + (), (2.21)

3To be more accurate, we would need log, j +logy (4 + 1) operations.
“#Note that the initial 2rm operations are comprised in the series.

32 Chapter 2.

then the computational complexity on average is given by
3mlog, m —m(3+ () + 3log, m + 2. 2.22)

We obtain logarithmic functions is (2.22) for the following reason: In the average case, we
assume that each insertion merely splits a segment in two equal parts. What happens when this
assumption is not met? This algorithm has a worse case too: Assume that at each step, the
rightmost and leftmost knot is always picked up (choose one side only and conserve it through
the whole process), then at each step j we need 2(m — j) operations to compute the errors and
retrieve the maximum distortions. Thus, the complexity in the worst case is given by

m
2y m-j=m’-m. (2.23)
j=1

In conclusion, urefine has complexity ©(nlogn) on average and ©(n?) in the worst case.
Note finally that the worst case is very unlikely.

Greedy decimation computational complexity Assume again that m denotes the num-
ber of internal knots, then initially we need to compute and sort m errors, leading to

m + Z log, j = m + log,(m!), 2.24)

=1

then using m! = vV2rm(Z)™ ~ mlog, m — (m + % log, m, we have a total of

1
mlogym + (1= ¢)m + 3 logy m (2.25)

operations. At each step j, the error of only two knots is modified by the decimation (recall the
example in Figure 2.4). Therefore, we first need to retrieve the outdated ones form the sorted error
vector, compute the new ones and insert them again. Each step j totalizes then 2 + 4 log , (m — j)
operations (assuming that the vector keeps size m — j during step j). After the initialization, we
still need to run m — 1 steps, then the computational complexity of the iterating process is given
by

m—1

> 2+ 4logy(m — 5)] = 4log,((m — 1)) + 2(m — 1). (2.26)

j=1

Using (m — 1)! = \/27(m — 1)(2=2)™~!, we have that

4log,((m — 1Y) =~ dmlogy,(m — 1) — 2log,(m — 1) — 4¢m, 2.27)

2.4. Reducing complexity using greediness 33

therefore, we obtain the average computational complexity to perform the complete decimation
by summing (2.25) and (2.26), i.e.

mlogy(m(m — 1)*) + (3 = 5)m + 1og2((~m—\/_—ﬁ1—)2) -2, (2.28)

In conclusion, udecimate has complexity O(nlogn) on average.

operations (log)

° 50 100 150 200 250

internal knots

Figure 2.9: Computational complexities comparison: The solid, dashed and
dotted curves depict the computational complexities (number of error
computations, comparisons and updates) for uoptimal , udecimate and
urefine (respectively) as a function of the number of internal knots.

Computational complexities comparisons Both analyses above give the computational
complexities “up to the operation”, which allows for their comparison in the graph of Figure
2.9. In the figure, the solid, dashed and dotted curves depict the computational complexities
(number of error computations, comparisons and updates) for uoptimal , udecimate and
urefine (respectively) as a function of the number of internal knots. We can read in the graph
that, although udecimate and urefine have the same complexity magnitude, urefine has
a smaller factor.

Error comparison In Figure 2.10a, we compare the distortion of the solutions returned by
uoptimal , urefine and udecimate using our dataset (Figure 2.2). The solid (top) curve
shows the errors obtained with the optimal algorithm using DP. The dashed and dotted curves
depict the errors returned by the decimation and refinement approaches, respectively. The max-
imum gain using DP over the greedy algorithms is 3.86 dB. Recall that, in Section 2.4.1, we
mentioned that greedy techniques tend to accumulate errors through iterations because of their

34 Chapter 2.

shortsighted, locally optimal choices. At low rates, the refinement algorithm, having run few
iterations, performs better than its decimation counterpart (Figure 2.10b). At high rates however,
the opposite situation is observed (Figure 2.10c).

I =
[=} -
[
§ §
b. " internal knots
P
51
5.0 I(;O 1;0 Z:)D 2;0
internal knots e
a. C. internal knots

Figure 2.10: Solution errors comparison: (a) The solid (top), dashed and dotted
curves show the errors obtained with uoptimal , udecimate and urefine,
respectively. (b) At low rates, the refinement method performs better than the
decimation approach, whereas (c) at high rates, the opposite situation is observed.

Solution properties comparison As seen previously, the configurations returned by
the optimal algorithm neither conserve error monotonicity nor verify progressiveness. In the
greedy cases, the solutions are naturally embedded due to the iterative approximation process.
Therefore, the successive approximations verify the progressiveness property. In Section 2.4.4,
we will see however that this property is only partly verified in the multidimensional case.
Unfortunately, none of the greedy techniques achieves monotonicity of the solution errors across
rates. Counterexamples for each case are again obtained with the example function in Figure

2.5a.

Finally, it is interesting to see that, when applying either the greedy refinement or decimation
scheme on the function in Figure 2.5a, the optimal solutions (the ones shown in Figures 2.5b-d)
are obtained. This fact proves that our polyline approximation problem verifies the greedy-choice
property introduced in Section 2.4.1.

2.4. Reducing complexity using greediness 35

2.4.4 Discussion of the multidimensional case

Greedy decimation and refinement algorithms are suitable for surface approximation. These
approaches has been investigated by several researchers [40, 30, 44, 43]. In the multidimensional
case however, two major issues appear:

1. The connectivity of the vertex set (defining the set of triangles) must be computed using
additional algorithms.

2. Efficient mechanisms must be investigated in order to find the outdated vertex errors after
each optimization step.

Consider the simple example of a set of vertices in the plane distributed in a square region,
as depicted in Figures 2.11a-d. To solve the first issue, Delaunay-type algorithms are used to
compute the connectivity of the vertices, leading to a so-called triangulated irregular network
(TIN). Figures 2.11a-d depict the triangulations returned by the original Delaunay algorithm for

Figure 2.11: Successive triangulated irregular networks (TIN): (a) A set of 8
vertices is connected using Delaunay algorithm. (b) When refined, the
retriangulated set does not contain the initial triangles connecting the vertices
marked with white points. Each refinement in (c) and (d) leads a new triangulation.
Therefore, the successive approximations obtained using TINs are not
progressive.

varying sizes of the vertex set. We will explain later the meaning of the marked vertices (white
dots) in the figures.

The typical cost for triangulating a set of n vertices using this technique is O(n logn). Each
time a vertex is inserted or decimated, the set must be triangulated again. In Figure 2.11a, we
depicted the triangulation for a set of 8 vertices, where the interior vertices are represented with
white dots. In Figure 2.11b, additional vertices are present such that a total of 32 vertices are
connected. The key observation is that the initial triangles connecting the vertices in Figure

36 Chapter 2.

2.11a are no more part of the refined triangulation in Figure 2.11b (see the white vertices location
in the figure). Therefore in the case of TINs, successive triangulations are not embedded:
For example, the triangulation in Figure 2.11b cannot be obtained by splitting triangles of
the triangulation of Figure 2.11a. Figure 2.11c and 2.11d show that, each addition of vertices
leads to a new triangulation. In other words, the connectivity is not progressive and must be
specified for each approximation. For this reason, TIN are a priori not suitable for progressive
transmission (or rendering).

For the second issue, the fact that the set can be arbitrarily connected makes difficult to find
the vertices whose error is outdated. Therefore, additional computational time must be spent
to update the surface characteristics and inevitably impedes the performances of approximation
algorithms.

2.5 Tree-constrained approximation

2.5.1 Introduction

In Section 2.4.4, we have seen that in the multidimensional case, the freedom involved by in-
serting or decimating arbitrary vertices has an annoying side-effect: The progressiveness is not
generalized to the connectivity of the vertex set. In the following sections, we explore a technique
to overcome this drawback: We impose a hierarchy, or constraints on the model. This approach
has been successfully investigated in the early 80’s in [3]. We rewrite then our insertion and
decimation algorithms for our polyline approximation problem in this restricted setting. We will
again discuss the multidimensional case in a later section.

Building a hierarchy on the knots A way to impose constraints is to establish a one to one
correspondence between the knots and the nodes of a binary tree: Assume a polyline built on n
knots k;, with j = 0...n — 1, where n = 2¢ + 1, d > 0 and a binary tree of depth d containing
2% — 1 nodes, numbered p = 0. ..2¢ — 2. Then, given p we have k; with

j=20""" 4 g2, (2.29)

where | = |log,(p + 1)| and p; = p — 2/ + 1. The index p; can be seen as a local index
for the node within its level [. The tree nodes map the set of 1 < m < n — 2 internal knots,
as depicted in Figure 2.12. In the figure, the arrows link knots with their corresponding tree node.

The full rate polyline Jo corresponds to a full tree. In order to satisfy the constraints, any
approximating polyline J; must yield a subtree, denoted by |J;| < |Jo|. Therefore, an immediate
implication is that the space of possible configurations for approximating polylines is severely
reduced. For instance, without constraints a polyline with m internal knots have (’1") candidate
approximations with 2 segments. In the constrained case, there is only one single two segments

2.5. Tree-constrained approximation 37

approximation: The configuration {k¢, & no1, k,,—1} corresponding to the tree root p = 0. For-
tunately, the number of possible configurations increases exponentially with rate. In the next
paragraph, we compare the space of constrained and unconstrained solutions.

]

k
klk23k4k5

k

Figure 2.12: lllustration of the mapping between tree nodes and polyline knots.

Space of solutions In the case of constrained approximation, a way of enumerating the
space of solutions having k internal knots is to count the number of trees, denoted by t(k),
yielding such a configuration. This number is valid for a polyline with at least 2* — 1 internal
knots, ie. |Jo| > 2% +1

o
\O\

O

0O
O

I
o O S\
N e

Figure 2.13: Partial trees representing constrained solutions (the index r
denotes the tree root node): (a) The two solutions with two internal knots. (b) The
five solutions with three internal knots.

When k& = 1, then only the singleton tree exists, i.e. t(1) = 1. For £ = 2, we have only two
solutions, as depicted in Figure 2.13a. The case £ = 3 is depicted in Figure 2.13b: To count
the number of possible trees, we add exactly one single branch to each solution obtained at step
k = 2, leading to the five configurations shown in the figure. To derive the general case, we can
observe that there are k ways to add one branch to the ¢(k — 1) solutions obtained at the preceding
step. Thus the following recurrence equations give the size of the constrained solution space:

t(3) = 5,

tk)y =k -t(k—-1), k>3, 230

38 Chapter 2.

Hence, the space of solutions for |Jo| > 2% — 1 is given by

Hk) = { 1,2,5 for k = 1,2, 3 respectively, 231)

ST(k) = 3(k+1)! k>3,

In Figure 2.14, we compare the sizes of the solution spaces in the unconstrained and constrained
cases, respectively. The z axis gives the number of selected internal knots, whereas the y axis
returns the number of possible configurations. The polyline in this example has 27 — 1 internal
knots, i.e. |Jo| = 129. The top curve represents the number of unconstrained solutions given by
(2.9) and the bottom curve shows the number of constrained solutions obtained with (2.31).

solution (log)

internal knots

Figure 2.14: Comparison between the solution space sizes in the unconstrained
(top curve) and the constrained (bottom curve) settings. The curves are given for
an example polyline of 129 knots. The x axis gives the number of selected internal
knots and the y axis returns the corresponding possible number of configurations.

2.5.2 Application of greedy methods

In this section, we adapt our greedy refinement and decimation methods to the constrained setting
and call the algorithms crefine and cdecimate , respectively. Both schemes have linear
storage complexity as in the unconstrained cases. Recall that, to fulfill the constraints, each
approximating polyline must correspond to a partial tree of the full tree representing Jo. In
Figures 2.15a-d, we illustrate the constrained greedy refinement method. In each figure, the tree
represents the constraints on the 3 internal knots. When a knot is inserted, the corresponding
node in the tree is colored in black. In Figure 2.15b, the only possible configuration using 2
segments is represented. The partial tree in this case is the singleton tree, i.e. the root node. Then
in Figure 2.15¢ and 2.15d, knots %, and k3 are successively inserted and their corresponding
partial tree is represented. We evaluate now the computational complexity of the method.

2.5. Tree-constrained approximation 39

Figure 2.15: Constrained greedy refinement: In each figure, the tree represents
the constraints on the 3 internal knots. When a knot is inserted, the corresponding
node in the tree is colored in black. (a) The coarsest, single-segment solution. (b)
At the first iteration, only knot k& no1 = k2 can be inserted to fulfill the constraints.

(c) knot k1 and knot k3 are successively inserted. Each approximation
corresponds to a partial tree.

Computational complexity for constrained greedy refinement The analysis of the
computational complexity is very similar to the one in the unconstrained case (Section 2.4.3). In
the constrained case, we only need to compute two errors per step and insert them in a sorted
vector, which leads to

m/2
3 (2 +2logy j) = m+210g2(%!), (2.32)

j=1
then using the approximation in (2.21), we obtain a total of
mlog, m + log, m — {m (2.33)

operations to perform the complete refinement in the constrained case. Consequently, crefine
has computational complexity @(nlogn). The algorithm pseudo-code is similar to the one
given in Appendix 2.C, with the difference that the knot selection is constrained.

In Figures 2.16a-d, we illustrate the constrained greedy decimation method. As in the inser-
tion example, the trees in the figures represent the configurations corresponding to the approx-
imating polylines. Figure 2.16a shows polyline Jg. In Figures 2.16b and 2.16c¢, knots (k; and
k3) corresponding to leaf nodes are decimated in order of increasing distortion. Finally in Figure
2.16d, knot ko (corresponding to the tree root node) can be decimated since both children have
been pruned. We compute now the complexity of the algorithm.

40 Chapter 2.

Figure 2.16: Constrained greedy decimation: in each figure, the tree represents
the constraints on the 3 internal knots. When a knot is decimated, the
corresponding node in the tree is colored in white. (a) The full rate polyline J ¢
described by a full tree. (b) Knot k3 and (c) knot k;, both corresponding to a leaf in
the tree are decimated. (d) Finally the tast knot, corresponding to the tree root
node, is removed.

Computational complexity for constrained greedy decimation Initially, the error for
each knot corresponding to a leaf node must be computed and sorted, leading to

m/2
m m m m 1 m
— 1 | = — —N =1 - —(—. 2.34
2+J§_1 08y J 2-{-log2(2) 3 og2m+210g2m C2 2.34)

Because of the constraints, nonleaf nodes cannot be deleted until their two children have been
removed. Then, each time a node is decimated, we must check whether its sibling is still present.
When present, then no operation is further performed. Otherwise, the error for its parent in the
tree is computed and sorted. Therefore, for 7 knots, we count only one operation for the “sibling
check”. For the remaining knots, we must check whether their sibling is present as well. Then,
we compute the errors and insert them in the sorted vector. We have then

mj2~1

+ ,Z"; [2 -l—log;,(% _i)=3m- 2+log2((gL~ 1)

m
2 2

(2.35)
1
= %logz(m -2)— Elogz(m -2)+ (2+()% -2

operations to decimate the polyline. The final complexity is obtained by summing (2.34) and
(2.35), leading to

2 loga(m(m — 2)) + %logz()—201+0%F -2 2.36)

m— 2

2.5. Tree-constrained approximation 41

operations for the algorithm. In conclusion cdecimate has computational complexity
O(nlogn). The algorithm pseudo-code is similar to the one given in Appendix 2.D, with the
difference that the knot selection is constrained.

Computational complexities and error comparison We compare the computational
complexities of the constrained algorithms in Figure 2.17a. Expectedly, refinement (dashed
curve) incurs less computational cost than decimation (dotted curve). We also display the
computational complexities in the unconstrained cases (top solid curves). In Figure 2.17b, we
compare the operational RD curves: The top (solid) curves show the errors obtained in the
unconstrained cases, whereas the dashed and dotted curves show the results returned by the
constrained refinement and decimation algorithms, respectively.

The obtained results are deceiving in terms of quality, which is partly due to the restriction
of the solution space. The unconstrained algorithms improve the solutions by a least 15dB. In
the constrained case, the approximation errors accumulated by the locally optimal choices of
the greedy schemes are even more obvious, since we can clearly see the operational RD curves
crossing around midrate. We will see in Section 2.5.4 that the poor performances are fortunately
not only due to the solution space restriction, but also to the local error estimate used at each op-
timization step. We will explain how the results can be significantly improved by using a global
error estimate (for the decimation scheme only) with a slight increase in computational com-
plexity. We review now the properties of the solutions returned by the constrained algorithms.

Constrained solutions properties comparison As in the unconstrained case, the
iterative process of the constrained algorithms naturally produces progressive approximations.
In the multidimensional case, the hierarchy imposed over the set of knots is obtained with a
subdivision scheme. In Section 2.5.3, we explain how the progressiveness is generalized to
surfaces. Unfortunately, the unconstrained algorithms still do not verify the monotonicity of the
operational RD curve. Again, it suffices to apply them on the function in Figure 2.5a to obtain a
nonmonotonic curve. ’

Finally, the greedy-choice property introduced in Section 2.4.1 is again verified in the con-
strained scheme using the function in Figure 2.5a: The application of the refinement or the
decimation scheme leads to the optimal solutions.

2.5.3 Multidimensional case: meshes obtained by subdivision

Assume that we have a set of vertices parametrized on a uniform grid of size 2 d41 %2441,
with d > 0, on the plane R?, it is possible to build a hierarchy on the set, as was done in the
polyline case. The constraints are imposed using a subdivision rule for connecting the vertices
into triangles. In the twodimensional case (as well as for some polytopes), there exists a natural

42 Chapter 2.

w - _ - T =
g g ined L
K | unconstrain e
=T T ®T methods o
- : o
S oo} v e
= ,"
6000 ‘unconstrained T .
methods /...~ constrained
5000 methods
4000
3000
decimation
o R ;,“—""'. e x;f:nement
19 " =¥ constrained
oLl methods
[] 50 100 150 200 250 300 Q 5;) 100 1;0 200 2;0 00
internal knots internal knot:
a. b.

Figure 2.17: Constrained algorithm performances: (a) Computational
complexities: the top (solid) curves are the complexities in the unconstrained
cases, whereas the dashed and dotted curves represent the complexities for the
refinement and decimation schemes, respectively. (b) Solution errors: The top
(solid) curves are the operational RD curves given by the unconstrained methods.
The dashed and dotted curves are returned by the refinement and the decimation
algorithms, respectively.

correspondence between the vertex constraints and the quadtree >. We will not give more details
about regular tilings here, as it will be the topic of Chapter 3.

When using a hierarchical procedure to connect the vertices in the mesh, the restricted space
of vertex configurations leads to a restricted set of possible triangulations. Moreover, the suc-
cessive triangulations are embedded, as depicted in Figures 2.18a-d. Figure 2.18a depicts how
a set of 8 vertices is triangulated using 4-8 subdivision (Chapter 3). Figures 2.18b-d show the
successive triangulations obtained when increasing the set size to 32, 128 and 256, respectively.
In these figures, we depict the set of triangles obtained in Figure 2.18a. We can see that the
successive approximations still contain the initial triangles. Hence, given an approximating
triangulation, the next finer/coarser configuration can be obtained by splitting/merging a set of
triangles.

When simplifying 4-8 meshes, e.g. using refinement or decimation, triangles are split into
two smaller triangles and pairs of triangles are merged into one larger triangle, respectively. In
Chapter 3, we study the properties of 4-8 meshes. In conclusion, imposing a hierarchy on the
vertex set leads to a set of progressive triangulations, i.e. both vertices and their connectivity are

SA quadtree is a similar to the binary tree, with the difference that each node has four children instead of two.

2.5. Tree-constrained approximation 43

embedded.

o
SN TN XD DR
, NN XA
NN BN RE
BN VANVAN " e - R EE S

, SN yd N N TN A4S

hN AN s \|/ VNGNS ZAN NN
SNEINGY BOSH O DEXEPH
AN B PR NI G AT
NEANZRS L TR

c d.

Figure 2.18: Set of progressive triangulations: The connectivity is constructed

using 4-8 subdivision (Chapter 3). (a) The connectivity obtained with an initial set

of 8 vertices. In the successive approximations using (b} 32, (c) 128 and (d) 256
vertices, the triangulations still contain the initial set of triangles (thick edges).

2.5.4 Using a global error estimate

We have seen that a major drawback when restricting the solution space (by imposing a hierarchy
on the polyline knots) is an important decrease in solution quality (Figure 2.17b). Although
it is clear that a smaller solution space degrades the performances, we have to be aware that
choosing a knot to insert or to decimate simply by examining its error incurred in the current
approximation is also very limiting. In the unconstrained case, basing choices on local errors
only for the greedy schemes does not result in a great penalty (Figure 2.10). However in the
constrained case, the effects are more important (Figure 2.17b).

A benefit of the model hierarchy is that a much more efficient error estimate can be built:
Denote by J; the set of knots corresponding to the subtree rooted at the node representing & ; in
the tree. For example, as depicted in Figure 2.12, we have

Iy = {k1, k2, ka}. (2.37)

Assume now decimating all the knots in J;; and denote by Ji ; this operation. For each decimated
subtree jkj , we can now evaluate its distortion as

D(Ji,) = D (ks = k), (2.38)

JEJ

where the index set j identifies the knots in J;. Then we can express AD(J},) as the variation

44 Chapter 2.

[step [k1] k2 1 ks | ka J
T | AD(Jr,) AD(Jr,) AD () AD(Jr,)
2 - AD(Jy,) — AD(Jy,) AD(Jy) AD(Jy,) — AD(Jx,)
3 AD(sz)—AD(Jkl)_AD(Jk3)) AD(Jk4)—AD(Jk1)—AD(Jk3)
4 : . AD(Jy,) — AD(Ji,)

Table 2.2: Knot errors for four steps of the decimation algorithm using a global
error estimate: The error values for step 2 and 4 correspond to Figure 2.19a and
2.19b, respectively.

in distortion when all knots in Jy; are decimated, hence

o

AD(JICJ) = D(Jk]) - D(ka)7 (2'39)

where by definition D(Jy,;) = 0 and D(jkj) is given by (2.38). Finally, we define A as
the set of parents of k;: Assume that k; corresponds to node index p in the tree, then A,
contains all knots corresponding to tree nodes along the path to the root. For example, we
have A;, = {ks,k4}. We now rework the constrained greedy decimation algorithm and call
cglobal the new algorithm. The pseudo-code will be given in Chapter 5.

Constrained greedy decimation revisited Initially, for each internal knot k; the value
AD(Jy;) is computed (step 1 in Table 2.2). Each node in the tree then records the couple

{AD(Ji;), Amax}, (2.40)

where A, contains the maximal value in the subtree rooted at knot k£ ;. When k; is decimated,
then Apax = —o0. At each step, the knot £* with maximal® AD(Jy,) is chosen. Then, for all
knots k; € Aj-, the following update is performed:

AD(Ji,) — AD(Ji+). (2.41)

For example, Figure 2.19a depicts the updates when decimating knot & ; (corresponding to node
3 in the tree): The knots in Ay, are encircled and their updated value is shown at step 2 in Table
2.2. At this step, the error estimate at each knot no longer represents the distortion at the knot,
but the global change in distortion when this knot is decimated. Assume that, at step 3 knot k 3 is
decimated, then the new values are again given in Table 2.2. Finally, when knot & » is decimated
at step 4 (Figure 2.19b), then the value stored for knot k 4 (Table 2.2) is such as Jy, would have
been decimated entirely in a single step! This example clearly shows that, using (2.41), we
obtain a global error estimate for each knot. We compute now the computational complexity of
the algorithm and compare the solution errors to the ones obtained using a local error estimate.

SRecall that AD(Jy;) is negative by definition (2.39).

2.5. Tree-constrained approximation 45

Figure 2.19: Global error estimate: (a) At step 2, k; is decimated and the
encircled knots depict the set Ay, . (b) Similarly, step 4 is represented. For each
figure, the updated values for the errors are shown in Table 2.2.

Computational complexity and error comparison Initially, for each knot & ;, AD(J;)
is evaluated and stored in the tree: Consider a polyline of length n, then the tree mapping the
m = n — 2 interior knots has depth d = log,(m + 1). For each subtree J},, we count the number
of errors to evaluate and the number of additions to compute the sum. Additionally, we need
m — 1 comparisons to retrieve the maximal values in the tree and assign A nax. Therefore, this
step has cost

d—1
D 2@ —3) 4+m—-1=d-29" —3.29 43+ m -1,
—~ (2.42)

= 2(m + 1) logy(m + 1) — 2m — 1.

During the iterated approximation process, for each node at level d — 1 — j, we must perform
d — j comparisons to get the optimal value, 2(d — j — 1) operations to update the parents and the
values A hax. Thus, we have

d—1

D 277971 (3d - 35 —2) =3d-2'—5-27+5

—e (2.43)
J_

=3(m+1)logy(m+1)—5(m+1)+5

operations to perform the complete decimation of the polyline. In conclusion, the total computa-
tional cost given by summing (2.42) and (2.43), i.e.

5(m + 1)log,(m + 1) — Tm — 1. (2.44)

Then using the global error estimate does not change the magnitude of the algorithm. Therefore
cglobal has computational complexity @(nlogn). In Figure 2.20a, we compare again the

46 Chapter 2.

computational complexities of our greedy set of algorithms. The complexity of cglobal is de-
picted with a dotted curve, whereas all the previous algorithms are represented with solid curves.
In Figure 2.20b, we compare now the operational RD curves: The dotted curve represents the er-
rors obtained using the global error estimate. Compared with the previous constrained versions,
we measure now only a maximum distance of 3.92dB with the unconstrained algorithms. The
global error estimate thus improves significantly the constrained approximation.

» T —_
= unconstrained %
decimati .
9 9000, eaimanon = 45 unconstrained
'au S methods
o = , “constrained g a0t g
8- +7 " using, - “constrained
5 ¢ global estimaty W .7 " using
7000 Eds +” global estimate
bt ined £ constrained
unconstraines methods
refinement
5000} 1 25|
400 20
3000 15
2000
refinement ©
1000| <onstrained 5
methods

° 50 100 150 200 250 X0 o 50 100 150 200 250 300

internal knots b internal knot
a.

Figure 2.20: Performances using the global estimate: (a) Computational
complexity and (b) solution errors. In each figure, the dotted curve depicts the
performances of the new algorithm.

Solution properties Changing the error estimate does not change the properties of the solu-
tions in this case. More precisely, the configurations are progressive and the solution errors are
nonmonotonic across rates. Again, we can see that the greedy-choice property is still verified
with the example in Figure 2.5a.

2.6 Optimal tree-constrained approach

2.6.1 Introduction

With this section, we arrive at the term of our exploration. We explain how the greedy decimation
algorithm using our global error estimate can be further improved: In the constrained setting, we
restrict ourselves to decimate knots corresponding to leaf nodes in the tree. Therefore, the rate
of the polyline decreases by one segment at each iteration.

2.6. Optimal tree-constrained approach 47

A more efficient approach is to decimate the vertex minimizing the increase in distortion
while maximizing the decrease in rate. In our polyline problem, this corresponds to extend
the decimation of single vertices (represented by leaf nodes) to a hierarchical set of vertices
(represented by a subtree). Although this approach is not very common in Computer Graphics, it
corresponds to well-established optimal tree pruning algorithms used in compression [31]. Our
last algorithm, called coptimal , is inspired by an algorithm used in tree quantization called
G-BFOS [9, 13]. We show that this algorithm ensures the monotonicity of solution errors. In
[13], Chou et al. give a proof for the optimality of the algorithm.

2.6.2 Algorithm

Recall the decimation algorithm explained in Section 2.5.4 and consider now storing in each tree
node the following structure:

{AD(ka)’AC(Jk]‘),)\(kj)a/\min}7 (2.45)

where
AMk;) = =AD(J;)/AC(Ji;) (2.46)

and the functional C(-) returns the rate of the subpolyline represented by the subtree rooted at
the node representing & ;. Consequently, C (jk ;) is the rate when all knots in J;; are decimated.
By definition we have

C(J,) =1, (2.47)

i.e. all the knots are replaced with a single segment. Therefore, we can define AC'(Jy;) as

AC(Jy;) = C(Jk;) — C(Jiy), (2.48)
=C(Jy,;) - 1.

The slope A(k;) as defined in (2.46) represents the variation in distortion over the variation

in rate when the subtree Jy; is decimated. Finally, A, contains the minimal lambda in the

subtree, i.e. we do not restrict the minimal value to be located in the leaves as in the previous

algorithm.

The algorithm operates in the operational RD plane. Each point (C'(.J), D(.Ji;)) represents
the knot configuration in the plane. The configuration is obtained by decimating subtree J
(Figure 2.21). We aim at finding the points lower-bounding the convex hull of all configurations.
These points form the optimal operational RD curve, as depicted in the figure.

Initially, we compute for each node the values AD(Jy;), AC(.J,;) and A(k;) and store the
minimal value for each subtree in Ap,;,. For knots k;s, the corresponding slopes are represented
in Figure 2.22a. Then the algorithm is iterated as follows: The node & * with minimal slope in

48 Chapter 2.

o - s I . (C(JO),D(JO)) o]

H i 2 L
05 1 15 2 25 3 35 4 45 5 55

Figure 2.21: Configurations in the RD plane: Each point (C(J,), D(Jx;))
represents the configuration obtained by decimating & ;.

the RD plane is chosen, i.e.

k* = argmin A(k;), (2.49)
j

and the corresponding set of knots .J}, is decimated (Figure 2.22b). Then, we update the set of
parents Ay such as Vk; € A., we do
AD(Jy;) — AD(Jg-),

AC(Jx;) — AC(Jx+). (2.50)

Finally, the slope A(k;) and the value Apm;y, for the subtree are recomputed (Figure 2.22¢). We
iterate the algorithm until £* corresponds to the root node.

Computational complexity and error The computational complexity of the algorithm is
very similar to the one of its greedy counterpart (Section 2.5.4). However, we also need to
compute AC(.Jy,) and the slopes A(k;). The first value is computed in closed-form, i.e.

AC(Jy,) = |Ji; | = 2. (2.51)

Additionally, we account one additional operation per slope. Thus, we add Zj;é 2¢+1 operations
to (2.42), leading to a total of
2(m + 1)logy(m + 1) - 1. 2.52)

Given m internal knots, we must perform m iterations in the worst case (when only leaf nodes
achieve minimal). Therefore, for each node at level d—1— 7, we still must do d—j comparisons.

2.6. Optimal tree-constrained approach 49

CaDIay OO DIN

[1 15 2 25 3 a8 4 as s 55 0 1 18 2 25 3 a5 4 45 s 55

a. b.

L €U2.D0

g (CTo¥;DXTp)) ™ 1
05 T 3 2 25 3 a8 0 I s 55

C.

Figure 2.22: Iteration of the optimal constrained algorithm.

However, we need 4(d — j — 1) operations to update the parents, compute the slopes and assign
Amin- We have then

d—1
24--1(5d — 55 —2) = 5d-2¢ - 7-2% 4+ 7,
;:0: (2.53)

=5(m+ 1)logy(m + 1) — Tm

operations to perform the optimal decimation in the worst case. The total cost of the algorithm
is obtained summing (2.52) and (2.53), i.e.

7(m + 1)loga(m + 1) — Tm — L. (2.54)

Therefore, copt imal has computational complexity ©(n logn). The optimal algorithm only
provides a weak improvement in terms of solution errors over its greedy counterpart (an aver-
age gain of 0.5 dB is measured). However, the variable-rate decimation scheme provides error
monotonicity across rates, as shown in the next section.

50 Chapter 2,

@1
s !)

o optimal constrained
g decimation,

iy 12000+ M

Q ’

= P

© .

, unconstrained]
decimation

:

constrained
using
global estimate’

unconstrained’|
refinement

4000 -

constrained
methods
20001 4

internal knots

Figure 2.23: Computational complexity comparison: The dotted curve
represents the complexity of the optimal constrained algorithm, whereas the solid
curves depict the complexities of the remaining greedy algorithms.

Solution properties The main difference between coptimal and its greedy counterpart
is that it can perform variable-rate decimation, i.e. we are not restricted to decimate knots
corresponding to leaf nodes. It is clear that all the properties verified by the greedy version also
hold for the optimal algorithm. Additionally, we show now with an example how the optimal
algorithm also verifies the monotonicity of the solution errors. We will give a formal proof for it
in Chapter 5.

Example 2.1
We apply now the optimal algorithm on the function in Figure 2.5a. Recall that all the previous
algorithms returned a nonmonotonic operational RD curve with this function. At the initialization
step, the slope A(k;) for each k; is computed (Figure 2.24a). According to table 2.1, We obtain
the following values:

M) =-32=4, Ak)=-F =2 Mk)=-3F=4 (2.55)
The knot corresponding to the minimal A is chosen, yielding knot & ». Then, the optimal move in
the RD plane with this function is to decimate all interior knots. The decrease in rate is 3 and the
optimal operational RD curve is depicted in Figure 2.24b.

The above example illustrates well that the algorithm uses a variable-rate decimation scheme

2.7. Review of algorithm properties 51

®
ry

« ~
o o N =
°
A
~

error (squared 12 norm)
b
e
1]
I
error (squared 12 norm)

IS

>
]
[§S)

»

L " L . 3. " n " L L L "
o 05 1 15 2 25 3 35 a 45 5] 05 1 15 2 25 3 35 4 45 B

rate (number of segments) rate (number of segments)

a. b.

Figure 2.24: Application of the optimal constrained algorithm to the function in
Figures 2.5a: (a) At the initialization, the slope A(k ;) for each knot is computed.
(b) The optimal decimation is obtained with the knot corresponding to the smallest
slope. Hence, we decimate J;,, i.e. all the interior knots in this case and the
nonmonotonicity is avoided.

to avoid the nonmonotonicity of the operational RD curve. Since the decrease in rate is not
constant as all the previous scheme, typically a sparser range of rates is available.

2.7 Review of algorithm properties

We provided a detailed analysis for the computational cost of the algorithms in this chapter. In
order to give a clearer summary for the computational complexities, we examine again each algo-
rithm cost having the same asymptotic behavior and derive a factor for their highest magnitude
term: For urefine, the cost (2.22) yields

3mlog, m — m(3 +¢) + 3log, m + 2 € ©(3mlogm). (2.56)

For udecimate, the cost (2.28) yields

mlogsm(m = D) + (3 = 5)m + logy (V) -2 <

amlog,(m®) = 5amlog,(m) € O(5mlogm),

2.57

where a > 0 is a sufficiently large factor. For crefine , the cost (2.33) yields

mlogs m + log, m — {m € O(mlogm). (2.58)

52 Chapter 2.

| algorithm | computational cost | storage cost | progressiveness | monotonicity |

uoptimal o(n®) 0(n?) .
urefine ©(3nlogn) ©(n) Vv
udecimate ©(5nlogn) O(n) Vv
crefine O(nlogn) O(n) v
cdecimate O(nlogn) On) Vv
cglobal O(5nlogn) O(n) Vv .
coptimal ©(7nlogn) O(n) Vv Vv

Table 2.3: Summary of algorithm properties.

For cdecimate, the cost (2.36) yields
1

= logy (m(m — 2)) + 5 logy(———) = 2(1+ ()2 —2 <

a% log, (m?) = am log,(m) € ©(mlogm),

where « > 0 is a sufficiently large factor. For cglobal , the cost (2.44) yields

5(m + 1)logy(m + 1) — 7m — 1 € O(5mlogm). (2.60)
Finally, for coptimal the cost (2.54) yields |

7(m + 1) loge(m + 1) — Tm — 1 € ©(7mlogm). (2.61)

The obtained factors are confirmed by Figure 2.23. Table 2.3 summarizes the properties of our
set of algorithms. Note that we express the complexity of the greedy algorithms in terms of
n=m— 2.

2.8 Summary

The simplicity of the polyline model permitted us to lead a full analysis and comparison of
the main algorithmic approaches in order to solve the approximation problem (our results are
summarized in Table 2.3). We explored a set of unconstrained and constrained algorithms and
gave a detailed analysis for each of them in terms of computational complexity and solution
erTors.

In our set of algorithms, cglobal (Section 2.6) is the most appealing to our transmission
problem. Consequently, the rest of this thesis mainly consists in the generalization to surface
models of this approach. Our plan for this task has several facets, which can be described by the
following observations:

2.8. Summary 53

» The simple connectivity of the polyline model eased our investigation. The multidimen-
sional case raises greater issues, as explained in Chapter 3.

» Mesh connectivity is more complex. Hence, we need an efficient data structure to access
the dataset. Once again, the polyline model freed us from this aspect. An efficient storage
mechanism is the topic of Chapter 4.

» In this chapter, all the algorithm optimizations are based on a single criterion: the coordi-
nates of the knots. This value can be seen as a property of the knot. Consequently, we can
think about having a set of properties and perform joint optimizations on multiple criteria.
In Chapter 5, we generalize cglobal to surfaces. Also, we explain how approximations
based on multiple properties is performed. Chapter 6 gives an example of such a joint
optimization scheme.

With the chapter, we depicted the panorama of mesh approximation using a monodimensional
*projection” of the problem. The rest of this thesis is led in the multidimensional case.

54

Chapter 2.

2.A. Computational complexity model and notations 55

Appendix 2.A Computational complexity model and
notations

2.A.1 Random Access Machine (RAM) model

To define the unit of time required to evaluate the computational complexity of an algorithm,
we need to choose a model of computation. A possible choice is the random access machine
(RAM) model [82]. The RAM is a register-based model of computation that can access any
of its registers in unit time (an idealization of the modern digital electronic computer). The
characteristics of this model are:

. Each memory unit holds a real number and its access has constant cost.

. The elementary operations are the comparison of two real numbers and any mathematical
operations.

All asymptotic bounds are given for this model.

2.A.2 Notations for computational complexity

Consider a function f(n) returning the number of necessary operations for a particular algorithm
to solve a problem of size n in our model of computation, the sets O, Q2 and O are defined as
follows:

Definition 2.1 (Computational Complexity Classification)
The computational cost f(n) € O(g(n)) for an input size n when we can find g(n) and suffi-
ciently large ¢ > 0 and n > ng such that f(n) is upper bounded by g(n), i.e.

O(g(n)) = {f(n) : 3¢ >0,3Ing > 0s.t0 < f(n) < cg(n),vn > ng}. (2.62)

The computational cost f(n) € Q(g(n)) for an input size n when we can find g(n) and suffi-
ciently large ¢ > 0 and n > ng such that f(n) is lower bounded by g(n), i.e.

Qgn)) = {f(n) : ¢ > 0,3ny > 05.t0 < cg(n) < f(n),¥Yn > no}. (2.63)

The computational cost f(n) € ©{g(n)) for an input size n when we can find g(n) and suffi-
ciently large c1,c2 > 0,c1 < co and n > ng such that f(n) is jointly lower bounded by ¢, g(n)
and upper bounded by c1g(n), i.e.

O(g(n)) = {f(n) : Je1,ca,m0 > 05.t0 < c1g(n) < f(n) < c29(n),Vn > no}. (2.64)

The function sets in Definition (2.1) characterize the asymptotic behavior of the algorithm,
as shown in the following example: Let f(n) be the computational complexity of an algorithm
in the worst case. We are interested in the behavior of f(n) when n — oo. Obviously, we

56 Chapter 2.

are interested in the algorithms whose asymptotic analysis yields a complexity with the smallest
order of magnitude. However, assuming two algorithms A and B having the respective complex-
ities fa(n) and fg(n) and fa(n) € O(fs(n)). Considering Definition (2.1), it may be possible
that, for some input size n, B outperforms A. Often, a small order of magnitude represents a
particularly interesting characteristic for an algorithm, however we need to be aware of the short-
comings of such limited view. When neither the constant ¢ nor n g are specified in (2.1), we must
keep in mind that the complexity bound is effective only for sufficiently large inputs.

2.A.3 Computational optimality

The complexity or size of a problem P is defined as the minimal number of elementary operations
needed by any algorithm to solve the problem. Consequently, an algorithm is computationally
optimal if its complexity has the same order of magnitude as the problem size. The optimality
has an asymptotic property of the algorithm, as stated in the definition below:

Definition 2.2 (Computational Optimality)
Given a problem P of size g(n), a computationally optimal algorithm having complexity f(n)
satisfies f(n) = O(g(n)).

Following Definition (2.2), we see that for any algorithm A solving P, we have
f(n) = Q(g(n)). (2.65)
Two natural lower bounds for g(n) are n and the output size s(n), then
g{n) = Q(max(n, s(n)). (2.66)

Then by definition, the complexity of any algorithm solving P is an upper bound for g(n), or
g(n) = O(f(n)). Finally, if an optimal algorithm exists, then

g(n) = O(max(n,s(n)). (2.67)

2.B. Pseudo-code for uoptimal 57

Appendix 2.B Pseudo-code for uoptimal

We give here the pseudo-code for the unconstrained optimal algorithm using dynamic program-
ming. We have the following notations:

o {ki,k;} denotes the segment between knots k; and k; and ||{k;, k;} — Jj41,5][3 is the
distance in squared [, norm between the segment and the full rate polyline computed only
on the internal knots between k; and k;.

ALGORITHM

forj =0.n—2do

> forl =0..5 do

s Dier) = |k by} = Ty gl3
+ end
s fori =0..j do

6 Jit1,j argmlin(D(Ji,Kj) + D(er))
7 end

s end

58

Chapter 2.

Appendix 2.C Pseudo-code for urefine

We give here the pseudo-code for the unconstrained greedy refinement algorithm. We have the
following notations:

kmax 1s the knot incurring the highest distortion.
D(k;) is the distortion measured only at knot k;.

Given a knot k.., we consider two particular knots k; and %, representing the closest
inserted knot to the left and right of k,ax respectively. In order words, the first knots
connecting the solution to the left and to the right and & ;4.

The operator & denotes the insertion of knot in a configuration .J ;.

The operator « in E ¢ arg D(k;) denotes the insertion of knot k; in the set E sorted
using the distortion D{k;).

ALGORITHM

1

3

7

8

init:

2 D(kmax) = -

forj =0..n—-2do

s if D(k;) > D(kmax) do
s kmax = arg D(k;)
¢ end

end

n—3 = Jn_2

o algorithm:

0w forj =0..n—2do

u if (I < max —1) do

» E «+ argmax{D(ki41),-.. D(kmax -1)}
15 end
14 if (r > max +1) do

s B+ argmax{D(kmax+1), ... D(kr—1)}

2.C. Pseudo-code for urefine

59

16 end
17 kmax =max F
18 Jn—(2+j) — Jn_(1+j) D kmax

19 end

60

Chapter 2.

Appendix 2.0 Pseudo-code for udecimate

We give here the pseudo-code for the unconstrained greedy refinement algorithm. We have the
following notations: -

kmin s the knot incurring the minimal distortion.
D(k;) is the distortion measured only at knot k.

Given a knot k,;,, we consider two particular knots k; and k, representing the closest
inserted knot to the left and right of k.,,x respectively. In order words, the first knots
connecting the solution to the left and to the right and & 5.

The operator \ denotes the decimation of knot in a configuration J ;.

The operators <— and <> denote the insertion and the replacement of knot & ; in a set of
knots F sorted using distortion D (k;), respectively.

ALGORITHM

1

init:

» forj=1.n-2do

s B+ argD(kj)

s+ end

s forj=1.n—2do

6 kmin = min F

7 Jj < Jj—1 \ kmin
s B+ arg D(kp)

s E « arg D(k,)

10 end

Chapter 3

Computational analysis of 4-8
meshes

3.1 Introduction

3.1.1 Motivation

Meshes with subdivision connectivity, i.e. regular triangulations constructed using iterated
subdivision rules, are popular in many applications, such as visualization [19] and finite element
analysis [15], to name a few. Their irregular counterparts have also been extensively studied
[49], but regular meshes are preferred because of their superior performance and flexibility for
processing [35], transmission [52] and compression [48].

A particular class of regular triangulations are 4-8 meshes. These meshes have been
extensively used to visualize terrain data [4, 19, 58, 71]. In this context, 4-8 meshes are also
called quadtree triangulations because quadtrees are often used to store them [55, 71, 76].
Terrain models are given as amplitude matrices (i.e. the parametrization is implicit) and 4-8
meshes are used to connect the vertices (Figures 3.1a-¢). Recently, researchers have also used
4-8 meshes to compute approximations of subdivision surfaces [87]. Subdivision surfaces are an
increasingly popular representation for piecewise-smooth surfaces. Algorithms for subdivisions
surfaces use recursive subdivision rules to create vertices from a coarse control mesh. Examples
of such rules are provided by Loop [59], Catmull-Clark [11, 14] and Velho {87]. Today, the
properties of subdivision surfaces are an important area of investigation (e.g. [93]).

In both terrain visualization and subdivision surfaces, researchers often deal with large
datasets. Therefore, simplification algorithms producing adaptive, multi-resolution representa-

tions are an important topic of investigation [19, 58, 71, 4]. Multi-resolution representations of

61

62 Chapter 3.

meshes with subdivision connectivity have many advantages over their uniform counterparts.
They allow for vertices to be concentrated in detailed regions, leading to efficient descriptions
of the shape. Their multiple levels of resolution provide an efficient means to deal with
resources-constrained rendering, storage or transmission. However, adaptivity comes at a price:
These representations are more complex to process and to store. Also, basic operations such as
vertex queries are more difficult to implement. In the next section, we review previous work on
simplification algorithms for 4-8 meshes.

The properties of 4-8 meshes analyzed in this chapter derive from the vertex hierarchy and
the particular connectivity of the vertex set. Hence, an analysis of the mesh as a tiling of R? is
sufficient, and the results are also valid for a set of connected vertices in R®. The amplitudes
z of the underlying matrix are important, however, when simplification errors are computed for
vertices, i.e. in simplification algorithms. The analysis is led using triangulated quads similar
to those shown in Figures 3.1a-e. However, our results also apply to meshes approximating
subdivision surfaces in R? (as in [87]), except at extraordinary vertices forming the coarse control
mesh. Recall that these vertices are similar to the ones used to connect the initial square of two
triangles in Figure 3.1a.

3.1.2 Previous work on simplification algorithms

Simplification algorithms, leading to multi-resolution representations, aim to select a subset
of the original vertices in order to efficiently represent the shape. We consider approaches
either based on vertex decimation (e.g. when starting from a dense mesh) or vertex insertion
(e.g. when starting from a coarse version of the mesh). Note that alternative approaches exist
(e.g. edge split, edge collapse) and are also investigated. In Section 3.2.3, we explain that a
hierarchy (very similar to the hierarchy in a tree structure) is imposed over the vertices by the
4-8 connection (Figure 3.1a-¢). Hence, decimating/inserting an arbitrary vertex often implies
jointly decimating/inserting additional vertices to preserve the hierarchy (think of pruning a tree
node and all its descendants, or inserting a leaf node and all its parents). For any vertex, its set of
descendants is called its merging domain and its set of parents is called its splitting domain. An
advantage for preserving the hierarchy is that a global error measure can be computed in order
to simplify the mesh. This characteristics will be exploited in Chapter 5.

Many simplification algorithms for 4-8 meshes based on decimation or insertion have been
given in the context of terrain visualization [19, 58, 71]. However, these methods are based on
insertion only [58, 71] or on restricted cases of decimation [19] (see below). Also, all previous
algorithms have used local error metrics. For subdivision surfaces, most implementations are
based on nonadaptive representations to avoid the added complexity and performance penalty
traditionally associated with adaptive schemes. When simplifying a mesh, an error criterion
is used to select vertices to insert or decimate. For example. an error can be computed at
each vertex according to local variations in curvature over its merging domain or splitting

3.1. Introduction 63

domain, depending on if the aim is to decimate or insert the vertex, respectively. Therefore
each simplification step modifies the model’s shape, and some errors must be recomputed. In
previous works, algorithms were given in order to recompute errors after a vertex insertion
[58, 71] or restricted decimation [19]. However, no such algorithm is described in the general
case of decimation’.

Overall, no computational analysis of common 4-8 mesh operations (e.g. decimation, inser-
tion, update of the modified errors) is available to the authors’ knowledge. A detailed analysis of
4-8 mesh properties is useful in many aspects: It provides tools to design algorithms and forecast
their cost. It also allows for more elaborated error metrics to be built, improving algorithm per-
formances. As explained above, simplification algorithms reduce the number of vertices whereas
algorithms for subdivision surfaces generate vertices using subdivision rules. Hence an analysis
of 4-8 mesh properties helps provide a unifying framework for simplification and subdivision
methods. In the next section, we explain our contributions and the organization of this chapter.

3.1.3 Contributions and plan

In this chapter, we present fundamental computational complexity results for processing 4-8
meshes. We summarize our contributions below and refer to the corresponding sections.

Computational analysis of mesh operations We compute the number of operations re-
quired to decimate and insert an arbitrary vertex in the hierarchy and show that, on average, these
operations can be performed in O (log n) time (Section 3.3.1). Call ancestors the vertices whose
domain connectivity is modified after a decimation or an insertion. We explain how to find these
vertices and show that @(log n) exist in each case (Section 3.3.2).

Merging domain intersections We explain that an interesting problem is to determine
which are the removed vertices in the merging domain of ancestors after decimating a vertex.
This problem requires the computation of merging domain intersections, and its solution is the
most important contribution in this chapter. The solution to this problem enables the building of
a global error metric for algorithms using general decimation. We will present such an algorithm
in Chapter 5. We explain how to describe merging domain intersections (Section 3.4.1), and we
provide a model for the problem (Section 3.4.2). We compute its cost in closed form (Section
3.4.3) and show that, on average, ©(log” n) operations are sufficient to compute the intersections
between the merging domain of a decimated vertex and the merging domains of all its ancestors
(Section 3.4.4).

Computational lower bounds for algorithms using local error Consider simplifica-
tion algorithms based on local error using either general decimation or insertion. We use our

'We explain the difference between restricted and general decimation in Section 3.2.3.

64 Chapter 3.

results to prove computational lower bounds for their execution (Section 3.5). More precisely,
we show that ©(n logn) operations are necessary to fully decompose or refine a surface.

3.2 4-8 mesh construction

3.2.1 Connecting a matrix of amplitudes

We denote by M a mesh having a connectivity obtained by recursive 4-8 connection. Since
the connectivity is regular, it is sufficient to represent M as a set of vertices, hence M =
{vo, .. .,vn-1}. We present a simple construction of a 4-8 mesh connecting an amplitude matrix
z (e.g. terrain data), i.e. the coordinates x, y are implicit. For the sake of clarity, we represent our
meshes as tilings of the plane R?. A 4-8 mesh connecting the dataset is created using the recur-
sive procedure depicted in Figures 3.1a-e. Initially, a quadrilateral, or more simply quad, formed
with two triangles is connected using the four corner vertices. Then, each triangle hypothenuse
is bisected to connect a vertex at the midpoint. We denote each connection step by [and Figures
3.1b-e depict steps I = 1,2, 3, 4, respectively. After | = 2d connection steps, the mesh connects
a matrix of amplitudes 2¢ + 1 and contains n = 2 - 4% triangles. The unique vertex inserted at
step [= 1 (Figure 3.1b) is called the roof vertex and is denoted by vy.

4 " g @

(a) bl=1 ©1l=2 @Il=3 (e)l=4

Figure 3.1: Connection of a matrix of amplitudes > using the 4-8 scheme: (a)
Initially, a square formed by two triangles is created using the corner vertices.
Then, triangle hypothenuses are bisected to connect a vertex at the midpoint.
Each connection step is denoted by ! and (b),(c),(d) and (e) shows steps | = 1,2,3
and 4, respectively.

The 4-8 scheme takes its name from an instance of regular tilings studied by Laves in Cristal-
lography [54]. A 4-8 mesh corresponds to a [4-82] tiling. The notation suggests that each triangle
has one vertex of valence 4 and two vertices of valence 8. In Figures 3.1a-e, this is verified at
even steps /.

The successive meshes generated by recursive connection are embedded, in the sense that
we can obtain any mesh from a coarser approximation by simply splitting some of the triangles,
which leads to the following definition:

3.2. 4-8 mesh construction 65

Definition 3.1 (Embedding)
Given M; and M, we say that M; is embedded in M; iff M| < |M;| and M; C M;. Note that
when M; = M, the inclusion is not necessary.

We need now to explain how the operator C can be used to compare two meshes: In the case
of a matrix of amplitudes z, the mesh can be simply defined as a set of vertices (z,y, z) and
therefore be freed from specifying explicitly the connectivity. An alternate definition is to use
only the z coordinate and specify the connectivity. This solution allows to define each vertex
with a single floating-point value (i.e. the z coordinate). In this case, the definition is a particular
case of [36]. Both approaches lead to the same semantic for M and allow for the comparison of
two meshes using the inclusion operator C. Having a mesh freed of parametric information, i.e.
the coordinates (z,y) of the vertices, leads to more efficient storage.

Considering a set of N vertices given as a matrix of amplitudes z and VN = 2¢ + 1, the
4-8 connection induces a natural hierarchy on the vertices in M. We illustrate it by splitting the
regular grid (2 into the so-called quincunx and Cartesian grids (Figures 3.2a and 3.2b). The sets
are denoted by () and C respectively. Since two connection steps are necessary for the mesh to
connect a uniform matrix, we have d = % with [even. The total size of each grid afterd > 0
connection steps is respectively given by

d_ Lar | ga1 8 d_1,ann 1

Q¢ = 64 +2 3 and |C|* = 124 3 3.1)
In Figures 3.2a and 3.2b, the index next to a vertex in the grid indicates at which connection step
this vertex is connected. Note that the four vertices with [= 0, forming the two initial triangles
(Figure 3.1a), are actually not connected during the recursive connection since they are used to
construct the initial base mesh. Thus we have |M|? = |Q]¢ + |C|* + 4, where d denotes the
number of connection steps. Finally, note that the quincunx grid is just a rotation of the Cartesian
one by 7 and their superposition results in the uniform matrix {2 (Figure 3.2¢).

3.2.2 Arbitrary topologies and subdivision surfaces

The construction presented in the previous section is useful to create representations of para-
metric surfaces such as terrains. To represent more involved topologies, two approaches are
possible: the connection scheme depicted in Figures 3.1a-e may be used to connect vertices
parametrized on a regular polyhedron. A regular polyhedron has equal faces whereas its vertices
are all surrounded alike. Call p the number of vertices connecting each face and ¢ the number
of faces surrounding each vertex, then only 5 possible couples (p, ¢) exist. This set of polyhedra
is known as platonic solids. Only 3 of them have triangular faces and are depicted in Figure 3.3.
For each of these polyhedra, 4-8 connection can be applied. A straightforward application is the
representation of spherical datasets since the subdivisions of a triangular platonic solid can be
used to obtain a tessellation of the sphere.

66 Chapter 3.

0-®-%-6-.0-9-9.9..0
000 B-0-4-0-9
e 000 0-0-O- -9
09 0-9-0-9-0-9
R I I A 2%)
6 -8-0-8-0-0.0.0.0

0
=3
O

Figure 3.2: Vertex hierarchy: (a) Cartesian grid. (b) Quincunx grid. (c)
Superposition of both grids. In (a) and (b) the index next to each vertex
corresponds to the connection step at which the vertex is connected.

Subdivision surfaces are used to generate 4-8 meshes with arbitrary topology [87]. A coarse
control mesh composed of a small set of triangulated quads (as in Figure 3.1a) fixes the topology
and is used as an initial mesh. The vertices connecting the quad forming the control mesh are
often called extraordinary vertices since their valence might be arbitrary. Subdivision rules are
used to create new vertices connected on each quad, as in Figures 3.1b-e.

3.2.3 Constraints when simplifying 4-8 meshes

The iterative procedure used to connect the vertices imposes hierarchical constraints over the set
of vertices. The hierarchical structure is fixed by the connection step { assigned to the vertices.
When computing an adaptive representation of the mesh (e.g using decimation or refinement),
the hierarchy between vertices must be preserved.

For example, consider the root vertex connected in Figure 3.1b. A decimation perserving
the hierarchy operates as follows: When this vertex is decimated (e.g. in the mesh of Figure
3.1e), the edge orginally split by the vertex (the diagonal in Figure 3.12) must be recovered.
Consequently, all the vertices in the mesh are also decimated. Call v a vertex, then M ,, denotes
the set of vertices that must be removed jointly in order to recover the original edge and thus
preserve the hierarchy. We call the set M, merging domain. A merging domain is attached
to each vertex in the mesh. For the vertices v connected at the step depicted in Figure 3.1e,
M, = {v} since it suffices to remove v to recover the corresponding edge in Figure 3.1d. We
refer to such decimation as a restricted case of decimation (as used in [19]). In contrast, a
general case decimation refers to the removal of an arbitrary vertex (i.e. with |M ,| > 1).

We look now at the hierarchical constraints incurred when decimating and inserting a vertex

3.2. 4-8 mesh construction 67

Figure 3.3: The three platonic solids having triangular faces: (a) the tetrahedron,
(b) the octahedron, (c) the icosahedron.

in more detail. Consider the example in Figure 3.4a, and assume that v is connected at step [.
Then the vertices in M, connected at steps [+ 1,7 + 2 and [+ 3 are labeled with the index 1, 2
and 3, respectively. The set M, is decimated as follows: First, v is decimated. Then we remove
the four vertices on the edges of the triangulated quad split by v (vertices with index 1). These
vertices are called descendants of v, and we explain how to find them in Section 3.3.2. Then for
each of these vertices, we decimate their four descendants (vertices with index 2). Note that the
descendants split the four quads at the next level surrounding each edge of the previous quad.
We repeat the procedure until the descendants connected at the last step are reached (step | + 3
in the example). The resulting mesh is shown in Figure 3.4b. The set of triangles tiling the
merging domain in the figure is called support.

We also attach to each vertex v a splitting domain, denoted by S,,. The domain contains the
vertices to insert jointly to » in order to preserve the hierarchy. Figure 3.4c shows an example
of insertion: The vertex v lies at a location connected at step [= 5. An insertion preserving
the hierarchy operates as follows: -First, we connect v to its parents® at step | = 4. Then, each
of these vertices is connected to its parents at step [= 3 and so on. We repeat until no more
vertices need to be inserted. At most this bottom-up traversal is stopped at the root vertex. The
underlying grid in the figure represents the parametrization of a 9 x 9 matrix of amplitudes.

Preserving the hierarchy has two consequences for simplified meshes: First, it ensures that
successive decimations/insertions yield a set of embedded meshes. For example, consider a
coarse mesh obtained after a series of decimations. If the series of meshes is embedded (Defi-
nition 3.1), it is always possible to reconstruct a mesh from a coarser version only by splitting a
set of triangles. Second, the resulting mesh is conforming [15], i.e. no triangle has a vertex of
another triangle in the interior of one of its edges. This condition must be fulfilled in order to

2We explain how to find the parents in Section 3.3.2.

68 Chapter 3.

0O)
-/
3 3 <
6106366 <
3 IRTEG 3
602600016266
< 6206206306]
6263606606606 -
By 16506 3 b
666056 ®
3 3 b
N
&/
(@) (b) (©)

Figure 3.4: Mesh operations: (a) The white vertices represent the set M ,.. (b)
Support of the merging domain (set of triangles tiling the domain after that A7 , is
decimated). (c) Insertion of a vertex v at a location connected at step [= 5. The
white vertices form the splitting domain and the numbers correspond to the
connection steps. The underlying grid depicts the parametrization of a 9 x 9
matrix of amplitudes.

render the surface without cracks, i.e. to avoid shape discontinuities.

3.3 Analysis of simplification operations

3.3.1 Decimation and insertion of a vertex

We first evaluate the cost of decimating a vertex. To do so, we compute the number of triangles
connected with at least one vertex in M,. This number is linearly proportional to the number
of vertices in M, (see below). We address two cases: (1) before the decimation of M, (e.g.
Figure 3.4a), and (2) after the decimation of all vertices in M ,. In the first case, The number of
triangles is denoted by |M,|. In the second case, the empty set M., is denoted by M, and the
number of triangles is denoted by | M, | o. Note that | M,| A counts the number of triangles tiling
the support of the domain (e.g. Figure 3.4b).

Assume that M, contains NV vertices and VN =24 +1. Thus, the connection of a matrix of
amplitudes yields a mesh with n = 2 - 4¢ triangles, furthermore N and n are linked by

11
n=(N- 1)(§ + 2—d)'1. (3.2)

Both | M,|a and |M,|a are functions of the size of the mesh n and the connection step [of

3.3. Analysis of simplification operations 69

the vertex. Proposition 3.1 then gives the sizes | M| a(I,n) and |M,|a (I, n), i.c. as functions
of n and [. These functions return the sizes of a “fully expanded” merging domain, i.e the
mesh boundaries are ignored. Hence the largest overestimate is obtained for the root vertex, e.g.
|M,|a(1,n) > n. The sizes are correct for vertices close to the center of the mesh and having a
sufficiently large [. The proofs for Proposition 3.1 are given in Appendix 3.A.1.

Proposition 3.1 (Size of the merging domain) Consider a uniform 4-8 mesh containing n =
2 - 4% triangles with d > 0. The number of triangles | M| a (L, n) for a vertex v connected at step
1 >1 > 2d is given by

(2logyn —1)2'"!n, l>2d-4,
|Myla(l,n) =< 128-co+4(co- (24— 12-¢7' + 4¢72) (3.3)
+8c;'c} - 16 1), 1<2d—4,

where cy(I,n) = 2!l =% and ca(l,n) = %. The number of triangles | M| a(1,n) is
given by

2t=lp — 2, [>2d -4,
|My|a(l,n) =< 322 Hn-cf' + 3. ¢p) (3.4
—16(logyn — L) — 18, 1<2d-4,

with ¢, (I, n) = 21198 n—t5]

In Figure 3.5a, we depict | M| A (middle curve) and |M v]A (bottom curve) as a function of
the connection step [posing n = 2 - 420, The top constant value represents the mesh size n.
Recall that since the mesh is bounded, the maximum value at [= 1 is greater than n, as shown in
the latter figure. Figure 3.5b shows the asymptotic behavior of |M ,|A and |J\UL,| & (posing 1=1)
for n — oo. The top linear curve represents the mesh size, whereas the middle and the bottom
curves are given respectively by |M, | and va |A. We give now one more result necessary to
derive the asymptotic behavior of | M| and | M,|a theoretically.

The following properties derive from the hierarchical connection:

n

|My|a (27! = 1,n) = |My|a(l,), (3.5
41
; n
lMUIA(QH_lan) = |MUIA(27 Z)a (36)
9 . o mn
|My|a (2 — 1,n) = |M,|a(1, =), (3.7
41
o . v n
| My (27, n) = | M| (2, 15), (3:8)

where (3.5) and (3.7) hold for all vertices of the Cartesian grid (i.e. [is odd) and (3.6) and
(3.8) holds for all vertices of the quincunx grid (i.e. ! is even).

70

Chapter 3.

e

35 10 —
30} :
g g H
g 8100} A
= c .
820} 8 '
£ £
g1sp- 8
@ G
£ £10
S10r g
8 =

st

0 i
10 0 5 10

OO

30 40 10

(@) (b)

10 20 1
step | of the subdivision process mesh density {log)

Figure 3.5: Asymptotic behavior of the merging domain: (a) Merging domain
sizes as a function of I (n = 2 - 4°). The top constant value depicts the mesh size.
The middle and bottom curves represent | M, | and | M, | respectively. (b)
Merging domain size as a function of n (I = 1). The top linear curve represents
the mesh density n, whereas the middie and the bottom curves are given for

|M,| and | M, | respectively.

We derive now the asymptotic behavior of | M| a (1, 7) and | M, | a (1,) or equivalently their
size when n — oo (Figure 3.5b). We first compute the size posing | = 1. We use the short-cuts
|My|a(n) and |M,| A (n) to denote respectively |M,|a(1,n) and |[M,|A(1,n). We have

_ | 2logyn —1)n, n < 128,
M| a(n) = { ™+ %c? ~64c; — 37t + %cfz, n > 128,

NAROE 21ty 2, n < 128,
VAV T neet +48-¢) — 16log, n — 26, n > 128,

with ¢; (n) = 2U°617~2] We need now to bound the term ¢ (1), thus

1 /n 1 /n
~ 2 < < - /=
8\/2—01(”)—4 2

For (3.9) we have that ¢; (1, n) € ©(y/n) and c3(1,n) € ©(n), hence
|My|a(n) € O(n),
Using (3.11), we can now lower bound (3.10) to obtain:
|My|a(n) > 4v/n + 3V2y/n — 16log, n — 26,
€ Q(vn).

(3.9)

(3.10)

@3.11)

(3.12)

(3.13)

3.3. Analysis of simplification operations 71

Similarly, we upper bound (3.10):

|My|a(n) < 2%/ + 6v2v/n — 16log, n — 26,
€ O(v/n).
Using (3.13) and (3.14) we have that
|M,|a(n) € O(v/n) (3.15)

Both results (3.12) and (3.15) are confirmed by Figure 3.5b. We compute now the complexities
on average. To do so, we proceed as follows:

(3.14)

1. We compute the merging domain size for each ! and n — oco.

2. We calculate their weighted sum using the quantity of vertices (3.1) connected at each
connection step /.

3. The sum is averaged by the total number of triangles n.

For the first task, we simply use (3.5) and (3.6) which allows to restrict us to two cases, namely
[= 1 (Cartesian) and [= 2 (quincunx) and we vary the density n of the mesh instead. This
twist allows us to reuse the results (3.12) and (3.15). For the second task, we weight the merging
domain sizes using the approximation 4° for the vertices quantities, with i = 1...d where is
d = log4(n) — . For the third task, using (3.2) we have that

N-1)(5+3)7"
lim = = lim ()3 + 51)

d—oo N d—oo N

=2 (3.16)

Therefore & is a good asymptotic value for the number of vertices in the mesh. For E[|M ,|a(n)]
we have

d—1 d—1
BllMla(m)] = 2(3 4m(1, 1)+ 3 4'm(2, 1)),
=0

1=0
g &1 g ol
= 5(241@(5) +Z4l@(z))~,
i=0 i=0

. (3.17)

d—1 -1
2 ; n ; n
— E 16, - — E 4'hy - —).
n(i—O 8 & * 0 - 41)

I

=2(by + b2)(d - 1),
= 2(by + ba)(logy m — g)

which proves that
E[|M,]a(n)] € ©(logn) (3.18)

72 Chapter 3.

Similarly, for E[|M,| A (n)] we have

. 9 d—1) d-1]
E[M]am)] = =(3_4m(1L,) + Y 4m(2, 1)),
1=0 i=0

2 d—1] Py d—1])
= ;(i;zz @<\/4—_,i) + gz @(\/;>),

2 d-1 . n d-1 ; ") (3.19)
= E(;4b1-\/;+;4b2-\/;),

9 d—1)
= E\/ﬁ(bl + b2)[Z 21,

i=0

()

Finally, we compute the order of the term (x) by replacing d

d—1
d o= \/g -1 €0(Vn), (3.20)
=0

yielding
B[, |a(m)] e 2YMOWVN) o) G21)

n
which proves that | M, | (n) has constant size on average. The following theorem summarizes
our result on the asymptotic size of the merging domains:

Theorem 3.1 (Asymptotic sizes of the merging domain)
Consider a 4-8 mesh containingn = 2 - 4% triangles with d > 0, the density and support size in
triangles of the merging domain are given by

|My|a(n) € O(n),

o 3.22
|32, (n) € O(v/m), 622

whereas, on average, we have,

E[|My|a(n)] € ©(logn),

. (3.23)
E[|My|a(n)] € O(c).

We compute now the cost for inserting a vertex. To do so, we calculate the number of triangles
|Sy| A connected with at least one vertex in S,. Finding S,, only requires a bottom-up traversal of
the mesh structure (exactly how this traveral is performed will be explained in the next section).

3.3. Analysis of simplification operations 73

Moreover, each vertex splits two triangles in the mesh (Figure 3.4c). Therefore, for the vertices
connected at the last step { = 2d, we have

|Sula € O(logn). (3.24)

The function |S,|a increases linearly with the connection step, and |.S, | is minimum for the
root vertex. Therefore, averaging |S ,| A over all vertices yields again

E[|S.|] € ©(logn), (3.25)

3.3.2 Sets of ancestor vertices

Consider a decimation algorithm: We denote by A 5/, the set of vertices whose error is modified
after decimating a vertex v, i.e. decimating M ,,. Similarly, consider an insertion algorithm: We
denote by Ag, the set of vertices whose error is modified after inserting a vertex v, i.e. inserting
S,. Both vertices in Ayr, and Ag, are called ancestors. The set Ay, refers to vertices not yet
decimated, whereas A g, refers to vertices not yet inserted.

(@ ()

Figure 3.6: Visual representation of the ancestors of M ,: (a) M, C M,. (b)
Overlap between M, and M,. The dark region depicts the domains’ overlap, and
the thick line is the intersection boundary.

We give now some insights on the asymptotic behavior of | A s, | when n — co. An intuitive
observation is that |4, | can only have polynomial size if the merging domain remains local
around v in a mesh of increasing size. Figure 3.7 represents the merging domain M, by its
support. In a mesh of infinite density (i.e. n — oc), the domain converges to the irregular
octagon represented by the dark shape in the figure. Proposition 3.2 states that M, is spatially
bounded when n — oo, which implies that |A4 s, | has polynomial size since there is a finite
number of merging domains intersecting and containing M ,. The proof is given in Appendix
3.A2

74 Chapter 3.

A%

Trmax

Figure 3.7: Limit surface of the support of vertex v: the white region represents
the support for the actual mesh density, whereas the dark region shows the limit
surface in a mesh of infinite density.

Proposition 3.2 (Limit surface of the merging domain) The support of M, in a mesh of in-
creasing density is bounded by the irregular octagon with dimensions r pa = V2 and roin = %
in Figure 3.7.

We explain first how to find the ancestor sets A pr,: We are looking for vertices a such that
M, C M, (Figure 3.6a), and for vertices a whose domain A{, partially overlaps M, (Figure
3.6b). In the latter figures, we depict the merging domains using their support. The decimation
of M, has removed vertices in the merging domain of both types of vertices a as defined above.

An important property of 4-8 meshes is obtained by construction: When the mesh is subdi-
vided, the merging domain of a vertex v is embedded in at most two merging domains of vertices
(call the vertices a; and a) connected at the previous step. These vertices are the parents of v.
Each vertex has two parents at the previous step, except for the border vertices, which have only
one parent. Figures 3.8a-d depict four connection steps. The root vertex (Figure 3.8a) has no par-
ents by definition. For steps [> 1 (Figures 3.8b-d), an arrow links each vertex to its parents (at
the previous step [). Symmetrically reversing the arrows would link a vertex to its descendants.
To find a chain of ancestors, denoted by A ,, for any vertex v, the arrows linking v to its parents
are recursively followed until the root vertex is reached. This results in a bottom-up traversal of
the mesh. For example, in Figure 3.9a we depict the chain of ancestors 4, = {a;},¢ =1:10
of vertex v. In the example, a1 is the root vertex vo. The ancestor with the smallest connection
step is always the root vertex vg. Hence for any vertex v

Va; € Ay, M, C M,, C M, (3.26)

Moreover, Vi, a; ¢ M,. Note that the set S, (e.g. Figure 3.4¢) is found using the ancestor chain

3.3. Analysis of simplification operations 75

of v. However, the set S, is composed of vertices not yet inserted, hence recursions (e.g. as
shown in Figure 3.9a) are stopped when a vertex already in the mesh is met.

Figure 3.8: Finding the parent vertices: In each figure, the parents are
represented in white and an arrow points from each vertex to its parents. (a) The
root vertex has no parents by definition. Parents of the vertices inserted at steps

(b)l=1,(c)l=2and(d) !l = 3.

B
L p
Py [b
P [[
[
9 Ny, a7' 4 o e
4 aj : [. [} ° [}
3 Ve [oo
9 oy b
q a a ® 3
ap 3 s
[
4 p
@ (b)

Figure 3.9: Ancestor vertices: (a) The chain of ancestors a; built from v by
recursively finding its parents towards the root vertex. Note that a 10 = vo. (b) The
white vertices in M, are the only ones with one parent not in M ,,.

Construction of a chain of ancestor A, We give below a recursive algorithm to find the
chain of ancestor A, of a vertex v:

ALGORITHM

76 Chapter 3.

Ay, +— 0

function CONSTRUCT_SET(VERTEX v)

1 if v # root
» FIND a1 SUCH THAT M, C M,, see Figure 3.9a
s ifa; ¢ A,
+ Ay, ®a @ denotes the insertion in the set

s CONSTRUCT.SET(a1)
¢ if v IS NOT ON THE MESH BOUNDARY
7 FIND a5 SUCH THAT M,, C M,, see Figure 3.9a
8 ifag ¢ Av
9 AU D aq
io. CONSTRUCT_SET(as)

11 end

Following the above discussion, the ancestors a of M, such that M, C M, are simply
found by building a chain of ancestor starting at v. How can we find ancestors when M , and
M, partially overlap? These ancestors are found by building ancestor chains from a selected
set of vertices in M,. Again, denote by a1, ay the parents of a vertex (found by following the
arrows in Figures 3.8a-d). For some vertices in M ,,, a1, a2 € M,,. Therefore, these vertices must
be avoided. Only a small set of vertices in M, have one parent which does not belong to AZ,.
These vertices are depicted in white in Figure 3.9b. There is exactly one such vertex per triangle
tiling the support of the merging domain. Therefore, with (3.21) we know that, on average, we
have a constant number of such vertices. Then, the ancestors a are found by building an ancestor
chain from these particular vertices, starting at the parent not belonging to M ,,.

A bottom-up traversal of the mesh to find ancestors requires ©(logn} steps. Hence, with
(3.21) we have, on average, that

Apr, € O(c) - O(logn) € O(logn). (3.27)
We explain now how to find Ag,: A property of the vertices in M, is
Yw € My,v € Ay, (3.28)

i.e. all the vertices w € M, have v as an ancestor. For Ag, we are looking for the vertices a
whose splitting domain (hence error) has changed after inserting v, i.e. at least one vertex was

3.4. Merging domain intersections 77

inserted in S,. More precisely, the vertices such that 3w € S,,w € S,. Therefore, we have to
find a subset of vertices w; in A, (the ancestor chain built from v) with the smallest connection
step, such that no pairs w;, w; verifies M, C M, ,. Otherwise, the set {w;} is redundant.
Call these vertices min; (A,), then following (3.28), we have

As, = | M. (3.29)

weEming(A,)

The latter result shows an interesting duality between S, and M,,. Using (3.23), we can conclude
that, on average,

As, € O(logn). (3.30)

3.4 Merging domain intersections

In the following sections, we propose a method for finding merging domain intersections. Recall
that two types of ancestors exist for M,: the vertices a such that M, C M, and the vertices a
whose domain M, partially overlaps M,. When M,, C M,, then M, N M, = M,. Therefore,
we are interested in finding the intersection in the second case. We proceed in two steps: First,
we compute the size of an intersection. The metric used to compute the size is defined in the next
section. Second, we provide an algorithm that can be used to find M, N MM, for all ancestors a
whose domain partially overlaps M.

3.4.1 How to describe an intersection

We describe the intersection between two merging domains as the union of a set of (smaller)
merging domains. Using merging domains as building blocks provides a compact, efficient
description for intersections. Finding the vertices in M, only requires searching around v using
a single pattern, whereas finding M, N M, is difficult due to the multiplicity of cases: Just
consider all the possible locations for neighboring ancestors a. Hence, Figure 3.6b is just a
particular example of arrangement for M, N M,. Following (3.27), in total we have ©(logn)
such arrangements.

Consider the following example: In Figure 3.10b, the intersection M, N M, is the single
domain M,,. In general, more than one domain is needed to represent the intersection. Consider
then M, N M, in Figure 3.10c: In this case, the intersection is

My, U My, U M,,, (3.31)

which makes sense, since the vertices contained in the intersection belong to the domains
My,,1=1,2,3.

78 Chapter 3.

We would like to represent the intersection as an exclusive set of vertices, i.e. as in (3.31).
Consider M, N M, in Figure 3.10d: The domain M ,,, overlaps with the domains M, and M,,,.
We write the intersection as

5 5
U Mu, = 5 Mu, \ D, (3.32)
1=1 i=1

where the operator € “gathers™ the vertices in the sets M,,,, and D denotes the set of vertices
to remove in order to obtain an exclusive set — in this case, the vertices in M., N M,,
and M,, N M,,. To minimize the number of terms in the union (3.32), the domains M ,,,
should be as large a possible (e.g. as depicted in Figure 3.10d). Finally, the set D in (3.32) is
also expressed as a union of smaller domains. Therefore, computing this term again involves
removing redundant vertices. This suggests that finding an intersection often requires recursively
adding (&) and subtracting (\) domains (inclusion exclusion principle).

We address the problem as follows: We identify a worst case, i.e. the pair of neighbor
vertices v and a with the largest intersection. Then, we propose a model to compute the size
of the intersection (Section 3.4.2 and 3.4.3). The size is given in terms of domains to add or
subtract, e.g. as in (3.32), in order to obtain an exclusive set of vertices. Finally, we provide an
algorithm for computing all possible intersections of a merging domain M ,, with its neighbors a
in Aps, (Section 3.4.4).

3.4.2 Modeling of the intersection between a pair of merging do-
mains

Consider two vertices v and a arranged as in Figure 3.10a. The intersection size is maximum
between domains of central vertices in two horizontal (or vertical) adjacent quads (Figure 3.10a).
Figures 3.10b to 3.10d depict the union between two domains > attached to vertices connected
respectively at step 2d — 1, 2d — 3 and 2d — 5 for a mesh of size n = 2 - 4% (recall that the
subdivision steps [range between 1 and 2d). These vertices are located at the center of a quad.
The intersection between the domains is shaded. We denote by 541, I34—3 and Ip4_5 these
unions, hence

Ly = (M, & M,) \ My, ,with v and a as in Figure 3.10b,

(.33
Ly 3 = (M, ® M,)\ (&>_,M,,), with v and a as in Figure 3.10c.)

Assume that C() is an operator measuring the cost to find I»4_;, j > 1, as defined in the previous
section. Then, we have that C'(I24-1) = 2 and C(I24-3) = 4. To verify this, simply count the
number of times an operator & or \ is used in the above equations.

Finding I>4_5 requires a little more work. Call basic domains the domains forming an inter-
section in Io4_ ;. For example, I24—1, I2a—3 and I>4_5 have one, three and five basic domains,

3In the figures, we choose to depict M, as triangulated to explicitly show the density of triangles needed for the
intersection.

3.4. Merging domain intersections 79

7
v W Wy Wy
W

= B
NEZINFTS !

AN INININZ NN N LTS)

NN NN TN N

AN N TNANFIN TNATNATS

(a) (b) (c) d)

Figure 3.10: The intersection between merging domains in vertical position: (a)
The intersection is maximum for direct vertical (as depicted) and horizontal
neighbors. The shaded parts in (b) /.41, (c) I3 and (d) .45 depict the

intersections between the domains M, and Af,.

respectively. Then, figure 3.11a depicts the intersection in /245 and a decomposition into a set
of basic domains M, .1 = 1 : 5 is shown in Figure 3.11b. Unlike /4, and /243, some of the
basic domains intersect and the left part in Figure 3.11b shows that M ., 11 M, is an instance
of 15y 1. Symmetrically, the same observation can be made for M ., 1 M, . Therefore, to find
Lo 5. we must first deal with the embedded /24, 's. Hence, .45 can be written as

left right
r N g —
lag—5 = (M & MO\ (&— My, \ Log—1 \ Tag=1); (3.34)
(R § W g X A —
2 4 2(C{Jad—1)+1)

where “left” and “right”” above the equation stand for the left and right 75, s in Figure 3.11b.
The costs of the individual part of (3.34) are given underneath the equation. How is computed
the cost ("(la4-5) in this case? First, we account for the cost of each I44_ and the cost to
substract them from &7_, M, . Then, we add the cost for adding the five basic domains forming
the intersection and the cost for substracting them to M, & M,,. We called this latter part of the
cost basic cost because it does not account for embedded intersections. Hence. the total cost to
compule (3.34) is

C(lag-3) = _g_’ +2-(C(lag—y)+ 1) =06+2-(2+1) =12. (3.35)
basic cost

More generally. finding Jo,4-;'s with j > 5 always involves dealing with smaller embedded
Is4—;'s. The tree in Figure 3.12 efficiently models the problem: Each level. as well as each

80 Chapter 3.

N R g

(a)

Figure 3.11: Decomposition of the intersection in /4. s: (a) The intersection in
14 5. (b) Decomposition of the intersection into a set of basic domains M
i = 1 : 5. The embedded intersection M/ ,., N M., is further split. This intersection
is an instance of I.;_, (Figure 3.10b).

node, represents an instance of 7., ;. For example, I24. 5 is represented by the first level in the
tree. The two nodes at this level depict the symmetrical embedding of /4, ,’s as represented
in Figure 3.11b. Hence, the tree is recursive: Consider for example /4o, which contains two
instances of [s4_5. Then. each instance embedds /4 ;’s and is represented by the first level of
the tree.

Only I54_; and [543 do not contain embedded intersections to resolve. We can obtain a
nonrecursive formulation of the tree as follows: First. we replace each node representing an
instance of I24_;,j > 5, by the level representing its embedded instances I, and [24-3. We
call T 5 the resulting tree. The right half of T'; 4 after substitution is shown in Figure 3.13a. The
left half is a vertically mirrored version.

Then, we need a new tree T ;7 to represent pairs of instances [245 and I24-7, embedded in
Lyg—j.j > 9 (Figure 3.13b). Also, we need a tree T'q 1y to account for pairs Joyg and [24-1; in
Iy, j > 13, etc... More generally, we need a set of trees 724 ;24 ;-2 to represent instances
of pairs J34; and Iy ;5. with j > 2d — j + 2. Therefore the recursive tree model in Figure
3.12 is replaced by a set of trees.,

We give now an example: How can we find C(/;4-«) with our nonrecursive set of trees?
Computing C'(/24_¢) involves two trees: First, we account for the set of embedded instances
Isg—y and Iy 5 in Ty 5 (third level in the wree of Figure 3.13a). Then. we account for the

3.4. Merging domain intersections 81

Problems
Lags
Loy
Lagy Ly L3y
-l&l 11'_! i l’Zﬂ-ll.

Figure 3.12: Embedding of intersection problems using a recursive tree: Each
level of the tree, as well as each node, represents an instance of embedded
intersectionin Iay—,, j 2 5.

embedded instances of [a4. 5 in 15 7 (first level in the tree of Figure 3.13b). Finally, the basic
domains forming the intersection in /5,y are taken into account.

3.4.3 Computational cost

The advantage of the nonrecursive formulation is that the appearance pattern of any pair [y .
34,2 18 represented by a single generic tree T3y j 04— ;2. 1t suffices then to study this tree
in order to evaluate the asymptotical cost for finding 744 ,.

Let us denote by @ and W the number of pairs of problems Iy ; and Iy ;4. respectively.
The repetition pattern is given by the following system of recurrence equations

Gk) = 0k — 1)+ 2% (k = 1),
Vik)=®(k-1). (3.36)
k> 0,8(0) =1, 0(0) = 0.

The case k = () corresponds to the first level in the tree. where we have a single pair of sub-
problems [, (Figures 3.13a-b), therefore ®(0) = 1 and W(0] = (), The system (3.36) has the
solution

9
d(k) = %(-n*‘ + ;“32*.
% | | (3.37)
W(k) = —i(hl)* - §2*.

where k > 0.

82 Chapter 3.

|2'|_5 I?!iﬂ
b7 Lag 11
Loy Ly
1 I
LV VIR PP PYICER PP PP PR I il Tws Tar Taon Twn Tas Yur Tai Loy n
(a) (b)

Figure 3.13: Trees for the nonrecursive model: (a) The tree T, » in the figure is
obtained by replacing the embedded /., 's, i > 5 in Figure 3.12 by their
associated levels. (b) The tree T, ; in the figure models the occurrences of
embedded /., » and Ty 7 In foy- '8, i = 9.

We compute the cost C'(124- ;) as follows: First, we rename each cost C'([y ;) by C'(1;),
where i = | j/2]. This allows for computing the costs as a single-parameter function and sim-
plifies our computation. Then, we weight the number of pairs ® (&), 9 (&) of problems [4, , and
Iyi— ;-2 with their basic costs, since the nonrecursive model let us use a summation across a set
of trees in order to account for embedded intersections. In general, the basic cost for /24 1s
J -+ 1, or equivalently 2i + 2 in our single-parameter cost function. The first problem involving
two trees is ('(Iag_7), i.e. C'(1y). Therefore the cost fori > 2 is

P q
CL)=2i+2+2) (45 -)®(i — 2j) + 23 (45 + D¥(i - 2j), (3.38)
y=1 =1

where p = i—1-| 5" | and ¢ = [51 |. To obtain the asymptotic behavior, we sum the equation,
leading to -

90 2" 64 10 2 92 a6
() =21+ =2 R podin | ot i —
() =2+ 322 +1- grlgP+)+ 5l - gralgl+r D+ Fit (3.39)
. { o] 3 + l 2L
,—;{—l}’[[;H— 1)°4+1=(g+1)" = 5(p+1) + i'iz— ;
A quick analysis is performed by observing the magnitude of each term:
i.p,qg € Ollogn), 2°eOn).47° 47"e (-){;';I. (3.40)

Therefore,
(1) € ©(n), (3.41)

3.4. Merging domain intersections 83

since 2% is the dominant term in (3.39). As for (3.3) or (3.4), the cost C (I ;) decreases exponen-
tially when 7 increases. Hence averaging (3.41) over all vertices yields

E[C(I;)] € ©(logn). (3.42)

3.4.4 Algorithm computing all intersections

In this section we provide an algorithm to compute in the sets D in (3.32) between M ,, and all
the ancestors in A 57, based on an inclusion-exclusion technique.

To illustrate the algorithm with a simple example, we compute the term D in (3.32). Recall
the decomposition in Figure 3.11b. Then, D = (M, N My,) © (My, N M,,,). We restrict
our example to computing the first term of D. The intersection M ,,, N M,,, is shown in Figure
3.10b, hence in our example M ,,, N M,,, = M, U M,. Assume that a and v are connected at
step {. Then, w in Figure 3.10b is connected at level [+ 1 and 4, = {a, v, ...}, where the dots
suggest addtionnal vertices. The algorithm iteratively decimates vertices starting at the ones with
the largest connection step (I + 1 in our example). Each vertex is removed from all the merging
domains of its ancestors. Assume that D gathers the removed vertices forming M ,,, N My,
then the algorithm proceeds as follows: First, Va € A,,, decimate w from M,, i.e. M, \ {w}.
The same is done for all other vertices connected at step { + 1 in M, and M, (see the dots in D
below). Then after the first step, we have

D={w,..}, M,={a}, M,={v}. (3.43)

At the second step, the vertices connected at step [are considered. Hence, the vertices a and v
are decimated and D = {w,a,v,...}. The set D contains only one w and an exclusive set is
obtained.

The algorithm below computes all intersections between M, and M,, with v connected at
stepl and a € Ajps,. As suggested before, our algorithm finds the intersection by decimating
M,, although this is not mandatory to implement the algorithm. At each ancestora € A ., a
set D, gathers the vertices in the intersection between M, and M,. Note that the decimation
must be performed step-wise and starts at vertices with the largest step /.

ALGORITHM

) for ALL VERTICES w CONNECTED AT STEP 2d. . .1

:» for ALLa € A,
3 Ma\w

84 Chapter 3.

s ifa ¢ M, then D, dw

s end

s end

Since M, contains ©(log n) vertices on average and @ (log n) operations are required to find
the ancestor chain A, the cost of the algorithm is O (log? n).

3.5 Application: cost of algorithms using local error

Consider an algorithm using general decimation whose input is a dense 4-8 mesh of vertices in
R3. A progressive representation is computed using iterated decimation. An error in [5 norm is
computed for each vertex v as the sum of the squared differences between the vertices in M,
and their projection in the domain’s support averaged by |M ,|a. Then, at each step we need
O(logn) operations (3.23) to decimate the vertices, and ©(logn) operations (3.27) to find the
ancestors. For each ancestor, © (logn) vertex errors (3.23) have to be locally recomputed, hence
the cost for updating all errors is ©(log?n). On average, the algorithm requires n/©(logn)
steps to fully decompose the mesh; therefore, the minimal cost is O (n logn).

Now consider an algorithm using general insertion. The input mesh has minimal resolution
(e.g. Figure 3.1a) and is iteratively refined using vertex insertion. Then, at each step we need
O (logn) operations (3.24) to insert the vertices, and ©(log n) operations (3.30) to find the ances-
tors. Again, for each ancestor, ©(log n) vertex errors (3.24) have to be locally recomputed, hence
the cost for updating all errors is ©(log”). On average, the algorithm requires n./© (log n) steps
on to fully refine the mesh, therefore the minimal cost is again © (n logn). We conclude with the
following proposition:

Proposition 3.3 On average, an algorithm based on local error (evaluated over the vertex do-
mains) and using general decimation or insertion requires ©(nlogn) operations to fully decom-
pose or refine a 4-8 mesh with n triangles.

3.6 Summary

We presented several fundamental results in computational complexity when processing 4-8
meshes. We have shown that © (logn) operations are necessary to decimate or insert a vertex in
the mesh while preserving the hierarchy over the vertex set. These operations yield a conforming
mesh, hence the represented surface can be rendered without shape discontinuity. We have

3.6. Summary 85

shown how to efficiently update the vertex errors when decimating or inserting vertices. More
precisely, the latter operations change the errors at ©(logn) vertices, and on average, ©(log 2 n)
operations are needed to update them. Since 1/O(logn) steps are necessary to decompose or
refine a mesh of 7 triangles, the total cost of the algorithm is O (n logn).

We addressed the problem of finding merging domain intersections and provided a model for
obtaining a closed form for the computational cost of this operation. More precisely, we have
shown that © (log n) operations are required to compute an intersection and that all intersections
between the merging domain of a vertex and the domain of its ancestors can be found in
©(log® n) operations.

Our results can be advantageously used to implement efficient algorithms. Moreover their
analysis is simplified because the computational complexity mainly depends on the operations
analyzed in this chapter. We will show in Chapter S that, using merging domain intersections, we
obtain an algorithm to compute progressive representations of 4-8 meshes using general decima-
tion and global error. This algorithm is a generalization to meshes of the algorithm coptimal
(optimal tree-constrained approximation of polylines, see Section 2.6).

86

Chapter 3.

3.A. Proofs 87

Appendix 3.A Proofs
In this section, we give the proofs for the properties in this chapter.

3.A.1 Proof of Proposition 3.1

We compute the number of triangles |M |4 and |M, |~ as follows: We construct a dual repre-
sentation of the support using a tree structure. Hence, each triangle corresponds to a node and
the tree expands towards the boundaries of the support (Figure 3.14a).

P

R ¢ /§§;
4 A _.>1 by

By

AN T

b g N P T
AV TN
L
A
Para o0y

(a) (b) (c)

Figure 3.14: Computing | M, |~ and |, |.: (a) A dual representation of the
support is constructed using a tree structure. (b) Tree structure expanding towards
the boundaries. The node labeled “R" corresponds to the node in part (a). (c) The
top part depicts a support and the bottom part is its triangulated counterpart. The

dual tree is weighted using the number of triangles embedded in the triangles

corresponding to the nodes.

Using the dual representation for the support, | M, | is found by summing the tree nodes;
[M,| A is a weighted version of the sum. At the center of the support, the tree is balanced, i.e.
each node has two children. However, the tree becomes unbalanced towards the boundaries.
Figure 3.14b depicts the tree at the bottom part of the support (note that the same tree expands
towards the other cardinal directions). The label “R™ in Figure 3.14a and 3.14b points out the
sibling nodes. The shaded region in Figure 3.14b shows the unbalanced part of the tree.

We count the tree nodes as follows: We compute two sums, one for the balanced part and
one for the unbalanced part. Assume that ¢ counts the tree levels and denote by | 4'1"1..|_z_x|,{.5} the
number of triangles in the balanced part, then

(]

|y |an(i) = Y2k =2 ~2. i

=1

1A
-

(3.44)

88 Chapter 3.

Assume now that j counts the unbalanced levels (vertical axis in Figure 3.14b),ie. j = ¢ — 4.
Then for the unbalanced part, we use the following observation: For j odd 27 nodes have two
children and 27! — 2 nodes have one child. Moreover for j even, 277! nodes have two children
and 27*! — 2 nodes have one child. Then, the sum of nodes for the unbalanced part is again split
into two sums: one over odd j and one over even j. For any j, we have j — |j/2] odd indices
and |j/2| even indices. We denote by | M,|au(j) the the number of nodes in the unbalanced
part, thenforj > 1

) i—Li/2] l3/2]
IMylau() =40 3 @2 -2)+ 3 (252 2+ —9)),
prrt P (3.45)
= 3227~ 1] 4 3. 21511y _gj — g0.
Hence, fori > 4
Myla(i) = |My|ab(4) + | My auli — 4),
|My|A(7) = |My|ab(4) + |My] auli ~ 4) (3.46)

=32(2-LF -1 4 3. 2lF 1) g — 18,

We now compute | M, | using a weighted version of the sums (3.44) and (3.45). Each tree node
is weighted using the number of triangles embedded in the triangle represented by the node. This
number is a function of the total number of tree levels ¢ and the level k of the tree node. More
precisely, the weight is given by w;, = 27F+1, Hence, the weighted sum of (3.44) yields

i i
|My|an(i) =) 27 k1o =3 "ot = . 27+, i< 4. (3.47)
k=1 k=1

Since we used two sums for the unbalanced part, we use w) = 2972%%! for the sum over even
j’s and w} = 2972k+2 for the sum over odd j’s. Hence,

Ji—li/2] Li/2]
|Mv|Au(j) — 4(Z (2k+2 _ 2)2j—2k+2 + Z (2k+2 + 2k+1 _ 2)2j—2k+1),
k=1 k=1 (3.48)

=24.27 4 22215—4—9‘ _16-218) —12.9i-15) 4 %2]‘—215.

Hence, fori > 4

|My|a(2) =|My|an(4) + [Mo| auli — 4),

4
=128 -cy +4(co - (24— 12- 7' + 3c1‘2) (3.49)

+ §02_lcf —16-¢1),

3

3.A. Proofs 89

where ¢; = 2l*=*] and ¢z = 2071 To conclude, we need to express (3.46) and (3.49) in terms
of the total number of triangles n and the connection step /. The parameter { is linked to n and !
as 2! = n - 2!, or equivalently n = 4(*+)/2_ For example, a triplet i, n, [is found as follows: In a
uniform mesh of n = 8 triangles, ¢ = 2 tree levels are needed to compute |M ,|A(l = 1,n = 8)
or |M1,|A(l = 1,n = 8). Hence, we replace i = 2-log, n — [in (3.44), (3.46), (3.47) and (3.49),
Therefore, for | M| A () we have

(2logyn —)2t !n, [>2d -4,
|My|a(l,n) =< 128-co + 4(cy - (24 —12-¢7' + 3e7?) (3.50)
+8c;'ct - 16 ¢1), 1 <2d-4,

with ¢; (I, n) = 2U08a =% ¢)(1,n) = 222 1> 1> 2d andn = 2 - 4%
whereas for | M,| A (i), we have

5 21-lp — 2, 1> 2log, § —4,
VTlan) = { 3202+ . gl +ia) (3.51)
—16(log, n — —) 18, 1<2log, 5 —4
and c;(l,n) = 2U°8an=%5*) 1 > 1> 2dandn = 2 - 44, O

3.A.2 Proof of Proposition 3.2

The support of M~ in Figure 3.7 grows like a geometric series along the radii r i, and rpay.
Count ¢ each element of such series, then the triangles at step ¢ are twice smaller than the triangles
at the preceding step ¢ — 1. Series rp,i, and 7, have common ratio 5; and % respectively.

Therefore the dimension of the octagon are given by

Pmin = lgréo 5+ Z 5 = (3.52)
and
= li —1—+n L =2 (3.53)
Tmax = e V2 2] '

90

Chapter 3.

Chapter 4

Quadtree data structure for
efficient storage and access of
4-8 meshes

4.1 Introduction

4.1.1 Design of an efficient data structure

This chapter addresses the design of an efficient quadtree data structure for 4-8 meshes. We have
a twofold objective, as explained below.

Efficient navigation First, we want the quadtree to provide mechanisms to implement at best
the operations described in Chapter 3. Such an aspect eventually translates into the development
of a navigation method. Recall the decimation of an arbitrary vertex in the dataset (Section
3.2.3): We show that solving this problem efficiently depends on the ability for the quadtree to
provide fast node traversal methods. Moreover, important mesh processing steps, such as the
determination of the visibility, rely on quick retrieval of a vertex subset.

Compact storage Second, we want the quadtree to provide compact storage of the dataset,
rather than primarily only keep track of the connectivity of the simplified mesh as in previous
works [84, 42, 19, 58, 71]. We want to take advantage of the regular connectivity provided by
the subdivision scheme to describe the mesh connectivity with a minimum of bits. The data
structure should also be easily extendable to arbitrary topology models, e.g. subdivision surfaces
build using 4-8 subdivision.

91

92 Chapter 4.

4.1.2 Contribution and plan

We propose a new quadtree data structure called semi-linear quadtree, which aims at storing
4-8 meshes. The tree stores jointly individual nodes and subtree levels, where a subtree level
is represented as a continuous array in memory. We propose a location code space to iden-
tify both nodes and subtree levels. The semi-linear quadtree construction contributes in two
areas: neighbor-finding techniques as used in spatial databases, and processing and storage of
4-8 meshes for computer graphics. Our contributions are summarized below:

Neighbor-finding techniques Instead of giving an algorithm to find the index of an ad-
jacent node as done in all previous works [29, 81, 75], we give a closed form for all index
differences in the quadtree, hence

» Our neighbor-finding technique outperforms previous methods [75, 80, 29] in terms of
computational cost.

. The closed form equations generalizes neighbor-finding methods to traversals. A traversal
computes the index of an arbitrary node in the tree with only the characteristics of the
starting node (Section 4.4.4).

. Although a particular node or subtree level is generally accessed in O(logm), accessing a
node within a subtree level has constant cost.

Processing and storage of 4-8 meshes The semi-linear quadtree provides efficient
mechanisms to store and process 4-8 meshes. We expose below its improvements over previ-
ous implementations [29, 81, 75]:

. No location code is needed to index nodes within a subtree level, leading to more compact
storage than previous implementations.

. The semi-linear quadtree dynamically improves both storage and access cost while grow-
ing by gathering nodes into subtree levels, as well as subtree levels into larger levels. At
one extreme, a dense quadtree can be stored as a single array in memory. In this case,
accesses have constant cost and no location code needs to be stored explicitly for the tree.

We further extend traversals to traversal paths. A traversal path is a powerful paradigm
to state computationally optimal implementations of algorithms on the quadtree, i.e. the
algorithm complexity has the same magnitude as the problem size. We give examples of
applications in Section 4.7.

. We provide a method to store the connectivity and the geometry of all vertices without any
redundancy, thus solving the issues pointed out in [58].

« Our framework extends naturally to spherical datasets using a subdivided octahedron and
to models of arbitrary topology, e.g. subdivision surface.

4.2, Background material and review 93

. Finally, large mesh patches can be described with a forest of quadtrees without additional
work leading to a framework to process and store arbitrary large meshes.

We start this chapter with a in-depth review of background material and previous
investigations. This review is important in order to clarify our contributions. Then, Section
4.3 presents a quadtree for 4-8 meshes called semi-linear quadtree. Section 4.4 and 4.5 present
respectively a neighbor-finding technique and an efficient storage method for the quadtree. Sec-
tion 4.6 explains how to adapt the quadtree to meshes having a more involved topology. Finally,
Section 4.7 introduces applications for the processing of 4-8 meshes.

4.2 Background material and review

4.2.1 Square quadtree and triangle quadtree

The quadtree is a widely used data structure in computer graphics [84, 42, 58, 71] and image
processing [81, 29]. It provides an efficient means to describe hierarchical datasets and recursive
subdivision processes. A common utilization of the quadtree is the description of recursive
subdivisions of the plane into square regions! {81, 29, 75], as shown in Figure 4.1a. This
formulation is still the most appropriate to describe 4-8 meshes when starting from an initial
square of two triangles (Figure 3.1a).

The appearance of alternate subdivision schemes led to the study of quadtrees describing
recursive subdivisions of triangular regions (Figure 4.1b) [56, 24, 32]. The two constructions are
named square quadtree and triangle quadtree, respectively. A triangle quadtree is typically used
to describe meshes whose connectivity is based on quaternary subdivision [94, 36, 48].

a. b.

Figure 4.1: Different quadtrees: (a) The square quadtree. (b) The triangle quadtree.

!Each subdivision splits a square into four squares of equal size.

94 Chapter 4.

4.2.2 Overview of mesh storage using quadtrees

Our aim being to store 4-8 meshes, we focus our review on the square quadtree and simply refer
to this particular formulation as quadtree for the rest of this thesis. Each quadtree node represents
a triangulated square, as represented in Figure 4.2. Alternatively to common representation [76],
we propose to depict a quadtree as shown in the left hand-side of Figure 4.2: We link together
only the nodes having a common father and located at the same level. This representation tran-
scribes the spatial nature of the dataset.

N
N
N
N
N
N
/1N
N

Y INCINININ
NEINCINN/
INANANAN

Figure 4.2: Quadtree structure storing a 4-8 mesh: To have a clear
representation of the quadtree in the figure, we link together only the nodes having
a common father, and located at the same level. The arrows link the nodes to their

corresponding regions in the mesh.

Note that, neighbor squares share common vertices on their edges which may induce redun-
dant storage [58, 71]. We will address this issue later in Section 4.5.

4.2.3 Restricted quadtree

Early usages of the quadtree for the display of meshes take us back to Catmull [12] in the
1970’s. In order to rasterize a parametric surface, Catmull proposes an algorithm starting with
a single quadrilateral approximating the model. Then, the patch is recursively subdivided until
each pixel of the display is filled by the color of a single subpatch (see pages 286-288 in [76]).
The output is a set of quadrilaterals that is well represented using a quadtree. Unfortunately, the
set of adjacent patches are not coplanar in general, which provokes discontinuities or cracks on
the surface, as depicted in Figure 4.3a.

This problem is addressed by Tamminen et al. [84]. Their solution consists in aligning
vertices shared by adjacent edges (Figure 4.3b). Later, Von Herzen ef al. [42] propose to
combine a decomposition rule with triangulation in order to solve the problem: Patches are
further subdivided such that neighbor squares do not differ from more than one subdivision level

4.2. Background material and review 95

Figure 4.3: Preserving of the continuity of a subdivided surface: (a) A set of
quadrilaterai is generated to rasterize a parametric surface. (b) Tamminen et al.
align the vertices shared by the edges of adjacent patches [84], whereas (c) Von

Herzen et al. [42] further subdivide the patches such that adjacent squares do not
differ from more than one subdivision level, and (d) the resulting subdivision is
triangulated.

(Figure 4.3c). The resulting set of quadrilaterals is finally triangulated and has 4-8 connectivity
(Figure 4.3d). This construction is called restricted quadtree.

More recent contributions are due to Lindstrom et al. [58] and Pajarola [71]. They both
propose the same approximation method based on quadtrees. The mesh is refined by inserting
vertices and the surface is retriangulated in order to obtain a restricted quadtree (see Section
3.3.1). Solving the problem of computing a restricted quadtree after inserting a vertex is
equivalent to finding its set of ancestors (Section 3.3.2). Albeit Lindstrom et al. do not give the
complexity of their algorithm, Pajarola claims a computational optimal algorithm running in
linear time with the tree size?, but does not give any proof.

Navigation methods, also referred as neighbor-finding algorithms for the quadtree have
been a active area of research in the spatial databases and geographical information systems
community. Finding the adjacent squares [75, 81, 29] or triangles [70, 32, 24, 56] (Figures 4.1a-
b) is a fundamental operation for a number of algorithms. To implement their decomposition
rule, Von Herzen et al. [42] take advantage of such techniques. However, neither Lindstrom
et al. nor Pajarola use neighbor-finding algorithms to carry out their refinement scheme. A
possible explanation could be the following: Neighbor-finding methods have been developed for
a particular implementation of the quadtree called linear quadtree. A linear quadtree is a list of
nodes representing the leaves of the tree. It is used as an alternative to common pointer-based
implementations since in most cases (see [76]) it saves a substantial amount of memory 3.

Each node is assigned a location code describing its subdivision path from the root. This

2The size is defined as the number of nodes in the tree.
3In the pointer-based implementation, each node has to store four pointers.

96 Chapter 4.

code is used to define adjacency relationships between nodes. Since our contribution to neighbor-
finding techniques is tightly related to the design and processing of location codes, we will give
more details in the next paragraph. For the case of 4-8 meshes as used by Lindstrom et al.
and Pajarola, the connectivity is encoded across levels of the quadtree since the hierarchy of
the data structure lodges the recursive subdivision process, i.e. the mesh is locally stored in a
subtree and a set of leaf nodes is inadequate to characterize the connectivity and the dataset. As
used in Von Herzen ef al. (Figure 4.3d) the linear quadtree formulation somehow “flattens” the
multiresolution nature of the mesh. Therefore, previous works on neighbor-finding techniques
for linear quadtree [75, 81, 29] are not immediately applicable since location codes constrain to
perform operations on leaf nodes.

4.2.4 Linear quadtrees and neighbor finding techniques

In the previous section, we explained that a linear quadtree is represented by a list of leaf nodes,
each containing a location code. The location code is stored as an integer and its expression
in base 4 reflects the quadrant subdivisions leading to the node. Additionally, the level of the
node is stored. The list is finally sorted using the decimal expression of the location code and
the level. Operations on the quadtree, for example neighbor-finding techniques, are implemented
in terms of manipulations of the location code and have been studied by Samet [75], Schrack
[81] and Gargantini {29]. Samet and Gargantini adopt the same convention for the assignment of
quaternary digits to quadrants, whereas Schrack opts for an alternate one —horizontally mirrored—
as depicted in Figure 4.4a. However, both conventions lead to the same code semantic. Figure
4.4b shows a partition and the quaternary location codes corresponding to each node are given.
Figure 4.4c gives the equivalent decimal expressions.

NW NE 220230 {320 330 40 | 44 | 56 | 60
2 21221313024 303 383950 51
3 200 1210021 H300)30) 310 32 36§37)48)49 52
0201 030 g |12
Sw SE 100 16
0 1 000|010 0 4
a b. [

Figure 4.4: Location codes: (a) Orientation corresponding to quaternary digits.
(b) Quaternary location codes and (c) their equivalence in decimal notation.

Samet’s, Gargantini’s and Schrack’s neighbor-finding techniques proceed in the following
way: First, the quaternary location code of the node (initially stored as an integer) is calculated.
The level of the node is used to stop the decoding process. Then, the code of the neighbor in the

4.3. A quadtree for 4-8 meshes 97

desired direction is computed (see next paragraph). Finally, the list is traversed to determine the
existence or the absence of the neighbor (after converting back the quaternary code). Their ap-
proaches differ in the way the location of the neighbor is obtained, i.e. how the code is processed.

Assume that the smallest square in the subdivision belongs to an 2" x 2" grid* and that
m squares are encoded. Samet’s and Gargantini’s methods operate directly on the quaternary
expression. To find a neighbor, the digits are “reflected” in the appropriate direction according to
their assignment to quadrants: For example node 3004 has western neighbor 2114 (Figure 4.4b).
Codes are reflected starting from the least significant digit until a common father (detected by
an equal digit) is met. For instance, 3004 has northern neighbor 3024 (Figure 4.4b), i.e. only the
least significant digit is reflected since a common father is already encountered at the second
digit. In conclusion, Samet’s and Gargantini’s methods have complexity ©(logm + 3n). The
factor 3 enters because we need two conversions and n digits reflections.

An important property of the location code is that its binary expression contains the coordi-
nates of the pixel represented by the node [29, 69, 53], referred as interleaved coordinates [80].
Schrack’s method operates on the interleaved coordinates of the location code. He introduces
the concept of dilated integers to perform operations directly on the coordinates. In this set-
ting, neighbor directions are expressed using couples of relative increments (for example, the
NW neighbor corresponds to the increments A = (—1,1)) and the adjacent node is found us-
ing a constant number of operations. However, the total complexity of Schrack’s algorithm is
O(logm + 2n) since we still need two conversions.

4.3 A quadtree for 4-8 meshes

4.3.1 Design of the location code

Linear quadtrees are appropriate to describe the recursive subdivisions of a square region
[75, 80, 29], however in the case of 4-8 meshes, the recursive construction spreads information
(connectivity and vertices) across levels of the tree. Therefore, subtrees must be stored leading to
a different construction. When used in this context, the location codes proposed by Samet, Gar-
gantini and Schrack overlap, i.e. the same integer appear more that once in the list. However, the
list can still be sorted since the level of the node is stored jointly. However, their neighbor-finding
techniques are not defined in this case. We use the continuous integer range () . . . %(4‘1 —1)—1as
location code space, since a complete (or balanced) quadtree can be implemented as a continuous
array of nodes in memory, as stated in the following definition:

Definition 4.1 (quadtree indices as a continuous range of integers)
A quadtree of depth d contains 3", 4° nodes, with indices ranging from0, ..., +(4¢ — 1) — 1.
For a tree of depth d > 0, each node p is located at level |log,(3p + 1)|. Each node p > 0 has

“4In this case, location codes of n bits are required.

98 Chapter 4.

a parent node L”—le, and each node such that p < (4971 — 1) — 1 (i.e. not corresponding to a
leaf) has child nodes 4p + ¢, withi = 1...4.

The properties of the location code construction are summarized below:

Property 4.1 (Location code)
4.1.1 A location code p contains the level of the node and the level is {log ,(3p + 1)].

4.1.2 Each level i of the quadtree 4.1 can be seen as an 2° x 2 grid. A location code p at level i
contains a local location code p— -13-(4i —1) embedding the interleaved coordinates locating
the node inside the grid at level i.

4.1.3 Subtree levels are represented by continuous ranges of integers.

A local location code at level ¢ is equivalent to the code used by Samet, Gargantini and Schrack
to describe an 2¢ x 2! grid. Therefore, all properties studied in [75, 80, 29, 69, 53] still hold for
a local code.

The assignment of quaternary digits to quadrants must be generalized accordingly. Figure
4.5a depicts the spatial organization of a node and its child nodes. We named the generalized
digit assignment z-ordering. A direct consequence of the assignment is that the index differences
between rows and columns at every levels in the quadtree are constant, as depicted by the arrows
in Figure 4.5b. The property is also true with the assignment used by Samet, Gargantini and
Schrack between neighbor pixels at the same level, i.e. represented by squares of equal size (see
Figure 4.4).

4.3.2 Semi-linear quadtree

In this section, we propose a new tree construction called semi-linear quadtree (SLQ). The SLQ
aims at generalizing the linear quadtree construction presented in [75, 80, 29]. We call it semi-
linear because both nodes and subtree levels are stored jointly. The location code construction
described in the previous section allows for the description of subtrees, which is a requirement
to store 4-8 meshes. The generalization comes only with a little increase in storage price (1
quaternary, or 2 bits per location code) since the space spanned by our code is four times larger
than the previous implementations [75, 80, 29]. However we must keep in mind that quadtrees are
exponential in nature. Therefore even a small increase in code size can result in great differences
in storage requirements. This issue is addressed as follows: in the SLQ, individual nodes and
subtree levels are stored jointly in the data structure. Subtree levels can be stored as arrays
in memory considering Property 4.1.3 of our location code. This has the following interesting
outcomes:

. No location code needs to be stored for the nodes in a subtree level, since it can be found
by incrementing (i.e. shifting) the code of the root node.

4.4. Neighbor-finding technique 99

/

-

ap+l - 7 AL apa2

-

@ D)

A

a3~ Y 4pua

Figure 4.5: Quadtree indexing: (a) The z-ordering is used to assign an index to
each child. (c) Spatial index organization using z-ordering for a balanced quadtree
of depth 4.

. Nodes within subtree levels are accessed in constant-time.

The SLQ includes a control algorithm grouping nodes and subtree levels when modifying the
structure of the tree, i.e. inserting or deleting nodes. At the extreme, a dense quadtree can be
stored as a continuous array in memory. In this case, all accesses have constant cost (compared
to always O(logm) for linear quadtree implementations [75, 80, 29]) and no location code is
needed to index the nodes. However, we will not describe the control algorithm here; instead we
will focus on the development of neighbor-finding techniques for the SLQ.

4.4 Neighbor-finding technique

4.41 A closed form for index differences

Recall that a property of location codes is that the index differences, between columns and rows
of nodes at the same level, is constant. This fact suggests that a closed form for the index differ-
ences can be found. Samet’s and Gargantini’s reflection rule on quaternary codes and Schrack’s

100 Chapter 4.

operations on the interleaved coordinates compute these index differences to find neighbors. Call
now 7 the relative level distance (RLD) between two nodes. The RLD is the distance in terms of
quadtree levels between two nodes to their closest common father. The closed form for the index
differences is given in Theorem 4.1 in terms of the RLD and the proof is given in Appendix 4.A.

Theorem 4.1 (closed form for the index differences)
The horizontal/vertical differences between the indices of adjacent nodes having a relative dis-
tance distance r are constant for a particular column/row. The horizontal differences are

2 1
Sn(r) = §4r + 3 4.1)

1
Ont(r) = §4T+1 - (toroidal) (4.2)

[FCRT

The vertical differences are) 5
8y (r) = 26,(r) = g4T+1 +3 @.3)

2
Oyt (r) = 20ne(r) = §4r+1 - (toroidal) (4.4)

[ICRN)

Equations (4.1) and (4.3) in Theorem 4.1 express the vertical and horizontal differences d be-
tween the node indices as a function of r. Additionally, (4.2) and (4.4) give a similar differ-
ence for the border nodes with their opposite neighbors (which is equivalent to assume that the
quadtree has a toroidal structure). These latter equations are very useful to extend neighbor-
finding techniques to forests of quadtrees or to implement more involved topologies (Section
4.6). Recall now the reflection rule of Samet and Gargantini (Section 4.2.4). Their algorithms
stop as soon as a common father is met, or equivalently when the same quaternary digit is found.
The RLD actually gives the number of digits to examine for a pair of nodes, since it measures
the distance to their common father. It makes sense then to use the RLD as input value for the
closed form. In the next section, we explain how the RLD between two nodes is obtained.

4.4.2 Recurrence equations for the relative level distance

Consider two neighbor nodes p; and p-, then their RLD is the solution to

-1 s — 1
B =150 “5)

The recursive nature of the quadtree allows us to derive a set of recurrence equations for the
solutions to (4.5). Call r* the RLD’s for the nodes of level 7, then we have

r'=[0, ¢, 0], ¢ = [0],

) 4.6
r'= I:Z - 17 ¢i7 T — 1] 3 ¢'l = |:¢'1',—-17 i — la ¢i—l] . ()

4.4. Neighbor-finding technique 101

Therefore, (4.1)-(4.4) are evaluated using the vectors r¢. We need then one vectors per level
(since the horizontal and vertical distance are proportional) to retrieve all index differences in the
quadtree. Call A% (r’) and A’ (r*) the vectors giving the index differences for pairs of horizontal
and vertical neighbor nodes, respectively. Then, for A% (r') we have

AR(r!) = [=0nt(0), 6r(0), ~6ne(0)], ®; = [6,(0)],
R = [=O0m(i = 1), &, —6n(i—1)], $; = [®ic1, Oh(i-1), ®;].
“.7)
Following Theorem 4.1, for Af (r) we have that
Al(r') = 2A% (r)),i > 0. (4.8)

For example, A}, A7 and A} yield respectively
Ay =1[-1, 1, -1],
Ay =[-5, 1, 3, 1, -5], 4.9)
Ay =[-21, 1, 3, 1, 11, 1, 3, 1, -21],

whereas for AL, A2 and A3 we have respectively
Al =[-2, 2, -2],
A2=1[-10, 2, 6, 2, -10], (4.10)
A =1[-42, 2, 6, 2, 22, 2, 6, 2, —42],

Il

as depicted in Figure 4.5b. Finally, note that because the vectors are symmetric for each direction,
only half of the elements are actually needed. In the rest of this chapter, we will refer to these
vectors simply as A-vectors.

4.4.3 Interleaved coordinates

To complete our navigation framework, we need to find a way to access the A-vectors. To achieve
this, we use the interleaved coordinates contained in the local location code. We proceed in two
steps: First, the local location code is computed. Second, we decode its quaternary expression
and derive the interleaved coordinates. Call p ; the node at level 4 for which a neighbor is searched
and [gy, g,] its interleaved coordinates within the level. Then, the local location code is given by

L
Ps — 5(4 -1). “.11)

Its quaternary expression is denoted by ¢,, = {gi—1,...,¢o} and has length ;. To obtain the
interleaved coordinates, we define a coordinate system for the level and compute the coordinates

102 Chapter 4.

with a simple sum of 2 x 2 matrices. Setting the origin to the top leftmost node leads to the
following four matrices

10 [0 0
Fo =0, F = [0 0] , Fy = 0 1} , Fs =1y, 4.12)
where each matrix corresponds to a digit in base 4. Then [g, g,] is given by

gnl _ 2]
[gv] => Fa [Qi_ : (4.13)

i

Example 4.1
Consider node 59, located at level 3 and having local index 38. The local location code is

q = {2,1,2}. Hence,
o elfonfonll-f) e

The coordinates g5, and g, are used to access A}, and Al respectively. Note that A}, and A}
have both size 2° 4 1. Nodes p, and p, are further called the starting node and the target node
respectively. The vectors are accessed in the following way:

. Its western neighbor is given by

o= ps — Aj[gn]. (4.15)
. Its eastern neighbor is given by
P = ps + Ab[gn + 1]. (4.16)
. Its northern neighbor is given by
pr = ps — Aj[g.]- @.17)
« Its southern neighbor is given by
pe=ps + Ayfgy + 1], 4.18)

Example 4.2
For example, we now use the A-vectors to find the neighbors of 8, thus

4.4. Neighbor-finding technique 103

. Its western neighborisps =8 — Aj[1] =8 —-1=1T.

. Its eastern neighboris p, = 8 + AZ[2] =8+ 3 =11.
. Its northern neighboris p, = 8 — A%[1] =8 -2 =6.
. Its southern neighboris p; = 8 + A2[2] = 8 + 6 = 14.

These results can be verified in Figure 4.5b.

Assume a quadtree of m nodes and a location code of length n. First, we need to convert the
decimal expression of the node index. Second, we compute the matrix sum to find the interleaved
coordinates. We can conclude that our neighbor-finding method has complexity O(logm +
2n). However, in a dense quadtree the logarithmic term fades away since nodes are accessed in
constant time on average. Thus in the latter case, the complexity on average is ©(2n) operations.

4.4.4 Traversals and traversal paths

As seen in the previous sections, our solution allows adjacent neighbors to be found using a
closed form for the index differences, avoiding to compute the distance each time a neighbor
is searched as needed in [75, 80, 29]. In this section, we explain how to go beyond adja-
cent neighbor-finding schemes and introduce the generalized notions of traversals and traversal
paths.

Traversals Assume again a starting node p, and a target node p;. Both can be arbitrary nodes
in the quadtree. A traversal is achieved if we can find two scalars T (p,) and A(p,) such that

pe = Y(ps) + Aps), (4.19)

where Y is a scaling function and A is an index difference. The key fact is that the values T
and A are only functions of p; and a geometric relation G(p;, p;) between the two nodes (Figure
4.6a). The geometric relation defines how T and A are implemented and can be seen as a set
of unitary displacements® in the tree. The chosen sequence is arbitrary and links p and p;. A
traversal is constructed as follows:

1. The index p; is scaled, i.e. the index of an ancestor or a descendant at the same level of
pt is computed. The scaled node index is Y(p,). More details on the general form of the
scaling function are given at the end of this paragraph.

2. The shortest path from Y (p;) to p; using vertical and horizontal displacements is used to
construct A. The index difference A is a sum of AJ and A7, where j is the level of p;.

5 As computed in the previous section. Additionally, moves to father and children nodes are allowed.

104 Chapter 4.

Assume that [gy,, g,] are the interleaved coordinates of p,. Then, the coordinates of Y (p,)
are easily obtained by multiplying or performing the integer division by 2 of [g , g,,] and adding
or subtracting unit increments. Call (g}, g}] the scaled coordinates, then the coordinates of the
subsequent nodes in the traversal are obtained by incrementing its components according to the
directions. Therefore, the A-vectors AJ and A, can be appropriately accessed.

Equations (4.15)-(4.18) implement the relations Gy (i.e. horizontal) and G; (i.e. vertical)
depicted in Figure 4.6a (in both directions). In this case, Y is the identity function. The traversals
G2 and G3 are implemented using the methodology described above. Thus, for G 5 we have

Gy : Pt = ps + Ablgn + 1] — Al[gu], (4.20)
whereas Gg is given by
Gs : pr=4-ps + 2+ Al 2g, + 2] — AlT1[2g,]. .21)
N e’ ~—— o
T A

Example 4.3
Assume that p;, = 12 (at level 2), then G3 yields p; = 24 (Figures 4.5b). Namely we have

[9h, g0] = [3,1] and
pe=4-12+2+A3[8] — A3[2] =50 — 21 — 6 = 23. (4.22)

Assuming that r levels are separating nodes p, and p;, then the general form for the scaling
function T (p;) is given by the scalar product

Ds
&1
Y(p) = [4r4 L. 1] | |, 4.23)

Cr

where ¢y, . ..c, is a series of 7 child nodes’ locations, therefore ¢, is an integer such that 1 <
¢r < 4. For example, in Gz we have 7 = 1 and ¢; = 2 (see Equation (4.21) and Figure 4.6a).

Traversal paths A traversal path is defined as a series of visited nodes, as depicted in Figure
4.6b. A traversal path only differs from a traversal in the sense that the indices of the successive
nodes between p,; and p; are computed. A traversal path is a powerful paradigm for implementing
algorithms visiting a series of adjacent nodes in the quadtree (see Section 4.7). When construct-
ing traversals in the previous paragraph, we simply used the fact that geometric relations are

4.4. Neighbor-finding technique 105

additive. For example, in Figure 4.6a we have
G=G & Go, 4.24)

where & denotes the successive application, i.e. composition, of Gy and G;. Similarly, Gs was
implemented with a series of relations G and G, plus a scaling operation for the initial node.

o C 2 T O") LO ’I) I_O’)
1 oopo
O

|

ifis

@)

(o O

o
& o
T——o
U
.

e

O
O

,,___d,n
O—
0

O

[—]
G

o—=
O

o——o

=

=

Figure 4.6: Traversals and traversal paths: (a) The geometric relations between
pair of nodes represent traversals in the tree. (b) A traversal path of length 10.

The advantage of using traversals and traversal paths over previous neighbor-finding methods
[75, 80, 29] is their low computational complexity. Their cost is linear with the path length
because only the quaternary location code of the initial node p ; in the path must be computed
in order to obtain its interleaved coordinates. Each neighbor-finding step costs one addition
compared to d operations [75, 29], for a quadtree of depth d. Schrack [80] also finds neighbors
at constant cost, but needs (as in [75, 29]) to convert the quaternary digits of the code into a
decimal expression expression in order to check availability. This step is not necessary with our
method because the A-vectors store decimal values, allowing us to directly obtain the decimal
expression of the neighbor index.

Assuming a location code of length n and a quadtree of m nodes, the expected cost of a
sufficiently long traversal or traversal path in a sparse quadtree is ®(/logm). Finally, the use
of a SLQ greatly improves access performances, since subtree levels are stored as continuous
arrays in memory when the quadtree is dense. In conclusion, the expected cost of a traversal or a
traversal path is ©(!), whereas previous methods in [75, 29] and [81] yield a cost of ©(l logm +
3ld) and O(llog m + 21d), respectively.

106 Chapter 4.

4.5 Efficient storage of the mesh

This section describes an efficient method to store 4-8 meshes using the SLQ. For the sake of
clarity, we describe the storage for a balanced quadtree, but our method applies to sparse trees
as well.

In a 4-8 mesh, each triangulated square can potentially describe the characteristics (i.e. value
and connectivity) of five vertices, as depicted in Figure 4.7a. However, since neighbor squares
share common vertices on their edges, such a description is highly redundant. Lindstrom et al.
point out this problem in [58] and their solution requires to duplicate the shared information.
In [71], the author seems to store only Cartesian vertices® and does not explain how quincunx
vertices are handled.

w >

Figure 4.7: Storage of vertex characteristics avoiding redundancy: (a) Only the
characteristics of the white vertices are stored in a quadtree node. (b) The full
data structure storing the mesh without redundancy.

In order to avoid redundancy, we store only the characteristics of three vertices per node
(the central vertex and two adjacent border vertices), for example the white vertices in Figure
4.7a. Therefore each node stores three floating point numbers plus three bits (each bit checks
the vertex availability) to completely encode the geometry and the connectivity. The quadtree is
sufficient to store all vertices characteristics but the ones on the eastern and southern borders. It
suffices to use two additional binary trees to store the remaining vertices, as depicted in Figure
4.7b. Therefore, each node in the binary trees stores one floating point number plus one bit.

To access the information stored in the binary trees, we need to find the indices of the binary
nodes given the characteristics of their sibling in the quadtree: Consider a quadtree node p at
level 7 located at the eastern border, and having local interleaved coordinates [g 5, gv]- The index

6See Section 3.2.1.

4.6. Further constructions 107

of its sibling binary node is given by
28— 1+g,. 4.25)

Consider now a node p located at the southern border, then the index in this case is

2t — 1+ gp. (4.26)

Example 4.4
For example, node 8 (level 2) has coordinates 3, 1]. Therefore, its sibling binary node has index

4 intree C (Figure 4.7b). Similarly, node 16 has coordinates [3, 3] and its sibling binary node has
index 6 in tree B (Figure 4.7b).

4.6 Further constructions

Quadtrees describing more involved topologies than surfaces are very interesting in computer
graphics. In this section, we give a construction for the octahedron. Then, we describe how we
handle models with arbitrary topologies. Finally, we explain how we store large mesh patches
using a forest of quadtrees.

Northern hemisphere Southern hemisphere

[/

NIA
SN

N
7

Y
N7

N,
N

N
2,

NI
®

Figure 4.8: Octahedron: (a) The octahedron is handled seamiessly in our
framework. (b) Each hemisphere is represented by a separate mesh, and the
octahedron is obtained by merging them one on top of the other using the border
vertices. The vertices stored for each hemisphere are represented with white dots.

108 Chapter 4.

Octahedron The storage of tessellations of the sphere is important to manage spherical
datasets. For this purpose, triangle quadtrees have been developed for example in [56, 24, 32].
The management of spherical data is also achieved with square quadtrees such as the SLQ. A
regular tessellation of the sphere is usually obtained by recursive subdivision of a platonic poly-
hedron having triangular faces. There are three such polyhedra: The tetrahedron (4 faces), the
octahedron (8 faces) and the icosahedron (20 faces). In previous work [56, 24, 32], polyhedra are
stored using a forest of quadtrees, where one quadtree is assigned per facet. The SLQ construc-
tion for surfaces is easily generalized to the octahedron (Figure 4.8a): Using two quadtrees, one
per hemisphere of the octahedron, we obtain a construction having exactly the same traversal
properties as surfaces. Moreover, no binary tree is required (Section 4.5) since two quadtrees
suffice to store the information of all vertices without redundancy. In Figure 4.8b, we depict the
vertices stored in each hemisphere quadtree. To traverse hemispheres, we use Equations (4.2)
and (4.4).

Arbitrary topologies Storing arbitrary topology models using a set of quadtrees is equivalent
to the problem of finding a parameterization for the mesh. The parameterization of arbitrary
models can be performed using remeshing techniques [94].

iz}

i

N
s. W [E[.

S :

N INJ N N 1
iw EW EW ECW EC

S S S} S

».N,.'___”_ 5 6 7
W (B s

(b

Figure 4.9: Tetrakishexahedron: (a) The tetrakishexahedron is a simple example
of complex topology requiring side-information in order to traverse the faces. (b)
The adjacency relations between the faces of the cube underlying the
tetrakishexahedron. Each couple of integer denotes an adjacency pair.

A model with arbitrary topology can be stored using a forest of SLQ’s. Each quadtree is
assigned to a mesh patch and describes a region of the model, such as one quadtree is assigned
per hemisphere in the case of the octahedron. However, the coherence of the forest must be
maintained with additional side information, i.e. how adjacent patches are cleaved. We must
know the cleaving of the patches in order to implement traversals between them. A simple

4.6. Further constructions 109

example is given by the tetrakishexahedron depicted in Figure 4.9a. This polyhedron is simply
the result of putting a 4-8 mesh on each face of a cube. The coherence is maintained as follows:
For each adjacent face, their geometric orientation is recorded with a couple of cardinal points,
for example (N,E), (E,E), etc...

Using (4.2) and (4.4) —the toroidal equations in Theorem 4.1—, the navigation between the
adjacencies (E,W),(W,E),(N,S) and (S,N) is achieved. Consider now the pair (E,N), since the
adjacency (W,E) is included in our framework, we can implement (E,N) by rotating the inter-
leaved coordinates of the eastern border node by 7. Then the index corresponding to the rotated
coordinates is computed by inverting (4.14). We can now compute the difference between the
index of the previous node in the traversal (or traversal path) and this index and continue the
browsing using the rotated coordinates. Figure 4.9b depicts the adjacencies in the case of the
tetrakishexahedron. In the figure, each couple of integer denotes an adjacency pair. Among
the 12 adjacencies (i.e. edges) of the underlying cube, only 6 of them need a rotation before
performing a traversal.

Handling large surface patches In order to process very large meshes, a patch is subdi-
vided into a group of smaller patches. Therefore, a single patch is managed with a forest of
quadtrees. In this case, no side-information is needed, unlike in the case of the tetrakishexahe-
dron since the set of patches can be cleaved in a way such that we use only pair of adjacencies
comprised in our framework. Figure 4.10 depicts traversals between components of the forest.
The support of mesh partitioning in our framework allows for block-based approximation of

Figure 4.10: Data structure scalability to the navigation of a forest of quadtrees:
The starting nodes are p; and the target nodes are p;, i = 1...4. The index
difference ¢ is the value to add to p to obtain p;, i.e. p; = pi, + 6.

110 Chapter 4.

meshes as in [44]. and meshes of arbitrary size can be handled.

4.7 Algorithms for 4-8 meshes

In this section, we present three algorithms for 4-8 meshes. We briefly explain how computation-
ally optimal implementations can be obtained on the quadtree using the traversal path paradigm.

Restricted quadtree Recall the problem of computing a restricted quadtree after decimating
an arbitrary vertex in the mesh (Section 3.2.3). Figure 4.1 | a unveils the quadiree structure storing
the support of the merging domain of Figure 3.7: Intuitively, the mesh layer has been replaced by
the quadtree used to store it. The dark region depicts the nodes traversed during the decimation.
The arrows represent a proportion of the extensive traversal required in the quadtree to visit
the vertices in the domain. According to Theorem 3.1. the cost of the computationally optimal
algorithm 1s ©(log n). Using a traversal path, it is easy now to construct an algorithm to solve
the problem exactly in this complexity.

(a) (b) (c)

Figure 4.11: Applications on the quadtree: (a) Traversal of the merging domain
when decimating an arbitrary vertex. (b) Finding an ancestor path, or computing
the splitting domain of an arbitrary vertex. (c) Quick selection of the nodes
containing data lying in the view frustum.

Ancestor path A computationally optimal implementation of the algorithm to find an ances-
tor path in Section 3.3.2 is also obtained using a traversal. Figure 4.11b depicts the path in the
quadtree corresponding to Figure 3.9a. The problem of computing a restricted quadtree after in-
serting a vertex requires the same traversal path [58, 71]. The computationally optimal algorithm
has complexity ©(log n) (Section 3.3.2),

4.8. Summary

Author Neighbor-finding complexity Traversal/Traversal path of length 1
sparse tree dense tree sparse tree dense tree
Our technique | ©(logm + 2n) O(2n) O(llogm) o)
Samet [75] O(logm +3n) | O(logm +3n) | O(llogm + 3in) | O(llogm + 3in)
Gargantini [75] | ©(logm + 3n) | O(logm +3n) | O(llogm + 3In) | ©(llogm + 3in)
Schrack [75] | O(logm + 2n) | ©(logm +2n) | O(llogm + 2In) | O(llog m + 2In)

Table 4.1: Summary of properties for the semi-linear quadtree. We assume
location codes of length n and that m nodes are stored. The computational
complexity to find a neighbor accounts for all the operations to obtain the node, i.e.
conversion of the decimal expression of the location code, operations to find the
neighbor location code, conversion of the quaternary digit expression and node
retrieval in the quadtree. We assume traversals and traversal paths of length
[>> 1. Finally, all complexities are given in expectation.

Visibility When processing large meshes, algorithms performing a quick selection of a subset
of the vertices dramatically improve performances. Consider the problem of retrieving the visible
part of a mesh: A simple algorithm aims at rastering the quadtree structure, as depicted in Figure
4.11c. In this figure, the view frustum is projected on the surface, as well as the direction of view.
The direction of view and its perpendicular vector on the surface are used to rasterize the frustum.
Using a traversal path, the algorithm is implemented with a computational complexity linear with
the content of the field of view. Thus, the algorithm is computationally optimal.

4.8 Summary

In this chapter, we presented a framework to store and efficiently process 4-8 meshes stored in a
quadtree data structure. We presented a new quadtree construction called semi-linear quadtree,
which improves the linear quadtree in {75, 81, 29] both in storage and access performances. The
best performances are obtained with a dense quadtree since few side information (i.e. location
codes) is needed and constant-time access to the nodes is achieved on average. In this chapter,
we presented the following results:

» A neighbor-finding method for the semi-linear quadtree outperforming all previous tech-
niques in terms of computational complexity [75, 81, 29].

» A generalization of the concept of neighbor-finding to traversal and traversal paths.

» A technique to store and efficiently browse spherical datasets using a subdivided octahe-
dron.

112 Chapter 4.

» A construction using a forest of semi-linear quadtrees to store and browse meshes with
arbitrary topology, e.g. subdivision surfaces using 4-8 subdivision.

Also, our framework allows the processing of large meshes using partitioning. In Table
4.1, We compare our results to the main contributions in the field [75, 81, 29]. Finally, we
explained how to use our results to construct computationally optimal algorithms on quadtrees.
In particular, we gave computationally optimal implementations for two algorithms studied in
Chapter 3: the computation of merging domains (Section 3.3.1) and the construction of ancestor
paths (Section 3.3.2). We use these implementations in the surface simplification algorithm
presented in Chapter 5.

4.A. Proofs 113

Appendix 4.A Proofs
4.A.1 Proof of Theorem 4.1

To find the distance between nodes in closed-form, we need to write the general expression of
pairs of nodes’ indices for which the index differences are searched. Figure 4.12 illustrates the
technique to find the distance between two horizontal neighbor nodes: At the tree level 1, nodes
4p + 1 and 4p + 2 are two horizontal neighbors. At level 2, the neighbors are respectively the
nodes with indices 4(4p + 1) + 2 and 4(4p + 2) + 1. For an arbitrary level r + 1, the indices,
denoted respectively by p,, and p. (where w and e stand for west and eas?), are given by the
recurrence equations

0) =4p+1,
Pw(0) P 4.27)
Du(r) = 4p,(r — 1)+ 2,r > 0,
and
0) =4p + 2,
pe(0) =4p+ 428)
Pe(r) =4pe(r—1)+1,r >0,
which have the solutions, respectively,
2
pu(r) =4""p+ oy 2, (4.29)
3 3
r+1 7 L 1
pe(r)y=4""p+ 54 — 3 (4.30)

As an example, note that when using the scalar product notation in (4.23), (4.29) corresponds to
the scaling function

N =S

pu(r) = [4"147 .. 1] (4.31)
2
In other words, the index p.,,(r) is found by traversing one child node at location 1, then » — 1
child nodes at location 2. The distance in closed-form is obtained by computing p () — py(r),
ie.
2 1

on(r) = 347+ 3. (4.32)

We can verify that §,(1) = 1, §,(2) = 3, 6,(3) = 11, etc... as shown in Figure 4.5.

114 Chapter 4.

tree level

O— O

Figure 4.12: lllustration of the technique to find the index differences in
closed-form., In this example, we show how to find the horizontal distance between
two arbitrary nodes.

To find 64, the same technique is used with the recurrence equations:

Ppw(0) =4p+1,

Pu(r) = 4py(r — 1)+ 1,7 > 0, “33)
and
Pe(0) = 4p +2, @34)
pe(r) = dpe(r — 1)+ 2,7 > 0,
which have the solutions, respectively,
pu(r) =4"""p+ §4T - % (4.35)
pe(r) =4""'p+ §4T - -:3; (4.36)
The distance in closed-form is obtained by computing p.(r) — p,(r), i.e.
Spe(r) = %4’“ ~ % 4.37)

We can verify that 65,4 (0) = 1, 0, (1) = 5, 654(2) = 21, etc... as shown in Figure 4.5.

4.A. Proofs

115

For the vertical distances §,,(r) and 6,¢(r), we denote the indices of two vertical neighbor
nodes by p,, and p;, respectively (where the subscripts n and s stand for north and south). For

4, (r), we use the recurrence equations

pn(O) =4dp+1,
palr) = 4pnl(r = 1) + 4,7 >0,

and

ps(0) = 4p + 3,
ps(r) = 4ps(r — 1)+ 2,7 > 0,

which have the solutions, respectively

7 4
pa(r) =4 p+ 347 - 5,

11 2
ps(T) = 4T+1p+ —3—47‘ - 5

The distance in closed-form is obtained by computing p () — p,(r), i.e.

1 2
61}(T) = 547“4—1 + P

3
= 26h (1“)
Finally, for §,;(r), we use the recurrence equation
ps(0) = 4p + 3,
ps(r) = 4dps(r — 1) + 3,7 > 0,

and 4.33 for p,,(r). Therefore, the solutions are given by

1 1
pn(,,,) — 4r+1p+ g41’—+—1 _ :_3_’

pulr) = 47 1p 471 — 1,
and the distance p;(r) — pn(r) is given by

2
5vt(7‘) = §4T+1 —

= 25hta

b

VLA

which concludes this proof.

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

116 Chapter 4.

Chapter 5

Progressive meshes in an
operational rate-distortion
sense

5.1 Introduction

5.1.1 Motivation

In Section 2.6, we presented an optimal tree-constrained decimation algorithm for polylines.
This algorithm has been reported to be the only one fulfilling all the requirements for our
transmission framework (Table 2.3). In particular, the generated approximations are progressive
and achieve error monotonicity across rate. Moreover, the error estimate computed by the
algorithm is global. Finally, the algorithm is computationally efficient and achieves the best
solution quality in the constrained case. In this chapter, we generalize this algorithm to 4-8
meshes approximation. Recall that our algorithm is derived from the optimal tree pruning
algorithm given in [9, 13]. The latter implementation is used to compute adaptive quantizers for
compression.

We aim at processing large polygonal meshes. Then, we reuse the results of Chapter 3 to
efficiently decimate the dataset and update the vertex errors. In particular, we use the algorithm
given in Section 3.4.4, computing merging domain intersections, to optimize the mesh using
global error. Our algorithm decimates a 4-8 mesh stored in a quadtree. We implement the dec-
imation of merging domains and the update of vertex errors using the quadtree implementation
presented in Chapter 4. Finally, note that previous work in simplification for 4-8 meshes has been
previously reviewed in Section 3.1.2. However, we summarize the key issues when processing

117

118 Chapter 5.

large meshes in Section 5.2.1.

Figure 5.1: Surface approximation: (a) The original mesh contains 131072
triangles. (b) An approximation using 6000 triangles.

5.1.2 Contributions and plan

Efficient simplification algorithm We propose an ©(n log 1) algorithm to produce adap-
tive representations of 4-8 meshes using general decimation and global error. The algorithm
decomposes o mesh into a control mesh plus a series of detail meshes. Global error metrics
yield better approximation quality than heuristics based on local error, but are often computa-
tionally expensive. In comparison, our algorithm using global error is computationally efficient.
We shows that a direct approach using the same error criterion requires at least ©(n“) time.
Also. decimation approaches vield better results than their refinement counterparts. In particular,
general decimation is usually needed to obtain optimal solutions [31],

Rate-distortion framework and global error We study our mesh simplification algorithm
in an operational Rate-Distortion (RD) framework. We attach decimation costs to cach vertex.
More precisely, we measure a cost in rate, given in term of triangles, and a cost in distortion, com-
puted in [, norm with respect to the original mesh. We give an ©(log” n) algorithm to maintain
global characteristics for the vertices during the optimization process. This algorithm is based
on a inclusion-exclusion principle used 1o compute merging domain intersections presented in
Chapter 3.

5.2. Algorithm description 119

Discussion on optimality We discuss the optimality of the solutions and analyze how opti-
mal vertices are chosen at each decimation step. Although we do not prove the optimality of the
algorithm, we use our results to show that approximation errors are most of the time monotonic
across rate. We prove that, under certain assumptions, monotonicity is achieved. We explain that
suboptimal cases leading to nonmonotonicities exist. However, we show experimentally that the
approximation errors returned by our algorithm behave almost always monotonically across rate.
We compare our algorithm to its restricted counterpart, i.e. we force the algorithm to perform
restricted decimation only, and show that monotonicity is no more conserved in this case.

Minimal metric assumptions We show that our algorithm makes minimal assumptions on
the mesh functionals. Recall that [denote the interpolation step of a vertex. Such a value is
assigned to each vertex during the 4-8 mesh construction depicted in Figure 3.1a-e. Then, we
prove that our algorithm only requires the rate functional to be monotonically decreasing with
{ while the distortion functional can be arbitrary decreasing, i.e. non-monotonic or monotonic.
This feature leaves the greatest freedom to elaborate an optimization metric tailored to the appli-
cation.

Experimental results We show experimentally the superiority of using global error for the
vertices over approaches based on local error. Then, we apply our algorithm to a database of
388 terrains [16] and give approximation results and timings. Timings are given for terrains
containing up to two millions triangles.

The chapter is organized as follows: In Section 5.2, we introduce our approach: We present
our framework and give the algorithm. We analyze the algorithm in Section 5.3: More precisely,
in Section 5.3.1, we explain the update method used to maintain global characteristics for the
vertices. We evaluate the complexity of the algorithm in Section 5.3.2. We discuss the optimality
of the solutions in Section 5.4 and give experimental results in Section 5.5. We summarize the
results in this Chapter in Section 5.6.

5.2 Algorithm description

We reviewed the constraints attached to the simplification of 4-8 meshes in Chapter 3. In this
section, we describe our algorithm and framework in the following sections. This section is
organized as follows: First, we review the key issues when processing large meshes in Section
5.2.1. Second, we pose the central problem and present our solution in Section 5.2.2.

5.2.1 Key issues when processing large meshes

We summarize below the key issues to address when simplifying large meshes: Having an ef-
ficient data structure is essential, since many processing steps strongly rely on the ability to

120 Chapter 5.

efficiently query the dataset. Examples include the recomputation of the connectivity and the
update of the errors after a simplification step. An efficient data structure must then provide:

e Information on the spatial orientation of the mesh.
e Fast and simple access to the dataset.
e Minimal storage.

Moreover, the efficiency of the data structure is tightly coupled with the mesh connectivity.
For example, a mesh with regular connectivity lowers the storage complexity and allows a better
design of data access mechanisms. The semi-linear quadtree (SLQ) presented in Chapter 4
fulfills all the above requirements. For the rest of this chapter, we will refer to the SLQ simply
as quadtree when mentioning our work.

Meshes with regular connectivity does not usually achieve the quality of irregular triangula-
tions (see Figure 2.17b), but provides a more flexible framework in terms of optimization and
efficiency. The processing of large meshes requires scalable algorithms, as described in [44],
with low computational complexity. The algorithms must also be able to handle multiple error
metrics. Sophisticated error metrics including, for example, the attributes of the vertices (such as
color, shading, texture) should be considered. Our framework is built under these considerations.

5.2.2 Central problem and solution

This section introduces an @(n logn) algorithm based on general decimation and global error.
We show in Section 5.3.2 that it computationally outperforms a direct approach using the same
error criterion. We apply it to a mesh built on a matrix of amplitudes z, e.g. terrain data. We
use mesh functionals u : M, — R to compute properties for v over its merging domain M ,,.
We use two mesh functionals R and D: R is called the rate and counts the number of triangles,
whereas D measures the distance in /5 norm between the original surface and an approximation
(Appendix 5.A). Hence, for each v we compute the vector value u(M) = (R(M,), D(M,)).

Call My = {vo, - -.,vn~-1} the input mesh and M a simplified version, then the problem to
solve is

D(R)= min {D(M)|R(M) <r}, 5.1

(R) |M|S|M0|{(IR(M) < r} (5.1

where r denotes a constraint in rate. A progressive representation for M is found by solving the
problem for all values 2 > r > n. For a rate budget r, the solution (R(M ;), D(A!;)) returned by
D(R) satisfies the constraint at minimal incurred distortion. The set of solutions, denoted by

|B| <...< |M1| < |M0l, (5.2)

where B is the control mesh, corresponds to a series of embedded approximations. The solutions
are embedded in the sense that any approximation can be reconstructed from a coarser solution

5.2. Algorithm description 121

only by splitting a set of triangles.

Each simplified mesh (R(M), D(M)) can be represented as a position in the space of
values spanned by R and D. This space is called rate-distortion (RD) plane (Figures 5.2a-d).
The set of all possible approximations is a cloud of positions in the RD plane. Each optimal
configuration is represented by a position u(M;) = (R(M;), D(M;)) on the curve bounding the
convex hull of all configurations (Figure 5.2d). This curve is called the operational RD curve
and the approximations on this curve are optimal in the operational RD sense.

We define the variation of a functional as
Au(M,) = u(M,) — u(M,). (5.3)

Hence, Au(M,) = (AR(M,),AD{M,)). The variation Au(}7,) is the change in rate and
distortion when M, is decimated. Therefore, a vector Au(A/,,) links two configurations in the
RD plane. More precisely, given a mesh over which Au(M,) is computed, the vector leads
to the configuration obtained by decimating M ,. Hence, A(v) = —AD(AL,)/AR(M,) is the
trade-off between rate and distortion when M, is decimated and represents a slope in the RD
plane (Figure 5.2a).

Zerun u <M0)

(@) (b)

Figure 5.2: Algorithm: (a) Initially, the variations Au(A/) and the slopes A(v)
are computed for each vertex. (b) The vertex with minimal slope
Av) = —AD(M,)/AR(M,) is chosen and decimated. The RD characteristics of
the ancestor vertices of M., are updated, hence the corresponding positions in the
RD plane are displaced.

The algorithm proceeds as follows: Initially, the variations Au(A/) and the slopes A(v) are
computed (Figure 5.2a) and stored for each vertex. Note that AD(A/,.) < 0 (Appendix 5.A),

122 Chapter 5.

hence A\(v) > 0. Additionally, we use a value Apin at each vertex to store the minimal slope
amongs all its descendants. At each iteration the vertex v with minimal A(v) is chosen and M , is
decimated (Figure 5.2b). The decimation changes the characteristics (i.e. in rate and distortion)
of a set of vertices. We call these vertices ancestors and denote this set by A r,. Two types
of ancestors a exist: the vertices such that M, C M, and the vertices such that M, and M,
partially overlap. In Chapter 3, we explain how to find these vertices efficiently. In particular, we
prove that

|An,| € O(logn). 6.4

Also, we show that ©(log? n) operations are sufficient to update all the ancestor values. We
explain our update mechanism in Section 5.3.1. Once the RD characteristics of the ancestor
vertices are updated, the corresponding positions u{M,) in the RD plane are displaced. The
algorithm is iterated until the configuration with minimal rate is reached (Figures 5.2c-d).

Figure 5.3: Algorithm: (a),(b) The algorithm is iterated. The algorithm aims at
the solutions on the curve lowerbounding the set of all possible configurations.
These approximations are optimal in the operational RD sense.

We give the algorithm below. In our application, we use an 4-8 interpolated matrix of
amplitudes and the configuration with minimal rate has two triangles and is shown in Figure
3.1a. It's important to note that A{,, contains all the vertices in the mesh. Therefore, since
our characteristics are global, the global rate and the global distortion are given by R(M ,,)
and D(M,,), respectively. Hence, in line 7 we use R(M,,) to test the rate of the current
approximation. Similarily, we could use D(M,,) to obtain configurations satisfying a maximum
error. The total complexity of the algorithm is computed in Section 5.3.2.

ALGORITHM

5.3. Analysis 123

i initialization:

: forallv

3 COMPUTE AD(M,), AR(M,)

—AD(M,
s Av) « —AR(ng))

s iteration:

s1=1 (counter for the approximations.)
» while R(M,,) > 2

s V¥ = argmin,ep A(v).

o My +— M;_1\ M,..

10 UPDATE AD(M,) AND AR(M,).

n end

12 end

5.3 Analysis
5.3.1 Update of global error

In this section, we present the algorithm used to update the functional variations of the vertex
characteristics. The algorithm has cost ©(log? n) and is derived from an algorithm computing
merging domain intersections presented in Chapter 3. Assume that a vertex M, is decimated,
then the variations Au(M,) are replaced by

Au(M,) — Au(M,), (5.5)

where w € M, and a € Aps,. We explain below how to find the variations Au(M,) updated
with Au(M,,).

We use the algorithm below to update the functional variations computed at the initialization
(lines 1-4 of the algorithm in Section 5.2.2) during the mesh optimization. In the algorithm, the
updated ancestor functionals are denoted Au’{M,). The algorithm finds the set of ancestors
Ay, and updates the characteristics using (5.5). More precisely, a set of parents (Section 3.3.2)
for each vertex w € M,, denoted by A,,, is traversed (see Chapter 3 for details). The parents

124 Chapter 5.

(@ (b)

Figure 5.4: Update of the global error: (a) When M ,,, and M,, are decimated,
the global characteristics (rate and distortion) of the mesh are
u(M,,) — Au(M,, U M,,). (b) Intersection between two large merging domains.
For clarity, the merging domains are represented using their support. The
intersection is depicted in dark shade and the thick line represents the boundary
between the domains.

are found using a bottom-up traversal of the mesh. An example of traversal is shown in Figure
5.5. The index next to each vertex is the interpolation step [(Figures 3.1a-¢). The update (5.5)
is performed for each parent. Once the set of parents for w has been visited, w is decimated.
Hence the algorithm is used to update the ancestor variations and decimate the domain M ,,, and
replaces lines 9 and 10 of the algorithm given in Section 5.2.2. Recall that an important property
of 4-8 meshes (3.28), related to the parents of a vertex, is

Yw € My,v € Ay, (5.6)

i.e. all the vertices w € M, have v as a parent. Assume that v is interpolated at step [, then
the set of vertices w € M, has to be visited starting from the vertices in the domain having the
largest interpolation step. Therefore, if M, spreads through m levels, then first the available
vertices with step ! 4+ m are decimated, then the vertices with step I + m — 1, and so on.

ALGORITHM

i for ALL AVAILABLE VERTICES w € M, INTERPOLATED AT STEP! +m....l[

: for ALLa € A,
3 Au'(M,) = Au(M,) — Au(M,,)
s end

s decimate w

5.3. Analysis 125

Figure 5.5: Parents of vertex w (A,,): To find the parents of w, interpolated at
1 = 5, the mesh is traversed bottom-up (see Chapter 3 for details). The index next
to each vertex indicates the interpolation step.

s end

We explain now how global characteristics are maintained using the above algorithm. We
start with a simple example, then we address the general case. To do so, we summerize the
problem of finding merging domain intersections. A complete analysis of this problem is found
in Chapter 3.

After the initialization phase (lines 1-4 of the algorithm in Section 5.2.2), the functional
values Au(M,) are global since no vertex has been yet decimated. Consider M, and M,, as
depicted in Figure 5.4a. Clearly, after decimating both domains, the global characteristics of the
mesh (rate and distortion) are

u(M,,) — Au(M,, UM,,), 5.7

where v denotes the root vertex. Recall that this vertex can be used to measure the characteristics
of the complete mesh since M, contains all the vertices. Unfortunately, M, N M,, # 0 thus

Au(M,, UM,,) < Au(M,,) + Au(M,,). (5.8)

However, M,, C M,, U M,,, as shown in Figure 5.4a, and the surplus of Au(M,,) + Au(M,,)
is Au(M,,) because every triangle tiling the support of M ,, is also a triangle of either the support
of M, or M,,. Hence, we have

Au(M,, UM,,) = Au(M,,) + Au(M,,) — Au(M,,). (5.9

126 Chapter 5.

Figure 5.6: Merging domain intersections: Decomposition of the intersection in
Figure 5.4b: The intersection is expressed as the union of a set of smaller
domains M,,, i = 1 : 5. Note that couples of domains M, , My, and My, , My,
overlap.

We decimate now successively M, and M,,. For M, , The algorithm first decimates w and
the three remaining vertices (depicted in white in Figure 5.4a) interpolated at the same step.
Hence, following (5.6), the updated functional characteristics at v, vz and vg (root vertex) are,
respectively,

Au(M,,)-Au(M,,) — > Au(My),

kEM,y, Jh#v1,kFw
Au(My,)-Au(My), (5.10)
Au(My,)-Au(My) — Y Au(Mg).

EEM,, kv, kw

Then, the algorithm decimates v; and the updated value at v is
Au(M,,) — Au(M,,). (5.11)

Note that v, is not affected by the decimation of v, since v; ¢ A,,. Now M, is decimated
(starting with the three available vertices k € M, k # w), and the updated values at v and vg
are, respectively,

Au(M,,)-Au(M,) - > Au(My),
kEM,, k#va k#w
(5.12)
Au(M,,)—Au(M,,) — > Au(My).

k€M, kv, kW

Finally, the algorithm decimates v» and the updated value at vy is

Au(M,,) — Au(M,,) — Au(M,,) + Au(M,,), - (5.13)

5.3. Analysis 127

which shows that (5.9) is obtained, i.e. the characteristics computed at v are global.

The above example shows that the algorithm uses an inclusion-exclusion principle to
compute the global error at each vertex. We presented a simple example where the intersection
between the decimated domains M, and M, is the singleton domain M,, = {w}. In general,
intersections between domains are more complex. For example, consider the intersection
between the two domains in Figure 5.4b. In the figure, the domains are depicted using their
support for clarity. Following (5.4), we have ©(logn) possible arrangements for intersections.
Hence the examples in Figures 5.4a and 5.4b are just particular cases. Figure 5.7 depicts another
example of arrangement.

The intersection in Figure 5.4b can be decomposed in terms of smaller merging domains, as
shown in Figure 5.6. The number of domains is proportional to the size of the intersection. In
the example of Figure 5.4a, a single domain M ,, is sufficient to express the intersection, whereas
in Figure 5.6, the intersection is written

My, U My, U My, U My, U M,,. (5.14)

Unfortunately, the domains JM; forming the intersection overlap (Figure 5.6), i.e.
My, N My, # 0 and M,, N My, # 0 . Therefore to compute the union (3.32), we
use an inclusion-exclusion approach to resolve all embedded intersections. In Chapter 3, we call
this problem merging domain intersections and we show that the union (3.32), i.e. exclusive
intersection, can be computed in O(logn) time. Also, we show that exclusive intersections
between a decimated domain M, and the domains of all its ancestors A »s, are computed in
O(log? n) time.

The update algorithm given at the beginning of this section automatically computes all
exclusive intersections after decimating a domain 3 ,. The computed values at each vertex are
the global RD characteristics to substract to u(f,,) after decimating the vertex. Hence, the
characterstics u(M,,), i.e. at the root vertex, are the global characteristics of the mesh.

We conclude now this section with the following general example: Assume that all vertices
in M, are decimated except v. Therefore, following (5.6) the updated variations at v and v ¢ are,
respectively,

Au(M,) — zweMu,w;év Au(My),

5.15
AU(Myy) = 3 pents e A(M,). .15
Assume that v is now decimated, then using (5.5), the variation at v is now
Au(M,,) — Au(M,), (5.16)

which corresponds to the global characteritics of the mesh after the decimation of M ,,.

128 Chapter 5.

5.3.2 Complexity

The cost of the algorithm in Section 5.2.2, i.e. computing a complete decomposition of the
mesh, is found as follows: In Chapter 3, we show that merging domains have size ©(logn) on
average, thus assuming a mesh of n triangles, the initialization has cost ©(nlogn). At each
iteration, the optimal vertex v* (having minimal slope A(v*)) is found in ©(logn) operations
using the values Apmin. The cost to decimate M, and update the variations for the vertices in
Ap, is O(log® n). Also, ©(logn) values A(v) and Amin are recomputed and the algorithm is
iterated. On average, n/©(logn) steps are necessary to decompose the mesh, since at each step,
©(logn) vertices on average are decimated (average size of merging domains). Hence, the cost
to compute the full decomposition is ©(n logn).

A direct algorithm needs to recompute the global error over each ancestors’ domain. A
lowerbound for this update is obtained as follows: We have roughly ©(4!*!) vertices at step
I and I € O(logn) ancestors exists. Call a any such ancestor, then |M | (i,n) ~ n/471
1 <4 < I. Therefore, a lowerbound for the complexity is

logy n

Z Z = —n - 1nlog4 n— ;n € O(n?). (5.17)

Note the above approximation accounts only for the ancestors @ such as M, C M,. Accounting
for the update of the ancestors whose domain partially overlaps does not change the order of
magnitude. However, this evaluation is complex due to the O(logn) cases of overlap, i.e.
arrangements for intersections, one has to deal with (Section 5.3.1).

We conclude our analysis of the algorithm with the following proposition:

Proposition 5.1 On average, an algorithm based on global error and using general decimation
requires O(nlogn) operations to fully decompose a 4-8 mesh with n triangles when merging
domain intersections are used to update the vertex errors.

5.4 Discussion of optimality

In this section, we discuss the optimality of the algorithm. First, we explain how an optimal
vertex is chosen at each decimation step (Section 5.4.1). Second, we discuss issues related to
intersections between domains and how optimal choices are affected (Section 5.4.2). Third, we
explain how the monotonicity of the approximation errors (i.e. distortions) are conserved across
rate (Section 5.4.3).

5.4. Discussion of optimality 129

5.4.1 Optimal choice

Recall that our rate functional measures the number of triangles, hence the functional is mono-
tonically increasing with the mesh size. Consider now the following example: Consider two
vertices v; and vy such that vy € M, ,i.e. AR(M,,) < AR(M,,). Furthermore, assume that

AD(My,) > AD(M,,). (5.18)

Such a case is possible with the [» or the [, norms since both are nonmonotonic with the mesh
size [41]. Recall that AD(M,,) < 0 and AD(M,,) < 0 (Section 5.2.2). If v, is decimated,
then following (5.5) and (5.6), we have that

AD(M,,) — AD(M,,) >0, (5.19)

and the new slope 0 (
—(D le) -D M'Uz))
) = &Row,,) - aRGL,) <" 20
i.e. the sign of the slope changes. In consequence, M ,, will be the optimal domain to decimate
at the next iteration, and the global error will decrease, i.e the RD curve will be nonmonotonic.
We say that M, is a nonmonotonic merging domain with respect to M ,,,, i.e. decimating M,
creates a nonmonotonicity at v;.

The algorithm avoids the above situation using general decimation as follows: If the deci-
mation of a domain M, provokes a nonmonotonicity at a parent of v, then the algorithm will
decimate the domain of the parent instead. In Proposition 5.2, we show that only the rate func-
tional needs to be monotonic and that the distortion functional can be arbitrary (i.e. monotonic
or nonmonotonic), both with respect to the mesh size, in order for the algorithm to make the
optimal choice.

Proposition 5.2 Given vy and v, such that vy € M, and AR(M,) > 0 (monotonicity of the
rate functional), then M., is decimated before M.,,, if and only if

AD(M,,)

AD(M,,) >0 >1, (5.21)

where § = AR(M,,)/AR(M,,). When v, does not meet condition (5.21), the domain M ,, is
said to be nonmonotonic with respect to M .

Proof. For M, to be decimated before M, , we need to have
AD(M,,)AR(M,,) > AR(M,,)AD(M,,). (5.22)
Since the functional R is monotonically increasing, we can write

AR(M,,) = §AR(M,,),6 > 1 (5.23)

130 Chapter 5.

Then, replacing (5.23) in (5.22) yields

AD(My,) > SAD(M,,). (5.24)

5.4.2 Intersection between domains and optimal choice

In Section 5.2.2, we explained that a type of ancestors is the vertices a such that M, and M,
partially overlap. Figure 5.7 illustrates such a case. Assume now that M , is the optimal domain
to decimate at some iteration and that M , is nonmonotonic with respect to M ,,. Since w € M,,
M, is decimated jointly to M,. Following (5.6), the decimation creates a nonmonotonicity at
M,. The above example shows that, due to the overlap between domains, the algorithm using
general decimation cannot avoid nonmonotonicities across rate.

Figure 5.7: Suboptimal choice of the algorithm: w € M, N M, and M, is a
nonmonotonic merging domain with respect to M ., (see Proposition 5.2).
Decimating M, provokes a nonmonotonicity at M.

We perform experiments using matrices of amplitudes z (terrain data [16]) and compare our
algorithm to its restricted counterpart, i.e. we force the algorithm to perform restricted decima-
tion only (Section 3.2.3). Hence, only singleton domains M ,, i.e. |M,| = 1, are decimated,
preventing the algorithm to make optimal choices as explained in Section 5.4.1. We find that,
although the algorithm using general decimation cannot avoid monotonicity, the RD curve (top
curve in Figure 5.8) is very stable compared to the one obtained with its restricted counterpart
(bottom curve in Figure 5.8). For the restricted version, nonmonotonicities often occur at low
rate. We conclude that, for our dataset, few cases of nonmonotonicity are observed.

5.4. Discussion of optimality 131

108

108.1

108.2

1083

dB,

5108.4

-
(=1
@
o

global 12 err

108.6 |
1087 bl

108.9 - i .) \ . H L
0 50 100 150 200 250 300 350 400 450
cost in triangles

Figure 5.8: Stability of error across rate: We compare the monotoncity of the RD
curves obtained using general decimation (top curve) and its restricted
counterpart (bottom curve). The curve obtained with the restricted version is
unstable at low rates.

5.4.3 Monotonicity

In this section, we show that a rate functional monotonic with the mesh size is necessary and
sufficient for the approximation errors to be monotonic across rate. To do so, we assume that
no suboptimal choice, as explained in Section 5.4.3, is made. Under the above assumptions, we
actually show that the slopes A, corresponding to optimal choices made during the mesh decom-
position, monotonically decrease across rates. This fact is stated in the following proposition:

Proposition 5.3 (Monotonicity of the RD Curve) Consider that AR(M,) > 0 and AD(M,)
is arbitrary, Yv. Call v* the optimal vertex to decimate and assume that there is no ancestor
a € Apg,. such that M, is a nonmonotonic domain with respect to a vertex w € M,- N M,.
Then, for all updated vertices a € Ay, we have

Aa) > A(v¥). (5.25)

Proof. We have to show that A(v*) is a lowerbound for {A(v)} ;e ns. We only have to consider
the updated vertices a € Ay, , ie.

AD(Ma) — AD(Mv*)
= i -

) ,Va € Ay, (5.26)

132 Chapter 5.

Moreover, M, satisfies Proposition 5.2, then
SAD(M,) — AD(M,)

A@) > S R,) “AR(M,)’
(6 — 1)AD(M,-)

(6 — 1)AR(M,-) (5.27)
AD(M,.) .
m > A(v*).

O

5.5 Experimental results

We organize our experimental results as follows: In Section 5.5.2, we first demonstrate the
efficiency of our global error estimate using the polyline model. We simply recall some of the
results obtained in Chapter 2.

Recall that the hierarchy imposed over the vertices by the 4-8 construction restricts the space
of approximations (Section 3.2.1). As seen in Chapter 2, this constraint can be applied to the
polyline model using a binary tree, i.e. a decimation (or insertion) algorithm must preserve the
tree hierarchy when optimizing the model. We refer to these algorithms as constrained (Section
5.5.2). We compare our algorithm to two constrained approaches using local error: vertex
insertion and vertex decimation.

We also compare our results to the optimal, unconstrained, approximations obtained using
dynamic programming. In the mesh case, this could be seen as the optimal solutions using irreg-
ular triangulations. However, Agarwal ez al. [1] have demonstrated that finding these solutions is
NP-Hard. In Chapter 2, we explain and compare approaches to approximate polylines in detail.
Finally, we apply our algorithm to terrain data (Section 5.5.3).

5.5.1 Terrain dataset and measures

In this section, we apply our algorithm to a large set of DETD’s. Our dataset represents the
southwest region of Switzerland (the Alps) [16] and is composed of 388 terrains of size 257 x 257
vertices. Consider emax the maximum error obtained by decimating all the vertices in the mesh
and e, the error measured between an approximation of rate r and M. We compute the peak-
to-signal noise ratio, or PSNR between the two meshes. The error, denoted by £ ., is given in dB
and is defined as

€max
E, = IOIOgIO(er n 1). (dB) (5.28)

5.5. Experimental results 133

5.5.2 Comparison with methods using local error

In this section, we recall some of the results obtained in Chapter 2. We use the polyline model
to test the efficiency of our global error estimate for the vertices. As explained previously, this
allows us to compare our approach to several approximation methods. In particular, we can
compare our approximations to the optimal ones obtained using dynamic programming. In the
later case, the space of solutions is not constrained.

Figure 5.9 shows an example of constrained decimation. The top curve is the original one
and has 7 interior knots. These knots are iteratively decimated and the bottom curve can be seen
as the control curve, i.e. similar to the control mesh showed in Figure 3.1a. The binary tree
constraining the decimation is depicted using bold lines in the figure.

Figure 5.9: Successive approximations of a polyline using constrained knot
decimation: Knots are iteratively decimated from top to bottom. The binary tree
constraining the decimation is depicted using bold lines.

Our experimental results are shown in Figure 5.10: The graph shows a comparison of the
RD curves. The rate is computed as the number of segments forming an approximation and
the distortion is computed in /5 norm with respect to the original curve. We run the experiment
using 256 curves obtained from terrain data and we average the results of each algorithm. To
compute the average, we normalize the errors and fix the gain to 50 dB.

The top curve shows the errors of the optimal approximations found using dynamic program-
ming. The dashed curve is obtained with our algorithm using general decimation and global
error. The two bottom curves are obtained with restricted insertion and decimation using local
error. Both approaches accumulate errors through the iterative approximation process. Hence,

134 Chapter 5.

50 T r T —_
optimal PP
5 approximagier -~
_ - Constrained decimati

ol _ -~ approximations ecimation _

35t 1
o J
CEY
<]
=25 4
@

20 R

15 1

10H 4

5 1

0 . ") .

.
0 50 100 150 200 250 300
rate (segments)

Figure 5.10: Comparison of RD curves: The rate is computed as the number of
segments forming an approximation and the distortion is computed in [; norm with
respect to the original curve. The top curve is obtained using dynamic
programming. The dashed curve is obtained with our algorithm. Finally, the two
bottom curves compare the decimation and insertion approaches using local error.

the insertion method achieves better quality than the one using decimation at low rates and, sym-
metrically, the decimation method achieves better quality than the one using insertion at high
rates.

5.5.3 Decomposition of terrain data

We apply now our algorithm to terrain data. We run experiments on 388 terrains [16]. Each
matrix of amplitudes has size 257 x 257, hence each model has 131’072 triangles. The errors
obtained using each terrain is averaged using the maximum error computed as the distance in
> norm between the control mesh (Figure 3.1a) and the original mesh. Then, the maximum
gain is fixed to 50 dB and the average curve is shown in Figure 5.11. An example of terrain
decomposition is shown in Figure 5.13.

We give now some timings when computing a complete decomposition. We use a PC
equipped with a Pentium IiI 500 Mhz and 256 Mb of RAM. The implementation is in C++ and
is not optimized. We store the 4-8 meshes with the quadtree described in [55]. For the timings,
we use a subset of the available terrains in [16]. We use 50 terrains with sizes up to two millions

5.5. Experimental results

135

error (dB)
&5 8

IS
=]
T

w
&

O SRS VOO ST

. N L ; .
4] 2 4 6 8 10 12 14
rate (number of triangles) x 10"

-

Figure 5.11: Average RD curve: We apply our algorithm to a database of 388
terrains [16]. To compute the average curve, the errors obtained using each
terrain are normalized and the maximum gain is fixed to 50 dB.

triangles.

The results in Table 5.5.3 are obtained by measuring the average decomposition time for each
terrain. Separate measurements are given for the initialization and the decomposition (lines 1-4

and lines 5-12 of the algorithm in Section 5.2.2, respectively).

number of triangles 7 | init. time (s) | decomposition time (s)
2048 0.003 0.057
8192 0.011 0.30
32766 0.05 1.7
131072 0.24 11.4
524288 1.07 48
2097152 4.81 238

Table 5.1: Average decomposition times: The timings are obtained using a PC
equipped with a Pentium 11l 500 Mhz and 256 Mb of RAM.

136 Chapter 5.

5.6 Summary

We presented a scalable mesh approximation framework for 4-8 meshes. Our method allows us
to perform approximations using global error at low computational cost ©(n logn). Our solution
has several advantages:

» The variable-rate optimization approach allows us to best conserve the monotonicity of the
distortion across rates.

» Minimal requirements for the specification of the rate and distortion functionals provide
high flexibility for the user to target their definition according to the application.

» The functionals are only evaluated during the initialization stage, allowing us to keep their
utilization apart from the optimization process using an efficient update mechanism.

» Our update algorithm allows us to compute a global error estimate for the mesh improving
the quality of the approximations in the constrained setting, moreover the update is carried
on at minimal computational cost.

» Our framework is computationally efficient and can handle large datasets.

We used a metric where the rate functional counts the number of triangles and the distor-
tion functional measures the /5 norm in world-space. However, recall that the flexibility of our
framework allows us to tailor the metric to the application with great freedom (recall the mini-
mal assumptions on the functionals presented in Section 5.4.1). This characteristic allows us to
address several problems inherent to our transmission framework (Section 1.2.6). In Chapter 6,
we will use our algorithm to perform optimization in screen-space, i.e. to obtain view-dependent
approximations.

5.A. Evaluation of mesh functionals 137

Appendix 5.A Evaluation of mesh functionals

We compute the costs in rate for each domain, measured as the number of triangles, in closed
form using the results in Chapter 3. More precisely, we give closed-forms to compute R(M,)
and R(M,).

(x7¥7) (Xg¥s) (XgY¥g)

(X4 Ys) (X5 ¥s) (X5 Ye)

x1.¥4) (X2} (X3¥3)

Figure 5.12: Computation of the error in squared > norm for a triangulated
quad. The right part shows a top view of the triangulated quad.

We use the squared /> norm as a measure of distortion between the original mesh and the
approximations. More precisely, each vertex is projected in its corresponding triangles in the
support of the domain. Consider the simple case of a matrix of amplitudes z. Figure 5.12
shows how errors are measured on a triangulated quadrilateral. The total distortion is evaluated
similarily on the domain M.

Consider the triangulated quadrilateral in the left-hand side of Figure 5.12. Each amplitude
z; 1s projected in a triangle of the support. For example, z4 is projected in the triangle formed
by vertices (1, Y1, 21), (Z5,Ys, 25), (€3, Y3, 23) (right-hand side of Figure 5.12). Denote by z| a
projected amplitude, hence the error for each vertex is then given by

6 = |z — 2if%. (5.29)

To evaluate the error D(M,), all the vertices in the domain are projected in the support of M ,.
The distortion functional is computed as

D(M,)= > 8, D(M,)=0. (5.30)
vEM,
hence 5
AD(M,) = —-D(M,), (5.31)

i.e. intially AD(A,) < O for alt the vertices.

138 Chapter 5.

Figure 5.13: Progressive refinement of a terrain mesh: (a) A coarse resolution
of the mesh is generated with: 200 triangles (PSNR 14.9 dB), successively refined
1o (b) 400 (PSNR 18.46 dB), (c) 800 (PSNR 22.2 dB), (d) 1600 (PSNR 25.914
dB), (e) 3200 (PSNR 29.81 dB) and finally (f) 6400 triangles (PSNR 33.8 dB).

Chapter 6

Joint mesh and texture
optimization

6.1 Introduction
6.1.1 Motivation

In this chapter!, we address a very simple yet basic question of computer graphics: Given a
surface specified by a mesh and a texture to be mapped on that mesh, what is the resolution
required for the mesh and the texture to achieve the best display quality, respectively? This
question is relevant every time we are resource constrained, and we need to simplify meshes
and/or textures mapped on the meshes. The constraints might be of different nature:

o Computational: For example, complexity of rendering meshes and mapping textures.

o Storage space or bandwidth: For example, bitrate needed to represent, transmit or update
a complex model and its associated texture information.

¢ Both in computation and bandwidth.

In such cases, it is critical to choose the correct resolution or level of details for both the mesh
and the texture mapped on it. If more resources become available (e.g. in progressive downloads
over the Internet), it is important to know if the mesh or the texture needs to be refined first.

To make our discussion more concrete, consider a specific case where the interplay of
texture and mesh resolution is particularly intuitive, for example, very large terrain models
with aerial photographs to be mapped on the terrain models. Consider two extreme cases:

IThis work was done in collaboration with Stefan Horbelt (Stefan.Horbelt@epfl.ch)

139

140 Chapter 6.

First, assume mapping a very fine texture (a very detailed aerial photograph) onto a very
coarse terrain model. This gives an unsatisfactory result: While many details are available, the
surface model is too simplistic compared to the texture resolution. At the other extreme, take
a very detailed terrain model, but with an overly coarse texture. The mesh is now very com-
plex, but the texture is trivial, thus not reaching a good trade-off. The above two extreme cases
hint at a better solution, where the correct trade-off between mesh and texture resolution is found.

This investigation targets the characterization of control information for the system control
module of our transmission framework (Figure 1.4). Recall that this module operates as a
puppeteer for the encoder set and the multiplexer. Our joint encoding investigation provides a
means to share resources between geometry and texture data inside the multiplexed bitstream
such that the encoded information minimizes the distortion criterion for a given bit budget.

To the author’s knowledge, this joint optimization problem has not been previously ad-
dressed. A “single-sided” point of view would twig our ambitions as optimizing geometry with
texture information (see [74] for example), whereas in our problem there truly is a concurrent
approach to achieve the best rendering quality. To solve this problem, we propose an efficient
algorithm based on marginal analysis [6, 7]. Marginal analysis is a greedy optimization method
used in economy to solve convex and linear programming problems [46]. More recently, this
technique has been successfully exploited to address problems in image processing [92]. The
aim of this chapter is to show that there exists a non-trivial interaction between geometry and
texture contribution to the overall quality of the rendered image. We address a simplified version
of the problem by evaluating the interaction between progressive view-dependent encoded tex-
tures [45] and meshes. In contrast, the general problem would consist in generating jointly both
progressive descriptions.

6.1.2 Contributions and plan

The following points summarize the main contributions of our work:

Format framework for joint mesh-texture optimization We explain how the joint op-
timization problem can be addressed efficiently using a pyramid of view-dependent simplified
meshes and view-dependent encoded textures.

Efficient heuristic We introduce a greedy algorithm to compute the set of pairs (M, T;)
based on marginal analysis. The algorithm runs in linear time with the number of optimal pairs.

Near optimal algorithm We compare the pairs (M;,T;) found by our efficient heuristic
to the optimal ones and show that our algorithm performs close to the optimal path found by
exhaustive search.

6.1. Introduction 141

Balancing of mesh and texture data Our work ultimately contributes with a technique to
balance the quantity of mesh and texture information in a bandwidth constrained environment in
order to maximize the rendered quality.

This chapter is organized as follows: We start with a review of classical texturing approaches
and give then our contributions in Section 6.1.2. We pose formally our optimization problem in
Section 6.2, then explain how marginal analysis can be used to address this problem in Section
6.2.2. In Section 6.3, we study the complexity of the problem and give an algorithm. We give
extensive experimental results in Section 6.4. Finally, Section 6.5 summarizes our results.

6.1.3 Classical approaches to texture processing and encoding

In this section, we first briefly review the main techniques used to encode and process texture
information and discuss their interest within a transmission framework. For a more detailed
survey. we refer the reader to [39].

Raw data and mip-mapping Most of the time in computer graphics applications, textures
don’t have a specific encoding other than the description provided by their original image
format. Once loaded into memory, the data is converted to a format supported by the rendering
engine [64]. In order to deal with seamless replication of the texture on the mesh, duplicates
at multiple resolution are passed to the engine. This technique, known as mip-mapping, is

R
Blrs
H l P || —]
—
(a)

(h) (c)

Figure 6.1: Mip-mapping example: (a) The texture is stored at multiple
resolutions, passing at set of pre-filtered textures to the engine. (b) Using
mip-mapping, low-resolution duplicates are replicated on polygons distant from the
viewer. (c) The uniform replication of a high-resolution texture produces aliasing.

commonly supported in hardware and allows us to avoid aliasing when patches are replicated on
polygons distant from the viewer-.

Figure 6.la depicts the original texture and its pre-filtered duplicates. In Figure 6.1b, we
show the effect of tiling the texture using mip-mapping, whereas in Figure 6.1¢, we illustrate the
aliasing effect when only the highest resolution component is tiled on the polygons.

“Using a perspective projection. far polygons will appear smaller than the ones close 1o the viewer.

142 Chapter 6.

Subband coding The use of subband coding methods such as the wavelet transform [88] can
be used to obtain a progressive description of the texture. This encoding scheme is well adapted
to transmission since few texture data, represented as transform coefficients, can be transmitted
in order to obtain an approximation. The wavelet transform describes the texture as a set of
embedded coefficients. Therefore, the refinement of a previously transmitted set can be achieved
by sending only further detail coefficients. Finally, the coefficients reflect local properties of
the texture, therefore the refinement can be restricted to regions allowing us to perform view-
dependent optimization [45), as depicted in Figure 6.5. Using this property, the local resolution
of the texture can be adapted in order to avoid aliasing such as in the case of mip-mapping (Figure
6.1). For more informations, we refer the reader to [88, 60, 90].

Texture generation Texture generation techniques are quite new 1o the field of image pro-
cessing and aim at producing artificial texture patterns with statistical values measured from an
input image (635, 79]. Although this technique can only describe simple patterns, its strength
relies on its ability 1o describe patches using small sets of parameters.

Procedural textures Procedural techniques can be seen as a more general case of texture
generation. These methods aim at simulating natural materials and phenomena using algorithmic
descriptions [91, 73, 63] and rendering them into a texture. The functions generating the texture
are then evaluated when needed. For example, in Figures 6.2a-c, procedural textures are used
to simulate fog [21, 22). fire [28] and clouds [27], respectively, The examples in the figure
were obtained from the advanced SIGGRAPH openGL course. Procedural methods are usually
computationally demanding since the functions must be constantly evaluated in order to update
the texture. A good survey of procedural texturing is given in [23],

(a)

Figure 6.2: Texture generation using procedural approaches: Simulation of (a)

fog, (b) fire and (c) clouds. The functions encapsulating the texture synthesis are

evaluated periodically, hence producing animated textures. These examples were
taken from the advanced openGL SIGGRAPH course 1997,

How fit the above encoding methods in a transmission framework? Sending raw data,
doubtlessly, is 1o limiting since it may waste bandwidth resources. As said previously, our

6.2. Problem formulation 143

encoding scheme uses subband coding methods to achieve progressiveness for the bitstream.
The last two techniques, namely texture generation and procedural textures, based on synthesis
are interesting for their compactness, but complicate the design of the fexture decoder module
(Figure 1.4), i.e. the decoder should handle multiple decoding schemes. We will therefore con-
sider them no further, although we keep in mind that they offer exciting alternatives to classical
transform coding. Note that a procedural method would also require us to define an interac-
tion protocol between the texture decoder and the rendering engine since procedural textures are
periodically synthesized.

6.2 Problem formulation

6.2.1 Joint mesh-texture optimization

Consider a surface mesh at full resolution M and a family of simplified meshes {M;};=0.. .n—1-
A progressive set is obtained with the algorithm presented in Chapter 5. We associate a value
Cum(M;) to each mesh representing its cost (number of bits needed to represent it, or its
computational rendering cost).

Likewise, given a full resolution texture T and a family of simplified textures {7’ };=1.. as,
obtained with the method in [45]. We associate a function C'7(T}) to each texture, which
measures its cost (again, bitrate or computational cost of rendering). In Figure 6.3, we depicted
our full resolution model using the mesh A/ and the texture 7y. The mesh is built on a 257 x 257
DETD (see Section 5.1.1) and the texture is a 1024 x 1024 pixels, 24 bits image.

Finally, for a given pair (M;, T;), we define a distortion measure D(A;, T;) which evaluates
the error in screen space between the image generated by the full resolution version (M ¢, Tp)
and the approximated version (M, T;). Calling the image on the screen I(M;, T;) to reflect its
dependence on the underlying model and texture, a possible distortion is the [; norm, or

D(M;,T;) = ||I(Mo,To) — I(M;, Tj)|, - 6.1)

Note that I(M;, T;) depends on the rendering process (e.g. lighting), but we assume the same
rendering process for the various approximate images. The statement of the problem is now the
following: Given a total budget for the combined complexity of the mesh and texture:

C=Cuy+ CT, (6.2)
find the pair (M;, T;) that minimizes D(M;, T;),7 € [0...N],j € [0...Af], i.e.
Dyin = mln(D(M27TJ))7 6.3)
6.

under the constraint that
Cu(M;) + Cr(T;) < C. (6.4)

144 Chapter 6.

Figure 6.3: Full resolution model: The model is rendered using the mesh Al and texture T,

Such a formulation is very reminiscent of compression systems, and indeed. when the cost is
the required bitrate for model and texture, the above gives a best compression scheme in an
operational rate-distortion sense.

6.2.2 Marginal analysis

The search for the minimum error in (6.3) can be done by exhaustive search (i.e. comparing all
possible pairs of mesh and texture resolutions satisfying the bitrate constraint), but this is clearly
impractical (see Section 6.3.1). Thus it is critical to find computationally efficient methods for
searching a wide variety of possible approximations. In the following, we focus our attention
on the case where the cost is the bitrate required for representing the mesh and the texture. This
is a well defined cost and it is relevant for applications where storage and/or transmission are
involved.

Finally, We restrict our attention progressive meshes and textures. While this is a restricted
class, it is a very important one for the case where interactivity and communication is involved
(e.g. progressive downloads),

Dataset, cost and distortion operators We use a set of \' progressive, view-dependent
approximated meshes obtained with digital elevation terrain data (DETD) [16]. In Figure 6.4a,
an example of view-dependent approximation used for the experiments 1s shown. Figure 6.4b
depict the view-dependent simplification from a location slightly behind the one using for the

6.2. Problem formulation 145

simplification. Finally, a world-space simplification of the model is shown in Figure 6.4c¢ for
comparison.

(a) (b) (c)

Figure 6.4: View-dependent and world-space optimizations: In (a), the model
has been optimized for a specific viewpoint (see the concentration of triangles) In
(b), the terrain is viewed from a location slightly behing the viewpoint used for
simplification. In (c), the model using a metric in world-space.

The simplification is We use well-known results in geometry compression [85] to obtain an
estimate for the cost of encoding both vertices and connectivity. The set of M progressively
refined textures is generated with the aerial photograph in Figure 6.5.

The cost of a texture accounts for the number of 16-bits quantized wavelet coefficients used
for the reconstruction. Since we have view-dependent representation of both mesh and texture,
the error is computed in screen-space. To do so, we compute the distance between the two ren-
dered images in the screen, assuming the same rendering conditions for the various approximated
images,

Greedy optimization using marginal analysis We propose an optimization scheme
based on marginal analysis [6, 7] to solve the problem. Marginal analysis is primarily a technique
used in Economics [46]. but recently has been successfully applied in image processing [92].

Intuitively, marginal analysis can be explained as follows: Economists say that when making
a decision, people think at the margin, which simply means that they compare marginal costs
with marginal benefits. A rational person will then pursue an activity until the marginal benefits
cqual the marginal costs. Basically, marginal analysis is based on the idea that it is the future
costs and benefits that everyone bases decisions on. For example. say you are deciding whether
to read this thesis further. You will evaluate the marginal benefits against the marginal costs
(all the things you should give up by spending more time reading). If the marginal benefits are
greater than or equal 1o the marginal costs, then you continue the reading, In fact, you continue

146 Chapter 6.

(a) (b)

Figure 6.5: View-dependent encoding of a texture obtained from an aerial
photograph of the Alps (courtesy of Stefan Horbelt): (a) The texture is encoded
such that it can be locally refined in the visible regions in the field of view. The

point represents the user viewpoint and the rays delimit the projected pyramid of
view, (b) the texture is projected on the terrain and the scene is shown from a
viewpoint located slightly behind the real viewpoint. We can see that regions
outside the field of view are blurred since less information is encoded for these
parts,

until the benefits are equal to the costs. Going any further would cause costs to become greater
than benefits, and would be irrational.

When applied to our problem, marginal analysis translates as follows: A necessary condition
for a pair (M;.T;) to be a candidate that achieves a good trade-off between mesh and texture
resolution is that removing a certain bit budget from either mesh or texture will lead to a similar
increase in distortion. The intuition behind the result is simple: If it were not so. some of the
bits could be moved from mesh to texture (or vice versa) in order to reduce the distortion. While
this result is exact only when assuming independence of the mesh and texture (which is an
approximation), the heuristic using it is quite competitive.

Two applications are possible: We can either increase or reduce the available resources,
i.e. the bit budget in our case. Resource reduction approaches are usually more competitive than
resource increase methods. This fact is well know in optimization [31] and has been illustrated by
the greedy approximation algorithms in Section 2.4.1 where we used refinement and decimation.
In the next sections, we first explain how our problem can be solved using exhaustive search in
order 1o illustrate the complexity of the solution space. Then, we give the algorithm based on

6.3. Algorithm description 147

marginal analysis using the resources reduction approach to solve it.

6.3 Algorithm description

6.3.1 Space of solutions and complexity

We first conduct an exhaustive search experiment for a set of pairs (A, T;) of meshes and
textures approximated for a specific viewpoint. The viewer location, corresponding to the one in
Figure 6.4b, is such that only 10% of the terrain mesh is visible. To generate the approximation
M; and T}, we increase exponentially the rate of the mesh and the texture from 0.01% to 10% of
the available vertices and wavelet coefficients. In total, 32 textures and 60 meshes are generated
giving a total of 1920 pairs.

0 Ratedistortion curve

N
@
T

n
&
T

o
=

Screen space error: PSNR in dB

60 80 1(‘)() 120
Joint bitrate in KBytes

Figure 6.6: Exhaustive search in the space of solutions: The thick curve shows
the optimal rate-distortion pairs upper bounding the convex hull of all
configurations found by exhaustive search. Each thin curve represents a constant
texture rate, where the rate vaiue is indicated for some of them.

Figure 6.6 shows the results of the experiment: For each pair (A ;= . 50.7j=1.31), the PSNR
with respect to the full resolution pair (Mg, Tp) is evaluated in the screen space. Each thin curve
in the figure corresponds to a fixed texture rate. The rate of the mesh increases on the x-axis,
while the y-axis shows the resulting PSNR. Note that only some of the texture rates are indicated
in the figure. The optimal path (thick curve in the figure) upperbounds the convex hull of all

148 Chapter 6.

curves. Following this path gives the highest PSNR for a given bitrate.

6.3.2 Efficient greedy strategy

In this section, we explain the algorithm that performs a marginal analysis to search the solutions
to (6.3). The algorithm searches greedily for the best tradeoff while reducing the resolution of
both mesh and texture. In other words, at each step the resource -the bit budget in our case-
is dwindled. In this resources reduction mode, a full resolution with full resolution texture is
successively coarsened. At each step, given a target budget reduction of B bits, the best of less-
ening the mesh or the texture description by B bits is chosen (or possibly, reducing both by B/2).

In practice, the next coarser version of the corresponding entity fixes the bit reduction B.
The downgrading is evaluated by comparing the PSNR of the degraded model (i.e. textured
mesh) with respect to the original in screen space. Albeit we apply a greedy approach, we will
show in Section 6.4 that it performs quite close to an optimal selection in our experiments. The
computational complexity of the greedy algorithm is very attractive since its magnitude is linear
with the optimal path in the space of configurations.

Although marginal analysis is a greedy strategy, optimality can be obtained when the
two entities are independent. In this particular setting, the problem turns out to be standard
Lagrangian optimization [51]. As explained previously, an alternate way to operate the algorithm
is to increase the resolution of both texture and mesh. However, increasing resources is doubly
greedy and would not even perform optimally in the case of independence [31], thus the
reduction approach is preferable. We give now the algorithm:

ALGORITHM

> Inmput: PAIRS (M;, T;) WITHi = {0,...,N} AND j = {0,..., M}
< QOutput: A SET OF PROGRESSIVE PAIRS (M}, Ty,), WITH] € i AND m €
1 i = 0,] = 0
: whilei < Nori < Mdo
3 Dmin = argmin[D(MH_l,Tj),D(]\L-,TjH)]
4 ifDmin is D(Mi—{-l, TJ)
s STORE THE PAIR (M;41,T5)
si=1+1

; else

6.4. Experimental results ‘ 149

s STORE THE PAIR (M;, Tj11)
s j=754+1

10 end

1t end

6.4 Experimental results

In this section we give the experimental results obtained for our DETD and aerial photograph.
We compare the greedy path to the optimal path found by exhaustive search (Section 6.3.1).
Figures 6.7 and 6.8 both show the optimal RD path found by exhaustive search (thick line) and
the path found by marginal analysis (thin line). In both figures, the number of triangles increases
along the x axis, whereas the amount of texture coefficients increases along the y axis. The
figures clearly illustrate that our greedy method gives a good approximation of the optimal path.

Constant PSNR curves Additionally, Figure 6.7 illustrates (for all combinations of the 60
meshes and 32 textures) the iso-lines of constant PSNR. The PSNR value is given by the line
intensity, which refers to the intensity bar on the right hand-side of the figure. Low PSNR curves
are on the left hand side, whereas high PSNR curves are on the right hand side. This figure
reveals an interesting behavior of the error criterion (recall that we are using as distance the
l> norm in the screen): Consider the white points in the figure locating a series of model of
constant PSNR. They show that, when using a coarse resolution mesh (in this example 0.2% of
the vertices are used), increasing the resolution of the texture surprisingly does not reduce the
distortion, although one might infer the appearance to be more appealing (compare for example
Figure 6.9a and 6.9f). This illustrates the well-known problem that a perceptual measure would
be a better adapted error criterion than the /5 norm.

Constant joint rate curves In Figure 6.8, we represent the iso-lines corresponding to con-
figurations of constant joint rate. Again, the magnitudes can be read using the intensity bar on the
right hand-side. Low rate curves are on the bottom left corner, whereas high rate curves are on
the top right corner of the figure. The white points locate a series of models of constant joint rate,
represented in Figures 6.10a-f. Practically, this set of figures shows 6 different bit repartitions
leading to the same rate. This example points out that computing the optimal joint rate for the
model is definitively important since we can see in the figures that the perceptual quality greatly
varies according to the resource attribution.

150 Chapter 6.

PSNR indB

7

8.1%

5.6%

iernts ——x

£ 1.7%

<
o
B

0.2%

Number of wavelet coeffici

0.01% 0.04% 0.14% 0.59% 2.38% 9.64%
Number of triangles —

Figure 6.7: Iso-lines of constant PSNR for all mesh and texture combinations,
whose magnitude can be found using the intensity bar on the right hand-side. Low
PSNR curves are on the left hand side, whereas high PSNR curves are on the
right hand side. The thick lines show the optimal RD path found by exhaustive
search and the thin lines form the path found by marginal analysis. The white
points locate the models shown in Figures 6.9a-f.

Greedy approach complexity The path found by the marginal analysis has a length of 84
frames. To find it, twice as much frames had to be rendered and their screen space error evaluated
(recall that the computational complexity is linear with the path length). Both Figure 6.7 and 6.8
show that the path is close to the optimal path found by exhaustive search. Exhaustive search
requires to evaluate about 1920 mesh-texture combinations, whereas marginal analysis needs
only 168 evaluations. We can conclude that it provides an efficient tool to select pairs (M ;, T;)
that are close to optimal. In Appendix 6.A, we show a series of models on the near optimal path

by found marginal analysis.

6.5 Summary

In this chapter, we presented a method allowing us to determinate the balance between mesh
and texture data in order to maximize the rendered quality when resources are constrained. In

particular:

» We clearly showed that there is a important interaction between mesh and texture in ren-

6.5. Summary 151

Joim! bitrate in KBytes

8.1%

56%

icients ——>

1.7%
04%

0.2%

Number of wavelet coelf

0.1%

0.01% 0.04% 0.14% 059% 238% 9.64%
Number of triangles -->

Figure 6.8: Iso-lines of constant joint rate of all mesh and texture combinations,
whose magnitude can be found using the intensity bar on the right hand-side. Low
rate curves are on the bottom left corner, whereas high rate curves are on the top
right corner of the figure. The thick lines show the optimal RD path found by
exhaustive search and the thin lines form the path found by marginal analysis. The
white points locate the models shown in Figure 6.10a-f. For these models, the
constant joint rate is approximatively 10Kb.

dered images (Figures 6.10a-f).

» We used a computationally efficient greedy heuristic to choose the mesh and the texture
resolutions satisfying the constraints.

» We showed that we can determine near-optimal mesh and texture pairs with our method.

We also gave an example of a well-known fact in visual sciences: the need for a perceptual
measure (Figure 6.9a-f). In Chapter 7, we will explained how our algorithm immediately inserts
in the system control module of our transmission framework (Figure 1.4).

152

Chapter 6.

el

Figure 6.9: Models along a constant PSNR curve: The models in (a) to (f)
correspond to the points (bottom to top) in Figure 6.7.

6.5. Summary 153

Figure 6.10: Models along a constant joint rate curve (approximatively 10 Kb).

154 Chapter 6.

6.A. Models on the near optimal path 155

Appendix 6.A Models on the near optimal path

Low joint rate models on the near optimal path The points in the graph, showing the
near optimal path, correspond to the model indices. The pie graphs show the repartition between
texture (left hand side) and mesh (right hand side). The PSNR’s and joint rates are displayed in
the figures. Note that in Plates | to 4, the texture rate is close to 0 and no pie graph is displayed.

156 Chapter 6.

High joint rate models on the near optimal path The points in the graph showing the
near optimal path correspond to the model indices. The pie graphs show the repartition between
texture (left hand side) and mesh (right hand side). The PSNR's and joint rates are displayed in
the figures.

e g

Chapter 7

Conclusion

7.1 Introduction

We close this thesis in two steps: First, we explain how the results obtained in this thesis are
placed within the transmission framework presented in Chapter 1. We describe their placement
in the transmitter only (Figures 7.1a-b and 7.2a-b), since their existence in the receiver is mainly
symmetric. Then, we present several improvements for our framework and delineate future
research directions.

7.2 Transmitter characterization and module interplays

7.2.1 Review of approximation algorithms

The technical review of approximation algorithms in Chapter 2 allowed us to understand the
advantages and drawbacks of the main approaches to our approximation problem. We chose to
generalize to the multi-dimensional case the only algorithm gathering all the requirements of
our transmission framework, namely the optimal tree-constrained approach (Section 2.6). We
recall below the reasons for our choice.

This algorithm has the following interesting properties: First, it is computationally efficient,
which allows for the processing of large datasets. Second, when dealing with surfaces, the con-
straints imposed over the dataset allows for connecting the vertices using a recursive procedure.
A direct consequence is that few bits are necessary to describe the mesh connectivity, yielding
compact storage. Another important outcome is that the successive approximating triangulations
are embedded, which results in a progressive decomposition of the mesh (Figure 2.18). Third, we
showed that a global error estimate can be advantageously used for the vertices if the hierarchy

157

158 Chapter 7.

imposed over the dataset is preserved through the simplification process. As a result, we ob-
tain high quality approximations. Finally, the monotonicity of the approximations is conserved
through the decomposition (Section 2.2.3). This feature ensures that, when reconstructing the

model, each refinement reduces the distortion.

7.2.2 Efficient, scalable geometry encoding

The analysis of basic optimization operations for 4-8 meshes in Chapter 3 proved very useful
to evaluate the computational requirements to process this class of meshes. These results led to
efficient algorithms for the geometry encoder (Figure 7.1a).

Geometry
encoder

Database

(a)

Figure 7.1: Placement of the results in our transmission framework: (a) The
investigation of Chapter 3 provided a comprehensive study of the mechanisms
implementing the geometry encoder module. (b) The resuits of Chapter 4 allowed
us to implement efficient data accesses between processing modules and the
database.

In Chapter 4, we studied a quadtree data structure providing compact storage and efficient
access to large datasets. Therefore, this investigation mainly contributed to implement efficient
operations between the processing modules and the database (Figure 7.1b).

7.2.3 Model approximation under constraints

Our preliminary investigations in Chapters 3 and 4 permitted us to construct an efficient algori-
thm in Chapter 5 to compute approximations in an operational rate-distortion (RD) framework.
In particular, using the results of Chapter 3, we were able to use a global error estimate
to simplify 4-8 meshes. With the results of Chapter 4, we obtained computational optimal

7.2. Transmitter characterization and module interplays 159

implementations our algorithm leading to a computationally efficient mesh approximation
framework.

An important aspect of our method is its ability to perform optimizations under constraints.
This feature allowed us to address the joint optimizations problems of our transmission frame-
work described in Section 1.2.6 (Figure 7.2a). We illustrated the case of joint source-rendering
approximations, i.e. satisfying the constraints of the rendering hardware. We explain how to
address the general problem of joint source-channel-rendering in Section 7.3 and leave it as a
future research direction.

Geometry | | E Geometry]
encoder = % encoder
<8
2ic
g.8 bo.w
EE 8-
% g Texture . fs:g
= §- encoder] Multiplex [7] _.g;-E 2
o : & =
L__| System Control

© %

Figure 7.2: Placement of the results in our transmission framework: (a) Our
algorithm allows us to perform optimization under constraints. More precisely,
meshes can be approximated to satisfy the constraints of the rendering hardware,
or to satisfy the bandwidth or storage constraints. (b) Our method to determine the
near optimal balancing between mesh and texture information in the multiplexed
bitstream allow the system control module to tune the output rates of the
encoders.

Finally, in Chapter 6 we investigated how to balance the mesh and texture information in our
constrained environment. We showed the interplay between mesh and texture in Figures 6.10a-f:
For the same resource constraint (the bitrate in this case), the models showed great disparities
in quality. We proposed an efficient heuristic based on marginal analysis to obtain near-optimal
balance of the information in the heterogenous bitstream transmitted over the network (Figure
1.6). This algorithm goes into the system control module and tunes the bitrate of the streams
entering the multiplexing unit (Figure 7.2b). In the next section, we explore several possible
improvements to our solution.

160 Chapter 7.

7.3 Future work and research directions

In the next sections, we suggest several future research directions:

7.3.1 Mesh compression in an operational rate-distortion sense

To obtain an estimate for the cost of encoding the mesh, we used recent results obtained in mesh
compression [34]. These methods have been developed for meshes with irregular structure.
Therefore no assumption is made on the connectivity of the mesh. In our case, our mesh
connectivity is obtained using 4-8 connection. Therefore, its regularity allows for more efficient
encoding schemes. To the author’s knowledge, no work has been yet pursued for 4-8 meshes.

A compression scheme that takes advantage of our variable-rate optimization method, as well
as our hierarchical data structure, would provide a means to encode meshes in an operational RD
sense. Such an investigation is tightly related to the encoding of location codes for the semi-
linear quadtree (Section 4.3.1). The goal of this investigation is the design of a monotonic cost
functional evaluating the optimal cost to encode a subtree. Once designed, the new metric could
be used without changes in the decimation algorithm presented in this thesis.

7.3.2 Joint approximation-compression

In the framework presented in Chapter 5, we approximate meshes in the following way: At each
step we choose to decimate a vertex v and its attached merging domain M ,, where v is selected
as the optimal candidate according to a metric. We could extend the possibilities as follows:
Assume that we have a set of quantizers [31] for the vertices, then we could either decimate the
vertex or quantize it. The metric should be designed to take the new choices into account. The
result is a framework where, at each step, multiple choices for optimization are available. An
appropriate cost functional in this case would be similar to the one designed for the problem
in Section 7.3.1. Consequently, the range of available bitrates becomes larger. This problem
actually solves an instance of a general problem of joint source-channel-rendering encoding con-
strained to meshes.

7.3.3 Joint encoding of mesh and texture

In Chapter 6, we presented an efficient method to select near-optimal mesh and texture pairs
maximizing the rendered quality for a bit budget. To achieve this, we had to generate separately a
set of view-dependent approximated meshes and a set of view-dependent approximated textures.
This problem could be addressed differently using our simplification framework presented in
Chapter 5. It can be seen as an extension to vertex attributes of the problem described in Section
7.3.2. Again, at each optimization step multiple choices are available. In this case, either M,
can be decimated and the mesh coarsened, or the texture resolution can degraded by selecting

7.4. Status and availability 161

fewer transform coefficients. Using this method, the mesh and texture approximation is truly
performed jointly and avoids the use of separate methods as done in Chapter 6.

7.4 Status and availability

Source code for the semi-linear quadtree has been publicly available ! since November 30th 1999
at the address http://lcavuww. epfl.ch/~balmelli/software/quadtree/index.html. We set
up a web site containing documentation, man pages and Java applets. Visitors are free to register
to receive further notices. Source code for the mesh approximation algorithm has not been yet
released, since it lacks some documentation.

7.5 Summary

From our results, we can see that most of our attention was spent on the geometry optimization
aspect of our transmission system. Since well-established methods exist to generate embedded
and compact descriptions of textures, we focused our attention on the remaining components of
our system. We payed attention to generate models coping with our constrained environment.
In particular, we proposed methods to efficiently generate progressive representation under con-
straints. We performed several experiments with large datasets. We provided a simplified de-
scription of a transmission system for computer graphics models and tried to identify important
problems in this context.

"However, the code usage is restricted to academic research only and is protected in the United States by a pending
patent [5].

162

Bibliography

[1] PK. Agarwal and P.K. Desikan. An efficient algorithm for terrain simplification. Proceed-
ings ACM-SIAM Sympo. Discrete Algorithms, pages 139-147,1997.

[2] PK. Agarwal and S. Suri. Surface approximation and geometric partition. Proceedings of
Sth ACM-SIAM Sympo. Discrete Algorithms, pages 24-33, 1994.

[3] Dana H. Ballard. Strip trees: a hierarchical representation for curves. Communication of
the ACM, 24(5):310-321, 1981.

[4] L. Balmelli, S. Ayer, and M. Vetterli. Efficient algorithms for embedded rendering of terrain
models. Proceedings of IEEE Int. Conf. Image Processing (ICIP), 2:914-918, October
1998.

[5] L. Balmelli, J. Kovadevié, and M. Vetterli. Efficient processing of quadtree data. US patent
filed, Lucent Technologies, Bell Labs, Murray Hill (NJ), USA, November 1999.

[6] S.Benninga. Numerical techniques in finance. MIT Press, ISBN 0262521415, 1989.
{71 S. Benninga and B. Czaczkes. Financial modeling. MIT Press, ISBN 0262024373, 1997.

[8] L. Boxer, C. Chang, R. Miller, and A. Rau-Chaplin. Polygonal approximation by boundary
reduction. Pattern Recognition Letters, 14:111-119, 1993.

[9] L. Breiman, J.H. Freidman, R.A. Olshen, and C.J. Stone. Classification and Regression
Trees. The Wadsworth Statistics/Probability Series, Belmont,CA; Wadsworth, 1984.

[10] D.M. Brophy. An automated methodology for linear generalization in thematic cartography.
Proceedings ACSM 33rd Annual meeting, pages 300-314, 1973.

[11] E. Catmull. A subdivision algorithm for computer display of curved surfaces. PhD thesis,
Report UTEC-CSs-74-133, Computer Science Department, University of Utah, December
1974.

{12] E. Catmull. Computer display of curved surface. Proc. of the Conference on Computer
Graphics, Pattern Recognition and Data Structures, Los Angeles, pages 11-17, May 1975.

163

164 BIBLIOGRAPHY

[13] P. Chou, T. Lookabaugh, and R. Gray. Optimal pruning with application to tree-structured
source coding and modeling. IEEE Transactions on Information Theory, 35(2):299-315,
March 1989.

[14] J.H. Clark. A fast algorithm for rendering parametric surfaces. Proceedings of SSIGGRAPH,
pages 289-99, 1979.

[15] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry,
algorithms and applications. Springer-Verlag, 2000.

[16] Office Federal de Topographie. Pixelkarte 1:25000 cd rom 1,2,3. CH-2084 Wabern, Mai
1997.

[17] M. Deering. Geometry compression. Proceedings of SSGGRAPH, July 1995.

[18] D. Douglas and T. Peucker. Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature. The Canadian Cartographer, 10(2):112-122,
1973.

[19] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-
Weinstein. Roaming terrain: Real-time optimally adapting meshes. Proceedings of IEEE
Visualization, 1997.

[20] R. O. Duda and P. E. Hart. Pattern classification and scene analysis. Wiley, New York, 1973.

[21] D.Ebert, W. Carlson, and R. Parent. Solid space and inverse particle systems for controlling
the animation of gases and fluids. The visual computer, 10(4):179-190, 1994,

[22] D. Ebert and R. Parent. Rendering and animation of gaseous phenomena by combining fast
volume and scanline a-buffer techniques. proceeding of SIGGRAPH, 24:357-366, August
1990.

[23] D. Ebert (Editor), EK. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texture and mod-
eling, a procedural approach. AP Professional, Academic Press, 1994.

[24] G. Fekete. Rendering and managing spherical data with sphere quadtrees. Proceedings of
IEEE Visualization, pages 176-186, October 1990.

[25] A. Finkelstein and D. H. Salesin. Multiresolution curves. Computer graphics proceedings,
Annual conference series, 1994.

[26] Foley, van Dam, Feiner, and Hughes. Computer Graphics: Principles and Practice. Addi-
son Wesley, The Systems Programming Series, 1992.

[27] G. Gardner. Visual simulation of clouds. proceeding of SSIGGRAPH, 19:11-20, July 1985.
[28] G. Gardner. Forest fire simulation. proceeding of SIGGRAPH, 24:430-436, August 1990.

BIBLIOGRAPHY 165

{29] 1. Gargantini. An effective way to represent quadtree. Communications of the ACM,
25(12):905-910, December 1982.

[30] M. Garland and P.S. Heckbert. Surface simplification using quadric error metric. Proceed-
ings of ACM Siggraph, 1997.

[31] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Aca-
demic Publishers, 1992.

[32] M.F. Goodchild and S. Yang. A hierarchical spatial data structure for global geographi-
cal information system. CVGIP: Graphical Models and Image Processing, 54(1):31-44,
January 1992.

[33] Network Working Group. Rtp: A transport protocol for real-time applications. Request for
Comments (RFC 1889), available at http:/fwww.cis.ohio-state.eduw/htbin/rfc/rfc1889.html,
January 1986.

[34] S. Gumhold and W. Strasser. Real time compression of triangle mesh connectivity. pro-
ceeding of SIGGRAPH, pages 133-140, 1998.

[35] 1. Guskov, W. Swelden, and P. Schroder. Multiresolution signal processing for meshes.
Proceedings of SIGGRAPH, pages 325-334, 1999.

[36] 1. Guskov, K. Vidimce, W. Sweldens, and P. Schroder. Normal meshes. o appear in
proceedings of SIGGRAPH, 2000.

[37] E Halsall. Data Communications, Computer Networks and Open Systems. Addison Wesley,
1996.

[38] P. Heckbert. A minimal ray tracer. In P. Heckbert, editor, Graphics Gems IV, pages 375—
381. Academic Press, Boston, 1994.

[391 P.S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications,
6(11):56-67, November 1986.

[40] P.S. Heckbert and M. Garland. Multiresolution modeling for fast rendering. Carnegie
Mellon University http://www.cs.cmu.edu/ ph, May 1997,

[41] P.S. Heckbert and M. Garland. Survey of polygonal surface simplification algorithms.
Carnegie Mellon University Technical Report, May 1997.

[42] B. Von Herzen and A.H. Barr. Accurate triangulation of deformed, intersecting surfaces.
Computer Graphics 21, also Proceeding of ACM SIGGRAPH 87, 21(4):103-110, July
1987.

[43] H. Hoppe. Progressive meshes. Proceedings of SIGGRAPH, pages 99-108, 1996.

166 BIBLIOGRAPHY

[44] H. Hoppe. Smooth view-dependent level-of-detail control and its application to terrain
rendering. Proceedings of IEEE Visualization, pages 35—42, October 1998.

[45] S. Horbelt, F. Jordan, and T. Ebrahimi. Streaming of photo-realistic texture mapped on
3d surfaces. Int. Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional
Imaging, Sept 1997.

[46] A. Horsley and A. Wrobel. Marginal analysis and bewley equilibria: The use of sub-
gradients. London School of Economics, 10 PORTUGAL STREET WC2A 2HA, United
Kingdom. Theoretical Economics in its series London School of Economics - Suntory Toy-
ota,Theoretical Economics, 1991.

[47] H. Imai and M. Iri. Polygonal approximations of a curve - formulation and algorithms.
Computational Morphology - G.T Toussaint (editor), Elsevier Science Publishers, 1988.

[48] A. Khodakovsky, P. Schroder, and W. Sweldens. Progressive geometry compression. fo
appear in proceedings of SIGGRAPH, 2000.

[49] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution hierarchies on unstructured triangle
meshes. Computational Geometry, 14(1-3):5-24, 1999.

[50] D. Koller, P. Lindstrom, W. Ribarsky, L. Hodges, N. Faust, and G. Turner. Virtual gis:
A real time 3d geographic information system. Proceedings of IEEFE Visualization, pages
94-100, 1995.

[51] K.Ramchandran and M.Vetterli. Best wavelet packet bases in a rate-distortion sense. JEEE
Transactions on Image Processing, 2(2):160—175, April 1993.

[52] U. Labsik, L. Kobbelt, R. Schneider, and H.-P. Seidel. Progressive transmission of subdi-
vision surfaces. Computational Geometry, 15(1-3):25-39, 2000.

[53] R. Laurini. Graphical databases built on peano space-filling curves. Proc. Eurographics,
pages 327-338, 1985.

[54] F. Laves. Die Bau-zusammenhénge innerhalb der Kristallstrukturen. Zeitschrift fiir Kristal-
lographie, 73:202-265, 1930.

[55] L.Balmelli, J.Kovadevi¢, and M. Vetterli. Quadtree for embedded surface visualization:
Constraints and efficient data structures. Proceedings of IEEFE Int. Conf. Image Processing
(ICIP), 2:487-491, October 1999.

{56] M. Lee and H. Samet. Navigating through triangle meshes implemented as linear quadtrees.
Technical Report, Computer Science Dept., Center for Automation Research, University of
Maryland, CS-TR-3900, April 1998.

BIBLIOGRAPHY 167

[57] J.G. Leu and L. Chen. Polygonal approximation of 2d shapes through boundary merging.
Pattern Recognition Letters, 7:231-238, 1988.

[58] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A. Turner. Real-time
continuous level of detail rendering of height fields. Proceedings of SIGGRAPH, pages
109-118, 1996.

[59] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, University of
Utah, Department of Mathematics, 1987.

[60] S.Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.

[61] S. McCanne and M. Vetterli. Low-complexity video coding for receiver-driven layered
multicast. IEEE Journal on Selected Areas in Communications, 15(6):983-1002, August
1997.

[62] S.B. Nadler. Hyperspaces of sets. Marcel Dekker, New York, 1978.

{63] N.Chiba, S.Sanakanishi, K. Yokoyama, I.Ootawara, K.Muraoka, and N.Saito. Visual simu-
lation of water currents using a particle-based behavioral model. The Journal of Visualiza-
tion and Computer Animation, 6(3), July-September 1995.

[64] J. Neider, T. David, and Mason Woo. OpenGL Programming Guide. Addison Wesley,
1993.

[65] A. Van Nevel. Texture synthesis via matching first and second order statistic of wavelet
frame decomposition. Proceedings of IEEE Int. Conf. Image Processing (ICIP), 1:72-76,
1998.

[66] ITU-T Telecommunication Standardization Sector of ITU. Low bitrate system for video
telephony over high-speed modem lines(h.324). Draft ITU-T Recommendation H.324,
1995.

{67] ITU-T Telecommunication Standardization Sector of ITU. Multimedia system control
(h.245). Draft ITU-T Recommendation H.245, 1995.

[68] ITU-T Telecommunication Standardization Sector of ITU. Multiplexing protocol for low
bitrate multimedia communication (h.223). Draft ITU-T Recommendation H.223, 1995.

[69] M.A. Olivier and N.E. Wiseman. Operation on quadtree leaves and related image areas.
Computation Journal, 26(4):375-380, 1983.

[70] E.J. Otoo and H. Zhu. Indexing on spherical surfaces using semi-quadcodes. Advances in
Spatial Databases - 3rd Int. Sym., pages 510-529, 1993,

[71] R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation.
Proceedings of IEEE Visualization, pages 299-305, 1998.

168 BIBLIOGRAPHY

[72] T. Pavlidis. Structural pattern recognition. Springer-Verlag, Berlin, 1977.

[731 R.E.Rosenblum, W.E.Carlson, and E.Tripp III. Simulating the structure and dynamics of
human hair: modeling, rendering and animation. The Journal of Visualization and Com-
puter Animation, 2(4), October-December 1991,

[74] H. Rushmeier, B. Rogowitz, and C. Piatko. Perceptual issues in substituting texture for
geometry. SPIE Proceedings, Human Vision and Electronic Imaging V, B. Rogowitz and T.
Pappas, Editors, 3959:372-383, 2000.

[75] H. Samet. Neighbor finding techniques for images represented by quadtrees. Computer
Graphics and Image Processing, 18(1):37-57, January 1982.

[76] H. Samet. Application of Spatial Data Structures: Computer Graphics, Image Processing
and GIS. Addison-Wesley Publishing Company, 1990.

[77] D. Saupe. Optimal piecewise linear image coding. SPIE Visual Communication and Image
Processing (VCIP’98), 1998.

[78] C. Schlegel. Trellis coding. 1EEE press, 445 Hoes Lane, P.O box 1331, Piscataway, NJ
08855-1331, 1997.

[79] C. Schlick. Fast alternatives to Perlin’s bias and gain functions. In P. Heckbert, editor,
Graphics Gems IV, pages 401-403. Academic Press, Boston, 1994.

[80] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees in constant
time. CVGIP: Image Understanding, 55(3):221-230, May 1992.

[81] G. Schrack and 1. Gargantini. Mirroring and rotating images in linear quadtree form with
few machine instructions. IVC, 11:112-118, 1993.

[82] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. Journal of the
Association for Computing Machinery, 10(2):217-255, 1963.

[83] International Organization For Standardization. Overview of the mpeg-4 stan-
dard. ISO/IEC, available at hitp://drogo.cselt.it/mpeg/standards/mpeg-4/mpeg-4.him,
JTC1/SC29/WG11(N3156), December 1999.

[84] M. Tamminen and EW, Jansen. An integrity filter for recursive subdivision meshes. Com-
puter Graphics 9, 4(1):351-363, 1985.

[85] G. Taubin and Jarek Rossignac. Geometric compression through topological surgery. Re-
search Report RC-20340, IBM T.J.Watson Research Center, NY 10598, January 1996.

[86] L. Velho and D. Zorin. 4-8 subdivision. Mathematical Methods in CAGD. Vanderbilt
University Press, 2000.

BIBLIOGRAPHY 169

[87] L. Velho and D. Zorin. 4-8 subdivision. to appear in CAGD, 2001.

[88] M. Vetterli and J. Kovadevi¢. Wavelets and subband coding. Prentice Hall PTR, Englewood
Cliffs, New Jersey 07632, 1995.

[89] E. R. White. Assessment of line-generalization algorithms using characteristic points. The
American Cartographer, 12(1):17-27, 1985.

[90] M.V. Wickerhauser. Adapted wavelet analysis from theory to software. IEEE press, AK
Peters, Wellesley, Massachusetts, 1993.

[91] W.T.Reeves. Particle systems, a technique for modelling a class of fuzzy objects. IEEE
Computer Graphics, 17(3):359-376, 1983.

[92] Z. Xiong, K. Ramchandran, and M. T. Orchard. Space-frequency quantization for wavelet
image coding. IEEE Transactions on Image Processing, 6:677-693, May 1997.

[93] D. Zorin. A method for analysis of C !-continuity of subdivision surfaces. SIAM Journal
of Numerical Analysis, 37(4):1677-1708, 2000.

[94] D. Zorin, P. Schroder, and W. Sweldens. Interactive mesh editing. Technical Report, Com-
puter Graphics Group, California Institute of technology, CS-TR-97-06, 1997.

170

Acknowledgments

I would like to thank many people for their support and their help for making my life happier
during my graduate studies:

My parents achieved so many things in their life that many would feel small. I think their
point of view, the total freedom they left me and their constant example that, everything comes
into focus when sufficient faith and work is involved, gave me the motivation to achieve this
work. 1 am sure that my sister, Carole, will agree on all the above points. She will file her Ph.D
in Biology next year.

I would like to thank Antonio Russo and Zoran Pecenovic for their everlasting friendship. I
knew that I could always count on Zoran to share my research doubts. I also would like to thank
him for his multiple readings and corrections of this thesis, as well as for other publications.
Of course, Antonio was there to take care of different, but very important, types of issues. Both
Antonio and Zoran have always been around and [feel somehow that I will never get rid of them.

A great friend during my studies was Ander Madinagoitia. We shared a lot of culture during
his stay in Switzerland. With him, I learned what it was to be from Pais Vasco. Thanks also to
Leire, Asier and Eulalia (ok, you're from Barcelona) for their friendship.

When I came back from the US, I was lucky to share my office with David Hasler. Even
more enjoyable, we found out that we had a common passion for sport. As a result, we ended up
to pass most of our noon breaks together at the sport center in Dorigny. I really appreciated our
constant discussions and the shared interests we had for each other research problems.

Advising is a difficult task and I believe that my professor Martin Vetterli has done a great job.
I appreciated the very friendly relationship we had during my stay. His wisdom was enlightening
and he showed me the way to the ability of doing 108 things in parallel without cracking. The
way he optimizes his time and resources would fill a thesis by itself.

Advising mister total stranger is even more challenging; But both Jelena Kovacevi¢ and
Alexandra Mojsilovi¢ have done a great job while 1 was at Bell Labs. They both dedicated
themselves to helping me and to making my oversea stay a success. I would like to thank them
for their inifinite patience, their support and friendship.

172

Last but not least: even if we only had sporadic contacts during my thesis, he always listened
very carefully and asked the right question. I have known Professor Thomas Liebling since my
undergrade studies, but never thought I would sit once in his office to talk about research. I would
like to thank him for his interest.

Finally, I would like to thank my labmates and the great secretaries from LCAV and DSC for

being so helpful.

Curriculum vitae

Laurent Balmelli
DI-LCAV-EPFL, Ecole Polytechnique Fédérale, 1015 Lausanne, Switzerland
Phone (+4121) 475 0224 (home); (+4121) 693 5671 (work)

E-mail: balmelli@lcavsunl.epfl.ch ; balmelli@acm.org

EDUCATION

1997 -now Ecole Polytechnique Fédérale, Lausanne, Switzerland. Ph.D in Communica-
tion Systems. Graduate courses in Advanced Signal Processing and Wavelets and Com-
puter Networking and Traffic Control.

1992 -1996 Ecole Polytechnique Fédérale, Lausanne, Switzerland. M.S., Computer Sci-
ence. 9.25/10.0 GPA overall (courses in Optimization, Distributed Systems, Computer
Graphics, Networking, Neural Networks, Graph Theory), 10.0/10.0 on Master Thesis
(topic: Visualization/Computation of Large Scale Molecular Dynamics Simulations).

REFERENCES

e Professor Martin Vetterli (http://lcavwww.epfl.ch/~vetterli/), Laboratory for Audio-Visual
Communications, Ecole Polytechnique Federal, Lausanne, Switzerland. Contact - vet-
terli@lcavsunl.epfl.ch - tel. +4121 693 56 98 / +4179 277 37 19 - Thesis advisor

e Professor Thomas Liebling (http://rosowww.epfl.ch/lg/), Operational Research chair,
Mathematical Dept., Ecole Polytechnique Federal, Lausanne, Switzerland. Contact -
Thomas.Liebling@epfl.ch - tel +41 21 693 25 03 - Member of thesis jury

e Dr. Jelena Kovacevic (http://cm.bell-labs.com/cm/ms/who/jelena/index.html), Mathemat-
ical Science Center, Bell Labs, Lucent Technologies, Murray Hill, NJ, USA. Contact -
jelena@research.bell-labs.com - tel: +1 908 582 6504 - Member of thesis jury, and advi-
sor while at Bell Labs

174

o Professor Murat Kunt (http://Itswww.epfl.ch/staff/kunt.html), Signal Processing Labora-
tory, Ecole Polytechnique Federal, Lausanne, Switzerland. Contact - Murat. Kunt@epfl.ch
- tel: +41 21 693 26 01 - Undergrade project advisor

LANGUAGES
English : Fluent.

French : Fluent.
Italian : Fluent,
Spanish : Fluent.

Also studied German (7 years), Portuguese (1 year). Currently learning Japanese.

EXPERIENCE

Mar 1997-now Ecole Polytechnique Fédérale, Lausanne, Switzerland
PhD student

Laboratory for Audio-Visual Communications. Thesis: Computer Graphics Models
for Communications.

Research on progressive meshes for transmission, source-rendering coding algo-
rithms for joint transmission of meshes and textures, spatial data structure for storage and
access of large terrain databases.

Teaching assistant in signal processing - implementation of a distance learning frame-
work in Java.

Advisor: Martin Vetterli - vetterli@Icavsunl.epfl.ch - tel. +4121 693 56 98 / +4179
2773719

2 U.S. patents filed, 1 journal paper (submitted), 7 conference papers.

Sept 1998-Jul 1999 Bell Labs, Lucent Technologies, Murray Hill, NJ, USA
Intern

Multimedia Research Laboratory and Mathematical Sciences Center (Mathematics of
Communication), research in transmission of computer graphics 3D meshes and textures.
In particular: developement of an efficient data structure for spatial data, and a texture
discrimination method.

Reference: Jelena Kovacevic - jelena@research.bell-labs.com - tel: +1 908 582 6504

175

Apr 1996-Mar 1997 Ecole Polytechnique Fédérale, Lausanne, Switzerland
Software Engineer

Laboratory for Audio-Visual Communications. C++ Development of H.324 Low bi-
trate video codec (European Project VIDAS). The implementation of H.263, G.721 was
based on existing implementation. The implementation of H.223 and H.245 was done
from scratch.

Oct 1995- Mar 1996 Silicon Graphics Inc. (SGI), Center of Supercomputing Chemistry,
Basel, Switzerland
Master Thesis Internship

Development of software for computation of molecular dynamics simulations and
visualization on a cluster of four Power Challenge with 18 processors each. Developed
an adaptive sampling method to track matter density variation through simulation. The
project was done in collaboration with the Computer Graphics Laboratory at the Ecole
Polytechnique. See publication (10).

Oct 1994 - July 1995 Ecole Polytechnique Fédérale, Lausanne, Switzerland

Undergraduate Research

Signal Processing Laboratory (LTS-EPFL). Prof. Murat Kunt. Implementation and
optimization for a MPEG4 coder on a Cray T3D massive parallel computer with 256 pro-
cessors. (graded 10.0/10.0, awarded semester’s best undergrade student of LTS).

Theoretical Computer Science Laboratory. Design and Implementation of a C++
architecture for distributed software (on computer cluster). Project achieved in a local
company (Linkvest Inc.) (graded 9.5/10.0).

Jul.-Sept. 1994 Cray Research, Inc. Eagan, Minnesota, USA

Summer student internship

Development of a networking monitoring tool for tape backup systems.

PATENTS AND PUBLICATIONS

1. L. Balmelli, J. Kovacevic and M. Vetterli, Efficient Processing of Quadtree Data, US patent
filed, November 1999.

2. L. Balmelli, A. Mojsilovic, Method and Apparatus for Texture Analysis and Replicability
Determination, US patent filed October 1999.

3. L. Balmelli, J. Kovacevic and M. Vetterli, Progressive Meshes in an Operational Rate-
Distortion Sense, to appear in IEEE Transactions on Visualization and Computer Graphics,
also EPFL/LCAV Tech. Report no DSC/2000/019

176

10.

. L. Balmelli, J. Kovacevic and M. Vetterli, Solving the Coplanarity Problem of Embedded

Regular Triangulations, Proceedings of Vision, Modeling and Visualization, November
1999, Erlangen, Germany

. L. Balmelli, J. Kovacevic and M. Vetterli, Quadtrees for Embedded Surface Visualization:

Constraints and Efficient Data Structures, Proceeding of the IEEE International Confer-
ence on Image Processing (ICIP), October 1999, Kobe, Japan.

. L. Balmelli and A. Mojsilovic, Wavelet Domain Features for Texture Description, Classi-

fication and Replicability Analysis, Proceeding of the IEEE International Conference on
Image Processing (ICIP), October 1999, Kobe, Japan

. L. Balmelli, S. Ayer and M. Vetterli, Efficient Algorithms for Embedded Terrain Simpli-

fication, Proceeding of the IEEE International Conference on Image Processing (ICIP),
October 1998, Chicago, USA

. L. Balmelli, S. Ayer, Y. Cheneval and M. Vetterli, A Framework for Interactive Courses and

Virtual Laboratories, Proceedings of Multimedia Signal Processing conference, December
1998, Portofino, USA.

. Y. Cheneval, L. Balmelli, P. Prandoni, M. Vetterli and J. Kovacevic, DSP Education using

Java, Proceeding of ICASSP 98, Seattle, USA.

L. Balmelli, Adaptive Sampling of Very Large Particle Systems using an incremental
SOFM, Proceedings of Eurographics, June 1996, Poitier, France.

THE LITTLE COUSIN SERIES IN MATHEMATICAL SIGNAL PROCESSING
Editor: Martin Vetterli

10.

11.

12.

The Berkeley years

13.

The Columbia series

1.

Karlsson, Gunnar David. Subband Coding for Packet Video. CU/CTR/TR 137-
89-16, May 1989.

. Linzer, Elliot Neil. Arithmetic Complexity and Numerical Properties of Algo-

rithms involving Toeplitz Matrices. October 1990.

. Kovacevié, Jelena. Filter Banks and Wavelets: Extensions and Applications.

CU/CTR/TR 257-91-38, September 1991.

. Uz, Kamil Metin. Multiresolution Systems for Video Coding. CU/CTR/TR 313-

92-23, May 1992

. Radha, Hayder M. Sadik. Efficient Image Representation using Binary Space

Partitioning Trees. CU/CTR/TR 343-93-23, December 1992.

. Nguyen, Truong-Thao. Deterministic Analysis of Oversampled A/D Conversion

and Sigma/Delta Modulation, and Decoding Improvements using Consistent
Estimates. CU/CTR/TR 327-93-06, February 1993.

Herley, Cormac. Wavelets and Filter Banks. CU/CTR/TR 339-93-19, April
1993.

Garrett, Mark William. Contributions toward Real-Time Services on Packet
Switched Networks. CU/CTR/TR 340-93-20, April 1993.

Ramchandran, Kannan. Joint Optimization Techniques in Image and Video
Coding with Applications to Multiresolution Digital Broadcast. June 1993,

Shah, Imran Ali. Theory, Design and Structures for Multidimensional Filter
Banks and Applications in Coding of Interlaced Video. CU/CTR/TR 367-94-
14, December 1993.

Hong, Jonathan Jen-1. Discrete Fourier, Hartley, and Cosine Transforms in Sig-
nal Processing. CU/CTR/TR 366-94-13, December 1993.

Ortega, Antonio. Optimization Techniques for Adaptive Quantization of Image
and Video under Delay Constraints. CU/CTR/TR 374-94-21, June 1994.

Park, Hyung-Ju. A Computational Theory of Laurent Polynomial Rings and
Multidimensional FIR Systems. Coadv. with Tsit-Yuen Lam, Mathematics,
U.C. Berkeley. UCB/ERL M95/39, May 1995.

14.

15.

16.

17.

18.

The Lausanne time

19.

20.
21.

22.

Cvetkovié, Zoran. 0vercomplete Expansions for Digital Signal Processing.
UCB/ERL M95/114, December 1995.

McCanne, Steven Ray. Scalable Compression and Transmission of Internet
Multicast Video. Coadv. with Van Jacobson, Lawrence Berkeley National Lab-
oratory. UCB/CSD 96/928, December 1996.

Goodwin, Michael Mark. Adaptive Signal Models: Theory, Algorithms, and Au-
dio Applications. Coadv. with Edward A. Lee, EECS, U.C. Berkeley. UCB/ERL
M97/91, December 1997,

Goyal, Vivek K. Beyond Traditional Transform Coding. UCB/ERL M99/2,
September 1998.

Chang, Sai-Hsueh Grace. Image Denoising and Interpolation based on Com-
pression and Edge Models. Coadv. with Bin Yu, Statistics, U.C. Berkeley.
UCB/ERL M99/57, Fall 1998.

Prandoni, Paolo. Optimal Segmentation Techniques for Piecewise Stationary
Signals. EPFL 1993(1999), June 1999.

Lebrun, Jérdme. Balancing MultiWavelets. EPFL 2192(2000), May 2000.

Weidmann, Claudio. Oligoquantization in Low-Rate Lossy Source Coding.
EPFL 2234(2000), July 2000.

Balmelli, Laurent. Rate-Distortion Optimal Mesh Simplification for Communi-
cation. EPFL 2260(2000), September 2000.

