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Abstract

The theory of high rate lossy source coding is well developed both with respect to the
practice of quantization and its fundamental rate distortion limits. But many modern
compression systems for natural signals such as audio and images operate at lower
rates, which are not covered by these theories. Often these systems are based on a
signal transform followed by a nonlinear processing step that reduces the number of
coefficients that are actually quantized. Both this nonlinearity and the non-Gaussianity
of the involved signals rule out using the theory of (high rate) linear transform coding
to analyze such compression algorithms. The lossy source coding theorem could be
used, but it is not the right tool “to see what happens”. Another way of getting a better
understanding of these systems is to look at them as a form of nonlinear approximation
of individual signals. While partly avoiding the need for statistical signal models that
are hard to come by, this approach still relies on high rate results for the coefficient
quantization.

In this thesis we take a more information theoretic approach, whose main result
is a new low-rate upper bound on the distortion rate function. In order to obtain that
result, the problem had to be simplified substantially. To begin with, only i.i.d. mem-
oryless sources with a mean square error distortion measure are considered. Instead
of bounding the distortion rate function D(R) directly, we derive upper bounds on
the optimum performance of a certain class of quantizers, which by definition up-
per bound also D(R). Inspired by the observation that many of those compression
systems quantize only very few coefficients at low rates, we called this the class of
oligoquantizers. In particular, if the coefficients have a peaked unimodal probabil-
ity density, a simple magnitude thresholding operation is very effective at deciding
which coefficients should be quantized. It turns out that peaked unimodal densities
are also the most interesting ones, not just because they appear in many transform
coding systems, but also because they have a D(R) behavior that is very different
from a Gaussian. Thus the emphasis of this work will be on oligoquantization based
on scalar thresholding. Actually we will show that the principle of oligoquantization
does not generalize well to higher dimensions.

On a more applied note, we analyze several models for sparse transform coef-
ficients with the aid of the low rate bound. For the special case of sparse coefficient
vectors and Hamming distortion measure, analytic expressions for R(D) are obtained.
A high rate bound that complements its low rate counterpart is also derived. Finally,
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we show how these bounds can be computed directly from a set of source samples,
without first estimating the underlying probability density. These empirical bounds
can be a useful complement to the rate distortion function computed with Blahut's
algorithm, since the latter is hard to use at very low or high rates.



Zusammenfassung

Die Theorie der verlustbehafteten Quellcodierung mit hoher Rate ist gut entwickelt,
sowohl in Bezug auf die praktischen Aspekte der Quantisierung, als auch betreffs der
durch die Ratenverzerrungstheorie gesetzten grundlegenden Schranken. Aber viele
moderne Kompressionssysteme fiir natiirliche Signale wie Audio und Bilder arbeiten
mit niedrigeren Raten, die nicht durch diese Theorien abgedeckt werden. Hiufig ba-
sieren diese Systeme auf einem Signaltransformation gefolgt von einem nichtlinearen
Verarbeitungsschritt, der die Anzahl Koeffizienten verringert, die effektiv quantisiert
werden. Sowohl diese Nichtlinearitdt als auch der nicht-Gaussische Charakter der
interessierenden Signale verunméglichen es, solche Kompressionsalgorithmen mit-
tels der Theorie der (hochratigen) Transformationskompression zu analysieren. Das
Raten-Verzerrungs-Theorem kénnte verwendet werden, aber es ist nicht das geeigne-
te Hilfsmittel um zu verstehen warum solche Methoden derart gut funktionieren. Ein
anderer Ansatz betrachtet diese Algorithmen als Methoden zur nichtlinearen Approxi-
mation von deterministischen Signalen. Obwohl dadurch auf schwer beizukommende
statistische Signalmodelle teilweise verzichtet werden kann, verwendet dieser Ansatz
immer noch die Resultate fiir hochratige Quantisierung.

In der vorliegenden Dissertation beschreiten wir einen mehr informationstheoreti-
schen Zugang, dessen Hauptergebnis eine neue obere Schranke der Ratenverzerrungs-
funktion fiir niedere Raten ist. Um dieses Resultat zu erreichen mussten wir das Pro-
blem stark vereinfachen. Einerseits beschriinken wir uns auf gedichtnisfreie Quellen
und quadratisches Verzerrungsmass. Andererseits arbeiten wir nicht direkt mit der
Ratenverzerrungsfunktion D(R), sondemn mit oberen Schranken auf der operationel-
len Ratenverzerrungsfunktion einer bestimmten Klasse von Quantisierungsverfahren.
Definitionsgemiss sind diese Schranken auch obere Schranken auf D(R). Inspiriert
durch die Beobachtung, dass viele dieser Kompressionsverfahren bei niedrigen Raten
nur wenige Koeffizienten effektiv quantisieren, tauften wir diese Klasse von Verfahren
“Oligoquantisierer”’. Insbesondere wenn die Koeffizienten eine zugespitzte unimo-
dale Wahrscheinlichkeitsdichte haben, geniigt eine einfache Schwellenoperation um
zu bestimmen, welche Koeffizienten quantisiert werden sollen. Es stellt sich heraus,
dass diese unimodalen Wahrscheinlichkeitsdichten am interessantesten sind, nicht nur
weil sie in vielen Kompressionsverfahren auftreten, sondern auch weil sie ein D(R)-
Verhalten haben, dass sich stark von dem Gaussischer Quellen unterscheidet. Daher
liegt der Schwerpunkt dieser Arbeit in Oligoquantisierern, die auf skalarer Schwel-

v



vi

lendiskriminierung beruhen. Tatsdchlich werden wir zeigen, dass sich das Prinzip der
Oligoquantisierung schlecht auf hohere Dimensionen verallgemeinern lésst.

Im Hinblick auf Anwendungen untersuchen wir verschiedene Modelle fiir Trans-
formationskoeffizienten mit Hilfe der neuen oberen Schranke. Fiir einen Spezialfall
mit Hamming-Verzerrung geben wir exakte parametrische Ausdriicke fiir £(D) an.
Die Schranke fiir niedere Raten ergdnzen wir mit einer fiir hohe Raten. Schlies-
slich zeigen wir, wie diese Schranken direkt aus einer Stichprobe der Quelle berech-
net berechnet werden kénnen, ohne vorher die Wahrscheinlichkeitsdichte der Quelle
schitzen zu miissen. Diese empirisch bestimmten Schranken sind eine willkommene
Erginzung zu den Ratenverzerrungsfunktionen, die mit dem Blahut-Algorithmus be-
rechnet werden konnen. Letzterer kann niéimlich bei sehr niedrigen oder hohen Raten
nur beschrinkt eingesetzt werden.
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Chapter 1

Introduction

The main motivation for writing the present thesis came from the astonishingly good
low-rate performance of modern image compressors, wavelet-based and not. Their
operational distortion rate curve has a steep decay at low rates, before it turns into the
asymptotic —6 dB/bit slope for higher rates. The key observation to be made is that at
low rates, only very few coefficients are actually quantized, and all the others are set to
zero (which is also quantization, of course). This fact is illustrated in Figure 1.1, which
shows both the distortion as a function of rate and the number of coefficients used to
achieve that distortion. Prompted by how few coefficients are actually quantized, we
coined the name oligoquantization for this situation.!

The goal we set out for this thesis is to analyze oligoquantization to obtain a better
understanding of low-rate lossy compression. In the remainder of this introduction,
we will briefly recall some of the basic concepts of quantization and rate distortion
theory.

1.1 Quantization and Rate Distortion Theory

The following summary contains information that is found in the standard references
on the subjects. For quantization, these are [2, 19, 20, 21, 29, 35] in no particular order,
and for rate distortion theory we refer to [1, 10, 27, 44, 45]. The IEEE Transactions
on Information Theory had a special issue on Quantization in May 1982; also the
50’th anniversary commemorative issue of October 1998 contains two related articles
[3, 23].

A quantizer Q(x) maps the whole space R¥ to a countable set of reproduction
values Y = {y, : ¢ € I}, where Z is called the index set (often T = Nor Np).
Therefore we can define a quantizer as a set of cells S = {S; C R* : i € T} with
their corresponding reproduction values, such that @Q(x) = y, for z € S;. Using an

!Compare with oligomineral water which contains particularly few minerals . . .

1
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Figure 1.1: Typical wavelet transform image coder performance: operational
distortion rate function (decreasing curve, left scale) and proportion of coef-
ficients used (increasing curve, right scale).

indicator function we can also write

Q@) = yilecs,- (.1

The quality of a quantizer is measured by defining a distortion measure d(x, &) be-
tween a sample z and its reproduction Z. In this thesis we will only use the squared
error:

d(z, &) = ||z - Z||°. (1.2)

If the quantized samples are from a random source with probability density fx (z),
the average quantizer rate per dimension is

R(Q) = —H(Q =z sz log pi (1.3)

with p; = Pr{X € S;} = [ s, f=(x) de. The average squared error distortion per
dimension is

D(Q) = 1 Bld(X, Q(X))] Zpl / Iz - Q@) fu(e) dw.  (14)
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For the mean squared error (MSE) distortion measure it can be shown that the lowest
distortion is achieved if each cell is represented by its conditional mean or centroid:

y, = E[X|X € §j] = I%/ fz=(z) de. (L.5)
i Js;

The tradeoff between rate and distortion may be quantified by the k-dimensional
operational distortion rate function §(R), which is the least distortion achievable by
any k-dimensional quantizer of rate R or less:

O(R) = inf  D(Q). (1.6)

If we further optimize over the dimensionality, we get the operational distortion rate
Sfunction:

5(R) = inf 6,(R). (1.7

This is the point where rate distortion theory enters the scene: while quantization
uses a deterministic mapping ()(z), rate distortion theory uses a stochastic mapping
that for each input value « is defined by a conditional probability density gy-|x (y|z).2
The distortion is defined as

D(q) = E[d(X,Y)] (1.8)
and the information rate is the mutual information
R(q) =I(X;Y). (1.9)

The information rate distortion function is the minimum achievable rate over all condi-
tional distributions ¢{y|x) that satisfy the expected distortion constraint E[d(X,Y)] <
D:

RY(D) = I(X;Y) (1.10)

min
a(yiz): fx v F(@)a(yle)(z—y)2<D

It can be shown that the inverse function DY)(R) is well defined and could also be
obtained by minimizing the distortion over all conditional distributions ¢(y|z) that
satisfy a rate constraint. We prefer the function DI)(R) because it is related to the
functions (1.6, 1.7) defined for quantization.

First of all, we have

DYY(R) < 5(R) < 5x(R), (L.11)

2Pplease note that from here on, we will restrict ourselves to scalar random variables, since this thesis
is only concerned with memoryless scalar sources. Also, we will often drop the indices on probability
densities such as gy | x (ylz) and just write g(y|x) when there is no danger of confusion.
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B N(0,5D)

p=1-5

Figure 1.2: Forward test channel for the Gerrish-Schultheiss upper bound.

since the set of stochastic maps ¢(y|z) includes every deterministic map Q(z). In
fact, the lossy source coding theorem first proved by Shannon [44, 45] implies that
DU(R) = &§(R). Therefore from here on we will speak of the distortion rate func-
tion (drf) and denote it by D(R). The adjective “operational” will only be used in
conjunction with (classes of) quantizers.

Throughout the thesis we will use two classic bounds on R(D). The Gaussian
upper bound for a source of variance o2 is

02

37
and the Shannon lower bound (SLB) for a source with differential entropy H (X)) is

R(D) < =log (1.12)

[

R(D) > H(X) - %log(27reD). (1.13)

Most often we will actually use the corresponding bounds on the inverse function
D(R), that is

02

2me
For a large class of sources, the Shannon lower bound is asymptotically tight for D —
0, respectively & — co. In contrast, the Gaussian upper bound is very loose for the
highly non-Gaussian, sparse source densities that are of interest in this thesis.

Some of the main results presented in the following chapters are upper bounds
on D(R), which we want to compare with previously known bounds. The only other
bound that made it into textbooks, besides the Gaussian upper bound, is due to Gerrish
and Schultheiss [18]:

exp (2H(2) — 2R) < D(R) < o exp(—2R). (1.14)

1
R(D)< H(Y) - §ln(27re,8D), (1.15)
withg =1 - 0% and the marginal density

_ 1 —(y — Bz)*
Q(y)—/p(m)\/mexp 55D dz. (1.16)
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The bound can be easily derived using the test channel shown in Figure 1.2. If H(Y')
is upper bounded by the entropy of a Gaussian with the variance of Y, (1.15) reduces
to the Gaussian upper bound. A disadvantage of the bound (1.15) is that it usually
requires a double numeric integration to compute H(Y'), since the marginal ¢(y) can
rarely be obtained in closed form (as usual the Gaussian density is an exception).

Finally, we remark that one would expect that the conditional distribution ¢* (y|z)
that achieves the minimum rate® in (1.10) is continuous if the source pdf f(z) is also
continuous. Astonishingly enough, this is usually not the case! At low rates, the sup-
port of Y is in most cases discrete, i.e. ¢*(y|z) exists only for y € {y1,y2,...}. This
phenomenon has been first described by Fix [16, 17] for sources with finite support.
It was later independently rediscovered by Rose [38] who looked at the infinite sup-
port case. Rose also proved that the support set is continuous at sub-critical distortion
(when the SLB is tight) and that it becomes discrete at supercritical distortion (SLB is
not tight). Thus there is an anomaly in the computation of the rate distortion function
precisely at low rates, which is the region that interests us most.

1.2 Outline of Thesis

We give an outline of the remaining chapters of this thesis:

¢ In Chapter 2 we introduce oligoquantization based on scalar thresholding and
study the Gaussian case in some detail. Then we derive the main result, an upper
bound on operational distortion rate for thresholding oligoquantization. We also
provide tightened and loosened versions of the bound. The Chapter ends with
an example where we compare the bound to actual quantizer performance.

o The third Chapter is concerned with transform coding, in particular we study
several models for transform coefficients. Also, a tighter high-rate bound is
derived and used in a new definition of coding gain.

e Chapter 4 contains two main results: the upside is a method to compute sample-
based bounds without estimating a density. The downside is a theorem that
shows that the principle of oligoquantization does not carry over well to high
dimensions.

o Finally, Chapter 5 starts with a short summary of the thesis and then presents
some concluding remarks.
1.2.1 Acronyms

Unfortunately also this author can’t escape the damnation of communications re-
search: the acronym. Table 1.1 is an incomplete list of those used throughout this
thesis, with a reference to the defining section, if available.

*In general, there might actually be more than one such distribution.
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Acronym | Meaning Section
BMS Binary memoryless source

DMS Discrete memoryless source

drf Distortion rate function 1.1
GG Generalized Gaussian 2.5
GM Gaussian Mixture 34
MCQ Magnitude classifying quantization | 3.5
MSE Mean squared error

pdf Probability density function

pmf Probability mass function

rdf Rate distortion function 1.1
v Random variable

SLB Shannon lower bound 1.1
TOQ Thresholding oligoquantization 2.1

Table 1.1: Some acronyms used in this thesis



Chapter 2

Bounding Low-Rate Distortion

In the introduction we have shown that a simple threshold-based oligoquantization
method is a very efficient way to encode wavelet coefficients. The core of this chapter
(and this thesis) will be an upper bound on operational distortion rate for thresholding
oligoquantization (TOQ). After defining TOQ, we first study the behavior of thresh-
olded Gaussian random variables. Then we derive the low-rate bound and a tightened
version of it. In contrast, by loosening the bound we will gain more insight in the
tradeoffs involved in TOQ. Finally, we present a simple example which allows us to
compare the bounds with the distortion achieved by actual quantizers.

A Remark on Notation Even though the bit is with us since the beginnings of in-
formation theory, for the purpose of deriving analytical expressions it is much simpler
to work with natural logarithms. Therefore in this thesis all equations involving en-
tropies, rates, etc ... will be expressed in nats, and all logarithms are to the base e.
Of course the standard disclaimer “unless otherwise noted” applies. To make things
slightly confusing, all plots will use bits as a concession to all those who are eyeing
for slopes of —6 dB/bit.

Another minor change from canonical notation concerns entropy: h(-) always
stands for the binary entropy function h(p) = —pInp — (1 — p) In(1 — p) (measured
in nats), whereas H (X ) might stand for discrete or differential entropy, depending on
the alphabet of X. This convention is motivated by some cases where both a binary
entropy function and a differential entropy appear in the same expression.

2.1 Thresholding Oligoquantization

To keep things simple, most of this thesis considers only memoryless sources that emit
a sequence of i.i.d. zero mean random variables with a symmetric probability density
function (pdf) fx (z), that is

fx(=2) = fx().

7



8 Bounding Low-Rate Distortion

This simplifies many computations, since the second moment of a set with zero mean
will be equal to its variance:

E[X|X € §] =0 < E[X?|X € §] = Var(X|X € S).

In particular, this is the case for a symmetric pdf when the set S is symmetric about the
origin. Therefore we will often use the term variance to designate the second moment
and vice-versa. This convention is used throughout the thesis, up to Section 4.1, where
we will deal with arbitrary densities. As it turns out, many results carry over directly
thanks to the fact that the second moment is an upper bound to the variance.

However, for now we will concentrate on symmetric densities, which is not a very
severe restriction if we want to use our results to analyze low-rate lossy transform
coding systems. For one, a main goal of using a transform is to have approximately
independent coefficients at the output. In general these will not be identically dis-
tributed (think of the KLT), but mixing them into a single distribution will always
provide an upper bound to the rate distortion performance of more elaborate vector
coding schemes. Finally, the restriction to symmetric densities is minor too, because
a transform that produces a skewed coefficient density is intuitively mismatched to
the source. In fact most i.i.d. coefficient density models proposed in the literature are
symmetric, ¢.g. Laplacian or generalized Gaussian.

Definition 2.1 Thresholding oligoquantization (TOQ) of a sequence of i.i.d. random
variables [X;)i=1,... .00 is a two step encoding process:

1. Each sample is classified: samples with magnitude above a threshold T are
called significant! and assembled into a new sequence [V;], which might be
empty. The other — insignificant — samples are discarded. The density of the
thresholded random variable is

. 0, v < T
O =4 d, ST @b

1
g

Since the pdf f(x) is symmetric, the normalization constant u(T'), ie. the prob-
ability of a significant sample, will be

p(T)=EU]=Pe{|X|>T} = 2/ flz)d=. 2.2)
T
A binary sequence

U] = [L1x,y>7] (2.3)

called significance map records the positions of the significant samples and will
be sent to the decoder as side information using rate h(u(T)) per sample (h is
the binary entropy function).

'The term significant is borrowed from image compression, where similar quantization methods are
very popular.
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2. The sequence of thresholded random variables [V;] is then quantized with a k-
d{mensional quantizer matched to their density, yielding the quantized sequence
[V}]. The quantizer indices are entropy coded and sent to the decoder.

The decoder can reassemble the original sequence thanks to the significance map:
the insignificant samples are mapped to the centroid E{X||X| < T] = 0, while the
significant samples are reconstructed from the quantized sequence V).

Often a scalar quantizer (k = 1) is used for the significant samples. Then the
whole process can be described as a single scalar quantizer with a prescribed zero
bin [~T,T]. Such scalar quantizers are also known as deadzone quantizers; if the
bins outside the zero bin have the same width, we get a particular case of the uniform
threshold quantizer [15}.

The following proposition shows that two step TOQ with scalar quantization has
the same asymptotic rate per sample (as the number of samples approaches infinity) as
a single step quantizer with prescribed zero bin. The same threshold value T and the
same quantization bins for the significant samples are used for both codes, therefore
they yield the same distortion,

Proposition 2.1 Let Y € {1,2,..., L} be the scalar quantization index of the sig-
nificant values V; in the two step code. Then the asymptotic rate per sample is
Ry = h(p) + pH(Y). Let Y € {0,1,...,L} be the scalar quantization index
of the single step quantizer. The rate for this code is R(;y = H YV)= Ry).

Proof: The significance map U; can be coded with k() bits per sample. For every
U; = 1 we have to encode a sample of the random variable Y, thus

Ry = h(p) + E[UIH(Y) = h(p) + pH(Y).

If Y is distributed with Pr{Yy = i} =pi,i=1,...,L, then Y will have the dis-
tribution Pr{Y = 0} = 1 — pu, Pr{Y = i} = ppi, 1 = 1,..., L. Therefore we
have

L
Ruy=H(Y) = —(1— p)logy(1 - p) = »_ pps log, (up:)

i=1

L
= —(1— p)logy(1 — ) — plogy (1) — »_ pilogy(pi) = Ry

i=1
O

This means that the single step quantizer and two step TOQ are functionally equiv-
alent, there is only an implementation difference.

Example 2.1 We consider two and four level Lloyd-Max quantization [29, 35] of
thresholded Gaussian random variables. Figure 2.1 shows the operational distortion
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rate curves obtained by using the threshold as a parameter. The two curves start at the
respective (R, D) points for Lloyd-Max quantization (T' = 0) and end in (R, D) =
(0,1) for T — oo. They show that by varying the threshold one can achieve a whole
set of (R, D) points which are actually below simple time sharing of the original
Lloyd-Max solutions. Also shown are the Gaussian D(R) as a lower bound, the Gish-
Pierce asymptote for high-rate scalar quantization [21} and the operational D(R) of
entropy coded uniform quantization.

—— Gaussian D(R)
— Threshold + 2 level Lioyd-Max Q
- - Threshotd + 4 level Lioyd-Max Q (J
---- Entropy-coded uniform Q

MSE Distortion [dB]

05

1 1.5
Rate [bits]

Figure 2.1: Thresholding oligoquantization of a Gaussian random variable.

2.2 R/D Analysis of Thresholded Gaussian

In order to derive rate distortion bounds for TOQ with arbitrary (“optimal™) choice of
threshold, we first characterize the R/D behavior of thresholded random variables. We
restrict our analysis to the zero mean Gaussian case.

Upper bound We upper bound D(R) of the thresholded Gaussian by the distortion
rate function of a Gaussian with the same variance (1.12). From the Gaussian density,
f(x) = (V2r0) 'exp(—2%/20?), we compute the pdf of the thresholded variable
according to (2.1):

_ 0 v < T
T ’
f( )('U) = { 1 e—z2/202’ IUI >T 29

w(T) Vano
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with normalization constant

w(T) = erfc (?g) . (2.5)

The variance is E; V2 = A(T)/p(T) with

AT = 2/T°° 2 f(z) dz = o (,U(T) + \/gge_gf> . (2.6)

Inserting this into the distortion rate formula for the Gaussian provides the desired
upper bound:

AT —
D(R) < 40e™?F, Q2.7

Shannon lower bound First, we compute the differential entropy of a thresholded

Gaussian:
H(V) = 3355 + §In(270”) + In(u(T))

The Shannon lower bound follows from (1.13) as

Rsyp(D)=H(V) - %ln(Zﬂ'eD)
-— 02
= % + In(p(T)) + éln (%) . 2.8)

Figure 2.2 shows the upper and lower bounds and the empirical D(R) computed
with Blahut’s algorithm [4] for two values of the normalized threshold T/a.2 For
larger thresholds, a distinct knee appears at R = 1. This is in accordance with the
intuition that the first bit should give a large reduction in distortion for large threshold
values. An interesting question is how close simple two level (one bit) quantization
comes to the Shannon lower bound:

Proposition 2.2 Let D, be the distortion for two level Lloyd-Max quantization of
a thresholded Gaussian with pdf given by (2.4), and let Dspp be the solution of
Rspp(D) =In2. We have

. D2 27T
=0, 2.9
Ill—{réo Dsp e 29

Thus the asymptotic distortion for two level quantization is about 2.31 times the lower
bound, or 3.64 dB above it.

2Note that there is double normalization in Figure 2.2: first, the threshold ¢ is taken relative to the
standard deviation o of the original rv, and after, the variance & of the thresholded rv is normalized to one.
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D(R) of Thresholded Gaussian (T/c=0.5)

= Gaussia;1 upper bound
»« Tightened upper bound I
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— Shannon lower bound
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D(R) of Thresholded Gaussian (T/o=1)

— Gaussian upper bound
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- = Blahut algorithm
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Figure 2.2: D(R) behavior of thresholded Gaussian with T/o = 0.5 (top)
and T'/o = 1 (bottom): Upper and lower bounds and empirical D(R) com-
puted with Blahut’s algorithm.
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A(zo)
u(zo)o

Proof: We use the substitutions z = T'/o, a(z) = 7 and the relation u(T') =

.2
2ze_ "

/2 .
A\/é_:—(_a_(z)—-—l) to obtain

2
D, = [a(z) - (—a(z)z_ 1> ]02
1 a(z)—1-2z2 22 2
Dsip = goe (a(z)—1)2°

and therefore

i g = i [ ] [SE (o - P

_.2
Inserting a(z) — 1 = ?7%—/\72_2—) and applying Bernoulli-de I"Hospital’s rule repeat-

edly shows that the first term converges to 2= and the second to one. 0O

This result should be compared to the asymptotic (high-rate) performance achiev-
able with scalar quantization. Gish and Pierce[21] found that high-rate uniform quan-
tizers are optimal and yield a distortion that is me/6 ~ 1.42 times the Shannon lower
bound. Also, one bit quantization of a Gaussian has a distortion of 4(7 — 2) /7 =~ 1.45
times the SLB. We conclude that even low-rate (I bit) scalar quantization of the
thresholded Gaussian is quite efficient. In fact, since the gap between the upper bound
(2.7) and the lower bound (2.8) widens for growing T, we see that scalar quantiza-
tion of the thresholded samples has a distortion that is asymptotically (for T — co)
vanishing compared to the upper bound.

2.2.1 A Tighter Upper Bound

As just mentioned, the Gaussian upper bound is very loose for large thresholds. To
get a tighter bound, we make the following thought experiment: let us use a Gaussian
codebook to encode a Gaussian random variable X with average distortion D(R).
Now assume that we get the free side information U = 1,x > which we can use to

improve the estimate X. Write the average distortion as
D(R) =Pr{U = 0} Ed(X,X|U = 0) + Pr{U = 1} Ed(X, X|U = 1)
= (1 - u(T)) Dy + w(T) Dy, 2.10)
with D; = Ed(X, X|U = i). It is evident that D, is the thresholded Gaussian D(R)
that we want to bound. Since we know the random codebook distribution needed to

achieve D(R), we can easily compute D;. The goal is now to find a function ¢(Z)
that minimizes D, = Ed(X, ¢( X’)|U = 1). By the calculus of variations we find

(347)2 (2-T)2
2D

fran Q e 20 —e¢
i (m)—m+\/7erf(ﬂ)—erf(i_T)—Q‘ @D

V2D V2D
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Unfortunately this expression is hard to integrate symbolically, but its graph served as
an inspiration for a simpler function,

$(%) = & + ade ", (2.12)

that is easier to handle and gives quite tight bounds when optimized over the parame-
ters a, b. Actually, setting a = b = 0 already gives a tighter bound than (2.7), namely

2
H T s
Di(R) < 1+[\/—7zri—(;)~e—” o2e~2R @2.13)

A plot of this bound is included in Figure 2.2. Rather disturbingly, the bound
crosses the D(R) curve computed with Blahut’s algorithm (BA). The culprit is the
discretization of the density needed for the BA, which introduces some error. Addi-
tionally, normalizing by the variance of the discretized source introduces even more
error.

2.3 Upper Bound on Distortion Rate

Now we set out to upper bound the operational D(R) performance of TOQ, which is
implicitly also an upper bound to the distortion rate function (drf) of the source being
quantized. This is the key result of this thesis, since it will allow us to characterize the
low-rate D(R) behavior of “highly non-Gaussian” sources.

Thresholding oligoquantization is a two step process, consisting of thresholding
followed by quantization of the significant samples. Ideally one would use a variable-
dimension vector quantizer, since the number of samples varies from block to block
(assuming data is processed in blocks). In practical schemes, scalar quantization is
often preferred thanks to its simplicity and speed. And at low rates it performs quite
well, as illustrated by Example 2.1.

In general we can never achieve a rate distortion optimal encoding if we use two
step TOQ for lossy encoding of a block of i.i.d. random variables. Except in “con-
structed” cases, the thresholding implies a suboptimal code even if it is followed by
an optimal quantizer for the significant samples. An optimal two step encoder is com-
posed of an ideal lossless encoder for the significance indicator U, and an R/D optimal
encoder for the values V' of the significant samples. Therefore we first characterize
the R/D behavior of thresholded random variables.

The D(R) function of a single thresholded random variable V' can be upper boun-
ded with the distortion rate function of a Gaussian with the same variance. The unnor-
malized variance is

A(T)=2 /T ” f(z)z?dz (2.14)
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where f(x) is the pdf of the non-thresholded rv and A(0) = o2 its variance. Afier
normalization with (2.2) the upper bound becomes

Dy (Ry) < Ep Ve 2fv = 22y .15)

‘We will not use tighter upper bounds such as the one presented in Section 2.2.1, since
they would complicate if not inhibit the optimization steps that lead to the main result.

For each sample we need H(U) = h(u(T)) bits to indicate whether it is signifi-
cant, i.e. above threshold. Given the total rate per sample R, the rate Ry available to
code each significant sample is

R — h((T))
wTy

Taking into account the distortion resulting from the uncoded sub-threshold samples,
we can write the following bound on the drf of the source X:

Ry(T,R) = (2.16)

D(R) < w(T)Dy(Rv(T, R)) + (1 — (T)) E[X?||X| < T]
or
D(R) < B(T,R) = A(T) exp (-2’3——%)@2) + 0% — A(T). @.17)

The sought-after TOQ bound is obtained by optimizing over the threshold ¢, that
is we search the rate R*(to) for which the bound D{R*(%5)) < B(R*(to)) is tightest
over all ¢ in some neighborhood of ¢(. This means that the bound will only be locally
optimal (see remark after Theorem 2.3).

Direct minimization of B(#, R) with respect to ¢ is very difficult. Instead we sweep
the threshold ¢ from 0 to co and compute candidate points of the convex hull of the
resulting bounds D(R) < B(¢, R) in the (R, D) plane. To further simplify the task,
we assume that two bounds B(t,r) and B(t + At, r) have a common tangent (equiv-
alently: they intersect each other). This tangent can then be used to find candidate
convex hull points. The resulting parametric upper bound will be called the magni-
tude bound, since the involved thresholding is only concerned with the magnitude of
the samples.

Theorem 2.3 (Magnitude bound) The operational distortion rate function for thresh-
olding oligoquantization of a memoryless continuous random variable X with sym-
metric pdf f(x) and variance o? is upper bounded by

D(R*()) < A(t) [exp (—zﬁ%ﬁﬂm) - 1] +o?, Vt>0:3R(t) (.18)
where the rate R*(t) is given by (primes denote derivatives)

RE(8) = h(u(t)) = $ult) [20(u(e)) + (8) + Wor () (D220 |
2.19)
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with

() 5
1) ="-+=t 220
1) =3 @ (2.20)
The expression for R*(t) involves Lambert's W function, which solves W (z)e
x. The subscript -1 indicates the second real branch of W, taking values on [-1, ~c0|.
A real-valued solution for R* exists only if the argument of the W function is larger
than —1/e (see remarks after proof).

Wi(r) ~

Proof:

We take two curves of the family (2.17), say B(t,7) and B(¢t + A¢, ), and
determine their common tangent by solving the following system of equations:

(ZB)(t,70) (ZB)(t+At,m)=s (2.21)

B(t + At,m) — B(t,70)

™ — 7o

= s. (2.22)

Using (£ B)(t,7) = —2%‘(%) exp (——2@;;((—;@) we solve (2.21) for r:

ry = B g — h(u(t))] + h(u(t + A1) — Su(t + Aty In 52D (223)

and start inserting this solution into (2.22):
s = B(t + Atvrl) - B(t7 7'0)

T —To
At + At)e™ 2500 2 Hn SEEETRE _ A()e 2
" —To
Al + Af) - )
1 — 70
[t + D) — p(@)] 2B e — L4t + A1) - A1)
™ —To

= (B)(t,ro) = =255 e

w(t) ’
where the last equality is actually again (2.21). For our convenience we make the
substitutions Ay = gt + At) — p(t), AA = At + At) — A(t) to obtain

(2.24)

A(t) —2ra=his)

Ok w0 [Ap+2(rp —r9)] - AA=0. (2.25)

Now we let
y =278, (2.26)
o= A0 25 .27

B=Ap+2(r —1) — Z%Ay

= Ap— 28GR B () + 2h(p(t + At)) — p(t + At) In LD (28)
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so that (2.25) becomes
ae¥(-Apy+ ) —-AA=0. (2.29)

At this point we have to make an additional assumption about the pdf f(x), namely
that it is not constantly equal to zero over the interval {t,f + At) (as long as this
interval is contained in the support of f). Then for any At > 0 we have Ap < 0 (and
AA < 0) by definition.’ Therefore we can divide (2.29) by —aAyu and get

e¥(y — _) + QAA/L =0. (2.30)

Now we can finally use the Lambert W function of Maple fame to find the solution(s)
B
¥= 2y +W( e Aﬂ) 2.3])

Using the defining equation W (z)e" () = x it is easy to show that (2.31) actually
solves (2.30). Before we go on and take limits, let’s resolve the question on what
branch of W we have to use. From (2.26) it is clear that we need negative real-valued
solutlons The principal branch Wy(z) has domain [~1/e, co) and takes on values

in [—1,00), whereas the other real-valued branch W_, (z) has values in (—oo, —1].
Since a more negative y will yield a tighter bound (see (2.26) and (2.17)), we pick
the branch W_;(x). Its domain is [—1/e, 0), which implies that for a specific pdf
f(z) and threshold ¢, equation (2.31) might have no real solution, i.e. that no common
tangent exists. That case will be analyzed in the remark following the proof.

Because W_; () is a continuous function, we may take the limit At — 0 of the
expressions appearing in the argument of W:

B L pB)hlp(t+At) —p(t+AA () +p(t) () —p(t) h(u(E))
Al?—ralo Ap T I%I—I}o 1+2 2O A — (8]
+ p(t+At) At In A(t+4¢)—In A(t)  Ilnp(t+At)—lnp(t)
w(t+ A —pu(t) At At

— (u(t ()A'(¢

=1+ 2k (u(t)) — 22l —L—u e -1, (2.32)
lim A — lim (ACFAD-AD]u@) —2h(n(t))/u(t)
At—0 @B Ao A - pDIA() ©

= AU —2h(u()/ute) (2.33)

By the definitions of i and A we have /() = —2f(t) and A/(t) = —2f(t)t?, hence
;;s_g_g)—f;g; 842 = (1), as defined in (2.20). Inserting (2.32, 2.33) into (231) gives

y =20/ (u(t)) — 228D 4 y (1) + W (—’y(t)e_z"'("“”‘”“)) (2.34)

31f this assumption does not hold, we also have 3 = 0 and thus (2.26) is always satisfied. This case
corresponds to a random variable with holes in its support, that is a mixture of two (or more) random
variables with non-overlapping supports (ranges). Picking the “critical” ¢ actually separates the mixture
components in two groups.
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and after inserting this into (2.26) and solving for 7y we get (2.19). O

Remarks As pointed out in the proof, for some values of the threshold ¢ there might
be no solution to the common tangent problem. This is the case when increasing ¢
produces a bound B(t + At,r) that for all r is larger than B(t,7). Using a Taylor

approximation
B(t + At,7) = B(t,r) + (£ B)(t,7)At

we see that there is no common tangent for all ¢ satisfying

mrin(%B)(t,r) > 0. (2.35)

To find this minimum we differentiate %B with respect to 7:

_or=h{u(t))
(6?_;7‘B)(t’7') = 2e 2 u(‘t‘)

[—#Q(t)A'(t)+2H'(i)A(t)(%#(t)—r+h(u(t))—u(t)h’(#(t)))] (2.36)

#3(t)

After discarding the zero at »r = oo, the rate of the candidate minimum is found by
setting the term in square brackets to 0:

P = L) {1 = 9 (8) — 20/ (u(t)) + 22500 237)

To verify that it is indeed a (unique, thus global) minimum:

h
PESH [44920] 5 o

Now we insert (2.37) into (2.35) to characterize those ¢ that satisfy

3 *
(587 B)(t,7") = 2¢~

o (lt gr*=h(n(t))
GB)(t,r") = [4/(8) + 22080 (w(u(t)) + TR Y] 25T - )
= A%&t_ew)—lwh W®) — 4'(t). (2.38)

If we divide (2.38) by 4'(t) = -2 f (t)t? < 0 (thus flipping the inequality) we see that
(2.35) is equivalent to e =2 ¢7(1)+2h'(u(1)) < ~(t) and after another sign flip we get

-1 —y(t)e" VD72 (), (239

This is a reassuring result: condition (2.39), and thus (2.35), is true exactly iff the
argument of the W function in (2.19) is less than or equal to —1/e, i.e. when there
is no real-valued solution. Nevertheless, this condition alone does not guarantee that
we find only convex hull points, since one of the constituent bounds B(¢, ) might be
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below all others for a threshold ¢ satisfying (2.35). In all examples we have studied,
it happened to be the trivial bound B(0, ), if at all. For a Gaussian source, obviously
no upper bound can be better than B(0, ), while for Laplacian sources all thresholds
above a critical value yield slight improvements. For pdf’s that are even more peaked
around zero, such as those studied in the next chapter, the critical threshold is (almost)
zero. Informally, these “forbidden” threshold values mean that the reduction in the
number of coded significant samples is not sufficient to offset the increased position
rate A(p(t)). From this reasoning it becomes evident that such ¢ can only lie between
0 and tg 5, with p(fg.5) = 0.5. On the other hand, this means that the bound will be
useful at low rates (i.e. for high thresholds), a rate region for which few bounds are
known.

An example of the bound is plotted in Figure 2.3, together with an improved ver-
sion that will be presented next.

2.4 Tightening the Bound

The approach to tighten the bound is based on quantization in the sense that we split
the set of significant samples according to their sign. Thus we get a total of three
classes: “0”, “+” and “—”. As before, the insignificant samples (the “0” class) will
be mapped to zero. By symmetry of f(z) the rate Ry will be divided evenly among
“+” and “—" samples; the bound can be derived with the same techniques as for The-
orem 2.3. However, besides the probability mass and the second moment, the first
moment of the significant samples must also be known, or else the bound will not be
very tight.

The magnitude bound is based on classifying the samples into significant and in-
significant ones. If the threshold is fairly large, the pdf of the significant samples will
have a sizeable gap around zero, and their variance will be much larger than twice the
variance of the positive (or negative) significant samples alone. Thus we can expect
a tighter bound if we further classify the significant samples according to their sign,
even though the side information rate increases. Since the pdf f(z) is assumed to be
symmetric, we need one bit more per significant sample. The average rate becomes

R =n(u(T)) + n(T)(In2 + Ry),

(the In 2 term is the sign bit in nats) and the corresponding distortion bound is
_pR=h(u(T)—p(T)In2
+ (1 — pu(T)) Var(X| | X]| < T).
The insignificant samples are quantized to zero as before, while the significant samples

are now one-sided random variables with variance Var(X|X > T'), since we know
their sign. One disadvantage of this approach is that besides p(t) and A(¢), we also
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need the first moment (the centroid)

() =EX|X > = {THoede @Al

to compute that variance. This is the price to be paid for a (sometimes) tighter bound.

Theorem 2.4 (Magnitude plus Sign Bound) The operational distortion rate func-
tion for thresholding oligoquantization of a memoryless continuous random variable

X with symmetric pdf f(x) and variance * is upper bounded by
D(R7,,(t)) < Bins(R;,(1))
2 o Bama(t)—h(n(t)) 2
= 4[A(t) — p()E" (t)]e “ +0° — A(t), (242)

where the rate R}, .(t) is given by

Ry (1) = h(p(t) — p()R' ()
— HO [ () + Woy (—ma@)e O O] 243)
with
t) —t)? it?
1ty = ~/£(§L();2)— and 2 (t) = ————2 244)
uw®y = 6 (t) w(t) f (t)
Proof: The proof works along the same lines as the one of Theorem 2.3. Instead of
(2.23) the solution for 7, is now

"= u<‘+§”[r ~ h(u(®))] + h(u(t + At))
(2.45)
[A(t)—p(t)E ()] u(t+AL)
bt + At In o
Equation (2.24) becomes
9 gra~h(u(t))
_ By(t+ At,r1) — Ba(t,r0) A;L( 0 - &t )) s — AA
- " —7To - Ty —To
o ro=h(u(t))
= ($Bs)(t,r0) = -2 (4 - €2()) (2:46)
which after the substitutions (compare with (2.26-2.28))
-2 T(t), .47
hin(t)
a=4 (u(t éz(t)) 2w (2.48)
B=Apu+2(r; —rg) — u(t) SO Ap
= Ap — 2R () + 2R (u(t + At))
A(t) 2
o — &)
— u(t + At)In —28 (2.49)

A(t+At
AR _e2(t + A1)
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is again equivalent to
ae¥(-Apy+ ) - AA=0. (2.50)

Therefore we can use solution (2.31), but now inserting the following limits:

) t)—1t)?
Al?ﬁoﬁ% = 20/ (u(t)) — 228D /(;(i() ) 2) , (2.51)
n(t) *é (t)
AA it’ 2R(u(8))/ 1(t)
H — - t
ABoads =0 _py® 232

The theorem follows. 0
For lazy people, or when £(t) is not available, Theorem 2.4 can be weakened to

Corollary 2.5 (Weak Magnitude plus Sign Bound)

D(R:ums(t)) S B'me(R:ums(t))

3 B o —2Rhma =Ry
= 4[A(t) — p(t)t]e (0 +0° — A(t), (2.53)
with
Ripms = h(u(1) = p(OR (1)) = “0W_y (=g 47)
(2.54)
Proof: £(t) > t therefore Var(X|X > t) < %)— — ¢ 0

Figure 2.3 shows the upper bounds and the Shannon lower bound for a Laplacian

source with pdf f(x) = %2:6‘/5”’, magnitude bound (2.18), magnitude+sign bound
(2.42) and weakened M+S bound (2.53). Clearly the latter is weaker than the other
two; only at rates below 0.01 bits it becomes slightly tighter. For more peaked den-
sities this situation improves a bit, but in general Corollary 2.5 is rather useless when
compared to the magnitude bound (Theorem 2.3). On the other hand, as announced
the magnitude+sign bound is tightest at lower rates up to about 2 bits.

Even though the M+S bound beats the Gaussian upper bound by about 0.2 dB at
0.2 bits, these bounds are not overwhelming. The examples in the next section will
show that they get more interesting for densities that are more peaked than the Lapla-
cian. Here interesting means upper bounds that are substantially below the Gaussian
upper bound, corresponding to sources that are efficiently quantized with a threshold-
ing oligoquantization.



22

Bounding Low-Rate Distortion

— Magnitude bound
- = Magnitude+sign bound
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+~-+ Gaussian upper bound
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Figure 2.3: Distortion-rate upper bounds for a Laplacian source (unit vari-

ance). Low-rate detail at bottom.
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2.5 Loosening the Bound

The primary objective of loosening the bound is to have simpler expressions to deal
with. In turn these will give better insight into the “geometry” of low-rate TOQ. Since
the bound (2.17) holds for all rates R and thresholds T, we can use an approximation
to R*(T') without giving up the bounding property; the resulting bound will simply
be less tight. In other words, any real-valued function R(¢) will yield an upper bound,
but the goal is to approximate R*(t) at low rates. The most troublesome term in the
expression for R*(t) is of course the Lambert W function, which makes it an ideal
candidate for an approximation. From the paper by Corless et. al. [9] we get the
following series expansion:

W_1(2) = In(—2) = In(=In(—2)) = > In(1 + py/vy), (2.55)
k>0
where v, 41 = vp+p, and ppy1 = — In(1+p, /v,,), with starting values vg = In(—2)

and po = In(— In{—=z)), respectively. For z — 0— we have po /v — 0, thus the first
two terms in (2.55) are a good approximation for W_, (2) if z is small.
Looking at (2.19) we get

W_y (=y(®)e™2 =90 ) 2 Iny(t) — 20 (u(1)) — (8)
—In[—Iny(2) + 2h'((t)) + v(t)]
for small yi(¢) (since 0 < v(t) < 1) and finally

R(t) = Ru(t) = h(u(t)) + ) {=Iny(t) + In[=Iny(t) + 2h"(u(t)) + ()]} -

2
(2.56)

Using this approximation in (2.18) yields the following weaker upper bound:

AD()
DR < T aw @ 2@ * 0 - A0

_ p(t) 2
T o—Iny(t) — 2Imp(t) + 2In(1 — w(t)) +¥(t)

+o? —A(t) (25D

Since lim,_,g— pg/vg = 0, the first term in (2.55) dominates the second term. The
former can therefore be used to get an even simpler approximation:

R ()~ RBaft) = h(u(t) — A0 o) 258)

Inserting this into (2.18) gives

D(Ry(t)) < A(t)y(t) + 0® — A(t) = u(t) t* + o — A(t) (2.59)
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with R(#) given by the right hand side of (2.58). However the decay of In(z)/z is very
slow, so (2.59) will only be useful for vanishingly small 4, that is B — 0. The above
nicely displays the basic interaction between p(t) and A(t) in bounding distortion
rate. It also allows one to upper bound the slope of D(R) at R = 0.

Theorem 2.6 Let f(x) be a symmetric, finite variance pdf that satisfies the conditions
(i) im, o f(t) = 0 and f'(t) exists fort — oo,
(ii) p(t) > 0 (and A(t) > 0) for any finite t > 0.

Then the slope* of D(R) at R = 0 satisfies

2
, e 1) ,
D'(R)| <x=-2 (tliglo 5 (t)> . (2.60)
Proof: First, a note about the conditions: the first is straightforward and the second
simply guarantees that the support of f(z) is the whole real line (if supp(f) were
say [—t1,t;], one would use left-hand limits at ¢;). Note also that by the dominated
convergence theorem of real analysis [41] we have

lim p(t) =0 and lim A(¢) =0. (2.61)
t—o0 t—o0
From the conditions we can conclude that

1 262
0< Jim (1) <1, 262)

which we will need later. Recalling the definition of v, namely v(£) = u(t) t?/A(¢) =
2 /E[X?| X > t], we see that condition (iii) guarantees that the limit in (2.62) is well
defined. Then the right-hand inequality is satisfied by definition, while the left-hand
one follows from y(t) 2 > 0 and A(t) < o2 fort > 0.

Let R(t) = h(u(t)) — L2 Iny(¢) as in (2.58), then lim; o R(t) = 0 by (2.61)
and (2.62). Let B(t) = A(t)7y(¢) + o — A(¢), the right-hand side of (2.59). Then we
also have lim;_, ., B(t) = 0% = D(0) and since B is an upper bound,

Do) < Jim, %%

That is, at R = 0 the slope of D(R) must be more negative than the slope of the
upper bound (2.59). To compute this limit, we observe that p'(¢) = —2f(¢) and

“4Note to those who try to verify this on a graph: the rate is measured in nats . . .
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A'(t) = —2f(¢) #? to obtain

B'(t) 2pu(t)t

lim = lim

t=oo RI(t)  t=o0 2f(t)[Inp(t) — In(1 — p(t)) + Iny(t) + L — v(t)] — p(t)/t
= Am f(tl)é(ln)p(t) (}ggo ) (t—m In o( t))
- (o ) (1 575)

= (}W, f((tt))) =

_ B=2I (Gaussian)
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Figure 2.4: Generalized Gaussian pdf for several values of the shape param-
eter /3 (all with variance o2 = 1).

Example 2.2 Consider a random variable with a generalized Gaussian density

s 17
16 = oar(aTy =P (‘Eﬁ')

with two parameters: o > 0 and the shape parameter 3 > 0.
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Remark: This notation is used e.g. in [31], whereas the more “canonical” notation
is flz) = %ﬂj’}% exp(—b(o, v)|z|*) with b(o,v) = 1/T(3v-1)/T(v~1) deter-
mined by the shape parameter v and the standard deviation . The correspondence
with our notation is simply & = 1/b(o,v) and 8 = v.

We differentiate f to get

f(t) af A8

f'(t) B
Taking the limit for £ — oo we can distinguish three cases:

(a) B > 1: This case includes the Gaussian density (8 = 2); the slope bound is
D'(0) € Ao = 0. This is trivially true for any distortion rate function and
hence not very useful. Since Aq is the slope of bound (2.59) at R = 0, this
result actually tells us that for 5 > 1 that bound is really bad. Because Ay = 0
implies that the bound is not even convex and could be improved by timesharing
(multiplexing) between (D, R) = (02, 0) and some point with R > 0.

(b) 5 = 1 (Laplacian density): D'(0) < Ap = —2a°> = —0™.

(¢) B < 1: We have D'(0) < A\g = —oo, which means that D(R) decays very
rapidly at low rates.

Thus Theorem 2.6 suffices to establish that for generalized Gaussians with 3 < 1,
i.e. those which are more peaked than a Laplacian, the D axis is tangent to D(R) at

= [;=2 (Gaurssian)
: + B=1 (Laplacian)

R Sy S I i ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R [bits]

Figure 2.5: Weakened upper bound Eq. (2.59) for generalized Gaussian D(R).
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(R, D) = (0, 0?). This discontinuous behavior of the slope bound as a function of 3 is
surprising at first, since the family of generalized Gaussian densities is continuous in
the shape parameter 5. However, if we consider a single density fo s () in this family,
we see that the tail decay will be super-exponential for 5 > 1 and sub-exponential for
£ < 1. This is the cause for the abrupt slope change. Figure 2.5 plots the bound (2.59)
for several values of 3; the corresponding densities are shown in Figure 2.4.

A good compromise We have seen two approximations to R*(¢) that lead to up-
per bounds with different appeals: precision for (2.57), simplicity for (2.59). Since
allegedly the Swiss always strive for a compromise, we will try to find one by ap-
proximating the argument of the second logarithm in (2.56). Recall that h'(p) =
In(1—x)—In(g). Forlarge ¢ (thus small z2) the term — In ¢ dominates In(1—p) & —pu.

B=2 (Gaussian) B=1 (Laplacian)

g W .
g g L
o —— Bound 0 Z X, e — Bound 0
-10f| . =. Bound 1 : N 101 v Bound 1 | ING RS
. Bound 2 : o -+ Bound 2
~ = Bound 3 : : N - = Bound 3
— SLB : : Y — SLB
-15 - - -15 . -
0 0.5 1 15 2 25 (¢} 0.5 1 15 2 2.5
R [bits] R [bits)
B=1/2
0
\ — Bound 0
= Bound 1
: » Bound 2
5NN = = Bound 3 |

D [dB]

ST SR NN

% 0:5 3 2 "2.5 0 o " e ; 25
R [bits] R [bits]

Figure 2.6: Comparison of upper bounds for generalized Gaussian D(R).

Legend: “Bound 0” is the magnitude bound (2.18), “Bound 1” is Eq. (2.57),

“Bound 2" is Eq. (2.59) and “Bound 3” is Eq. (2.64); “SLB” is the Shannon

lower bound.
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In fact, for large enough ¢, v(¢) is close to one, so that — In 1 dominates all terms.
Mutatis mutandis — In y would become important for small ¢{. However we are more
interested in tight bounds at low rates, that is for large ¢, and therefore our compromise
rate is

t
R*(t) =~ R3(t) = h{u(t)) + ? [~ lny(¢) + In(—21n p(t))] (2.63)
and the corresponding upper bound is

2
D(Ry(1)) < _i;f—l’j% +o?— Alt) = :5—&)%(5 AR, (6

This is tighter than (2.59) for all i < e~'/? (but also the rate has been slightly in-
creased).

All the three weakened bounds and the magnitude upper bound are shown in Fig-
ure 2.6 for four different densities of the generalized Gaussian family. As the shape
parameter gets smaller, the density is more peaked (see Fig. 2.4) and the low-rate de-
cay of the bounds becomes steeper. The magnitude bound (2.18) and Eq. (2.57) are
almost indistinguishable, whereas the weakest bound, Eq. (2.59), honors its appella-
tion. Finally, Eq. (2.64) indeed strikes a good compromise, since as promised it is
quite tight at low rates.

2.6 The Flat-Peaked Random Variable

In this section we are going to analyze a simple example of a random variable that is
peaked at its mean and has heavy tails, as shown in Figure 2.7. A proper pdf f(z) has
to satisfy

/f(.’l)) dz = 2(ad + bc — ac) = 1. (2.65)
Further, we will normalize the variance to one, or
3 3 _ .3
/:L'zf(l') dz =2 (d% P . 4 ) =1 (2.66)
With these two equations we can easily compute ¢ and d to be
. Rl 2.67)
©Z %0 - a?)’ @
a? +ab+b* -3
d= -—m—. (2.68)

From the constraints b > a > 0 and d > ¢ > 0 we get the ranges of a and b for which
the box peak pdf is well defined: 0 < a < V3 and b > /3.
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I |
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Y

Figure 2.7: The pdf of a flat-peaked random variable

The goal of this example is to compare the upper bound to different scalar quan-
tization approaches, which are easy to analyze for the piecewise uniform density at
hand. The pdf is determined by any two parameters: we choose the width of the peak,
2a, and its probability mass pp = 2ad. This situation can also be characterized by
saying that 2a is the smallest volume of any (one-dimensional) set of probability py.

At low rates, we consider symmetric three, resp. five level scalar quantizers. The
width of the center bin, which is equal to twice the threshold, is varying from 2t =
2a...2b. For the outside bins, a Lloyd-Max quantizer for the thresholded random
variable is used. In general, the reconstruction points are the centroids of the outside
bins. However, in the particular case ¢t > a that we consider, the Lloyd-Max quantizer
reduces to a uniform quantizer, where the reconstruction points are identical to the bin
centers. This is a special case of Uniform Threshold Quantization (UTQ) analyzed in
[15]: one center bin of width 2¢, and 2N surrounding bins of width (b — a)/N each.

The first two curves in Figure 2.8 show the achievable performance: the local
minima correspond to the three, resp. five level Lloyd-Max quantizers. We recall that
the quantizer indices are entropy coded to achieve rates below one bit. The endpoints
on the right coincide with a quantizer with zero bin ]—a, a[ plus two, resp. four uniform
outside bins. The third curve is for a scheme that optimally allocates rate among
uniform quantizers for each of the three regions [-b, —a], ] —q, a] and [a, b]. This again
corresponds to UTQ, but with the added freedom of allowing a non-integer number of
bins N; = 2F. Note that the minimum rate will be H(1 — p1,p1/2,p1/2 = H(p1) +
p1 bits, i.e. when each region corresponds to one quantization bin (p; = 1 — pg). As
is obvious from the figure, this scheme is far from optimal at low rates. The other
curves in Figure 2.8 are the magnitude upper bound, the empirical D(R) computed
with Blahut's algorithm and the SLB. The knee in the upper bound is a good indicator
for the beginning of the high-rate region, where the bound becomes loose.
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Figure 2.8: Distortion rate characterization of flat-peaked source. Parameters
a=01p =1-0.11

The differential entropy needed to compute the SLB can be expressed as

hMX)= - /f(:v) log f(z)dz = —2adlog(d) — 2(b — a)clog(c) (2.69)

= H(p)+polog(2a) + pi log(p; > V/12 ¥ (p1 — 4)a% —3a), (2.70)

where we used b = (1/2)(—a + \/ 12p7 + (1 — 4p; 1)a?). Equation (2.70) makes
evident that for py — 1 (therefore p; — 0) the term log(2¢) dominates all others,
since limp_,o4 plnp = 0. This underlines the importance of the width (the volume)
of the most probable set, which essentially determines the entropy.

2.6.1 Infinite Tails

Now we will fix the value of @ and let b — oo, respectively p; — 04-. This corre-
sponds to a random variable that concentrates essentially all probability to the finite
interval | — a, a[, but has infinite tails such that the variance constraint (2.66) is satis-
fied. First, the the rate distortion behavior will be characterized by the Shannon lower
bound and the magnitude upper bound. Then the performance of a practical uniform
quantization scheme is analyzed.
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Figure 2.9: Distortion rate characterization of flat-peaked source for b — co.

Shannen lower bound As expected from (2.70), we have

lim A(X) = 11H3+ h(X) = log(2a).

b—oc P1—

The more confined the peak (smaller a), the lower the entropy and thus the SLB. If we
take a as an (inverse) measure of peakedness, this simply means that highly peaked
random variables have lower asymptotic (high-rate) distortion than less peaked ones,
i.e. they are easier to compress.

Magnitude upper bound First we treat the case for thresholds ¢ > a. Define ¢ =
7bh, so that for b — oo the bound can be computed for all 0 < 7 < 1. The key
quantities needed to compute the bound are

3 - 2
u(r) = bT_#:?(l -7), @.71)
_ 2
A(r) = gf—g,ﬁﬁ(l -7, 2.72)

Since limy_, o 1£(7) = 0 regardless of 7, we have that for any R > 0 the exponential
exp(~2[R — h{u)]/u) in the bound (2.18) goes to zero, implying D(R > 0) <
02 — A(r). Furthermore, limy_,o A(7) = (1 — a?/3)(1 — 7°), which means the
bound is tightest for 7 — 0. Therefore we can bound the distortion of the flat-peaked
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source with

2

D(R) < % +5 VYR>0 2.73)

for an arbitrarily small positive §. Thus D(R) drops abruptly from 1 to a?/3 (or less)
when the rate is increased from 0.
Now let’s look at ¢ < a, where after taking the limit &6 — oo we have

w(t) =1—t/a, .79
Aty =1-t3/3a. (2.75)

These can be directly plugged into one of the upper bounds. If we use (2.58) and
(2.59) and set t = a, we get R(a) = 0 and D(R(a)) < a%/3 as expected. For
Figure 2.9 the tighter bound (2.64) was used. By taking the limit b — o0 we have
actually reduced our flat-peaked pdf to a random variable that with probability one is
uniformly distributed over [—a, a] — not very interesting.

2.6.2 Uniform Spike

Finally we analyze the case a — 0+, but keeping the probability mass py at zero. This
corresponds to having a Dirac distribution §(z) of weight po plus an uniform density
on [—b, b] with probability 1 — py. This setup actually anticipates the spike process
that will be analyzed in more detail in the next chapter, only that there the continuous
density will be Gaussian, not uniform.

The moment constraints (2.65, 2.66) require

— _V3 _ (1=pa)®?
b V=T andc = W
With these equations we obtain the moment functions x(t) = (1 — po)(1 — ¢/b) and
A(t) = 1 — 3/b®, from which we can plot the magnitude bound. The distortion for a
uniform quantizer is straightforward to compute if we observe that it operates only a
proportion 1 — py of the time. Its operational drf is

§(R) = exp(~287220)) - R > p(py). (2.76)

Figure 2.10 shows that we can improve on (2.76) by linear multiplexing between the
(R, D) = (0,1) and the point on J(R) that has the tangent through (0, 1). The other
remarkable point is that the bound is actually better than a uniform quantizer, even
when multiplexing with R = 0.
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Figure 2.10: Distortion-rate upper bound and uniform quantizer performance
for uniform spike source. Linear scale at bottom.






Chapter 3

Low-Rate Transform Coding

In this chapter we are going to address the question that first motivated our research:
what makes transform coding systems do so well at low rates? We will take an ad hoc
approach with a slant towards wavelet transforms; in particular, all examples will be
for wavelet image compression. As a consequence, we will only be able to give partial
answers to the opening question. Nevertheless, the bounds from this and the previous
chapter can be used to distinguish between transforms with coefficient statistics that
are “good” or “bad” for compression. In that sense these bounds are engineering tools
that quantify one’s intuition about low-rate transform coding.

The outline of this chapter is as follows: first, we will argue that “good” transforms
output coefficient vectors that are sparse, i.e. most components are equal to zero or
close to it. This observation leads to the definition of the spike process, which is an
extremely simple model for sparse coefficients. If we are just concerned with the
positions of the nonzero components, the Hamming distortion measure is appropriate.
Section 3.2 is an exception to the general flavor of this thesis, since it presents exact
analytic solutions for this special Hamming case. In Section 3.3 we get back to upper
bounds on mean squared error when we look at Gaussian-valued spike processes. As
it turns out, the spike model is not a good match for the behavior that we actually see
in practical systems. Therefore in Section 3.4 we look at Gaussian mixture coefficient
models, which will give more satisfying results. They also expose the weakness of
the magnitude bound at higher rates. We take that as an incentive to derive a high-
rate upper bound that complements the low-rate bound, but at the price of giving
up on oligoquantization. In exchange the high-rate bound also allows us to define a
coding gain similar to the one known in linear transform coding. This opens a new
perspective on those transform coding systems that “mix” all coefficients together and
quantize them with a single quantizer, which is matched to the mixture density.

35
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Figure 3.1: Block diagram of a transform coding system

3.1 Sparse Transform Coefficients

The basic block diagram of a transform coder is shown in Figure 3.1. In most cases
the signal is split into blocks of constant length before it is transformed and quantized.
The quantizer is usually a direct product of scalar quantizers: in fact, the main “rai-
son d’étre” of transform coding is to avoid the complexity of vector quantization. If
the transform is orthogonal, Parseval’s equality holds and the distortion in the signal
domain will be equal to the quantizer distortion in the transform domain. This is also
approximately true for some often used biorthogonal wavelet transforms, since they
have almost tight frame bounds. Thanks to this relation, the design of the transform
and the quantizer can be separated.

The goal of the transform is to decorrelate the signal, or more generally, to pack
the signal energy in as few coefficients as possible. If the input signal is a stationary
Gaussian process, then the Karhunen-Logve transform (KLT) is known to be the best
such transform. The best high-rate product quantizer can then be found with standard
bit allocation methods. Even a low-rate analysis of this Gaussian/KLT case is possible
(30}

The problem with these approaches is that most natural signals are highly non-
Gaussian, so the KLT analysis does not apply. Nevertheless, transform coding works!
We sketch an explanation of this for the wavelet transform. Figure 3.2 shows a dyadic
one-dimensional wavelet transform realized with an iterated filter bank. H; is a high-
pass filter that outputs the details, whereas the lowpass Hy outputs a coarse approx-
imation of the input signal. Each time we iterate over the lowpass output, we are
analyzing the signal at a larger scale.

A key property of a wavelet is the number of vanishing moments. In a nutshell,
it says up to what degree a polynomial will be canceled in the highpass (and thus be
represented entirely by the lowpass aka scaling coefficients). Figure 3.3 shows the
wavelet decomposition of a piecewise polynomial signal. If the wavelet has enough
vanishing moments, only a fixed number of nonzero detail coefficients will appear at
each scale around the signal singularities. The polynomial part will be entirely rep-
resented by the lowpass approximation. This behavior extends to piecewise regular
signals and is in fact a good first approximation for wavelet transforms of arbitrary
signals that are mainly composed of smooth pieces [14]. These are good models not
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Figure 3.2: Wavelet transform with an iterated filter bank.

only for images!, but also many other non-stationary, non-Gaussian natural signals.
Here we have to remark that our “derivation” holds in one dimension, whereas the
situation is less straightforward for the separable two-dimensional transforms used
in image compression. However, the observed coefficient behavior still supports the
hypothesis that the wavelet coefficients describe singularities, while the scaling co-
efficients approximate the smooth signal component. There is simply a certain re-
dundancy (an increased number of nonzero coefficients), since a separable transform
cannot “recognize” the proper singularities (i.e. edges) in two dimensions.

To sum up, the wavelet transforms used in compression yield vectors of sparse
large amplitude coefficients. They live up to the goal of packing as much energy
as possible in as few coefficients as necessary. In fact even transforms of the Fourier
family show a similar behavior if they operate on small blocks, like in the JPEG image
coding standard. Another example are the coefficients in LPC speech coding when the
sound is voiced.

Of course these sparse transform vectors are an ideal match for oligoquantization,
since the thresholding will retain precisely the large amplitude coefficients that contain
most of the signal energy. Note that now we consider a single (scalar) quantizer for
all coefficients, and no longer the product quantizers with bit allocation that are used
with the KLT. This makes sense because we cannot predict a priori the positions of
large coefficients?, so that precomputed bit allocation is impossible.

In this chapter we will analyze two models for sparse transform coefficients. First,
we propose a strongly simplified model of a transform vector that is zero everywhere
except in a few positions, where large “spikes” stick out (see the detail scales in Fig-
ure 3.3). This spike model will be studied in the next two sections. However, due
to its discontinuous nature, it does not match the behavior of actual transform coding
systems. Therefore we then look at Gaussian mixtures, which prove to be a much
better model.

VExcept for high frequency textures.
20f course causal prediction across wavelet scales is possible. However the position of a singularity in
the signal cannot be predicted.
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Literature Transform coding is treated in almost every textbook that covers lossy
data compression, see e.g. [26, 28, 43]. Wavelet-oriented signal processing textbooks
that contain material on transform coding are e.g. [47, 32]. An analysis of the low-rate
behavior of image transform coders, based on measured statistics, appeared in [33].

3.2 Spike Position Encoding

Before we generalize to random spikes in the next section, we want to analyze a re-
stricted subproblem that is deterministic in the sense that the number of spikes is
known a priori to both encoder and decoder. For the Hamming distortion measure it
is possible to obtain analytic expressions for the rate distortion function.

3.2.1 Definitions and Single Spike Case

In the following definition the spike location will be restricted to a finite set. This
makes sense, not only because in practice one always deals with a finite number of
transform coefficients, but also because a continuous distribution of spike locations
would require infinite rate for zero distortion.

Definition 3.1 A spike process is a memoryless random process which outputs or-
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dered pairs (U, V') of random variables, where the position U has a finite alphabet
U with \U| = N, while the vatue V is drawn from an alphabet V with no particular
restrictions.

We will assume 4 = {1,2,... , N}, since any other alphabet of size N can always
be represented by that set. Further we suppose that V is a ring. Then a spike process
sample (u,v) can be mapped to a VN -vector simply by ¢(u,v) = ve,, where e; is
the i-th standard basis vector.

Definition 3.2 Let X be the source alphabet, and X the reconstruction alphabet. A
single-letter distortion measure (or fidelity criterion) is a non-negative real-valued
Sunction p(z,%) : X x X — [0, 00[. In the spike case we have & = (u,v), X =U XV,
and analogously &, x.

Probably the simplest distortion measure that can be applied to spike processes is
the Hamming distance between the position vectors, i.e. the basis vectors e;. It can be
shown (see Theorem 3.1 below) that just one additional reconstruction letter is needed
to achieve the rate distortion bound, and it will map to the all-zero vector 0. If we
define d = {0} UU and ey = 0, then everything fits nicely. Using @& = 0 corresponds
to not coding the position. We get the following distortion measure:

wr(e, — eg)

= §(4) 4 2[1 — 6(@)][1 — 6(u — )] G.1)

plu, v; 4, D)

Thus “giving the right answer” has zero distortion, a wrong answer two, and not an-
swering costs one distortion unit. We proceed with the definition of the (information)
rate distortion function for discrete memoryless sources (DMS), closely following the
notation in Berger’s book [1]. Note that this coincides with the information-theoretic
definition (“infimum of achievable rates”).

Definition 3.3 (Rate distortion function of a DMS) Let X ~ P be a discrete mem-
oryless random variable, p(x, ) a single-letter distortion measure, 21X (klj) a con-
ditional distribution (defining a random codebook), and Py ¢(j,k) = P(§)Q(klj)
the corresponding joint distribution. The average distortion associated with Q(k|j) is

d(Q) =Y P()Q(kl7)p(j, k). 32)
7.k

If a conditional probability assignment satisfies d(Q) < D it is called D-admissible.
The set of all D-admissible Q@ is Qp = {Q(k|j) : d(Q) < D}. The average mutual
information (“description rate”) induced by Q is

Q(kl5)
Qk)

1(Q) =Y P(j)Q(k|5) log (3.3)
J.k
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where Q(k Z P(7)Q(k|7). The rate distortion function R(D) is defined as
R(D)= min I
(D)= min I(Q)

This convex optimization problem can be solved with the method of Lagrange
multiptiers [1], [10, Section 13.7]. We start with the functional

J(Q) = I(Q) + Md(Q) + ZVJ ZQ(ku

where the last term comes from the constraint that Q}(k|j) is a proper conditional
distribution, i.e. satisfies >, @(k|7) = 1. The minimizing conditional distribution
can be computed as

Q(k)e=20tih)
Qkl) = S QUE e reGED 34
The marginal Q(k) has to satisfy the following N = | X| conditions:
P(jleUm) o
Z ZL, Q(k')e—xp ey =1 ifQk) >0, (3.5)
~Ap(3,k) ]
Z zk’ k/ TGk <1 if Q(k) = 0. (3.6)

Inequality (3.6) stems from the Kuhn-Tucker conditions (for a detailed derivation of
the above see Section 13.7 in [10]). The solution of the problem is further simplified
by the following theorem (2.6.1 in [1]):

Theorem 3.1 (Berger) No more than N reproducing letters need be used to obtain
any point on the R(D) curve that does not lie on a straight-line segment. At most,
N=N+1 reproducing letters are needed for a point that lies on a straight-line
segment,

As anticipated above, we need just one additional reconstruction letter to achieve
R(D). To see that it can only be the all-zero vector, consider the source alphabet
U= {ez;}, which consists of all vectors of Hamming weight one. Any other non-zero
vector will be at Hamming distance one or more from these vectors and thus can only
worsen the distortion achieved by the all-zero vector, i.e. exactly one.

Proposition 3.2 The rate distortion function for a single spike in N > 2 equiprobable
positions with the Hamming distortion criterion (3.1) is

_ (- D)log(N -1) f{<D<L1,
R(D) = {logN— Slog(N-1)-h(5) ifo<D< 3. D
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Proof: The symmetry of the input distribution, P(j) = 1/N (j = 1,...,N), sug-
gests the following marginal distribution:

1—-qo

Let us first assume that ¢ > 0 holds for all k. Then the N + 1 conditions (3.5) have
to be met. We make the substitution 3 = e~ and insert our Q(k) into the equation,
first for k #£ 0:

A N (V- 1)p? __!
2B + R (B+ (N - DB?) o’ + (B + (N - 1)) P(j)

Q=(g0,q1=@=...=qnv = 3.8)

=N

q@((N - 1) - NB +1) =0. (3.9)
For k& = 0 we get almost the same equation:
Ngt 1
@B + (8 + (N - 1)6%)  P())

(1—go)((N-1)82-N3+1)=0. (3.10)

The solution § = 1 corresponds to the point (0, Dyy,a,) (with Dy, = 1) in the
(R, D) plane, which is achieved by setting go = 1. Therefore the interesting solution
is 8 = 1/(N — 1), which when inserted into (3.4) yields

Q(k|j) = qe(N — 1)17l:0), G.11)

Putting (3.11) into (3.2) we get the average distortion d(Q) = 1 — &=2(1 — ¢o) and
from (3.3) the rate 1(Q) = 2=2(1 — ¢o)log(N — 1). Noting that these hold for
go > 0, we combine them to eliminate ¢y and get
R N-2
- fi <
log(N - 1) or R

This proves the first part of equation (3.7). When R reaches its upper bound in (3.12),
D reaches 2/N and we have ¢p = 0. At that point, equation (3.9) will be satisfied for
all 8. According to condition (3.6), equation (3.10) now becomes an inequality:

(N-1)B2-NF+1>0. (3.13)

This is satisfied by 3 > 1 or 8 < ', which is equivalent to A > In(N — 1). The
first solution (8 > 1) can be discarded, since it would result in D(R) being larger than
1 and discontinuous. The conditional distribution parameterized by 3 is

D(R)=1

log(N —1). 3.12)

0, k=0
Q(k|7) ={ ) (3.14)
wv-ng F#0
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As before we put this into (3.2) to get d(Q) = % and into (3.3) yielding

1Q) =logN - — N =DF 1o N_1)—n <——1——> ,

I+ (N—1)p I+ (N-1)p
where h(p) = —plog p—(1—p)log(1—p) is the binary entropy function. Eliminating
3 from the last two equations yields the second part of equation (3.7). 0

Figure 3.4 shows a set of typical R(D) functions. As N grows large, the linear
segment dominates the rate distortion characteristics. Further we observe that in the
special case N = 2 the solution degrades to the D(R) function of a binary symmetric
source (with doubled distortion).

Figure 3.4: R(D) for single spike with Hamming distortion, N = 2 (bottom)
up to N = 5 (top curve). The rate has been normalized to 1/log N. For
N — o0, R(D) becomes a straight line, see (3.7).

3.2.2 Generalizing to Multiple Spikes

The typical output of an image transform is of course not a single spike in one out of NV
positions, but rather a group of them. Therefore a way to model a transformed picture
is to specify K out of N coefficient positions, e.g. those above a given threshold. In
the Hamming case this is equivalent to a source emitting one of the ( IA{’) binary vectors
of length NV and Hamming weight K. We will again assume that all source letters are
equally probable, and that NV and K are given. We look only at the case where the
number of 1’s is K < N/2, since the other case (N/2 < K < N) is complementary.

The analysis is simplified by the fact that the set of source vectors of weight K
forms a group code under permutation. Under the action of the symmetric group Sy,
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any vector of the set will again yield the whole set. Thus the code is geometrically
uniform, i.e. the distance (distortion) profile looks the same from any vector of the set.
By decomposing permutations into transpositions, one establishes that the distances
will always be integer multiples of two. Assuming that K’ < N/2, there are exactly

K\/N-K
wd:(d)( i ) d=0,...,K (3.15)

vectors at Hamming distance 2d from a given vector. The following identity will also
be very helpful in our development:

K
> wa =
d=0

As in the single spike case, the reconstruction alphabet consists of the source alphabet
plus the zero vector, to which we assign the probability g, as before. To compute
the slope of the linear part of the rate distortion curve we have to solve the equation
(compare with (3.9, 3.10))

K

> () (") =)

d=0

K
> wB* - (ﬁ)ﬁ" =0. (3.17)
d=0

The solution 3 = 1 corresponds again to maximum distortion, D = K. We will now
assume that somehow we found the interesting root 8y with 0 < 8y < 1 (for K = 2

itis 8o = ( N 5 2) _1/2, for larger K it can be computed numerically). Then the linear
part of the rate distortion function will be
R(D)=(D-K)logfy, D(Bo)< D<K (3.18)

where the bounds on D guarantee 0 < go < 1 (D(f39) is defined below in (3.20a)).
For g = 0, any 5 < 3, will satisfy the Kuhn-Tucker conditions. We define a pseudo-
distribution

waf

Efzﬁ:o wyr 324" )

After some calculations, we get a parametric expression for the rate-distortion curve:

bg d=0,...,K. (3.19)

K
D(B) =) bs2d (3.20a)
d=1
N K K
R(B) = log ( K) + dgobd log by — dz=obd log wy (3.20b)

for 0 < 8 < fBo. The middle term in the expression for R is the negative entropy of our
pseudo-distribution b, (compare with (3.7)). Figure 3.5 shows that for sparse spikes
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0 0.2 04 px 06 0.8 1

Figure 3.5: R(D) for multiple spikes with Hamming distortion, K = 4,8, 16
spikes (top to bottom curve) in N = 32 positions. Rate, distortion normalized
to R* = R/log (}) and D* = D/K.

(small K/N) the linear segment again dominates the rate distortion behavior. The
consequence of this “almost linear” R(D) behavior for sparse spikes is the following:
to build a close to optimal encoder for intermediate rates 0 < R < log ( ﬁf), we can
simply multiplex between a rate 0 code (no spikes coded) and one with rate log ()
(all K spikes coded exactly). Put otherwise, if we have a bit budget to be spent in
coding a sparse binary vector, we can simply go ahead and code the exact positions of
the ones (the spikes) until we run out of bits.

These results can also be used to derive the asymptotic operational rate distortion
function of a simple two pass universal lossy source coder as follows: first the number
of ones (K) in a block of length IV is determined and sent to the decoder using at most
log, N bits. Then a code for a weight K vector is used. For N — oo, we approach
the above rate distortion functions with a redundancy of l—"%"’vﬂ bits per sample. (In
view of the results for universal lossless source coding, we expect that this redundancy
could be halved.)

3.3 Random Spike Processes

The previous section was a short excursion to Hamming distortion and precise results:
now we are back to mean squared error and upper bounds. Instead of considering
only the spike positions, now we also look at their values. Moreover, we abandon
the deterministic setting “K spikes in IV positions” in favor of a memoryless, scalar
model. Figure 3.6 shows the basic setting: a spike process is simply the product of
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a binary-{0, 1} source with a memoryless real-valued source. Here we consider only
Gaussian values, because they serve as the usual worst-case benchmark. The binary
source simply “switches the value source on or off”. To start, we consider a BMS, so
that the resulting spike process is also memoryless.

Binary source: Ue{0,1}
- Bernoulli-p ’
- Markov order 1

X=U0V

Gaussian source

N(0,0%)

VeR

Figure 3.6: Spike process

Definition 3.4 (Bernoulli-Gaussian (BG) spike process) An i.i.d. Bernoulli-Gauss-
ian spike source (process) emits a memoryless random variable X that is the product
of a binary random variable with a zero mean Gaussian random variable. The binary
{(Bernoulli) random variable has Pr{X = 1} = pand Pr{X = 0} = 1 — p, and the
Gaussian has variance o2, Using the §(-) distribution, the pdf of the BG spike can be
written as

f(z) = (1-p)s(z)+p e /20 (3.21)

2o

This pdf can also be seen as a mixture of two zero mean Gaussian random vari-
ables, with one of them having zero variance (a special case of the model that will be
studied in the next section). The magnitude bound (2.18) can be easily evaluated if
one replaces T by T + ¢ in the lower integration boundary of (2.2), with an arbitrarily
small number ¢ > 0. By doing this we exclude the Dirac (1 —p)d(z) from the integral,
and hence we have ;(T') < p for all T > 0. This is obviously correct, since we never
have to code the value of a spike with zero amplitude.

Figure 3.7 shows the bound and the empirical D(R) for p = 0.11. The asymptote
shown is actually the trivial upper bound B(0, R), i.e. when all spikes are coded (thus
at least R = h(0.11) = 0.5 bits are required before the distortion starts decreasing).
The figure illustrates the change in D(R) behavior between low and high rates that
is typical of spike processes, regardless whether the continuous part of the pdf is a
Gaussian or some other density (see also the uniform spike in Section 2.6.2).
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Figure 3.7: Bernoulli-Gaussian spike with p = 0.11: empirical D{R), upper
bound (2.18) and trivial upper bound B(0, R) (bottom to top curve). Normal-
ized to unit variance.

Mixed random variables When evaluating the magnitude bound for the BG spike,
we excluded the Dirac §(x) from the integrals. The deeper reason is quite simple:
most results in “standard” rate distortion theory hold only for random variables with
(absolutely) continuous densities, some hold if there is at most a countable number of
steps in the pdf. That the BG spike is a strange random variable is also evident from
the plotted bounds, since the asymptotic distortion decay is much steeper than —6 dB
per bit. In fact, the spikes belong to the family of mixed random variables, that have
both a discrete and a continuous part. Their entropy cannot be computed with the
usual integral, but only via mutual information conditioned on the discrete part [37,
Ch. 2]. With this trick, Rosenthal and Binia were able to derive the asymptotic rate
distortion behavior of mixed random variables [39]. Their results coincide with our
asymptotic upper bound B(0, R) if the continuous part is Gaussian, otherwise their
result is obviously tighter.

3.3.1 First Order Markov Spikes

A natural extension of the memoryless spike model is to consider bursts of spikes. To
model such a bursty behavior we can simply replace the Bernoulli process by a first
order binary Markov process, with states Sy (no spike) and S; (spike). Thus we get a
spike process with correlated positions, but uncorrelated values. The Markov process
is specified by two transition probabilities, & = Pr{Sy — $;} and 8 = Pr{S; —
So}.

To compute a bound like (2.18) we first threshold the Markov-Gaussian spike pro-
cess. It is easy to show that the resulting process is the product of a new first order
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Markov process and a thresholded i.i.d. Gaussian process. The parameters of the new
(“thresholded””) Markov process can be computed from «, 3 and the threshold ¢. Then
we compute the entropy rate of the thresholded process, i.e. the spike position indica-
tor (2.3), and use it to replace h(p(T')) in equation (2.16).

Figure 3.8 compares upper bounds for memoryless and Markov spikes with the
same marginal spike probability, p = «/(« + 3). At low rates the two bounds are
quite close, while at higher rates their horizontal spacing approaches the difference
between zero-th and first order entropy (entropy rate). The low-rate behavior can be
explained as follows: low rates correspond to high thresholds, which means that the
thresholded spikes are very sparse and there is thus less dependency among them.
Therefore the difference between zero-th and first order entropy gets smaller. This
means that at low rates it is harder to exploit the significance map correlation between
neighboring samples, unless the values are correlated (but in the present example they
are not: only their positions are).

04

~251

_30-l LS ¥ L} L L} LI
0 01 02 03RO04 05 06

Figure 3.8: Upper bounds for memoryless BG spike with p = 1/16 (top
curve) and first order Markov Gaussian spike with & = 1/30 and § = 1/2,
yielding same marginal probability p = 1/16 (bottom curve).

Discussion We proposed the spike process as a model for sparse transform coeffi-
cients. However, comparing with Figure 1.1 we see that its D(R) behavior is very
different from the one observed in actual image coders. The reason lies in the mixed
nature of the model: at large rates, we have to spend the rate to code the discrete part®,
but in turn the distortion decay will be steeper, inversely proportional to the proba-
bility of nonzero samples. Conversely, by the tightness of the Shannon lower bound,

*1f the pdf is continuous, for ¢ — 0 we need no side information rate, or lim; ¢ h(u(¢)). Conversely,
the spike case will top out at h(p) (assuming p < 1/2).
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a continuous random variable cannot have an asymptotic distortion decay other than
the well known —6 dB per bit. We conclude that the spike process is a bad model for
our intended application, or, to put it more positively, it is a solution in search of a
problem.

3.4 Gaussian Mixture Model

As became clear in the above discussion, we should stick to continuous densities when
modeling transform coefficients. One of the more common approaches to density
estimation is based on Gaussian mixtures. In this section we will analyze a simple
ii.d. Gaussian mixture model, where a hidden binary memoryless source picks one
of two zero mean memoryless Gaussian sources. This is a generalization of the spike
model, where one source had zero variance. The model pdf is:

flz)=pf(z|S =1)+ (1 - p)f(z]|S =2) (3.22)
where S is the hidden state selecting a source, and
f@]S =) = ——e—="/20F, (323)
270

Such models have been used quite successfully in various applications, see [12] and
references therein. To get realistic estimates for the parameters, we used a version of
the EM algorithm [7] on the wavelet coefficients of the Lena image (transformed with
SPIHT [42]). The scaling coefficients were discarded beforehand, since the model
(3.22) does not fit them (due to nonzero mean); and therefore they are not accounted
for in the rate distortion bound.

Figure 3.9 shows the magnitude bound and the empirical D(R) computed with
Blahut’s algorithm [4]. Up to the knee, which is typical for image coding distortion
rate curves, the distortion decays more rapidly. This means mainly that the sparse co-
efficients from the high variance source are retained by the thresholding operation. At
higher rates, the coefficients from the low variance source also start being significant.
The empirical D(R) curve crosses the bound for numerical precision reasons: the
pdf input to Blahut’s algorithm should be more finely quantized around zero, where
the low variance source is determinant. Another apparent fact is that at higher rates
the bound becomes loose, because it converges to the trivial Gaussian upper bound
B(0, R). At high rates (very low threshold), D(R) of a thresholded rv is close to
D(R) of the non-thresholded rv, which is far from the Gaussian upper bound for the
mixture density in our example. A tighter upper bound, which holds also for densities
other than Gaussian mixtures, will be presented in Section 3.5.

3.4.1 Lower Bound on D(R) of Gaussian Mixtures

Since Gaussian mixtures are a popular tool to approximate unknown densities, it is
useful to also have a lower bound on their rate distortion function. The Gaussian
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Figure 3.9: Gaussian mixture model for wavelet (detail) coefficients: upper
bound on TOQ distortion rate function and empirical D(R). The top curve is
the trivial Gaussian upper bound B(0, R). Model parameters, normalized to
unit variance: p = 0.9141, 07 = 0.01207 and 03 = 11.51. At bottom, detail
of low-rate region.
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mixture source can be viewed as a finite alphabet discrete memoryless source S that
switches between |S| Gaussian sources A'(m;, 02) with selection probabilities w, =
Pr{S = s}. Alower bound on D(R) is found by assuming that an oracle provides
the hidden state variable S to the source encoder. Since S — X — X form a Markov
chain, we have

I(X; X|S) < I(X; X). (3.24)

We observe that Rip(D) = minyg|q 5e0p I(X;)?IS) (with Qp = {p(&|z,s) :
E(X — X)? < D}) can be computed exactly by solving the following standard rate
allocation problem (see Appendix A):

Dy (Rp) = ?gl} > weoem?H (3.25)

subject to
Z wsRs = Ry, and R, > 0. (3.26)

This yields the lower bound D(R) > Dy, (R). We note that this bound can be seen as
a special case of a conditional rate distortion function [22].

Figure 3.10 shows the lower bound, together with the upper bound to be presented
in Section 3.5 and the (R, D) points achieved by a scalar bitplane quantizer (applied
to 3 10° pseudo-random samples from mixture source; significance maps are entropy
coded, sign and refinements bits left uncoded). At low rates, thresholding with simple
scalar quantization performs very close to the R/D optimum.

3.4.2 Modeling Dependencies across Wavelet Scales

Practical wavelet coders try to exploit dependencies between coefficients within and
across scales. One expects to find some correlation, because many popular filters are
not perfectly orthogonal and also, by the partial non-randomness of images, they can
never achieve total decorrelation. Data structures such as zero trees are used to track
dependencies across scales, from coarse to fine. The in-scale dependencies are cap-
tured by a small causal context around the coefficient being processed. There are no
good continuous models of this correlation (e.g. Gauss-Markov, AR), also because
their existence would imply that we could have built a better decorrelating transform
in the first place. Instead, practical schemes such as SPIHT [42] use the significance
map to extract a context for the binary arithmetic encoder that encodes the significance
of a coefficient. More elaborate schemes also consider the sign, but yield a relatively
small gain, which can be improved if the signs are used in an estimate of coefficient
magnitude [13]. This sums up to the general agreement that the most significant bit
of the coefficients (represented in base 2) “carries” most of the correlation that can be
exploited in practical compression schemes [50]. Over the last years, several authors
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Figure 3.10: Gaussian mixture model for wavelet (detail) coefficients: Low-
and high-rate upper and lower bounds on distortion rate. The middle curve is
the empirical D(R), the boxes denote (R, D) points achieved with a bitplane
quantizer. At bottom, detail of low-rate region.
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have also remarked that it is not necessary to use a tree data structure to catch depen-
dencies across scales. It suffices to reorder coefficients so that dependent coefficients
are close to each other in a linear arrangement. Alternatively, larger contexts contain-
ing all spatially neighboring coefficients are used in the arithmetic encoder, as is done
for example in the JPEG 2000 standard. The main advantage compared to the tree
approach is the absence of large global data structures, a disadvantage is the increased
computational complexity (the arithmetic encoder has to encode lots of zeros that the
tree would represent with one node) [34].

To summarize, we see that trying to find a good model of coefficient dependen-
cies is a bit of a “catch-22”. If the model is discrete (based on most significant bits),
then the appropriate framework seems universal lossless coding, which doesn’t deal
with distortion. If the model is continuous we could hire an engineer to build a bet-
ter decorrelating transform. Finally, we remark that the Markov spikes presented in
Section 3.3.1 are certainly not a good model!

3.5 High-Rate Bound

The Gaussian mixture example made it obvious once more that the magnitude upper
bound becomes loose at high rates, as it approaches the Gaussian upper bound. There
is definitely an opportunity for a tighter high-rate bound. Besides that we need an
exception to confirm the rule that this thesis focuses on low rates.

In Section 2.3 we bounded the rate distortion function of the significant samples
above threshold with Eq. (2.15), since we were looking at thresholding oligoquan-
tization. However, a better D(R) bound may result if the samples below threshold
are also considered for coding, i.e. upper bounded as Gaussians. The corresponding
quantization method is a straightforward generalization of oligoquantization.

Definition 3.5 Magnitude Classifying Quantization (MCQ) is a two step quantization
procedure for i.i.d. sources. First, the samples are classified into significant and in-
significant ones, according to whether their magnitude lies above or below a chosen
threshold, respectively. The class of each sample is sent to the decoder as side infor-
mation. Then each class is quantized separately using one of two (high-dimensional)
quantizers, whose rates are chosen in order to minimize overall distortion.

In the usual manner, we are going to state an upper bound on distortion rate which
is also an upper bound on operational §( R) of MCQ.

Theorem 3.3 (High-Rate Magnitude Bound) Ler the variances of the insignificant
and the significant samples be

2_
a5(t) = E[X?| |X| < f] = 5=2) (3.27a)

and

ot(t) = ElX?||X| > 1] = 44, (3.27b)
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respectively. Then for all

R 2 Rpin(t) = h(u(8) + } In 253 (3.28)

ag(t

distortion rate of a memoryless source is upper bounded by
D(R) < By, (t, R) = c(t)e ", (3.29)

where

c(t) = exp [3h(p(t)) + (1 — p(t)) In(o? — A()) + u(t) In A(t)] .

The best asymptotic upper bound for R — oo is obtained by numerically searching
the tg € [0,00) that minimizes c(t). Since lim_ 1o c(t) = o2, the Gaussian upper
bound is always a member of this family of bounds.

Proof: The thresholding process splits the input into two “sources” with variances
given in (3.27a). A given sample belongs with probability wo = 1 — p to the first
source, and with probability w; = p to the second (the dependence on ¢ is dropped
for convenience). We assign rate Ry,; to source 7. Then the average rate per sample is

R = h(p) + woRv,p + w1 Rv,
and the average distortion can be upper bounded with
D < woage 2Bvo 4y ole v,

We see that optimizing the bound is a standard weighted rate allocation problem, ex-
cept for the side information term h(y) that gets added to the rate. The detailed so-
lution can be found in Appendix A; it leads immediately to (3.29). Condition (3.28)
guarantees that the rate allocation is proper, i.e. both Ry ; are non-negative. O

Corollary 3.4 The (low-rate) magnitude bound (2.18) and the high-rate magnitude
bound (3.29) coincide in proper non-boundary local extrema of the high-rate bound,
provided that f(x) > 0 over supp( f). More formally,

R*(t) = Rnin(t) <= B(t, R*(t)) = Bu,(t, Rmin(t)) <= '(t)=0. (3.30)
Proof: First we study the rightmost equation, The derivative of c(t) is
! 02 ! !
() = e() [u (I ZD + A1) (7%7) - ;21(7>) + 2 (t)h’(u(t))]

= ~2/(t)e(t) [in G+ (Fy — os) + W) B3

ag(t
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Since we assumed f(t) > 0 and have c(t) > 0 by definition, the term in square
brackets has to be zero for a proper local extremum. Since the domain ¢ € [0, 00) is
half open, a possible boundary minimum at ¢ = 0 has to be inspected separately. (The
same applies to the right boundary t,,,,,, if the support is bounded.) Now let’s look at
the middle equation:

B(t, R* (1)) = A(t) exp [20'(u(8)) + 7(8) + Wy (—y()e ™2 D=0
+o%— A(t)

1 2_
= BhT(t7 Rmin(t)) = Ug(t) = Ul_ul%g), (3.32)

which after taking the logarithm is equivalent to
Wy (—y(8)e™ 2" O =10) = _ap(u(z)) - 5(2) - In S52. (3.33)
Inserting this into the defining equation W (z)e"(®) = z we get

(=20 t8)) = 710) = I Z) Zie OO = (e OO,

(3.34)
which is equivalent to
2 2 N _
0= [m S+ 21 (u(t)) + (1)1 — g—g%)] e~ 2 (=YD, (3.35)

Observing that y(t) = ;f?—” shows that the term in brackets is equal to the bracketed
1

term (3.31), so that (3.35) implies ¢'(¢) = 0. Finally, the leftmost expression in (3.30)
is

0 = R*(t) — Rmin(t)

= = hile) [26/ (1) +7(0) + Wor (=1 EO=10)] - L(t) n 18,
(3.36)

Since ¢ is not allowed to be on the right support boundary, we can divide (3.36) by
w(t) > 0 and after rearranging terms we get exactly equation (3.33). Thus also the
first condition is equivalent to ¢'(t) = 0. 0

For a fixed threshold ¢, by definition of R,;, the point By, (t, Rmin(t)) is the
switch-point between the low-rate bound and the high-rate bound, that is for all R >
R,,;,, the high-rate bound is tighter. If now the two bounds are optimized (“best R
for given ¢”), Corollary 3.4 comes as no big surprise. In the interesting cases, when
c(t) has a single local (thus global) minimum at ¢, > 0, the consequence is that for
t > to (R < Riin(to)) the low-rate bound will be tighter, and for B > R, (to0)
the high-rate bound will take over. In the less interesting cases such as the Gaussian,



3.5 High-Rate Bound 55

¢(t) is minimal at ¢y = 0 and takes on a global maximum for some g > 0. At low
rates the bound (2.18) is again tighter; it becomes looser up to R,,;,,(to), while from
that rate on (3.29) will be the loosest bound. So far we have found no examples of
densities that lead to multiple local extrema of c(t).

Example 3.1 (Comparison with Gerrish-Schultheiss Upper Bound) Now that we
have both a low-rate and a high-rate upper bound, a comparison with previously
known bounds is in order. By its design, the high-rate bound will never be weaker
than the Gaussian upper bound. Therefore we limit the comparison to the Gerrish-
Schultheiss bound (equation !.15) stated in the introduction [18]. As mentioned there,
its main disadvantage is that in general it needs a double numeric integration — with
the usual Gaussian exception. For the Gaussian mixtures analyzed in the preceding
section, the marginal (codebook) density ¢(y) (equation 1.16) will again be a Gaussian
mixture. Hence only a single numeric integration is needed to compute the differential
entropy H(Y').

Figure 3.11 plots the upper bounds for the by now familiar Gaussian mixture ex-
ample (modeling wavelet coefficients). The advantage of the magnitude classification
bounds at low to medium rates is evident: they are tighter and they are simpler to
compute than the Gerrish-Schultheiss bound. However, at higher rates the Gerrish-
Schultheiss bound will necessarily win over the high-rate bound, since it converges to
the Shannon lower bound (it is asymptotically tight).

— Low- & high-rate upper bound
- =+ Gerrish-Schultheiss upper bound.
= = Blahut afgorithm

-5

L
=)

MSE Distortion [dB]

0.5 1

15 2 25

Rate [bits]

Figure 3.11: Gaussian mixture model for wavelet (detail) coefficients: Com-
parison with Gerrish-Schultheiss upper bound. The circle marks the switch-
point from low-rate to high-rate magnitude bound.
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3.5.1 An Upper Bound on Differential Entropy
We exploit the trivial fact that an upper bound to D(R) is also an upper bound to the

Shannon lower bound.

Corollary 3.5 Let uy = p(ty) and Ay = A(ty) be the quantities yielding the best
asymptotic upper bound in Theorem 3.3. Define the probability mass functions

Bo = o, 1 — o], @0 =[24,1— 2¢].

If the underlying pdf f(z) is absolutely continuous on R, the differential entropy
H(X) can be upper bounded by

H(X) < $In(2meo?) + h(1o) — 2D(pollao). (3.37)
Proof: By definition, A(t) is non-negative, monotonically decreasing on [0, co) with
A(0) = ¢*. Therefore ay is a proper pmf and thus the divergence in (3.37) is well
defined. Smce f(z) is absolutely continuous, the Shannon lower bound is also well

defined:
R(D) > Rspp(D) = H(X) — { In(2neD).

We may combine this with (3.29) expressed as a bound on R(D):

R(D) < 39 = 3p(p0) + 1522 In(o? — 4g) + L0 In 4y — L ln D

to obtain
H(X) < 3 In(2mea?) + 3h(po) + 52 In(1 ~ 28) + 40 In 4p.
from which the corollary follows instantly. 0O

For tp = 0, that is o = 1, the bound (3.37) reduces to the well known Gaussian
upper bound on differential entropy. Of course we are more interested in random
variables with very small (i.e. negative!) differential entropy, because these can be
compressed more easily. In that case the divergence term must be very large, and
the “side information” term h(jp) becomes negligible. Therefore low differential
entropy is essentially due to a “variance distribution” ao that is skewed compared to
the probability distribution gs,.

Example 3.2 Table 3.1 lists the upper bound and the entropy of a generalized Gaus-
sian for several values of the shape parameter 5. The bound is quite loose, compare
also with Figure 2.6. For peaked Gaussian mixtures such as the one we studied in
Section 3.4 the bound is much tighter.
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Shape Entropy | Upper bound
2 (Gaussian) | 1.4189 | 1.4189

1 (Laplacian | 1.3466 | 1.4064

172 09925 | 1.1624

1/8 -2.2430 1 -1.3100

Table 3.1: Differential entropy bounds for generalized Gaussian sources.
(Unit variance, entropy in nats.)

3.5.2 Coding Gain Revisited

In the study of linear transform coding, the coding gain measures the compression
gain of a transform coding system with quantizer bit allocation compared to a scalar
quantizer system without transform. Here we show how the high-rate upper bound
leads to an expression that is reminiscent of the coding gain of a two-dimensional
transform coding system.

Let us quickly go through the derivation of the classical transform coding gain.
Consider a real-valued, time-discrete, stationary and ergodic process { X } with mean
zero and variance o2. The samples are grouped into blocks X = [X/¥,] of length N
and transformed with an orthonormal transform T':

Y=TX.

By Parseval’s equality the quantization error in the signal domain will be equal to the
error in the transform domain:

IX - X|I* = Iy - Y|*.

Also, the average variance of the transform coefficients V; is equal to the variance of

X:
1 & 1 &
SN EY?= VY EX? =02
N; i N; =9

This holds (by linearity of expectation) assuming zero mean and can be easily ex-
tended to the nonzero mean case. Let 07 = EY;? be the variance of the i-th compo-
nent, i.e. transform coefficient. Note that we actually mean a random variable when
we talk about coefficients/components. If we use N scalar quantizers to quantize Y,
the optimal high-rate bit allocation is easily found using Lagrangian optimization (see
Appendix A, with weights w; = 1/N).* From Equation (A.8) we get an average dis-

tortion of the form D = (], o2)'/Ne~2R. This can be compared with the distortion

4This uses the assumption that either the signal is a correlated Gaussian process (then any orthonormal
transform will yield Gaussian coefficients), or at least that the signal components X; and the transform
coefficients Y; have the same “marginal” high-rate D(R) behavior of the form D = ce~2F.
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of a scalar quantizer applied to the X, whichis D = 0%¢ 2R = L Y™V EX?e 2R
In fact, the transform coding gain can be defined as the ratio of the distortion of di-
rect scalar quantization of the signal samples over scalar quantization of the transform
coefficients (with bit allocation):

# N10'2
1= (2
Gro = —JL== S, (3.38)
(IL‘::I 01)

In purely algebraic terms Equation (3.38) is the ratio of the arithmetic mean of the co-
efficient variances to the their geometric mean, which is often used as the “axiomatic”
definition of coding gain. Our short derivation gives some additional insight on the
implicit assumptions, namely high rate and (near-)Gaussianity.

Now it is obvious that we can define a measure of coding gain for magnitude
classifying quantization by considering the ratio of the Gaussian upper bound to the
high-rate upper bound (3.29).

Definition 3.6 The coding gain for optimaP magnitude classifying quantization is

Cun = A0 0 plto) ai(to) + (1 = ulto)) o5 (to) (3.39)
MCQ C(t[]) C(t()) e2h(ﬂ(t0)) o_f,u.(to)(to) Ug(l-u(to))(to)’ .

where ty is the threshold yielding the tightest upper bound in Theorem 3.3.

Except for the additional side information term e?#(#(*0)) | this definition corre-
sponds to the classical coding gain (3.38) for two sources with weights u(ty) and
1 — pu(to). This similarity opens a new perspective on transform coding: instead of
considering each transform coefficient as a distinct random variable, we mix all co-
efficients together and use a quantizer for the marginal density. A transform that has
high classical coding gain will have a peaked marginal density, so that also the MCQ
coding gain will be large. At the same time the mixing approach obviously entails a
loss in coding gain, that we study by means of an example.

Example 3.3 (Coding Gain Loss for Gaussian Mixtures) If the transform outputs
zero mean Gaussian coefficients, where each has one of just two distinct variances,
the resulting marginal density will be a two component Gaussian mixture like the one
studied in Section 3.4. We get the largest classical coding gain if for every sample
we know from which of the two sources it was emitted. That situation corresponds
exactly to the “oracle” lower bound presented in Section 3.4.1, and the coding gain is
simply the distance in dB to the Gaussian upper bound. The coding gain loss is the
ratio of MCQ coding gain (3.39) to classical coding gain (3.38), or the distance in dB
from the lower bound (3.25) to the high-rate upper bound (3.29):

e?h(u(to)) U%ﬂ(to)(to) Ug(l_u(to))(to)

2(1—wy) 2wy
m0 Omi1

SHere optimal refers to the tightest upper bound of Theorem 3.3; directly optimizing a MCQ would
yield tighter bounds, because significant and insignificant samples differ in D(R) behavior.

Acg =
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Note that here 02 (ty) denotes the variance of the sub-threshold samples, while o2, is
the first mixture variance. Figure 3.12 contains contour plots of the coding gain and
the MCQ loss Agg for different ratios §2 = ¢2,, /02, of the mixture variances and
weights wy = 1 — wo (0 = 1 is the Gaussian pdf). Large ¢ and small w; lead to
peaked densities; for example, the wavelet coefficient mixture from Section 3.4 has
6 ~ 30.9 and w; =~ 0.09. From the graph we see that these values correspond to a loss
of about 2.5 dB, which can be verified by checking the distance between the high-rate
bounds in Figure 3.10.

The above definition of coding gain loss is based on the assumption that we are
actually mixing two Gaussian sources with distinct variances (i.e. & > 1). What if we
only have a single source with the same marginal mixture density? Then the lower
bound is not achievable for # > 1 and thus a better definition of coding gain loss is
the ratio of the high-rate upper bound to the Shannon lower bound:

A e2h(u(to)) o‘f”“‘))(to) Ug(l—u(lo))(to)
CelsLe) = exp[2H(X) — In(2re))

The differential entropy H(X) has to be computed with numerical integration meth-
ods. Figure 3.13 plots the coding gain and the MCQ loss for this case. The MCQ loss
is remarkably low over a wide range of parameter values. This shows that the magni-
tude classification quantization approach is very effective for such sources. Let us also
remark that in this example the optimal MCQ threshold ¢y was always larger than the
threshold for the maximum likelihood classification, ¢ 77, = 1/In6%/(1 — 8-2)g,0.
This is quite natural, since the goal of the classification is a tight distortion bound, not
the optimal distinction of the two component sources.

Gaussian mixture models have often been used in image compression, for example
a classification approach has been proposed in [25]. The authors consider the joint
numerical optimization of the classifier and (high-rate) uniform quantizers for each
of the NV classes. Their simulation results indicate that for typical image data N = 2
classes yield a substantial improvement over a single class. Adding more classes gives
only minor gains over N = 2, which supports our observation that a two-component
Gaussian mixture is a good basic model for wavelet coefficients.
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Figure 3.12: Magnitude classifying quantization (MCQ) of two component
Gaussian mixtures (GM). Top: Coding gain Gr¢ for unmixed sources (equiv-
alent to GM lower bound). Bottom: Coding gain loss for MCQ of the mixture.
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Figure 3.13: Magnitude classifying quantization (MCQ) of two component
Gaussian mixtures (GM). Top: Coding gain G5, g for mixture source (equiv-
alent to Shannon lower bound). Bottom: Coding gain loss for MCQ of the
mixture.






Chapter 4

Extensions

This chapter extends the results of the previous chapters in various directions (its self-
explanatory working title was “odds and ends™). To get started, we outline a way
to generalize the magnitude upper bounds to sources with arbitrary, asymmetric den-
sities. The section thereafter deals with the key quantities x(¢) and A(t), showing
how they yield a succinct characterization of the rate distortion behavior of a ran-
dom source. Also, we outline how the bounds can be estimated directly from a set of
samples, without having to estimate the underlying probability density. The core of
the chapter addresses the extension of oligoquantization to higher dimensions. Two
examples will demonstrate that some improvements compared to scalar thresholding
are possible. On the other hand we will show that asymptotically for large dimen-
sions, oligoquantization amounts to simple multiplexing between no quantizer (rate
zero) and whatever quantizer is used for the significant samples. This means that
oligoquantization should only be considered at low rates and low dimensions.

4.1 Sources with Arbitrary Densities

In Chapter 2 we made the assumption that the random variable X has a symmetric
probability density function, thus simplifying many calculations. This section will
give a short outline of which results still hold when this condition is relaxed.

For an arbitrary pdf f(z), we define the moment functions to be

—t o0
= 2)dx ) dz, 4.1a
w = [ @t [ s @10
—t (e
A(t):/ m2f(m)dm+/ 2?2 f(z) dz. 4.1b)
— 00 t

All our upper bounds are based on the Gaussian upper bound, D(R) < o?e2E,
Therefore if the variance of the (in)significant samples is overestimated, the bounds

63
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will stiil hold. Luckily this is precisely the case, since

2_4
Var(X?|1X] < £) < B[X?||X| < ] = ”_1?;(%) @2a)
Var(X2||X| > #) < B[X?||X] > ] = —;‘—% 4.2b)

The other critical points in the proofs are the derivatives of the moment functions, their
ratio should be A’(¢)/'(t) = t? (see the Proof of Theorem 2.3, at end). From (4.1)
we see that the derivatives are

W(t) = —f(-t) — f(t), 4.3a)
A'(t) = [ f(=t) = f(B)]E7, (4.3b)

hence their ratio has indeed the desired value. If the pdf has finite support, additionally
we have to make sure that at least one of f(—t) and f(¢) is positive.

From Equations (4.2) and (4.3) we can conclude that the low-rate magnitude bound
(Theorem 2.3) and its high-rate cousin (Theorem 3.3) hold for arbitrary source den-
sities if the definitions (4.1) are used. The latter implies that also the entropy bound
(Corollary 3.5) is valid. Notice that the bounds can by optimized by shifting the pdf:
intuitively the mode of the density should be close to the origin, such that the distortion
floor E[X?|}X| < t] is small (see also Section 4.3.1).

The case of the magnitude+sign bound (Theorem 2.4) is much more delicate. Ba-
sically we split the source into three sources (classes) with variances ¢2,,02,0%,
and weights (probabilities) p_1, tg, t+.1. The high-rate bound can be computed in
straightforward fashion, since it is simply a rate allocation problem for three sources.
Conversely, things get complicated as soon as one or more of the three partial rates
Ry, is zero. Of course we could force this back into the symmetrical pdf case by: i)
Using always 1 bit to encode the sign, even if 1 # p4q, ii) Setting Ry, = Ry,
and iii) Upper bounding 2 | and 0%, by their maximum. However it is likely that this
triple weakening will not yield any interesting bounds, therefore we do not explore it
any further.

4.2 One graph says it all

Information theorists have a weakness for single-letter descriptions, which describe
the essential characteristics of a problem with a single quantity. Unfortunately con-
cerning rate distortion behavior there is not much that can be described by a single
quantity: the variance of a random variable yields the Gaussian upper bound, and
together with its entropy one can compute the Shannon lower bound. However, we
need more information to get a more detailed picture, in particular at low rates. The
bounds presented in the previous Chapters are quite demanding in that respect, since
they require the knowledge of the (symmetric) pdf to compute the zero-th and second
moments of the thresholded random variable. However in practical situations, where
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one is given a sequence of samples from an unknown source, it can be quite tricky
to obtain a reasonable estimate of the underlying density. On the other hand, sample
moments are easy to compute and are statistically robust if the i.1.d. assumption holds.

In this section we will argue that the “moment profile” A(y) is all we need to
compute our bounds. Of course this is far from a single-letter characterization, but at
least all relevant quantities can be read off directly from the graph of A(p), whereas
starting from the pdf f(x) involves more computations. And the moment profile can
be directly computed by ordering the (squared) sequence of samples.

Looking at the different magnitude bounds, we see that all quantities that are ever
needed are ¢, ;i(t) and A(t). The latter two are obviously given by A(y:), while for
the former we observe that

_ Al _ 2 2
A(pt) = 2 = = =t (4.4)

where prime denotes a derivative with respect to p, and dot w.r.t. £. So the slope of
the moment profile A(y) is exactly the squared threshold #?> we were looking for. If
furthermore we assume that f(z) > 0 for all ¢ < ¢4, (the support of f(z) has no
holes, i.e. X takes on values anywhere in its range (—%,04, tmas)), then we have

" —  RBAD-AMEE) _ —2f(O[-4FE)t-2f ()2 -4 (U2 F1 (1)
Al(pt)) = E 2300 B2 = s —8f3(t) :
= —ﬁ«) Vi:0 <t < tmes- 4.5)

We summarize the properties of A(u):

e A(0) =0and A'(0) = ¢2

maz?
s A(1)=o0cZand A'(1) = 0,

o A(p) 1s strictly monotonically increasing on (0, 1) by (4.4) and
o A(y) is strictly concave-N on (0, 1) by (4.5).

An immediate consequence of the above is that the moment profile of a random
variable X with finite range (—%,nq4, tmaz) cannot reach points (y, A) that lie above
the tangent through (0, 0) with slope 2, .. However, by the high-rate bound (Theo-
rem 3.3), or equivalently the entropy bound (Corollary 3.5), to get high compression
ratios we would like a moment profile A(y) that is as close as possible to the upper left
hand corner. See also Figure 4.1, which is a contour plot of the differential entropy up-
per bound. Does this mean that a bounded random variable cannot be compressed as
well as an unbounded one? We conjecture this is not the case, but rather it means that
the underlying Gaussian upper bound does a bad job on bounded random variables.

Example 4.1 We take again the wavelet transform coefficients from the Lena image
that we used in Section 3.4 to compute a Gaussian mixture model. However this time
we take all of them, after subtracting the mean from the lowpass (scaling) coefficients
(this is also done in SPIHT and costs negligible extra rate). The estimated moment
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Figure 4.1: Contour plot of the differential entropy upper bound Eq. 3.37 in
the (A, p) plane (normalized to A(1) = 0% = 1, maximum at (§, ).
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Figure 4.2: Empirical moment profile A() for the Lena wavelet coefficients.
The square marks the point (ug, Ag), where the high-rate bound is tightest.



4.2 One graph says it all 67

profile A(z) is shown in Figure 4.2. We could fit a curve (e.g. a spline) to estimate the
slope ¢2, but actually there is no need to do so. Since we obtain A () from the ordered
sample magnitudes £ > T3 > ... > Tp > ... > Ty, for u = k/n a reasonable
estimate for ¢ is { = x, or maybe £ = (xj + 241)/2. The reader might frown at
this ad hoc approach, but since ¢ is only needed to compute the “optimal” rate R*, we
always get a valid upper bound as long as A is a good estimate. This follows from
the same reasoning which allowed us to loosen the bound in Section 2.5, and from the
fact that 4 is not estimated.

Figure 4.3 shows the resulting empirical magnitude upper bound and its high-
rate continuation in comparison with a simple bit plane encoder (the same as in Sec-
tion 3.4) and the SPIHT algorithm. Compared to the Gaussian mixture approach this
empirical bound is certainly a better match to actual compression behavior. The gap
between bound and SPIHT is mainly due to residual correlation among the coeffi-
cients, which SPIHT exploits via zero tree and conditional arithmetic coding. That
also the scalar bit plane method beats the bound is mainly due to the Gaussian upper
bound’s looseness for high thresholds. Finally, at higher rates (above 2.5 bits) things
look anomalous because the underlying image source is actually discrete. In fact both
SPIHT and the bit plane method reach zero distortion at a rate of around 5.6 bits.

Comparing this example with the Gaussian mixture in Section 3.4, we suspect
that the bound works best for samples from a real valued source with infinite support.
These are of course exactly the assumptions implicitly made by using the Gaussian
upper bound. In a sense the magnitude bound suffers from the inverse problem of
Blahut’s algorithm [4], which has to map infinite densities to a (implicitly bounded)
finite set of source letters on the real line.

To assess the reliability of the estimated upper bound we observe that the magni-
tude bound has the form

A()[e?Y —1] + 2.

Therefore the total estimation error depends only on the errors from estimating A(u)
and 02 = A(p = 1). Since these are simple variance estimates, they can be easily
analyzed with standard techniques.

Getting back to the “single letter quantity” question that prompted this section, we
can argue that the best pick would be the /o quantities o and Ag. These completely
determine the high-rate upper bound from Theorem 3.3 and also its Corollary, the
entropy upper bound. From the latter we can deduce that A(y) has to be tangent to
a contour in Figure 4.1, which allows us to gain a very rough picture of A(y). This
improves a bit if additionally we know whether the source is bounded or not (slope at
it = 0). Of course from a guesstimate of A(y) in the range & = 0... p1o we could
actually plot the low-rate bound.

Summing up, the magnitude bound provides a complement and/or an alternative
to the Blahut-Arimoto algorithm (BA) for estimating rate distortion functions from
samples of a memoryless source. Oftentimes, the BA does not provide reliable es-
timates (at very low and very high rates), because it is very hard to find the “right”
quantization of the input density. To illustrate this point, we mention that we were



68

Extensions

T v T T T
: : : — Maghitude bound
: : : : : : +=++ High rate m. bound
<5 B B T T FOR AR - = SPIHT H
: : : : : : *_Bit plane encoding

MSE Distortion [dB]

0.5 1 15 2 25 3 35 4 4.5 5
Rate [bits]

0 T T L T [ N BE——— L e—

: : : : : : ~— Magnitude bound
+«++ High rate m. bound
= = SPIHT

-5

L
o

MSE Distortion [dB]
I
O

i
]
i=]

0 0.1 0.2 03 04 0.6 07 0.8 0.9 1

05
Rate [bits]
Figure 4.3: Empirical D(R) bound computed from wavelet coefficients:
Comparison with simple bit plane encoder and SPIHT image compression
(bottom: low rate detail).



4.3 Going Multidimensional 69

unable to get a decent D(R) estimate for the above example.! Finally, we remark that
it is also possible to estimate the M&S bound from the sample moment profiles A(}i)
and ¢ (1), though often it doesn’t improve on the magnitude bound (in the example it
was looser for rates above 0.01 bits).

4.3 Going Multidimensional

In most coding problems considered in information theory, increasing the block size
(the dimension) improves the code performance. Often this is termed the dimensional
coding gain. Unfortunately, oligoquantization is an exception to this rule, it actually
is most efficient in low dimensions. In this section we explore why this is so. Our
approach will be based on multidimensional quantization, but the conclusions carry
over to rate distortion bounds in the same spirit.

In the derivations of our bounds we assumed that the significant samples are en-
coded with an R/D optimal codebook, corresponding to an infinite-dimensional vector
quantizer (even though in general scalar quantization suffices to beat the Gaussian up-
per bound). So the multidimensional generalization of thresholding oligoquantization
does not concern the quantization step, but only the thresholding step. Before we ex-
tend scalar thresholding oligoquantization to vector thresholding, we want to restate
once more what precisely makes it different from other quantization methods.

4.3.1 The Spirit of Oligoquantization

Let us recall the magnitude bound:

D(R) < Pr{|X| > T} Var(X||X] > T)e 2Bv(TR)
+ Pr{|X| < T} Var(X||X| < T').

Clearly, the second term is a distortion floor which is independent of the rate per
significant sample Ry. Now think of a A level scalar thresholding oligoquantizer and
let po = Pr{X € Sy} be the probability of the zero bin (here So = {z : |z| < T}).
The entropy of the quantizer index Y = Q(X) can be upper bounded as follows:

-1
H(Y)= - pilogp; < —pologpo — (1~ po)log

i=

1—po
M-1

= h{po) + (1 = po)log(M — 1), (4.6)

since the conditional entropy H(Y'|Y # 0) is maximized by having uniform probabil-
ity on the remaining M — 1 indices. As a first attempt in building a low rate quantizer

! As already noted, the main problems of Blahut’s algorithm at low rates stem from the discrete nature
of the optimal reproduction alphabet. Both Fix [17] and Rose [38] proposed algorithms that alternatively
optimize the reproduction alphabet and the conditional pmf’s minimizing mutual information. Convergence
properties for these schemes are harder to establish.
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we would therefore try to make pg as large as possible, because this makes the bound
(4.6) small.2 At the same time we should keep the distortion incurred in the zero bin
So as small as possible, since it determines the distortion floor. Of course this is ex-
actly what we are doing when we are thresholding a unimodal density which has its
mode at the origin.

These principles carry over to vector quantizers with M codewords, where again
we will try to identify a high probability/low distortion cell that keeps the rate low,
without unduly increasing the distortion floor. Note that the “standard” way to build
low-rate vector quantizers is to increase the dimension n until it is possible to place
M = e”F reconstruction points that each have approximately the same probability
and distortion contribution. The rate-distortion theoretic view of this is that the points
should be uniformly spread over the typical set. Informally, classical VQ tends to
symmetry, whereas the principle of oligoquantization is asymmetric.

The gist of oligoquantization is: given o3, find the set Sy with the largest possi-
ble probability py = Pr{X € Sy} subject to the constraint Var(X|X € S;) < o2.
Or, for given p, find the set with probability at least p that has the smallest variance
Var(X|X € Sp). We will call this alternatively the high probability or the low vari-
ance set.

4.3.2 The Shape of the Low Variance Set

Finding the n-dimensional high probability/low variance set Sq for an arbitrary pdf
f(z) is a challenging problem. It resembles a classical isoperimetric problem that can
be attacked with variational methods, but it is more difficult since also the centroid is
“variable”.

The problem is simplified a bit if the density f(x) is symmetric and strictly uni-
modal, which implies that (2} is maximal at ¢ = 0 and that it is a decreasing function
of |z|. Then also the k-dimensional product density f(x) = Hi":l f(z;) will be de-
creasing along any ray starting at the origin. These properties enable us to give an
informal recipe for building the high probability/low variance set:

¢ For vanishingly smali volume V0l(5)), the pdf f(x) can be assumed constant
over Sp. Then the variance is only a function of the volume. We conclude that
in this case, the set Sy contains the origin (the mode), since by that it will have
the largest possible probability for the given volume.

o Thanks to the point symmetry f(—z) = f(z), larger volume sets can be
“grown” by adding pairs of points which are symmetric to the origin. Thus
Sp is point symmetric around the origin, which will also be the centroid, and
hence the variance is minimal.

e The set S, contains no “holes”, all points on a segment from the origin to a point

2 And it minimizes the proportion 1 — pg of samples that have to be quantized to one of the other M — 1
levels. Hence the name oligoquantization.
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on the boundary 95, belong to Sy. Otherwise we could reduce the variance by
“filling the holes”, since f(x) is decreasing along any ray starting at the origin.

The above arguments are not sufficient to determine the shape of the set Sy. For
that task, we take a very practical approach and consider a block of n samples, where
each sample is a k-dimensional vector. In the limit of large block lengths, Sy will
contain about ng & pon samples, and its sample variance will be close to o3. It is
evident that for given ng we get the lowest variance set by taking the ng samples with
smallest norm ||;]|? (their mean will be ~ 0, thus Var(S,) = Eg, || X||?). From this
we see that S is a k-dimensional hyperball.

4.4 Circular and Spherical Thresholding

We present practical examples of two- and three-dimensional oligoquantizers for spher-
ically symmetric densities such as the Gaussian. The thresholding and the quantizer
will have the same dimension, as was the case for scalar Gaussian quantization in
example 2.1. Therefore the two step oligoquantizer can again be seen as an ordinary
k-dimensional quantizer in disguise.

By the discussion in the previous Section it is clear that we will classify as in-
significant all samples within a circle of radius ¢ centered at the origin (a sphere in
3D). At the decoder they will be mapped to the all zero vector. In two dimensions, the
significant samples are quantized using a polar quantizer, whose M — 1 reconstruction
points will be regularly spaced on a circle of radius ¢; > t that can be determined by
the centroid rule. In three dimensions, the simplest approach is to use the vertices
of a regular polytope [11] as reconstruction points. The general idea is to threshold
with a k-dimensional sphere and then use a k-dim. geometrically uniform quantizer
whose reconstruction (code) points lie on a larger sphere. We get the code points of
such a geometrically uniform quantizer by letting a finite subgroup of SLy(R) act on
a start vector.® The term “geometrically uniform” stems from the fact that all Voronoi
cells will have the same shape. This approach with two concentric spheres (one is
the threshold, the other contains the quantizer codebook) is clearly modeled after the
one dimensional example, with one center bin and two outside bins. The main dif-
ference from other low-rate vector quantizers is that we impose the spherical center
cell z : ||zl|? < 2 (the loss due to spherical thresholding instead of using the Voronoi
cells is negligible). Compare the scalar case were we prescribed the zero bin [—¢, t].

For a number of such quantizers we ran simulations with a Gaussian source. By
varying the radius ¢ different rates are achieved. The results are plotted in Figure 4.4
(2D) and Figure 4.5 (3D). The peculiar look of the plots comes from plotting the
differences to the Gaussian distortion rate function, D(R) = 0227 2%, This makes
their visual comparison easier. It comes as no big surprise that in two dimensions the
best quantizer is hexagonal (plus the origin). Its gain compared to a three level scalar

3Think of a finite group built from reflections and rotations.
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quantizer is about 0.1 dB at a rate of 1 bit. In three dimensions, the winner so far* is
the icosahedron, which gains 0.2 dB at 1 bit.

Design and analysis of spherically symmetric quantization constellations, like
those used for the significant samples, have been studied by several researchers. Polar
quantization of Gaussian random variables has been studied by Bucklew and Gal-
lagher in [5]; they also treated the non-Gaussian case in [6]. Spherical quantization
in higher dimensions has been analyzed by Swaszek and Thomas [46]. There is also
a close resemblance between multidimensional oligoquantization and root lattice vec-
tor quantizers [40]. The main difference is that oligoquantization starts by specifying
an n-dimensional region (e.g a ball) containing the insignificant samples, after which
the quantizer for the significant samples (outside this region) is designed. In general
this region, which we also dubbed the low variance set, will not be a Voronoi cell
of the quantizer constellation. Such a quantizer is thus inherently suboptimal, except
in a few special cases. On the other hand, the rate of root lattice VQ can be varied
by scaling the lattice and thus the corresponding Voronoi regions, i.e. the quantizer
cells. However, the constellation points will not coincide with the centroids of the
corresponding cells (again with rare exceptions). Hence also that scheme is subop-
timal; whether oligoquantization or root lattice VQ is better has to be analyzed on a
case-by-case basis.

4.4.1 High-Dimensional Dead End

The last theorem in this thesis states that it is not worth the trouble to extend oligo-
quantization to higher dimensions.

Theorem 4.1 For large enough k, the distortion rate curve of k-dimensional oligo-
quantization is arbitrarily close to a line which corresponds to multiplexing (time
sharing) between the trivial quantizer Q(x) = 0 and some k-dimensional vector
quantizer Q'.

Proof: The only fact about typical sets that we need is that Pr{z € 72““)} > 1—¢for
k sufficiently large. Now suppose we are growing our high probability/low variance
set of probability mass 1 — p. No matter what its shape is (!), at most a subset of
arbitrarily small® probability mass e lies outside the typical set. Therefore we are
actually quantizing a proportion p of the typical set. This can be done for example
using a vector quantizer for the original source with M = 28%o codewords (vectors)
that achieves a distortion Jy. Assuming that the codewords are evenly spread over the
typical set, the high probability set will contain about pM of these codewords, which
will be used each with equal probability p—lﬁ. The rate is

R(p) ~ £[h(p) + plog(pM)] %))
= —1(1-p)log(1 - p) + pRo 4.8)

4We only tested the platonic solids and some other geometrically uniform constellations.
5Actually, choosing € determines the minimal & for which the theorem holds.
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and the distortion
§(p) = (1 = p)o® + péo. 4.9)

Since (1 — p)log(1 — p) is bounded, the corresponding term in (4.7) vanishes for large
k. Therefore high-dimensional thresholding followed by quantization is equivalent to
multiplexing between (R, §) = (0,0?) and (R, §) = (Ry, ). O

Informally, we could characterize the first step of oligoquantization as asking the
question “should we quantize this block of k& samples?” There are two costs involved:
the side information rate for giving the answer, and the distortion incurred if the an-
swer is “no”. The procedure pays off if the answer is most often “no” and the associ-
ated distortion is small. However, when £ is large the theory of typical sequences tells
us that the correct answer is almost always “yes”. So there is no point in enforcing a
“no”, since then we will almost surely pay the maximal distortion cost 2.

The positive consequence of this theorem is that we can be content with the per-
formance that low-dimensional oligoquantization delivers. If that’s not enough, we
have to shop for a true vector quantizer.



Chapter 5

Conclusion

The main contributions of this thesis can be summarized as follows:

e The distortion rate bounds presented in Chapter 2 are a useful tool to study
the low-rate behavior of the peaked unimodal densities, like those that appear
in modern transform coding systems. The given examples demonstrate that
practical scalar oligoquantizers are often sufficient to even beat these bounds.

e Two-component Gaussian mixtures are shown to be an adequate model to catch
the basic rate distortion behavior of wavelet transform coders.

e The high-rate bound of Section 3.5 allows us to introduce the notion of coding
gain also for transform codes that are not based on the linear (KLT) paradigm.

e The sample-based bound estimates of Section 4.2 are a welcome complement
to the Blahut algorithm, since the latter is only usable at medium rates.

o Finally, Chapter 4 explains why oligoquantization is most effective in low di-
mensions. This is good news to the users of scalar oligoquantization, but bad
news to those who can afford the complexity of higher-dimensional systems.

The main weakness of our bounds is that we have no analytic tools to assess how
tight they are compared to the actual rate distortion function.! On the other hand they
can still serve as a benchmark for lossy source coders, in the sense that any decent
coder should beat them!

Perhaps a deeper connection with rate distortion theory can be found by linking
quantization theory with the results of Fix and Rose, which were mentioned in the
introduction [17, 38]. Namely the fact that a low-rate optimal codebook will only
need a few discrete reconstruction points reminds one of a scalar quantizer. However

! For an individual source we could of course compare with a numerical evaluation of the Shannon lower
bound and/or determine D{R) with Blahut's algorithm. However, we are more interested in the tightness
for a class of sources.

5
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we can’t just compare with a scalar quantizer that has the same reconstruction points,
because the rate would be much larger (even though the distortion would be slightly
reduced thanks to the nearest neighbor rule).

Another point that merits further investigation is the tightness of the Gaussian
upper bound for thresholded random variables. There are two possible goals: one
is to tighten that bound and therefore also the upper bound on operational §(R) of
thresholding oligoquantization. That approach would be in the spirit of the magnitude
plus sign bound of Section 2.4, but without using the first moment £(¢). The other
possible goal is to upper bound the distortion of entropy coded scalar quantization of
thresholded random variables, that is to generalize the Gish-Pierce asymptote. This
would give us an asymptotically achievable upper bound on the operational rdf of
scalar oligoquantizers.

To end this thesis on a humorous note, we could say that “an extensive list of
related open problems can be requested from the author”. This is one reason that
makes research enjoyable, but also frustrating at times: it raises more questions than
it ever answers.



Appendix A

Weighted Rate Allocation

Let [X1,X>,...,Xk] be a vector of k independent Gaussian random variables with
variances [0?, 03, ... ,02],and [wi, wa, . .. , wk] a vector of positive weights that sum
to one (Ef:1 w; = 1). Further assume without loss of generality that the .X; are in
order of increasing variance:

ol<oi<.. . <ol (A.D)
The distortion rate functions of the individual rv’s are the k functions
D;(R;) = o] exp(—2R;).

Now the weighted rate allocation problem is to find a vector [Ry, Ry, ..., Ri] of
non-negative rates that minimizes the weighted distortion

k k
D =) wDi(R) = wiole (A2)
i=1 =1

subject to the rate constraint (R > 0)

k
S wR <R (A3)
i=1

Temporarily ignoring the non-negativity constraints R; > 0 we can set up a La-
grangian

k k
J = Z wiaize‘ZR‘ + A (Z w;R; — R) (A4)

i=1 i=1

and set its partial derivatives to zero:

s d = —2wio?e 2R 4 hw; £ 0. (AS5)
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Since the weights w; are positive, the solutions of (A.5) do not depend on them:

Ri=tm (%), (A.6)

Inserting these back into (A.2) yields the distortion D = E -] Wio o? 3‘-4— = % and

o4

therefore (A.6) is equivalent to R; = ln(—DL). At this point we go back to the non-
negativity constraints R; > 0 and establish that the condition

D < Dpin = min{o?,03,... ,0i} = of (A7)

suffices to satisfy all of them. Since D has now taken over the role of the Lagrange
multiplier, we see that every value of D < D,,;,, solves the problem for a specific
constraint (A.3), namely

k

k
Lw;In (%) =1l (Hﬁ“’i) ~ 1D (A.8)
i=1

Turning things around we also see that (A.7) corresponds to

i=1

R> Rpin=1In (H 02"“) ~ 11n Doin. (A9)

The case when some R; become zero can be solved via the Kuhn-Tucker condi-
tions. Alternatively, we observe that (A.1) implies

RI<R!<..<R:.

Thus the sum (A.8) will become R(D) = Ef i 3 Lo In ( ) with the starting index
o € {1,2,...,k}. A careful analysis reveals that for each rate constraint R and
Lagrange multiplier A there is an unique g, such that (A.3) is satisfied with equality
and the positive rates R; are given by (A.6). More details can be found e.g. in [28].
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