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Version Abrégée

Cette these s’inscrit dans le cadre de I'étude théorique du transport électronique
dans de petits conducteurs & basses températures. Notre but est de compren-
dre linteraction entre les systémes mésoscopiques et 'environnement statistique,
el ses elfets sur les dispositifs électroniques dans le domaine dn transport. Dans
une premiere approche basée sur la description du transport de Landauer, nous
étudions de mani¢re phénoménologique les propriétés dun transport d’un échantillon
mésoscopique relié A des réservoirs électroniques. En particulier, nous nous intéressons
a 'influence du couplage & I'environnement statistique sur le temps de cohérence
de phase et & la conductibilité d’un systéme électronique ouvert. Nos résultats
ont pu expliquer les données expérimentales récentes montrant la saturation du
temps de cohérence de phase & basses températures et I'apparition des plateanx
non universels de conductibilité dans les fils quantiques parfaits.

Nous présentons un modéle microscopique en assurant le couplage entre un
petit systéme électronique fini et son environnement, par Uintermédiaire de degrés
de liberté vibratoires locaux. En appliquant une simple méthode itérative, nous
calculons I'évolution temporelle de la matrice de densité du systeme.

En nous basant sur ces idées, nous étudions la relaxation d’énergie électronique
dans un anncau unidimensionnel, ¢t nous discutons le réle de I'interaction d’électron-
électron et du couplage & Penvironnement. Nous analysons les courants dans un
anneau traversé par un flux magnétique constant, et nous comparons nos résultats
& la théorie habituelle de I'état fondamental pour les courants permanents.

Notre modele est étendu a la description de Pévolution temporelle de la ma-
trice de densité des électrons dans un anneau traversé par un champ magnétique
dépendant du temps. En particulier, nous étudions la dynamique du systéme en
pr(;:scnce ainsi qu’en absence de dissipation. Dans cette description, les processus
cohérents et dispersifs sont uniformément distribués sur I’anneau, alors que dans
I'approche de Landauer au courant continu dissipatif, les régions dispersives et
cohérentes sont séparées spatialement.

Mots clés: Systémes mésoscopiques, propriétés électroniques, dissipation, relaxation
énergétique, goulots d’étranglement, courants persistants.






Abstract

This thesis is concerned with the theoretical study of the transport in small con-
ductors at low temperatures. Our aim is to elucidate the interplay between the
statistical environment and mesoscopic systems, and its effect on electronic fea-
tures in the domain of transport. In a first phenomenological approach based on
the Landauer picture of transport, we study dc transport properties of a meso-
scopic sample connected to electronic reservoirs. The influence of the coupling to
the statistical environment on the phase-coherence time and on the conductance
of an electronic open system is then investigated. Our results may explain re-
cent experimental findings showing the saturation of the phase-coherence time at
low temperatures and the emergence of nonuniversal conductance steps in perfect
quantum wires. .

We present a microscopic model to account for the coupling between small
finite electronic systems and the further environment via local vibrational degrees
of freedom. We calculate the time-evolution of the density matrix of the sample
system, by applying a simple iterative procedure.

Using this approach, the energy relaxation of electrons in a one-dimensional
loop is studied and the role of the electron-electron interaction and the coupling
(o the environment, is discussed.

We analyse currents in a loop, which is threaded by a constant magnetic flux,
and comparc our results with the common ground state theory of the persistent
currents.

Our model is extended to describe the situation of a loop, in which the elec-
trons are driven by a time-dependent magnetic field. In particular, we study the
electronic current in the presence as well as in the absence of dissipation. In this
description, both coherent and dissipative processes are uniformly distributed in
the loop system, in contrast with the Landauer approach to de transport, where
dissipative and coherent regions are spatially separated.

Keywords: Mesoscopic systems, electronic properties, dissipation, energy relaxation,
bottlenecks, persistent currents.






Zusammenfassung

Diese Arbeit befafit sich mit der theoretischen Beschreibung des Elektronentrans-
ports in kleinen Proben bei tiefen Temperaturen. Unser Ziel ist, das Zusanimen-
spiel zwischen mesoskopischen Systemen und der statistischen Umgebung sowie
deren EinfluBauf die elektronischen Transporteigenschaften zu erldutern. Aus-
gehend von der Landauer Theorie betrachten wir zundchst die Gleichstromeigen-
schaften ciner an zwei clektronische Reservoire angeschlossen mesoskopischen Probe.
Der Einflufl der statistischen Umgebung auf die Phasenkohérenzzeit und auf den
Leitwert eines elektronisch offenen Systems wird untersucht. Unsere Resultate
liefern eine mogliche Erklarung fiir die experimentell beobachtete Sattigung der
Phasenkohérenzzeit bei niedrigen Temperaturen sowic das Auftreten von nichtu-
niversellen Leitwertstufen in perfekten Quantendriahten.

Des weiteren schlagen wir ein mikroskopisches Modell vor, das uns erlaubt, die
Kopplung zwischen kleinen begrenzten elektronischen Systemen und ihrer Umge-
bung iiber lokale Schwingungsfreiheitsgrade zit beschreiben. Wir berechnen die
Zeitentwicklung der Dichtematrix des Systems mit Hilfe einer einfachen Itera-
tionstechnik.

Diese Methode ermdglicht es uns, die Energierelaxation der Elektronen in einer
cindimensionalen Schleife, als auch die Rolle der Elektron-Elcktron-Wechsclwirkung
und der Kopplung zur Umgebung zu behandeln.

Wir analysieren die Dauerstrome in einer Schleife in einem konstanten Mag-
netfeld und vergleichen unsere Ergebnisse mit denen der {iblichen Grundzustand-
stheorie.

Unser Modell gibt uns weiter die Moglichkeit, die Dynamik der durch ein
zeitabhingiges Magnetfeld angetriebenen Elektronen in einem Ring zu beschreiben.
Insbesondere ‘untersichen wir den Einfluldissipativer Stremung auf den Strom.
In diesem Fall sind kohidrente sowie dissipative Prozesse gleichmiBig auf dem
Ringsystem verteilt, im Gegensatz zum Landauer-Bild, in dem dissipative und
kohidrente Regionen rdumlich von einander getrennt sind.

Schlagworter: Mesoskopische Systeme, clektronische Eigenschaften, Dissipation, En-
ergierclaxation, Flaschenhalseffekte, Daucrstréme
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Chapter 1

Introduction

The rapid progress of device technology in the past two decades has drastically
changed the focus of fundamental research in the domain of electronic trans-
port. Historically, interference effects were first considered in the description
of transport in disordered solids [1, 2, 3, 4]. The experimental realization of a
two-dimensional clectron gas at low temperatures was a first step towards a new
transport regime, which got the denomination “mesoscopic”. Small conductors
whose dimensions are intermediate between the microscopic and the macroscopic
ones, are called mesoscopic from the greek “mesos”, which means “between”. The
dimensions of these samples are comparable to the coherence length of the carri-
ers 8o that the quantum behavior of the carriers affects their transport properties.
The experimental evidence {or phenomena like the quantum Hall effect, univer-
sal conductance fluctuations, non-dissipative direct currents (so-called persistent
currents), and Bloch oscillations have given evidence for the limitation of clas-
sical and semi-classical pictures of the dc transport. Soon after, it was realized
that the transmission approach —a well-developed tool at the inception of quan-
tum mechanics— offers an appropriate theoretical instrument to describe the de
transport properties of mesoscopic systems. '

Phase coherence is a crucial concept for the understanding of mesoscopic

lical cn-

tems. Due to their characteristic of being weakly coupled to the stals
vironment, mesoscopic systems represent a convenient tool to study the onset of
relaxation. In gencral, there are two types of experimental approaches:

e Optics. Experimentally accessible effects take place at a short time scale
of the order pico seconds. Over short time scales, one can describe the
dynamical behavior of the carriers in a mesoscopic sample gystem by the
coherent evolution of the isolated system.

e Transport. The time scale for observable transport phenomena is rather
long, so that the coupling between the sample and the further environment

11



12 CHAPTER 1. INTRODUCTION

has to be taken into account, since the phase coherence in the sample is
gradually lost due to inelastic scattering processes induced by the statistical
environment. In this work we focus on the transport properties of mesoscopic

systems.

From the theoretical point of view, one can deseribe optical phenomena by
solving the generalized Semiconductor-Bloch cquations that account for the rele-
vant quantum mechanical interactions [5, 6]. There are two main approaches to
describe the transport features of mesoscopic systems. One of them is the Green's
function approach, involving the Keldysh formalism [7]. Based on this description,
Potz has recently derived gencralized Boltzmann-Bloch equations to study coher-
ent carrier dynamics and phase breaking in mesoscopic semiconductor structures
[8]. Datta has represented the environment by a continuum of local harmonic
oscillators in thermal cquilibrium that are coupled to the electronic subsystem
{91. -
In the description of de transport developed by Landauer [1], the environ-
ment is accounted for by two statistically independent electron reservoirs, which
are held at different chemical potentials to drive the current through the samn-
ple. Exploiting this idea, Biittiker recognized that dissipation in the sample can
be phenomenologically simulated by means of fictitious voltage probes that are
connected to additional clectron reservoirs and satisfy the condition of current
conservation [10]. The reservoirs are held at thermal equilibrium, so that the
electrons are dissipated when entering one or more of the voltage probes. This
approach has been successfully used to describe the onset of dissipation in the
electronic de transport in megoscopic samples [11, 12, 13]. However, the need for
a rigorous microscopic approach to dissipation still persists.

While phase-destroying processes are expected to vanish at temperatures
T — 0 in closed systems [14], recent experiments have shown instcad that the
phase-coherence time saturates at low temperatures [15]. This result raised the
question about the existence and the origin of dephasing processes at low temper-
atures, which has not yet been satisfactorily answered.

Almost at the same time, the experimental results presented by Yacoby et
al. [16] posed another theoretical challenge to the scientific community. The
authors of Ref. [16] studied the transport properties of perfect quantum wires at
low temperatures and found measurable deviations in the conductance plateaus
from the expected universal value of 2¢?/h. The experiment showed that the step
height. of the conductance plateaus increases toward the universal value with the
width of the wire, with the temperature and with the external bias. These authors
argued that nonuniversal conductance steps can be explained neither by elastic
impurities nor in terms of electron-electron interactions.
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The role of electron-phonon interactions in electronic relaxation processes has
been discussed by a number of authors. In particular, recent investigations on the
so-called “phonon bottleneck”, which has been claimed to inhibit the cooling of
carriers in quantum dots when the level separation does not match the phonon
energy, have excited controversial points of view. The debates on this subject
persist within both the theoretical and experimental communities [17, 18, 19].

In the present work, we study the possible effects of the contacts and the
coupling to the environment on the transport properties of a mesoscopic sample
system. Furthermore, we investigate the electronic properties of an initially iso-
lated small system that interacts with its environment via local vibrational degrees
of freedom.

Chapter 2 provides a brief overview of the Landauer picture of dc transport
at lower dimensions and introduces some experimental techniques to measure the
phase-coherence length.

Chapter 3 treats in a phenomenological manner the role of the contacts on
de transport measurements within the framework of the Landauer approach. We
show that both, the saturation of the phase-coherence time and nonuniversal con-
ductance steps, may he due to clectronic transitions induced by phonon ecmission.
These transitions remain possible even at low temperatures in electronically open
systems.

In Chapter 4, we introduce a simple model to study electronic properties of
a small sample system, containing a finite number of electronic and local vi-
brational degrees of freedom. The influence of the environment is considered in a
phenomenological manuner by attributing a finite lifetime to the vibrational states.

The time evolution of the density matrix of the system is then calculated
within our approach. We describe the energy relaxation of one- and two-electron
systems for a loop geometry of the sample. We note that, in contrast with the
Landauer approach where coherent and dissipative regions are spatially separated,
dissipation is nniformly distributed in the loop system. The effects of electron-
clectron interactions on the electronic relaxation in small systems are discussed.

Based on this model description, Chapter 5 deals with persistent currents in
a small loop that is threaded by a constant magnetic flux. The role of relaxation
bottlenecks and of the Coulomb interaction between the electrons is investigated.

In Chapter 6, we apply our model to describe the time evolution of the density
matrix of a loop, in which the electrons are driven by a time-dependent mag-
netic field. The current through the isolated loop is studied for both interacting
and non-interacting clectrons. We then illustrate the transition from coherent to
dissipative dc regime. Finally, our conclusions are given in Chapter 7.






Chapter 2

General aspects

Mesoscopic systems have attracted much attention in our time. On the one hand,
they have been very important for the progress of the device technology in the past
decade and for the development of new instruments used in fundamental research
as well as in our everyday’s life. On the other hand, they are also interesting
in themselves, as their characteristic dimensions are intermediate between the
atomic and the macroscopic length scales. In particular, one may expect a better
undorqtandmg of the transition from quantum to classical b(\hmqor by studying
the physical properties of nano devices.

Quantum mechanics states that the wavefunction |¥ >, describing the state
of a closed system, evolves according to the Schrédinger equation,

d
ih—|U >= H|¥ > . .
i |0 >= H|¥ > (2.1

Given au initial state |®; > and the Hamiltouian H of the system at time g,
its state at any arbitrary time ¢ is determined by Eq. 2.1. If we measure an
observable of the systemn at t, the question can be raised as to what the outcome
will be. The Copenhagen interpretation was the first attempt to find a solution
to this problem [20], although not very satisfactory. It is based on a suggestion
of Niels Bohr, who argued that a classical device that decides about the single
outcome among all possible results is necessary for a measurement. This implies
a sharp border between classical aud quantum mechanics and claims quantum
theory not to be universal.

Even though the clue to solve the measurement problem was already known
from the early days of quantum theory, it is only in the past three decades that
people have recognized its importance for the transition from quantnm to classical
[21, 22, 23]. In fact, Eq. 2.1 is only applicable to closed systems which evolve
coherently as long as they arc completely isolated from the environment. The
interaction between the sample system and its environment causes decoherence
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within the sample. This loss of quantum coherence can be attributed to the
entanglement of the system states with the infinite set of states of the statistical
cnvironment. This prevailing idea of the decoherence is discussed in the literature
under different aspects [24, 23]. In this work we focus on mesoscopic systems.

In the following, we will introdnce some fundamental values that characterize
the quantum coherence in mesoscopic samples. We will also give a brief review of
the transport theory for low-dimensional systems and of the experimental tech-
niques that have allowed to measure these values.

2.1 Characteristic lengths

The size of a conductor usually determines its transport behavior. For example,
a sample shows an ohmic behavior, when its dimensions are much larger than
certain characteristic lengths, such as (i) the Fermi wave length, (ii) the mean
free path and (iii) the phase-coherence length. In a mesoscopic system, however,
the dimensions are of the order of these characteristic lengths, so that one can
still observe quantum coherence effects. We will discuss all the relevant length
scales one by one.

2.1.1 Mean Free Path

The mean free path L,, is the distance covered by an electron before its initial
momentum is destroyed. The associated relaxation time 7 is inversely proportional
to the probability of scattering from a state with an initial momentum to another
state with a different momentum. Thus, in metallic systems at low temperatures,
where the transport is due to electrons close to the Fermi level, the mean free
path is given by

Lm = UFT, (2.2)

where vp = fikg/m is the Fermi velocity to the Fermi wave vector kp. The
latter varies as a function of electron density n. In a d dimensional system it is
proportional to kp o n!/4,

2.1.2 Fermi Wave Length

The length corresponding to the Fermi wave vector, Ap = 21 /kg, is much shorter
than the mean free path in macroscopic metallic systems. The electrons with
kinetic energy less than the Fermi energy have longer wave lengths, but at low
temperatures they do not contribute to the dc¢ transport so that the Fermi wave
length represents the relevant length scale in this case. A comparison between the
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Figure 2.1: The incoming
electron beam is separated
into two paths at point A
of the metallic ring. In the
full coherent case, the quan-

tum interfercnces at B can %
be changed from constructive

to destructive by varying.the
magnetic flux

sample dimensions and A, determines the effective dimensionality of the system.
Il all the three dimensions of the sample are much larger than Ap, the system is
truly three-dimensional. Quantum wells, ‘quantum wires and gnantum dots are
obtained by reducing one or more of the edges of the sample to the order of Ag.

2.1.3 Thermal Diffusion Length

A finitc mean [ree path leads to a particular transport behavior in the presence of
disorder {2] On length scales longer than L,,, the system can then be considered
as diffusive and the electronic propagation can be characterized by the diffusion
constant D = vi7/d, where d stands for the dimensionality. In this regime, the
cnergy of every Bloch state is broadened by approximately f/7. The phase of the
wavefunctions belouging to these eigenvalues has a definite correlation and the
phase coherence of a particular state is not destroyed by random scatterers.
The characteristic length in this regime is given by

Ly = /Dh/ksT, (2.3)

kg being the Boltzmann constant. The quantity 2/kgT is the time scale corre-
sponding to the thermal broadening of the Fermi distribution, so that Lt can be
considered as'a length over which the coherence effects still persist when averaged
over states near the Fermi energy within the thermal broadening.

2.1.4 Phase-Coherence Length

All the length scales above are introduced within the framework of the one-particle
picture, where interactions, such as the electrou-phonon or the Coulomb interac-
tion, are neglected. The phase-coherence length characterizes a sample, taking
into account also the inelastic scattering processes.

Fig. 2.1 shows a situation, in which a beam of clectrons is split into two paths
at the point A and is recombined at the point B. In the absence of additional
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backscattering in the leads, the two paths are identical and the resulting inter-
ference at point B is constructive. The amplitude of the interference pattern will
reduce in the presence of clastic or inclastic backscattering of the clectrons by
impurities, defects, phonons, ete. If the latter are thermally distributed they add
a random phase to the scattered electrons, so that constructive interference at
point B is destroyed. For scattering by static impurities one has a definite phase
relation between the two paths. Since magnetic field gives rise to an additional
phase factor by breaking the symietry of the ring [25, 26], the interference pat-
tern in this case can be changed from destructive to constructive just by applying
an appropriate constant magnetic field through the ring. In the case of dynamic
scatterers, such as phonons, the phase relation between the scattered waves varies
randomly in time. A constant magnetic field will then only result in a random
fluctuation of the interference amplitude, whose average over time goes to zero.
The phase-coherence length Ly is defined as the distance over which the phase
relations continue to persist.

The phasc-coherence time 7, is the characteristic time attributed to Ly. In a
naive first approach one could think that 7, is equal to the collision time. However,
a simple argument shows that this is not necessarily true. In fact, a phonon,
which interacts identically with both paths, would randomly change the phasc of
the electrons without affecting their phase difference. The simplest way to find a
relation between Ly and 7, seems to be

Ly = vry. (2.4)

Definition 2.4 is, however, ouly acceptable, if the mean free path L, is of the
same order or shorter than Ly. In most metallic samples, however, L, < Ly s0
that the trajectory of an clectron during 7, is rather characterized by diffusion.
In this case, the relation between L, and 7, becomes

L% = Dry. (2.5)

2.2 Landauer Picture of Transport

Landauer [27] investigated electronic dc transport in a one-dimensional wire, di-
viding the whole system into two subsystems: (i) A sample connected by long
ideal leads at both ends to (ii) two electron reservoirs with chemical potentials
mu (lelt reservoir) and e, (right reservoir) near the Fermi energy of the quantum
wire (Fig. 2.2). The two ideal reservoirs are statistically independent. and ab-
sorb incident electrons regardless of their energy or phase. In this picture all the
phase destroying and dissipative processes take place in the reservoirs and not
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i, ‘ sample l N
Figure 2.2: A sample con-
nected to two reservoirs with / \
chemical potentials 1y > pt,.

in the sample. It is importaut to note that within the framework of this model
the reservoirs are by definition infinite , since otherwise the chemical potential of

finite reservoirs would change with time in the presence of a direct current. More-
over, complete electronic dissipation is guarauteed only in infinite reservoirs. The
Landauer formula relates the conductivity G to the transmission probahility T of
the electrons in the sample. At zero temperature and if the contact resistance is
neglected, it reads )
a=27 (2.6)
h
Thus, in the lincar response regime and at zero temperature, the current in the

two-terminal device (Fig. 2.2) can be expressed as

2e .
1 =—TApu 2.7
5 A, (2.7

with Ay being the difference between the chemical potentials of the left and right
reservoirs. The description can easily be extended to many-terminal devices. In
fact, there is no qualitative difference between terminals so that they can be
treated in an equal manner. Imagine a many-terminal device, where the terminal
leads j are connected to different reservoirs with corresponding chemical potentials
5. The current flowing through a specific terminal ¢ is obtained by summing over

all terminals
_2e

I"_W i

[Ti—vjllfi - Tj—n‘/’o‘] : (2.8)
where the arrows in the indices of the transmission coefficients indicate the direc-
tion of the clectron transfer between two terminals i and j.

Assuming a Fermi distribution for the electrons, the description can be ex-
tended to non-zero temperatures. This assumption is, however, strictly correct
only at cquilibrium and its extension to the de transport problem must be con-
sidered as a rough approximation of the true electronic distribution functions. At
a given temperature T the energy distribution of the electrons in a reservoir with
the chemical potential y; is then determined by the Fermi function of the latter

1
" oxp(E — pifkpT) + 1

fi(E,T) (2.9)
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In quasi-one-dimensional(quasi-1D) quantum wires, the transport takes place in
several channels or propagating states that in general possess different transinis-
sion probabilitics. Including the back- and forward current at any point in the
two-terminal device, one obtains for the net current through a single channel

i(B) = SH(EE,T) - (B, T)) (2.10)

where fi(E,T) (f.(E,T)) represent the electronic distribution in the left (right)
reservoir, and where we have assuned that the transmission does not depend on
the direction. This is always true for time-independent elastic scatterers in the
sample. The assumption of the left-right symmetry is not valid for scattering by
general time-dependent potentials V'(#). In Ref. [28], it is shown that a mesoscopic
pump can be constructed using the inequality between the back- and forward
scattering. The total current results from the sum of i(E) over all channels. In
analogy to Eq. 2.8, for multi-terminal devices, the current in the channels can be
written as 9%

i(B) = 2 2 [Dsifi (B, T) = Tip (B, )] (2.11)

&

In the absence of time-dependent scattering potentials, the transmission coeffi-
cients satisfy the sum rule

ZTIC—»j = ZTJ‘—bk (2'12)
& &
so that Eq. 2.11 can be expressed in the form
i 2e -
i(E) = 3 L Tulfi(B,T) = ful(B, D)), (2.13)
k
where we have disposed of the notation 7; vi = Do

2.2.1 Aspects of Laudauer-Biittiker Approach

There are some points in this formalism that need more clarification. From the
energetic point of view it still remains the question where the Joule heat is dissi-
pated. If the scatterers in the sample are static without any internal degrees of
freedom, they cannot dissipate energy. Energy dissipation can only occur through
ineclastic processes like phonon emission. At first glance this does not seem like
a very significant problem for the electronic transport, which is, according to the
Landaner formula, essentially determined by the momentum relaxation of the
clectrons and not by their energy relaxation. Its importance, however, becomes
more obvious, when one tries to describe the transition from the fully coherent to
the ohmic regime.
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Biittiker has accounted for dissipation in the sample using a multi-terminal
approach by introducing phase-randomizing “fictitions voltage probes” [10]. The
latter arc connected to clectron reservoirs, whose chemical potential is determined
such that the voltage probe conserves the current and introduces a loss of phase
coherence and a change of electron energy. In this picture the net current, flowing
from the first to the second terminal, is divided into two components: (i) the
coherently transmitted part of electrons which pass through the sample without
entering any voltage probe, and (ii) the incoherent fraction of cleétrons, which
have entered in one or more voltage probes, having their phase randomized and
energy changed before reaching the second terminal. The How of the current
between the terminals is assumed to be fully coherent. The physical idea behind
this phenomenological approach is to simulate the phase breaking processes and
epergy changes by introducing thermalization within the reservoirs attached to
the virtual voltage probes. It can be shown that this method is equivalent to
introducing a finite life timne to particles in a fully coherent system [29]. In this
approach, the Joule heat is generated by changes of the local electron energy. In
a microscopic picture, the excess of energy would eventually be dissipated to the
lattice.

Another crucial point in the Landauer-Bittiker formalisin is the role of the
Pauli exclusion principte. The question whether Eq. 2.13 should be modified to

i(B) = 525 [T B, DY~ (B, 1)) = T fu( B, DY =GB, TY)] (219)
k

or not (see for example [30]) has initially attracted little scientific interest, since
this modification has no effect on the description of the electron transport in the
absence of inelastic scattering processes. In fact, the terms containing f;(E, T) fi(E, T)
cancel in Eq. 2.14 and there is finally no difference between the right-hand sides
of the equations 2.11 and 2.14. But the situation changes, when the sum rule
Eq. 2.12 is not satisfied. In a fully colierent system, any occupied scatlering
state will contribute to the current, and Pauli blocking cannot occur. This is
due to the fact that the time evolution of the coherent system is determined by
a unitary time-evolution operator. The situation changes, however, for the non-
coherent transport, in which real electronic transitions take place due to inelastic
scattering processes.

The effect of the exclusion principle on the non-coherent electronic transport is
more complicated than described by Fq. 2.14. In general, the current, is comprised
of both, a coherent and a non-coherent component. While, according to the
above argument, no extra factor is nceded for describing the Pauli exclusion in
the coherent component of the current, it is also not correct to account for its
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effect on the non-coherent part just by simply inserting (1 — f) factors as is done
in Eq. 2.14. A better understanding of the role of the Pauli exclusion principle
for the electronic transport requires a detailed microscopic theory including the
role of the contacts and the reservoirs.

The two points, discussed above, have the same origin. Both are closely related
with the interaction between the sample system and its environment. In chapter
3, we will discuss the effects of contacts and reservoirs in particular on the dc
transport properties of mesoscopic systems.

2.3 Experimental Techniques

As previously mentioned, different length scales determine the characteristics of
a system. The phase-coherence length is certainly the scale that gives the most
interesting information about the behavior of the sample, especially at low temper-
aturcs. It has therefore been the object of numerous experimental investigations
during the past decade. In this section we describe two experimental methods,
which are generally employed to measure Ly.

2.3.1 Aharonov-Bohm Effect

At very low temperatures the resistance of small loops Fig. 2.1 shows periodic
oscillations as a function of the magnetic field. This phenomenon, briefly discussed
in subsection 2.1.4, is known as the Aharonov-Bohm (AB) effect. The size of the
AB oscillations scales with two characteristic lengths Ly and Ly. When both
length scales are much longer than the circumference of the ring, the root mean
square of AB oscillations in the conductance Agsp approaches its universal value
2¢? /. The amplitude of these oscillations is proportional to the fraction of phase
coherent carriers. Taking into account that the amplitude reduces through energy
averaging, the AB scaling equation reads [31]

e wly

A!JAB - GE T

exp(—L/Ly), (2.15)

where « is a nutber of the order of 1 that accounts for the sample geometry. This
scaling behavior is, however, only expected for the case L > Ly, since the factor
Lt/L is due to the energy averaging. In the opposite limit, L < L, the energy
averaging does not come into play and the factor Ly /L is replaced by 1.

Other anthors [32] have numerically calculated the scaling of AB oscillations
for a different. geometry and added some corrections to Eq. 2.15. In any case, the
phase-coherence length can be obtained by means of the AB scaling equation, if
the numerical factor « is known. In practice one measures the AB oscillations for
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a series of samples with the same geometry but of the different lengths L (see c.g.
[33} and the references therein). The prefactor o being approximately the same
for these samples, one can estimate it by fitting the length dependence of Agap
at each temperature. Ly can then be obtained by means of the Eq. 2.15.

2.3.2 Weak Localization Regime

When applying the Landauer formula to a disordered single-mode conductor, one
finds that the resistance p(L) increases expouentially with the sample length [1].
Thouless stated that even a multi-moded quasi-1D conductor shows this non-
linear dependence, if its zero temperature resistance exceeds a critical value of the
order h/2¢? [3]. Tn other words, if the sample is longer than a characteristic length,
known as localization length Ly, its resistance should increase exponentially with
the length. However, this non-linear behavior can only bee seen if the phase-
coherence length is at least of the same order as Ly,.. In this case, the conductor
is said to be in the strong localization regime.

If Ly < Ly, the conductor is said to be in the weak localization regime.
Expanding the resistance in a Taylor series in this regime one finds [4]

el ()]

where p(L) is expressed in units of h/2e?, i.e. p(L) = p(L)h/2€2. The first term on
the right hand side is the classical term, while the second term represents a quan-

tum correction Ap to the resistance. This correction arises from the constructive
interference of time-reversed backscattered clectron paths. The phase-coberence
between the pairs of time-reversed trajectories, which start and end in the same
mode, doubles the probability of reflection and so decreases the conductance.

In a quasi-1D sample with a width W shorter than Ly, the amplitude of this
quantum correction to the conductance is [34, 35]

1
2D | 1 1 1\?
6G=-""T" N2 [ =4 - 2.1
¢ h L {T'p + (T(p + 7‘) } ‘ (2.17)
and for quasi-two-dimensional samples one finds
62 To
iG=-S1 [— + 1} . (2.18)
wh T

It is thus sufficient to measure 6G in order to determine 5. The simplest way to
do this is to apply a magnetic field perpendicular to the sample. The time-reversal
symmetry can effectively be broken by sufficiently large fields, when the magnetic
flux enclosed by a possible time-reversed pair of a given dimension is large enough
to change the AB phasc by = 7.






Chapter 3

Dissipation in Electronically
Open Systems

Multiple elastic scattering of electrons in mesoscopic systems at sample bound-
aries, potential barriers or impurilies is at the origin of quantum interference
effects which can be observed in the de transport properties. The most prominent
examples are Aharonov-Bohm oscillatious or universal conductance fluctuations
which have been both widely studied in the literature, as well experimentally as
theoretically [36, 37, 38]. Quantum interference effects rely on the phase coherence
of the electronic wave functions. It is thus important to understand the physical
processes limiting the phase coherence in mesoscopic systems. Despite consider-
able progress in the general understanding of coherence phenomena in mesoscopic
systems, a satisfactory theoretical description of the mechanisms underlying the
loss of phase coherence is still missing. At high temperatures, dissipation is un-
doubtedly dominated by inelastic electron-phonon scattering, and interference
effects are completely suppressed even in small samples. In the absence of elastic
scattering, fully coherent propagating electronic states are expected for transla-
tional invariant systems at zero temperature [39]. Recent experiments on weakly
disordered quasi-2D systems indicate that in the limit of low temperatures the
phasc-cohcrence time of the clectron states does not become infinite but rather
saturates.

Universal quantization of the dc conductance in units of 2¢?/h is a character-
istic feature of quantum wires. Experimentally, it has been observed in different
situations, and a well elaborated theoretical explanation for this phenomenon has
already found a wide acceptance in the scientific community.

Recently, several groups have, however, reported that the de conductance in
perfect mesoscopic quanium wires shows in fact. nonuniversal conductance steps
(2e%/h)v with v < 1. This bchavior could not be explained within the framework
of known models with either interacting or non-interacting electrons in the sample.
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In the following we show that these surprising features are possibly related and
may be explained in quite similar term. Our argument is based on the openness
of the clectronic systent, which implics that clectrons in “occupied” states in the

satuple can always diffuse further away.

3.1 Phase-Coherence Time at Low Temperatures

Several recent experiments on quasi-lD Au wires [15), GaAs/Al,Ga;_,As het-
crostructures [40], as well as on GaAs/Al,Ga,_,As ballistic quantum dots [41]
and normal-metal/superconductor samples [42] have shown a saturation of the
phase-coherence time 7, at low temperatures rather than the expected increase
versus infinity.

Starting from the assumption that electron-phonon scattering can be neglected
at low temperatures, Mohanty et al. [43] gave a tentative explanation in terms
of electron-electron scattering, where electrons contributing to the transport are
scattered by the zero-point fluctuations of the clectromagnetic environment, ac-
companying the fluctuations of the N-particle density. In this picture, the zero-
point fluctuations dominate at low temperatures and give rise to phase-destructive
scattering even in the limit of zero temperature. Other authors have attempted
to explain this behavior in terms of electron-electron interactions within the sam-
ple [40, 44, 45]. These explanations are, however, not completely satisfactory. A
consistent, approach taking into account the entanglement of the elecironic states
would require a description of transport properties in terms of the correlated col-
lective motion of all electrons instead of using an effective one-electron picture,
where the effect of the electrons in the background is reduced to dephasing the
one-particle states. In Ref. {46] the low-temperature saturation of 7, is proposed
to be due to the external electromagnetic noise.

Here we propose an alternative explanation of low-temperature decoherence.
We gtart from the idea that dephasing is caused by the interaction between the
sample and its environment even at zero temperature. This becomes possible if we
explicitly take into account the fact that the system is open, which is particularly
appropriate under the here-considered de conditions, where the system is linked
to dissipating reservoirs. While the authors of Ref. [43] account for the dissipative
phase-destroying phonon-absorption processes at finite temperatures, they assume
that under the experimental conditions, i.e., at low electric fields and low temper-
atures, electron scattering involving phonon-emission processes is suppressed by
the Pauli exclusion principle. This assumption is, however, not strictly correct.
The Pauli exclusion principle is only valid in closed systems and cannot be ap-
plied to open systems, i.e. systemns connected to reservoirs, where the number of
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electron states per (infinitesimal) energy interval is infinite. In other words, while
at low temperature and low fields Pauli blocking suppresses transitions into states
helow the Fermi energy in closed systems, it is also obvious that this suppression
becomes at least less important when the system is gradually opened, so that
supernumerary electrons can escape the sample region. This immediately shows
that, contrary to the arguments in the literature, phonon-emission processes may
quite well be important and should at least be reconsidered. Our present problem
is closely related to the question already raised by R. Landauer[30], mentioned in
subsection 2.2.1, whether the Pauli exclusion principle has to be considered or not
for electrons entering the external reservoirs under de conditions. In the following
we will show that the experimental results can in fact be explained by accounting
for phonon-emission contributions.

3.1.1 Phase-Coherence Time in Presence of Electron-Phonon -
Scattering Processes

Starting from the Landauer picture for de transport; we consider a two-terminal
device and assume weak electron-phonon interaction. Electron scattering by
phonons can then be described on the level of one-phonon emission or one-phonon
ahsorption processes. Both the electron and the phonon subsystems are open. The
thermal coupling of the phonons to the environment leads to a finite phonon life-
time Tynen. The electrons are coupled to two statistically independent reservoirs
with chemical potentials near the Fermi energy Er of the closed clectron system.
Even for vanishing electron-phonon interactions, this coupling to the reservoirs
implies a finite lifetime 7., for electrons in the mesoscopic subsystem that we
consider. This case has been treated by Lang [47]) and Datta et al. [48] exper-
imentally as well as theoretically for very small systems, e.g. few-atom systems
in a scanning tunneling microscope. The interaction between electrons and reser-
voirs decreases with the sample size. The thermal coupling with the environment
is controlled by the rather strong vibrational interaction between the mesoscopic
subsystem and the substrate. For sufficiently large samples, or small electronic
escape rate, we may therefore assume Tppen < Tres. Thus prepared, we can now
introduce the effects of electron-phonon coupling on the lifetime of electrons. In
order to discuss properly transitions between one-electron states with initial en-
ergy E; and final encrgy Ey, we have to ensure that the interaction time 7 is
sufficiently large for the dominant one-phonon transitions, i.e.,

AFET > 21 with AE=E; - E}. (3.1)
The interaction time is limited by the lifetime of the phonons, i.e. we have

1/7 > 1/Tphon > 1/Tres. (3.2)
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The effective lifetime 7.5, of an clectron near the Fermi energy is then given by
I/Tgff:l/T,vcs—Fl/Te-i-l/Ta (33)

where 7, (7,) corresponds to one-phonon emission (absorption) processes. We
use Fermi’s golden rule, to calculate the phase-coherence time 7, in presence
of electron-phonon interactions. The effective electron-phonon coupling can be
characterized by

1 wp
—= [ Macpn(@)g(e)de, (34)

where Me—pn represents the coupling matrix clement. For weak coupling, i.c.
/7, < 1 /T,,h(,,,, the phonons participating in successive scattering processes be-
come statistically independent, and we get

ﬂ’—"—" 1~ af(E +w)] glw)dw.
1 (35)
Here g(w) is the phonon density of states and f(FE) is the Fermi distribution
function. The reduction factor « € [0,1] accounts for the loss of electrons into
the reservoirs, o = 1 corresponds to complete Pauli blocking in a closed system,
for & = 0 we have no Pauli blocking at all. In the following we chose E = Ef for
the electron energy. Note that we use the clementary form in Eq. 3.5 rather than
the description in terms of the Eliashberg coupling fupction{49], since the latter
already includes the Pauli blocking.

For the two-dimensional case we have g(w) = 27w/c, with ¢ being the group
velocity of the longitudinal phonons. With the substitutions ©p = fiwp/kp, and

T¢(E) / Merpp [t ~ eof (B — w)lgw)dw+/

Eq. 3.5 reads

T = T7

(1-a)e® + (1 +a)e -
e — 1

l—1’2/2TIZM (@T)
7_4)* ) el—ph‘r T

dz. (3.6)

Here, the modified matrix element Mgl,ph(:L‘T) can be approximated as
Me,_,,h (2T) ~ naT. (3.7
Eq. 3.6 is valid under the above mentioned conditions
L/7 > 1/Tyhon > 1/75 3 1/ Tres. (3.8)

From Equations. 3.6 and 3.6 it follows that the electron-phonon emission term
leads 1o finite phase-coherence time for oo < 1 even at T = 0.

The dephasing rate in Eq. 3.6 is defined by the coupling factor 7 depending on
the specific material, and by the reduction factor e which describes the coupling
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Figure 3.1: Temperature dependence of the phase-coherence time. The points represent
the experimental results of Ref. [43]. Curves q,...,e are calculated from Eq. 3.5 for
7 = 0.058s~' K3 and different o values, a) @ = 1; b) @ = 0.9999999; ¢) & = 0.9999971;
d) @ =0.999; ¢) a=0.

to the reservoirs and thus depends on the sample configuration. We note that the
high-temperature behavior is controlled by n alone, whereas the low-temperature
behavior is determined by c.

In Fig. 3.1 we show the temperature-dependence of the dephasing time for
7 = 0.058 s~1 K 3 and different «« parameters. The coupling parameter was chosen
to fit. the experimental results of Mohanty et al. [43] for a Au quantum wire,
which are also represented. The curves were obtained with ©p = 170K which
corresponds to the case of Au.

An excellent fit of the experimental points from Ref. [43] is obtained with
o = 0.9999971 (curve ¢ in Fig. 3.1). Comparison with the case of complete Pauli
blocking (@ = 1) shows that the experimental results can be explained assuming a
finite but extremely small probability rate for the electrons to escape the sample
region.
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Tigure 3.2: Temperature dependence of the phase-coherence time for Au (upper two
curves, correspouding to the samples Au-1 and Au-5 in Ref. [15]; the uppermost curve is
identical with the experimental curve in Fig. 3.1) and for the evaporated Pd-Au samples
of Ref. [50] (Jower two curves). The theoretical fits given by the full lines correspond
to ©p = 170K and a) 5 = 00585~ K3, @ = 0.9999971; b) 7 = 0.058s ' K~3 o =
0.999978; ¢) 7 = 0.09s 1K~ o = 0.99595; d) 5 = 0.09s~1K 3, o = 0.9916.

3.1.2 Discussion and Suggestions for Further Investiga-
tions

From our theoretical analysis it follows inumediately that the high-temperature be-
havior should be characteristic for the chosen material, whereas the low-temperature
behavior should depend solely on the sample geometry and the contact configu-
ration (sce also curves b,c and d in Fig. 3.1). This is indced confirmed by the
existing experimental results (see Figs. 2 and 4 in Ref. [15]), which can also be
described within our approach. As an example, we present further fits for Au [15)
and for Pd-Au [50] in Fig. 3.2.

To check the consistency of our interpretation, we estimate the fraction p of
clectrons leaving the sample within the time interval 7, = 7,(cx = 0,7 = 0). Here,
T, measires the scattering time due to phonon emission only in the absence of
any Pauli blocking. We obtain p = /D7,/d, where d is the distance between the
two contacts and D is the diffusion constant. The fraction p represents an upper
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estimate of the free states below Ep which can be reached by electrons at Er after
phonon emission. In fact, additional scattering e.g. at the contacts and at the
sample boundaries will lower the escape rate of the clectrons in real samples with
respect to the ideal value of D/d%. Moreover, the above estimate does not account
for the fact that, in addition to the phonon-emission path, states below Ep are
also filled from the reservoirs. Both concurring paths are statistically independent
and have to be treated on an equal basis. We thus expect

p>1-o. (3.9)

The validity of this relation can be checked if the diffusion constant D is known.
We have found that it is satisticd for the Au samples of Ref. [15].

The coupling of electrons within the sample to the reservoirs depends on the
sample size, on the contact geometry as well as on the presence of disorder or
barriers. The correctness of the presented ideas could be experimentally verified
by introducing for example variable barriers in the contact regions. According to
our description, it shonld then be possible to systematically change the saturation
value of the phase-coherence time at low temperatures by varying the barrier
heights. Such a behavior is not expected within the dephasing models based on
electron-electron scattering. A distinction between our picture of decoherence and
the electron-electron based dephasing mechanism is thus possible.

3.2 Nonuniversal Conductance Steps

Though the universal conductance quantization in one-dimensional (1D) electronic
systems was predicted long before, the first successful experiments, performed
on ballistic point contacts defined in a two-dimensional electron gas of a GaAs-
AlGaAs heterostructure [51], date late cightics. While these earlier experiments
were performed at very low temperatures (I" < 0.6K), quantization was found
more recently even in metallic break junctions at room temperature [52]. Univer-
sal conductance steps recuire the absence of electron backscattering within the
sample. This explains why the direct confirmation of the quantization in quan-
tum wires has not been possible for a long time. Elastic or inclastic backscattering
can, however, be suppressed by exposing a 2D electron gas in a quantun wire to
a perpendicular maguetic field. ln this way the quantization can be recovered and
leads Lo integer quantum Hall plateaus [53].

Only recently, Yacoby ef al. [16] have succeeded to produce quantum wires
as long as 1 — 10pm of extreme quality. Quite surprisingly, the conductance
steps found for these samples have heights (2¢%/h) v with » = 0.8...0.9 instead
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of v = 1. In the meantime, these results have been confirmed by other groups
[54, 55].

As was already discussed in Ref. [16], the nonuniversal step height can neither
be explained by elastic impurity scattering nor by electron-electron interactions.
Nevertheless, it is obvious that any decrease of the conductance with respect to
its universal value must be due to either some backscattering mechanism or to a
reduction of the number of non-equilibrium electrons participating in the transport
at given bias. Most recently, Alekscev ot al.[56] have attempted to cxplain the
experimental results using the first type of argument. They argue that electrons
exiting the 1D channels in the wire are partly scattered back at the contacts. In
their picture, the scatteriug potential is caused by the Friedel oscillations of the
charge density in the 2D gas behind the contacts. The experimentally observed
increase of the step heights at larger bias or temperature is then explained by
the reduced scattering probability in both cases. However, this approach, while
interesting in itself, is not completely satisfactory. In particular, one should expect
length-dependent Fabry-Pérot type oscillations of the conductance due to multiple
scattering of electrons between the contacts instcad of the observed well-defined
conductance plateaus. We also believe that the existence of coherent scattering
of electrons from the 2D electron gas behind the contacts back into the wire is
questionable, since the 2D sections are in close thermal contact with the substrate.
This implies that dissipative processes due to inelastic electron-phonon scattering
should already be important in the region of the Friedel oscillations near the
contacts.

In the following we employ the second type of argument. In contrast to Ref.
[56] we will restrict onr discussion to the lincar response regime at small bias,
and we will only consider the zero-temperature case. Our approach is based on
the same argument as in the previous section. In open de systems connected to
electron reservoirs, non-equilibrium electrons coupled to states with lower energies
by electron-phonon interaction can descend into these states even at zero temper-
ature. The relevance of these transitions in open systems can be infered from
the observation that, without such processes, thermalization of non-equilibrium
electrons entering an electron reservoir with a given chemical potential would be
impossible in the low-temperature limit. Accepting this relaxation mechanism
in the reservoirs, it is then quite natural to allow for these transitions also in
the sample region. The resulting situation can be described within the Landauer
picture of dc transport and assuming partial Pauli blocking in the reservoirs.
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Figure 3.3: Quantum wire connected to external electron pservoins. The eleotronie
transitions considered in the rate equations Egs. 311 and 3.12 are indieated by the
RITUWS.

3.2.1 Model Description

We consider a mesoscopic wite conmectend to electron reservoirs at both ends. A
direet curront through the wire is maintained by keeping the two reservoirs at
slightly different chemical potentials gy and g, To be specific, we consider the
case gy > Ep > p, [see Fig. 3.3). where Ep is the Fermi energy of the wire at
equilibrivm. We assume the wire and the contact regions to be froe of elastic
seatbering centers of potentinl barriers.

Dhie to the lateral confinement of the electron gas in the quantiun wire, the
electromic states of the wire are split into 1D subbapds, T the absence of elastic or
inclustic seattering within the wire, the conduclanee is G = (22 /h) N (Eg ), whore
N(Ey) is the number of subbands crossing the Fermi-level. In the following we
presume nogligible interband electrou-phonon coupling, but we allow for intrband
coupling. Then, the current through the wire can be written as

L
J(E¢) = }_’i; (Er —2), (3.10)

where the sum runs over all subbands crossing the Fermi level, ¢, denotes the
lower hand edge of subband 5. The contributions § (£} being independent of the
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subband index s, it is sufficient to discuss the situation for a single subband t with
the bottom energy ¢, < Ep. For simplicity, we assume a single trausition energy
hwphon for phonon cmission processes, which may represent an optical phonon
energy or the Debye frequency. The coupling between electron states separated
by fiwpnon is given by the transition rate 1/7._,,. This allows us to describe the
situation within the sample by an effective two-level system, where the upper level
1 accounts for the ensemble of states in the interval i, < & < gy, and the lower level
2 represents the ensemble of states in the interval y, — hwphon < € < iy — Hiwphon
(see Fig. 3.3).

3.2.2 Rate Equations

In the following we derive the rate equations that determine the occupation of both
levels at low temperatures with AT < hwphe,. Under the above assumptions, only
states propagating from left to right can be occupied in level 1, whereas electrons
in level 2 travel in both directions. Nevertheless, as long as we assume equal
scattering probability from level 1 into both propagation directions in level 2, the
occupation probability is the same for left-right and right-left traveling states, and
we only need to calculate one of both.

In the absence of phonon-emission processes, we have the standard situation:
Electrons are injected from the left into level 1, travel through the wire, before
being reabsorbed by the right reservoir; electrons in level 2 do not contribute to
the total current, regardless of the made assumptions about the partial currents
from left to right or from right to left. The conductance is quantized in units of
2e*/h.

The physics becomes much more involved, when we allow for inclastic scat-
tering due to phonon emission. Electrons in subbands ¢ with energies E ~ Ep >
€t + hwphon, which have entered the sample from the left reservoir may then be
scattered into level 2. The ensemble of electrons in level 2 traveling from left to
right can thus be reached from level 1 as well as from the left reservoir. Both
sources being statistically independent, we have to account for Pauli blocking ef-
fects, i.c., we have to ensure that electrons attempting to enter level 2 from the
left reservoir, are only allowed to occupy states which are not yet occupied by
electrons which have entered through level 1'. Similarly, electrons from level 1
can only enter states in level 2 which are not yet occupied by statistically inde-
pendent electrons. For Ep — & > hwppan, the stationary occupations n, and n, in

'Panli hlocking does not, concern coherent electrons, since the coherent, dynamics of electrons
entering from one source is described by a unitary evolution operator keeping the electron states
orthogonal at each time. Therefore, as long as coherence is guaranteed, multiple occupation of
electron states is impossible, and Pauli exclusion does not come into play [30].




3.2. NONUNIVERSAL CONDUCTANCE STEPS 35

levels 1 and 2 by electrons traveling from left to right obey the rate equations

1 n
— =2 M e (3.11)
Td1 Te—ph Tdi
1—n ) n
2T gyt 8) 4 p2 (3.12)
Td2 Te—ph Td2

Here we have assumed that electrons in level 1 are scattered with equal probability
into both propagation directions in level 2. This leads to the factor 2 in Eq. 3.11.
The electron-phonon interaction is given by the scattering rate 1/7._pp. The
transit times per unit length, 751 and 74, are obtained from the reciprocal group
velocities in the considered subband at encrgies Er and Ep — hwppon, respectively.
The partial occupation n,, describes the fraction of electrons which have entered
level 2 from level 1, and 6 represents the related fraction of electrons in level 2,
which again have entered through level 1, but now within a time interval given
by the phonon-coherence time Tppen. The electrons described by the parameter
& are still coherent with electrons entering from level 1, and therefore they do
not contribute to the Pauli blocking of transitions from level 1 to level 2. In a
semi-classical picture we obtain

4= 71,2,1@592. (3.13)
Td1

In the following we will assume Tpnon = To—pn 2, The factor p in Eq. 3.12 gives the
probability 0 < p < 1 to enter the reservoirs from level 2. The absence of any Pauli
blocking in the reservoirs is described by p = 1, full Pauli blocking corresponding
to closed systems is obtained with p = 0. Following our above arguments, electrons
occupying reservoir states interacting with the sample region may always diffuse
further away into empty states, i.e., the reservoirs should be regarded as leaking
rather than as closed systems. We thus expect a non-vanishing probability p for
the electrons in level 2 to enter the left and right reservoirs.

3.2.3 Energy Dependence of Level Occupation

We emphasize that the rate equations 3.11 and 3.12 can of course not describe
any effects due to the coherent evolution of the electronic states within the time

2With this assumption the phonons are still well defined, but coherent multiple-phonon
processes leading to polaron effects become negligible. We will see later (see Eq. 3.17), that
formally this assumption becomes irrelevant, for our description in the limit, of sufficiently large
electron-phonon coupling. For reasons of consistency, however, the condition Tppen < Teopn
remains necessary, since otherwise we would have to describe the effects of the electron-phonon
interaction on the coherent evolution of the electron states, which is beyond the possibilities of
the present approach based on rate equations.
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interval ) < t < Tppon- In the following we therefore restrict ourselves to the
discussion of the results in the limit § — 0, where coherence effects become
unimportant. The introduction of the paramcter ¢ in Egs. 3.11 and 3.12 is,
however, necessary, in order to find the solution with the correct limiting behavior,
as will be seen below.

Under our above assumption of equal inelastic back- and forward scattering
probabilities, the forward and backward current contributions from electrons. in
level 2 cancel, and the contribution to the current from a single subband becomes

j=(2¢*/h)m. (3.14)

We thus have to calculate the oceupation n,. The system of the three cquations
3.11, 3.12 and  3.13 is, however, still underdetermined, since it contains four
unknowns n;, ny, n,; and §. We therefore have to look for a supplementary
condition, which defines the relative importance of the two independent entries
into level 2. For this purpose we introduce the partial occupation ng,e, which
represents the fraction of electrons in level 2 having entered through the left
reservoir. It obeys the sum rule

g = Mg + Ny res- (3.15)

The ratio ng,1 /1y res is determined by the ratio between the respective rates 1/7,_ps
and 1/74, i.c.

Ny 1 T2
o Ta (3.16)
N res Te—ph

Equations 3.11, 3.12, 3.13, 3.15, and 3.16 define the five unknowns n,, ny, ng,,
Nares; and 6. These equations are readily solved for any set of parameters. In
the limit of large electron-phonon coupling with 7,_pn/7g1 — 0 ? and assuming
parabolic dispersion for the 1D subbands we obtain

¢ 1 for &= 7t and 0<&<1 a7
m (&) = = ron .
1) 1—2pHt =1 — 2p /&L E>1. (317

The (:orrésponding solutions for the other parameters are 6 = 0, ny; = ny = 1,
and np ;65 = 0. From Eq. 3.17 we obtain for the saturation value

m (00) =1~ 2p, (3.18)

which together with Eq. 3.14 leads to the conductance step height v =1 — 2p.
The resulting energy dependence of the conductance is shown in Fig. 3.4. As it
can alrcady be seen from Eq. 3.17, incoming clectrons with energies smaller than

3This implies 7pp0n — 0 and thus § — 0, which defines the range of validity of our approach.
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Figure 3.4: Conductance for p = 0.1 in presence of weak elastic backscattering (¢ = 0.15

in Eq. 3.19). The dotled curve is obtained without backscattering (¢ = 0).

the phonon cnergy fwyp,., cannot be scattered into lower-lying states, and the
conductance reaches its universal value 2¢2/h, in disagreement with the experi-
meni. This behavior is partly due to our restriction to a single phonon frequency,
it will be smoothened when we allow for coupling with the continuum of acousti-
cal phonons, which would also be more realistic. But even this will not affect the
value of the conductance at the edge. The remaining discrepancy can be removed
by assuming c.g. weak clastic backscattering in the sample region. Near the band
edge, the transmission probability in the presence of a thin elastic barrier can be
described by '

T (¢) with & > 0, (3.19)

c+é
where ¢ > 0 measures the scattering strength of the barrier, ¢ = 0 corresponds
to perfect transmission. Fig. 3.4 shows that the conductance peak near the band
edge can in fact be suppressed by weak elastic backscattering without affecting
the saturation value.

3.2.4 Comparison with Experiment and Predictions

In this section we have shown that the nonuniversal conductance plateaus that are
observed in thin perfect quantum wires may indicate incomplete Pauli blocking
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of clectrons entering “occupicd” reservoir states. If this picture is correct, the
measured step heights should of course depend in a characteristic manner on the
system parameters defining the coupling between sample and reservoirs.  This
expectation is qualitatively confirmed by the experimental facts.

Yacoby et al. {16] find that the step height v increases with the widths of
the wires. In order to understand this behavior one has to recognize that, in the
specific sample geometry used in the cxperiment, the contact region is the same
for all samples, i.c., the ratio between contact surface and volume of the wires
decreases for increasing widths of the wires. The sample region, which consists
of the wire, is thus gradually closed when the width of the wire is increased.
We therefore expect smaller p values for wide wires, which is in accord with the
observed increase of step heights. In fact, the parameter p is related with the
parameter « in section 3.1.1. The values of the latter were found to be rather
small (= 107%) in the there-discussed large diffusive systems with small contacts.

Possibly, the increase of the step heights in the presence of a magnetic field
perpendicular to the wire found in Ref. [54] may be explained by a similar de-
coupling mechauism. In this case the effective contact areas are reduced by the
formation of edge states. The observed constant step height between conscentive
conductance plateaus shows that inter-mode scattering is negligible in the samples
of Ref. [16].

Experimentally, the conductance step heights v do not depend on the lengths
of the quantum wires for lengths between 1 and 5 pan [16]. For larger lengths
the measured conductance decreases and the steps disappear. This experimental
behavior is in full agreement with our present description which predicts indepen-
dence with respect to the sample length as long as multiple elastic scattering can
be excluded. Similarly, we also expect different behavior for very short quantum
wires, for which the assumption of well defined perfect transmission channels can
no longer be justified. ’

Yacoby et ol[16] also find that the step height of the first plateau raises with
the temperature in the range 1K < T < 25K as well as with the bias. While in
Ref. [56] this behavior was attributed to the dependence of the elastic backscat-
tering on the temperature and on the external bias, both situations cannot be
treated directly within our two-level approach and their explanation remains a
theoretical challenge for further investigations. However, it seems reasonable to
assume, that for larger currents the effective width of the contacts reduces due to
the charging of the edge states carrying the current. This bottleneck effect would
lead 1o smaller p values and therefore to larger step heights. Similarly, the ther-
malization in the reservoirs becoming more rapid with increasing temperature, we
would expect that electrons trying to enter the reservoir states from level 2 will
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then more and more be hindered by already present reservoir electrons, which
Liave reached these receiving states by inelastic phonon-absorption processes.

The sole existence of nonuniversal conductance steps in gquantum wires raises
of course the question, under which conditions one will obtain universal rather
than nonuniversal behavior. In our model, the situation is controlled by two
parameters, the electron-phonon coupling rate in the mesoscopic sample 1/7,_pn
and the phenomenological parameter p, which accounts for the contact properties
as well as for the diffusion of electrons below the Fermi level in the reservoirs.
Universal behavior is only obtained if at least one of these two parameters vanishes,
i.e. if 1/7epn 22 0 or p o~ 0. While of course it will be rather impossible to change
the electron-phonon coupling within the wire, it should in principle be possible to
follow the transition from nominiversal to universal behavior by gradually closing
the connection with the reservoirs using external gates.

In summary, we state that both behaviors, saturation of 7, and nonnniversal
conductance steps, may have the same origin. Both effects depend on the effective
coupling between the mesoscopic sample system and the surrounding environinent.
In the mesoscopic regime, more information than given by the usual parameters,
such as temperature, sample dimensions and the diffusion constant, is needed
to understand the experimental results. In particular, contact parameters that
control the openness of the system will play a crucial role in the interpretation of
transport experiments.

The approach shown above remains, however, purcly phenomenological and
gives no clear picture about the microscopical meaning of the parameters o or
p, which were introduced in a more or less ad-hoc manner. In the next chapters
we treat a.closed electronic system, which is coupled to the environment via local
vibrational degrees of freedom. This way, we strive for a more microscopical
approach of the dissipation.






Chapter 4

Electron Relaxation in Small
Systems

The phenomenological description of dissipation, used in the previous chapter,
doces not relate the chosen parameters to the relevant physical properties of the
system. A throughout microscopical treatment of open systems is almost impos-
sible, since the number of intervesing system parameters goes to infinity. Unlike
an open system, one can describe a closed system completely by the Schridinger
equation. Here we attempt to describe an initially closed small system that is
weakly conpled to to the environment (e.g. thermally). We consider a finite num-
ber of electrons in a finite electronic space. The system is opened in a controllable
manner, by introducing indirect interaction processes between the electrons and
the environment via internal degrees of freedom of the system. This situation is
schematically shown in Fig. 4.1.

The encrgy relaxation of electrons has been a subject of both experimental
(see e.g. [57]) as well as theoretical studies {58, 59, 60, 61, 62]. Using a gener-
alized Monte Carlo approach, Rossi and coworkers have found a strong interplay
between energy relaxation and phase ccherence [63]. The authors of Ref. [60]
investigate the energy relaxation of hot electrons. Assuming a linear energy dis-
persion they were able to solve exactly the time-dependent Schrédinger equation.
In the following, we propose a simple method to describe the electron relaxation
in a small system with an arbitrary dispersion.

In Ref. [58] the Monte Carlo method is applied to describe the coherent and
incoherent phenomena in photoexcited semiconductors. Later, this method is
used to investigate the ultrafast carrier dynamics [64, 59], in particular the carrier
relaxation and the role of the coherent processes as well as the carrier-carrier
processes in Hartree-Fock approximation. The general aim of these authors is to
study the phenomena at very short time scales. Our present objective is, however,
to achieve an understanding of dissipation and relaxation in the long-time limit,

41
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Figure 4.1: Schematieal llusteation of a closed oloctronic sample system eoupled to the
envitonment vie local vibrational meodes.

and 1o deseribe the electronie de transport, where the relevant time scales are not
of the same order as the reciprocal dissipation rate, bt mnch larger,

4.1 Theoretical Model

We investigate the electronic relaxation of a mesoscopic sample, where the elec-
trons wro confined toon Gnite spatinl wgion. The sawple formne can be chosen
arbitragily. The elections interaet divectly with local vibrational modes (LVAM) of
the sample that can be oprosentod by a cortain number of barmwonic oscillators,
In the shsenee of the coupling (o the environment. po dissipation is expected sl
the system wonld completely be described by the Hamiltonian

H=H +H +H,, (1)

where H, eopresents the olectrons, H, considers the LNMs and H,, is the mutual
interaction hetween both. Depending on the case, one can write down these terms
il solve the time-dependent Sehridinger equation.  Alternatively, the problem
can be sulved by studying the time evolution of the density matrix g of the whole

R ——— - "
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system with the corresponding initial conditions. In this case, one has to solve
the Liouville equation

o) = lp, H] (42)
instead of the Eq. 2.1. Both methods lead 1o the same result and the solution
can be given in terms of polaronic cigenstiates of the Hamiltonian Eq. 4.1.

As long as there is no interaction with the environment, the coherent evolu-
tion of the system may be described by either of both methods. The sitnation
changes, when we consider the dissipative processes due to interaction with the
environment. While the Schrodinger equation describes merely the coherent evo-
fution of the system, the Eq. 4.2 offers the possibility to extend the description
to non-coherent interaction. The most popular way to introduce the decoherence
is to add a phenomenological “loss” term to Lq. 4.2 and to study the resulting
master equation (see e.g. [65] and the references therein).

Here we introduce dissipation through the coupling to the environmental de-
grees of freedom. We consider the electron-LVM interaction to be weak and study
the problem in the presence of direct coupling between the LVMs and the vibra-
tional modes of the substrate, which are considered to represent an ideal thermal
bath. Thus, even for an infinitesimal but non-zero electron-LVM coupling H,,
the vibrational modes of the isolated mesoscopic system are no more eigenstates
of the whole system. This can be accounted for in a phenomenological manner
by attributing a finite lifetime 7, to these modes. The coherent evolution of the
electrons and the LVMs can ouly be maintained for times smaller than 7,.

The situation above can be translated into the language of quantum mechanics
in the following manner. The Hilbert space ‘H of the sample system, containing
only electronic and the vibrational degrees of freedom and of the effective dimen-
sion K, is given by the tensorial product between the electronic subspace H, and
the vibrational subspace #,,

H="H.QHp (4.3)
In the absence of the clectron-phonon interaction, the density matrix can be writ-
ten as
plt) = pelt) ® (1), (4.4)
with

pe(t) = TT,, P(t)
pp(t) = Tre p(t),

being the partial density matrices of the clectronic respectively phononic subsys-
tem over the Hilbert subspace H, respectively H,. Eq. 4.4 is no more valid, when
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we consider the H,, term, but one can still define the electronic density matrix
pe(t) (also pp(t)) due to Eq. 4.5 (Eq. 4.6). If both systemns are weakly correlated
(sce [66]), the problem can be treated by introducing a corrclation term 7, (t)

"'ep(t) = p(t) - /)e(t) ® P])(t)~ (47)

The coupling to the environment can then be introduced in this picture by trac-
ing over all the LVM states, while the LVM occupation is kept at the thermal
equilibrium distribution corresponding to the temperature in the environment.

Here we treat the problem in a similar way. Starting from an ipitial configu-
ration py = p(t = tp), the time cvolution of p is obtained in a two-step procedure;
i) cohcrent cvolution of p during the time interval ty < ¢ < #, = fp + 7, and
ii) state reduction by tracing p(t;) over the subspace of LVMs and resetting the
LVMs occupations to their equilibrium values. Iterating this procedure, one can
then follow the time evolution of the system towards its electronic equilibrium
configuration. When the electronic and vibrational subsystems are weakly corre-
lated and at low temperatures, the IVM subspace can be constructed int terms of
the ground state and the first excited states of each oscillator. Non-zero temper-
atures can be treated similarly. Assuming M harmonic oscillators as the LVMs,
the space of the latter is given by all the oscillator states |0; >,[1; >,...,|n >
for i =1,..., M, |n; > being the highest occupied state of the oscillator i at the
corresponding temperature 7. The electron-LVM interaction, given in general
form in Eq. 4.14, couples any oscillator state |j; > only to the oscillator states
|( —1); > and {(j + 1); >. The Hamiltonian matrix element hetween the states
|ji > and [(j + 1); > has a prefactor 1/4/7 + I because of the normalization, i.e.
the matrix element becomes less important for the higher excited modes. Thus,
the matrix element between the ground and the first excited state has the maost
weight, even for higher temperatures.

To describe the coherent evolution due to the Eq. 4.2, it is convenient to
diagonalize the Hamiltonian H and change to the eigenbasis, since in this basis
the evolution of the density matrix g is easily calculated by

(0(t1)) = exp(~i(Ej — Ex)7p)(0(to))j ks (4.8)

the E;’s heing the eigenvalues of H in Eq. 4.1. The density matrix in the product
representation of the electronic states and the LVMs, denoted by p, and the density
matrix p in the eigenbasis of the Hamiltonian Eq. 4.1 are related by

olto) = S'p(to)S, (4.9)
where the transformation matrix S is given by the eigenvectors v; of H

S = (v1,v9,...,UK). (4.10)
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The trace over vibrational modes Eq. 4.5 in step ii) is most easily calculated
in the product basis. Thus, each cycle requires a back- and forth transformation
between both basis sets. To be specific, let us consider a single clectron in a sample
system described by N electronic states, and interacting with M —1 excited modes
of a single oscillator. Then, the density matrix p in the product basis can be
written as

[T IV T PIK-M -+ PIK
PMIL ooo PMM PMK-M . PMK
: : : (4.11)
PE=MI oo PK-MM PK-MK~-M --- PK-MK
PK1 .- PKM PKK-M e PKK

with K’ = M xN. The diagonal elements of cach submatrix contain the occupation
informatiou of the corresponding vibrational mode. State reduction according to
Eq. 4.5 is done by resetting the diagonal elements of cach submatrix to the values
corresponding to the equilibrium distribution of LVMs and by eliminating the
non-diagonal clements.

This iterative procedure is easy to apply, when the number of the electrons
and LVMs is small enough. The effective dimension K of the Hilbert space grows
superlincarly with the number of the electrons and that of the LVMs so that an
exact diagonalization of the Hamiltonian and back- and forth transformation of
p becomes more and more time-consuming. For larger systems, it will be more
cfficient. (o switch to the interaction picture and to trcat the coberent evolution
in secoud order perturbation theory. In the present work, however, we investigate
the physics of small systems, when the direct diagonalization is most convenient.

4.2 Single-Electron Relaxation in Small 1D Loops

We first investigate the relaxation of a single electron in a one-dimensional loop.
The choice of a loop-formed sample is motivated hy the fact that it can later be
used to describe electronic transport driven by external fields.

We assume that the sample is embedded in a large gap host material. In the
eigenrepresentation, H, is giveu hy

N
H, = z c—,,cI,cn, (4.12)

n=1
where the index » labels the N eigenstates of H, corresponding to the loop, and
the operators ¢}, (¢,) denote the respective creation (annihilation) operators. The
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electronic system interacts with a single local mode described by H,
H, = wb'b, (4.13)

where bt (b) denotes the creation (annihilation) operator of the harmonic oscil-
lator with the frequency w. The b and ¢ operators obey the commutation or
anti-commutation rules for bosons respectively fermions. The mutual interaction
between electrons and LVMs has the general form
Hop = Y (AU, k, Oclerby + BG, b, Ocled) (4.14)
ki

As explained before, for the here-assumed weak electron-LVM coupling Bq. 4.14
and zero temperature we can limii the subspace of the LVMs to the first excited
state.

H, is derived from the solution of the N-site tight-binding Hamiltonian with
periodic boundary conditions. Its eigenvalues are given by

€n = €(1 — cos(ky)), (4.15)

k, being defined by k, = 27n/N, where n = —N/2,...,N/2 for even N or
n=—(N-1)/2,...,(N —1)/2 for odd N mark the first Brillouin zone. With
the choice Eq. 4.15, the band bottom is at n = 0 and the eigenvalues satisfy
0 < €, < 2¢. The corresponding eigenfunctions |¢, > can be described in terms
of Bloch functions in the basis set of Wannier functions |5 >

1
Pn >= —~—= > exp(the §) |7 > . 4.16
[0 2= 755 L explita ) (416)
Assuming a constant electron-LVM coupling C between different electron states,
the interaction reads
Hep = CY cle (b +). (4.17)
Wl
It might appear that the description of the local vibrational modes by a single
oscillator is too rudimentary to investigate the evolution of the system. However,
this rather simplified model yields all the essential features of more elaborated
descriptions, which include more oscillator states. In particular, it is sufficient to
discuss the role of different parameters included in the model.

4.2.1 Numerical Results

In the following we assume Rydberg atomic units (au) for the energies. The
corresponding time unit is 7y = 4.484 x 10717 s }. As an example we consider the

see e.g. Journal of Physical and Chemical Reference Data, Vol 28, No.6, (1999). The value
given there corresponds to Hartree units for the energy, and has to be multiplied by a factor of
two for the here-assumed Rydberg units
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Figure 4.2: Energy relaxation of a single electron in a loop with respect to time. The
electronic system is described by N=20 states and ¢ = 0.05 au. The latter are coupled
to a single mode of frequency w = 0.01 au, with coupling factor C' = 0.0005 aun and
T = 40079.

energy relaxation of an initially excited electron in a loop with N = 20 sites and
€ = (.05 an. The initial state of the excited electron is chosen to be the uppermost
state of the band.

The relaxation depends of course on the choice of the oscillator Eq. 4.13,
defined by w, on its coupling to the electronic states €', and on the parameter 7,,
which describes the interaction with the environment. The relaxation behavior of
the electron is characterized by the time dependence of its energy

E(l) = Tr (p(t)H.) (4.18)

and by the corresponding occupation number, which is given by the diagonal
clements of the clectronic density matrix p,;(t), i = 1,..., N at different times.
An example is shown in Fig. 4.2. A nearly perfect relaxation into the ground state
is achieved with the parameter set w = 0.01 an, € = 0.0005 au and 7, = 4007
after about 2.5 ps.

Fig. 4.3 shows that the electron wave packet spreads over all the clectronic
states at intermediate times before it localizes finally over the three states with
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Figure 4.3: Occupation of electronic states for the same parameter set as for Fig. 4.2
at different times ¢ = mmy,, m = 0,10,20,....

the lowest energy. We note that the relaxation cannot be described within the
approach of Fermi’s golden rule. With the choice of a finite value of the parameter
7p one excludes all trivial blockings due to the eventual mismatch between w and
the encrgy difference between two electronic eigenstates, and it becomes possible
to describe the clectronic relaxation even for a strongly energy-dependent dmmty
of states, as it is the case for the tight-binding band.

The final electronic energy after relaxation

E,, = Jim E(t) (4.19)

may be used to illustrate the effect of the model parameters. In particular, 7,
controls the coupling of different electronic states to the ideal bath representing the
further environment. In the extreme limit 7, — ¢ there is no energy conservation
at all. Hence, all electronic states are equally coupled to each other. In the long-
time limit the occupation of each state becomes thus independent of its energy so
that 1 )

/)e,ii(t d OO) = 7\—, Yi = Eoo =e€. (420)
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Figure 4.4: Final electronic energy as a function of the lifetime 7, of the oscillator
states. The other parameters are the same as in Fig. 4.2.

The opposite limit 7, — oo describes the case of vanishing coupling to the
environment. The relaxation slows gradually down in this limit. The case 7, = 0o
corresponds to the coherent evolution of the electron-LVM system. As it can be
seen in Fig. 4.4, E, remains more or less unchanged for a long range hetween
these two limits, passing through a minimum for an intermediate 7,. We note
that our approach is only adequate to deseribe the time evolution of p(t) for times
1> 7. '

The dependence of Ey, on the oscillator frequency w is demonstrated in Fig.
4.5. Again the two limiting cases w — 0 and w > 2¢ can casily be understood.
Up- and downward coupling become the same when w tends to zero, leading to the
situation described by Eq. 4.20. Similarly when w > 2¢, the coupling between the
electronic states becomes uniform and E, approaches in this case monotonously
the mid-band value ¢. For 0 < w < 2¢, the final electron energy fluctuates with w
as a result of its coincidental resonance with the electronic transition energies at
the bottomn of the band.

Other more microscopical models for the local vibrational modcs are given and
discussed in Ref. [67], such as coupling to several (M) local oscillators with the
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Figure 4.5: Final electronic energy as a function of the frequency of the single mode
w. The other parameters are the same as in Fig. 4.2.

samne frequency, where

M

H, = w) by (4.21)
j=1

Hy, = CY cle(d] +b), (4.22)
Ikt

or the coupling to the acoustical phonons in the Debye model, represented by

H, = 3 wpblp, (4.23)
a#0 '
H, = iC Y (2¢/N)Zcxpeer(by — b y) (4.24)
k.q

with ¢ = [-%],..., [-21!] and w, = 2wp|q|/N.

Figures 4.6 and 4.7 show the time dependence of the electronic energy and
the occupation of the states for different times using ecquations 4.23 and 4.24.
Comparison of Figures 4.2, 4.3 and 4.6, 4.7 shows that the SM approach is quite

sufficient to describe the essential features of the electronic relaxation. For general
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Figure 4.6: Time dependence of the energy relaxation for the same electronic system as
in Fig. 4.2 coupled to acoustical phonons. The latter are described by the parameters
wp = 0.015 au, C = 0.0001 au and 7, = 10*r.

consideration, it is thus possible to use the SM approach instead of a much more
enmbersome many-mode approach. The price to pay is that no direct microscop-
ical meaning can be attributed to the parameters used in the SM approach. The
parameter set, however, can be chosen to simulate the results of more microscop-
ical models without. the considerable numerical effort, needed for the latter.

In our model description, the dissipation is due to the contact to the environ-
ment. Electrons in the system interact coherently with the LVMs giving energy
to the vibrational subsystem. The energy gained by the LVMs is then absorbed
by the further environment. The non-diagonal clements of the density matrix
Eq. 4.11 contain the information about the phase coherence hetween the different
states. While resetting p(t) to its equilibrium values, the vibrational subsystem
looses its phase coherence as well as its energy. The phase coherence between
different electronic states remains, however, untouched by the state reduction.

Another aspect of our results is that the [inal stationary state of a relaxing
electronic system is not perforce its ground state. Here we may distinguish be-
tween bottleneck effects that retard the relaxation and environmental blockings
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Figurc 4.7: Occupations of electronic states for the same parameter set as for Fig. 4.6
at different times t = 7, m = 0,10,20,. ...

that cause the stationary state of the system to be different from the ground
state.

4.3 Two-Electron Relaxation

The simplest non-trivial case to look at the effect of interactions between the
electrons is a two-electron system. In fact, various characteristics of a many-
clectron system can already be studied in a two-electron system, thus avoiding
long calculations, which would be necessary for many-electron systems. In the
following, we use the iterative procedure, described in Section 4.1, to determine
the time evolution of the electronic density matiix corresponding to two relaxing
electrons in the small 1D loop.

The Hamiltonian of the confined clectronic system interacting with LVMs reads

H=H,+ Hy+ Hep+ Hee, (4.25)

where H, is the non-interacting electronic Hamiltonian defined by
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H, = ZGk(;Lck. (4.26)
&

H, and H,, are given according to the sct of LVMs. As demonstrated in the
previous section, relaxation can be accessed at least qualitatively within the SM
approach, thus avoiding unnecessary numerical effort. Only the parameter set has
to be adapted to the problem. In the following we dispose of the parameters in
Equations 4.13 and 4.14.

The Hamiltonian describing the electron-electron interaction in q representa-

tion is given by
1 ,
He. =3 Z ""uclt:lc}‘cznkzﬁrqch—q: (4.27)

k1.k2,q
where V, describes the Coulomb potential. In the r representation, H,, reads

[44
He= ) (4.28)
r;a Irl - r2|7
where « includes all other constants. This potential is evaluated for our special
geometry of a loop in Appendix A.
We distinguish between the case of electrons with parallel spins and that of
electrons with opposite spins. ’

4.3.1 Pauli Exclusion

We first study the relaxation for non-interacting electrons (H,, = 0). The number
of two-clectron states increases quadratically with the munber of one-clectron
states, i.e. N(N —1)/2. In order to limit the numerical effort we choose in
the following N = 10 states. The energy dispersion of the electrons is given by
Eq. 4.15 and € = 0.06 au, the frequency of LVM being w = 0.01 au and the
coupling factor C' = 0.0003 au. Starting from the uppermost excited electronic
levels, in which the electrons ocenpy the nuppermost, electronic states of the non-
interacting svstemn, we follow the relaxation of the electronic system. Fig. 4.8
shows the time-dependence of the electronic energy with respect to the ground
state AE(t) = E(t) — Eq, with E; being the ground-state energy of the pure
electronic system for the respective spin configuration. AE, is defined accordingly
by

AF, = lim AE(t). (4.29)

t—o0

The case of electrons with opposile spins is calculated assnming independent,
relaxation of the two clectrons. This simplification means, strictly spoken, that
each electron is connected to a different vibrational mode so that we are not
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Figure 4.8: Two-electron en-
crgy relaxation in a ring with
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= = 0.06 au, coupled to a sin-
gle vibrational mode. The lat-

ter is defined by the param- — yaralesps
e opponite ains

eter set w = 0.01 au, C =
0.0003 an and 7, = 10%70.
The solid line represents the
case of electrons with parallel
spins. The dotted line depicts

the relaxation of two indepen- 0.0 X N
dent electrons that can be in- 0 5000 10000
terpreted to represent the case i(1 0’ To)

of opposite spins (see text).

exactly in the same situation as in the case of the clectrons with parallel spins,
wlhiere two-electron states are connected to a common single mode. However, for
the considered weak electron-LVM coupling C the effective interaction between
the clectrons via LVM is negligible, and the results become comparable.
According to the Pauli exclusion principle, two electrons with parallel spins
cannot occupy the same state, hence an electron is hindered to enter into a state
already occupied by the other. Fig. 4.8 shows the results for the case, where
bottleneck effects are negligible. The comparison of the energy relaxation for
both spin configurations shows that the two electrons with opposite spins relax
faster, and F, comes closer to the ground state value. This is, however, not a
gencral result. The parameter set of Fig. 4.8 is chosen so that the relaxation
is almost perfect for each electron. The relaxation of two electrons with parallel
spins can even be faster, and their final state may come closer to the ground state,
when bottleneck. effects in the single-electron relaxation are important. This may
seem strange at the first glance, but it can be explained by the fact that the
Pauli exclusion principle hinders the electrous to enter certain states, which act
eventually as temporary traps, and so it helps to bridge the bottlenecks.

4.3.2 Electron-Electron Interaction

In the previous subsection, we have ireated the electrons as chargeless particles.
We now study the influence of the Coulomb interaction between the electrons on
the relaxation. The electron-electron interaction is scaled through an additional
parameter o/ R, where R is the radius of the ring (see Appendix A).



4.3. TWO-ELECTRON RELAXATION 55

— /R=()
wiae fR=0.0001 au
==ume o/R=0.0005 au

0.2

AE(t)

0 5000 10000
1(10° 1)

Figure 4.9: Time dependence of AF (see text) for a two-electron system with parallel
spins and different Coulomb interaction strengths between the electrons. The electronic
and vibrational parameters are the same as in Fig. 4.8.

Figures 4.9 and 4.10 show the energy relaxation of two electrons with parallel,
respectively opposite, spins for the same case as before, but for electron-electron
interaction parameters o/ R = 0.0001 and 0.0005 au. Weak clectron-electron in-
teraction facilitates the relaxation of electrons. For both spin configurations and
in the limit of small @/ R-values, AEy, decreases with increasing parameter o/ R,
and the relaxation into the stationary state becomes faster. If we continue to in-
crease the interaction, AE,, passes through a minimum and finally il starls rising
to higher values. For rising Coulomb interaction, the relaxation time increases as
well. This can be seen in Fig. 4.11, where we compare AE(t) for /R = 0.001
au and /R = 0.0005 au with the relaxation of interaction-free electrons with
parallel spins. .

In order to understand the above mentioned effects one has to consider the
dependence of the eigenvalue spectrum of the electrons on the Coulomb inter-
action. Fig. 4.12 shows the energy levels of the two-clectron system with the
same electronic parameter set as in Fig. 4.8 and for different o/ R. Introducing a.
weak electron-clectron interaction, the degeneracy of the states is removed with-
out a noticeable change in the difference between minimum and maximum of the
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Figure 4.10: Time dependence of AE (see text) for a two-electron system with opposite
spins and different Coulomb interaction strengths between the electrons. The electronic
and vibrational parameters are the same as in Fig. 4.8.

energy eigenvalues. This reduces the energetic distance between adjacent states
and facilitates the relaxation. In principle, the coupling of the non-interacting
two-electron states should also lead to a more uniform coupling of the result-
ing eigenstates of the interacting system with the oscillator. This effect, which
would also enforce the above tendency, intervenes only when the electron-LVM
coupling matrix clements depend on the clectronic states, and it does not exist
for the here-considered state-independent C. Further increase of the Coulomb
interaction leads to a separation of the energy levels, so the relaxation decelerates
gradually and more time is needed to attain the stationary state. This behavior
is found for both spin configurations.

Before passing to the next chapter we want to stress that the final stationary
state can be different from the ground state. This difference cannot be attributed
to the fact that the calculation is in practice interrupted at long times. Fig. 4.13
shows AE(t) for two interacting electrons with parallel spins, the same electronic
and vibrational parameter sets as in Fig. 4.9, and /R = 0.0005 au. The solid
line represents the relaxation from the uppermost electronic state, while the initial
state for the dotted curve is the ground state of the system. The stationary state
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Figure 4.11: Time dependence of AE for a two-electron system with parallel spins.
The electronic and vibrational parameters are the same as in Fig. 4.8.
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Figure 4.13: The stationary state does not depend on the initial state. Starting from
the ground state (solid line) or the uppermost state (dotted line) the relaxation process
leads to the same final state, which is different from the ground state.

for hoth cases is the same, and so it is independent of the initial state. This is

true for all the relaxation situations shown here.



Chapter 5

Persistent Currents

Small ring systems provide an excellent testing ground to gain insight into some
basic aspects in mesoscopic physics. Considering a ring threaded by a constant
magnetic flux ¢, and inspired by the fact that the periodicity of the potential on
a ring makes the problem formally the same as that of Bloch wave functions in
a crystal, Bittiker, fmry and Landauer have predicted that this should lead to
a persistent current in the clectronic ground state [68]. The persistent current,
in rings is periodic with respect to enclosed flux with the period ¢ = hefe.
Later, Landauer and Biittiker have shown that neither finite temperature nor
elastic scattering will destroy the effect and that the latter can also survive weak
inelastic scattering [69].

Though persistent currents have been discussed theoretically by many authors
[70, 71], no experimental evidence of their existence was provided until the begin-
ning of the nineties. Lévy and coworkers have first measured persistent currents of
107 isolated copper rings [72] at low temperatures and found a ¢ /2 (and not ¢)
periodicity of the currents. Somewhat later, another group gave account about
their measurements on single Au loops [73]. The authors found that the current os-
cillates with a period ¢y. Moreover, both groups reported valnes for the persistent
current, which are 1 to 2 orders of magnitude larger than the ones theoretically
predicted. Other authors, who have measured the persistent currents in a single
GaAs/AlGaAs loop, however, have found a current amplitude in good agrecment
with the theoretical prediction [74]. While the reason for ¢y/2 oscillations are
more or less well understood [71], no definitive explanation for the discrepancy
between the theoretical and experimental values has yet been found.

In the following, we study persistent enrrents within the scope of our approach.
The role of electron-electron interactions is investigated in a two-electron system.
We discuss also the effects of bottlenecks and incomplete relaxation on the per-
sistent currents.
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5.1 Persistent Currents in the Electronic Ground
State

After a revolution around a one-dimensional (1D) ring an electron reaches exactly
the same point as before. Thus, the electrons in a ring behave the same as the ones
in a periodic potential. The wave vectors, comparable to Bloch wave vectors in a
crystal, are given by k, = 2rn/N, where N is the number of the sites on the ring.
In the presence of a magnetic flux, one can treat the problem by introducing the
corresponding vector potential A in the Hamiltonian or by solving the problem
for modificd boundary conditions [75]. Choosing the second way, the wave vector
ki, determined by the flux-dependent boundary conditions, then reads
27 ¢

kp = —(n+ —). 5.1
77 ™ (5.1)

On the other hand the current operator in a 1D system is given by
J=e— = e~[H, #]. (5.2)

Changing into the momentum representation we obtain

s e 0

=—[H, —]. 5.3
Tk ) [ ? P k] (0 )
The expectation value of the current is then casily calculated from
e OE (k) -
= ——— 4
S T (54)

Replacing &, in Eq. 4.15 by the one given in Eq. 5.1 we calculate the ground
state of a ring exposed to a magnetic flux ¢ by diagonalizing the Hamiltonian in
the two-electron basis. The current operator, however, is a one-clectron operator.
The total current in the ring is given by the sum of the partial currents of each state
ky,, the latter being the product of the state current Eq. 5.4 and the corresponding
occupation of the state. In the operator form, the total current reads

Tyt = TT(ﬂej% (5.5)
where p, is defined by Eq. 4.5. Eq. 5.5 can be simplified to

Tiot = Zﬂflkw (5.6)
k

p¥ being the occupation of the one-electron state with the wave vector k.
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Fig. 5.1 shows the periodic ground state current of two electrons with parallel
spins in a loop with N = 10 sites and ¢ = 0.06 aun, neglecting the Coulomb
interaction.

In the next step we study the effect of Coulomb interaction between the clec-
trons on the ground-state current. Assuming the Hamiltonian Eq. 4.25, we cal-
cnlate the ground-state current of the loop for different electron-electron inter-
action strengths. The persistent currents with respect to the flux are shown in
Fig. 5.2 for the parallel spin configuration. The solid line represents the case of
non-interacting fermions, «/R is given by 0.0008 au or 0.0015 au for the dotted,
respectively daslied diagram. We notice that the persistent current of the ground
state is progressively suppressed by the electron-electron interaction. This is an
artifact of the tight-binding model. The Coulomb interaction couples between all
non-interacting two-electron basis states. In the limit of very strong interaction
all staies arc equally coupled as a result of the limited band width so that the
ground state of the system contains all two-electron basis states with the same
weight. This can be compared with the situation of a full band, which carries no
current.
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The effect of electron-electron interaction can also be understood in a pertur-
bation theory argumentation: The Hamiltonian H = H, + H,, can be divided
by the factor o/ R that scales the Coulomb interaction. When the latter is suffi-
ciently large, the other contributions to the Hamiltonian H, can be treated as a
perturbation. In the limit H.. — oo, H, becomes negligible, and the problem can
be treated as if 2¢ — 0, which corresponds to the case of zero band width. Thus,
the total current, being related to the band width by Equations 5.4 and 5.6, is
expected to vanish in this limit.

The arguments given above are of course not valid for an unlimited spectrum,
as e.g. in the free-electron approximation. The persistent currents and the role of
the electron-clectron interaction in such cases are discussed in Ref. [76].

5.2 Persistent Currents in Presence of Environ-
mental Coupling

In this section we investigate the persistent currents of a ring, where the latter is
coupled to the environment in the same manner as was described in Chapter 4.
Again we assume two electrons on a ring of N = 10 sites and change step by step
the magnetic flux. For each step we calculate first the final stationary electronic
configuration p.(t = oo). The corresponding current is then obtained from Eq.
5.5. We have checked that the current is independent of the initial conditions.

Fig. 5.3 shows the calculated current as a function of the flux over a period
¢ for two electrons with parallel spins in a band of half width ¢ = 0.06 au. The
electron-electron interaction is here neglected. The parameter set involving the
single LVM is 7, = 30079, w = 0.013 au and C = 0.0003 au. Passing through
I{¢p/2) = 0, fixed by the symmetry of the problem, the current-flux diagrams of
the relaxing system show the expected I(¢ + ¢0/2) = —I(—¢ + ¢¢/2) relation.
The difference between the current of the relaxing system (solid line) and the
persistent currents of the ground state (dashed line) is due to the fact that the
systewn does not reach its true electronic ground state.

Obviously, it is impossible to find a parameter set for a single mode that
allows a perfect relaxation of the clectrons into the ground state over the whole
flux range. The relaxation of the electrons becomes the more difficult, the more
the electronic states approach each other. So, the relaxed electrons spread over
several low-energy states at the bottom of the band instead of being localized in
the true electronic ground state. Qualitatively, it can be stated that persistent,
cutrents of the ground state can only be expected, if the LVMs, which are available
to the system, couple between the energetically deepest states to allow perfect
relaxation between adjacent levels. Once the origin of the difference is understood,
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Figure 5.3: Currents of a relaxing two-electron system (solid line) in comparison to
ground state currents (dashed line). The electronic parameters are the same as in Fig.
5.1. The single vibrational mode of the relaxing system is described by w = 0.013 au,
¢ =0.0003 au and 7, = 3007.

the question has to be raised about the existence of these environmental blockings
in real systems. Are they ouly artifacts of our approach or can one expect such
effects even in real experiments?

In order to give an answer to this question it is sufficient to discuss the influence
of different paramecters on the relaxation. As it was mentioned in Subsection
4.2.1, in the single-mode approximation the parameters like w and 7, do not
correspond to the true microscopic values of the system. Nevertheless, these
model parameters can be chosen to describe qualitatively different cases that can
occur in real experimental situations. The oscillator frequency w is the cssential
paramneter that influences the current-flux dependency. The current-flux diagrams
for different w values are shown in Fig. 5.4. All other parameters are the same for
all the curves, in particular 7, = 3007 is chosen small enough so that there are no
dynamical hottlenecks. The hest correspondence with the ground state curve is
achieved if the oscillator requency is adapted to the energy difference between the
ground state and the first excited states AEy, i.e w = AFE). The curves get even
closer if one adds one or more oscillators with smaller frequencies to the system.
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Figure 5.4: w dependence of the persistent currents in a relaxing system in contact
with the environment. The corresponding w values are given in the inset. All the other
parameters are the samme as in Fig. 5.3.

A rough estimation yields the relation between AE) and the relevant phonon
energies of a real system. For a metal loop at zero temperature the problem can
be reduced to an effective two-level model, since all the states below the Fermi
level Er are occupied. Hence, we need to estimate the level differences £ in the
neighbourhood of the Er. Assuming a quadratic dispersion E = k2, one deduces

(5E |k1=k‘<* = 2]”:(”; ( .

(s3]
=~
~—

For a ring of the perimeter L = 10um (which is the approximative length of the
loops in Ref. [73]) and Ep = 1 eV, 0k = 2x/L and kr = /Ep can easily be
estimated and we find according to Eq. 5.7 6 E &~ 0.3 meV, which is much smaller
than the phonon-energies of optical phonons of the order 10-100 meV.

The rough estimation above shows that environmental blockings have to be
expected in experimentally relevant situations. In the following, we discuss some
particular effects of incomplete relaxation.
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5.3 Higher Harmonics

The authors of Ref. [72] reported a ¢y/2 dependence of the persistent currents for
their 107 copper rings. The later observations of the persistent currents of a single
loop confirmed the predicted ¢, oscillations [73]. The reason of this discrepancy is
attributed to the ensemble averaging in Ref. [77]. Tn fact, the persistent currents
are shifted by ¢o/2 depending on the odd or even number of electrons in the ring.
The number of electrons being randomly odd or even for each isolated ring, the
¢y contribution averages out to zero for the large number 107, while the ¢qy/2
contribution remains non-zero.

The current-flux diagram for w = 0.006 an in Fig. 5.4 (dotted line) shows a
case, where the even superharmonics dominate the flux dependence of the current
and where the ¢y/2 oscillation is clearly visible. All other parameters are the same
asin Fig. 5.4. As the calculations are performed for a single loop without disorder,
the reason for the ¢g/2 oscillation cannot be attributed to ensemble averaging.
In fact, the ¢o/2 oscillation found in our calculations is due to the contributions
of excited electronic states. The occapation pF of the clectronic states and Lheir
individual contributions I to the current are hoth periodic in the magnetic flux
with the period ¢y. The product in Eq. 5.6 leads then to the appearance of the
higher harmonics. However, ¢,/2 harmonics remain the dominating terms.

Our results indicate that the coupling of the sample to the environment should
explicitly be taken into account to get a correct understanding of the experimental
results. In particular, it cannot be expected that the relaxed clectronic configu-
ration of the coupled sample system reaches the ideal electronic ground state of
the isolated sample. A ground state theory is only applicable, when the LVM
coupling obeys very strict conditions, which cannot be expected to be realized in
true experimental situations.

5.3.1 DPersistent Currents of Interacting Electrons

We introduce the Coulomb interaction in the same manner as it was described in
Section 4.3 and look at the persistent currents of the system for different interac-
tion strengths in the casc of two clectrons with parallel spins (Fig. 5.5). In order
to get comparable results, the same parameter set as in Fig. 5.3 is used here.
Comparison between Fig. 5.3 and Fig. 5.5 shows that the jump of the current at
¢ = 0 is smoothed by the electron-electron interaction. This is due to the state
mixing in the presence of the Conlomb interaction. The currents ol the relax-
ing system deviate maximally from that of the ground state around ¢ = ¢o/2,
where the relaxation into the ground state becomes more difficult because of the
degeneracy of the contributing one-particle states. For increasing strength of the
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Figure 5.5: Comparison between the persistent currents of the same relaxing electronic
system as in Fig. 5.3 for different electron-electron interaction strengths. The curve for
the ground-state current is valid for all interaction parameters in the considered case.

Coulomb interaction, the current approaches the ground state current, as long as
the interaction is weak enough. This confirms our previous results in Chapter
4, where we have found that weak Coulomb interaction facilitates the relaxation
towards the electronic ground state.

The persistent currents become smaller at any ¢, when the Coulomb interac-
tion is further increased, in agreement with the discussion in Section 5.1.



Chapter 6

Transport in Loops Coupled to
Their Environment

There are two ways to obtain a dissipative direct current in a lead. One of them
is assumed in the Landauer picture of transport, in which the current through the
lead is driven by the difference in the chemical potentials of the two connected
reservoirs. The second way is to generate the current in a ring threaded by a
time dependent magnetic flux. If the latter increases linearly in time, and in the
limit of strong dissipative coupling, one expects a direct current driven by the
corresponding electromotorical force (EMF).

The current generated by a constant EMF is, however, not necessarily a di-
rect current. In a full coherent loop system, the electrons are expected to travel
through the electronic band leading to an oscillatory behavior of the current
[78, 79], known as Bloch oscillations. Experimentally, Bloch oscillations have been
observed only recently, mostly for photoexcited carriers in semiconductor super-
latticos [80, 81, 82]. The oscillations are damped in the presence of dissipative
interactions between the system and the environment.

In this chapter we extend our model to describe the transport in a small
loop pierced by a flux increasing linerarly with time. Controlling the openness of
the system through onr model parameters, we then cover in principle the whole
transport regime from the cohierent carrier transport and Bloch oscillations up to
the Ohmic regime.

6.1 Sudden Approximation

The situation of a time-dependent flux can be described using the so-called accel-
eration theorem [75]
dk '
a = (ZE, ' (61)

67
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where E represents the electric field. On the one hand, according to Maxwell
equations the vector potential A is related to electric field by
10A
E=——~-— 6.2
c ot (6.2)
s0 that the vector potential A corresponding to a constant E is given by
A = —cEt, where ¢ denotes the speed of light. On the other hand, the vector

potential and the flux, being related by
6= }f Adr, (6.3)

have the same time dependence, so we can apply Eq. 6.1 for a constant clectric
field to describe a ring threaded by a magnetic flux increasing linearly in time
é(t) = 7t, v being a constant.

The incorporating of Eq. 6.1 in the relaxation program is, however, a little
bit more tricky for the dynamical case, as the Hamiltonian will now change in
time. In principle, the iterative procedure requires a new diagonalization of the
Hamiltonian at each time step. We avoid this difficulty using the sudden approx-
imation.

First, we approximate the flux ¢(£) = vt by an adequate step function, in which
the flux remains unchanged during a time interval 7, before it jumps instanta-
neously to the next step valuc. Further, we assume a slowly increasing magnetic
flux so that 7, > 7,. Finally, the flux step is determined so that it corresponds
to a translation of k-vector (Eq. 6.1) by 6k = 2x/N. The last assumption avoids
the diagonalization prohlmn‘, because the Hamiltonian is the same after a shift of
27 /N, due to the periodicity of the band defined by Eq. 4.15, i.e. we have

H(t+1,) = H(t). (6.4)
We note that this assumption is not really necessary, and one could choose any
fraction of 6k for the flux. If for example, the step is chosen to be §k/n, we
have to diagonalize only the »n corresponding Hamiltonians, which then define the
coherent evolution in the respective time intervals. The procedure is repetitive
after nry,.

Now we can apply the sudden approximation. We assume that the Hamiltonian
changes discontinuously from H = H, for times t < 0 to H = H, for t > 0. The
stationary solution in both time domains are obtained from

Hl'u,- = Eju]' and Hz’b‘k = Ek’Uk, (65)

where the #’s and o's are cowplete orthonormal sets of functions. The general
solutions can then be written

Wt < 0) =" aju;exp(—iE;t/h) (6.6)
J
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Tyt > 0) =Y bpopexp(—iExt/h), (6.7)
3

where the coefficients @ and b are independent of time. Using the continuity of ¥
at t = 0, we multiply Equations 6.6 and 6.7 by vg for a particular k and integrate
over the spatial coordinates to find

be=3 0 / Uty (6.8)
J

Eq. 6.8 yiclds the relation between the solutions before and after the instanta-
necous jump in the Hamiltonian. Under our particular assumptions, the function
sets u and v have the same elements. Therefore, the function set v can be obtained
from the set u by a permutation of the indices, i.e vy = wu;. In the one-electron
picture of a loop with N sites the resulting index relation is given by

j = Mod(k + 1, N). (6.9)

6.2 Bloch Oscillations in small two-electron loop
systems

We consider two electrons with parallel spins in a loop with N electronic sites.
First of all we study the coherent electronic transport of an isolated ring in the
absence of the electron-electron interaction. At ¢ = 0, the electrons are assumed
to be in the ground state of the electronic system!. We switch on a time dependent
magnetic ficld, so that the loop is threaded by the flux ¢(1) = i, t > 0, with
v = Az,—:md)o. (6.10)

The current in the ring is calculated by means of Eq. 5.6 after each time interval
T

Fig. 6.1 shows the time dependence of the current in a loop with N = 10 sites
and for 7, = 10%7,. The oscillations in the current correspond to Bloch oscillations
and describe how the electrons travel through the band. The electrons are not
subject to any interaction except the Pauli exclusion and they shift from onc state
to the adjacent state after each time interval 7,,. The period of the oscillation is
thus N7,,.

6.2.1 Effects of Electron-Electron Interaction

Switching on the Coulomb interaction between the electrons, we observe beats in
the time dependence of the current. This behavior is shown in Fig. 6.2 for two

1The choice of the initial state has no qualitative effect on the results.
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Figure 6.1: Bloch oscillations of the current for a fully coherent system of two electrons
with parallel spins on a 1D loop with N = 10 sites. No Coulomb interaction between
the electrons is included. The increase of the flux with time is specified by 7, = 10%7.

electrons on a loop with N = 8 sites threaded by the flux defined by the step time
T = 10379 The Coulomb interaction parameter is o/ R = 0.0001 au.

Beats require the superposition of at least two different frequencies. In the
present case, the first frequency can be identified as the frequency of the Bloch
oscillations. The further frequencies depend on the electron-electron coupling, and
describe the relative motion of the two electrons caused by the interaction. The
period of these [requencies tends to infinity for vanishing Coulomb interaction.

Closer examination of the beat pattern in Fig. 6.2, shows that it is only
approximately repetitive. In fact, an exact repetitive pattern can only be expected
if the intervening frequencies are commensurable, which will in general not be the
case.

In order to get a better understanding of the quantum beats in the presence of
the electron-electron interaction, we have to recognize that the clectron-electron
interaction leads to a coupling between non-interacting two-clectron basis states,
whereas the current depends on the occupation of the states in the one-electron
space. In the non-interacting case, the electrons travel through the band structure
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Figure 6.2: Bloch oscillations and quantum beats of the current for a fully coherent
loop sample of two electrons with parallel spins, and with N = 8 sites. The electron-
electron interaction parameter is @/R = 0.0001 au and the increase of the flux with
time is specified by 7, = 10%7.

according to equations 6.1 and 6.9, and the set of the occupation numbers ok
in Eq. 5.6 remains unchanged. In the presence of the Coulomb interaction, the
situation becomes different, since the coupling between the electrons depends
on the clectronic distribution pf®, and it thus becomes time dependent. The
resulting changes of the occupation g give rise to the observed gquantum beats.

We emphasize that the electron-electron interaction causes no dissipation,
since it couples merely between dilferent states of a finile electronic sysitem.
Though, the change in the oscillation pattern of the current might be very com-
plicated, a direct current, which would indicate the existence of real dissipation,
cannot be reached even for ¢t — co.
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Figure 6.3: Damped Bloch oscillations for two electrons with parallel spin in a 1D loop
with N = 10 sites and for different electron-LVM couplings. The vibrational parameters’
are w = 0.01 and 7, = 10%7g. The system is driven with the same flux as in Fig. 6.1.
The electron-clectron interaction is set to zero (/R = 0).

6.3 Damping of Bloch Oscillations and DC in
Presence of Dissipation

We now introduce dissipation via coupling of the electronic states with a single
local vibrational mode. We first consider two non-interacting electrons with par-
allel spins on a loop with N = 10 sites. The band width parameter is £ = (.06
au. The single LVM is defined by w = 0.01 au, 7, = 10*r and C = 3 x 107°
au for the dotted or C = 3 x 107* au for the solid line. The increasce of the flux
with time is given by 7,, = 10°7%. Fig. 6.3 shows the time dependence of the
current. We see that the Bloch oscillations for the weak coupling (dotted line)
are damped and disappear after about 10 oscillations. A non-zero direct current
is found for longer times. The amount of this direct current is independent. of the
initial state. Howcever, it depends on the dissipation in the loop. We note that
the norm of current increases, at first, with increasing electron-LVM coupling.
Further increasing of the dissipation, however, suppresses the current.
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Figure 6.4: Dissipative transport of two electrons with parallel spin in the loop of Fig.
6.2. The vibrational parameters are w = 0.01 au, 7, = 10007 and C = 3 x 1072,

Similar behavior is seen for interacting electrons coupled to their environment.
Fig. 6.4 shows the time dependence of the current for two electrons with parallel
spins in the loop of Fig.' 6.2. The clectronic system is weakly coupled (C' = 3x107°
au) to a single LVM, defined by w = 0.01 au and 7, = 10007. Weak beats can be
seen before the current becomes de.






Chapter 7

Conclusions

In this'work we have been councerned with the physics of small sample systems
and with the influence of the environment on their electronic properties. Our
first objective was to clarify the origins of recent experimental results, such as the
saturation of the phase-cohercnce time at low temperatures and the observation
of nonuniversal conductance steps in clean quantum wires. These observations
were previously not fully inderstood. Furthermore, a simple relaxation model is
developed in order to achieve a microscopic understanding of the interplay between
the environment and the sample.

Applying a phenomenological model based on the Landauer picture of de trans-
port, we have shown that these puzzling experimental results may both have the
same origin. The openness of the electronic system has to be considered in cither
of both cases, when discussing the transport properties of the sample systems.
The historical development in the case of conductance steps, i.c. from universal
to nonuniversal behavior, is in fact a hint, that the coupling of the system to
the environment is a crucial element to understand this effect. The nonuniversal
conductance steps have been observed in quantum wires, which in contrast with
previous ones were of a very high quality. In this case, electrons in the sample
region can easily diffuse away.

The measured features of a mesoscopic sample depend considerably on its
coupling to the outside. This is quite expected, since effects due to the quantum
coherence of carriers are sensitively affected by the environment. Thus, more
information about the contacts is needed to interpret properly the experimental
data.

We have developed a simple numerical method to describe the time evolution
of the density matrix of a finite small electronic system, which interacts with the
environment merely via local vibrational modes. Qur procedure, fully detailed in
Chapter 4, takes into account the influence of the further environment by assum-
ing phenomenologically a finite lifetime for these modes. In view of the results

7%
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obtained, we deduce that our approach is expedient to investigate e¢lectronic prop-
erties of small sample systems. In particular, we have applied our method to study
the electronic relaxation in small 1D loops. We have found that weak clectron-
electron interactions facilitate the relaxation. Furthermore, we have shown that
the final stationary state of the relaxed electronic sample system may be different
from its ground state. The coupling to the environment is at the origin of these
relaxation bottlenecks. The more adjacent states at the bottom of the conduction
band approach each other, the more it becomes difficult for the relaxing sample
system to reach the ideal ground state of the isolated sample.

Within our approach, we have studied persistent currents in a single 1D loop,
which is thicaded by a coustant magnetic iux. In Chapter 5, we have shown that
persistent currents in a relaxing sample systern may be affected by the coupling
to the environment. A ground state theory cannot be universally applied, since
electron relaxation in a sample depends essentially on the local modes, which
couple to the further environment. The contribution of the excited states to the
persistent currents leads to higher harmonics in the current periodicity. In agree-
ment with the results mentioned above, we have also found that the persistent
currents of a relaxing sample approach their ground state values by increasing
electron-electron interactions, as long as thesc are weak enough. Strong Coulomb
interactions suppress the currents in a limited band at any flux value.

We have extended our study of the 1D loops in magnetic fields to the case of
a time-dependent flux in Chapter 6. The currents driven by the corresponding
electromotoric force have been investigated for different cases. Bloch oscillations
of the current occur for non-interacting electrons in a fully coherent system. We
have found additional quantum beats, when the Coulomb interaction is switched
on. These beats are a result of the superposition of Bloch oscillations and of the
relative motion of the electrons, which results itself from the Coulomb interaction.
In the presence of weak dissipation, Bloch oscillations and quantum beats are
damped. A direet current, whose value is independent of the initial state, is
found for longer times.

A number of fundamental issues still deserve further study. In particular, it
remains an experimental challenge to control the coupling parameters of the sam-
ple to its environment and to determine the influence of the latter on the outcome
of the measurement. For the low-temperature saturation of the phase coherence
as well as for the nonuniversal conductance steps we have made clear predictions,
which could thence be verilied experimentally. From the theoretical point, of view
we are just at the inception. The presented simple munerical approach is not.
elaborated enough to apply it to samples of realistic mesoscopic dimensions. The
nuinerical efficiency can be improved by treating the problem in second order



7

perturbation theory in the interaction picture. Furthermore, in addition to the
here-assumed electron-phonon interaction, one may also account for other rele-
vant quantum mechanical couplings, which can mediate the interaction with a
statistical environment. We note that our model description does not rely on the
choice of a single lifetime parameter 7,. For example, one could easily extend it
to treat a distribution of lifetime values within a Monte Carlo approach.

We have discussed two different ways to generate current. On the one hand, we
have extended the dc transport picture, in which coherent and dissipative regions
are properly separated, towards a more realistic one by allowing for the same
processes in the sample as well as in the reservoirs. On the other hand, we have
studied the dissipative direct current generation in a homogencous loop system,
in which dissipative processes occur everywhere with the same probability. Both
approaches should become comparable by adding a strong dissipative “reservoir
region” to a large loop system.






Appendix A

Electronic Arrays

A.1 Two-Electron Statés

Our calculations for two electrons (in Chapters 4, 5 and 6) are performed introduc-
ing the electronic arrays that eventually account for the Pauli exclusion principle.
The electronic states for a non-interacting system, defined by the tight-binding
band Eq. 4.15 are shown in Fig. A.1 for N = 10, where two electrons occupy the
states k_5 = —m and k_y = —4n/5.

In order to specify all the possible non-interacting two-electron states in such
a system we dispose of a vector array of the dimension (N(N —1)/2) x N for
clectrons with parallel spins

11,1,0...,0>
|1,0,1...,0 >

(A1)
0...,0,1,1>

where the 7-th position in each vector stands for k; and the digit represents the
occupation of the state. Speaking in terms of Bloch vectors Eq. 4.16 and Bloch

E/e
Figure A.l: Tight-binding 2
band of a non-interacting elec-
tronic system with N = 10
sites.  The uppermost states I
for
n = —5 and n = —4 are occu- —t—At—F—————>
pied. 54 -3 201 23 4 "
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Figure A.2:  The distance
between the i-th and the j-th
site on a 1D loop 75

functions, the vector

10...,\1/...,\1/...,0> for p#v (A.2)
' I v

represents in fact [y, (r1), ¢, (r2) >.
Adding N more vectors

[2,0...,0 >
[0,2...,0>
. (A3)
[0...,0,2>

to the array A.1 we describe the situation of electrons with opposite spins.

The Pauli exclusion is alrcady included in A.1, as there is no case of double
occupation in a state. However, the antisymmetry of the wavefunction has to be
accounted for explicitly, when the electrons interact via the Coulomb interaction.

A.2 Calculation of Electron-Electron Interaction
on Loops

The Coulomb potential between two electrons with parallel spins on a loop in Fig.
A.2 depends on their distance
&2
7)(1';, l‘j) = (A4)

3
Tij
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with (i - 5)
. ow(i—73 _
Tij = 2R|sm( N )l (AD)
The Hamiltonian of the interaction can then be written as
1 N N 2
3 I (A.6)
i#j i’

We resnme all the constants, also the ones due to the choice of Rydberg atomic
units of energy, together and replace them by « to find

N N 1

@ . o -
H,,e = —]'?- ZZ W N\"lth (; = 1\] (AI)

The matrix elements of the electron-electron interaction between the states
|1/;k” (r1), ¥s, (r2) > and |, (r1), ¥, (r2) > with respect to the antisymmetry can
then be evalnated over

H,_’fé‘k”_’k“k" = <, (r1), Wr, (X2)| HeelPra (T1), Wiy (T2) > —
< W, (02), 1w, (1) Hee [ ¥, (1), Yp, (r2) > —
<y, (r1), oy, (02) | Heel b, (r2), ¥, (1) > +
< Pr, (r2), Vi, (01)| Hee|tor, (£2), o, (r1) > (A.8)
For example the first term on the right hand side of Eq. A.8 is given by
A — ky)mé) exp(2i(ky — k,)nd)

@ exp{2
< 'l/f;.:,,(h), wk,, (rZ)lILe'wk» (1'1) l/”-,\ 1'2 Z Z I
m#n

| sin{8(m — n))|
(A.9)
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