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Version Abrégée

Cette these s’inscrit dans le vaste domaine de l'apprentissage automatique. Dans une société qui pro-
duit et consomme une quantité croissante (voire débordante) d’information, des méthodes permettant
de donner un sens & toute cette information deviennent indispensables. L’apprentissage automatique
essaie de répondre a ce besoin par des modeles qui expliquent certains aspects d’un flot de données.
Lors de la construction de tels modeles, il est important de se poser les questions suivantes :

- Quelle est la structure des données? Cette question est particulierement pertinente pour des
données & haute dimension que ’on ne peut plus visualiser d’une facon informative.

- Quelles sont les caractéristiques principales des données ?
- Comment prédire si un motif appartient & une classe plutét qu’a une autre ?

Cette thése étudie ces trois questions avec, comme trait d’union, l'idée de construire des modeles
complexes & partir de modeles trés simples. La décomposition en sous-problémes se traduit aussi dans
les procédures utilisées pour estimer les valeurs des paramétres de ces modeles. Les algorithmes pour
les modeles simples forment le noyau des algorithmes pour le modele complexe.

Les questions posées ci-dessus sont traitées en trois volets :

Apprentissage non-supervisé Cette partie est consacrée au probléme de ’estimation d’une den-
sité de probabilité, qui a pour but de trouver une bonne représentation probabiliste des données. Un
des modeles les plus utilisés pour I’estimation de densité est le mélange de Gaussiennes (ou multigaus-
siennes). Une alternative prometteuse au mélange de Gaussiennes consiste en un mélange de modgles
a variables cachées comme l’analyse en composantes principales (ACP) ou ’analyse factorielle. L’avan-
tage de ces modeles est qu’ils permettent de représenter des matrices de covariance avec un nombre
inférieur de parametres défini par le choix de la dimension d’un sous-espace. Une évaluation empirique
sur une large collection de bases de données montre que des modeles & variables cachées donnent des
résultats bien meilleurs que des multigaussiennes.

Pour pallier au choix par validation croisée de la dimension du sous-espace, une méthode d’esti-
mation Bayesienne pour des mélanges de modéles & variables cachées est proposée. Cette méthode
permet de déterminer automatiquement la dimension adéquate pendant I’entrainement du modele.

Extraction de caractéristiques L’ACP est aussi (et surtout) une méthode classique pour 1’ex-
traction de caractéristiques. Cependant, elle est limitée & une extraction linéaire par le moyen d’une
projection dans un sous-espace. L’ACP a base de fonctions & noyaux (“kernel PCA”) permet V'extraction
non-linéaire des caractéristiques des données. L’application de la kernel Pca & une base de données
de N motifs demande de trouver les vecteurs propres d’une matrice de taille N x N. Un algorithme
“Expectation-Maximization” (EM) pour I’ACP qui ne nécessite pas le stockage de cette matrice, est
adapté a la kernel PcA afin que l’on puisse 'appliquer aux grandes bases de données de plus de 10.000
motifs. Les expériences démontrent 'intérét de cette approche et les caractéristiques extraites par ce



pré-traitement permettent 'entrainement de classifieurs simples mais performants. On décrit ici une
nouvelle variante de Palgorithme EM pour 'AcP qui I’accélére considérablement en rendant possible
l’adaptation des parameétres d’une fagon incrémentale.

Apprentissage supervisé Cette partie montre deux maniéres de construire des modeles complexes
& partir de modeles simples pour le probléme de la classification. La premiere approche s’inspire
directement des modeles de mélange pour Papprentissage non-supervisé. Le modéle qui en résulte,
nommé mélange d’experts, essaie de diviser un probléme complexe en sous-problemes et attribue des
modeles simples & chaque sous-probléme. La division de ’espace et la recombinaison des réponses
des experts se fait par un autre modele, nommé pondérateur, dépendant des entrées. Aprés une vue
d’ensemble de ce modele et des algorithmes existants destinés & l'entrainer, différents pondérateurs
sont proposés et comparés. Parmi ceux-ci se trouvent les modeéles de mélange pour ’apprentissage non-
supervisé. Les expériences montrent qu’un mélange d’experts standard avec un réseau de neurones
comme pondérateur donne les meilleurs résultats.

La deuxieme approche est un algorithme constructif, nommé “boosting”, et crée un ensemble
de modeles en mettant de plus en plus de poids sur les données qui ont été classifiées d’une fagon
erronée par les classifieurs précédents. Un modele a été développé qui se trouve & mi-chemin entre un
mélange d’experts et le boosting. Le modeéle ajoute au boosting une combinaison dynamique (comme
un pondérateur). Ceci a l’avantage qu’avec un ensemble nettement plus petit le résultat obtenu est
souvent aussi bon qu’avec le boosting. De plus, le modele a des bases solides dans la théorie de
I’apprentissage.

Finalement, les modeles étudiés ici ont été évalués sur deux bases de données dans le domaine de
la vision. Les résultats confirment 'intérét des mélanges de modeles & variables cachées avec lesquels
on obtient des tres bons résultats dans un classifieur Bayesien.



Summary

In a society which produces and consumes an ever increasing amount of information, methods which
can make sense out of all this data become of crucial importance. Machine learning tries to develop
models which can make the information load accessible. Three important questions one can ask when
constructing such models are:

- What is the structure of the data? This is especially relevant for high-dimensional data which
cannot be visualized anymore.

- Which features are most characteristic?
- How to predict whether a pattern belongs to one class or to another?

This thesis investigates these three questions by trying to construct complex models from simple
ones. The decomposition into simpler parts can also be found in the methods used for estimating the
parameter values of these models. The algorithms for the simple models constitute the core of the
algorithms for the complex ones.

The above questions are addressed in three stages:

Unsupervised learning This part deals with the problem of probability density estimation with
the goal of finding a good probabilistic representation of the data. One of the most popular density
estimation methods is the Gaussian mixture model (GMM). A promising alternative to GMMs are the
recently proposed mixtures of latent variable models. Exarples of the latter are principal component
analysis (PcA) and factor analysis. The advantage of these models is that they are capable of repre-
senting the covariance structure with less parameters by choosing the dimension of a subspace in a
suitable way. An empirical evaluation on a large number of data sets shows that mixtures of latent
variable models almost always outperform GMMs.

To avoid having to choose a value for the dimension of the subspace by a computationally expensive
search technique such as cross-validation, a Bayesian treatment of mixtures of latent variable models
is proposed. This framework makes it possible to determine the appropriate dimension during training
and experiments illustrate its viability.

Feature extraction Pca is also (and foremost) a classic method for feature extraction. However,
PcA is limited to linear feature extraction by a projection onto a subspace. Kernel PCA is a recent
method which allows non-linear feature extraction. Applying kernel PCa to a data set with N patterns
requires finding the eigenvectors of an N x N matrix. An Expectation-Maximization (EM) algorithm
for Pca which does not need to store this matrix is adapted to kernel Pca and applied to large data
sets with more than 10,000 examples. The experiments confirm that this approach is feasible and
that the extracted features lead to good performance when used as pre-processed data for a linear
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classifier. A new on-line variant of the EM algorithm for PcA is presented and shown to speed up the
learning process.

Supervised learning This part illustrates two ways of constructing complex models from simple
ones for classification problems. The first approach is inspired by unsupervised mixture models and
extends them to supervised learning. The resulting model, called a mixture of experts, tries to de-
compose a complex problem into subproblems treated by several simpler models. The division of the
data space is effectuated by an input-dependent gating network. After a review of the model and ex-
isting training methods, different possible gating networks are proposed and compared. Unsupervised
mixture models are one of the evaluated options. The experiments show that a standard mixture of
experts with a neural network gate gives the best results.

The second approach is a constructive algorithm called boosting which creates a committee of
simple models by emphasizing patterns which have been frequently misclassified by the preceding
classifiers. A new model has been developed which lies between a mixture of experts and a boosted
committee. It adds an input-dependent combiner (like a gating network) to standard boosting. This
has the advantage that with a considerably smaller committee results are obtained which are compa-
rable to those of boosting.

Finally, some of the investigated models have been evaluated on two problems of machine vision.
The results confirm the potential of mixtures of latent variable models which lead to good performance
when incorporated in a Bayes classifier.
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Notation and Abbreviations

Upper-case bold letters denote matrices, for example R. Vectors are denoted by lower-case bold
letters, for example x, and are column vectors. Subscripting is used for indexing; thus, z; denotes the
ith element of vector x and R;; the element in the ith row and jth column of matrix R.

)

transpose (of a vector or a matrix), thus x = (z1,29,...,24)
“distributed according to”

“proportional to”

expectation of a random variable

determinant

length of a vector

Kronecker product of two matrices (A.13)

Element-wise product of two matrices (A.14)

all-zero matrix

mixing coefficients (but sometimes also Lagrange coefficients)
vector of all hyperparameters

regularization parameter or hyperparameter

the number of well-determined parameters

Kronecker delta (§;; = 1if i = j, 0 otherwise)

mean of a Gaussian distribution

parameters of a model

posterior probabilities in a mixture of experts

covariance matrix of a multivariate Gaussian distribution
logistic or sigmoid activation function: 1/(1 + exp{—=z))
variance of a Gaussian distribution

map from data space to feature space

probability density function

empirical kernel map

summed inputs to the output units of a neural network model
summed input to the jth output unit of a neural network model
number of classes

class k

n choose k: (}})

training set

dimension of input (or data) space

diag operator on a vector (A.11)

error function

expectation of a random variable

feature space

activation function



xii Notation and Abbreviations

g; jth output of a gating network (more explicitly g;(x,8,))
h;(-) posterior probabilities in a mixture model

I identity matrix

I, identity matrix of size k x k

J all-ones matrix

L likelihood function

K kernel matrix

kernel function

dimension of latent space

In logarithm to base e

m number of mixture components

N number of training examples

N(p,X) multivariate Gaussian distribution with mean g and covariance matrix X

S o
-
N

P probability

(") probability density function

R factor analysis noise covariance matrix
R the set of real numbers

S sample covariance matrix

T matrix of target outputs

t" target output n

tr trace operator

w factor loading matrix

w parameters of a model (often the weights)
w; parameters of sub-model j

v parameters of a gating network

vec(+) vec operator on a matrix

X matrix of input patterns

x" input pattern n

{x™,t"} data set
y output of a model (more explicitly y(x, 8))

Y; output of sub-model j
Yj jth output of a model
z missing or latent variables

ARD automatic relevance determination

cv cross-validation
Em Expectation Maximization (algorithm)
Fa factor analysis

GLM  generalized linear model

GMM  Gaussian mixture model

HME  hierarchical mixture of experts
IRLS iteratively reweighted least squares

ME mixture of experts
MFra mixture of factor analyzers
ML maximum likelihood

MLp multi-layer perceptron
MpcA mixture of principal component analyzers
Nn neural network
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RBF
SvD
SvMm

principal component analysis
probabilistic principal component analysis
radial basis function

singular value decomposition

support vector machine






CHAPTER 1

Introduction

When looking back it is hard, even for me, to imagine that this thesis started out of an interest in
optical implementations of artificial neural networks. This indeed seems to have little to do with
the title which you, dear reader, saw on the cover page. In a certain sense, this change of scope is
illustrative for the development the neural network field has gone through over the past decade. Shortly
after its revival during the eighties, it was characterized by a period of optimism and exaggerated
claims about machines which mimic the way the human brain processes information. While this
anthropomorphic metaphor has certainly been an inspiration for some of the models developed during
this period, it seems to me that has also been counterproductive. The fact that we do not understand
most of the processes in the brain might have enhanced the idea that one need not really understand
the model which has been inspired by it. It has also led to reinventing wheels already developed in
older fields such as pattern recognition and statistics.

Luckily things have changed considerably by now and the artificial neural network field has found
its place among these older disciplines as a form of applied statistics (Bishop 1995; Ripley 1996). It is
also in this context that one should place this thesis. Almost all models which will be discussed have
their roots in probability theory which provides a fruitful framework for the problem I was interested
in: learning from examples in the presence of uncertainty.

This problem arises in a context in which we are given a data set of examples and our goal is
to automatically find structure in these examples. We can discern at least two different settings of
the learning problem: unsupervised and supervised. The problem of unsupervised learning is the one
which is more difficult to define and more diverse. Typical examples are the problem of grouping
similar data into clusters or the extraction of useful features from data. Imagine, for example, that
the given data set comes from a high-dimensional space and we would like to visualize the data in two-
dimensional space to make it easier to interpret for a human observer. A way to tackle this problem
could be to cluster the data and, as a form of feature extraction, find an informative projection into
two dimensions for each cluster separately. As we will see, a convenient way of formulating many
forms of unsupervised learning in probabilistic terms is as a density estimation problem.

We speak of supervised learning when the data set D consists of pairs of patterns x* and outputs
t! represented as vectors:

D = {(x',tY),...,x",tM)},

known as the training set. Our goal in this case is to learn a mapping from patterns to outputs based
on this data set. The patterns could, for example, be the pixel values of pictures of Swiss mountain
tops and the corresponding output a discrete label describing its canton. This kind of problem where
the outputs are discrete classes is called a classification problem. Of course, the outputs could also be
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real-valued in which case the task is referred to as a regression problem. This thesis focuses mostly
on classification tasks although many of the techniques described are readily extended to regression
problems.

What does it mean to learn a mapping from patterns to outputs? One solution could be to make
a look-up table out of the training set and predict an arbitrary constant value for patterns not in the
training set. While this gives perfect results on the training set, it clearly does not work for other
patterns: if an image of the Matterhorn was not in the training set this model is very unlikely to
predict that it can be found in the canton of Wallis. What we really want is a model which learns a
mapping that performs well not only on the training set but also generalizes well on unseen examples.
In probabilistic terms, we assume that there is some unknown probability density function p(x,t)
from which all examples are drawn independently and of which the training set is a sample. Learning
a mapping then involves extracting that information from the training data which is characteristic for
the density p(x, t) without capturing the noise inherent in the finite training set. The look-up table in
our example does exactly the opposite and should have been discarded right away. The other extreme
would be a model which is not flexible enough. Imagine that our model makes a simple decision: if
there is snow on the mountain top, it is in Wallis. This clearly is too simple a model and will not
generalize well either. This illustrates that the learning problem is a kind of balancing act which
requires a careful choice of the complexity of the model to obtain good generalization.

Note that, although the above example was given in the context of supervised learning, the problem
of complexity control also arises in unsupervised learning. Here the training set D just consists of
patterns x*:

D={x'...,x"}

and is again to be considered as a sample from some unknown probability density function p(x).
As said before, a convenient way of expressing unsupervised learning probabilistically is as a density
estimation problem, that is, trying to recover the density p(x) which generated the data. A training
set consisting of the height of various Swiss mountain! tops could, for example, be modeled in a
non-parametric way using a histogram. This involves dividing data space in equally sized bins and
counting the fraction of training patterns in each bin. The complexity of this model is governed by
one single smoothing parameter which determines the number of bins: using too few bins the model
is poor and with too many bins the model is too flexible and will fit the noise in the training data.

Now that I have defined more or less informally the second part of the title, time has come to turn
our attention to what really is the main theme of this thesis: mizture models or, to be more precise,
how to make complex models from simpler ones and the advantages of such an approach. Along
the way, we will encounter various models that have been proposed over the last decade in the fields
of neural networks and machine learning. My contribution consists of several extensions of existing
models while also tying these models together and developing some connections between them. The
rest of this introductory chapter is meant to give the reader a feeling of why this approach of making
complex models from simpler ones is an interesting one. I will also recall some of the basics of pattern
recognition and statistics without striving for completeness. The reader is referred to standard text
books on the subject for a more complete and accurate description (Bishop 1995; Duda and Hart
1973; Ripley 1996) and also to the later chapters in which I will define things more precisely.

A very simple toy example which is still interesting enough to make a point will be used throughout
the introduction. Figure 1.1 shows this example which consists of 20 data points in the two-dimensional
plane belonging to two classes {the pluses and the crosses). But for the moment we will forget the
class labels and have a look at the problem of ...

1 will not use the Dutch definition of a mountain which would include bridges and dikes.
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Figure 1.1: Toy example with two classes: + and X.

Unsupervised Learning

Within the variety of tasks arising in unsupervised learning, I will focus on the problem of probability
density estimation. Instead of following a non-parametric approach such as using histograms as in the
above example, [ will stay in the realm of parametric methods. This typically involves the choice of
a family of probability density functions p(x|@) containing adjustable parameters 8. The parameter
values are then determined by optimizing some criterion on the training data. A simple and widely
used example of a density function is the Gaussian or normal distribution defined on z € R:

1 (z - p)?
— 2y — A S A
with mean p and variance o2 as parameters. A univariate Gaussian distribution is bell-shaped as
illustrated in Figure 1.2. This can readily be extended to a multivariate form for x € R¢:

1 1
p(x16) = N(x|u, Z) = IS[2(2m) 2 exp [_i(x -pw)'E T (x - M)] ; (1.1)
with mean g and dxd symmetric and positive definite covariance matrix X. For the moment, let
us assume that the covariance matrix can be simplified to one single variance parameter as in the
one-dimensional case: ¥ = ¢2I;. This means that a contour of constant density is a hypersphere of
all points that have the same distance to the mean p.
Which criterion should we optimize to determine the values of the parameters g and ¢? on a

training set D = {x',...,x™}? The standard choice is to maximize the joint probability density of
D:

N
£(D,8) = p(D|) = [[ p(x"|0),
i=1

where as always, we have made the assumption that the data is independently distributed which
allows us to factorize the joint probability. This approach seems reasonable since maximizing the
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Figure 1.2: Density estimation problem for a one-dimensional normal density function N(z}u,s?) on
data set D.

joint probability can be seen as trying to find that member of the chosen family of density functions
which is most likely to have generated the data. This technique is therefore known as mazimum
likelihood and the function £ is called the likelihood function. The idea is illustrated in Figure 1.2
where we suppose that the given data D is more or less Gaussian distributed. The Gaussian bell as
given in the figure is of course not likely to have generated this data and maximum likelihood will
shift the Gaussian to the right and make it more peaked to explain the data.

But how to find these maximum likelihood estimates? One of the advantages of the Gaussian
distribution is that this can be done analytically by differentiating the likelihood function with respect
to its parameters. For the one-dimensional case this gives the familiar sample mean and sample

variance:
N
.1 n
B = = E z,
N n=1

1
~2 n ;)2
a_NEI(:c e,

This is nice and simple but of course often the probability density generating the data is far from
Gaussian. The data in Figure 1.1 is not likely to come from a simple Gaussian distribution, for
example. But it does make sense to suppose that each of the 4 clusters has been generated by a
different Gaussian density and that the underlying process is a mix of these 4 components. This can
be made more precise by considering mixtures of simple parametric density functions.

Unsupervised Learning: Mixture Models

A mizture model is defined as the linear combination of m component densities p;(x|0;):

p(x(6) = > a;p;(x|6;), (1.2)

j=1

with mizing coefficients a; which sum to one and are non-negative to make the mixture model a valid
distribution. We can give a generative interpretation of a mixture model as choosing a component j
with probability o;; and then generating a data point from p;(x|8;). Based on a priori information, we
might very well choose component densities which do not belong to the same family of distributions.



We assume that this is not the case in our toy data example and try to model it with a mixture of
four spherical (that is, ¥ = oI, as before) Gaussians:

P(x]0) = cr N (xlpsy, 07) + 02N (x|py, 03) + N (x| 3, 03) + N (x| g, 07).

The likelihood function in this case is:

N
p(D16) = [Jlan N (%' 1y, 0F) + a2 N (X |12, 03) + s N (x| a3, 05) + N (X' [1as, 03)]-

=1

Is there also an analytical solution for the maximum likelihood estimates of the mixture parameters
as was the case for a single Gaussian distribution? Alas, there is not and even for a mixture of two
one-dimensional Gaussians we have to recur to iterative methods (Titterington, Smith, and Makov
1985). One of the first treatments of such a mixture model actually showed that using the method of
moments, one needs to find a negative root of a nonic equation (Pearson 1894).

However, an elegant iterative algorithm exists for finding optima of the likelihood function of a
mixture model. The idea behind the algorithm is simple and can be illustrated on the toy data. Our
problem could be easily solved if for each pattern in our toy data set, we also had a label indicating to
which of the four mixture component it belongs. Maximum likelihood estimation can then be done for
each component separately for “its” part of the data set. Of course, we do not have such a label but
we could cast it into probabilistic terms and define a discrete distribution P(z|x) on the component
label z =1...4. We can then work with these as a sort of “responsibility” that each component takes
for a data point. Parameter estimation can again be done for each component separately but this
time on the whole data set with the P(z|x"™) acting as weighting factor for pattern x™. The estimate
for the means of the Gaussian mixture components becomes, for example:

. Yo, Plz=jlx™)x"
M= Ty P =k

which in the case of one component indeed reduces to the sample mean as one would expect.

This is a particular instantiation for the case of mixture models of a very general algorithm known
as the Ezpectation-Mazimization algorithm (EM) of Dempster, Laird, and Rubin (1977). This is an
iterative two-step procedure for finding optima of a likelihood function and in the case of our Gaussian
mixture model it takes the following form:

Initialize coefficients o, mean p;, and variance 012-

1. Expectation (or E-) step: determine the responsibilities P(z|x") given the current parameter
values.

2. Maximization (or M-) step: using the responsibilities find new estimates for the a;, p;, and af-.

The M-step often reduces to a simple density estimation problem. The working of the EM algorithm
is illustrated on our toy example in Figure 1.3. Starting from some random initialization of the four
Gaussian component densities, it indeed succeeds in placing the Gaussian circles on the different
clusters of data. The example might also give us a better idea of the responsibilities which can be
interpreted as how well a density performs on a pattern x™ relative to the whole mixture model (this
is explained in Chapter 2):
n 2
Pl = i) = g T
Yin N(x"|py, 03)

Let us have a look at the part of Figure 1.3 corresponding to the fifth iteration of the EM algorithm.
In this case, two overlapping Gaussians are positioned on the crosses. Clearly, the left one of the two
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Figure 1.3: Toy example: Gaussian mixture model with 4 components trained in an iterative way with
the EM algorithm. The means and variances were initialized randomly while the mixture coefficients
were supposed to be equal (1/4). The circles are the contour lines at distance o; of the mean of
component j.

will take a high responsibility for the cluster of crosses on the left-hand and a low responsibility for
all other patterns (E-step). This means that in the new estimate for the mean of this Gaussian the
left-hand crosses will be weighted more heavily than the other patterns and that the Gaussian circle
will be moved closer to the left-hand crosses (M-step). In the next panel one can see that this is
indeed the case and that the tie between the two overlapping Gaussians has been broken. I will deal
with the EM algorithm in its general formulation in Chapter 2 and it will be used over and over again
throughout this thesis.

It is important to realize that until now, we have focused on finding a good density estimation on
the training data. But, as said in the beginning of the introduction, what we are really interested in is
the generalization on unseen examples. In fact, by increasing the number of mixture components we
keep improving the likelihood score on the training data. This is illustrated in Figure 1.4 where the
number of mixture components was varied when estimating the density on the toy data problem. In
order to estimate the generalization performance of the Gaussian mixture model found, a test set was
generated from the same underlying distribution. The results clearly show that the likelihood on the
training data increases when adding components. On the test set, on the other hand, the optimum
number of mixture components is equal to four and with more components the likelihood decreases.
The model is said to overfit the training data when more than four components are used.

This example illustrates once more the importance of choosing the appropriate model complexity
to obtain good generalization. This has motivated much of the research that will be presented in
Chapter 2, which deals with variants of Gaussian mixture models that are amenable to a more fine-
tuned model selection. It will also be shown how so-called Bayesian techniques can improve upon the
standard maximum likelihood framework for these mixture models and enable estimation and model
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Figure 1.4: Illustrating the importance of the appropriate model complexity for a Gaussian mixture
model by varying the number of mixture components. The training set consisted of 20 data points
drawn from the same distribution as in Figure 1.1. The test set was made up of 200 data points from
this distribution. Results are the mean over 10 different realizations of the training and test sets and
the measure used is the log-likelihood In £L(D, 6).

selection at the same time.

Supervised Learning: Bayes Classifiers

We now shift our attention to the problem of supervised learning and more specifically classification,
where the patterns come with a discrete label. Our toy example is a classification problem with two
classes which are denoted as C; and Cx. We want to construct a classifier that predicts whether a
given pattern is more likely to be a cross or a plus. Thus, we are interested in modeling the posterior
probability of each class given a pattern: P(C4|x) and P(Cx|x). One way to attack this problem is
to express it as a density estimation problem which is possible through the famous Bayes’ rule:

p(x|C+)P(Cy) p(x|C4+)P(C+) class-conditional x prior
P(Cilx) = = = — . (1.3)
p(x) p(x|C+)P(C4) + p(x|Cx)P(Cx) normalization

The prior P(Cy) represents the probability that a pattern, about which one has no information at

all, is a plus. Thus, a sensible way to estimate it is to just count the number of occurrences of each

class in the training set. This gives us P(C1) = 3/5 and P(Cx) = 2/5 in the toy problem. If we really

have no other information about a pattern, the best decision one could make is to attribute it to the
class with the highest prior probability.

Of course, normally we do have more information, for example in our case the coordinates (z1, z2)

of a pattern. This enables the estimation of the class-conditional densities p(x|C+) and p(x|Cx) of x,

given that it belongs to a certain class. This brings us back to a separate density estimation problem

for each class and the unsupervised techniques described previously can be readily employed here.

Then Bayes’ rule (1.3) can be used to estimate the posterior probabilities and attribute the pattern
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to the class for which the posterior probability is highest:

x is assigned to Cy & P(C4x) > P(Cx|x)
x is assigned to C4 3 p(x|C+)P(Cy) > p(x|Cx)P(Cx).

It often is convenient to take the logarithm on both sides and obtain the equivalent (because of the
monotonicity of the logarithm) decision rule:

x is assigned to C+ & Inp(x|C;+) + In P(C4) > Inp(x|Cx) + In P(Cy).
In our toy example, the prior probabilities of the two classes are assumed to be equal:2

x is assigned to C, & Inp(x|C+) > Inp(x|Cx).
Such a decision rule gives rise to so-called decision boundaries determined by the points at which the
inequality becomes an equality.

Let us now try to model each class in our two-dimensional toy problem with a spherical Gaussian
distribution A (g, ,03) and MV (g, ,0%) using (1.1) with X; =021, and d=2:

11 x—p)Tx— )
Inp(x|C+) = In o +1In E - 202

_ 1 1 (x—p) T (x—py)
Inp(x[Cx) = In o +1In E - 202 .

Subtracting the second line from the first one gives the following equation for the decision boundary
between the pluses and the crosses:

2 — T _ _ T _
0 - n%+(x [x) 2(x py)  (x—py) 2(x (229 (1.4)
oL 207, 207

and it is easy (but rather boring) to show that the resulting decision boundary is a circle.

This is illustrated in the upper part of Figure 1.5. It is clear that the idea to model each class-
conditional density with only one spherical Gaussian is not that successful. Not only does the resulting
classifier make an error on one of the crosses but also the error on a test set is likely to be high, given
the tight boundary around the crosses. The lower part of the figure shows that when using a mixture
of two spherical Gaussians for each class, the result looks much more reasonable. Also in the case
of Bayes classifiers, mixture models can lead to improved results. The mixture models defined in
Chapter 2 will be used to construct Bayes classifiers in Chapter 4.

Let us now have a look at the special case in which we also assume the variances of the two
Gaussian distributions N(p,0%) and N(p,,0%) to be equal: 02 = ¢%. Then (1.4) can be further
simplified to a linear function of x:

T

(b5 —pOx+2ulp, ~puin,) =wix+b.

This has motivated direct estimation of the parameters (w, b) of such a linear decision boundary both
in statistics (Fisher 1952) and pattern recognition (Nilsson 1965). This approach has the advantage of
not having to choose a specific parametric density, in this sense it might be considered more robust. It
also has the advantage that the direct approach often requires far less parameters (only d+1). However,

2I can assure the reader that, in fact, they are, even if the small training set does not show this.
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Figure 1.5: Toy example with two classes (+ and x): Bayes classifier. The top part shows a Bayes
classifier with a spherical Gaussian for each class (left) and the resulting circular decision boundary
(right) leading to one error (indicated by a circle around the point) on the toy problem. The bottom
part uses a mixture of two spherical Gaussians for each class (left) and nicely separates the two classes
(right).

it is not a panacea: a linear decision boundary is obviously very limited. In our toy example, it would
not be of much use in separating the two classes.

A logical way to go is to extend these linear models to non-linear ones and this has led to a
variety of new models in the neural network field (multi-layer perceptrons) and statistics (projection
pursuit regression and multivariate adaptive regression splines, for example). These models all have
the following general form:

y(x) = w3 g(Wix + b1) + b, (1.5)

where ¢ is some non-linear function; it is often preceded by yet another non-linear function. While
these models are far more expressive, they also call for rather complex non-linear optimization routines.
In the rest of this introduction, I will present three alternatives which are all based on the idea of
making complex models out of a simple linear classifier.

Supervised Learning: Kernel Trick

In the first alternative, we take one step back from the general non-linear form (1.5) and consider the
following model with only one “layer” of parameters:

y(x) = wi 2(x) + by,

where ® : R? — F is a function from data space into some higher-dimensional feature space F.
The roots of this approach lie in the sixties and at that time it was known as the method of potential
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Figure 1.6: Toy example with two classes (+ and x) with a mapping ® of the data from R? into R3.
The mapped data is linearly separable in R3.

functions in the field of pattern recognition {Aizerman, Braverman, and Rozonoer 1964; Nilsson 1965).
The idea behind it is that by choosing a suitable mapping ® into feature space, one might obtain a
high-dimensional representation of the data which is better suited for a simple linear model. Consider,
for example, the following mapping to the unordered products of degree 2 of the input coordinates:

¢:R >R
($1vx2) — (y11y2;y3) = (55'%,\/53711'2,335)-

When applied to our toy example, the mapped data in three-dimensional space can be correctly
classified by a linear decision surface (see Figure 1.6).

But this idea of a mapping into a high-dimensional space can become expensive: taking all un-
ordered degree p products of the coordinates (z1,. . ., z4) leads to a feature space of dimension C’g“’“l.
Consider again the grey-level images of Swiss mountain tops and let us assume that they are of size
16 x 16 (d = 256). When taking all unordered products of 3 pixels (p = 3) the dimension of feature
space becomes 2829056 ... This mere fact might persuade us that this is not the way to go. However,
let us have a closer look at the mapping ® : R — R? and more specifically at dot products in R®:

@(X) ) (I)(Y) = (.’17%, \/§I1(L‘2,IL‘%) ) (y%7 \/-éyly%yg)
= ziy] + 23122 + 2hys = ((21,72) - (91,92))°
= (x-y):=k(xy).

Thus, taking the dot product in feature space can be done without explicitly mapping the data but
via a so-called kernel function k : R* x R? — R. There are actually many classes of kernel functions
which correspond to a dot product in some feature space.

An important consequence of the above is that any algorithm that only depends on the data
through dot products x* - x/ can be made non-linear by replacing dot products by k(x%,x7). This is
the kernel trick made popular by Vapnik and his colleagues (Vapnik 1995). It is one of the several
elegant ingredients which make up support vector machines and turned them into powerful non-linear
classifiers.

Actually, I will apply the kernel trick in an unsupervised learning context, viz. for extracting
features from the data in a non-linear way. This is based on a recent extension of the well-known
method of principal component analysis using kernel functions (Scholkopf, Smola, and Miiller 1998).
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Figure 1.7: Toy example with two classes (+ and X): a mixture of two experts. The left panel shows
the problem decomposition found with the (solid) decision line of the gate which creates a simple
subproblem for each of the two experts, decision lines of the experts are dashed. The middle panel
shows the decision boundary of the entire mixture of experts. The right panel gives the outputs of
the gate and illustrates the softness of the split.

This is yet another part of Chapter 2 and surprisingly enough will be based on some of the techniques
described in the mixture model part of Chapter 2.

Supervised Learning: Mixture of Experts

The second alternative is inspired by the use of mixture models in unsupervised learning and extends
them to supervised learning. The motivation for this approach comes from the fact that often complex
problems can be solved by breaking them down into, hopefully simpler, sub-problems and combining
their responses. This idea is at the heart of the mizrture of ezperts model (Jacobs et al. 1991) in
which a gating network splits up the data space with ezpert networks® specializing on the different
regions. More formally, the architecture of a mixture of experts consists of m linear experts, the
outputs y;(x, w;) of which are weighted by the outputs of a linear gating network a;(x, V):

y(x’ 0) = Z Qaj (X, V)yj (x7 Wj)'

j=1

The outputs of the gating network are constrained to sum to one and be non-negative. This allows
for its interpretation as a classifier which attributes patterns to the expert networks in a probabilistic
way. This also implies that the gating network splits the data space in a “soft” way: data can lie in
several regions simultaneously. This is an important difference with so-called decision trees that tend
to perform hard splits.

Let us come back to the toy example when modeled by a mixture of 2 linear experts. The left
panel of Figure 1.7 shows the problem decomposition found by the gating network. The two sub-
problems have become linearly separable and each of them can be solved by a simple linear expert
model which only gives a correct response on “its” part of data space. The decision boundary of the

3The use of the term “expert” is a little overblown since it need not be an expert at all!
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entire model, that is a linear combination of the expert outputs weighted by the gating outputs, does
indeed separate the pluses from the crosses (second panel of Figure 1.7). The third panel illustrates
that the gating network splits the data space in a soft way: the two outputs of the gating network
a1 (x) and ao(x) are equal to a 1/2 on its decision line and away from it one expert dominates.

The mixture of experts model can be given a probabilistic interpretation as a conditional den-
sity estimation problem. Given a training set D = {(x!,t!),...,(x",t")} we want to estimate a
conditional density p(t|x) and a conditional mixture model can be defined as follows:

p(t]x) = z a; (x)p; (t]x).

Jj=1

When comparing this with the definition of a standard mixture model (1.2), this is indeed a mixture
in output space conditioned on pattern x. Roughly we can say that expert network j is modeling the
mean of density p; and the gating network a multinomial e. A mixture of experts being a conditional
mixture model, it should not come as a surprise that it can be trained within the maximum likelihood
framework by the EM algorithm.

Chapter 4 will provide a link between the unsupervised mixture models of Chapter 2 and mixtures
of experts by using these unsupervised mixtures as gating network.

Supervised Learning: Boosting

A third way of making a complex model out of simpler ones is with so-called committee or ensemble
methods. 1 will limit myself to one of the most promising ensemble methods: boosting. The theoretical
motivation of boosting came from the wish to transform a model which performs only slightly better
than random guessing into an arbitrarily accurate learning algorithm (Freund 1995; Schapire 1990).
The first practical boosting method for classification problems is known as AdaBoost and was proposed
in 1995 by Freund and Schapire. The idea of AdaBoost is to construct in an iterative fashion a linear
combination of m simple base classifiers:

y(x) = ay;(x),
j=1

adding classifiers one by one during training. When comparing this with the definition of a mixture of
experts, one immediately sees that there is no such thing as a gating network here. The sub-problems
in this case are determined by the performance of the preceding classifiers and modifying the training
set: more and more weight is put on the examples which have been misclassified by the previous
classifiers. This modification of the training set can be done by interpreting these example weights
as probabilities and by sampling according to this distribution. Often a deterministic interpretation
is also possible in which the example weights are included as factors into some cost function to be
optimized.

This can again be illustrated on our toy example? for which an ensemble of simple linear classifiers
has been constructed (Figure 1.8). The first classifier correctly classifies all patterns except the lowest
plus pattern. The reweighting idea of boosting implies that this pattern takes on a higher weight in
the training set for the subsequent classifier. This is indicated in the second panel by scaling the size
of a symbol proportionally to its weight. The second classifier, therefore, mainly focuses on correctly
classifying this lowest plus pattern. The third classifier correctly classifies the patterns which were
misclassified by either of the two previous classifiers. When combining these three classifiers, the
resulting ensemble does separate the pluses from the crosses (the lower part of Figure 1.8).

4With only 8 patterns this time to make the plot more readable.
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Figure 1.8: Toy example with two classes (+ and x): boosted ensemble of three classifiers. The upper
part shows the three classifiers, that have been generated iteratively by boosting, with their decision
lines. The errors made by each classifier are indicated by circles around the data point. The weight
given to each data point is indicated by the size of the pluses and the crosses. The lower part shows
the combination of the three boosted classifiers together with its decision boundary.

One might think that the boosting principle of constructing classifiers on ever more specialized
versions of the training set leads to overfitting and poor generalization. While this can indeed be
the case on very noisy data sets, empirical evidence and results from statistical learning theory have
shown that boosting performs well in a low noise regime. I will come back to this in greater detail
in Chapter 5. There, I will also develop a model in between a boosted ensemble and a mixture of
experts by allowing the fixed weights a; of AdaBoost to be input-dependent.

Roadmap

Now that I have presented the main characters of the piece, time has come to rise the curtain. The
general flow goes from unsupervised to supervised learning.

Chapter 2 focuses on the use of mixture models for density estimation. Starting with a general
description of the EM algorithm, it is then applied in the specific case of Gaussian mixture models
(GmMs). It is outlined that there is a large gap between the use of standard multivariate Gaussians
and restricted ones such as the spherical Gaussians used throughout the Introduction. A more flexible
alternative is presented in the form of the recently proposed mixtures of latent variable models (Tipping
and Bishop 1999). These latent variable models are strongly related to dimensionality reduction
methods as factor analysis and principal component analysis and these are discussed in detail. An
EM algorithm for mixtures of factor analyzers and principal component analyzers is derived and
its computational complexity is examined. After these theoretical preliminaries, the results of an
empirical comparison of the various mixture models on about 20 data sets are discussed. The empirical
results show that mixtures of latent variable models are often preferable both in terms of computational
complexity and generalization performance to standard GMMs.
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One of the problems with mixtures of latent variable models is the selection of the appropriate
model. One not only has to choose the number of mixture components but also the dimension of
latent space in each component. A search over all combinations of these is nearly impossible. A
new Bayesian technique is presented that finds the appropriate dimension of latent space for each
component of a mixture of factor analyzers. A recent Bayesian treatment of PcA (Bishop 1999a) is
derived as a special case. Empirical results illustrate that this not only simplifies model selection but
can also lead to improved results.

The last part of Chapter 2 deals with another form of unsupervised learning, viz. feature extraction.
A recent method for non-linear feature extraction called kerne! principal component analysis (PCA)
{Scholkopf, Smola, and Miiller 1998) is presented. Standard kernel PCA on a training set with N
examples requires storage of an N x N matrix. It is shown how an Em algorithm for Pca can avoid
storing this matrix and make kernel PCcA applicable to large data sets with more than 10,000 examples.
The extracted non-linear features are shown to be interesting by training simple linear classifiers on
them that perform very well. A novel on-line EM algorithm for Pca is derived and shown to give
further speed-ups.

Chapter 3 is mainly of tutorial nature. After a short recall of the principles of Bayes classifiers, the
mixture of experts model is defined in detail. An overview of various methods for training mixtures
of experts is given going from gradient-based approaches to the EM algorithm. The chapter ends with
a proof of a new consistency result which shows that in the limit of infinite data the posterior class
probabilities minimize the error function of a mixture of experts.

Chapter 4 links the models of the previous two chapters by using mixtures of latent variable models
as a gating network in a mixture of experts. This extends work of Xu, Jordan, and Hinton (1995)
and it is shown that the resulting localized mixture of experts can be trained in the EM framework.
These localized mixtures of experts are compared with standard mixtures of experts in an empirical
evaluation on about 20 data sets. Some problems of the localized approach are outlined. Furthermore,
Bayes classifiers are constructed from the mixture models described in Chapter 2 on these same data
sets and shown to perform well also in supervised learning.

Chapter 5 describes the idea behind boosting and outlines its recent interpretation as a stage-wise
gradient descent optimization of a cost function of the margins. A new algorithm is presented which
extends AdaBoost by using a separate model for determining the input-dependent coefficients of each
expert. Experiments show that one can often obtain performance that is at least as good as with
AdaBoost but with a much smaller ensemble.

Chapter 6 concludes with a series of experiments on two computer vision problems, viz. face versus
non-face classification and handwritten digit recognition. Some of the models encountered along this
thesis are shown to give resuits which rank well among those obtained with other state-of-the-art
methods.

Before starting out, I would like the reader to know that these pages contain some rather detailed
and technical proofs. Since I do not like “exercises left to the reader” or saying “it is straightforward”>
when it is not, I tried to spell out proofs as completely as possible. If you think the proofs too detailed,
it will not harm to read them faster!

51 did put in a few of them for old habit’s sake.



CHAPTER 2

Unsupervised Learning: Mixture Models
and Feature Extraction

Unsupervised learning deals with modeling or extracting information from an unlabeled data sample:
D= {xl,...,xN},

with x* = (z7,...,27)T € R?. Two classic problems in unsupervised learning are density modeling and
feature extraction. The goal of density estimation is to find a descriptive model of the data. As we
already saw in Chapter 1, this is often done by assuming that the data has been generated according
to some underlying parametric density function and by estimating the parameters of this density.
Descriptive models can, for example, be used for clustering data in groups of similar examples or as
an initial step in supervised learning of labeled data such as Bayes classifiers and radial basis function
networks.

Feature extraction tries to find a compact description of the interesting features of the data.
This can be useful for visualization of high-dimensional data in two or three dimensions or for data
compression. It can also be applied as a pre-processing step in supervised learning which enables to
reduce the dimension of the data to be handled by a subsequent model.

Roadmap

In this chapter, some interesting examples of both the descriptive and the feature extraction approach
to unsupervised learning are developed. Along the way, we will see that the boundary between these
two approaches is not that rigid and that a cross-over can be fruitful. We start with a general and
precise description of the Expectation-Maximization algorithm for maximum likelihood (ML) in the
presence of hidden or latent variables. This forms the basis of most algorithms described in this and
later chapters. As a first example of latent variable models, we consider mixture models which we
already encountered in Chapter 1. In this case, the single latent variable is just a discrete label for the
mixture components. Section 2.2 shows how to apply the EM algorithm to general mixture models and
to Gaussian mixture models in particular. It is outlined that the issue of model complexity can only
be handled in a very coarse-grained way in GMMs. An elegant manner of controlling model complexity
of GMMs in a more flexible way is the introduction of continuous latent variables z=(z1,...,2¢)7 with
£<d; this can be interpreted as a form of dimensionality reduction or feature extraction. Section 2.3
describes how this idea forms the basis of factor analysis (FA) (Bartholomew and Knott 1999) and
a recent probabilistic formulation of PcA (Tipping and Bishop 1999). These linear latent variable
models can be readily included as component distributions of a mixture model. Section 2.4 describes
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how the EM algorithm can be used for learning the parameters of a mixture of factor analyzers (MFA)
(Ghahramani and Hinton 1996). An EM algorithm for mixtures of principal component analyzers
(Mpca) (Tipping and Bishop 1999) is derived as a special case of the one for MFAs. A detailed
analysis of the computational complexity of these Em algorithms is given and it is shown that also in
this respect they are a valuable alternative to basic GMMs. I conclude this review of the state-of-the-
art with a short derivation of an EM algorithm for standard Pca as proposed by Roweis (1998). It is
shown that the algorithm is an alternative to standard numerical methods for PcA when dealing with
high-dimensional data. Moreover, the algorithm can handle the data in an incremental way which is
useful on large data sets (section 2.5).

The first original contribution of this chapter is empirical, viz. an experimental comparison of
mixtures of latent variable models and GMMs on about 20 data sets. The empirical density estimation
results show that mixtures of latent variable models are often preferable both in terms of computational
complexity and generalization performance to standard GMMs (Moerland 1999b). We will then address
the issue of model selection in more detail. The experiments of section 2.6 used validation data to
select values for free parameters such as the number of mixture components and the dimension of
latent space £. An approximate Bayesian inference technique is described that automatically selects
the appropriate dimension of latent space for factor analysis. A recent Bayesian treatment of Pca
(Bishop 1999a) is derived as a special case. Empirical results on about 20 data sets illustrate that
the Bayesian technique not only simplifies model selection but can also lead to improved results
(section 2.7).

The last part of this chapter illustrates the usefulness of the EM algorithm for standard Pca
presented in section 2.5 in a particular context, viz. that of kernel PcA (Scholkopf, Smola, and Miiller
1998). This is a non-linear extension of PcA based on the kernel trick described in Chapter 1. It
requires the eigendecomposition of a so-called kernel matrix of size NxN. A disadvantage of using
standard numerical methods for this eigendecomposition is that they require storing this kernel matrix.
The incremental version of EM for Pca is used to avoid storage of the kernel matrix. The application
of EM to kernel PcA necessitates a reformulation of kernel Pca which I developed independently of
Mika (1998). Experimental results are given where EM for kernel PCA extracts up to 512 non-linear
features from a data set with 15,000 examples. The extracted features of various data sets are also
used as pre-processed data for a simple linear classifier. The performance of the resulting classifiers
turns out to be very good. Finally, a novel on-line EM algorithm for PCA is derived based on a general
approach of Neal and Hinton (1999). Experiments show that this can give a further speed-up of EmM
for kernel Pca.

2.1 Maximum Likelihood Estimation

Suppose that we have unlabeled data D ={x"} which we assume to be generated from a probability
density function p(x16) with parameters 8. As we saw in Chapter 1, a common approach to estimate
the parameters of p(x|0) given a set of N examples {x"} is mazimum likelihood (for example, Duda
and Hart 1973) and this is the approach I will take in most of this thesis. We make the standard
assumption that the examples are drawn independently from the same distribution which allows us
to factorize the joint probability p({x"}|0):

£(6) = p({x"}16) = [[ p(x"16). (2.1)

This function is defined as the likelihood of 8 with respect to the data {x"}. Maximum likelihood
estimation consists of finding values for 8 which maximize £(@). This is intuitively appealing since
it corresponds to values which describe the data well. An alternative approach would be to consider
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not only the single most likely parameter values but to treat them as random variables, which is the
so-called Bayesian approach. We will come back to this and its possible advantages in section 2.7.

It often is easier to maximize the log-likelihood (which has identical solutions due to the mono-
tonicity of the logarithm):

In£(6) = > Inp(x"|6). (2.2)
If one wants to interpret it as an error function to be minimized, we take the negative log-likelihood:
- Inp(x"|6). (2.3)

A more general approach is to assume that we also have unobserved or hidden variables z that help
modeling the observed data x. The hidden variables can, for example, be discrete component labels
which represent a sort of imaginary class labels for the observed data. In fact, this is a way to define
mixture models, as we will see in section 2.2. The log-likelihood of the observed data is then obtained
by marginalizing over the hidden variables. For the moment, we assume the hidden variables to be
discrete and marginalization boils down to applying the sum rule (A.16):

@)=Y WY px",z8). (2.4)

A first and simple approach to optimize this log-likelihood would be to calculate the partial derivatives
with respect to each of its parameters 6; and see whether the resulting equations (put to zero) can be
solved. Starting with (2.4) and taking the derivative of the logarithm gives:

8ln£
ZZ px" z]0) 30 [pr z|0]

Using the sum rule (A.16) and shifting the sum:

1 i} n
= — ——p(x", 2|0).
2 gy ;P )
Introducing the logarithm via the partial derivative:

p(x", z|0)
Z prmey) 39 Inp(x", z|0)

which can be rewritten with Bayes’ rule (A.18):
= Zp (z|x™, 0 lnp(x ,z|8) = 0. (2.5)

This system of equations is in all interesting cases coupled and non-linear because the parameters
6 appear both in the posterior of the hidden variables p(z|x™,0) and the partial derivatives. This
means that we cannot hope for a direct closed-form solution of the system. Of course, it could be
handled iteratively by any of the standard non-linear optimization techniques but in what follows a
simpler approach is derived in the form of the EM algorithm. The basic idea of the EmM algorithm is to
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decouple the system of equations (2.5) by first estimating the posterior p(z|x™, 8) and then determine
the parameter values in (2.5) while keeping the posterior fixed. This is generally a simpler problem
since it involves the joint distribution p(x™,2z|0) of the observed and hidden variables. It will be
shown that this intuitively appealing approach is a theoretically sound way of performing maximum
likelihood estimation.

Actually, we consider a more general problem based on the observation that in (2.5) the summation
over all configurations of the hidden variables might be computationally intractable. Imagine, for
example, a binary hidden state of length 50: marginalizing the hidden variables would require summing
over all 2°° hidden states; this is actually a problem which occurs in Boltzmann machines and sigmoid
belief networks (Jordan et al. 1999). It can sometimes be remedied by approximating the posterior
of the hidden variables p(z|x™, 8) by a restricted distribution Q(z|x™,8). We therefore start out with
the log-likelihood (2.2):

In£(6 Zlnp x"|8)

and introduce the approximating distribution ¢ with the sum rule (A.16):
=Y Inp(x"|0) Y Q(zlx", ).

This can be rewritten with the product rule (A.17) and Bayes’ rule (A.18):

‘Z[ Dapiay | Q0

= ZQ (z|x",0) Inp(x",z|6) — ZQ(Z|X”,9) In p(z|x",0).

n,z n,z

Introducing the entropy of @ in both terms:

= 3" Q(lx",0) Inp(x",2|8) - 3" QzIx", ) ln Q(zlx", 6) — 3 Q(zlx", O)p(zlx", 6)

7,2

+ ZQ(zlx",e) In Q(z|x", )

p(x",2|0) p(z|x )
= z|x™, 6)1 z|x™,0)1 .
ZQ( jx” Q(zl o) ZQ( I 0w 0]
Thus, the log-likelihood can be rewritten for any @ as:
‘ p(x",z|6) plz[x™,0)
in £(6 ZQ 2", 6)In 5orn ZQ( z|x",6)1 zlxn O 0) (2.6)

= /J(Q, 6) + KL(Q||p)
= free energy + Kullback-Leibler divergence.

This rewriting of the log-likelihood stems from the work of Neal and Hinton (1999). Knowing
that the Kullback-Leibler divergence is non-negative (Cover and Thomas 1991) directly leads to the
observation that the free energy £(Q, ) is a lower bound of the log-likelihood. This forms the basis
of the generalized EM algorithm by coordinate ascent in the lower bound £(Q, 8) (Algorithm 1). It is
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Algorithm 1 Generalized EM algorithm

loop
{ (2.6): In£(9) = £(Q,0) + KL(Q|Ip)}

E-step: Choose Q"% such that it decreases the Kullback-Leibler divergence KL(Q||p) while
keeping the parameters 6 fixed

{£(Q™",0) > L(Q,0) since In £(@) does not depend on Q}

M-step: Choose the parameters "°" such as to increase the free energy £(Q"®V, 8) while keeping
QoY fixed

{£(Q™",0™™) > L(Q,0)}

Q,6 1= Quev, g
end loop

Algorithm 2 EM algorithm
loop

{ (26): In£(6) = L(Q,0) + KL(Ql|p)}

E-step: Q" (z|x",0) := p(z|x", 8) (for all n)

{£(Q™", 0) = In L(0) since In £(6) does not depend on Q and KL(Q"¥||p) = 0}

Bnew

M-step: Choose the parameters
keeping @™V fixed.

such as to maximize the free energy L£(Q"V,8) while

{In £(6°°™) > In £(Q"~,6°™) > In L(6)}

Q.8 := Quev, g™
end loop

an iterative two-step procedure consisting of a “E (expectation) step” which increases £(Q, @) with
respect to @ and a “M (maximization) step” which increases £(Q, 8) with respect to the parameters
6. This view of the EM algorithm has been exploited recently in the context of variational methods
for graphical models; see (Frey 1998; Jordan et al. 1999) for excellent overviews. Its typical use is
to restrict the family of distributions from which @ can be chosen in order to simplify the E-step.
Of course, this approach is not guaranteed to maximize the log-likelihood but if the family of Q
distributions is rich enough the lower bound £(@,8) can be close to the actual value of the log-
likelihood. This causes a balancing act of choosing the @ distributions sufficiently simple to make the
E-step tractable and also rich enough to have a tight lower bound.

The reader might suspect that since I coined the previous algorithm generalized EM, it is in some
way related to the well-known standard EM algorithm (Dempster, Laird, and Rubin 1977). This is
indeed the case if we do not impose any restrictions on Q. Q(z|x",8) can then be chosen equal
to the true posterior p(z|x™,8) and make the Kullback-Leibler divergence after the E-step equal to
zero (Cover and Thomas 1991) to give the tightest lower bound £(Q,8). The M-step of standard
EM typically maximizes and not just increases £(Q,8) with respect to the parameters 8. This gives
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Algorithm 2 which performs coordinate ascent in the log-likelihood, which is exactly what we are
looking for. At each cycle the EM algorithm is guaranteed to increase the log-likelihood unless it is
already at a local maximum (Neal and Hinton 1999). The fact that Algorithm 2 is indeed standard
EM as traditionally presented can be seen by looking more closely at the M-step. Using the choice of
Q in the E-step and the definition of the free energy £(Q"¢", @) (the first term in (2.6)) the M-step is
equivalent to:

p(x",z|0"")

0 := argmax new(zlx™, ) In ————=
ognew ZQ ( l ) Qnew(zlxn’o)

= argmax Zp(zlx", 6) In p(x", z{@"°") — Zp(z|x", 6) In p(z|x", 6) (2.7)
enew p oz

= argmax expected complete log-likelihood — constant,
onew

which is, apart from an irrelevant constant, the standard formulation of the EM algorithm (Dempster,
Laird, and Rubin 1977).

It is enlightening to compare the M-step (2.7) in terms of the expected complete log-likelihood with
the system of coupled equations we derived earlier (2.5). The necessary conditions for maximization
in the M-step can namely also be written as solving the following system (for each 67°%):

n 0 n new
Zp(zlx 70) g lnp(x 7z|0 ¢ ) =0,
n,z M

which through the estimation of the posterior of the hidden variables in the E-step is not coupled
anymore: things have really been simplified by the EM algorithm and, moreover, convergence to a
local maximum of the log-likelihood is guaranteed.

We could summarize the main idea of the EM algorithm as follows. Maximum likelihood estimation
in a model with hidden variables leads to a system of coupled highly non-linear equations which can
be decoupled by first estimating the distribution of the hidden variables given the data and the model
parameters; this is the E-step, viz. estimate p(z|x™,6). All one needs to do in the M-step is to
maximize the expected (with respect to the hidden variables) log-likelihood of the complete data,
which is often a far easier problem because the hidden variables provide extra information.

In the rest of this thesis, the standard and generalized EM algorithms will be applied again and
again to a variety of models with hidden variables. We start with one of the simplest of such models:
mixture models.

2.2 Mixture Models and the EM Algorithm

As said at the beginning of section 2.1, the basic approach for density modeling is the parametric
approach in which we choose a specific probability density function and maximize its likelihood.
While this method is often simple, it is also sensitive to model mismatch: obviously it is difficult to
know in advance which density function will fit the data best. Moreover, the parametric approach
for analytically simple densities such as those belonging to the exponential family (for example, Duda
and Hart 1973) is restricted to modeling unimodal distributions. If the data has several modes or
clusters, the resulting model will be poor.

The toy example of Chapter 1 already illustrated the need for a more flexible model and the
usefulness of mixing simple density functions. I recall that a mixture model is defined as a linear
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Figure 2.1: Density modeling with a mixture model.

combination of m component densities p;(x|6;):
p(x10,a) = > a;p;(x|6;), (2.8)
j=1

where the a; are the mizing coefficients which are non-negative and sum to one. This guarantees that
p(x) is a valid density function. The parameters of the mixture model are 8 =(6;,...,8,,) and a.
The mixture model approach of combining several simple density functions into a more complex one
is illustrated in Figure 2.1.

We can also introduce mixture models in a slightly more formal way from the perspective of a
model with hidden variables. This involves the introduction of a discrete hidden variable z=1...m,
labeling the component density functions (using the sum (A.16) and product (A.17) rules):

p(x16) = 3" px,2l6) = 3 p(x,2 = j18) = 3 P(z = 10)p(x]= = ,6).
z j=1

=1
Assuming that the parameter vector 8 is partitioned among the components §=(61,...,0,,):
m
p(x16) = 3 Pz = j)p(xlz = 5,6;), (2.9)
j=1

which is identical to (2.8). In the rest of this thesis, I will often use a more compact notation and
leave the parameters implicit since they will normally be clear in the specific context:

p(x) =) a;pi(x).
j

We now discuss in some detail how the EM algorithm can be applied to mixture models. Specific
choices for the component densities p;(x) and derivations of the corresponding instantiations of the Em
algorithm are described in sections 2.2.1 and 2.4. However, part of the EM algorithm is independent of
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the choice of the component densities, viz. the E-step and the optimization of the mixing coefficients
in the M-step.

The mixture model error function which we want to minimize is the negative log-likelihood (2.3)
of the mixture density (2.9) on the training data {x"}:

E0)=-> Y P(z=jp(x"|z = j,6;). (2.10)
j=1

n

Note that, in general, this error function has multiple local minima of different values and that the
EM algorithm only guarantees converge towards one of them.

With respect to the E-step, we recall from the previous section that it involves estimation of the
posterior of the hidden variables p(z = j|x",8). For a mixture model, this is particularly simple since
a direct application of Bayes’ rule (A.18) gives:

E-step:  h;(x") 1= p(z = j|x",0) = P(z = j|0)p(nx;|2 =4,05) _ ajpj(:") _ "?‘jpj(xn) .

p(x"16) p(x") 21 a;pi(x™)
i

(2.11)

These posteriors for the mixing coefficients can be interpreted as indicators of the “responsibility”
that component j takes for a data point x™. They might be seen as the probabilistic counterpart
of a hard decision which attributes each of the data points to only one component and which would
decouple the problem in separate parts which can easily be solved.

The M-step consists of the maximization of the expected complete log-likelihood (first term in (2.7))
or equivalently the minimization of its negation, with respect to the parameters of the mixture model:

E(E) ==Y p(zlx™,0)lnp(x",2/6™") = = > Y p(z = jjx",0)Inp(x",z = j|6™"). (2.12)

n,z n j=1

Using the definition of the posterior (2.11) and the product rule, we have:

== Z Z hj (Xn) ln{a;.‘eij (xnw;_er)}

n j=1
== > hxM)Inag™ =3 hi(x") Inp;(x"65), (2.13)
n j=1 n j=1

which is called the (expected) complete error function. Since the first term of (2.13) does not depend
on the choice of the component densities, the mixture coefficients o} can be optimized independently.
The constraint on the mixing coeflicients that ; aj*" =1 can be included in the optimization problem
with a Lagrangian function for the first part of the complete error function (2.13):

L@, ) == D> hix™)nad™ | + XY o™ -1},
n j=1 J

and setting the partial derivatives with respect to the a™% and A to zero gives a system of m+1 linear
equations, the solution of which is:

new 1 n
o = = 3 hy(x"), (2.14)
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where N is the number of patterns in the training set {x"}. The M-step for the other parameters
now involves the minimization of the second term of the complete error function (2.13) only.

It is also interesting to see that this part of the complete error function forms a completely decou-
pled optimization problem: — 3" Z;n___l h;(x™) Inp;(x™|67°") can be dealt with separately for each
of the component densities. The estimates of the parameters are similar to the ones one would find
by maximum likelihood on the single component density but weighted by the posteriors h;(x") as we
already saw in the case of a Gaussian mixture model in Chapter 1. We will see many other examples
of this later on.

As a first example, the next section describes in more detail the most popular kind of mixture
model: a Gaussian mixture model. Its popularity is of course mostly due to its simplicity and the nice
analytical and statistical properties of the Gaussian distribution. This choice makes that the M-step
can be performed analytically in a simple way. While this is actually the case for any density from the
exponential family (Titterington, Smith, and Makov 1985, Chapter 4), I will limit myself to Gaussian
component, densities here.

2.2.1 Gaussian Mixture Models

Gaussian mixture models are a standard tool for density estimation and are described in many text-
books (for example, (Bishop 1995; McLachlan and Basford 1988; Titterington, Smith, and Makov
1985)). A GMM is defined as a mixture model (2.8) with component distributions which are multi-
variate Gaussian with a d x d symmetric and positive-definite covariance matrix X; and dx1 mean

pj
p;(x) = N(x|p;, X;) = Wexp {~%(x - pj)TEj—l(x - u.j)} . (2.15)

The parameters of a GMM can be determined by maximum likelihood estimation with the EM algorithm
within the general framework for mixture models described in the previous section. This already gives
us the E-step (2.11) and the estimation of the mixing coefficients (2.14). The updates in the M-step for
the parameters 3; and p; of the component densities can be found by minimizing the complete error
function (2.13) and are summarized in the following instantiation of the EM algorithm (for example,
(Duda and Hart 1973, Chapter 6)):

E-step: Estimation of the posteriors, for all j:

) = 2
2 aipi(x™)

i=1

M-step: Re-estimation of the parameters of the GMM (where the new parameter values are denoted
with a prime) for all j:

Ot; = %]—Z hj (Xn)
r_ Zn hj(xn)xn

S S NeD)

s = Zn B — g )" — )T
I >0 hy(xm) '




24

Unsupervised Learning: Mixture Models and Feature Extraction

The updates for the mean p; and the covariance matrix 3; correspond indeed to a sort of weighted (by
hi(x™)) versions of the sample mean and the sample covariance matrix. GMMs with full covariance
matrices have several disadvantages, all related to the fact that a full covariance matrix contains
d(d + 1}/2 free parameters (the factor of 1/2 is due to symmetry) which becomes unwieldy for high-
dimensional data. Consequently, in each M-step the update of each of the X; has a complexity of
O(d?>N). Moreover, the update of the posteriors in the E-step and the calculation of the likelihood
function (for example, to monitor convergence on a training or validation set) require calculating
the inverse and determinant of the dxd matrices 3;. Even if one exploits the fact that the sample
covariance matrix is symmetric and supposed to be positive definite, in order to use a Cholesky
decomposition (Press et al. 1992), the computational complexity is O(d®). With respect to the
positive definiteness of the estimate 2;-, one can observe that this constraint is satisfied if the number
of data points is large enough with respect to the dimension of data space: the matrix has to be
full rank, that is, a necessary condition is N > d. This is especially restrictive in the mixture model
context since the number of data points associated with a specific component can be a small subset
of the total number of data points.! Therefore, in order to obtain well-determined estimates and to
avoid overfitting on the training data, a large training set is often needed.

A standard remedy for the problem of badly determined parameters and overfitting when data is
scarce is using regularization, that is, an extra penalty term in the error function which encourages
smoother estimations. In the rest of this thesis, I will use a penalized likelihood approach which has
been proposed for GMMs by Ormoneit and Tresp (1998). This requires only some additional factors
in the M-step update of the covariance matrix and is numerically more stable:

s _ 12 M X" — py)(x" — pp) "} + la
T (T b (x} +1 :

Of course, this approach requires tuning the 8 parameter on a validation set.

Another natural way of dealing with scarce data is to limit the number of free parameters in a
GMM by imposing constraints on the form of the covariance matrix. Three obvious possibilities are
covariance matrices which are either:

(2.16)

e spherical: ¥; = U?Id as throughout Chapter 1. A single parameter for the whole covariance
structure which gives an unflexible model.

¢ diagonal: with all off-diagonal elements equal to zero. This gives d parameters but a model in
which the axes of the Gaussians are aligned with the data axes; it does not capture correlation
amongst the variables.

o tied: parameters of the covariance matrices are tied across the component densities (Bellegarda
and Nahamoo 1990). One of the simplest examples is to have one covariance matrix common
to all Gaussian components.

Spherical and diagonal covariance matrices limit the computational complexity of the update of each
covariance structure in the M-step to O(dN). Moreover, also the inverse and their determinant are
O(d). Appendix F contains a detailed derivation of the EM algorithm for a GMM with spherical
covariance matrices for those who want to have a look at the update formulas. I will refer to these
models as spherical, diagonal, tied, and full GMMs respectively.

A problem with maximum likelihood estimation for GMMs is that the likelihood goes to infinity
for certain parameter values on the boundary of parameter space. This is, for example, the case when
in a mixture of spherical Gaussians, one of the data points is used as mean p; and o; approaches zero
(Duda and Hart 1973, Chapter 6). While this is disturbing, a large body of empirical and theoretical

! And a; gives an estimate of the portion of the data associated with a component.
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evidence (Titterington, Smith, and Makov 1985, Chapter 4) points to the existence of satisfactory
finite local optima. I take a pragmatic point of view and in the experiments later on (section 2.6),
good initialization and a small lower bound on the values of the variance parameters seem to be
sufficient for avoiding the singularities of the likelihood surface. Actually, the penalized update of X;
(2.16) can be interpreted as bounding the diagonal of the covariance matrix away from zero by the
term B1,.

The constraints on the form of the covariance structure introduced above might seem natural,
they are also quite restrictive. Modeling power can be increased by adding components to the mixture
but that seems to be begging the question. Is there a way to design models which cover the big gap
between having a diagonal covariance matrix (d parameters) and a full covariance matrix (d(d +1)/2
parameters)? In the next section, it is shown how the introduction of continuous hidden or latent
variables can lead to more flexible models which smoothly fill up this gap. We first treat the case of
simple parametric modeling and extend it to mixture models in section 2.4.

2.3 Linear Latent Variable Models

The problem of the GMMs with a full covariance matrix in the previous section is their huge number of
free parameters for high-dimensional data. How could we use hidden variables to control the number
of parameters? A possible answer is the introduction of a latent space of dimension £ <d—1 for the
latent variables z = (21, 2a, .. ., 2¢)T and specifying probabilistically how latent and observed variables
are related. This can be interpreted as a form of dimensionality reduction or feature extraction. Since
our starting point is a GMM, we can safely assume that the latent space is R¢ and the data space is
R?. The latent variables now being continuous, marginalizing over them is done by integration and
not by summing as was assumed in section 2.1:

p(x"|6) = / p(x",2|8)dz = / p(x" |2, 8)p(z)dz. (2.17)

To keep this integration tractable, we limit ourselves to linear mappings and Gaussian distributions.
We define p(x™|z, 0) through the following mapping from latent space to data space, together with a
Gaussian prior p(z) for the latent variables:

x=Wz+pu+e¢ with z~N(0,1) , e~N(O,R), (2.18)

with model parameters W, R, and p. The idea behind the model is illustrated in Figure 2.2. The
prior distribution over the latent variables is a simple Gaussian ball (left-hand part of Figure 2.2) in
latent space. A dx ¢ generative or factor loading matrix W maps the latent space into data space.
The effect is to stretch and translate the Gaussian ball in data space (right-hand part of Figure 2.2)
resulting in a sort of ¢-dimensional pancake in d-dimensional space; the pancake can also be translated
over . To get a real manifold in data space, the pancake is finally convolved in data space with a
Gaussian noise distribution p() with dxd covariance matrix R which is independent of z (Roweis and
Ghahramani 1999). This can also be interpreted as a generative model in which the hidden variables
model the causes for the observed data (Figure 2.3).

Due to the restrictions imposed upon the form of the mapping and the priors, everything stays
entirely in the Gaussian domain. The conditional distribution of the latent variables given the observed
variables is:2

x|z ~ N(Wz+ u,R), (2.19)

2With x|z ~ ... as a shorthand for p(x|z) = ...
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Figure 2.2: A generative model from a latent space of dimension 2 to a data space of dimension 3.

and its convolution (2.17) with the Gaussian prior p(z) can be performed analytically. This gives the
distribution of the observed data, which is also Gaussian:®

x~N(@,M) with M=R+WWT, (2.20)

But for the moment, we have not gained anything, since the covariance matrix of the observation
noise R is unrestricted and the number of parameters is still O(d?). All second-order information in
the data could be modeled by choosing R equal to the sample covariance matrix. The simplest way
of restricting R is to make the observed data independent given the latent data, that is (see (2.19)):

e R = 021;: the latent variable model is called probabilistic principal component analysis (PPCA)
(Tipping and Bishop 1999) or sensible principal component analysis (Roweis 1998; Roweis and
Ghahramani 1999). This terminology has been chosen while with ¢2 -+ 0 conventional PcA is
recovered (and even a stronger statement can be made as we will see below).

¢ R ~ diagonal matrix: the latent variable model is standard factor analysis (Everitt 1984). In
this case, the hidden variables z are often called factors.

These restrictions imply that a linear latent variable model can be viewed as a way of capturing
the covariance structure of the d-dimensional observed data through M (2.20) with at most d(£ + 1)
parameters. This might be interpreted as a kind of discrete regularization in which one can tune the
complexity of the model by choosing the dimension of latent space ¢. In this way, one can cover the
whole spectrum of a covariance matrix with O(d) parameters to one with O(d?) in a more or less
smooth manner. It is also interesting to note that even if one chooses £=1, the resulting covariance
matrix has a number of parameters of the same order as a Gaussian with a diagonal covariance matrix,
but will still be able to capture correlations between the observed variables. A central issue in the use
of linear latent variable models is that of choosing an appropriate value for £. We will see that this
problem can be addressed by a Bayesian treatment (section 2.7).

Estimation What about maximum likelihood estimation for linear latent variable models? The
log-likelihood (2.2) of (2.20) is:

L, W,R) = Zln

3This follows from the fact that the sum of two independent Gaussian distributed quantities is also Gaussian dis-
tributed with as mean the sum of the means and as covariance matrix the sum of the covariance matrices. x is the sum
of e ~ N(O,R) and Wz + p ~ N (u, WWT) where the latter follows from (A.19).
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factors

Figure 2.3: Network representation of probabilistic principal component analysis and factor analysis.

Using the definition of a multivariate Gaussian (2.15):
= Zln —-1———exp{—1(x - )™ Hx - )}
. [M[L/2(27)d/2 9
Distributing the logarithm over the product:
N 1 T 1
=~ {dn(2m) + n M} - 5Z{(x — 1) ™™ (x - w)}.
The last term is scalar, thus one can take the trace of it and perform trace rotation {(A.1):

L(p, W,R) = —g{dln(Zw) +In|M| + tr(M™!S)}, (2.21)

where S is the d xd sample covariance matrix:
S= o3 (- wx— ). (2.22)
The maximum likelihood estimate of the mean p is simply the sample mean of the data:
P = 7\;1“ > oxm (2.23)
n

The log-likelihood (2.21) with respect to the parameters W and R can be maximized by the Em
algorithm. For factor analysis, this instantiation of EM was derived by Rubin and Thayer (1982) and
we come back to this in the next section. The special case of Prca with R = ¢?I; was dealt with
by Roweis (1998) and Tipping and Bishop (1999). Tipping and Bishop actually showed that for the
PrcCA model a closed-form solution for the global maximum of the likelihood exists and that this is
the only stable maximum of the likelihood surface. This solution involves an eigendecomposition of
the sample covariance matrix S and the maximum likelihood estimate for the generative matrix W
spans the f-dimensional principal subspace of the data:

W = Ug(Ag — 0213)1/2‘/, (2.24)

where Ay is a £x £ diagonal matrix with the ¢ largest eigenvalues \; of S on the diagonal. Uy is a dx¢
matrix containing in its columns the corresponding principal eigenvectors of S, and V is an arbitrary
£x ¢ rotation matrix (V=1 = vT)4

4This arbitrary rotation implies that the number of free parameters for Ppca is dé+1—£(£—1)/2.
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This clearly shows the strong relation with standard principal component analysis, a popular
technique for dimensionality reduction (Jollife 1986). PcaA is based on a linear projection onto the
principal subspace spanned by the (orthonormal) principal eigenvectors U, of the sample covariance
matrix S. The new coordinate values are called the principal components. The principal component
projection is the orthogonal projection which minimizes the squared reconstruction error:

Z [Ix™ = U U7 (%™ = par,) + eI (2.25)

Note that projection and reconstruction boil down to simple matrix multiplications due to the or-
thonormality of the eigenvectors. An equivalent characterization of PCA is as the linear projection
which maximizes the projection variances. Typical applications of PCA are data compression and
denoising.

The maximum likelihood estimate for the ohservation noise variance R =¢?I; can also be found
in closed form (Tipping and Bishop 1999):

d
1
2 E .
UML = d_—_[ = )“la (226)

and this has now the interpretation of the average variance lost per dimension which has been left
out.

Some Remarks The probabilistic model of PPCA has several advantages with respect to standard
PcA such as the availability of a proper density model with likelihood scores for model comparison. For
standard PcA one can evaluate the reconstruction cost (2.25) of a point but this measure is insensitive
to arbitrary translations within the principal subspace. We are mainly interested in another advantage
of PPCA, viz. the ease of incorporating it into a mixture of constrained Gaussians. In section 2.4, we
address the extension to mixtures of latent variable models and their maximum likelihood estimation
via the EM algorithm in detail.

The reader might wonder about the consequences of the seemingly small difference in the choice
of the noise model R which is spherical for PPcA and diagonal for FA. Tt is easy to see from the
generative model (2.18) that factor analysis is insensitive to rescaling the coordinates of the data.®
Scaling factors can namely be incorporated in the corresponding rows of W and the corresponding
entry of the diagonal R. This transforms ML solutions for the original data into ML solutions for the
rescaled data. At the same time, FA is sensitive to the choice of the coordinate system in data space:
an orthogonal transformation of the data cannot be incorporated into R because of the diagonality
constraint. The constraint corresponds to the assumption that the components of the noise are
independent in this particular coordinate system (like a sort of sensor noise). For probabilistic Pca, it
is exactly the other way around. PPcCa is insensitive to a rotation of the data which can be incorporated
by left multiplying W by the same rotation. However, scaling the data can only be handled if all the
coordinates are scaled by the same factor because of sphericality constraint on R.

Ppca (like standard Pca) can have difficulties in separating information from noise as illustrated
by the toy example of Figure 2.4. In this example, the second coordinate z, is much noisier than
the others. Factor analysis with its diagonal noise covariance R succeeds in modeling this noisy
component and finds the correlation between the third and the fourth coordinate z3, z4. PPca on
the other hand, is confused by the high variance on the second coordinate z5 and finds a correlation
between dimensions 24 and an estimate of the noise that averages over the remaining noise in the

5This argument and the next ones are done by “handwaving”. A precise statement can be made by considering the
effect of a linear transformation x — Ax on the log-likelihood (2.21). This a nice exercise and all the details are in
(Tipping and Bishop 1999).
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Fa Prca
Correlation coefficients  variance weights  noise weights  noise
X I3 I3 I4 (r.z ) w R w o
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Figure 2.4: A toy data set of 1000 patterns in four dimensions (zy,rs,z3.24). The first dimension
has been generated from a Gaussian having small variance, while the second dimension has been
generated from a Gaussian with high variance. The first two dimensions are independent of the other
dimensions. The third and fourth dimension are highly correlated and have been generated from the
same values (Gaussian with medium-valued variance) corrupted by small Gaussian noise. This can be
seen from the Hinton diagrams with gray for positive and black for negative values and the size of the
square proportional to the value of the corresponding parameter. The first two diagrams represent
the correlation coefficients and the variance of the data. This data was used to train a FA and a Prca
model with one factor (£=1). The other Hinton diagrams shown correspond to the estimated 4 x 1
factor loading W and the 4x 1 diagonal of the estimated noise covariance R for both models.

data. Loosely speaking, principal component analysis pays attention to both variance and covariance,
whereas factor analysis looks only at covariance (Neal and Dayan 1997).

The reader is referred to (Roweis and Ghahramani 1999) and (Bishop 1999b) for a more general
discussion of latent variable models which are non-linear (such as the generative topographic mapping)
and dynamic in time (such as hidden Markov models and Kalman filters).

2.4 Mixtures of Factor Analysis and PCA

One important advantage of the linear latent variable models described in section 2.3 is that they
define a proper probability model which can be extended to a mixture model. The mixture model
(2.8) is then a linear combination of component distributions (2.20):

py(xliy, Ry, W) ~ Ny, R; + W;WT), (2.27)

with separate parameters for each of the component distributions. With spherical noise covariance
R,, the model is called a mixture of principal component analyzers (Tipping and Bishop 1999) and
with a diagonal R, it is called a mixture of factor analyzers (Ghahramani and Hinton 1996). These
mixtures can be interpreted as a mixture of constrained Gaussians in which the number of parameters
can be controlled through the dimension of the latent space £ without putting too strong constraints
on the flexibility of the model, that is, on the form of the covariance matrix.

In this section, | present a detailed derivation of an Em algorithm for mixtures of factor analyzers
and then specialize it to the EM algorithm for Mpcas derived by Tipping and Bishop (1999). An EM
algorithm for MFAs was originally presented by Ghahramani and Hinton (1996) but the one presented
here gives a nicer separation of concerns by staying close to Tipping and Bishop's algorithm for Mpcas.
The reader who does not want to go into all the details of this derivation can skip this part and have
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a look at the final algorithms and a discussion of their computational complexity on page 34-35 right
away. For those who dare to continue reading, it might be helpful to keep an eye on the matrix and
probability identities which are listed in Appendix A which will be used extensively.

Derivation of EM Algorithm for Mixtures of Latent Variable Models

A mixture of latent variable models takes the following form:
m
p(x) =) a;p;(x), with pi(x) ~ N(u;, R; + W;WT), (2.28)
j=1

where p;(x) is a single latent variable model (2.20) and the @; are the mixing coefficients. The error
function to be minimized is the negative log-likelihood (2.10):

E@0) ==Y I o;p;(x"|uj, R;, W)).
n j=1

The maximum likelihood estimates for the parameters of this mixture model can be determined with
a two-stage EM procedure (Tipping and Bishop 1999). The idea of this two-stage approach is to
take into account the hidden variables indicating the component labels first and consider the latent
variables {z"} only in the second stage. This allows us to easily build upon the general framework for
mixture models described in section 2.2.

First stage: E-step I recall that the E-step for general mixture models involves estimating the
responsibilities of component j for each data point (2.11):

By = 2P (2.29)

m

Y. aipi(x™)

i=1

First stage: M-step The M-step then consists of minimizing the expected complete error func-
tion (2.13) with respect to the parameters of the mixture model (with / denoting the new parameter
values):

m
E(E) ==Y > hi(x")In{a}p;(x"|u}, R}, W})}. (2.30)
As we know, the updates of the mixing coefficients are independent of the choice of the component
densities (2.14):
1
of =+ > hi(x™). (2.31)
n

In this first stage, we will only update the centers p;, the other parameters are dealt with in the
second stage. Using (2.28) and the definition of a multivariate Gaussian (2.15), the complete error
function (2.30) can be written as:

E(E) = = 32 3 by (") In o m) N 7 exp {50 = )T 2 = ) ],

n j=1




2.4 Mixtures of Factor Analysis and PCA

31

where the covariance matrix for the latent variable model is M; = R/4+W; (W})T. For the centers of the
component densities, the partial derivative of this complete error function is (using (A.2) and (A.3)):

o [— S0 Al { - " = M " - ué)}] 0 = = 3 by (<)M (<" — ).

n i=1

Setting this partial derivative to zero, we obtain the new estimate for the means:

o Zn hj(xn)xn
B = SR (2.32)
2o hi(x™)

This concludes the first stage of the EM algorithm for a mixture of latent variable models. What still
needs to be done is to find the updates of the parameters in Mj, that is the weight matrices W; and
the local noise models R;. This is done with a second stage of the EM algorithm within the M-step of
the first stage. As shown in section 2.1, decreasing and not minimizing the expected complete error
function (2.30) in the M-step is sufficient for convergence to a local minimum. We will do exactly
that in this second stage by introducing the latent variables z in the complete error function of the
first stage (2.30) and performing one iteration of the EM algorithm to update W; and R;. This is
guaranteed to increase £(E.) and will, therefore, also increase the likelihood of the entire mixture
model.

Second stage: E-step We start by introducing the continuous latent variables z; in (2.30):
(B = =50 Y-ty n | [ ol ol Ry, W) da). (2.33)
n j=1 z

From the previous sections, we know that EM can take care of the integral inside the logarithm
through estimation of the posterior of the latent variables p;(z|x™,8). The posterior can be found
by observing that the joint distribution of the latent and observed variables for component j is also
Gaussian distributed (according to the definition of the latent variable model (2.18) and (2.27)):

Z 0 1, wT
[X] ~N ([“3] ’ [Wo' R; +V‘}5WJ‘TD '

The posterior can be determined directly from this joint distribution using (A.24) and is also Gaussian:

pi(z|x", pf, Ry, Wj) = N(W] M (x" = ), T - W M;'W;). (2.34)

The Gaussian posterior is fully characterized by its first and second moments:
(7f) = WiMj'(x" —p)) (2.35)
(22z)7) = I-WIM7'W; + (20 )(2})7. (2.36)

These two equations seem to require the inversion of the dxd matrix M;, but they can be simplified
using the matrix inversion lemma (A.8) (leaving out the indices):

M= (WWT +R)! =R !'-R W, + WIR'W)"'WIR! =R - RI'WN'WTR™!,
(2.37)

with £x ¢ matrix:

N=1I,+WIR!W. (2.38)
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We see that inverting M actually only requires the inversion of a £ x £ matrix N and taking the
inverse of the noise covariance matrix R which is easy because of the diagonality constraint. Further
simplification is possible with the following straightforward rewriting:

/‘N_1 +WTR-I'WN-! ’

I, =NN"'= (2.39)
M N-14+ N-IWTR™IW

Thus, we can transform the first two factors in (2.35) using (2.37) and (2.39):

WM™ = WIR™ - WIRT'WN!'WTR™ = (I, - WTRT'WNH)W'R ™ = NT'WTRL.

(2.40)
The first two terms of (2.36) can be written as (using (2.39)):
I -WIM'W=I,- N'WIR!'W =N"1 (2.41)
Substituting (2.40) and (2.41) in the moments (2.35) and (2.36) gives:
(z}) = Ny'WIR'(x" - pj) (2.42)
(zp(z})T) = Nj' + (=2} )=z})". (2.43)

Having fully characterized the posterior of the latent variables, this terminates the E-step of the second
stage.

Second stage: M-step For the second-stage M-step, the expected (with respect to the posteriors
of the latent variables) complete error function corresponding to (2.33) is:

m

EE,) = - ZZhj(x")/pj(z]x",O) {Inajp,;(x",z|u}, R, W)} da.

n j=1

Given that the posterior is Gaussian and is fully characterized by its first and second moments, this
can be written in a more compact way:

E(B) = - 303 hi(x™)(Ina}p; (x", 2l R}, W), (2.44)

n j=1

where (. ) denotes the expectation with respect to the posterior distribution of z. The joint probability
distribution is (using (2.18) and the definition of a multivariate Gaussian (2.15)):

P 2) = ("D (2) = () IR e { @) (R)) g | 2m) 2 e { = 3Ta)

where

a?

— 7 Ty U
;=X Wiz — p;.

Rewriting (2.44) using the above expression for the joint distribution and collecting irrelevant constants
which do not depend on W; and R;, gives:

. i 1 1 1N=1(yn n
EE) = =D hx)f - 5In [Rj - 5 (" = Wizp — u))T(R) 7 (x" = Wz} — u))) }
n j=1
+constant. (2.45)
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Factoring out the last term on the first line (with the trace operator “tr” to get the appropriate
moments):

SO = )T (R 7 (" — ) — 206" — i) (RY) W (a5 )

(@) (W) (R) " Wia) ) |

= g TR — ) — 20" — )T (R W ()
or {(W)T(R) " Wiz} (23)7)} ).

The second stage M-step then requires minimizing the complete error function (substituting the above
expression in (2.45)):

= Y M [ IRy - 2 — )R (" — )

n j=1
O = )T (R TW () - o (W (RO WiEI @)Y (246

with respect to the parameters which have not yet been optimized in the first stage of the EM algorithm:
the generative matrices W; and the noise covariance R;. For W, the partial derivative is (and this

is left as an exercise to the reader, it requires some derivatives of traces and scalar forms listed in
Appendix A):

an = —Zh T - i) ()T - (R))TIW( 2] (27) )} =0, (2.47)

that has the following solution:

—1

[Zh (x™)(x™ — p})¢ HZh 22 z)7)| . (2.48)

For noise covariance R, the partial derivative of the complete error function (2.46) with respect to
its inverse is (yet another small exercise for the reader):

af( - S R = 07 ) )T+ W) 5 )T
-§W;.<z;.l(zy) W)T} =0,

Using the new estimate (2.48) W’ and the diagonal constraint on the noise model R; (Rubin and
Thayer 1982) we obtain:

R; = > h S () 28 [Zh (x" ~ ) = Wi(z7 )} (x" = pi)T | (2.49)

And this ends the derivation of the EM algorithm for MFas (Algorithm 3 on the following page). The
EM algorithm for a mixture of latent variable models thus consists of iteratively performing:

— first stage E-step: (2.29);
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— first stage M-step: reestimate a; (2.31) and centers p; (2.32);
— second stage E-step: compute the posteriors (2.42) and (2.43) using the new estimates for p;;

— second stage M-step: reestimate W; (2.48) and R; (2.49).

Algorithm 3 EM algorithm for MFas
Require:

- A training set of N examples: {xi1,...,Xn}.
- Error function: E = -3 In37", ajp;(x™) with  p;(x) ~ N(p;,R; + W;WT)
- W;:dx{ Rj:dxdanddiagonal Nj:€x¢ (z}):€x1 (z}(z})T):exL

loop
{First stage: E-step}
for j:=1tomdo
forn:=1to N do
hj(xn) = m“g‘l’z(x )
£ eonter)
end for
end for
{First stage: M-step for & and p}
for j:=1tomdo
o = % Zn hj(xn)
o g ha (X)X
My = 5 R )
end for
{Second stage: E-step}
for j :=1tom do
N; :=I,+ WIR;'W;
forn:=1to N do
(27) = N7 'WTR; (x" — py)
(22 (@)7) = Ny o+ (e (7T
end for
end for
{Second stage: M-step for W and R}
forj::ltomdo
Ty1-1
W= [, hi(x™)(x™ = p)(2} )T [, by (x (2] (z Y]
R, E—leag[z By () {7 — py) = W22 )} (" = )]
end for
{Stage 2 minimizes £(E,) and, therefore decreases £(E,) which decreases the error function E}

end loop

We already know that a mixture of latent variable models offers an efficient alternative to full GMMs in
terms of the number of parameters, but what about its computational complexity? Let us analyze the
complexity of the algorithm step by step. The most intricate part is the calculation of the posteriors
h;(x™), which requires the evaluation of the component densities:

pi(x) = N(p;, R; + W;WT) = lM—ll'ﬂl(WgeXp{—%(X—Mj)TMfl(x—Mj)}- (2.50)
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This seems to involve calculating the inverse and determinant of the d xd matrix M;. However, as
before, MJ._1 can be rewritten using the matrix inversion lemma (see (2.37)):
-1 _p-1 -1w N-lwTn-1
M;" =R, -R; W;,N/"W; R,
which only requires the inversion of a £x¢ matrix which is O(£%) and the easy inversion of the diagonal
matrix R;. Actually, just calculating N; = I, + WJ-TRJ-_1W]- is a more complex operation of O(¢2d).

When substituting this result in (2.50) care should be taken in choosing an efficient parsing for the
multiplications:

(=) ™M (x — ) = (x = ) TR (x — py) — {(x = ) TRTW FNGH{WT R (x — ) }

This is an O(¢dN) operation since it has to be done for each data point and each mixture component.
Furthermore, the determinant |M;| can also be simplified with the determinant factoring lemma (A.9):

IM;| = |R; + W, W]| = [R;|lI, + WTR;'W,| = |R,[|N},

which only necessitates a determinant of a ¢x £ matrix, which is O(¢%), and the easy determinant of
the diagonal matrix R;.

It is easy to verify that the other operations are of the same order of complexity as the ones
considered until now. This is especially so for the update of R; which does not require the calculation
of the sample covariance but only the variance for each coordinate, because of the “diag” operator. The
EM algorithm for MFAs with m components, therefore, has computational complexity of O(mf?d) +
O(médN) in each iteration. Recall from section 2.2.1 that the complexity of EM for full GMMs is
O(md®) + O(md®N). Mras give a speed-up of (d/¢)? on the first term and (d/£) on the second term.
Both in terms of the number of parameters and of computational complexity, MFAs smoothly cover
the range between diagonal and full covariance matrices in a GMM.

A Few Remarks on Mixtures of Principal Component Analyzers

The transformation of the algorithm for MFAs to one for MPCAs is quite easy: substituting R; = a?
in Algorithm 3 and some algebra leads to Algorithm 4 on the next page which is identical to the one
of Tipping and Bishop (1999). The interested reader can find the details of this transformation in
Appendix E. The computational complexity of this algorithm is also O(mf2d) + O(mfdN). This is
not that straightforward to see since I formulated the algorithm in terms of a weighted local covariance
matrix S; for each component. Calculating these covariance matrices would be an O(d? N) operation,
but in this case it can be done more efficiently: S; is used only in S;W; and in tr(S;). The latter is a
straightforward O(dN') operation and the calculation of S;W; can be done in O(¢dN) with a smarter
parsing:

S;Wi =D (x" — ) {(x" - ;) "W, } .

The advantage of the explicit formulation in terms of local covariance matrices is that it can be
shown that each mixture component performs a local PcA, where each data point is weighted by the
responsibility of that component (Tipping and Bishop 1999). This has motivated the use of MPCAs
as a model for local linear dimensionality reduction and visualization (Bishop and Tipping 1998).

2.5 Incremental EM Algorithm for PCA

Let us now go back to Ppca, that is MPCA with just one component density. As discussed in
section 2.3, Tipping and Bishop (1999) have shown that for the PPCA model a closed-form solution
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Algorithm 4 EM algorithm for MPCas.
Require:

- see Algorithm 3 but with R; = O'?Id

loop
{First stage: E-step}
for j:=1tomdo
hi(x™) = ;i (x")
end for
{First stage: M-step}
for j:=1tomdo
aj = 5 2 by (x™)
- St hi(x™)x™
M = SR
end for
{Second stage}
for 3 :=1tomdo
{Local covariance matrix}
Sj = o Lon hi (XM (X" = p) (X" — p)T
N; =0l + WIW;
W, Woia,j := S;W;(c?I, + N7 'WIS;W;)~1, W;
o2 = gtr(S; — W;N;7 "W, S;)
end for
end loop

exists for the global maximum of the likelihood and that this is the only stable maximum of the
likelihood surface. The closed-form solution (2.24) involves computing the sample covariance matrix,
which is O(d?N), and its eigendecomposition, which is O(d®). One might prefer the EM algorithm for
Ppca with its computational complexity of O(¢dN)+O(¢2d) and which also converges to the global
maximum of the likelihood. The EM algorithm can offer a considerable speed-up over the closed-form
solution if it does not take too many iterations to converge or if £<Kd.

PprcA trained with EM can also be an attractive way of doing standard Pca, for example for
feature extraction (Roweis 1998). Of course, a host of other approaches exists for doing Pca. A
general technique is to first compute the sample covariance matrix, which is O(d?N), followed by
any general method which solves a symmetric eigenvalue problem (Golub and Van Loan 1996). The
more advanced methods are able to extract a specified number £ of principal eigenvectors and are in
general O(¢d?). One can avoid computing the sample covariance matrix and its typical problems with
a small amount of data in a high-dimensional space, by computing the singular value decomposition
of the N x d matrix containing the training data (Ripley 1996). A disadvantage of these techniques
is that, in general, they require storing the entire covariance matrix or the entire data matrix. This
has motivated the development of incremental techniques from the field of neural networks. A first
approach is closely related to singular value decomposition and inspired by the fact that PCA minimizes
the reconstruction cost (2.25). This can be mimicked by an auto-associative linear neural network with
£ hidden neurons minimizing the sum-of-squares error function in an incremental way (Diamantaras
and Kung 1996). Another class of methods use some form of Hebbian learning on a one-layer neural
network to find the principal subspace (Diamantaras and Kung 1996).

The EM algorithm for PPCA combines several of the advantages of the above methods. It does not



2.5 Incremental EM Algorithm for PCA

37

require computing the covariance matrix and is only O(¢dN)+O(£2d) when extracting the £ principal
eigenvectors. The span of the generative matrix W is guaranteed to converge to the ¢-dimensional
principal subspace (see (2.24)). Moreover, the algorithm can be performed incrementally using only
a single data point at a time as we will see below. ,

Since we are now interested in feature extraction and not in density modeling, we can make the
noise variance infinitesimal ¢ — 0 and end up with a concise EM algorithm for Pca (Roweis 1998).
The reduction of the EM algorithm for MPCAs (Algorithm 4) in the single component case (m = 1)
and with infinitely small noise variance (02 — 0) is as follows. The first stage EM-step is simple and
reduces to the sample mean (2.23) as estimate for p since h;(x™) = 1 for all n in the one-component
case. The second stage requires a little more attention and I copy the equations needed here (leaving
out the component indices):

N =7, + WI'w W' =SW(o’I, + N 'WTSW)~ L,
For 02 — 0 this can be simplified:
N=wWTw W =SWN"'wisw)1
We start with the update of the generative matrix:
W' = SW(N-!'wTsw)!

Substituting the sample covariance matrix S (2.22) and using N = WTW:

=[S - we - ! [ W[WTW) WS - )" - )T YW -

n

Adding WTW and its inverse as factors (using that (AB)™* = B~1A~1):
-1
W= [ - w) =) [ WW W) [(WTW) T WL (- ) (=) TS W W W) ]

Defining (z") = (WTW)"'WT(x" — p) (this really is (2.42) for R; = 031z — 0 in the E-step for
training a MFA) gives the update of the generative matrix:
-1

W =[S - wz)T [ ()] (2.51)

This gives us Algorithm 5 for PCa (the batch version in the left-hand column). The EM algorithm for
PcA has an intuitive interpretation. The E-step can be seen as a linear projection of the data x™ onto
our current guess for the principal subspace; this gives us the values of the latent variables z™. The
M-step is the solution of a least-squares problem and minimizes the reconstruction cost of the data.

It is straightforward to transform the batch version of Algorithm 5 into an equivalent incremental®
version in the right-hand column (Roweis 1998). The incremental variant does not need to store the
entire data set and its storage requirements are only O(¢d)+O(€?). Hebbian learning on a one-layer
neural network has similar computational and storage complexity as EM for Pca. The Em algorithm
has the advantage that it does not require choosing a suitable learning rate and that at each iteration
the cost is minimized. The Hebbian rules have the advantage of being really on-line and can thus be
applied when data varies over time. We will come back to this and other issues in section 2.8 where
EM for Pca is applied to so-called kernel PcA. This is a non-linear form of Pca based on the kernel
trick illustrated in Chapter 1 and has to solve an eigenvalue problem on a matrix of size N x N. The
EM algorithm for PcA can be used to do this without having to store the entire matrix.

6Note that I use a relatively weak definition of “incremental” since the parameters are updated only after having
seen the whole data set.
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Algorithm 5 EM algorithm for Pca (batch and incremental).

Require:
- A training set of N examples: {x!,...,x"V}.
{Incremental Algorithm}
pi= 2, X" N
{Batch Algorithm} loop
pe=3  x"/N {E-step}
loop V= (WIw)- w7
{E-step} A= O(axe); B := 0
for n:=1to N do for n:=1to N do
(27) = (WIW)ITWT(x" — p) (z") = V(" - p)
end for a = (x" — )( )TA:=A+a
{M-step) 1 = (2)(2")7;B=B+b
W= [30,(x" = p)(2")T] [ (2" (z")T]” end for
end loop {M-step}
W .= AB!
end loop

2.6 Experiments: Density Estimation

We have come a long way and the presented models seem interesting but now time has come to let
the data have its say. This section is dedicated to an experimental comparison of standard GMMs and
mixtures of latent variable models and illustrates the merit of the latter in density modeling (Moerland
1999b).

Recent literature contains various experimental results for density modeling with mixtures of latent
variable models, on isolated problems:

¢ a comparison of MPCAs and GMMs on an artificial data set (Tipping and Bishop 1999);

e a comparison of MFAs with various other methods (standard Pca, factor analysis, generative
topographic mapping) on the specific problem of density modeling of electropalatographic data
(Carreira-Perpifidn and Renals 1998);

e handwritten digit recognition MPCAs and MFAs with a mixture model for each class in a Bayes
classifier (Hinton, Dayan, and Revow 1997; Tipping and Bishop 1999);

e face recognition with MFAs with a mixture model for each class in a Bayes classifier and the
nearest neighbour rule (Frey, Colmenarez, and Huang 1998).

The goal of the experiments described in the rest of this section is to provide a more extensive
comparison of GMMs and mixtures of latent variable models on a large set of benchmarks. Here, we
consider only density estimation per se but we will come back to the inclusion of mixture models in
Bayes classifiers later on (sections 3.1 and 4.3).

2.6.1 Experimental Set-Up

The density estimation experiments were mostly done with various data sets out of the Irvine reposi-
tory (Blake, Keogh, and Merz 1998) and a subset of the digits “two” out of the NIST special database-3
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Data set # attributes | # classes | # examples | missing data | # attr.
discr. | cont. train | test

banana - 2 2 803 -

cancer - 10 2 699 - . 10

dermatology - 34 6 366 - . 34

glass - 9 6 214 -

heart - 13 2 303 - ° 13

ionosphere - 34 2 351 -

iris - 4 3 150 -

letter - 16 26 | 20000 -

NIST - 256 10 | 15025 | 4975

optical - 64 10 | 3823 -

pen - 16 10 | 7494 -

pima - 8 2 768 -

satimage - 36 6 | 4435 | 2000

segmentation - 19 7| 2310 -

sonar - 60 2 208 -

soybean 35 - 19 683 - ° 134

twos - 256 10 [ 1948 -

vowel - 10 11 990 -

waveform - 21 3 600 -

waveform-noise - 40 3 600 -

Table 2.1: Properties of the data sets used in the experiments. The last column gives the number of
attributes after pre-processing missing data.

of handwritten digits (Garris and Wilkinson 1992). I limited myself to data sets for classification prob-
lems since that is what we will focus on in the following chapters and the same collection of benchmarks
will be used there. Of course, for the current experiments only the input space of the data sets plays
a role and the class labels are not taken into consideration. An overview of the main characteristics
of the different data sets is given in Table 2.1. As can be seen from this table, the benchmarks largely
differ in input dimension and number of patterns and cover a wide spectrum of data sets which one
might encounter in practice. The reader is referred to Appendix C for more information on these and
other benchmarks used in this thesis and on their availability.

The raw data has been pre-processed in various ways. This is not really necessary in the context of
density estimation but it will be so in later chapters where neural networks are used. Thus, throughout
my thesis data sets are always pre-processed in the same way. First of all, each of the ordinal and real-
valued attributes has been normalized to have zero mean and unit standard deviation on the training
data. For soybean, some of the attributes are categorical and these are mapped to a 1-of-¢ coding,
thus increasing the number of attributes (see the fifth column of Table 2.1). Finally, for the data sets
indicated with a e, some of the attributes are missing for some patterns. For ordinal and real-valued
inputs, the missing value has been replaced by zero (the mean value after normalization) and for
categorical inputs an extra bit was added to the 1-of-¢ coding to encode a missing value. Of course,
this is not the best strategy to follow (especially for mixture models trained by EM) (Ghahramani
and Jordan 1994): it was mainly chosen for its simplicity. The pre-processing of the NIST and twos
data consisted of centering, normalizing, and smoothing the original patterns to obtain a 16 x 16
representation.

The first class of models compared are GMMs with the various choices of a covariance matrix
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described in section 2.2.1: spherical, diagonal, full, and full but tied across the mixture components.
From the class of mixtures of latent variable models both MFAs and MPCAs were used. The training
of all mixture models consisted of an initialization phase and 15 iterations of the EM algorithm. The
initialization of each of the mixture models used k-means clustering (Bishop 1995) to determine the
centers. The mixing coefficients were then computed from the proportion of examples belonging
(closest) to each cluster.

Covariance matrices for the initialization of the GMMs were calculated based on the sample co-
variance of the points associated with (that is, closest to) the corresponding centers. The penalized
likelihood approach described in section 2.2.1 was used for training full GMMs with a fixed (sub-
optimal) value for 8 = 0.05.7 Furthermore, a small threshold was imposed upon the singular values of
the covariance matrices to avoid non-singularities and mixture components which collapse to covering
only a single data point.

The initialization of the generative matrices W; of the mixtures of latent variable models was
done using (2.24) via a few iterations of EM for PCA on the points associated with the corresponding
centers. The noise models R; were initialized using the variance lost in the Pca projections found
for each cluster using (2.26). For the MFas, I decided to use a single noise model R which is tied
across the mixture components. This single diagonal matrix corresponds to the intuitive idea behind
factor analysis of data corrupted by sensor noise: such noise would be similarly distributed for all
data and should not vary across the mixture components. A simple form of regularization was used
by imposing a small threshold upon the values of R,;.

The number of iterations of the EM algorithm was chosen to be 15 because this very often turned
out to be sufficient for approaching a local minimum on the training set. This might be due to the
initialization which already positions the mixture components rather well. Of course, there might be
far better local minima and there are methods for escaping from a “bad” local minimum but that will
not be our concern here.

The 5x2cv F test (Alpaydin 1999; Dietterich 1998a) has been used on all data sets for testing
whether a difference in performance between the methods was statistically significant. In this test,
five replications of twofold cross-validation are performed: each training set and each test set comprises
50% of the data. This was also done for the satimage data which, in principle, comes with a fixed
division in a training and a test set (see Table 2.1). The test is explained in detail in Appendix B.
In each round of cross-validation, one third of the training data was set aside for validation purposes
(respecting the class distributions). The results on the validation sets were used to select the best
model for each class of mixture models on each data set. The free parameters varied in each class of
models were the number of components (at least 5 different values where used) and, for MPCas and
MrFras, the dimension of latent space.

2.6.2 FEwvaluation on Artificial Data

As a first test, experiments were performed on two often used artificial classification problems with
code for generating the data at the Irvine repository (Blake, Keogh, and Merz 1998): waveform and
waveform-noise (the last two rows of Table 2.1). The waveform data is generated according to:

z; = uhi(i)+ (1 —uwhe(?)+e  Class1
z; = uh; (’L) + (1 - U)h3 (2) + & Class 2
z; = uho(i)+ (1 —u)hs(i)+e;  Class 3,

where i=1,2,...21, u is a random variable, uniformly distributed on (0,1), €; ~ A(0,I), and the h;
are shifted triangular waveforms: hi(¢) =max(6 — |¢ — 11|,0), h2(i) = h1(i — 4), and h3(i)=h, (i + 4).
For waveform-noise, the 19 additional attributes are all noise attributes with mean 0 and variance 1.

"Ideally different values should have been tried selecting the best value on validation data.
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Mixture model train test 5x2cv
Full 22.4(0.18) 26.1(0.34)
Spherical 25.4(0.08) 25.7(0.28)
Diagonal 24.9(0.10) 25.3(0.26) <
Mprca-1 24.6(0.14) 25.2(0.31)
MPCA-3 24.0(0.15) 25.1(0.27)

MFA-3 23.5(0.17) 24.4(0.24) <
MFa-1 23.8(0.19) 24.3(0.25) <

Table 2.2: Density modeling on waveform with 3 mixture components. Scores are in average negative
log likelihood (the smaller the better). The entries are the averages of the negative log-likelihood per
data point over 10 cross-validated simulations with the standard deviation in parentheses. A <-sign
indicates whether the score on the test set is significantly better (95%) than the one on the previous
row. MFA-£ and MPCA-£ denote a mixture of latent variable models with £ factors.

Mixture model train test 5x2cv
Full 45.4(0.27)  60.1(0.69)
MpPCA-3 51.5(0.14) 53.7(0.50) <
Spherical 52.8(0.10) 53.4(0.48) <
Mpca-1 52.3(0.12) 53.4(0.48)
Diagonal 51.5(0.13) 52.4(0.48) <
MFA-3 50.0(0.19) 51.9(0.50) <
MFa-1 50.7(0.19) 51.7(0.51) <

Table 2.3: Density modeling on waveform-noise with three mixture components. Scores are in average
negative log likelihood.

The results on waveform and waveform-noise are in Tables 2.2 and 2.3. The GMM with a full
covariance matrix obtains the best likelihood on the training set but the worst score on the test set:
the model is overfitting the data due to its many parameters. For all the other models the score on the
test is only slightly worse than the score on the training set which suggests the absence of overfitting.
On waveform (Table 2.2), the best results are obtained with the mixtures of latent variable models.
It is especially worth noting that the MFA model with only one factor performs much better than
the GMM with a diagonal covariance matrix which has about the same number of free parameters.
This shows that the axial alignment constraint of the diagonal model is not appropriate in this case.
On waveform-noise (Table 2.3), the best results are again obtained with Mras, but MPCAs are not
performing that good. This is most likely due to the fact that the 19 additional inputs for this data
set are just white noise and MFAs can separately model correlations and variance (R; is diagonal),
whereas MPCas cannot (R; is isotropic).

It is also interesting to investigate the influence of the number of parameters in a mixture model.
Figure 2.5 illustrates that for a fixed number of parameters, GMMs with diagonal covariance matrices,
varying the number of mixture components from 2 to 10, were always outperformed by MFas, varying
the number of factors and mixture components, on waveform-noise.

A second example is the noisy shrinking spiral data of Figure 2.6 which has been used in some
recent papers on MFAs (Ghahramani and Beal 1999; Ueda, Nakano, Ghahramani, and Hinton 1999).
This toy data set nicely illustrates some of the short-comings of the GMMs.
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Figure 2.5: Comparison of a GMM with diagonal covariance matrices and a MFA on waveform-noise:
the average negative log-likelihood on the test set versus the number of parameters.

Training data GMM

Mincture of Sphericat Gaussans / Negative Log-Lkethood 2 59 Micture of Dagonal Gaussians  Negathve Log-Likemnood 2 18 Muture of Ful Gauseians / Negative Log-Likathood  1.74
e Ay v

Test data GMM (8 = 0.01) MFra Mpca

Micture of Ful Gaussns 7 Negaivs Log-LikeEiad O 163 Misture of FAs / Negetve Log—Lheuaod, 0.345 Minire of PCAS / Negative Log—| kaiinood: 0.782

GMM
spherical diagonal full full(8=0.01) Mra Mrca
Train 2.56 1.63 -0.92 -0.20 -0.19  -0.54
Test 2.69 2.14 1.99 0.21 0.41 0.85

Figure 2.6: Noisy shrinking spiral data with a training set of 100 examples and a test set of 1500
examples. All mixture models have 14 components. The dimension of latent space for the MpPcA and
the MFA is £ =1. The values in the table are the average negative log-likelihood of the test data.
Results are the mean over 20 random initializations of the data. The mixture models are shown in
the x —y plane with ellipses at a distance of one standard deviation.
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Spherical and diagonal covariance matrices are clearly too constraint. The introduction of more
mixture components did not help either since this reduced the training error but not the test error.
A full GMM has too many parameters for the small number of examples in the training set: this
leads to the lowest training error but a high test error. A regularized full GMM (8 = 0.01) performs
much better and actually outperforms the MFA and MPCA models (although I did not test statistical
significance here). Note that I selected the value of 8 by “cheating” since it was chosen based on its
performance on the test set. MFAs and MPCAs show good performance with a dimension of latent
space £=1 without any further regularization.

2.6.3 Evaluation on Real-World Data

Do the good results for mixtures of latent variable models on both artificial data sets carry over to
real-world data? To answer this question, experiments have been performed on the data sets listed
in Table 2.1. The results are shown in Table 2.4, where the best method and the ones that are not
significantly worse (95% on the 5x2cv F test) are set underlined. Note that on the dermatology and
glass data, the results do not allow any conclusion about the relative performance of the different
models. The results also show the power of using a paired test: in spite of sometimes large standard
deviations, significant differences can still be detected.

For most data sets the number of mixture components tried, had at least five different values
ranging from one to a value depending on the complexity of the problem but with a maximum of 20.
The dimension of latent space for MpPcAs and MFAs was varied in a similar way but with a maximum
value of 15 (and of course upper-bounded by the dimension of data space).

The last row in Table 2.4 gives an immediate idea of the global performance of the different models
by specifying the total number of underlined scores for each model class. This number of wins shows
that MFas provide the best density estimations. They are outperformed on only two data sets (cancer
and ionosphere) out of 18. With respect to the spherical GMMs, the score of only 1 win illustrates
that they are too constrained to model the data. From the results, one can also indirectly conclude
that using full covariance matrices makes the model sensitive to overfitting: the best model has only
one mixture component in about half of the cases. This effect can be reduced by tying the covariance
matrices across the mixture components but this also considerably reduces modeling power: there is
only one win for tied GMMs. When data is plentiful, however, full GMMs might still be among the
best models. Diagonal GMMs are performing quite well on a few data sets; this is most impressive on
the optical data which is hand-written digit data with discretized attributes. Some of its attributes
are zero throughout the whole data set and a diagonal GMM is well-suited for capturing this kind of
absence of noise. It might also explain why the scores of the MPCAs are not as good as with MFaAs: the
single variance parameter for each mixture component makes it more difficult for MPCAs to separate
information and noise. This is illustrated by the mediocre performance on the optical data. MpPCas
do not succeed in dealing with the varying amounts of noise in the different attributes.

We can conclude that mixtures of latent variable models and especially MFas, are indeed a flexible
alternative to standard Gaussian mixture models, the complexity of which can be tuned by varying
the dimension of the latent space. Moreover, their computational complexity also scales favorably
with the dimension of latent space and places them on a spectrum going from diagonal GMmMs to full
GMMs.

2.7 Bayesian Methods for Latent Variable Models

One of the limitations of the maximum likelihood framework to which we have adhered until now is
that it does not take into account model complexity. Therefore, we selected the number of mixture
components and factors by measuring the performance of each model on validation data. Actually,
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GMM

Data spherical diagonal tied full Mrpca MFA

banana 2.7(0.04)° 2.6(0.10)°® 2.7(0.04)¢ 2.6(0.09)° 2.6(0.08)%* 2.6(0.10)%?
cancer 7.3(1.09)¢ 1.5(0.97)° 11.1(0.95)? 5.5(1.12)° 3.7(1.43)8%5 . 6.1(0.98)%%
dermatology 39.1(0.92)° 36.5(4.94)* 40.2(1.07)% 40.7(1.25)" 37.9(0.66)%! 33.4(9.42)*°
glass 10.1(1.79)* 10.8(3.62)* 11.5(4.39)" 11.7(4.38)" 11.1(3.62)** 13.1(4.93)*°
heart 17.9(0.26)° 16.4(0.74)? 15.4(0.95)° 18.2(0.21)* 18.0(0.24)%* 14.5(1.38)%!
ionosphere 31.9(2.20)% 27.2(1.53)° 62.1(9.21)* 65.3(6.17)" 29.4(2.20)%1 37.5(1.72)"°
iris 4.0(0.31)* 3.4(0.23)* 2.8(0.27)* 2.5(0.20)? 2.6(0.31)>° 2.7(0.25)%2
letter 18.3(0.11)%° 16.0(0.18)2° 16.0(0.14)*°  11.4(0.29)*° 12.0(0.14)%%%  11.6(0.50)%%1®
optical 66.3(1.01)° —11.6(1.48)° 53.0(3.12)%° 8.5(2.60)° 46.1(6.55)20'°  ~12.5(1.71)1%15
pen 13.8(0.17)%° 7.7(0.28)2° 10.6(0.24)%° 3.3(0.47)%° 3.9(0.35)201°  —4.7(0.74)%01°
satimage 13.2(0.37)%° 11.5(0.24)2°  —0.6(0.14)*°  —4.6(0.37)° —3.1(0.43)'%*®  —4.4(0.36)%'5
segmentation 13.3(0.65)'°  —6.0(2.36)"°  -7.2(1.35)®  —14.2(2.92)® —7.6(7.69)1%%  —20.6(4.66)'%*
sonar 76.7(1.92)* 79.0(1.97)*  195.5(9.93)'  197.3(8.56)" 73.5(3.11)*° 68.9(4.54)1 1%
soybean. 16.2(2.23)° —167.0(9.76)° —173.5(5.84)° —174.7(8.85)> —13.2(9.40)*® —196.7(6.85)%®
twos —109.1(1.99)%° —186.7(3.00)>° —295.2(1.88)" —295.1(2.20)" -—286.7(3.82)*'® —323.6(7.19)*'°
vowel 12.4(0.14)"! 12.3(0.14)! 11.7(0.17)'  11,5(0.22)* 11.5(0.31)'*+2 11.5(0.39)!°
waveform 25.3(0.30)° 24.9(0.28)° 24.9(0.22)* 24.9(0.25)* 24.8(0.27)*1° 24.3(0.25)*!
waveform-noise  53.5(0.49)* 52.5(0.49)* 54.1(0.54)" 54.1(0.54)* 53.5(0.46)%* 51.6(0.51)"2
wins 1 5 1 6 7 14

Table 2.4: Input density modeling with GMMs, MFAs, and MPCAs. Scores are in average negative
log-likelihood on the test set and are the average over 10 experiments in a 5x2cv F' test set-up. The
standard deviation is given between parentheses. Each score corresponds to the best model out of the
particular class of models as evaluated on a validation set. The first superscript indicates the number
of mixture components in the “best”. The second superscript for mixtures of latent variable models
specifies the dimension of latent space. The underlined scores are the ones that do not pass the 5x2cv
F test with 95% confidence when compared with the model having the best score.

using mixtures of latent variable models with the same dimension of latent space for each of the
mixture components is simply a way of keeping this discrete model search more tractable. One
would certainly expect to improve performance by allowing each of the mixture components to have
its proper dimensionality. In this section, I present a Bayesian way of selecting these component
dimensionalities automatically as proposed by Bishop (1999a) for Pca. The Bayesian approach is
introduced by showing how regularization can be interpreted in probabilistic terms. The evidence
framework of MacKay (1991) for keeping Bayesian inference tractable is also briefly explained. This
approach is used to derive a novel Bayesian treatment of factor analysis which can automatically
determine the effective dimension of latent space. The resulting algorithm is an extension of the
previously derived EM algorithm. Bishop’s (1999a) Bayesian Pca is derived as a special case of
Bayesian FA. It is shown that Bayesian FA is computationally more complex than Bayesian PcaA
but that it remains tractable when implemented carefully. Both methods can be readily extended to
mixtures of FA and PcA. I conclude this section with a series of experiments on toy data and with
the first experimental results on a large set of real-world benchmarks. These experiments show the
viability of the Bayesian approach as a way of avoiding overfitting and selecting the dimensionality
(or dimensionalities when dealing with mixture models) of latent space.
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2.7.1 From Regularization to the Evidence Framework

An approach to control the effective complexity of a model is the use of regularization which involves
the addition of a term to the error function in order to encourage simpler mappings. This can be
used as a means to still obtain good generalization with models that are actually too complex for the
data. The regularized error function thus consists of a data term which we assume to be the negative
log-likelihood as before and a penalty term Ep:

E = —Inp(D|6) + yEp(). (2.52)

The parameter v controls the influence of the penalty term on the total error function. A well-
known example of regularization is known as weight decay or ridge regression: Ep(8) = 1||0||>.
This regularizer favors a smoother mapping by penalizing large parameter values which are often an
indication for overfitting.

The inclusion of such a regularizer simplifies the problem of model selection since we can now
choose a rather complex model and rely on the penalty term to control the effective complexity. The
complexity control is now embodied by the single regularization parameter v. An appropriate value
for v could again be found by using validation data.? This becomes unwieldy when more complex
regularizers are used with several regularization parameters. Such a complex regularizer is exactly
what we need to control the dimension of latent space in PpPcA and FA. Remember that each dimension
of latent space, with £=d—1, corresponds to a column of the generative matrix W = (wy ... wg).
Bishop (1999a), therefore, proposes to use a separate regularization term of the weight decay type for
each column of W:

1 d—1
5 2 wllwill®, (2.53)
i=1

with regularization parameters v = (71 ...74—1). This means that the value of ; controls the norm
of column w; and is even able to switch it off entirely by forcing the corresponding weights to zero.
This regularization term is motivated by the framework of automatic relevance determination (ARD)
as proposed by MacKay and Neal (see, for example, MacKay 1994b). They used it for controlling the
relevance of inputs of a multi-layer perceptron (MLP).

This ARD term involves d—1 regularization parameters and as already observed before, selecting
their values using validation data would be cumbersome. A principled way of handling regularization
on the training data only is the application of Bayesian inference techniques (Bishop 1995; MacKay
1991). The essence of Bayesian inference is that instead of a single set of values for the parameters as
in maximum likelihood estimation, a probability distribution over the parameter space is considered.
This can be motivated by interpreting (2.52) entirely in probabilistic terms using Bayes’ rule (A.18):

p(D]0)p(8]v)
(D)

The weight decay regularizer 1+||8||? then corresponds directly to a so-called prior distribution for
the parameters:

E=—-lnp#D,y)=—-1n [ ] o« —Inp(D|B) — Inp(B}7). (2.54)

p(Bl7) = N (610,1/9) o« exp(~ I

Thus, minimization of the regularized error function (2.52) is equivalent to finding the most probable
parameter values Oyp maximizing the posterior distribution p(@|D,-). This is a nice probabilistic
interpretation of the error function but the real strength of the Bayesian framework only emerges
when going to a higher level of inference.

80f course, it cannot be determined on the training data only since the optimum value would be zero.
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At the second level of inference, we do not consider the regularization parameters (or hyperparam-
eters) fixed but also try to adapt them within the Bayesian framework. We start with the posterior
distribution of the hyperparameters and turn the Bayesian crank:

plr|D) = L2, (255)

The data-dependent term p(D|7) is the normalizing constant of the posterior p(@|D,~) on the previous
level of inference (2.54) and it is called the evidence for the hyperparameters ~. It is assumed that
we only have very weak prior knowledge about the hyperparameters and that we do not consider the
hyperprior p(v). We now take the evidence (MacKay 1991) or type-II maximum likelihood (Berger
1985, page 99) approach and determine the most probable values for 4 maximizing the posterior
p(v|D).® Ignoring the hyperprior and the denominator of (2.55) which does not depend on =, this
boils down to maximizing the evidence p(D|~).

Maximizing the evidence can be done by expressing it in terms of the already defined likelihood
and prior (using the sum and the product rule):

evidence = p(D|v) = /p(DIG,’Y)p(9|’7)d9 = /P(D|9)P(0|’7)d0'

The above integral can sometimes be handled analytically, for example when both likelihood and
prior are Gaussian and quadratic in the parameters 8. In general, however, it will require Monte
Carlo methods (Neal 1996) or well-chosen approximations. Again we follow in the footsteps of MacKay
(1991) and approximate the integrand by a Gaussian distribution around the most probable parameter
values Ovp. This leads to an analytical solution for the most probable hyperparameters maximizing
the evidence. In the case of a single weight decay regularizer it gives the following solution (MacKay
1991): 5
— 9 . L~ -1
= O with =k — vtr(H™),

where k is the total number of parameters in 8 and H is the Hessian matrix given by the second deriva-
tives of —Inp(@|D) (evaluated at Bmp); 6 is generally referred to as the number of well-determined
parameters and 0 < § < k. In what follows, we will assume that all parameters are well-determined
by the data and replace § with the number of parameters k. This way we do not need to calculate
and store the Hessian matrix which can become cumbersome when having hundreds of parameters (as
is often our case). This approximation is called quick and dirty (MacKay 1991, Chapter 3) but also
cheap and cheerful!® (MacKay 1994a).

The above is readily generalized from the case of a single weight decay regularizer to the more
complicated ARD regularizer (2.53). This regularizer can also be interpreted as the logarithm of a
prior distribution on the parameters with each hyperparameter ; controlling one of the columns of
W:

1 ap 1 )
pWi) = IT (2£)" exo (~Gliwal?) (2.56)
i=1

Each of the regularization parameters -y; can be re-estimated separately (MacKay 1991) and using the
cheap and cheerful approximation this gives:

T R

2A fully Bayesian treatment would use the entire distribution and not only the most probable hyperparameters; the
distribution should then be integrated over in later stages.

1074 is like with a glass of beer which is half full or half empty: the degree of fullness is in the eye of the beholder. 1
will refer to it as the cheap and cheerful approximation.

(2.57)
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where we have used that each w; is a vector of d parameters. The consequence of the above re-
estimation formula is that columns w;, for which there is insufficient support from the data will be
driven to zero, with the corresponding v; — oo. The un-used dimensions are switched off completely.
The effective or underlying dimensionality of the model is defined as the number of columns w; whose
value remain non-zero.

A practical implementation of the evidence framework using an ARD regularizer (2.53), (2.56)
consists of iteratively performing:

1 Minimize a regularized error function (2.54): E = —Inp(D|W) + % Zf;ll il w2
2 Re-estimate the regularization parameters v using (2.57): v; := d/||w;]|>.

Actually, in practice one often does not perform step 1 until convergence to a minimum; just a few
iterations of the optimization algorithm suffice.

We now apply this framework to FA and Prca. Due to the approximation made, step 2 is
straightforward. The regularization term in step 1, however, requires changing the EM algorithm for
these models.

2.7.2 Bayesian Factor Analysis and PCA

We limit ourselves to the case of a single latent variable model in order to simplify the notation, but
the extension to mixture models is easy. As before, we start with factor analysis and PprcA is dealt
with as a special case.

Factor Analysis The log-likelihood maximized by the Em algorithm for factor analysis in the single
component case was (2.21):

N
L(p, W,0%) = ——2-{dln(27r) +In|C| +tr(C™'S)}.
The error function to be minimized including the ARD regularization term then becomes:
=
E=-L(1W,0%) +3 ;'yi||wi||2.

As one can see by checking the various steps of the EM algorithm for MFAs derived in section 2.4, the
only part that changes is the estimation of W in the second stage M-step. All we need is the expected
complete error function at that stage (2.46), while at the same time restricting ourselves to just one
mixture component and adding the regularization term:

EE) = -3~ gin RI- 6" - TR = )+ ("~ ) TRW (")

—%tr {(WTR'W(z"(z")7)}

1 d—-1
+5 2 illwill®, (2.58)
i=1

As before, we take the partial derivative with respect to W and put it to zero (which is just (2.47)
plus the regularization term):

2 AR - )T - R W) ))

104 il jwal |2
+§_Z_z—_16_‘”/TVM:0, (2.59)
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The last term can be written in matrix form with I' = diag(«y); using trace rotation (A.4) and the
diagonality of T', we have:

OF iy villwill® _ 9tr (TWTW)
OW OW

Substituting this equation in (2.59) and introducing the shorthands for the sufficient statistics X =
S (x = u)(z")T and Z = ¥, (2" (z")7T ) gives:

0=-R'X+R'WZ + WT.

=2WI.

Multiplying both sides by R:
X =WZ+ RWT. (2.60)

The additional term due to regularization does complicate things, since there is no straightforward
way of solving this system as before (where we had (2.48) W = XZ™!). Our goal is to factor out
W and this requires some further manipulation. We consider the equivalent system using the “vec”
operator (A.10) which stacks the columns of a matrix and applying it to both sides:

vec(X) = vec(WZ) + vec(RWT).
Using (A.13) (instantiation A, B, C := 15, W,Z) vec(W) can be factored out of the first term:
vec(X) = (ZT @ I;)vec(W) + vec(RWT),

where ® denotes the Kronecker product (A.12). Both R and T = diag(+y) are diagonal and defining
r as the main diagonal of R:

vec(X) = (Z7 ® Iy)vec(W) + vec{(xry7) o W},

where o denotes the element-wise matrix product (A.14). With (A.15), the element-wise product can
be eliminated:

vec(X) = [ZT ® I; + diag{vec(ryT)}vec(W). (2.61)

At last, we have obtained a linear system for which we can find W with standard numerical methods.
However, the matrix between square brackets is of size dfx df and seemingly solving the system is
O(d®¢%). Luckily, because of the sparseness of the identity matrix I, it has at most df? non-zero
elements: the matrix is tiled with £? diagonal matrices of size dx d. Permuting rows and columuns, it
can actually be transformed into a matrix with d matrices of size £x £ on the main diagonal. Such
banded systems can be solved with complexity O(d¢®) (Golub and Van Loan 1996, page 153).

Principal Component Analysis For Prca the inclusion of the regularization term requires only
a simple modification of the standard EM algorithm. We go back to the system we started with (2.60)
and substitute the spherical noise covariance matrix of PPca R = ¢21,:

X =WZ+0*WT.
Now it is straightforward to factor out W:

X =W(Z + o°IN)
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(a) My estimation of W (b) Bayesian estimation of W

Figure 2.7: Comparison of ML and Bayesian estimation for PPca on a toy data set. The data set
consists of 100 10-dimensional points where the first three coordinates are normally distributed with
a variance of 1 and the other 7 normally distributed coordinates with a variance of 1/4. The Hinton
diagrams of W show that the Bayesian model finds the appropriate dimension of latent space, while
the ML model does not.

and substituting the definitions of X and Z. the estimate for W becomes (Bishop 1999a):

=
W= [Z(x" — p)(z" )’] [Z(z"(z"l"") MEI‘] : (2.62)

Comparing this with the update for W in Algorithm 3 for Mras, we see that this only introduced an
additional term o*T". This means that for PPcA and Mpca, the regularization term does not change
computational complexity and storage requirements.

2.7.3 Experiments: Toy Data

As a first test of Bayesian Pca, I took an example from the paper by Bishop (1999a) (in this way,
it also offered the possibility of cross-checking my implementation). This example consists of 100 10-
dimensional data points from a Gaussian distribution with a variance of 1 in the first three coordinates
and a variance of a 1/4 in the remaining seven coordinates. Thus, the underlying dimensionality of
the data is equal to three and the variance in the other seven directions can be modeled with the single
parameter o of the spherical noise covariance matrix. However, since we only have a small sample
of 100 points, we expect maximum likelihood estimation to have difficulties in separating sample and
signal noise. This is confirmed by the 10x9 W matrix found by ML estimation of which the Hinton
diagram is shown in Figure 2.7a. We see that it did discover the three principal components; however,
the last six columns have non-zero elements due to the small sample size.

The 10x9 W matrix found by Bayesian PCA has only three non-zero columns as is shown by its
Hinton diagram in Figure 2.7b. It does indeed discover the underlying dimensionality of the data and
explains the remaining variance as noise by putting the other columns to zero.
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Figure 2.8: Comparison of a MPCA trained with maximum likelihood and a MPCA trained in a
Bayesian framework on waveform: the average negative log-likelihood versus the dimension of latent
space £ with a mixture of 4 PCcas. Results are the average of a 5x2cv experiment.

In a second experiment, we compare ML and Bayesian estimation for MPcAs. For this purpose, I
performed density estimation on the waveform data of section 2.6.2 with a 4-component MPCA. As is
to be expected a mixture of maximum likelihood Pcas starts overfitting the training data when the
dimension of latent space is increased (Figure 2.8). A Bayesian mixture of PCAs resolves this problem
and both training and test error stay on the same level when increasing £. This can be explained by
the fact that Bayesian estimation successfully determines the underlying dimensionality for each of
the mixture components. In this experiment, in average 2-3 dimensions per component are retained
and the other columns of the weight matrices are put to zero.

2.7.4 Experiments: Real-World Data

We now go back to the real-world data sets considered in section 2.6.3. A series of experiments has
been performed in which the best MPCAs and MFAs found with maximum likelihood (Table 2.4) are
compared with their Bayesian cousins. The set-up of the experiments for training the Bayesian MPCaAs
and MFas is almost the same as the framework described in section 2.6.1. The difference lies in the
estimation of the parameters for which 40 iterations of EM were performed with the new updates
for the weight matrices: (2.62) for MPCAs and (2.61) for MFas. After each fifth iteration of the Em
algorithm, the hyperparameters « were re-estimated (2.57).

The results for MPCAs are in Table 2.5. For convenience, the results for the best ML MPCAs
found in Table 2.4 have been copied here together with the number of mixture components and the
dimension of latent space. The Bayesian MPCAs had the same number of mixture components as
their ML counterparts and a latent dimension of £=d—1 (except for the soybean data to save some
computing time: £=>50 instead of 133). When comparing the negative log-likelihood scores of the ML
and the Bayesian models, one observes that in most cases Bayesian estimation gives better results,
even if the difference is often quite small and likely to be not significant. There are three data sets
for which the difference is more important: optical, segmentation, and soybean. This is due to the
fact that in the ML experiments, I did not include values of ¢ which are high enough. Choosing the
dimension of latent space equal to the average value found by Bayesian MPCA, the scores obtained
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ML Mpca Bayesian MpcA

Data # components likelihood # factors likelihood # factors
banana 6 2.6(0.08) 1 2.6(0.09) 0.6/1
cancer 6 3.7(1.43) 5 3.0(1.31) 3.7/9
dermatology 6 37.9(0.66) 1 36.5(1.49) 3.9/33
glass 4 11.1(3.62) 1 10.1(2.56) 4.5/8
heart 2 18.0(0.24) 1 17.6(0.90) 3.5/12
ionosphere 8 29.4(2.20) 1 26.2(1.42) 2.2/33
iris 2 2.6(0.31) 3 2.8(0.52) 2.5/3
letter 20 12.0(0.14) 15 11.7(0.16) 12.2/15
optical 20 46.1(6.55) 15 26.8(5.72) 45.6/63
pen 20 3.9(0.35) 15 3.8(0.38) 11.4/15
satimage 10 ~3.1(0.43) 15 —3.6(0.23) 14.8/35
segmentation 10 —7.6(7.69) 8 —17.9(5.33) 10.4/18
sonar 1 73.5(3.11) 5 71.2(3.38) 16.4/59
soybean 4 —13.2(9.40) 8 —116.0(17.83) 21.3/50
vowel 11 11.5(0.31) 3 11.2(0.25) 3.8/9
waveform 1 24.8(0.27) 10 24.9(0.34) 7.9/20
waveform-noise 2 53.5(0.46) 1 53.5(0.47) 3.9/39

Table 2.5: A comparison of input density modeling with MPCAs trained with maximum likelihood
and in the Bayesian framework. Scores are in average negative log-likelihood on the test set and are
the average over 10 experiments in a 5x2cv F' test set-up. The standard deviation is given between
parentheses. The ML score corresponds to the best MPCA model as evaluated on a validation set. The
second column (# components) indicates the number of mixture components in the “best” model.
The fourth column specifies the dimension of latent space of the best model. The Bayesian approach
has been applied to a MPCA with the same number of components (as indicated by the second column)
and with a number of factors £=d—1. The final column gives the average number of factors selected
by the ARD prior in the Bayesian approach versus £.

with ML come closer to the ones for Bayesian estimation although they are still slightly worse.

The average selected dimensionality over all mixture components with Bayesian MPCAs is given
in the last column of Table 2.5. This value is often close to the value found on validation data by
ML given in the fourth column. Bayesian estimation is a useful alternative to cross-validation indeed.
Moreover, for MPCAs it almost comes for free when using the cheap and cheerful approximation to
the evidence scheme.

The results for MFas are in Table 2.6. The set-up was as with the Bayesian MPcas and again the
ML scores have been copied from Table 2.4. The likelihood scores are also quite comparable, although
there are two exceptions for which Bayesian MFas perform considerably worse: optical and soybean.
A possible explanation might be that in this particular case, the cheap and cheerful approximation
breaks down due to the rather high dimension of data space and latent space. An indication is that
scores comparable to the ML score are obtained when estimating Bayesian Mpcas for optical and
soybean with £=20. The average selected dimensionality over all mixture components with Bayesian
MFAs in the last column of Table 2.6 is again quite close to the value selected on validation data by
ML given in the fourth column. Thus, also for MFAs the Bayesian approach is a viable alternative to
costly cross-validation in a ML framework.
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ML MFa Bayesian MFA

Data # components likelihood # factors likelihood # factors
banana 6 2.6(0.10) 1 2.7(0.05) 0.5/1
cancer 2 6.1(0.98) 5 4.7(1.11) 5.3/9
dermatology 4 33.4(9.42) 5 30.8(6.25) 6.4/33
glass 1 13.1(4.93) 5 11.3(4.01) 8.0/8
heart 6 14.5(1.38) 1 13.3(3.58) 2.1/12
ionosphere 1 37.5(1.72) 5 40.6(3.59) 21.0/33
iris 2 2.7(0.25) 2 2.6(0.28) 2.0/3
letter 20 11.6(0.50) 15 12.1(0.14) 11.8/15
optical 10 —12.5(1.71) 15 1.3(2.52) 52.1/63
pen 20 —4.7(0.74) 15 —4.4(0.48) 11.7/15
satimage 6 —4.4(0.36) 15 —4.2(0.24) 16.5/35
segmentation 10 —20.6(4.66) 8 —20.5(4.38) 8.5/18
sonar 1 68.9(4.54) 15 67.8(2.51) 15.0/59
soybean 6 —196.7(6.85) 8 —160.4(9.22) 5.6/50
vowel 11 11.5(0.39) 5 11.2(0.27) 3.6/9
waveform 4 24.3(0.25) 1 24.4(0.24) 1.1/20
waveform-noise 1 51.6(0.51) 3 51.6(0.53) 2.3/39

Table 2.6: A comparison of input density modeling with MFAs trained with maximum likelihood and
in the Bayesian framework. See Table 2.5 for additional details.

2.7.5 Discussion

The price one has to pay for the Bayesian approach for FaA is that even when using the cheap and
cheerful approximation, it is computationally more expensive than the standard EM algorithm. Solv-
ing the linear system (2.61) is O(d¢3), which is cumbersome for high-dimensional data and when
choosing £=d — 1. Luckily, this is in general also the case in which we do not expect a high effective
dimensionality of latent space. Thus, it would not harm to follow the Bayesian approach but with a
lower value of £. This might also resolve some of the problems of the cheap and cheerful approximation
since many parameters are likely to be not well-determined for high values of £.

Recently alternative Bayesian treatments for PCA (Bishop 1999¢) and MFAs (Ghahramani and Beal
1999) have been proposed. Both take a variational approach to Bayesian inference. This exploits the
same idea that we encountered in the derivation of the generalized EM Algorithm (Algorithm 1) in
order to approximate the posterior of the hidden variables. For Bayesian inference the parameters 6
are considered hidden and the posterior distribution is p(8|D). As we saw above, integrating over this
distribution is in general not feasible and we used a Gaussian approximation around the most probable
parameter values @yp. The choice of a Gaussian is quite arbitrary and mainly motivated by analytical
simplicity.!! The variational approach introduces an approximating distribution Q(@|D) in order to
make the integration tractable. Following the same reasoning as in the derivation of Algorithm 1, this
leads to the idea of maximizing a lower bound of the evidence p(D) (Jordan, Ghahramani, Jaakkola,
and Saul 1999). It turns out that in many cases one only needs to assume that the approximating
@) factorizes in a specific way, to keep the maximization tractable. The variational maximization
determines the specific functional form of @ given this factorization and the priors on the parameters
6.

Variational PcA (Bishop 1999¢) not only includes the ARD prior on the weights W but also priors

11 Although in the large sample limit, the approximation becomes good.
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for the other parameters of the model. The first moments of the optimal @ distributions for W and
the hyperparameters 4 turn out to be very similar to the ones found above with both the Gaussian
and the cheap and cheerful approximations. Ghahramani and Beal (1999) went one step further and
proposed to use variational inference for MFAs. Their procedure cannot only automatically determine
the dimensionality for each of the mixture components but also the number of components. While
pruning components fits nicely in the variational framework, component birth is done in a heuristic
way by splitting existing components. Performance on a number of toy examples is promising. The
first moments of the optimal @ distributions for W and the hyperparameters « are again almost
identical to the ones found above.

It has also been proposed to use an annealing scheme for performing model selection with MpPCAs
(Meinicke and Ritter 1999). The disadvantage of this approach is that at its heart it repeatedly uses
an EM algorithm on full GMMs and an eigendecomposition of weighted covariance matrices. This
becomes computationally expensive for high-dimensional data and mixtures of latent variable models
were introduced to avoid exactly this!

In section 4.3 it is shown that Bayesian MPcAs and MFas also give good results when used for
estimating class-conditional deunsities in a Bayes classifier.

2.8 Incremental and On-Line Kernel PCA

Until now we have mainly addressed the problem of density estimation. This section deals with
another form of unsupervised learning, viz. feature extraction. As we saw already in section 2.3, Pca
is one of the most popular techniques for feature extraction and latent variable models provide us with
a probabilistic reformulation. When using PcA for feature extraction it amounts to a linear projection
of the data onto the principal subspace. This has naturally motivated the development of non-linear
variants of PCA. One of the motivations for the work of Tipping and Bishop (1999) was exactly
this. Their MPCA provides a way of combining a number of local PCA models in a non-linear way.
A related approach is to partition the data using vector quantization and then to find the principal
subspace within each partition (Kambhatla and Leen 1997). This can be interpreted as a “winner-
take-all” variant of the MPCA model. Various global non-linear approaches have also been developed
such as auto-associative multi-layer perceptrons minimizing the reconstruction error (Kramer 1991;
Diamantaras and Kung 1996) and principal curves (Hastie and Stuetzle 1989). The disadvantage of
both the mixture and the global approaches is that they require non-linear optimization techniques.
Moreover, their objective functions are often littered with local minima.

In this section, we pursue a different approach of making a model non-linear, viz. by kernel
functions k : RY x R* — R on pairs of points in data space. If these kernel functions satisfy a
certain condition (Mercer’s condition), they correspond to non-linearly mapping the data in a high-
dimensional feature space F' by a map ® : R? — F and taking the dot product in this space (Vapnik
1995):

k(x,y) = @(x) - &(y). (2.63)

The simple polynomial kernel used on the toy data set in Chapter 1 is an example of such a kernel
function.

This means that any linear algorithm in which the data only appears in the form of dot products
X;X;, can be made non-linear by replacing the dot product by a kernel function k(x;,x;) and doing all
the other calculations as before. The crux is that it enables us to work in feature space without having
to map the data into it. The best-known example using this idea is the support vector machine (Svm)
in which a linear classification method based on hyperplanes is transformed into a powerful non-linear
method by kernel functions. Some examples of valid (that is, satisfying Mercer’s condition) kernels are:
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Polynomial kernels: k(x;,x;) = (x5 - %;)P
Radial basis function (RBF) kernels:  k(x;,x;) = exp [—|x; — x;||/(20%)]
Sigmoid kernels: k(x;,x;) = tanh [a(x; - x;)],

which all correspond to a dot product in a high-dimensional feature space. For a polynomial kernel
of degree p, for example, the feature space consists of all products of entries up to order p: a quantity
which grows like dP. Recently, the kernel trick has also been applied to Fisher discriminant analysis
(Mika, Rétsch, Weston, Schélkopf, and Miiller 1999) and Pca (Schélkopf, Smola, and Miiller 1998).
The latter is coined kernel Pca and is based on a formulation of PcA in terms of the dot product
matrix instead of the covariance matrix. This makes it possible to extract non-linear features by
solving an eigenvalue problem like for PcA.

After a brief recall of the main ideas of kernel Pca, I show how we can profit from the work done
in the previous sections and use the EM algorithm for PcA (Algorithm 5) to solve the eigenvalue
problem and make kernel PcaA more tractable on large data sets. This involves an adaptation of the
formulation of kernel PcA which I developed independently of a similar approach by Mika (1998)
described in section 2.8.2. The main contribution of this section consists of the application of the
incremental version of Algorithm 5 in the context of kernel PcaA. This alleviates the need for storing a
so-called kernel matrix of size NxN and enables us to obtain the first results with kernel Pca on data
sets with V > 3,000 in section 2.8.3. The usefulness of kernel Pca is illustrated by using the extracted
non-linear features and training simple linear classifiers on them. Results on several data sets are
among the best obtained with various other models described in this thesis. I conclude this section
by the development of an on-line Em algorithm for PCA which takes EM-steps on part of the data
only. This builds on a general approach of Neal and Hinton (1999) for on-line EM but the application
to PcA is novel. Experiments in section 2.8.4 illustrate that this on-line algorithm can give further
speed-ups of a factor 2 to 4.

2.8.1 Kernel PCA

The standard formulation of Pca is as the eigendecomposition of the covariance matrix of the data
(section 2.3). We will see that PCA can also be carried out on the dot product matrix, a well-known
fact in the literature (Kirby and Sirovich 1990; Schélkopf, Smola, and Miiller 1998) but I think this
proof is more elegant (and more objectively, shorter) than previous ones.

Let {x"} be a data set with N examples of dimension d. We also suppose the data set to be
centered: 3° x" = 04. The d x N matrix X = (x! x? ... xV) represents the data in a compact
way. Standard PcaA is based on finding the eigenvalues and orthonormal eigenvectors of the (sample)
covariance matrix of size dx d:

1
= —XxT. 2.64
C N ( .)
The matrix in terms of dot products we are interested in is the dot product matrix of size N x V:

K= %XTX. (2.65)

With a slight abuse of language, 1 will refer to the eigenvectors with a corresponding eigenvalue
different from zero, as the non-zero eigenvectors.

THEOREM 1
There is a one-to-one correspondence between the non-zero eigenvectors {v*} of C and the non-zero
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eigenvectors {u*} of K and they have the same eigenvalues A1, Az, ..., A, (of course, p < min(d, N)):
vk = Xuf// (2.66)
u* = XTvF /A, (2.67)

where the scaling by +/A; normalizes the eigenvectors.

Proof Let v be an eigenvector of the covariance matrix C with eigenvalue A: XX7v=\v. Then:
XTX(XTv) = XT(XXTv) = A\XTv,

so A is also an eigenvalue of the dot matrix X7X with corresponding eigenvector X”v provided
XTv # 0x which follows from:

A#£0 = W#0; o XXTv#£0;, = XIv#ou.

So we only have to take the non-zero eigenvectors into account. By symmetry (in X and X7), we can
also conclude that each non-zero eigenvector of the dot product matrix X7 Xu=Au corresponds to a
non-zero eigenvector Xu of the covariance matrix with eigenvalue A. The one-to-one correspondence as
stated in theorem follows after a straightforward normalization of the eigenvectors. Given normalized
eigenvectors u for the dot product matrix, one can normalize the eigenvectors for the covariance
matrix:

norm(v) = vIv = u7X7Xu = AuTu = ),

and the other way round. End of Proof

A direct consequence of the theorem is that one can perform Pca feature extraction entirely in terms
of dot products by calculating the dot product matrix K, determining its orthonormal eigenvectors
u* and its eigenvalues ); and projecting a point x € R? onto the principal eigenvectors v* in data
space as defined by (2.66):

N
xTvk = xTXuk/\/g = \:Z Uf (x- xi)] /\//\_kv (2.68)

in which the data also appears only in a dot product. This means that we can map the data points
into a high-dimensional feature space F by @ : R¢ — F' and still perform Pca feature extraction in F
without explicitly performing this map using the kernel trick.

When mapping the data into feature space, the dot product matrix becomes the so-called kernel
matrix K (of size N x N):

Kij = &(x') - &(x7) = k(x*, x%), (2.69)

where we used the kernel trick (2.63). Let the non-zero eigenvectors of K be {u*}, as before, with
corresponding eigenvalues {\¥}. The principal eigenvectors of the covariance matrix of the mapped
data lie in the span of the ®-images of the training data (similar to 2.66):

N
vk = [Zuf@(xi)] /I Ak (2.70)

Feature extraction can again be done by projecting a point ®$(x) onto the principal eigenvectors v*

in feature space (similar to (2.68)):

N N
o(x) - vk = [Z ub{®(x) - @(x")}] IV Ak = [E ubk(x, xi>] IV Ak (2.71)
i=1 =1
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Algorithm 6 Kernel Pca
Require:

- A matrix of training examples: X = (x'x? ... xV).

- A kernel function & : R xR¢ —» R

fori:=1to N do

for j:=1to N do

K;; := k(x},x’) {kernel matrix}

end for
end for
J :=ones(N, N)
K := (J - %J)K(J — %J) {Centering the training data (*)}
Determine eigenvectors {u*} and eigenvalues {\;} of K/N.
for k : u* is a non-zero eigenvector do

u* = uk /N
end for
{Feature extraction of the first £ non-linear principal components of test data ti,...,tr. Assume
AL > A2 2 AN}
fori:=1to L do

for j:=1to N do

Kiest o= k(t, x7)

end for
end for
J :=ones(N,L)/N
Ktest := Ktest — 7'K — K] + 7'KJ {Centering the test data (%)}
A:=(ulu? ... v
Z := K*s*A { (2.71) in matrix notation}
{Z is the L x ¢ matrix of the first £ non-linear principal components of ty,...,tz}

This leads to Algorithm 6 which is formulated entirely in terms of the kernel function. The core
of kernel PCA constitutes an eigenvalue problem on the kernel matrix K. The two transformations
(marked by %) of the kernel matrix K in Algorithm 6 are necessary to have data that is centered in
feature space as was assumed in theorem 1. Scholkopf et al. (1998) developed this as a way to center
the data without having to calculate explicitly the mean in F' (which would be impossible).

Kernel PCA corresponds exactly to linear PcA in the high-dimensional feature space F' and, there-
fore, has all the properties of Pca in F. Because of the non-linearity of the map ®, the features are
extracted in data space in a non-linear way: the contour lines of constant projections onto a principal
eigenvector are non-linear in data space. This is illustrated on a toy example which appears in the
original paper of Schélkopf et al. (1998) and consists of three Gaussian clusters in R?, see Figure 2.9.
Here I used a polynomial kernel of degree 1 to 5 for extracting the first four principal components.
While for linear Pca (a polynomial kernel of degree 1) the contour lines are straight lines, they are
non-linear for higher degrees. They also give a better idea of the structure of the data by focusing
on regions where data points can be found. Notice also the similarity between the features extracted
with kernels of the same parity (of their degree). Given the fact that the feature space of polynomial
kernels corresponds to all ordered products of degree p, this does not come as a surprise. Also a RBF
kernel was used for extracting principal components from the same toy data, see Figure 2.10.

Another interesting property of kernel Pca is that the number of principal components is at



2.8 Incremental and On-Line Kernel PCA

57

degree=1 degree=2 degree=3

L
¥

4
]7 -

*
2

BT @

I

e

Figure 2.9: Toy example with three Gaussian clusters of 30 data points each. The figure shows the
first 4 principal components (in order of decreasing eigenvalue size) extracted with the EM algorithm
for kernel PcA using a polynomial kernel (x-y)P with degree p=1...5. Contour lines indicate levels of
constant principal component value. Toy data is the same as in (Scholkopf, Smola, and Miiller 1998)
and a script for generating it can be found on http://svm.first.gmd.de/software/kpca-toy.m.
For linear PcA (degree 1) the contour lines are orthogonal to the eigenvectors.

most min(dim(F'), N) while for linear PCA it is at most min{(d, N). This means that if the number
of examples N exceeds the input dimension d, kernel PCA can, in general, extract more features.
Remember from Chapter 1 that the dimension of F for a polynomial kernel of degree p is Cg‘H"l.
Since in this toy example d=2, only p+1 features are extracted (see Figure 2.9).

Kernel Pca has been applied by Scholkopf et al. (1998) to a character recognition problem in
which non-linear features were extracted and used as input for a linear SvM, obtaining results which
are competitive with the best results obtained with a non-linear SvM. This illustrates that kernel
Pca is capable of extracting interesting non-linear features.

However, kernel PcA also has several disadvantages. Firstly, non-linear principal component ex-
traction based on (2.71) involves evaluating the kernel function N times for each principal component
of a new pattern while for standard Pca only the dot product of two d-dimensional vectors is needed.
For large N, so-called reduced set methods have been proposed to approximate each eigenvector (2.70)
with a smaller expansion (Schélkopf et al. 1998) v/ = Zlel a;®(z;), where M <N and z; € R?. This
is typically done by minimizing the squared difference between an eigenvector v and its approximation
v'. Gradient descent can then be used to find values for «; and z,.

Secondly, a nice property of linear PCA is that one can approximately reconstruct a point in data
space from its principal components. With kernel Pca, we can reconstruct a point in feature space
but the problem of finding an approximate pre-image in data space is quite intricate (Schélkopf et al.
1999).



58

Unsupervised Learning: Mixture Models and Feature Extraction

eigenvalue=0.233 eigenvalue=0.052 eigenvalue=0.044

% "@

eigenvalue=0.033 eigenvalue=0.031

Figure 2.10: Toy example of Figure 2.9 using a RBF kernel: exp(—||x — y||?/0.1). Contour lines
indicate levels of constant principal component value. As observed by Scholkopf et al. (1998), the
first two non-linear principal components (upper left) separate the three clusters. The next three
split up each of the clusters. The components 6-8 also split up the clusters but are orthogonal to
the previous three splits. Note that in this example, we could have extracted up to 90 (the number
of data points) features from the two-dimensional data since the feature space of a RBF kernel is of
infinite dimension. The eigenvalues, however, decay quite rapidly.

Thirdly, standard methods for solving eigenvalue problems need to store the entire N x N kernel
matrix which can become infeasible for a large number of examples N. In the rest of this section, it
is described how the incremental Em algorithm for PPCA (Algorithm 5) can be used to deal with this
and make kernel PcA more tractable on large data sets.

2.8.2 Adapting Kernel PCA

A prerequisite of the EM algorithm for Pca is that is has to be applied on the data set (and not on
the covariance matrix) but in the case of kernel PCA this data set {®(x™)} is high-dimensional and
can most of the time not even be calculated explicitly. That is why the kernel trick was so useful in
the first place! But there is a way around this problem which uses the idea of an empirical kernel map
Ty : R - RV (Mika 1998; Scholkopf et al. 1999):

Un(x) = [B(x') - 8(x), ..., B(x") - 2(x)]T

= [k(xlax), ey k(xN,X)]T. (272)

This empirical map does not map the data into feature space but into a space of size N. This is
motivated by the fact that in (2.70) the eigenvectors lie in the span of the mapped training data (like
the weight vector in a SvM). The empirical kernel map projects each data point onto the subspace
spanned by the {®(x™)} and enables to do all calculations in the relevant subspace of F. Since the
{¥n(x™)} do not form an orthonormal basis in R | the dot product in this space is not the ordinary
dot product (x,y) =3, X;y;. The nice thing is that in the case of kernel PCA we can ignore this as
the following argument shows.

The idea is that we have to perform linear PCA on the {¥n(x™)} from the empirical kernel map
and diagonalize its covariance matrix. Let the N x N matrix ¥ =¥ (x!) ¥n(x?) ... Un(xV)], then
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diagonalize K principal components: (2.71)

- F {u"}, (A} (T, ubk(e, 2:))/VA%
D= {a"} (2.71/
diagonalize C scaling: (2.73)
k‘ RY \I’{uk}y {re} —= {0 L /R = {0}

Figure 2.11: Schematic overview of kernel Pca. The upper halve describes standard kernel Pca of
section 2.8.1, the lower halve describes the empirical map solution of section 2.8.2.

from (2.72) and the definition of the kernel matrix (2.69): ¥ = NK. This means that the covariance
matrix of the empirically mapped data is:

Cy = %\IJ\PT = NKK” = NK2.
So we actually diagonalize NK? instead of K as in kernel PCA but one can show (see (Mika 1998)
for a proof) that the two matrices have the same eigenvectors {u*}. The eigenvalues {\;} of K are
related to the eigenvalues {r;} of NK? by:

Ap = ”“_N’“ (2.73)

and as before one can normalize the eigenvectors {v*} for the covariance matrix C of the data by
dividing each u* by v/A;. Figure 2.11 illustrates the two different ways of doing kernel PcA. Instead
of actually diagonalizing the covariance matrix Cy, the incremental EM algorithm for Pca is applied
directly on the mapped data ¥ = NK. It is now relatively easy to adapt Algorithm 6 such that it also
correctly takes into account the centering of the data in an incremental way. This means that we only
need to apply the empirical map to one data point at a time and do not need to store the NxNV kernel
matrix. The computational complexity of incremental EM for kernel PCA when extracting £ non-linear
principal components is O(¢N?) to which one should add O(dN?) for calculating the mapped data
¥ in each iteration. This should be compared to standard kernel PcA when extracting all principal
components which is O(N3). If one wants to extract only a limited number of components for huge
data sets, the gain in computational complexity can also be considerable.

2.8.3 Experiments
Toy Data

As a first example, we compare the various algorithms for kernel PCA on the toy data set of Figure 2.9
and 2.10. The experiment with this toy data set consisted of investigating how the complexity of the
various methods for kernel Pca scales with the size of the data set (see Figure 2.12a and its caption).
Complexity has been measured in floating point operations with the Matlab flops function. The
number of data points was gradually increased from 30 to 3,000 for the four methods. One can see
that standard kernel PCA scales cubicly with the number of data points due to diagonalization of an
Nx N matrix. This can be considered as an upper bound for all methods since if one wants to extract
all N non-linear components also the other methods become cubic in N. The other methods scale
quadratically with N with a similar complexity for incremental EM and implicitly restarted Arnoldi.
The batch EM algorithm is computationally more efficient than its incremental variant because the
kernel matrix is calculated only once, while for the incremental method each time an example is
presented, its empirical kernel map has to be calculated. The big advantage of incremental Em
with respect to all other methods, however, is the reduction in storage requirements. For the other
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Figure 2.12: Comparison of various methods for kernel PCA on the toy data of Figure 2.10 varying
the number of data points and the number of extracted (non-linear) principal components. For figure
(a), the y-axis indicates the number of flops for calculating the first eigenvector and eigenvalue. The
methods compared are standard kernel Pca with the Matlab eig function (extracting all principal
components), standard kernel PcA with the Matlab eigs function (extracting one principal component
with an implicitly restarted Arnoldi method), the EM algorithm for kernel Pca and its incremental
variant (both extracting one principal component and with 20 EM iterations). The calculation of
the kernel matrix is also included as a lower bound for all methods. For figure (b), the on-line Em
algorithm has been used to extract an increasing number of (non-linear) principal components from
the toy data of Figure 2.10 with 1000 points in each of the three clusters.

methods the N x /N kernel matrix has to be stored, while for incremental EM storage requirements are
O(¢N) + O(#?) (A,B,W in Algorithm 5).

A last concern which one might have is with respect to the convergence of the EM algorithm for
kernel Pca. We know that it will converge to a global minimum but the number of iterations could
increase with the number of data points. In the example of Figure 2.12a, I monitored the first principal
eigenvalues and eigenvectors. Eigenvalues found by the four methods almost always agree within 99%.
Also the dot product between their eigenvectors is almost always 0.99 or more, as we would expect
for orthonormal vectors. This fast convergence is also its principal advantage with respect to other
methods for incremental Pca based on neural network models (Oja 1982; Sanger 1989), which converge
more slowly and where a learning rate has to be specified. Finally, Figure 2.12b illustrates how the
complexity of incremental EmM scales with the number of extracted non-linear components. Since the
complexity is of O(¢N?), it is more or less linear in £ — N.

Real-World Data

Typical applications of standard PcA include denoising, data compression and reconstruction. The
application of kernel PCA to these problems is an active research topic in itself (Scholkopf et al.
1999). This is indeed a non-trivial problem as the outcomes of kernel PcA feature extraction lie in
feature space and need not have a pre-image in data space: each eigenvector lies in the span of the
mapped training data (2.70). Thus, techniques are required for finding approximate pre-images of
those expansions in feature space.

We will, therefore, limit ourselves to a simpler (but indirect) way of evaluating the usefulness
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Linear RBF kernel Polynomial kernel
Data d % % | 207 # % | degree  #
banana 2 570 1928 | 10 30 69.6 4 30
letter 16 76.8 91.8 | 10 512 84.5 3 256
optical 64 946 | 968 | 64 128 97.4 2 512
pen 16 955 |99.3) 10 200 98.1 2 200
sonar 60 669 |83.1| 30 60 75.4 4 60
vowel 10 624 |88 5 50 69.8 2 100

Table 2.7: Results of the experiments with kernel Pca features used for classification with a perceptron.
Scores are in percentage of correct classification on the test set and are the averages over 10 experiments
in a 5x2cv F test framework. Each of the scores corresponds to the best model out of the particular
class of models as evaluated on a validation set. The underlined scores are the ones that do not pass
the 5x2cv F' test test with 90% confidence when compared with the model having the best score. The
column labeled “Linear” gives the percentage of correctly classified patterns when linear Pca is used.
Columns labeled “#” give the number of features extracted by kernel Pca.

Degree (polynomial kernel)

# 1 2 3 4

16 90.3 91.0 904 89.9
32 930 947 945 94.6
64 929 957 96.1 95.7
128 92.8 97.0 96.9 96.8
256 926 974 975 971
512 - 978 983 97.7

Table 2.8: Percentage of correct classification on the NIST test set for a perceptron trained on non-
linear features extracted with kernel Pca. A polynomial kernel (x - y)” with degree p = 1---4 has
been used. The underlined scores are best with 90% confidence using McNemar’s test.

of the non-linear features extracted by kernel Pca, viz. as a preprocessing step for classification
algorithms. For this purpose, kernel Pca features were used for training a simple linear classifier. I
restricted myself to a subset of the data sets given in Table 2.1 and described in Appendix C (see
Table 2.7 and 2.8 for the data sets used). Pre-processing of the attribute values was done as described
in section 2.6.1. The desired outputs are based on the 1-of-¢ coding scheme with one output for each
class. The NIST data comes with a fixed division in a training and a test set (see Table 2.1) and
McNemar’s test was used to determine whether the difference in performance between two methods
was statistically significant (Dietterich 1998a). This test involves only a single training run and is
described in detail in Appendix B. For all other data sets the 5x2cv F test was used with five
replications of twofold cross-validation. The incremental EM algorithm for PCA has been used within
the framework of section 2.8.2 for performing kernel PCA on the training data. While for some of the
data sets standard batch methods for the eigendecomposition of the kernel matrix could have been
used, this is clearly out of the question for letter (10,000 training examples) and NIST (15,025 training
examples). The number of iterations of the incremental EM algorithm was chosen to be 20. For each
data set both polynomial and RBF kernels were used. The degree of the polynomial kernel was varied

from 1 to 4 and for the RBF kernel several values for the variance o2 were tried; also the number of

extracted features was varied.
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The linear classifier trained on the extracted features was a simple 1-layer neural network with a
softmax activation function (3.14). Early stopping on a validation set, which contains one third of the
training data and has balanced classes, was used to avoid overfitting. The validation data set aside for
early stopping was also used to select the best model for each type of kernel function on each data set.
The 1-layer neural network was trained with the scaled conjugate gradient algorithm (Mgller 1993).

The results of the experiments for all data sets except the NIST data are in Table 2.7. As a basis
of comparison the results of a perceptron with a polynomial kernel of degree 1 using all d features
are given in the column labeled “Linear”. This is just standard PcA and boils down to a rotation of
the original data. What is not shown in Table 2.7 is that, in general, the performance of the linear
classifier trained on non-linear principal components is better than for the same number of linear
principal components. For example on the pen data, for a RBF kernel with 02 =5 and 16 non-linear
features already 97% of the test data is correctly classified. Moreover, kernel PCA makes it possible to
extract many more components than the dimension of data space and improve results even further.
This is clearly illustrated by the results listed in Table 2.7 in which the number of non-linear features
used is up to 35 times as high. It is interesting to notice that a RBF kernel is often the safe choice
for a kernel function and that the polynomial kernel seems mainly suitable for image data (such as
optical and NIST).

The results on the NIST data are given in Table 2.8. Again the non-linear principal components
systematically lead to better results than when using the same number of linear principal components.
The best result obtained is with a polynomial kernel of degree 3 and 512 non-linear features (remember
that d=256). This is actually the best result I have obtained on the NIST data. The results on the
data sets of Table 2.7 are also often as good as the best scores I obtained with mixtures of experts
and Bayes classifiers using mixtures of latent variable models (see section 4.3 and 4.4.3).

A brute force approach for handling large data sets has been proposed by Schélkopf et al. (1998).
Their idea is to perform kernel Pca only on M < N of the training examples (2.71):

M
B(x) vk = [Z ulk(x, xi)} /\//E,

while extracting the principal components from all examples for subsequent training of the linear
classifier. To compare this approach with full-blown kernel Pca, I performed some experiments on
the NIST data with a polynomial kernel of degree 3 and 256 non-linear features. When all 15,025
training examples are used, 97.5% of the test data is classified correctly (see Table 2.8). Using only
part of the data for kernel Pca this score is equaled (McNemar’s test with 90% confidence) only when
choosing M as high as 10,000 examples. However, already surprisingly good results are obtained with
M =300: the resulting perceptron correctly classifies 97.2% of the test data. It would be interesting to
perform a more systematic comparison with the brute force method on various data sets. A possibility
for improving this method would be not to select the subset of the data randomly (as I did here) but
to start with “interesting” data points found by a clustering procedure, for example.

2.8.4 On-Line EM for PCA and Kernel PCA

Algorithm 5 for incremental PCA has the advantage of not having to store the entire data set. However,
it is not really an on-line'? algorithm since first all data is used in the E-step and only then parameters
are updated in the M-step. One would expect the algorithm to converge faster if it was allowed to
take EM-steps based on a part of the data only. This can actually be done in a sound way as was
shown by Neal and Hinton (1999) for the generalized EM algorithm (Algorithm 1).

12My definition of the notion “on-line” is relatively weak since I still assume that we have a fixed training set which
does not change over time.
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Algorithm 7 On-line EM algorithm: general and for PcaA.
Require:

- A training set of N examples: {x!,... x"}.
{On-Line Pca Algorithm}
W :=rand(d,?)
p=73 x"/N
{Initialization of sufficient statistics}
A := O(dxg);B = O(lxl)
for n:=1to N do

On-Line EM Algorithm
{ 8 ) 8™ 1= O(gee); " = O(pnr)

loop end for
E-step: i(ijpo

Choose a data point x™

if 1 = — T -1y T .
Q(z[x™,8) := p(z|x",6) if ¢ =0 then V := (W/W)~'W7 end if

for n:=1to N do
if i >0 then V := (W W)~'WT7 end if
(Z")¢=V( - i
a:=(x" - p)(z")
b= (2" )(2z")T
A=A+a-s";B.=B+b-t"

M-step:
Update 6 to maximize the free energy
L£(Q, 0) keeping @ fixed.

)
T

end loop if i >0 then W := AB—! end if
":=a;t":=b
end for
if { =0 then W := AB! end if
t:=1+1
end loop

This general on-line EM algorithm is given on the left-hand side in Algorithm 7. The partial E-
step consists of choosing a pattern x™ and determining the posterior of the hidden variables. This
on-line version is still guaranteed to converge to a local maximum of the data likelihood if each data
point is regularly chosen in the E-step. A simple way to guarantee that it is indeed the case is by
selecting the data point for the E-step in a cyclic way. However, the M-step still requires having the
whole data set available. As Neal and Hinton (1999) pointed out, also a partial M-step suffices if the
E-step can be summarized by sufficient statistics. This can be illustrated on the EMm algorithm for
Pca (Algorithm 5) where the M-step depends entirely on sufficient statistics s=3}_, s", viz

A= "(x"—p)(z)T
B=Z(z"

In the incremental version of the EM algorithm for Pca, we already exploited the fact that these
quantities can be calculated incrementally. We can go one step further, however, by storing the
sufficient statistics sf* for each data point x™ at iteration ¢ and using it to obtain the sufficient
statistics after a partial E-step on data point x” at iteration ¢+ 1:

Si41 = (E s{”) +si, — 87,
m
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Figure 2.13: Ilustration of the influence of the number of blocks when doing kernel PCA with on-line
EM on the toy data of figure 2.9 (with 100 data points in each of the three clusters). Results are the
average over 10 experiments.

which simply replaces the old sufficient statistics with the newly computed ones for the data point
selected in the E-step. The M-step then uses the current sufficient statistics to update the parameters.

I applied this idea to the EM algorithm for PCA to transform it into the on-line algorithm on the
right-hand side of Algorithm 7. The matrices s” and t™ play the role of the sufficient statistics for
each data point as calculated in the previous iteration. A first iteration of plain incremental PcA is
done to obtain good initial values for the sufficient statistics. This led to more stable results; a similar
problem is also pointed out by Thiesson, Meek, and Heckerman (1999) with on-line EM for GMMs.
Note that, as written, the algorithm cycles through the data set in a fixed way.

The reader can immediately notice two drawbacks of the on-line algorithm. The first one is that
the on-line algorithm requires storing the old sufficient statistics s™ and t™. This is not always onerous
but in this case it is: it requires storing N matrices of size dxf and N matrices of size £x£. The second
one is that the assignments V := (WTW)"'W7 and W := AB~! are computationally expensive if
performed for each data point separately. Both drawbacks can be handled by cycling through blocks
of data points instead of individual points.

Similar ideas have been applied to training Gaussian mixture models with an on-line EM algorithm
in (Neal and Hinton 1999; Thiesson, Meek, and Heckerman 1999). They have demonstrated that it can
lead to speed-ups of a factor three with respect to batch EM on some data sets. Here I describe a small
experiment with the on-line EM algorithm for PCA when used to perform kernel Pca. For this purpose,
I used the toy data of Figure 2.9 with 100 data points in each of the three clusters; four principal
components were extracted. The on-line algorithm was used while varying the number of blocks in
which the 300 data points were partitioned. The number of blocks varied from 1, which corresponds
to incremental EM since all data points are used, to 100, with 3 data points per block. Results are
shown in Figure 2.13 in which the reconstruction error'® on the training set is given as a function of
the number of passes through the entire data set. This illustrates that already when partitioning the
data in only five blocks, a significantly lower number of passes is needed for convergence. Splitting the

13The reconstruction error is defined as ||@(x™) — P,®(x")||?: the squared distance between the ®-image of x™ and
its reconstruction when projected onto the first £ principal components P;®(x") = [Zi:l ®(x™) - vFIvE, Tt can be
entirely expressed in terms of the kernel function and can actually be calculated in an incremental way. Thus, it is
again not necessary to store the entire kernel matrix (proof omitted).
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data in more blocks does not make a difference. Experiments on some other data sets led to similar
results with the on-line algorithm with 5-10 blocks converging 2 to 4 times faster than incremental
EM. Whether this is really worth the effort depends on the additional computation time of the on-line
algorithm. In the specific context of kernel PcA where d= N, the cost of the incremental EM algorithm
is O(N?2¢). The additional cost of the on-line algorithm is due to the repeated calculation of V and
W which is O(N¢?) for each block of data. This means that especially for £ < N while partitioning
the data in few blocks, the computational cost of the M-step is negligible.

2.8.5 Discussion

The on-line EM algorithm for PCA described in the previous section can easily be extended to Fa,
MFas, and Mpcas. Also in this case the M-step depends completely on sufficient statistics, as can
be seen by inspecting Algorithm 3. It would be interesting to use these on-line variants to speed up
training of mixtures of latent variable models on large data sets.

Another possibility for extending these on-line EM algorithms could be to use a stochastic variant
as proposed in (Neal and Hinton 1999; Nowlan 1991). This method does not maintain strictly accurate
sufficient statistics but is based on an exponentially decaying average of the statistics of recently visited
data points. This can be interpreted as a way of forgetting data which was seen a long time ago and
it is especially interesting for very large data sets. Although convergence to a local optimum is not
guaranteed, this variant seems to work well and fast in practice for appropriate values of the decay
parameter.

Real on-line algorithms for PcA and Fa which can handle data that changes over time do exist.
For Pca these were already mentioned in section 2.5. For FA real on-line algorithms are more difficult
to come by since the E-step has to be approximated. A first approach uses a wake-sleep algorithm
in which linear generative and recognition networks are jointly trained using the delta rule (Neal
and Dayan 1997). The algorithm is simple and requires only local computations but it is slow since
sampling is used and convergence to a local maximum of the data likelihood is not guaranteed. Another
recent approach uses iterative probability propagation on the FA network of Figure 2.3 to approximate
the E-step (Frey 1999). The M-step is again realized with a simple delta rule. Experimental results
indicate that although iterative probability propagation is not guaranteed to converge, in practice it
often does. A disadvantage of almost all these approaches using a Hebbian or delta rule is that a
learning rate has to be chosen. The EM algorithm does not have such user-defined parameters and
convergence to a local optimum is guaranteed; it is considerably less local though.

A disadvantage of kernel PcA already outlined in section 2.8.1 is that principal component extrac-
tion requires calculating a dense expansion in terms of kernels:

&(x)-v = [Z uik(x, xi)] . (2.74)

Reduced set methods are one way to obtain smaller expansions over A < N patterns but they are
computationally quite expensive. Another approach would be to sparsify the expansion such that
many of the u} are equal to zero and the corresponding kernels can be pruned. Remember that
the u® are the orthonormal eigenvectors of the kernel matrix K. Is there a way to obtain a sparser
(approximate) representation of the eigenvectors? I tried an approach which was remotely inspired
by Tipping’s (1999b) relevance vector machine and the Bayesian method for Pca of section 2.7. The
idea is to use probabilistic Pca (Algorithm 4 with m=1) for kernel Pca and define a suitable prior
on the weight matrix W. Instead of the ARD prior on the columns of W used in section 2.7, we can
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define an ARD prior on all the weights:

p(W|T) = ﬁ ﬁ (%)dﬁ exp (—%—yijwfj) ,

i=1j=1

with T' a dx £ matrix of hyperparameters. The ~y;; control the inverse variance of w;; and for large
values of +;;, the corresponding w;; will be driven to zero and lead to a sparser W. Like in section 2.7,
the EM algorithm for PPCA can be adapted to incorporate the ARD regularizer and to re-estimate
hyperparameters v;;. The complexity of the adapted EM algorithm is similar to the one we derived
for Bayesian FA and can also profit from sparse matrix computations. I did a few small experiments
with this ARD regularizer and it did lead to sparser eigenvectors on the kernel matrix in most cases.
However, the eigenvectors remained quite dense with at least 50% of the coordinates different from
ZErO.

A more promising approach has been proposed recently by Smola et al. (1999). Their sparse
kernel feature analysis takes a different path in that it puts an £; penalty on the expansion coeflicients
in (2.74): Zil lu;| < 1. This leads to very sparse expansions which require only m kernel functions
to be computed for extracting the first m features. The basic algorithm still needs to store the kernel
matrix, however. They also propose an approximate variant of their algorithm which is guaranteed to
find feature extractors which are among the best ones. This algorithm works on random subsamples of
size ¢ of the data. This reduces memory requirements to O(cN) and still extracts meaningful features
on the toy data of Figure 2.9.



CHAPTER 3

Supervised Learning: Mixture Models

While the previous chapter dealt with modeling unlabeled data {x"}, we now consider the problem
of supervised learning of labeled data given a training set:

D= {(xl’tl)y [RER (XN’tN)}’

with patterns x™ = (z7,.. .,xg)T € R? and target outputs t™. The goal of supervised learning is to
find a model which predicts as accurately as possible the label t of a given pattern x. It is natural to
distinguish between two main types of supervised learning. In the first category, the labels are real-
valued t € R® and the task is referred to as a regression problem. The labels t can also be categorical
and represent a discrete class label Cy in a C-class classification problem. While I focus mainly on
classification problems in the oncoming chapters, the discussion in this chapter will be kept as general
as possible.

We assume that all examples are drawn independently from a joint density function p(x,t) and
that the training set D is a sample from it. Adhering to the principle not to solve a more complex
problem than the one we are interested in, one might say that modeling this joint density is too general
a problem since it can be decomposed using the product rule (A.17):

p(x,t) = p(t|x)p(x).

When doing supervised learning, it is the conditional density p(t|x) of t given x that we really want
to model. Directly modeling this conditional density is the approach which has dominated most of
neural network research.

Roadmap

This chapter describes two ways of modeling the conditional density in a maximum likelihood frame-
work. It is mainly of tutorial nature and serves as an introduction for the extensions and experiments
described in Chapter 4. We start with a brief recall of the Bayes classifiers already encountered in
Chapter 1. These are of interest since the mixture models of the previous chapter can be readily
plugged into Bayes classifiers as class-conditional densities. While Bayes classifiers do try to model
the conditional density, this is done in an indirect way. The rest of this chapter, therefore, deals
with more direct ways of modeling the conditional density. First, it is outlined how the well-known
sum-of-squares error function comes about as a direct consequence of assuming a Gaussian conditional
density. This leads to the fact that, in the limit of infinite data, the estimator which minimizes the
sum-of-squares function is the conditional mean of the target outputs. As was the case for unsu-
pervised learning, such a unimodal representation is often not flexible enough. This motivates the
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best decision

P(z|C1)P(C1) P(z|C3)P(Cy)
RN / S L N
. ’ N 1 A N - ~ o
e & aaa o ac saam a e Class1 | Class 2
(a) Density modeling (b) Optimal Bayes decision

Figure 3.1: Bayes classification consists of modeling the density for each class separately (a) and
classifying points according to Bayes’ decision rule (b).

idea of applying mixture models also in the context of supervised learning in the form of a conditional
mixture model. An excellent reference for this material is (Bishop 1995) and section 3.2 largely follows
his presentation. The rest of the chapter studies a specific choice of a conditional mixture model, viz.
mixtures of experts (MEs) (Jacobs, Jordan, Nowlan, and Hinton 1991). The modular architecture
of a ME is described in detail (section 3.3) followed by a review of the literature on various ways of
training MEs. The methods discussed are gradient-based optimization and, not surprising for mixture
models, the EM algorithm (section 3.4). The last section contains an original contribution consisting
of a generalization of the aforementioned result on the conditional mean as an optimal estimator for
the sum-of-squares error. An identical result also holds for the mixture of experts error function; for
a classification problem this means that MEs can in principle estimate posterior probabilities of class
membership (Moerland 1997a).

3.1 Bayes Classifiers

The classic approach for a classification problem with C classes {Cy} is based on rewriting the condi-
tional density with Bayes’ rule (A.18) (extension of the two-class case of (1.3)):

p(x|Cx)P(Ck)  p(x|Ck)P(Cy)  class-conditional x prior
p(x) - 2 p(x|C;)P(C;) N normalization

P(Cilx) = (3.1)

and modeling the prior P(Ci) and the class-conditional densities p(x|Cy). The prior represents the
probability that an arbitrary example out of our data belongs to class Cx. The class-conditional
distribution models the density of the data belonging to class C,. Before describing in some more
detail how these quantities can be estimated, it is explained how (3.1) can be used to classify a
pattern.

It is easy to show (see, for example (Duda and Hart 1973)) and intuitively clear that the probability
of making an error when classifying an example x is minimized by Bayes’ decision rule of assigning it
to the class with the largest posterior probability (Figure 3.1):

x is assigned to Cy & P(Ci|x) > P(Cj|x) forall j # k.
This can be rewritten using the denominator of (3.1):

x is assigned to Cy & p(x|Cx)P(Cr) > p(x|C;)P(C;) for all j # k. (3.2)

This means that we would have an optimal classifier if we could perfectly estimate the priors and
the class-conditional densities. Of course, the most trivial problems excepted, this is not possible in
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practice and one needs to find approximate estimates of these quantities on a finite set of training
data {(x™,t")}. Priors P(Ci) are often estimated on the basis of the training set as the proportion
of samples of class Cj, or using a priori knowledge. The class-conditional densities can be modeled
on the training data with non-parametric methods like histograms or nearest-neighbors or parametric
methods such as the mixture models described in Chapter 2. Note that the estimation of the class-
conditional densities involves K subproblems in which each of the p(x|C) is estimated based on the
data belonging to class Cy only. As a consequence it is straightforward to introduce new classes
without having to reestimate the whole model: imagine that we would exchange our decimal system
for the duodecimal system and would have invented new symbals representing the numbers “ten” and
“eleven”. A Bayes classifier for hand-written number recognition would only require estimating the
class-conditional densities for the two new numbers, while a classifier which directly estimates the
posterior probabilities (for example, a multi-layer perceptron) should be completely retrained.

A possible criticism of Bayes classifiers is that in a sense they are modeling too much: for each class
many aspects of the data are modeled which may or may not play a role in discriminating between
classes. Often Bayes classifiers also require more parameters and more computation during recall
since when a new example is presented, the posterior probabilities of all classes need to be calculated.
Advantages of the Bayes classifier are its ease of training: estimating the class-conditional densities
is often far less computationally demanding than training the complex non-linear models described
in the rest of this chapter. Moreover, as argued by Hinton et al. (1997), Bayes classifiers are more
resistant to overfitting the training data, because the input data contains much more information than
just the class label.

A last remark concerning the Bayes decision rule is that in practice, one often uses a numerically
more stable variant of (3.2) by taking the logarithm of both sides (which is equivalent since the
logarithm is monotonic):

x is assigned to Cj & Inp(x|Cx) +In P(C) > Inp(x|C;) +In P(C;) forallj #k. (3.3)

We will come back to the Bayes classifier in section 4.3 where the GMMs, MPCAs, and MFas of chapter 2
are used to model class-conditional densities.

3.2 Conditional Mixture Models

As said in the introduction to this chapter, a logical approach to supervised learning is to model
directly the conditional density p(t|x) of target output t given pattern x. Like in section 2.1 for
unsupervised learning, this can be done by choosing a particular parameterization of p(t|x,8) and
estimating the parameters in a maximum likelihood framework for (independently distributed) training
data {(x",t")}:

£(0) = p({t"}|{x"},6) = [[ p(t"[x",6).
If one wants to interpret it as an error function to be minimized, we take the negative log-likelihood:
E®) =~ _Inp(t"|x",6), (3.4)

where a parameterized model y(x, 8) is going to describe certain aspects of the conditional density.
To make this a little bit more concrete, let us assume that we want to solve a regression problem with
one-dimensional output {(x™,¢")} and that we take the conditional density to be Gaussian:

_{y(x,0) - t}z] ,

p(tx,8) = @ro?)ifz P { 52 (3.5)
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where I introduced a parameterized model y(x, 8) for the mean of the Gaussian, so that p(¢|x,8) can
be interpreted as Gaussian noise around the mean. Substituting this in the error function (3.4) gives,
leaving out the constant terms:

B(O) = 3 S {y(x",0) -, (36)

i.e. the familiar sum-of-squares error function. In the same vein, it can be shown that a Bernoulli
conditional distribution gives rise to the cross-entropy error function for two-class problems and a
multinomial distribution to cross-entropy for multi-class problems (see (Bishop 1995, chapter 6) for
an excellent discussion).

Thus, we see that the maximum likelihood framework can offer a motivation for well-known error
functions. It is important to realize that the use of a particular error function does not assume the
conditional density p(t|x, @) to be really of this form. Let us have another look at the Gaussian
case which motivated the sum-of-squares error function. In the limit of infinite data, the estimate
y(x,8°%") which minimizes the error function (3.6) is the conditional mean of the target outputs
(Papoulis 1991; Bishop 1995):

y(x, 0°%Y) = (t|x) := /tp(t|x) dt, (3.7)

and this also determines a global variance given by the value of the sum-of-squares error function
at its minimum y(x, @°°%). This implies that the sum-of-squares error function cannot distinguish
between the true conditional distribution and a Gaussian distribution with the same conditional mean
and global averaged variance. This can be particularly troublesome when the target data for the same
input is multi-modal: minimizing a sum-of-squares error function can only learn the conditional mean
of the data which is clearly a poor description of the data. This situation is comparable to the one in
a parametric approach to unsupervised learning using simple densities and our solution throughout
Chapter 2 has been to use the more flexible mixture models. Can we also do this in the context
of supervised learning or, in other words, what would be the supervised counterpart of (2.9)? The
obvious choice is a mixture model of m conditional probability densities ¢;(t|x, 8):

p(tlx,0) = Y p(t,z = jIx,0) = 3 plz = jlx, O)p(tlx, 2 = 5,0) := 3 g;(x,0)85(t]%,60),  (3.8)

with input-dependent mixing coeflicients g;(x, ) which are non-negative and sum to one. This guar-
antees that the mixture distribution is normalized: f p(t|x)dt=1. The corresponding error function
in the maximum likelihood framework is, using (3.4):

E(0) =-) Inp(t"]x",8) =—> InY_ g;(x",0)¢;(t"|x",6) (3.9)

n J=1

and it is this mixture error function which forms the basis of the rest of this chapter. It is also the
error function which underpins Bishop’s (1995, section 6.4) mixture density network which he applied
to learning the conditional density of multi-valued problems I discussed earlier.

Until now, 1 have motivated the mixture error function (3.9) by its capacity of dealing with multi-
modality in regression problems. Is there a similar motivation for classification problems? Well,
formally there is not: it is well-known (Duda and Hart 1973, section 5.8.3; Bishop 1995, section 6.6)
that for a multi-class problem with 1-of-C' coding! of the targets, the conditional mean (3.7) is equal

1For a classification problem with C classes, the target outputs are coded as t € {0,1}€ such that for a pattern from
class C¢, output t has a one on its c-th coordinate and zeros everywhere else: {} = fjc.
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to the posterior probability:
Y (x, 8°%) = P(Cy|x).

We know from the discussion on Bayes classifiers in the previous section that this is optimal and thus,
there seems to be no reason to introduce the mixture error function. However, the above discussion
on optimal estimators is biased for several reasons (Bishop 1995):

e It only holds in the limit of an infinite data set as is evidenced by the integral in (3.7). On finite
data, issues such as the bias-variance dilemma and model complexity play an important role.

o At the same time, it supposes that the model y(x, #) is sufficiently general to approximate the
conditional mean (¢|x) accurately.

e The conditional mean corresponds to a global minimum of the error function but the error
surface of a sufficiently general model y(x, 8) is likely to have many local minima in a complex
non-linear optimization problem.

It is in this context that the mixture error function (3.9) can also be motivated less formally, as a
way of replacing a complex global model y(x,8) by a mixture of less complex local models. This is
particularly relevant if the problem can be decomposed into simpler subproblems in different regions of
data space. The conditional mixture model (3.8) can then be interpreted as a probabilistic subdivision
of the input region by the mixing coefficients g;(x,8) which weight the component means y;(x,8) of
conditional densities ¢;(t|x,8).

Note that until now we have assumed that the mixing coefficients and the mixture components
of (3.8) shared their parameters 8. To take the divide-and-conquer principle of handling a mixture
of simple local models even further, it seems logical to split up the parameter vector between the

different constituent components of the mixture model 6=(0,,0,...,0,):
p(tlx,0) = > p(t,z = jlx,0) = D _p(z = jlx,0,)p(tlx,z = ,6;) = ) _ g;(x,8,)¢; (t|x,6;). (3.10)
Jj=1 Jj=1 j=1

The best-known example of such a supervised modular mixture model is the mixture of experts of
Jacobs et al. (1991) which I will discuss in more detail in the next section. The divide-and-conquer
approach of mixtures of experts has shown particularly useful in discovering different regimes in
plece-wise stationary time series (Weigend et al. 1995), modeling discontinuities in the input-output
mapping (Nowlan 1991), and regression and classification problems in general (Waterhouse 1997).

3.3 Mixtures of Experts

A mixture of experts embodies the idea of a modular supervised mixture model described in the
previous section. It does this by associating specific models with the constituent components of (3.10)
in a way described in Figure 3.2. The gating network (or gate) is a neural network with m outputs and
corresponds to the input-dependent mixture coefficients g;(x,8,). In order to ensure a probabilistic
interpretation, the g;(x) are related via the softmaz function (Bridle 1990). This gives for the j-th
output of the gating network:

_ _ expla;(x)]
9;(x) = m, (3.11)

where the a; are the gating network outputs before the softmax thresholding.? The softmax function
makes the gating network outputs sum to one and non-negative.

2In neural network lingo this is called an activation function.



72

Supervised Learning: Mixture Models

g1 Gating network
®
X
¥i Y2 ... Ym
Expert 1 Expert 2 | ....| Expert m
X X X

Figure 3.2: Architecture of a mixture of experts network.

The means of component densities ¢;(t|x,#;) are modeled by m ezpert networks (or experts)
y;i(x,0;) and the output of the entire ME is the linear combination of the expert outputs weighted by
the gating network outputs:

y(x,0) = g;(x,0,)y;(x,0;). (3.12)

=1

The gating network can be interpreted as a classifier that attributes patterns to the expert networks
in a probabilistic way. This also implies that the gating network splits the data space in a “soft” way:
data can lie in several regions simultaneously (remember Figure 1.7).

The specific choice of the expert networks depends on the problem at hand, but a standard choice
are single-layer neural networks known as generalized linear models (GLMs) in the statistics literature
(Jordan and Jacobs 1994; McCullagh and Nelder 1989). Denoting the parameters of expert j with a
weight matrix W and the activation function with f, a GLM expert is defined as:®

yj(x, Wj) = f(WjX). (313)

GLMs motivate a direct coupling between the activation function f, the expert’s component density
#;(t|x,0;) and the type of problem we are dealing with. These couplings are (Jordan and Jacobs
1994):

- the identity function f(x)=x with a Gaussian noise model (3.5) for regression problems with
teRC;

- the sigmoid or logistic function f(x)=1/{1 + exp(—x)} with a Bernoulli distribution (3.22) for
two-class classification problems with a one-dimensional output to code the classes ¢t € {0, 1};

3This weight matrix can include an extra column for the biases and the pattern x an additional coordinate equal to
one for this purpose.
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- the softmax function (3.11) with a multinomial distribution (3.24) for multi-class classification
problems with 1-of-C' coding t € {0,1}¢.

Of course, one could also use more complex experts such as multi-layer perceptrons (Weigend, Mangeas,
and Srivastava 1995) but this discards the interpretation of a mixture of experts as a mixture of simple
models.

A standard choice for the gating network is also a GLM with a softmax non-linearity (3.11), weight
matrix V, and weight vector v; for output j (1<j<m):

exp[a’j (X, Vi )]
>ies expla;(x, v;)]

This corresponds to the intuitively appealing interpretation of the gating network as solving a multi-
class classification problem based on a multinomial distribution. A mixture of experts thus tries to
learn simultaneously a “soft” partitioning of data space by the gating network and the predictions
for the experts on their attributed regions. The crux of this blend of unsupervised and supervised
learning is the mixture of experts error function (the negative logarithm of (3.10)):

with a;(x,v;) = vix. (3.14)

g;j (X, V) = J

E@)=-) In>_ g;(x",0,);(t"[x",6;). (3.15)
Jj=1

n

In the next section, various existing methods for minimizing this ME error function are described.
Learning algorithms treated are gradient-based algorithms and, not surprising given that we are
dealing with a mixture model, an EM algorithm.

3.4 Training Mixtures of Experts

In this section, an extensive review is given of different learning algorithms for minimizing the Mg
error function (3.15). The first approach consists of standard gradient-based learning and has been
applied with some success in the training of MEs (Jacobs et al. 1991; Jordan and Jacobs 1994). The
second approach is an instantiation of the EM algorithm, as it has been formulated for and applied
to mixtures of experts (Jordan and Jacobs 1994). Like with the unsupervised mixture models of
Chapter 2, the advantage of the EM approach lies in the fact that it nicely decouples the parameter
estimation for the different components of a ME model.*

3.4.1 Gradient-Based Optimization

Many standard iterative optimization methods (gradient descent, conjugate gradients, quasi-Newton)
are based on the calculation of gradients. This has already been noted at the beginning of section 2.1
where we derived a coupled system of equations (2.5) for minimizing the negative log-likelihood with
respect to its parameters 6;:

OE(0)

n oy 0 n -
50 = —;p(zbc ,0)5971np(x ,2|6) = 0.

Transferred to the context of supervised learning, this gives:

OE(6) _ n n gy 0 n Ik @) —
a—ei_—;p(zbc ,t ’0)80 In p(t”, z|x",0) = 0.

i

4This section is based on an earlier technical report (Moerland 1997c).
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Although these equations are coupled, we will see that a gradient-based approach for mixtures of
experts is still possible. Using the definition of a conditional mixture model (3.10) we have:

8]
—*—=—ZZP2—11X £,0) 5 In{g; (x",65)04 (£71x",6,)}

n_71

:_ZZP(Z jlxm, t", 6 )[af) Ing; (x",0,) + a(zilnqu(t"lx",oj)]. (3.16)

n j=1

Like for unsupervised mixture models, the first term is the posterior of the hidden variables and can
be rewritten with Bayes’ rule (A.18):

P(Z=]lx H)p(tnlz::],x 0) g](x 0g)¢](t 'x 01)

p(t"|x™, 0) X 9i(x™, 0,) 85t |x", 0;)
(3.17)

7 (x", %) := P(z = j|x",t",0) =

These can be interpreted as indicators for the responsibility which expert j takes for a prediction on
pattern x™ given the target output t™.

I suppose that the experts and the gating network are feed-forward neural networks (GLMs or
MLps). The gradients with respect to the weights 6; in (3.16) are completely determined by the
partial derivatives of the error function with respect to the network outputs af for pattern x” (be-
fore thresholding flax(x™)]). These derivatives form the basis of the back-propagation algorithm
(Rumelhart, Hinton, and Williams 1986).

Gating Network

A closer look at (3.16) shows that the partial derivative with respect to the k-th output of the gating
network can be written as, using (3.17):

BE(B) = X", 47) Oln g;(x" Bg)
Oay Z )b da}

This might look familiar to some readers and with reason, this is exactly the partial derivative one
obtains when minimizing the cross-entropy error function for a m-class problem (Bishop 1995, section
6.9) with a softmax activation function. It reduces to:

OE(9)
Oal

= gk (xn7 09) — Tk (Xnytn): (318)

which has the natural interpretation of adjusting the gating network such that the outputs gx are
drawn toward the posteriors 7.

Expert Networks

The partial derivative with respect to the k-th output of expert j can be written as (using (3.16)
and (3.17)):

8E(n9) = —m; (xn,tn)aln @; (t"|x",0;)
Oaj,

i : (3.19)
8ajk
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The second factor is exactly the partial derivative one obtains when minimizing a maximum likelihood-
based error function (compare with (3.4)). For ¢;(t"|x™) chosen from the exponential family with
its corresponding activation function, it has a particularly simple form (McCullagh and Nelder 1989;
Bishop 1995, chapter 6):

OE(0)

K
da

= mi (", ")y (x", ;) — 17} (3.20)

It has the natural interpretation of adapting the expert parameters such that expert output y;
gets pulled toward the target output . The posterior 7; weights the change in parameter values
proportional to the responsibility of expert j for example (x™,t").

The exponential family includes the following standard distributions:

1 It = y5(x,6,)I1
@mor P [ 2

Gaussian: o;(t|x) = , (3.21)

where C' is the dimensionality of the target t. The corresponding activation function is the identity
function and the related error function is sum-of squares.

c
Bernoulli: @;(t|x) = H{yjk(x",ej)}t‘“{l —yn(x,0;)} 7, (3.22)
k=1

(3.23)

with a sigmoid (or logistic) activation function. For two-class problems, the corresponding error
function is the cross-entropy error with 0/1-coding.

C
Multinomial:  ¢;(t)x) = [[{u(x,0;)}", (3.24)
k=1

for multi-class classification problems with 1-of-C' coding. The corresponding activation function is
the softmax (3.11) and the error function is the multi-class cross-entropy.

A simple example are GLM expert networks with a single output, Gaussian conditional density,
and linear activation function and a GLM gating network. The gradient descent weight updates for
weights w; of expert j are, using (3.20):

Aw; = 1) Z ﬂj(x",t")(wfx" -t T,
n
and for the gating network weights v; incoming to the j-th output of the gate, using (3.18):
Avj = =) _lg5(x", V) = 75 (x", "] (x")
n

where 1 denotes a learning rate parameter. Equation (3.20) is similar to what one would find with
ordinary sum-of-squares and cross-entropy error functions but with the posterior probabilities 7; as
an extra weighting factor. Of course, the gradients obtained could also be used in more powerful
non-linear optimization techniques such as conjugate gradient algorithms and quasi-Newton methods.
A global least-squares approach could also be used instead of the ME error function (3.15). This might
be more appropriate when we have no a priori belief that the problem can decomposed into simpler
subproblems (Bradshaw, Duchateau, and Bersini 1997).



76

Supervised Learning: Mixture Models

Adaptive Variances in Mixtures of Experts

For regression problems, it is useful to introduce a local variance o; for each expert (Weigend et al.
1995) in the Gaussian conditional density:

—vi(x. 0.2
03(t0) = Gz e [‘ - 2 ] - (3.25)

These expert variances make that the model can handle different noise levels, which is useful when
dealing with piece-wise stationary time series switching between different regimes. It has been noted
that this may reduce overfitting and ease the subdivision of the problem among the experts (Weigend
et al. 1995). The introduction of the expert variances necessitates some small changes in the gradients
derived earlier. It is easy to see that we have to add an additional factor to (3.20):

OE(0)
Ba?k

= m(x",t%) 5 lyu(x", 0; ) — t&l-

kﬁw'H

The factor 1/ 032- can be seen as a form of weighted regression that focuses on low-noise regions and
that discounts high noise regions (outliers, for example).

The updates for the variance parameters are obtained using (3.16) and the definition of the spherical
Gaussian (3.25):

OE(9) _ n ony 985 ( t"'x _ n npemy 167 = ¥ 0)I1 O (£"[x™)
o, _En:w,(x ) —L Z x",t7) 05 (67 [x") 3 - ]
Setting the partial derivatives to zero, a direct solution (for the batch update) is

g2 = iZn ﬂ-j(xn,tn)“tn - Yj(xnvaj)”2

7 c 2o T, E7) ’

which again has a simple interpretation as the squared errors of expert j weighted by the posteriors
mj. Weigend et al. (1995) also describe the incorporation of prior belief about the expert variances
in a maximum likelihood framework to avoid singularities and overfitting in regions of low noise. A
Bayesian approach has also been applied to MEs (Waterhouse, MacKay, and Robinson 1996) using
variational methods in this context.

We can estimate local error bars given the expert variances (see (Bishop 1995, section 6.4) for a
proof):

x) =Y g;(x,0;) [0 + |ly;(x.0;) — y(x,0)]’].
J
In fact, Bishop follows a more general approach where the expert variances are also input-dependent.

3.4.2 Expectation Maximization Algorithm

The application of the EM algorithm to a mixture of experts is relatively straightforward and closely
related to EM for unsupervised mixture models in section 2.2.

The E-step requires the estimation of the posteriors of the hidden variables which we already
derived along the way in the previous section (see (3.17)):

9;i(x", 64)9; (¢"x", 6;) (3.26)

E-step: 7;(x™,t") := P(z = j|x",t",0) = S 1. 0,)u (& X", 07
i9i yUg)Pi s Ui
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The M-step consists of the minimization of the expected complete error function with respect to
the parameters of the mixtures of experts and gives (the supervised counterpart of (2.12)):

E(Ec) = - p(z|x",t",0) Inp(t", z|x", 8"
.2

== ) mx" t") npt", 2 = j|x", 8"%),

n j=1

which gives using (3.10):

== > mE M Ing(x,0,) — 33 m(x", 67 Ing; (£7]x", 8)) (3.27)

n j=1 n j=1

= Egate(0,) + ZEJ(OJ‘)-

j=1

Comparing the complete error function with the original ME error function (3.15) shows that the Em
algorithm has moved the logarithm inside the sum, resulting in a separate error minimization problem
for each of the mixture components.

An interpretation of the cross-entropy term for the gating network Egate(8y), is as the entropy of
distributing a pattern x amongst the experts. This cost is minimal if experts are mutually exclusive
and increases when experts share a pattern. The second term E;(8;) for expert j has the general
form of a weighted maximum likelihood problem (see also (3.19)). The weighting with 7; implies that
the “influential” experts are the ones with a large value for =;, that is by (3.26), the ones with a low
error. Thus, the complete error function nicely incorporates the soft splitting of the data space which
is an essential characteristic of the ME model.

The exact form of the M-step of the EM algorithm depends on the choice of the model for the gate
and experts. When we choose feed-forward neural networks and ¢, (t"|x") from the exponential family
as in the previous section, gradient-based optimization leads to the same gradients as before: (3.18)
for the gating network and (3.20) for the experts. When the expert and gating networks are chosen
to be MLPs the M-step cannot minimize the complete error function but can at best decrease it using
iterative non-linear optimization methods: the algorithm becomes generalized EM. This also implies
that if one uses only one iteration of gradient descent for the experts and the gate, EM is equivalent
to the gradient methods of the previous section.

When experts and gate are GLMs, the separate optimization problems reduce to maximum likeli-
hood problems for GLMs (Jordan and Jacobs 1994). If ¢;(t"|x") is a Gaussian conditional density,
the optimization of the parameters of the experts reduces to solving a weighted least-squares problem
which can be solved in one pass using pseudo-inverses. This is discussed in more detail below. For
logistic or softmax GLM experts and for the softmax GLM gating network, no one-pass solution exists
and iterative methods are needed. These non-linear GLMs have the nice property that their error func-
tions have a unique minimum (Auer, Hebster, and Warmuth 1996; Nabney 1999). Jordan and Jacobs
(1994) propose to use the iteratively weighted least-squares (IRLS) algorithm for these optimization
problems. However, IRLS is computationally expensive since it requires the calculation of the Hessian
matrix of second-order derivatives in each iteration. In the experiments in the upcoming chapters, I
chose therefore for more efficient non-linear optimization methods such as the scaled conjugate gra-
dient algorithm (Mgller 1993). Algorithm 8 on the following page summarizes the EM algorithm for
mixtures of experts.

A more detailed treatment of the convergence of the EM algorithm for mixture of experts can be
found in (Jordan and Xu 1995).
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Algorithm 8 (Generalized) EM algorithm for Mixtures of Experts
Require:

- A training set of N examples: {x!,... ,x™}.
- Conditional densities ¢, (t™|x™) from the exponential family for each of the experts 1 < j < m.
- Feed-forward networks for the experts and the gate.

Initialize the expert and gating networks
loop
{E-step: calculate posteriors (3.26)}
for n:=1to N do
for j:=1tom do 0 o
L gi(x", (t7|x™,0;
) = S e B

end for
end for
{M-step}
{Gating network: decrease Egato(6) (3.27)}
Update @, by calculating the gradient of Egate(6,)
for j :=1tom do

{Expert j: decrease E;(0;) (3.27)}

Update 6; by calculating the gradient of £;(8;)
end for

end loop

Weighted Least-Squares Algorithms for M-Step

In this section, a simple heuristic to reduce the M-step for MEs with GLM experts and gate to a
one-pass calculation (Jordan and Jacobs 1994) is described. The M-step for expert j requires the
solution of the following system of normal equations (using (3.27), (3.20), and (3.13)):

> m(x" ) F(Wx™) — t7](x™)T =0 forall j. (3.28)

The M-step for the gating network involves the solution of (using (3.27), (3.18), and (3.14)):

D g (x™, V) = m(x™, tM)](x™MT =0 forall 5. (3.29)
n
With a linear activation function f for the expert networks (corresponding to Gaussian conditional
densities), (3.28) is a weighted least-squares problem which has an exact solution using pseudo-inverses
(Press et al. 1992). Using matrix notation (3.28) can then be written as:

XTI (XWT —T) =0,

where with N training patterns, d network inputs, and C network outputs, X is the data matrix of
size N xd, W is the weight matrix for expert j with dimensions C xd, T is the target output matrix
of size N xC, and II; is the diagonal matrix of the posteriors 7; of size N xN. The one-step solution
of this equation is:

W7 = (XTI, X) "' XTI, T. (3.30)
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In order to avoid problems with singularities (of the matrix X7TI;X), it can be solved using singular
value decomposition (SvD) (Press et al. 1992, section 15.4), which directly finds a solution in the
least-squares sense of the associated system of linear equations:

VILXWT = /I T.

For the gating network and for experts with a softmax activation function, the non-linearity makes
that the least-squares approach cannot be applied directly. However, an approximate solution can be
obtained by inverting the softmax function and optimizing the weights such that they solve a weighted
least-squares problem on the outputs before thresholding. Inverting the softmax:

i=

exp(a;) .
= gives a;=1In(y;) +1In ) exp(a;),
% expla;) = Inw) +In D exple

where the second term is constant for all a; and disappears when the softmax is applied. This means
that (3.29) can be approximated as a least-squares problem by taking the logarithm of the posteriors
(using (3.14)):

Z[V;‘-rx" —Inm;(x",tM](x")T =0,

n

Similarly, for the expert networks by taking the logarithm of the target outputs in (3.28):
D w6 (W™ — Int™)(x™)T = 0.
n

The exact solution is then, for the gating network:
va = (XTX)"'X T In(mr;),
and for the expert networks:
W7 = (XTI, X) "' XL, In(T).

Finally, a last obstacle for the application of this technique is that we have to avoid taking the
logarithm of zero values in T and II; by thresholding them away from zero. Of course, also in this
case the weighted least-squares problems can be solved with SvD to avoid numerical instability.

3.5 Estimating Posterior Probabilities

It is well-known that in the limit of infinite data and for sufficiently powerful models, when minimiz-
ing sum-of-squares or cross-entropy error functions for classification problems, the optimal outputs
approximate the posterior probabilities of class membership. As mentioned in section 3.2, for clas-
sification problems it is a direct consequence of the optimal estimate being the conditional mean
(t|x) (3.7). This has been rediscovered again and again over the last 25 years and in different contexts
(Bourlard and Morgan 1994; Duda and Hart 1973; Hampshire and Pearlmutter 1990; Richard and
Lippmann 1991; Ruck et al. 1990; Wan 1990). This property is a useful one, especially when the
network outputs are to be used in a further decision-making stage (for example, rejection thresholds)
or integrated in other statistical pattern recognition methods.

The ME error function (3.15) can be seen as a generalization of the sum-of-squares and cross-
entropy error functions which arise in the special case of a ME with only one expert network. The
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purpose of this section is to show that also at the global minimum of the ME error function, the
optimal ME outputs estimate posterior probabilities of class membership. The proof is along the lines
of (Bishop 1995, section 6.1.3) for the sum-of-squares error function and based on (Moerland 1997b;
Moerland 1997a).

The ME error function (3.15) was defined as:

=Y I g;(x™,0,)8;(t"x", 6;).
n j=t

The proof I gave in (Moerland 1997a) was entirely based on this error function and got quite lengthy
because of the logarithm in front of the sum. It can be considerably simplified when using the complete
error function (3.27) derived in the context of the EM algorithm for mixtures of experts:

ZZ@X ,t")Ing;(x", 6,) ZZTFJ ,t") In ¢, (t"|x", 8;) gate+ZE

n j=1 n j=1

Since we know that minimizing the complete error function also minimizes the original ME error
function (section 2.1), the rest of the proof will be done in terms of E..

In the limit of an infinite data set the finite sum over the patterns (when divided by the number
of patterns) can be replaced by an integral:

B // [i 73 (x, t) In{g;(x)¢; (t|X)}] p(t,x) dt dx,
=1

factoring the joint distribution:

~ [ I3 w0ty g 8] pleprpte) doe (3:31)
j=1

The interpretation of the ME outputs when this error function is minimized, can be obtained by
setting to zero, the functional derivatives (Bishop 1995, Appendix D; Jost and Li-Jost 1998) of E.
with respect to the gating network outputs g;(x) and the expert network outputs y;.(x). The solutions
of these equations are expressions for g;(x) and y;(x) at the minimum of E.. The use of functional
derivatives is based on the assumption that the expert and gating networks have sufficient functional
capacity to model these optimal estimates and we come back to it at the end of this section.

Gating Network

The functional derivative of (3.31) with respect to the gating outputs g; has to be constrained since
the gating outputs should sum to one: 3, g;(x)=1. This can be done with a Lagrange multiplier )
and leaving out the terms which do not depend on g;, the Lagrangian becomes:

L(g,\) = ZQJ (x) — 1] // Z (x,t)Ing;(x )} p(t|x)p(x) dt dx.

The functional derivative set to zero with respect to g; is:

6L(g, ) _ mi(x,t) _ )
St =a- [ Euptodt =0 forall
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Summing over j and using the constraint on g; and the fact that the posteriors sum to one, we find
A = p(x). Substituting this value in the above equation gives the optimal gating network outputs:

50) = [ ix,0) ) e (3.32)
This has the natural interpretation of the conditional mean of the posteriors.

Experts: Gaussian Conditional Density

Assume that the experts have a linear activation function and a Gaussian conditional density:

_||t—yj(x)||2J

n n 1
1" = e |12

(3.33)

where C' is the dimensionality of t. The functional derivative of (3.31) with respect to the expert
network outputs y;.(x) is, by cancelling out the logarithm against the exponential:

SE, 1

e = 5 [ ) usel) — el plehIptx) de = 0.
Therefore, at the minimum of E. the expert outputs satisfy:

[ 7i(x, t)tc p(tx) dt
Jmi(x,t) p(t]x) dt

y;c(X) (334)

This is the conditional mean of the target outputs but, as one would expect, weighted by the posteriors
T

Experts: Multinomial Conditional Density

Assume that the experts have a softmax activation function and a multinomial conditional density:

C

i (t"x™) = [J ). (3.35)

c=1

The functional derivative of (3.31) with respect to the expert outputs y;. has to be constrained since
the outputs should sum to one: )", y;.(x)=1. Introducing a Lagrange multiplier for the constraint
and leaving out the terms independent of y;,, gives:

L{y;,A) = )\[Z Yje(x) —1] — // [Z 7;j(x,t)In ¢j(t|x)] p(t|x)p(x) dt dx.
c j=1

Substituting the multinomial density (3.35):

L(y;,A) = Zy;c x) — 1] // Zﬂ'] (x, t Ztc lnyjc(x)}] p(t]|x)p(x) dt dx.

The functional derivative with respect to y;.(x) is

5L(y_7', /\)

5Yje(x) =A- /”J(x t)—— ]c( ) p(t|x)p(x)dt =0 for all c.
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If we sum over ¢ and use the constraint on y;. and the fact that the target outputs sum to one (1-of-C
coding), we find A = f m;(x, t)p(t|x)p(x) dt. Substituting this value in the above equation gives the
optimal expert outputs:

[ mi(x, t)t. p(t]x) dt
Yje(x) = f;_j(x, 0 p(tp) db (3.36)

as with a Gaussian conditional density (3.34).

Interpretation of Network Outputs

Finally, using (3.32) and (3.34), the output vector of a mixture of experts that minimizes the ME error
function is (using (3.12)):

1o = Y 0503e(x) = 3 [ 73, Ot
J J
exchanging integration and summation:
/ 3 mi(x, )t pltix) dt = / to pltlx) dt = (t.]x), (3.37)
J

where we have used that the posterior probabilities 7;(x,t) sum to one. The interpretation of (3.37)
is that the output y.(x) of a ME at the minimum of the ME error function is equal to the conditional
average of the target data as for the outputs of a network trained by minimizing the sum-of-squares
or cross-entropy error functions. As we saw in section 3.2 for a classification problem with 1-of-C
coding, the conditional average of the target data is:

Ye(x) = (tc|x) = P(Cc|x),

so that the outputs of a ME do indeed estimate the posterior probability that x belongs to class C,.

Discussion

This is only a rather weak consistency result based on the assumption that there is an unlimited
amount of the data and that both experts and gates have sufficient functional capacity. The latter
excludes GLMs and would imply the need for MLPs, for example.

More relevant is the case in which there is only a limited amount of data available. This has been
studied only recently for mixtures of experts (Jiang and Tanner 1999b; Zeevi, Meir, and Maiorov
1998). Zeevi et al. (1998) have investigated a mixture of linear GLMs. They show that such a
simple ME can approximate a wide class of smooth functions and they give bounds which depend
on the number of experts. With respect to consistency, they show that the conditional mean can be
estimated consistently with increasing sample size when minimizing the sum-of-squares.

It has been shown that useful results can also be obtained within the maximum likelihood frame-
work for conditional mixture models described in this chapter (Jiang and Tanner 1999a; Jiang and
Tanner 1999b). They consider both hierarchical and standard MEs with general GLMs as experts. The
bounds are similar to the ones obtained by Zeevi et al. (1998). Moreover, they also provide bounds
for the estimation of unimodal conditional densities from the exponential family.



CHAPTER 4

Localized Mixtures of Experts

The focus of Chapter 2 was on the use of unsupervised mixture models for density estimation and
feature extraction. The promising results obtained with mixtures of latent variable models motivate
this chapter in which such mixture models are used in Bayes classifiers and as a gating network in a
mixture of experts model.

Roadmap

As we saw in the previous chapter, a mixture of experts consists of a gating network which learns
to partition the data space and of experts networks attributed to these different regions. We start
with a discussion on the choice of the gating network in a mixture of experts. In Chapter 3, it has
been assumed that the gate is a feed-forward neural network (NN). It is motivated by an illustrative
example that it might be worthwhile to try another type of gate based on an unsupervised mixture
model (section 4.1). Such a localized gating network was first proposed by Xu et al. (1995) based on
GMMs. Section 4.2 gives a derivation of the EM algorithm for a localized mixture of experts. This
general derivation clearly shows that one can choose any type of mixture model as gating network
and enables us to use not only GMMs but also mixtures of latent variable models. It is shown that
the M-step for the mixture-based gating network is one-pass and almost identical to the unsupervised
case.

The rest of this chapter consists of a series of experiments on the same collection of about 20
data sets as in Chapter 2 but this time for supervised learning of classification problems. We start
with an experimental evaluation of mixture models in Bayes classifiers following the general scheme
outlined in section 3.1. The class-conditional densities are modeled by GMMs, MPcas, and MFAs and
the results obtained on the benchmark problems often are surprisingly good compared with the ones
obtained with MEs in section 4.4. Bayesian MPcCAs and MFAs (section 2.7) are again shown to offer
a viable way of selecting the dimensionality of latent space. This is especially interesting for Bayes
classifiers with mixture models because the Bayesian framework enables the model to select a different
dimensionality for each mixture component in each class-conditional density.

Section 4.4 compares the localized model with GMM, MPcCA, and MFA gates with standard mixtures
of experts having single or multi-layer perceptrons as gating network (Moerland 1999a; Moerland
1998). Standard MEs clearly outperform the localized ones and some possible explanations are given.
The chapter ends with a short discussion on the possibility of performing localized dimensionality
reduction with a localized mixture of experts with a MPCA gate.
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(a) Convex division: GLM gate. (b) Ellipsoidal division: gate based on a mixture model.

Figure 4.1: Two different divisions of the data space.

4.1 Choice of the Gating Network

Since the gating network in a mixture of experts deals with the decomposition into smaller tasks, the
choice of the type of gating network is an important one. The standard mixture of experts model as
defined in the previous chapter, has a GLM with a softmax activation function as gate (Jordan and
Jacobs 1994). This leads to a division of the data space by soft hyper-planes with decision boundaries
which are simply connected and convex (see the left panel of Figure 4.1) which might seem too limited
an approach. An alternative is the use of what Weigend et al. (1995) coined gated experts. In this
model, the gate is a MLP with a softmax output activation function. This enables far more complex
decompositions with non-linear decision boundaries. A third approach is a hierarchical mixture of
experts (HME) (Jordan and Jacobs 1994) which has a tree structure. The leaves of the tree contain
the expert networks and the non-terminal nodes contain the gating networks. This model also enables
complex decompositions while using simple gating networks. Finally, it is also possible to divide
the data space with soft hyper-ellipsoids using normalized Gaussian kernels (Xu et al. 1995), each
localized to a specific expert (right panel of Figure 4.1). That is, the j-th output gating network takes
the following form (the counterpart of (3.11)):

9;(x,0y) = %7 (4.1)

which is normalized to ensure a probabilistic interpretation and where p;(x) is a Gaussian distribution.
The gating network can thus be interpreted as a GMM where each component of the mixture model
defines the region of “influence” of the corresponding expert. Xu et al. (1995) derived an EM algorithm
for this type of mixtures of experts and obtained promising results on some toy problems. This has
been confirmed on some isolated problems by Fritsch (1996) and Ramamurti and Ghosh (1999). Since
this type of gate decomposes the data space with soft hyper-ellipsoids, I will refer to the whole model
as a localized mixture of experts. The resulting model bears some resemblance to a normalized radial
basis function network (Moody and Darken 1989), the main difference being that in that case the
expert output is a constant value.

As we will see, this localized approach is in no way limited to GMMs as a gating network and may
be applied to any mixture model which can be trained with the EM algorithm. In Chapter 2, mixtures
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Centers of a 10-component 16-factor Mpca
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0 812 0 5 17 612 0

1 1 1570 2 0 0 119 0 0 5 1
2 53 0 1276 6 35 I8 2 0 71 0
3 7 0 30 814 255 41 2 0 411 0
4 3 0 11 0 458 88 0 503 121 247
3 9 0 I 619 371 20 1 0 272 3
6 131 0 1 2 23 697 58T 0 19 0
7 2 0 27 0 238 3 0 690 6 603
8 11 0 22 52 228 138 2 6 969 56
9 0 0 3 0 72 12 0 480 27 89

Figure 4.2: Density estimation with a 10-component 16-factor MpPCA trained on the NIST data set.
Each pattern is assigned to the component (illustrated by its center) on which it has the highest
likelihood score p;(x") and the total number of such examples for a digit class is listed below each
center.

of latent variable models were shown to be a flexible alternative to Gyums in density estimation and,
therefore, a potential candidate for a localized gating network. Do mixtures of latent variable models
indeed find interesting decompositions of the problem which can be easily solved by simple expert
networks? Are they also a flexible alternative to GMMSs in the context of supervised learning? Is the
localized approach better than having a feed-forward N~ as gate? These questions will be explored
in more detail in the rest of this chapter but first | illustrate the potential of a localized gate with an
example.

The example shows that the unsupervised learning of a mixture model may find a useful decom-
position of the problem (Figure 4.2). 1 trained a 10-component 16-factor MPCA on the NIST data
(Appendix C) resulting in a model with the 10 centers shown in the figure.! Most centers look like
blurred or merged instances of the digits.? This is exemplified when evaluating the likelihood of a digit
under each of the 10 component densities p,(x) and assigning a digit to the mixture component which
maximizes its likelihood. This may be interpreted as a hard decision and a separate classifier could
be trained on the examples attributed to each center. As can be seen by inspecting the columns of
Figure 4.2, this indeed leads to a simpler classification problem in the majority of the cases. The col-
umn of the seventh center, for example, virtually boils down to the two-class problem of distinguishing
zeros from sixes. This is a problem which most likely can be handled with a simple model and which
might even be linearly separable. Columns 5 and 6, however, do not lead to a nice decomposition
with at least five classes being present with many examples. A localized gate as in (4.1) would do
this but in a more sophisticated way. Firstly, the definition of the localized gate does not lead to a
hard partitioning of the data space but to a soft split with cooperation between experts. Secondly.
a localized mixture of experts is trained as a whole and thus it is expected that the localized gate
positions itself so as to ease the task of the experts.

! This is not a Bayes classifier! The entire data set was used to train the mixture.
2For those who wonder, 1 used pre-processed data as it was available at IDIAP and apparently the data has been
aligned to the lefi.
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4.2 EM Algorithm for Localized Mixtures of Experts

In this section, an EM algorithm for localized mixtures of experts is derived which is a slightly gener-
alized version of what has been proposed in (Xu, Jordan, and Hinton 1995). As already said before,
a localized gating network consists of normalized kernels each assigned to a specific expert:

. a;p;(x)

(x) = P(1lx) = —J—_-—’ 4.2
where ), a; = 1, a; > 0, and p; a probability density function; thus the gating network outputs g;
sum to one and are non-negative. The numerator of (4.2) can be interpreted as the component of a

simple mixture model. This choice of the gating outputs leads to the following conditional probability
density for a mixture of experts (substituting (4.2) in definition (3.10)):

p(tlx) = Z “”’jlﬁj‘() (1), (4.3)

If we now go back to the expected complete error function derived for a mixture of experts (3.27), we
see that the M-step for the localized gating network has to minimize:

Egate = — Z Z mi{x",t")In za]p:]i()x) ) (4.4)

n j=1

which still contains the logarithm of a sum and thus calls for a non-linear optimization method. It
would, however, be nice if we could in some way use the EM algorithm for unsupervised mixture
models and reduce the M-step for the gating network to a one-pass calculation. Jordan and Xu (1995)
realized that this can be done by performing maximum likelihood estimation not on the conditional
density (4.3) but on the joint density:

p(x,t) = p(t|x)p( Z a;p; (x)d; (t|x),
which by maximum likelihood leads to the following error function on the training data {(x",t")}:
=~ Zanajp] "); (£ x™). (4.5)
n

The E-step then consists of calculating the posteriors of the hidden variables which follows directly
from (3.26) by substituting (4.2) for g;(x"):

E-step: g(Z;z) = 71;(x",t") = n?jpj (x7l)¢j (t"x™) . (46)

2 aipi(x™) ¢ (t7|x")
i=1
The expected complete error function corresponding to (4.5) is (using (3.27) and (4.2)):

ZZW] (x™,t") In {a;p;(x™)} — Zzﬂg (x™,t") In {&;(t"[x™)}.

n j=1 n j=1

=  Egate(€y) + ZEj(ej)-
j=1
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The M-step consists of minimizing or decreasing this complete error function with respect to the
parameters of the expert networks and the gate. Comparing the above equation with (3.27) shows
that the expert error functions have the same form and thus the optimization of the expert networks
in the M-step is as in section 3.4.2. We focus therefore on the gating error function:

Egate = — Z Zﬂj(xn,t") Ing; - Z Zﬂ'j(x”,t") Inp;(x™). (4.7)

n j=1 n j=1

But this is exactly the complete error function we derived for an unsupervised mixture model (2.13)!
The only difference is in the definition of their posteriors h;(x™) (2.11) and 7;(x", t") (4.6) respectively.
In the case of a localized mixture of experts, the posteriors include both patterns and target outputs
reflecting the supervised nature of the model. This gives us the one-pass M-step we were looking for.
Moreover, any mixture model which can be trained with EM could be used as a gating network in this
framework. This makes it possible to use not only GMMs as in (Xu, Jordan, and Hinton 1995) but
also Mpcas and Mras. These alternative choices for the gating network have been evaluated in the
experiments described in section 4.4.

An alternative approach for a virtually similar model with a GMM gate and conditional Gaussian
experts has been proposed by Jebara and Pentland (1999). They manage to avoid having to perform
ML estimation on the joint density by upper bounding Egate (4.4). This can be done with a simple
variational bound of the logarithm In(z) < z—1:

Egate < - Z Z 7 (x",t") Ina;p;(x) + Z Z 7 (x",t") Z{aipi(x) -1}
n j=1 n j=1 i

The minimization of this upper bound can be done analytically although along the way other bounds
have to be introduced. This method has the advantage of still performing ML estimation on the condi-
tional density which is our ultimate goal. Results on toy regression data indicate better performance
than when estimating the joint density.

4.3 Experiments: Bayes Classifiers

Before describing the experiments with the localized mixtures of experts, I first report on the results
of a series of experiments with mixture models for estimating the class-conditional densities in a Bayes
classifier. That is, each class conditional density is modeled by a separate mixture model is:

P(XICk) = > akipri(x),
i
and the corresponding Bayes decision rule (3.2):

x is assigned to Cy =3 P(Cy) Z aripri(x) > P(C;) Z ajipji(x) forall j#k.  (4.8)
i i

Oddly enough, the use of mixture models in Bayes classifiers is not that widespread in the machine
learning community, but see for example {(Hastie and Tibshirani 1996; Hastie, Tibshirani, and Buja
1999; Kambhatla and Leen 1995).

4.3.1 Experimental Set-Up

The experiments were set up in the same way as those for density estimation with mixture models
described in section 2.6.1. The main difference is that we now take the class labels into account
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and form separate training sets for each class on which to train the mixture models. These separate
mixture models were initialized and trained with the EM algorithm as in section 2.6.1.

The NIST and satimage data come with a fixed division in a training and a test set (see Table 2.1)
and McNemar’s test was used to determine whether the difference in performance between two methods
was statistically significant (Dietterich 1998a). This test involves only a single training run and is
described in detail in Appendix B. For all other data sets the 5x2cv F' test was used with five
replications of twofold cross-validation. In each round one third of the training data was set aside for
validation purposes (respecting the class distributions) on the entire Bayes classifier. The results on
the validation data were used to select the best model for each type of mixture model on a data set.
For most data sets, the number of mixture components tried for each class-conditional density had at
least five different values ranging from 1 to a value depending on the complexity of the problem but
with a maximum of 20. The dimension of latent space for MPCAs and MFAs was varied in a similar
way but with a maximum value of 10 (and of course upper-bounded by the dimension of data space).

In each Bayes classifier, the mixture models for each class-conditional density were chosen to be
identical, that is, of the same type, with the same number of components and (for the latent variable
models) with the same dimension of latent space. Classification of the examples was based on Bayes
decision rule (4.8). The priors P(Ci) were estimated on the basis of the training set as the proportion
of samples of class Cy.

4.3.2 Evaluation

The results of the experiments with Bayes classifiers are listed in Table 4.1, where the best method
and the ones that are not significantly worse (90% on the 5x2cv F' test or McNemar’s test) are set
underlined. Note that on the pima data set, the results do not allow any conclusion about the relative
performance of the different models: all of them perform equally well and no underlining is used in
this case. The last row in Table 4.1 gives an idea of the global performance of the different models by
specifying the total number of underlined scores for each model type. The number of wins shows that
MFras and MPcCAs provide the best Bayes classifiers though their advantage is not as impressive as
with unsupervised density modeling (section 2.6). This is related to the fact that in Bayes classifiers
the relation between the quantity we are optimizing, viz. the likelihood of the data from a given class,
and the ultimate goal, viz. minimizing classification error, is obscure. It can very well happen that
the Bayes classifier with highest average likelihood on the test data is not the one that minimizes the
classification error.

The mixtures of latent variable models are outperformed twice by mixtures of spherical GMMs on
the cancer and dermatology data. This seems to be due to overfitting since the mean classification
error on the training set was consistently higher with the more complex mixture models. Spherical
and diagonal GMMs give satisfactory results on small data sets. This does not come as a surprise since
data can be very scarce in this case with only few examples for each class. The mixtures of latent
variable models are also outperformed three times by mixtures of tied or full GMMs. These include
data sets for which data is plentiful such as letter and pen on which full GMMs already showed good
performance in density estimation (Table 2.4).

It is also interesting to note that in most cases, the best mixture model has several components and
performs better than a single component model of the same type. A general remark on these Bayes
classifiers is that their classification error often is comparable with other state-of-the-art classifiers. A
nice example is the score (95% correct) obtained on letter with a mixture of 20 tied GMms for each
of the 26 classes. The best result obtained in the StatLog project (Michie, Spiegelhalter, and Taylor
1994) in which a host of statistical and machine learning were compared, was 93.6%. This score has
been improved to around 98% (Schwenk and Bengio 1998) only very recently with boosting methods
such as AdaBoost.

The results on the NIST handwritten digit data are satisfactory as well: the best score of 97.3% was
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Data spherical diagonal tied full Mpca MFra
banana 89.2(1.79)°  90.9(1.19)°  88.8(1.74)°  93.4(1.36)°  93.3(1.80)>'  93.0(0.87)"
cancer 96.1(1.22)°  95.8(0.82)>  94.1(1.26)°  94.9(1.04)*>  95.2(1.10)>*  95.0(1.38)'"
dermatology 95.7(1.03)"  93.7(2.26)*  92.1(1.29)°  92.1(1.63)'  94.9(1.31)"'  94.1(2.02)'*°
glass 61.5(3.87)°  63.0(4.43)° 62.6(5.65)° 65.4(3.17)°  56.9(4.75)>'  63.5(4.38)*"!
heart 81.7(1.95)"  81.7(2.44)' 77.6(2.38)" 77.5(3.73)' 81.1(2.33)"'  81.9(3.31)'*
ionosphere 90.7(1.33)°  89.5(1.49)>  85.6(3.58)>  85.8(3.65)"  93.9(1.33)"*  93.3(1.28)'°
iris 92.9(3.14)>  93.5(2.42)"  96.2(2.50)"  95.8(2.47)°  96.5(1.79)"*  96.9(1.99)"
letter 84.9(0.35)*°  86.9(0.72)*° 95.0(0.29)*° 93.7(0.36)'°  92.0(0.59)'®°  94.1(0.27)'%"°
NIST 94.2%° 95,74 - 96.7° 97.1'%° 97.3%010
optical 93.8(0.61)"°  93.1(0.67)° 94.6(0.61)°  94.6(0.68)"  95.9(0.60)*>°  95.0(0.51)*°
pen 97.1(0.50)"°  96.6(0.35)"° 98.6(0.13)'° 99.2(0.15)'°  98.3(0.21)>®  98.5(0.20)**
pima 73.6(1.13)"  74.6(1.23)"  73.3(1.97)*  73.9(1.50)"  74.5(1.33)"°  72.5(2.19)°!
satimage 86.1° 87.6"° 87.7%° 84.9° 88.9'° 87.2102
segmentation 89.1(0.76)"°  89.7(3.95)'° 91.4(1.77)'° 92.6(0.85)"°  89.2(2.12)*°  91.6(0.95)'"®
sonar 75.8(3.93)°  74.4(6.03)>  63.3(1.94)°  70.4(3.54)°  78.1(4.10)"°  81.6(6.32)>°
soybean 85.3(3.15)  90.7(2.02)>  9L.5(1.11)"  91.6(0.93)'  89.0(1.73)"°  92.9(1.82)"*
vowel 72.7(2.58)°  75.6(2.11)°  81.8(1.96)°  88.0(2.13)°  78.6(2.19)>°  85.2(2.51)>°
waveform 84.1(1.21)>  81.8(2.37)° 74.7(2.21)°  74.3(1.57)'  80.1(2.55)*'  83.2(1.75)*!
waveform-noise  79.9(2.71)"  79.2(2.46)'  66.7(2.03)®°  67.0(1.71)'  77.8(2.14)""  80.6(1.48)"*
wins 6 5 5 7 9 11

Table 4.1: Results of the experiments with Bayes classifiers with different mixture models for modeling
the class-conditional densities. Scores are in percentage of correct classification on the test set and are
the average over 10 experiments in a 5x2cv F test framework or a single run for NIST and satimage.
The standard deviation is given between parentheses. Each of the scores corresponds to the best model
out of the particular class of models as selected on validation data. The first superscript indicates the
number of mixture components of each class conditional density in the best model. For mixtures of
latent variable models, the second superscript specifies the dimension of latent space. The underlined
scores are the ones that do not pass the 5x2cv F test or McNemar’s test with 90% confidence when
compared with the model having the best score.

obtained by modeling each of the ten digits with a 10-component 10-factor MFA. This is comparable
to the best scores I obtained with large MLPs. Figure 4.3 shows the centers of each of these mixture
models. It can be seen that the mixture model succeeded in learning variations in writing style. Some
centers of the model for a “two”, for example, correspond to a “two” with curl and others to a “two”
without curl. This example illustrates that Bayes classifiers based on mixture models not only provide
fast training and good performance but also solutions which are relatively easy to interpret.

4.3.3 Bayesian MPCAs and MFAs in Bayes Classifiers

In section 2.7, we saw that it is possible to train mixtures of latent variable models in a Bayesian
framework such that the appropriate dimensions of latent space are determined automatically. This
can be especially interesting in the context of Bayes classifiers since in the above experiments we
assumed that the number of factors is equal for all mixture components and for each class. This was
necessary to keep model selection on validation data tractable. One would expect that within the
Bayesian framework results can be obtained which are at least as good since the Bayesian framework
enables us to cover the whole model space. Note that ideally, we would also like to automatically
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Figure 4.3: Means of a 10-component 10-factor MFA for each digit of the NIST data in a Bayes
classifier.

select the number of mixture components for each class. This is another free parameter which was
assumed to be equal for all class-conditional densities in the above experiments. A heuristic Bayesian
way to select the number of components has been proposed recently for MrAs (Ghahramani and Beal
1999) (see also the discussion at the end of section 2.7). In the experiments I did not pursue this idea
and fixed the number of mixture components.

The set-up of the experiments is almost the same as the framework described in section 4.3.1.
The main difference is that for each mixture model 40 iterations of EM were performed with the new
updates for the weight matrices: (2.62) for Mpcas and (2.61) for MFAs. After each fifth iteration of
the EM algorithm, the hyperparameters v were re-estimated (2.57).

The results for Bayes classifiers with MpCAs are listed in Table 4.2. For convenience, the results for
the best ML mixtures found in Table 4.1 have been copied here together with the number of mixture
components and the dimension of latent space. The Bayesian Mpcas had the same number of mixture
components as their ML counterparts and a latent dimension of f =d—-1. For the high-dimensional
NIST, optical, sonar, and soybean data sets, a lower value of £ was chosen. This was done partly to save
computation time and partly to avoid problems with the cheap and cheerful approximation already
outlined in section 2.7.7 The results for Baves classifiers with MFAs are in Table 4.3. The set-up was
as with the Bayesian MpPcAas and again the ML scores have been copied from Table 4.1.

When comparing the classification scores of the ML and the Bayesian models, one observes that
in most cases the difference is quite small (and very likely to be not significant). This does not show
the improvement we were hoping for by having a more fine-grained model search. However, Bayesian
estimation is certainly a useful and efficient approach since cross-validation is only needed for selecting
the number of mixture components. The average selected dimensionality over all mixture components
and all classes with Bayesian mixtures is given in the last column of Tables 4.2 and 4.3, This value is
often quite close to the value selected on validation data with ML, especially for Mras. With Mpcas
the selected number of factors is in general higher than with ML,

3The value of £ was again selected on validation data, which is not very satisfactory since this is exactly what we
wanted to avoid in the Bayesian framework! Luckily it is only an upper bound on the dimensions of latent space that
can be selected in the Bayesian framework.
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ML Mpca Bayesian Mpca

Data # components classification (%) # factors  classification (%) # factors
banana 5 93.3(1.80) 1 92.5(1.71) 0.7/1
cancer 2 95.2(1.10) 3 95.7(0.71) 4.1/9
dermatology 1 94.9(1.31) 1 95.8(1.73) 5.2/33
glass 5 56.9(4.75) 1 59.1(3.71) 0.1/8
heart 1 81.1(2.33) 1 81.2(3.47) 2.3/12
ionosphere 1 93.9(1.33) 3 89.3(3.22) 20.0/33
iris 1 96.5(1.79) 3 96.0(3.07) 2.0/3
letter 10 92.0(0.59) 5 93.1(0.49) 5.8/15
NIST 10 97.1 5 97.3 18.5/20
optical 3 95.9(0.60) 5 96.8(0.34) 11.6/15
pen 5 98.3(0.21) 3 98.7(0.25) 9/15
pima 1 74.5(1.33) 5 74.0(1.81) 40/7
satimage 10 88.9 5 88.8 9.4/35
segmentation 5 89.2(2.12) 5 87.8(3.04) 4.8/18
sonar 1 78.1(4.10) 3 78.5(3.60) 10.0/30
soybean 1 89.0(2.55) 5 86.4(2.54) 0/50
vowel 2 78.6(2.19) 3 78.9(2.78) 3.6/9
waveform 3 80.1(2.55) 1 83.2(2.48) 2.5/20
waveform-noise 1 77.8(2.14) 1 79.4(2.27) 2.5/39

Table 4.2: A comparison of Bayes classifiers with MPCAs trained with maximum likelihood and in the
Bayesian framework of section 2.7. Scores are in percentage of correct classification on the test set and
are the average over 10 experiments in a 5x2cv F test set-up or a single run for NIST and satimage.
The standard deviation is given between parentheses. The ML score corresponds to the best MPCca
model as evaluated on validation data. The second column (# components) indicates the number of
mixture components in the “best” model. The fourth column specifies the dimension of latent space
of the best model. The Bayesian approach has been applied to a MPCA with the same number of
components (as indicated by the second column) and with a number of factors £ =d—1. The final
column gives the mean number of factors selected by the ARD prior in the Bayesian approach versus

L.

Let us now have a look at a particular example of the dimensionalities of latent space selected
in the Bayesian framework. I took the satimage data on which the Bayesian MFA outperformed
its ML cousin (89.4% against 87.2%, significance according to McNemar’s test 99.7%). The Bayes
classifier consisted of a 10-component 35-factor MFa for each of the 6 classes in the satimage data. A
boxplot of the estimated dimensionalities of latent space for each class-conditional density is shown in
Figure 4.4. This clearly indicates that the Bayesian mixtures attributes a different number of factors
to each mixture component and also allows for differences between the classes.

4.4 Experiments: Mixtures of Experts

In this section, the results of a series of experiments with various types of mixture of experts models
are described. The main goal of the experiments was to evaluate the influence of the choice of the
gating network on the overall performance of the whole model. Three of the gating networks are of
the localized type described earlier and are based on GMMs, MPcas, and MFAs respectively. These
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ML Mra Bayesian MFra

Data # components classification (%) # factors  classification (%) # factors
banana 5 93.0(0.87) 1 93.1(0.77) 0.7/1
cancer 1 95.0(1.38) 1 94.9(1.07) 4.2/9
dermatology 1 94.1(2.02) 3 95.3(1.51) 0/33
glass 2 63.5(4.38) 1 63.8(4.04) 0.7/8
heart 1 81.9(3.31) 1 81.0(3.57) 2/12
ionosphere 1 93.3(1.28) 3 92.1(2.71) 19.5/33
iris 1 96.9(1.99) 1 96.9(2.74) 1.3/3
letter 10 94.1(0.27) 5 93.9(0.31) 4.4/15
NIST 20 97.3 10 97.6 5.4/30
optical 2 95.0(0.51) 5 96.0(0.38) 7.6/15
pen 10 98.5(0.20) 5 98.3(0.39) 5.4/15
pima 3 72.5(2.19) 1 69.0(4.78) 3.1/7
satimage 10 87.2 3 89.4 8.1/35
segmentation 10 91.6(0.95) 3 90.9(1.24) 3.8/18
sonar 2 81.6(6.32) 3 83.6(1.72) 6.4/30
soybean 1 92.9(1.82) 1 92.7(0.87) 0/50
vowel 2 85.2(2.51) 5 83.1(2.49) 2.7/9
waveform 2 83.2(1.75) 1 84.3(1.48) 0.8/20
waveform-noise 1 80.6(1.48) 1 81.1(1.68) 1.0/39

Table 4.3: A comparison of Bayes classifiers with MFAs trained with maximum likelihood and in the
Bayesian framework of section 2.7. See Table 4.2 for more details.

models are compared with the standard ME model in which the gate is a GLM with a softmax activation
function and a ME model with a softmax MLP gate. The expert networks were chosen to be GLMs in
all cases.

In the existing literature, experiments with localized mixtures of experts based on GMMs have
mainly been performed on isolated problems. The paper by Xu et al. (1995) in which the localized
model has been proposed, only evaluates the model on a toy problem for regression. Xu’s model has
also been extended to a constructive approach for training MEs which has been evaluated on several
small regression problems (Ramamurti and Ghosh 1999) but almost without comparing it with other
models. Various mixture of expert models have been evaluated on a large speech recognition database
in a hybrid neural network + hidden Markov model (Fritsch 1996). Hierarchical mixtures of experts,
mixtures of experts, gated experts and a mixture of Gaussian experts were used in this hybrid model.
The mixture of Gaussian experts is an extension of the localized mixture of experts that also uses
Gaussian kernels as experts. An empirical comparison on a handwritten digit problem of localized
mixtures of experts trained by gradient-based methods with MLps and radial basis function networks
is given in (Alpaydin and Jordan 1996). Gated experts have not yet been used often and if so, only
on isolated problems. Weigend et al. (1995) applied gated experts to several time series problems,
especially those with different regimes. As stated before, in (Fritsch 1996) a gated expert model is
used on a problem in automatic speech recognition, like in (Waterhouse and Cook 1997) where it also
compared with a MLP.

A thorough experimental evaluation of MEs has been done by Waterhouse (1997) in the DELVE
framework (Rasmussen et al. 1996). He compared standard MEs with his extensions: a constructive
algorithm for hierarchical mixtures of experts and a Bayesian training method for MEs. The choice
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Figure 4.4: Boxplot of the estimated dimension of latent space for a 10-component 35-factor MFAs
for each of the 6 classes of the satimage data in a Bayes classifier. Each box has lines at the lower
quartile, median and upper quartile values. The whiskers are lines extending from each end of the
box to show the extent of the rest of the values.

of the DELVE framework has the advantage that the results can be easily compared with the ones
obtained on DELVE with other methods. For classification problems, however, it suffers from a lack
of data sets and of results on other state-of-the-art models (see also Appendix B). I therefore chose
the experimental set-up which is described in the next section with a larger number of data sets.

4.4.1 Experimental Set-U.p

The experiments with the MEs were performed on the classification problems listed in Table 2.1.
Pre-processing of the attribute values was done as described in section 2.6.1. The target outputs are
based on the 1-of-C coding scheme with one output for each class.

Training of the localized mixtures of experts consisted of two phases. In the first phase, the
mixture model for the gating network was initialized and trained in an unsupervised fashion exactly
as described in section 2.6.1 to find a good initial configuration. In the second phase the whole
model was trained in the EM framework described in section 4.2. The M-step for each of the experts
consisted of three iterations of the scaled conjugate gradient algorithm (Mgller 1993). The M-step
for the gate is as described in section 4.2, based on the M-step for the corresponding mixture model.
For the experiments with standard MEs, the initial weights of the experts and the gate were chosen
randomly from a Gaussian distribution around zero. The M-step for each of the experts and the
gating network again consisted of three iterations of the scaled conjugate gradient algorithm. Early
stopping on a validation set (which contains one third of the training data and has balanced classes)
was used to avoid overfitting. The expert networks were GLMs with a softmax activation function in
all the different types of MEs.

McNemar’s test was used for the NIST and satimage data. For all other data sets the 5x2cv F
test was used with five replications of twofold cross-validation. The validation data set aside for
early stopping was also used to select the best model for each type of ME on a data set. The free
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Figure 4.5: Two-class (+ and -)° toy problem. The first solution is found by a localized 3-expert ME
with a GMM gate. The Gaussian components of the gating network are represented as ellipses at a
distance of one standard deviation. The hyperplanes of the GLM experts (dotted lines) nicely separate
the letters to which they are attributed. The next panels show 4 snapshots of training a 4-expert ME
with a GLM gate and their predicted values. The hyperplanes of the GLM gate are displayed (solid
lines) and are slowly positioned so as to decompose the problem into subproblems which are linearly
separable. The hyperplanes of the GLM experts in the last panel solve their respective subproblems.

parameters varied were the number of experts (at least 5 different values), the dimension of latent
space for localized MEs with a MPCa or MFA gate, and the number of hidden neurons for a MLP gate.

4.4.2 Evaluation on Artificial Data

The first example is a two-class toy problem in which I generated the acronym “ICANN” from several
Gaussians and attributed the “C” and the first “N” to one class and the others to the second class
(Figure 4.5). A 3-expert localized ME with a GMM gate trained using the EM algorithm described in
section 4.2, quickly found a solution. The Gaussian components of the gating network are positioned
in such a way that the subproblems are linearly separable in the most evident way. A 3-expert ME with
a GLM gate was not able to find a solution which classified all examples correctly but a 4-expert ME
was. However, the number of EM iterations was higher and the decomposition found is less elegant.
The solution is shown in the four right-hand panels of Figure 4.5 together with the hyperplanes of
the gating network. Interestingly enough the final solution only requires three experts and the fourth
expert is never active. In fact, the GLM gate does divide the data space into four regions but their
intersections lie far out of the range of the training data.

As a second example, we come back to the waveform and waveform-noise data (the last two rows of
Table 2.1) already used in section 2.6.2. The optimal Bayes classification rate for these two toy data
sets is about 86%. The results on waveform and waveform-noise are in Tables 4.4 and 4.5. The results
are the average over 10 experiments in a 5x2cv F test {(90%) framework and standard deviation is
given between parentheses.

On both data sets the standard MEs perform best, often significantly better than the localized
MeEs. To gain some insight in the solutions found by a mixture of 3 experts, Figure 4.6 shows the
projection of the waveform data onto its two leading principal components. Each of the 3 classes
turns out to lie on the edge of a triangle. The left half of Figure 4.6 illustrates the solution found by
a mixture of 3 experts with a MPCA gate. The three clusters found by the localized gate lie close to
the vertices of the triangle, and the subproblem solved by each of the experts is therefore effectively
reduced to a two-class problem for separating the two edges out of this vertex. The right half of
Figure 4.6 shows that the GLM gate did not find a meaningful decomposition of the problem but that

50r dark and light for the less keen-sighted.
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Gate test Gate test

Spherical 79.7(3.28) Full 76.8(1.38)

Diagonal 79.7(2.73) Spherical 77.4(1.50)

MraA-2 80.5(2.00) Mra-1 77.5(1.08)

Mra-1 80.6(2.85) Diagonal 77.6(1.74)

MpPcCA-3 80.8(2.16) Mra-2 77.6(0.92)

Full 81.2(1.40) MprcA-2 78.0(1.66)

Mra-3 81.6(1.39) Mpca-1 78.1(1.57)

MPCA-2 81.8(1.34) Mra-3 78.2(1.59)

MvLp (4) 82.2(1.63) MprcA-3 78.7(0.77)

Mpca-1 82.3(1.28) MLP (4) 79.6(3.44)

Perceptron  83.2(1.16) Perceptron 81.7(1.02)
Table 4.4: Classification results on waveform Table 4.5: Classification results on waveform-
with a mixture of 3 experts. Scores are in noise with a mixture of 3 experts. Scores are
percentage of correct classification. in percentage of correct classification.

this was not necessary anyway. All 3 experts separate the classes more or less nicely and the entire
ME performs a sort of averaging which is known to often improve accuracy.

4.4.3 Evaluation on Real-World Data

Experiments were performed on the real-world data sets listed in Table 2.1. For most data sets, the
number of experts tried had at least five different values ranging from two to a value depending on the
complexity of the problem but with a maximum of 20. The dimension of latent space for MPCAs and
MFas gates was varied in a similar way but with a maximum value of 10 (and of course upper-bounded
by the dimension of data space). The number of hidden neurons in the MLP gate was either 5, 10 or
20.

The results of the experiments are shown in Table 4.6, where the best method and the ones which
are not significantly worse (90% on the 5x2cv F' test or McNemar’s test) are set underlined. Note
that on eight data sets, the results do not allow any conclusion about the relative performance of the
different models. On all remaining data sets, however, a standard ME (with a GLM or MLP gate) is
significantly better than most of the localized MEs. In this respect the number of wins specified in the
bottom row of Table 4.6 is instructive. When comparing the various localized mixtures of experts, it is
clear that the results are not uniform. None of the GMMs or mixtures of latent variable models can be
preferred over the others. More specifically, there seems to be no correlation between the performance
of a gate as a density estimator in data space (section 2.6) and the classification results in a localized
ME. The results illustrate that the more complex decompositions offered by a MLP gate do not make
a difference. The scores are almost identical to the ones obtained with a GLM gate.

A criterion for quantifying the difference between feed-forward gates and localized gates is the
entropy of the gating outputs:

ZZQ] )In g;(x™),

n j=1

which we can normalize by dividing it by the entropy of the uniform distribution. On almost all
data sets, the entropy of the NN gates was bigger than the entropy of the localized gates by at least
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Figure 4.6: The solutions found on the 3-class waveform data by a localized (MPCA with one factor)
and a standard mixture of 3 experts. The data has been projected onto its two leading principal
components. The Gaussian components of the MPCA gate are shown as ellipses at a distance of one
standard deviation. The decision boundaries of the gating networks (solid lines) and of the expert
networks (dotted lines) are also displayed.
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, GMM

Data spherical  diagonal full Mpca MFa GLM MLp
banana 88.8(2.95)° 92.4(2.17)° 91.6(1.97)° 92.4(0.99)>" 91.1(2.70)>* 90.1(5.16)° 92.0(1.19)>*°
cancer 96.1(0.63)° 96.6(0.64)° 96.5(0.58)% 96.4(0.69)** 95.8(0.96)%" 96.5(0.48)* 96.4(0.84)>'°
dermatology  97.1(0.57)° 94.8(1.96)°> 94.2(1.89)* 96.2(1.14)*" 95.5(1.72)*°® 96.6(1.10)° 96.3(1.20)*>™°
glass 65.3(3.12)* 63.5(5.15)° 62.4(4.22)% 63.4(2.90)*" 64.3(3.67)°' 65.2(4.53)® 64.1(4.06)%°
heart 80.2(3.80)> 80.8(3.37)% 79.6(3.15)% 79.8(2.47)' 79.0(3.37)%' 80.0(2.71)® 81.1(2.07)**°
ionosphere 87.7(1.60)° 87.8(2.08)* 83.2(5.11)° 87.9(2.07)°' 86.3(1.57)%' 89.5(1.90)* 87.9(2.77)**°
iris 94.9(2.24)> 94.8(2.03)% 93.3(4.07)> 92.1(3.99)>' 93.5(3.13)*' 93.3(4.70)® 94.5(1.32)**
letter 85.9(0.85)"° 85.3(2.29)"° 89.0(1.27)"° 88.2(1.33)**" 87.5(0.99)'*° 90.0(0.64)"° 90.8(0.55)*>*
NlST 95.110 95‘410 94.210 m20,10 95.710.10 Mm 96_.010,10
optical 95.5(0.86)% 95.0(0.84)> 95.8(0.48)% 96.0(0.66)*° 95.9(0.41)>' 96.8(0.37)* 96.4(0.31)**°
pen 97.8(0.45)*° 97.6(0.39)° 97.8(0.24)> 97.7(0.82)** 97.8(0.21)>" 98.9(0.20)'° 98.9(0.18)**
pima 74.9(2.18)* 74.7(1.67)° 74.0(1.86)° 74.7(0.96)>° 74.5(1.78)>® 75.6(1.46)® 75.2(1.42)%°
satimage 82.4° 85.22 85.27 86.6%° 85.8% 88.4° 87.6%*
segmentation  93.8(1.11)* 93.4(0.91)* 93.6(1.49)* 94.0(0.94)** 94.0(0.77)%' 95.2(0.83)° 95.6(0.60)%%
sonar 78.3(2.65)* 79.4(2.90) 67.7(4.69)° 78.2(4.46)>' 79.8(3.00)*° 79.0(4.45)* 79.9(3.75)**°
soybean 89.9(2.70)° 89.9(2.90)* 89.3(1.75)% 89.2(3.22)>° 90.3(1.17)** 90.1(1.54)* 91.1(1.13)>'°
vowel 82.0(1.95)" 82.8(2.22)"' 81.0(3.35)"" 82.4(3.56)''-' 82.8(2.77)""* 81.5(2.61)"" 81.3(2.71)'**°
waveform 83.1(1.72)° 82.6(1.45)°> 82(2.00)® 82.6(1.45)*° 82.5(1.52)>° 82.0(1.19)® 83.5(1.77)%%
waveform-noise 77.8(2.09)° 78.5(1.59)° 78.7(2.04)* 79.9(1.91)>' 78.6(1.98)*° 81.7(2.04)° 82.6(2.00)**°
wins 5 3 1 4 3 10 11

Table 4.6: Results of the experiments with a mixture of experts and different gating networks. Scores
are in percentage of correct classification on the test set and are the average over 10 experiments in
a b5x2cv F test framework or a single run for NIST and satimage. The standard deviation is given
between parentheses. Each of the scores corresponds to the best model out of the particular class of
models as selected on validation data. The first superscript indicates the number of experts in the best
model. For mixtures of latent variable models, the second superscript specifies the dimension of latent
space. The second superscript for the MLP gate gives the number of hidden neurons. The underlined
scores are the ones that do not pass the 5x2cv F test or McNemar’s test with 90% confidence when
compared with the model having the best score.

one order of magnitude. This illustrates that standard mixtures of experts are far less localized and
attribute patterns across the experts, if this happens to reduce the total error. It seems to confirm
the claim of Jordan and Jacobs (1994) that the soft splits of the standard mixture of experts reduce
the variance of the model which might explain the better results obtained using NN gates.
The fact that localized gates may lead to hard splits of the data space can also be seen informally
from the definition of the posteriors 7;(x,t) (4.6) and the localized gate (4.2):
m (xn, tn) — ;D (xn)¢j (tn|xn) — 9j (xn)¢j (tn|xn) ]

éail)i (x™) ¢ (t7|x7) i g:(x7) by (67 |x)

If the initial values of g;(x) after unsupervised EM training of the mixture model are very close to one
for one output and hence close to zero for the others, it is likely that the posteriors will be close to
values of the gating outputs. Moreover, as we know from (3.18), during training the gating outputs
get pulled towards the posteriors, which in this case means that the initial hard split will almost not
change. This is what I observed in some experiments: the centers of the Gaussian components almost
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do not move during the EM training of the entire localized ME.

It also suggests possible ways to improve the results with localized MEs. One way might be
to initialize the mixture models for the gate in such a way that there is some overlap between the
component densities. Some initial tests show that this does indeed sometimes improve accuracy but
not enough to cover the gap with standard MEs. Another possibility is to generalize the E-step of the
EM algorithm by introducing a parameter §:

[ap; (x™) o, (£7[x™))° .

> [aipi(xm) ¢ (t7[x™)]#

=1

i (x",t") =

Thus, for 8 = 1 standard EM is obtained and decreasing 5 smoothens the distribution of the posteriors
which becomes uniform for # = 0. We could now start by training the localized ME in the standard
manner and gradually decrease § to force the gating network to decompose the data space in a
smoother way; it can be interpreted as inverse annealing. This has been proposed by Hoffman (1999)
in a different context but with a similar goal. In (Hoffman 1999) this method gave results comparable
to carefully annealed models and reduced overfitting of models trained with standard EM.

Let us conclude with a rough comparison of the results obtained with mixture models in Bayes
classifiers (Table 4.1) and those with MEs (Table 4.6). If we take the highest scores on each data set,
Bayes classifiers are best in 13 out of 19 cases! The difference in performance can be considerable:
with a full GMM 95% of the test data is correctly classified on letter while the best ME cannot do
better than 90.8%. We will perform a more a direct comparison on two machine vision problems in
Chapter 6.

4.5 Discussion

I also tried to take advantage of having a localized ME with a MPCA gate to perform localized
dimensionality reduction for each of the experts. This should be opposed to performing a global
PcA on the data and using the same reduced data set for all experts. In the localized scheme, each
expert can be assigned to a local PCA model (a mixture component out of the MPCA gate) and this
local PCA can be used to map the input data for the corresponding expert into a lower dimension
(Tipping and Bishop 1999). This idea is clearly in agreement with the assumption that different
features might be important in different regions of the data space. Local dimensionality reduction
was implemented by first training the localized gate in an unsupervised fashion and then constructing
the reduced dimension data set for each expert by projecting the data points onto the local linear
model corresponding to the expert. This led to much better results than with the global approach.
Note that in both cases, the gating network uses the original data and the experts the reduced data.
However, both models were clearly outperformed by a simple global PcaA for standard MEs.

An alternative approach for the combination of local experts using a decomposition through density
estimation has been proposed by Rida et al. (1999). It differs in several aspects from the localized
ME approach pursued in this chapter. First of all, they completely separate the training of the gate
and the experts. The gate is a GMM which is initialized in a constructive way using a variant of
the Kohonen map that tries to find an appropriate number of clusters automatically. Patterns are
then assigned to at least one expert using a threshold on the likelihood of a pattern for each mixture
component. Each of the experts is then trained on the (localized) subset of the data assigned to it.
This decoupling has the advantage that any standard classifier can be used as expert and not only
the ones which have a probabilistic interpretation as in MEs. This allows, for example, to use support
vector machines as experts in a straightforward way. Combination of the trained experts is done
as in this chapter with a normalized gating output possibly with additional coefficients adapted on
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validation data. The initial experiments in (Rida et al. 1999) look promising and their combination
of experts outperforms global models on two data sets.

Recently, an on-line EM algorithm for a localized ME with a full GMM gate has been proposed (Sato
and Ishii 2000) for regression problems. The idea is based on similar observations as the ones made
in section 2.8.4 regarding the on-line EM algorithm. When dealing with GLM experts with a linear
activation function, the M-step reduces to a weighted least-squares problem which depends entirely
on sufficient statistics (3.30). As we saw in section 4.2, the M-step for a GMM gate is almost identical
to the unsupervised case and is also fully specified in terms of sufficient statistics (section 2.8.4).
This means that the general on-line EM algorithm (Neal and Hinton 1999) can be applied in this
case as well. Sato and Ishii (2000) go one step further and develop a stochastic scheme which can
handle real on-line learning with data varying over time. This is done by including an exponentially
decaying average of the statistics of recently visited data points. They obtain good results on some
low-dimensional function approximation problems in a dynamic environment. Real on-line learning
could in principle also be used in classification problems with non-linear experts when making the
approximations described in section 3.4.2. This would again lead to a weighted least-squares problem
for each expert summarized by its sufficient statistics.






CHAPTER D

Combining Boosted Experts Dynamically

This chapter stands a little apart from the rest of the thesis. While adhering to the principle of
making a complex model out of simpler ones, this time we do not cast the problem in probabilistic
terms. An extension of Freund and Schapire’s (1997) AdaBoost algorithm is presented which allows
for an input-dependent combination of the base experts. A separate model is used for determining
the input-dependent coefficients of each expert. The error function minimized by these additional
models is a margin cost function that has also been shown to be minimized by AdaBoost. The models
used for dynamically combining the base experts are simple one-layer neural networks (Moerland and
Mayoraz 1999).

Roadmap

Ensemble methods such as bagging (Breiman 1996) and boosting (Freund and Schapire 1997) operate
by taking a base algorithm and invoking it repeatedly with different training sets. A main characteristic
of boosting is that it maintains a distribution on the original training set and sequentially adapts this
distribution to emphasize patterns which have been frequently misclassified. Boosting algorithms,
such as AdaBoost (Freund and Schapire 1997) and its variants, have shown very good performance
on a wide range of classification problems and with many different base algorithms (also called weak
learners) (Freund and Schapire 1996; Quinlan 1996; Schwenk and Bengio 1998; Dietterich 1998b;
Bauer and Kohavi 1999).

The combination of the different experts generated by a boosting algorithm is often based on some
form of weighted voting. In AdaBoost, for example, the higher weights are given to the experts with
the lower error. An alternative to using fixed weights when combining the base experts, is to allow
the weights to be input-dependent. This idea can be traced back to Quinlan (1996) who proposed
to define a confidence measure for an input pattern when using C4.5 as base expert. This heuristic
led to an improvement on a large majority of the data sets evaluated by Quinlan (1996). A related
approach is described in (Avnimelech and Intrator 1999) where MLPs are dynamically combined using
a confidence measure based on the difference between the highest and the second highest output of a
MLP on a multi-class problem. Waterhouse and Cook (1997) used boosting to initialize a mixture of
MLP experts and then retrained these initial experts and a randomized gate in the mixture of experts
framework. The gating network, thus, provides a dynamic combination of the base experts. On a
large speech recognition problem, Waterhouse observed that only when both experts and the gate were
retrained, performance improved with respect to the boosted model used for initializing the experts.

In this chapter, a more principled approach for dynamically combining boosted experts is proposed
(called Dynaboost). The approach is based on the recent idea that various boosting algorithms can be
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Combined model: H;(x) =D 1o uhi(x)
Expert coefficients: 3 / \
(8%} Q3 Q;
Base experts: hi(x) ha(x) ha(x) | ..... h;(x)
} } ! }
Training sample: P P, P P;
-

Figure 5.1: AdaBoost: iterative generation of an ensemble {h;} each member of which is trained on
data sampled from the original training data according to a distribution F;.

interpreted as a stage-wise gradient descent optimization of a cost function of the margins (Breiman
1997; Friedman et al. 1998; Ratsch et al. 1998; Mason et al. 1999). The margin concept plays an
important role in explaining the resistance to overfitting of boosting algorithms: larger margins imply
lower generalization error (Schapire et al. 1998). They also show that AdaBoost tends to increase the
margins of the training examples.

The DynaBoost algorithm extends other boosting algorithms by using a separate model for de-
termining the input-dependent coefficients of each expert. This means that the combined DynaBoost
model resembles a mixture of experts with a gating network dynamically combining the base experts.
The error function minimized by the models which make up the gating network is exactly the cost
function of the margins that has been shown to be minimized by AdaBoost. In section 5.1, we recall
the definition of AdaBoost and describe how to extend it to DynaBoost. The error function of the
margins is described in more detail.

The experimental results for the DynaBoost algorithm and a comparison with AdaBoost on a
range of binary and multi-class classification problems are reported in section 5.2. In all experiments
discussed here, the models used for dynamically combining the base experts are simple GLMs. It is
shown that the dynamic approach of DynaBoost significantly improves the results on most data sets
when rather weak base experts are used (GLMs in this case). With MLP base experts the difference
in performance between DynaBoost and AdaBoost is small.

5.1 AdaBoost and DynaBoost

The basic idea behind boosting is illustrated in Figure 5.1. An ensemble of base experts is constructed
in a greedy way adding classifiers one by one to the ensemble. It takes as input a training set of N
examples D = {(x!,#!),...,(x",t")} where x’ is drawn from the input space X and t! € Y is the
class label associated with x*. AdaBoost starts with a uniform weighting P, of the training data and
adapts the weighting such that the misclassified examples get more weight. On round i, a base expert
h; : X = Y is trained to minimize the error on the training data weighted according to the distribution
P;. The expert coeflicients «; are chosen such that greater weight is given to the expert with lower
weighted error. The combined model is a weighted vote over the base experts. The pseudo-code for
AdaBoost is given in the top half of Algorithm 9.
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Algorithm 9 AdaBoost.M1 for C-class problems (Freund and Schapire 1997) and DynaBoost

Require:

- A training set D of N examples: {(x!,t!),...,(x",tV)} with labels ! € Y = {1, ...

,C}.

- A weak learning algorithm L(D, P) which returns a base expert which minimizes the weighted

(on a distribution P) error on the training set D.

Ensure: Combined model Hj(x) = argmaxycy > ;c;p,(x)y=t @  (AdaBoost.Ml1)

P(n):=1/Nforalln=1,...,N
for j:=1toT do

h; == L(D,P)
€5 7= Dok (xmyptn L3 (1) {e; is the weighted error of h;}
if ¢; > 1/2 then

return H;_;

foralln=1,... ,N do
Pjsa(n) = Coy | CP™
end for

end for

end if
aj = §In(5H) {a; > 0}
Zj =2./e;(1 —¢;) {Z; is a normalization constant}
foralln=1,... ,N do
' . e~ [Z; if hj(x") =t"
PJ+1 (n) = P](n)' { e%i /Zj if hj(x") #t" (5'1)
end for
end for
Ensure: Combined model H}”™*(x) = argmaxycy 3 ;. (x)=¢ @i(X)  (DynaBoost)
P (n):=1/Nforalln=1,...,N
for j:=1toT do
h; = L(D, P)
€5 7= Dpah, (xn)ztn £3 (1) {e; is the weighted error of h;}
if ; > 1/2 then
return H]]?_y’l“‘
end if
Determine the parameters for the jth gater 8; which minimize (5.4): C7"™ = >N, ey
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One of the nice properties of AdaBoost is that if the base experts have weighted error ¢; smaller
than 1/2, the training error of the combined model goes to zero exponentially fast (Freund and Schapire
1997). While this theorem only addresses the training error, there is also strong experimental evidence
that AdaBoost is quite robust to overfitting and generalizes well (Freund and Schapire 1996; Quinlan
1996). Recent explanations of this phenomenon are based on the notion of margins. The margin of
an example is defined as the difference between the total weight assigned to the correct label and the
one assigned to a wrong label:!

m(Hj,x,t) = Z a; | — Z a; |- (5.2)

i<j:hi(x)=t i<j:hi(x)#t

In the two-class case, when encoding the two class labels as -1 and 1 respectively, this reduces to the
compact: m(Hj,x,t) =t 7_, a;h;(x) = tH;(x). A pattern has a positive margin if and only if it is
correctly classified by the combined model. Moreover, the magnitude of the margin can be interpreted
as a measure of confidence in the prediction.

Schapire et al. (1998) have demonstrated that larger margins imply lower generalization error and
that AdaBoost tends to increase the margins of the training examples. This is intuitively clear when
comparing the update of P (5.1) with the definition of the margin (5.2): most weight is placed on the
examples for which the margin is smallest.

Another recent break-trough in the understanding of boosting algorithms, has been the proof that
various boosting algorithms can be interpreted as a stage-wise gradient descent optimization of cost
functions of the margins (Breiman 1997; Friedman et al. 1998; Ritsch et al. 1998; Mason et al. 1999).
The margin cost function for AdaBoost.M1 at round j is:

N
Cj =) e mHX) (5.3)

n=1

and it can be shown that the updates of the distribution P; and the expert coefficients «;, and the
stopping criteria on ¢;, all follow from a gradient descent optimization of the above margin cost
function (see, for example, (Mason et al. 1999)). The cost function is a (rather loose) upper bound
of the 0-1 loss function.

Now, we are ready to replace the fixed expert coefficients a; of AdaBoost by input-dependent
coefficients a;(x) and present the DynaBoost algorithm. The combined model becomes:

HP¥™*(x) = argmax Z o (x).
tey | _ .=
i<j:hi (x)=t

The main problem is how to determine o;({x). Adhering to the greedy approach of AdaBoost, it
seems logical to use separate weak learners (which I coin gaters) for determining the input-dependent
coefficients: a;(x) = a;(x,80;), with parameters 8;. The error function which has to be minimized
for these new weak learners is readily obtained by generalizing (5.2) and (5.3):

N N
C;?Yna _ Z e(ZiSj:hi(xn);étn ai(xn,ei))_(Zisj:hi(x")=\‘-" a,-(x".ﬂ,-)) = Z (CPyna (5.4)
n=1

Jm
n=1

with C"ffl““ as short-hand for the error of the combined model at iteration j on pattern x®. The error
function which has to be minimized on round j+1 can then be written as the sum of the old C};™

1 This is actually a lower bound on the definition of the margin in (Schapire et al. 1998).
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multiplied by an exponential factor:

N
C;?_}{‘;“ = Z C;?,;'L"*‘e—ofﬁl(x":9-')1(’1]'+1(X")=t")7 (5.5)

n=1

where I(true) =1 and I(false) = —1. If we choose the a;11(x) = a;j4+1(x,0;41) to be differentiable in
its parameters 8,4, gradient-based optimization algorithms can be used for minimizing (5.5).

In the experiments described in the next section, a GLM with a sigmoid activation function was
chosen for each gater:

a;(x,0;) = 0(8; - 2) = 1/(1 + exp(~; - z)).

The choice of the activation function is motivated by the fact that the fixed expert coefficients a;
in AdaBoost are strictly positive. The lower asymptote of the sigmoid function guarantees that it
is also the case for the a;(x) in DynaBoost. The higher asymptote of the sigmoid function has no
counter-part in AdaBoost: o; as defined in Algorithm 9 can grow arbitrarily large when €; — 0. The
higher asymptote may nevertheless be useful since allowing large values for a;(x) could correspond
to overly confident predictions and a certain risk of overfitting. The main motivation for using a GLM
is that is an easy to learn rather weak learner which can be trained with gradient-based methods.
Another reason is that we are also interested in links between DynaBoost and mixtures of experts:
the combined DynaBoost model resembles a mixture of experts with a gating network dynamically
combining the base experts. The combined model obtained by DynaBoost could, for example, be
retrained in the framework of mixtures of experts as in (Waterhouse and Cook 1997).

The pseudo-code for DynaBoost is given in the bottom half of Algorithm 9. DynaBoost algorithm
is similar to AdaBoost but with all a; replaced by a;;(x), and the update of a;(x) consists of a gradient-
based optimization of a margin cost function (5.5). This cost function is minimized by putting more
weight on correct predictions and C;f;‘“‘ plays a role similar to P;(n): most weight is placed on the
difficult examples.

5.2 Experiments

The experiments were performed on 10 of the data sets listed in Table 2.1. On all benchmarks, 5x2cv
was used and the results presented are the average over the 10 outcomes.

We compare AdaBoost and DynaBoost using two different base experts: GLMs and MLPs with
10 hidden neurons. In all cases, we performed boosting by sampling where examples are drawn
with replacement from the training set with a probability proportional to the distribution P. The
output activation function for the base experts was either a sigmoid function for two-class problems
or a softmax for multi-class problems. The error function minimized by the base experts was cross-
entropy. The base experts and the GLM gaters (for DynaBoost) were trained for 30 iterations of
the scaled conjugate gradient algorithm (Mgller 1993). The number of rounds of boosting varied
with the data sets and was chosen to be 100, 200, or 500. The reported experiments are the first
executions of DynaBoost and more have to be done in order to allow more robust conclusions on the
performance of the method. Nevertheless, some general comments can be safely made on the basis of
these experiments.

Figure 5.2 clearly illustrates that the behavior of DynaBoost is quite similar to the one of AdaBoost
when strong learners are used as experts (e.g. MLPs, see the 10 plots in the right-hand half of the
figure). On the contrary, important differences are observed between the two methods when weak
learners are used.

The training error for DynaBoost always converged to zero, usually much faster than the one
for AdaBoost (not shown). This is not surprising since the use of dynamic coefficients considerably
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increases the power of the learning model. The drawback of a powerful model is the increased risk
of overfitting. Interestingly enough, none of the ten experiments with MLP base experts show any
overfitting behavior.

The analysis is more complex in the case of weak learners. An impressive improvement is obtained
with the use of dynamic coefficients in four cases, without any overfitting: banana, vowel, glass, and
segmentation. In two other cases, there are no significant differences between DynaBoost and AdaBoost
(sonar and cancer). For soybean, ionosphere and optical, the initial behavior of DynaBoost is good but
after some rounds the model starts to overfit. In the first two cases, the error of DynaBoost after
a few rounds is smaller than the smallest one achieved by AdaBoost and after a large number of
rounds the two errors are comparable. This means, in particular, that the use of a validation set to
stop the boosting process would have given a small and well performing learning model with dynamic
coefficients. Finally, in the case of pima, which is known to have a high level of noise, DynaBoost
overfits dramatically, while AdaBoost overfits only slightly.

5.3 Discussion

The DynaBoost algorithm seems an interesting extension of Freund and Schapire’s (1997) AdaBoost
and can improve upon it when the base experts are relatively weak. The use of dynamic coefficients
considerably increases the power of the learning model and the training error for DynaBoost usually
converges to zero much faster than for AdaBoost. The drawback of a powerful model is the increased
risk of overfitting, but the experimental results indicate that in many cases DynaBoost does not overfit.

Directions for future research include the investigation of the convergence properties of DynaBoost.
Can we prove that the training error of the combined model goes to zero as is the case for AdaBoost?
Is it possible say something about the generalization error of DynaBoost? On the experimental side,
more simulations have to be done in order to allow more robust conclusions on the performance of the
method. This can include the use of other base experts, such as stumps and general decision trees. It
would also be interesting to pursue other choices for the gaters. Finally, the combined model obtained
by DynaBoost could be retrained in the framework of mixtures of experts to improve performance
further:
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Figure 5.2: Comparison of AdaBoost (dotted) and DynaBoost (solid) on 10 classification problems:
test errors (in percentage of misclassified examples) are displayed as a function of the number of

rounds of boosting. The left-hand half gives the results with GLM base experts and the right-hand
half with MLP base experts.






CHAPTER O

Applications to Computer Vision

Roadmap

Some of the models presented in the previous chapters are applied to two classification problems in
the area of computer vision. The first data set is quite small and high-dimensional and consists of
grey level images of faces and non-faces. The second benchmark is the popular MNIST data set of
handwritten digits. I limited myself to Bayes classifiers using mixture models for the class-conditional
densities and standard MEs. The results with a ME are slightly better than the ones obtained with
MLPs but they both are clearly outperformed by a Bayes classifier using mixtures of latent variable
models. Without any further pre-processing the latter come quite close to the best results on the
MNIST data set.

6.1 Face Versus Non-Face Classification

In this section, we construct classifiers which have to distinguish faces from non-faces. The resulting
classifiers could, for example, be used in a face detection system in which the appearance of a face in
a larger image has to be detected (Ben-Yacoub 1997). Possible applications are in face recognition or
identification for access-critical services such as information about one’s bank account. Note that the
goal was not to build a state-of-the-art system but mainly to evaluate some of the models discussed
in the previous chapters on a small but high-dimensional data set.

For this purpose, we used a small database of face and non-face images which is described in detail
in Appendix D. The database consists of 25 x 25 grey level images of 1476 faces and 1628 non-faces
and was split in a training set of 200 faces and 200 non-faces, a validation set of 538 faces and 614 non-
faces, and a test set of 738 faces and 814 non-faces. Each of the images is scaled in the interval [0, 1]
and no other pre-processing steps were made (such as normalization to compensate for illumination
changes).

The classifiers constructed are Bayes classifiers using mixture models and mixtures of experts.
The set-up of the experiments was similar to the scheme described in section 4.3.1 for Bayes classifiers
and in section 4.4.1 for mixtures of experts. Both GMMs and mixtures of latent variable models
were used for modeling each of the two classes in a Bayes classifier. Mixtures models were trained
varying the number of mixture components m € {1,2, 3,5, 7,10, 15, 20, 30, 50, 100} and the dimension
of latent space for Mpcas and MFas £€{1, 2,3, 5,10, 15,20, 30,50, 75}.! Mixtures of experts with GLM

IWhen increasing the number of mixture components, the maximum dimension of latent space was gradually de-
creased to avoid singularities.
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GMM ME
spherical  diagonal  full Mpca MrA  GLM Mvrp
91.2* 90.1'" 092.8'° 944" 054'™ 03.1' 925"

Table 6.1: Results of the experiments with Bayes classifiers and mixtures of experts on the face data
set. Scores are in percentage of correct classification on the test set. Each of the scores corresponds to
the best model out of the particular class of models as evaluated on a validation set. The underlined
score is best with 90% confidence using McNemar's test. Superscripts are as in Table 4.1 (for Bayes
classifiers) and Table 4.6 (for mixtures of experts).

Center Factor loadings

r=
n ’ =

Center + Factor loadings

Figure 6.1: Mra with 1 mixture component and 75 factors trained on 200 faces of the face data set.
Out of the 75 factors, 10 typical examples have been selected. The sum of the center and these factors
illustrates some of the transformations which have been captured.

experts were used varying the number of experts m € {1,2,3,4,5,7,10,15,20}. With MLP experts
me{1,2,5,10} while the number of hidden units was chosen from {4,8,15,25,50}.

The results of the experiments of the classifiers which perform best on the validation set are given
in Table 6.1. A simple factor analyzer with £=75 outperforms all other models (McNemar's test with
90% confidence). Some characteristic aspects of the resulting model are visualized in Figure 6.1, The
center g of the FA represents the “average” face occurring in the training data. The factor loadings,
that is, the columns of W in (2.18), can be interpreted as transformations of this average face to
account for illumination changes and other facial characteristics. Figure 6.1 shows 10 of the 75 factor
loadings and the sums of the center and these factor loadings. Some of the features extracted are a
mustache in the first factor loading and glasses in the seventh factor loading. Eyes become in general
more visible and one can also observe changes in nose and mouth shape.

The FA and PpcA models are closely related to the well-known method of eigenfaces (Turk and
Pentland 1991) which is just a catchy name for a standard Pca on the face images: each image is
projected onto the principal eigenvectors and classified as a face if its reconstruction error falls below a
certain threshold. As already observed in section 2.3, the advantage of probabilistic PcA with respect
to standard PcA is that it is based on a proper probability model and incorporates the in-subspace
error. Factor analysis has moreover the advantage of separately modeling the pixel noise and this
might explain its good performance on this task. Good performance in a face recognition task has
also been obtained with MFas in (Frey, Colmenarez, and Huang 1998).

The best performing MpcA model has 10 mixture components, each with a dimension of latent
space [ =20. The 10 centers of the MpcAas for the face images and the non-face images are shown in
Figure 6.2. This clearly illustrates that the mixture components for the face images model different
types of faces and variations in lighting. For the non-face images one observes both texture images
and parts of a face (the ninth center, for example). The factor loadings of a mixture component can
now be interpreted as transformations of each of these centers. A mixture model is better suited for
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Centers
Mixing coefficients  0.02 0.045 0.01 0.17 0.15 0.16 0.12 (0.235 0.045 0.045

Faces ﬁmmnxznm
Non-faces E : H - - . x -

Mixing coeflicients  0.21 0.135 0.005 0.265 0.005 0.01 0.015 0.01 0.18 0.165

Figure 6.2: Two Mpcas with 10 mixture components and 20 factors trained on 200 faces and 200 non-
faces of the face data set. The first row shows the 10 centers of the MpcA for the face examples and
the second row of the Mpca for the non-face examples. The mixture coefficients a; of each mixture
component are also indicated.

capturing the non-linear manifold of “face space” than simple linear models Pca and Fa. However,
in this experiment it does not seem to pay off. A likely explanation is the limited size of the training
set with only 200 images for both classes.

The Gaussian mixture models are clearly outperformed by the mixtures of latent variable models.
As is to be expected when modeling the entire covariance matrix with so few data in 625-dimensional
space, the best full GMM has only one mixture component. Spherical and diagonal GMMs are again
not flexible enough to maodel the data.

The mixture of expert models are also outperformed by the best Bayes classifiers. However, they
are still better than a simple GLM (90.5%) and big Mups (91,3%) on the same data.

6.2 Handwritten Digit Recognition

From the small data set of the previous section, we now go to a large data set of handwritten digits
which can be obtained from (LeCun 2000), This MNIST data set is described in detail in Appendix D.
It comes as 28 x 28 grey level images in a training set of 60,000 examples and a test set of 10,000
examples. Each of the 8-bit pixel values is scaled in the interval [0,1]. The MNIST data set as it is
available from (LeCun 2000) is already normalized and centered. However, it is still highly diverse in
writing style, line thickness, slant, and arc size (see Figure D.3). This makes it a challenging test bed
for learning algorithms. It also has the advantage of being widely used: this enables the comparison
with many other classifiers.

The classifiers constructed are again Bayes classifiers using mixture models and mixtures of experts.
The set-up of the experiments is similar to the scheme described in section 4.3.1 for Bayes classifiers
and in section 4.4.1 for mixtures of experts. Both GMums and mixtures of latent variable models were
used for modeling each of the ten classes in a Baves classifier. Mixtures models were trained varying
the number of mixture components m € {10, 20, 30, 40, 50, 100, 200} and the dimension of latent space
for Mpcas and Mras £ € {10, 20,30,40}.7 Mixtures of experts were used varying the number of experts
m e {10, 20, 30,40, 50} and with both Gum and MLp experts. The number of hidden units in each MLp
expert was chosen to be 50 or 150. Training of the ME models deviated slightly from the standard Em
set-up. The total training set was divided into a set of 40,000 examples for estimating the parameters
of a M and a validation set of the remaining 20,000 examples for early stopping. Because of the
size of the training set, it was divided into 20 bunches of 2.000 examples and the EM algorithm was
applied on each of those bunches cyclicly. This means that we lose the convergence guarantee of the

Not all possible combinations were tried though.
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GMM ME
m £ | spherical diagonal MpcA Mra GLM MLP
10 10 92.0 92.6 979 979 964 97.2*°
20 98.2 98.0
30 98.3 983
20 10 93.6 93.8 98.0 97.7 969 97.5°
20 98.3 983
30 98.3 983
30 10 94.2 94.7 98.1 979 971 97.6*
30 985 984
40 20 94.4 94.9 985 984 972
40 985 985
50 20 95.0 95.2 984 984 975
100 95.8 95.9 97.4
200 95.8 96.5

Table 6.2: Results of the experiments with Bayes classifiers and mixtures of experts on the MNIST
data set. Scores are in percentage of correct classification on the test set. The underlined scores are
best with 90% confidence using McNemar’s test. m indicates the number of mixture components or
the number of experts. { indicates the dimension of latent space for the mixtures of latent variable
models. The number of hidden neurons in a mixture of experts with MLP experts is superscript.

EM algorithm proper, but in practice this simple strategy turns out to work quite well.

All classifiers have been trained only once and the corresponding results on the 10,000 example
test set are given in Table 6.2. McNemar’s test was used to determine whether the difference in
performance between two classifiers was statistically significant. These results were obtained with
subsampled 16 x 16 images in order to reduce the computational complexity.

We first have a look at the results obtained with the Bayes classifiers using a mixture model for
each digit class. As one can see, the GMMs are again not flexible enough to model the data. Even
when increasing the number of mixture components to 200, performance is still significantly worse
than for the other models.

Mixtures of latent variable models show good performance on the MNIST data set, also when
compared with previous results using other classifiers, as we will see later on in this section. This does
not come as a surprise as already in (Hinton et al. 1997; Tipping and Bishop 1999) good results are
obtained with MPCAs and MFAs on a smaller data set of handwritten digits.> Hinton et al. (1997)
proposed the use of mixtures of latent variable models since digit images are supposed to lie on a
non-linear, lower-dimensional, and smooth manifold. Using a mixture model takes into account the
non-linearity of the manifold, with the mixture components capturing different writing styles and
significant transformations. Each mixture component corresponds to a linear latent variable model
and captures local invariances induced by small transformations.

The different writing styles and transformations captured by a MPCA are illustrated in Figure 6.3.
Each digit was modeled by a mixture of 20 PPcAs with a dimension of latent space £=20. Figure 6.3
shows the centers of each mixture model. Examples of different writing styles can be seen in the
presence of twos with and without curl and of several sevens with an additional bar. Variations in

3Though (Hinton et al. 1997) used an approximation of the EM algorithm for these models in which examples are
attributed in a soft way to the mixture components which reconstruct them well.
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Figure 6.3: Centers of a Mpca with 20) mixture components (and 20 factors) lor each digit of the

MNIST data set

line thickness have also been taken into account:; see for example, the hirst and second «
['he centers incorporate the variations in slant of the

\ priori one might have expected MFas to outperform MpCas, given the more flexible diagonal
noise model of factor analyzers. | can see two possible explanations for the fact that their performance
is quite similar. Firstly, the normalization of the digit images during pre-processing might lessen the

need of a diagonal noise model, Secondly, as in the previous chapters, the noise model in a NIFA was
assumed to be tied across the mixture components. Mavbe this is too strong a constraint and better
results might be obtained by not tving the noise model. Similar performance with Mpcas and Mea

on a smaller handwritten digit data set was also observed in (Hinton et al. 1997)

Mixtures of experts perform considerably worse on the MNIST data when compared with mixtures

of latent variable models (Table 6.2). Moreover, they take far more time to train than mixture models

in Baves classifiers. While the training time for the best MpPcas and MFAs is a couple of hours, one

should at least count in terms of davs for training a mixture of experts on the MNIST data; this is
1all o when having MLP experts

[he results with mixtures of experts are actually quite good when comparing with previous result
for MNIST. A short summary of these is given in Figure 6.4 in which the best scores with some populas
nodels on the same data set without further pre-processing are displaved. The best M 1ssifies
2.95% of the test examples and has two hidden layers with 500 and 150 hidden units respectivi
I'his amounts to approximately 277.500 parameters (20x 20 images were used A mixture of 30 GLm
experts gives a similar misclassification rate of 2.9% (Table 6.2) but using three tunes less parameters

Mixtures of GLM experts also compare favorably with pairwise linear classifiers which give 7.6% erron

Pairwise coupling consists of training a separate linear model on each pair of classes and combining

the predictions to make a classification. For handwritten digit recognition this leads to 45 linea
classifiers, each of which is trained using about 1/5 of the data. Such a pairwise linear classifier is

clearly outperformed by a mixture of 40-50 GLM experts. This is also the case when using a pairwise
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Figure 6.4: A summary of the best scores obtained on the MNIST data set in this chapter and as
available in (LeCun 2000) and (LeCun et al. 1995). PWC stands for a pairwise coupling of linear
classifiers and KNN is a K-nearest neighbor classifier.

coupling of linear support vector machines (5.4% error in Kreflel 1999). Of course, each expert of a
mixture of experts is trained using all data* and computationally more demanding.

Bayes classifiers with mixtures of latent variable find are among the best classifiers on the MNIST
data, although their performance is not yet state-of-the-art. The best off-the-shelf classifier is a
support vector machine with a polynomial kernel (1% error). Other classifiers which perform better
incorporate, in one way or another, prior knowledge of the problem of handwritten digit recognition.
I expect that better results can also be obtained with mixtures of latent variable by some additional
pre-processing. A simple approach would be to straighten up the slanted digits. This has proved
fruitful for other classifiers. In fact, the best result with a MLP has been obtained in this way and
reduced the misclassification rate to 1.6% (LeCun et al. 1995). A more ambitious step would be to
incorporate transformation invariance directly into the latent variable model (Jojic and Frey 1999).

4The posteriors in the EM algorithm might actually have a similar effect when going to zero.




CHAPTER 1

Conclusions and Outlook

The principle of making complex models out of simpler ones has proved a fruitful idea throughout this
thesis. One of the important advantages of such an approach is that it leads to learning algorithms
which are analytically and computationally tractable. In fact, the algorithms for the simple models
are often at the heart of the algorithm for the complex one. The EM algorithm for maximum likelihood
estimation is a versatile tool which embodies exactly this idea in a probabilistic context. It has been
shown at work both in unsupervised learning and supervised learning with mixture models. We can
also use EM in models with continuous latent variables that form the hidden causes for the patterns.
The kernel trick can also be interpreted as a way of making a complex (non-linear) model out of a
simple one. It is possible to apply this trick to any algorithm which can be formulated solely in terms
of dot products between the patterns and it does not require any other changes of the algorithm.
Boosting is yet another incarnation of the “complex out of simple” idea. It can be used with any type
of classifier as a simple model where the boosting algorithm mainly determines the specific training
set for each of the base models.

These basic models and techniques are well-known in the machine learning community but one
of the contributions of this thesis is that they are presented in a unified framework. We now have a
closer look at the more technical contributions and possible directions for future research.

Mixtures of latent variable models A detailed derivation of the general EM algorithm was given,
which was specialized to maximum likelihood estimation for GMMs and mixtures of latent variable
models. The first original contribution of the present work is mainly of empirical nature. Mixtures
of latent variable models were demonstrated to consistently outperform Gaussian mixture models
on 18 real-world data sets when applied to the problem of density estimation. This holds both in
terms of generalization performance and computational complexity. A disadvantage of mixtures of
latent variable models is that one has to choose extra free parameters, viz. the dimensions of latent
space. While this can be done using validation data (and in fact that is what I did in the experiments
mentioned above), it would be far more attractive if the appropriate dimensions could be determined
automatically. It was shown that a Bayesian procedure can be used for this purpose without much
computational burden. Bayesian Pca (Bishop 1999a) was derived as a special case of Bayesian FA.
A series of experiments on toy and real-world data illustrated that the method is capable of finding
the appropriate dimensions of latent space during training. Results obtained are at least as good as
with maximum likelihood while avoiding a discrete model search.

Mixture models were used as class-conditional densities in a Bayes classifier. Also in this case,
mixtures of latent variable models perform better than GMMs and Bayesian inference again proved to
be effective. On the MNIST data set results were obtained which are close to the best state-of-the-art
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classifiers. I do expect mixtures of latent variable models to become an alternative to GMMs in other
contexts, for example as an output density in a Hidden Markov model (Saul and Rahim 1998).

The above mixture models are mixtures of Gaussians whether constrained or not. This implies that
they are most suitable for modeling continuous variables. Real-world data, however, often contains
binary and categorical attributes mixed with continuous ones. Discrete attributes can be handled by
non-linear latent variable models known as latent trait models in the field of statistics {Bartholomew
and Knott 1999). The non-linear models loose the analytical tractability of the Gaussian ones but a
variational approximation can be used to give an efficient algorithm, as was shown recently for the
binary case (Tipping 1999a). It would be interesting to apply these techniques to mixed data and
develop mixtures of non-linear latent variable models.

I also proposed exact on-line versions of the EM algorithm for a mixture of latent variable models.
On-line EM for Pca was demonstrated to speed up the extraction of principal components on a few
small data sets. This merits a more careful experimental evaluation and also the extension to mixture
models has not been tried out yet. Moreover, stochastic versions of the EM algorithm are expected to
lead to a further speed-up of the learning process.

Kernel PCA As an application of the incremental and on-line EM algorithms for Pca, I showed
that they can make kernel Pca feasible for large data sets with more than 10,000 patterns. This
allowed us to extract a high number of non-linear features which were subsequently used to train
simple 1-layer neural networks. The results obtained on some of the data sets outperform all other
models described in this thesis. EM for PcA showed rapid convergence in practice but it is an open
question whether numerically superior techniques exist which also avoid storing the kernel matrix.

A disadvantage of EM for kernel PCA is the need to calculate the entire kernel matrix in an
incremental way on every iteration. Experimental results indicate that non-linear features which are
almost as good can often be found by applying kernel PCA to only a small random subset of the data.
This is not a very systematic approach but a recent proposal (Smola, Mangasarian, and Scholkopf
1999) holds the promise of doing it in a well-founded greedy way. It might well be the way to go for
kernel PcA and other kernel methods.

Mixtures of experts A review of training methods for MEs was presented which collects results
scattered around the literature. As a corollary a weak consistency property of the ME error function
was proved demonstrating that at its global minimum the ME outputs estimate posterior probabilities.
The link to the chapter on mixture models in unsupervised learning was provided by using mixture
models as a gating network. These localized mixtures of experts turn out to perform not as well as
standard MEs with a GLM gate. This is due to the softer splits in data space induced by the latter. I
did not pursue a systematic comparison of MEs with other non-linear models. However, on most of the
data sets used throughout this thesis I obtained similar scores with MLPs. A ME model sometimes has
an edge on MLPs in terms of training time and the number of parameters though, as was illustrated
on the MNIST data set.

The situation can be different if we have an a priori belief that the data space can be decomposed
in a meaningful way. MEs might be the model of choice in that case. Examples are time series
with different regimes (Weigend, Mangeas, and Srivastava 1995) and modeling multi-modal data for
regression (Bishop 1995, section 6.4).

Boosting The last part of this thesis described a non-probabilistic way of making complex models
out of simple ones, viz. boosting. The AdaBoost algorithm was extended by allowing an input-
dependent combination of the experts. It was shown that the dynamic approach often leads to better
scores when weak GLM experts are used. This work is rather preliminary and can be extended in
various ways. A first issue is that the choice of a logistic function in the gate is quite arbitrary and
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other choices (linear, for example) should be experimented with. The choice of a linear activation
function would have the advantage of giving a stronger bound on the training error than AdaBoost,
since it contains having fixed weights as a special case. Other choices for the experts, such as stumps
and decision trees, and for the gate, such as a small RBF network, are also worth exploring.






APPENDIX A

Matrix and Probability Identities

Notation and Some Pointers

As in the rest of this thesis, lower-case bold letters a, b etc., denote vectors and upper-case bold
letters X, Y etc., denote matrices. For a more detailed description of the notational conventions, see
page xi. In what follows, I assume that matrices are non-singular when taking the inverse. Matrices
and vectors are also supposed to have the right size for the operations applied to them.

Most of these identities are a subset of the ones collected on a cheat sheet made available by
Sam Roweis: http://www.gatsby.ucl.ac.uk/"roweis/notes/{matrixid.ps.gz,gaussid.ps.gz}.
Other useful references are: (Marcus and Minc 1992; Golub and Van Loan 1996; Kreyszig 1999) for
linear algebra and (Mardia, Kent, and Bibby 1979) for probability theory.

Trace Rotation

tr(XY -+ Z) = tr(ZXY - ) = - - = tr(Z- - - XY) (A.1)
Derivatives
d(a’b) 0(bTa) _
da = Ha b (4-2)
T
%‘aaﬁ = (X +X7)a (A.3)
or(XTYX) T
—x = (Y+YNX (A4)
Oln|X| _
% = (xH! (A.5)
d(a’Xb)
—5‘5‘(—‘-— = abT (AG)
9(aTXTpb)
—5x = bTa (A7)

Matrix inversion lemma This lemma is useful for calculating the inverse of certain matrices in a
more efficient way:

X+YZY) ' =X -X'Y(Z 4+ YTX YY) lyTX (A.8)
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where X and Z are square and non-singular. If X is easy to invert (for example, diagonal) and Y has
many rows and few columns, this lemma can make taking the inverse computationally efficient. It is
also known as the Sherman-Morrison-Woodbury formula in the literature (Golub and Van Loan 1996,
page 50).

Determinant factoring lemma For diagonal and non-singular £x¢ matrix R, £xk matrix X and
kx ¢ matrix Y:

R+ XY| = |R|I; + YR™!X|. (A.9)

If £>> k and using that the inverse and determinant of diagonal matrix R are easy to calculate, this
lemma can considerably simplify the calculation of the determinant.

Vec operator Function that stacks the columns of a matrix into one vector:

az1 Q22

vec [(au a12>] = (@11 an a12 azz)T- (A.10)

Diag operator Function from vectors to matrices that puts the vector on the main diagonal:

. aq _f{a 0
aoa[(2)] = (4 9). e
I also use it as a function from matrices to matrices that sets the off-diagonal elements to zero:
. 0
dia apy a2 — {1 )
128 [<a21 az2 0 as
Kronecker product The Kronecker product of two matrices is defined as:
11 @12 a1B a12B
B= . A12
(am a22) @ (ang a22B) ( )
Then with the “vec” operator (A.10), we have:

vec(ABC) = (CT ® A)vec(B) (A.13)

(Golub and Van Loan 1996, page 180). This is a fact that often comes in handy when solving matrix
equations.

Element-wise product The element-wise product of two matrices is:
ai; Qe bii  bi2 anbyy  aiebio
o = . A.ll4
<a21 022) (b21 b22) (a21 bo1  as2bor (A.19)

With the “vec” (A.10) and “diag” (A.11) operators , the element-wise product can be removed from
an expression:

vec(A o B) = diag{vec(A)}vec(B) (A.15)
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Basic Probability Rules

P(x) = Z P(x,y) (Sum rule)
y
P(x,y) = P(y|x)P(x) (Product rule)
P(xly) = Plylx) P(x) (Bayes’ theorem)

P(y)

Linear functions of a Gaussian vector
a~N(p,XE) = Xa+b~NXp+b XTXT),

which is a special case of (no matter how a is distributed):

EXa+b)=XE@R@)+b
Covar(Xa + b) = XCovar(a)XT.

Marginals and Conditionals of a Gaussian

o=~ (Bl 2 )

with Z the cross-variance matrix between x and y, the Gaussian marginal distributions are:

x ~ N(a,X)
yNN(b’Y)a

and Gaussian conditional distributions:

xly ~N@+zZY Yy ~b),X -2y 'z7)
ylx ~N(b+2ZTX (x—a), Y -Z2TX"'Z).

(A.16)

(A.17)
(A.18)

(A.19)

(A.20)
(A.21)
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Statistical Tests

The statistical tests that have been used in the evaluation of the experiments throughout this thesis
are the 5x2cv F test and McNemar’s test.

5x2cv Test

Dietterich (1998a) proposes to use a 5x2cv ¢ test if learning is not too computationally demanding
and an algorithm can be repeated several times. This test is a variation on the well-known k-fold
cross-validation: the data sample is divided into & portions and the algorithm is applied k times where
for each run a different portion is left out for testing and the k£ — 1 remaining portions are used for
training. A standard choice in the machine learning literature is to have 10 folds. However, in this case
there is a 80% overlap between each pair of training sets which severely invalidates the independence
assumptions needed for applying a ¢ test.

Dietterich’s 5x2cv t test offers a partial (of course, having a single realization of the data of limited
size, we cannot expect to guarantee independence) solution for this problem. This test consists of
5 (random) replications of 2-fold cross-validation, thus making the 2 training sets in a replication
non-overlapping and reducing dependence. Dietterich shows that his test has acceptable Type I error
and reasonable power. The 5x2cv t test, however, involves an arbitrary choice of some factor and a
more robust variant has been proposed by Alpaydin (1999): the combined 5x2cv F test which has
even lower Type I error and higher power.

The 5x2cv F' test and its assumptions can be derived as follows. In each replication, the two
learning algorithms A and B that we want to compare, are then trained on one halve of the data and
tested on the other halve. We define:

pi; = difference between the (test) error of the two algorithms on fold j in replication 4
j=1,2andi=1,---,5.

The test is now based on the following assumptions under the null hypothesis that the two algorithms
have the same error rate. Each of the error rates can be considered normally distributed {in the case
of regression) or binomially distributed (in the case of classification) and hence approximated by a
normal distribution, for example (Feller 1970, chapter 7) and (Mitchell 1997, chapter 5). Each of
the p;; is then the difference of two normally and identically distributed quantities and (wrongly)
assuming that they are independent:

pij ~N0,0) = pi/o~N(0,1) = pijc°~x] > N::ZX:(pfj)/(r2 ~x3, (B.1)
i g
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On the other hand, denoting the mean of the error rates of replication ¢ as P, and the estimated
variance as var; = (p;; — §;)? — (pi2 — P;)? and (wrongly) assuming that p;; and p;; are independent:

*

pij ~N(0,0) = varfoi~xi = M:= Z:var,-/a2 ~ X3, (B.2)

where in both steps marked with a = in (B.1) and (B.2), we also (wrongly) assumed independence of
the summands. Finally, we can use a well-known fact about F' distributions (Kreyszig 1999):
X] /TL

X1 ~ xi and X5 ~ an and X, X5 independent = m ~ Fpm.

And (again) wrongly assuming that N and M defined in (B.1) and (B.2) respectively, are independent,
we arrive at the 5x2cv F' test (Alpaydin 1999):

_N/10 X 20h)
T M/5 T 23, var;

f ~ Flo,s-
Thus, the null hypothesis that the two algorithms have the same error rate can be rejected with 95%
confidence if f > Fyg5 = 4.74.

McNemar’s Test

Dietterich (1998a) proposes to use McNemar’s test if learning is computationally expensive and can
only be performed once. In this case, the data sample is split in a fixed training set and test set. The
two learning algorithms A and B that we want to compare, are then trained on the training set and
their prediction on the test set leads to the following contingency table:

noo | Moz # of ex. misclassified by A and B | # of ex. misclassified by A4, not by B

N0 | N1 # of ex. misclassified by B, not by A | # of ex. correctly classified by 4 and B

Under the null hypothesis that the two algorithms have the same error rate, the following statistic
is approximately x? distributed with one degree of freedom (Everitt 1977):

_ (Ino1 = nyo| = 1)?
o1 + Nio '

Thus, the null hypothesis that the two algorithms have the same error rate can be rejected with 95%
confidence if ¢ > x? = 3.84.

Of course, a major disadvantage of McNemar’s test is the fact that it is entirely based on fixed sets
and thus does not take into account variability. However, since this test is typically applied when the
given data set is big, this variability is expected to be quite small. According to Dietterich (1998a),
McNemar’s test has acceptable Type I error and is also quite powerful.

Remark The panoply of assumptions that were necessary to derive McNemar’s and the 5x2cv F
test clearly illustrates one of the main problems of experimental evaluations in machine learning. A
different approach has been taken in the DELVE project (Rasmussen et al. 1996) in which large data
sets are used to be able to construct various non-overlapping training and test sets of varying size.
This allows for more independence between runs and a more systematic exploration of the problem
space. But as stated by Neal (1998), the major weakness of DELVE is its lack of data sets; this
is especially so for classification problems. Therefore, I opted for a more “traditional” experimental
protocol in my thesis. End of Remark
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Data Sets

Most of the data sets used in this thesis can be obtained from the UCI Machine Learning Repository
(Blake, Keogh, and Merz 1998) via the Internet: http://www.ics.uci.edu/ mlearn/MLRepository.
html. At the same address a more detailed description of the data sets and further references can also
be found. The list below gives, for each entry, the name I used to designate a data set in this thesis,
followed between brackets by the name under which one can find it in the repository and a short
description. The reader is referred to Table 2.1 for a compact representation of some characteristics
of the data sets.

banana  Two-dimensional toy problem with two classes -
generated from several nonlinearly transformed Gaussian "1“* + * "
and uniform blobs (Figure C.1). It was first used in (Réatsch, Lt f’f'tf.' CUET
Onoda, and Miller 1998). A script for generating the ba- *‘;f ;:J ey :I%J:: 1 :
nana data has been made available by Gunnar Rétsch: http: S ,*_*-'.." e '..ff_ﬁ A
//www.first.gmd.de/ raetsch/data/banana.txt e ,:.:' soes, : ":*-;;i -

R -t . AR
cancer (Wisconsin Breast Cancer) Each example has one Y -:' e **:.’i.ﬁ :,';ﬁ A
of 2 possible classes: benign or malignant. The breast can- L - ‘;&5;?: T

cer data set was made available by Dr. William H. Wolberg
from the University of Wisconsin Hospitals, Madison (Man-
gasarian and Wolberg 1990).

Figure C.1: banana data

dermatology = Diagnosis of 6 dermatological (erythemato-
squamous) diseases.

glass (Glass Identification) Classification of 6 types of glass motivated by criminological investiga-
tion. At the scene of the crime, the glass left can be used as evidence ... if it is correctly identified.

heart (Heart Disease) I used the Cleveland part of the heart disease data sets made available by
V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.
Goal is to distinguish between presence and absence of heart disease in a patient.

ionosphere  Classification of radar returns from the ionosphere. The targets were free electrons in
the ionosphere. ”Good” radar returns are those showing evidence of some type of structure in the
ionosphere. ”Bad” returns are those that do not; their signals pass through the ionosphere.
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iris  R. A. Fisher’s classic data set where the goal is to predict the type of iris plant given the sepal
and petal lengths and widths.

letter (Letter Recognition) The objective is to identify each of a large number of black-and-white
rectangular pixel displays as one of the 26 capital letters in the alphabet. Each display was converted
into 16 primitive numerical attributes (statistical moments and edge counts).

NIST  Data from the NIST Special Database 3 of handwritten digits (Garris and Wilkinson 1992).
Data has been size-normalized, deskewed, centered, and smoothed to obtain 16x 16 images with their
values scaled to the interval [0, 1]. The training set consists of 15,025 digits from 140 writers and the
test set of 4,975 digits from 48 writers (not overlapping with training set).

optical (Optical Recognition of Handwritten Digits) From a total of 43 people, 30 contributed hand-
written digits to the training set and another 13 to the test set. This gives a training set of 3823
examples and a test set of 1797 examples. Note that I used only the training set in all experiments.

pen (Pen-Based Recognition of Handwritten Digits) A digit database obtained by collecting 250
samples from 44 writers on a pressure sensitive tablet with a cordless stylus. The digits are repre-
sented as a sequence of points regularly spaced in arc length. Only the training set of 30 writers was
used in the experiments.

pima (Pima Indians Diabetes) The diagnostic investigated is whether the patient (Pima Indian
woman) shows signs of diabetes.

satimage (part of the Statlog Project Databases) Generated from Landsat satellite data. Goal is to
predict the type of soil given multi-spectral values of pixels in 3x3 neighborhoods in a satellite image.
Data comes as a separate training (4435 examples) and test set (2000 examples).

segmentation (Image Segmentation) The instances were drawn randomly from a database of 7 out-
door images. The images were handsegmented to create a classification of the type of surface for every
pixel.

sonar (part of the Undocumented Databases) Discriminate between sonar signals bounced off a metal
cylinder and those bounced off a roughly cylindrical rock.

soybean  Prediction of 19 types of soybean disease given 35 categorical attributes.
twos  The subset of “twos” from our NIST data set.

vowel (part of the Undocumented Databases) Speaker independent recognition of the eleven steady
state vowels of British English using LPC derived log area ratios.

waveform (Waveform Data Generator) Toy data from (Breiman, Friedman, Olshen, and Stone 1984,
pages 49-55). A script for generating the data is available from the UCI repository. See also page 40 of
this thesis for a more detailed description. Known Bayes optimal classification rate of 86% accuracy.

waveform-noise (Waveform Data Generator) Like waveform but with 19 extra attributes that are all
noise attributes with mean 0 and variance 1.



APPENDIX D

Vision Data Sets

face Data Set

The face data set as available at IDIAP (Ben-Yacoub 1997) consists of 25 x 25 images of 1476 faces
and 1628 non-faces. Out of these two ensembles a training and test set were made of equal size each
containing 738 faces and 814 non-faces. Some examples of the training and the test set are shown in
Figure D.1 and D.2. The face images contain both men and women', people with glasses, a beard
or a mustache, and a variety of different facial expressions. The non-face images were mainly taken
from general textured images, although some contain a small part of a face (for example, the first two
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Figure D.1: Some examples of faces and non-faces in the face training set.
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Figure D.2: Some examples of faces and non-faces in the face test set,

In the experiments described in section 6.1, the training data has been further subdivided into
a set for determining the parameters of a model consisting of 200 faces and 200 non-faces, and a
validation set for model selection with the remaining images (538 faces and 614 non-faces).

MNIST Data Set

The MNIST handwritten digit data set has been made available by Y. LeCun of AT&T Labs Research
at http://wuw.research.att.com/ yann/ocr/mnist/index.html. This data set has a training set

‘though not many.
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f 60,000 examples and a test set of 10,000 example It is actually a subset of the union of two
different data sets provided by the US National Institute of Standards and Technology (NIST): NIST
Special Database 3 (SD-3)° and NIST Test Data 1 SD-1 I'he former has been collected amongst
S census workers while SD-1 consists of digits written by high school students. SD-1 is, therefor

much more difficult to recognize than SD-3

At ATET out of SD-1 and SD-3. the MNIST data set has been constructed to obtain a bigger and
more balanced data set. The 60,000 example training set is composed of 30,000 patterns from SD-1
and 30,000 patterns from SD-3. The 10,000 example test set is composed of 5,000 patterns from SD-1
and 5,000 patterns from SD-3. The training set contains examples from approximately 500 writers

Sets of writers of the training set and test set are disjoint

T | ]
't rngi 1 DI wnd I es | 1 NIST 19| I 20 |
| 1 e § I t I b sultin ntal S-bi | 15 A
| he ar \Sil 10 These imag
in a 28 x 28 image by computing the center ol mass he pixels an ransiating the nag
Figure D.3 shows 10 examples of each digit from both the training and the test set. As one car
there is a large variation in line thickness, writing style and angle. and even some noise (101
example. in the box of the fifth 6 and fourth 7 in Figure D.3a). In most of the experiments described

in section 6.2 the images were subsampled to 16 x 16 pixels to save computation time
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Figure D.3: Examples of hand-written digits in the MNIST data set




APPENDIX E

From Factor Analyzers to Principal
Component Analyzers

It is described in detail how to transform the EM algorithm for a MFA (Algorithm 3, page 34) in an
EMm algorithm for Mpca (Algorithm 4, page 36) in the form as it occurs in (Tipping and Bishop 1999).

The first stage of the two algorithms is exactly the same; therefore, we focus on the second stage
of the algorithms and for convenience it is repeated here for the MFa algorithm:

{Second stage: E-step (EM for MFa)}
for j :=1tom do
N; =1+ W/R;'W;
for n:=1to N do
(z) = NFIWIRTH (x" — )
(23(2)7) = N7 + (e} ) (2})7
end for
end for
{Second stage: M-step}
for j:=1tom do

W, =[S b = ) )| [ by Wz )Ty
R, = yrmydiag[ 5, b (X" = 1) = W; (27 )}x" = 1))

end for

A first simple rewriting consists of replacing the diagonal noise covariance matrices of a MFA by
the single variance parameter 012- of a MPCA in the equations for the E-step:

N; =1, + Wi W,;/o? (E.1)
(2}) = N7'"WI(x" — ;) /ol (E.2)

Now, it is merely a question of manipulating the updates of the parameters W; and R; (which of



130
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course has to be reduced to an update of o). We start with the factor loading matrix W;:
= [ o6 = T[S rz ™)
= [ = )] [y + (250250

-1

Substituting (E.2) and using that N is symmetric:
= [D R = ) (6 = ) T (WNG o) [3 by ™) N7 +
+NIWI (" — p)(x" — ﬂj)TWjNJ-—l/"}l}]

Defining the weighted covariance matrix S; = Z—hl,(?c"_) > A (M) (x™ - py)(x™ — p;)T and using
that A='B~! = (BA) !

-1
= [Z hj(x")] S;W; {Z hi(x™) {071 + N W] (x" — pj)(x" - Mj)TWj/Uf}]
n n
-1
- [Z h; (xn)] S;W; [Z B30+ 3 b (xINTIWT (™ — ) (x™ — )T W /a;]
n n n
Moving 3 h;(x™) within the inverse:

= W, 031, + {3 Ay () (02N W (" — ) (<" — 1) "W} 3y xm)]

-1

= 8 W, {021, + (o2N;) " WT'S; W,

Defining, M; = 03N; = 0”1, + W] W}, the new factor loadings become:

W) = S;W,(c?1, + M; ' W] S;W;)~". (E.3)
The MFA update of the noise covariance matrix is:
Rj = 5= h dlag[z By (M = p3) = Wi(23 )} = )T

=diag[ 5 h H)Zh (x")W (27 )(x" —uJ)T].
Substituting (E.2):

= diag[Sj W’ (N7 1/02)WT2:h (x™ — pi)(x™ — uj)T]

ol h
= diag [sj - W;.(Nj—1 /aj)ij sj].
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Replacing the diagonal R; with 012- by taking the trace and dividing by the length of the diagonal,
the new noise variance becomes:

1 _
(63) = —tr(S; — WiM;'WTS;). (E.4)

The second stage of the EM algorithm for MPCA can now be written as (using (E.3),(E.4), and the
definitions of M; and the weighted covariance matrix S;):

{Second stage (Em for MPCA)}
for j:=1tom do
Sj = giw Lon i (X")(x" = p3)(x™ — p5)T
Mj = 0'32'13 -+ WTW]
W;, Woia,j := S;W;(03, + M 'WTS;W;) =1 W,
o? = Ltr(S; — W;M; "W, .S;)
end for

and finally gives us Algorithm 4, page 36. This is exactly the same algorithm as derived by Tipping
and Bishop (1999); the reader is referred to section 2.4 for a discussion of its complexity.






APPENDIX F

EM for Gaussian Mixture Models

For completeness’ sake, I will give a short derivation of the M-step of the EM algorithm for a Gaussian
mixture model (see also any of the standard text books (Titterington et al. 1985; McLachlan and
Basford 1988; Bishop 1995)). Each probability density function p; is chosen to be a spherical Gaussian

with variance 0]2.:
1 1% — w511
(x]0;) = —— _n= R .
bj (x| .7) (27rajz)d/2 exp ( 252

J
The expected complete error function to be minimized in the M-step is as we have seen (2.13):

E.=- ZZh ™) In{a}*"p; (x"|65°")} ZZh ") In el — ZZh ™) Inp; (x"|67°"),

n j=1 n j=1 n j=1
(F.1)

The estimation of the mixing coefficients is as before (2.14):

w 1
af™ = N ; hi(x™

where N is the number of patterns in the training set {x"}.
For the centers of the Gaussian kernels, the partial derivative of the second part of the complete

error function (Fl) gives:
-2, ") Inp; (x"67°V)] -3 hij(x™)  Op;(x"|65°") ‘Zh (x" —u;‘ew).

aunew n pj(xnieyew) a new new)2

Setting this partial derivative to zero, we obtain a new estimate for the means:

Zn hj (xn)xn

2 hixm)
For the variance parameters of the Gaussian kernels, the partial derivative of the second part of the
complete error function (F.1) is:

O[=3n Xoimy hi(x™) Inp; (x"167°)] _ Z hi(x™)  9p;(x"|6;°")

O p; (x™6;°)  dojv

—'Zh lc” _“’ew”2— d
3
;1ew) U;ew

new __
n;m =
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Setting this partial derivative to zero, the new estimate for the variances is:

newy2 _ 12, hy(x™)Ix" — pnev |2
’ d Z:n hj(x")

which completes the M-step for the Gaussian kernels.

(o
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dx2cv, see test

activation function, 71

AdaBoost, 102-105

annealing, 53, 98

ARD, see automatic relevance determination
automatic relevance determination, 45

bagging, 101
Bayes

classifier, 68—69
Bayes’

rule, 121

theorem, 121
Bayesian inference, 45-47
Bernoulli distribution, 75
boosting, 12, 101

classification, 1, 7, 67
component density, 21
conditional

mixture model, 12, 70

probability density, 67
covariance matrix, 3, 23

diagonal, 24

full, 24

spherical, 24

tied, 24
cross-validation, 123
seecross-validation, xii

data set, 1
decision boundary, 8
density estimation, 3
conditional, 12
determinant
factoring lemma, 120
identities, 119
dimensionality
effective, 47
underlying, 47

Index

DynaBoost, 102-105

early stopping, 62
eigenvalue, 54
principal, 27
eigenvector, 54
principal, 27
element-wise product, 120
EMm algorithm, 20
for PcA (batch and incremental), 38
for Gaussian mixture models, 23
for localized mixtures of experts, 86
for mixtures of factor analyzers, 29-35
for mixtures of principal component ana-
lyzers, 35
generalized, 19
on-line, 63
on-line for Pca, 63
ensemble
methods, 101
error function, 17
complete, 22
evidence, 46
framework, 45-47
expectation maximization algorithm, see EM
algorithm
expert network, 11, 73

Fa, see factor analysis
factor, 26
analysis, 25-29
loadings, 25
feature extraction, 53
feature space, 9, 53
free energy, 18

gate, 73
gating network, 11, 73
Gaussian
distribution, 3
multivariate, 3
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Gaussian mixture model, 5, 23-25
generalization, 2

generalized linear model, 72
generative matrix, 25

GLM, see generalized linear model
GMM, see Gaussian mixture model
gradient descent, 73

graphical model, 19

hidden variable, 17

hierarchical mixtures of experts, 84
HME, see hierarchical mixture of experts
hyperparameter, 46

incremental, 37
IRLS, see iteratively reweighted least-squares
iteratively reweighted least-squares, 77

kernel
(empirical) map, 58
function, 10, 53
matrix, 56
polynomial, 54
principal component analysis, 53—-58
RBF, 54
trick, 10
Kronecker product, 120
Kullback-Leibler divergence, 18

latent variable, 25
latent variable models, 25-29
likelihood, 16

function, 4

penalized, 24
linear

classifier, 8
log-likelihood, 17

expected complete, 20
logistic function, 72

margin, 104
matrix
identities, 119
inversion lemma, 119
maximum likelihood, 4
estimation, 16-20
McNemar’s, see test
ME, see mixture of experts
mean, 3, 23
sample, 4
MFA, see mixture of factor analyzers

mixing coefficient, 21
mixture

component, 21

of factor analyzers, 29-35

of Gaussians, 5, 23-25

of principal component analyzers, 35
mixture model, 4, 20-23
mixture of experts, 11, 71-82
mixtures of experts

(definition), 72

hierarchical, 84

localized, 84-87
ML, see maximum likelihood
MLP, see multi-layer perceptron
model

complexity, 2, 6

selection, 44
MPcCA, see mixture of principal component an-

alyzers

multi-layer perceptron, 9
multinomial distribution, 75
multivariate Gaussian distribution, 3

neural network, 72
NN, see neural network
normal distribution, see Gaussian

on-line, 62
overfitting, 6

parameter tying, 24
parametric density estimation, 3
pattern, 1
Pca, see principal component analysis
posterior, 17, 74
posterior probability, 79-82
PPcaA, see principal component analysis (prob-
abilistic)
principal component analysis, 25-29
EM algorithm, 35
kernel, 53-58
non-linear, 53
probabilistic, 26
prior probability, 45
probability
class-conditional, 7
density estimation, 3
density function, 3
joint, 3
posterior, 7, 17, 45
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prior, 7, 45
product rule, 121

radial basis function, 54

RBF, see radial basis function
regression, 2, 67
regularization, 24, 45

ridge regression, 45

sigmoid, 72

singular value decomposition, 79
softmax, 71

sufficient statistics, 63

sum rule, 121

supervised learning, 1, 7

support vector machine, 53

SVvD, see singular value decomposition
SVM, see support vector machine

test
5x2cv, 123
McNemar’s, 124
test set, 6
trace rotation, 119
training set, 1

unimodal, 20
unsupervised learning, 1, 3, 15

validation set, 40
variance, 3
sample, 4
variational methods, 19, 52, 87

weight decay, 45
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