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Abstract

For some time now, the design of architectures for providing dependable Quality
of Service (QoS) on multimedia networks has been a busy topic in academia and
industry. In this work we look at practical aspects of Quality of Service, and in
particular at resource reservation for the Internet.

Initially, our focus was on ATM, which looked like the most promising QoS
technology at the time. We proposed, implemented, and demonstrated Arequipa,
a mechanism that uses ATM to provide QoS for TCP/IP, and which only requires
end-to-end connectivity, but no changes in the ATM network.

While ATM still has its place, the Differentiated Services architecture, which
returns to the paradigm of packet-oriented processing in the network, is nowadays
a more likely candidate for providing a basis for supporting dependable Quality of
Service in the Internet. We therefore concentrated on Differentiated Services when
looking for solutions to overcome some of the problems we found in the reservation
models in Arequipa and the underlying ATM.

Our work culminates in the development of SRP, the “Scalable resource Reser-
vation Protocol”, a highly scalable yet conceptually simple reservation protocol for
TCP/IP. SRP achieves scalability by aggregating flows in the network, and by con-
trolling flow admission by making simple per-packet decisions, which are based on
estimates of the bandwidth available for reservation.

We give a detailed description of the SRP architecture, including examples of
estimation algorithms and an introduction to a novel approach for scalable policing.
We describe how we integrated SRP in the ns simulator, and show simulation results.
Finally, we have implemented SRP on top of Differentiated Services on Linux, and
again we describe the implementation and give measurement results.

We also discuss some of the infrastructure-building activities that have resulted
from our work, namely the ATM on Linux project, documentation of Linux traffic

control, and the Diffserv on Linux project.
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Zusammenfassung

Die Entwicklung von Architekturen, die eine verlissliche Dienstqualitit (Quality
of Service, QoS) in Multimedianetzen ermdglichen, ist bereits seit einiger Zeit ein
in Forschung und Industrie mit grossem Interesse verfolgtes Thema. In der vor-
liegenden Arbeit achten wir auf praktische Aspekte von QoS, und speziell auf
Ressourcenreservation fiir das Internet.

Anfangs konzentrierten wir uns auf ATM, das damals die vielversprechendste
Architectur fir QoS zu sein schien. Wir haben Arequipa, einen Mechanismus der
ATM verwendet um QoS fiir TCP/IP bereitzustellen, entwickelt, implementiert, und
demonstriert. Arequipa bendtigt ATM am ganzen Weg zwischen kommunizierenden
Knoten, braucht sonst aber keine Anderungen im Netzwerk.

Heutzutage ist die “Differentiated Services” Architektur (Diffserv), die zum
Prinzip der paketorientierten Datenverarbeitung im Netzwerk zurtickkehrt, ein
wahrscheinlicherer Kandidat fiir QoS im Internet als ATM. Wir haben uns deshalb
auf der Suche nach Losungsansitzen fiir Probleme, die sich im Rahmen unserer
Arbeit mit Arequipa gestellt haben, fortan auf Diffserv konzentriert.

Unsere Arbeit gipfelt in der Entwicklung von SRP, dem “Skalierbaren
RessourcenreservationsProtokoll”, einem hochgradig skalierbaren, dennoch aber
konzeptionell einfachen Reservationsprotokoll fiir TCP/IP. SRP erreicht Skalier-
barkeit durch Aggregieren von Datenfliissen im Netzwerk, und durch das Kontrol-
lieren der Verbindungsannahme durch einfache, auf Schatzungen der verfiigbaren
Bandbreite gestiitzte Entscheidungen, die fiir einzelne Pakete getroffen werden.

Wir geben eine ausfiihrliche Beschreibung der SRP-Architektur, mit Beispielen
fiir Algorithmen zur Bandbeitenabschiatzung, und skizzieren auch einen neuartigen
Ansatz fiir skalierbares Policing. Wir beschreiben, wie wir SRP in den ns Simulator
integriert haben, und zeigen Simulationsergebnisse. Schliesslich haben wir SRP auf
Diffserv fiir Linux implementiert, und auch hier beschreiben wir dir Implementierung
und zeigen Messergebnisse.

Weiter beschreiben wir einige der Aktivitaten zur Bereitstellung von Infrastruk-
tur, die von unserer Arbeit ausgegangen sind, ndmlich das “ATM on Linux” Projekt,

Dokumentation fiir Linux Traffic Control, und das Projekt Diffserv fiir Linux.
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Chapter 1
Introduction

In this chapter, we briefly introduce the concept of Quality of Service. Then we
describe major QoS architectures, to which our work is closely related. After this
preparation, we can discuss our activities in the area of QoS research. This chapter

finishes with a look at related work, and an outline of the rest of the book.

1.1 Quality of Service

Transferring multi-media data and other time-critical data over networks may
need a dependable Quality of Service (QoS). This is the case for all situations where
a minimum guaranteed bandwidth is required. There are fundamentally two ap-

proaches to provide Quality of Service:

e The network can be dimensioned in such a way that traffic requiring quality

of service is very unlikely to ever exceed the available resources.

e An alternative is to explicitly reserve resources for specific data flows [1]. This

line of thinking finds its origin in the past experience in telephony networks.

Enlarging the network until all delay and throughput requirements are met on
all links is a reliable way of ensuring that applications obtain the service they need.
Unfortunately, given sufficiently diverse needs, this can quickly lead to economically

infeasible requirements on the network.



Traditional reservation architectures tend to require explicit specification of re-
source requirements and careful tracking of reservation state. This makes them
complex to design, expensive to implement, difficult to use, and may also cause
scalability problems.

A compromise between telephone-style reservations and provisioning is the use
of different priority levels, with higher priority given to flows that are expected to
receive high quality of service. This is the approach taken in proprietary architec-
tures such as [2]. The work currently underway at the Internet Engineering Task
Force (IETF) on the topic of Differentiated Services [3] also provides solutions in
that direction.

Later on, we will show how resource reservations can be built upon Differenti-
ated Services, such that the dependability of reservations can be obtained without

sacrificing the elegance and scalability of a priority scheme.

1.2 Quality of Service architectures

This section discusses the evolution of the nowadays most visible Quality of
Service architectures for integrated services networks. It also briefly characterizes
the approaches introduced in the course of this work on reservation mechanisms for
the Internet. Some of the mechanisms are then described in much more detail later

in this chapter.

1.2.1 IP precedence and TOS

The concept of a non-uniform service has been part of the IP architecture since
the very beginning. Already the original specification of the Internet Protocol [4]
provides a type of service (TOS) byte containing a set of eight precedence values
and a set of TOS bits that can be used to indicate the need for short delay, high
throughput, or reliability.

The use of the TOS bits has been later re-defined in [5], which only allows a
single bit to be set at a time, and which also introduces a new service type called

“minimize monetary cost”. Finally, [6] added the somewhat dubious concept of



“security” (mainly in the sense of confidentiality) as a fifth non-default service.

The original use of the TOS byte was a mixed success: the use of precedences
to give traffic necessary for the operation of the network infrastructure priority over

“user traffic” was generally accepted. This was mainly applied to routing traffic.

Setting the TOS bits is supported by most operating systems and also by many
applications, in particular by those using protocols listed in section “IP TOS PA-
RAMETERS” of [7]. However, only few networks or routers were actually configured
to differentiate packet treatment based on TOS bits. Due to this lack of consistent
deployment, no meaningful end-to-end service could be constructed, except in trivial

or highly homogeneous cases.

Recently, the interest in using the TOS byte has increased again. For example
Cisco’s “Committed Access Rate” [8] allows the assignment of precedence values in
IP packets based on packet classification and on rate metering. The Differentiated
Services architecture generalizes this concept even more and is discussed in a separate

section below.

1.2.2 ATM

One network technology for providing reservations is the Asynchronous Transfer
Mode (ATM) [9, 10], which promises to provide a scalable network architecture. The
design of ATM considered reservation mechanisms from the very beginning. ATM
networks therefore now offer reliable reservation mechanisms and well-understood
traffic management concepts. Corporate and public ATM networks are already a
reality in many places. Applications that are specifically written to use ATM, so-
called native ATM applications, already guarantee end-to-end QoS today. However,
one major problem is that the vast majority of networked applications is written to
TCP/IP service interfaces, not to ATM. If you want to use TCP/IP applications in

such environments, the standard solution is to run IP over ATM.
A more detailed description of native ATM can be found in chapter A. Technolo-

gies for carrying IP over ATM are discussed in chapters A and B, and in particular

in section B.2.



1.2.3 Integrated Services (intserv)

The IETF identified the need for supporting integrated services years ago [11,
12], and has been working on the design of reservation mechanisms for TCP/IP.
One major result of this activity are the Resource reSerVation Protocol (RSVP
[13]), the definition of a guaranteed and a controlled-load service [14, 15], and the
corresponding mappings to specific link layers, which are largely still in draft status.
This approach is based on the concept of integration: network nodes (here: routers)
need to be upgraded in order to support an additional set of functions required
by the reserved services. Once and if RSVP is deployed across the Internet, it is

possible to use TCP/IP applications with some end-to-end quality of service.

1.2.4 Differentiated Services

Traditional resource reservation architectures that have been proposed for in-
tegrated service networks (RSVP [13], ST-2 [16], Tenet [17], ATM [10, 18], etc.)
all have in common that intermediate systems (routers or switches) need to store
per-flow state information. The more recently designed Differentiated Services ar-
chitecture [19] offers improved scalability by aggregating flows and by maintaining
state information only for such aggregates. The basic architecture does not include
resource reservation but depends on additional mechanisms for signaling (e.g RSVP

[20]) and for resource allocation (e.g. provisioning or so-called “bandwidth brokers”

[21]).

1.2.5 RSVP over Diffserv

Recently, hybrid approaches combining RSVP and Differentiated Services have
been proposed (e.g. [22]) to overcome the scalability problems of RSVP. Unlike SRP,
which runs end-to-end, they require a mapping of the INTSERV services onto the
underlying Differentiated Services network, and a means to tunnel RSVP signaling
information through network regions where QoS is provided using Differentiated

Services.



1.3 In quest of QoS

We summarize in this section the work presented in more detail in the rest of
this book. We describe the research activities in chronological order, and we also

mention the reason why we decided to examine those specific approaches.

1.3.1 Why Linux ?

Since Linux is a re-occurring theme throughout this book, a little historical note
on why we selected this operating system seems appropriate before we discuss what
we used it for.

In the middle of 1999, this question may sound a little strange. Linux has gained
so much popularity and its benefits for advanced research and development work
are so obvious, that it seems difficult to imagine using any other platform for work
which is likely to involve modifications at various places in the operating system,
including the kernel.

This wasn’t always so. Back at the end of 1994, when our work started, Linux
was still a bit of an oddball system, cherished by its adepts, but largely ignored
and dismissed as a hacker’s toy by most people looking for a “serious” platform.
The usual route taken by researchers who wanted to gain actual implementation
experience was either to confine themselves to user space, or to use a commercial
Unix kernel and to do their work under non-disclosure agreements, typically allowing
them to publish their findings and to release their software in compiled (binary) form,
but limiting access to source code, which made it difficult if not impossible for other
researchers or developers to build upon their work, and for students to learn from
it.

This is a situation we clearly wanted to avoid. In order to gain a deeper un-
derstanding of real-life performance of QoS architectures, and in order to be able
to design and implement our own improvements, an open, flexible, and easily ex-
tensible platform with state of the art support for QoS techniques was needed. We
found openness, flexibility, and extensibility in Linux, but QoS support was lacking.

Our research has therefore spawned a number of strongly implementation-oriented



activities which provided the infrastructure for experimenting with more advanced
designs.

An alternative to Linux could have been BSD, which shares many attractive
properties with Linux, and which, particularly in 1994, was reputed to have a
TCP/IP stack vastly superior to the one found in Linux. The decision for Linux
was motivated mainly by prior experience and the perception of a much more dy-
namic and also more coherent! development process. Also, we were confident that
any major shortcomings in parts of Linux would be rectified soon, which turned
out to be correct. Linux has served us well, and meanwhile, it has gained so much
momentum, also compared to BSD, that we are very happy with our choice also
under this aspect.

The infrastructure-building projects that have resulted from our work are the
ATM on Linux implementation, which provides a complete ATM stack from the
device drivers, via several mechanisms for running IP over ATM, up to the signaling
protocols; the documentation of Linux traffic control; and the implementation of
support for Differentiated Services on Linux. All of these activities were well received

in the Linux community and have become de facto standards on Linux.

1.3.2 Arequipa

Initially, we perceived ATM as the future network architecture for quality of
service. However, the all the wonderful capabilities of ATM were useless for most
applications, which were written for TCP /IP, because no mapping of QoS character-
istics between TCP/IP and ATM was available at the time. We designed Arequipa
to address this issue.

Arequipa is a method for providing the quality of service of ATM to TCP/IP
applications without requiring any cooperation in the network between IP and ATM.
It does not need any modifications in the ATM or IP networks; however, it requires

end-to-end ATM connectivity.

!Due to various reasons, BSD development had splintered into several competing and mutually
hostile efforts. In fact, fragmentation of the BSD community was so rapid that people jokingly
referred to the ensemble of 386BSD, FreeBSD, NetBSD, OpenBSD, etc. as “BSD du jour”. For-
tunately, the situation has improved.



The approach taken by Arequipa is that of service integration in hosts only. It
relies on the fact that TCP/IP implementations do not follow a strict layer sepa-
ration: the [P destination tables in hosts are typically set per socket pair, rather
than per IP destination address. This makes it possible to select a given ATM con-
nection for one specific application flow, instead of for one IP destination address.
Service integration in hosts rather than in the network makes it possible to use QoS

immediately, since ATM commercial networks are already in operation.

1.3.3 From Arequipa to SRP

There is a number of lessons we learned from the implementation and deployment
of Arequipa, but here we would like to focus on one major lesson. It has to do with
the observation that, contrary to our expectation when we started the project in
1994, the penetration of end-to-end ATM remains minuscule. One obvious reason is
the fact that ATM requires specific communication adapters, and cannot run today
on the existing hosts, which, for the vast majority of them, use Ethernet. However,
our work on Arequipa may give us some additional clues about the reasons for this
state of affairs. Certainly, the lack of ATM penetration is not due to the difficulty
of making QoS available and visible to the user. Indeed, with Arequipa, we have a
solution readily available for the Unix environment, and we conjecture that porting
that solution to the market dominating operating system would not be a major
effort. We also do not believe that the minor changes required to Web clients or
servers are a major drawback, since the time between releases of this type of software
is usually less than a year. If there would be a massive push to obtain QoS in hosts,
then the ATM penetration would be higher. Therefore, we are lead to think that
making QoS visible to the user is an idea that simply did not meet its market.
Many users would like to have it, but hardly any organization is willing to invest
in the network technology required to support it. This also leads us to conjecture
that approaches based on RSVP that would attempt at making QoS visible to the
end user will equally suffer from the same lack of penetration, because introducing
RSVP into the Internet is also a major investment.

If we follow this line of thought, we conclude that it may not be a good idea to



let the QoS be visible to the application, except maybe for niche application settings

where the investment is justified.

1.3.4 SRP

The realization that traditional reservation mechanisms were too complex, both
for rapid deployment, and for addressing user needs, led us to look for a much more
light-weight approach. SRP is the result of this work.

SRP extends upon simple aggregation by providing a means for reserving net-
work resources in routers along the path taken by flows, using a single end-to-end
protocol. It does so without explicit signaling of flow parameters, and without re-
quiring routers to maintain per-flow state. Instead, routers monitor the aggregate
flows of reserved traffic and maintain a running estimate of what amount of resources

is required to serve them with the appropriate quality of service.

1.4 Related work

1.4.1 IETF and ATM Forum

IETF and ATM Forum have specified a plethora of protocols to address various
aspects of providing Quality of Service. We have already mentioned some of them
in section 1.2. Section B.2 compares several approaches for transmitting IP packets

over ATM in more detail.

1.4.2 Guaranteed Internet Bandwidth

This is an architecture that, similar to Arequipa, uses service integration to

obtain dependable QoS. We discuss it in the appendix on Arequipa, in section B.2.6.

1.4.3 Ticket Signalling Protocol

The “Ticket Signalling Protocol” [23] looks at first sight quite similar to SRP,

because it also aggregates flows everywhere in the network. The main difference is



that TSP still uses an explicit form of signaling, the so-called tickets. Where SRP
can rely on easily repeatable measurements, TSP has to keep track of the state of

its tickets, thereby sacrificing much of the simplicity gained by aggregation.

1.4.4 Phantom Circuit Protocol

The “Phantom Circuit Protocol” (PCP) has recently been proposed in [24]. PCP
is very similar to SRP and also uses a concept of “probes” and “reserved” packets,
where the probe traffic is a model of the future reserved traffic. Since the packet
types are sufficiently similar, we will use the SRP terms request and reserved when

discussing PCP in the remainder of this section.

PCP differs from SRP in that routers are not required to explicitly remove request
packets (i.e. either by dropping or degrading them), but just have to treat them
worse than reserved packets. The destination can then determine the bandwidth

available for reserved traffic by measuring the properties of the request flow.

Details on many architectural considerations, such as how successful reservations
are communicated back to the source, or the effect probes can have on best-effort
traffic, are still missing. Furthermore, although not generally required, the preferred
mechanism for treating request packets worse than reserved packets seems to be
dropping. There also seems to be the concept of waiting until the full reservation
has been obtained before admitting actual user traffic. SRP offers more flexibility by
allowing failed requests to be degraded, so that immediate end-to-end communication
is still possible, although without reservation.

[24] claims not to require bandwidth estimates in the routers. However, in order
to prevent reserved traffic from allocating arbitrarily large amounts of bandwidth
(only limited by the link capacity, and perhaps the jitter experienced by individual
micro-flows), some bandwidth limiting of request and reserved traffic is needed, which
is, in fact, also reflected by the suggested use of Weighted Fair Queuing in [25].

Also, it is not clear if PCP is susceptible to reservation drifts caused by requests
receiving sufficiently good forwarding behaviour in times of congestion, because jitter

in reserved may momentarily lower the bandwidth perceived at the router.



10

1.5 Structure of this book

Chapter 2 introduces the fundamental design of SRP, specifies the protocols,
gives examples for the various measurement algorithms, and discusses more advanced
issues, such as scalable policing and multicast.

In chapter 3, we describe the implementation of an SRP simulator, and give a
set of simulation results illustrating the performance of SRP.

Chapters 4 and 5 describe the general design of Linux Traffic Control and of the
extensions we made in order to support Differentiated Services. This serves as the
basis for the implementation of SRP on Linux.

In chapter 6, we continue with the topic of actual implementations, and describe
how we extended the Diffserv infrastructure on Linux to support SRP. In chapter
7, we show the performance of this implementation in a small test network.

The historical work that preceded SRP is described in the following appendices:
Appendix A gives a short introduction to ATM and details selected aspects of the
ATM on Linux implementation. In appendix B, we describe how we implemented
Arequipa and made it publicly available in Linux, how we applied it to the Web,

and finally, how we tested it on a European ATM wide area network.
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Chapter 2

The Scalable Resource

Reservation Protocol

In this chapter, we describe the basic SRP concepts and algorithms, we show
how SRP can be integrated with the current Internet architecture, and we introduce
an approach for policing aggregated flows in a scalable way.

This chapter is organized as follows. Section 2.2 provides a more detailed pro-
tocol overview. Section 2.3 describes the role of the traffic estimators and discusses
algorithms for their implementation. Section 2.4 addresses policing issues and out-

lines an approach for designing a scalable policing mechanism.

2.1 Introduction

The Scalable Reservation Protocol (SRP) provides a light-weight reservation
mechanism for multimedia traffic in the Internet. Our main focus is on good scal-
ability to very large numbers of individual flows. End systems (i.e. senders and
destinations) actively participate in maintaining reservations, but routers can still
control their conformance. Routers aggregate flows and monitor the aggregate to
estimate the local resources needed to support present and new reservations. There
is neither explicit signaling of flow parameters, nor maintenance of per-flow state by

routers.
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Reservation mechanism In short, our reservation model works as follows. A
source that wishes to make a reservation starts by sending data packets marked
as request packets to the destination. When receiving a request packet, a router
determines whether hypothetically adding this packet to the flow of reserved packets
would still allow it to meet the quality of service goals.® If so, the request packet is
accepted and forwarded towards the destination, while still keeping the status of a
request packet. In the opposite case, the request packet is degraded to a lower traffic
class, such as best-effort, and forwarded towards the destination. A packet sent as
request will reach the destination as request only if all routers along the path have
accepted the packet as request.

The destination periodically sends feedback to the source indicating the amount
of request and reserved packets that have been received. This feedback does not re-
ceive any special treatment in the network (except possibly for policing, see below).
Upon reception of the feedback, the source can send packets marked as reserved ac-
cording to a profile derived from the feedback. If necessary, the source may continue
to send more request packets in an attempt to further increase the reservation.

Thus, in essence, a router accepting to forward a request packet as request allows
the source to send more reserved packets in the future; it is thus a form of implicit

reservation.

Aggregation Routers aggregate flows on output ports, and possibly on any con-
tention point as required by their internal architecture. They use estimator algo-
rithms for each aggregated flow to determine their current reservation levels and
to predict the impact of accepting request packets. The exact definition of what
constitutes an aggregated flow is local to a router.

Likewise, senders and sources treat all flows between each pair of them as a single
aggregate and use estimator algorithms for characterizing them. The estimator
algorithms in routers and hosts do not need to be the same. In fact, we expect hosts
to implement a fairly simple algorithm, while estimator algorithms in routers may

evolve independently over time.

LQuality of service is loss ratio and delay, and is defined statically.
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Fairness and security Denial-of-service conditions may arise if flows can reserve
disproportional amounts of resources or if flows can exceed their reservations. We
presently consider fairness in accepting reservations a local policy issue (much like
billing) which may be addressed at a future time.

Sources violating the agreed upon reservations are a real threat and need to be
policed. A scalable policing mechanism to allow routers to identify non-conformant
flows based on certain heuristics is the subject of ongoing research; an architecture
and preliminary results are presented in section 2.4. Such a mechanism can be
combined with more traditional approaches, e.g. policing of individual flows at

network edges.

2.2 Architecture overview

The proposed architecture uses two protocols to manage reservations: a reser-
vation protocol (sections 2.2.1 and 2.2.2) to establish and maintain them, and a
feedback protocol (sections 2.2.3 and 2.2.4) to inform the sender about the reserva-

tion status.

Sender  Data & reservations Receiver

/ \ \
Q 4_: — . e Q
Feedback \ /

Router

Figure 2.1: Overview of the components in SRP.

Figure 2.1 illustrates the operation of the two protocols:

e Data packets with reservation information are sent from the sender to the
receiver. The reservation information consists in a packet type which can

take three values, one of them being ordinary best-effort. Routers process
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this information to control reservation increases, and to estimate the effective

resource usage.

e The receiver sends feedback information back to the sender. Routers only

forward this information; they do not need to process it.

2.2.1 Reservation protocol

The reservation protocol is used in the direction from the sender to the receiver.
It is implemented by the sender, the receiver, and the routers between them. As
mentioned earlier, the reservation information is a packet type which may take three

values:

Request This packet is part of a flow which is trying to gain reserved status.
Routers may accept, degrade or reject such packets. When routers accept
some request packets, then they commit to accept in the future a flow of re-
served packets at the same rate. The exact definition of the rate is part of the

estimator module.

Reserved This type identifies packets which are inside the source’s profile and
are allowed to make use of the reservation previously established by request
packets. Given a correct estimation, routers should never discard reserved

packets because of resource shortage.?

Best-effort No reservation is attempted by this packet.

Packet types are initially assigned by the sender, as shown in figure 2.2. A
traffic source (e.g. the application) specifies for each packet if that packet needs a
reservation. If no reservation is necessary, the packet is simply sent as best-effort. If a
reservation is needed, the protocol entity checks if an already established reservation
at the source covers the current packet. If so, the packet is sent as reserved, otherwise

an increase of the reservation is requested by sending the packet as request.

2A router will typically perform acceptance checks also on reserved packets, e.g. as protection
from failures and for policing.
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Application Protocol stack
Yes
Reserved

Needs Reservation
reservation established ?
- Request
No

Doesn’t need
reservation

B Best effort

Figure 2.2: Initial packet type assignment by sender.

Each router performs two processing steps (see also figure 2.3). First, for each
reserved packet the estimator updates its current estimate of the resources used by
the aggregate flows. For each request packet, the router decides whether to accept the
reservation increase, considering the resource estimate (packet admission control).
Then, packets are processed by various schedulers and queue managers inside the

router.

e When a reserved packet is received, the estimator updates the resource estima-
tion. The packet is forwarded unchanged to the scheduler where it will have

priority over best-effort traffic and normally is not discarded.

e When a request packet is received, then the estimator checks whether accept-
ing the packet will not exceed the available resources. If the packet can be
accepted, its request label is not modified and the resource estimate is changed
accordingly. If the packet cannot be accepted, then it is degraded, i.e. its type
it changed to best-effort or it is discarded.

e [f a scheduler or queue manager cannot accept a reserved or request packet,

then the packet is either discarded or downgraded to best-effort.
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Figure 2.3: Packet processing by routers.

2.2.2 Packet type encoding

RFC2474 [26] defines the use of an octet in the IPv4 and IPv6 header for Differ-
entiated Services (DS). This field contains the DS Code Point (DSCP), which de-
termines how the respective packet is to be treated by routers (Per-Hop Behaviour,
PHB). The DS field is ideally suited for expressing the SRP packet types. For SRP
use, it is of particular importance that the DS architecture allows routers to change
the content of a packet’s DS field (e.g. to select a different PHB).

As illustrated in figure 2.4, SRP packet types can be expressed by introducing
two new PHBs (for request and for reserved), and by using the predefined DSCP

value 0 for best-effort. DSCP values for request and reserved can be allocated locally

in each DS domain.

The suggested default DSCP values are 0x1b for request and 0x1f for reserved.

Other values may be used as long as the following constraints are met:

e the values must be in one of the experimental /local use pools defined in [26]:

xxxx11 binary and xxxx01 binary.

e they should occupy adjacent code points in the respective pool

e they must be smaller than 0x50 (otherwise, privileges are required to set them
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PHB DSCP

Default — > 000000
SRP Request — xxxxxx
SRP Reserved — yyyyyy

0 6 7
DS field DSCP |CU
0 8 16 24 31
IPv4 header Ver| HL | TOS Total length
Fragment ID Flg | Frag. offset
TTL Protocol Checksum

Source address

Destination address

- Options, data, ... |

Figure 2.4: Packet type encoding using Differentiated Services (IPv4 example).

at the source using the IP_TOS socket option)

Note that, within the limitations described in RFC2475 [19], the reservation pro-
tocol may “tunnel” through routers that do not implement reservations. This allows
the use of unmodified equipment in parts of the network which are dimensioned such

that congestion is not a problem.

2.2.3 Feedback protocol

The feedback protocol is used to convey information on the success of reservations
and on the network status from the receiver to the sender. Feedback information is
collected by the receiver and it is sent directly to the sender. Unlike the reservation
protocol, the feedback protocol does not need to be interpreted by routers.

The feedback contains the cumulative number of bytes in request and reserved
packets that have reached the receiver, and the local time at the receiver at which
the feedback message was generated.

Receivers collect feedback information independently for each sender and senders
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maintain the reservation state independently for each receiver. Note that, if more
than one flow to the same destination exists, attribution of reservations is a local

decision at the source.

0o I 1 [ 2 [ 3 | 4 | 5 [ 6 [ 7 |
Version Reserved
t0 t
Reserved Num REQ (t0)
Reserved Num REQ (t)
Reserved Num RSV (t0)
Reserved Num RSV (t)

Figure 2.5: Feedback message format.

Figure 2.5 illustrates the content of a feedback message: the time when the
message was generated (t, measured in microseconds), and the number of bytes
in request and reserved packets received at the destination (REQ and RSV). All
counters can start with arbitrary values and they wrap back to zero when they
overflow.

Feedback messages are transported over UDP [27]. The default port number
to which to send feedback is 4360 decimal.®> Feedback receivers should ignore all
messages originating from a port different from 4360 as a basic measure against
tampering. The octets in figure 2.5 are shown in the order of transmission. In each
field, the most significant octet is transmitted first. The version number field must
be set to one by the sender of a feedback message. Feedback receivers implementing
version one of the protocol must ignore all messages with version 0, and process all
messages with version one or above.

Feedback messages received out of sequence are ignored. In order to improve
tolerance to packet loss, also the information sent in the previous feedback message

(at time t0) is repeated. Portions of the message are reserved to allow for future

3A request for a registered user port assignment by IANA is pending.
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extensions.

2.2.4 Feedback scheduling

Feedback messages are not always sent at the same rate. Instead, the destination
generates them only when there is useful information to report, e.g. when request
packets reach the destination or when the reserved rate changes. We suggest the
following algorithm for deciding when to send a feedback message:

We define ¢ as the current time, ¢, as the time when the last feedback was sent,
At =t —ty, ANgpg as the number of bytes in request packets received since %,
R(s) as the estimated reserved rate at time s, T); as the minimum interval between
two feedback messages, 17 as the largest interval in the absence of changes, T as
the largest interval during reservation ramp-up, ¥ as the maximum change in the
reserved rate for which no notification of the source is necessary, and Nyj,.s as the
maximum number of request bytes that can be received before a feedback needs to
be generated.

Generally, we only send feedback if At > Ty, If ANggg = 0, we send feedback
if At > 17 or BO-Rb) - 9 1f ANggpqg > 0, we send feedback if At > Ty or

R(t)
ANgrgg > Nibres-

2.2.5 Congestion control

In order to avoid interfering with congestion-controlled traffic (e.g. TCP) in
an unfair way [28], and to prevent starvation among competing reservations, SRP
senders must respond to congestion by limiting the rate at which they send request
packets.

A mechanism similar to TCP congestion control can also be used with SRP:
the sender maintains a congestion window, which grows while request packets pass
the network unharmed, and which shrinks when congestion is detected. Congestion
is assumed when request packets are lost. Their loss is detected by comparing the
number of request and reserved bytes indicated in feedback messages with the values

expected by the sender.
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Congestion of reserved traffic (e.g. due to a partial network failure) is detected
when the rate obtained from feedback messages is significantly below the rate ex-
pected by the sender (we assume that small decreases or apparent increases of the
reserved are caused by jitter and ignore them). In this case, the sender lowers its
own estimate to the indicated rate. A complete communication failure is assumed if
no feedback is received while several request timeouts occur. In this case, the SRP
component in the sender resets the reservation to zero and notifies its user.

Recently, the concept of a centralized congestion manager has been suggested in
IETF. Such a component would be highly desirable for SRP, because SRP has no
easily accessible two-way communication path from which congestion information
could be obtained. If applications layered on top of SRP report their own congestion

experience to a centralized component, SRP could directly benefit from this.

2.2.6 Example

Figure 2.6 provides the overall picture of the reservation and feedback protocols
for two end-systems connected through routers R1 and R2. The initial resource
acquisition phase is followed by the generation of request packets after the first
feedback message arrives. Dotted arrows correspond to degraded request packets,
which passed the admission control test at router R1 but could not be accepted at
router R2 because of resource shortage. Degradation of requests is taken into account
by the feedback protocol. After receiving the feedback information the source sends
reserved packets at an appropriate rate, which, in this case, is smaller than the one

at which request packets were generated.

2.2.7 Multicast

The key strength of SRP is to provide scalable reservations for unicast flows.
Nevertheless, we consider it important for SRP to also support multicast traffic.
To this end, we propose a design that slightly extends the reservation mechanism
described above. Refinement of this design is still the subject of ongoing work.

Additional details on the proposed mechanism can also be found in [29].
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Figure 2.6: Reservation and feedback protocol diagram.

The extensions concern the feedback and the reservation protocol at the source.
They are needed to cope with several problems which are typical in a multicast

environment:

e the joining mechanism: how to establish reservations to a new group member

without affecting the reservation already in place;

e transparency: events like route instability, topology changes, joining and leav-
ing of some group members and situations like heterogeneous connectivity
should only affect their limited scope, i.e. they should be transparent to the

remaining session members.

e feedback implosion: the feedback protocol which works well in a unicast sce-

nario does not scale well in a multicast environment.

Establishing reservations in a multicast tree Members of a multicast session

are divided into two sets:
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1. joining members, forming the request multicast group;
2. “old” members, forming the reserved multicast group.

Receivers wishing to receive a multicast flow first join the request group. The
join request is issued hop-by-hop toward a multicast router already on the reserved
tree (or to the source). Routers already receiving reserved traffic start sending the
multicast traffic to the new member after receiving the join request. In addition to
that, they also switch the reserved flag to request. Members of the request group can
compare their reservation estimate to the target amount indicated by the source. If
the reservation offered is acceptable, then the member can leave the request group

and join the reserved group. Figure 2.7 illustrates the group structure.

res O res
\
0
res / \req res req
O A
req JI res res J]req
5 A 5
req req res res JZ req
Sy

—= request tree —® reserved tree

Figure 2.7: Request and reserved multicast group.

The algorithm executed by the multicast router when a multicast packet is re-

ceived, is the following:
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if ((packet_addr is multicast) and
(packet_type == RES)) {
forward packet to reserved group;
if (router is in the request group) {
newpacket = copy(packet);
newpacket_type = REQ;
forward newpacket to request group;

Transparency In a network with bottlenecks the algorithm should avoid that the
link with worst connectivity (e.g. with the lowest bandwidth availability) limits the
reservation offered to each member of the group. To cope with this heterogeneity
multicast members could be grouped into separate sets and layered coding [30] could
be used.

Different coding layers representing different levels of quality are sent to different
multicast groups. Typically, all the receivers are included in a common multicast
tree for the distribution of the fundamental coding layer, and each member can join

additional groups depending on the quality of its connectivity.

Feedback The problem of feedback implosion is solved by simply not sending any
explicit feedback but by using group membership as an implicit indicator instead.
The multicast source can fix an a priori value for the minimum amount of reser-
vations required to forward the traffic of a given coding layer. After joining the
request group the receiver does flow acceptance control. If the estimated reservation
is acceptable compared to the target set by the source, then it can leave the request

group and join the reserved, otherwise it leaves the request group and gives up.

2.3 Estimation modules

We call estimator the algorithm which attempts to calculate the amount of re-
sources that need to be reserved. The estimation measures the number of requests
sent by sources and the number of reserved packets which actually make use of the

reservation.
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Figure 2.8: Use of estimators at senders, routers, and receivers

Estimators are used for several functions.

e Senders use the estimator for an optimistic prediction of the reservation the
network will perform for the traffic they emit. This, in conjunction with
feedback received from the receiver, is used to decide whether to send request

or reserved packets.

e Routers use the estimator for packet-wise admission control and perhaps also

to detect anomalies.

e In receivers, the (simple) estimator is fed with the received traffic and it gen-
erates a rough estimate of changes in the reservation. This is used to schedule

the sending of feedback messages to the source.

Figure 2.8 shows how the estimator algorithm is used in all network elements.

Our architecture is independent of the specific algorithm used to implement the

estimator. Sections 2.3.1 and 2.3.2 describe two different solutions. The defini-

tion and evaluation of algorithms for reservation calculation in hosts and routers is

still ongoing work. A detailed analysis of the estimation algorithms and additional

improvements can be found in [29].
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2.3.1 Basic estimation algorithm

The basic algorithm we present here is suitable for sources and destinations, and
could be used as a rough estimator by routers. This estimator counts the number
of requests it receives (and accepts) during a certain observation interval and uses
this as an estimate for the bandwidth that will be used in future intervals of the
same duration.

In addition to requests for new reservations, the use of existing reservations
needs to be measured too. This way, reservations of sources that stop sending or
that decrease their sending rate can automatically be removed. For this purpose
the use of reservations can be simply measured by counting the number of reserved
packets that are received in a certain interval.

To compensate for deviations caused by delay variations, spurious packet loss
(e.g. in a best-effort part of the network), etc., reservations can be “held” for
more than one observation interval. This can be accomplished by remembering the
observed traffic over several intervals and using the maximum of these values (step
3 of the following algorithm). Given a hold time of h observation intervals, the
maximum amount of resources which can be allocated Maz, res and req (the total
number of reserved and request bytes received in a given observation interval), the
reservation R (in bytes) is computed by a router as follows. Given a packet of n
bytes:
if (packet_type == REQ)

if (R + req + n < Max) {
accept;
req = req +n; // step 1
}

else degrade;

if (packet_type == RES)
if (res + n < R) {
accept;
res = res +n; // step 2
}

else degrade;

where initially R, res, req = 0. At the end of each observation cycle the following

steps are computed:
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for (i =h; 1 > 1; i--) R[i] = R[i-1];
R[1] = res + req;

R = max(R[h],R[h-11,...,R[11); // step 3
res = req = 0;

The same algorithm can be run by the destination with the only difference that
no admission checks are needed.

Examples of the operation of the basic algorithm can be found in [31].

This easy algorithm presents several problems. First of all, the choice of the
right value of the observation interval is critical and difficult. Small values make
the estimation dependent on bursts of reserved or request packets and cause an
overestimation of the resources needed. On the other hand, large intervals make the
estimator react slowly to changes in the traffic profile. Then, the strictness of traffic
acceptance control is fixed, while adaptivity would be highly desirable in order to
make the allocation of new resources stricter as the amount of resources reserved
gets closer to the maximum. These problems can be solved by devising an adaptive

enhanced algorithm like the one described in the following section.

2.3.2 Enhanced estimation algorithm

Instead of using the same estimator in every network component, we can enhance
the previous approach so that senders and receivers still run the simple algorithm
described above, while routers implement an improved estimator.

We describe an example algorithm in detail below. It consists of the principal
components illustrated in figure 2.9: the effective bandwidth used by reserved and
accepted request packets is measured and then smoothed by calculating an exponen-
tially weighted average (). This calculation is performed for every single packet.

The estimate 7 is multiplied with a correction factor  in order to correct for
systematic errors in the estimation. Packets are added to a virtual queue (i.e. a
counter), which is emptied at the estimated rate. If the estimate is too high, the
virtual queue shrinks. If the estimate is too low, the virtual queue grows. Based on

the size of the virtual queue, # can be adjusted.
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Figure 2.9: Schematic design of an adaptive estimator.

Packet admission control and low pass filter In order to filter out small
scale traffic profile variations in a way close to the real node behavior, we borrow
the concept of deterministic effective bandwidth from network calculus [32]. Given
an arrival curve o and a delay bound D, the corresponding deterministic effective

bandwidth ep is defined as:

By applying this definition to our model and by assuming that observation starts

at time 0, we obtain that:

e — sup n;+...+n;

1<i<j tj—ti+D
where ¢, ...,%; are the time instants at which packets arrive, n; is the number of
bytes in packet number i (only reserved or request packets are taken into account)

and D is a fixed parameter: the delay objective.

e represents the bandwidth required for the flow with smoothed peaks, as packets
are queued in a buffer system requesting a maximum queueing time of D. Since the
traffic profile of a flow may change, the capacity estimated for a given flow should

vary accordingly. To achieve this we estimate the effective bandwidth e at any
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arrival time ¢ of a reserved or request packet over a sliding window w:

2.1
ti—t;+D (21)

ep = sup
1<i<j and t;,t; €[ty —w,ty]

Then, in order to smooth out changes in e, as a function of the packet rate of
a flow we eventually calculate v by taking the exponentially weighted average of ey
and we assume that the amount of bandwidth allocated by a router at time ¢, per

input and Output port is equal to v
d d
Vi "Y1 + (]_ — ) € (22)

where « is a parameter such that 0 < o < 1, and d = t;, — t;_;. a? is the weight,
which depends on the time between packets. Parameters o and w define the behavior
of the low pass filter, in particular the resource release process of the estimator when
a given flow stops, and the reservation keeping during temporary silences.

The packet admission procedure is devised in such a way that reserved packets are
always considered in the estimator, while request packets have to pass an admission
control test. If the k-th packet is reserved, then equations 2.1 and 2.2 are computed
and the packet is accepted, even if it could be discarded later by the scheduler. On
the other hand, if the packet type is request, the following test is applied:

if .3 < Char then accept else refuse

where C),4; 1s a fixed parameter representing the maximum amount of bandwidth
which can be reserved on a given output interface, and [ is a correction factor
computed according to the algorithm presented in the following paragraph. If the
packet is accepted then the estimated bandwidth is updated, otherwise the packet
is downgraded to best-effort and we let vy, = v, 1 (i.e. if a packet is rejected by the

admission test, its arrival is ignored by the estimator).

Adaptivity in packet admission control Adaptivity in packet admission con-
trol is obtained by making parameter  vary as a function of the number of reserved
bytes lost. There are two independent variables: L,, the number of reserved bytes
really lost by the router, and L,, the number of reserved bytes wvirtually lost as

defined in formula 2.3.
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L, is the measure of real losses of reserved and (accepted) request packet, which
occur when the amount of reserved traffic reaches the capacity C,,.,. We assume
that L, is counted over intervals (t — 6, 1] (see below).*

In order to tune 3 before reserved traffic reaches the capacity C,,.., we calculate
at each packet arrival the maximum buffer occupancy L,, counted in bytes, of a
virtual queue served at rate v (the current estimate of the bandwidth required by

the flow), and the maximum virtual queue size L"**:
LU = maX(O, LU + N — ’Yk—lﬁ(tk — tk—l)) (23)

L7 = max (L), L)

where ny, is the size of the current packet, ¢ —t,_; is the time since the previous
packet was received, and ~y;_; is the value of v computed after the last packet
reception. The initial values of L, and L;*** are 0.

If our estimation procedure is correct, we should have L]*** < 3D, otherwise
we need to increase the value of 3. Conversely, if L' is very small, then we have
to decrease [3.

To determine how to change 3, we use L' to calculate the rate v3" at which
we have to serve the virtual queue to reach the length corresponding to the delay
goal D at the present rate /.

8 =6+ W;;ﬁfm

or

Lmaa:
ﬁ’=6+B< ” —6D>
v
where B~! is the time after which the length goal should be reached. £ is updated

with period 6 as follows:

N,
——
if L;>0

g paal p <L? - ﬂD) (2.4)

where N, is the amount of data received in reserved and (accepted) request

packets since the last update of 3, L, is the amount of such data lost in the same

4The actual measurement and filtering method for L, is argument of further study.
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interval, v is the current bandwidth estimate, and A and B are fixed parameters
to be tuned by simulation. The initial value of 8 is 1. LJ'** is reset to L, after
computing (2.4).

The possibility to make [ a function of the rejection rate of request packets and
the tuning of the parameters used in the algorithms described above, are arguments

for future work.

2.4 Policing

In the previous sections, we assumed that network elements operate in confor-
mance with the described behaviour. We will now describe some general aspects
of the non-conformance we expect to experience in real networks and we propose
a scalable approach for protecting the network and its users from the effects of
non-conformant traffic.

We distinguish two main types of non-conformance: (1) use of resources without
prior permission (theft of service), and (2) denial of service. Both types of non-
conformance have in common that traffic for which no adequate reservation exists
is added to the network. Policing must therefore be based on the comparison of the
current traffic with the expected traffic. If the former exceeds the latter, packets
not belonging to conformant flows must be identified and counter-measures can be

performed, e.g. offending packets can be discarded.

2.4.1 SRP constraints

The architecture of SRP imposes a few constraints on a policing solution: (1)
reservations can decrease along the path, (2) no per-flow information is available,
(3) only the addition of new reserved traffic is announced, but not its removal.

The first constraint stems from the fact that each router sees only the reservation
requests that have been accepted by upstream nodes, and it can either accept the
whole reservation or only a part of it. Upstream routers may therefore initially
accept more of a reservation than downstream routers. A source sending request

packets at a rate R and following them up with reserved packets at the same rate
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may therefore go undetected at upstream routers, even if the bandwidth along the
entire path (i.e. the reservation obtained at the bottleneck router) is below R.

Note that reserved traffic and feedback packets may use different paths. Reser-
vations can therefore not simply be verified by examining feedback traffic (which
indicates the minimum reservation obtained along the path). However, in some
cases, it may be possible to restrict the choice of possible routes in order to enable
also this type of policing.

The second constraint implies that traditional policing approaches, which are
based on measuring each individual flow, cannot generally be applied for SRP with-
out sacrificing its scalability.

The third constraint limits our ability of detecting non-conformance of an ag-
gregate without additional information on its internal structure: when sources stop
sending, their resources are released implicitly by measuring the overall reduction of
the reserved traffic volume. If non-conformant sources inject traffic that is equivalent
in volume to the traffic previously generated by now silent sources, the aggregate

does not seem to change, and the abuse may go undetected.

2.4.2 Three complementary approaches

We consider three approaches for policing. First, at the boundary to access
networks, monitoring individual flows may be the most economic approach, because
the number of flows will typically be small at such points, and it is comparably easy
to route forward and backward traffic through the policing point.

The second approach applies the same principles, but works on aggregates in-
stead. Both, reserved traffic and feedback messages are examined and policed. This
way, the policing entity can ensure that only the accepted amount of traffic passes.
Heuristics on the internal structure of the aggregate, as discussed below, can be
used to ensure that not only the volume but also the paths reserved traffic takes
correspond to the reservation.

Finally, we propose a heuristic approach that works by capturing certain char-
acteristics of an aggregate and comparing new traffic against these characteristics.

If the traffic volume exceeds certain bounds, which we assume to be caused by
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non-conformant traffic, packets are classified by their similarity to the stored char-
acteristics. Packets are discarded if they are not similar to the expected traffic, or if

they are similar to excess traffic. We describe the heuristic approach in more detail

below.

2.4.3 Architecture of the heuristic approach

Our approach is based on the observation that packets belonging to conformant
flows will exhibit certain characteristics that can be used to detect them with a
certain probability. Likewise, probable characteristics of packets belonging to non-
conformant flows can be determined, and incoming packets can be matched against
those characteristics.

We identify each flow by a unique bit pattern in the IP headers of packets
belonging to it, e.g. the source and the destination address. We call this the packet

stgnature.
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Figure 2.10: The frequency of bit patterns.

The characteristic we are using is the frequency of bit patterns in those signa-
tures. Figure 2.10 illustrates a case where three conformant flows generate a profile

of their bit pattern frequency, and then bit patterns of the three conformant flows
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and one non-conformant flow are compared with this profile. The comparison is

done by adding the frequencies with which the bits in the pattern were observed.

We notice that the patterns used for calculating the profile obtain a higher

ranking, indicating their higher probability of being among the reference patterns.

2.4.4 General information flow

Figure 2.11 shows the general architecture. First, we measure if the current traffic
exceeds the expected traffic by some tolerance margin (1). This will determine how

aggressively we try to detect and to eliminate non-conformant traffic.

In parallel, we calculate the probability that the current packet belongs to a
conformant (“good”) or non-conformant (“bad”) flow. We do this by comparing it
with the profiles obtained for supposedly conformant packets (2), and for packets

suspected to belong to non-conformant flows (3).

In order to make the calculation independent from the actual bit patterns occur-
ring in signatures, we expand the packet signature to a larger vector using a hash
function (4). The hash function is keyed with a random number only known to the
router. It is therefore difficult if not impossible for an attacker to construct packets
in a way that their signatures will have a predictable relation to the signatures of

packets belonging to specific other flows.

The probabilities for conformance and non-conformance are then added (5) and
a decision is made whether the packet in question should be accepted or not (6),
and, depending on this decision, the packet is either enqueued for forwarding or it
is discarded (7).

In parallel, a decision is made if the packet should be counted for the next
estimate of the profile of conformant flows (8). After a certain time interval, the
profile of accepted packets is copied to the profile of conformant flows, and the
difference between the previous profile of conformant flows and the current profile

of all received packets is used as the next prediction for non-conformant flows (9).



34

Forward
- -
Data | Hdr
Resource usage A X
Packet Amount of excess
signature |
Estimator )
N
__ Policin
Ratmgs de015101%
= 4
E — | Pattern 4’( Compare @ I
_ 3 / \ — Count if
"Bad" profile | <— @« "Good" profile | 2 accepted
T Copy after interval T
Key 4>| Current profile | | Accepted profile |<*

Figure 2.11: Policing architecture overview.

2.4.5 Formal description

The signature of each incoming packet is hashed to a bit vector w of length d.
Then we count the relative frequency of ones at each bit position in a set W of such
vectors:

pi w;
-z

wew

where w; is the value of the ith bit. We call p(1W) the profile of W.
We define a discriminant function g(W, w) to reflect the probability that a vector

w belongs to a set of vectors W as

LS~ o with 2 = wips(W) + (1 — wg)(1 — ps(V)

W,
( w dzl

We assume that the d components of the vectors in W are independent Bernoulli
variables. The probability that the event {w; = 1} occurs exactly k times in the

|W| vectors is binomial. The statistical properties of the discriminant function can
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be determined. Using
k 144 1
P(”—W‘“fw) - ( ; )ﬁ

k 2k k
Ply,=—weW)] = —P xi:—w¢W>
(= gwvew) = e =
(1 <k < |W|), we obtain the mean and the variance of the probability distribution
of g(W, w):

1 1 2 1 13 1
fwew = 5+ 3p] Cwew = dgw] T sawE — @wE = ] orw e W (2.5)

_1 2 _ 1 )
Pwgw = 5 TuwgW = Q7] forw ¢ W

where the approximation is valid for |W| > d.

We measure the profile of actual reserved traffic over short time intervals. In interval
Tj, given the profile p(A) of conformant traffic (which is initially obtained from
accepted requests), and the measured traffic M;_; of the previous interval 7_;, we
can determine the profile of non conformant traffic B as p(B) = p(M;_1) — p(A).
We can now determine the function g(A, w), which represents the probability that a
new packet with vector w is part of the conformant traffic A, as well as the function
g(B,w), the probability of it to be part of traffic that was previously found to be in
excess of the agreed upon reservation.’

We accept packets if
z(w) > threshold, with z(w) = g(A,w) — g(B, w)

Using formula 2.5 we can approximate the condition for obtaining good separation
of the probability distributions of g(A,w) and ¢g(B, w):
L]
Al +|B|

A full paper covering the mathematical background of the proposed approach
is in preparation. The development of a more comprehensive model that also takes
into account effects like rate decreases, jitter, etc., and the study of applicability of

this approach to other aggregation-based architectures than SRP, are the subject of

ongoing research.

SFor simplicity, we omit reduction of the traffic volume in this discussion.
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2.5 Conclusion

We have proposed a new scalable resource reservation architecture for the Inter-
net. Our architecture achieves scalability for a large number of concurrent flows by
aggregating flows at each link. This aggregation is made possible by delegating cer-
tain traffic control decisions to end systems — an idea borrowed from TCP. Reserva-
tions are controlled with estimation algorithms, which predict future resource usage
based on previously observed traffic. Furthermore, protocol processing is simplified
by attaching the reservation control information directly to data packets.

In this chapter, we described the general concepts, gave examples for implemen-
tations of core elements, including the design of estimator algorithms for sources,
destinations and routers, and we introduced a policing framework. In the next
chapter, we will focus on simulations. The remaining chapters of this book focus on

implementation issues, which finally lead to a prototype of SRP.
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Chapter 3
Simulation

We have implemented a model of SRP in the UCB/LBNL/VINT network simu-
lator ns [33]. In this section, first describe the implementation, and then we show the
network behaviour obtained by simulating a large number of SRP sources sending

over a bottleneck link.!

3.1 Simulator implementation

This section gives a brief overview of the structure of the SRP-related extensions
to ns-2, and their use in simulation scripts.
Figure 3.1 illustrates the interaction of the extensions with each other and with

existing parts of ns. SRP-specific extensions are shown in dark grey.

3.1.1 SRP agents

In ns, applications generating or receiving traffic are represented by so-called
agents. SRP uses two agents: the SRPAgent (srpagent.cc), which controls traffic
generation and reception of feedback, and the SRPSink (srp-sink.cc), which acts
as the destination of SRP traffic. Both agents provide only the framework for SRP

and feedback traffic and leave packet type selection and scheduling to the estimators.

!The changes to ns-2 and the configuration scripts for the simulation are available on http:
//icawwwl.epfl.ch/srp/
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Figure 3.1: SRP-related components in the ns simulator.

SRPAgent has a built-in constant rate traffic generator. Optionally, a more ad-
vanced traffic generator can be registered. That generator can also access the estima-

tor module and may therefore adapt traffic generation to the available reservation.

3.1.2 SRP estimators

All of the “intelligence” of the SRP simulator is in the estimators. They control
packet admission, perform rate estimation, schedule feedback emission, and process

incoming feedback messages.

SRPEstimator
JumpEstimator AdaptiveEstimator

N N\

Jump2Estimator Jump3Estimator Adap2Estimator
Source Destination Router

Figure 3.2: Class hierarchy of SRP estimators.

Figure 3.2 shows the class hierarchy of SRP estimators: JumpEstimator (srp_
jumpest.cc) implements the basic algorithm described in section 2.3.1, and is di-

vided into the more specialized sub-classes Jump2Estimator (srp_jump2.cc; only
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for the SRP source), and Jump3Estimator (srp_jump3.cc; only for the SRP desti-
nation).

AdaptiveEstimator (srp_adest.cc) and Adap2Estimator (srp_ad2.cc)
implement the adaptive estimation algorithm described in section 2.3.2.2
Adap2Estimator reduces the overly expensive calculation of the effective bandwidth
to a simple average over a fixed time interval, which yields equally good results in
our simulations.

The parent class SRPEstimator (srp_estimator.cc) defines, among others, the

following methods for SRP estimators:

admit Decide whether to admit a packet with its current type. If the packet is not
admitted, the caller may change the packet type (e.g. from reserved to request)
and try again. admit returns a non-zero value if the packet is admitted, zero

otherwise.

packet Count the specified packet. This function is invoked exactly once for each

packet as the packet is passed to the queue.

loss Loss of the specified packet, because the queue was full. Note that loss is

invoked after packet.

get_feedback Obtain the feedback information gathered by the estimator. This

method needs to implemented only by estimators used at the destination.

set_feedback Process incoming feedback. This method needs to be implemented

only by estimators used at the sender.

Jump3Estimator can optionally be compiled such that it pretends successful
reception also of request packets which have been degraded. This causes the source
to generate non-conformant traffic, which still reacts to congestion and is therefore
not easily detected. This extension was used to generate traces of non-conformant

traffic for evaluation of the statistic classification described in section 2.4.

2Note that, for historical reasons, the division of code between AdaptiveEstimator and
Adap2Estimator is somewhat arbitrary, and that Adap2Estimator overrides most methods of
AdaptiveEstimator.
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3.1.3 SRP queue

SRPQueue (srpqueue.cc) implements a queue which consists internally of two
drop-tail queues, of which one is served with higher delay priority than the other.
This corresponds to the simplest way of implementing the isolation of reserved SRP
traffic from other traffic in a router.

SRPQueue invokes the estimator to decide whether request packets should be
admitted, and it also notifies the estimator when packets are enqueued or lost.

In order to test the stability of estimations in the presence of jitter in the network,
a jitter generator was added to the SRP queue. A detailed description of this can
be found in [34]. This extension was used to ensure that the estimation of reserved

traffic at the source does not drift due to jitter.

3.1.4 Example

The following ns script sets up the configuration shown in figure 3.1:

set ns [new Simulator]

Create a new instance of the simmulator.

set S [$ns node]
set D [$ns node]
set R [$ns node]

Create the source, destination, and router node.

$ns duplex-link $S $R 10Mb 15ms DropTail

Link the source to the router with a bidirectional 10 Mbps link.

$ns simplex-link $D $R 5Mb 15ms DropTail

$ns simplex-link $R $D 5Mb 15ms SRP

set srpqueue [[$ns link $R $D] queue]

[$srpqueue get-priority-queue] set limit_ 150
[$srpqueue get-best-effort-queue] set limit_ 1000
set est [new SRPEstimator/Adaptive/Adap2]

$est set cmax 0.8

$srpqueue estimator $est
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Create the link between the router and the destination. In the forward direction,
this link uses SRP. In the backward direction, it has a normal drop-tail queue. The
two SRP queues are limited to 150 and 1000 packets, respectively. Then an estimator
is attached and the maximum bandwidth allocation for reserved traffic is set to 80%
of the link bandwidth (cmax).

set src [new Agent/SRP]
$ns attach-agent $S $src
$src estimator [new SRPEstimator/Jump/holal

An SRP agent is attached to the source and its estimator is set to

Jump2Estimator.

set dst [new Agent/SRPSink]
$ns attach-agent $D $dst
$dst estimator [new SRPEstimator/Jump/dest]

Likewise for the destination.

$ns connect $src $dst

Source and destination agent are connected.

$src set packet-size 1000
$src set target-rate 1000

The target rate of the source is set to 1000 packets per second. Each packet has
a size of 1000 bytes.

$ns at 0 "$src start"
$ns at 9 "$src stop"
$ns at 10 "exit 0"
$ns run

The source sends for nine seconds. One second later, the simulation ends.
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Figure 3.3: Configuration of the simulated network.

3.2 Simulation scenario

The network configuration used for the simulation is shown in figure 3.3. The

grey paths mark flows we examine below.

There are ten routers (labeled R1...R10) and 40 hosts (labeled 1...40). Each of
the hosts 1...20 tries occasionally to send to any of the hosts 21...40. Connection
parameters are chosen such that the average number of concurrently active sources
sending via the R1-R2 link is approximately 150. Flows have an on-off behaviour,
where the on and off times are randomly chosen from the intervals [5,20] and [0, 30]
seconds, respectively. The bandwidth of a flow remains constant while the flow is
active and is chosen randomly from the interval [1, 150] packets per second.

All links in the network have a bandwidth of 10’000 packets per second and a
delay of 15 ms.?> We allow up to 90% of the link capacity to be allocated to reserved
traffic. The link between R1 and R2 is a bottleneck, which can only handle about
54% of the offered peak traffic. The delay objective D of the queue at R1 is 10 ms.
The queue size at the bottleneck link is limited to 150 packets (15 ms) for reserved

and request packets.

3Small random variations were added to link bandwidth and delay to avoid the entire network
from being perfectly synchronized. Also, some simplifications have been made in order to reduce
simulation overhead: only R1 performs acceptance control, feedback is sent at constant intervals,
the estimator in R1 only approximates the algorithm in [31], and congestion avoidance at sources
uses a trimmed version of the mechanism described in section 2.2.5.
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3.3 Simulation results

Figure 3.4 shows the R1-R2 link as seen from R1. We show the total offered
rate, and the smoothed actual rates of request and reserved packets. Figure 3.5
shows the queuing delay at R1 for all three packet types. The system succeeds in
limiting the queuing delay for reserved and request packets to less than the delay

goal of 10 ms.
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Figure 3.4: Traffic at R1 towards R2.
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Figure 3.5: Queuing delay at R1 on the link towards R2.
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Finally, we examine some end-to-end flows. Figure 3.6 shows a successful reser-
vation of 149 packets per second from host 5 to 39. The requested rate, the rate of
request packets sent, and the rate of reserved packets received are shown. Similarly,
figure 3.7 shows the same data for a reservation host 5 attempts later to 28, at a time
when the offered traffic already exceeds the bandwidth available at the bottleneck.
The reservation for 97 packets per second does not succeed initially, so the sender

continues to send request packets at a reduced rate until the desired reservation is

eventually obtained.
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Figure 3.6: End-to-end reservation from host 5 to host 39.
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Figure 3.7: End-to-end reservation from host 5 to host 28.
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During the entire simulated interval of 50 seconds, 14’657 request packets and
379’648 reserved packets were sent from R1 to R2. This is 98% of the total offered
traffic, limited by the reservable bandwidth of that link.

3.4 Conclusion

We have extended the popular ns simulator such that it can be used to validate
SRP. The simulations we have done suggest that SRP is does indeed work.

While working on the simulations, it became clear that the most sensitive com-
ponents in SRP are the estimators at the source and, even more so, in routers. The
SRP architecture allows estimators to be easily replaced, such that more advanced

estimators can be deployed where necessary.
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Chapter 4

Linux Traffic Control

Linux offers a rich set of traffic control functions. This chapter gives an overview
of the design of the respective kernel code, describes its structure, and illustrates

the addition of new elements by describing a new queuing discipline.

4.1 Introduction

Recent Linux kernels offer a wide variety of traffic control functions. The kernel
parts for traffic control, and several user-space programs to control them have been
implemented by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>. That work was in-
spired by the concepts described in [35], but it also covers the mechanisms required
for supporting the architecture developed in the IETF “intserv” group [36], and will
serve as the basis for supporting the more recent work of “diffserv” [3]. See also [20]
for further details on how intserv and diffserv are related. This document illustrates
the underlying architecture and describes how new traffic control functions can be
added to the Linux kernel. The kernel version we used is 2.2.6.

Figure 4.1 shows roughly how the kernel processes data received from the net-
work, and how it generates new data to be sent on the network: incoming packets
are examined and then either directly forwarded to the network (e.g. on a different
interface, if the machine is acting as a router or a bridge), or they are passed up to
higher layers in the protocol stack (e.g. to a transport protocol like UDP or TCP)

for further processing. Those higher layers may also generate data on their own
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Upper layers (TCP, UDP, ...)

Traffic control
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Figure 4.1: Processing of network data.

and hand it to the lower layers for tasks like encapsulation, routing, and eventually
transmission.

“Forwarding” includes the selection of the output interface, the selection of the
next hop, encapsulation, etc. Once all this is done, packets are queued on the
respective output interface. This is the point where traffic control comes into play.
Traffic control can, among other things, decide if packets are queued or if they are
dropped (e.g. if the queue has reached some length limit, or if the traffic exceeds
some rate limit), it can decide in which order packets are sent (e.g. to give priority to
certain flows), it can delay the sending of packets (e.g. to limit the rate of outbound
traffic), etc.

Once traffic control has released a packet for sending, the device driver picks it
up and emits it on the network.

Sections 4.2 to 4.4 give an overview and explain some terminology. Sections 4.5
to 4.8 describe the elements of traffic control in the Linux kernel in more detail.

Section 4.9 describes a queuing discipline that has been implemented by the author.

4.2 Overview

The traffic control code in the Linux kernel consists of the following major con-

ceptual components:
e queuing disciplines
e classes (within a queuing discipline)

e filters
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e policing

Each network device has a queuing discipline associated with it, which controls
how packets enqueued on that device are treated. A very simple queuing discipline
may just consist of a single queue, where all packets are stored in the order in which
they have been enqueued, and which is emptied as fast as the respective device can
send. See figure 4.2 for such a queuing discipline without externally visible internal

structure.

—1 Queuing discipline

Figure 4.2: A simple queuing discipline without classes.

More elaborate queuing disciplines may use filters to distinguish among different
classes of packets and process each class in a specific way, e.g. by giving one class

priority over other classes.

Y

> Filter —al .45 [ Queuing discipline

= Filter

Y
Y

Class | 1 Queuing discipline L

Y

Y

> Filter

Queuing discipline

Figure 4.3: A simple queuing discipline with multiple classes.

Figure 4.3 shows an example of such a queuing discipline. Note that multiple
filters may map to the same class.

Queuing disciplines and classes are intimately tied together: the presence of
classes and their semantics are fundamental properties of the queuing discipline. In
contrast to that, filters can be combined arbitrarily with queuing disciplines and
classes as long as the queuing discipline has classes at all. But flexibility doesn’t
end yet — classes normally don’t take care of storing their packets themselves, but

they use another queuing discipline to take care of that. That queuing discipline
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can be arbitrarily chosen from the set of available queuing disciplines, and it may

well have classes, which in turn use queuing disciplines, etc.

Y
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Queuing discipline with two delay priorities

Figure 4.4: Combination of priority, TBF, and FIFO queuing disciplines.

Figure 4.4 shows an example of such a stack: first, there is a queuing discipline
with two delay priorities. Packets which are selected by the filter go to the high-
priority class, while all other packets go to the low-priority class. Whenever there
are packets in the high-priority queue, they are sent before packets in the low-
priority queue (e.g. the sch_prio queuing discipline works this way). In order to
prevent high-priority traffic from starving low-priority traffic, we use a token bucket
filter (TBF), which enforces a rate of at most 1 Mbps. Finally, the queuing of low-
priority packets is done by a FIFO queuing discipline. Note that there are better
ways to accomplish what we’ve done here, e.g. by using class-based queuing (CBQ)
[37].

Packets are enqueued as follows: when the enqueue function of a queuing disci-
pline is called, it runs one filter after the other until one of them indicates a match.
It then queues the packet for the corresponding class, which usually means to invoke
the enqueue function of the queuing discipline “owned” by that class. Packets which
do not match any of the filters are typically attributed to some default class.

Typically, each class “owns” one queue, but it is in principle also possible that
several classes share the same queue or even that a single queue is used by all classes
of the respective queuing discipline. Note however that packets do not carry any
explicit indication of which class they were attributed to. Queuing disciplines that
change per-class information when dequeuing packets (e.g. CBQ) may therefore not

work properly if the “inner” queues are shared, unless they are able either to repeat

|
Y
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the classification or to pass the classification result from enqueue to dequeue by
some other means.

Usually when enqueuing packets, the corresponding flow(s) can be policed, e.g.
by discarding packets which exceed a certain rate.

We will not try to introduce new terminology to distinguish among algorithms,
their implementations, and instances of such elements, but rather use the terms
queuing discipline, class, and filter throughout most of this document, to refer to all

three levels of abstraction at the same time.

4.3 Resources

Linux traffic control is spread over a comparably large number of files. Note that
all path names are relative to the base directory of the respective component, e.g.
for the Linux kernel this is /usr/src/linux/, for the tc program iproute2/tc/.

tc is a user-space program used to manipulate individual traffic control elements.
Its source is in the file iproute2-wversion.tar.gz, which can be obtained from ftp:
//linux.wauug.org/pub/net/ip-routing/.

The kernel code resides mainly in the directory net/sched/. The interfaces
between kernel traffic control elements and user space programs using them are
declared in include/linux/pkt_cls.h and include/linux/pkt_sched.h. Decla-
rations used only inside the kernel and the definitions of some inline functions can
be found in include/net/pkt_cls.h and include/net/pkt_sched.h.

The rtnetlink mechanism used for communication between traffic control ele-
ments in user-space and in the kernel is implemented in net/core/rtnetlink.c and
include/linux/rtnetlink.h. rtnetlink is based on netlink, which can be found in
net/netlink/ and include/linux/netlink.h.

The kernel source can be obtained from the usual well-known places, e.g. from
ftp://ftp.kernel.org/pub/linux/kernel/v2.2/.

The example in section 4.9 is included in the ATM on Linux distribution, which
can be downloaded from http://icawwwl.epfl.ch/linux-atm/dist.html.

The Differentiated Services on Linux project (http://icawwwl.epfl.ch/
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linux-diffserv/) has produced further examples for extensions of Linux traffic

control and their use.

4.4 Terminology

Unfortunately, the terminology used to describe traffic control elements is far
from consistent in literature, and there are some variations even within Linux traffic
control. The purpose of this section is to help to put things into context.

Figure 4.5 shows the architectural models and the terminology used in the IETF
groups “intserv” [13] and “diffserv” [26, 19], and how elements of Linux traffic
control are related to them. Note that classes play an ambivalent role, because
they determine the final outcome of a classification and they can also be part of the
mechanism that implements a certain queuing or scheduling behaviour.

Table 4.1 summarizes the keywords used at the tc command line, the file names

used in the kernel (in net/sched/), and the file names used in the source of tc.

Element tc keyword | File name prefix
Kernel ‘ tc
Queuing discipline qdisc sch_ q_
Class class (sch_)  (qo)
Filter filter cls_ f_

Table 4.1: Keywords and file names used for traffic control elements.

4.5 Queuing disciplines

Each queuing discipline provides the following set of functions to control its

operation (see struct Qdisc_ops in include/net/pkt_sched.h):

enqueue enqueues a packet with the queuing discipline. If the queuing discipline has
classes, the enqueue function first selects a class and then invokes the enqueue

function of the corresponding queuing discipline for further enqueuing.
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Figure 4.5: Relation of elements of the intserv and diffserv architecture to traffic
control in the Linux kernel.
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dequeue returns the next packet eligible for sending. If the queuing discipline has
no packets to send (e.g. because the queue is empty or because they’re not

scheduled to be sent yet), dequeue returns NULL.

requeue puts a packet back into the queue after dequeuing it with dequeue. This
differs from enqueue in that the packet should be queued at exactly the place
from which it was removed by dequeue, and that it should not be included
in the statistics of cumulative traffic that has passed the queue, because that

was already done in the enqueue function.
drop drops one packet from the queue.
init initializes and configures the queuing discipline.
change changes the configuration of a queuing discipline.

reset returns the queuing discipline to its initial state. All queues are cleared,
timers are stopped, etc. Also, the reset functions of all queuing disciplines

associated with classes of this queuing discipline are invoked.

destroy removes a queuing discipline. It removes all classes and possibly also all
filters, cancels all pending events and returns all resources held by the queu-
ing discipline (except for the data structure describing the queuing discipline

itself).

dump returns diagnostic data used for maintenance. Typically, the dump functions

returns all sufficiently important configuration and state variables.

For all these functions, queuing disciplines are usually referenced by a pointer to
the corresponding struct Qdisc.

When a packet is enqueued on an interface (dev_queue_xmit in net/core/
dev.c), the enqueue function of the device’s queuing discipline (field qdisc of
struct device in include/linux/netdevice.c) is invoked. Afterwards, dev_
queue_xmit calls qdisc_wakeup in include/net/pkt_sched.h on that device to

try sending the packet that was just enqueued.
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qdisc_wakeup immediately calls qdisc_restart in net/sched/sch_generic.c,
which is the main function to poll queuing disciplines and to send packets. qdisc_
restart first tries to obtain a packet from the queuing discipline of the device, and
if it succeeds, it invokes the device’s hard_start_xmit function to actually send
the packet. If sending fails for some reason, the packet is returned to the queuing
discipline via its requeue function.

qdisc_wakeup can also be invoked by a queuing discipline when that queuing
discipline notices that a packet may be due for sending, e.g. on expiration of a timer.
TBF is an example of such a queuing discipline. qdisc_restart is also called via
qdisc_run_queues from net_bh in net/core/dev.c. net_bh is the “bottom-half”
handler of the networking stack and is executed whenever packets have been queued

up for further processing.

dev_queue_xmit

— gdisc_endqueue " * Timer

—* gdisc_wakeup

gdisc restart

—* gdisc_dequeue

— hard_start_xmit

gdisc_run_queues

net_bh

Figure 4.6: Functions called when enqueuing and sending packets.

Figure 4.6 illustrates the procedure. For simplicity, calls made by the queuing
discipline (e.g. for classification) are not shown.
Note that queuing disciplines never make direct calls to delivery functions. In-

stead, they have to wait until they are polled.
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If a queuing discipline is compiled into the the kernel, it should be registered by
pktsched_init in net/sched/sch_api.c. Alternatively, is can also be registered
from some other place using register_qdisc, e.g. from the init_module function
if the queuing discipline is compiled as a module.

When creating or changing an instance of a queuing discipline, a vector of options
(type struct rtattr #*, declared in include/linux/rtnetlink.h) is passed to the
init function. Each option is encoded with its type, the length of the value, and the
value (i.e. zero or more data bytes). Option types and the data structures used for
values are declared in include/linux/pkt_sched.h. The option vector is parsed by
calling rtattr_parse, which returns an array of pointers to the individual elements,
indexed by the option type. The length and content of an option can be accessed
via the macros RTA_PAYLOAD and RTA_DATA, respectively.

Option vectors are passed between user-space programs and the kernel using the
rtnetlink mechanism. Explaining rtnetlink and the underlying netlink is beyond the
scope of this work. The location of the respective source files is described in section
4.3.

Instances of queuing disciplines are identified by 32-bit numbers, which are split
into a major and a minor number. The usual notation is major: minor. For queuing
disciplines, the minor number is always zero. Note that these major and minor

numbers are not related to the numbers used for device special files.

4.6 Classes

Classes can be identified in two ways: (1) by the class ID, which is assigned by
the user, and (2) by the internal ID, which is assigned by the queuing discipline.
The latter has to be unique within a given queuing discipline and may be an index, a
pointer, etc. Note that the value 0 is special and means “not found” when returned
by get. The class ID is of type u32, while the internal ID is of type unsigned long.
Inside the kernel, the usual way to refer to a class is by its internal ID. Only get
and change use the class ID instead.

Note that multiple class IDs may map to the same internal class ID. In this
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case, the class ID conveys additional information from the classifier to the queuing
discipline or class.

Class IDs are structured like queuing discipline IDs, with the major number
corresponding to their instance of the queuing discipline, and the minor number
identifying the class within that instance.

Queuing disciplines with classes provide the following set of functions to manip-

ulate classes (see struct Qdisc_class_ops in include/net/pkt_sched.h):

graft attaches a new queuing discipline to a class and returns the previously used

queuing discipline.
leaf returns the queuing discipline of a class.

get looks up a class by its class ID and returns the internal ID. If the class maintains

a usage count, get should increment it.

put is invoked whenever a class that was previously referenced with get is derefer-
enced. If the class maintains a usage count, put should decrement it. If the

usage count reaches zero, put may remove the class.

change changes the properties of a class. change is also used to create new classes,
where applicable — some queuing disciplines have a constant number of classes

which are created when the queuing discipline is initialized.

delete handles requests to delete a class. It checks if the class is not in use, and

de-activates and removes it in this case.

walk iterates over all classes of a queuing discipline and invokes a callback function
for each of them. This is used to obtain diagnostic data for all classes of a

queuing discipline.

tcf_chain returns a pointer to the anchor of the list of filters associated with a

class. This is used to manipulate the filter list.

bind_tcf binds an instance of a filter to the class. bind_tcf is usually identical to

get, except when the queuing discipline needs to be able to explicitly refuse
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class deletion. (E.g. sch_cbq refuses to delete classes while they are referenced

by filters.)

unbind_tcf removes an instance of a filter from the class. unbind_tcf is usually

identical to put.
dump_class returns diagnostic data, like dump does for queuing disciplines.

Classes are selected in the enqueue function of the queuing discipline
usually by invoking tc_classify in include/net/pkt_cls.h, which returns
a struct tcf_result (in include/net/pkt_cls.h) containing the class ID
(classid) and possibly also the internal ID (class), see section 4.7. The return
value of tc_classify is either —1 (TC_POLICE_UNSPEC) or the policing decision re-
turned by the filter (see section 4.8). The return values of tc_classify are declared
in include/linux/pkt_cls.h.

There is also a shortcut for classification of locally generated traffic: if skb->
priority contains the ID of a class of the current queuing discipline, that class is
used and no further classification is attempted. skb->priority (struct sk_buff
in include/linux/skbuff.h) is set to sk->priority (struct sock in include/
net/sock.h) when locally generating a packet. sk->priority can be set with the
SO_PRIORITY socket option (sock_setsockopt in net/core/sock.c). This type of
classification can be useful for implementing functionality like the one provided by
Arequipa [38].

Note that kernels up to at least 2.2.3 limit the value that can be set with SO_
PRIORITY to the range 0...7, so that this shortcut classification does not work.
However, all queuing disciplines support it. Also note that skb->priority can
contain other priority values, e.g. the priority obtained from the TOS byte of the
IPv4 header. All such values are below the smallest valid class number, 65536.

After selecting the class, the enqueue function of the respective inner queuing
discipline is invoked. The way how this queuing discipline is stored in the data
structure(s) associated with the class can vary among queuing discipline implemen-
tations.

The option vector passed to the change function is of the same structure as
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the vectors passed to the init functions of queuing disciplines. The corresponding

declarations are also in include/linux/pkt_sched.h.

4.7 Filters

Filters are used by a queuing discipline to assign incoming packets to one of its

classes. This happens during the enqueue operation of the queuing discipline.

Qdisc/class

> Filter prio=1 — Filter prio=2 — —-

> Element handle=X

Y
Element handle=Y

Figure 4.7: Structure of filters, with a list of elements belonging to the first filter,
and no internal structure for the second filter.

Filters are kept in filter lists which can be maintained per queuing discipline or
per class, depending on the design of the queuing discipline. Filter lists are ordered
by priority, in ascending order. Furthermore, the entries are keyed by the protocol
for which they apply. Those protocol numbers are also used in skb->protocol and
they are defined in include/linux/if_ether.h. Filters for the same protocol on
the same filter list must have different priorities.

A filter may also have an internal structure: it may control internal elements,
which are then referenced by 32-bit handles. These handles are similar to class IDs,
but they are not split into major and minor numbers. Handle 0 always refers to
the filter itself. Like classes, also filters have internal IDs, which are obtained with
the get function. The internal organization of a filter can be arbitrary. Figure 4.7

shows a filter with a list of internal elements.
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Figure 4.8: Looking for a match.

UNSPEC

Figure 4.8 shows the order in which filters and their elements can be examined.
A linked list that is processed sequentially is of course only one of many possible
internal structures of a filter.

Filters are controlled via the following functions (see struct tcf_proto_ops in

include/net/pkt_cls.h):

classify performs the classification and returns one of the TC_POLICE_... values
described in section 4.8. If the result is not TC_POLICE_UNSPEC, it also re-
turns the selected class ID and optionally also the internal class ID in the
struct tcf_result pointed to by res. If the internal class ID is omitted, the

value zero must be stored in res->class.
init initializes the filter.

destroy is invoked to remove a filter. Also the queuing disciplines sch_cbq and
sch_atm use destroy to remove stale filters when deleting classes. If the
filter or any of its elements were registered with classes, these registrations are

canceled by calling unbind_tcf.

get looks up a filter element by its handle and returns the internal filter ID.
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put is invoked when a filter element previously referenced with get is no longer

used.

change configures a new filter or changes the properties of an existing filter. Config-
uration parameters are passed with the same mechanism as used for queuing
disciplines and classes. change registers the addition of a new filter or filter

element to a class by calling bind_tcf.

delete deletes an element of a filter. To delete the entire filter, destroy has to be
used. This distinction is transparent to the user and is made in net/sched/
cls_api:tc_ctl_tfilter. If the filter element was registered with a class,

that registration is canceled by calling unbind_tcf.

walk iterates over all elements of a filter and invokes a callback function for each of

them. This is used to obtain diagnostic data.
dump returns diagnostic data for a filter or one of its elements.

Note that the code for the RSVP filters is in cls_rsvp.h. cls_rsvp.c and
cls_rsvp6.c only contain the right set of includes and set some parameters (mainly
RSVP_DST_LEN), which control the type of filter generated from cls_rsvp.h.

Filters vary in the scope of packets their instances can classify: When using
the cls_fw and cls_route filters, one instance per queuing discipline can classify
packets for all classes. Those filters take the class ID from the packet descriptor,
where it was stored before by some other entity in the protocol stack, e.g. cls_fw
uses the marking functionality of the firewall code. We call such filters generic.
They are illustrated in figure 4.9.

The other type of filters (c1s_rsvp and cls_u32) needs one or more instances
of the filter or its internal elements per class. We call such filters specific. Multiple
instances of such a filter (or its elements) on the same filter list (e.g. for the same
class) are distinguished by an internal filter 1D, which is similar to the internal ID
used for classes. However, unlike classes, filters have no “filter ID”. Instead, they
are identified by the queuing discipline or class for which they are registered, and

their priority among the filters there.
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Figure 4.9: Generic filter.

Because specific filters have at least one instance or element per class, they can
of course store the internal ID of that class and provide it as a result of classification.
This then allows quick retrieval of class information by the queuing discipline. Figure
4.10 illustrates this scenario, where a pointer to the class structure is used as the
internal ID. Unfortunately, generic filters have no means to provide this information.
Therefore, they set the class field in struct tcf_result to zero and leave the
lookup operation to the queuing discipline.

Starting with kernel version 2.2.5, also the generic filters cls_fw cls_route
can become specific filters. This configuration change happens automatically when

explicitly binding classes to them.

4.8 Policing

The purpose of policing is to ensure that traffic does not exceed certain bounds.
For simplicity, we will assume a broad definition of policing and consider it to com-
prise all kinds of traffic control actions that depend in some way on the traffic
volume.

We consider four types of policing mechanisms: (1) policing decisions by filters,



63

" Packet content

— -
skb e

s

s
! s
| s
s
|

Filter can use all pécket information
1 7

s
s

Voo~

filter classify

i |2
5} 2 x:0
= < Classes
£ |y 3
o _
£ X:a
e, _
.y| classid| 2 )
x:y|classid| .z <:b
class o -
.\\ g
tcf result B -
o Xy

Figure 4.10: Specific filter, with a pointer to the class used as the internal class ID.

(2) refusal to enqueue a packet, (3) dropping of a packet from an “inner” queuing
discipline, and (4) dropping of a packet when enqueuing a new one. Figures 4.11 to
4.15 illustrate the four mechanisms.

The first type of actions are decisions taken by filters (figure 4.11). The classify
function of a filter can return three types of values to indicate a policy decision (the

values are declared in include/linux/pkt_cls.h:
TC_POLICE_OK No special treatment requested.

TC_POLICE_RECLASSIFY Packet was selected by filter but it exceeds certain bounds

and should be re-classified (see below).

TC_POLICE_SHOT Packet was selected by filter and found to violate the bounds such
that it should be discarded.

Currently, the filters c1s_rsvp, cls_rsvp6, and cls_u32 support policing. The

policing information is returned via tc_classify (in include/net/pkt_cls.h) to
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filterl classify
UNSPEC
Filter(s) —~

filter2 classify
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Figure 4.11: Policing when enqueuing; decision taken by filter.

the enqueue function of the queuing discipline. It is then up to the queuing discipline
to take an appropriate action. The queuing disciplines sch_cbq and sch_atm handle
TC_POLICE_RECLASSIFY and TC_POLICE_SHOT. The sch_prio queuing discipline
ignores any policing information returned by tc_classify.

Filters can use the function tcf_police (in net/sched/police.c) to determine
if the flow they select conforms to a token bucket. The bucket parameters (de-
clared in struct tc_police in include/linux/pkt_cls.h and later on stored in
struct tcf_police in include/net/pkt_sched.h) are roughly the same as for
TBF: maximum packet size (mtu), average rate (rate), peak rate (peakrate), and
bucket size (burst). The field action contains the policy decision code returned
when accepting the packet would exceed the limits. If the packet can be accepted,
tcf_police updates the meter and returns the decision code stored in result.

If no matching filter was found, tc_classify returns TC_POLICE_UNSPEC. In
this case, a queuing discipline will typically either discard the packet or treat it with
low priority.

Sometimes, it is desirable to police traffic with respect to more than a single
token bucket, e.g. to partition traffic into “low”, “high”, and “excess” packets. In

order to build such configurations, multiple policing functions need to be consulted.
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Figure 4.12: Looking for a match, with policing.

To accomplish this, tcf_police returns TC_POLICE_UNSPEC, upon which the filter
proceeds with the next element, or, if the current filter has no more eligible elements,
the next filter is invoked. An example of such a configuration is given in [39].

Figure 4.12 illustrates how the matching process changes when policing is in-
volved.

The second type of policing occurs when a queuing discipline fails to enqueue
a packet (figure 4.13). In this case, it normally simply discards the packet (i.e.
by calling kfree_skb). Some queuing disciplines also provide more sophisticated
feedback to the calling queuing discipline and give it a second chance for enqueuing
the packet: if the reshape_fail callback function has been set (in struct Qdisc),
the “inner” queuing discipline may invoke it instead to allow the “outer” queuing
discipline to select a different class. If reshape_fail is not set or if it returns a
non-zero value, the packet must be discarded. Currently, only sch_cbq provides
a reshape_fail function. sch_fifo and sch_tbf make calls to reshape_fail, if

available.
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Figure 4.13: Policing when enqueuing; decision taken by “inner” queuing discipline.
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inner_enqueue inner_drop
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outer_enqueue outer_. ..
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Figure 4.14: Policing after enqueuing; decision taken by “outer” queuing discipline.

The third policing mechanism is applied if a queuing discipline decides to drop
a packet from an “inner” queuing discipline after that packet was enqueued, e.g.
in order to create space for packets of a more important class (figure 4.14). This
is done using the drop function. The cbq_dequeue_prio function of sch_cbq uses

this via cbq_under_limit to remove packets from classes which are over limit.

Also the fourth mechanism (figure 4.15) discards packets that have already been
successfully enqueued: if the enqueue function of a queuing discipline considers a
new packet to be more important than some older one, it can discard the old packet

and enqueue the new one instead. It indicates this to the caller by returning zero.
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Figure 4.15: Older packet is discarded to make room for new packet.

4.9 The sch_atm queuing discipline

As an example of how new traffic control elements can be added, we examine the
ATM queuing discipline in more detail. It is used to re-direct flows from the default
path (e.g. through a given interface) to ATM VCs. Each flow can have its own
ATM VC, but multiple flows can also share the same VC. Figure 4.16 illustrates the

structure of this queuing discipline.
Filter Class | Queuing discipline | ATM VC
Filter Class : Qu_elli_ng fii_sgil_)l_in_e : T | ATM VC

Filter Class | Queuing discipline |
Default - ------------
— %,

ATM queuing discipline

Figure 4.16: The ATM queuing discipline.

While its classification and queuing part is fairly generic, the ATM queuing
discipline differs from other queuing disciplines in that packets enqueued on it may
leave via other paths than through the dequeue function or being dropped: whenever

dequeue is called, it first checks all inner queuing disciplines for packets to send,
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and sends them over the respective ATM VCs. After that, it returns whatever it
gets from the default queue, which receives the packets that don’t get attributed to
any of the classes.

In order to prevent VCs from being removed while the queuing discipline is
still using them, the reference count of the corresponding socket is increased when
attaching a VC to a class of the ATM queuing discipline. This happens in the
function sockfd_lookup in net/socket.c which atm_tc_change calls to translate
the socket descriptor number to a pointer to the socket structure. When the class
is removed, it returns the socket using sockfd_put, which then decrements the
reference count. This pair of functions performs roughly the equivalent of fdopen
and close.

The ATM queuing discipline supports the policing responses TC_POLICE_SHOT
and TC_POLICE_RECLASSIFY. The latter can be handled in two different ways: (1)
by assigning the packet to a new class (as configured by the user), or (2) by setting
the cell loss priority bit in outgoing ATM cells.

The code of the ATM queuing discipline is in net/sched/sch_atm.c. In ad-
dition to that file, include/linux/pkt_sched.h contains the option types (prefix
TCA_ATM_), and net/sched/sch_api.c contains the initialization. Furthermore, the
usual changes had to be made to net/sched/Config.in and net/sched/Makefile
to include the new queuing discipline in the configuration and build process.

The use of the ATM queuing discipline is described in the file atm/extra/tc/
README in the ATM on Linux distribution.

4.10 Conclusion

Linux traffic control consists of a large variety of elements, which interact with
each other in many ways. The modular approach chosen results in a very versatile
design that can be readily applied to most current traffic control tasks, and which
can be easily extended to accommodate less typical applications, such as the link-
layer selection implemented in the ATM queuing discipline. It also forms the basis

for the Linux implementation of Differentiated Services, which unify and advance
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many of the existing traffic control concepts.

We have described queuing disciplines, classes, filters, and elements within filters,
we have illustrated the most important interactions between these components, and
we have briefly introduced the design of a new queuing discipline. We hope this
information to be useful for people aiming to understand the inner workings of
Linux traffic control, and in particular also to implementors of new traffic control

functions.
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Chapter 5
Differentiated Services on Linux

As shown in the previous chapter, recent Linux kernels offer a wide variety of
traffic control functions, which can be combined in a modular way. We have designed
support for Differentiated Services based on the existing traffic control elements, and
we have implemented new components where necessary. In this chapter we give a
brief overview of the structure of Linux traffic control, we describe our prototype
implementation in more detail, and we show measurement results to illustrate its
performance.

This chapter is structured as follows. Section 5.2 introduces the concepts of the
Diffserv architecture. Section 5.3 discusses where traffic control functions in the
Linux kernel needed to be extended. Section 5.4 describes the new components in
more detail.

In section 5.5, we explain examples of configuration scripts. We conclude with

measurement results obtained using our implementation in section 5.6.

5.1 Introduction

The Differentiated Services architecture (Diffserv; [19]) provides an infrastruc-
ture for applications, users, or providers to select the network service that best suits
their needs. Services may differ in many ways, such as delay or loss goals.

Diffserv defines local node services in terms of the forwarding behavior of indi-

vidual routers (the so-called Per-Hop-Behavior; PHB). Diffserv defines only PHBs
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which can be used to define end-to-end services, however the actual use of these
building blocks to define end-to-end services is beyond the current scope of the
IETF Diffserv Working Group [3].

When forwarding a packet, a node selects the PHB to apply based on the content
of the Diffserv field (short “DS field”) in the IP header [26]. This value is called
the Diffserv Code Point (DSCP). Note that each network may decide on its own
mapping between DSCP values and PHBs. Nevertheless, each PHB definition also
proposes a default DSCP value.

The Diffserv design allows PHBs to be defined, implemented, and deployed in a
largely independent way. It is therefore important to preserve this flexibility in any
implementation.

We have developed a design to support basic classification and DS field manip-
ulation required by Diffserv nodes. The design enables configuration of the first
PHBs that are being defined in the Diffserv WG. We have implemented a prototype
of this design using the traffic control framework available in recent Linux kernels.
The source code, configuration examples, and related information can be obtained
from http://icawwwl.epfl.ch/linux-diffserv/

The main focus of our work is to allow maximum flexibility for node configuration
and for experiments with PHBs, while still maintaining a design that does not

unnecessarily sacrifice performance.

5.2 Differentiated Services

Figure 5.1 shows the general structure of the forwarding path in a Diffserv node.

— G o Marking
1er it arkin
Meter o PHB &

Figure 5.1: General Diffserv forwarding path.

Depending on the implementation, marking may also occur at different places,

possibly even several times.
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5.2.1 Classification and metering

Diffserv distinguishes two types of classification: a “behavior aggregate classifier”
distinguishes packets based only on their DS fields. A “micro-flow classifier” may
take into account the whole packet, e.g. the source and destination IP addresses,
port numbers, etc.

Classification based on packet contents may also be supplemented by metering

of traffic flows, e.g. in order to accept only limited traffic for a given PHB.

5.2.2 Marking

The process of setting or modifying the DS field is called marking. Marking is

necessary in several cases, for example:

Whenever a packet from a non-Diffserv network reaches the edge of a Diffserv

network, its DS field has to be initialized to the appropriate DSCP.

e Diffserv-capable hosts need to be able to set the DS field of packets they

originate.

e Since different parts of a network may use different DSCP to PHB mappings,
edge routers may have to change the DS field in packets crossing such a bound-

ary.

e A PHB group may use multiple PHBs and hence multiple DSCPs to convey
additional information (e.g. some form of congestion indication). In this case,

the DS field may change at any Diffserv-capable node along the path.

5.2.3 PHBs

Three groups of PHBs are currently being defined in the Diffserv WG:

e PHBs for compatibility with historical use of the IPv4 TOS byte (defined in
[26])

e Expedited forwarding, a simple high-priority PHB [40]
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e Assured Forwarding, a group of PHBs with different delay and drop priorities
[41]

5.3 Diffserv extensions to Linux traffic control

The traffic control framework available in recent Linux kernels [42] already offers
most of the functionality required for implementing Diffserv support. We therefore
closely followed the existing design and added new components only where it was

deemed strictly necessary.

5.3.1 Overview

The classification result may be used several times in the Diffserv processing
path, and it may also depend on external factors (e.g. time), so reproducing the

classification result may not only be expensive, but actually impossible.

We therefore added a new field tc_index to the packet buffer descriptor (struct
sk_buff), where we store the result of the initial classification. In order to avoid
confusing tc_index with the classifier cls_tcindex, we will call the former skb->

tc_index throughout this document.

skb->tc_index is set using the sch_dsmark queuing discipline, which is also
responsible for initially retrieving the DSCP, and for setting the DS field in packets
before they are sent on the network. sch_dsmark provides the framework for all

other operations.

The cls_tcindex classifier reads all or part of skb->tc_index and uses this to

select classes.

Finally, we need a queuing discipline to support multiple drop priorities as re-
quired for Assured Forwarding. For this, we designed GRED, a generalized RED.
sch_gred provides a configurable number of drop priorities which are selected by

the lower bits of skb->tc_index.
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5.3.2 Classification and marking

The classifiers cls_rsvp and cls_u32 can handle all micro-flow classification
tasks. Additionally, the ipchains firewall is also capable of tagging microflows into
classes. Behavior aggregate classification could also be done using cls_u32 and
ipchains, but since we usually already have sch_dsmark at the top level, we use
the simpler c1s_tcindex and retrieve the DSCP using sch_dsmark, which then puts
it into skb->tc_index.

When using sch_dsmark, the class number returned by the classifier is stored in
skb->tc_index. This way, the result can be re-used during later processing steps.

Nodes in multiple DS domains must also be able to distinguish packets by the
inbound interface in order to translate the DSCP to the correct PHB. This can be
done using the route classifier, in combination with the ip rule command interface
subset.

Marking is done when a packet is dequeued from sch_dsmark. sch_dsmark uses
skb->tc_index as an index to a table in which the outbound DSCP is stored and
puts this value into the packet’s DS field.

skb->iph->tos

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =
Initial value of tc_index
\ Initial DS field marking —
cls [ N N J
rsvp
— —

sch_dsmark

tc_iﬂdei
may chan
[ A V,,,,,),/,,,%,,>

skb->tc_index

Figure 5.2: Micro-flow classifier.

Figure 5.2 shows the use of sch_dsmark and skb->tc_index in a micro-flow

classifier based on cls_rsvp. Figure 5.3 shows a behavior aggregate classifier using
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cls_tcindex.

skb->iph->tos
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skb->tc_index

Figure 5.3: Behaviour aggregate classifier.

5.3.3 Cascaded meters

Multiple meters are needed if traffic should be assigned to more than two classes,
based on the bandwidth it uses. As an example, such classes could be for “low”,
“high”, and “excess” traffic.

Our current implementation supports a limited form of cascading at the level
of classifiers. We are testing a cleaner and more efficient solution at the time of

writing.

5.3.4 Implementing PHBs

PHBs based only on delay priorities, e.g. Expedited Forwarding [40], can be
built using CBQ [37] or the more simple sch_prio. (See section 5.5.)

Besides four delay priorities, which can again be implemented with already ex-
isting components, Assured Forwarding [41] also needs three drop priorities, which
is more than the current implementation of RED supports. We therefore added a

new queuing discipline which we call “generalized RED” (GRED). GRED uses the
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lower bits of skb->tc_index to select the drop class and hence the corresponding

set of RED parameters.

5.3.5 Shaping

The so-called Token Bucket Filter (sch_tbf) can be used for shaping at edge
nodes. Unfortunately, the highest rate at which sch_tbf can shape is limited by
the system timer, which normally ticks at 100 Hz, but can be accelerated to 1 kHz
or more if the processor is sufficiently powerful. Note that Linux traffic control
supports more granular clocking for droppers (i.e. shapers without buffer).

CBQ can also be used to do shaping.

Higher rates can be shaped when using hardware-based solutions, such as ATM.

5.3.6 End systems

Diffserv-capable sources use the same functionality as edge routers, i.e. any
classification and traffic conditioning can be administratively configured.

In addition to that, an application may also choose to mark packets when they
are generated. For IPv4, this can be done using the IP_TOS socket option, which is
commonly available on Unix, and of course also on Linux. Note that Linux follows
the [5] convention of not allowing the lowest bit of the TOS byte to be different from
zero. This restriction is compatible with use for Diffserv. Furthermore, the use of
values corresponding to high precedences (i.e. DSCP 0x28 and above) is restricted.
This can be avoided either by giving the application the appropriate capabilities
(privileges), or by re-marking (see below).

Setting the DS field with IPv6 is currently very awkward. In the future, an
improved interface is likely to be provided that unifies the IPv4 and IPv6 usage
and that may contain additional improvements, e.g. selection of services instead of
“raw” DS field values.

An application’s choice of DS field values can always be refused or changed by

traffic control (using re-marking) before a packet actually reaches the network.
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5.4 New components

The prototype implementation of Diffserv support requires the addition of three
new traffic control elements to the kernel: (1) the queuing discipline sch dsmark
to extract and to set the DSCP, (2) the classifier cls_tcindex which uses this
information, and (3) the queuing discipline sch_gred which supports multiple drop

priorities and buffer sharing.

Only the queueing discipline to extract and set the DSCP is truly specific to
the differentiated services architecture. The other two elements can also be used in

other contexts.

Figure 5.2 shows the use of sch dsmark for the initial packet marking when
entering a Diffserv domain. The classification and rate control metering is performed

by a micro-flow classifier, e.g. cls_rsvp, in this case.

This classifier determines the initial TC index which is then stored in skb->tc_
index. Afterwards, further processing is performed by an inner queuing discipline.

Note that this queuing discipline may read and even change skb->tc_index.

When a packet leaves sch_dsmark, skb->tc_index is examined and the DS field

of the packet is set accordingly.

Figure 5.3 shows the use of sch_dsmark and cls_tcindex in a node which works
on a behavior aggregate, i.e. on packets with the DS field already set. The procedure
is quite similar to the previous scenario, with the exception that cls_tcindex takes
over the role of cls_rsvp and that the DS field of the incoming packet is copied to

tc_index before invoking the classifier.

Note that the value of the outbound DS field can be affected at three locations:
(1) in sch_dsmark, when classifying based on skb->tc_index, which contains the
original value of the DS field; (2) by changing skb->tc_index in an inner queuing
discipline; and (3) in sch_dsmark, when mapping the final value of skb->tc_index

back to a new value of the DS field.
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As illustrated in figure 5.4, the sch_dsmark queuing discipline performs three

actions based on the scripting invocation:

e [f set_tc_index is set, it retrieves the content of the DS field and stores it in

skb->tc_index.

e It invokes a classifier and stores the class ID returned in skb->tc_index. If

the classifier finds no match, the value of default_index is used instead.

If default_index is not set, the value of skb->tc_index is not changed.

Note that this can yield undefined behaviour if neither set_tc_index nor

default_index is set.

o After sending the packet through its inner queuing discipline, it uses the re-

sulting value of skb->tc_index as an index into a table of (mask,value) pairs.

The original value of the DS field is then replaced using the following formula:

ds_field = (ds_field & mask) | value

skb->iph->tos

Optional: DS field is copied to tc_index
/

res.classid contains new tc_index

/

Filter

O Filter classid| Queuing discipline
Default

tc| index is translated to DSCP
default_ indexprovides tc_index

sch dsmark

Classifier may use tc_index

Mask Value

skb->tc_index

Figure 5.4: The dsmark queuing discipline.

Table 5.4.1 lists the parameters that can be configured in th

,,,,,,,,,,, ~

e dsmark queuing

discipline. The upper part of the table shows parameters of the queuing discipline
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itself. The lower part shows parameters of each class.

Variable name / tc keyword Value Default
indices 2" none
default_index 0...indices-1 | absent
set_tc_index none (flag) absent
mask 0...0xff Oxff
value 0...0xft 0

Table 5.1: Configuration parameters of sch_dsmark.

indices is the size of the table of (mask,value) pairs.

5.4.2 cls_tcindex

As shown in figure 5.5, the cls_tcindex classifier uses skb->tc_index to select
classes. It first calculates the lookup key using the algorithm
key = (skb->tc_index >> shift) & mask
Then it looks for an entry with this handle. If an entry is found, it may call a meter
(if configured), and it will return the class IDs of the corresponding class.

If no entry is found, the result depends on whether fall through is set. If set,
a class ID is constructed from the lookup key. Otherwise, it returns a “not found”
indication and the search continues with the next classifier. We call construction of
the class ID an “algorithmic mapping”. This can be used to avoid setting up a large
number of classifier elements if there is a sufficiently simple relation between values
of skb->tc_index and class IDs. An example of this trick is used in the AF scripts
on the web site.

The size of the lookup table can be set using the hash option. cls_tcindex
automatically uses perfect hashing if the range of possible choices does not exceed
the size of the lookup table. If the hash option is omitted, an implementation-
dependent default value is chosen.

Table 5.4.2 shows the parameters that can be configured in the tcindex classifier.
The upper part of the table shows parameters of the classifier itself. The lower part

shows parameters of each element.
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Figure 5.5: The tcindex classifier.

Variable tc keyword Value Default
hash hash 1...0x10000 | implementation-
dependent
mask mask 0...0xftf Oxftt
shift shift 0...15 0
fall_through | fall_through/ flag fall_through
pass_on
res classid major: minor none
police police Profile none

Table 5.2: Configuration parameters of c1s_tcindex.

Note that the keyword used by tc (the command-line tool used to manually con-
figure traffic control elements) does not always correspond to the variable internally

used by cls_tcindex.

5.4.3 sch gred

Figure 5.6 shows how sch_gred uses skb->tc_index for the selection of the
right virtual queue (VQ) within a physical queue. What makes sch_gred different
from other Multi-RED implementations is the fact that it is decoupled from any

one specific block along the packet’s path such as a header classifier or meter. For
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Figure 5.6: Generic RED and the use of skb->tc_index

example, CISCO’s DWRED [43] is tied to mapping VQ selection based on the
precedence bits classification. On the other hand, RIO [44] is tied to the IN/OUT
metering levels for the selection of the VQ. In the case of GRED, any classifier,
meter, etc. along the data path can affect the selection of the VQ by setting the
appropriate value of skb->tc_index.

GRED also differs from the two mentioned multiple RED mechanisms in that
it is not limited to a specific number of VQ. The number of VQs is configurable
for each physical class queue. GRED does not assume certain drop precedences (or
priorities). It depends on the configuration parameters passed on by the user. In
essence, DWRED and RIO are special cases of GRED.

Currently, the number of virtual queues is limited to 16 (the least significant
4 bits of skb->tc_index). There is a one to one mapping between the values of
skb->tc_index and the virtual queue number in a class. Buffer sharing is achieved

using one of two ways (selectable via configuration):

e Simple setting of physical queue limits. It is up to the individual configuring
the virtual queues parameters to decide which one gets preferential treatment.
Sharing and preferential treatment amongst virtual queues is based on param-
eter settings such as the per-virtual queue physical limit, threshold values and

drop probabilities. This is the default setting.
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e A similar average queue trick as that is used in [44]. This is selected by the
operator grio during the setup. Each V(Q within a class is assigned a priority
at configuration time. Priorities range from 1 to 16 at the moment, with 1
being the highest. The computation of the average queue value (for a VQ)
involves first summing to the current stored average queue value all the the
other average queue values of the VQs which are more important than it.
This way a relatively higher priority (lower priority value) gets preferential
treatment because its average queue is always the lowest; the relatively lower
priority will still continue to send when the higher ones are not dominating the
buffer space. A user can still configure the per-virtual-Queue physical queue
limits, threshold values, and drop probabilities as in the (first) case when the

grio option is not defined.

The second scheme is slightly slower than the first one (a few more per-packet
computations).

GRED is configured in two steps. First (see also the upper part of table 5.4.3)
the generic parameters are configured to select the number of virtual queues DPs
and whether to turn on the RIO-like buffer sharing scheme (grio). Also at this
point, a default virtual queue is selected so that packets with out of range values of
skb->tc_index or misconfigured priorities in the case of grio buffer-sharing setup
are directed to it. Normally, the default virtual queue is the one with the highest
likelihood of having a packet discarded. The operator setup identifies that this is a
generic setup for GRED.

The second step is to set parameters for individual virtual queues. (See also the
lower part of table 5.4.3).

These parameters are equivalent to the traditional RED parameters. In addition,
each RED configuration identifies which virtual queue the parameters belong to as
well as the priority if the grio technique is selected. The mandatory parameters

are:
e limit defines the virtual queue “physical” limit in bytes.

e min defines the minimum threshold value in bytes.
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Variable | tc keyword Value Default
DPs DPs 1...16 none
def default 1...DPs none
grio grio none (flag) | absent

limit limit bytes none
qth_min min bytes none
qth_max max bytes none
n/a avpkt bytes none
n/a bandwidth rate 10 Mbps
n/a burst packets none
n/a probability | [0...1) 0.02
DP DP 1...DPs 0
prio prio 1...DPs none

Table 5.3: Configuration parameters of sch_gred.

max defines the maximum threshold value in bytes.
avpkt is the average packet size in bytes.
bandwidth is the wire-speed of the interface.

burst is the number of average-sized packets allowed to burst. The Linux
RED implementation attempts to compute an optimal W value for the user
based on the avpkt, minimum threshold and allowed burst size. This is based

on the equation:

qmin 1 —(1— W)burst

burst + 1 — <
o avpkt W

as described in [45].
probability defines the drop probability in the range [0...).
DP identifies the virtual queue assigned to these parameters.

prio identifies the virtual queue priority if grio was set in the general param-

eters.
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5.5 Building sample configurations

tAc

Kernel

Figure 5.7: User space to kernel communication using tc

Communication and configuration of the kernel code or modules is achieved by
a user level program tc written by Alexey. The interaction is shown in figure 5.5.

Given the flexibility of the code, there are many ways to reach the same end goal.
Depending on the requirement, one could script the same PHB using a different
combinations of qdiscs; e.g. one could build a core EF capable router using either
CBQ to rate limit it and prioritise its traffic or instead use the PRIO qdisc with a
Token Bucket attached to rate limit it. It is hoped that users of Linux Diffserv will
be able to script their own flavored configurations. The examples below (as well
as those on the Linux Diffserv web site) are simplistic, in the sense that they only
assume one interface per node. One should easily be able to extend them for more
than one interface

The normal recipe for creating a configuration script is:
e attach sch_dsmark to the output interface
e define the structure of the queuing discipline(s) inside sch_dsmark

e number the classes and decide on a numbering scheme to use for skb->
tc_index (the latter may be trivial if skb->tc_index is only used within

sch_dsmark.)
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e identify which packets go to which classes and configure the classifier(s) of

sch_dsmark accordingly

The script lines in the next subsections are numbered for clarity of the accom-

panying description below.

For clarity, we did not include handling of historical DS field values in our scripts.

5.5.1 Edge device: Packet re-marking

u32 Meter Class 1:1 DSCP 0x2e
L = Class 122 | FIFO DSCP 0x18
Exceeded limit _ [
Class 1:3 DSCP Ox1a
No match —

sch dsmark (1:0)

—
1. tc
2. tc
3. tc
4. tc
5. tc
6. tc
7. tc
8. tc
9. tc

Figure 5.8: Packet re-marking at the edge.

qdisc add dev ethO handle 1:0 root dsmark indices 64
class change dev ethO classid 1:1 dsmark mask 0x3 value 0xb8
class change dev ethO classid 1:2 dsmark mask 0x3 value 0x68
class change dev ethO classid 1:3 dsmark mask 0x3 value 0x48
filter add dev ethO parent 1:0 protocol ip prio 4 handle 1: u32
divisor 1
filter add dev ethO parent 1:0 protocol ip prio 5 handle 2: u32
divisor 1
filter add dev ethO parent 1:0 prio 4 u32
match ip dst 10.0.0.0/24
police rate 1Mbit burst 2K continue
flowid 1:1
filter add dev ethO parent 1:0 prio 5 u32
match ip dst 10.0.0.0/24
flowid 1:2
filter add dev ethO parent 1:0 prio 4 u32
match ip dst 10.1.0.0/16
match ip src 192.1.0.0/16
match ip protocol 6 Oxff
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match ip dport 0x17 Oxffff
flowid 1:3

The first line attaches a dsmarker to the interface ethO on the root node. The
second line instructs the dsmarker to remark the DSCP of classid 1:1 by first masking
out bits 6 and 7 then ORing that with a value of 0xb8. Note that: This is equivalent
to ignoring the ECN bits, and setting the code point value to 0x2e (which happens
to be the DSCP for EF). In a similar manner, the third line instructs the dsmarker
to remark the CP of classid 1:2 to Oxla (DSCP for AF31). The fourth line adds
a remarking the class 1:3 DSCPs to 0x12 (DSCP for AF21). These three lines in

effect are also registering the classes 1:2, 1:3 and 1:4.

Line 5 adds a u32 classifier with priority of 4. Line 6 adds another classifier of
a lower priority. Line 7 maps all packets with a source IP address of 10.0.0.0/24
to class 1:1. Line 7 and 8 show how one can attach a meter to a classifier and
the reaction to an exceeding of the rate. Basically, the trick is to define two filters
matching the same headers with a higher priority one attached with a meter and
policing action. The operator continue is used to allow a lookup of the next lower
priority matching filter. In this case, should the metering be exceeded in class 1:1,
the flow is reclassified to class 1:2. Line 9 selects all TCP packets from source subnet
10.1.1.0/16 destined towards subnet 192.1.1.0/16 and sends them to the queue for

class 1:3.

The overall effect is: all packets coming in from source subnet address 10.0.0.0/24
will get their packets marked with a DSCP of 0x2e (EF class/PHB) up to a point
where they start exceeding their allocated rate (of 1Mbps and burst of 2K). In
this case, the packets are demoted to class 1:2 where they will be remarked to
DSCP 0x18 (AF21). Any TCP packets of origin subnet 10.1.1.0/16 destination
subnet 192.1.1.0/16 will be remarked to 0x1A (AF22). It is easy to see that one
can build a multi-color marking scheme of large depths using using such cascading

filter/metering schemes.
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Figure 5.9: Configuring EF using CBQ.

5.5.2 Core device: EF using CBQ

The script below is the output of the EF Perl script on the Linux Diffserv Web

site.

1. tc qdisc add dev ethO handle 1:0 root dsmark indices 64
set_tc_index

2. tc filter add dev ethO parent 1:0 protocol ip prio 1
tcindex mask Oxfc shift 2

3. tc qdisc add dev ethO parent 1:0 handle 2:0 cbq
bandwidth 10Mbit allot 1514 cell 8 avpkt 1000 mpu 64

4. tc class add dev ethO parent 2:0 classid 2:1 cbq
bandwidth 10Mbit
rate 1500Kbit avpkt 1000 prio 1 bounded isolated
allot 1514 weight 1 maxburst 10 defmap 1

5. tc qdisc add dev ethO parent 2:1 pfifo limit 5

6. tc filter add dev ethO parent 2:0 protocol ip prio 1
handle Ox2e tcindex classid 2:1 pass_on

7. tc class add dev ethO parent 2:0 classid 2:2 cbq
bandwidth 10Mbit rate 5Mbit avpkt 1000 prio 7
allot 1514 weight 1 maxburst 21 borrow

8. tc qdisc add dev ethO parent 2:2 red limit 60KB min 15KB
max 45KB burst 20 avpkt 1000 bandwidth 10Mbit
probability 0.4

9. tc filter add dev ethO parent 2:0 protocol ip prio 2
handle O tcindex mask 0 classid 2:2 pass_on

Line 1 attaches to the root node on interface ethO a dsmarker which copies the
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TOS byte into skb->tc_index. Line 2 adds a filter to the root node which exists
merely to mask out the ECN bits and extract the DSCP field by shifting to the
right by two bits. A classful qdisc using CBQ is attached to node 2:0 (2:0 is the
child of the root node 1:0) — this is in line 3. Two child classes are defined out of
the 2:0 node. 2:1 is of type CBQ which is bound to a rate of 1.5 Mbps (line 4).
A packet counting FIFO qdisc (pfifo) with a maximum queue size of 5 packets is
attached to the CBQ class as the buffer management scheme (line 5). Line 6 adds
a tcindex classifier which will redirect all packets with a skb->tc_index 0x2e (the
DSCP for EF) to classid 2:1 — non 0x2e are allowed to fall through so they can be
matched by another filter. Line 7 defines another CBQ class, 2:2, emanating out of
node 2:0 — this is intended to be the Best Effort class. The rate is limited to 5 Mbps;
however, the class is allowed to borrow extra bandwidth if it is not being used (via
the operator borrow). Since the EF class does not lend its bandwidth (operator
isolated line 4), the BE can only borrow up to a maximum of an extra 3.5Mbps.
Note that in scenarios where there is no congestion on the wire, this might not be
a very smart provisioning scheme since the BE traffic will probably get equivalent
traffic performance as EF. The major differentiator in that case will be the priorities.
The EF class’ traffic will always be served first as long as there is something on the
queue (prio 1 is higher than prio 8 in comparing line 4 and 7). Line 8 attaches RED
as the buffer management scheme to be used by the BE class. Line 9 then maps the
rest of the packets (without DSCP of 0x2e) to the classid 2:2. The description of
the RED and CBQ parameters are beyond the scope of this document.

5.6 Measurements

We have measured the effect of Expedited Forwarding in a simple test network.
In this section, we give some early measurement results to illustrate how our imple-
mentation can be used.

Figure 5.10 shows the configuration of our network. Additional details, traf-
fic traces, and the configuration scripts can be found in ftp://lrcftp.epfl.ch/
pub/linux/diffserv/misc/test.19990401/ (select jump.htm for more convenient
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Figure 5.10: Configuration of the test network.

Hosts A and C send via router R to host B. A and B are connected via 10 Mbps
Ethernet. C is connected via 100 Mbps Ethernet. A emits UDP traffic, marked with
the EF default DSCP, which is shaped at the source to 100 kbps. C emits best-effort

UDP background traffic as fast as it can. Table 5.4 summarizes the configuration.

Host | Link Rate  Type MAC packet
(Mbps)  (Mbps) size (bytes)
A 10 0.1 EF 100
B 10 n/a n/a n/a
C 100 ~ 5O BE 676

Table 5.4: Host configuration parameters.

The measurements show the time between consecutive packets arriving at B.
Variation of this time is an indicator for how much the network load disturbs the
flow from A to B. Note that we generated our test traffic using ttcp, which does
not try to limit its sending rate. The shaper at A therefore already discards a large
number of packets right at the source.

We first tested the network without background traffic (figure 5.11). As expected,

traffic is very smooth. The average measured inter-packet time of 8.1 ms corresponds
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to the expected 8 ms. The maximum time was 10.1 ms. (Shaper granularity was 10

ms, i.e. we did not raise the timer frequency (see section 5.3.5).

- 140 - Maximum inter-packet time —— |
£ 120 t+ Average inter-packet time ------ .
(] L .
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0 /,w S ; \\\\\\\\\\\\\ Iffw y»f—ff/fl—f—«/,~———f—~l»»—w 5 v—f—fl—\ ATARETAS \r—fI//f—w v’/“"l ffffffffffff
0 1 2 3 4 5 6 7 8
Time (s)

Figure 5.11: Inter-packet time for traffic from A in un-congested network (averaged
over 40 ms)

In the following test (figure 5.12), we added a burst of background traffic from
C but did not yet enable EF processing at router R. Figure 5.12 shows the effect of
this on traffic from A. The maximum inter-packet time measured was 81 ms. 14%

fewer packets from A reached the destination than in the previous test.

& 140 - Maximum inter-packet time —— |
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< 40 )
o
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Time (s)

Figure 5.12: Inter-packet time for traffic from A with background traffic from C,
without EF (averaged over 100 ms)

Finally, we used the script described in section 5.5.2 to enable EF in router R and
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measured the resulting behaviour (figure 5.13). We see a significant improvement:
the average inter-packet time decreases to the normal 8.1 ms, with a maximum of
18.4 ms, probably caused by losses. The number of packets arriving at B was only

3% lower than in the first test.
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Figure 5.13: Inter-packet time for traffic from A with background traffic from C,
using EF (averaged over 40 ms)

Our measurements show that we can indeed effectively shield EF flows from
other traffic. Slight differences from the expected results (e.g. the 3% loss) will need
further examination. Also, while these tests nicely illustrate the improvement ob-
tained by using EF, the application-level semantics are hardly meaningful. Further
experiments will therefore use less greedy sources and congestion-controlled sources.
The effects of aggregation of multiple EF flows and the behaviour of the resulting
traffic are also of interest beyond this specific implementation. Finally, we will also

examine other PHBs than EF.

5.7 Conclusion

We have given a brief introduction to the Diffserv architecture, and we have ex-
plained how the existing infrastructure can be extended in order to support Diffserv.
We have then shown how we implemented support for the Diffserv architecture in

Linux, using the traffic control framework of recent kernels. We have also described
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how nodes can be configured using our work, and we have given the results of mea-
surements in a simple test configuration using Expedited Forwarding.

Our implementation provides a very flexible platform for experiments with PHBs
already under standardization as well as experiments with new PHBs. It can also
serve as a platform for work in other areas of Diffserv, such as edge configuration
management and policy management.

Future work will focus on the elimination of a few restrictions that still exist in
our architecture, the simplification of the configuration procedures, and of course
in further trials to validate our implementation and to gain experience with the
construction of services using Diffserv in general.

At the time of writing, efforts have begun to gradually introduce Diffserv support
into what can be called “mainstream” Linux. Also, extensive tests with several
applications and router equipment from various vendors are planned in a few research

networks, e.g. in the Quantum Test Programme [46].
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Chapter 6
SRP implementation

In this chapter, we describe the internals of a prototype implementation of SRP
on Linux. The implementation is based on the support for Differentiated Services

on Linux as described in chapter 5.

6.1 Overview

The implementation is structured such that only per-packet processing is done
inside the kernel, while operations not directly involving individual packets are car-
ried out by user-space processes. The user-space processes are called SRP demons.
For simplicity, the implementation merges the SRP demons for sources, destinations,

and routers in a single program called srpd.

At the sender and at the receiver, a new SRP-specific classifier called cls_srp
monitors flows aggregated per remote IP address. srpd uses the metering results to
estimate the reservation. At the source, cls_srp also selects the packet type based

on rates configured by srpd.

In routers, a simple two-priority configuration is used, similar to Expedited For-
warding (see section 5.5). The amount of request and reserved traffic is monitored

by srpd, which estimates the reservation and limits request traffic accordingly.
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6.2 Traffic control elements

Only small changes had to be made to support SRP. The only entirely new
component is the SRP-specific classifier c1s_srp. cls_srp combines several selection
and metering functions that would be difficult and inefficient to construct using
existing traffic control elements.

The second change was to add a count of bytes accepted per entry to
cls_tcindex. This is necessary, because cls_tcindex is the only place in a router
where reserved and request traffic can be distinguished.

Finally, policers did not work properly if updated (replaced) frequently. We
implemented a function that allows for a smoother transition from one policer to

the next one.

6.2.1 cls_srp

The cls_srp classifier is used in the SRP source and in the SRP destination. It

performs the following tasks:
e select local packets (optional)
e check if the packet is of type reserved or request
e retrieve rates and counters related to the remote address
e check rate and degrade if necessary (source only)
e add packet size to statistics

Figure 6.1 shows the structure of the cls_srp classifier. The local address check
is only performed if a list of local addresses is present. Single-homed hosts can
usually omit this check.

Note that, unlike c1s_tcindex, cls_srp does not bit-shift the value of skb->tc_
index before comparing it with the values for reserved and request packets. cls_srp
returns TC_POLICE_UNSPEC for packets which are not SRP packets, i.e. which are

neither reserved nor request.
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Figure 6.1: The SRP classifier.

When used at the destination, cls_srp can’t use skb->tc_index, because it is
not yet set at the time when the ingress classifier is invoked. Therefore, cls_srp

uses directly the value of the IPv4 TOS byte. Note that the mask is still applied.

Next, the remote address of SRP packets is used to retrieve an entry containing
the current policing information and statistics. If no entry exists, a new one is
created. The new entry has no policing information, so any packets matching this

entry are discarded until srpd adds this information.

If used at the source, cls_srp now checks the rate and degrades the packet, if
necessary. This is accomplished with the mechanisms normally used for policing. If
the packet fails the rate check for request traffic, cls_srp returns the action value
returned by the last policing function checked. If no policing function was invoked,
i.e. because none is configured, cls_srp returns TC_POLICE_SHOT, which normally

causes the packet to be discarded.

Finally, if a packet has been accepted as either request or reserved, its size is

added to the corresponding statistics counter, and the class ID for the packet type
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is returned.
Table 6.2.1 shows the parameters that can be configured in the srp classifier.
The upper part of the table shows parameters of the classifier itself. The lower part

shows parameters of each remote address entry.

Variable name / tc keyword Value Default
source none (flag) absent
local list of IPv4 empty

addresses
mask 0...0xfftf Diiid
tcindex_rsv 0...0xfftf 0
tcindex_req 0...0xfttt 0
classid_rsv class ID 0:0 (no match)
classid_req class ID 0:0 (no match)
remote IPv4 address none
rsv_meter policing spec. none
req_meter policing spec. none
rsv_bytes unsigned long 0
(read-only)
req_bytes unsigned long 0
(read-only)

Table 6.1: Configuration parameters of cls_srp.

Most of the parameters have already been discussed. cls_srp acts in source mode
if source is specified, in destination mode otherwise. tcindex_res and tcindex_
res contain the value skb->tc_index or skb->nh.iph->tos is compared with after
applying the mask.

Note that rsv_bytes and req_bytes can only be read. Each counter wraps

around to zero when passing ULONG_MAX.

6.2.2 cls_tcindex extension

The variable bytes was added to elements of cls_tcindex, as shown in table
6.2.2.
This variable can only be read. The counter wraps around to zero when passing

ULONG_MAX.
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Variable | tc keyword Value Default
bytes n/a unsigned long 0

Table 6.2: New parameter of cls_tcindex.

6.2.3 Smooth policer updates

Finally, when updating a policer, it is always reset to the maximum “credit”.
When making frequent small adjustments, the rate effectively accepted by the policer
will therefore be far above the configured rate.

We added a new function tcf_police_replace that replaces an existing policer
with a new one, computes the current “credit” of the old policer, and copies it over
to the new policer. It also performs the actual replacement operation.

cls_srp and cls_tcindex were changed to use tcf_police_replace when up-

dating policers.

6.3 Node configuration

This section describes how traffic control elements are combined at SRP nodes,

and how they interact with the SRP demons.

6.3.1 Sender

As shown in figure 6.2, the traffic control part at an SRP sender is fairly straight-
forward: applications mark packets for which a reservation is desired using the
srp_reserve API function (see section 6.4). cls_srp then determines whether
packets fit in the rate budget for reserved, or at least request traffic to the respective
destination, and classifies them accordingly. Then packets are queued, and finally
marked and transmitted.

The queuing mechanism could use different drop or delay priorities, depending
on the packet type. For simplicity, we assume no congestion at the source, so a
simple FIFO is sufficient.

All of the intelligence of the SRP source resides in the SRP demon, which uses
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Figure 6.2: Traffic control elements at SRP sender.

statistics retrieved from cls_srp, and the feedback received from the destination(s)
to calculate the reservation to each destination and the acceptable rate of request

traffic. It then configures the policers in cls_srp accordingly.

6.3.2 Receiver

SRP receivers use the ingress policing infrastructure to pass the packet flow
through cls_srp, as shown in figure 6.3.

cls_srp simply counts the bytes received from each remote SRP node. This
information is periodically retrieved by srpd and then transmitted in feedback mes-
sages to the respective nodes. The SRP demon also removes stale entries from

cls_srp after a while.

6.3.3 Router

Routers use a configuration very similar to what is also used for Expedited
Forwarding (see section 5.5 for details). As shown in figure 6.4, the only difference

is in the initial classification, which distinguishes three instead of only two classes.
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Figure 6.3: Traffic control elements at SRP receiver.

The first tcindex classifier identifies reserved and request packets, and limits the
amount of accepted request packets. It may optionally also police reserved traffic.

The SRP demon polls the statistics gathered by the innermost queuing disciplines
to estimate the current reservation. This estimate is then used to set the rate or
credit available for request traffic.

When leaving the dsmark queuing discipline, packets are re-marked, e.g. the
DSCP of request packets that have been downgraded to best-effort is changed ac-
cordingly.

6.4 SRP API

Only a very rudimental API is provided in the prototype implementation. It
allows applications to attempt a reservation for the traffic they generate at a socket.
No explicit feedback on the success of the attempt is provided. Instead, the appli-
cation is expected to have its own means for detecting failure to communicate, and
to abandon unsuccessful reservation attempts after a while.

Note that the SRP demon has final control over what is sent to the network, so
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Figure 6.4: Traffic control elements at SRP router.

correct performance of the node can be ensured, even if an application persistently
tries to obtain a reservation which is denied by the network.

The API consists of a single function, defined in /usr/include/srp.h:
int srp_reserve(int sd,int do_reserve);
If do_reserve is non-zero, a reservation is attempted. Otherwise, no reservation

is made, and any existing reservation expires. srp_reserve returns zero if the

attempt was successfully initiated. Otherwise, it returns a negative value and sets

errno.
srp_reserve internally uses the IP_TOS socket option to set the DS field of

outbound packets to reserved.

6.5 Known restrictions

At the time of writing, the prototype implementation of SRP has still the fol-

lowing restrictions:
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e Only supports [Pv4.

e Turn-around times are comparably long, because communication between

srpd and the kernel is performed via tc.

e cls_srp should have a policers with an initial or global budget of bandwidth
for request traffic, such that the first packets of a flow for which a new remote

address entry is created are not lost.

e For simplicity, feedback is sent about once per second, independent of the rate

at which changes occur.

e Likewise, the SRP senders and routers retrieve statistics and process feedback

(senders) only once per second.

6.6 Conclusion

In this chapter, we have shown how a working prototype of SRP for sources, des-
tinations, and routers, can be built on top of the existing support for Differentiated
Services with the addition of only one new component, and minor modification to
two other components. While the prototype is too constrained and also too ineffi-
cient for production use, it serves as a proof of concept, and allows to experiment

with SRP in a real network, as shown in the next chapter.
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Chapter 7
SRP measurements

We have run the SRP prototype described in the previous chapter in a simple
test network. In this chapter, we discuss some measurements obtained during these

test runs.

7.1 Test scenario

The purpose of the tests was to verify that the reservation properly ramps up,
and that the router can control how much bandwidth a source claims. Isolation of

reserved traffic from best-effort traffic has already been examined in section 5.6.

Shared 10 Mbps Ethernet

SRP SRP SRP
Sender Router Receiver

Sender emits one 100+40 bytes packet every 7 ms
(20000 bytes/second)

Figure 7.1: Test network configuration.

The test network consisted of three nodes on the same shared 10 Mbps Ethernet,
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as shown in figure 7.1.
The source sends one UDP packet with a payload of 100 bytes every 7 ms. The
resulting IP packet has a size of 140 bytes, so the required bandwidth is 20’000

bytes/s or 160 kbps. The source was active for 120 seconds in each test run.

35000 1 | | | BE TIEFFORTI ffi ]
%\ 30000 L ST- traffic — |
(0] | i
-y 25000 Offered traffic (160 kbps)
— 20000 - -
>
£ 15000 | .
(@]
3 10000 | 1
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~ 5000 .
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Time (s)

Figure 7.2: Over-provisioned best-effort network; seen from receiver.

7.2 Measurement results

We first tested the behaviour of the system when the available bandwidth is large
enough that the router does not constrain the reservation.

In the first test (figure 7.2), SRP was not used at all. The unloaded network is
more than sufficiently fast for the offered traffic.

The next test involved SRP, but there was still more bandwidth available than
necessary. Figure 7.3 shows the traffic at the receiver. We can see that the reserva-
tion ramps up quickly and then remains stable.

A more interesting test is shown in figure 7.4. Now the bandwidth available for
reservation is below the offered traffic. We can see that the sender tries to increase
the reservation, but the router refuses most of the request packets.

The process of requesting more bandwidth is more clearly visible in the case

shown in figures 7.5 and 7.6. Here the bandwidth is limited to 50 kbps. The source
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Figure 7.3: Sufficient reservable bandwidth; seen from receiver.

constantly emits request packets, but the router refuses to increase the reservation
and discards most of them.

The spikes at the beginning of each transfer occur because policing functions in
Linux traffic control are initialized to the maximum credit. The burst sizes at the

source were 3 kB for reserved and 2 kB for request traffic.

7.3 Conclusion

We have shown that the prototype implementation of SRP behaves in the ex-
pected way in a simple configuration. Testing of SRP in more advanced scenarios
is planned as future work. Also, our results suggest that more flexibility in the

initialization of policing functions in Linux traffic control may be desirable.
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Figure 7.4: Limited to 100 kbps; seen from receiver.
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Figure 7.5: Limited to 50 kbps; seen from sender.
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Chapter 8
Conclusion

The chapter summarizes the work presented so far, gives a critical appraisal of
the relevance of the work done in this project, and concludes with an outlook on

the future evolution of the projects or their results.

8.1 Summary

The work presented in this thesis is strongly focused on direct practical applica-
bility: ATM on Linux is intensely used in the whole world. Arequipa was completely
implemented and tested with real-life equipment. The concepts of Linux traffic con-
trol have become more accessible due to the description produced in the course
of this work, and there is now frequently discussion on new interesting uses and
extensions on mailing lists related to Linux networking. The implementation of Dif-
ferentiated Services on Linux is attracting a lot of interest, and is now also allowing
the on-going standardization work in Diffserv to be verified against the properties

of an existing implementation.

In the case of ATM and of Diffserv, concepts reaching beyond the immediate
focus of industry have been designed and successfully implemented: Arequipa pro-
vided a rapid deployment option for users needing Quality of Service, and SRP is

addressing the lack of coherent signaling in the Diffserv network architecture.
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8.2 Relevance

The ATM on Linux project is widely recognized in industry and academia, and
has yielded the de facto standard implementation under Linux. Although still quite
young, the Diffserv on Linux project seems to be heading in the same direction.

While Arequipa’s reliance on wide deployment of ATM confines it to a niche,
general deployment of some form of Diffserv functionality in most core networks is
likely to occur.

Current trends towards approaches that combine RSVP and Diffserv may seem to
eliminate the need for a properly integrated, homogeneous reservation architecture
for Diffserv. It should however be noted that, based on past experience with Diffserv
(e.g. work on Assured Forwarding in the Diffserv group has shown that managing
even a comparably small set of priorities can be surprising difficult and controver-
sial), smooth integration of Intserv and Diffserv cannot be taken for granted. Also
the often postulated concept of a bandwidth broker that oversees resource usage and
allocation in large areas of a network will certainly need to be refined when concrete
implementations are attempted.

All this is evidence that there is a place for rival architectures such as SRP.
Also, elements originally developed in a different but sufficiently similar context
(e.g. estimators for aggregate traffic or scalable policers) may be usefully applied in

whatever will become the QoS architecture in the Internet.

8.3 Future work

The availability of a simulator and a running prototype of SRP allows indepen-
dent verification of its properties and work on its shortcomings. In particular, at
the time of writing, a research group is investigating the practical usefulness of the
scalable policing design proposed for SRP, and another group inside ICA is working
on improving the estimation in routers.

The documentation of Linux traffic control will continue to be maintained and
extended, such that prospective implementors of new traffic control functionality

will have a reference for the surrounding infrastructure, and that users of traffic
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control elements will be able to develop a solid understanding of the underlying
concepts.

The results of the ATM on Linux and Diffserv on Linux projects are currently
being integrated into the mainstream code base of Linux, which will make them
easily available for millions of users interested in learning, experiments, or production
use. We hope that the availability of an openly available implementation will also

help the on-going standardization process of Diffserv.
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Appendix A

ATM on Linux

Since the beginning of 1995, ATM support is being developed for Linux. By
now, Linux supports most functionality that is required for state of the art ATM
networking. This chapter briefly introduces relevant ATM concepts and presents

the current status of development on Linux.

A.1 Introduction

ATM (Asynchronous Transfer Mode, [9], see also [47] for a comprehensive
overview of ATM technology) is a network technology for modern high-speed inte-
grated services networks. It is not only popular in WANS, for high-speed backbones
interconnecting LANs, and for access networks (e.g. ASDL), but ATM also offers
a rich set of features to support guaranteed Quality of Service (QoS; bandwidth,

end-to-end delay, etc.), which is necessary for many multimedia applications.

In order to create an ATM platform for research and education, the Labora-
toire de Réseaux de Communication (LRC, later ICA) of EPFL is developing ATM

support for Linux.

The Web main page of the ATM on Linux project with pointers to the latest ATM

on Linux distribution and related news is http://icawwwl.epfl.ch/linux-atm/
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A.2 ATM basics

ATM is designed for demanding data and multimedia communication, such as
audio and video transmission, and high-speed data transfer. The design of ATM
has been strongly influenced by the telecommunication community, and therefore
ATM differs in many ways from data network architectures like today’s Internet.

The probably most important differences are the following:

e ATM is connection-oriented
e ATM supports guaranteed QoS (“Quality of Service”)

e ATM clearly distinguishes between end systems and “the network”

All these concepts have their counterparts in the telephony network: you have
to establish a connection before you can communicate with the other party, the QoS
(i.e. that you get reasonable bi-directional voice transmission) is guaranteed and
doesn’t depend on the network load, and your telephone is very different from, say,
a PBX.

Another difference is that ATM sends data in tiny cells with a fixed size of only
53 bytes instead of in variable-size frames. While this difference is important at
the lowest protocol layers, higher layers typically use larger units which are then
transformed from/to cells by a so-called “ATM adaption layer” (AAL, [48]).

Figure A.1 shows the structure of an ATM network. The network itself con-
sists of interconnected switches. Two types of networks are distinguished: “private”
networks are typically company or campus networks, and “public” networks corre-
spond to what is offered by telephone carriers. The standardized interface between
end systems (“hosts”) and the ATM network is called the “user-network interface”
(UNI). The UNI defines several types of physical media (i.e. multi-mode fiber, UTP-
5, etc.), many bit rates (ranging from only a few Mbps to 155 Mbps and more), line
codings, configuration and signaling protocols, etc.

The most commonly used version of the UNI is 3.1 [49], but many providers of
ATM stacks have already implemented the next version, 4.0 [10, 18], or are working

on it. UNI 4.0 adds many new features to UNI 3.1, the most interesting ones
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Figure A.1: General structure of an ATM network

Private network

are probably a scalable point-to-multipoint (“multicast”) mechanism and support
for ABR (“Available Bit Rate”), a traffic class with congestion control inside the

network.

There are two mechanisms for setting up ATM connections: the simple way is
to configure each switch individually (a bit like it was done in the early days of
telephony, where operators had to physically connect calls on switchboards). Such
connections are called “permanent virtual circuits” (PVCs). A more convenient
way of setting up connections it to “dial” them, which is called “signaling” in ATM
terminology. “Switched virtual circuits” (SVCs) are set up using signaling. ATM
signaling is based on the protocols DSS2 (see Q.2931 [50] for unicast and (.2971
[51] for multicast), which in turn use the so-called SAAL [52, 53, 54] to transport

signaling messages.

Figure A.2 illustrates ATM signaling: first, the caller sends a SETUP message
towards the destination (1). This message is processed at every single switch. If
the destination accepts the call, it returns a CONNECT message (2). Again, this
message is seen by all switches. When the CONNECT message reaches the desti-

nation, the data connection is established and data can be exchanged between both
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end systems (3).! Note that the switches don’t have to interpret what is sent on the

data connection.

Calling end system Called end system
1
P /‘\/—\\ \
SETUP SETUP SETUP
— = —
ESFe/——1 S | </ Data S r=—1ES
CONNECT/ CONNECT CONNECT
|
Switch 3 2

Figure A.2: Signaling message flows

Two mechanisms that are closely related to signaling are address configuration
and a directory service. Addresses are configured either manually or automatically,
using the “interim local management interface” (ILMI, [49]), which is based on
SNMP [55].

An ATM NSAP address (see section 5.1.3.1 of [49]) has a length of 20 bytes.
Human beings therefore usually prefer to use names instead of numeric addresses.
This can be accomplished either by using a hosts file or by using a distributed
directory service. ATM Forum has specified such a directory service called ANS
(“ATM Name Service”, [56]), which is based on BIND (“named”).

At the time of writing, ATM on Linux supports PVCs and SVCs with UNI 3.1
signaling. Support for UNI 4.0 signaling is being worked on. The ILMI demon was
contributed by Scott Shumate. ANS support was contributed by Marko Kiiskila.

A.3 ATM and the real world

ATM purists may dream of a world where all computers, TV sets, telephones,
etc., are connected to a big ATM cloud consisting of many interconnected ATM net-

works, but the real world is different: connectionless IP networks, typically without

LThis is slightly simplified. ATM signaling also allows acknowledgements for the SETUP mes-
sage and it requires an acknowledgement for CONNECT.
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user-accessible QoS concepts, play the dominant role, and “native” ATM applica-
tions are a minority.

The first step in running IP over ATM is to have a means to carry IP packets
on ATM. This is mainly an encapsulation issue, defined in RFC1483 [57]. With this
alone, IP can be run over ATM using PVCs.

For SVCs, also a way to resolve IP addresses to ATM addresses is needed. The
[ETF currently uses an approach called “classical IP over ATM” that is based on
an extension of ARP, called ATMARP [58, 59]. ATMARP works like this (see also
figure A.3): each IP subnet has one ARP server (C). When a client (A, B) starts,
it registers its own IP and ATM addresses at the ARP server (1). Now, if client
A wants to send data to client B, but it only knows B’s IP address, it sends an
ATMARP request (2) to the server. If the server knows B’s addresses, it responds
with an ATMARP reply (3), containing B’s ATM address. A can now establish an
SVC to B and send data (4).

ATMARP server

N

InARP (1
C n/ (D)

InARP (1)
AN

ARP request (2)

\
ARP reply (3 IP data (4)
Client ply 3) Client
A B

Figure A.3: ATMARP message flows

ATM Forum has defined a similar service, called “LAN Emulation” (LANE)
[60, 61]. LANE tries to provide exactly the functionality one would obtain from,
say, an Ethernet. Therefore, is can also carry other protocols than just IP and it
supports multicast (and even broadcast). One disadvantage of LANE with respect
to classical IP over ATM is that the maximum IP packet size is limited to 1500



120

bytes, like on Ethernet, whereas the default maximum IP packet size for classical
[P over ATM is 9180 bytes ([62]).

Work from IETF and ATM Forum has been merged in MPOA (“MultiProtocol
Over ATM”, [63]), which aims to overcome many of the limitations of classical IP
and LANE. In particular, MPOA allows the use of “shortcut” connections which
bypass intermediate routers.

Furthermore, work has been done on integrating IP mechanisms for negotiating
QoS parameters (e.g. RSVP [13]) with ATM [64].

ATM on Linux supports IP over ATM for PVCs and SVCs as defined by RFC1577
[58] and others. Comprehensive support for LANE, including complete LANE server
functionality, has been contributed by Marko Kiiskild [65]. Later on, Heikki Vati-
ainen has taken care of LANE maintenance and also also contributed an implemen-
tation of MPOA.

Because standard IP currently supports neither direct ATM end-to-end connec-
tivity beyond subnet boundaries nor negotiation of QoS aspects, LRC has designed
an extension of ATMARP called Arequipa (“Application Requested IP over ATM”.
Arequipa allows applications to request a direct ATM connection for their exclusive
use with TCP/IP protocols. The applications can also determine exactly what QoS
will be available to them. We describe Arequipa in appendix B.

A.4 ATM on Linux details

This section describes the development process of ATM on Linux and the current

implementation.

A.4.1 Drivers

The first step in bringing ATM to Linux was to find ATM adapters that offered
sufficient performance, that were available on the market, and for which program-
ming information was openly available. The search for such adapters turned out
to be quite difficult, mainly because at the end of 94, many companies only had

products for Sun’s SBus, and very few adapters for the PCI bus were available on
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the market.

Eventually, we chose to use the products from ZeitNet and from Efficient Net-
works. In spring 1995, a driver for the Efficient Networks EN155p adapter was writ-
ten, and a driver for the ZeitNet ZN1221 adapter followed soon thereafter. Both
adapters are PCI bus cards and run ATM at 155 Mbps over multi-mode fiber.

A.4.2 ATM socket API

In order to send data over even only PVCs, a device driver alone isn’t enough,
but also an API is needed. Although ATM Forum is defining a semantic API [66],
this description is far too general for any concrete implementation. Therefore, based
on the BSD socket API, a native ATM API was defined for PVCs and later for SVCs
too [67]. This was done in parallel with device driver development.

After some code was written to implement the ATM-specific socket and protocol
functions, which interface between the common socket layer and the device drivers
[68], early tests were possible. (See figures A.4 and A.5 for the protocol stack.) Since
IP over ATM encapsulation is comparably easy to implement, support for classical
IP over ATM over PVC was added shortly thereafter.

Figures A.4 and A.5 illustrate the user-space and kernel-space, respectively, parts
of the Linux networking protocol stack. Figure A.5 shows the “traditional” IP over
Ethernet (or SLIP, PPP, etc.) stack on the right side, the elements added by the
ATM stack are on the left side.

A.4.3 Single-copy

At that time, performance tests revealed that throughput left much to be desired:
instead of the theoretical maximum of 135.6 Mbps for user data with raw ATM, only
a throughput of approximately 100 Mbps was obtained under ideal conditions. The
results for IP over ATM were much worse. The culprit was easily found: because
PCs tend to have a slow memory interface, the comparably large number of copy

operations in the kernel created a bottleneck.

!This is only an interface to the signaling demon, which performs the actual exchange of Q.2931
signaling messages.
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Figure A.4: User-space parts of the Linux networking stack.

The problem was resolved using a concept called “single-copy”, where data is
copied directly between user space and the device driver, without additional copying
to kernel buffers [69]. With single-copy, transfer rates of up to 130 Mbps are possible
on Linux PCs with native ATM when using sufficiently large datagrams.

Because this single-copy implementation was limited to native ATM connections,
and because advances in commodity PC hardware have improved some of the per-
formance bottlenecks, single-copy was removed in later versions of ATM on Linux.
There is an on-going discussion among Linux kernel developers on the implementa-
tion of more general single-copy mechanisms, i.e. ones that are also applicable to

other transports than native ATM.

A.4.4 Signaling

Since PVCs are too inflexible for most purposes, the logical next step was to
start to implement signaling. ATM signaling mainly consists of the actual signaling

protocol DSS2 and the transport protocol SSCOP [53]. Because those protocols are
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Figure A.5: Kernel-space parts of the Linux networking stack.

rather complex but do most of their work only when connections are established or
torn down, we decided to implement them in a demon in user mode.

Figure A.6 illustrates a typical connection setup: When started, the signaling
demon creates a PVC to communicate with the signaling entity in the network (1),
and a special SVC socket (2), which is used to exchange signaling messages with the
kernel. A very simple protocol is used for the communication between the kernel
and the signaling demon.

When an application requests a connection to a remote party (3), the kernel
sends a message to the signaling demon (4), which then performs the signaling
dialog with the ATM network (5). When the connection is established, the signaling
demon indicates this to the kernel (6), which then sets up the local part of the data
connection (7) and notifies the application (8). Incoming calls are handled in a
similar way.

Later on, a demon was also added for the “interim local management interface”
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Figure A.6: Signaling procedure in the kernel

(ILMI, [49]) protocol, which is used mainly for configuration purposes, such as ad-
dress auto-configuration. This demon was contributed by Scott Shumate of the

University of Kansas.

A.4.5 ATMARP

After basic SVC functionality was available, ATMARP had to be implemented
to make use of SVCs for IP over ATM too. The approach chosen is similar to
signaling: a demon process implements the ATMARP protocol and only a simple
table for ARP lookups is kept in the kernel, see figure A.7.

When started, the ATMARP demon creates a special socket (1) to communicate
with the kernel. When an application wants to send data to an IP destination
(2) on the same IP subnet, TCP/IP performs an ARP table lookup (3). If no
ATM connection exists for that destination yet, the kernel sends a message to the
ATMARP demon requesting resolution of the IP address (4). If the local machine
acts as the ATMARP server for the IP subnet, only a lookup in the address resolution
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Figure A.7: ATMARP procedure in the kernel

table of the ATMARP demon is performed.? Otherwise, the ATMARP demon first
searches its own table, and if no entry is found, it sends a resolution request to the
ATMARP server. If the resolution succeeds, a new SVC is opened for the destination
host (5) and it is entered in the kernel ATMARP table (6). Now, IP packets can be
sent to the remote host (7).

Note that the ATMARP demon still owns the SVC and that it can send ARP
packets to the remote host (8). Also, all incoming packets are examined and they’re

either sent to the TCP/IP stack (IP, 9) or to the ATMARP demon (ARP, 10).

2In addition to the entries that are also in the kernel ATMARP table, the ATMARP demon
also caches mappings for hosts to which no connection exists.
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A.5 Conclusion

A brief introduction to the most important concepts of ATM in today’s net-
working world was given and it was illustrated that ATM on Linux supports all
the respective mechanisms, and how this is accomplished. For some particularly
interesting cases, details about the actual implementation were given.

At the time of writing, ATM on Linux has probably been installed at at least
one thousand sites. Several other researchers have based their work on it, and also
groups in industry are using it for various purposes. Integration into the “main-
stream” Linux kernel is in progress, which will further simplify the installation and

configuration process.
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Appendix B
Arequipa

Arequipa is a method for providing the quality of service of ATM to TCP/IP
applications without requiring any cooperation in the network between IP and ATM.
It does not need any modifications in the ATM or IP networks; however, it requires
end-to-end ATM connectivity.

In this chapter, we present the design, implementation and our first experience

with Arequipa.

B.1 Introduction

A few years ago, it was commonly assumed that any architecture for providing
Quality of Service on the Internet will be linked to RSVP in some way.

In this article, we report on the feasibility of an alternative approach, called
Application REQuested IP over ATM (Arequipa). Our purpose with Arequipa is
to show that providing the quality of service of ATM to TCP/IP applications is
straightforward with minimum changes to the TCP/IP implementation in hosts.
For two end-systems to communicate using Arequipa, it is necessary that they are
connected (1) to a common ATM network and (2) to the Internet or to the same
Intranet. However, there is no cooperation required between the two types of net-
works. We say that our approach is based on a concept of segregation. Arequipa
allows applications to establish direct point-to-point end-to-end ATM connections

with a given QoS at the link level. These connections are used exclusively by the ap-
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plications that requested them. After setup of the Arequipa connection (namely, the
ATM connection that is used for Arequipa), the applications can use the standard

TCP/IP service to exchange data.

We made the conscious choice to let the user, or the application, explicitly con-
trol the ATM connection. In our implementation, we support unspecified bit rate
(UBR) and constant bit rate (CBR) connections. In the latter case, the user or
application has to specify the requested peak cell rate. The additional traffic or
QoS parameters required by the ATM signalling procedure are set transparently
by our implementation. We believe that it is reasonable to limit the information
requested from the user or application to just the choice mentioned above, namely:
UBR with no rate information, or CBR with a specified peak cell rate. Our choice
to make the traffic specification visible to the application is an essential part of
Arequipa; we believe that it will become more common in the future for a large
variety of applications.It is based on the concept that QoS comes with a price, and
therefore we expect a dialogue between application and user to take place before a
guaranteed QoS is requested. However, this does come with a drawback: existing
application code has to be modified. We did the modification to a web client and a
web browser, as reported in section B.5. Similar work has been done for video and
audio conferencing applications [70]. An alternative to our approach is to let the
operating system choose the traffic parameters in lieu of the application. We do not
follow this approach with Arequipa because we explicitly want to make quality of

service visible to the end-user.

Considerable work has been devoted in the Broadband [SDN context on defining
an application level signaling framework that would enable applications to negoti-
ate services and determine service access points, depending on application profiles,
terminal capabilities and service requirements by end-users [71]. We claim that such
efforts are to a large extent redundant with the existing base of Internet applications
(such as the Web). With Arequipa, it is possible for applications to use the Internet
for exchanging short messages for purposes of service negotiation, address mapping,

authentication, and then set up ATM connections as needed [72, 73].

The chapter is structured as follows: section B.2 describes mechanisms for run-
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ning IP over ATM which are either currently in use or which are being defined by
the IETF or the ATM Forum. In sections B.3 and B.4, we explain the concept of
Arequipa and how we implemented it in a UNIX-like operating system. Section
B.5 introduces a way of using Arequipa with the World-Wide Web (WWW, [74]).
In section B.6, we describe how we tested Arequipa to transfer video data across
Europe.

Although of high importance, the related issue of pricing for ATM services is not

considered here.

B.2 Transmitting IP Packets over ATM

The IETF and the ATM Forum have defined various mechanisms that can be
used to send IP traffic over ATM, and they continue developing new mechanisms
and refining the existing ones. For what could be called the second generation of
such mechanisms, both groups have joined forces and are closely synchronizing their

efforts. This section briefly describes the current state of affairs.

B.2.1 Classical IP over ATM

The first standard developed by the IETF for running IP over ATM is the so-
called classical IP over ATM, defined mainly in RFC1577 [58], but see also REC1483
[57], REC1755 [59], and RFC1932 [75]. In that scheme, IP hosts are grouped in Log-
ical IP Subnets (LIS) which are typically interconnected with IP routers. The ATM
network is treated much like a LAN and hosts within a LIS can obtain each other’s
ATM addresses through an address resolution protocol that maps IP addresses to
ATM addresses. After obtaining the address of a destination (within the LIS), an
ATM connection is established to it. If a packet has to go to another host outside
the LIS, it is sent to a router which forwards it.

The advantage of this solution is that it works in the same manner as existing [P
networks, hence the name. The disadvantage is that packets may be sent through
a set of routers and ATM connections even if a direct ATM connection between

the communicating hosts would be possible, as illustrated in figure B.1. Also, all
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ATM network

Figure B.1: Classical IP over ATM has to use routers even if a direct ATM connection
could be established between communicating hosts

the data flowing between two machines typically uses the same ATM connection,

making it impossible to request a QoS for one specific data stream.

B.2.2 LAN Emulation

LAN Emulation (LANE, [61]) is ATM Forum’s equivalent to classical IP over
ATM. Like the latter, it limits direct ATM connections to a comparably small cloud
of systems, the so-called Emulated LAN (ELAN). The main differences to classical
IP over ATM are that LANE uses IEEE 802 [76] MAC addresses instead of IP
addresses, and that it also includes support for multicast and broadcast mechanisms.

LANE version 1 has no concept of honoring QoS requirements of upper layers.

Support for this is planned for LANE version 2.

B.2.3 Next Hop Resolution Protocol

An improvement for classical IP over ATM is the Next Hop Resolution Protocol
(NHRP, [77]). This protocol tries to resolve ATM addresses for hosts which are not
in the same LIS. With the ATM address of a remote host, a direct ATM connection

can be established, bypassing intermediate routers (see figure B.2). In cases were the
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ATM address of a remote host can be resolved, NHRP can thus provide end-to-end

ATM connections.

ATM network

Figure B.2: NHRP can establish direct end-to-end ATM connections between hosts

However, NHRP has no mechanism to manage the QoS of such connections. Data
from different applications may transit through the same end-to-end ATM connec-
tion and the QoS an application experiences depends on the traffic load generated

by the others.

B.2.4 Multiprotocol over ATM

Multiprotocol over ATM (MPOA, [63]) merges protocols developed by the IETF
and the ATM Forum, and extends them for using end-to-end ATM connections also
with non-IP protocols, such as IPX. This includes mainly: NHRP and the multicast
mechanism described in RFC2022 [78]. In addition, MPOA has mechanisms for flow
classification, in order to decide automatically at layer 3 when an ATM shortcut
should be established. It also supports the decoupling from the data and control

paths in intermediate systems.

Like LANE, phase 1 of MPOA does not consider QoS, but phase 2 will.
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B.2.5 RSVP

Current IP networks are designed to provide a best effort service. This explains
why the aforementioned solutions for running IP over ATM do not pass the notion
of QoS guarantees that ATM provides to the IP layer.

The standard approach for providing QoS guarantees in IP networks is the use of
the Resource Reservation Protocol (RSVP). RSVP is part of the Integrated Services
framework for the Internet. It typically hinges on mechanisms like packet schedulers,
which make sure that data flows for which reservations have been made get their
share of bandwidth on links. In this framework, RSVP is the signaling protocol,
propagating information about available services and requests for reservation along

the data path between sources and destinations.

B.2.6 Guaranteed Internet Bandwidth

A mechanism called “Guaranteed Internet Bandwidth” (GIB [79]) approaches
the QoS issues by directing flows with QoS requirements over dedicated wide area
network (WAN) connections (for example ISDN or ATM). End systems use a special
signaling protocol to ask a GIB agent to change the routing tables of the gateway
routers. Limiting flow selection to IP routes (namely, to the destination IP address)
allows the use of standard routers, but makes the isolation of concurrent flows un-

reliable.

B.2.7 Discussion

The methods of running IP over ATM presented above (except for GIB) have one
thing in common: They hide the fact that ATM is being used from the applications.
Since ATM is used below the IP layer and IP has no notion of connections or QoS,
the interoperation mechanisms hide those properties of ATM.

NHRP/MPOA and RSVP alleviate the problem by setting up end-to-end con-
nections below the IP layer and by setting up reservations above it. This approach
has the advantage of being very general but it adds some complexity and has the

following restrictions.
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e [n order for NHRP to be effective, it must be deployed on all the nodes between
communicating hosts. If this is not the case, NHRP is not able to create an end-
to-end connection between the hosts and RSVP will not be able to guarantee
reservations on the entire path. RSVP can operate even if some routers do
not implement it, however, there is no reservation on such paths. On an ATM
WAN, for example, end stations must rely on their service providers to deploy
NHRP and RSVP over all parts of the WAN between them, in order to benefit
directly from ATM guaranteed QoS.

It is true that QoS guaranteeing services need only be deployed on the con-
gested parts of the network. However, the congested parts are usually the
backbones and long-distance links, which is where it is most complicated to
install new services. Arequipa avoids this problem since it only needs to be

installed on end systems.

e With public ATM connections being offered by telecom companies, it is now
possible to have long distance end-to-end ATM connections, even across coun-
try borders. Thus two hosts in two distant ATM WANs may be able to open
end-to-end ATM connections through their public network operators. How-
ever, the IP backbone on the long distance path between the WANs may well
not be running on ATM. Thus NHRP may not be able to resolve the ATM

addresses and to set up end-to-end connections.

In contrast to all methods presented above, Arequipa aims at providing the QoS
of ATM directly to the application, and at letting the application control its use.
It is not clear at this time which approach has superior benefits, but it should be
emphasized that they pursue different objectives. Arequipa is based on network
segregation, with integration in the hosts only; it is therefore less general but also

considerably simpler.

B.3 Arequipa

Arequipa allows applications to establish end-to-end ATM connections under

their own control, and to use these connections at the lower protocol layer to carry
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the IP traffic of specific sockets.
Unlike the connections set up by classical IP over ATM or by LANE, Arequipa
connections are used exclusively by the applications that requested them. The

applications can therefore exactly determine what QoS will be available to them.

ATM network

Figure B.3: End-to-end Arequipa connections for three applications with QoS
requirements

Figure B.3 illustrates that Arequipa connections go end-to-end and that each
flow has its own connection.

In its broadest sense, Arequipa offers a means to use properties of a network
technology that is used to transport another network technology (e.g., IP on ATM)
without requiring the explicit design and deployment of sophisticated interworking
mechanisms and protocols.

Traditional protocol layering typically only allows access to functionality of lower
layers if upper layers provide their own means to express that functionality. This
approach can introduce significant complexity if the semantics of the respective
mechanism are dissimilar. Also, if the upper layer fails to provide that interface, no
direct access is possible and the lower layer functionality may be wasted or used in
an inefficient way (e.g., if using heuristics to decide on the use of extra features). By
allowing applications to control the lower layer, Arequipa enables them to exploit

those properties.
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Note that Arequipa coexists with “normal” use of the networking stacks, i.e., ap-
plications not requiring Arequipa do not need to be modified and they will continue

to use whatever other mechanisms are provided.

B.3.1 Example

Figure B.4 illustrates the case of TCP/IP over ATM: TCP connections between
applications are built by multiplexing their traffic over an upper layer (IP), which
is in turn carried by a lower layer (e.g., Ethernet or ATM). Routers terminate lower
layer segments in order to overcome scalability limitations of either layer or of the

interface between the layers.

Applications

Upper layer Upper layer
eglP) [ -7~~~ 7 > (eg. IP)

5-4 &-4
& &
¢ = = f
O ©]
~ ~

Lower layer Lower layer
(e.g. ATM) - - - (e.g. ATM)

Figure B.4: Communication without Arequipa

Figure B.5 shows the same scenario, but this time using only Arequipa. The
applications still have their TCP connections, but there is one dedicated end-to-end
(Arequipa) connection at the lower layer for each of them.

Note that, although traffic between applications using Arequipa does not pass
the normal routed IP path anymore, general [P connectivity may still be necessary,

e.g. for ICMP messages or for traffic of other applications.
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Applications

Upper layer Upper layer
(e.g. IP) (e.g. IP)
Lower layer 1 ower layer
(e.g. ATM) : (e.g. ATM)

Figure B.5: Communication with Arequipa

B.3.2 Applicability

Arequipa is applicable if the following two conditions are met:

e applications can control “native” connections over the lower layer communi-

cation media

e the upper and the lower layer (e.g., IP and ATM) both allow communication
between the same end-points (or they share at least a useful common subset

of reachable end-points)

The next two conditions do not have to be met, but without them the use of

Arequipa may be questionable:

e the upper layer is multiplexed over the lower layer (e.g., when using classical
IP over ATM, all IP traffic between a pair of hosts typically shares the same
ATM SVC)

e multiple lower layer connections are possible between a pair of end-points
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In order to simplify interaction with the protocol stack, Arequipa assumes that
data sent to destinations for which no Arequipa lower layer connection has been

established will be delivered by some default mechanism.

Note that, despite its name (Application REQuested IP over ATM), Arequipa
is not limited to IP and ATM only. The upper layer is typically IP or some similar
protocol (e.g., IPX). The lower layer can be ATM, Frame Relay, N-ISDN, etc. Some
of the advantages of using Arequipa in addition to the usual IP mechanisms are
avoidance of routing overhead and the possibility of using dedicated connections
with “hard” quality of service guarantees. This is of interest for flows with a lifetime

which is long compared to the setup delay incurred by the lower layer.

B.3.3 API

The following primitives are available to applications using Arequipa:

int arequipa_preset(int sd,const struct sockaddr_atmsvc *addr,const

struct atm qos *qos);

Presets the specified INET domain socket to use a direct ATM connection to
addr with the QOS parameters specified in qos. If the socket is already connected,
the ATM connection is set up immediately and data is redirected to flow over that

connection.
int arequipa_expect(int sd,int on);

Enables (if on is non-zero) or disables (if on is zero) the use of Arequipa for return
traffic on the specified INET domain socket. When enabling the use of Arequipa for
return traffic, the Arequipa connection on which the next data packet or incoming

connection for the socket is received is attached to that socket.
int arequipa_close(int sd);

Dissociates an Arequipa VC from the specified socket. After that, traffic uses
normal IP routing. Note that the Arequipa connection is automatically closed when

the INET socket is closed.
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B.3.4 Use of ATM user-to-user signaling

ATM connections for Arequipa use are used almost exactly like connections for
IP over ATM. However, in order to avoid conflicts with the IP over ATM entity,
Arequipa connections are signaled in a slightly different way, so the rule is as follows:

An Arequipa connection is signaled by using the procedures and codings de-
scribed in RFC1755 [59], with the addition that the Broadband High Layer Infor-
mation (BHLI) information element be included in the SETUP message, with the
coding shown in table B.1.

bb_high_layer_information
high layer_information_type
3 (vendor-specific
application id.)

high layer_information
00-60-D7 (EPFL OUI)
01-00-00-01  (Arequipa)

Table B.1: Use of the Broadband High Layer Information information element with
Arequipa

B.4 Implementing Arequipa in a Unix environ-

ment

This section describes general aspects of implementing Arequipa for IP over ATM
in a socket-based operating system kernel. The organization of kernel internal data
structures is assumed to be similar to the one found in the networking part of the

Linux kernel [80].

B.4.1 Kernel data structures without Arequipa

Figure B.6 shows some of the kernel data structures that are typically associated
with a TCP socket when not using Arequipa. Incoming data is demultiplexed by
the protocol stack (in figure B.6, the circle with TCP/IP) and queued on the socket.
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Outgoing data is multiplexed by the protocol stack and sent to the corresponding
network interface.

Each data packet consists of a packet descriptor and the actual data. The packet
descriptor contains information like the socket the packet belongs to, the interface
on which it was received, etc.

Most modern TCP/IP implementations also cache routing information (including
the network interface) for each socket, so that route lookups only need to be done

when a new connection is established or if the routing table is modified.

B.4.2 Data structures for incoming Arequipa

When using Arequipa, incoming packets are handled as if they were using Clas-
sical [P over ATM: after little or no ATM-specific processing, they are passed to
the protocol stack, which then performs the usual demultiplexing, etc. The only
significant difference is that they are marked in order to identify them as originating
from Arequipa (and from which VC) when they arrive at the socket.

Figure B.7 shows the data structures used when receiving from Arequipa. Note
that all Arequipa VCs on a system can use the same Arequipa pseudo-interface.!

If the socket is not yet using Arequipa for sending (namely, if it has no as-
sociated Arequipa VC) and if it expects incoming Arequipa traffic (namely, if
arequipa_expect has been invoked with the on argument set to a non-zero value),
the Arequipa VC on which the packet has been received is attached to the socket,
so that outbound traffic uses the VC.

Note that if a packet is received over an Arequipa VC, then it is possible that the
VC no longer exists at the time the data is delivered to the socket. It is therefore
necessary to verify the validity of the incoming Arequipa VC before attaching it to
the upper layer socket (the normal closing procedures only ensure that both layers
are synchronized after establishing the association).

This can be implemented as follows:

!The term “pseudo-interface” is used to make it clear that the Arequipa interface does not
correspond to a physical network interface (namely, hardware) although the protocol stack interacts
with it as if it did.
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Figure B.6: Kernel data structures of a TCP socket (simplified)
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e all incoming Arequipa VCs are registered in a list (while they are dangling

because they are not attached)

e there is a global generation number, which is incremented whenever a new
Arequipa VC is created. The generation number at the time of VC creation

is stored in the VC descriptor.

e the generation number of the Arequipa VC is recorded in the descriptor of

each data packet arriving on that VC

A VC is still valid when the packet is delivered to the socket only if a reference
to that VC is on the list and if its generation number matches the one stored in the

packet descriptor.

B.4.3 Data structures for outgoing Arequipa

When sending from an Arequipa socket, outbound packets must be associated
with the corresponding Arequipa VC. As illustrated in figure B.8, this is done by
sending them all through an Arequipa pseudo-interface (a) which then looks up a
back pointer (b) to the originating socket in the packet descriptor. The originating
socket contains a pointer to the descriptor (c) of the VC over which the data has to
be sent.

Note that an Arequipa connection may be removed (e.g. because the remote
party has closed it, because of a network failure, etc.) without notification at the
socket. In this case, the Arequipa route is removed and all outbound traffic is sent

with the “normal” IP mechanisms again.

B.4.4 Networking code changes

If using the approach outlined in the previous sections, the networking code has

to be modified at least at the following places:

e when creating a socket, the Arequipa information (namely, if Arequipa is in
use on that socket, if the socket expects incoming Arequipa traffic, etc.) needs

to be initialized
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e when connecting a UDP or TCP socket, a cached Arequipa route exists if
arequipa_preset was invoked before the connect system call. This cached

route must be preserved.

e when delivering data from Arequipa to a socket, the Arequipa VC is attached
to the socket if

— the socket expects incoming Arequipa traffic, and
— the socket does not currently use Arequipa, and

— the Arequipa VC is not already attached to a different socket

e if an incoming TCP connection is received on a listening socket which expects
incoming Arequipa traffic, the new socket (the one returned by accept) is
also set to expect incoming Arequipa traffic and, if the packet has arrived
via Arequipa and if the constraints listed above are met, the Arequipa VC is

attached to the new socket

e when an upper layer socket is closed, the underlying Arequipa connection has

to be closed too

e when forwarding IP packets, packets received over an Arequipa connection

must be discarded (see [38], section 6)

Additional modifications may be necessary depending on how per-socket route
caches are invalidated. Also, socket destruction may be interrupt-driven and may

therefore need special care.

B.4.5 TCP issues

The use of TCP over Arequipa raises two specific problems: (1) if the Arequipa
connection is attached after establishing the TCP connection, the maximum segment
size (MSS) of TCP may be very small, typically increasing processing overhead. (2)
there are no generally useful semantics for listening on a socket for which an Arequipa

connection has already been set up.
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TCP implementations frequently limit the MSS to a value which is based on the
MTU of the IP interface on which the connection is started. If connections are set
up over a media with an MTU size that is small compared to the default IP over
ATM MTU size [62], that MSS will have to be kept even if Arequipa is later used
for that socket (see RFC1122 [81], section 4.2.2.6). It is therefore recommended
to invoke arequipa_preset before connect and to invoke arequipa_expect before
listen.

Note that this is the only way to ensure that the use of Arequipa is known at
both ends when exchanging the initial SYN segments. Applications that require the
TCP listener to set up the Arequipa connection are therefore not able to ensure the
use of a larger MSS.

Although the API could allow associating an Arequipa connection with a socket
that is used to listen for incoming connections, the usefulness of such an operation
is questionable.

Therefore, attempts to execute arequipa_preset on a listening socket or to
listen on a socket for which an Arequipa connection already exists yield an error.

Further implementation details, including a step-by-step description of the
changes that were necessary when adding Arequipa support to Linux, can be found

in [82).

B.5 Transmitting Web documents with guaran-

teed QoS

One of the most popular applications on IP networks is the World Wide Web
(WWW, [74]). Its popularity stems from the fact that it allows to access many
different types of multimedia documents with a single intuitive user interface.

The Web is also a good example for an application that can benefit from depend-
able QoS: if the network can guarantee the required bandwidth, data with real-time
constraints (e.g., video clips) can be displayed during reception and does not have
to be downloaded and replayed from a file, as it is currently done. Also, users

frequently have loose time constraints (e.g., the time to download stock exchange
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information). QoS guarantees ensure that users can obtain an adequate service and

won’t be subjected to the vagaries of best-effort.

B.5.1 Arequipa and the Web

In order to use Arequipa for Web applications, three types of information are

needed:

e The side that establishes the Arequipa connection must know the ATM address
of the opposite side.

e Likewise, the side that establishes the Arequipa connection must be able to

specify the QoS information.

e Finally, the side that establishes the TCP/IP connection (normally using either
TCP or UDP) also needs to know the destination port.

We have chosen to let the Web server open Arequipa connections to the client,
thus the server needs to know the ATM address of the client. This information can
be sent conveniently as a pragma in the client’s request [83]. This pragma can serve
another purpose, namely to indicate to the server that the client is capable of using
Arequipa.

The server also establishes the TCP/IP connection on which the document is
transferred, so the client needs to indicate the port on which it expects the data.
For convenience, it also includes the protocol type along with the port number.

For each document, we want to be able to specify whether a connection with
guaranteed QoS should be used. If yes, we also want to specify what kind of ser-
vice and what QoS should be requested. To specify this information, we use the
notion of meta-information for Web documents. Web servers are able to store meta-
information for each document, either in the header of the document or in a separate
file. We use this feature to store the ATM service and the QoS parameters to be
requested.

Although not strictly required, the QoS information is also useful to the client,
so it is included in the meta-information the server sends in response to a request.

Figure B.9 illustrates the general information flow.
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Figure B.9: General information flow when using Arequipa with the Web

Because a client may want to know the QoS attributes of a document before
downloading it with Arequipa (e.g., because the client wants to ensure that suffi-
cient local resources are available to handle the document, or because the user is
charged for ATM connections and therefore only wants to use Arequipa for selected
documents), we also need a mechanism to obtain only the headers, which include
the QoS meta-information.

While a client could always send a HEAD request before issuing a GET, this would
add one extra round-trip time for every request, whether or not the document in
question is eligible for being transferred with Arequipa. This is clearly undesirable.
We therefore extend the semantics of GET to only return the header of the document

under the following conditions:
e the document has associated QoS information, and

e the client indicated that it supports Arequipa (by sending its ATM address),

and
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e the client did not include the destination port number.

If the client decides to retrieve the document using Arequipa, it issues a second
request, this time with the destination port number. Note that a client can avoid
the extra round-trip if it has a priori knowledge about the document (e.g., if the
headers are cached) or if it wants to use Arequipa anyway, whatever the requested
QoS is.

The extended behavior of the Web server is shown in the pseudo-code below:

if (request_has_ATM_address && document_has_QoS_metainfo)
if (request_has_port_number)
send_document_using_arequipa() ;
else send_headers_only();
else /* non-QoS document or non-Arequipa client */
send_document_standard_way() ;

Note that this extension is compatible to the standard HTTP protocol and that
Arequipa capable servers and client will interact seamlessly with their standard

counterparts.

B.5.2 HTTP extensions

When the client sends additional information required for Arequipa, it uses the
following extra header fields:

Pragma: ATM-address=pub_address.prv_address

pub_address is the public E.164 address [84] of the client. If the client has no
such address, that part of the field is empty. prv_address is the private ATM NSAP
address of the client. If the client has no such address, that part of the field is
left empty. Presence of the ATM-address pragma indicates that the client supports
Arequipa and that it wishes to make this fact known to the server.

Pragma: socket=protocol.port_number

protocol is typically TCP or UDP. port_number is the corresponding port number
or whatever information the protocol may use to identify end-points. Presence
of the socket pragma indicates that the client wishes to retrieve the requested
document over Arequipa, if the document is suitable for this, and if the server

supports Arequipa.
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QoS meta-information is sent by the server by adding the following new fields to
the document header:

ATM-Service: service

service is either UBR or CBR.

ATM-QoS-PCR: peak_cell_rate

peak_cell rate is the required peak cell rate in cells per second. This field can

be omitted when using UBR.

B.5.3 Example

Figure B.10 shows a sample HT'TP dialog when using Arequipa.

The client first sends its request without the port information, so that the server
only returns the header. After asking the user for permission to request retrieval
with Arequipa, the client sets up its socket and repeats the request, this time with
the port information. The server can now establish the Arequipa connection and

sends the document with the specified quality of service.

B.5.4 Arequipa with proxies

A proxy Web server (short “a proxy”) is a Web server that requests documents
from other Web server on behalf of clients. Typical uses for proxies include Web
caches and application-level gateways through firewalls.

When used in conjunction with a proxy, Arequipa can even be useful to client
that are not directly connected to ATM: If the network between the client and the
proxy is dimensioned to offer enough bandwidth so that congestion is very unlikely
(the typical situation in a LAN), it is sufficient if Arequipa is used only over the —
possibly congested — WAN.

Figure B.11 illustrates the use of Arequipa with a proxy. The proxy uses Are-
quipa when transferring documents over the WAN from remote servers. The client
uses the best-effort service of its LAN and doesn’t even have to know about Are-
quipa.

The pricing question for cached documents is interesting, but, as mentioned

earlier, is outside the scope of this work. Note that in our example, the cache is
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Pragma: ATM-address=495000...
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batman.mpg connect
‘ write
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Figure B.10: Example request/response flow when using Arequipa on the Web
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Figure B.11: Arequipa with a proxy Web server

located on the firewall or on the LAN of a company and all costs occurred by the

users of the cache will be billed to the company.

B.6 An Arequipa test in the WAN

In October 1996, a demonstration of Arequipa was performed in an ATM WAN
environment. This was done as part of an interim presentation of the “Web over
ATM” project [73], which also comprises the work on Arequipa. A number of
other tests and demonstrations of Arequipa were performed in 1997 as part of the

European ACTS project.

The demonstration consisted of the transmission of raw uncompressed live video
over TCP with Arequipa across Europe (see figure B.12). The purpose of this
demonstration was to show how bandwidth-intensive applications can benefit from

Arequipa.

Arequipa is part of the ATM-Linux distribution. The test reported here used
computers with an Intel processor, a PCI bus and ATM adapters from two differ-
ent vendors. The network used a number of different ATM switches from various

vendors.
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Figure B.12: Arequipa test in European WAN

B.6.1 The Network

The transmission was done from sites in Helsinki (Finland) to EPFL in Lausanne
(Switzerland), using the JAMES (Joint ATM Experiment on European Services)?
network. The partner sites in Finland were Nokia and Telecom Finland.

In order to experiment with the setup without wasting bandwidth in the inter-
national network, preliminary testing was done with ETH in Ziirich (Switzerland).
An overview of the sites involved is shown in figure B.13.

The WAN connections with Finland were virtual paths with a constant bit rate
of 77°200 cells per second (corresponding to a user data rate of almost 30 Mb/s).
The connection with ETH was a virtual path with a bandwidth of approximately

2See http://btlabsl.labs.bt.com/profsoc/james/
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Figure B.13: Schematic overview of the network structure

EPFL ETHZ

34 Mb/s.
As described in section B.5, the Web was used to start and to control the video

transmissions.

B.6.2 Results

The demonstration setup worked as expected and, using the video application
with traffic shaping set to allow a user data rate of 27.3 Mb/s, a throughput of
approximately 25 Mb/s was obtained for video traffic from Finland.

Also, the throughput for TCP over Arequipa without application overhead was
tested on the 34 Mb/s virtual path with ETH. This benchmark was done with
ttcp, a program that sends/receives to/from memory without doing any further
data processing. With traffic shaping set to 33.3 Mb/s, we obtained a throughput
of up to 33.0 Mb/s.

While those results tend to indicate that our implementation of Arequipa is able
to sustain high rates, it should be noted however that the goal of Arequipa is not
to obtain a high throughput. In contrast, Arequipa allows an application to receive
a specified throughput, with hard guarantees, and in most cases for a price. This
was illustrated in the demonstration using video images of a remote clock, with the

display sent over a TCP connection using Arequipa. Depending on the selected peak
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cell rate, the watch would either run too fast, too slow, or just at about the right

speed, obviously something, you couldn’t obtain with the normal Internet.

B.7 Conclusions and lessons learned

We have presented Arequipa, a method for providing the quality of service of end-
to-end ATM connections to TCP/IP applications. It makes it possible to use ATM
natively, in those cases where end-to-end ATM connectivity exists, while preserving
the TCP/IP environment, and with only minimal changes to the application code.
We have implemented Arequipa in Linux, tested it extensively, made it a part of the
ATM-Linux distribution, and published an Internet RFC documenting it. We have
described a way of using Arequipa with the Web without sacrificing compatibility
with standard Web browsers and servers. We have indicated how Arequipa can be
of use even for hosts not directly connected to ATM, using application level proxies.
Finally, we have presented the results of a test of Arequipa in a European WAN

setup.

B.8 Available software

An implementation of the Arequipa mechanisms is part of versions 0.13 to 0.32
of the ATM on Linux distribution. Support for Arequipa was discontinued with
version 0.33, but the older distributions are still available from http://icawwwl.
epfl.ch/linux-atm/.

An application package for Arequipa is available on http://icawwwl.epfl.ch/

arequipa/. It includes the following components (with complete source code):
e Web server and proxy server: CERN httpd with Arequipa extensions
e Web browser: Arena with Arequipa extensions

e Video application: a modular video capture and playback package
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Appendix C
Abbreviations

AAL ATM Adaption Layer

AF Assured Forwarding [41]

API Application Program Interface

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode, page 116
Arequipa Application REQested IP over Atm, page 133
B-ISDN Broadband ISDN (ATM)

BE Best-Effort

CAR Committed Access Rate [§]

CBR Constant Bit Rate

DSCP Differentiated Services Code Point

EF Expedited Forwarding [40]

IETF Internet Engineering Task Force, http://www.ietf.org/

ILMI Interim Local Management Interface, page 118
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INTSERV IETF Integrated Services Working Group [36]
IP Internet Protocol [4]

ISDN Integrates Services Data Network
ISP Internet Service Provider

LANE LAN Emulation [61]

MPOA Multi-Protocol over ATM [63]
N-ISDN Narrow-band ISDN

PCP Phantom Circuit Protocol [24], page 9
PHB Per-Hop Behaviour [19]

PVC Permanent Virtual Channel

QOS Quality of Service

RFC Request for Comments

SRP Scalable resource Reservation Protocol
SVC Switched Virtual Channel

TCP Transmission Control Protocol [85]
TOS Type of Service

UBR Unspecified Bit Rate

UNI User-Network Interface
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