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VERSION ABRÉGÉE

 

La dynamique des vortex est étudiée dans un échantillon monocristallin maclé d’YBa

 

2

 

Cu

 

3

 

O

 

7-

 

δ

 

 de
haute qualité à l’aide de mesures de résistivité. Neuf contacts en or sont déposés sur l’une des sur-
faces de l’échantillon, permettant ainsi d’effectuer différentes sortes d’études.

En premier lieu, la résistivité longitudinale révèle la transition de phase de vortex. Lorsque le
champ magnétique est légèrement incliné au dehors des plans de macles, la transition est vraisem-
blablement du premier ordre, séparant le liquide de vortex d’un réseau de vortex ou un verre de
Bragg. Si par contre le champ magnétique est parallèle à l’axe cristallographique 

 

c

 

, c’est-à-dire le
long des plans de macles, la phase solide est alors apparemment un verre de Bose.

D’autre part, des mesures de l’orientation et de l’amplitude du champ électrique en fonction de la
direction du courant dans le plan 

 

ab

 

 fourni un grand nombre d’informations au sujet de l’influence
des macles sur la dynamique des vortex. On observe un mouvement partiellement dirigé des vortex
le long de la famille de plans de macles dominante, débutant déjà dans le liquide de vortex et de-
venant de plus en plus marqué lorsque la température ou le champ magnétique sont réduits. Il n’y
a pas de changement soudain de l’influence des macles à la transition de phase de vortex. On mon-
tre aussi que les mesures habituelles de résistivité dans des échantillons maclés avec un courant
appliqué le long des axes 

 

a

 

 ou 

 

b

 

 doivent être interprétées avec prudence, précisément en raison du
fait que suite à ce mouvement dirigé des vortex le champ électrique n’est plus parallèle au courant.

Finalement, l’effet Hall de l’état mixte est étudié, avec une attention particulière pour la transition
de phase de vortex. On observe l’habituelle anomalie Hall, c’est-à-dire un changement de signe de
l’effet Hall dans l’état mixte, et on montre que la loi d’échelle pour la résistivité Hall  reste
inchangée dans le solide de vortex (

 

ρ

 

xy

 

 est la résistivité Hall et 

 

ρ

 

xx

 

 la résistivité longitudinale). Lors-
que le champ magnétique est parallèle aux plans de macles, on obtient un exposant critique de

 

β

 

 

 

=

 

 

 

2

 

, correspondant naturellement à une conductivité Hall constante au-dessous et légèrement au-
dessus de la transition de phase de vortex. En présence d’un champ magnétique incliné, l’exposant
devient 

 

β

 

 

 

=

 

 

 

1.4

 

. Dans ce cas, on observe un soudain changement de comportement de la conducti-
vité Hall précisément à la fusion du réseau de vortex. Cet effet étant fortement dépendant de la den-
sité de courant, on l’interprète comme une conséquence de l’ancrage des vortex. Ainsi, on
démontre que la conductivité Hall est bien 

 

dépendante

 

 de l’ancrage, résolvant en principe une tra-
ditionnelle controverse sur cette question. A la lumière des présents résultats, on passe en revue
différents modèles théoriques concernant l’anomalie Hall aussi bien que la loi d’échelle. Un nou-
veau modèle phénoménologique pour la loi d’échelle de la résistivité Hall est aussi proposé, s’ap-
puyant sur une analogie directe avec la théorie de la percolation dans les conducteurs métalliques.

  ρxy ∝ ρxx
β





 

THESIS ABSTRACT

 

Resistivity measurements are used to study vortex dynamics in a high quality superconducting
YBa

 

2

 

Cu

 

3

 

O

 

7-

 

δ

 

 twinned single crystal. Nine gold contacts have been deposited on one sample sur-
face, allowing us to perform different kinds of investigations.

Firstly, simple longitudinal resistivity data reveal the vortex phase transition. When the magnetic
field is slightly tilted away from the twin planes, this transition is presumably of first order, sepa-
rating a vortex liquid phase from a solid vortex lattice or Bragg glass. If on the other hand the mag-
netic field is parallel to the crystallographic 

 

c

 

-axis, that is along the twin boundaries, the solid
phase then apparently becomes a Bose glass.

Secondly, measurements of the orientation and magnitude of the electric field as a function of the
current direction in the 

 

ab

 

 plane yield much information about the influence of the twins on the
vortex dynamics. We observe a partially guided vortex motion along the dominating twin plane
family, already apparent in the vortex liquid, and becoming progressively more and more pro-
nounced as the temperature or the magnetic field is reduced. There is no sharp change of the twin
influence at the vortex phase transition. We also show that standard resistivity measurements in
twinned samples, in which the current is applied along the 

 

a

 

 or 

 

b

 

-axis, should be interpreted care-
fully, precisely because as a consequence of this guided motion the electric field is no longer par-
allel to the current.

Finally, the mixed state Hall effect is studied, with particular focus given to the vortex phase tran-
sition. We observe the usual Hall anomaly, that is, a sign reversal of the Hall effect in the mixed
state, and show that the often reported Hall resistivity scaling law  remains unchanged in
the vortex solid phase (

 

ρ

 

xy

 

 is the Hall resistivity and 

 

ρ

 

xx

 

 the longitudinal resistivity). When the mag-
netic field is parallel to the twin boundaries, we obtain the critical exponent 

 

β

 

 

 

=

 

 

 

2

 

, naturally corre-
sponding to a constant Hall conductivity below and slightly above the vortex phase transition. In
the presence of a tilted magnetic field the exponent is then 

 

β

 

 

 

=

 

 

 

1.4

 

. In this case, we observe a sharp
change of behavior in the Hall conductivity right at the vortex lattice melting point, its slope be-
coming much larger in the vortex solid phase. This effect being strongly dependent on the current
density, we interpret it as a result of vortex pinning. Hence this demonstrates that the Hall conduc-
tivity 

 

is

 

 pinning dependent, hopefully solving a long term controversy with regards to this topic.
We review some theoretical models concerning the Hall anomaly as well as the Hall scaling law
in light of our data. A novel phenomenological model for the Hall resistivity scaling law is also
given, directly inspired from the theory of percolation in metallic conductors.

  ρxy ∝ ρxx
β
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CHAPTER I

 

VORTEX MATTER

 

1. Introduction

 

The basic magnetic properties of type II superconductors are well represented in the mean-field

 

H

 

-

 

T

 

 phase diagram (Fig. I-1). Besides the normal metallic phase at 

 

H

 

 

 

>

 

 

 

H

 

c

 

2

 

(

 

T

 

), the superconduc-
ting domain is divided into two phases :

• the low field Meissner-Ochsenfeld phase, where the external magnetic field 

 

H

 

 

 

<

 

 

 

H

 

c

 

1

 

(

 

T

 

) is
completely expelled from the bulk material, such that the induction vanishes inside it, 

 

i.e

 

.

 

B

 

 

 

= 0,

 

• the intermediate field regime 

 

H

 

c

 

1

 

(

 

T

 

) 

 

<

 

 

 

H

 

 

 

<

 

 

 

H

 

c

 

2

 

(

 

T

 

), called the Shubnikov phase or mixed state,
in which the magnetic field enters the superconductor in the form of quantized flux lines, the

 

vortices

 

.

The vortices are essential in the determination of the mixed state properties : they are indeed re-
sponsible for both the magnetization and the resistivity in the superconducting state. On the theo-
retical level, most of the investigation of vortex physics can, in principle, be performed in the
framework of the Ginzburg-Landau theory [1]. This theory is based on the expansion of the free
energy in powers of a complex order parameter 

 

Ψ

 

, the squared modulus of which represents the
density of superconducting electrons. The mean field solution for 

 

Ψ is then obtained by minimiz-
ing the free energy F(Ψ). This approach leads to a second order superconducting to normal phase
transition at Hc2(T).

One of the important results of the Ginzburg-Landau theory is a spatially periodic solution, ob-
tained by Abrikosov [2], predicting the formation of a triangular lattice of straight vortices parallel
to the applied field, subsisting practically up to the phase transition at Hc2(T). This picture is ex-
perimentally confirmed in most of the conventional superconductors.

However, since the mean field solution of this model does not take into account critical fluctua-
tions, it is not valid close to the phase transition at Hc2(T). Fortunately, the fluctuation region sur-
rounding the superconducting-normal transition is negligible in conventional superconductors.

The situation has dramatically changed with the discovery of high temperature superconductors in
1986 [3]. These copper-oxide based materials have a critical temperature, Tc, of the order of 100 K,
that is almost an order of magnitude larger than the previous "conventional" materials. Also their
critical fields are quite extreme : Hc1(T = 0) is of the order of 10-2 Tesla, whereas the upper critical
field Hc2(T = 0) is estimated to be as high as 100 T. Actually, with their very large anisotropy, due



I

2

to their layered crystallographic structure, and their very short coherence length and large penetra-
tion depth, these materials are subject to significant fluctuations, such that the superconducting
transition is smoothed out over a few degrees. Below this broad "crossover", the mixed state covers
most of the phase diagram below Tc, as we can guess from the typical critical fields mentioned
above.

Moreover, due to the importance of fluctuations, the simple view of a triangular lattice of straight
vortices emerging from the mean field theory is far from reality. The mixed state is a system of
flexible interacting lines in the presence of disorder, generating a nontrivial statistical mechanics
and leading to a very complex collection of various vortex phases [4,5,6]. The richness of this new
vortex physics leads to consider the mixed state like a new state of matter, the vortex matter,
emerging as an independent subject of investigation (see e.g. the review from Blatter et al. [6]).

The vortex matter is all the more interesting since its relevant parameters can very easily be varied
over wide ranges : the vortex density, and thus the vortex repulsive interaction energy, can be
changed over many orders of magnitude through the magnetic field, the thermal energy through
the temperature, the pinning energy for example by introducing defects in the material through ir-
radiation, and finally the anisotropy, by selecting the coupling energy between the crystallographic
layers among various materials.

It is the competition between all of these energies, which are often of the same order of magnitude,
that leads to the large variety of vortex phases. A generic picture of the resulting new phase dia-
gram is represented in Fig. I-2. Note that, as we have mentioned above, the superconducting-nor-
mal transition has broaden into a wide zone of critical fluctuations (shaded area). For the sake of
simplicity, this diagram focuses on the case of isotropic superconductors (or slightly anisotropic,
like the sample used in this study), and thus does not exhaustively represent the richness of all the
possible phases and transitions. However, it still allows us to discuss a very general feature of the
vortex matter : the existence of a vortex liquid. Due to temperature induced fluctuations in the vor-
tex assembly, the usual Abrikosov vortex lattice indeed melts into a liquid (paragraph 2.3), simi-
larly to the melting of conventional matter.

The solid phase can be ordered and form a lattice (or an ordered Bragg glass, see paragraph 2.1),
and in this case the corresponding phase transition has been proved to be of first order. But if the

Figure I-1 : Mean field phase diagram of a conventional type II superconductor.
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interaction with the defects present in the material is too strong, vortices are influenced by the pin-
ning forces, and the disorder induced fluctuations leads to the formation of a disordered solid with
a glassy structure (see paragraph 2.2). Therefore, a transition from a periodic vortex structure to an
amorphous vortex solid can happen while the magnetic field is increased, since the latter accentu-
ates disorder effects. Obviously, the position of this transition line, and thus the extent of the or-
dered phase, is significantly affected by the sample dependent amount and strength of pinning. The
solid-liquid transition is of second order, whereas the lattice-glass transition is rather a continuous
crossover.

Before we give a more detailed description of these vortex phases, we first have to mention that
the above picture is considerably modified at least in two cases. First, when the defects in the ma-
terial are spatially correlated (in contrast to the randomly distributed pointlike disorder we have
implicitly assumed so far), the previously ordered crystalline solid phase then becomes a Bose
glass, and the liquid-glass transition is again of second order. This specific vortex phase will be
further described in paragraph 2.2.

Second, in more anisotropic materials, the coupling between the superconducting CuO2 planes,
separated by blocking layer, can weaken to the point at which the vortices can only form inside the
bidimensional parallel layers, forming what is usually called pancakes. Depending on the structure
in each of these layers, we can then again have a pancake liquid or solid. Since the decoupling tran-
sition is only reached at high magnetic fields, the phase diagram of strongly anisotropic compounds
is therefore similar to what is shown in Fig. I-2 with an additional transition line at high fields sep-
arating the linear vortex phases from the pancake phases [5]. However, since the superconducting
material used in this study is sufficiently weakly anisotropic to be presumably free of pancake
phases, we will not discuss this concept in more details.

Finally, we also have to point out that, whereas we have only treated of the different vortex phases
and the corresponding transitions from the static point of view, the dynamics of these phases are
also extremely rich and fundamentally important. In a few words, vortices can be set into motion
with the help of an electric current, provided the resulting driving force exceeds the pinning inter-
action of the vortices with material defects. Since a moving vortex generates an electric field, this
motion is associated with the appearance of non-zero resistivity and energy dissipation. We can

Figure I-2 : Phase diagram of an isotropic high temperature superconductor in the presence of point disorder.
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now understand how resistivity measurements in superconductors can be a very appropriate tool
to investigate the vortex dynamics on a practical as well as on a fundamental level (see section 3).
Note that it is also extremely important to understand and control pinning and vortex dynamics
with the view of technical applications, in order to fully take advantage of the most appealing prop-
erty of superconductors, namely its very low (ideally vanishing) resistivity.

In the next section, we provide more detailed information on the different vortex phases relevant
for the present work, the aims and achievements of which is given in the last section of the chapter.

2. Vortex phases

The sample used in this study is a superconducting YBa2Cu3O7-δ crystal, with δ of the order of
0.05. It has an orthorhombic structure, the c-axis being orthogonal to the CuO2 layers. The anisot-
ropy Γ = (mab / mc)

1/2 is of the order of 5 to 7, where mab and mc are the effective masses of the
charge carriers in the ab plane and along the c-axis respectively [7]. In this compound, the oxygen
vacancies provide a source of weak pointlike pinning centers for vortices. Oxygen atoms are also
anisotropically distributed along chains, generating a small in-plane anisotropy, the b axis being
very slightly greater than a. The consequence of this is the formation of twins, that are adjacent
domains with successively exchanging a and b axes. The twin boundaries are oriented along the
(110) directions, and are an important second source of vortex pinning (see section IV.2), this time
generated by correlated disorder. Therefore, beside the discussion of the different phases represent-
ed in Fig. I-2, the Bose glass mentioned above will also be presented here.

2.1 The ordered vortex "lattice"

In the case of a perfect sample (in absence of pinning forces), the ideal triangular Abrikosov vortex
lattice is formed at low temperature and low magnetic field. But, already in the presence of weak
disorder (like we find in any real sample), the question of the effect of the small vortex pinning on
the vortex assembly is not trivial. Of course, we can imagine quite intuitively that if we have only
sparsely distributed weak pointlike pinning centers, vortices will only be slightly distorted locally
without any impact on the overall vortex structure. However, since point defects in YBa2Cu3O7-δ,
namely oxygen vacancies, have a large density, the collective effect of all of these pinning centers
might be significant.

A formalization of this problem has been done by Larkin and Ovchinikov in their collective pin-
ning theory [8]. The main idea is that the periodic order of the lattice is conserved in a characteristic
volume Vc given by a collective pinning length Lc along the vortices direction, and a corresponding
radius Rc perpendicularly to the flux lines. Beyond these length scales, we find distortions of the
order of the pinning potential range ξ. As a consequence, Vc corresponds to the size of ordered vor-
tex bundles, or Larkin domains, that can be considered to be pinned as a whole, and such that the
vortices in these domains move collectively, by successive jumps of the order of ξ. In this model,
it was also considered that for larger distances, the cumulated distortions might become of the or-
der of the vortex lattice parameter, destroying the crystalline order through topological defects. The
main consequence of this description is that, due to the accumulated distortions between all the do-
mains over long distances, even weak pinning can suppress the long range order.
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On the other hand, a new theoretical approach to the same problem has recently shown that the vor-
tex lattice can take another form in the presence of weak disorder. Based on the early work of Nat-
terman [9], Giamarchi and Le Doussal have introduced the notion of Bragg glass [10]. They have
indeed shown that, due to the periodicity of the vortex lattice, the weak random disorder introduces
displacements in the crystalline structure that only grow logarithmically with the distance, such
that long range order is maintained in the resulting distorted lattice, which does not contain any
topological defects such as dislocations. As a consequence, the structure function of the vortex
phase shows Bragg peaks, hence the name of this glass. Note that we still have to speak about a
glass – and not simply a lattice – in the sense that the system can occupy different equivalent meta-
stable states in the random disorder potential. These different configurations are separated by en-
ergy barriers diverging at low currents, in contrast to the original Anderson–Kim theory [11] of
flux creep for vortex bundles, which predicted a linear voltage-current characteristic at any nonze-
ro temperature. As a consequence, this solid phase is truly superconducting, whereas the traditional
vortex creep always leads to dissipations.

The Bragg glass have another fundamentally different dynamic behavior from the collectively
pinned vortex solid introduced above. When it is set into motion, the ordered glass indeed flows
through well defined static channels [12]. An important prediction, still without clear experimental
support, is the existence of a transverse critical current : once the Bragg glass is moving in a given
direction, the corresponding channel pattern can be modified to take another orientation only pro-
vided the transverse driving force is exceeding a certain threshold.

On the experimental point of view, the solid phase and the transition separating it from the vortex
liquid have been characterized by many different methods [13]. For example, the spatial distribu-
tion of the vortices can be directly observed after decoration of the sample surface by small ferro-
magnetic particles [14] (Bitter decoration). Subsequent observation of the revealed vortex pattern
under a microscope have confirmed the existence of a triangular lattice with or without disloca-
tions. The structure function can also be measured directly by small angle neutron scattering [15].
A hexagonal symmetry pattern is observed in the vortex solid phase, with well defined peaks.
These peaks then decrease as the vortex phase transition is approached, and the symmetry pattern
is lost at the vortex lattice melting.

What probably represents the largest experimental effort at the present time is the investigation of
the nature of the transition from the vortex solid to the liquid phase [16,17], instead of the charac-
terization of the solid phase itself. Recent magnetic measurements have indeed shown that, in some
regime at least, this transition is associated with a step in the magnetization [18]. More precisely,
the vortex matter is more dense in the liquid phase (the magnetization is larger), just like the wa-
ter-ice system. Moreover, sensitive calorimetric measurements have also revealed that a peak in
the specific heat happens simultaneously, and is quantitatively consistent with the magnetization
jump via the Clausius-Clapeyron relation for first order phase transitions [19]. Therefore, we have
now strong evidence that the vortex liquid to solid phase transition can be of first order. However,
the presence of critical points on the phase transition line limiting the first order regime have been
reported on several occasions [17]. Although the question is still open, these changes of regimes
seem to be related to the sample disorder, and will be discussed in paragraph 2.2 of chapter IV.

Note that, although it is not a thermodynamical investigation tool, the phase transition is also vis-
ible in resistivity measurements : at low currents, the resistivity suddenly drops to zero at the tran-
sition from the vortex liquid to the solid [20,21]. Even if neither the width of this step nor its height
can bring information on the thermodynamic character of the transition, since the measurements
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are clearly performed out of equilibrium (the resistivity step simply corresponds to a sharp increase
in the critical current when going from the vortex liquid into the vortex solid), the existence of hys-
teresis at the transition observed in Ref. [20] provides more evidence for a first order transition.

2.2 The vortex glasses

When more disorder is present in the sample, the vortex phase transition is not of first order any-
more, as we have mentioned above. This means that the solid phase is altered by the pinning : the
long range translational order is lost. We therefore speak about a glass instead of a lattice.

For the present work, we consider two different approaches to vortex glasses. The first one, due to
Fischer et al. [22], which refers to a classical vortex glass, has some similarities with the theory of
spin glasses. The central idea is that the system is qualified by a characteristic length ξg and a re-
laxation time τg, both diverging as the glassy transition at the temperature Tg is approached :

and ,

where  are universal critical exponents. This scaling behavior has repercussions on the
transport properties, which in turn obeys some universal scaling relation. The non-linear volt-
age-current characteristic resulting from a diverging barrier at low currents makes this phase a true
superconducting phase, similarly to the Bragg glass discussed above. The possible consequences
of the scaling relations for the Hall effect will be given in the next chapter.

The second type of vortex glass, more relevant for the present work, appears in the presence of cor-
related strong disorder, such as columnar defects induced by irradiating the sample or twin planes.
Its properties were studied mainly by Nelson and Vinokur [23], using a two-dimensional boson lo-
calization analogy. Let us write the ith vortex position as r i(z), where r i is a 2d vector localizing a
position in the ab plane, and z is the position along the c-axis (which is also the orientation of the
correlated disorder). The energy of the system of many vortices with pair interactions and interac-
tion with a random z-independent potential (the z-correlated defects) is then similar to the evolution
of a system of interacting bosons in two dimensions with the same 2d potential. The vector r i is the
position of the ith boson, whereas z becomes a time variable : the vortices propagate across the sam-
ple just as bosons move in two dimensions with time.

The result is again a glass (with diverging barriers at low currents, and a scaling behavior, though
with a different universality class than the vortex glass discussed above), in which the vortices are
pinned on the defects. Actually, its dynamic properties are very similar to those of the above vortex
glass corresponding to point disorder.The Bose glass also has a phase transition to a vortex liquid,
in which vortices are no longer localized on defects, and where kinks allow them to jump from one
defect to the other. The main difference is that the transition temperature is shifted to larger values
with respect to the phase transition observable in the presence of point defects : the stronger the
disorder, the higher the transition temperature. As a consequence, the transition temperature will
depend on the orientation of the magnetic field, since the pinning efficiency is maximum when the
field is exactly aligned with the correlated disorder. Actually, there is even a threshold angle above
which the Bose glass disappears, since localization on defects no longer occurs. An expected an-
gular dependence is sketched in Fig. I-3. On the same plot is represented the transition temperature
for pointlike defects, which is slightly angle dependent due to the material anisotropy. It is very
interesting to point out that such a behavior closely corresponds to experimental data, as the cusp

   ξg ∝ T − T g
− ν

   τ g ∝ T − T g
− ν z

   ν and z
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at low angles of Fig. I-3 is indeed observed in twinned YBa2Cu3O7-δ crystals [24,25]. Our sample
also follows the same angular dependence (chapter IV).

2.3 The vortex liquid

Above the melting line presented in Fig. I-2, vortex interactions and disorder become less impor-
tant than fluctuations, and we have to consider a liquid of weakly confined lines. These lines are
usually entangled, in the sense that their wandering away from the straight vortex configuration
can be larger than the intervortex spacing.

Close above the melting line, the vortex liquid is still viscous with an energy barrier for vortex mo-
tion U independent of the current, such that the resistivity takes the thermally activated flux flow
(TAFF) form ρ ∝  e−U /kT [26]. On the other hand, when the temperature is further increased, as we
go deep into the liquid phase (farther from the vortex phase transition line), the energy barrier van-
ishes, and we reach the flux flow regime, where ρ ≈ ρn B / Bc2., in which ρn is the normal state re-
sistivity. Note that this important relation is the result of the Bardeen–Stephen [27] and the
Nozière–Vinen [28] theories, which will be discussed in details in the next chapter.

Finally, we have to say that the above picture of a liquid of line, even though it is the most widely
accepted description of the phase found above the melting line, is not the only possible model. If
the Abrikosov lattice is indeed observed at low temperatures by decoration experiments, and its
existence can be tracked up to the melting transition by neutron diffraction [29], there is no direct
evidence of the existence of vortices above this transition. Therefore, an alternative idea has
emerged, considering that the so called liquid phase is actually a sort of normal state dominated by
critical fluctuations of the order parameter [30]. The melting transition would then correspond to
the actual creation of vortices (when reducing the temperature or magnetic field).

However, note that, although this description might seem to be reasonable as a substitute for a sec-
ond order or continuous transition from a vortex liquid to a vortex glass, it is more difficult to see
how it could lead to a first order transition at the end of the critical fluctuation region. Moreover,

Figure I-3 : Relative dependences of the vortex phase transitions as a function of the angle α between the
applied magnetic field and the c-axis. Tm corresponds to the vortex lattice melting in the presence of point
disorder, and TBG is the Bose glass transition for correlated defects. When α < α∗ , the liquid freezes into a
Bose glass, whereas at larger angles the correlation of pinning is no longer dominant, and the liquid freezes
into a usual vortex lattice.
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it is now not only established that the vortex melting is of first order in the most clean samples, but
it has also been shown that both the magnitude of the corresponding thermodynamic properties
(such as the entropy jump) and their temperature dependences are in very good agreement with a
configurational melting of a vortex lattice within the London model [31].

3. The mixed state Hall effect

In the preceding section, we have given a short overview of the main vortex phases, with a few
indications on their dynamic properties. However, as far as the Hall effect is concerned, almost all
of the existing models consider only the dynamics of a single vortex, without taking into account
vortex-vortex interactions, elasticity of the vortex lattice, vortex phases, etc.

It is the aim of the present section to present the open questions and challenges related to the mixed
state Hall effect in type II superconductors, as well as to introduce the achievements of the present
work in this context.

3.1 Single vortex equation of motion

We shall derive formally in the next chapter the equation of motion of a single vortex in the absence
of pinning according to the Bardeen–Stephen [27] and the Nozière–Vinen [28] models. Here, we
merely use the result to provide a general introduction to the subject. When mass terms are neglect-
ed, this equations of motion can be written as

, (I.1)

where  is related to the applied transport current (providing the driving force) by 
(with  the density of superconducting carriers, e their charge, and  their velocity),  is the
velocity of the straight vortex, and  a unit vector oriented along the vortex. With a very intuitive
view emerging from, for example, the Bardeen–Stephen theory, the different terms can be justified
as follows (see Fig. I-4) :

•  is the Lorentz force resulting from the interaction between the transport current,
, and the vortex self magnetic field,

• –  can be seen as the consequence of the Lorentz force acting on the charges localized
in the vortex core, moving at the vortex velocity ,

•  is simply a viscous drag force for the vortex motion, due to the scattering of these lo-
calized charges.

Note that , whereas both  and  have the same sign as the charge e in this simple model.
More precisely, the damping coefficient η comes from the interactions between the excited, non-
superconducting states localized in the vortex core and the imperfections of the background mate-
rial made of positive ions, leading to a finite characteristic collision time for the excited states. The
coefficients  and  have multiple and more complex origins. They are in general determined
by hydrodynamic and core forces, arising from the interactions between the superflow around the
vortex and the excitations of the superconducting condensate (both localized in the vortex core and
delocalized in the whole charged fluid). The interface between the vortex core and the bulk super-

    k 1 vT − k 2 vL × ez − η vL = 0

vT     jT = nse vT

 ns  vT   vL

 ez

    k 1 vT × ez

    jT = nse vT
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fluid also plays an major but non-trivial role in the determination of the different factors in the
equation of motion.

From this equation, we can then get the vortex velocity from the applied current. The electric field
response is then determined through Josephson’s relation [32]

.

We can actually use this relation to directly relate the equation of motion to the different compo-
nents of the resistivity tensor. For the sake of simplicity, we consider here a conductor which is
invariant under a π/2 rotation around the z-axis, such that the properties along the x and y directions
are equivalent. Hence the resistivity tensor (defined by the relation ) has the form

,

where  is the longitudinal resistivity and  is the transverse resistivity. Note that in the present
discussion, we assume that  is symmetric in the magnetic field, namely ,
whereas  is antisymmetric, that is , such that  is in fact strictly identified
as the Hall resistivity. The case of a symmetric part in the transverse resistivity  will be dis-
cussed in chapter V.

From the above definitions and the Josephson relation, it follows straightforwardly that

.

Moreover, if we define the conductivity tensor σ as the inverse of ρ,

,

we have 

and ,

Figure I-4 : Representation of the different forces appearing in the vortex equation of motion (I.1).
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and the equation of motion becomes

.

In any case, we see that, even in absence of complex situations such as pinning and vortex-vortex
interactions, the simplest equation of motion (I.1) of a single vortex has terms that will contribute
to the Hall effect : we get indeed

(I.2)

for the vortex contribution to the Hall conductivity. The Hall component of the electric response
of a type II superconductor is therefore an integral part of the vortex dynamics, and should not be
neglected in the analysis of resistivity measurements. A complete picture of the vortex response
can indeed only be obtained from both longitudinal and transverse (Hall) components of the resis-
tivity. Of course, the longitudinal resistivity  represents by far the main part of the vortex mo-
tion, since the Hall angle, defined by

is experimentally usually very small (of the order of 10-1 to 10-2). However, as we will see in
paragraph 3.3, there are some features in the vortex dynamics that are only observable in the Hall
response.

Note that the above Hall conductivity is strictly related to vortex dynamics, hence the notation .
Although the equation of motion (I.1) corresponds to a hydrodynamic, mean-field description of
the vortex contribution, the fluctuations might also be taken into account in this term, for example
through a Ginzburg-Landau derivation. Aside from this vortex term, the total Hall conductivity
also contains contributions from the delocalized excitations, expressed as the product of the normal
state Hall conductivity  times the normal-like excited states fraction  (representing the
normal fluid density). Finally, we can write

, (I.3)

where we have stressed the fact that  also depends in general on the superconducting density g.

3.2 Pairing symmetry and vortex structure

As we shall see in the next chapter, the vortex flow Hall contribution  can be related to the mi-
croscopic properties of the vortex, its core structure, etc. It is therefore useful to first briefly present
a few of these aspects. We start by recalling what the structure of a vortex is in the standard Gin-
zburg–Landau theory.

The vortex is associated with a cylindric distribution of supercurrents, trapping a quantized mag-
netic flux φo = h / 2 e . Both the current and the magnetic induction are distributed around the core
axis over a distance λ, called the penetration depth. Inside the vortex core, the superconducting or-
der parameter Ψ is reduced to zero over a distance ξ, the coherence length (Fig. I-5). In high tem-
perature superconductors, . The fact that |Ψ | is suppressed in the core means that no
superconducting state is found on the vortex axis.
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More precisely, the zone in which |Ψ | is reduced corresponds to a zone of reduced superconducting
gap ∆, forming a potential well in which localized states can exist. In conventional BCS supercon-
ductors, Caroli, de Gennes and Matricon [33] have calculated the energy levels of these localized
quasiparticles. It has also been shown that the density of these localized states is the same as in the
normal state, so that the picture of a normal core of radius ξ is often used for the vortex. The inter-
level spacing, also called the minigap, which is of the order of , where ∆ is the BCS gap and
εF is the Fermi energy, is unfortunately too small to be observed directly in conventional supercon-
ductors (and moreover a level broadening due to scattering by impurities can easily become com-
parable to the minigap). Nevertheless, Hess et al. have shown the existence of (unresolved)
low-lying states in the vortex core of NbSe2 with the help of scanning tunneling microscope (STM)
spectroscopy [34].

However, recent experiments in high temperature superconductors have shown a different behav-
ior. For YBa2Cu3O7-δ, Maggio-Aprile et al. [35] have shown that only two bound states were ob-
servable in the vortex cores by STM spectroscopy. This result is actually consistent with the
Caroli–de Gennes–Matricon picture, since the ratio  in this material is much larger than in
conventional superconductors. As a consequence, only a few levels separated by the minigap can
exist in the well of depth ∆.

The same type of investigation on Bi2Sr2CaCu2O8 + δ at different oxygen concentrations δ leads to
the conclusion that there is no bound state at all in the vortex cores [36]. The larger value of the
gap ∆ (and thus of the ratio ) is a possible explanation. However, other surprising features are
observed in the density of states (DOS) of this compound. For example, the superconducting gap,
which is supposed to close at the superconducting to normal transition, is still clearly visible as a
large dip in the DOS. This dip is called the pseudogap, has the same width as ∆, and remains visible
up to temperatures much higher than Tc [37]. Note that this pseudogap is generally only visible in
underdoped materials (that is materials with a charge carrier content lower than the doping provid-
ing the highest Tc, see Fig. I-6) in which it can even be measured at room temperature [38], al-

Figure I-5 : Left : schematic view of the supercurrents surrounding a flux line in a type II superconductor.
Right : appearance of the resulting magnetic field B, current density j, and superconducting order parameter
modulus |Ψ | across such a vortex.
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though it is also reported to exist in overdoped Bi2Sr2CaCu2O8 + δ in Ref. [38]. This reveals the
efficiency of the pairing interaction far above Tc, a mechanism quite different from the usual BCS
picture.

More precisely, this pseudogap in the density of states first opens in some directions of the Bril-
louin zone at high temperature, whereas the rest of the Fermi surface still has a normal Fermi liquid
behavior, as noted from measurements by angle resolved photoemission spectroscopy [37,39]. As
the temperature is reduced, this gap spread along the Fermi surface. When the superconducting
transition is reached, the gap is then open for all the directions of the Brillouin zone, except for four
nodes, at the corners of the Fermi surface, where the spectrum remains gapless.

It is now widely accepted that this striking momentum dependence of the electronic properties cor-
responds to the d-wave symmetry of the order parameter : in simple terms, the wave function of
each pair changes sign four times around the Fermi surface. The d-wave symmetry of the super-
conducting state has been verified experimentally on many occasions for many cuprate com-
pounds, for example by the observation of a fractional flux quantum in a superconducting ring
laying at a tricrystal junction [40], or the diffraction pattern of the Josephson tunneling in corners
of crystals [41]. This d-wave nature of the pairing mechanism also has important consequences on
the localized vortex core states, since then the wave function has nodes in four different directions.
As a consequence, it was argued that no bound state can exist in a d-wave superconductor vortex,
because the potential well depth related to the gap ∆ is also anisotropic, and vanishes in four direc-
tions, such that the particles can in some way "escape" from the well in these directions (they are
in other terms infinitely extended in these directions). However, as we saw above, localized states
can be found in vortex cores, at least in some materials. From recent rigorous calculations [42], the
ideas of d-wave symmetry and vortex bound states have been reconciled by assuming a higher
symmetry, with a superimposition of two d-wave components (actually a  symmetry).

Although the existence of d-wave components in high temperature superconductors is now well
accepted, much more has to be done to understand on the one hand the origin of this symmetry
(related to the pairing mechanism), and on the other hand its consequences for the vortex structure
and the vortex dynamics.

Based on the above experimental evidences on the Fermi surface and symmetry of the order pa-
rameter, Geshkenbein et al. have developed a new theory [43], presumably only valid for under-

Figure I-6 : Typical dependences of the metallic-superconducting and the insulating-antiferromagnetic tran-
sition temperatures on the charge carriers concentration in most of the cuprates.
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doped high temperature superconductors, or more precisely for superconductors showing a
pseudogap above the critical temperature Tc. Actually, the question of whether this pseudogap is a
general feature in cuprates or is specific to underdoped systems is still open : it is not clear yet if it
is really absent from overdoped materials, or if it is only less pronounced and more difficult to ob-
serve experimentally, though still present [38].

The idea of this model is that the formation of the pseudogap corresponds to the creation of non-
conducting pairs in the corners of the Brillouin zone. When Tc is reached, these preformed bosons
then form a superconducting condensate. Note that the idea of a Bose condensation of preformed
pairs had been proposed earlier (see for example Ref. [44]). However, these previous models lead
to some predictions that do not agree with experimental facts like the width of the fluctuation re-
gion and the Hall effect. The crucial difference in this latest model [43] is that the Bose condensa-
tion happens against the background of the Fermi liquid, the (unpaired) fermions playing an active
role in the process, as they interact with the bosons. This promising model also deduces expres-
sions for the Hall conductivity, as will be discussed in the next chapter.

3.3 Hall anomaly and scaling

a) Hall anomaly

We now turn back to the Hall effect in the mixed state. As we have seen in paragraph 3.1, the stan-
dard flux flow models predict that the vortex Hall conductivity (I.2) has the same sign as in the
normal state, and can be seen as a consequence of the Hall effect in the normal cores of the vortices.

However, in high temperature superconductors (and in some conventional materials too), the Hall
effect sign changes in the superconducting state (see Fig. I-7). This Hall anomaly was first ob-
served in YBa2Cu3O7-δ by Galffy et al. [45]. Thereafter, the same kind of behavior was reported
for Bi2Sr2CaCu2O8+δ [46]. In this latter compound, as well as in other very anisotropic cuprates,
a second sign change, back to the normal state one, is often seen (note that a detailed literature re-
view is given in chapter III). As it is now widely accepted that this sign change is a genuine effect
of vortex dynamics, and not a spurious Hall effect resulting from extrinsic effects, such as materials
defects, it has become a challenge from the theoretical point of view to explain why sign changes
appear in the combination of the different terms of the total Hall conductivity (I.3). Some of the
tentative theories for the Hall anomaly are presented in the next chapter.

We can see from Fig. I-7 that the sign change of the Hall effect is not associated with any feature
in the longitudinal resistivity. More precisely, the longitudinal resistivity is known to be quite con-
sistent with the standard flux flow models (Bardeen-Stephen and Nozières-Vinen) when pinning
can be neglected (and with the collective pinning picture in the other case), but these standard mod-
els fail to explain the Hall behavior. This demonstrates that, as we have mentioned in
paragraph 3.1, the Hall effect is a necessary component for a complete picture of the vortex dy-
namics, as it reveals some features that could not be guessed from the longitudinal resistivity only.

One of the principal experimental controversies for the flux flow Hall effect that is still not com-
pletely resolved is the pinning dependence of the Hall conductivity σxy. Whereas both resistivities
ρxx and ρxy are obviously disorder dependent, there is no consensus on the resulting effects on the
Hall conductivity, as contradicting results are reported (see chapter III for a review).
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The influence of pinning can also become relevant in the presence of correlated and anisotropic
pinning, just like in the case of twin boundaries. When vortices tend to move along such extended
defects, the resistive response will have a transverse component that is even with respect to the
magnetic field (thus the name even Hall effect), in contrast to the Hall effect which is by definition
odd in the magnetic field. The question is then to know to what extent this guided motion also in-
fluences the true (odd) Hall effect, or if the latter can be considered as independent of this guided
motion. This question of guided motion along twin boundaries is addressed in chapter V.

b) Hall scaling law

Another striking feature is also observed in the Hall behavior of all the high temperature supercon-
ductors : the vanishing part of the data, at low temperature or low field, follows the scaling relation

as first noted by Luo et al. [47]. This behavior is easily seen on a log-log plot of  versus , as
shown in Fig. I-8.

Although this scaling seems to be very general (it is for example observed for any sign of the Hall
effect, after one or two sign changes, or even in the absence of Hall sign change), the reported val-
ues of β are quite scattered (see chapter III for a review of the literature). The highest reported ex-
ponent is β = 2, whereas values as low as 0.8 can be found. The upper limit β = 2 can be justified
by noting that β > 2 would imply a vanishing Hall conductivity as the resistivities vanish, since

  , knowing that . Therefore, if we assume that both
components of the conductivity  and  should diverge simultaneously, the condition β < 2
has to be satisfied.

Figure I-7 : Schematic temperature dependences of the longitudinal resistivity ρxx, Hall resistivity ρxy, Hall
angle tan θH and Hall conductivity σxy for YBa2Cu3O7-δ (at a moderate magnetic field B = 2 T), showing the
Hall sign reversal below Tc. 
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To our knowledge, four theories have been proposed in an attempt to explain this scaling relation,
and will be presented in the next chapter. Unfortunately, two of these theories predict a constant
universal exponent, in contradiction to the strongly sample dependent experimental data. The other
two are more compatible with the experimental diversity, but they are related to corresponding sce-
narios for the Hall anomaly, which are in turn difficult to accept : one is based on the influence of
pinning, the other on the existence of vacancies in the vortex lattice, both incompatible with the
existing observations of a Hall sign change in the critical fluctuation region, very close to or even
above Tc (see chapters II and III for details).

4. Summary of the present work

As we see, the Hall effect in high temperature superconductors is far from being fully understood.
Among the open questions is the effect of vortex-vortex and pinning interactions on the Hall be-
havior. We have seen that different solid phases can form thanks to the repulsive interaction be-
tween the vortices and the influence of disorder (pinning). It would be interesting to know what are
the Hall properties of these vortex phases, to help establish what are the important factors entering
the mixed state Hall effect.

Conversely, we have also noted at the beginning of this section (page 10) that the Hall effect is nec-
essary to investigate all the aspects of the vortex dynamics, to get a complete picture of all the forc-
es acting on the vortices. As a consequence, a study of the Hall effect in different well identified
vortex phases can obviously bring crucial information on the dynamics of these phases.

In summary, the central question of this work is : what are the correlations between the different
vortex phases and the Hall effect ? Very few similar investigations have been performed up to the
present time. Very recently, Morgoon et al. have studied both vortex guided motion [48] and Hall
effect [49] in unidirectionally twinned single crystals. Although one of these samples might possi-
bly show a sharp vortex lattice melting (as is apparent by comparing their data with the results of
the present work – but the vortex phase transition is not discussed in the above papers), all the oth-
ers appear to be rather disordered. It is then possible that the irreversibility line, at which the vor-
tices become pinned, lies above the phase transition, such that it prevents the formation of an
ordered phase (no step in the longitudinal resistivity, nor any other signatures of a phase transition,

Figure I-8 : Log-log plot of the Hall resistivity absolute value |ρxy| as a function of the longitudinal resistivity
ρxx in the low temperature range, bringing to the fore the Hall scaling relation ρxy ∝  ρxx

β. The dashed line
represents the divergence corresponding to the Hall resistivity sign change (see Fig. I-7).
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are shown nor reported for these samples). Moreover, the odd Hall effect shows surprising features,
not quite reproducible from one sample to the other and apparently related to twin effects.

Actually, the only work reporting Hall measurements across a vortex phase transition is made by
Wöltgens et al. [50], using YBa2Cu3O7-δ films. However, the glassy phase transition, identified
through vortex glass scaling, reveals the presence of significant disorder in the system. Only the
Hall scaling is shown in this paper : no data for the Hall conductivity are presented. Moreover, the
effect of the glassy transition on the Hall behavior is barely touched on. Note that Harris et al. [51]
also measured the Hall effect in untwinned YBa2Cu3O7-δ crystals showing a very clear resistive
vortex phase transition, but the measurements were done at too low current to set the vortex solid
into motion, therefore remaining limited to the vortex liquid phase.

Although we shall further discuss these pioneering works in the light of the present new results, it
already appears clearly that a detailed study of the Hall effect behavior at the vortex phase transi-
tion is lacking. The plan for the present work can be sketched as follows :

• choose a very clean, twinned crystal

• identify a true vortex phase transition

• measure both components of the resistivity,  and , as a function of the applied magnetic
field and the temperature

• analyze the even part of the transverse voltage in terms of vortex guided motion

• deduce from the odd transverse voltage the corresponding Hall conductivity , as well as
study the Hall power law scaling behavior for ( ), and correlate the data with the vortex
phase transition

• check for disorder (pinning) influence by changing the current density and the magnetic field
orientation with respect to the twin planes.

To conclude this chapter, we briefly summarize the obtained results that will be presented in
chapters V and VI. We first discuss in a few words the results for the even Hall effect. We observe
indeed a preferential motion of the vortices along the twin planes. This guided motion occurs al-
ready in the vortex liquid, and becomes more and more marked as the vortex phase transition is
approached. Note that there is no sharp change in this guided motion as the vortex solid is reached :
the vortex motion is simply progressively more and more influenced by the twins direction, just as

Figure I-9 : Change of behavior of the Hall conductivity σxy at the vortex phase transition, for a magnetic
field tilted away from the twin planes. The same effect is observed for measurements as a function of the mag-
netic field.
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in the smooth continuation of the vortex liquid trend. By measurements performed at different cur-
rent directions with respect to the twin planes, we conclude that, whereas the direction of vortex
motion is strongly influenced by the twin planes, the overall vortex mobility is itself not much af-
fected, much less than what might be guessed from usual measurements at as single current orien-
tation (which is often at 45 ° from the twin planes). The detailed results for the even Hall effect are
shown and discussed in chapter V.

Finally, we come to the discussion of the (odd) Hall effect results. Of course, consistently with the
preceding works on YBa2Cu3O7-δ samples, we observe a Hall anomaly, just as is represented in
Fig. I-7. However, when the angle between the magnetic field and the twin boundaries is large
enough (α > α∗ , see Fig. I-3), the Hall conductivity changes abruptly at the (presumably) first order
phase transition (see Fig. I-9). The Hall scaling law is verified for β = 1.4. It is completely inde-
pendent of magnetic field, temperature, current density and field orientation with respect to the

Figure I-10 : Comparison of the behavior of the Hall conductivity σxy for a magnetic field tilted away from
the twin planes (α > α∗ ) and parallel to the planes (α = 0). In the latter case, the conductivity seem to remain
constant around the vortex phase transition. At lower temperature, the noise prevents the observation of the
trend for σxy (dotted line).

Figure I-11 : Log-log plot of the Hall resistivity absolute value |ρxy| as a function of the longitudinal resis-
tivity ρxx (see Fig. I-8), revealing that the scaling exponent is β = 1.4 for a magnetic field tilted away from the
twin planes (α > α∗ ) and β = 2 for a field parallel to the planes (α = 0). It also appears that the scaling law is
unaffected by the respective vortex phase transitions.
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twin boundaries (as long as α > α∗ ). The most interesting observation is that the scaling relation is
absolutely unaffected by the vortex phase transition.

The current dependence and the exponent value clearly show that the Hall conductivity is pinning
dependent. This pinning dependence of the new Hall behavior observed in the solid phase also
means that it is probably not directly related to effects of the vortex bound states or analogous mi-
croscopic and electronic processes that were discussed in paragraph 3.2.

When the twins induce a Bose-glass phase (see Fig. I-3), the Hall behavior becomes very different.
First, the Hall conductivity is apparently constant in the vortex solid phase (Fig. I-10). It is then not
clear whether σxy finally diverges, vanishes, or remains constant as σxx diverges, since the obser-
vation in the low temperature limit is too sensitive to the noise. Secondly, the Hall scaling exponent
is precisely β = 2 (see Fig. I-11). Again, the scaling relation is unaffected by the vortex liquid to
solid phase transition. These results are further discussed in chapter VI.
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CHAPTER II HALL EFFECT REVIEW : THEORY

1. Overview

In this chapter, we discuss the pertinent theoretical models concerning the Hall effect in the mixed
state of type II superconductors. We start with the standard Bardeen-Stephen and Nozières-Vinen
models for the flux flow. These theories are based on a hydrodynamic approach within a two fluid
description, in which the charged fluid is split into a superfluid part and a dissipative normal-like
component. The vortex is considered as a core of normal fluid. The asymptotic flow is supposed
to be purely superfluid. The interface between the superfluid and the normal core is assumed to be
of negligible width in the Nozière-Vinen model, whereas a smooth transition region is introduced
in the Bardeen-Stephen theory. In both cases, only the interaction between the superfluid and the
vortex core, as well as the usual scattering of the normal component (which would lead to the nor-
mal resistivity in a non-superconducting system) are considered; no pinning force on the vortex is
introduced. As we shall see, both lead to the same expression for the flux flow, which is in good
agreement with the experimental findings for the free flux flow longitudinal resistivity, e.g. at high
enough temperature, such that pinning is not relevant. They also both predict a finite Hall resistiv-
ity, however with a slight difference in the field dependence. Unfortunately, the Hall effect in these
models is expected to have the same sign as in the normal state. Therefore, these two theories can-
not satisfyingly explain the data for the Hall anomaly, namely a Hall sign change (see Fig. I-7 in
the preceding chapter) in the mixed state of type II superconductors (and some conventional super-
conductors as well).

As a consequence, it is necessary to look for other descriptions of the mixed state Hall effect. In
section 3, we present what we think are the most relevant theories intended to explain this Hall
anomaly. Some of them are still based on a hydrodynamic approach. For example, the Nozière-Vi-
nen model is modified in order to take into account the effects of the pinning force (paragraph 3.1).
Pinning can also be considered to be so strong that it completely and rigidly immobilizes the whole
vortex lattice, except for a few lattice defects, e.g. vacancies, which then control the overall dy-
namics of the vortex assembly (paragraph 3.2). On the other hand, two other theories, actually in
relation with each other, consider microscopic processes concerning the pairing interaction and the
electronic states forming the superconducting phase (paragraphs 3.3 and 3.4). One is based on the
phenomenological Ginzburg-Landau theory, in which a particle-hole asymmetry has to be intro-
duced to allow for a non-vanishing Hall effect. This asymmetry is represented by the imaginary
part of the relaxation time for the superconducting order parameter Ψ. This imaginary relaxation
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time can be obtained from microscopic considerations either in the frame of the usual weak cou-
pling BCS theory, or for an alternative interaction leading to a non-BCS superconductivity, more
consistent with recent experiments on some high temperature superconductors. The second model
actually treats the entire problem on a microscopic level, and shows the equivalence with the phe-
nomenological time dependent Ginzburg-Landau and imaginary relaxation time picture.

Finally, the scaling relation between the longitudinal and the Hall resistivities (see Fig. I-8 in the
preceding chapter) also deserves an explanation. The theoretical predictions for this scaling law are
grouped in section 4, even though two of these theories are in fact direct consequences of models
for the Hall anomaly summarized above and presented in section 3 (namely the two "hydrodynam-
ic" approaches including pinning, paragraphs 3.1 and 3.2). In these two cases, the exponent β ap-
parently can take different values in the range 1 ≤ β ≤ 2, consistent with the rather scattered
experimental data. The other two are specifically developed to explain this Hall scaling : one again
introduces pinning, in the form of a very simplified average pinning force, again from a hydrody-
namic point of view, and leads strictly to β ≡ 2, but does not predict the sign of the Hall effect; the
other is more a consideration of universal scaling around critical phenomena, in this case the vortex
liquid to solid phase transition, where scaling exponents are used to describe a power law diver-
gence of the quantities which are assumed to diverge at the transition. A universal critical exponent
is then introduced for the Hall conductivity, and is related to the other known critical exponents.
The Hall resistivity scaling is then a consequence of this universal scaling at the transition, such
that the scaling exponent β can be expressed as a function of the other exponents as well. It is then
expected to be between 1 and 2, but should be universal (not sample dependent).

2. The standard Bardeen-Stephen and Nozières-Vinen models

In this section, we review the two original models [27,28] phenomenologically describing the mo-
tion of vortices in a charged superfluid. We first derive the usual Magnus force in the case of an
ideal superfluid with non-dissipative vortex motion. Then we introduce the dissipative force, to
reach the single vortex equation of motion already discussed in the preceding chapter,
paragraph 3.1.

We consider a single, straight vortex line, oriented along the z-axis, and immersed in an applied
superfluid flow vT(r ) in the laboratory frame of reference (which is also the referential of the su-
perconducting material, the lattice of positive ions). We choose S.I. units, thus B = µo H. In the fol-
lowing we write b = µo h, the microscopic (local) induction, and , the macroscopic
(averaged) induction. The following discussions are given within the framework of a two fluid
model [52]. The total supercurrent is j s = ns e vs, where ns and vs are respectively the density and the
velocity of the superfluid component and the carriers charge is e < 0 for electrons. For the sake of
simplicity, we make the following assumptions :

i) An extreme type-II superconductor, namely .

ii) A two-dimensional geometry, the vortex remaining parallel to the z-axis, and the fluid flow
lying in the (xy)-plane.

iii) A very low temperature, such that there are no normal electrons outside the vortex core.

iv) No pinning.

In this case the transport flow vT can be considered to be constant over the vortex core.

  B = b

  ξ << λ
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We also assume that the vortex line moves at a constant velocity vL. This motion induces a current
in the core vnc, the exact distribution of which will depend on the core structure and on the vortex
velocity itself. For example, in an extreme case corresponding to a vortex at rest (vL = 0), like in
the presence of strong pinning, the supercurrent would be flowing around the vortex (see Fig. II-1),
such that no fluid flows across the core (vnc = 0). This requires the existence of a dipolar backflow
vb(r ) to "screen" the applied transport flow vT, as shown in Fig. II-1.

On the other hand, if the vortex follows the applied flow (vL = vT), this means that it is actually at
rest in the transport flow frame of reference, thus, from the same argument as above, the core ve-
locity is now zero in this reference frame. Returning to the laboratory reference, we find vnc = vT :
the applied flow is not screened at all in the core, the backflow vb(r ) is zero. These extreme exam-
ples show that in general circumstances, the total supercurrent has to be decomposed as

,

where vv is the circular velocity distribution of the vortex itself :

,

and vb depends on vnc and the exact core structure.

However, in both models considered here, the backflow vb is neglected, though for different rea-
sons. Nozière and Vinen (NV) [28] consider the vortex core as a sharply bounded cylinder of ra-
dius a, consistent with microscopic calculations from Caroli et al. [33]. In this case, for a given vnc,
the backflow is given by the standard result of hydrodynamics :

(II.1)

Figure II-1 : a) Flow lines of a transport current flowing around a rigid cylindric core. b) Decomposition of
the same pattern into the homogeneous transport flow and a dipolar backflow given by Eq. (II.1) with 
(the vorticity has been omitted for more clarity).
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which is negligible outside the core. Bardeen and Stephen (BS) [27] consider a more detailed local
model with a normal core of radius a surrounded by a normal to superconducting transition region,
which allows them to carefully investigate the continuity of potential and velocity components at
the core boundary. They show from energy conservation that vb = 0, and thus that vnc = vT. In the
NV model, consistently with the calculations of BS (and even if their core modelization is differ-
ent), they also assume vnc = vT.

In summary, both models come to the same picture : a core of radius a ≈ ξ is composed of normal
electrons, backflow is neglected, and the velocities are

(II.2)

for the superfluid component outside the vortex core and

vnc = vT (II.3)

in the normal core.

2.1 The Magnus force

As a first step, we want to calculate the driving force on the vortex exerted by the superfluid. To
separate this force from the other contributions like the dissipative scattering of normal charges by
impurities, we first make an additional assumption :

v) A clean material, to avoid frictional forces on the vortex.

The dissipative force will be reintroduced once we have determined what the driving force is.

Well outside the core ( ), the superfluid then obeys London’s and Maxwell’s equations :

(II.4)

(II.5)

. (II.6)

Note that the last equation derives from Maxwell’s equation  knowing that the
magnetic field is constant in the vortex frame :

.

In (II.5), we have used the total electron density N instead of ns, since from the assumption (iii) we
know that the normal fluid density nn = 0. From (II.6) we see that 

(II.7)

with an arbitrary potential V.

The superfluid flow is governed by Euler’s equation

, (II.8)

where µ is the chemical potential. Note that, following our initial assumptions, the total energy in
the vortex frame is constant :

, (II.9)

    vs(r) = vT + vv(r)

   r >> ξ
    ∇∇ × vs + e
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    ∇∇ × b = µo N e vs

   ∇∇ × E = vL⋅∇∇ b

    ∇∇ × E = − ∂b ∂ t∂b ∂ t

    db
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= ∂b
∂ t
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since in this frame the superflow is stationary1.

In order to calculate the force acting on the vortex, we now construct a unit length cylinder Σ par-
allel to the z-axis, on one closed flow line in the vortex frame, far enough from the core, as illus-
trated in Fig. II-2. There is no fluid transfer across Σ, and the total force exerted on the fluid inside
the surface derives directly from (II.8) :

where we have used Eq. (II.7). With the help of Eq. (II.9) and the cylindric symmetry of vv and b,
it becomes

. (II.10)

Figure II-2 : Top view of the flow pattern around the vortex, in the vortex frame. The surface  is chosen
on a closed flow line, whereas  is a circular cylinder centered on the vortex.

1. It can be shown that the electric potential in (II.9) is indeed the same as the potential V used in (II.7) by
noting that, in Eq. (II.8), . This derives from the fact that the
superflow is stationary in the vortex frame and  is constant. We can then see, using (II.4) and (II.8) with
the above relation, that the gradient of (II.9) vanishes precisely if V is the same as in (II.7).
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If we instead take a surface  which is not on a flow line, we must also include the net momentum
flowing through the surface per unit time :

. (II.11)

To allow us to easily perform the integration, we chose  to be circular and centered on the vortex
core. In this case, , and  becomes

With the help of Eq. (II.2) and (II.4) and the standard vector identities for  and ,
one easily gets, for constant vL and vT,

,

which is the same expression as in Eq. (II.10). The convective term (II.11) resulting from the mo-
mentum flow through the surface is thus equal to the force acting on the core of the vortex :

. (II.12)

We can then finally calculate the total driving force, neglecting the second integral, which vanishes
as ξ 2 / λ2 :

Since  is constant over , we finally have

or, after integration,

. (II.13)

Finally, we can see that the force exerted by the superfluid on the vortex is the Magnus force.

Now that we have the driving force acting on the vortex, we can drop the last assumption (v), and
introduce the effect of friction between the vortex and the background superconducting material
made of positive ions. By balancing the driving Magnus force with the drag force fdrag, we then find
the vortex equation of motion , from which we calculate the vortex velocity vL as a
function of the transport current j T = ns e vT. In the two next paragraphs, we summarize the respec-
tive calculations of both models.
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2.2 The Bardeen-Stephen model

In their paper [27], Bardeen and Stephen consider, as already mentioned at the beginning of this
chapter, a normal core of radius a which is surrounded by a transition region, in which the order
parameter  goes smoothly from zero to its asymptotic equilibrium value . In this case, fric-
tion occurs both in the normal core and in the transition layer. To avoid the difficult calculations
necessary for the transition layer, we can restrict the equilibrium condition between the driving
force and the drag force to the normal core only. However, this requires us first to determine what
part of the total Magnus force (concerning the whole vortex) is acting over the core, the rest being
applied to the interface. Once we know this driving force Fnc acting only on the normal core charg-
es, we can then balance it against the core friction

, (II.14)

where τ is the electron-lattice collision time.

Considering that the normal electrons are in local equilibrium with the lattice, BS determine Fnc by
writing

,

where  is the total energy in the lattice frame, which is related to the total energy  in the vor-
tex frame written in Eq. (II.9) by  with ps = m vs − e A, A being the vector poten-
tial.  is the Lorentz force on the charges in the normal core  (b is
considered constant over the core).

In this model, the vortex in motion is treated as a perturbation of the stationary vortex by the fol-
lowing development : in the vortex frame, the total superfluid momentum ps is written 

,

where po is the momentum for a vortex at rest, and  is the modification of the superfluid
flow arising from the motion, which is then neglected. With the appropriate gauge and a constant
b in the core, we get in cylindric coordinates

.

Outside the normal core . The corresponding force field in the core is then ob-
tained by an appropriate continuation of the above field at the core boundary. Finally, we get the
total driving force for the normal electrons in the core :

By stating that the vortex circular velocity distribution vv reaches the depairing current at the nor-
mal core boundary (r = a), and interpolating linearly between the low and high field limits of the

 relation, BS reach the following equation for a as a function of the applied magnetic field :

.
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By balancing Fnc against  (II.14), and for vnc = vT (see the discussion on page 21), we get the
vortex equation of motion which takes the form

, (II.15)

since for  we can approximate b ≈ B (see Ref. [53] and references therein). From Eq. (II.15)
we calculate the electric field given by Josephson’s relation

(II.16)

with . Since the longitudinal and transverse components of E with respect to the trans-
port current j T = N e vT are, respectively,

and , (II.17)

we get for the longitudinal and transverse resistivities :

and , (II.18)

where we have introduced the normal (Drude) resistivity

.

Therefore, the longitudinal resistivity can be seen as the contribution of normal electrons of the
core, occupying a volume ratio of B / Bc2. From Eq. (II.16) and (II.17) we note that ρxx is symmetric
in the magnetic field (ρxx(−B) = ρxx(B)), whereas ρxy is antisymmetric (ρxy(−B) = − ρxy(B)), such
that it is just the Hall resistivity. Then from Eq. (II.18) we extract the Hall angle

with ωc = e B / m. This expression is exactly the same as for a normal metal.

2.3 The Nozières-Vinen model

On the other hand, Nozières and Vinen [28] consider a normal core of radius a, with a discontinu-
ous normal superconducting boundary, in contrast to the continuous transition region of the BS
model. Again, since we only know the friction force for the core electrons  (II.14), but not for
the vortex-superconductor interface, the equilibrium between friction in the normal core and the
driving force can only be explicitly written provided we know which part of the total Magnus force
applies on the bulk of the core, the remaining part being localized on the sharp interface. To answer
this question, we first recall that the convective part (II.11) of the Magnus force arising from the
flow of the momentum inside the core represents half the Magnus force, as written in Eq. (II.12).
NV then assume that this convective force is localized right at the core boundary, a statement that
can be justified by noting that the momentum crossing this interface should be dissipated over a
distance  that can be considered to be much smaller than ξ.
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Therefore, the remaining part, , is the driving force acting on the normal core1, which is
balanced against the drag force (II.14). Assuming, as already mentioned, vnc = vT, the equation of
motion is then :

. (II.19)

For high fields, NV choose the following relation for a :

.

With this, we can again deduce the electric field from Eq. (II.19) :

.

It follows from the definition of the resistivities (II.17) :

and . (II.20)

The Hall angle is given by

with . Note that we can also calculate the resulting mean field vortex flow
Hall conductivity

. (II.21)

In summary, NV reach the same longitudinal resistivity as BS, and have a Hall effect B / Bc2 times
smaller. Therefore, even though both models do not absolutely agree with each other, they bring
very similar results, and yet are still both unable to give an explanation for the Hall anomaly. The
Hall effect in these models can indeed be seen as the normal Hall effect on the normal charge car-
riers present in the core, and, hence, always has the same sign as the normal state Hall effect. As
we have mentioned in the preceding chapter, many experiments contradict this prediction.

Before discussing other models providing possible explanations for the Hall anomaly, we should
mention that the disagreement between the two models presented here can apparently be solved by
carefully considering Andreev scattering at the core boundary [54]. The convective force of the
NV model, absent in the BS model and responsible for the discrepancy, is then found to be micro-
scopically justified through this process.

1. Provided the electric potential V is continuous at the core interface, which means that there is no charge
layer around the vortex. If on the other hand a contact potential  is introduced in order to keep the total
energy  continuous at the interface, we recover the result of the BS model.
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3. The Hall anomaly

In this section, we present the main recent theories that are intended to provide an explanation for
the experimentally observed Hall anomaly, namely a change in the sign of the Hall effect in the
mixed state. This overview is not exhaustive, but focuses on the most widely accepted or discussed
models.

3.1 Pinning and backflow

As we have seen above, both BS and NV models neglect the backflow current reducing the flow
in the vortex core, and thus consider that vnc = vT. But as we have discussed at the beginning of this
chapter, a completely pinned vortex will have a maximal backflow vb = vnc − vT such that there is
no current inside the core vnc = 0. Therefore, Wang and Ting [55,56] have reconsidered the NV
model by including the pinning force and its effect on the backflow current, leading generally to
vnc ≠ vT (see Eq. (II.1)).

To keep the discussion of this model as simple as possible, we choose the high-κ ( ) approx-
imation in all that follows : we will consider that, since , b = B represents the microscopic
local field, the averaged induction, as well as the applied external field [53].

The new equation of motion for the normal core is now :

, (II.22)

where  is the pinning force acting on the normal core. This force is related to the backflow in
the core vb = vnc − vT by

, (II.23)

since the backflow should be oriented perpendicularly to the pinning direction ( ). Ener-
gy conservation in the system leads to k ≈ 1, and the total pinning force acting on the whole vortex
(not only on the normal core) is .

Aside from the introduction of pinning effects, Wang et al. make more exact derivations than NV,
although exactly within the same normal core model and with the same basic assumptions. For ex-
ample, unlike NV, they keep all the terms in the calculation of the integral which led to the Magnus
force in the NV model (see page 24). Therefore, all terms proportional to B / Bc2, which were ne-
glected in the NV theory, are kept here. Consistent with this generalization, no particular approx-
imation for the relation a(Bc2) is made, but a parameter χ = a2 / ξ 2 is introduced to account for the
exact value of a. However, most of the time 1/2 ≤ χ ≤ 1, thus this parameter will not bring any note-
worthy contribution.

The most important generalization in this model, compared with NV or BS theories, concerns the
contact force applied on the superconducting-normal core interface. Wang et al. write this force as

,

where  depends on the charge carrier mean free path . Asymptotically, for  (mod-
erately dirty limit), the fluid at the interface is in equilibrium with the lattice, the chemical potential
is continuous at the interface, and the contact force is such that , a situation which corre-
sponds to the BS model (see the footnote on page 23). On the other hand, if  (clean limit),
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the electric potential is now continuous, and the contact force vanishes, hence  (NV model).
The parameter  depends on the temperature through , and is basically expected to increase
with increasing T, going rapidly from 0 to 1 around To given by .

With all of these detailed contributions, the force acting on the normal core becomes

.

We can then calculate the resistivities ρxx and ρxy from the equilibrium condition Eq. (II.22), much
as in the BS or NV models. Assuming that Fp ∝  − vL, we get

and

. (II.24)

Both brackets above are always positive, and their ratio depends on . Since flux flow only hap-
pens if the Lorentz force overrides the pinning ( ), the pinning-related factor satisfies

with  the pinning force density, which we consider as independent of B around the
Hall anomaly to keep the discussion as simple as possible. It can be easily seen from Eq. (II.24)
that the Hall resistivity undergoes a sign change close to the depinning threshold. When  (for
low temperature in clean materials), depinning occurs at , and the negative Hall resistivity
occurs only in a narrow field region, with very small absolute value. When the field is further in-
creased, ρxy changes sign and ρxy ∝  Β. On the other hand, larger negative values of ρxy happen for

 (at higher temperatures), where

is negative just above depinning, reaches a negative maximum (of amplitude comparable to the
normal state Hall effect), and approaches the (positive) normal state behavior as .

Even though this formalism is more adapted to an analysis of the ρxy(B) dependence at fixed T, this
model also gives qualitatively correct results for the temperature dependence of the Hall effect,
provided the temperature dependences of  and  are taken into account.

However, we see that in no way can this theory predict the second sign change observed in some
materials at very low temperature. Another limitation of this model is the absence of thermal fluc-
tuation processes, ruling out crucial effects of vortex dynamics as, for example, thermally activated
flux flow (TAFF). Therefore, this theory was later completed by Wang, Dong and Ting
(WDT) [57] to explicitly include thermal fluctuations. The vortex equation of motion is then

, (II.25)

where FT is the thermal noise force and fdrag is the total drag force acting on the vortex (whereas
 was only exerted on the normal core). A complete discussion of the different contributions to
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this drag force is given in Ref. [56]. We just note here that it can be shown that the drag force not
only depends on the vortex or the superfluid velocities, vL and vT, respectively, but also has com-
ponents proportional to  and , as a consequence of the pinning-induced backflow (since
the core charges velocity vnc is directly influenced by the pinning, see Eq. (II.23)).

The resistivities ρxx and ρxy are then obtained by solving the time-averaged equation of motion.
Even though the thermal force itself obviously vanishes in average ( ), a difference with
the preceding model subsists through the average pinning force , which appears directly in the
equation of motion (II.25), as well as indirectly in the drag force fdrag, as mentioned above. In the
TAFF and creep regimes,  is very different from Fp of Wang and Ting’s model above.

Assuming that  (where the coefficient Γp(vL) includes dependence on the temper-
ature T and the pinning energy Up), taking into account the experimental evidence that

, and with , we finally have

(II.26)

and

(II.27)

(  is the usual viscosity coefficient, namely the factor of the fdrag term which is propor-
tional to vL, see Ref. [56]).

Clearly, if  is close to 1 (high enough temperature), B not too large, and for strong enough pin-
ning (Γp > η), ρxy is negative (provided the normal state Hall effect ωc2 τ is positive, i.e. for positive
charge carriers). More generally, it can be seen that this version of the model very well describes
the observed field as well as temperature dependences of the Hall resistivity in various materials.
This theory also features a second sign change of ρxy as a function of temperature : at low temper-
ature, , and ρxy is positive. When the temperature is increased,  increases, and ρxy be-
comes negative as stated above (provided the field is low enough). Of course, when the
temperature reaches Tc2(B), pinning vanishes ( ) and ρxy switches to positive sign again.

Unfortunately, a complete analysis of the above relations in order to compare them to the experi-
mental data is made difficult by the non-trivial dependence on a number of "free" parameters, or
more precisely on parameters that are not accurately known experimentally (such as the factors Γp

and ). Therefore, a much more efficient way to investigate the predictions of this pinning induced
backflow model is that of numerical simulations [58-60]. Note that the simulations are actually
based directly on the single vortex equation of motion (II.25), by explicitly introducing thermal
noise in a "molecular dynamics" system, and not on the basis of the final expressions Eq. (II.26)
and (II.27) which are the consequence of an assumption on the average pinning force  (see
above). Again, the results are quite consistent with experimental data. These simulations can also
be used to determine the average pinning force and the coefficient Γp(vL) [61].

However, there is in the experimental literature a wide controversy about the pinning effects in this
model. In many experiments, the Hall anomaly is indeed said to show a behavior that is opposite
to that of WDT’s predictions. More precisely, the negative maximum of the Hall resistivity 
often decreases as the disorder is increased (see next chapter for a review of references). This is
usually taken as a proof that the disorder is not the cause of the Hall anomaly. Unfortunately, we
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can see from Eq. (II.26) and (II.27) that the interpretation within this model is not so simple. We
first have to introduce explicitly ρxx from Eq. (II.26) into ρxy of Eq. (II.27) :

.

We then see that in the thermally activated flux flow (TAFF) pinning dominated regime, where the
vortex dynamics is essentially controlled by the pinning ( ), the above expression for the
Hall resistivity leads to  : the pinning indeed reduces the negative Hall conductivity.
It is nevertheless the pinning itself which is responsible for the negative sign (from the term be-
tween brackets). On the other hand, closer to the free flux flow region, where the pinning is reduced
(and where the negative Hall effect usually occurs), the sign of the above expression and its pinning
dependence is far from trivial : once the Hall effect has changed its sign, the influence of an in-
crease of pinning depends on the competition between the decrease of ρxx and the increase of the
(negative) factor in brackets. The discussion on this pinning dependence of the magnitude of the
Hall resistivity is hardly straightforward, and is often oversimplified in the literature.

Very recently, this WDT model has also been completed by Zhu et al. by adding vortex-vortex in-
teractions in the equation of motion (II.25), which was then solved numerically [62] similarly to
the simulations above. In a few words, the result is that the intervortex interactions can apparently
play the same role as the thermal fluctuations : this additional parameter, together with the pinning
interactions, can also induce a Hall sign change.

Finally, from Eq. (II.26) and (II.27) we see that the WDT model naturally predicts some sort of
scaling between the longitudinal and Hall resistivities, since we can also write

, (II.28)

even though the a priori field and temperature dependence of the  prefactor should first be dis-
cussed in detail. This discussion will be given in the next section (see paragraph 4.2, page 38).

Globally, the only weak point of this model is that is relies strictly on a hydrodynamic approach of
the vortex motion. Therefore, it cannot take into account the critical fluctuations of the order pa-
rameter near the superconducting-normal transition, which might be important in the Hall anomaly
process. The Hall sign change has indeed been reported to be extremely close to Tc (or even above
Tc [63]) in some materials.

3.2 Vortex lattice defects

Another model that considers pinning on vortices is proposed by Ao [64,65]. Actually, the pinning
effects are quite extreme here, since the vortex lattice is considered as completely pinned, the dy-
namics of the assembly being only controlled by the mobility of lattice defects.

Ao’s starting point is the vortex equation of motion

, (II.29)

namely the balance between the Magnus force and a viscous drag parallel to the vortex motion.
Note that this equation of motion, although there is some similarity, is not absolutely the same as
in the standard BS or NV models of section 2. We recall that in the NV model, the Magnus force
is balanced by a drag force proportional to vT, whereas in the BS model the Lorentz force is op-
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posed to the above drag force − η vL. The viscous coefficient η here, nevertheless, takes the BS
form . In the usual case of independent free vortices, it is straightforward
to see that the resulting longitudinal and Hall resistivities would be

and , (II.30)

which is consistent with the usual flux flow resistivity  only provided 
(superclean limit), but reproduces the NV Hall resistivity ρxy only for  (dirty limit).

Ao then considers that vortex-vortex interactions are dominant, leading to a regular Abrikosov vor-
tex lattice. He then supposes that this lattice is rigidly pinned, but has just sufficient thermal energy
to contain some defects. After a comparison of theoretical energy scales for these defects and with
some experimental support, he then restricts the considered lattice defects to interstitials and va-
cancies, arguing that they are the perturbations of the periodic lattice with the lowest energy. More-
over, vacancies are said to have even lower energy than interstitials, therefore dominating the
dynamical response in this regime.

We can introduce the thermally activated vacancy density as

, (II.31)

where Ev is the vacancy formation energy scale and bv = 1 (note that we can also use bv = 0 to reflect
pinning-induced vacancies). The vacancy effective relaxation time can be defined through the ef-
fective vacancy viscosity  as

or . (II.32)

Here, av is a sample-dependent numerical factor, again of the order of unity and insensitive to tem-
perature. Note that the corresponding expressions could also be written for interstitials, but with
factors ai and bi larger than av and bv, respectively, since interstitial have larger formation energy.

The key idea is to consider the vacancies as moving independently in the pinned vortex lattice, fol-
lowing the equation of motion (II.29). Since in Eq. (II.30) we have B = n φo where n is the vortex
density, we can by analogy directly deduce the vacancy contribution to the resistivities

and (II.33)

with the expressions for nv and τv given above. Obviously, with the "anti-vortex" nature of vacan-
cies, the corresponding Hall resistivity has a sign opposite to the flux flow Hall effect by construc-
tion. This model is interesting in the sense that it introduces intervortex interactions and the notion
of the vortex lattice. However, it still remains based on a "single vortex" equation of motion, since
finally the vacancies are just moving independently in the rigid lattice.

The main difficulty with this theory is to investigate the behavior close to the free flux flow region,
in the vortex liquid, where the Hall sign change actually occurs. The notion of vacancy in this dis-
ordered and fluctuating regime is indeed not clear at all. On the other hand, this model might be
worth considering in the pinned vortex solid regime.

The discussion, within this model, on the scaling law between the longitudinal and Hall resistivities
will be given in the next section (paragraph 4.3, page 39).
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3.3 Time-dependent Ginzburg-Landau equations

Aside from the two preceding hydrodynamic approaches, the phenomenological Ginzburg-Landau
theory has also been used to calculate the conductivity. Here we very briefly give the method of
derivation of the conductivity in this framework, and then show how this formalism should be
modified to be able to describe the Hall anomaly.

For dynamic systems the time-dependent Ginzburg-Landau equation has to be used. With 
the complex order parameter and 

, (II.34)

the Ginzburg-Landau free energy (including the magnetic contribution), this equation is [66]

, (II.35)

where γ is the dimensionless relaxation time and V the electric potential. The idea is to calculate
from (II.34) the variation of the free energy  (per unit cell of the vortex lattice) corresponding
to a displacement of the vortex by an arbitrary vector d, and relate it to the work done by the drag
force which is balanced by the driving Lorentz force :

, (II.36)

where L is the length of the vortex segment with

. (II.37)

For a slow vortex motion of velocity vL, the time derivative  can be replaced with the operator
 acting on the variables describing the vortex at rest. We can then solve the resulting sys-

tem (II.34)-(II.37) to determine j T as a function of vL, and then extract the longitudinal and Hall
conductivities from the relation  introduced in the preceding chapter (see
page 10). Before going into the detailed result, we can directly note that if γ is real, the Hall con-
ductivity is identically zero. In this case, Eq. (II.35) indeed has a "particle-hole symmetry" : it is
invariant under the simultaneous transformations ,  and , from which we
can deduce that . Combined with the Onsager relation  and
the assumed rotational symmetry of the system , we easily show that

.

Therefore, it was realized quite recently that a non-zero imaginary part of the relaxation time
 was necessary to get the flux-flow component of the Hall effect [67,68]. The mean field

vortex contributions to the conductivity then become, with  and  constants of the order of uni-
ty,

,

the standard result of the phenomenological BS and NV models of section II.2, and

. (II.38)

Expressions taking the additional fluctuation contributions into account can be found in Ref. [69].
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The central question is then to know what sign should be expected for , or in other words how
to determine the  factor from microscopic considerations. Fukuyama et al. have calculated this
imaginary part of the relaxation time within the BCS model [70], reaching the result [68]

 , (II.39)

where  is the BCS pairing interaction. We see that the vortex contribution to the Hall conduc-
tivity (II.38) can have a sign opposite to the normal state Hall effect depending on the Fermi surface
structure. However, as we will see later on, this prediction of sign is usually not in agreement with
the experimental data [71].

In general terms, the advantage of this formulation of the Hall effect in the frame of the Gin-
zburg-Landau theory is that it allows for the introduction of fluctuations, absent from a classical
mean field "hydrodynamic" picture like the two preceding models. A potential of randomly dis-
tributed pinning centers can also be included in the Ginzburg-Landau free energy. Ikeda [72-74]
has analyzed such a very complete system by a perturbative approach of lowest Landau levels
(LLL). The formalism of this model clearly goes far beyond the scope of this theoretical overview.
However, we shall come back to the results of Ikeda’s work to discuss the pinning dependence of
the Hall effect in the light of the results of this work, in chapter VI.

3.4 Vortex charge

In the preceding hydrodynamic theories, the vortex core was modeled by a cylinder of radius a ≈ ξ,
with a density of states equal to that of a normal metal of the same total electron density as the su-
perconductor, following the picture emerging from the Caroli-de Gennes-Matricon [33] calcula-
tions (see discussion on page 11). In other words, the electronic density at the vortex core, no, was
the same as the density far from the core, .

However, this calculation of the minigap  and the consequent vortex bound states is
valid only for the traditional superconductors which are well described by the BCS theory, and in
which the chemical potential can be considered as temperature independent (µ(T) = εF). Provided
the standard weak coupling BCS theory can not satisfyingly describe the high-Tc superconductors
properties, this temperature dependence should be taken into account [75]. The result can be ex-
pressed as a function of the particle-hole asymmetry in the electronic band structure, since the su-
perconducting chemical potential µ(T) is related to the normal state potential µn by :

,

where N(ε) is the density of states and c ∼ 0.3  is a constant. As we can see, a spatial variation of
the gap ∆ (as is the case in a vortex) then leads to a gradient in the chemical potential. Therefore,
there is a difference δµ in the chemical potential between the bulk superconducting phase and the
normal vortex core, which corresponds, for an uncharged system, to an additional core density [76]

. (II.40)

Although a detailed discussion on the origin of this vortex charge can be found in Ref. [76], the
subsequent derivation of its consequence on the Hall effect is erroneous, featuring incorrect signs.
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A valid microscopic derivation of the vortex charge-related Hall properties has been done in
Ref. [77], whereas a deeper quantitative discussion of the vortex charge itself and its Coulomb
screening can be found in Ref. [78].

Without going into the detailed microscopic calculation of the vortex charge, we can still derive its
consequence on the Hall effect from a phenomenologic point of view, according to the original pa-
pers of Feigel’man et al. [79,80]. For this we consider as given the additional core density

, and look at the influence it has on the calculations of the NV model presented
above. Since the latter was directly derived for , it has indeed to be slightly adapted to
this new vortex charge.

For example, the equation of motion (II.19) now becomes

, (II.41)

and the relation vnc = vT does not satisfy the current continuity equation anymore : the current far
from the core is  whereas it is j nc = no e vnc inside the core. Therefore, the correct conti-
nuity equation is, in the vortex frame,

from which we extract vnc :

. (II.42)

We can then introduce (II.42) into (II.41) and solve for vT. One easily gets

.

Again, we use the relation

(II.43)

to determine the flux flow Hall conductivity

, (II.44)

which is the standard result (II.21) from the NV theory (with N = no) plus the additional term
 related to the vortex charge. The longitudinal conductivity is the same as in the standard

models. It is noteworthy to add that the vortex-charge induced term  can be shown to be
the same as the Hall term (II.38) of the time dependent Ginzburg-Landau theory presented in
paragraph 3.3, which is proportional to −  : the vortex charge δn (II.40) has indeed the same de-
pendence on the Fermi surface curvature  as the  obtained from the weak coupling BCS
theory (II.39), such that  is opposite to the normal state Hall effect  for a negative 
in both cases. Note that the BCS relation between the critical temperature Tc and the coupling pa-
rameter  can also be used to express the vortex charge [78]. The result is then propor-
tional to  instead of .

As we have briefly noted previously, the density modulation from Eq. (II.40) is valid for uncharged
systems only. In a charged fluid, the initial excess of density δn will be screened by Coulomb in-
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teractions. Within the Thomas-Fermi approximation of the dielectric function ,
where  is the screening length, we can approximate the real charge density difference by

.

In other words, this means that the true vortex charge  should not be calculated by imposing
a constant chemical potential as we have done for Eq. (II.40), but a constant electrochemical po-
tential . From the expression above, we see that the vortex charge is strongly re-
duced by electrostatic screening. However, by an adiabatic action approach, Feigel’man et al. [80]
show that only the value of the unscreened charge δn = δn(r  = 0) enters the Hall conductivity. The
reason for this is that the singular topological contribution to the action leading to the additional
term  in the Hall conductivity is not affected by Coulomb screening, since the latter
only depends on the longitudinal component of the electric field , whereas the topolog-
ical action term is related to the angular expression of the vortex-induced phase.

Therefore, depending on the sign and magnitude of the vortex charge δn, a sign change in the total
vortex Hall conductivity  can happen. In their paper, Feigel’man et al. [80] show
by considering different cases that this theory can explain the observed temperature and field de-
pendences of the Hall conductivity. For instance, since  is large at low temperature and van-
ishes close to Tc, we can see that if δn is positive and large enough, the Hall conductivity can have
two successive sign changes as a function of T.

Note finally that, just as the topological term  is derived on microscopic basis in Ref. [77], the
standard scattering term from the NV theory  can also be obtained from a quasiclassic ap-
proach on the microscopic level [81,82,83]. More precisely, whereas the first of these papers di-
rectly verifies the NV result [81], the following ones also consider the effects of delocalized
quasiparticles [82,83] (i.e. the normal component of the fluid). The result is that the NV term is
reduced by a factor g which goes from 0 (close to Tc) to 1 (for T = 0), as already introduced in
Eq. (I.3). Moreover, the delocalized states add a fraction (1−g) of the normal state Hall conductiv-
ity . However, the vortex charge term  is not affected by the (homogeneous) normal com-
ponent. We finally get for the total Hall conductivity [80] :

. (II.45)

In conclusion, we can summarize the two last models in the following manner. First, we have seen
that there is a vortex charge due to the temperature dependence of the chemical potential. This
charge is proportional to , and directly influences the Hall conductivity. Unfortunately,
the consequent Hall sign is opposite to the experimental data in most cases. Secondly, and inde-
pendently, an imaginary relaxation time  had to be included in the phenomenological time de-
pendent Ginzburg-Landau theory to allow for a finite Hall conductivity. Again, this parameter can
be shown to depend on  under the assumptions of a weak coupling BCS theory, and
moreover lead to the same  dependence of the Hall conductivity in this case. As a con-
sequence, this conductivity obviously still has a sign contradicting the experimental findings.
Therefore, the microscopic determination of  should not be done within a usual BCS coupling
model.

A promising alternative model has been presented in the preceding chapter (page 12). In this pair-
ing scenario, non-conducting pairs are "preformed" far above the superconducting transition, and
condense in a superconducting state only at Tc. This condensation is however not of pure Bose
character, since the preformed bosons are always interacting with underlying remaining unpaired
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fermions. This new pairing model provides another way to calculate microscopically the imaginary
time  [43]. It can be shown that  now has a sign opposite to that coming from the vortex charge
picture presented above. The sign is then consistent with the experimental data.

4. The Hall resistivity scaling law

In this last section of the chapter, we briefly discuss the different theories featuring the experimen-
tally observed scaling  between the Hall and longitudinal resistivities.

4.1 Average pinning force

One of the most referred to models for the Hall scaling law is a work from Vinokur et al. [85], in
which this behavior is assigned to the presence of vortex pinning. This phenomenological theory
is based on two key points. First, the form of the equation of motion

,

which is very similar to Eq. (I.1), with  for the driving Lorentz force and an additional
average pinning force. Note that the drag force only depends on the vortex velocity vL, without oth-
er drag terms related to the superfluid velocity nor the pinning force, in contrast to the WDT theory
presented in paragraph 3.1 (page 29). Second, the average pinning force itself is considered, by
symmetry arguments, as only depending on the vortex velocity, and is therefore oriented along the
vortex motion, this time similarly to the WDT model of paragraph 3.1 :

.

As a consequence, its effect on the vortex dynamics is only a renormalization of the viscous coef-
ficient, . The resulting equation of motion can then easily be solved. Taking into
account the experimental fact that , it is straightforward to verify that

and ,

from which we deduce the wanted relation

. (II.46)

Consequently, the scaling law is verified with the exponent β ≡ 2 provided k2 does not depend on
the temperature T and is approximately proportional to B. Note that in this model the sign change
of the Hall resistivity can only occur through a sign change of the transverse force parameter k2.

It is also obvious (in general terms, not only from this model) that a power law scaling cannot hold
around such a sign change. Therefore, two cases have to be considered here : first, k2 can be strong-
ly temperature (and field) dependent, and undergo a sign change. In this regime, no scaling relation
is possible. Secondly, far enough from these sign changes (there might indeed be more than one of
them), and mostly at low temperature (or low field) where the resistivity vanishes, there might be
another regime in which k2 does almost not depend on the temperature T and is approximately pro-
portional to B, such that the scaling is verified with β ≡ 2. This phenomenological discussion also
provides an explanation for the experimental observation of various values β < 2, by considering
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an intermediate case, where k2 slightly increases when the temperature T is raised and grows faster
than B, thus reducing the effective exponent β.

However, we believe that the experimental scaling (often showing β < 2) is still not explained in
this way. A temperature dependence of k2 would of course break the β = 2 scaling, but recovering
again the scaling relation with a new, lower exponent β then requires that k2 itself should scale as
a power of the longitudinal resistivity, which is no less surprising than the former Hall resistivity
scaling, and hence would also require an explanation.

4.2 Pinning and backflow

In paragraph 3.1, Eq. (II.28) indicated that a Hall scaling behavior might come out of the theory of
Wang, Dong and Ting, which takes into account pinning-induced backflow as well as thermal fluc-
tuations in the single-vortex equation of motion. First, we recall that Eq. (II.28) was

with , where  depends on the charge carrier mean free path , and is
basically expected to increase rapidly with increasing T around the temperature To corresponding
to . Γp represents the pinning intensity, and thus presumably depends on both the tem-
perature and the magnetic field. The difference with the model from Vinokur et al. (see preceding
paragraph) is that the more complex form of the drag force in WDT’s initial vortex equation of
motion does not allow to get a scaling relation independent of the pinning factor , as was the
case in Eq. (II.46). The main reason is that this factor is explicitly contained in the drag force, since
the pinning induces the backflow, which in turn determines dissipation in the vortex core, a mech-
anism which is absent in Vinokur’s model.

In order to know whether a scaling relation  can be deduced from Eq. (II.28), the overall
temperature and field dependences of the factor multiplying  have to be carefully analyzed. If
this factor is constant (as in a system with weak pinning, at high temperature where , and in
a moderate magnetic field), obviously β = 2.

The discussion of other cases is far from trivial, but some studies show that a scaling still holds,
however, with a smaller value of the exponent β. From numerical simulations (already discussed
on page 30), Dong and Wang [58] get an exponent β ≈ 1.7. Phenomenological analytical relations
can also be used to estimate this exponent. Vinokur et al. indeed used the experimental values of
scaling exponents in voltage-current characteristics around a vortex glass transition to get an ap-
proximate expression for the pinning factor Γp [85], yielding Γp(vL) ∼  vL 

-1/2, which leads to an ex-
ponent β = 1.5 [57].

Therefore, many different values of the exponent can be expected depending on the pinning prop-
erties. It is indeed interesting to note that different types of pinning would apparently lead to dif-
ferent scaling exponents. Again, similarly to the predictions for the Hall anomaly, it should be said
that the results are quite sensitive to the parameters of the model, which are not very well known
experimentally. As a consequence, numerical studies appear to be a promising tool for investigat-
ing the possible scaling behaviors within this model. Since only Ref. [58] provides such a study,
much more has to be done in this regard.
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4.3 Vortex lattice defects

In Ao’s model of moving vacancies in a pinned vortex lattice (see paragraph 3.2), a scaling law is
also present in the low-temperature limit kB T < Ev, where Ev is the energy scale of the vacancy for-
mation. From Eq. (II.33), using the expressions (II.31) and (II.32), we see that

(II.47)

and

. (II.48)

This obviously leads to the relation , with

varying between 1 and 2 (for the thermally activated vacancies of temperature-independent mobil-
ity and for the pinning-induced vacancies, respectively). A is a constant independent of the mag-
netic field B, provided no is itself field-independent.

4.4 Vortex glass scaling

Another approach to the scaling law is the vortex-glass model [22], obtained within the Gin-
zburg-Landau theory, and briefly presented in the preceding chapter (paragraph I.2.2). According
to the usual scaling relations for the asymptotic behavior in critical phenomena, the longitudinal
conductivity is expected to diverge around the vortex-glass transition as

, (II.49)

where the coherence length  itself diverges as

with  the vortex-glass transition temperature and d is the spatial dimension of the system. The
exponents ν and z are universal critical exponents, only depending on the nature of the considered
critical phenomenon, and can be determined from experiments. For the vortex glass transition, for
example, we have z ≈ 5 (see for example Ref. [84]).

For the Hall conductivity, the asymptotic dependence (II.49) has to be modified, to take into ac-
count the imaginary part  of the relaxation time required for the Hall effect (see paragraph 3.3),
not included in the original vortex-glass theory from Fisher et al [22]. For this correction, Dorsey
et al. [86] propose the form

where  is a new critical exponent related to the particle-hole asymmetry at the vortex-glass tran-
sition, represented by . We have noted in paragraph 3.3 that the Hall conductivity vanishes when
the imaginary relaxation time  is zero, and that the sign of σxy is determined by the sign of .
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It is then natural to expect that the correction function Fxy is linear in its argument  for small
values (close to the transition). Therefore, we have

or with Eq. (II.49)

.

This scaling relation for the conductivity can be straightforwardly translated for the resistivity, pro-
vided  :

,

which can be written as

with . In their original work, Dorsey et al. determine that  in order to
get β ≈ 1.7, the only experimental value known at the time. However, whatever the value of this
critical exponent is, it is supposed to be universal, only  being sample-dependent. Therefore, β
should be sample independent, which is not confirmed by experiments.

Moreover, in this model the scaling law is directly related to critical behavior around the vor-
tex-glass transition. As a consequence, no scaling is expected far above the transition temperature
Tg. Again, experiments in which scaling is observable in any regime (of course far enough from
sign changes in the Hall resistivity), including close to Tc, does not corroborate this prediction. This
is mostly evident in BiSrCaCuO, in which Tg is very low because of the quasi-2d layered structure,
although the scaling is verified up to much higher temperatures [87].
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CHAPTER III HALL EFFECT REVIEW : EXPERIMENTS

In this chapter, we review the main observations of the Hall effect in type II superconductors. We
will restrict ourselves to a discussion on the mixed state Hall effect, focusing on the Hall anomaly
and the Hall scaling law. However, since the discussions of experimental data often refer to the
existing theories, we will also make a series of comments on the concerned models.

1. Hall anomaly

1.1 First observations

Even before high temperature superconductors were known, a sign change in the mixed state Hall
effect had already been observed, for example in niobium [88] and in vanadium [89]. However, in
these materials this feature was found to be strongly sample dependent. It was realized for example
that macroscopic linear defects introduced by the rolling process in the sample manufacture were
leading to a strong guided motion of vortices, then dominating the transverse electric response of
these materials. Moreover, this sign change was never seen in many other samples, e.g., metallic
alloys [90]. It is therefore not very clear whether this sign change is strictly related to these defects
or if it is actually an intrinsic consequence of flux flow.

Later, the same kind of anomaly has been seen in high temperature superconductors, first in
YBa2Cu3O7-δ [45] and in Bi2Sr2CaCu2O8+δ [46] polycrystalline samples (ceramics and films, re-
spectively). Again, there were first some doubts about the origin of this sign change, because of a
possible influence of inhomogeneities. But shortly thereafter, a similar sign reversal was also ob-
served in single crystals of the same two compounds by Forró et al. [91], and on epitaxial
YBa2Cu3O7-δ thin films by Hagen et al. [92], strengthening the idea of an intrinsic cause for this
effect. Other early observations can be found in Ref. [93,94].

Note that after the discovery of the Hall anomaly in cuprates described above, new measurements
have been performed in low temperature superconductors, confirming that this effect is also intrin-
sically present in conventional materials. One of the most convincing examples is the case of
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2H-NbSe2 [95], since this anisotropic layered superconductor can be easily grown as high purity
single crystals free of macroscopic inhomogeneities.

1.2 Hall anomaly in different cuprates

In the preceding paragraph, we have only mentioned the two most studied cuprate high temperature
superconductors, namely YBa2Cu3O7-δ (hereafter Y:123) and Bi2Sr2CaCu2O8+δ (Bi:2212). We
briefly list here the other compounds in which the same type of anomalous Hall effect was ob-
served.

First, Y:123 has been doped either with praseodymium (Y1-xPrxBa2Cu3O7-δ) [96,97] or with cal-
cium (Y1-xCaxBa2Cu3O7-δ) [98,71]. Complete substitution of yttrium is also used to obtain other
compounds of the 123 family, such as with erbium (Er:123) [46], holmium (Ho:123) [99,100] or
europium (Eu:123) [100].

Bismuth-based compounds were also doped in various ways, for example by introducing lead on
bismuth sites, leading to (Bi,Pb):1112 and (Bi,Pb):2234 [101], (Bi,Pb):2223 [102], or even in the
calcium free variety, (Bi,Pb):2201 [71]. The same calcium free bismuth-based cuprate Bi:2201 can
also be doped with lanthanum on the strontium sites, leading to Bi1.95Sr1.65La0.4CuO6+δ [63]. All
of these materials have shown a Hall anomaly, at least in some doping range (see paragraph 1.4 for
a discussion on the doping dependence).

Similar structures, either thallium or mercury-based, have a behavior very similar to bismuth-based
compounds. Therefore, it is not surprising to find again a Hall anomaly in Tl:2212 [93,103-105],
Tl:2223 [106], and Hg:1212 [107].

In the first discovered superconducting cuprate1 family, La2-xSrxCuO4-δ [71,108] has also been
shown to exhibit a Hall anomaly. Similarly, Nd2-xCexCuO4-δ has an anomaly in its Hall
behavior [109]. However, the latter compound has a striking peculiarity : it is the only known cu-
prate to have a negative (electron-like) Hall effect in the normal state, the anomaly therefore con-
sisting of an incursion into positive territory in the mixed state.

However, measurements in Y:123, Ho:123 and Eu:123 have shown that, although the "usual" Hall
effect (that is, with the magnetic field along the c-axis, and the current and the electric field in the
ab plane) is always hole-like (namely p-type) in the normal state with a negative Hall anomaly, the
"out of plane" Hall effect (magnetic field and current in the ab plane, perpendicular to each other,
and Hall voltage measured along the c-axis) is negative (n-type, electron-like) in the normal
state [100,110-112]. In one of these cases, the Hall anomaly (still observable in this orientation) is
seen to consist of a positive mixed state Hall signal, therefore inducing a sign reversal [100], just
as in Nd2-xCexCuO4-δ, but in other reports the anomaly is a negative mixed state Hall contribution
adding to the already negative normal state Hall effect [111,112].

Even though all the materials cited here show a Hall anomaly, the sign change occurs only in some
regime. For example, it always disappears at high enough magnetic fields (see next paragraph).

From those measurements known at that time, and including all the known the measurements in
low temperature superconductors, Hagen et al. [109] noticed a correlation between the existence
of a Hall sign reversal and the ratio , where  is the mean free path at Tc, as estimated from the
normal state resistivity, and ξ is the BCS coherence length. They reached the conclusion that the

1. which was a La-Ba-Cu-O compound, see Ref. [3].

   ξξ
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anomaly occurs when this ration is of the order of unity, that is in the crossover between the clean
and dirty limits. This correlation was later confirmed by Colino et al. [99].

1.3 Multiple sign reversals

In the most anisotropic materials, the Hall effect often displays two successive sign changes in the
mixed state. This has been observed in bismuth, thallium and mercury based compounds, more pre-
cisely in Bi:2212 [113,114,87], Tl:2212 [103-105], Tl:2223 [106], and Hg:1212 [107].

Since the second sign change was observed in these materials, it has of course also been looked for
in yttrium-based compounds, but no clear evidence could be found for a long time. Finally, using
pulsed high currents in a Y:123 thin film, Nakao et al. were able to show that at much lower tem-
perature than the usual measurements of the Hall anomaly, the Hall effect sign is indeed again the
same as in the normal state (for some appropriate values of the magnetic field and temperature),
proving the existence of a second sign change [115].

Very recently, a third sign reversal has even been reported for Hg:1212 by Kang et al. [116]. It
should be noted however that it could only be seen in samples in which columnar defects were add-
ed by sample irradiation.

As we have mentioned before, the Hall sign change only occurs in a given regime. For example, it
cannot be observed at an arbitrarily high magnetic field. An illustration of this change of behavior
is given in Fig. III-1 for a situation with two sign changes (but the same happens when only one
inversion is observed, as in 123 compounds) : when the Hall resistivity is measured as a function
of the temperature at an appropriate magnetic field, the sign reversals can be observed (curve a).
At higher fields, the sign finally becomes constant (curve b), even though the anomaly is still ob-
servable, but is too small to induce a sign reversal. For example, the Hall resistivity is reported to
become strictly positive at approximately 8 T for Y:123 [87], between 2 and 3 T in Tl:2212 [103].
Note that these values are slightly sample dependent, and some variations can be found in the
literature : for Bi:2212, Ri et al. find a limit around 3 T [87], whereas Zavaritsky et al. place it be-
tween 4 and 5 T [113].

It is interesting to add that, although the first negative incursion (shown in Fig. III-1) therefore de-
creases with increasing magnetic field, the second one (after the third sign change) seems to be en-
hanced at high fields (at least up to 8 T) [116].

Figure III-1 : a) Double sign change in the Hall resistivity, as observed in some materials (see text for ref-
erences). b) Usual behavior at higher magnetic fields : the sign is constant, but the Hall anomaly is still
present.

T
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1.4 Doping dependence

As we have already explained in chapter I (page 11), the oxygen content in the cuprates influences
the hole concentration, allowing one to go from the underdoped to the overdoped regimes
(Fig. I-6). This is also the case for the other kinds of doping, such as the lead inclusion in bis-
muth-based compounds, or the addition of praseodymium in Y:123 (see paragraph 1.2 above).

This doping level of the materials strongly affects the Hall effect. From a complete set of new mea-
surements as a function of doping in different materials, and together with some other data, Nagao-
ka et al. reached the conclusion that only underdoped and slightly overdoped cuprates can have a
Hall anomaly [71]. Significantly overdoped systems apparently have a strictly positive Hall effect.

However, a few contradicting results, not included in Nagaoka’s analysis, can be found. The most
significant one is a study from Jones et al. on different Y:123 epitaxial films with various oxygen
contents [117]. Here, the opposite behavior is found : the anomaly disappears in underdoped films.
Similarly, the sign change could not be seen in underdoped Y1-xPrxBa2Cu3O7-δ, more precisely for
x < 0.24 (or for δ > 0.27 in praseodymium-free samples) [97,118]. These last results should never-
theless be considered carefully, since Y1-xPrxBa2Cu3O7-δ samples with x < 0.2 show a Hall anom-
aly in Ref. [96], and in Ref. [118], it seems that the measurements are performed only at a single
magnetic field B = 5.5 T. Therefore, it is quite possible that for underdoped samples with low
enough Tc (70 K and lower), the anomaly would only be visible at lower fields, as we have ex-
plained above (paragraph 1.3).

Apart from these few exceptions, a clear correlation between the doping of the cuprates and their
mixed state Hall effect still exists. At first sight, a theoretical explanation could be found in the
vortex charge model (see preceding chapter, paragraphs 3.3 and 3.4), since in this theory the vortex
contribution to the Hall effect is proportional to  (or ), a parameter that indeed
depends on the charge carriers concentration, and precisely changes sign around optimal doping.
Unfortunately, the sign predicted from this model is exactly opposite to the observed one :

 is positive (and so should be the Hall effect in the mixed state) for underdoped
materials [71]. Therefore, another way to determine the imaginary part of the relaxation time for
the time dependent Ginzburg-Landau (TDGL) formulation is required. As we have already dis-
cussed in the preceding chapter (page 36), such an alternative model can be found in the preformed
pairs scenario from Geshkenbein et al. [43], which predicts the correct sign for underdoped sys-
tems.

1.5 Hall conductivity fit

In chapter I, we have mentioned that the Hall conductivity can be decomposed into two parts, one
being the delocalized quasiparticles contribution, seen as the normal fluid Hall effect, the other be-
ing the vortex flow Hall effect (see Eq. (I.3) on page 10). Rigorous calculations of these terms can
be done in the frame of the Ginzburg-Landau theory [67,68]. From the experimental point of view,
many authors have tried to perform such a decomposition for the measurements of the Hall con-
ductivity as a function of the magnetic field. Since in the normal state  and in the mixed
state σxy generally diverges at low fields, it is rather natural to start from a decomposition

,
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where the factors  and  are in principle temperature dependent, and  denotes the
normal (delocalized quasiparticles) component, written as  in Eq. (I.3). This expression
has been satisfyingly used to fit the experimental data in some cases [119,120]. The vortex part of
the conductivity can even be fitted with expressions for the fluctuation part of the conductivity re-
sulting from the Ginzburg-Landau theory [121,122].

However, in some materials, the equation above is not adequate to fit the data. In many cases, a
constant term C3 had to be added to the conductivity [97,104,108,123] :

, 

even though in Ref. [104] C2 is then shown to be zero. A nice summary is given in the very recent
reference [123].

Finally, note that in some cases a power law temperature dependence of the coefficients C1 to C3
have been reported [97,108,119,120,123]. However, since in our sample the "divergence" at low
field is anyway much faster than  and is current dependent (therefore related to pinning, see
chapter VI), this decomposition is not really relevant for our measurements, so that we do not give
more details on this topic.

2. Hall scaling

We will try now to summarize the available experimental data about the Hall resistivity scaling law
. However, as we shall see, there is a large confusion in the analysis of the results. One

of the objectives of this short section is therefore to make a rather exhaustive list of the references
dealing with the subject, and attempt to give an objective digest of the whole.

The first observation of the scaling law was made from Hall measurements as a function of the tem-
perature in epitaxial YBa2Cu3O7-δ thin films by Luo et al. [47]. They found β = 1.7± 0.2 at both
B = 1.4 T and 3.7 T. Later, many other observations have been done in many different compounds
and all sample types [50,87,104,107,112,114,120,124-130], for negative as well as positive Hall
effects. Note that the "out of plane" Hall resistivity mentioned in paragraph 1.2 also follows the
same scaling relation [112].

Vinokur’s model (Ref. [85] and paragraph 4.1 in the preceding chapter) is often cited as the theo-
retical explanation of this scaling relation, and several authors indeed report an exponent of
β = 2 [50,87,114,120,124], in agreement with this theory. However, some comments have to be
made on several of these references.

First, in two of them, different values of β are obtained, only one being β = 2 : in Ref. [87], which
is a comparative study between Y:123 and Bi:2212, the authors get β = 2 for the first sample, but
β = 1.8 for the second one. Similarly, in Ref. [124], in which Y:123 crystals are irradiated to create
columnar defects, β = 2 is only found for the non-irradiated sample when measured at a field
B ≥ 3 T, whereas the other data (all the irradiated crystals, as well as the unirradiated one for
B = 1 T) show β = 1.5.
In Ref. [120], the scaling law yields β = 2, but from the reported decomposition of the Hall con-
ductivity  (paragraph 1.5 above), it is clear that σxy diverges at low fields,
since C1 ≠ 0. These two results are in some sense contradicting each other, since as we have already
seen, the Hall conductivity can be expressed as    knowing
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that . Therefore, β = 2 should lead to a constant conductivity, or at most a conductivity
that just follows the small residual temperature and/or field dependence of the prefactor A of the
scaling law, a factor which is in any case not expected to diverge at low fields. This contradiction
could be explained by noting more generally that the numerical fit of the experimental data with a
power law most often leads to statistical errors of the order of ± 0.1 - 0.2 for the exponent β, such
that the actual value of β in this work might indeed be slightly smaller than the reported value of 2.

Aside from these references where β = 2, other reports add to the confusion rising about the exper-
imental values of β. In a work from Samoilov et al. [104], for example, lines corresponding to β = 2
are superimposed on the log-log plot of the data. However, these lines are just given for a visual
reference, but do not in anyway correspond to actual fits of the data. A close examination of the
figure (mostly at low fields) clearly reveals that a value of the order of β ≈ 1.5 would much better
represent the experimental results. In another Letter, the same author implicitly suggests that the
scaling  predicted by Vinokur is in agreement with the data [125]. However, on the only
plot representing this scaling, lines corresponding to β = 1.3 to 1.4 are used to fit the data (although
this is not mentioned in the text). Since these papers are often incorrectly cited, we think that it is
worth pointing out that the only work from the same group actually showing a set of data truly cor-
responding to β = 2 is their first experiment on Bi:2212 (Ref. [114]), in the Tesla range. Note that
in this work, the behavior is also shown to be very different at much lower fields (a regime with
β ≈ 1 is found at B = 0.1 T).

After this discussion about the β = 2 value of the exponent, we now turn to the experimental data
bringing different results. First, we note that these values are usually lying between 1.4 and 1.8
(quite often around 1.5 to 1.6 [112,127,128]), but values as low as 0.8 can be found [130]. Note
that this scattering of data is apparently not related to the different compounds, but really seems to
be the result of a sample dependence. Another important finding in some of these works is the field
(or temperature) dependence of the exponent β, as already mentioned above in the case of
Ref. [124]. The same kind of behavior is also observed by other authors. Most often, β is seen to
increase for increasing fields [107,126,128], whereas in Ref. [129] the inverse dependence is ob-
served. In Ref. [128], β decreases at high temperatures. Note that in Ref. [126] from Budhani et
al., lines for β = 1.85 are plotted on each different experimental data set, but obviously not all cor-
respond to actual power law fits, just as already mentioned above concerning the work of Samoilov
et al. [104]. Although this behavior indeed corresponds to the high field data, it clearly does not at
all fit the curves for low fields, as has also already been commented by Kang et al. [107]. Again,
a close inspection of the figure shows that the exponent is of the order of 1.5 at B = 3 T, and almost
decreases down to 1 for B = 1 T.

To conclude the discussion about the temperature and field dependence of the scaling relation, we
note that Wöltgens et al. report a analysis of the Hall resistivity measured as a function of the cur-
rent density [50] in terms of Dorsey’s scaling theory for a vortex glass transition [86] (which is dis-
cussed in paragraph 4.4 of the preceding chapter). However, they note that the scaling indeed holds
above the glassy transition temperature Tg (with β = 2), but not below, where it seems to become
temperature dependent (even though the analysis in the text is somewhat confusing, giving contra-
dicting conclusions).

In summary, despite the confusion prevailing about this subject, we believe that an exponent of
β = 2 remains an exception in real samples (although it probably does occur in some cases), and
that neither Vinokur’s model nor Dorsey’s vortex glass scaling can satisfactorily explain the ob-
served Hall scaling relation.

   ρxx >> ρxy

   ρxy ∝ ρxx
2
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Finally, we mention that the scaling is obtained for measurements as a function of the temperature
(that is, by plotting log ρxy(T) versus log ρxy(T), as in most of the references mentioned here), as
well as for measurements as a function of the magnetic field (namely reporting log ρxy(B) versus
log ρxy(B) [120,127,130]), or even of the current density [50,128]. Note that data for which the
scaling for ρxy(T) leads to a field dependent β (see above) would not scale if ρxy(B) would be re-
ported as a function of ρxx(B).

3. Influence of disorder

3.1 Pinning dependence

After the Hall scaling exponent discussed in the preceding section, the influence of pinning on the
Hall effect is another controversial subject. To address this question, two different methods are
generally used : either increase the pinning by introducing columnar defects (by sample
irradiation) [124-126,131-134], or use multilayered samples (or "superlattices") made of succes-
sive superconducting YBa2Cu3O7-δ and semiconducting PrBa2Cu3O7-δ layers, the respective
thickness of which determines the pinning efficiency [120,128,129]. Increasing the current density
(and thus the driving force on the vortex) to reduce the relative effectiveness of pinning forces,
therefore approaching a "free flux flow" regime, has also been used [95,122,135]. An original
method consisting in the rotation of the magnetic field with respect to the columnar defects to low-
er their pinning action has also been reported [132]. Finally, we note that the sign reversal of the
Hall effect has been observed to happen even above (though very close to) Tc, first in
YBa2Cu3O7-δ, then in bismuth-based compounds [63]. Of course, this regime is clearly even be-
yond free flux flow, and presumably no vortex (thus no pinning) can be considered here.

The only theory predicting pinning dependence of the Hall behavior discussed in these experimen-
tal works (but not the only theory existing, as we shall see in chapter VI) is WDT’s model for pin-
ning induced backflow (see paragraph 3.1 in the preceding chapter). This is actually the center of
the controversy : there are approximately as many authors finding support for this theory in their
experimental data [107,124,129,133] as the opposite [95,120,122,126]. However, in the latter ref-
erences, the conclusion usually follows from the observation that the amplitude of the negative
Hall resistivity decreases when the pinning is increased. Unfortunately, as we have already exten-
sively discussed in the preceding chapter (page 30), the analysis in the frame of this theory is not
so straightforward. The persistence of the controversy is probably partly related to the necessity to
perform actually numerical simulations to investigate accurately the predictions of this model. As
we have noted in the preceding chapter, the effect of disorder on the Hall resistivity depends on the
competition between the decrease of ρxx and the increase of the (negative) factor in brackets of
Eq. (II.28). We notice here that in the only attempt to analytically use this model to quantitatively
discuss experimental results, Smith et al. consider the limit  [136], whereas this parameter
of the theory is strictly in the range  (see paragraph 3.1 of chapter II). Since this choice
precisely suppresses the key competition between the two terms indicated above, it is not surpris-
ing to see that this analysis cannot match the experimental data [136].

Actually, we believe that it would be better to discuss the pinning dependence of the conductivity
σxy rather than the resistivity ρxy : the former, which can reasonably be written as σxy  (see

 ƒ → ∞
 0 ≤ ƒ ≤ 1

   ≈ ρxy ρxx
2ρxy ρxx
2
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section 2), is indeed directly proportional to the negative factor resulting from the effect of pinning
(the term between brackets in Eq. (II.28)), which is not the case for the resistivity. According to
WDT’s model, the conductivity should then be more negative for stronger pinning (the very be-
havior which is often incorrectly expected for the resistivity), a fact usually experimentally verified
in the low field/temperature regime (see e.g. Ref. [124,132]; note that Ref. [125] shows exactly the
same Hall conductivity behavior as in Ref. [132], in contrast to the author’s claim : the resolution
is merely lower, and the use of too large symbols prevents the clear observation of this trend).

The experiments involving irradiation of samples deserve a few comments. First, we note that this
irradiation should remain in reasonable limits : if the samples are overexposed, this process actu-
ally leads to an effect opposite to what is expected, that is a reduction of the critical current (hence
of the pinning) because of excessive damage in the sample, as in Ref. [131,137]. Second, even
when this limit is not reached, irradiation usually increases the normal state resistivity ρn and re-
duces the critical temperature Tc. Therefore, a correct comparison of samples can only be done by
representing ρ / ρn versus T / Tc, a normalization which is often not respected, see e.g. Ref. [126].

Finally, we would like to raise a last question, yet almost never addressed, about irradiated
samples : since the charge carrier’s mean free path seems to be closely related to the mixed state
Hall effect (see paragraph 1.2), one can wonder if the influence of the columnar defects is really
only a question of pinning. More precisely, the mean free path is indeed reduced by the irradiation
inside the defect : it is precisely this process which provides the pinning force. If one considers the
column as a narrow and straight cylinder on which the vortex can be localized and pinned, and
from which it can of course also unpin, then indeed the irradiation only provides additional pin-
ning. However, the situation is much more complex : the columns actually have a diameter very
large compared to the vortex core scale (they can be as much as three orders of magnitude larger
than ξ [126,133]).

Therefore, the vortex cores stand in large "damaged" regions of considerably reduced mean free
path, which they have to cross (without feeling any pinning force, which is mainly localized at the
boundary of the column where there is a strong mean free path gradient) before they can unpin
from the defects. But since the mean free path presumably influences the flux flow Hall effect, this
"intracolumnar motion" can significantly alter the Hall response of the system. In the case of a vor-
tex unpinning from a column and moving to the next one, a part of the vortex path will be inside
the column, while the other part is in the (almost) unaffected material, with the pinning force main-
ly occurring at the interface. The Hall effect is then influenced by two different values of the mean
free path, in a ratio depending on the column size and density, both very much sample dependent.
Unfortunately, although the defect density is always quite well controlled and included in the anal-
ysis, the column size is seldom reported, and almost never taken into account in the interpretation
of data. The role of the mean free path and the diameter of the defects is in fact only discussed in
the very recent work on the third Hall sign change in irradiated Hg:1212 [116].

Even if this description is very schematic and certainly oversimplified, we see that we have to con-
sider a vortex trajectory with inhomogeneous mean free path plus increased pinning, and not only
an irradiated superconductor with an enhanced pinning, which is otherwise similar to the unirra-
diated one. For this reason, the creation of columnar defects is probably not the best way to study
the influence of pinning on the Hall effect as long as the respective importance of the two effects
described above (increased pinning and inhomogeneous mean free path) is not better understood.
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3.2 Effects of twins

Since the present work deals with a twinned YBa2Cu3O7-δ crystal (see next chapter), it is worth
briefly mentioning some previous works on the relationship between the Hall effect and the pres-
ence of twins. In fact, there are very few studies of this type.

First, we note that Rice et al. [127] performed measurements in an untwinned YBa2Cu3O7-δ single
crystal, and compared their results to those of twinned samples. They find no significant difference
in the Hall anomaly of these two types of samples, indicating that the pinning is not the origin of
the Hall sign change.

More recently, the work of Morgoon et al. [49] already discussed in chapter I (page 15) should be
added the two very interesting contributions from Casaca et al. [138,139]. First, measurements of
the Hall effect at high fields show that the pinning by twin boundaries indeed affects the Hall con-
ductivity, even though this effect only happens at lower temperatures than the onset of the twins-re-
lated pinning effect obviously visible in both the longitudinal and the Hall resistivities [138].
Secondly, in unidirectionally twinned thin films, they also measure the Hall resistivity with the cur-
rent applied successively along and perpendicularly to the twin planes [139]. They again observe
that the Hall conductivity is influenced by twin boundary pinning, and also that the ratio between
the Hall resistivity in the two directions is temperature dependent. They explain their results by in-
troducing a modified WDT model for anisotropic pinning. However, the sign change occurs at the
same magnetic field for the two directions, which is in apparent contradiction with this modified
model.

Some more references and a related discussion on the general relations between the twins in
YBa2Cu3O7-δ and the vortex dynamics will be given in chapter V (paragraph 1.2, page 72).

3.3 Conclusion

In summary, we note that :

• unfortunately, too much confusion prevails concerning the values of the scaling exponent to
draw a conclusion on its pinning dependence,

• the sign change of the Hall effect (the Hall anomaly) may happen in regimes where no pinning
can be considered, such that vortex pinning is not the primary cause for this effect (but this
does not necessarily prevent a pinning-based description to be adequate and successful in other
regimes, see below),

• even though there is still no absolute consensus on that point, we affirm that the Hall conduc-
tivity σxy is pinning dependent in some regimes (this is very clearly confirmed by our results
presented in chapter VI), such that the pinning definitely has to be taken into account for a
complete description of the Hall effect,

• even though the twin boundary pinning affects the Hall conductivity, vortex guided motion re-
sulting from its anisotropic nature does not significantly influence the Hall angle (in the high-
est quality crystals at least), since twinned and untwinned samples show similar behaviors.
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CHAPTER IV SAMPLE AND SETUP

1. Experimental setup and procedures

In this first section of the present chapter, we describe and comment all the experimental parts, de-
vices and pieces of apparatus that are of importance for the present study, except for the sample
itself, which is the object of the second section.

1.1 Cryostat, magnet and sample holder

The vacuum insulated cryostat is a commercial Oxford Spectromag 4000−7T system, operated
with liquid helium (and a shielding liquid nitrogen vessel). Split pair superconducting magnets are
lying in the helium bath, generating a magnetic field up to 7 Tesla. As we shall see later, it is note-
worthy to mention that the whole cryostat is placed on an antivibration system, cutting off all ex-
ternal vibrations of frequency above 1 Hz. Since the magnet produces a horizontal field with
vertical sample access (thanks to its split coils geometry, see Fig. IV-1), orientation of the sample
with respect to the field can be straightforwardly achieved by a simple rotation of the sample rod,
unlike systems with axial access in a vertical magnet coil.

On the upper part of the rod, a mirror is placed to determine the orientation of the sample, with the
help of a laser beam. By measuring the position of the laser spot at a rather large distance from the
mirror (about 4 meters), a very high accuracy and excellent reproducibility can be achieved : the
angle is estimated to be known within a ± 0.01 ° error only. Of course, this accuracy is relevant for
an angle relative to a given initial position only. The absolute value of the angle between the mag-
netic field and the sample orientation (direction of its crystallographic axes) is another issue, and
will be discussed later (see page 66).

The sample holder is a home made, specifically designed part mounted at the end of a commercial
Oxford sample rod. Before describing the sample holder itself, we just note that the rod is equipped
with a bundle of wires, going down from the connector plate at the top to the sample position.These
wires are simple insulated copper wires of 100 µm diameter1, and are glued on the external wall of
the thin inox tube forming the rod, in a side-by-side untwisted layout. In other words, no special
measure is adopted to avoid ac coupling between the wires or noise generation by pick up of ex-

1. Except for the heater current leads which are 200 µm in diameter.
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ternal electromagnetic perturbations, as would be the case for example with twisted wires or spe-
cific cryogenic coaxial cables.

The sample holder is a copper part equipped with its own temperature probe and electric heater
(see Fig. IV-2). The connection plate is an easily interchangeable sample support, on which is
placed the sample, glued onto a sapphire for a better thermal contact with the copper parts. This
glass-fiber plate for printed circuits is designed for the connection of up to 22 independent electric
contacts on the sample. Using standard IC socket technology (not shown in Fig. IV-2), it provides
the possibility to remove the sample together with its wiring without any soldering operation,
therefore leaving the opportunity to replace it later to resume measurements exactly in the same
conditions.

1.2 Temperature control

A "variable temperature insert" (VTI) is fitted vertically in the cryostat to provide a sample space
with controlled temperature between the split coils of the magnet. The sample rod with its sample
holder described above is simply inserted in this VTI. A capillary tube equipped with a needle
valve brings helium from the liquid bath to the bottom of the VTI, generating a cooling gas flow
around the sample holder, and is then pumped out of the VTI by an exhaust tube on top of the cry-
ostat. The capillary ends in a heat exchanger, the temperature of which is adjusted with an Oxford
ITC 503 PID temperature controller. Although the expanding helium flow is supposed to be very
homogenous in time and space, the sample is protected from direct exposure to temperature or flow
fluctuations by a copper cap fitted to the sample holder (see Fig. IV-2). Gas exchange into this al-

Figure IV-1 : Schematic representation of the split pair magnets and sample rod access geometry. The rela-
tive field-sample orientation can be changed by turning the sample rod, on which a mirror is fixed to measure
accurately its orientation by deflection of a laser beam.
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most closed sample space is however always possible through the wire access passing through the
heater coil, at the upper part of the sample holder. This passage is large enough to allow a prelim-
inary thermal equilibrium by convection between inside and outside the cap. For most of the mea-
surements, the pressure of the helium flowing gas was 20 ± 3 mbar.

The sample is glued onto a 0.5 mm thick sapphire plate which is in direct contact with the copper
part of the sample holder. This sapphire provides both electric insulation and high thermal conduc-
tion. A carbon-glass temperature sensor is embedded in the copper, only 1 mm away from the sap-
phire position. Even though the gas flow temperature is already regulated, the sample temperature,
as determined by this carbon-glass probe, is controlled by a second temperature controller (Lakes-
hore DRC 93-CA) with the heater shown in Fig. IV-2, achieving a much faster temperature stabi-
lization. The temperature reproducibility (corresponding to the sensitivity of the probe
measurement) is of the order of 10 mK, its stability is about 0.1 K (the regulation can be performed
within ± 0.05 K of the setpoint), and its accuracy (mainly limited by the sensor calibration and the
influence of the magnetic field on the sensor reading) is estimated to be lower than 0.1 K.

1.3 Currents and voltages

The current used for the Hall measurements is generated by an ac+dc voltage source (Stanford
DS360 ultra low distortion function generator). Its output, a sine wave at 30 Hz added to an offset,
is connected to the sample in series with a 1 kΩ resistor. This resistor plays two different roles.

Figure IV-2 : Schematic view of the sample holder design. Left : 3D view of the copper sample holder (and
open cap) at the end of the inox tube. Right : detail showing the relative positions of the sample, heater and
temperature sensor. The main dimensions are given in millimeters.

heater coil

sample (not to scale)
on sapphire

carbon-glass
sensor

copper cap

connection plate

16Ø

30



IV

54

First, is provides a constant load for the source, since its resistance is much larger than the sample
and contacts (the wires, contacts and sample resistances are less than 6 Ω altogether). Second, the
voltage drop across this resistor can be accurately monitored by a digital oscilloscope to provide a
measurement of the actual current ac and dc components (see Fig. IV-3). Note that a synchronous
square signal is also provided by the function generator to serve as a reference for the lock-in am-
plifiers (see below).

From the connectors of the sample rod, using as short as possible twisted pairs of wires, the two
voltage signals are directly fed to very low noise passive transformers (EG&G 1900), amplifying
the signal by a factor of 1000. The transformers are placed on the cryostat, to take advantage of the
antivibration system. With the sample and wires total resistance of about 4 to 5 Ω, the amplifiers
have a rather narrow frequency response, with a maximum of −1 dB close to 30 Hz, but less than
−4 dB at 100 Hz already. This has conditioned the choice of measurements at a single frequency
of 30 Hz, for which the transformer gain is maximal and does not significantly depend on the input
charge (sample and wires resistance). The transformers output are then connected to a lock-in am-
plifier (Stanford SR830) to measure the amplitude and phase of the voltage ac component.

Special care must be taken to avoid signal grounding (by the use of floating connections on devices
and differential measurements on lock-in and oscilloscope, for example), which would lead to un-
desired ground loops generating large parasitic voltages.

1.4 Specific "orientable current" source

For some of the measurements done is this work (presented in the next chapter), we had to apply
a current density oriented in any direction in the sample plane. This can be achieved by decompos-
ing this total current into two perpendicular components (see Fig. IV-4).

More precisely, the application of an orientable ac+dc current requires two in-phase sources with
ac and dc components in the same adjustable ratio. For this purpose, we have developed a simple
double current source based on two analogical, four-quadrant multiplier, integrated circuits (Ana-
log Devices AD 385). As before (paragraph 1.3), a single ac+dc source (DS360) provides the total

Figure IV-3 : Schematic connections for Hall effect measurements.
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current signal (corresponding then to the magnitude of the current). This signal is multiplied by
two factors, corresponding to the cosine or sine of the angle βj (defined in Fig IV-4), to generate
signals proportional to Ix and Iy, respectively (Fig IV-5). Since the multiplier output is designed for
a high impedance load and is limited to the ± 2 V range, these signals are then amplified (by two
Stanford SR560 low noise preamplifiers) to match the required characteristics for a current source.
The amplifiers outputs are then connected to the appropriate sample current contacts through re-
sistors (Fig IV-6), just as described in paragraph 1.3.

The dc signals for the multiplication factors are obtained from digital to analog converters (DACs),
integrated into the two commercial lock-in amplifiers, and can thus be easily controlled through a
computer interface. Note that the exact transfer function of the multiplier circuits has a gain 1/U
(Fig. IV-5), unknown though very close to unity. However, since the final values of the currents Ix
and Iy are accurately determined by the voltage drop across the resistors (see paragraph 1.3), it is
not necessary to determine nor compensate accurately U. On the other hand, another imperfection
of these multipliers had to be compensated : their output has a small offset, or in other words a
small but significant dc output when either (or both) x1−x2 or y1−y2 is zero. An additional input z
is precisely provided for this kind of offset compensation, and was connected to two other DACs
(see Fig. IV-5).  

1.5 Measurements procedure

In the last paragraph of this section, we briefly describe the procedure used for the measurements
reported in the next chapters. All the data collected correspond to an ac current component at 30 Hz
for the reasons evoked in paragraph 1.3.

a) Hall measurements

For the Hall measurements, the ac+dc current is applied between contacts 1 and 2 (all the contact
numbers refer to Fig. IV-13 on page 64). The longitudinal resistivity is obviously extracted from
the voltage between contacts 3 and 4. According to the sample dimensions, a current of Ix = 1 mA
corresponds roughly to a current density of j = 10 A/cm2. Note that small systematic errors are
probably present in the numeric estimations of the current densities, as well as the resistivities due
to some uncertainty on the effective distances between contacts. The maximum used current den-

Figure IV-4 : Principle of an orientable current density j  in the sample center by the application of two
in-phase perpendicular current components Ix and Iy.
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Figure IV-5 : Schema of the multiplier circuit used to provide the two in-phase current sources.

Figure IV-6 : Schematic connections for measurements as a function of the current orientation.
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sity is of the order of 150 A/cm2, since densities above 200 A/cm2 have been observed to heat the
sample slightly.

The transverse resistivity is measured between the contact 5 and a mixing of contacts 6 and 7.
These two contacts are indeed linked by an adjustable resistor (Fig IV-6), in order to compensate
as much as possible for the misalignment of the measuring direction, which should ideally be ex-
actly perpendicular to the current direction. The resistor is adjusted to get a zero transverse voltage
at zero magnetic field.

The two components of the resistivity are simultaneously measured during slow magnetic field or
temperature sweeps, and the non-sweeping parameter is of course held constant. At very low field
and temperature, deep in the vortex solid where the critical current is much larger than the applied
current, the vortices are strongly pinned at rest. We therefore do not expect to measure any flux
flow voltage. However, there is, surprisingly, a non-negligible signal at the output of the passive
transformers amplifying the measured voltage. This background is mostly due to an inductive cou-
pling between the wires on the sample rod and around the sample (remember that the wires are not
twisted). Since we are interested here in the in-phase, resistive response only (without inductive
part nor electronically induced phase shift influence), it is necessary to perform a background sub-
traction from the raw data.

If we assume that the total generated voltage corresponds to a resistor (our sample) in series with
an inductance, we must then make a subtraction of a complex impedance from the complex re-
sponse given by the voltage modulus and phase (both measured by the lock-in amplifiers). This
operation is illustrated in Fig. IV-7, and is nicely justified a posteriori by noting that after this sim-
ple background subtraction processing, the corrected signal has a constant zero phase (or π if the
in-phase voltage is negative), whereas the raw phase has some "arbitrary" – though approximately
monotonic – variations of the order of ± π/2.

Figure IV-7 : Modulus Vx and phase ϕx of the longitudinal voltage at a magnetic field B = 2 T exactly aligned
with the c-axis, and for a current density of j = 150 A/cm2 dc + 50 A/cm2 pp (peak to peak). Solid lines : un-
corrected, raw data. Lines with symbols : result after the inductive background complex subtraction.
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We see that this processing step mainly affects the results in the low level part of the signal, which
is precisely the region of interest for this study. Moreover, as we shall see further on, this subtrac-
tion processing has even more dramatic effects in the case of measurements as a function of the
current direction (Fig. IV-10).

Measurements are performed under the same conditions with both magnetic field polarities (by
swapping the magnet current leads), and the Hall resistivity is identified with the antisymmetric
part of the transverse resistivity. An example of such a pair of measurements is given in Fig. IV-8.
We see that the difference between the transverse voltages Vy for both field polarities (curves a and
b) is large around T = 90 K, roughly corresponding to the negative maximum of the Hall resistivity
ρxy. At lower temperatures, this difference becomes very small. It can be realized from this figure
to which extent it is fundamental to keep the noise as low as possible. We recall that the objective
of the present work is to investigate the Hall effect in the vortex solid phase. Since the vortex phase
transition is around Tm = 88.2 K for this magnetic field, we see that the Hall signal (the half differ-
ence between curves a and b) becomes only a small fraction of the total measured voltage. The
symmetric part of the transverse voltage Vy (the average between curves a and b) reflects a guided
motion of vortices along twin boundaries, and is the subject of the next chapter. Note that, even
though this operation has almost no effect on the results, the longitudinal resistivity ρxx is rigorous-
ly computed from the average between the longitudinal voltages Vx for both field polarities.

Since at high currents electromagnetic forces on the wires may move them and induce parasitic
voltages, all the measurements (for each field polarity) are repeated after a current direction rever-
sal, and the average of the data for both current polarities is taken. The importance of this operation
is best seen on the Hall conductivity σxy (Fig. IV-9), which is the most sensitive to noise and other
undesired contributions to the signal. The strongest influence on the data occurs at low magnetic
fields (or at low temperatures for a measurement as a function of the temperature), i.e. is signifi-

Figure IV-8 : Longitudinal and transverse voltages (after inductive background subtraction, see Fig. IV-7)
for the two polarities of the magnetic field, B = ± 2 T. The field is exactly aligned with the c-axis, and the cur-
rent density is j = 150 A/cm2 dc + 50 A/cm2 pp. The Hall effect is then obtained from the difference between
the two transverse voltages Vy, curves a and b.
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cantly below the vortex phase transition, where the voltages become very low, eventually vanish-
ing.

In summary, the procedure for Hall measurements is the following. First, temperature or field
sweeps are performed for both current and field polarities (hence four measurements in total), mak-
ing sure that the sweeping parameter was reaching low enough values to go deep into the vortex
solid, where there is only the inductive contribution in the signal. The inductive modulus and phase
backgrounds of each of the longitudinal and transverse signals are then subtracted (following com-
plex algebra) to the recorded raw modulus and phase of the corresponding voltages. The longitu-
dinal resistivity is finally obtained from the average of the four longitudinal voltages, whereas the
Hall resistivity is extracted from the antisymmetric part (half difference) with respect to the mag-
netic field, averaged between the two current polarities.

b) Orientable current measurements

Thanks to the numerous available contacts on the sample surface, we can also measure the direc-
tion of the electric field as a function of the direction of the current density in the sample. Using
the specific source described in paragraph 1.4, Ix is injected between contacts 1 and 2, Iy between
5 and 6, and the corresponding electric field components were deduced from Vx = V3-4 and
Vy = V8-9.

All the measurements are done at a fixed temperature and magnetic field, and both components of
the electric field are recorded as the current direction is changed through a complete 360 ° turn. In
this case, the inductive background is measured around such a whole 360 ° current turn at low mag-
netic field and temperature, deep in the vortex solid where vortices are strongly pinned. Its angle
dependent complex value is then subtracted from the raw measurements, similarly to the Hall data
processing described above. We can see in Fig. IV-10 that this operation is especially important to
obtain the true angular dependence of the resistivity in the vortex solid, where the resistive part

Figure IV-9 : Open and solid symbols : hall conductivity σxy as a function of the magnetic field for the two
polarities of the current, j = ± 150 A/cm2 dc + 50 A/cm2 pp. The temperature is T = 88 K and the magnetic field
is inclined at 4 ° from the c-axis. Solid line : hall conductivity σxy averaged between the two current polarities.
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becomes smaller than the inductive background : the raw data for the desired temperature (87.5 K)
and the low temperature inductive background (measured at T = 80 K) are extremely similar, the
difference essentially lying in the phase of the total signal (solid line). After the complex subtrac-
tion, however, a significant resistive component is revealed (solid symbols).

2. Sample

The sample used for this study is a YBa2Cu3O7-δ single crystal which has been grown in a BaZrO3
crucible (by A. Erb et al. in Geneva), a method known to produce crystals of very high purity
[140]. Its size is about 870 × 400 × 24 µm. Because in YBa2Cu3O7-δ some of the oxygen atoms
are anisotropically distributed along chains, there is a small in-plane anisotropy, the b axis being
very slightly greater than a. The lattice structure is therefore orthorhombic, and internal stresses,
appearing when samples (grown at high temperatures) are cooled, usually lead to microtwinning

Figure IV-10 : Modulus Vx and phase ϕx of the longitudinal voltage at a magnetic field B = 2 T exactly
aligned with the c-axis, and for a current density of j = 50 A/cm2 dc + 12.5 A/cm2 pp. Solid lines : uncorrected,
raw data. Solid symbols : result after the complex subtraction of the inductive background measured at low
temperature (dashed line).
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of the crystal. The twins are adjacent domains with a and b successively exchanged, and the twin
boundaries are oriented along the (110) directions. Among the consequences of the a-b anisotropy
is the different optical reflectivity of twins of opposite orientation, such that the twin structure can
be observed with polarized light. As shown in Fig. IV-11, our crystal is indeed twinned, with one
dominant twin plane family. Rather large monodomains are also present.

As we shall see, these twin planes can have under some conditions a rather strong influence on the
magnetic field distribution inside the sample. It is then important to check to what extent these
magnetic field inhomogeneities might in turn influence the resistivity measurements. For this we
have used magnetooptic observations, a very useful tool [141] based on the Faraday effect, namely
the rotation of the light polarization in some adequate medium under the influence of a magnetic
field. More precisely, the total angle of the polarization rotation is proportional to the magnitude
of the field component parallel to the light propagation direction. The idea is then to chose a ma-
terial showing a very strong Faraday effect, in this case a ferrimagnetic doped iron garnet (with a
Faraday rotation of almost 10 ° for about 1 kG, the saturation field of the material). This "magne-
tooptic indicator" (actually a film deposited on a reflecting substrate) is then placed on top of the
sample, and observed with a polarized light microscope. The areas of high magnetic field will then
be brighter than the zones with low magnetic field.

This has been done for our sample at a temperature close to the conditions of our subsequent resis-
tivity measurements, in a perpendicular applied field (Fig. IV-12). At low fields (B = 90 G), the ef-
fect of the twins is easily observable, resulting in a very inhomogeneous field distribution clearly
correlated to the twin structure observable in Fig. IV-11 (other magnetooptic observations of
twinned samples can also be found in [142]). Note that the inclined "rhombs" at the lower edge of
the sample visible in Fig. IV-12a are artifacts related to magnetic domains in the magnetooptic in-
dicator itself, and are not directly related to the field distribution in the sample. When the field is
increased to B = 260 G (Fig. IV-12b), the flux inhomogeneities are obviously smoothed out. Since
the magnetic fields used for the resistivity measurements are in the Tesla range, and usually the
temperature is even a few degrees higher (which strongly contributes to a homogeneous flux dis-
tribution, due to rapidly vanishing critical currents in this temperature range), it can be assumed
that the twin effects on the field distribution are negligible in the frame of the resistivity measure-
ments.

More generally, it is noteworthy to specify that the same sample has already been used for other
types of extensive magnetooptic observations [143] which have proven its very high quality. How-
ever, even though we have just seen that the flux distribution is almost unperturbed by twins at high
enough fields, the question of whether a small1 additional applied current would lead to a vortex
motion unperturbed by twin boundaries is another issue, and will be experimentally addressed in
the next chapter.   

2.1 Contacts

In order to perform resistivity and Hall measurements, we obviously need electric contacts on the
sample surface. This step has been a major difficulty of this work. Many attempts have been made
on different similar single crystals. The different techniques tried were for example a direct "sol-
dering" of gold wires on the sample surface using a conducting silver epoxy paste, or a silver paint.

1. Small with respect to the magnetization screening currents.
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Gold contact pads have also been deposited through a mask by sputtering, and gold wires were then
again attached to these contact pads with silver epoxy. In all these cases, the resulting contacts were
of too high resistivity (above 1 Ω, sometimes up to about 100 Ω), inducing a very high noise in
voltage measurements (in the worst case even masking the superconducting resistive transition).

There are probably many reasons for this high contact resistivity. First of all, the quite small di-
mensions of the used samples imply the need to make rather small contacts, provided we want to
have many of them (the chosen pattern includes nine contacts, see Fig. IV-13). Some of them have
then a very small contact surface with the sample material. This small size makes it also difficult
to manipulate masks and wires to actually build these contacts.

Another source of problems was probably the quality of the surface for some of these samples. First
of all, a surface layer with a possibly different oxygen content might influence its conductivity. But
also any type of other substance polluting the surface might play an insulating role. This has prob-
ably been the case, for example, when the solvent used to glue the sample onto the sapphire was
not properly removed before evaporation, leaving traces of the non-conducting glue on the sample
top surface.

A heat treatment is also definitely necessary after the contacts have been made, to let the gold dif-
fuse into the first layers of the crystal, in order to reduce the contact resistivity as much as possible.
The adequate parameters for this annealing have to be carefully selected.

Finally, the successful attempt has been done according to the following procedure. After the sam-
ple had been glued onto a glass plate, its top surface was thoroughly cleaned under a microscope
with the help of a razor blade. Then gold contacts have been evaporated through a mask in a high
vacuum evaporation chamber. More precisely, two successive evaporations with different masks
were necessary to obtain the desired contact pattern. The masks were hand made by cutting long
and very narrow bands of aluminum foil (down to about 0.1 mm width), or simply using 50 µm
diameter gold wires to make separations between the closest contacts. All these elements were
placed in the correct position, then anchored with glue beside the sample, on the glass surface. The
evaporated gold layer is about 50 nm thick.

Figure IV-11 : Image of one sample surface in polarized light, revealing the twins structure (the sample
length is 870 µm, see Fig. IV-13 for more detailed dimensions). One orientation of twin planes is clearly dom-
inant (from top left to bottom right).
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After the two evaporations, the sample (removed from its glass support) has been annealed for 46
hours at a temperature of 405 ± 3 °C, in a continuous oxygen flow at ambient pressure. It was then
glued on the sapphire of the sample holder, making sure the glue layer is as thin as possible, in or-
der to have the sample as parallel as possible to the sapphire surface, and also to have the best ther-
mal contact between them.

Finally, gold wires of 12 µm diameter have been attached to the contact pads with conducting sil-
ver epoxy (Du Pont 4929). The other end of these wires were soldered on the connection plate
(Fig. IV-2) with indium.

The resulting contacts have a very low resistivity (< 0.5 Ω), and the achieved noise level in the
measured voltage is as low as 0.1 nV to 1 nV (depending on the considered contacts). Unfortunate-
ly, the adhesion force of the silver epoxy is rather weak, and after some thermal cycling of the sam-
ple, some wires became lose from the sample surface a couple of times. However, each time new
wires were placed on the same contact pads following the same procedure, and the resulting con-
tact quality was always fully recovered.

Figure IV-12 : Magnetooptical imaging of the perpendicular magnetic flux penetration into the sample at
81 K. a) Applied field 90 G. The influence of twins is clearly visible. b) Applied field 260 G. The contrast is
strongly reduced, indicating a much more homogeneous flux distribution.
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Note that, aside from the contacts quality, we believe that another factor is determinant in the very
low noise level : the antivibration system. A risk of noise generation by electromagnetic pick up
indeed exists, as a consequence of vibrations of the loose gold microwires around the sample, and
to some extent of the untwisted wires along the sample rod as well. Thanks to the suppression of
vibrations in all of the cryostat parts (including the sample and its gold wires, the sample rod, and,
most importantly, the passive signal transformers), the only parts of the wiring subject to pick up
noise are the coaxial cables in which the signal is already amplified by a factor of 1000, reducing
the relative importance of such noise.

Figure IV-13 : Top : Picture of the sample surface after deposition of gold contact pads and bonding of the
gold wires. Bottom : schematic representation of the contacts pattern, with their characteristic dimensions in
microns. The sample thickness is 24 µm.
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2.2 Preliminary measurements

a) Critical temperature

Since the sample had to be annealed in oxygen atmosphere in order to get contacts of sufficient
quality (see paragraph 2.1), it is legitimate to wonder whether this process has significantly altered
the oxygen concentration. To answer this question, we can experimentally estimate the critical
temperature Tc of the sample by measuring the resistive transition at zero magnetic field
(Fig. IV-14).

At first sight, we see that Tc ≈ 93.5 K with a transition width of ∆Tc ≈ 0.5 K. The temperature
sweep rate is slow enough so that there is no measurable difference between ramping up or down.
Note that the transition width is rather large for a high quality crystal. This is however an artifact
unrelated to the sample itself. Unfortunately, since the magnet present in the cryostat is supercon-
ducting, it is indeed itself subject to vortex pinning from the first time it is energized until it is
raised above its own critical temperature. In other words, a remanent field is intrinsically present
after a first application of the magnetic field, and can only be suppressed by letting the liquid he-
lium bath evaporate, warming up the whole system. Knowing that the bonding of the wires onto
the sample surface is extremely fragile, and could break by simple thermal cycling to and from
room temperature, it was chosen not to let the magnet warm up. Therefore, the only solution is to
reduce the remanent field as much as possible by successive applications of opposite field direc-
tions of decreasing magnitudes. It is estimated that the usual remanence of about 100 G can be re-
duced by about 90 % with this process. However, in no way can it be affirmed that the field is
strictly zero during this measurement, and hence the result cannot be used to reliably determine the
transition width ∆Tc for example. The value of Tc itself has to be considered as an indication of
limited accuracy (± 0.2 K). In any case, we conclude from this estimation of Tc that the sample is
practically at optimal doping, so that the oxygen content has not been affected by the thermal treat-
ment of the contacts.

Figure IV-14 : Measurement of the resistive transition at H ≈ 0, showing that 93 K < Tc < 94 K. The current
density is 0.2 A/cm2 rms and the temperature is decreased at a rate of 0.1 K/min.
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b) Field alignment

As we have mentioned at the beginning of this chapter, the sample can be oriented with respect to
the magnetic field produced by the superconducting magnet. The question is then to know the ab-
solute value of the angle between the field and the sample c axis. For this, we use the fact that in
the vortex liquid, the resistivity is minimum when field is precisely aligned to the c axis (because
of the influence of twin boundaries on the vortex dynamics [144]). We therefore measure the re-
sistivity for different angles at constant appropriate magnetic field and temperature. Typical results
are shown in Fig. IV-15.

The main difficulty for this operation is the stability of temperature, since even the small oscilla-
tions of about 0.02 K induce resistivity variations larger than the increase corresponding to a rota-
tion from 0 ° to ± 0.1 °. Averages over times much longer than the temperature oscillations were
necessary to localize the minimum with an accuracy better than 0.05 ° (with the help of a parabolic
fit on the small angle data, see Fig. IV-15 left). This operation had to be performed every time the
sample was unmounted from the sample rod (to fix loose wires, for example) and then reinserted
into the cryostat.

c) Vortex lattice melting

A good test of the sample quality is to see if the vortex liquid to solid phase transition is observable
by resistivity measurements. If it is not the case, this means that the irreversibility line (the onset
of non-zero critical currents) is above the melting transition line in the (H,T) phase diagram, such
that the vortex phase-dependent dynamics is masked by pinning effects. The measurements at low
current densities shown in Fig. IV-16 clearly reveal the presence of a rather sharp vortex phase
transition, the signature of which is the steep drop to zero of the resistivity when temperature or
magnetic field are reduced. In the solid phase (at low temperature and low field), the vortex dy-
namics can still be probed with the help of larger currents, overcoming the critical current
(Fig. IV-16 right).

A still open question is to determine whether this transition is indeed a true first order lattice to
liquid phase transition, or if the solid phase is rather a disordered glass, the transition being of sec-
ond order (see chapter I, page 5). Specific heat and magnetization measurements have shown that

Figure IV-15 : Angular dependence of the resistivity used to align the sample with the magnetic field.
Left : 89 K, 2 T and 7 A/cm2 rms. Right : more precise set of data taken at 85.5 K, 4 T and10 A/cm2 rms; the
solid line is a parabolic fit. α = 0 is identified to the minimum of the parabola.
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in clean enough samples, a first order transition occurs. A critical point is often seen to limit this
regime, yielding a second order transition at high fields [17]. However, according to the latest de-
velopments on this topic, the position of this critical point is sample dependent, and lies apparently
above 50 T in the cleanest crystals [145].

On the other hand, the low field part of the phase diagram sometimes also seems to be influenced
by some defects that suppress the first order nature of the transition [17]. In this case, the defects
are possibly the twin boundaries, since this lower critical point on the phase transition line is usu-
ally not seen in naturally untwinned crystals [146]. Aside from this role of the twins in the low field
data scattering, we believe that there is also a relation with the use of very large samples. The peaks
in calorimetric measurements are indeed extremely close to the experimental resolution, and their
observation is improved by the selection of rather massive samples, very thick (usually more than
200 µm). Unfortunately, it is well known that these thick samples feature non-superconducting in-
tergrowths or simply interplanar cracks which, even if they are not apparent on any sample lateral
surface, still dramatically influence magnetic flux penetration, as revealed by magnetooptic
observations [147].

For our sample, we have investigated the role of twin boundaries by measuring the resistive step
associated to the vortex phase transition as a function of the angle α between the magnetic field
and the twin planes. The curves obtained at different angles are given in Fig. IV-17. We see that
the resistivity is strongly reduced at low angles in the vortex liquid. This is precisely what we have
used to align the sample with the magnetic field (see Fig. IV-15 above). Note that we will come
back to this reduction of the longitudinal resistivity in the next chapter. Above the temperature TTB,
the curves at moderate angles are superimposed, indicating that the twins have no significant in-
fluence anymore. The curve for larger angles (for example for α = 20 °) are clearly lying lower,
because the magnetic field component perpendicular to the current starts to decrease as the field is
further rotated away from the c-axis.

Figure IV-16 : Left : Resistive transition associated to the vortex lattice melting, as a function of temperature
and for different applied magnetic fields. The current density is 1 A/cm2 rms, and the magnetic field angle is
α = 3°. Right : Equivalent measurement as a function of magnetic field at T = 89 K, same current (open sym-
bols). With a larger current (150 A/cm2 dc + 5 A/cm2 ac), the vortex solid can be set into motion (solid sym-
bols).
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We have then estimated the temperature of the resistivity onset for each of the angles a. For this,
an intersect of a linear fit of the resistivity step in the neighborhood of T = 82.3 K with the axis of
zero resistivity was used. A plot showing this onset temperature as a function of the angle α for
two different magnetic field intensities is given in Fig. IV-18. This figure should be compared to
Fig. I-3 on page 7. It is indeed very similar to the recent results from Grigera et al. on an analogous
YBa2Cu3O7-δ single crystal [25], who have interpreted the peak of Tonset at low angles as the sig-
nature of a Bose-glass transition due to the twin boundaries. Following their suggestion, we have
fitted this part of the data with the expression

,

where ,  and v are free parameters. The critical exponent v is then v = 1.23 for B = 2 T and
v = 1.09 for B = 6 T, in excellent agreement with the value of v = 1 ± 0.2  found by Grigera et al. at
B = 6 T. At larger angles, the behavior is the one expected from simple anisotropic scaling [148,6],
as revealed by the parabolic fit in Fig. IV-18. The transition between the two different regimes hap-
pens at an angle α∗  of the order of 2 ° to 3 °, again consistent with the crossover of α∗  ≈ 2.1 ° of
Ref. [25].

In conclusion, since we only have access to resistivity measurements to characterize our sample,
and have no "thermodynamic" data like specific heat or magnetization, we cannot affirm rigorous-
ly what is the order of the vortex phase transition we observe. However, considering that the an-
gular dependence is just the same as in Ref. [25], that our sample is much thinner than the crystals
usually used for calorimetric measurements (see discussion above), has a very low normal state re-
sistivity (less than 25 µΩ cm, meaning that it is extremely clean), and is not heavily twinned (with
large untwinned domains, see Fig. IV-11), we have strong reasons to believe that the solid phase

Figure IV-17 : Resistive transition as a function of the temperature, at B = 6 T and j = 1 A/cm2 rms, for dif-
ferent angles α between the magnetic field and the twin planes (α = 0 °, ± 0.2 °, 0.5 °, 1 °, 2 °, 3 °, 5 °, 7 °, 10 °,
12.7 °, 20 °). TTB marks approximately the temperature above which the twins do not affect the resistivity any-
more.
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is a Bose-glass for α < α∗ , and an ordered vortex lattice (Bragg-glass) for α > α∗ , separated from
the vortex liquid by a first order phase transition. In any case, the issue of the exact nature of the
solid phase for α > α∗  is not determinant for our study. The most important point is to be able to
precisely localize this transition in the magnetic field and temperature, which is clearly the case as
can be seen from Fig. IV-16 and IV-17 for example.

Figure IV-18 : Onset temperature of the resistive transition as a function of the magnetic field orientation α
with respect to the twin boundaries. Data for B = 6 T (solid symbols) correspond to Fig. IV-17. Similar data
for B = 2 T are also given (open symbols). Dashed lines are parabolic fits representing the anisotropic scaling,
solid lines are fits corresponding to a Bose-glass transition (see text).
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CHAPTER V RESULTS : GUIDED MOTION

1. General idea

1.1 Even Hall effect

Since the early work on the Hall effect in the mixed state of type II superconductors, it has been
observed that the transverse resistivity has not only an antisymmetric part (with respect to the mag-
netic field), namely the Hall component, but also usually a symmetric part (sometimes also called
"even Hall effect"), indicating that the vortices actually have a direction of motion influenced by
material inhomogeneities. In low Tc materials for example, this guided motion was seen to depend
on the details of sample processing, which induces extended defects in preferential directions.

When performing the first preliminary measurements mentioned in the preceding chapter, we have
indeed found out that a large transverse voltage is also present in our sample (an example is given
in Fig. IV-8). Of course a part of this signal is antisymmetric and represents the Hall effect, but
after averaging the data for both field polarities, an important symmetric part remains. Actually,
this symmetric part can even be of the same order of magnitude as the longitudinal resistivity,
whereas the Hall resistivity is usually one to two orders of magnitude smaller.

This shows that vortices undergo a guided motion, such that the electric field is at a rather large
angle (much larger than the Hall angle) from the current direction. The question now is to know
more precisely in which direction do the vortices exactly flow depending on the current orientation,
what happens as a function of the vortex phase (solid or liquid), and what is the dependence on the
angle α (the direction of the magnetic field with respect to the twin planes, see page 66). Thanks
to the contact pattern on our sample, we have the opportunity to actually determine the direction
of the electric field in response to a current density of various orientations. This is the objective of
the present chapter.
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1.2 Twins and vortex dynamics

It is evident that in twinned samples, twin planes should play an important role in this guided mo-
tion. The understanding of the effect of twin boundaries on the vortex dynamics have been the sub-
ject of extensive work. On the theoretical side, we can find, for example, a Fokker-Planck equation
approach [149], or various numerical simulations, like molecular dynamics simulations [150] or
algorithms based on time dependent Ginzburg-Landau equations [151].

From the experimental point of view, the role of twins in YBa2Cu3O7-δ has been discussed in de-
tails on the basis of magnetooptic observations [142], as already cited in section 2 of the preceding
chapter. But resistivity measurements have also brought much information to the understanding of
this topic. The first measurements in unidirectionally twinned samples [152,24] usually focused on
the magnetic field orientation (angle α) dependence, and were performed with a single current ori-
entation (usually at 0 °, 45 ° or 90 ° from the twin planes), while recording only one voltage com-
ponent along the current direction. Later, an important work has been the direct comparison of
different current orientations with respect to the twins (0 °, 45 ° and 90 ° under the same condi-
tions), however in different similar samples (with one fixed current direction in each sample) and
still only measuring the longitudinal voltage [153]. Much more recently, two different perpendic-
ular current directions (along and across the twin planes) were used in the same film sample, and
both longitudinal and transverse voltage were measured [139], but only the usual antisymmetric
Hall data were reported, not the even Hall effect reflecting guided motion.

A direct study of the guided vortex motion in unidirectionally twinned samples has been accom-
plished for the first time only very recently, by Morgoon et al. [48]. In this work, three different
samples where prepared, each with a different angle between the applied current and the twin
planes (+90 °, +45 ° and −30 °), and the transverse voltage has been recorded to extract the even
Hall effect. The authors can then track the transverse behavior in terms of guided motion. Unfor-
tunately, very few data are given in this short report. We propose here a new, more versatile method
and present new results in the continuation of this work. This method is based on the reconstruction
of the total electric field, both in amplitude and direction, as a function of the direction of the cur-
rent, which is continuously adjustable with respect to the twin planes.

2. Results

2.1 Detailed procedure

As briefly described in the preceding chapter, a specific double current source is used to feed two
orthogonal currents Ix and Iy into the sample, in a ratio determining the orientation βj of the total
current density (Fig. IV-4).

For each current source (Ix and Iy), a 510 Ω resistor was placed on both current leads to check by
the voltage drop across these resistors that all the current leaving one of the sources was indeed
only returning to that same source. In other words, it was checked that no cross-feed happens be-
tween the preamplifiers providing the currents Ix and Iy (page 56).

The principle of the measurements reported here is to determine the electric field modulus E and
its orientation βE (Fig. V-1) from two orthogonal voltage components Vx = V3-4 and Vy = V8-9 (see
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Fig. IV-13 for contact numbering) as βj goes over a complete turn1. After the subtraction of the
inductive background (as already described in paragraph IV.1.5), Vx and Vy are converted into elec-
tric field units, taking into account the distances between contacts.

Two different series of such measurements have been done. The first one is performed at a constant
temperature of 89 K, and angular dependences are recorded for many different magnetic field val-
ues, from the vortex liquid state down to the solid phase. For this set of data, the total current den-
sity is 60 A/cm2 dc + 10 A/cm2 ac peak-to-peak (pp), and the inductive background is obtained by
a measurement at 0.8 T. The other series is measured at 2 T, for several different temperatures (also
crossing the vortex phase transition), with a current density of 100 A/cm2 dc + 25 A/cm2 pp. The
inductive background is then measured at 80 K. In each series, all the measurements are repeated

Figure V-1 : Definition of the two angles used in this chapter : βj (related to the orientation of the current
density in the sample plane x-y) and βE (related to the electric field orientation in the same x-y reference
frame).

1. Actually, the measurements are performed over 380 ° for βj, the overlapping of data reflecting the repro-
ducibility after a whole turn.

Figure V-2 : Longitudinal resistivity at 2 T for two different angles α between the magnetic field and the
twin planes. The data represented with a solid line without markers is measured at low current density (about
3 A/cm2 rms) to localize the vortex phase transition (Tm ≈ 88.2 K). The other data are measured at a higher
current, namely 150 A/cm2 dc + 50 A/cm2 pp. The twin boundaries influence the resistivity up to approxi-
mately TTB = 89.9 K.
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under the same conditions for two different magnetic field orientations : once with α = 0 ° (field
exactly aligned with the twin planes) and once for α = 4 °.

Before presenting the actual results for angular dependences, we first show what the effects of
these two field orientations on the longitudinal resistivity ρxx are, both in the vortex liquid and solid
phases. Fig. V-2 shows comparative measurements for α = 0 ° and α = 4 °. It appears that when the
field is right along the twin planes, the resistivity is reduced in the liquid phase, but slightly in-
creased in the solid phase [144]. Note that some comments will be given on this point at the end of
this chapter, in the light of the results presented below.

The difference between the two curves, obviously induced by the twin boundaries, is observable
up to the temperature TTB ≈ 89.9 K lying significantly above the vortex phase transition tempera-
ture Tm ≈ 88.2 K. Of course, the same qualitative picture can be obtained from measurements as a
function of magnetic field at constant temperature. For a temperature of 89 K, the two correspond-
ing magnetic field values are Bm ≈ 1.65 T and BTB ≈ 2.5 T.

2.2 Measurements at constant temperature

a) Data for α = 0 °

We first present the results for the magnetic field parallel to the twin planes, namely for α = 0 °. In
Fig. V-3 are shown the data for magnetic fields ranging from 3 T to 1 T. Due to the very fast de-
crease of the resistivity below the melting field, the curves have to be traced on two different plots,
with linear scale at high fields, but a logarithmic scale for the low field data. These polar plots are
representations of the modulus of the total electric field E both as a function of the direction of the
current and the direction of the electric field itself, namely the E(βj) and E(βE) curves.

The first general observation that can be made from these two first plots is that there are clearly
two axial symmetries, with the axes roughly in the  (or 45 °− 225 °) and the  (or
135 °− 315 °) directions, obviously corresponding to the twin plane orientations. However, we ob-
serve only a twofold symmetry in the data, meaning that only one of the two possible twin plane
families is dominating, consistent with the magnetooptic observations of the preceding chapter
(section 2). More precisely, we see that at low enough magnetic fields, the electric field is larger
(meaning a faster vortex motion) when the current is oriented in the  direction. Since it was
observed in Fig. IV-11 and IV-12 (page 62 and page 63, respectively) that the dominating twin
family is along , the data show that the twin planes act as a barrier for vortex motion across
them, but facilitate the motion along the planes, as already reported in the literature [142,153] (re-
member that the driving Lorentz force is perpendicular to the current density, and that from Joseph-
son’s relation the electric field is also perpendicular to the vortex motion [32]).

When looking at the low field data, it becomes apparent that the symmetry axes rotates away from
the exact  and  directions. This is most probably the consequence of the combined ef-
fect of contact misalignments (the pairs of contacts are not exactly along the x and y axes) and vari-
ations in the current distributions, due to the increasing non-linearity in the voltage-current
characteristics in the vortex solid. Therefore, we believe that the physical preferential direction is
still completely determined by the twin planes in this regime, and only the measured angles are
biased by these extrinsic processes.
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Another interesting feature is that, at the highest magnetic field values, e.g. 3 T and 2.5 T, the
curves are not perfect circles, even though the influence of twins on the vortex dynamics is ob-
served to be negligible deep in the vortex liquid (Fig. V-2). Moreover, the small observable oval-
ization is opposite to the strong asymmetry observable at lower fields. It is very interesting to note
that this is perfectly consistent with measurements done in the normal state by Villard et al. [154],
where it was shown that the normal state resistivity for the current applied perpendicularly to the
twin planes is much larger than when the current is along the planes, in direct opposition to the
mixed state resistivity. These two opposite behaviors can be summarized by saying that the mobil-
ity of both normal electrons and vortices (even though they are quite different objects) is larger for
a motion along the twin planes. Therefore, a large electron mobility obviously leads to a small nor-
mal resistivity, whereas a large vortex mobility corresponds to a large vortex velocity, inducing a
large electric field, and thus a large flux flow resistivity. It is then possible that, when measuring
the current angular dependence of the resistivity above BTB, where the twins contribution to flux
flow is negligible, only the normal electrons contributes to the (smaller) observable anisotropy.

Finally, it can be said from Fig. V-3 that the E(βE) and E(βj) curves almost perfectly coincide at
high fields, but no longer when below BTB. This difference means that βE ≠ βj, or in other words
that the electric field is not parallel to the current, which is nothing but the signature of guided
motion. Unfortunately, the visualization of this relative angle from such a figure is far from easy.
To illustrate more explicitly the guided motion, we have therefore tried to present the same data in

Figure V-3 : Polar plots of the electric field as the current is rotated in the sample plane. The magnetic field
is parallel to the twin planes (α = 0 °), the total current density is j = 60 A/cm2 dc + 10 A/cm2 ac pp and the
temperature is T = 89 K. Solid curves show the modulus of the electric field as a function of the current ori-
entation (βj), dashed lines are the actual electric field values (in modulus and argument βE) visited during a
complete turn of the current. Left : The radial scale is linear from 0 (center) to 50 µV cm-1. From outside to-
wards the center, the solid curves correspond to magnetic fields of B = 3 T, 2.5 T, 2 T, 1.8 T, 1.7 T, 1.6 T and
1.5 T. The vortex phase transition happens between the two curves separated by a shaded area. Corresponding
dashed curves are shown for B = 3 T, 2.5 T and 2 T. Right : Similar representation of data at lower magnetic
field in logarithmic radial scale (from 0.01 µV cm-1 at the origin to 10 µV cm-1). Shown are B = 1.5 T, 1.4 T,
1.2 T and 1 T (dashed lines only for B = 1.5 T and 1 T).
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a different way, focusing on constant directions of the current (constant βj), and looking at the di-
rection (and modulus) of the electric field.

This has been done in Fig. V-4, where a series of lines have been drawn between the values of the
electric field (in modulus and argument, E(βE)) taken as the magnetic field is reduced, each line
corresponding to a given orientation of current βj (indicated close to each of these lines, all around
the plot). Some curves of E(βE) for constant values of the magnetic field have also been traced,
which are exactly equivalent to the dashed lines in Fig. V-3. The same plot is represented twice,
the right version having a logarithmic radial scale to reveal the details at low magnetic fields.

From this representation, we first note that, even at high magnetic field in the vortex solid, the an-
gle βE is slightly shifted by about + 5 ° (when the current is along x, namely at βj = 0 ° or 180 °) to
almost + 10 °(when βj = 90 ° or 270 °) with respect to βj. This is an indication of the respective con-
tact pairs misalignment with the x and y axes.

But the most impressive feature on this graphic is the very clear signature of guided motion along
the dominant twin boundaries family. When the Lorentz force is along these twin planes (for
βj = 45 ° or 225 °), the electric field slowly vanishes as the magnetic field is reduced, but keeps al-
ways the same orientation, with βE ≈ βj (although a small reorientation is visible, again because of
the above mentioned probable small changes in the current density distribution). Similarly, when
the current is along the twins (hence the driving force on vortices is just orthogonal to the twin
planes, for βj = 135 ° and 315 °), the direction of the electric field is also unchanged as the magnetic
field decreases from the vortex liquid to the vortex solid. The only difference is that the electric
field vanishes much more rapidly in the solid (as can be seen from the anisotropic shape of the dot-
ted lines), indicating a stronger vortex pinning for this current orientation.

Figure V-4 :  Left : From the same data as Fig. V-3 (with α = 0 °, j = 60 A/cm2 dc + 10 A/cm2 ac pp and
T = 89 K), representation of the evolution of the modulus and argument βE of the electric field as the magnetic
field is reduced from B = 3 T to 1 T, for a series of given current orientations βj (indicated all around the plot).
The dotted lines show the values of the electric field for some specific magnetic fields (and thus correspond
to the dashed lines of Fig. V-3) which are B = 3 T, 2.5 T, 2 T, 1.7 T and 1.5 T (from outside towards the cen-
ter). The vortex phase transition happens between the two curves separated by a shaded area. On the right is
exactly the same plot in logarithmic radial scale (the origin corresponds to 1 µV cm-1).
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On the other hand, when the current is at roughly ± 45 ° from the twin planes, there is a very obvi-
ous onset of guided motion as the magnetic field decreases, observable in the strong variation of
the electric field orientation for a constant current direction βj (see for example the thicker line cor-
responding to βj = 0 °). This guided motion becomes effective quite precisely at the field BTB at
which the twin boundaries have been observed to influence the longitudinal resistivity (Fig. V-2).
However, the transition is progressive : although the electric field tends to rotate towards the 
direction (meaning that the vortices tend to move along the twin boundaries), a complete vortex
canalization along the twin planes occurs only at lower magnetic fields. Moreover, for the currents
oriented far away from the  direction, it is not even clear whether this true canalization even-
tually happens.

b) Data for α = 4 °

Exactly similar measurements have been performed with the magnetic field slightly tilted away
from the twin planes, and the results are presented in the same manner in the two next figures
(Fig. V-5 and V-6).

We can note three major differences between these figures and the data presented above for α = 0 °
(Fig. V-3 and V-4). First, the reduction of the electric field, as the magnetic field is decreased, is
more regular than for α = 0 °,  where the electric field was mainly dropping sharply between 2.5

Figure V-5 : Polar plots of the electric field as the current is rotated in the sample plane. The magnetic field
is tilted at α = 4 ° from the twin planes, the total current density is j = 60 A/cm2 dc + 10 A/cm2 ac pp and the
temperature is T = 89 K. Solid curves show the modulus of the electric field as a function of the current ori-
entation (βj), dashed lines are the actual electric field values (in modulus and argument βE) visited during a
complete turn of the current. Left : Linear radial scale from 0 to 40 µV cm-1. From outside towards the center,
the magnetic fields are B = 2.5 T, 2 T, 1.8 T, 1.7 T, 1.6 T and 1.5 T. The vortex phase transition happens be-
tween the two curves separated by a shaded area. Corresponding dashed curves are shown for B = 2.5 T, 2 T
and 1.5 T. Right : Logarithmic radial scale (from 0.01 µV cm-1 to 10 µV cm-1), with B = 1.5 T, 1.4 T, 1.3 T,
1.2 T and 1.1 T (dashed lines only for B = 1.5 T and 1.1 T).
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and 2 T (Fig. V-3). Of course, this is the consequence of the different behaviors of the resistivity
for the two magnetic field orientations shown in Fig. V-2.

Secondly, even though the response is still clearly anisotropic, the strong reduction of the resistiv-
ity (or electric field) at low magnetic field when the current is along the twin planes (βj ≈ 135 ° or
315 °) has almost completely vanished. We can reasonably assume that at such small angles α be-
tween the twin planes and the applied magnetic field, the vortices are composed of segments par-
allel to the c axis "trapped" in the twin boundaries, linked by inclined parts between the twin
planes [155]. The difference between Fig. V-3 and Fig. V-5 might then mean that the inclined
kinks are sufficient to suppress the strong and sharp resistivity drop present at α = 0 ° when the cur-
rent is along the twin planes, but have almost no influence on the smaller and smoother 360 ° ani-
sotropy, which is present on both figures. However, this picture is somehow oversimplified, as we
will see in paragraph 2.3.

Thirdly, Fig. V-6 indicates that the transition to guided motion still occurs when vortices are tilted
away from the twin planes, even though the magnetic field dependence is much smoother. How-
ever, in this case no absolute canalization of vortex motion along twin boundaries is observable, in
the sense that, at the lowest magnetic field values, the electric field reaches a different orientation
for each different direction of the current density βj. Finally, recalling that the vortex phase transi-
tion field is Bm ≈ 1.65 T, it is evident that for a constant current orientation, the electric field rotates
away from the current mainly in the vortex liquid phase, its direction then remaining almost con-
stant in the vortex solid (note that this observation is also partly valid for α = 0 °, at least as long
as the Lorentz force is not oriented almost perpendicularly to the direction of guided motion, see
Fig. V-4).

Figure V-6 : Left : From the same data as Fig. V-5 (with α = 4 °, j = 60 A/cm2 dc + 10 A/cm2 ac pp and
T = 89 K), representation of the evolution of the modulus and argument βE of the electric field as the magnetic
field is reduced from B = 2.5 T to 1.1 T, for a series of given current orientations βj (indicated all around the
plot). The dotted lines show the values of the electric field for some specific magnetic fields (and thus corre-
spond to the dashed lines of Fig. V-5) which are B = 2.5 T, 2 T, 1.7 T, 1.6 T and 1.5 T (from outside towards
the center). The vortex phase transition happens between the two curves separated by a shaded area. On the
right is exactly the same plot in logarithmic radial scale (the origin corresponds to 1 µV cm-1).
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2.3 Measurements at constant field

The difference between what we have presented in paragraph 2.2 and the set of data presented here
is not only that the magnetic field instead of the temperature is now kept constant, but also the mea-
surement and data processing procedures have been slightly modified. First, we have tried to com-
pensate the small contact misalignment observed in the preceding paragraph, by introducing
correction factors in the mixing of Ix and Iy used to generate a current density with a given orien-
tation βj, as well as a different calculation of Ex and Ey from the measured voltages, again intro-
ducing some mixed contributions of Vx and Vy. We have also measured the angular dependence of
the electric field for both magnetic field polarities, calculating the symmetric part (or in other terms
the average of the data for both fields) to rigorously obtain the even Hall effect (even though the
asymmetric Hall effect is usually negligible compared to the total signal, as we have noted at the
beginning of this chapter). Finally, note that a larger current density was used, in order to enhance
the signal-to-noise ratio.

In Fig. V-7 are shown the data for four different temperatures, T = 90 K, 88.5 K, 88 K and 87.5 K.
We recall that the vortex phase transition temperature is Tm ≈ 88.2 K and the onset of the twin
boundaries influence on the vortex dynamics is TTB ≈ 89.9 K (see page 73). The main difference
with Fig. V-3 and V-5 is that even above TTB, at T = 90 K, the anisotropy is still very well apparent,
and is not reversed with respect to the vortex solid behavior, as was the case for the "normal
state-like" anisotropy observed at high magnetic fields in the preceding paragraph (page 75). It
would be interesting to know whether the reason is that the temperature is too close to TTB, such
that the twins actually still act on vortices, or if this is the result of a contact misalignment inaccu-

Figure V-7 : Polar plots of the electric field as the current is rotated in the sample plane, for two different
orientations of the magnetic field. Left : α = 0 ° (field along the twin planes). Right : α = 4 °. In both cases,
the magnetic field intensity is B = 2 T and the total current density is j = 100 A/cm2 dc + 25 A/cm2 ac pp. Sol-
id curves show the modulus of the electric field as a function of the current orientation (βj), dashed lines are
the actual electric field values (in modulus and argument βE) visited during a complete turn of the current.
From outside towards the center, the temperatures are T = 90 K, 88.5 K, 88 K and 87.5 K. The vortex phase
transition happens between the two curves separated by a shaded area. The dashed curves E(βE) are not shown
for the lowest temperature.

0

90

180

270

0

90

180

270

|| E ||

12
5

[µV cm−1]

12
5

βj (       )

βE (       )
α = 0 ° α = 4 °



V

80

rate compensation. Unfortunately no measurement have been performed in the same conditions at
higher temperatures up to the normal state, so this question cannot be answered.

Aside from this striking difference, the data for α = 0 ° (Fig. V-7 left) form a picture very similar
to the results of paragraph 2.2 : a well marked resistivity drop still occurs at lower temperatures
when the current is parallel to the twin planes, and a strong difference between the current and elec-
tric field directions, observable through the separation of the E(βj) and E(βE) curves, still reflects
the existence of guided motion. For α = 4 ° however, (Fig. V-7 right), the same resistivity drop in
the  direction of current is now also clearly visible, whereas it was almost undetectable in
Fig. V-5 (except maybe on the curve for 1.6 T). Therefore, the remark formulated in Fig. V-5 about
the apparent absence of this dip in the  direction (see page 78) should be reconsidered : the
dip, although less marked at inclined magnetic fields, is still present.

We can also note that the data of Fig. V-7 are better than those of paragraph 2.2 (the noise level is
lower), in part due to the field symmetrization involving an averaging between two sets of mea-
surements. It is then worth looking in more detail at the low field data, as is done in Fig. V-8. A
small feature, which was scarcely visible on the measurements of paragraph 2.2, is now very nicely
observable : a kind of partial fourfold symmetry shows up at the lowest magnetic fields. It is more
marked when vortices are exactly aligned with the twin planes (α = 0 °, Fig. V-8 left), but is also
detectable for inclined field (α = 4 °, Fig. V-8 right). It is very surprising to see that this feature is
not at all symmetric with respect to the  axis (it is mostly evident from the 87.5 K curve for
α = 0 °), suggesting a kind of "history dependence" related to the direction of current rotation dur-
ing the measurement, even though the current is rotated very slowly, stopping for many seconds in
each orientation to record stabilized averages of the voltage signals. Unfortunately, no data is avail-
able for the opposite direction of current rotation, so more measurements are required to answer
this question.   

Figure V-8 : Enlarged view of the low field data of Fig. V-7, showing both the E(βj) and E(βE) curves in the
vortex solid phase. Left : For α = 0 °, T = 88 K and T = 87.5 K. Right : at α = 4 °, only T = 87.5 K.
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In Fig. V-9, we also provide the plots of E(βE) lines at constant current directions βj, just as for the
representations in Fig. V-4 and V-6. Similar to the observations made in these two figures, we note
that guided motion is quite visible, and again smoother at tilted magnetic fields, even though data
for more temperatures are lacking to reach pictures as complete as Fig. V-4 and V-6.

Fig. V-9 also allows us to establish that the correction of contact misalignment is not conclusive :
βE is now shifted the other way compared to βj, by − 10 ° (in the liquid phase, at 90 K) almost iso-
tropically instead of + 5 ° to + 10 ° as in Fig. V-4 and V-6, suggesting that the small errors have
been overcompensated. It is difficult to know if this is also the reason for the important remanent
anisotropy at high temperatures, above TTB.

2.4 Implications for the interpretation of resistivity measurements

From the measurements shown here, it is also possible to reconstruct the equivalent of resistivity
measurements at two different magnetic field orientations, like what is presented in Fig. V-2. Here,
we have the advantage of having access to more information, like the total magnitude of the electric
field, instead of only its component parallel to the current, and also the behavior for various current
directions, all in the same sample. Note that in Ref. [153], Fleshler et al. already compared the re-
sistivity for three different current directions, but as we mentioned already at the beginning of this
chapter, only the longitudinal component (along the current) of the electric field was measured, and
a different sample was used for each current direction. Since the pinning effects are often sample
dependent, it is therefore difficult to know exactly what is the importance of the current direction
with respect to the twin boundaries for the vortex dynamics.

Figure V-9 :  From the same data as Fig. V-7 (with B = 2 T, j = 100 A/cm2 dc + 25 A/cm2 ac pp, and for
α = 0 ° on the left and α = 4 ° on the right), representation of the evolution of the modulus and argument βE
of the electric field as the temperature is reduced, for a series of given current orientations βj (indicated around
the plots). The dotted lines show the values of the electric field for the different temperatures (and thus cor-
respond to the dashed lines of Fig. V-7 and V-8), which are T = 90 K, 88.5 K, 88 K and 87.5 K (from outside
towards the center). The vortex phase transition happens between the two curves separated by a shaded area.
The radial scale is logarithmic, the origin corresponding to 1 µV cm-1.
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For this purpose, we use the measurements as a function of the magnetic field presented in
paragraph 2.2, since we have more data in this case. First, we extract from these data the equivalent
of a standard resistivity measurement, as was shown in Fig. V-2, i.e. the longitudinal electric field
Ex for a current along the x-axis (namely for βj = 0 °). The resulting curves are represented in
Fig. V-10 and V-11 with dashed lines for α = 0 ° (solid symbols) and α = 4 ° (open symbols). As
we expected, the picture is very much like the curves of Fig. V-2.

The idea is now to see what is the influence of guided motion on the difference between the two
curves, and what is really a intrinsic difference in the vortex mobility between α = 0 ° and α = 4 °.
First, we plot in Fig. V-10, together with the curves described above, the values of the total mag-
nitude of the electric field in the same conditions (solid lines). The result is a sort of indication of
the amplitude of guided motion : if the solid and dashed lines are perfectly superimposed, then the
total electric field is indeed parallel to the current (Ex = Etot), so that there is no guided motion, and
the difference between α = 0 ° and α = 4 ° is truly only a consequence of a change in the vortex mo-
bility. Of course, since we have already demonstrated the existence of guided motion above, it is
not surprising to see that this is not the case here : the longitudinal field is only a part of the total
electric field. However, the effect is much stronger for α = 0 ° than for α = 4 °, since the guided mo-
tion has been observed to be more efficient when vortices are exactly along the twin planes. As a

Figure V-10 : Selected data of paragraph 2.2 reported as a function of the magnetic field. The dashed lines
represent what would be measured in a standard resistivity measurement (longitudinal component of the elec-
tric field Ex for a current at 45 ° from the twins, corresponding to βj = 0 °). The solid lines show what the total
magnitude of the electric field Etot actually is in this case. The temperature is T = 89 K and the current is
j = 60 A/cm2 dc + 10 A/cm2 ac pp. Solid symbols are for the magnetic field aligned with the twin boundaries
(α = 0 °), open symbols correspond to α = 4 °.
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consequence, this means that a part (about one half to one third) of the resistivity difference be-
tween the two orientations of the magnetic field reflects a difference in the vortex motion direction,
the other part resulting from a different vortex mobility for this current orientation.

In the discussion above, we have just considered a case of a current oriented at 45 ° from the twin
planes, so that the vortices also have to move at an angle from the twins (even if this angle is small-
er because of guided motion). The question is now to know what is the influence of the magnetic
field orientation on the vortex mobility if the current is perpendicular to the twins, so that the vor-
tices will move along the twins (and so that, even for an inclined magnetic field, the vortex seg-
ments located inside the twin boundaries will always remain in them).

For this, we compare the usual "longitudinal resistivity" curves (in dashed lines, the same as in
Fig. V-10) to the data obtained for βj = 45 ° in the present chapter. Note that we show the total mag-
nitude of the electric field Etot for βj = 45 ° (solid lines in Fig. V-11). Interestingly enough, we see
that there is only a very small residual difference between the two magnetic field orientations
α = 0 ° and α = 4 ° in this case : the vortex mobility becomes very few dependent on the magnetic
field orientation (that is on the presence of inclined segments of the vortex) when the motion hap-
pens along the twin planes. Note however from the inset of Fig. V-11 that the crossing of the two

Figure V-11 :  Selected data of paragraph 2.2 reported as a function of the magnetic field. The dashed lines
represent what would be measured in a standard resistivity measurement (longitudinal component of the elec-
tric field Ex for a current at 45 ° from the twins, corresponding to βj = 0 °). The solid lines show the total mag-
nitude of the electric field Etot for a current perpendicular to the twins, corresponding to βj = 45 ° (that is for
maximum vortex mobility, forcing them along the twins). The temperature is T = 89 K and the current is
j = 60 A/cm2 dc + 10 A/cm2 ac pp. Solid symbols are for the magnetic field aligned with the twin boundaries
(α = 0 °), open symbols correspond to α = 4 °. Inset : Detailed view of the vortex solid behavior.
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curves still happens at the same position, the resistivity being smaller in the vortex solid for larger
angles (α = 4 °). Regrettably, the small alignment errors mentioned in the previous paragraphs
make it difficult to know whether the small residual difference between α = 0 ° and α = 4 ° is ob-
served because the current is actually not exactly across the twin planes, or if a dependence in the
vortex mobility on the magnetic field orientation would always remain, whatever the current di-
rection is.

Obviously, the data shown here are only a preliminary test for this method, showing however that
it is really feasible, with a simple eight contact geometry, to study thoroughly, quantitatively and
reliably the influence of twins on vortex dynamics (see next section below), and for example check
precisely the predictions of models like the one of Ref. [155] for inclined vortices.

3. Conclusion

We have presented here a study of vortex guided motion in a twinned YBa2Cu3O7-δ crystal as a
function of a continuously orientable current density. The experimental method consists of resis-
tivity measurements, measuring two perpendicular electric field components, while applying two
orthogonal and synchronous current components. We have also demonstrated how this effect has
a strong influence on what can be measured in standard longitudinal resistivity measurements, as
they are very often performed in similar samples.

The observed guided motion is clearly related to the twin structure of the sample, vortices moving
preferentially along the twin planes, having a very poor mobility across them. In our particular
sample, one of the two twin boundary families is dominating, a characteristic also confirmed by
the magnetooptic observations of the preceding chapter. The resulting  anisotropy is seen to
manifest itself already in the vortex liquid phase, becoming more and more pronounced as ap-
proaching the vortex phase transition. Once in the vortex solid, the behavior tends to remain con-
stant, except for the emergence of a small  anisotropy, probably due to a minor influence of
the second twin plane family. We have seen no sharp feature corresponding to the crossing of the
vortex phase transition. This result will have some importance for the next chapter.

As we have seen on various occasions from the results of the present chapter, the data may be dif-
ficult to discuss quantitatively with great precision, since the information is biased by imperfec-
tions like contact misalignments. Of course, a compensation can in principle be easily done by
introducing experimentally determined trigonometric correction factors, corresponding to a
change from an arbitrary to an orthogonal x-y frame of reference, as is tempted for the measure-
ments of paragraph 2.3. Even though this correction was not performed precisely enough in the
case of these results, it is most probable that such a method would not lead to a perfectly satisfying
outcome in any case. Indeed, another imperfection certainly plays a role, namely the modification
of the current distribution in the sample as the voltage-current characteristic becomes strongly non-
linear. One of the consequences observable on our data is the apparent progressive rotation of the

 and  directions as the magnetic field or temperature is reduced, reflecting a change in
the effective ratio of x and y current components in the region of the voltage measurement.

This last problem could be solved by a more symmetric contact configuration, as illustrated in
Fig. V-12. We see that our contact pattern on the sample is not really adapted to this type of inves-
tigation, since for example the Vx voltage is not measured in between the contacts providing the Iy
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current. Therefore, depending on the local spatial distribution of the current flowing between the
Iy pads, and with only a slight asymmetry in the voltage contacts, the measured Vx could easily be
a mixed contribution of both Ex and Ey. If the contact pattern is made as illustrated in Fig.V-12 b,
these coupled effects will essentially be suppressed, since then both voltage components are mea-
sured in a zone where the current distributions are more homogeneous.

Also, a second cause of perturbed current distributions is that our sample is not uniformly twinned
(see Fig. IV-11). Hence vortex guided motion probably have a quite complex and inhomogeneous
form. In this sense, the overall qualitative results are even surprisingly coherent.

However, because of these homogeneities, some observations (such as the existence of a true ca-
nalization exactly along the twin planes, or the appearance of a partial fourfold symmetry) might
be dependent on the current intensity, since these various influences might be overcome by differ-
ent critical currents. This can be a possible explanation for some of the differences observed be-
tween the data of paragraphs 2.2 and 2.3 in the vortex solid phase, since the measurements have
been obtained at different current densities.

It would also be extremely interesting to extract from our data the ordinary (antisymmetric) Hall
effect as a function of current orientation with respect to the twin boundaries. Unfortunately, we
have tried to perform this data processing, but the results were completely inconsistent, not even
showing any general trend, nor being reproducible after a complete 360 ° current rotation. The
problem is that this requires the determination of the angles βj and βE with very high accuracy,
since we then have to project the electric field on a direction perpendicular to the current. There-
fore, non-constant errors in βj or βE would result in a variable mixing of longitudinal and transverse
components. Since the Hall effect is very small, only a little parasitic contribution of other compo-
nents is enough to completely dominate the result. A contact pattern like the one drawn in
Fig.V-12 b, with a fairly good misalignment correction, would probably provide much more useful
results, since it would provide a more accurate and reproducible determination of βj and βE.

In any case, this new experimental method is obviously a very good way to investigate the influ-
ence of twin planes on vortex dynamics in RBa2Cu3O7 – type samples. Many questions can be ad-
dressed this way. For example, more data should be collected on the transition from the normal
state anisotropy (as measured by Villard et al. [154]) to the opposite guided motion anisotropy,
since the present results are not conclusive.

Figure V-12 : a) Schematic contact pattern used in this work : the x and y axis are not equivalent, since, for
example, the voltage taps for the x direction are not placed properly in between the feeds for the y current com-
ponent. b) Example of a more ideal contact configuration for the study of guided motion as a function of the
current orientation, with a better reciprocity in both x and y directions.

a) b)

x

y
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Deeper in the mixed state, we have seen that our sample mainly shows a twofold symmetric angu-
lar response, with some indication of a fourfold symmetry lower in the vortex solid phase. It would
be interesting to look at other types of samples, either unidirectionally twinned or on the other hand
more uniformly twinned in both directions, to see how the angular response correlates to the twin
structure as a function of the temperature and magnetic field. We could then evaluate the influence
of the guided motion on standard longitudinal resistivity measurements, in which the response of
only one current direction is analyzed through only one, parallel, voltage component.

A very important issue is also to understand what happens exactly in originally twinned crystals
that are submitted to a uniaxial stress at rather high temperature in order to be detwinned. Even
though the contrast in polarized light pictures of the sample surface1 is observed to disappear dur-
ing this process, it is difficult to know if the samples are then really completely twin free. For ex-
ample, the critical current is not significantly reduced in the detwinned samples, whereas an
important source of vortex pinning should have been removed [156]. Moreover, when looking at
the surface more carefully, dark lines in the  and  directions are still slightly
visible [157], indicating that the uniaxial stress might only have moved the twin boundaries to pro-
mote one of the two twin orientations, without actually resulting in the annihilation of the bound-
aries themselves [157]. In some cases, two successive twin planes would then be too close to each
other to be detectable with the help of an optical microscope. Clearly, the method used here might
be a good way to characterize these samples, by looking at a possible remanent anisotropic pinning.

As a complement to the results presented here, a confirmation that the even Hall effect in
YBa2Cu3O7-δ is indeed related to guided motion of vortices along the twin boundaries can be
found in Ref. [127]. In these measurements of the Hall effect in an untwinned crystal, the trans-
verse voltage has been reported to have a negligible part symmetric with respect to the magnetic
field.

Finally, we also want to point out that this experimental method can find another very interesting
application. We have mentioned in chapter I (page 5) that the Bragg glass, the vortex solid phase
occurring in sufficiently clean systems, has a characteristic transverse dynamics which should al-
low us to clearly identify this particular vortex phase. The idea is that once this glass has been put
in motion in a given direction, a change of this direction requires an intrinsic transverse force spe-
cific to this vortex phase, since its motion occurs along well defined channels. Therefore, even if
the longitudinal motion is itself non-linear, the transverse component of the response should have
a different non-linear characteristic due to this effect. A nice way to detect it could then be to apply
a current rotating in the sample plane, and measure the resulting electric field, in magnitude and
direction. The difference between the longitudinal and the transverse components of the response
would then induce a lag ∆β = βE − βj between the current and the electric field directions. This lag
should then change its sign when switching from a clockwise to a counterclockwise current rota-
tion, and should depend on the current intensity. Of course, an untwinned crystal is required for
this kind of measurement, since the lag ∆β is very probably much smaller than the contribution of
guided motion by twin boundaries observed in our sample.

1. corresponding to the alternation of twins of opposite orientations (see Fig. IV-11).

 (110)  (110)
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CHAPTER VI RESULTS : HALL EFFECT

1. Hall effect in the vortex solid

In this chapter, we present and discuss the results for the Hall effect in the mixed state of our
YBa2Cu3O7-δ sample, already partially presented elsewhere [158]. As we have mentioned previ-
ously, the main achievement of this work with respect to the already existing experimental studies
is that we have performed the measurements both in the vortex liquid and the vortex solid phase,
across the well identified vortex phase transition.

All the measurements and data processing have been performed following the procedures com-
mented in chapter IV, paragraph 1.5. Among these procedures, we recall that we extract the Hall
effect from the part of the transverse resistivity which is antisymmetric upon reversal of the mag-
netic field polarity, in order to reduce as much as possible the influence of the guided motion (dis-
cussed in the preceding chapter) on the results. The only non-systematic step in the data processing
procedures is the averaging between two equivalent sets of measurements performed with opposite
current polarities : only some of the data shown here are the result of such a process. An indication
of whether or not this current symmetrization has actually been done will be given for each of the
reported results.

1.1 Measurements as a function of the temperature

We start with measurements at constant magnetic field, done as the temperature is slowly increased
at a rate of 0.4 K per minute, with the field inclined by α = 4 ° away from the c-axis, in order to
reduce the influence of the twin boundaries. In Fig. VI-1 the longitudinal and Hall resistivities are
first shown for B = 2 T. The open symbols correspond to measurements at low current density,
clearly revealing the vortex phase transition at Tm ≈ 88.2 K. Solid symbols represent data for a
much higher current (with only one current polarity). The vortex solid is then set into motion, al-
lowing us to probe its dynamics.

In both cases, the Hall anomaly is clearly visible : the Hall resistivity ρxy is indeed positive in the
normal state and slightly below, but changes sign just above 92 K, only slightly below Tc ≈ 93.5 K.
It then reaches a negative maximum before returning to a value of zero because of the vanishing
vortex mobility at lower temperatures. For low current, both resistivities drop to zero quite sharply
at the vortex phase transition, since at that point the critical current steeply increases. On the other
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hand, at higher current, the Hall resistivity shows a shoulder extending into the vortex solid, much
like the corresponding well known behavior of the longitudinal resistivity. A careful examination
of the data in the vortex solid reveals no significant difference in the onset temperatures of both
resistivities ρxx and ρxy.

From these data, we can then extract the Hall angle and the Hall conductivity, both shown in
Fig. VI-2. From the expressions relating these two quantities to the resistivities (tan θH = ρxy / ρxx
and σxy = ρxy / (ρxx

2 + ρxy
2) ≈ ρxy / ρxx

2), it is evident that when the measured ρxx and ρxy decrease
below the noise level, the calculated values of tan θH and σxy are scattered and are no more signif-
icant. Therefore, the representation of the data for low current is interrupted when the large scat-
tering starts, namely at the vortex phase transition, where the resistivity vanishes. From the data at
high current, it is also interesting to note that the noise becomes more important just as the vortex
phase transition is crossed from the vortex liquid to the vortex solid. This noise is intrinsic to the
vortex solid, which moves by irregular motion of bundles, or avalanches, of correlated vortices.

If we now focus on the conductivity σxy, we immediately see what is the most striking result of this
work : the slope of the Hall conductivity is much steeper in the vortex solid than in the vortex liq-
uid. Moreover, the transition from the usual vortex liquid behavior to the fast drop of the conduc-
tivity at low temperatures is very sharp, and happens right at the vortex phase transition. This is the
first experimental evidence that the vortex phase transition affects the Hall behavior.

In Fig. VI-3 are represented equivalent data for magnetic fields ranging from 1 to 4 Tesla. In all
the cases, the steep drop of the Hall conductivity is clearly visible, and its position can be checked
to correspond precisely to the vortex phase transition temperature. The sudden appearance of noise
at this point is also systematic, even though the use of only one current polarity might be respon-
sible for some of the peaks in σxy (see Fig. IV-9 on page 59).

Figure VI-1 : Longitudinal resistivity ρxx and Hall resistivity ρxy as a function of the temperature, in a mag-
netic field B = 2 T inclined at α = 4 ° away from the c-axis. Open symbols correspond to a current density of
j = 1 A/cm2 rms, and reveal the vortex melting at Tm ≈ 88.2 K. Solid symbols are measured with a higher cur-
rent j = 150 A/cm2 dc + 50 A/cm2 pp of single polarity.
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Figure VI-2 : Hall angle tan θH and Hall conductivity σxy obtained from the data of Fig. VI-1. B = 2 T,
α = 4 °, j = 1 A/cm2 rms (open symbols) and j = 150 A/cm2 dc + 50 A/cm2 pp (solid symbols, single polari-
ty). The dramatic change of behavior of the conductivity at the vortex phase transition is clearly visible.

Figure VI-3 : Hall conductivity σxy as a function of the temperature for various magnetic fields, always in-
clined by α = 4 ° from the c-axis. The current is j = 150 A/cm2 dc + 50 A/cm2 pp (single polarity). Inset : de-
tail of the same data showing the sign change.
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The inset of Fig. VI-3 shows the same data, but on a reduced scale, only concerning the vortex liq-
uid phase. The sign change is then well observable, and the asymptotic normal state Hall conduc-
tivity (only weakly dependent on the temperature and proportional to the magnetic field) is
apparent. Note that the scale of the inset provides a good idea of the improvement made in the
present work compared to the data existing in the literature : to our knowledge, the lowest values
precedently reported for σxy in YBa2Cu3O7-δ were between − 2.5x10-3 and − 3.5x10-3 µΩ-1 cm-1

[122,124,125,132], about a factor two too small to reveal the change of behavior related to the vor-
tex phase transition reported here. Note, however, that values with a magnitude similar to our data
(60x10-3 µΩ-1 cm-1) can more easily be obtained in HgBa2CaCu2O6+δ, which have a much larger
longitudinal resistivity for a comparable (though positive) Hall angle [107].

Therefore, it is evident why the striking behavior of the Hall conductivity of Fig. VI-3 has never
been reported before. Even though some experimental data for ρxy or tan θH, other than those cited
above, might have sufficient accuracy to reach large enough negative values of the conductivity
σxy ≈ ρxy / ρxx

2 = tan θH / ρxx, the fact that the conductivity is not explicitly calculated and shown
prevents the observation of this effect. The signature of the vortex phase transition is indeed only
present in σxy, whereas nothing can be detected in the Hall resistivity ρxy nor in the Hall angle
tan θH (except for the larger noise in the vortex solid).

Finally, from the same set of data, we can also study the scaling relation |ρxy| = A ρxx
β between the

Hall conductivity ρxy and the longitudinal resistivity ρxx. In Fig. VI-4 are shown the data measured
as a function of the temperature for three different magnetic fields. Observe that the sharp dips at
the right of the plot correspond to the sign changes of ρxy, corresponding to divergences when the
absolute value is represented with a logarithmic scale.

First of all, it is remarkable to see how well the scaling law is verified over many orders of magni-
tude, as has already been reported in the literature (see chapter III for a review). Note also that the
data for all the different magnetic fields not only form a straight line in the log-log plot, but also
collapse all on the same line. This means that the prefactor A in the scaling relation is not only tem-
perature independent in this regime, such that the power law is verified for ρxy(T) versus ρxx(T),
but is also magnetic field independent, such that data measured as a function of the magnetic field
at a fixed temperature would also verify the same scaling relation for ρxy(B) versus ρxx(B) with the
same exponent (at least in an equivalent magnetic field range). This will indeed be directly verified
in the next paragraph. Finally, the value β = 1.4 found here is consistent with the widely scattered
data found in the literature.

But the most interesting result coming out of Fig. VI-4 is that the scaling relation is absolutely con-
tinuous through the vortex lattice melting transition, unperturbed by the change of vortex phase.
Even though the scaling law has been observed to be verified in a vortex solid phase for data mea-
sured as a function of the current by Wöltgens et al. [50], it was shown that the parameters A and
β were then temperature dependent (although they were constant in the liquid phase), meaning that
data measured as a function of the temperature would not scale through the phase transition. More-
over, in this thin film sample, the solid phase was a disordered vortex glass, such that the transition
was not sharp, first order-type, and was not reported to be associated to a dramatic change of the
Hall behavior (like the sharp drop of the Hall conductivity that we see here). It is indeed very sur-
prising to see in our case how a big change of slope of the conductivity can remain without any
effect on the scaling relation. This certainly has to be explained.
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1.2 Measurements as a function of the magnetic field

If we try to interpret the results for the Hall conductivity shown above, we will certainly reach an
important question : apart from the vortex melting corresponding to the sharp drop of σxy, which
other varying parameter can play a role in this striking behavior ? As first noted by Hagen et
al. [109] (see page 42), some microscopic parameters indeed also seem to be strongly correlated
to the Hall anomaly, namely the ratio between the electronic mean free path  and the coherence
length ξ. Since these two quantities depend on the temperature in opposite ways, this ratio changes
during the measurements of the preceding paragraph : ξ /  is presumably larger than unity at high
temperature (dirty limit), while it probably drops much lower when the temperature is sufficiently
reduced (superclean limit).

Provided the expected behavior in the superclean limit precisely corresponds to a Hall angle of
θH = π / 2, or in other words to diverging tan θH and σxy, which is at first sight consistent with our
data. However, in superclean systems, the Hall angle can actually only be positive, which means
that the vortices are at rest in the supercurrent frame of reference (vortices flow together with the
current), thus not really compatible with the negative Hall anomaly, in which the vortices have to
flow against the current density1. Moreover, even though our σxy seems to indeed diverge, the Hall

Figure VI-4 : Log-log plot of the absolute value of the Hall conductivity ρxy as a function of the longitudinal
resistivity ρxx for α = 4 °, j = 150 A/cm2 dc + 50 A/cm2 pp (single polarity), and three different magnetic
fields : B = 1, 2 and 3 T. The temperature is the implicit running parameter for each of the curves. The pow-
er-law scaling relation |ρxy| ∝  ρxx

β is clearly apparent, and is underlined by a dashed straight line, correspond-
ing to an exponent of β = 1.4.

1. Note for example that in underdoped Y:123, Harris et al. incorrectly interpret a very large negative Hall
angle as an evidence for a superclean regime [159]. In their case, a preformed pairs scenario seems more
adapted to their data [43].
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angle rather seems to vanish. But still the possible role of the temperature dependent microscopic
parameters cited above is worth checking.

This question can be very simply addressed by performing the same type of measurement for the
conductivity as in the preceding paragraph, this time at constant temperature, as a function of the
magnetic field. Therefore, these measurements can be assumed to be done at constant values of the
ratio ξ / . The data are shown in Fig. VI-5.

The answer is immediate : the fast change of slope of the Hall conductivity is again visible, and is
still associated to the vortex phase transition. Aside from this fact, it is also noteworthy to stress in
light of Fig. VI-5 that the normal state conductivity, measured here at T = 94 K, is linear in the
magnetic field and strictly positive, even though this temperature is only half a degree above Tc,
therefore still in the fluctuation region of the superconducting transition.

Finally, from the similarity between measurements done at constant temperature and at constant
magnetic field, we can conclude that the new observed behavior for the Hall conductivity is not
caused by the temperature dependence of the ratio ξ / , but is really directly related to the vortex
phase.

1.3 Current dependence

All the results presented up to now for the vortex solid phase have been performed with the same
current density, large enough to set the solid into motion. However, as we have seen in Fig. VI-1,
the system is already non-linear close to, but above the melting, in the vortex liquid phase. Whereas
Fig. VI-2 shows that the Hall conductivity in the liquid phase is not significantly altered by this

Figure VI-5 : Hall conductivity σxy as a function of the magnetic field for various temperatures, from the
normal state (at T = 94 K) down to T = 86 K. The magnetic field is inclined by α = 4 ° from the c-axis. The
current is j = 150 A/cm2 dc + 50 A/cm2 pp, with a single polarity except for the data at 88 K, which are aver-
aged between both current polarities.
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non-linearity, we also have to study the behavior of the vortex solid, where the non-linearity is
much stronger.

For this, we have measured the longitudinal and Hall resistivities at various different current den-
sities. The results are presented in Fig. VI-6. As we have already stated at the beginning of the
chapter, the behavior of ρxx and ρxy in the solid phase are very similar : both resistivities drop rather
sharply at low current densities, but extend more and more into the solid phase as the current is
increased.

More interesting is the Hall conductivity that can be calculated from these data, even though they
are more noisy than the curves presented before. The result is shown in Fig. VI-7 for a selection of
three different dc current densities. Obviously, the Hall conductivity is not at all linear in the vortex
solid phase : the change of slope at the vortex phase transition Bm is dramatic at low currents, but
is smoother for larger currents. At j = 200 A/cm2, the change is strongly reduced – though still
present – at the melting field, but it appears, despite the rapidly increasing noise, that the conduc-
tivity decreases gradually faster at lower fields to finally approach a slope similar to that observed
at smaller currents.

This strong current dependence suggests that the observed change of the conductivity slope at the
vortex phase transition is related to pinning forces. The effect is indeed the most apparent at low
currents, where the material defects have the largest impact on vortex motion. When the current
rises, the flux flow becomes less influenced by pinning forces, and the conductivity retains a be-
havior more similar to the liquid state, until the magnetic field is reduced enough to let again the
disorder dominate the vortex dynamics. We shall come back to this discussion later on.  

Figure VI-6 : Longitudinal resistivity ρxx and Hall resistivity ρxy at T = 89 K as a function of the magnetic
field, for a set of different current densities. The currents are indicated in A/cm2 following the notation
(jdc, jac), the measurements at non-zero dc currents being done with a single polarity. The field is inclined at
α = 3 ° away from the c-axis.
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We now turn to the scaling relation between the Hall and the longitudinal resistivities, more pre-
cisely to its current dependence. In Fig. VI-8 are plotted three curves from selected data of
Fig. VI-6. Surprisingly, the large differences observed in Fig VI-7 are not apparent here : the scal-
ing is systematically verified, still with the constant value of the exponent β = 1.4. Of course, this
is not completely unexpected, since we had already seen in paragraph 1.1 that the scaling was con-
tinuous at the vortex phase transition for j = 150 A/cm2. Therefore, if the scaling behavior was cur-
rent dependent in the vortex solid (remaining current independent in the liquid, where both
resistivities are linear), it would be very unlikely to have identical liquid and solid scaling laws pre-
cisely for this specific value of the current only.

Actually, this omnipresent scaling law and the peculiar value of the exponent β brings us a new
way to consider the data of Fig. VI-7. On the one hand, we know that the conductivity is very well
approximated by σxy ≈ ρxy / ρxx

2. On the other hand, we have checked that the scaling relation
|ρxy| ∝  ρxx

β holds across the vortex phase transition with β = 1.4 for all of our measurements.
Therefore, we get σxy ∝ ρxx

− 0.6 as a direct consequence of the general scaling relation. Provided
that the drop to large negative values of the Hall conductivity at the vortex phase transition is very
sharp at low currents, but almost disappears at high current density (see Fig. VI-7), it might be ar-
gued that it is only an extrinsic effect, a sort of pinning-induced artifact. However, we now see from
the line of argument above that the sink of σxy is no more an "artifact" than the sharp drop of ρxx
at the melting transition : both are indeed directly related to the vortex phase transition, and are
simply similarly smoothed out at large current densities, as a direct consequence of the Hall scaling
law binding them together. In some way, understanding the origin of the scaling law is a central
challenge, the rest of the Hall behavior following from the longitudinal resistivity behavior. Of
course, this does not mean that deriving the scaling law is the only theoretical difficulty, since the

Figure VI-7 : Hall conductivity σxy calculated from the data of Fig. VI-6, for three selected values of the dc
current component (of single polarity). The ac component is always jac = 4 A/cm2 pp, T = 89 K and α = 3 °.
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description of ρxx is non-trivial in itself : to predict its behavior at the melting transition or in the
vortex solid is a demanding, still open question in collective vortex dynamics.

The current dependence of σxy brings us a second reason why this new behavior of the Hall con-
ductivity at the vortex phase transition is rather hard to observe. Aside from the necessity to reach
the large negative values of σxy corresponding to the vortex lattice melting, as noted on page 90, it
is also necessary to perform the Hall measurements at reasonably low current to observe the sharp
slope change of the conductivity at the transition. Measuring at low current in the vortex solid
means a very low signal, such that an extremely low noise level is absolutely essential for such
work.

1.4 Field direction dependence

In paragraph 1.3 above, by changing the current density we saw that the Hall conductivity is pin-
ning dependent. Another way to modify the pinning influence in our sample is to change the ori-
entation of the magnetic field. As seen in the preceding chapter, the twin boundaries indeed have
a strong impact on vortex dynamics, depending significantly on the angle between the magnetic
field and the twin planes. Therefore, we give here a last series of measurements of the Hall effect
for different field orientations α.

The results presented in Fig. VI-9 allows us to compare the Hall behavior at α = 0 °, 4 ° and 7 °.
Note that the data for α = 4 ° are just the same as those at high current of Fig. VI-1 and VI-2, as
well as those labelled B = 2 T in Fig. VI-3 and VI-4.

Figure VI-8 : Log-log plot of the absolute value of the Hall conductivity ρxy as a function of the longitudinal
resistivity ρxx for T = 89 K, jac = 4 A/cm2 pp and three different, indicated jdc (of single polarity). The mag-
netic field, inclined at α = 3 °, is the implicit running parameter for each of the curves. The power-law scaling
relation |ρxy| ∝  ρxx

β is clearly apparent, and is underlined by a dashed straight line, corresponding to an expo-
nent of β = 1.4.
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The picture formed by the ρxx curves is similar to Fig. V-2 of the preceding chapter, where we have
noted that when α = 4 °, the resistivity is higher in the liquid phase than in the α = 0 ° case (field
along the twin planes), but is slightly reduced in the solid phase. Now we can add that for larger
angles, the longitudinal resistivity is always larger than when α = 0 °, even in the vortex solid.
From Fig. VI-9 we also immediately see that the Hall behavior does not follow the same trend : the
relative positions of the different curves observed in the liquid state – which is the same as the cor-
responding order between the longitudinal resistivities – is preserved in the vortex solid phase : we
always have an increasing Hall resistivity for increasing angles α.

This difference in the angle dependence of both the longitudinal and Hall resistivities has a very
important consequence on the Hall conductivity, shown in Fig. VI-10. At α = 4 ° and 7 °, the vortex
liquid behavior is the same, and the curves spread at the vortex phase transition, with a sharp slope
change for α = 4 °, and a much smoother deviation from the liquid trend at α = 7 °. This can be seen
as the same pinning effect as in Fig. VI-7 : at large angles α, the pinning of twin boundaries is re-
duced, such that the usual current density (j = 150 A/cm2 dc + 50 A/cm2 pp) is more "efficient"
than at lower angles, or in other words it is bigger with respect to the critical current, leading to a
behavior close to the data for larger currents measured at α = 4 ° (see the curve at jdc = 200 A/cm2

in Fig. VI-7).  

For α = 0 °, on the other hand, the conductivity starts to deviate from the other curves in the vortex
liquid already, below TTB but clearly above TBG. After a small bump below the usual σxy curve
(i.e., at larger negative values), the Hall conductivity seems to reach a constant value in the vortex
solid, at approximately σxy = 6x10-3 µΩ-1 cm-1. This can in no way be interpreted following the
same pinning argument as above : at α = 0 °, the twin planes influence should be the largest, and
the conductivity should sink event faster than for α = 4 °.

Figure VI-9 : Longitudinal resistivity ρxx and Hall resistivity ρxy as a function of the temperature, in a mag-
netic field of B = 2 T inclined from the c-axis by α = 0 °, 4 ° and 7 °. The curves for α = 0 ° and 7 ° are averages
between data for both polarities of the current density, whose magnitude is j = 150 A/cm2 dc + 50 A/cm2 pp.
For α = 4 °, the current has the same value, but the measurement is done with only one polarity.
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Figure VI-10 : Hall conductivity σxy as a function of the temperature calculated from the data of Fig. VI-9.
B = 2 T, α = 0 °, 4 ° and 7 °. The current is j = 150 A/cm2 dc + 50 A/cm2 pp (both polarities for α = 0 ° and
7 °, single polarity for α = 4°).

Figure VI-11 : Log-log plot of the absolute value of the Hall conductivity ρxy as a function of the longitudi-
nal resistivity ρxx, for a magnetic field of B = 2 T tilted away from the c-axis by different angles α. The current
is j = 150 A/cm2 dc + 50 A/cm2 pp (both polarities for α = 0 ° and 7 °, single polarity for α = 4°). The tem-
perature is the implicit running parameter for each of the curves. The power-law scaling relation |ρxy| ∝  ρxx

β

is verified with β = 1.4 for α = 4 ° and 7 ° and β = 2 for α = 0 ° (dashed lines).
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The repercussion of this different Hall behavior for the Hall scaling law is illustrated in Fig. VI-11 :
whereas the data for α = 7 ° still match the same scaling relation as all the measurements shown
before, namely with an exponent β = 1.4, the curve corresponding to α = 0 ° clearly displays some-
thing different : it still scales down to very low values of the resistivity and through the vortex
phase transition, but with a different slope on the log-log plot. Practically, the new value of the
exponent is β ≈ 2.0 (the curve fit more precisely leads to β = 2.06, meaning that σxy possibly could
even vanish at lower temperatures; however, this small nuance is beyond the noise level). Actually,
this approximate value of β could already be expected from the behavior of the Hall conductivity
σxy shown in Fig. VI-10 : since from the scaling law we can write σxy ∝ ρxx

β − 2, a constant con-
ductivity can only correspond to β = 2 provided ρxx is far from being constant, as it drops by more
than one order of magnitude in the scaling region.

2. Discussion

2.1 Phenomenology of the results

As a first step in the discussion of our results, we will summarize the observed behavior for the
Hall conductivity, and discuss it empirically. The link with the different theories for the Hall anom-
aly and the Hall scaling law will be given in the next paragraph.

The results of this chapter give a new insight into the low temperature / low magnetic field mixed
state Hall behavior. Although they do not provide new information on the sign change of the Hall
effect that happens higher in the vortex liquid, they include most of the rich physics characteristic
of the mixed state : linear and non-linear conductivity, solid and liquid vortex phases, partial and
"tunable" influence of twin boundaries, etc. The results around the vortex phase transition can be
condensed into two main points :

• when the magnetic field is tilted away from the c-axis (and thus from the twin planes) by more
than approximately α∗  ≈ 2 ° to 3 °, the Hall resistivity obeys the scaling law |ρxy| ∝  ρxx

β with
β = 1.4 from about the negative maximum of ρxy down to the vortex solid, through the vortex
phase transition. As a consequence, the negative Hall conductivity diverges as the longitudinal
resistivity ρxx vanishes, since σxy = ρxy / (ρxx

2 + ρxy
2) ≈ ρxy / ρxx

2 ∝ ρxx
β − 2 ∝ ρxx

− 0.6.

• when the magnetic field is parallel to the twin planes (α = 0 °), the scaling law still holds in the
non-linear region, namely slightly above and all the way below the vortex phase transition, but
with β ≈ 2. The Hall conductivity σxy is then basically constant.

Since in the considered regime the Hall behavior is completely determined by the longitudinal re-
sistivity through the scaling relation, we start by commenting on the scaling law. We first note that
our value of β = 1.4 is very constant, in the sense that it is independent of the temperature, magnetic
field intensity and orientation (for α > α∗ ), as well as current intensity, contrary to some measure-
ments reported in the literature. Actually, as we have seen in chapter III, the few available experi-
mental values of the exponent are quite scattered, and the general dependences on the above
parameters is far from being clearly established. We believe that these disagreements are partly the
consequence of a considerable sensitivity of the scaling relation to backgrounds and offsets in the
measured resistivities : for example, a small, non-constant inductive contribution to the signal,
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which might be negligible for most of the measured data (e.g. in the vortex liquid), will have a
strong influence on the scaling behavior, which shifts the focus on the low-level data (considered
in logarithmic scale). However, note that our value of β = 1.4, even though very constant and re-
producible, is still associated with a small fitting statistical error (of the order of ± 0.05 to ± 0.1)
because of the noise level. Therefore, it can also be compatible with the (often reported) value of
β = 1.5, which has the particularity to lead to a Hall conductivity expressed as a function of the lon-
gitudinal resistivity as

.

Another recurrent controversy in the experimental literature that can be addressed with our mea-
surements is the pinning dependence of the Hall conductivity. As we have already noted on
page 94 and in the results summary just above, this information is trivially obtained in the scaling
regime : since ρxx is obviously always pinning dependent, σxy is pinning independent if and only
if β = 2. In all other cases, σxy depends on pinning through ρxx. In our sample, we therefore have
a clear dependence of σxy on pinning for tilted magnetic fields. On the other hand, we can assume
from the scaling law that at α = 0 ° the Hall conductivity is pinning independent, even though we
do not have directly measured σxy at different currents for this field orientation.

Although the Hall scaling is valid almost up to TTB (or BTB for measurements performed as a func-
tion of the magnetic field), the pinning dependence revealed on ρxx and ρxy by changing the mag-
netic field orientation α (see Fig. VI-9), which is well marked far above Tm (respectively Bm), is
not apparent in the Hall conductivity, probably because the effect of the field rotation on σxy is too
small to be observed correctly. The influence on σxy is visible only when ρxx and ρxy become non-
linear and more temperature (or field) dependent, namely close to Tm (or Bm). However, between
Tm and TTB (respectively Bm and BTB), β is in clearly not close to 2, such that σxy is rigorously pin-
ning dependent (and thus α dependent) through ρxx. Therefore, in some sense, the scaling argument
is much more sensitive to address the question of pinning dependence of the Hall conductivity than
a direct measurement of this conductivity under different pinning conditions. For example,
Samoilov [125] have concluded that σxy is independent of pinning on the basis of data performed
strictly in the linear regime. However, it is clear from their data that the Hall scaling leads to an
exponent β smaller than 2.

Aside from these considerations on scaling, the influence of twin boundaries should also be dis-
cussed. It might indeed be argued that the Hall effect in general, and notably the change of behavior
at the vortex phase transition in our crystal is strongly influenced by the twins. However, a couple
of arguments can cancel these doubts. First of all, as already noted several times in the literature,
the Hall effect of both twinned and untwinned samples is very similar. This is confirmed by our
results, which are in very good quantitative agreement with measurements in an untwinned
crystal [127,51], where it was reported that no even Hall effect, namely no guided motion, was
observable [127].

Even more convincingly, we can point out that the observed change of behavior of σxy at the vortex
phase transition is very sharp, whereas we have experimentally shown in chapter V that the onset
of guided motion is smooth, and starts already deep in liquid. From this we can affirm that the (odd)
Hall effect is not affected by guided motion in our twinned sample; in this sense, the statement we
have made at the beginning of this chapter, namely the fact that extracting the antisymmetric part
of the transverse resistivity upon magnetic field reversal allows us to eliminate the influence of
guided motion, is justified a posteriori. The reason for this is that, as we have seen in chapter V,
there is probably no absolute guided motion, even in the vortex solid, for the orientation of current

   σ xy ∝ 1 ρxx1 ρxx
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we have used here (at 45 ° from the twin planes, namely at βj = 0 ° to follow the notation of the
preceding chapter). Therefore, as soon as the vortices leave the twin planes to achieve a trajectory
not strictly parallel to them, the overall motion can be influenced by the intrinsic bulk Hall angle.

Of course, if the pinning produced by the twin boundaries is stronger (in dirtier samples, for exam-
ple), the guided motion can have a much stronger influence, and even dominate the antisymmetric
transverse response. To illustrate this, we recall that Morgoon et al. [49] have measured the Hall
effect in three different unidirectionally twinned Y:123 films, each of them having a different di-
rection of the current with respect to the twin planes. It is very interesting to first note that in one
of their samples (labelled S#1 in Ref. [49]), in which the current is at − 60 ° from the twin planes
(i.e. βj = 75 ° in our notation), they actually measure a sharp change of slope in the Hall conductiv-
ity, just like we report in the present chapter for βj = 0 °. However, their data for the longitudinal
resistivity do not show a corresponding sharp step indicating the simultaneous occurrence of a vor-
tex phase transition (the first oder lattice melting is not observed in film samples).

Moreover, the interpretation of this behavior is all the more delicate since the two other samples
(S#2 and S#3) have a very different Hall conductivity. Although the sample S#3 has an acceptable
behavior, since its conductivity is qualitatively1 similar to that of S#1, the last sample (S#2) pre-
sents rather puzzling data. Even though the current orientation is not fundamentally different from
that of S#1 (it is at 45 ° from the twin planes, namely at βj = 0 °), the Hall conductivity indeed
shows two additional sign reversals in the low field regime, separated by a sharp and very large
positive peak. Since this behavior has never been reported by other authors for similar samples
(and for the same current orientation, which is most often used), and since this difference between
S#1 and S#2 is too important to be explained by the minor change of current orientation with re-
spect to the twin planes, we conclude that these observations are rather the consequence of a sam-
ple dependence than the result of the different current orientations. In some sense, this shows how
interesting it might be to improve our eight terminal technique to extract the Hall effect for any
current orientation in the same sample (see discussion on page 85).

Finally, we turn to the Hall behavior for the magnetic field oriented along the twin planes (α = 0 °).
Whereas we have noted that the Hall scaling exponent β is independent on the temperature and the
magnetic field, we have seen that it depends strongly on the field orientation α (Fig. VI-11). This
indicates that the scaling law is disorder-type dependent, with β = 1.4 for point disorder and β = 2
for correlated disorder (see discussion in paragraph 2.2), when vortices are localized inside the
twin boundaries.

We have noted in chapter IV (see Fig. IV-18 and discussion on page 68) that the vortex solid phase
is presumably a vortex lattice (or a Bragg glass) for α > α∗  ≈ 2 ° to 3 °, and a Bose glass when
α < α∗ . Therefore, the corresponding change in the scaling exponent β might be related to this
change of the nature of the solid phase. It is worth pointing out that in the original description of
the Bose glass [23], the Bose glass transition is indeed expected to have a different universality
class of critical exponents than the vortex glass from Fisher et al. [22]. However, it is still not yet
clear whether there is a direct link between the critical exponents of the transition from the vortex
liquid to solid and the exponent of the Hall scaling law (see discussion on page 40), as was pro-
posed by Dorsey et al. [86]. Another similar development in terms of critical exponents, this time
in the frame of percolative processes, will also be given further on (see next paragraph, page 104).

1. the particular current orientation, which is just orthogonal to the twin boundaries, βj = 45 °, can justify the
quantitative difference
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In any case, the very different behavior of the Hall conductivity for α > α∗  and α < α∗  allows us
to confirm that the Bose glass and the vortex lattice phases are not only different from a configu-
rational (static) point of view, but also have very different dynamic properties. Further, the value
of β = 2 for α = 0 ° have led us to state that the Hall conductivity is independent of disorder. More-
over, it is important to stress that this is the first time that an exponent of β = 2 is precisely shown
to correspond to a constant Hall conductivity σxy. Although most of the reports of the same value
of the exponent do not show the corresponding conductivity, a few works report both a diverging
conductivity and a contradicting exponent of β = 2. In this case, the explanation can probably be
found in a small though significant error in the numerical estimation of β (see the comment about
Ref. [120] on page 45). In this sense, our simultaneous report of β = 2 and a constant Hall conduc-
tivity in the same regime shows that in our case the exponent is accurately equal to 2. It would be
very interesting to know if these properties are intrinsic attributes of the Bose glass in general. This
is of course an open question.

As a last comment, we also want to emphasize that the strong dependence of the exponent on the
spatial correlation of the defects together with the magnetic field orientation can explain at least a
part of the scattering in the experimental determinations of β. This also leads us to a remark on
Ref. [124], in which twinned Y:123 crystals are irradiated to different doses, and the scaling expo-
nent is measured at different magnetic fields for each irradiation level. The authors then report that
β is found to be 1.5 for all the irradiated samples, but is 2 for almost all the data of the unirradiated
crystal (except the measurement at B = 1 T, for which they also find β = 1.5). This is at first sight
very surprising, since this behavior is exactly opposite to our own findings : we have β = 2 when
correlated disorder (twins in our sample) is relevant, and β = 1.4 in the other case. We can tenta-
tively explain this striking difference by first noting that the samples in Ref. [124] are indeed also
twinned, and that, as mentioned in the text, the irradiation beam "was aligned approximately par-
allel to the c-axis" [124]. Therefore, it is quite probable that the disorder is actually more "corre-
lated" in the non-irradiated sample, where they have performed the measurements with the field
well aligned with the twin planes, leading to β = 2, just like in our sample, than in the irradiated
samples which have columnar defects at an angle from the twin planes, leading to a so-called
"splayed defects" configuration, in which the vortices are much more entangled and can have very
different properties [160]. It is possible that the measurement at B = 1 T has been done in a slightly
different orientation, at α > α∗ , which is of the order of the sample alignment accuracy for the usual
geometry of cryostats, as we have noted at the very beginning of chapter IV. This hypothesis, if
verified, is very interesting, since it would then suggest that a vortex glass in the case of splayed
defects has the same Hall scaling exponent as the vortex solid in a twinned crystal in inclined mag-
netic fields. The corresponding theories (Ref. [160] and [155], respectively) have to be completed
before they can bring an answer to this question. The two families of twin boundaries could event
actually play the same role for inclined field as the two directions of columnar defects considered
in splayed disorder models. Even though these comments are rather speculative, a systematic ex-
perimental investigation of these types of samples would be informative.

2.2 Theoretical implications

We will now discuss the results reported in this chapter more specifically from the theoretical point
of view. However, we first have to note that, as we have already mentioned at the beginning of the
preceding paragraph, our data are more concerned with the relation between the vortex phases and
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the Hall effect, focusing on the vortex liquid to solid phase transition, than on the Hall anomaly
itself, namely the Hall sign reversal. As a consequence, the theories presented for the Hall anomaly
in chapter III are not really adequate, since they do not take into account the vortex phase, nor even
vortex-vortex interactions in its full complexity. The difficulty is even increased by the fact that
even the vortex lattice melting itself has no satisfying microscopic explanation at the present time.
Moreover, the new behaviors of the Hall conductivity that we have seen here, namely a sharp
change in its slope at the vortex lattice melting transition, as well as a constant conductivity in (and
slightly above) the Bose glass phase, occur in the regime of the Hall resistivity scaling, which is
itself not convincingly predicted either.

To start with, we want to point out that in a recent comment on the present work [161], Ao sees the
vortex solid Hall behavior as the verification of the vortex lattice defects model presented in
chapter II, paragraph 3.2 (see also Ref. [64,65]). Of course, we agree with some of his arguments.
First, the pinning certainly plays a dominant role on the Hall conductivity in the vortex solid. Sec-
ond, since the collective pinning, in close relation with vortex-vortex interactions, is well known
to be necessary to successfully describe the longitudinal flux flow resistivity in presence of weak
disorder, it is reasonable to expect the same interactions to be required for a correct description of
the flux flow Hall component of the resistivity under the same conditions. However, we are not
absolutely convinced that our experimental data (and more generally all the phenomenology of the
Hall anomaly) is completely described by this theory. Since it is based on the independent motion
of vacancies in an otherwise rigidly pinned vortex lattice as the source of the negative Hall effect,
it is very difficult to see how it might explain, for example, the presence of a sign reversal extreme-
ly deep in the vortex liquid, very close to Tc, as it is most often observed. This theory is, indeed, a
purely mean field hydrodynamic model, based on a single vortex equation of motion.

On the other hand, the consideration of this model in the vortex solid phase, where the mean field
description is probably closer to the reality (the fluctuations are then greatly reduced) should be
done more carefully. There could be a sudden enhanced contribution of the vortex lattice vacan-
cies, when reaching the vortex solid phase, increasing the absolute value of the Hall conductivity.
Unfortunately, since the magnitude of the Hall effect is fundamentally determined by the lattice
defect density, it is difficult to imagine why the vortex solid would actually have more defects than
the liquid disordered phase. Even the transition between the vortex liquid and the vortex solid
brings forward a major problem. To explain the role of vacancies in the disordered solid, Ao as-
sumes the existence of "local crystalline structures, like lattice domains" in the vortex assembly
already above the vortex phase transition. But, if this transition then becomes the progressive or-
dering, or growth, of these crystallites, it is doubtful that the resulting phase transition can be of
first order.

Moreover, note that this theory also fails to account for the doping dependence of the flux flow
Hall effect, which apparently determines the Hall effect sign, independent of the vortex phase. Fi-
nally, the picture of motion of independent vacancies in the immobile lattice is in any case in dis-
agreement with the well accepted1 notion of a vortex solid moving by plastic motion, more
resembling avalanches along specific channels.

We now quickly address the other models for the Hall anomaly presented in chapter II. For exam-
ple, the vortex charge model is not compatible with the observed influence of current in our data :
since in this model the extrapolation of the zero temperature Hall conductivity σxy(T → 0) should
provide information on the charge carrier density [43], the strong current dependence of the Hall

1. and observed, e.g. through noise measurements
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conductivity slope in the vortex solid would lead to a carrier density varying over a couple of orders
of magnitude in a moderate current range, which is not acceptable, confirming that the observed
effect is rather related to the pinning.

Therefore, the pinning related model of Wang et al. [57] (page 28) is a priori an interesting theory.
For example, the change of behavior at the vortex phase transition might be explained through this
theory by a sudden increase of the critical current (namely of the effective pinning force), in very
good agreement with experimental facts. However, it is not clear whether this model can account
for the observed disorder-type dependence of the Hall scaling exponent. Similar to Ao’s scenario
of lattice defects motion, this model is not compatible with the electronic doping dependence, nor
with critical fluctuations close to Tc, which apparently also play a role in the Hall effect. We shall
come back to this model in the conclusion (next chapter), but we already can see that a really com-
plete description of the mixed state Hall effect necessarily has to include both fluctuations and pin-
ning interactions, as well as presumably take into account vortex-vortex interactions, to explain the
influence of the vortex phase observed in the present work.

For this reason, the most promising rigorous model probably lies in a time dependent Gin-
zburg-Landau (TDGL) approach including pinning interactions, as proposed by Ikeda. In a first
model in some way in the continuation of the vortex glass theory from Fisher et al. [22], he con-
siders the effect of point-like disorder on the Hall conductivity [72]. Thanks to his perturbative ap-
proach of fluctuations in the lowest Landau level (LLL) approximation, he can then account for the
vortex phase transition (called the vortex glass transition). Note that, even though this model is a
very complete and rigorous approach to the Ginzburg-Landau equations, it is not in itself a truly
microscopic theory, since the complex part of the relaxation time, notably determining the Hall ef-
fect, is a parameter of the model that still has to be calculated on a microscopic basis.

Although the formalism of this theory is very exacting and demanding, we can summarize some
important points concerning the Hall effect in a few words. The idea is to decompose the super-
conducting part of the Hall conductivity  (Eq. (I.3) on page 10) into three terms :

where  is the mean field contribution, reducing to the vortex flow deep in the liquid regime,
 is precisely the term of Gaussian fluctuations related to the vortex glass order and the associ-

ated transition, and  includes other pinning-related perturbative terms due to superconducting
amplitude fluctuations (also called critical fluctuations).

The first contribution  has a form similar to the previous TDGL derivations (see chapter III).
However, in two dimensions (in layered systems), the vortex glass fluctuation part  is shown
to be opposite to , and depend on the pinning strength [72]. Therefore, if the imaginary part of
the relaxation time is such that  is itself opposite to the normal state Hall effect, the total Hall
conductivity can undergo two successive sign reversals in these systems, in agreement with the ex-
perimental observations. Similarly,  is also proportional to the pinning strength, though with
the same sign as the mean field contribution . With this result, Ikeda can qualitatively explain
why some authors experimentally report a pinning independent Hall conductivity : it is, according
to him, the result of the competition between  and . In three dimensions, the calculation
seems to be more delicate, but apparently all three terms have the same sign in this model for
point-like defects, therefore explaining the presence of only one sign change in the less anisotropic
systems. Note that the pinning strength dependence of both  and  also explains why 
is increased as the pinning starts to dominate, yielding a Hall conductivity which diverges faster
than 1 / B, as is often observed experimentally [107,108,119,159].
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Very recently, in response to the experimental results presented in this chapter, Ikeda proposed a
new, more complete version of his theory, including both point-like and line-like disorder [73,74].
The main conclusion is that the line-like defects play, in some sense, the same role as the two di-
mensional fluctuations, again giving a Hall effect contribution opposite to the mean field term,
whereas the point-like disorder (in the tridimensional case that we consider for our Y:123 sample)
still leads to a strictly negative superconducting part of the Hall conductivity. 

As a consequence, our observation of a constant Hall conductivity when the magnetic field is
aligned with the twin boundaries would reflect the competition between line-like and point-like
disorder. However, the behavior deeper in the vortex solid is not yet clear, since it is apparently not
straightforward whether or not the Gaussian fluctuation part of the conductivity  eventually di-
verges near the phase transition.

Unfortunately, due to its complexity, Ikeda’s theory is still essentially qualitative, and many more
analytical developments are required. For example, a precise prediction of the Hall scaling expo-
nent in different conditions is still lacking.

Finally, we would like to present an alternative, much more empirical and phenomenological ex-
planation for the scaling behavior that we observe. In the case of a mixed metallic/insulating sys-
tem, the conductivity is governed by percolation processes. The corresponding theory leads to a
longitudinal conductivity expressed as , where  is the difference between the
conducting metallic phase density p and the critical percolation threshold pc of this density. The
critical exponent is reported to be t ≈ 1.3 in two dimensions, and t ≈ 1.6 in three dimensions [162].
Similarly, the Hall number RH diverges as , where  [163], where d is the di-
mension. As a consequence, we see that g is obviously zero in two dimensions, such that the Hall
number is unchanged by the percolation process. Therefore, the Hall conductivity 
is exactly proportional to  (at constant magnetic field). In three dimensions, g = ν ≈ 0.9 [162],
such that from the above relations .

From this point, Geshkenbein [164] has proposed that if one views the vortex freezing as an inho-
mogeneous, non-simultaneous process, with regions where vortices are pinned (thus with vanish-
ing resistivity), and others where they can still move, inducing a non-zero electric resistivity, the
behavior should have many analogies with the usual percolative transition in inhomogeneous
conductors [162,163]. Nonetheless, we have to be aware that the above model for the percolation
of charge carriers across an inhomogeneous conductor can apply to moving vortices in inhomoge-
neous pinning, provided we finally interpret the vortex conductivity (the values for σ above) as the
electric resistivity, since a high vortex mobility means large electric dissipations. Therefore, the re-
lations for σxy above would become scaling relations for the Hall resistivity.

In the latter case, the dimensionality would be determined either by the intrinsic anisotropy of the
material (like the usual assignation of a two dimensional nature to the most strongly layered com-
pounds), or by the vortex localization along correlated defects, suppressing one vortex degree of
freedom, resulting in a geometry therefore two dimensional-like, explaining our change of scaling
exponent when the vortices are oriented along the twin planes. It is then impressive to see how well
the exponents from this percolation picture are in agreement with our data : one indeed finds β ≈ 2
in two dimensions (correlated disorder), and β ≈ 1.4−1.5 in three dimensions (point-like disorder).
We also see how the introduction of splayed defects, allowing for a strong entanglement of the vor-
tex phase, therefore bringing back the third degree of freedom, can explain the reduction of the ex-
ponent from 2 to 1.5 (see comment about Ref. [124] on page 101).
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3. Conclusion

We have studied here the Hall effect for a current oriented at 45 ° from the twin boundaries. Thanks
to the very low noise level, we have measured the Hall conductivity down to large negative values
not yet reported for YBa2Cu3O7-δ, about ten times larger than the level corresponding to the vortex
lattice melting. We can therefore compare the vortex liquid and solid Hall behaviors. When the
magnetic field is tilted away from the twin planes, we see that the Hall conductivity as a function
of both the temperature and the magnetic field is much steeper in the vortex solid phase than in the
liquid. On the other hand, the scaling power law for the Hall resistivity is absolutely not affected
by the vortex phase transition. We exclude an influence of vortex guided motion for the sharp
change of slope of the conductivity, since the twin boundaries were shown to affect the electric re-
sponse only very smoothly and progressively, without any sharp signature of the vortex phase tran-
sition (preceding chapter).

The slope of the conductivity is the largest for low currents, revealing the major role played by the
pinning dependence in this new effect. More generally, we insist on the fact that the Hall resistivity
scaling exponent of β = 1.4 necessarily implies that the Hall conductivity is anyway pinning de-
pendent. Therefore, even if it is very tempting to avoid the complexity of pinning in the description
of vortex dynamics, the disorder has to be taken into account for the mixed state Hall effect. Such
a description can be either done in the frame of a complete time dependent Ginzburg-Landau mod-
el including fluctuations and pinning, as proposed by Ikeda, or, if a mean-field description is con-
sidered as acceptable, with a simpler hydrodynamic single vortex equation of motion, of course
also including pinning, as developed by Wang et al.

When the magnetic field is applied parallel to the twin planes, the scaling exponent is then β = 2.
We also show for the first time that this particular value corresponds to a constant Hall conductiv-
ity, as should indeed follow from its definition. We also insist on the fact that only this value can
lead to a pinning independent Hall conductivity.

Considering the difficulty to accurately align the magnetic field (or a particle beam for sample ir-
radiation) with the crystallographic c-axis, and consequently to the very sensitive dependence of
the Hall behavior to rotations by angles as low as 2 °, we believe that alignment errors can explain
an important part of the discrepancy between the various existing data for irradiated and twinned
samples.

Finally, we recall that we propose here a new phenomenological model for the Hall resistivity scal-
ing law, suggested by Geshkenbein (page 104). Based on an analogy with the percolative descrip-
tion of a conducting to insulating transition, it is meant to be used very generally in presence of
pinning. Describing the progressive transition to a frozen vortex assembly, it considers the system
as a random distribution of domains in which the vortices are pinned, providing a vanishing electric
resistivity, the remaining volume being dissipative. Using the universal critical exponents for the
percolation processes, we find a Hall scaling exponent of β = 2 at constant magnetic field in two
dimension, and β ≈ 1.4 − 1.5 in three dimensions, in good agreement with our data. Note that the
dimensionality has, here, to be understood in terms of degrees of freedom for the vortices : in the
presence of unidirectionally strong correlated disorder, the vortices are straight and behave two-di-
mensionally; for point-like disorder or splayed correlated defects, the system is three-dimensional.

This model is very interesting, since it is independent of the vortex phase : it simply describes the
scaling behavior as the resistivity vanishes (that is as the vortices become pinned). This is again in
good agreement with the fact that the scaling regime starts roughly where the pinning of twin
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boundaries is seen to first have an influence on the resistivity, that is at T = TTB (see Fig. VI-9 and
VI-11). Note that another explanation of the scaling law in terms of universal critical exponents
had been given before (see page 39). However, two problems were emerging in this case. First, this
model was predicting only one single universal exponent, in disagreement with the rather scattered
data of the literature. In this sense, the percolation picture is more acceptable, since the two pre-
dicted values indeed correspond to the most often reported experimental estimations. Secondly, it
is related to the vortex phase transition, such that the shift of the conductivity divergence to lower
temperatures at higher currents is not well accounted for.
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CHAPTER VII CONCLUSIONS

In the present work, we have experimentally investigated vortex dynamics in a twinned high qual-
ity YBa2Cu3O7-δ single crystal by way of resistivity measurements. The main objective was to
study the mixed state Hall effect in the vortex solid phase. Thanks to the nine contact pattern de-
posited on the sample surface, the guided motion of vortices along twin boundaries has also been
studied as a function of the current direction. Since the voltage signal is much smaller in the vortex
solid than in the liquid phase, very special attention has been paid to the data processing in order
to avoid any undesired, non-intrinsic contribution. For example, the resistivity is obtained from the
measured total impedance after the subtraction of a complex inductive background. Moreover, the
orientation of the magnetic field with respect to the sample c-axis is controlled with a high accu-
racy. All these steps are absolutely determinant for the study of the above mentioned effects.

In the considered sample, the vortex phase transition is clearly observable through the resistivity
measurements. It is apparently of first order when the magnetic field is sufficiently inclined from
the twin planes (by more than α∗  ≈ 2 ° to 3 °), revealing the transition from a vortex liquid to a vor-
tex lattice or a Bragg glass. When the vortices are parallel to the twin boundaries, the solid phase
is instead shown to be a Bose glass, as already reported by other authors [25].

The investigation of guided motion has shown us that one twin family manifestly dominates the
vortex dynamics. We have also seen that when the vortices are aligned to the twin planes, the lon-
gitudinal resistivity is not reduced mainly because of a reduction of the vortex mobility, but rather
as a consequence of the rotation of the electric field away from the current direction, lowering its
projection in the direction of measurement.

Another important result with respect to Hall measurements is that, as soon as the Lorentz force is
not along the twin boundaries, the vortex motion is apparently never strictly channeled within the
twin planes, a lateral component of the vortex velocity always remains. Therefore, thanks to this
lateral motion, the Hall effect is not inhibited by guided motion. Before we further specifically
comment on our results for the Hall effect, we first give a brief general synthesis of the different
theories that we believe might bring conclusive explanations for the mixed state Hall effect.

Considering the various dependences of the Hall anomaly, which indeed depends on the nature of
the compound and its doping, or on the orientation of the current with respect to the crystallograph-
ic axis, for example, its explanation should be sought in microscopic processes, such as the local-
ized vortex core states, the influence of the d symmetry of pairing, the existence of preformed pairs,
etc. In order to rigorously reveal the role of vortex-vortex interactions, as well as the interplay be-
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tween the pinning and the fluctuations, the approach the most likely to succeed is the use of the
time-dependent Ginzburg-Landau equations, including all of these effects, as has been proposed
by Ikeda [72-74]. In this theory, the various microscopic processes can by included through a key
parameter, like the imaginary part of the relaxation time.

However, since this complete formalism is rather demanding, a more phenomenological simplified
model would be welcome, for example, in a regime in which the mean field description is a good
approximation, that is when fluctuations can be reasonably neglected (at low enough fields or tem-
peratures). In this case, a hydrodynamic approach of the vortex equation of motion, of course tak-
ing the pinning into account (which will always be dominant in this regime) can be very useful.
The question is then to know whether a single vortex equation of motion may contain all of the
relevant physics, or if a many-body theory should necessarily be considered. If we assume that the
pinning force already reflects the collective behavior of the vortex assembly (through the elastic
constants of the vortex lattice, for example), it is then possible that a single vortex model including
this pinning force as a parameter, as proposed by Wang et al. [57], would be satisfying in the ap-
propriate regime.

On the other hand, the Hall scaling relation, which is much more general, is hence probably not
related to such specific microscopic quantities. It is indeed observed in any compound, for any dop-
ing (that is, even if the Hall anomaly is not present). Since the scaling is verified in the regime
where the resistivity vanishes, the pinning is certainly a key factor in this behavior. The best model,
in this sense, is the percolation description of the vortex freezing that is suggested here, following
an original idea from Geshkenbein [164], since it correctly predicts two different possible expo-
nents (β = 2 and β ≈ 1.4 − 1.5) depending on the dimensionality, independent of the vortex phase,
current density or any material specific parameter. Such a very phenomenological and general
model is certainly required considering the omnipresence of scaling.

Turning back to our results, we note that the scaling behavior that we report for the vanishing part
of the Hall resistivity is in excellent agreement with the percolation picture : we find β ≈ 1.4 when
the point-like defects are dominant (that is when the magnetic field is inclined away from the twin
planes), for any current density, magnetic field, temperature, and in the vortex liquid and solid
alike. When the magnetic field is exactly parallel to the twin boundaries, presumably localizing the
vortices along them, the exponent becomes β = 2 (as confirmed by the constant Hall conductivity).

Aside from that, the sharp change of the Hall conductivity at the vortex phase transition in inclined
fields, together with its magnetic field direction and current dependences, show that the Hall con-
ductivity is unambiguously and strongly pinning dependent, in contrast to often reported contrary
assertions. Note that, since the Hall conductivity can be expressed from the scaling relation approx-
imately as , the sharp change of σxy at the vortex lattice melting can be phenomeno-
logically explained by the corresponding change of the longitudinal resistivity. However, if we
microscopically interpret the Hall conductivity in terms of the transverse force acting on vortices,
its vortex phase dependence certainly is a challenge to the theories mentioned above.

In the direct continuation of this work, many points still have to be investigated. For example, we
have seen that the Hall conductivity becomes steeper and steeper in the vortex solid as the magnetic
field is progressively (but not completely) aligned with the twin boundaries. However, when the
alignment is perfect, the Hall conductivity is then constant, a behavior that is not at all a continua-
tion of the above mentioned trend. Therefore, it would be very interesting to further explore this
angle dependence (for 0 ° < α < 4 °) to see how the transition between these two regimes occurs.

   σ xy ∝ 1 ρxx1 ρxx
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Moreover, the fact that the Hall conductivity is independent of the temperature, when the vortices
are aligned with the twin planes, is perfectly explained by the percolation theory for a two dimen-
sional case. We have however noted that in this model the Hall conductivity, although indeed in-
dependent of the temperature, is proportional to the magnetic field. It would be very nice to
confirm this prediction by complementary measurements as a function of the magnetic field, or as
a function of the temperature but for different magnetic fields.

More generally, we recall that the main originality of this work, from the experimental point of
view, is the use a multicontact configuration allowing us to apply a current in any direction in the
sample plane, and to measure the magnitude as well as the direction of the resulting electric field.
We would like to point out that this technique can also be used to address several other major open
questions in vortex dynamics.

Obviously, the method is particularly adapted to the investigation of extended defects providing
anisotropic pinning, such as twin boundaries. First, the effects of these twins on the vortex dynam-
ics can be studied as a function of the current direction in much more detail. The advantage of this
experimental setup compared to other studies is that all of the investigations can be done in the
same sample, avoiding sample dependent effects, quite unavoidable when dealing with twinned
samples. One can then, for example, address more accurately the magnetic field orientation depen-
dence of the vortex mobility, by skirting the problems of the projection of the electric field on the
current direction, which are possibly not parallel to each other as a results of guided motion. An-
other very important possibility provided by this method is the check of the still debatable efficien-
cy of sample detwinning [156,157]. A residual anisotropy of the resistivity in a direction
corresponding to twin planes would indeed mean that the twin boundaries are still present, even if
the twins are not visible anymore, for example because one twin family is largely dominating, the
domains of the other being too small to be optically observed.

For other types of intrinsic effects that are expected to have a much smaller amplitude, naturally
untwinned samples are required. As proposed by Vicente Alvarez et al. [165], a similar setup can,
for example, be used to study the intrinsic current orientation dependence of the Hall effect that
they have predicted for d-wave superconductors. The dynamics of the vortex solid phase can also
be investigated with a rotating current density, to try to reveal the stronger non-linearity expected
for the transverse response of a Bragg glass.



VII

110



111

REFERENCES

1. V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20 (1950) 1064.

2. A.A. Abrikosov, Sov. Phys. JETP 5 (1957) 1174.

3. J.G. Bednorz and K.A. Müller, Z. Phys. B 64 (1986) 189.

4. G. Blatter, Physica C 282-287 (1997) 19.

5. G.W. Crabtree and D.R. Nelson, Physics Today April (1997) 38.

6. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin and V.M. Vinokur, Rev. Mod.
Phys. 66 (1994) 1125.

7. J.R. Waldram, Superconductivity of Metals and Cuprates, IOP, Bristol (1996).
C.P. Poole, H.A. Farach and R.J. Creswick, Superconductivity, Academic Press, San Diego
(1995).

8. A.I. Larkin and Y.N. Ovchinikov, J. Low Temp. Phys. 34 (1979) 409.

9. T. Natterman, Phys. Rev. Lett. 64 (1990) 2454.

10. T. Giamarchi and P. Le Doussal, Phys. Rev. B 52 (1995) 1242.

11. P. W. Anderson and Y.B. Kim, Rev. Mod. Phys. 36 (1964) 39.

12. T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 76 (1996) 3408.
P. Le Doussal and T. Giamarchi, Phys. Rev. B 57 (1998) 11356.

13. E.H. Brandt, Rep. Prog. Phys. 58 (1995) 1465.

14. U. Essman and H. Träuble, Phys. Lett. 24A (1967) 526.

15. D. Cribier, B. Jacrot, L.M. Rao and B. Farnoux, Phys. Letters 9 (1964) 106.

16. E. Zeldov, D. Majer, M. Konczykowski, V.B. Geshkenbein, V.M. Vinokur and H. Shtrikman,
Nature 375 (1995) 373.

17. M. Roulin, A. Junod, A. Erb and E. Walker, Phys. Rev. Lett. 80 (1998) 1722.

18. H. Pastoriza, M.F. Goffman, A. Arribére and F. de la Cruz, Phys. Rev. Lett. 72 (1994) 2951.
U. Welp, J.A. Fendrich, W.K. Kwok, G.W. Crabtree and B. W. Veal, Phys. Rev. Lett. 76
(1996) 4809.

19. A. Schilling, R.A. Fisher, N. Phillips, U. Welp, D. Dasgupta, W.K. Kwok and G.W. Crabtree,
Nature 382 (1996) 791.



112

20. H. Safar, P.L. Gammel, D.A. Huse, D.J. Bishop, J.P. Rice and D.M. Ginsberg, Phys. Rev. Lett.
69 (1992) 824.

21. D.T. Fuchs, E. Zeldov, D. Majer, R.A. Doyle, T. Tamegai, S. Ooi and M. Konczykovski,
Phys. Rev. B 54 (1996) 796.

22. M.P.A. Fisher, Phys. Rev. Lett. 62 (1989) 1415.
D.S. Fisher, M.P.A. Fisher and D.A. Huse, Phys. Rev. B 43 (1991) 130.

23. D.R. Nelson and V.M. Vinokur, Phys. Rev. Lett. 68 (1992) 2398.
D.R. Nelson and V.M. Vinokur, Phys. Rev. B 48 (1993) 13060.

24. W.K. Kwok, S. Fleshler, U. Welp, V.M. Vinokur, J. Downey, G.W. Crabtree and
M.M. Miller, Phys. Rev. Lett. 69 (1992) 3370.

25. S.A. Grigera, E. Morré, E. Osquiguil, C. Balseiro, G. Nieva and F. de la Cruz, Phys. Rev. Lett.
81 (1998) 2348.

26. V.M. Vinokur, M.V. Feigel’man, V.B. Geshkenbein and A.I. Larkin, Phys. Rev. Lett. 65
(1990) 259.

27. J. Bardeen and M.J. Stephen, Phys. Rev. 140 (1965) A1197.

28. P. Nozières and W.F. Vinen, Phil. Mag. 14 (1966) 667.

29. M.T. Wylie, E.M. Forgan, S. Lloyd, S. Lee, R. Cubitt, M. Yethiraj and H.A. Mook, Czech. J.
Phys. 46 Suppl. S3 (1996) 1569.

30. J.R. Cooper, J.W. Loram, J.D. Johnson, J.W. Hodby and C. Changkang, Phys. Rev. Lett. 79
(1997) 1730.
A.V. Nikulov, Czech. J. Phys. 46 Suppl. S3 (1996) 1779.
A.V. Nikulov, D.Y. Remisov and V.A. Oboznov, Phys. Rev. Lett. 75 (1995) 2586.

31. M.J.W. Dodgson, V.M. Geshkenbein, H. Nordborg and G. Blatter, Phys. Rev. Lett. 80 (1998)
837.
M.J.W. Dodgson, V.M. Geshkenbein, H. Nordborg and G. Blatter, Phys. Rev. B 57 (1998)
14498.

32. B.D. Josephson, Phys. Letters 16 (1965) 242.

33. C. Caroli, P.G. De Gennes and J. Matricon, Phys. Letters 9 (1964) 307.

34. H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles and J.V. Waszezak, Phys. Rev. Lett. 62
(1989) 214.

35. I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker and Ø. Fischer, Phys. Rev. Lett. 75 (1995)
2754.

36. Ch. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile and Ø. Fischer, Phys. Rev. Lett. 80
(1998) 3606.

37. D.S. Marshall, D.S. Dessau, A.G. Loeser, C.-H. Park, A.Y. Matsuura, J.N. Eckstein,
I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer and Z.-X. Shen, Phys. Rev. Lett. 76 (1996)
4841.



113

38. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki and Ø. Fischer, Phys. Rev. Lett. 80 (1998)
149.

39. M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, T. Tokoya, T. Takeuchi, T. Takahashi,
T. Mochiku, K. Kadowaki, P. Gupasarma and D.G. Hinks, Nature 392 (1998) 157.

40. C.C. Tsuei, J.R. Kirtley, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, T. Shaw, J.Z. Sun and
M.B. Ketchen, Phys. Rev. Lett. 73 (1994) 593.

41. D.A. Wollman, D.J. Van Harlingen, J. Giapintzakis and D.M. Ginsberg, Phys. Rev. Lett. 75
(1995) 797.

42. M. Franz and Z. Te anovi , Phys. Rev. Lett. 80 (1998) 4763.

43. V.B. Geshkenbein, L.B. Ioffe and A.I. Larkin, Phys. Rev. B 55 (1997) 3173.

44. C.A. Sá de Melo, M. Randeria and J.R. Engelbrecht, Phys. Rev. Lett. 71 (1993) 3202.

45. M. Galffy and E. Zirngiebl, Solid State Commun. 68 (1988) 929.

46. Y. Iye, S. Nakamura and T. Tamegai, Physica C 159 (1989) 616.

47. J. Luo, T.P. Orlando, J.M. Graybeal, X.D. Wu and R. Muenchausen, Phys. Rev. Lett. 68
(1992) 690.

48. V.N. Morgoon, V.A. Shklovskij, V. Bindilatti, A.V. Bondarenko, R.F Jardim, C.C. Becerra
and A.F. Aartori, Czech. J. Phys. 46 Suppl. S3 (1996) 1751.

49. V.N. Morgoon, V.A. Shklovskij, V. Bindilatti, A.V. Bondarenko, R.F Jardim, C.C. Becerra,
C.Y. Shigue and A.V. Sivakov, J. Low. Temp. Phys. 105 (1996) 963.

50. P.J.M. Wöltgens, C. Dekker and H.W. de Wijn, Phys. Rev. Lett. 71 (1993) 3858.

51. J.M. Harris, N.P. Ong, P. Matl, R. Gagnon, L. Taillefer, T. Kimura and K. Kitazawa, Phys.
Rev. B 51 (1995) 12053.

52. L. Landau, J. of Physics (Moscow) 5 (1941) 71.
J. Bardeen, Phys. Rev. Lett. 1 (1958) 399.

53. E.H. Brandt, Phys. Rev. Lett. 78 (1997) 2208.

54. S. Hofmann and R. Kümmel, Phys. Rev. Lett. 70 (1993) 1319.

55. Z.D. Wang and C.S. Ting, Phys. Rev. Lett. 67 (1991) 3618.

56. Z.D. Wang and C.S. Ting, Phys. Rev. B 46 (1992) 284.

57. Z.D. Wang, J. Dong and C.S. Ting, Phys. Rev. Lett. 72 (1994) 3875.

58. J. Dong and Z.D. Wang, J. Phys. Condens. Matter 7 (1995) 367.

59. B.Y. Zhu, Modern Phys. Lett. B 10 (1996) 1227.

60. B.Y. Zhu, Physica C 276 (1997) 309.

61. B.Y. Zhu, Phys. Stat. Sol. B 199 (1997) 189.

62. B.Y. Zhu, D.Y. Xing and Z.D. Wang, to be published in Phys. Rev. B (1999).

s̆ ć
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