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Abstract

The concept of stationarity is central to signal processing; it indeed guarantees that the
deterministic spectral properties of linear time-invariant systems are also applicable to re-
alizations of stationary random processes. In almost all practical settings, however, the
sienal at hand is just a finite-size vector whose underlying generating process, if we are
willing to admit one, is unknown; in this case, invoking stationarity is tantamount to stat-
ing that a single linear system (however complex) suffices to model the data effectively, be
it for analysis, processing, or compression purposes. It is intuitively clear that if the com-
plexity of the model can grow unchecked, its accuracy can increase arbitrarily (short of
computational limitations): this defines a tradeoff in which, for a given data vector, a set
of complexity /accuracy pairs are defined for each possible model. In general one is inter-
ested in parsimnonious modeling; by identifying complexity with “rate” and model misad-
Justiment with “distortion”, the situation becomes akin to an operational rate-distortion
(R/D) problem in which, for each possible “rate”, the goal is to find the model yielding
the minimum distortion.

In practice, however, only a finite palette of models is available, the complexity of
which is limited by computational reasons; thercfore, the entire data vector often proves
too “nonstationary” for any single model. If the process is just slowly drifting, adaptive
syvstews are probably the best choice; on the other hand, a wide class of signals exhibits a
series of rather abrupt transition between locally regular portions (e.g. speech, images). In
this case a common solution is to partition the data uniformly so that the resulting pieces
are small enough to appear stationary with respect to the available models. However, if the
goal is again to obtain an overall modeling which is optimal in the above R/D sense, it is
necessary that the segmentation be a free variable in the modelization process; this is how-
ever not the case if a fixed-size time windowing is used. Note that now the reachable points
in the R/D plane are in fact indexed not just by a model but by a segmentation/model-
sequence pair; their number therefore grows exponentially with the size of the data vector.

This thesis is concerned with the development of efficient techniques to explore this
R/D set and to determine its operational lower bound for specific signal processing prob-
lems. It will be shown that, under very mild hypotheses, many practical applications
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dealing with nonstationary data sets can be cast as a R/D optimization problem involv-
ing segmentation, which can in turn be solved using polynomial-time dynamic program-
ming techniques. The flexibility of the approach will be demonstrated by a very diverse
set of examples: after a general overview of the various facets of the dynamic segmen-
tation problem in Chapter 2, Chapter 3 will use the framework to determine an opera-
tional R/D bound for the approximation of piccewise polynomial function with respect to
wavelet-based approximation; Chapter 4 will show its relevance to compression problems,
and in particular to speech coding based on linear prediction and to arithmetic coding for
binary sources; finally, in Chapter 5, an efficient data hiding scheme for PCM audio sig-
nals will be described, in which the optimal power allocation for the hidden data is deter-
mined with respect to the time-varying characteristics of the host signal.



Sommario

Il concetto di stazionarieta ricopre un ruolo fondamentale nel campo del trattamento dei
segnali. Esso infatti garantisce che le caratteristiche spettrali dei sistemi lineari e tempo-
invarianti progettati in un contesto deterministico siano ugualmente valide per le singole
realizzazioni di un processo stocastico stazionario. In pratica, tuttavia, il segnale a dis-
posizione € semplicemente un vettore di dimensione finita il cui processo generatore, pur
ammettendone Pesistenza, rimane sconosciuto; postulare la stazionarieta del segnale & in
questo caso equivalente ad ammettere che un singolo sistema lineare tempo-invariante sia
sufficiente a modellizare i dati nella loro interezza, vuoi per fini di analisi, vitoi per fini di
elaborazione e compressione. E chiaro, intuitivamente, che se la complessita del sistema
lineare potesse crescere illimitatamente, cosi crescerebbe 'accuratezza della rappresen-
tazione fornita; questa osservazione mostra una tipica situazione di compromesso in cui ad
ogni possibile vettore di dati corrisponde un insieme di coppie “complessita/accuratezza”
legate all’insieme di possibili sistemi lineari. Se associamo al concetto di complessita quello
di quantitd di dati usata nella descrizione' e al concetto di accuratezza quello di distor-
sione ritroviamo un classico problema rate-distortion (R/D) di carattere operazionale: per
ogni ammontare della quantitd di dati usata nella descrizione dobbiamo trovare il mod-
ello che, usando al massimno la quantita prescritta, fornisce una rappresentazione con mi-
nor distorsione possibile.

In pratica, tuttavia, abbiamo a disposizione solo una gamma assai ristretta di mo-
delli, considerato che la loro complessita massima ¢ limitata da ragioni di carattere com-
putazionale. In questa situazione il vettore di dati nella sua interezza pud dimostrarsi
troppo “nonstazionario” per un modello solo. Se il processo generatore cambia lenta-
mente, il problema pud essere affrontato con successo tramite 'uso di modelli adatta-
tivi; molti segnali sono perd caratterizzati da una serie di brusche transizioni che sepa-
rano zone di carattere relativamente regolare: il parlato ¢ le immagini ne sono tipici esem-
pi. In questi casi la soluzione pin comune ¢ quella di segmentare in maniera uniforme il
segnale di modo che i pezzi ottenuti siano sufficientemente piccoli da risultare stazionari

M concetto di rate.

vii
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rispetto alla gamma di modelli lineari a disposizione. Tuttavia, se I'obiettivo & ancora
quello di ottenere una modellizzazione globale che sia ottimale nel senso R/D descritto
sopra, € necessario che la segmentazione sia una variabile libera nel processo di modelliz-
zazione, e questo non € vero nel caso si usi una suddivisione uniforme del segnale basata
su una finestra temporale di dimensione fissa. Al contrario, nel caso di una segmentazione
dinamica le coppie complessita/accuratezza menzionate in precedenza (che corrispondono
a diversi punti sul piano R/D) sono individuate non da un singolo modello per i dati ma
da una determinata segmentazione e, al contempo, da una sequenza di modelli che sara
applicata ai segmenti. In teoria, dunque, il numero di punti R/D cresce esponenzialmente
con la lunghezza del vettore di dati.

Questa tesi si prefigge di analizzare e di sviluppare degli algoritmi efficienti che
determinino I'insieme dei punti R/D (e il suo limite inferiore di distorsione) per speci-
fici problemi del trattamento dei segnali. Sotto ipotesi assai blande, molte applicazioni
pratiche possono infatti essere reinterpretate come un problema di ottimizzazione R/D
che includa una segmentazione dinamica dei dati. A sua volta, quest’ultimo problema
pud essere risolto in tempo polinomiale tramite tecniche di programmazione lineare. La
flessibilita di quest’approccio sara evidenziata da svariati esempi: dopo aver analizzato
in dettaglio il problema della segmentazione dinamica nel secondo capitolo, il terzo capi-
tolo mostrerd I'uso dello schema proposto per validare dei limiti R/D teorici concernenti
Papprossimazione di funzioni polinomiali a tratti, confrontando i risultati ottenuti con
quelli di uno schema di approssimazione basato sulle wavelets. Nel quarto capitolo ver-
ranno illustrati due problemi pratici legati alla compressione dei dati, ed in particolare
alla compressione del parlato tramite codifica LPC e alla compressione di sorgenti bina-
rie tramite arithmetic coding; entrambi i problemi, si mostrera, possono offrire risultati
migliori tramite 1'uso di tecniche di segmentazione dinamica. Per concludere, nel quinto
capitolo sard sviluppato un sistema di mascheratura dei dati? per segnali musicali in co-
difica PCM.

?Data Hiding
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Chapter 1

Introduction

Non domandarci la formula che mondi possa aprirci
Si qualche storta sillaba e secca come un ramo.
Codesto solo oggi possiamo dirti,

Cio che non siamo, cid che non vogliamo.

— E. MONTALE, Ossi di seppia

Never trust anybody above 30.
— Banner at Sather Gate, Berkeley

The most eventful moment in the academic journey of an engineer-to-be is without
doubt the study of Taylor series; from that moment on, no natural phenomenon proves
too complex to escape linearization and all difficulties can be dismissed by virtue of suffi-
ciently small intervals. In signal processing, this philosophical frame of mind finds its par-
allel in the concept of stationarity and in the use of sufficiently small analysis windows.
The story goes more or less like this.

Digital signal processing, in its basic form, is admittedly hardly more than a lengthy
exercise on complex exponential functions. Complex exponentials’ claim to fame is being



2 Chapter 1.

the cigenfunctions of linear, time invariant (LTI) difference equations; and it is true that
a very wide array of interesting transformations of a signal can be expressed by means of
LTI difference equations. The trinity at the core of DSP is therefore made up of: signals,
i.c. lincar combinations of complex exponentials; spectra, i.e. the sequences of coefficients
in the above linear combinations; filters, i.e. LTI difference equations. Unfortunately,
when this paradigm is applied to the real world, it is aliost always impossible to fit the
observed data into a fixed combination of basis functions, first and foremost because we
cannot fathom all the minute details of a physical system. Enter stochastic processes.

The problem with stochastic processes, however, is that once we assume the data is
ramdom we have to gather statistics of all orders to have a complete description of what’s
happening: an impossible feat, clearly. Again, in the remarkable style of Alexander the
Great facing the famous knot, engineers decide that second order statistics suffice and,
whether by chance or by design, it so happens that if mean and variance are also shift-
invariant then the entire LTI machinery developed for deterministic signals retains its ap-
plicability and meaningfulness. Signals this nice are called stationary; signals not this nice
are usually winked at and welcomed to the flock anyway; and, as a crown result, Wold’s
theorem actually says that any stationary random process can be represented as filtered
white noise. We're back in business with our LTI difference equations, apparently.

But the real world is not so easily tamed; and even if it is true that many signals
might look like stationary processes, they do not do so for too long; they usually have a
finite duration, maybe even longer than the average research grant, but finite nonetheless

and this disrupts stationarity already. In addition to that, real physical systems exhibit
drifts. jummps, and all sorts of changing patterns which cannot be suitably described by
time-invariant second order statistics. Here the engineer remembers Taylor’s lesson and
chops the data into pieces: what looks complicated as a whole, is usually more digestible
in small bits. Nonlinear things now look linear, nonstationary things, stationary; all this
provided that the interval of observation is small enough. The philosophy is more or less
this: what we’re looking at through these little time windows are actually pieces of very
well behaved processes, sort of Platonic forms showing through for a little while, and we
can concentrate on them one at a time. But, in so doing, there’s not much holistic ran-
dommess left in the end and the elegant premises leading to the legitimization of LTI pro-
cessing are somehow disfranchised. Yet the algorithms work, and they work well.

In this thesis, thercfore, far from trying to redress the situation, we are willing to
carry it even further. Jump processes are not stationary, not Gaussian; we’ll look at them
simply as a collection of scalars, a single realization of a generating random process so be-
yond our descriptive grasp we won’t even try to set up credible statistical hypotheses for
it. other than it is piecewise regular. And we will show that if we have to go about chop-
ping these signals in order to process them, then there is a subtler way to do so than just
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splicing them into equal, small pieces. An optimal way, in fact.

Ideally, we would like to split the data so that these artificial breakpoints fall close
to meaningful time instants, possibly matching the actual moments of change in the un-
derlying generating system. Setting a breakpoint blindly (or at regular tiine intervals) is
tantamount to placing a bet on the selected point: is this one a winner, i.c., does this cor-
respond to a real physical change? Losing the bet might imply either severe undermodel-
ing (breakpoint too late) or high redundancy (breakpoint too soon). An optimal segmen-
tation strategy, needless to say, would always win the bet. But how can one always win?
It’s actually this simple: by knowing the future. This is indeed the price we'll have to pay
for optimality, in the sense that we will have to consider the whole of the data before go-
ing on with the processing. For real-time applications this is bad news, of course; but, for
those who can wait, the gain can be substantial, as we will show in what follows.

1.1 Beyond the fixed-window approach

1.1.1 The role of stationarity

A discrete-time random process z[n] is called wide-sense stationary (or stationary, with
abuse of language) if its first and second order moments are shift-invariant, i.e., if the
mean is a constant and if the autocorrelation! depends only on time lag and not on abso-
lute time index:

E{z[n]} = my (1.1)
E{z*[n]zm]} = rym—n]. (1.2)

Similarly, processes z[n] and y[n| are said to be jointly stationary if they are both station-
ary and if E{z*[n]y[m]} = rzy[m — n]. In the majority of cases, the autocorrelation r;[n]
(a deterministic signal, in itself) is absolutely summable, and therefore it possesses a valid
Fourier transform R, (e/*); this is called the power spectrum of the stochastic process, and
it represents the frequency distribution of the process’s power?. It is easy to show that,

'We will always assume zero-mean processes, so that covariance and correlation coincide.

2Just as not to lose sight of the operational approach which we will follow throughout, it is maybe use-
ful to point out right away how these correlation-derived quantities can be seen (and will be seen) mostly
as an asymptotic abstraction of experimental measurements. In Chapter 4 we will indicate how the nor-
mal equations in linear estimations derive from a deterministic Least Squares problem. As far as the power
spectrumn is concerned, it is easy to see that, if we are given a IV point realization of a stochastic process
z[n}, we can always writc out the following empirical spectral power distribution:

2

N--1

Z z[nje™*"

n=0

.\'}2\: (ew ) =

(1.3)
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given a stationary process z[n] as the input to a LTI filter of impulse response h[m], the out-
put process y[n] is itself stationary and jointly stationary with = and its autocorrelation is

ry[n] = ry[n] * g[n] (1.5)
where g[n] is the deterministic autocorrelation of the filter’s impulse response:
g[n] = Z h[n]h[m + n]. (1.6)
m

By taking Fourier transforms we have
Ry(e™) = |H(e’)* Ry (e?*); (1.7)

it is therefore clear that a LTI filter designed to have certain spectral properties for de-
terministic signals such as a low- or high-pass characteristic, will retain those properties
in the case of stochastic signals. It is precisely in this way that one can show the valid-
ity of the sampling theorem for wide-sense stationary data. Just as importantly, since any
stationary stochastic process can be represented by an associated deterministic signal, i.e.
the autocorrelation, all LTI processing can be conveniently designed in this context. It
must be said that the relation between a process and its autocorrelation is not uniquely
invertible since, roughly speaking, we are losing the phase information; yet, since most ap-
plications are¢ concerned mainly with power levels, the loss is not dramatic.

In adaptive signal processing techniques, stationarity plays an equally fundamental
role. Adaptivity can always be looked at as an estimation problem, since the adaptive sys-
tem has to compute its operating parameters from one or more realizations of a stochastic
process. Stationarity, in this context, ensures that a single set of paramenters is able to
capture the entirety of the process. Amongst the various estimation criteria which are pos-
sible, the linear mean square error (LMSE) certainly deserves a special mention; here the
fundamental assumption is that the parameters to be estimated are just a linear combina-
tion of the observed data. Together with the stationarity assuraption for the underlying
process, this leads to a convenient set of lincar equation known as the normal equations and

which can in turn be expanded as:

N-1N=-1

Xi(e) = Z Z z[n]z[m]e” T, (1.4)

n=0 m=0

by a change of variable k = m + n, the above expression reveals itself clearly as the squared DFT of the
empirical sample autocorrelation of the sequence. For stationary, ergodic processes, the latter converges
asymptotically to the true autocorrelation, yielding back the standard definition of the power spectrum.
But this also means that, as long as finite-support sequences are involved, we can always compute a di-
rect FFT of the data lightheartedly.
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to the corresponding MSE optimal solution (in expectation) for the estimated parameters;
the Wiener filter [39] is derived precisely in this context. While the LMSE model is in fact
a non-general approach to estimation, it is supported by the following observation: if we
assume that the process z[n] in Equation (1.5) is unit variance white noise, with autocorre-
lation rz[n] = §[n], then we sce that the autocorrelation of the output process is completely
definable by a proper choice of h{m] (Wold’s theorem) and, with this signal model, the es-
timation process for any stationary process is equivalent to determining the coefficients of
a linear filter. In this case one can show that the LMSE estimator coincides with a general
MSE estimator and the estimator is optimal in a Maximum a Posteriori (MAP) sense [6].

1.1.2 Piecewise stationarity

Basically all real-world signals, or at least all signals of any practical interest, depart from
stationarity in some degree; this is a consequence of the fact that the physical systems
which generate the measured data change their characteristics over time. Accordingly, we
can divide nonstationary processes into two broad categories: drifting processes and jump
processes. In the fist case, nonstationarity is due to smooth, “continuous” changes in the
system’s parameters; an example could be a chirp-like signal, in which there is a smooth
shift in the main peak of the power spectrum. This class of signals is usually best han-
dled by pointwisc backward adaptive systems, which can gradually update the estimated
parameters of the processes alongside with the drift [62]. Jump processes, on the other
hand, exhibit sharp transitions between different operating modes of the generating sys-
tem and this is the class we will consider in this work. These processes can be describes
as piecewise stationgry since, in between jumps, their parameters stay constant and they
appear stationary.

Stationarity is in the eye of the beholder

The theoretical definition of stationarity, if followed to the letter, would declare nonsta-
tionary each and every signal we can actually handle since, formally, a finite-support signal
1s not stationary anymore even if it is a truncated portion of a stationary process. These
difficulties are usually dismissed by means of suitable boundary conditions or by relying on
the notion of cyclostationarity, where the moments become periodic functions of the lag.

Jump processes, however, lend themselves to more philosophical speculations about
the nature of stationarity. Consider the simple example of a continuous-time random pro-
cess defined as:

y(t):{ o (t) ift<T

zy(t) ift>T (1.8)
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where z,(t) and z,(t) are two stationary processes with mean m; and mo respectively.
Assume T, the switching instant, is a known deterministic quantity; then the mean of the
global process is

Byl ={ ST (19)

which clearly indicates y(t) is nonstationary. On the other hand, assume we regard T as
a random variable, independent of z; and x9; assume, for instance, that T is uniformly
distributed over an interval [A, B]. In this case the mean is still dependent on time but,
as the interval extends to cover the entire real line, it approaches the asymptotic limit of
(m1 + mg)/2, independent of ¢, which leads to a bona-fide stationary process (the same
holds for the variance). In other words, the more knowledge we give up about the switch-
ing instant, the more stationary the process appears. Is this trade-off an advantageous
one? Not if all we have at hand is just one (or a few) realizations of the process. In this
case all parametric estimations must proceed from time averages, exploiting the ergodic-
ity of each of the underlying processes. Knowing the structure of the data, namely that
there is a switch, and determining its location first, improves the performance of this ap-
proach. Renouncing all knowledge about the switch might fulfill a formal stationarity hy-
pothesis but clearly undermines the practice-friendly ergodicity assumption®.

Although more rigourous mathematical characterizations of piecewise stationary
processes can be adopted [27], for our purposes it will suffice to consider the qualitative no-
tion of a global process in which an unknown yet deterministic switching pattern chooses
the current output from a set of stationary and independent random processes. A very
common type of signal which can be described by this paradigm is human speech, for in-
stance; in the classic source-resonator modelization, we can recognize source switches (be-
tween voiced and unvoiced sounds) which correspond to switches between statistically dif-
ferent random sources; and we can recognize resonator switches (corresponding to the dif-
ferent articulatory postures of the vocal apparatus) which alter the spectral properties of
the sources. Consider now a hypothetical experiment in which the same sentence is ut-
tered several times in a row; the switchpoints will fall approximately at the same time in-
stants while the random processes corresponding to the actual sounds will exhibit their
typical variability across realizations, which can be exploited to infer a more accurate
parametrization of the processes themselves. The operational hypothesis of a determinis-
tic switching pattern finds its algorithmic realization in the concept of time windowing, in
which the signal is split into smaller pieces prior to analysis.

3Similary, regularly switching signals (such as modulated carriers in communications) can be made cy-
clostationary in theoretical analyses via the introduction of an initial random delay uniformly distributed
over the modulation duty cicle [39]; this however does not affect practical detection schemes, which (rightly
so0) first determine the synchronization delay (if any) and then assume a deterministic switching pattern.
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Figure 1.1: Wideband Spectrogram

Basic windowing

Jump processes are usually handled by time windowing techniques using small windows,
i the hope that over the majority of intervals no jump occurs; inside these windowed por-
Hions. processing can therefore proceed as for a generic stationary signal. meaning we can
aecess the whole body of LTT analysis tools developed in the deterministic setting. In its
crudest form, windowing simply splits the signal into small segments of fixed size, the so
called “fixed-window™ approach, where the size of the window is small enough compared
to the rate of change of the underlying physical process. This is tantamount to assuming
a regnlarly spaced set of switching instants. We should note three problems right away:
first. the notion of “small enough™ is generally hardly quantifiable; second. in reducing the
support of the signal to that of a small segment, we are automatically providing a limited
amonnt of data to the processing tools, which might render unsatisfactory the results of
the analysis itself; third, process switchpoints will still fall inside some of the windowed
sepments. and not necessarily on their boundary.

e most common tradeoffs of this fixed window approach are exemplified by a
very common tool in speech analysis called the spectrogram. The spectrogram is a two
dimensional plot of the short-time Fourier transform (STFT) of the signal; the STFT is in
furn obtained by sliding a fixed-size window over the signal and by computing a discrete
Fonrier transform of the corresponding segment. A first approach is that of picking the
window small enough so that, in general, at most a single jump falls within a segment; the
resulting spectrogram is called wideband and a typical plot is displayed in Figure 1.1. The

rationale for the name is apparent once we recall that the DFT can be interpreted as a
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Figure 1.2: Narrowband Spectrogram

rudimentary modulated filterbank whose prototype passband characteristic is the Fourier
transform of the time-domain data window [19]. A small window will necessarily origi-
nate a wide main lobe in the frequency domain, and the frequency resolution of the trans-
form will be therefore limited, from which the label “wideband”. A window small enough
to characterize transients is often too short compared to the period of voiced sounds; the
result is that the corresponding DFT’s are not able to resolve the harmonic structure of
voiced speech. The alternative is to use a longer window, which produces the narrowband
spectrogram of Figure 1.2, but in this case the transients are not delineated clearly since
the location of the jump is “diluted” over the window support. These resolution problems,
it is important to point out, are not a consequence of the chosen transform (a Fourier
transform rather than any other linear transform), but just of the fixed window size.

1.1.3 Dynamic segmentation

From the spectrogram example it is evident that, in order to achieve a good analysis of a
piecewise stationary signal, the fundamental step is to arrive at a suitable, time-varying
segmentation of the data in which the breakpoint correspond to the actual jumps and to
the jumps only. However, the fundamental difficulty stems from the fact that, in general,
what we have at hand is just one realization of the process (think of speech, images); the
process being nonstationary, all ergodicity assumptions obviously fail and it is therefore
impossible to infer a probabilistic model of the switching pattern. The only viable alterna-
tive, therefore, is to perform some sort of operational stationarity test on the observed re-
alization; but the key point to note here is that, in the context of experimental data, there
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is no absolute notion of stationarity: any such measure is entirely related to the ultimate
analysis we intend to carry out and to the data models we will use. In an operational frame-
work, therefore, the word “stationarity” is in itself a misnomer; better would it be to use
the term “regularity”, for instance, or “model matching”. However, given that the term
has a well-understood connotation even in an empiric context, we will retain it for clarity.

Best adaptive bases: a classic example

Prime examples of dynamic segmentation depending both on the analysis tools and on
the data realization are to be found in the context of data compression. Lossy compres-
sion by transform coding is based on the energy compaction property of some classes of
linear transforms. This property ensures that, in the transform domain, the characteris-
tics of the original signal are adequately represented by a small subset of basis vectors;
by appropriately thresholding the transform coefficients, an arbitrary compression factor
can be achieved. Linear transforms, however, assume a stationary data set; in response
to this difficulty, Coifman and Wickerhauser introduced the concept of best adaptive ba-
sis [9]. Their fundamental idea is the definition of an additive cost functional M(-) which
measures the effectiveness of a local basis. Depending on the properties of the basis, a re-
cursive algorithm splits either the frequency or the time axis into diadic subintervals, for
an optimal fit of a series of local basis to a finite data vector; wavelet packets are used in
the frequency domain and local trigonometric bases in the time domain. The setting has
also been extended to more general time/frequency segmentations (and more general ba-
sis functions), leading to arbitrary tilings of the T/F plane [20]. Yet this approach would
be of limited practical value if it didn’t take explicitely into account the cost of represent-
ing the data in the new basis. This cost appears clearly after explicit quantization of the
coefficients and affects the faithfulness of the representation via the associate distortion.
This further extension of the best basis framework to the case of transform coding for
lossy compression was introduced by Ramchandran and Vetterli in [45]. As stated previ-
ously, in lossy compression we are often interested in quantizing the data in the transform
domain; the goal is to find the best basis while also trying to minimize the correspond-
ing distortion. In the quantized domain, we can associate a precise cost R in terms of bit
rate to each basis, and a corresponding distortion D; the main idea in [46] is to look at
the cost measure M(-) introduced above as an additive cost measure of Lagrangian form
R + AD, which induces a shift from the simple set of local transforms to the more mean-
ingful set of quantized representations in a local basis. The goal is once again to pick the
sequence of local expansions which minimizes M(-), with the proviso that the overall cost
of the representation must fall below a certain given rate budget.

Best basis algorithms are a typical instance in which we do away with stationar-
ity assumptions or stationarity tests but simply look for the jointly optimal time segmen-
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tation and set of transforms for a particular data set. It is clear that from a theoretical
point of view one could define a class of stochastic processes all of which lead to the same
best basis; from a practical point of view, however, we are willing to pay a computational
price in order not to formulate assumptions on the data and let the algorithm implicitly
define the class by exhaustively exploring the space of all bases.

More general coding models

The previous framework can be extended to include more general data models. This com-
prises the set of local transforms introduced above, of course, and reaches out to a wealth
of linear and nonlinear processing schemes, both adaptive and nonadaptive. In particu-
lar, classic schemes such as Linear Predictive Coding (LPC) [44], sinusoidal modeling [41],
local polynomial modeling [43], and arithmetic coding [42] have all been shown to bene-
fit from a dynamic segmentation framework; the following chapters will indeeed illustrate
the point in detail. Again, the fundamental concept is the definition of a cost function
which measures the descriptive performance of a given algorithm together with its coding
cost over a given data segment, and which implicitely constitutes an operational station-
arity test; now, however, we will not expect this function to be strictly additive. For ar-
bitrary time segmentations, this introduces some extra complexity and part of this work
is to illustrate how this can be tackled in an algorithmic way.

We have already said that a misplacement of the breakpoints in a segmentation can
lead to either redundancy in the representation or to undermodeling. Perhaps one of the
most interesting facets of dynamic segmentation is that the placement of breakpoints (and
the corresponding modelization) can be seen as a function of the amount of resources we
choose to spend. This defines a unified framework which bridges modeling, lossy compres-
sion and lossless compression. In pure modeling problems we are interested in minimizing
some distortion measure, regardless of the cost of our representation. In lossless compres-
sion we are interested in minimizing the cost instead, while using non-distorting coding
models. The case of lossy compression lies in between. By suitably segmenting the data,
all three cases are just outcomes of the very same algorithmic setup.

As a final note, it is important to remark that, by allowing for general basis or coding
models, the necessity arises to cfficiently represent the information relative to the segmen-
tation structure; this is particularly evident in applications such as compression. While a
dynamic segmentation of the data together with an optimal sequence of compression al-
gorithms usually yields a substantial bitrate reduction with respect to a fixed scheme, the
cost of the side information needed to identify the segmentation might largely undo this
gain. Obviously, side information costs must be integral part of the dynamic segmenta-
tion process; thercfore, efficient ways to tag this information to the data have to be taken
into account.
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1.2 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 will elaborate on the concept of
optimal time segmentation and optimal sequence of data models in great detail from an
abstract point of view. Once the algorithmic tools are in place, Chapter 3 will introduce
the first example of optimal data modeling, which involves piecewise polynomial approx-
imations; the corresponding operational results will be compared against two theoretical
bounds on piecewise polynomial approximation derived in the same chapter, with respect
to an oracle-based coding scheme and to a standard, nonlinear approximation wavelet cod-
ing scheme. Chapter 4 will apply the optimal segmentation strategy to two different in-
stances of practical lossy compression schemes: LPC speech coding and Arithmetic Cod-
ing for binary streams. Finally, in Chapter 5, the framework will be carried into the realm
of data communication, here in the form of Data Hiding; user data are to be embedded
into a host signal, an audio signal in this case, and optimal segmentation techniques in
conjunction with a perceptually-based cost function will allow us to maximize the overall
throughput.
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Chapter 2

Signal Segmentation and
Resource Allocation

4.27: Beziglich des Bestehens und Nichtbestehens von n
Sachverhalten gibt es K, = 5., _, (1) Moglichtkeiten.
Es konnen alle Kombinationen des Sachverhalte

bestehen, die andern nicht bestehen.
- L. WITTGENSTEIN, Tractatus Logico-Philosophicus

The basic ingredients of an optimal segmentation problem are a finite data vector, a
family of data models, and a cost function which measures the global goodness-of-fit of the
modelization. The modelization, in itself, is characterized jointly by a segmentation of the
data and by the sequence of data models which are applied to the segments; achieving op-
timality corresponds to determining the modelization (in the joint segmentation/model-
sequence sense just described) which minimizes the given cost function.

In order to ground the discussion in a concrete example, consider the case of a piece-
wise regular function composed of a series of contiguous polynomial pieces. Assume the
data vector is a N-point sampled version of such a function over a given interval; a typ-
ical example is shown in Figure 2.1. The goal is to describe these data using local poly-
nomial functions up to a maximum degree (the family of data models) minimizing the
global mean squared error (the cost function) of the representation. At first it might ap-
pear that in this case the localization of the breakpoints in the data (the segmentation)

13
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and the fitting of a local polynomial to each piece (the modelization) could be carried out
as separate, subsequent steps. However, what if some polynomial pieces have a larger de-
gree than those available in the given family of models? What if the data are corrupted
by noise? It is intuitively clear that, unless segmentation and allocation are performed
jointly, there can be no guarantee of true optimality with respect to the cost function.

A related question, and one which is inextricably tied to the practical, algorithmic
nature of the topic, is how to encode the modelization while preserving optimality; since
the “cost” of a polynomial piece (in terms of storage, for instance) increases with its de-
gree, in our example the question would translate to: how much do we want to spend for
cach segment, and how can this price affect the segmentation? Indeed, more often than
not, the optimal segmentation problem involves a fourth ingredient, which is an upper
limit on the amount of resources which can be spent on the modelization. This additional
requirement transforms the problem into a constrained optimization and it is easy to see
that it is this constraint which really makes the segmentation problem an interesting one;
in its absence, for instance, the N-point piecewise polynomial vector described above can
always be modeled with no error by a sequence of N polynomial “pieces” of zero degree
over N “segments” one data sample wide. Setting a limit on the resources or, better, us-
ing the limit to explore a set of optimal tradeoff points for different amounts of resources,
antomatically eliminates such trivial solutions and opens the way to parsimonious mod-
cling approaches; it now becomes even more apparent how the segmentation must be de-
termined jointly with the model fitting.

The fundamental premise to the optimal segmentation algorithms we will introduce
in the following is that they can all be regarded as an extension of the classic constrained
resource allocation problem; such a problem arises each time a limited amount of resources
must be suitably partitioned across several recipients in order to minimize (or maximize)
a global cost function. The best-known such case in signal processing is probably unequal
bit allocation for subband coding [61], for instance, but widely diverse examples abound in
disciplines such as operation research. In the simpler case when the allocation can be per-
formed independently amongst the different recipients, the solution to the problem obeys
to a simple intuitive rule: the optimal distribution of resources is that for which the differ-
ential decrement (or increment) of the cost function is the same for all recipients. In other
words, we favor those recipients which can make the most out of the resources they are
given, not those which are most in need'. In the jointly optimal allocation/scgmentation
case, the recipients are the segments themselves and the allocation process still follows the
aforementioned guideline; but, since the segmentation is a free variable in the allocation
process, some complications arise: dependence amongst allocation choices is the primary
difficulty and much of this work is devoted to finding efficient formulations for this case.

' A heartless, meritocratic policy one could argue, yet optimal in the global scheme of things.
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Figure 2.1: An example of piecewise polynomial function.

The rest of the chapter is organized as follows. We will first briefly compare the
philosophy behind the operational segmentation/allocation framework to the related (but
eminently theoretical) subject of rate-distortion theory. We will then proceed to analyze
three cases of optimal segmentation, for separable, partially separable and nonseparable
cost functionals and describe algorithmic solutions based on a Lagrangian minimization.
Data encoded according to an arbitrary segmentation require that side information about
the segmentation itself be part of the overall description; therefore, we will then tackle the
issue of efficiently encoding this side information by means of “colored bits”. Finally, in the
Appendix, we will consider alternative algorithmic implementations of the segmentation
algorithm for the three cases above; these, based on dynamic programming, can overcome
some of the limitations of the Lagrangian approach albeit at a higher computational cost.

2.1 Optimal allocations and rate-distortion theory

In signal processing, most allocation (and segmentation) problems appear in the context of
data compression and/or data transmission; without much loss of generality, we can there-
fore rephrase the general setup in more familiar terms by identifying the values provided
by the cost function as a measure of distortion and by representing the amount of available
resources by its descriptive cost in bits. With thesc associations, it is natural to draw a
parallel between the optimal allocation problem and the information theoretical concept of
rate-distortion (R/D). Classic R/D theory is concerned with the approximation of a (possi-
bly multidimensional) random source with respect to a given fidelity criterion, which is an
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exhaustively-defined distortion measure over the cartesian product of the source alphabet
and a set of reproduction symbols; it answers the question of how well this can be done via
an achievable lower bound on the number of bits necessary to achieve a certain reproduc-
tion fidelity. Similarly, in our allocation/segmentation framework, we are concerned with
a rate-constrained representation of the input data by means of a pre-defined set of repro-
duction “symbols” which are nothing but a data segment and its associated data model.

A simplified setup of the theoretical framework in the discrete case is the follow-
ing [4]. We have an input source with independent, identically distributed (iid) symbol
probabilities p(a) and alphabet A and an output alphabet B; we also have a fidelity cri-
terion (i.e. an additive per-letter measure) which is basically an M x N matrix: entry
d(a,b) is the distortion we incur by representing input symbol a by output symbol b, for
any a and b. These are the fixed parameters of the problem, known to both encoder and
decoder. We then consider a random transformation from the input to the output alpha-
bet, in the form of a conditional probability distribution q(bla). Auxiliary quantities in-
duced by the conditional probability are the average distortion

D, = Z Zp(a, b)d(a,b) (2.1)
a b
and the mutual information

(a,b)
I,(bja) = a ) pla,b)log p_) (2.2)
! 2 E,,: (p(a)p(b)

where the marginals and joint probability distributions are obtained from g(bja) in the
usual way. Shannon [53] showed that the achievable lower bound for the distortion-rate
function is in this case:

D=, 38 =
in the sense that, for a given rate R, we cannot hope to encode the source with a distor-
tion less than D(R).

Let’s now have a look at the situation in practice. We are looking for a determinis-
tic transformation of the input data which, in itself, is a sequence of local transformations
of the segmented input chosen from a collection of K possible coding models. In other
words, the input is just a finite size vector a in which the single clements are the data seg-
ments, while the output symbols are a vector b of “codewords” identifying the encoded
segments. We can identify the composite transformation by Q(-), so that b = Q(a); the
transfomation can be inverted and an additive distortion measure is defined by

Do(a,b) =Y d(a;,b;) = lla; — &l (2.4)
J J
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with @ = Q~'(b) and ||- || a suitable error norm. Denote by H(b) the cost in bits for com-
pletely identifying the sequence of output symbols. The overall goal is to find the com-
posite tranformation (Q which minimizes the global distortion while requiring less than R
bits to encode the output:

j— 1 . r

DB = iy <r 2@ (25)
there is clearly a formal analogy with (2.3), even though the setup is completely different.
Yet, this is one of the reasons why most of the techniques we will introduce in the follow-
ing have been addressed in the literature as operationally “R/D optimal”.

In the above expression, the operational rate H(b) is dependent on the way the
output symbols are coded, and is theoretically lower bounded by the entropy of the out-
put sequence b. However, in a truly algorithmical setup, we don’t have an input source
proper but a finite, size-N data realization with no better statistical description than ex-
plicit counting. We could still try to do our best by considering the set of all possible size-
N vectors of output symbols b)Y and minimize (2.5) using the empirical output entropies
relative to the histogram-based distribution induced by each vector,

D(R) = 1 d(a;,b 2.6
(R) =,  min <RZ : (26)

the implicit mapping between the input vector and the minimizing b identifies the coding
transformation Q(-). Yet this would be exponentially complex, since there are NX pos-
sible output vectors for each input. So we yield even more and we make the expression
for the rate additive too, which is tantamount to saying that we will code the output se-
quence according to a pre-defined statistical distribution P(-) for the K coding models,
and we will pay the Kullback-Leibler price for all &’s which do not conform:

D(R) = min d(a;, b 97
( bY 1N tog, 1/ P b")<1eZ I (2.7)

This is the fundamental equation for all the problems we will treat in the following; we will
refer to this simplified R/D scenario as to an operational rate-distortion framework and in
the rest of the chapter we will illustrate some cfficient algorithmic techniques to solve the
problem in (2.7). Although most statistical assumptions on the data have been dropped
(which moves us further and further from the Shannon’s bound), any prior knowledge on
the input is obviously taken into account from an engineering point of view. Computa-
tional requirements, for instance, call for economy in the nuinber of available models and
in their inherent complexity: indeed, little would be gained by allowing for, say, sinusoidal
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models in the case of piecewise polynomial data; yet the time spent on the search for the
optimum output sequence would dramatically increase. Similarly, the implicit distribu-
tion for b will be crafted to have the allocation process do what we think is “reasonable”.

2.2 Segmentation and allocation techniques

2.2.1 Notation and building blocks

Here and in the following the data will be represented by a N-element vector z1; the ele-
ments themselves are best viewed as sets of data samples: a single scalar value, disjoint seg-
ments of a one-dimensional discrete time signal, or 8 x 8 image blocks, for instance; we will
see later that the choice of what is a “data point” determines the underlying granularity
of the segmentation/allocation process, and is in itself a useful parameter controlling the
end results. We will assume we have a family of K data models, to each of which a distor-
tion function and a rate function pair is associated; both rate and distortion functions are
dependent on the set of points the model is applied to. We can right away distinguish be-
tween two main classes of models, which will give rise to two different allocation problems:

e Separable models, for which rate and distortion are additive over the single data
points (a family of scalar quantizers, for example);

o Nonseparable models, for which rate and distortion are nonadditive functions, in the
sense that they depend on the range of (consecutive) data points the same model is
applied to (a family of transform coders, for instance).

Both types of models can be adaptive or non adaptive, where adaptive means that the
parameters used to describe a model instance are derived from the data and must be ex-
plicitely encoded along with the data and the model index; polynomial models, for in-
stance, are obviously adaptive while a scalar quantizer is not.

2.2.2 Optimal resource allocation, independent case

Let us make a little step backward and, for the time being, forget about the segmentation
issue to concentrate on the allocation problem only. For our N-point data vector and our
family of K data models the goal is to assign a model to each point in order to minimize
the overall distortion under a given rate constraint; assume both rate and distortion ad-
ditive over the N data points, which restricts the allowed models to the separable class.
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Theory: the reverse waterfilling approach

The resource allocation problem can be tackled from within two very different frame-
works. In a probabilistic scenario we would assume that the data are the realization of a
N-dimensional random process for which we possess a statistical description, and that the
distortion for each of the N data sources can be expressed analytically as a function d(r)
where the rate, approximated by a real-valued quantity, indexes the model. A typical case
is that of quantization, where a family of quantizers can easily be ordered according to a
sufficiently dense set of rates; another example could be the truncation of local series ex-
pansions, as in block-transform coding schemes like JPEG [46]. In all cases the goal is to
arrive at a global allocation scheme which is optimal in expectation but note that, some-
how, this is still an operational R/D setting since the overall rate is considered additive.
In many practical cases, such a rate/distortion curve is a cup convex function, and the op-
timal resource distribution can be efficiently determined using reverse water-pouring tech-
niques or variations thereof [17]; the optimal distribution must satisfy the following con-
stant slope conditions and rate constraint:

0D
g =constant forn=1,... ,N

™ (2.8)
zrn =Ry

where D = 227:1 d(r,) is the sum of the N independent R/D functions for the sources
and Ry is the overall available rate. The resulting allocation scheme can be considered
“hard wired”, since it is designed only once for an entire class of data sources and it is
crystalized as an integral part of the overall data processing algorithm.

Practice: the operational approach

The second approach to resource allocation, which we will follow throughout, does away
with statistical descriptions and deals exclusively with the particular data realization to
be processed. While the set of K models has clearly been designed exploiting some form of
prior knowledge about the data sources, in this case we no longer rely on asymptotic rate-
distortion curves but rather on a discrete set of achievable R/D pairs. In other words, the
analytic curves of the previous approach are replaced by data-dependent, discrete sets of
explicitly computed operating points for all meaningful combinations of model and data
point; we are thus back to Equation (2.7). The discretization of the water-pouring ap-
proach for this operational case leads to a special case of Lagrangian optimization which
is amenable to very efficient algorithmic implementations; the main reference in this case
is the paper by Shoham and Gersho [55], to which we refer for all formal proofs.
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Figure 2.2: (a) Rate-Distortion pairs; (b) convex hull.

First of all, consider an arbitrary allocation w consisting in a N-element vector of
model indices; rate and distortion values for w can be computed by applying the model
indexed by the n-th element of w to the n-th data point z, for » =1 to N and summing
up the results, since by hypothesis both rate and distortion are additive and independent;
call these values R(w) and D(w) respectively. Given that there are K data models, the
sct of all meaningful allocations W has cardinality [W| < K and to each w € W is asso-
ciated a R/D pair which we can represent by a point in a distortion-rate plane as in Fig-
ure 2.2-(a). The optimal allocation problem can be now formulated as the search for:

w* = arg néivr‘lx{D(w)}
(2.9)
R(w*) ~ Ry

where the rate constraint is “approximate” since the idcal target rate might not be exactly
amongst the discrete set of reachable operational rates. Without further assumptions, the
solution of (2.9) involves an unstructured exhaustive search over K¥ R/D points, first se-
lecting candidate rates (dashed box in Fig. 2.2-(a)) and then selecting the one with mini-
mum distortion. We can however transform the process in a much more structured (and
therefore efficient) search over a linear parameter if we are willing to restrict the set of
candidate points to just the convex hull of the entire R/D set, highlighted in gray in Fig-
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ure 2.2-(b). The key to the efficient formulation lies in restating (2.9) as an unconstrained
problem via a Lagrange multiplier A; it can indeed be shown that if wy is a solution to

J}rgg‘l{ D(w) + AR(w) } (2.10)

then wq defines a point on the convex hull which solves the associated problem:

nin { D(w) }
(2.11)
R(w) < R(wo)

It may help the intuition to show why the set U of (R, D) pairs solutions to (2.10) in-
deed defines a convex line on the R/D plane. Given any two solutions (R;, D;) and
(R;,Dj), R; > R;, the line in the R/D plane connecting them has an (absolute) slope y =
(Dj — D;)/(R; — R;). Convexity requires that all solutions (R, D) such that R; < R < R,
lie below this line. Suppose this was not the case for a solution (R, D) € U in terms of
slopes connecting (R, D) to (R;, D;) and to (R;, D;) this implies (see Figure 2.3):

D;-D ___D-D
R-R, "SR -R

(2.12)

The (R, D) pair is by hypothesis a solution to (2.10) for a given A; however, if A < v, (2.12)
implies D; + AR; < D + AR and we have a contradiction; otherwise, if A > v, we have
again D; + AR; < D + AR; therefore (R, D) ¢ U. This holds for all elements of U and,
for a dense solution set, it provides an intuitive meaning to the value of A in (2.10) as the
derivative of the convex hull at the relative solution point. It should be noted at this point
that the restriction to the convex hull never affects optimality, but it might slightly reduce
the density of achievable rates. Indeed, consider the point labeled 'NR’ in Figure 2.2-(b);
the point is optimal with respect to its associated rate, since no other point with the same
rate lies below it, yet it would not be reachable by the Lagrangian optimization since it
doesn’t lie on the convex hull. Instead, the closest Lagrangian soulution would either be
point ‘R1’ or ‘R2’, depending on A. Usually, for sufficiently dense sets of coding models,
this restriction is of no practical consequences; in Appendix 2.A, however, we will describe
an algorithm based on dynamic programming which circumnvents this problem.

With this unconstrained formulation the search strategy therefore involves finding
the value of A for which the solution w to (2.10) satisfies R(w) = Rp. So far, however,
little seems to have been gained in terms of efficiency. The breakthrough comes from two
separate observations; first, since rate and distortion are additive, non negative and inde-
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S
R
Figure 2.3: Convexity of the hull.

pendent, we can rewrite (2.10) as:

Il
bt
=)
=
=

N
min{D(w) + AR(w)} = min{ nzzjl{d(n; wn) + Ar(n;wa)} }

N
= Z k_rlninK{ d(n; k) + Ar(n; k) } (2.13)
k=1

where d(n; k) and r(n; k) are the distortion and the rate associated to using model & over
Iy. Since the terms in the sum are independent, the total number of comparisons needed
to solve (2.10) is now on the order of KN for a given value of A. Equation (2.10) repre-
sents in fact a discretized version of the constant slope condition in (2.8), where all points
operate at the same tradeoff factor .

The second fundamental observation is that there is a monotonic relationship be-
tween A and the total rate (for a proof, sec again [55]). This means that the desired value
can be found using a fast scarch, using for instance the bisection method [45]; although
it is hard to give a precise estimate of the number of iterations needed to fulfill the given
rate constraint, dependent as it is on the initial value for A, it is usually remarked that
the time spent on the iteration is rather small. A priori information on the characteristics
of the data is usually sufficient to formulate an educated guess for the initial value which
minimizes the number of refinement steps. This monotonic relationship between the rate
and the Lagrange parameter is a fundamental asset of the unconstrained formulation; it
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gives A the role of a user definable “knob” with which the problems of data compression
(A = +00) and data modeling (A — 0) are seamlessly bridged.

2.2.3 Optimal resource allocation, partially independent case
From allocation to segmentation: side information

In the operational optimization framework for additive cost functionals just described a
fundamental piece is still missing: since the allocation is strictly dependent on the par-
ticular data vector, its description becomes an integral part of the overall modelization,
and must be taken into account. In fact, the usual purpose of an optimal allocation is
data compression; it is obvious that, by allowing for an arbitrary sequence of encoding
schemes, we must provide an adequate amount of information to the decoder, on top of
the compressed data, if we want to invert the process. This description, however, exacts
a non-negligible toll on the total available rate in the form of side information; to pre-
serve the optimality of the solution, this extra cost must be explicitely included in the al-
location process. The question now is: what is the actual cost of encoding the allocation
structure? Consider a simnple example: assume that the data are stored in an 8-point vec-
tor and that the family of models is comprises 4 different coding schemes, labeled A, B, C
and D:; let the final allocation be A, A, A, A, A, C, C, C: we can encode this (or any other)
sequence in a straightforward manner using 8 x 2 = 16 bits. If the data are piecewise sta-
tionary, however, ncighboring data points will have on average a higher likelihood of being
assigned the same data model and in this case some form of run-length coding is decidedly
more effective. Indced, the previous allocation can be encoded with 2 x (3 + 2) = 10 bits,
where we use log, 8 = 3 bits to encode a run and 2 bits for the model. Run-length coding
implicitely segments the data into blocks of points for which the allocation is constant; we
can qualify this observation as follows:

Proposition 1 For piecewise stationary signals, if side information is taken into account
efficiently, each modelization subsumes a segmentation even in the case of an additive cost
functional.

This encoding scheme has also another important consequence: it creates dependence be-
tween data points with respect to the allocation. Indeed, the model choice for the n-th
data element has now different rate requirements depending on the choice for the previous
element (i.e. whether we need to start a new encoding run or extend the previous one).
In this case, equation (2.13) does not hold anymore and the allocation algorithm will have
to be modified accordingly. We can therefore state the following:

Proposition 2 Side information introduces dependence in the allocation process.
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Extending the lagrangian framework

This one-step-back dependence in the cost functional is after all rather simple and the in-
dependent allocation framework can be easily extended to the present case with some ex-
tra algorithmic complexity but at no major increase in the computational requirements.
In fact, the distortion values are still independent and we can integrate the cost of side in-
formation by introducing a new function for the rate r.(n; k, h) defined as

r(n; k) ifk=~h

re(nik.h) = { r(nik) + c(h,k) ifk # h (2.14)

where c¢(h, k) is the cost (in bits) of signaling a transition from model h to model k; this
information will comprise a model index and a measure of the number of points the model
is applied to (more details about the values for ¢(-,-) will be discussed in section 2.3.2).
With this, the search for the optimal cost functional in Equation (2.13) becomes

J(A) = gg‘x‘ll{ D(w) + AR(w) }

N

gg‘xilj{zl d(n;wy) + Are(n; wp, wn_1) } (2.15)

with the convention that wy is set to some agreed-upon initial model. The minimization
in the above expression is no longer separable; however, suppose we knew the value w} of
i-th element in the optimal allocation w*; since the dependence amongst terms extends
only one step backward, we can write:
i1
J(A) = nl;i_rll{Z[d(n; wy) + AT (N Wn, Wn—1)] + Ac(w], wio1)} +
1 n=1

+ d(i;w]) + Ar(Gw)) +

N
+ min{ 37 dn;wn) + Aren; wn, a1 dug=ug (2.16)

w; -
i+l n=i+1

The three terms on the right state that the global optimum is composed of the partial allo-
cation whose Lagrangian cost, including the cost of a potential transition to w}, is minimum
up to 7 —1, plus the Lagrangian cost for the point we assume to know, plus the cost for the
remaining points, which is independent of the previous ones. This holds for any value of ¢
and therefore, at each step, the optimal allocation can be built incrementally by formulat-
ing an optimality hypothesis over each one of the K models. Equation (2.16) is a particular
case of the optimality principle in dynamic programming [3] and suggests an efficient way
to implement the allocation process as a trellis search using the Viterbi algorithm [15]. The
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Figure 2.4: Trellis for the partially independent case: (a) trellis struc-
ture; (b) path population.

trellis formulation has the advantage of storting all intermediate rate and distortion values
i convenient structure, making an iteration over the Lagrange parameter much quicker,
and is a popular algorithmic strategy in similar optimization problems [36, 56]. Note that
the computational requirements are still lincar in N, just as the storage requirements.

Algorithm 2.1: Trellis algorithm for the partially independent case

The minimization in (2.16) can be deployed on a K-state, (N + 1)-stage trellis as
in Figure 2.4-(a); a state will be denoted by s, &, where the first subscript identi-
fies the step index (from 1 to N) and the second subscript a model index (from 1
to K); the same notation is used for the path metrics associated to the states, jy k.

Step 1: Initialization

1 Define (by convention) an initial state so; and set jo; = 0.

2 Create the trellis: for 1 <n < N
create a state set S, containing K states spx each, 1 <k < K.
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3 For each s, 1, € S, 1 <n <N
compute the distortion and rate values d(n; k), r(n; k) and associate
these values to the state.

Step 2: Trellis path population

4 Select a value for A; let jg, = 0.

5 Forl1<n<N
For 1<k<K
Determine the minimum cumulative Lagrangian costs:

Ing = lg}lisnk.{j;—x,h +d(n; k) + Are(n; k, h)}

using the values stored in the trellis?.

Assume the minimum is for b = h*: connect s, to $p_1 -
and associate j , to s, (see Figure 2.4-(b)).

Step 3: Backtracking

6 Sclect the state sy g~ with the minimum value for j . ; from this, obtain the
corresponding overall rate and distortion values 7*(A) and d*(A).

7 If the rate constraint Ry is met

Then follow the paths backward in the trellis from sy x+ to s;9; the
sequence of travesed states yields (backwards) the optimal allocation.
Stop.

Else proceed to the iteration over A.

Step 4: Iteration over )\

In some cases, especially when the rate constraint is specified to within a toler-
ance interval, an educated guess for A can avoid the need for an explicit search.
In most cases, however, the value for A must be determined iteratively until the
rate constraint Ry is met as closely as possible. The scarch algorithm exploits
the convexity of the solution set and proceeds as follows [45]:

8 First determine A, and Apax $0 that 7* (Amax) < Ro < 7 (Amin) (see below);

9 Choose a starting value for A between Anpin and Apax.

2For n = 1, the only possible value for h is 1, obviously
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10  Run the path population and backtracking steps (Steps 2 and 3 above).
11 If Ry =1r*())
Then the optimum is found. Stop.
Else
If Ry <r*(N)
Then Apax ¢ A

Else )‘min «— ’\

Determine the new value as A = (d*(Amin) —
d*(Amnax)) /(7" (Amax) — 7*(Amin)) and goto line 10.

Given the monotonic relationship between A and 7*(A), an obvious choice for the ini-
tial minimum value is Ayn = 0, for which the minimum allowable distortion is achieved.
Conversely, a safe maximum value is A = +oc (to within the numerical limits of the hard-
ware). This upper bound is however much too high in most cases and a better starting
value can usually be inferred from the properties of the data; some examples will be illus-
trated in the next chapters.

2.2.4 Joint segmentation and allocation: dependent case

Let us now go back to the piecewise polynomial example: to model a polynomial, the fam-
ily of data models will clearly comprise what we could call “polynomial prototypes”, that
is, set of polynomial templates indexed by their degree and whose parameters are esti-
mated from the data samples they are applied to. Clearly, fitting such polynomial proto-
types to different portions of the signal is no longer a pointwise process since the accuracy
of the local polynomial parameters depends on the entire amount of data available to the
underlying estimation process (think of Least Squares) while the rate stays constant; this,
in turn, affects the cost functional in a nonseparable way. This is a common occurrence
and, in fact, truly pointwise cost functionals are more the exception than the rule. Re-
member that the goal of optimal segmentation is to remove the fixed-window constraint,
and windows are introduced in the first place to somehow discretize on a regular grid a
given distortion function.

In general terms, nonseparable data models push back the optimal allocation prob-
lem to its original exponential complexity. Fortunately, however, for models whose dis-
tortion s still additive over disjoint segments, the framework of the previous section can
be easily adapted using dynamic programming. This includes all data models for which
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the classic fixed-window paradigm is applicable, leaving out only the recursive backward
adaptive coding schemes.

Dependent allocation

Again. the sole hypothesis now is that the distortion function is additive over disjoint seg-
mments. We have chosen to tag the side information as a preamble to each segment using
run-length coding, therefore the Lagrangian cost functional J = D + AR is itself additive
over disjoint segments. If the segmentation was given a priori (a fixed-window splitting,
for instance), then the modeling problem would become the simpler allocation problem il-
lustrated above, where the data “points” to which the resources are assigned are just the
seginents themselves. For a N-point data vector there is only a finite number of possi-
ble semmentations, 2V 1 to be precise; if we let the segmentation be a free variable in the
minimization process, we simply have to deal with a larger population of operational R/D
points cach of which is now indexed by segmentation-allocation pairs as in Figure 2.5.
Again. if we choose to restrict the minimization to the convex hull of the composite set of
points. we can solve the associated Lagrangian problem as a double minimization:

J(A) = rt‘é"}-‘w?v{/‘it){‘](’\)}’ (2.17)
where T is the set of all possible segmentations. More in detail, a segmentation t is defined
as o collection of j + 1 time indices: t = {tg =1 <t <ta <... <tj_1 <t; = N+ 1},
with j between 1 and N; the number of segments defined by any one ¢ will be denoted
by a(t). 1 < o(t) < N, with the i-th segment being .’L‘Z“wl. The notation for the alloca-
tion w must now reflects its dependence on the number of segments; in particular, w(t)
is now a collection of o(t) model indices w;, 1 < w; < K and W (¢) is the set of all possi-
ble allocations for t, with |W (t)] = Q7 .

The cost functional in (2.17) now involves two kinds of dependence, both in the rate
and in the distortion; as we said, however, it is still additive over disjoint segments and
therefore we can write:

a(t)
J(A) = I}é‘}lwfenv}fb){; d(ti, tivr;w;) + Ar(ti, tigr;wi)) } (2.18)

where now the notation for the distortion and the rate highlights the beginning and the
end of the data segment xii“_l to which the model indexed by w; is applied. Since data
segments are now the basic allocation recipients in the optimization process, we don’t need
to separate the contribution of side information, which is absorbed into the rate require-
ments for a given segment; the notation r(¢;,¢,41; w;) therefore includes here model index,

model parameters (if applicable) and segment length.
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Figure 2.5: Composite convex hull.

Since all quantities arc nonnegative, the inner minimization over W (t) can be carried
out independently term by term, reducing the number of comparisons to Ko(t) per seg-
mentation. Now the key observation is that, whatever the segmentation, all segments are
coded at the same rate/distortion trade-off as determined by A; thercfore, for a given A, we
can determine the optimal ¢ (in the sense of (2.17)) using once again a dynamic program-
ming approach, although different in flavor. Just as in the previous case, the development
of the dynamic algorithm can be illustrated formulating an optimality hypothesis. Suppose
we know a breakpoint ¢* belongs to the optimal segmentation ¢*; then it is easy to sce that

J[*l,N](’\) = J[*M._l](/\) Eu[l:n,\}wleltwt {J(N)} (2.19)
where subscripts indicate the signal range for the quantities involved (that is, Tjs- Ny 1s for
instance the set of all possible segmentations for ). In other words (2.19) states that
if t* is an optimal breakpoint, then the optimal cost functional for lt. is independent of
subsequent data. Again, this defines an incremental way to jointly determine the opti-
mal segmentation and allocation as a recursive optimality hypothesis for all data points
as segmentation breakpoints: for 1 <t < N,

I, ,]( ) = mln {I[l (M) + an {d(7,t; k) + Ar(k)}} (2.20)
with J[*1 0](/\) =0 by definition. At each step t, we need to keep track of the new I {:‘
ig-

and of the minimizing 7 only. The incremental process is illustrated graphically in
ure 2.6, where the first three steps of the algorithm are displayed; black lines represent
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Figure 2.6: Incremental segmentation/allocation.

the sub-segmentations for which the minimum cost functional has already been computed
while gray lines represent their extension to the current data length. It is clear how at
step three, for instance, once we assume a breakpoint at ¢ = 2, we don’t need to explic-
itly compute the optimal segmentation for points x; and x9, since it has already been de-
termined at step two.

In terms of computational requirements, by looking at Equation (2.20) we can see
that the minimization process at any step n entails the evaluation of n distinct cost func-
tionals over segments from length 1 to n; as a general approximation, assuming that the
distortion function for a n-point vector requires O(n%) operations, the total computational
requirements for the algorithm are then on the order of O(N%+?), while the storage re-
quirements are O(N).

Trellis-structured implementation

Computation of the cost functionals aside, the minimization in (2.20) requires exactly
N(N —1)/2 comparisons for a given value of A. If an iteration over the Lagrange param-
eter is required, as is often the case, it is much more convenient to split the algorithm in
two parts: on the first pass all the rate and distortion values needed by equation (2.20) are
computed and stored; subsequently, the minimum Lagrangian cost for a given A can be
determined at a lower computational cost, allowing for a faster iteration. This approach,
which in computer science parlance would be called memoization, can be organized on a
trellis; in contrast to the previous case, however, here the trellis functions more as a data
structure than as an algorithmic device, since most states, whose number grows linearly
with the time step, act only as place markers rather than as indicators of the encoder’s
state. Yet, the trellis structure offers an intuitive graphical representation of the mini-
mization process and allows for all intermmediate quantities to be conveniently organized;
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Figure 2.7: Trellis for the rate-dependent case:(a) trellis structure; (b) path population.

in most cases this leads to an improved overall performance, as the examples in the fol-
lowing chapters will show. The algorithm can be formalized as follows:

Algorithm 2.2: Trellis algorithm for the dependent case

Step 1: Initialization
Organize the data on a trellis (see Figure 2.7-(a)):

1 Forl<n<N
create a state set S, containing n new states s, each, 1 <m < n.

2 Then, for each s, m € U, Sn (in some suitable order):
If applicable, associate to the state all local intermediate quantities
for an incremental computation of the distortion.

Compute the distortion and rate values d(n — m + 1,n;k), r(k) for
1 <k < K and associate these values to sy .

3 Finally, create an extra state set Sny41 = {sn41,0}-
Step 2: Trellis path population

4 Select a value for X; let j5 = 0.
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5 For1<n<N
Determine the minimum cumulative Lagrangian cost:

Jn = B g;glk,{yn_m +d(n —m+ 1,n;k) + Mc+r(k)}

using the values stored in the trellis.

Assume the minimum is for the pair (m*, k*): connect sy, - t0 Spy1 |
and associate (j;,m*, k*) to the path. Also, connect sp m t0 Sp—1,m-1
for m > 1 (see Figure 2.7-(b)).

Step 3: Backtracking

6 Obtain the optimal rate and distortion for the given A from j3,, = d*()) +
AT*(A).

7 If the rate constraint is met
Then follow the path backward in the trellis from sy to s1,1 col-
lecting, where applicable, the values for m* and &£*. Assume 7 such
values are collected, numbered from j to 1 as we proceed backward:
the optimal segmentation is then t* = {to,... ,t;,t;4) = L} with¢; =
t;+1—~m; recursively, and the optimal allocation is w* = {k},... ,k}}
(Figure 2.7-(b)).

Else proceed to the iteration over A.

Step 4: Iteration over )\

See Step 4 in Algorithm 2.1.

The previous algorithm is very general and it applies to all cases of backward de-
pendent segmentation for which rate and distortion arc additive over disjoint segments.
The details of the implementation obviously depend on the particular application and on
the family of data models and in the examples of the following chapters this template will
be suitably customized.

2.3 About side information

In Section 2.2.3 we have shown that information about the allocation and the segmenta-
tion is an integral part of the minimization process, with the major consequence of creat-
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ing dependence between data points with respect to the chosen cost functional. However,
an issue has been so far swept under the rug, so to speak, and that is the actual size of this
additional information; it is clear that, just as with all other quantities, the final result of
the allocation process depends on the price (in bits) paid to describe the allocation itself.

We find ourselves in a self-referential situation: the allocation depends on the amount
of side information, and the amount of side information depends on the allocation. The
approach we will follow in the practical coding schemes of the next chapters is to cut open
this circularity by fixing the price of side information a priori. Yet, a more exhaustive ap-
proach would allow for different possible ways to encode the allocation structure, much in
the same fashion as we allow for different data models, and would perform a double opti-
mization over both sets. We will now try to explore what possibilities lic behind the side
information issue, both from a theoretical and a practical point of view.

2.3.1 Upper and lower bounds

The total amount of side information for each segment can often be split in two compo-
nents: a first portion is devoted to encoding the model index and possibly its related pa-
rameters, if these arc adaptive; the second portion encodes the start- and end-point of the
segment (or simply its length). The first portion of the side information content is basically
fixed, depending as it does on the family of models, and can be thought of as an integral
part of the rate requirements of a given model; we will not consider it further. The second
portion, however, has a subtler nature. Denote by ’I‘{{O the binary stream after the data
have been encoded; this stream comprises the encoded data and the side information re-
lated to the segmentation. We can always choose to lump the segmentation description in a
prefixed data block so that the output stream is partitioned as ﬁf“ = [sf; yf]; the fisrt part
is the side information (S bits) and the second part, with R = Ry — S, is the actual data.
In order to run the allocation process, we must fix in advance the amount of side
information associated to a segment. We can identify two extreme cases. If we have no
idea at all on the final number of segments, we must assume that any of the segments can
be as long as the output stream itself; therefore we must set the cost of side information
to log, Ro. At the other extreme, we could consider the completely unrealistic situation
in which we know exactly how many segments we will have in the end; say this number is
M. In this case, we can derive a lower bound on the cost of side information as follows:
associate to yf a length-I? binary vector z{"'; a value of one for z, means that y, is the
startpoint of a data segment, and there will be M ones in the vector. We can therefore
encode zf* with no less than RH(M/R) bits, where H(-) is the binary entropy function:

H(p) = —plog, p — (1 — p) log,(1 - p). (2.21)
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From the relation
Ry=R(1+ H(M/R)) (2.22)

we can determine the value for R and set the side information cost per segment to
(R/M)H(M/R), which is the minimum possible.

2.3.2 Coloring bits®

So far it secems that, for lack of better knowledge, all we can do is use the log, Ry estimate
since any value smaller than this does not guarantee we can encode any possible segmen-
tation. In fact it is not so; we can actually set the cost of side information to any value
less than log, Ry without making any assumption on the number of segments and still be
able to encode all segmentation structures. In so doing, however, we will have to pay a
fixed extra price for the added service.

The idea is to blend the two sequences yit and z,R into a single one; we could look
at this blending as (somewhat picturesquely) at a process where the bits in y which corre-
spond to the beginning of a segment are “colored” (red, for instance...); information theo-
rists would call this, more seriously, a stream punctuating scheme. Colored bits are equiv-
alent to a third symbol, besides zero and one; since the original streamn is binary, allowing
for an extra symbol corresponds to a data expansion which depends on its implicit prob-
ability, and this is the fixed price mentioned above. Similarly, a colored bit must be bi-
nary encoded at a cost of, say, ¢ bits; this will be the cost we select for the side informa-
tion of a segment. If we denote by p the data expansion factor caused by the presence of
the third symbol, we can write the following lower bound for the final output size:

R(1+p)+ Mc> R(1+ H(M/R)) (2.23)
where the expression on the left represents the final length of the binary stream (Ry) af-
ter using an arbitrary number M of colored bits, and the expression on the right is the

lower bound for M segments which we derived previously. We have therefore a relation
between the cost of a colored bit and the fixed expansion factor we have to allow for; from

¢ > (R/M)(H(M/R) - p) (2.24)

we can minimize the right hand side with respect to all meaningful ratios M/R (that is,
0 < M/R < 1/2 %) and obtain either a lower bound for the cost of a colored bit:

1
¢ > log, <2p — 1) (2.25)

3For the discussion in this section I am greatly indebted to Clandio Weidmann; in particular, at my in-
sistent request, he single-handedly derived the bound in (2.25) over a pizza and a beer.

"For M/R > 1/2 we simply switch assumptions, and assume each bit is an independent segment un-
less a colored bit is used.
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Figure 2.8: Percentage of side information as a function of breakpoint density.

or for the expansion factor given the size of side information:
p>logy (27 + 1). (2.26)

With these bounds we can derive an expression for p(M/Ry) = S/Ry, the percent-
age of output bits spent on side information as a function of the density of breakpoints.
We have

M
pe(M/Ro) = - logy Ro (2.27)

for the “easy” signaling scheme and

M ¢ p
(M/Ry) = — L

(2.28)

for the colored bits scheme. The curves corresponding to p.(-) are displayed in Figure 2.8,
parametrized in ¢, for Ry = 2!°; since p approaches zero as ¢ approaches log, Ry, each of
the curves also approximately represents the function p.(-) when Ry = 2°. The value of
¢ can therefore be used as a parameter in the optimization: the cost of side information
is set to ¢ and, correspondingly, the rate requirements for the models are augmented by a
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factor of p; an iteration over ¢ yields the optimal solution. The gain for this extra adap-
tivity is given by the offset between p. and pe; for a breakpoint density lower than 1% of
the total number of points, for instance, the maximum achievable gain is around 20%.

Implementation

We now know the bounds on the performance of colored bits, but how do we actually
color them? Building a universal punctuation scheme which achieves the bound in (2.23)
is, to the best of our knowledge, an open question. We can however implement the col-
oring mechanism quite simply using an arithmetic coder, with a performance remarkably
close to the bound.

Arithmetic coding will be discussed in detail in Chapter 4; for the time being, all
we need to know is that, given a k-ary input alphabet and an associated set of probabili-
ties pg, an arithmetic coder compresses an N-element string of input symbols to a binary
word of length log, 1/A, with

N . .
A= H 7)I(c# of k’s in the input) (2.29)
k=1

We will assume that the data vector yf¢ is a Bernoulli 1/2 sequence; this is reasonable
since we are in a compression context and the data models should output maximum en-
tropy sequences. If we process the data vector with a binary arithmetic coder, we obtain

A= pg(y) p(IR—h(y)) (230)

where h(y) is the Hamming weight of the sequence. By setting po = p; = 1/2, as by
hypothesis, we obviously have logy 1/4 = R, which is consistent with our assumption of
a maximum entropy sequence. Now we introduce colored bits, which are represented as
a third symbol of arbitrary probability e. We still want the “uacolored” data bits to be
equiprobable; the admissibility condition then imposes py = p; = (1 — €)/2 and with this
new probability assignment we encode the data to obtain

4 - (1—2-6)12; (2.31)

from this the expansion factor is derived as:

(2.32)

2
l-i—p=logg1

A colored bit will cost us log, 1/¢€ bits, as we can see from (2.29) so that in the end we have:

(2.33)

1
p= 10g2 1_2—6'
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Figure 2.9: Expansion factor p vs. cost of a colored bit: theoretical up-
per bound (solid) and arithmetic coding performance (dashed).

We can compare this relation to the theoretical bound in (2.26); the curves are displayed
in Figure 2.9, and they are almost indistinguishable for even moderate values of c.

Is it worth it?

Optimizing the segmentation with respect to the cost of side information requires an iter-
ation of the segmentation/allocation process over at most log, Ry values for ¢ and can be
seen as an additional refinement step. In most cases either the “easy” choice of ¢ = log, Ry
or a guess on the potential number of segments (and therefore on the corresponding c)
proves adequate; in applications where the premium is entirely on a low bitrate, the iter-
ation might be a need. One final remark is however necessary: in many compression ap-
plications (amongst which the polynomial modeling to be discussed in the next chapter)
it is difficult to exactly split the side information between a segmentation structure cotn-
ponent and a model parameters component. It is easy to see that in the dependent allo-
cation case the range of application of a given model (i.e. the segment’s length) is hardly
separable from the other segmental parameters. In this case the optimization of the seg-
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mentation with respect to the side information rests entirely with a careful design of the
family of data models.

2.4 Summary

Piecewise stationary signals can be effectively analyzed by a sequence of local models fit-
ted to the different portions of the signal itself; the implicit time segmentation, together
with the sequence of coding models, can be determined by formulating the fitting process
as a generalized rate-distortion problem and the result is optimal with respect to the cho-
sen family of models and the chosen cost function. Section 1 reviewed the connection be-
tween rate-distortion theory and the problem at hand. Section 2 introduced the fundamen-
tal building blocks of the optimal allocation problem and discussed in detail two funda-
mental cases of segmentation, for independent and dependent cost functions. An efficient
implementation can be arrived at using Lagrange multipliers, which conveniently bridge
the two end cases of signal modeling and signal compression, and general trellis-based al-
gorithmic procedures have been described; these procedures will be used as templates in
the following chapters, where specific coding problems are taken into account. The issue
of side information is also very important, since the optimal segmentation and allocation
are strictly data-dependent, and their description is an integral part of the coded data.
This is tackled in Section 3 and the idea of “colored bits”, used to encode a segmentation
structure at an arbitrary cost, is also discussed. Finally, Appendix A looks at the alloca-
tion problem from a different perspective: the trellis algorithm is used to explore all possi-
ble rates at once. This approach is usually too costly to be truly practical, but is nonethe-
less rather interesting in some of its slightly suboptimal heuristic variations.
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Appendix 2.A Alternative to the iteration

As we have seen, the use of Lagrange multipliers casts the search for the optimal allocation
into an efficient algorithmic framework. Yet, one could argue, this approach is not with-
out drawbacks. First and foremost, some R/D points, although optimal, are not reach-
able since they are off the convex hull, as we already pointed out in section 2.2.2. Then,
as with all iterative algorithms, the execution time is variable, depending as it does on the
initial guess for A. Furthermore, each minimization provides the optimal allocation only
for a single total rate and the minimization plus iteration process must be repeated if a
different rate is desired. Finally, a new global iteration is needed if the data vector is ex-
tended with new points.

Part of these problems were addressed in [47], where the GBFOS algorithm is used
to obtain the optimal allocation for all possible rates simultaneously in the case of indepen-
dent quantization of several sources. The scheme is however designed only for a set of quan-
tizers with contiguous rates and no provisions are made for side information or data vector
extensions. A more general approach which can account for both these issues makes use
(once again) of dynamic programming; while this is no new tool in this context (dating back
at least to 1980 [59]), it has not been widely used because of its purported computational
complexity. Indeed, it is a costly approach, but it solves the aforementioned problems and,
as we will show, is amenable to practical algorithmic implementations which trade com-
putational complexity for global optimality at a linear cost in the number of data points.

2.A.1 Independent case

Let us initially consider the dynamic programming solution for the case of independent al-
location, no side information (see Section 2.2.2). For any given bit budget Ry recall that
the optimal allocation w* is defined as:

w* = argwer(lzlg?:Ro{D(w)}. (2.34)

Due to the additivity and non-negativity of rate and distortion values we can write for
any data subsct z7:

min D(w)} = 2.35
w}llR(wf):R{ (wy')} (2.35)
min { min (D™} +d(n; k)}

1<K "2 R(w] ™ H=R—r(n:k)

where rate and distortion values are computed over the implicit data subset. In other
words, the optimal solution at step n with rate I can be obtained from the minimum par-
tial solution at step n — 1 with rate “one model away” from R. The relation is clearly
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recursive in nand valid for all values of R; this leads to the following trellis-based algo-
rithin™: let S, be the set of meaningful states in the trellis at step n; each element of S,
is a {r.d. k) triple where r is the cumulative rate, d is the cumulative distortion and k is
the last model index; cach (r, d, k) represents the value of the inner minimization in (2.35)
for rate 7. Then the algorithm is the following:

Algorithm 2.3: Dynamic programming: independent case

Step 1: Initialization
i Let Sp = {(0,0,0)}.
Step 2: Allocation
2 At each stepn, 1 <n <N
let S, = 0;
precompute d(n; k) for k=1,... | K;

for all previous states (r,d,k) € Sp_4
fork=1to K

compute the new cumulative rate r' = r + r(n; k)

compute new cumulative distortion: d' = d + d(n; k)

(new state:)
look for a state (r',4, &) in S, (for any 4 and &)

if there’s no such state
then S, = S,(r',d', k)}

else if d' < § (pruning)
then S, = (S, \ {(+'. 8, )} (', d', k)}

connect old state to new state.

"Please note that, although the trellis notation which follows resembles that of the previous sections,
the algorithms are unrelated; here the states represent the cumulative rate, while in the previous cases the
states were associated either to the model index or to the length of the data segments.
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Step 3: Backtracking:

3 Select (r,d, k) € Sy with r = Ry (or r closest to Ry).

4 Collect the model indices following back along the branches in the trellis;

Please note that in the end not only do we have the optimal allocation for all rates,
but also the optimal allocation for all data subsets z},1 < n < N; extending the optimal
allocation to a longer data vector is therefore straightforward.

The computational requirements of the algorithm can be estimated as follows. Be-
sides the computation of the R/D pairs, at each step the number of trellis operations
(sums, comparisons) is proportional to the number of states |S,|. A simple estimate for
the latter is obtained observing that, at each step, the number of different states is equal
to the number of reachable rates. The smallest and largest such rates increase at each
step by Tmin and ray respectively, where rnin and 7,5 are the minimum and maximum
rates amongst all items in the family of data models. The number of reachable states at
each step is smaller if all possible rates share a common factor. The number of states at
step n is therefore upper bounded by

e e
Spl <n—=2 T 4] —nA+1. 2.36
I 7l| —’n’GCDk{T(’k)} + n ( )
Summing across all points for a length-N data vector, storage and computational require-
ments are therefore proportional to (A/2)(N% + N) + N.

2.A.2 Partially independent case

As usual, we choose to encode the structure of the allocation by associating side informa-
tion to model transitions. Suppose the cost of signaling a transition is ¢ bits; now apply-
ing model £ to the data point z, leaves the distortion as before but changes the effective
rate requirement to 7(n; k) + ¢ if the model for the previous data point was not the k-th
as well. Integrating this dependence in the previous dynamic programming framework de-
termines only an increase of the state space. Line 2 of the previous allocation algorithm
can be modified as follows:
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Algorithm 2.4: Dynamic programming: partially independent case J

2 Ateachstepn,1<n< N
let S, = 0;

precompute d(n; k) for k =1,... | K,

for all previous states (r,d, k) € S,
fork=1to K
compute the new cumulative rate: if h = k
then v’ = r + r(n; k)

else ' =r +r(n;h) +c

compute new cumulative distortion: d' = d + d(n; k)

(new state:)
look for a state (1,4, k) in S,, (for any é only)

if there’s no such state
then S, = S, (r',d',h)}

else if d < ¢ (pruning)
then S, = (Sp \ {(". 6, ) H(r',d', h)}

connect old state to new state.

Note that now we are allowed to prune only between states with the same rate and
the same model index. The increase in state space size is due to the fact that the rate
range at each step is augmented by ¢ bits and to the fact that states with the same rate
but different quantizer indices are now distinct, for an overall K-fold increase. The upper
bound in (2.36) remains formally valid provided we use:

K(rmax — Tmin + C)
GCDi{r(;k),7(5k) +c}

A= (2.37)

Although in this description we have represented the cost of side information as a
constant for simplicity, the very same algorithmic procedure can be used if the cost of a
transition is ¢(z, j), where 7 and j are the indices of contiguous models. If some prior infor-
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mation is available about the data which makes the use of a quantizer more likely than oth-
ers, this information can be usefully incorporated in ¢(z, j) to minimize side information.

2.A.3 Dependent case

When the cost function is non-additive the situation becomes more complex in that, at
cach step n we have to keep track of data segments that are still “open”. Indeed, con-
sider this simple example: assume we have just two models, A and B; at n = 1 we have
only two well-defined states, corresponding to coding the first data point as a complete
segment of length one with either model A or model B. At the next step, however, there
are six states amongst which we can prune: the first four correspond to splitting z? into
two length-one segments (AA, AB, BA, BB), while the other two correspond to coding z?
with a single model, either A or B. We can tackle the situation by introducing a fictitious
model index k£ = 0 with no associate distortion and zero rate, which acts as a marker for
open segments. Unfortunately, it turns out that in this case the number of states grows
quadratically with n, for a total number of states in the trellis proportional to N3. This
is usually too memory intcnsive for the algorithm to be of practical value. For complete-
ness, here is however the modified algorithm

The aggregate set of scgmentations and relative allocations has cardinality (K +1)";
indeed, for 1 < i < N, there are (’l\' ) different segmentations with exactly 7 segments and
each of these admits K* different allocations. We can see this fact from another angle by
introducing an extra model index k£ = 0 and representing a segmentation/allocation pair
in a joint way as a vector z, with the convention that leading zeros to a model index rep-
resent the number of consecutive points the following model is applied to. For instance,
z = {0,0,A,0, B, B,0, A} corresponds to t = {1,4,6,7,9}, w = {4, B, B, A}. Clearly,
|Z] = (K +1)V. We call an allocation “open” if at least its last element is zero. With this
notation, equation (2.35) becomes

min  {D(z})} =
zi’|R(z;l):R{ ! }

min { min { min (DY} +d(m,n;k)} ). (2.38)
1SkSK 1Sman—1 pm|pn =1 =0, R(2]*)= R—r(m.nsk) !

What this expression means is that, at step n, the partial allocations “one model away”
include also all open allocations pointing back to an earlier step than n — 1; these are the
21 for which the model index is zero from some step m to n for all . < n. We can still

associate a state to each possible value of the inner minimization and modify the trellis
algorithm as follows:
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Algorithm 2.5: Dynamic programming: dependent case

Step 1: Initialization
1 Let So = {(0,0,0,0)}.
Step 2: Allocation
2 Ateachstepn,1<n<N
let S, = 0;

for all previous states (r,d, k,l) € S;,1
Sy = Sp(r,d,0,{)}, and connect old state to new state;

fork=1to K
compute new cumulative rate: v’ =7+ r(l,n; k) + ¢

compute new cumulative distortion: d' = d + d(l,n; k)

(new state:)
look for a state (r',0,k,A) in S, for k # 0 and any §
and s

if there’s no such state
then S, = Sp(r'.d',k,n)}

else if d' < 0 (pruning)
then S, = (Sp\{(+', 9, ks, )} (v, d', k,n)}

connect old state to new state.
Step 3: Backtracking:

3 Select (r,d, k,l) € Sy with r = Ry (or r closest to Ry) and collect the model
indices (including the zeros) following back along the branches in the trellis.

Now we can prune between states with the same rate only if the corresponding al-
locations are not open, while we must extend all previous states to an equivalent number
of open allocations. The number of states can be estimated as follows: at step n there
are o, open allocations and ¢, closed ones; the total number of states is S, = o, + ¢p.
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Figure 2.10: Continuous approximation for the trellis.

Closed states have a well-defined rate, and therefore the bound in (2.36) is still valid with
A = Tmax/GCDg{r(-,-;k)} (remember that now the minimum rate is zero, because of
open allocations). Open states are however as many as the states at the previous step:
On+1 = Sy; this leads to S, = S,y + nA + 1, or S, = An(n + 1)/2 + n. Summing over
n leads to the anticipated result of a cubic number of states. Because of this, we will not
pursue this algorithmic line any further.

2.A.4 Implementation Issues

In the following section we will illustrate some implementation strategies which reduce
the complexity of the algorithm in most practical cases. To facilitate the discussion, we
will make use of a graphical representation of the trellis based on a continuous approzi-
mation. First of all observe that the model rates can be normalized so that they are co-
prime and that the smallest rate is zero. In this case at each step n the minimum rate is
zero and the maximum rate is n(rpax — min) = nA. With this normalization, the trellis
can be represented graphically as a wedge (see Fig. 2.10): the step number n runs along
the z-axis while the rate r is plotted along the y-axis (pointing downwards); the slope of
the wedge is simply A. In the continuous approximation we consider n and r as real val-
ued quantities; this allows us to infer estimates on the number of states as surface mea-
sures: the number of states in Fig. 2.10 is NZA/2, which, for a moderately dense set of
admissible model rates, is very close to the bound in (2.36) summed over all steps.

Zooming in

In most compression applications, we are concerned with one particular bit rate or at most
with a narrow range of rates around a given bit budget. The trellis structure allows us to
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Bmin
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(a)

Figure 2.11: Zooming in: (a) single rate; (b) rate interval.

“zoom 11" to the range of interest, reducing the total number of trellis states (and of op-
eration) to O(N). Suppose we are interested in bit rate of Ry at the final step N. At each
intermediate step n, it is enough to keep only those states whose rate r satisfies

Ry — (N —n)A <r < Ry; (2.39)

all paths passing through any other state will either undershoot or overshoot the target
rate. This is represented in Fig. 2.11-(a); the total number of meaningful states for the
trellis is proportional to the shaded area A in the wedge, yiclding

A= Ry(N = Ro/A). (2.40)

Similarly. if we zoom in on a range of rates between Rp,in and Ryax (see Fig. 2.11-(b)),
the munber of states is proportional to

A = Ruax(N = Ruin/A). (2.41)

Block-by-block and continuous coding

Two classes of applications require us to terminate the trellis scarch before the global op-
timum is found; this happens when either the size of the data vector size is unknown a
priori or it imposes storage requirements which are too large, or when there is a limit on
the processing delay before quantization and encoding of data points. In both cases, the
rate requirement can only be formulated in terms of an average bitrate of p bits/symbol,
with 7, < p < Tynar; in the graphical representation the target bitrate becomes a line of
slope p. as in Fig. 2.10.
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A first approach is to partition the data into size-L contiguous blocks and run the
“zoom in” algorithm separately for each block for a target rate R = pL. The resulting
trellis configuration is displayed in Fig. 2.12-(a).

A second approach, more in line with standard trellis practice, is the following. As-
sume we start building the trellis up to n = L + 1, at which point we backtrack L steps
and find the locally optimal path for rate R = (L + 1)p. For a sufficiently large L, we can
assume that s; = (ry,d), k1), the initial state of this path at n = 1, is actually the initial
state of the globally optimal path and we can encode and send the associated first data
point using model k. If s; is indeed optimal, the globally optimal path will unwind in-
side a wedge starting at s; even if the globally optimal and the locally optimal path af-
terwards differ in all states but the first one. This means that at step L + 2 we need only
update the states in Sy, whose rate r satisfies

Lromin <7 — 711 < Lrmax (242)

which requires on the order of L operations and generates LA + 1 new states. At the next
step the process is repeated, and in general, at step n > L we backtrack L steps from rate
R, = np, encode the point with model number k,_;. associated to state s,_p, and up-
date the subset of states in S, for which Lrpyiy, < 7y — mp—f, € Lrmax. Finally, to ensure
stability we only need to show that at each step the target rate R, is within the new re-
duced set of states S;,. This can be shown by induction: assumne the proposition holds at
step n; we backtrack and find the locally optimal rate r,,_;. Now, it must be

Tn—1, + LTmax < Bn < mn—1, + LTmin, (2.43)

otherwise R,, would not be reachable in L steps from r,,_;. At stepn+1itis Ry = Ry+p
and since rpip < P < Tmax, it is also

Tn-L + Lrmax + Tmax < Ruy1 < Tnor + LTnin + Tmin (244)

and it is immediate to recognize in the two outer terms of the inequality the maximun
and minimum rates in S, 4.

The storage and computational costs of the algorithm are clearly linear in n. A
graphical representation of the resulting “tiled wedges” is displayed in Fig. 2.12-(b). For
both strategies, the resulting suboptimality is heavily dependent on L. In the block by
block approach, the bitrate requirement is followed exactly over length-L segments; the
price we pay is a high distortion if the block size is small compared to the rate of change
of the signal. The continuous coding approach follows the optimal path more closely but
usually does not yield a constant bitrate over fixed blocks. Both methods also introduce
“out. of budget” side information; while in the block algorithm however this happens only
at each block boundary, in the continuous algorithm continuity of states is not preserved
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(a)

Figure 2.12: Continuous coding: (a) block by block; (b) backtracking.

and the price can be substantially higher. The best tradeoff is obviously dependent on the
quantization problem and on the data, and it must be necessarily tested “on the field”.
A numerical example is displayed in Fig. 2.13: a synthetic 500-point data vector is gen-
erated by an iid random number generator whose variance switches between a and 3 ac-
cording to a Poisson process with A = 0.01. Two quantizers, 8 and 16 bits, are matched
to a and 8 and the cost of side information is 8 bits. The solid line represents the glob-
ally optimal path for a target bitrate of 4 bits/point, while the circles and the diamonds
represent the block and continuous coding solutions for L = 150. Marks on the upper line
indicate the switch points in the data source.
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Figure 2.13: Experimental example: block by block (circles) and continu-
ous (diamonds) coding solutions.
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Chapter 3

Local Polynomial Modeling

Sicelides Musae, paulo maiora canamus!
- P. VERGILIUS MARO, Eclogae, IV

Ne sutor supra crepidam.

- Latin proverb

In the previous chapter, we have introduced the example of piecewise polynomial
functions as a convenient example of a piecewise stationary signal. Indeed, the local poly-
nomial approximation of real functions is a very well studied topic, especially in the form
of spline approximation [12]. Splines are parametrized polynomial functions which are
used to interpolate a given function over a set of selected points (called knots); higher-
degree splines allow for an increasing order of continuity between juxtaposed pieces, with
correspondingly increasing approximation smoothness, and several techniques exist to de-
termine a good set of interpolation knots. These approximation techniques, however, are
usually developed in what we could call a “rate-indifferent” framework, in the sense that
the goal is the minimization of the distortion only (for an exception, see [33]). In the case
of spline approximation, for instance, the number of knots (which corresponds to our seg-
mentation breakpoints) is a pre-determined parameter whose direct relation to the over-
all acceuracy does not find a parallel expression in terms of overall rate. Similarly, the in-
evitable quantization of the polynomial coefficients themselves is usually viewed as an ad-
ditional, separate step; this may be acceptable when the ultimate goal is data modeling and

o1
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the (implicit) rate is high; but it leads to appreciably suboptimal results if the purpose of
the modelization is data compression and the rate is severely constrained. In our dynamic
allocation scheme, however, both these goals are seamlessly connected by the Lagrange pa-
rameter, which acts as a knob between modelization (infinite rate) and compression (min-
imal rate), and in all cases the solution is optimal with respect to the distortion measure.

In this chapter we will study the piecewise polynomial case in greater detail, both
as a convenient testbed for the algorithmic techniques introduced so far and as an im-
portant approximation problem in its own right. Indeed, piecewise polynomial functions
are a special case of piecewise smooth functions, which are interesting mathematical ob-
jects used to model a great variety of natural phenomena. In particular, we would like to
compare the rate-distortion behavior of local polynomial modeling based on dynamic seg-
mentation to nonlincar wavelet approximation. Wavelets have long been considered ideal
candidates for piecewise smooth function due to their vanishing moments properties [27],
and the question now is to sec how these properties carry through in an operational rate-
distortion scenario. In order to perform this comparison, we will first take a brief detour
into the realm of continuous-time functions and derive two R/D upper bounds for the ap-
proximation methods we intend to study; we will then discretize the problem in order to
obtain experimental results which we will compare to the theoretical bounds.

3.1 Wavelets and compression: a brief overview

Wavelets [61, 27, 57] have had an important impact on signal processing theory and prac-
tice. In particular, wavelets play a key role in compression, image compression being a
prime example. This success is linked to the ability of wavelets to capture efficiently both
stationary and transient behaviors. In signal processing parlance, wavelets somehow avoid
the fixed-window problem (as in the short-time Fourier transform, for example), since they
work with many windows via their scaling property. In the case of piecewise stationary
processes wavelet methods are possible models as well, since they are able to both fit the
stationary part and capture the breakpoints. In particular, in the context of smooth func-
tions, the vanishing moments property is of particular interest; a wavelet ¢(t) is said to
have G + 1 vanishing moments if

(pn(t),t™) =0 for0<m <G, (3.1)

where (-,-) is the inner product defined on Ls. This means that, for a piecewise poly-
nomial function, the only nonzero wavelet coefficients are those associated to the break-
points of the function.

When one is interested in data compression, a key question is not just the approxi-
mation behavior, but the effective rate-distortion characteristic of schemes where wavelets



3.1. Wavelets and compression: a brief overview 53

and scaling functions arc used as elementary approximation atoms. Indeed, compression
is the trade-off between description complexity and approximation quality; given an ob-
ject of interest, or a class of objects, one studies this trade-off by choosing a representa-
tion (e.g. an orthonormal basis) and then deciding how to describe the object parsimo-
niously in the representation: such a parsimonious representation typically involves an ap-
proximation. For example, for a function described with respect to an orthonormal ba-
sis, only a subset of basis vectors might be used (subspace approximation) and the cocf-
ficients used in the expansion are always approximated via quantization. Thus, both the
subspace approximation and the coeflicient quantization contribute to the approximation
error. More formally, for a function f in Lo(R) for which {¢,} is an orthonormal basis,
we have the approximate representation.

fo=) apn (3:2)
nel
n = Qln. f)] (3:3)

where I is an index subset and @Q[-] is a quantization function, such as for example the
rounding to the nearest multiple of a quantization step A:

&= Qla] = A- ({%J +%> (3.4)

Typically, the approximation error is is a squared error measured by the Lo norm:
e=[lf - fII3. (3.5)

The description complexity corresponds to describing the index set I, as well as describ-
ing the quantized coefficients &,. The description complexity is usually called the rate R,
corresponding to the number of necessary binary digits. Therefore the approximation f of
f leads to a rate-distortion pair (R,¢€), indicating one possible trade-off between descrip-
tion complexity and approximation error. This example, despite its simplicity, is quite
powerful and actually used in practical compression standards; it however raises the fol-
lowing questions naturally:

A: What are the classes of objects which are of interest and for which the rate-distortion
trade-off can be well understood ?

B: If approximations are carricd out in bases, what bases are good ?
C: How are the index set and the quantization to be chosen ?

D: Are there objects for which the approximation in bases is suboptimal ?
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Historically, question A has been addressed by the information theory community
in the context of rate-distortion theory. Shannon posed the problem in his 1948 landmark
paper [52] and proved rate-distortion results in his 1959 paper [53]. Yet, as we have seen,
rate-distortion theory has been mostly concerned with exact results within an asymptotic
framework (the so-called large blocksize assumption together with random coding argu-
ments). Thus, only particular processes (e.g. jointly Gaussian processes) are amenable to
this exact analysis. The framework has however been used extensively, in particular in its
operational version (when practical schemes are involved) (35].

In the stationary jointly Gaussian case the second question has a simple answer,
based on rate-distortion theory. For any process, the Karhunen-Loéve basis leads to the
best linear approximation, due to its decorrelating properties. In the jointly Gaussian
case the best possible approximation indeed happens to be a linear approximation, since
decorrelation implies statistical independence. Yet, not all things in life are jointly Gaus-
sian, and more powerful techniques than lincar approximation can achieve a better rate-
distortion tradeoff when the rate is constrained; that is where wavelets come into play, in
conjunction with more general nonlinear approximation strategies'. For processes which
are piecewise smooth (e.g. images), the abrupt changes are well captured by wavelets, and
the smooth or stationary parts are efficiently represented by coarse approximations using
scaling functions. Both practical algorithms (e.g. the EZW algorithm of Shapiro [54]) and
theoretical analyses [7, 28] have shown the power of approximation within a wavelet basis
or via a scarch in large libraries of orthonormal bases, based for example on binary subband
coding trees. This leads to wavelet packets [9] and rate-distortion optimal solutions [45].

The third question is more complex than it looks at first sight. If there was no cost
associated to the description of the index set, then I should clearly be the set {n} such that

Kens f)lner 2 |((pm»f>|m¢1 (3.6)

But when the rate for I is accounted for, it might be more efficient to use a fixed set I for
a class of objects, which needs no explicit indexing. For example, in the jointly Gaussian
case, the optimal procedure chooses a fixed set of Karhunen-Lo¢ve basis vectors (namely

IThe notion of “best” basis becomes slightly tricky if we allow for signal-dependent bases (to which the
KLT also belongs). Indeed, suppose we want to code the Mona Lisa image; then the best basis is clearly
that in which the first vector is the Mona Lisa image itself: with this choice we need only one bit to code
the data. Yet the coding gain is entirely offset by the cost of informing the decoder of the basis “structure”.
In fact, the choice of transform must be a compromise between sufficient generality and power of represen-
tation within a class of signals. Piecewise smooth functions are well approximated by wavelets with enough
vanishing moments and by local polynomial expansions. These models are sufficiently general to apply to a
wide variety of signals, even departing in some degree from the piecewise polynomial template. Other issues
in the choice of transform include computational efficiency and rate-distortion behavior in the case of quan-
tized, truncated representations. The comparisons in this chapter address these last two issues specifically.
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those corresponding to the largest eigenvalues) and spends all the rate to describe the co-
efficients with respect to these vectors. Note that a fixed subset corresponds to a linear
approximation procedure (before quantization, which is itself non-linear) while choosing
a subset as in (3.6) is a non-linear approximation method. It is easy to come up with ex-
amples of objects for which non-linear approximation is far superior to linear approxima-
tion. Consider a step function on {0, 1], where the step location is uniformly distributed
over the support interval. Take the Haar wavelet basis as an orthonormal basis for [0, 1].
It can be verified that the approximation error using M terms is approximately

€, ~1/M (3.7)
for the linear case, while it is
ey =27 M (3-8)

for a non-linear approximation using the M largest terms. However, this is only the first
part of the rate-distortion story, since we still have to index the M chosen terms. An-
ticipating what will be proven in the following, we see that we have to represent a cer-
tain number of scales J and that, at each scale, the coefficients require a certain number
of bits. This split leads to a number of scales J ~ v/R. The error is the sum of errors of
each scale, each of which is of the order 27%//. Together, we get:

DnL(R) ~ VR2™VE (3.9)

Finally, the fourth question is a critical one. While it is very popular to use othogo-
nal bases for approximation, this cannot be the end of the story. Just as not every stochas-
tic process is Gaussian, not all objects will be well represented in an orthogonal basis. In
other words, fitting a linear subspace to arbitrary objects is not always a good approxi-
mation. Furthermore, even for objects where a basis does well, some other approximation
method might do much better. In the above step function example, for instance, a simple
minded coding of the step location and of the step values leads to a rate-distortion behavior

D'(R) ~ 27 F/? (3.10)
The purpose of the following sections is to analyze these rate-distortion trade-offs more in
detail, both from a theoretical and a practical point of view.
3.2 R/D upper bounds for piecewise polynomial functions

Consider a continuous time signal s(t), t € [a, b], composed of M polynomial picces; assume
that the maximum degree of any polynomial piece is less than or equal to G and that cach
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piece (and therefore the entire signal) is bounded in magnitude by some constant A. The
signal is uniquely determined by the M polynomials and by M — 1 internal breakpoints;
by augmenting the set of breakpoints with the interval extremes a and b, we can write:

G
s(t) = D ptn =pit) for t; <t <ty (3.11)
n=0

where ¢ = tg < t1 < ... < tp-1 < tp = b are the breakpoints and the p$f) are the

i-th polynomial coefficients (with pgf) = ( for n larger than the polynomial degree); let
T = (b — a). We will consider two approximation strategies for this type of function; the
first is based on an oracle providing with arbitrary accuracy the function parameters, and
it encodes the separate pieces by means of a quantized representation via local Legen-
dre polynomials. The second approximation method uses compact-support wavelets with
G + 1 vanishing moments and encodes the nonzero wavelet coefficients along with a sig-
nificance map. For both methods, we will derive an (hopefully tight) upper bound on the
R/D performance, and we will compare it to actual experimental results.

3.2.1 Oracle-based local modeling

As we said, assume that the values for M, for the degrees of the polynomial pieces, and for
the internal breakpoints are provided with arbitrary accuracy by an oracle. In this case,
the derivation of the operational R/D bound will be carried out in three steps: first we
will determine a general R/D upper bound for the single polynomial pieces; secondly, we
will determine an R/D upper bound for encoding the breakpoint values; finally, we will
determine the jointly optimal bit allocation for the whole signal. Here and in the next
section, we will always consider the rate large enough to legitimate representing the dis-
tortion as a function of a continuous parameter; in other words, we will assume that the
high-resolution hypothesis holds for all quantizers.

Encoding of one polynomial piece

Consider the i-th polynomial of degree G;, defined over the support I; = [t;, t,41] of width
S;. Using a local Legendre expansion (see Appendix 3.A ) we can write (the subscript ¢ is
dropped for clarity throughout this section):

G G

p(t) = antn = Z 2”;‘ 1lnLl(n; t) (3.12)

n=0 n=0
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where Lj(n;t) is the n-th degree Legendre polynomial over I; due to the properties of the
expausion it is

| < AS (3.13)
for all n. The squared error after quantizing the coefficients can be expressed as

G 9 .
y 277, + 1 ~ i+1
62 = Z ( S ) (ln - 171,)2 ‘/ti L?(’ll; t) dt =

n=0

G
= STV (@n+ 1)y —in)? (3.14)
n=0

where in are the quantized values. Assume using for each coefficient a different b,,-bit uni-
form quantizer over the range specified by (3.13) for a step size of 24527 ; the total
squared error can be upper bounded as:

G
e’ <D, =A’SY (2n+1)27% (3.15)

n=0

For a global bit budget of R, bits, with 2, sufficiently large, the optimal allocation can
be found by solving the reverse waterfilling problem

oD,

b = constant

n (3.16)
b =Ry
which yields
R 2n+1

b — ———2— l ¥, = 3.17
n G+1 + 052 C ( )

with

n=0

e] rerut
C= [H(2n+ 1)] : (3.18)

since the geometric mean is always less than or equal to the arithmetic mean we have
C < (G+1), and we finally obtain the following upper bound for the ¢-th polynomial piece:

Dy(R,) < A2S(G + 1) 2" a1, (3.19)
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A

Figure 3.1: Encoding of switchpoints: true error (light area) and general up-
per bound (dark area)

Encoding of switchpoints

Assmmne that the M + 1 switchpoints ¢;, as provided by the oracle, are quantized with
a uniforin quantizer over the entire support of the signal. In terms of the overall mean
seutared error, the error relative to each quantized switchpoint can be upper bounded by
(see Figure 3.1):

o] <4A% | - 1. (3.20)

Again. the magnitude of the error is at most one half of the quantizer’s step size, so that
for a given switchpoint we have:

Di(R;) < 24%T 2Rt (3.21)
where Ry is the quantizer’s rate.

Composite R/D bound

The global distortion bound for s(t) is obtained additively as

M M+1
D <Y Dy (Ry,)+ Y. Dy(Ry,) (3.22)
i=1 1=0

where Dy, (Rp,) and Dy, (R,) are the bounds in (3.19) and (3.21) respectively, and where
the subscript denotes the index of the polynomial pieces.
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In order to obtain the optimal bit allocation for the composite polynomial function
given an overall rate, it would be necessary to find the constant-slope operating points for
all the summation terms in (3.22), as shown in (3.16); the resulting forinulas, however,
would be entirely impractical due to their dependence on all the polynomial parameters
across the whole function. Instead, we choose to derive a coarser but general upper bound
by introducing the following simplifications:

e all polynomial pieces are assumed of maximum degree G; this implies that, for poly-
nomials of lower degree, bits are allocated to the zero coefficients as well;

e the support of each polynomial piece S; is “approximated” by T, the entire func-
tion’s support; together with the previous assumption, this means that the water-
filling algorithm will assign the same number of bits R, to each polynomial piece;

e the origin of the function support (a) is either known or irrelevant; this reduces the
number of encoded switchpoints to M;

e all switchpoints are encoded at the same rate R;.
With these simplifications the rate distortion bound becomes:
D(R) < A°TM (27F+1 4 (G + 1)? 2701 ™%) (3.23)

where the total bit rate is R = M (R, + R,). By the usual reverse waterfilling argument
we obtain the optimal allocation:

G+1R
Rp = mﬁ + 10g2 K (324)
2 R

with K = (2G + 2)(G+1/(G+3)  Using the relation (for G > 0)

2K + (G +1)2K~ 81 < 2(G + 1) (3.26)
a simplified global upper bound is finally:

Dp(R) < 24T M(G + 1)22- @1, (3.27)

3.2.2 Wavelet-based approximation

Consider now an orthonormal wavelet basis over [a, b] where the wavelet has at least G + 1
vanishing moments [8]; we will consider a quantized nonlinear approximation of s(t) us-
ing a basis expansion over [a,b], and bound the R/D behavior of the approximation fol-
lowing the lines in [7].
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Distortion

If the wavelet has G + 1 vanishing moments, then the only nonzero coefficients in the ex-
pansion correspond to wavelets straddling one or more switchpoints; since the wavelet has
a compact support as well, each switchpoint affects only a finite number of wavelets at
each scale, which is equal to the length of the support itself. For G + 1 vanishing mo-
ments, the wavelet support L is

L>2G+1 (3.28)

and therefore, at each scale j in the decomposition the number of nonzero coefficients Cj
is bounded as

L<C;<ML. (3.29)

For a decomposition over a total of J levels, if we neglect the overlaps at each scale corre-
sponding to wavelets straddling more than a single switchpoint we can upper bound the
total number of nonzero coefficients C as

C<MLJ. (3.30)
It can be shown [27] that the nonzero coeflicients decay with increasing scale as
|ci k| < ATW 27972 (3.31)

where W is the maximum of the wavelet’s modulus. Using the same high-resolution b-bit
uniform quantizer for all the coefficients® with a stepsize of 2ATW 2~ we obtain the
largest scale before all successive coefficients are quantized to zero:

J=2b-2. (3.32)

With this allocation choice the total distortion bound is D = Dy + D; where

J
Dq = Z Z(cj*k - éj,k)2 (333)
k 7

+00
D= > &, (3.34)
k j=J+1

2In [7) the authors carry out a more detailed analysis in which the quantizer’s stepsize is varied according
to the decay in (3.31); this however affects only the constants in the R/D bound and not the asymptotics.
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is the error due to the wavelet series truncation after scale J (in both summations the index
k runs over the nonzero coeflicients in each scale). Upper bounding the quantization error
in the usual way and using the bound in (3.31) for each discarded coefficient we obtain

D < C(ATW)?27% 4 ML (ATW)?27 =
. 1
= ML (ATW)? (1 + ZJ> 9~/ (3.35)

Rate

Along with the quantized nonzero coeflicients, we must supply a significance map indicat-
ing their position; due to the structure of s(t), 2 bits per coefficients suffice to indicate
which of the next-scale wavelet siblings (left, right, both, or none) are nonzero. The total
rate therefore is

R=C(b+2) < MLJ(J/2 +3) (3.36)

where we have used (3.30) and (3.32). In our high-rate hypothesis it is surely going to be
b > 4 and therefore we can approximate (3.36) as

R< MLJ? (3.37)

Global upper bound

Equ. (3.35) provides a distortion bound as a function of .J; in turn, J is a function of the
overall rate as in (3.37). Combining the results we obtain the overall rate/distortion bound:

1 1 R _ 1R
Du (R) < (ATW)2 M(2G - 2"V IGHT M )
w )= ( ) (2 1)<1 4 2G’+1M> (3.38)

where we have assumed a minimum support wavelet, for which L = 2G + 1.

3.2.3 Comments and experimental results

To recapitulate, the two upper bounds obtained in the previous sections are of the form:

polynomial approzimation: Dp(R) = C,’,2‘CPR’
wavelet approrimation: Dw(R) =C},(1 + a/CyR)27V Cuwlt

Since these are upper bounds, we are especially concerned with their tightness. Un-
fortunately, as we have seen, many simplifications have been introduced in the derivation,
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wavelet approx
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Figure 3.2: Theoretical (solid) and experimental (dashed) R/D curves.

some of which are definitely rather crude; we will therefore concentrate on the rate of de-
cay of the R/D function rather than on the exact values of the constants. In order to
gauge the applicability of the theoretical bounds, we can try to compare them to the ac-
tual performance of practical coding systems. A word of caution is however necessary: in
order to implement the coding schemes described above, which are derived for continuous
time functions, a discretization of the test data is necessary; as a consequence, an implicit
granularity of the time axis is introduced, which limits the allowable range for both the
breakpoint quantization rate and for the number of decomposition levels in the wavelet
transformation. Unfortunately, computational requirements soon limit the resolution of
the discretization: in our experiments we have used 2'® points. The two approximation
techniques have been applied to randomly generated piecewise polynomial functions with
parameters A =1, T = 1, G = 4 and M = 4; Daubechies wavelets with 5 vanishing mo-
ments on the [0, 1] interval have been used for the decomposition. The results are shown
in Figure 3.2: the solid lines and the dashed lines display the R/D bound and the oper-
ational R/D curve respectively for the polynomial and wavelet approximation strategies
averaged over 50 function realizations.

A closer inspection of the R/D curves shows that, especially for the wavelet case,
there appears to be a large numerical offset between theoretical and practical values even
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MSE

rate

Figure 3.3: Theoretical (solid) and experimental (dashed) R/D curve for the
Haar wavelet approximation of the step function.

though the rate of decay is correct. This simply indicates that the bounds for the con-
stants in (3.38) are exceedingly large and the question is whether we can arrive at tighter
estimates. In the absence of a detailed statistical description for the characteristic pa-
rameters of s(t), the answer remains rather elusive in the general case; we can however
try to develop our intuition by studying in more detail a toy problem involving minimal-
complexity elements and a simple statistical model for the approximated function. The
availability of a particular statistical model for the generating process allows us to derive
an R/D result in expectation, which is hopefully tighter.

Consider the simple case in which G =0, M =2, T =1, and A = 1/2: the resulting
s(t) is simply a step function over, say, [0,1); we will assume that the location of the step
transition ¢¢ is uniformly distributed over the support and that the values of the function
left and right of the discontinuity are uniformly distributed over [—1/2,1/2]. Having a
piccewise constant function allows us to use a Haar wavelet decomposition over the [0, 1]
interval; recall that the Haar scaling function and wavelet have a single vanishing moment
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and they admit the closed-form representation

po(t) = 1 (3.39)
+2917 k277 <t < (k+1/2)277

Yik(t) = —9/2 (k+1/2)277 <t< (k+1)277 (3.40)
0 elsewhere

from which it is easy to see that there is no overlap between wavelets within a scale. Now
the following facts hold:

e because of the absence of overlap, at each scale we have exactly one nonzero coeffi-
cient®; the relation in (3.30) becomes exact:

C =J; (3.41)

e under the high resolution hypothesis for a b-bit quantizer, the quantization error be-
comes a uniform random variable over an interval half a step wide; the expected er-
ror for each quantized coeflicient is therefore 9-2b /12;

e the series truncation error (3.34) is, in expectation,
E[D] = (1/36)27V*Y; (3.42)
(for a proof, see Appendix 3.B);

e again, due to the non overlapping properties of the Haar wavelet, we can
rewrite (3.37) simply as R < J%.

With these values, the R/D bound, in expectation, becomes:

Dw(R) < % (1 + Z\/ﬁ) 2-VE, (3.43)

Figure 3.3 displays this curve along with the experimental results (dashed line); we can
now see that the numerical values agree to within the same order of magnitude. For com-

pleteness, the expected R/D bound for the polynomial approximation of the above step
function (obtained with a similar, simplified analysis) turns out to be:

Dp(R) = E\lf'z' 2~ k72 (3.44)

and this curve, together with its experimental counterpart, is displayed in Figure 3.4.

3In fact, a further consequence of the non-overlapping wavelets is that we need only one bit per coeffi-
cient to encode the significance map; for simplicity we will however use the general rate requirement (3.36)
both in the theoretical derivation and in the algorithmic implementation.
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Figure 3.4: Theoretical (solid) and experimen-
tal (dashed) R/D curve for the polynomial approximation of the step function.

3.3 R/D optimal approximation

We have seen that the direct polynomial approximation displays a far better rate-distortion
asymptotic behavior than the standard nonlinear wavelet approximation. However, the
polynomial bound was derived under two special hypotheses which are not generally met
in practice: the availability of an oracle and the use of high resolution quantizers. Since
the goal of most approximation techniques is a parsimonious representation of the data for
compression purposes, the question arises naturally: what is the best coding strategy in a
practical setting where the polynomial parameters are initially unknown and the bit rate is
severely constrained? If by “best” we mean the optimal solution with respect to an addi-
tive distortion measure, then the answer is given by the dynamic segmentation/allocation
algorithim introduced in the previous chapter. As we have seen, in this constrained al-
location approach, both breakpoints and local models must be determined jointly, since
the optimal segmentation is a function of the family of approximants we allow for and
of the global bitrate. In particular, for low rates, the available resources might not allow
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for a faithful encoding of all pieces and a globally optimal compromise solution must be
sought for, possibly by lumping scveral contiguos pieces into a single one, or by approxi-
mating some pieces by lower-degree polynomials with lighter description complexity. We
will see that the algorithm performance matches, and extends to the low bitrate case, that
of the oracle-based modeling. Please note that now we are entering an algorithmic sce-
nario where we perforce deal with discrete-time data vectors rather than continuous-time
functions; similarly to the experimental results of the previous section, granularity of the
involved quantities and computational requirements are now important factors.

3.3.1 Operational setup

Consider an N-point data vector = z)¥, which is a sampled version of a piecewise poly-
nomial function s(t) over a given support interval. The family of approximation models
we choose to use is the crucial “engineering” decision of the problem and is ruled by a-
priori knowledge on the input data (polynomial pieces of maximum degree G) and by eco-
nomical considerations in terms of computational requirements. In particular, we choose a
fixed, limited set of possible rates associated to a polynomial model of given degree, with
quantization of the individual coefficients following the line of (3.17). Clearly, the valid-
ity of such design parameters can only be assessed via the performance measure yielded
by the operational R/D curve. In the following we will assume a family of K polynomial
models, which is the aggregate set of polynomial prototypes from degree 0 to G with dif-
ferent quantization schemes for the parameters.

For a given segmentation ¢ and a related allocation w, defined as in section 2.2.4,
R(t,w) is the cost, in bits, associated to the sequence of g(t) polynomial models and
D(t,w) is the cumulative squared error of the approximation. The polynomial coefficients
are estimated by solving a Least Squares (LS) problem over each segment for all orders;
the resulting coefficients are then quantized according to one of the possible quantization
schemes we allow for. We can therefore write

a(t)
D(t,w) = d(ts, ti1; p(wi)); (3.45)
=1
where
d(ti, tigr; P(wi)) = |V plws) — 2 7% (3.46)

here, V is a suitably defined Vandermonde matrix (see later for details) and p(w;) is a
vector containing the estimated and quantized polynomial coefficients for the i-th seg-
ment according to model w; (w; indicates both the polynomial order and the quantization
scheme). We will assume that the polynomial coefficients are coded independently and
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therefore their overall cost (in bits) is a function b(-) of the model’s index only. A coun-
stant part of this cost is used up by the model index itself and by the segment’s length.

3.3.2 Implementation

Building Blocks

In the implementation of the dynamic segmentation algorithm we have chosen a simplified
set of quantization schemes. At low bitrates, Equation {3.17) states that the optimal bit
distribution for a set of polynomial coeflicients is basically uniform. We choose four possi-
ble allocations of 4, 8, 12, and 16 bits for the single coeflicient, so that the total rate of a
single polynomial piece is linearly dependent on its degree; the family of models has thus
cardinality K = 4(G +1). To each polynomial piece is associated a side information block
comprising [log, K bits for the model index and [log, N bits for the segments length.

Incremental Least-Squares Solution

In order to find the optimal segmentation the dynamic programming Equation (2.20) re-
quires us to solve a least squares problem for all segments z7',1 <n < N,n < m < N;
this can be efficiently carried out in an incremental fashion, and the trellis structure in
Algorithm 2.2 will be of help in organizing all the quantities involved in the computation.
For a data segment z7}, of length L = n — m + 1 the minimum squared-error polynomial
approximation of order D is found by solving the LS problem:

min ||V, p p — z)||? (3.47)
P

(all vectors are colums vectors) where the p = p{’ is a vector of D + 1 polynomial coeffi-
cients and Vy, p is the following L x (D + 1) Vandermonde matrix:

1 1 1 ... 1
2 2 922 ... 29D )
ViL.p) = (3.48)
1 L L2 ... LP

The solution to the LS problem is achieved by means of a QR factorization: assume we have
already computed V;, p = QR, with Q € RE*L an orthogonal matrix and R € RLX(D+1)
upper triangular, so that its last L — D — 1 rows are identically zero. Then the minimiz-
ing p satisfies

Ry Q5
Rl p Qtl m

o T, (3.49)
Rp Q%
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where R; is the i-th row of R and Q! is the i-th row of the transpose of Q. This system of
equations can be solved in O(LD) time. Now, if we extend the segment with a new data
point to ™!, we have to solve a related problem in which a new row has been appended
to the previous Vandermonde matrix, extending it to V4 p. Luckily, the QR factortiza-
tion need not be recomputed from scratch, but can be extended by means of Givens rota-
tions [18], and the new solution to (3.49) can be found in O(LD) time as well. Therefore,
for a polynormial fitting of any degree D, the initial QR factorization of Vp41 p can be pre-
computed and stored in memory, and the LS problems for all segment of length from D +1
to N can be computed incrementally in O(N?) time. The approximation error is then com-
puted by quantizing the coefficients to p and explicitly evaluating ||V p —x||?; this requires
once again O(LD) computations per length-L segment, for a total of O(N?) operations.

Trellis Algorithm

The trellis algorithm for the dependent allocation case can be adapted to the problem at
hand in the following way:

Algorithm 3.1: Local Polynomial Modeling |

Assume we have already pre-computed the QR factorization of the Vandermonde
matrices Vi ; for i =0,... ,G.

Step 1: Initialization

1 Build the trellis: for 1 <n < N
create a sequence of sets S, containing n new states s, ,, each, 1 <
m < 1.

2 Fori=0,... ,G
Forn=1,... ,N

Form=n,...,N
Extend the QR factors of V;,_;; to the QR factors for
‘/n,i;

Compute the distortion and rate values d(n — m +
1,n;k), (k) for 1 < k < K and associate these values
to Sp,m-

From this point on one can proceed as in Algorithm 2.2.
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MSE

Figure 3.5: Theoretical (solid) and experimen-
tal (dashed) R/D curves for the dynamic segmentation algorithm.

3.3.3 Results

We can now compare the experimental results of the optimal allocation algorithm with the
polynomial approximation R/D bound obtained using an oracle; however, since here the
interest lies in very low bit rates as well, we need to somehow refine the bound in (3.27).
In fact, under severe rate constraints, there might not be enough bits to encode the exact
structure of the function and the dynamic algorithm will be forced to use a coarse segmen-
tation in which several contiguous polynomial pieces are approximated by just one model;
in the limit, when the rate goes to zero, the approximation error approaches the integral
of s%(t) over the entire support of the function. This is not reflected by Equation (3.27),
where the expression for the error always assumes M distinct pieces. By approximating
the maximum error by 442T, we can define a more appropriate R/D bound for the poly-
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02

D4 =

Figure 3.6: Approximations provided by the dynamic segmentation algo-
rithm corresponding to points A, B, and C on the R/D curve in Figure 3.5.

nomial case as
D’»(R) = min{4A>T, Dp(R)} (3.50)

Figure 3.5 shows the numerical results obtained for a set of piecewise polynomial functions
as in the previous experiment; the underlying sampling is however coarser here (K = 28),
due to the heavier computational load. As before, the solid line indicates the new theoret-
ical upper bound and the dashed line the R/D performance of the dynamic algorithm. It
is also interesting to look more in detail at the segmentation/allocation choices performed
by the algorithm for different bitrate constraints; this is displayed in Figures 3.6-(a),(b),
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Figure 3.7: Piecewise polynomial approximations of a line of Lena.

and (c) with respect to the R/D points A, B, and C marked by a circle in Figure 3.5. In
Figure 3.6 the thin line shows the original piecewise polynomial function while the thick
lines shows the algorithmic results; while not always very intuitive, these low bit rate ap-
proximations are nonetheless optimal in a MSE sensc.

3.3.4 Whereto tends all this?*

As a final note, we can ask ourselves two further questions: how docs this framework
extend to real-world signals, which are clearly not exactly piecewise polynomial 7 And
more, can this framework be applied and compared to practical coding scenarios in which
wavelets are known to perform very well, such as image compression 7 Unfortunately, dy-
namic programniing techniques do not work for two-dimensional problems, and it is not
clear how to fit polynomial surfaces in a globally optimal way. Yet, we can gain some in-
tuition about both questions by looking at Figures 3.7-(a) and (b). The thin line repre-
sents a single column of the “Lena” image, for a total of 256 pixels; the thick lines are the
piecewise polynomnial approximations of the data, at increasing rates, obtained with the
dynamic segmentation algorithm introduced above. We could argue that, for increasing
bitrates, the algorithm captures more and more finely the local polynomial trends under-

*-W. Shakespeare.
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Figure 3.8: Original (a) and columnwise approximation (b) of the Lena image.

lying the image surfaces, while the finer details can be represented as an additive, noise-
like residual: this mirrors a similar type of signal decomposition which has been success-
fully used in the field of audio analysis [51]. A simple-minded demonstration of the gen-
eral idea can be obtained by running the polynomial modeling algorithm columnwise over
the entire image; the results are shown in Figure 3.8-(b) (Figure 3.8-(a) being the origi-
nal). The coding algorithm neglects horizontal correlations and therefore the effect is that
of a “rain-streaked” picture; whether improvements may lead to an efficient approxima-
tion scheme for real images is however hard to say at present. All this represents an in-
teresting line of research for future extensions of this work.

3.4 Summary

This chapter made use of the dynamic segmentation/allocation framework to validate a
rate-distortion bound for the coding performance of piecewise polynomial functions. Sec-
tion 1 infroduced the problem of data compression based on basis expansion, with a par-
ticular attention to wavelet coding methods and to nonlinear approximations techniques.
In Section 2 the first R/D bound was derived for a local polynomial expansion based on an
oracle, for a behavior of the form of R(D) =~ 2~ %, in Section 3 the same approach was ap-
plied to a nonlinear wavelet coding method with uniform quantization, for an R/D bound
of the form of R(D) =~ VR2~ VR Section 3 introduced the dynamic framework, which ob-
tains results very similar to the oracle-based method; algorithmic details were discussed
and experimental results illustrated.
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Appendix 3.A Local Legendre Expansion
Legendre polynomials are usually defined over the [—1, 1] interval by the recurrence relation
(n+ 1)L(n+ 1;t) = (2n + 1)t L(n;t) — nL(n — 1;t) (3.51)

where L(n;t) is the Legendre polynomial of degree n. They constitute an orthogonal ba-
sis for L[—1,1):

1
2 :
'/_1 L(n;t)L(m;t)dt = T 15(77, —m) (3.52)

and in particular, for a polynomial p(t) of degree G over [—1,1], we can write

1
h = / Lin;t)p(t)dt, n=0,...,G (3.53)
—1
G
2n+1
ty = lnL(n;t). 3.54
p(t) Z;) 5 InL(n:1) (3.54)

Since |L(n; t)| <1 for all n, |I,] < 2sup(_; y[p(t)].
A local Legendre expansion over the interval I = [a, 5] can be obtained by defining

a translated set of orthogonal polynomials

2
Ly 1) = L(m: 57— - "‘;j); (3.55)
the orthogonality relation becomes
g B-a .
Li(n;t)Ly(m;t)dt = d(n —m) (3.56)
@ 2n+1

and the analysis/synthesis formulas can be written as:

I

8
I / Li(n:t)p(t)dt, n=0,...,G (3.57)
[

G
p(t) = Z?Ljian,(n;t). (3.58)
n=0
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Appendix 3.B Estimate of the series truncation error

The estimate in (3.42) can be obtained as follows: assume that at scale jo the step dis-
continuity at ¢ falls within the interval [h277, (h 4 1)277°) for some k. Then in the Haar
wavelet series for s(t) the indices of the nonzero coefficients ¢; for j > jo satisfy

h2I7I0 < k< (h+1)27700, (3.59)

The wavelet set {t,x(t)} with j and k as above form an orthonormal basis for the
(k2770 (h 4+ 1)277°) interval minus the addition of a scaling function p(t) = 270/2 over the
same interval. We can therefore write:

oo (h+1)27-do—1

D, = z Z cik: (3.60)

J=0  k=h2i-Jo

(h+1)27-70 L (h+1)27~J0 2
/ A s2(t) dt — 2—10/2/ s(t) dt
h2-J0 h2-70

where we have used Parseval’s identity.

Now consider the location of the step (see Figure 3.9); let = ty — h277 be the dis-
tance between the discontinuity and the origin of the interval. Due to the properties of
s(t) we can safely assume that 7 is uniformly distributed over [0, 2770]. We can now write

Dy = 722 4+ (277 — )23 — 2% (724% + (277 — 1Y) 23 4+ 27(2770 — 7)) 29 (3.61)
where ) o are the values of s(t) left and right of the jump, respectively. Taking expecta-

tions over the independent quantities 7,z;, and z2, where x, o € U[—1/2,1/2], we finally
have:

E[Dy] = (1/36)27%. (3.62)

— !
. t ;
h2’o (h+1)27 0

Figure 3.9: Switchpoints location at a given wavelet scale.



Chapter 4

Data Compression: Linear Prediction
and Arithmetic Coding

Dum loquimur fugerit invida aetas ...
- Q. HORATIUS FLACCUS, Carmina 1,11

After the somehow “syntethic” case study of the previous chapter, we will now ex-
amine two practical applications of optimal segmentation techniques in the domain of data
compression. In the first example we will treat the case of speech compression based on
linear prediction. Speech is probably the piecewise stationary signal in the signal process-
ing literature. Its characteristics arc very well understood and even if most compression
schemes are based on the fixed-window paradigm, so much study and fine tuning went
into their design that their performance is usually remarkable. Linear prediction, in par-
ticular, is a spectacular example of how effective the “classic” random signal processing
approach can be: time windowing to evoke stationarity, rational transfer function model-
ing, linear inverse filtering - it works beautifully, quickly and elegantly. Yet there’s some-
thing to be gained even here; we will try to show that, if we really want to shave off the
last bits from the LP representation of a speech signal, a dynamic segmentation approach
is an effective way to go.

In the second application we will consider the case of arithmetic coding. Arithmetic
coding is an extremely versatile source coding scheme which, when the exact input statis-
tics are known, promises a compression performance to within two bits of the source en-
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tropy. The problem obviously lies with estimating these statistics as accurately as pos-
sible, and a wide variety of adaptive coding schemes exists in the literature. Adaptivity
can be of two kinds: in backward adaptive algorithms, only past data is used for the es-
timation, while in forward adaptive algorithms one is allowed to “peek ahead”; the lat-
ter case is in principle more accurate since it avoids the mismatches due to abrupt signal
transitions, but it has the disadvantage that side information must be conveyed to the de-
coder. Whether a backward or a forward adaptive scheme is more advantageous depends
obviously on the data realization. The idea here is to explore all data segmentations and
test both schemes on each segment in order to minimize the size of the compressed data.
Clearly, such an approach is suitable for piecewise stationary signals, for which we expect
stable statitstics over disjoint data segments (forward coded) possibly linked by transi-
tional regions with less identifiable trends (backward coded).

4.1 Speech compression via Linear Prediction

Arguably, linear prediction (LP) is amongst the most ubiquitous and successful signal pro-
cessing tools, with applications ranging from channel equalization to data compression,
and with a wealth of efficient and very robust algorithmic implementations. As a partic-
ular case of the more general least squares system identification problem, linear predic-
tion relies on the special assumption that the unknown system is purely autoregressive;
this is tantamount to postulating that the data are the output of an all-pole IIR linear
filter B(z) = 1/A(z). One can show that, under ideal conditions, linear prediction com-
putes the exact inverse filter A(z) together with the correct model order; inverse filtering
the data by A(z) recovers the original filter input [22].

In speech coding a whole class of coders, generally grouped under the label of hy-
brid time-domain coders, possesses a LP block at its core. This stems from the intuitively
sound and physically relevant modelization of the human speech apparatus as a excitator-
resonator pair: the oscillation of the vocal cords or a turbulent air flow are the input to
the vocal tract in producing voiced and unvoiced sounds. Although the vocal tract is not
exactly an all-pole IIR (there are zcros related to the nasal cavities), the accuracy of the
achievable modelization is striking. After inverse filtering, the excitation (or residual) is
recovered and different compression schemes are defined by the way the residual and the
LP coeflicients arc encoded. At one extreme of simplicity, systems such as LPC-10 [58] and
RELP (13] simply quantize the LP cocfficients and a parametrized version of the residual in
open-loop fashion. At the other extreme, codebook-based encoders such as CELP [49] uti-
lize the LP direct filter to produce a speech waveform from a synthetic residual; the resid-
ual is constructed from codebook entries as to minimize (in some perceptual “norm”) the
error between original and resynthesized speech, with the encoder operating in closed-loop.
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It is important to note that, although the closed-loop encoding process for a speech
coder is usually optimized with respect to ad-hoc perceptual criteria, the inverse filter
computed by the LP block is always obtained via a least squares minimization, where the
goodness-of-fit is measured by the mean squared error (MSE). Here we are concerned pre-
cisely with the global optimization of the composite linear predictor for an arbitrary sig-
nal with respect to its overall squared error and its composite order. Indeed, the funda-
mental difficulty with linear prediction of real signals lies with their inherent nonstationar-
ity; this is usually addressed by means of fixed-length windowing in the expectation that,
over small time intervals, the signal varies little. While this is true in general terms, it
does still happen that abrupt signal transitions fall within a windowed segment, and the
probability of such events increases with the window size. On the other hand, the win-
dow size cannot be reduced arbitrarily since, for locally stationary segments, the accuracy
of the estimation increases with it. Clearly, one would like to obtain a flexible segmenta-
tion in which the boundaries coincide with the transitions in the signal and the length of
the segments minimize the local squared error. Such a flexible segmentation implies asyn-
chronous coding and buffering; while this is bad news for low-delay applications, it opens
the way to unequal resource allocation for different portions of the signal. It is a well
known fact, for instance, that unvoiced speech can be coded with a coarser LP descrip-
tion than voiced speech, since it has a flatter spectral structure. For a given bit budget,
LP parameters should receive more bits where they are most needed.

The segmentation/allocation techniques studied so far arc indeed able to determine
the optimal segmentation and the optimal sequence of predictors for the segments with
respect to the global LP error. The approach differs from previous results attempting a
local optimization of the LP encoding process {14, 16] in that we completely do away with
frame-based encoding; the segmentation is completely flexible and the final cost (in bits)
of the LP parameters is minimized from within the LP encoding process.

4.1.1 Linear Prediction

In the classic stochastic formulation, given a discrete time stationary signal z(n), an
order-p linear predictor computes p coeflicients a;, ... ,a, so that the linear combination

E(n) =ax(n —1) +ax(n —2) + ... + apz(n —p) (4.1)
minimizes the expected squared crror:

d? = E{|z(n) — 2(n)|*}. (4.2)
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Minimization of (4.2) with respect to the a;’s yields a set of normal equations which are
of the form

p
> _aiplig) = p(0,5), forj=1,....p (4.3)

=1

where p(i,7) = Ep{z(n — i)z(n — j)}, the signal’s autocorrelation at lag |t — j.

For a finite data set, the problem loses its probabilistic nature and becomes a par-
ticular case of least squares approximation. In fact, for a truly autorcgressive signal with
no added noise, p samples suffice to uniquely determine the order-p generating model us-
ing Pade’s method [25]; these hypotheses are of course never met in practice so that many
more data points must be taken into account to minimize the effects of noise and model
mismatch. For a data set z+*M~1 M > p. the goal of linear prediction becomes the min-
imization of the squared error

B

d> = (zn — a)% (4.4)

n=A

the summation limits, A and B, reflect the implicit assumptions on the signal values out-
side of the known support and determine the influence of “border effects” on the LP com-
putation. For A = m + p and B = m + M — 1, the error is evaluated only within the
interval, and no further assumptions are made; this LP strategy is called the covariance
method. For A =m and B =m + M — 1 + p, together with the assumption that the sig-
nal is zero-padded as necessary, we have the so-called autocorrelation method; this method
often requires a tapering window since the discontinuity between the signal and the zero
extension might have adverse effects on the parameter estimation, but it is the most ad-
vantageous computationally. In both cases, the deterministic LP problem produces a set
of normal equations formally identical to (4.3) in which

B
p(i,5) = D Tn_iTn_j. (4.5)
n=A

The formulation in (4.5) is very close to the empiric autocorrelation formula; for an er-
godic signal this would converge to the true autocorrelation as the sample size grows to
infinity, and this formal analogy explains why it is customary to apply random processes
terminology (such as “stationary”) even to finite data sets.

The goodness-of-fit indicator for the deterministic linear predictor is the error
in (4.4), usually normalized by M (the MSE); this measure is however blind to the specific
causes of misadjustment and, for a fixed set of samples, it reacts similarly to phenomena
such as additive noise, undermodeling, and signal transitions. However, if the data set is
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Figure 4.1: Speech segment (upper panel) and linear predic-
tion MSE as a function of window length for data start-
ing at points A, B, and C (three lower panels respectively).

a windowed portion of a longer signal, the behavior of the MSE as a function of window
length and window placement offers more insight. Figure 4.1 shows a portion of a typical
speech signal; the three lower pancls show the MSE as a function of the window length
for the three points in the signal marked A, B, and C. The first panel is relative to the
onset of a voiced sound, and the MSE decreases non monotonically until the drift in the
periodic waveform make it increase again; the non monotonic behavior in the the curve is
due to the data window straddling, at times, a non integer number of periods. The sec-
ond panel shows a monotonically decreasing MSE corresponding to a slightly noisy, silent
gap between utterances. The third panel shows the abrupt transition in the MSE occur-
ring at sharp signal onsets such as at point C. These simple examples suffice to demon-
strate the potential benefits of a dynamic window size.

As for the order of the linear predictor, it is easy to show that the MSE is a nonde-
creasing function of p [24]; under ideal conditions, for an autoregressive signal of order g,
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the curve obtained by plotting the MSE as a function of p remains constant for p > ¢. In
general, for any dataset, the curve flattens out as p grows and a flatness test has indeed been
suggested in the past as the method to determine the correct order for the predictor [26].
It is important at this point to introduce the notion of cost of the LP representation; we
can measure this cost by the number of bits needed to encode (and transmit) the predic-
tor’s parameters and, independently of the overall encoding strategy, this numnber is clearly
a non decreasing function of the LP order. In modeling and compression application, the
diminishing returns in terms of MSE with growing model order must be weighted against
the corresponding increase in bit rate. An optimal tradeoff would deploy different orders
to different portions of the signal so that each segment is coded with the same benefit.

If we now consider the composite LP analysis of a signal with respect to a given seg-
mentation, the measure of accuracy of the modelization is given by the cumulative squared
errors of the segmental predictors while the cost (in terms of encoded LP parameters) is a
nondecreasing function of the sum of model orders and of the total number of segments. If
we identify the squared error as the model’s distortion and its descriptive cost as its rate,
the optimal segmentation and the optimal order allocation can be determined jointly as
the solution to a R/D optimization. Please note that true optimality can not be based on
a local “stationarity” test nor on a local flatness test but only on a global minimization
where the segmentation and the orders play the role of free variables.

4.1.2 R/D optimal Linear Prediction
Problem setup

With the notation for the segmentations and allocations defined as usual (section 2.2.4),
assume there are K different LP models which could be applied to a segment; these are
essentially predictors of different orders, but could include predictors whose parameters
are then quantized and coded in different ways. For a given segmentation ¢ and a related
allocation w we can write as usual

a(t)
D(t,w) = d(ti,tir1;w;) (4.6)
=1

where in this case d(t;,t;+); w;) is the squared error as in (4.4) for a linear predictor of or-
der w; applied to :1:::“— . Similarly, we will assume that the LP coefficients are coded in-
dependently and that their cost in bits is a function r(-) of the predictor’s order k, includ-

ing the side information necessary to identify the order, the segment’s length and possi-
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bly the quantization scheme. We will then write

o(t)
I(t.w) = r(w). (4.7)
i=1
Implementation

The LI’ “engine” will be Durbin’s algorithm [6], an autocorrelation method. Although no
tapering data window will be employed on the segments, the adaptive segimentation is suf-
ficiently flexible to minimize boundary effects and the optimal solutions does not signifi-
cantly differ from what would be obtained using the covariance method; the autocorrela-
tion method simply puts a slightly higher bias on longer segment lengths. The following
derivation is primarily illustrative of the key algorithmic issues, while still computation-
ally efficient: subtler implementations can be envisaged, possibly involving more sophisti-
cated covariance schemes [32).

While the segmentation algorithm allows for an extremely fine resolution, with min-
innun segient size of one data point, in most application it is more appropriate to al-
low for a coarser granularity, with segment sizes multiple of a C-point interval. Call this
minimal span a cell and define y = yF the collection of cells corresponding to  (assume
N = (L. possibly by zero-padding). The optimal segmentation/allocation algorithm can
therefore be applied to y with the substitution

dy(ti tipyw;) < dg((t; — 1)C + 1, (B4 — 1)Ciuy) (4.8)

where the subseripts indicate the underlying signal. In the following, the subscript y will
be inplicit.
Assume we allow for K possible linear predictor orders for the segments, p; < po <
< py . Since the Durbin’s recursion computes the prediction error for all lower order
problems as well, we will solve an order-px LP problem for all segments. This involves
the computation of the sum-products (4.5) which, for the autocorrelation method, depend
only on the lag I = |i — j|. With respect to y, for cell n we have

Cn+1)—-1-1
pull) = Z ThThl (4.9)
h=Cn

and. for any interval y7', pn,m)(l) satisfics the following chain relation:

/'[n.m](l) = p[n,m—l](l) + [)m(l) + 6m(l) (410)
with

Cm—1
(S,,,(l) = Z ThLp!- (411)

h=Cm-l
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Trellis algorithm

Algorithm 2.2 can be customized as follows:

| Algorithm 4.1: Linear Prediction

Step 1: Initialization
1 Compute for all cells y,,1 < n < L both p,(I) and d,(!) for 0 <[ < pg +1
(6,(1) = 0).
2 Create the trellis as usual;
3 Forn=1to N
For each sy, € Syt

Associate to the state a set of autocorrelation estimates
‘pn,m(l) = Pn—-1m-1 (1) + pn(l) + 8, (1) (with w.o()= 0);

Solve Durbin’s recursion from order p; to px using ¢y, » and
associate to s, the relative squared errors d(n —m,n+1;p;),
1<i<K.

From here the population, backtracking and iteration steps can proceed as usual.

As for the initial values of the Lagrange parameter, the minimum allowable distor-
tion is achieved for Anj, = 0. A good starting value for Ay can be inferred from the fol-
lowing argument. For a rate of zero bits, since no prediction is made, the resulting distor-
tion is equal to the energy of the entire signal:

Do =)z (4.12)
n

As we now sweep A from +o0o to 0, consider the first value A; for which r*(A;) > 1 bit.
Because of (2.17), for all (R, D) pairs it is D + A\ R > d*(A;) + A17*(\)) and, in particu-
lar, for (0, Dy) we can write

DO - d*(/\l)
ML —— <D 4.13
L= (A1) =0 ( )

We can therefore set Apax = Do.
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Computational requirements

The computational requirements for the algorithm can be broken up as follows. The initial-
ization step requires O(N) adds and multiplies for the computation of the autocorrelation
estimates. Then, for each state in the trellis, we need to sum up the cumulative estimates
(O(pk) adds and multiplies) and solve a LP problem with Durbin’s algorithm (O(p'f\,)
adds and multiplies plus O(pk ) divisions). The number of states is L(L+1)/2, L = N/C,
so in total the initialization step requires O((N/C)?) operations. Each iteration over A
requires a maximum of px comparisons (plus two adds and one multiply) per state, with
again a total of O((N/C)?) operations. Storage is proportional to the number of states.

For large datasets, as in the case of speech, the algorithm can easily be applied to
data segments separated by clearly identifiable features such as silence or gaps, for which
an a-priori allocation decision can be made with little risk of suboptimality. Alternatively,
since backtracking from time index n < L yields the optimal segmentation for yi', a split-
ting point can also be determined heuristically by executing the backtracking step for all
n’s: once a point ng of stable path convergence is found, in the sense that at least a min-
imum number of successive backtracked paths converge in ng, the trellis can be restarted
at that point and the allocation for n < 7y determined independently of successive data.
Again, the incurred suboptimality is minimal, but these solutions requires an explicit split-
ting of the total rate budget which might be difficult to determine a priori.

4.1.3 Results

We can finally compare the results between a fixed-window coding strategy such as that
employed in the LPC-10 speech coder [58] and the R/D optimal LP coding. The LP block
in the LPC-10 coder splits the data into fixed 22.5 ms frames (180 data points for 8 KHz
sampled speech) and computes an order-10 predictor for each frame. In our coder, we set
K = 6, allowing the order to span the range from p; = 5 to pg = 10, and we set the cell
size to C' = 60 samples. Quantization follows the LPC-10 specifications, with 5 bits for
the first four coeflicients, 4 bits for the next four, 3 and 2 bits for the last two; the LP pa-
rameters are in the form of reflection coefficients and therefore the effects of quantization
can be easily integrated in Durbin’s recursion. The cost of side information, which speci-
fies the length of the current segment, is set to 10 bits per segment, with three bits for the
predictor’s order and seven bits for the segment’s length. The algorithms are applied to a
2.2 seconds specch signal from a standard test corpus with DC bias removed and normal-
ized to unit amplitude.

Figure 4.2 shows the set of solutions obtained by iterating the algorithm between
Amin and Amay; the distortion is the cumulative squared error normalized by the sig-
nal’s energy, while the rate is normalized by the length of the speech sample. The circle
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Figure 4.2: Operational Rate/Distortion curve for a speech segment; the dot
indicates the operational R/D point of the fixed-window, LPC-10 predictor.

shows the operating (R, D) point for the fixed-window algorithm at its constant bitrate
of 1822 bit/sec; the normalized error power is -9.02 dB. At an equivalent rate, the R/D
optimal algorithm gains 0.74 dB; more significantly, an equivalent error power of -9.4 dB
is achieved at a bitrate of 277 bit/sec, which is approximately six times lower (point C
in Figure 4.2). Figure 4.3 show the segmentations and allocations relative to points A, B
and C in the R/D curve alongside with the speech signal. The width of a block repre-
sent a segment’s length, and its height the corresponding LP order. At first it might seem
surprising that a coarse segmentation such as C has the same MSE characteristics as the
fine windowing of the LPC-10 scheme; yet, while in both cases most of the signal’s energy
is still in the residual, its time distribution is very different. The LPC-10 22.5 ms inter-
val is appropriate as a baseline grid to resolve fast transicnts but offers no gain with re-
spect to longer range prediction; under the same distortion constraint, the dynamic seg-
mentation algorithm still resolves the main transients, but avoids isolating small speech
portions, which cannot be modeled by an order-10 predictor anyway, in favor of a more
accurate estimation of the quasi-stationary parts.
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Figure 4.3: Segmentations and allocations for the speech signal in the up-
per panel at the (R, D) operational points marked A, B, and C in Figure 4.2.

4.2 Arithmetic coding

Several picture coding systems like JBIG, JPEG, and EZW, utilize or allow for a binary
arithmetic coder as their last processing step. Indeed, as we mentioned in the beginning,
given an accurate estimate of the probability distribution of the binary input data, arith-
metic coding produces a code stream whose expected length is within two bits of the source
entropy. The practical difficulty rests with the estimation of the source statistics, and
much more so in the case of nonstationary data; in this case, adaptive schemes are a need.

Again, adaptivity in the probability estimation process can be of two kinds. Back-
ward adaptivity infers from past data a statistical description which is extended to the cur-
rent input. The Q-Coder [40], for instance, implements a backward predictive model by
means of a state machine whose transition table is carefully tailored to the average sta-
tistical behavior of bilevel images. The very structure of the adaptation mechanism, how-
ever, imposes a constraint on the generality of the predicted distribution: furthermore,
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causal transition in the data (as in a piecewise stationary memoryless source for which
the underlying probability distribution changes abruptly in time) will cause a substantial
mismatch overhead in any backward adaptive coder.

Forward adaptivity, on the other hand, relies on both past and future data to gen-
erate an estimate of the underlying statistical model; two-pass, adaptive Huffman coding
in JPEG is an example [60]. Clearly, this model offers complete generality in that an ex-
haustive minimization process can be performed to single out the distribution which min-
imizes the length of the coder’s output. Apart from the higher computational cost of such
a procedure, however, the price to be paid for this generality with respect to backward
adaptive systems consists in the side information which needs to be tagged to the coded
data to inform the decoder of the selected statistical model.

The choice of the most advantageous estimator depends entirely on the particular
data sequence which has to be encoded: it is easy to produce data sets for which a back-
ward adaptive model outperforms a forward adaptive model, and vice-versa. Therefore,
the criterion for choosing the type of estimator can only be the compression ratio at the
encoder’s output. For piccewise stationary inputs, this approach leads to a joint search for
the segmentation and the corresponding sequence of backward and forward models which
minimizes the total rate. We are back to our usual R/D optimization scenario, with just
a little difference: since the compression is lossless, the distortion is always zero, and it
will not enter in the minimization process; we could look at this also as a case in which
A = +00. It must be remarked, however, that the rate is nonseparable, due to the adap-
tive nature of the coding models.

4.2.1 Theoretical background

For a wide class of stationary signals including Markov processes and, as a particular case
thereof, Bernoulli sequences, Minimum Description Length (MDL) theory [48] provides a
lower bound on the performance of any compression scheme. Specifically, given a finite
N-point data sequence z1', the performance of any coder, backward or forward adaptive,
is bounded by the information of the sequence, defined as

I(x) = mdin rrgn{— log Pyg(x) + (1/2)dlog N}, (4.14)

where the (generic) statistical model Pg(z) depends on the d-element parameter vector
@ = 6¢ and the minimization is carried out over all number of parameters and all corre-
sponding parameter vectors.

Consider the case of Bernoulli sources for example, for which the parameter vector
is just the probability € of, say, a ‘1’; by taking expectations over all N-point data se-
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quences we obtain the average information
1
I(x)=H(0)+ 3 log N, (4.15)

where H(-) is the binary entropy function. The last term represents the cost of not know-
ing € a priori, and it can be paid for in two ways: in forward adaptive coders, by provid-
ing the estimated value for 6 to the decoder; in backward adaptive coders, by the estima-
tion mismatches in the causal prediction.

For nonstationary sequences the situation is more complex; the previous bounds in
a MDL sense have been extended to piecewise stationary Bernoulli sources by Merhav [29].
Intuitively, in this case the extra cost to be paid also includes the information pertain-
ing to the parameter transitions in the data sequence; it can indeed be shown that for N-
point sequences containing M switchpoints, the average information can be expressed as:

M
1
Ie)= - S LH:) + M% log N + MlogN, (4.16)
=0

where [; is the length of the data segment for which the Bernoulli parameter stays con-
stant and equal to 6;, and > [; = N. With respect to (4.15), the cost associated to the
Bernoulli parameter is multiplied by M; furthermore, an additional price of log N bits for
each transition appears. Merhav also proved that this lower bound can be attained by a
purely sequential coder (no look-ahead), but the method is hardly practical. These re-
sults were recently extended by Willems [63], who addressed more practical issues in the
problem of determining the set of parameters for a piecewise-constant Bernoulli sequence.
His analysis is however mostly concerned with the attainability of the Merhav bound in a
strictly sequential fashion.

While these lower bounds are very useful in stating the best performance one can
expect from a coding system, their asymptotic nature makes them less helpful in the case
of a single realization of a nonstationary process. In particular, the theoretically equiv-
alent efficiency of most estimators holds only in the limit; for one finite data sequence,
practical and computationally efficient estimators can yield substantially different results.
Here, we somewhat step aside from the theoretical framework described above; rather,
our goal is to implement a practical system using widely available building blocks (such
as the Q-coder), the baseline performance of which is very well known in a variety of set-
tings. The aim is twofold; on one hand we want to provide a system which easily “tags
on” to pre-existing coding scheme: one might indeed want to retain the core structure of
such coders for efficiency or compatibility reasons. Secondly, we want this system to be as
open as possible; the immediate advantage of this is that it is straightforward to augment
the family of coding models to arbitrarily complex predictors. This is especially useful
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when the data are no longer iid over some segments, and context-based prediction (which
takes into account higher-order statistics) becomes necessary.

4.2.2 Rate-optimal arithmetic coding
Problem setup

We will apply the optimal segmentation/allocation algorithm to the arithmetic coding
problem with respect to two coding models (K = 2). The first model is the backward
adaptive predictor implemented in the Q-Coder [40, 30]. This estimator declares one of the
two possible input values (say 0) the least probable symbol (LPS) and assigns a probability
to it; the other input value (1) is labeled the most probable symbol (MPS). The LPS proba-
bility is constantly adjusted depending on the sequence of LPS’s and MPS’s which are en-
coded; if the LPS probability passes the 0.5 mark, the LPS and MPS labels are swapped.
The probability estimation is carried out by means of a 29-value state machine; an LPS
probability value and pointers to the next and previous states are associated to each state.
The entries in the state machine were found experimentally in the context of bilevel im-
age coding. At each point in time, the Q-coder internal status can be represented as a
four-element vector 7 consisting of the value for the LPS, the LPS probability, the value
for the coding interval as stored in the internal register, and the value for the carry. This
allows us to compute the output rate for all segment lenghts in an incremental fashion.

The second model is a forward adaptive predictor in which an estimate of the
Bernoulli parameter for a segment zj,, is simply

1
h n ,
n—m+1 (m)

(4.17)

where h(-) indicates the Hamming weight of the sequence; this estimate (or its comple-
ment 1 — 6 if § > 1/2) is subsequently quantized to the closest probability 6 in the Q-
Coder table, so that it can be indexed by five bits. The data are then encoded with the
Q-coder algorithin in which the adptive estimation is turned off; initially the LPS is set
to 0 if 6 > 0.5 and to 1 otherwise, and the LPS probability is set to 6.

With the notation for the segmentations and allocations defined as usual (sec-
tion 2.2.4), the optimization takes the form of (2.17), but since the distortion is zero, there
is no need for a Lagrange parameter. However, this is a typical situation in which the
cost of side information is crucial, and we will thercfore iterate the solution over all possi-
ble costs for encoding a transition using the colored bits strategy of Section 2.3.2. In the
worst case, the input stream is a maximum entropy sequence, and therefore the largest
cost for a transition must be set to logo N. We will denote the cost of a transition by c,
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and the corresponding rate expansion factor by p; for a given choice of ¢ the optimization
problem becomes:

i in {R(t, 4.18
R Ly 1) 19
with
ao(t)
R(t,w) =) (1+p)r(tis tivriws) + ¢ (wi) (4.19)
=1

where r(n,m; k) is the size of the output stream when coding 7! with the backward
adaptive (k = 1) or the forward adaptive (k = 2) coder, and the side information is

i Jerl  ifk=1
°(")‘{c+1+5 ifk=2" (4.20)

one bit is indeed necessary to specify the model and, in the case of the forward adaptive
model, five more bits encode the Bernoulli parameter.

Implementation

Just as in the speech coding example, the granularity of the segmentation can be modi-
fied by rearranging the input bitstream into contiguous multi-bit cells of C bits each; the
new input vector will therefore be y = yF with

m

.mC
Yn = ZT(p 1041 (4.21)
and N = CL, possibly by zero-padding. The optimal segmentation/allocation algorithm
can thercfore be applied to y with the tacit assumptions that all parameters and rates for
any segment of y are in fact computed for the underlying signal & using the above relation.

Trellis algorithm

Algorithm 2.2 can be adapted as follows:

Algorithm 4.2: Arithmetic coding

Step 1: Initialization

Each state will hold the following quantities: h,, ,,, the cumulative Hamming
weight of the segments, 7, ,,, the latest internal configuration of the Q-coder,
and the rates for the backward and forward coding schemes. The initialization
proceeds incrementally:
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1 Forn=1to N
For each sy, € Sp, 1 <m<n
Associate to the state the cumulative Hamming weight of the
segment: hpn = hn_1m—1 + h(ys) (where hy o = 0Vn).

Compute 7(n — m + 1,n; 1) for the backward model: set the
initial Q-coder configuration to 7,-1m-1 and run the coder
over y,. Associate vy, the resulting Q-coder configuration,
to the state.

Compute r(n — m + 1,n;2) for the forward model: determine
the Bernoulli parameter as 6, = hym/Cm; quantize 6,
over the Q-coder probability table and estimate the rate as

(Cm)H(6).

2 Finally, create an extra state set Sp,+1 = {sr41,1}-
Step 2: Trellis path population

3 Select a value of ¢ and determine the corresponding p = — log,(1 — 27¢);
let 55 = 0.

4 Forl1<n<L
Determine the minimum cumulative rate:

g . . . _ ) . ,
o= M ,ggllg{Jn_m + (A +p)r(n—m+1,n:k) +c(k)}

using the values stored in the trellis. Assume the minimum is for the
pair (m*,k*): connect spm- to $,41,1 and associate (ji,m*, k%) to
the path. Also, connect $5, 5, t0 $p—1,m—1 for m > 1.

Step 3: Backtracking

See Step 3 in Algorithm 2.2.

Step 4: Iteration over ¢

Unfortunately, the relation between ¢ and the final rate is not monotonic, and the
itcration over the side information cost should in principle be exhaustive, from
[log, N1 to 2 bits. In practice, fewer iteration around the value of [(1/2) log, N
usually suffice.
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Step 5: Final encoding

Once the optimal segmentations have been determined, the segments can be en-
coded accordingly; the segmentation structure and the sequence of models can
be encoded by means of control codes in the binary output stream [2]. Here
we choose to blend the side information within the stream by means of a three-
symbol arithmetic coder in which a colored bit has probability € = 27¢ and in-
put symbols 0 and 1 have both probability (1 — €)/2. Each time a new segment
begins, a colored bit is coded, followed by a zero or a one to indicate the back-
ward or the forward model respectively; in the forward adaptive case, five more
bits are also encoded to specify 6.

Computational requirements

The computational requirements for the algorithm are as follows. The initialization step
requires a constant number of operation per state, proportional to the length of the cell
C. Again, the number of states is L(L +1)/2, L = N/C, so that the initialization step re-
quires a total of O((N/C)?) operations. Each iteration over ¢ requires a number of com-
parisons proportional to the number of states, with once again a global cost of O((N/C)?).

It is to be noted that the complexity of the decoder is equivalent to that of a stan-
dard arithmetic decoder, and that the decoding is instantaneous. This complexity asym-
metry, together with the encoder’s inherent delay, suggest that the proposed algorithm is
most useful in lossless data storage settings in which the premium is almost exclusively
on compression ratios.

4.2.3 A simple example

In the following example, the input to the dynamic arithmetic coder is the raster scan of
the bilevel image displayed on the left of Figure 4.5. While this is not, of course, a proper
image coding system (no image-specific prediction is applied) it illustrates in an intuitive
way the properties of the proposed algorithm. Figure 4.4 shows the achievable compres-
sion ratios as we vary the cost of a colored bit from 5 to 16 bit; the dashed line repre-
sents the baseline compression ratio obtained with the standard Q-coder. The shape of
the curve is typical to most compression problems: when the cost of a colored bit is too
low, the associated expansion factor dominates and the performance worsens significantly;
the curve also shows the non-monotonic dependence of the compression ratio on the cost
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compression ratio (%)
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Figure 4.4: Compression ratio vs. cost of a colored bit

of side information, which requires an exhaustive search over the parameter space. In this
case in particular, the optimum is achieved for a colored bit cost of 13 bits. The plot on
the right of Figure 4.5 displays the LPS probability for the binary arithmetic coder versus
the index of the coded byte for this latter case. The rectangular blocks in solid line rep-
resent portions of the signal for which the coder has identified a constant parameter for
the LPS probability by a forward adaptive estimate; the dashed line represents the cvolu-
tion of the LPS probability when the system works in a backward adaptive mode. We can
identify four distinct segments, corresponding to the four textures in the image. Section
A and D simply code the gray textures according to their pixel densities; forward adapta-
tion is efficient here due to the regularity of the pattern. In section C, for which the im-
age has the same number of black and white pixels per square region, the system locks to
a LPS probability of 1/2, to avoid the coding inefficiency of an oscillating backward adap-
tation. Finally, section B is coded mainly in backward adaptive mode, which is consistent
with the frequent and short transitions in the image. It is to be noted how the algorithm
achieves a very good segmentation of the image. The compression rates are 14.3% for the
proposed algorithm versus 12.3% for the Q-Coder.
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Figure 4.5: Arithmetic coding exampie

4.3 Summary

This chapter introduced two practical applications of the optimal segmentation/allocation
framework. Section 1 described a linear prediction algorithm in which the usual fixed-size
time windowing is replaced by a dynamic segmentation algorithm which allocates differ-
ent order LP predictors to different portions of the data according to their local stationar-
ity characteristics; the fundamentals of lincar prediction, and of speech linear prediction
in particular, have been reviewed in subsection 1.1, while subsection 1.2 extended the LP
algorithm to include dynamic segmentation using the dependent allocation template; fi-
nally, in subsection 1.3 a practical implementation of the algorithin as an extension of the
standard LPC-10 speech coding system has been described, with a discussion on the ex-
perimental results.

Section 2 applied the dynamic segmentation concept to binary arithmetic coding.
The principles of adaptive arithmetic coding were reviewed in first two subsections, with
a brief detour into the theoretical facets of coding limits for stationary sources. Subsec-
tion 2.2 placed the arithmetic coding problem in the context of rate optimality and intro-
duced a dynamic algorithm in which the coder can switch between a backward (Q-Coder)
and forward (counting) probability estimation mechanisms. Finally, some experimental
results were described.
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Chapter 5

Communications: Data Hiding for
Audio Signals

N>

3¢

- J. S. BACH, Kunst der Fuge, BWV 1080.19

Another fruitful domain of applicability for the optimal segmentation techniques in-
troduced so far is data communication. Nonflat, time-varying communication channels
are usually dealt with by invoking ergodicity and by designing a signaling system tuned to
the time-averaged characteristics of the medium. In most cases, this is really the best that
can be done, since a physical channel is something we have little or no control over and
since real-time communication is the one goal. Yet there are a few particular instances
where we can claim to possess perfect knowledge of past, present. and future channel con-
ditions. One such instance is data hiding, where the “channel noise” is represented by a
host signal to which arbitrary data are to be added in an undetectable way. A data hid-
ing system distributes the aggregate of the hidden data in time and in freqency in order
to exploit all the “energy gaps” in the host signal; if the latter is known in advance, this
time-frequency distribution can be carried out by means of optimal allocation techniques,
as we will show in the following.

95
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5.1 Data hiding

Data hiding, or steganography, is concerned with embedding data into a “host” message
(the cover message) in a way which is undetectable to an external observer; in this sense,
it differs from cryptography (although the hidden data can itself be encrypted) since the
cover niessage remains unaltered and entirely meaningful from a perceptual point of view.
In recent years, there has been a lot of interest in steganographic techniques in connection
with watermarking for copyright protection of audio and video material [1]; in these cases
the goal is to embed a marker or a digital signature in proprictary material in order to track
potential copyright infringements. Clearly, this requires that the data hiding method be
extremely resilient to common data processing techniques such as compression, filtering, or
cropping. which are viewed by the copyright owner as “attacks” on the watermark. Intu-
itively. it is easy to see that the capacity of the steganographic channel and its robustness
to attacks are inversely related to each other; in watermarking applications this should not
be o fundamental limitation since the amount of data to be hidden is relatively modest, yet
it ix still an active area of research to find a universally robust watermarking technique [11].

There is however another situation which can make good use of steganographic tech-
uigues. and that is the case when different data sources share the same, fixed physical chan-
nel. Multiple access channels are extremely well studied in the case of mobile communica-
tions. for instance, and we will see that some techniques that are commonly employed in
dealing with fading or nonflat multiple access links can be of help in designing a data hid-
ing svstem. However, the fundamental difference between such communication protocols
and a data hiding scenario is that, in the latter, one particular data source takes priority
with respect to the others; furthermore, some of the receivers might not have the ability
to extract the hidden message, yet the composite data stream should be entirely equiva-
lent (in some perceptual way) to the prioritary data stream alone. Everyday examples of
such o seenario are for instance a color TV signal, which can be reproduced by older black
and white sets; or teletext messages, inserted at the blanking intervals between frames in
a way that does not affect the standard TV decoding process. Both these methods work
by exploiting gaps in a decoding protocol; more sophisticated techniques can exploit the
pereeptual gaps in the human visual or auditory system instead, much in the same fash-
ion as standard compression algorithms do. The comnmon strategy, in all cases, is to max-
imize the amount of information that can be hidden in a given signal while preserving its
perceptual properties. This maximization of throughput necessarily implies a very low re-
silience to signal manipulation, which sets us apart from watermarking techniques; at any
rate. the goal is not secrecy or robustness towards attacks but the expansion (or better,
the splitting) of the communication channel throughput in a “backward dependent” way.

In this chapter we will discuss a data hiding technique for digital PCM audio, based
on the masking properties of the human auditory system (HAS). The setting might be that
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of a compact disc (CD), for instance, to which we want to tag additional data such as lyrics
or pictures without altering either the format of the support (the “Red Book” protocol) or
its audio capacity (74 minutes approximately); the resulting CD will therefore be entirely
compatible with standard CD players, will play to the maximum allowable duration, and
yet will allow more sophisticated equipment to retrieve the hidden data. Some commercial
examples which implement such an idea (albeit in minimal form) to improve audio qual-
ity are already available [37]; we will show that, by casting the data hiding technique in a
rate/distortion framework, the optimal compromise between throughput and perceptual
distortion can be achieved for all types of audio signal and for any data hiding protocol.

5.2 Perceptual audio coding

State of the art audio coding algorithms such as MPEG or Dolby’s AC3 can provide acous-
tically transparent compression ratios of the order of 4:1 to 6:1 by cleverly exploiting the
masking phenomena inherent in human hearing [31, 23]. Simply stated, masking occurs
when weaker signal components are made inaudible by the presence of louder components;
such weaker components are said to lic below the masking curve of the signal.

Compression algorithms quantize the signal so that the bulk of the overall quanti-
zation noise is hidden below the masking curve, and is therefore inaudible. In many au-
dio steganography techniques, the hidden data source can be modeled by an equivalent
additive noise generator; by shaping the power spectrum of such noise so that it lics be-
low the masking curve, one could in theory achieve a perfectly transparent embedding.
Perceptual hiding according to this general line has been indeed proposed in the context
of audio watermarking [5]; in this paper we are however concerned with a tagging system
for which maximum throughput and perfect extraction at the receiving end are the fun-
damental targets, which requires a finer exploitation of the masking propertics of a signal
and a more sophisticated hiding strategy.

5.2.1 Psychoacoustic modeling

In this section we will briefly review the fundamentals of psychoacoustic modeling from
an operative, computational point of view; this simplified approach neglects some finer as-
pects of the hearing mechanism such as temporal masking but proves entirely adequate
for the task at hand. From a physiological perspective, acoustic masking is a cousequence
of nonlinear processing in the inner ear; frequency-selective areas in the cochlea, called
critical bands, exhibit a saturation characteristic whereby a loud sound component (the
masker) renders inaudible all the weaker components in the same critical band which lie
below a certain power threshold. The threshold is in fact a function of frequency and it
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decays rather rapidly in an interval centered around the masker; its magnitude depends on
the critical band number, on the power of the masker, and on the type of masker (whether
an isolated spectral line or a noise-like component).

A psychoacoustic model tries to reproduce algorithmically these hearing mechanisms
in order to obtain an estimate of the effectively inaudible portion of a given audio signal.
Much study has been devoted to the characterization of masking functions {31}, and differ-
ent psychoacoustic models differ essentially in the parametrization of their shapes and de-
cay rates. In the following we will rely on a simple model in which masking functions are
approximated by piecewise linear functions in the log-power, bark frequency domain [38];
a unit of one bark corresponds to the width of a critical band and, since the width of suc-
cessive critical bands increases by approximately a third of an octave, there is essentially a
logarithmic mapping between bark scale and linear frequency scale. For complex tones the
masking phenomenon is distributed across the entire audible spectrum, since each spec-
tral component originates a local masking function; the sum of all masking thresholds for
all components across the signal’s bandwidth yields the overall masking curve.

An algorithmic process estimating the masking curve for a given signal can be illus-
trated with reference to the MPEG standard Psychoacoustic Model 1, which will also be
used in section 5.4.2. It comprises the following steps [21]:

o Computation of the power spectrum; this is performed by a short time Fourier trans-
form analysis.

e Separation of tonal and non-tonal components; since the masking power of isolated
spectral lines is less than that of noise-like spectral components, the former are sep-
arated from the latter.

o Computation of the individual masking thresholds; this step is accomplished by con-
volving each spectral component by the appropriate (tonal or non-tonal) masking
function.

e Computation of the global masking curve; the masking curve is obtained as the sum
of the individual masking thresholds.

An additional step is required to map the masking curve thus obtained back to the linear
frequency domain; the final result will be denoted by the time-frequency function ©(t, f).
For a fixed time instant ¢, this function is one realization of the masking curve; for a fixed
frequency fy, it represents the evolution of the masking threshold over time for the given
frequency. Figures 5.1 and 5.2 display typical iustances of a masking curve and of a time-
varying masking threshold (at low frequency) respectively; here and in the following, the
audio data are obtained from a string quartet CD [50].
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Figure 5.1: Masking curve for one frame (26 ms).

The time-frequency resolution of the psychoacoustic model depends on the under-
lying short time spectral analysis used to compute the power spectrum, and it is a trade-
off between accuracy of the tonal and non-tonal representation and responsiveness to fast
signal transients. In MPEG layer 11, for an input sampling rate of 44.1 KHz, the psychoa-
coustic model produces a masking curve every 26 ms; in the following, we will call such
an analysis interval as a frame.

5.2.2 Compression

As stated previously, the fundamental coding step of a perceptual audio coder is to quan-
tize the signal separately over different subbands so that the quantization noise level for
each subband is less than the minimum value of the masking curve over the subband. This
minimum value is generally referred to as the masking threshold for the subband. With-
out going into further details, the most important point is to remark that, due to this sig-
nal dependent quantization, part of the total bit budget for the coder must be spent to
inform the decoder of the different subband levels.
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Figure 5.2: Time varying masking threshold for a frequency around 1 KHz.

5.3 Perceptual data hiding

Counsider an audio signal s(t), 0 < t < tp bandlimited to fy Hz: we have seen that the
masking curve computation yields a function O(¢, f), of which two typical time and fre-
quency “slices” are displayed in Figures 5.1 and 5.2. This function represents a two dimen-
sional power constraint for the transmission power which, in principle, should lie below the
threshold {10]. In order to fulfill this constraint, we choose to adopt a separable approach
by discretizing both the time and frequency axis; while this is admittedly not the most so-
phisticated way to achieve a time-frequency power shaping, it is in line with the current
techniques which implement the psychoacoustic analysis model and allows for an easy in-
tegration of our transmission scherne in compression engines such as MPEG. In particular,
spectral power shaping in frequency for a given time interval is accomplished by multicar-
rier modulation, which implements a discretized approximation of the reverse waterfilling
algorithm [34]. The key point is that, if the entire frequency interval is split into M bands
by a M-ary filterbank with perfect or almost perfect reconstruction capabilities, then power
shaping along the time axis can proceed independently for each filterbank subchannel.
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5.3.1 Discretization

Assume the (positive) frequency axis [0, fx] is subdivided into M adjacent, non overlap-
ping bands [fn., fm+1); fo = 0, far = fn: at any time instant ¢ we can obtain M corre-
sponding masking thresholds values by selecting the minimum value of ©(¢, f) in each sub-
band. Also, the psychoacoustic model computes a full masking curve via short-time win-
dowing over frames C samples apart; for a sampling frequency of f; Hz, there are a total
of N = f,ty/C frames, with O(t, f) constant for (n — 1)C/f, <t <nC/fs,n=1,... ,N.
The completely discretized set of masking thresholds can therefore be denoted by the (dis-
crete) function #,,(n) form=1,... M andn=1,... ,N:

Onin) = min_ {O((n~1)C/fu])). (5.1

Using the same discretization grid, we would like to obtain a sequence of signal en-
ergy levels relative to the time-frequency tiles over which the masking thresholds are com-
puted; these can be determined as:

nC/fs
() = / 15(t) * g (t) 2dt (5.2)
(n=1)C/ fs

where the Fourier transform of g,,(t) is the indicator function for the interval [fn_1, fm];
in practice, these energy levels can be computed as the average energies over a time inter-
val of one frame at the outputs of a M-band filterbank.

As for the data tagging scheine, we assume we have M independent “transmitters”
which operate over the [fn—1, fm) bands; we also assume the power of the transmitters can
be arbitrarily varied form one C-point interval to the next from a minimum level py to a
maximuin level pg. In the rest of the analysis, the actual transmission method is irrelevant
as long as it can be modeled by a modulated, bandlimited additive noise source of equiv-
alent power; we will also assume that the number of bits which can be successfully trans-
mitted to the decoder each frame is a given function r(p) of the transmission level p only.

5.3.2 Data hiding and side information

At first, one might think to use a sequence of transmission power levels which lies just
below the sequence of masking thresholds for each subchaunel; the receiver would re-
determine the sequence of thresholds via a psychoacoustic model identical to the trans-
mitter and decode the data. Unfortunately, this approach is not viable for two reasons.
First, the masking curve computation for the audio signal and for the signal after the data
has been embedded generally yields different results; this means that the decoder cannot
recover the correct sequence of transmission levels, and therefore the data themselves. In
addition, it might happen that the throughput requirements are stringent but cannot be
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fulfilled by a sequence of power levels strictly below the thresholds; one might then decide
to forgo the absolute undetectability constraint and use a sequence of levels which some-
tiimes exceeds the masking thresholds. For both reasons, it is necessary to inform the re-
ceiver of the actual sequence of power levels, and this can only be done via side informa-
tion. The situation is akin to perceptual compression where, in order to exploit the psy-
choacoustic gaps in the signal, side information about these gaps has to be supplied.

Since music can be reasonably modeled as a piecewise stationary signal, we design
the transiission scheme so that side information is necessary only when the transmission
power level changes in time. We therefore find ourselves in a dependent allocation sit-
uation. as illustrated in Section 2.2.3, and we can deploy the appropriate machinery to
solve the problem. To recapitulate the conflicting requirements we are trying to fulfill, re-
call that side information necessarily uses up part of the overall throughput; the objec-
tive is thus to determine the transmission sequence which high throughput and a low de-
seription cost. At the same time, fewer power switches mean that we will overshoot the
guickly varying masking threshold requirements more often. A tradeoff between through-
pit and perceptual distortion is now apparent: the goal is to determine the optimal trans-
mission sequence with respect to these two parameters. The problem is again that of a
rate/distortion optimization, where the maximization of the “rate” (the throughput) must
be weighed against the corresponding increase in perceptual distortion.

5.4 R/D optimal data hiding

5.4.1 Problem setup

For a single subchannel, say subchannel m, the sequence of masking thresholds and signal
levels for the time interval [1, N] can be expressed in vector form as @ = ¥ and o = oY
(the channel subscript is inessential and is dropped throughout this section). An N-point
allocation w, defined the usual way, will represent a sequence of N transmission power
levels between p) and pg.

Call D(w) the perceptual distortion we incur if we use the sequence of power lev-
cls w to transmit data over the subchannel; the corresponding net throughput will be de-
noted by R(w). The goal is to maximize throughput while keeping the associated distor-
tion below an acceptable minimum level Dy; this can be expressed as a constrained max-
unization problem:

max {R(w)}

(5.3)
D(w) < Dy
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The above problem is similar, but not identical to (2.9); in order to reduce it to a
more “standard” form we have to consider in more detail the structure of rate and dis-
tortion. The measure we choose for the distortion is the sum of the scgmental perceptual
noise to signal ratios (NSR), since the hidden data in each subband can be represented as
an equivalent narrowband noise source.

A fundamental requirement is that the power of the noise be less than the power of
the signal; then, if the noise level is below the masking threshold, the perceptual distor-
tion is zero, otherwise its power is equivalent to the power of the transmitted data offset
by the level of the threshold itself. We can therefore write

N
D(w) = Zd(n;wn) (5.4)

n=1
with

+oc ifp> o,

d(n;p) — 0 ifp<6, <o, (5.5)

p— 011
On

ifg, <p<oy,

As for the throughput (rate), we can initially write

N-1

R('w) = Z Tc(n;wn,wn—l) (56)
n=0

with wg = p; by convention and where 7.(-) is the net throughput associated to a given
transmission level over one frame, minus the numnber of bits devoted to side information if
a model switch takes place (see Equation (2.14)); we will assuine that the cost of side in-
formation is always less than or equal to the minimum achievable frame rate for all frames
and all models, so that all the terms in (5.6) are non negative. Assume now that the orig-
inal (digital) audio channel allows for a maximum capacity of rp; bits per frame; for 16-
bit PCM data, for instance, and a frame length of 36 samples , rpy would be 576 bits.
Our goal is to split this capacity between an audio data channel proper and a tagged data
channel so as to maximize the throughput of the latter. We can therefore introduce the
following auxiliary quantity

R(p) = Nrpy — R(w) (5.7)
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which represents the portion of the total capacity not devoted to the hidden data. It is
easy to sec that using R, the problem in (5.3) is equivalent to:

mla/{R w)}
we (5.8)
D(w) < Do

and we are thus back to our familiar constrained minimization problem. From now on,
the solution can proceed the usual way by casting the problemn in unconstrained form us-
ing Lagrange multipliers and implementing Algorithm 2.1

Initial values for the iteration

Given the monotonic relationship between A and D*(A), an obvious choice for the initial
minimum value is Ayip = 0, for which the maximum allowable real throughput is achieved
at the expense of a very large distortion. A good estimate for Apax can be inferred from
the following argument. Assume we have obtained (for some large value of A) the solution
pair (0, Rmax), at zero distortion. As we now sweep A from +co to 0, consider the first
value A for which D*(A) > 0; a nonzero distortion means that the power of the data is
larger than the masking threshold in at least one frame, and therefore

]) = lgrlll<n[\/{ mln {d(‘n, pi }} = m|n§ (59)

Dpin can be easily computed from a single pass over 8. Because of (2. 10), for all (D, R)
pairs it is R+M\D> R*(/\l) + A1 D*(A}) and, in particular, for (0, Rmax) we can write

Rmax - R*()‘l) < NTI\/I

A <
L= D*()\l) - Dmin

(5.10)

We can therefore set Amax = N7ps/Dmin-

Multiple subchannels

The previous analysis easily carries over to the case of data hiding over all subchannels
simultaneously. Optimality of the global rate/distortion tradeoff means that all subchan-
nels must operate at the same value for A since the overall rate and distortion are the (un-
weighed) sums of the rates and of the perceptual distortions for all channels. For the M
different subchannels, by building

6 = {61(1),... ,01(N),62(1),... ,02(N),... ,6u(1),... ,0n(N)} (5.11)
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(and similarly for o) the trellis algorithm can be used to obtained an N M-element al-
location vector w from which the single subchannel allocations can be extracted in or-
derly fashion. A constant A\ across subchannels implies an optimal distribution of the to-
tal amount of hidden data across channels, so that little or no data is tagged to frequency
regions with poor masking capabilities such as in the high end of the audio spectrum.

5.4.2 Implementation

In the following section we will describe a practical implementation of the data hiding
scheme for stereo, 44.1 KHz 16-bit PCM audio.

Signaling scheme

Discretization of the frequency axis is achieved by means of a 32-channel, uniform cosine-
modulated filterbank as described in the MPEG Layer II specifications [21]; the width of
a single subchannel is 690 Hz. The psychoacoustic model produces a masking curve every
1152 raw audio samples, which is then discretized to produce a masking threshold value
for each subband; for a single subchannel, therefore, one threshold level is active over a
frame of 36 subband samples.

Data tagging is achieved by replacing the least significant bits of the subband sam-
ples with data bits. Assuming the data has been scrambled, this is equivalent to an addi-
tive narrowband noise source with an approximate power of 6 dB per tagged bit; due to
roundoff error in the analysis/synthesis filterbank computations, however, the least signif-
icant bit (LSB) of the subband samples is essentially random and therefore tagging can
proceed safely only from the second LSB onwards. We allow for K + 1 signaling models,
where the model index identifies the number of tagged bits per frame from zero to K; the
transmission power (in linecar units) corresponding to k tagged bits per sample is then:

if k =

Pk = { gk“ if k > 8; (5:12)
a signaling power of zero is needed when the finite distortion constraints cannot be met.
Since there are 36 16-bit subband samples in a frame, rp; = 576 and r(py) = 36k; the
minimumn number of bits which can be tagged to a frame is therefore 36.

Side information is strictly related to the signaling protocol described below; in par-
ticular, the cost of a transition from zero bits to a nonzero level is higher than that for
a transition to zero and the reason will be clear in the following section. In general, the
cost for a transmission power switch from k to h bits/sample is

0 bits ifk=~h
c(k,h) = 36 bits ifk#£h andk #0 (5.13)
36h bits ifk#h andk=0
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2 0 5 0
-»> | — > t
) 4 | data =1 , | data
header block #1 block #2 (no data)  header block #3

Figure 5.3: Signaling protocol for the allocation sequence
p* = {1(2),1(2),1(2),1(2),1(0), 1(0), 1(0), L(5), 1(5)}.

With these models, the optimal signaling sequence w* is determined by the trellis
algorithm, and tagging proceeds by passing the signal through the filterbank, replacing a
number of LSB’s in the subband samples with tagged data according to w*, and recon-
structing the PCM audio signal with the complementary synthesis filterbank. At the de-
coder, after synchronization, an identical analysis filterbank recovers the subband samples
and the data can be retrieved following the structure conveyed by the side information.

Signaling protocol

Synchronization between transmitter and receiver is established at the audio PCM sam-
ple level by inserting a sync sequence in the LSBs of the audio PCM samples; this has no
noticeable perceptual effect on the audio material. The hidden data transmission proto-
col is displayed in Figure 5.3 for an allocation vector

w' ={2,2,2,2,0,0,0,5,5}.

First of all, the allocation vector is subdivided in blocks for which the number of bits
per subband sample is constant; in this example there are three such blocks. Each tagged
data block begins with the side information describing the number of bits/samples and the
length (in frames) of the next block; for blocks which follow a zero bit allocation (and for the
initial block) a separate one-frame side information header is necessary in which data is al-
ways tagged at one bit/sample by convention, since the decoding process must be restarted;
in all other blocks side information is encoded at the current bit/sample allocation level.

Rather than optimizing the cost of side information, we chose to simplify matters by
fixing the number of bits spent on signaling the lenght of a segment to 8. With this choice,
the maximum block length is 6.6 seconds, which has proven largely sufficient in all prac-
tical cases; in the unlikely event of a longer block, the price to pay is an additional 36-bit
side information slot after the 256th frame, which introduces a negligible suboptimality in
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Figure 5.4: Throughput/distortion curve.

the global allocation. Four more bits completely specify the power level for a total alloca-
tion of 12 bits per transition; due to the catastrophic propagation of possible errors in the
decoding of the allocation structure, a 3:1 repetition code is employed for a total of 36 bits.

5.4.3 Results

In Figure 5.4 the net throughput is plotted against the perceptual NSR for a 1 minute
audio excerpt [50]. At zero distortion (noise always below the masking threshold) the net
rate is about 21 kbit/sec; at twice this rate the average NSR grows to -25 dB, the limit
after which, in most cases, distortion becomes disruptive. For the intermediate case of a
30 kbit/sec throughput and -35 dB NSR, Figure 5.5 displays how the R/D optimal al-
gorithhn allocates the transmission power across bands and in time for the first four sub-
bands; the dotted line represents the signal power while the thin continuous line repre-
sents the masking threshold; the power of the data is plotted with a thick line.

In general, for stereo CD audio, capacities on the order of 30 kbit/sec can easily be
achieved at no perceptual cost. The rate/distortion framework is completely general and
can be adapted to many different signaling schemes; furthermore, since the structure of
the tagged data is conveyed to the receiver by means of side information, the system is in-
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Figure 5.5: Transmission power allocations for the first four subbands.
dependent of the particular psychoacoustic model employed in the analysis.

5.5 Summary

This chapter introduced one further application of the optimal segmentation/allocation
framework by developing an optimal data hiding scheme for CD-quality audio signals. The
basics of data hiding have been illustrated in Section 1; Section 2 reviewed the fundamen-
tal notions of perceptual audio coding and psychoacoustic modeling, whose relevance to
the problem at hand is discussed in Section 3. Section 4 introduced the R/D optimal algo-
rithm, based on the partially independent trellis template; in this case the rate is the net
rate of the hidden data while the distortion is identified with the perceptual noise intro-
duced by the hiding process. Implementation details were also discussed in the same sec-
tion, together with experimental results which attest a net data throughput for the data
hiding scheme on the order of 30 kbit/sec at no perceptual loss.
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