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from Charmilles Technologies S.A., Meyrin, and especially Mr. Jean Waelti for his patience,
Dr. Michel Kocher for his criticism, Mr. René Demellayer for allowing us to work with his
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Abstract

HIGH-PRECISION tracking requires excellent control of slow motion and position-
ing. Recent advances have provided dynamic friction models that represent almost

all experimentally observed properties of friction. The state space formulation of these
new mathematical descriptions has the property that the state derivatives are continuous
functions. This enables the application of established theories for nonlinear systems. The
existence of locally stable fixed points does not imply for nonlinear systems the absence
of limit cycles (periodic orbits) or unstable solutions. Therefore, global properties of PI
velocity and PID position control are analyzed using a passivity and Lyapunov based
approach. These linear control laws are then extended by nonlinear components based on
the friction model considered. The applications presented in this work are in the domains
of mechatronics and machine-tools.

Version abrégée

L’ASSERVISSEMENT de haute précision d’entrâınements vise à la mâıtrise de mou-
vements lents et du positionnement. Récemment, des modèles dynamiques ont

été proposés, modèles qui représentent la plupart des phénomènes de frottement ob-
servés expérimentalement. Dans la représentation d’état de ces nouvelles descriptions
mathématiques, la dérivée de l’état est une fonction continue. Ceci permet l’application
des théories établies au sujet de systèmes non linéaires. L’existence de points d’équilibre
localement stables n’implique pas, pour un système non linéaire, l’absence de cycles limites
(trajectoires périodiques) ou de solutions instables. Les propriétés globales des boucles de
réglage PI de vitesse et PID de position sont alors analysées en utilisant les approches de
passivité et de Lyapunov. Ces lois de commande linéaires sont ensuite améliorées par des
contributions non linéaires à la commande basées sur le modèle du frottement considéré.
Les applications qui sont présentées proviennent des domaines de la mécatronique et des
machines-outils.

Zusammenfassung

HOCHPRÄZISIONSANSTEUERUNGEN von Antrieben bezwecken das Erzielen
vorgegebener Kriechbewegungen und das Erreichen einer genauen Achsenpositio-

nierung. Vor kurzem wurden Reibmodelle vorgestellt, die die meisten beobachteten
Reibeigenschaften beinhalten. In den Zustandsgleichungen dieser neuen mathematischen
Beschreibungen sind die Ableitungen der Zustände nach der Zeit kontinuierliche Funk-
tionen. Dies ermöglicht die Anwendung verbreiteter Theorien für nichtlineare Systeme.
Örtlich stabile Fixpunkte, sowie Grenzzyklen (periodische Schwingungen) und instabile
Lösungen des Anfangswertproblemes, können bei einem nichtlinearen System gleichzeitig
auftreten. Daher sind die globalen Eigenschaften von PI Geschwindigkeits- und PID
Positionsregelkreisen zu untersuchen, was mittels Passivität von Untergruppen und der
Lyapunovmethode möglich ist. Diese linearen Regler werden anschliessend durch das
Hinzufügen reibmodellbasierter nichtlinearer Elemente verbessert. Die vorgestellten An-
wendungen stammen aus den Bereichen Mechatronik und Werkzeugmaschinen.
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Chapter 1

Introduction

IN almost all mechanical systems, there are parts in contact undergoing relative motion.
Tribology is the science and technology of such interacting surfaces. The popular

associated terms are friction, wear, and lubrication. This study presents recent control
engineering results for drives with friction. For convenience, some terms are defined first:

Tribology: the science of the mechanisms of friction, lubrication, and wear of inter-
acting surfaces that are in relative motion.

Friction: a force that resists the tangential relative motion or tendency to such motion
of two bodies in contact.

Lubricant: a substance, such as grease or oil, that reduces friction and wear when
applied as a surface coating to moving parts.

Wear: is the progressive damage, involving material loss, which occurs on the surface
of a component as a result of its motion relative to the adjacent working part; it is almost
unavoidable companion of friction.

1.1 Motivation and Domain of Application

Friction is present in almost any industrial drive. This plus the fact that friction phenom-
ena are nonlinear make the topics of friction modeling, identification and compensation
very interesting and challenging.

These three topics are discussed herein mainly in the context of machine-tools. Some
machine parts considered are shown in Figure 1.1: (a) a ballscrew-and-nut transmission
that is used to transform rotational into linear motion, and (b) a linear roller bearing
that is widely used to guide the tools and the table of a machine-tool. Other machine
elements experiencing friction are preloaded ball bearings, motor brushes, harmonic gear
drives etc.

Although not directly related to problems of drive control, it is useful to look back
at some elements of the history of tribology [37]. In early civilizations, tribology was
primarily the technology of wear, lubrication, and mechanical friction force reduction.
The optimization of wear was, for example, used to increase the efficiency of hole drilling.
The first lubricants that were introduced between surfaces in relative motion were water
or animal fat. In order to achieve additional friction force reduction, wheels or logs were
used in transportation.

1



2 CHAPTER 1. INTRODUCTION

a) Ballscrew-and-nut transmission

b) Linear roller bearing

Figure 1.1: Principal domain of application: machine-tools.



1.2. PROBLEM FORMULATION AND POSTULATIONS 3

In the past, the physical topics of friction were discussed mainly by material scientists
and mechanical design engineers. The aspects of control engineering have been introduced
with adequate rigor only later [5]. The fundamentals for advanced friction compensation
have been presented recently by the group working at Lund and Grenoble [27]. The
relevance of their contribution is mainly the successful use of an integrated friction model
for synthesis of an enhanced controller that achieves efficient friction compensation for a
simple drive.

In order to provide a generic solution for the control of drives with friction, a large
variety of aspects are discussed here: starting with a description of the physical phenom-
ena, continuing with the integrated friction modeling and parameter identification, and
finishing with the standard and the advanced methodologies of friction force compensa-
tion.

1.2 Problem Formulation and Postulations

The problem solved herein is the synthesis of a stable control with desired performance
for drives with friction. The approach proposed is based on two steps: (i) modeling of the
drive that is specified with technical drawings, and (ii) synthesis of the controller. This
is illustrated in Figure 1.2. The simple drives considered here are formed of a motor, a
load, bearings and a position/velocity sensor. The friction is introduced by the bearings
and by the brushes of the motor (if a DC motor is used).

In the first step towards a solution of the control problem, modeling of the drive is
considered. The mathematical model that results should have the following properties:
(i) the model structure should be complex enough to capture the dominant phenomena
observed; (ii) the parameters of the model are selected such that a specified cost-function is
optimized, expressing the fact that the difference is minimized between the data predicted
by the model and observed experimentally; and (iii) after parameter identification and for
a particular application considered, it is possible to reduce appropriately the complexity
of the model. The postulations proposed for this first phase are the following:

Identification methodology. Classical identification methods do not
apply directly to the determination of the model parameters for a given setup,
since friction is a nonlinear phenomenon. However, it is observed that various
particular experiments can be used for the identification of reduced parameter
sets. With three experiments, it is possible to estimate all the parameters for
a simple drive with friction.

Model order reduction. A relationship between complex modern and
simple classical models can be established with a singular perturbation ap-
proach. This theory allows rigorous model order reduction (i.e. model sim-
plification) in certain particular cases. The analysis suggests the existence
of a fundamental parameter, the characteristic space constant, that decides
whether a displacement analyzed is ‘small’ or ‘large’. It results that the use of
modern complex models is required in all situations with ‘small’ displacements.

In the second step, the synthesis of stable control leading to desired behavior is per-
formed. The mathematical model of the system is nonlinear because of the nature of
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Postulations

1. Identification methodology
Model order reduction

2. Input–output linearization
Passivity based approach
Adaptive feedforward

Figure 1.2: Problem formulation and postulations.

friction. This introduces some problems for the analysis of stability of the closed-loop
system with a constant reference input. The states are ideally asymptotically stable, but
they can also be unstable (escape to infinity), stable with some steady-state tracking error,
stable with a periodic, or stable with a chaotic orbit. In addition, feedforward control can
be useful to achieve acceptable tracking for a specified frequency spectrum and amplitude
range of the reference signal. The postulations proposed for this second phase are the
following:

Input–output linearization. In order to achieve acceptable tracking
for a large frequency spectrum and a wide amplitude range of the reference
signal, it is almost inevitable to apply linearization techniques. Besides the
high loop-gain approach, input–output linearization can be achieved either by
feedback based on an estimation of the actual states, or by feedforward based
on an appropriately generated reference trajectory for the states of the system.

Passivity based approach. The synthesis of the control loop aims nor-
mally to achieve global asymptotic stability of the desired operating point.
Then the system approaches asymptotically the operating point starting from
any initial condition. This goal can be achieved with a passivity based ap-
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proach applied to the controller synthesis. This methodology uses the input–
output properties of appropriately chosen subsystems, that are interconnected
to form the full system. The key concept is that all the subsystems are dissi-
pating some kind of energy. Furthermore, it is possible to apply the operator
theory to establish the proofs of robust stability even for reference tracking.

Adaptive feedforward. When different control methodologies are com-
pared in a catalogue of solutions, it results that proportional–integral–
derivative (PID) control, enhanced by adaptive feedforward, is the most in-
teresting algorithm. The identification effort is reduced and robust stability is
achieved if the adaptation gains are sufficiently small. In addition, acceptable
step response and excellent sinus tracking performance are achieved.

1.3 Topics Considered

The objective of this thesis is to discuss the large variety of aspects that need to be
considered for the use of drives with friction. This enables establishment of a catalogue of
solutions that is useful for the control engineer. The topics considered are the following.

• Introducing the physical phenomena observed for two interacting surfaces

• Providing a mathematical model for each of these phenomena separately

• Considering two models for friction that are well suited for controller synthesis

• Comparing these two models in terms of their ability to predict friction force

• Presenting a methodology for modeling of (complex) drives with friction

• Proposing of a methodology for model parameter identification

• Studying common control approaches

• Motivating and analyzing widely used PI velocity control

• Motivating and analyzing widely used PID position control

• Presenting a survey of methods for performance enhancement

• Proposing solutions to the problem of friction state observation

• Discussing the topic of robustness versus modeling errors

• Illustrating the theoretical considerations of this thesis

• Discussing a particular actuator technology that is based on friction

• Applying PID and enhanced controller synthesis to an industrial drive

1.4 State of the Art

This thesis is based mainly on results in friction modeling and control synthesis presented
recently by a group at Lund and Grenoble [27]. They have shown that the tracking perfor-
mance can be increased with a control algorithm that is based on a model that represents
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most of the input–output phenomena that are reported in the literature. Nevertheless, the
author is convinced that a detailed study of the physics of friction is useful for the design
of high performance drives. This because it is possible to simplify the task of controller
synthesis considerably by an appropriate mechanical design and lubrication selection.

Detailed introductions to the subject topics of tribology are available [13], containing
mainly definitions for most of the common terms used in the science of contacting surfaces.
The statistical model for rough surfaces presented by Greenwood and Williamson [45]
and its extension by Francis [41] forms a fundamental concept that is required for the
understanding of friction phenomena. Owing to surface roughness, two machine parts
are contacting at a large number of small spots, distributed over the whole surface. The
properties of each contact point contribute to the overall behavior of the interface and
therefore to the observed macroscopic phenomena of friction. This concept has been
used before to establish a simple model for distributed element hysteresis [55]. Now it
is possible to evaluate the relationship between certain friction model parameters and
characteristics of the surface topology and the contacting materials [4].

An extended survey of friction modeling was presented recently [9] including a large
number of literature references. Classical friction modeling is based on the experiments of
the French scientist de Coulomb [34]. The behavior of a loaded slide on a flat surface was
analyzed for different constant pulling forces at various speeds. Later, several dynamic
effects, that are associated with friction, have been observed. The Dahl model [32] is a
compact mathematical formulation for some of these dynamic phenomena. This model
was originally developed for ball bearings, but its structure applies to sliding bearings
as well. The recent contribution of a group at Lund and Grenoble [27] is, however, the
first literature reference known to the author that uses extensively modern modeling re-
sults for controller synthesis. The Lund–Grenoble model has been designed to represent
observed input–output behavior by an appropriate extension of the Dahl model. Further-
more, controller synthesis is presented using modern analysis tools for nonlinear systems.
Whilst tribological aspects are generally discussed in undergraduate courses for mechani-
cal engineers, the point of view of the control engineer has been introduced only recently.
Numerous topics about control of drives with friction are discussed systematically [5, 8].
Analysis of the performances of PID control, considering the Coulomb model with static
friction, have been undertaken [7, 91]. Results for an alternative extension of Dahl’s dy-
namic friction model have been presented, and PID position and PI velocity control has
been analyzed [18]. Although these results are insightful for the understanding of the
performance of PID control applied to drives with friction, no literature references are
known to the author that consider the LuGre friction model.

Advanced friction compensation has been subjected to numerous publications that
have been summarized recently [9]. It is surprising that, as far as the author knows,
Dahl’s friction model which was developed in the late sixties and early seventies has
been used for the synthesis of control only in the nineties. In a first step, the Dahl
model was subjected to a mathematical analysis of its properties [15, 16]. These results
motivated an extension of the Dahl model and a Lyapunov function based stability anal-
ysis [26]. Recently, several additional contributions to nonlinear control synthesis have
been presented. These literature references are all focusing on input–output linearization
by feedback based on the estimated state vector. In a first step, only the nominal pa-
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rameter case was considered [2, 27]. Next, adaptive schemes were developed for specific
parametric model perturbations that are presumably related to changes in preload or
temperature [25, 94].

Two applications are presented at the end of the thesis: an inertial slider actuator
and a drive for a vertical machine-tool axis. Inertial drives were developed in the late
eighties for probe positioning in scanning tunneling microscopes [75, 80]. If driven by
piezocrystals, these new actuators present the advantage that extremely fine positioning
(in the nanometer range) is possible with high accuracy and at reasonable cost. The second
application is the control of the drive of a vertical axis that is used in a modern machining
technology, called Electrical Discharge Machining (EDM). In the EDM process, metal is
removed by generating high frequency sparks through a small gap filled with a dielectric
fluid. The terms of EDM are defined by standards and the various machines are classified
into the two major classes of die-sinkers and wire machines [96]. A complete description of
the EDM process and the concepts of machining parameter selection is available [36, 74].
Therein, it is emphasized that the appropriate selection of the polarities for the electrode
(tool) and the workpiece is fundamental for an economically interesting operation.

1.5 Organization of the Thesis

The core of the thesis is organized into five chapters. The fundamentals of tribology,
that seem to be useful for the control engineer, are summarized in Chapter 2. Models
of friction that are well suited for controller synthesis are presented in Chapter 3. The
aspects of control are discussed in two steps: (i) standard PID control (Chapter 4), and (ii)
performance enhancement by feedforward or feedback (Chapter 5). The methodologies
presented are illustrated in Chapter 6. The elements presented chapter by chapter are
the following.

Chapter 2 Tribology. The normal loading of rough surfaces is discussed in Sec-
tion 2.1 recalling modeling of rough surfaces and the evaluation of the real area of contact
for a given supported load. A survey of interface properties of dry and lubricated con-
tacts is provided in Section 2.2, leading to an empirical mathematical description of the
relationship between friction force and relative velocity. The microscopic behavior for
longitudinal loading of rough surfaces is discussed in Section 2.3 presenting, amongst oth-
ers, a relationship between physical properties of materials and the phenomena observed
for small displacements. The chapter is concluded in Section 2.4 with some remarks on
current trends in tribology.

Chapter 3 Integrated Friction Modeling. First two widely used models are pre-
sented: the Kinetic Friction Model (KFM) in Section 3.1 and Lund–Grenoble (LuGre)
model in Section 3.2. At the same time, the fundamental properties of each model are dis-
cussed. These two models are compared in Section 3.3 with a singular perturbation anal-
ysis: their ability to predict the friction force of a simple drive is considered. The results
give some indications that help to chose the adequate model complexity for a given situ-
ation. The problem of modeling complex mechanical systems with friction between parts
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in relative motion remains. The approach, which is briefly summarized in Appendix A,
proposes a rigorous methodology to establish the system of differential–algebraic equa-
tions even for complex mechanical systems. Finally, a methodology for model parameter
identification which is based on four special experiments that are exciting only particular
parts of the system is presented in Section 3.4.

Chapter 4 Design of PID Controllers. In Section 4.1 it is shown that PI control is
required to stabilize the system for a given (constant) reference velocity. Furthermore, in
Section 4.2 it is demonstrated that positioning requires a PID control structure to achieve
asymptotic stability of the positioning error. Intuitive understanding of transient behavior
is difficult for a global, nonlinear system analysis. Therefore, both control objectives
(velocity control and positioning) are also discussed applying linearization techniques.

Chapter 5 Enhanced Regulation and Tracking Performance. First, in Sec-
tion 5.1 this chapter presents a survey of feedforward friction compensation techniques.
In order to realize feedback compensation, in Section 5.2 it is necessary to discuss friction
state observers. The resulting estimated state vector is used in Section 5.3 for controller
synthesis based on the approach of input–output linearization by state feedback.

Chapter 6 Applications. In this chapter, two applications are presented: (i) the
modeling of an inertial drive is presented in Section 6.2, including a tribological study of
the surfaces in relative motion; and (ii) the identification and control of the vertical axis
of an industrial electro-discharge machining installation is discussed in Section 6.3. At
the end a catalogue of solutions for the control of drives with friction is provided.



Chapter 2

Tribology

Objectives

• Introducing the physical phenomena observed for two interacting surfaces

• Providing a mathematical model for each of these phenomena separately

MOST engineering mechanisms are composed of a certain number of interfaces be-
tween the machine parts. Therefore, it is mandatory, even for the control engineer,

to know some basics of tribology, which is the science and technology of two interacting
surfaces in relative motion.

The topics reviewed in this chapter are: (i) the behavior of rough surfaces in contact,
(ii) the resistance to motion whenever a solid slides over another which is called friction,
and (iii) the influence of lubrication which is the application of materials to the interface
in order to produce low friction and wear. The laws of wear, however, are not discussed
herein, since the author was rarely faced with problems of the erosion from one or both
solid surfaces in sliding, rolling or impact motion relative to one another.

It must be emphasized that the character of this chapter is somewhat encyclopedic,
but it is useful for what follows to discuss at least some basics of tribology. Furthermore,
a relationship is established between the input–output observation based models and the
physical phenomena. This is useful for an optimal mechanical design of drives which
reduces the problems encountered afterwards by the control engineer.

Detailed introductions to the topics of tribology are available [13], containing mainly
definitions for most of the common terms used in the science of contacting surfaces.
Further references are cited in the following sections.

This chapter is organized as follows. The normal loading of rough surfaces is discussed
in Section 2.1 recalling modeling of rough surfaces and the evaluation of the real area of
contact for a given supported load. A survey of interface properties of dry and lubricated
contacts is provided in Section 2.2, leading to an empirical mathematical description of
the relationship between friction force and relative velocity. The microscopic behavior for

9
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Figure 2.1: Engineering surface resulting from milling.

longitudinal loading of rough surfaces is discussed in Section 2.3 presenting, amongst oth-
ers, a relationship between physical properties of materials and the phenomena observed
for small displacements. The chapter is concluded in Section 2.4 with some remarks on
current trends in tribology.

2.1 Normal Loading of Rough Surfaces

Because friction phenomena are related to the interface between mechanical parts, it
is necessary in a first step to analyze the behavior of engineering surfaces in contact.
The most important observation is the fact that, at a microscopic scale, the surfaces of
machine parts look like the land surface of Switzerland with its mountains and valleys, see
Figure 2.1. Therefore, when two surfaces are pressed together, they are in contact only at
specific spots. The real area of contact is therefore much smaller than the apparent area
of contact. This implies that in fact overall friction phenomena result from summing up
the behavior of a large number of contact points. The problem of finding a macroscopic
model of friction is solved therefore in two steps: (i) a statistical model for rough surfaces
is specified; and (ii) the properties of all asperities are summed up, weighted by the
probability to find an asperity of the characteristics considered. This approach is used
here for establishing the relationship between the normal load and the resulting real area
of contact for the interface between two rough surfaces. Note that fundamentally different
micromechanisms can lead to the same macroscopic law if such a statistical averaging is
applied. This abstraction leads to generic solutions which apply to a large variety of
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Figure 2.2: Two dimensional contact model.

physical systems.
Without loss of generality consider the contact model illustrated in Figure 2.2. For

this two dimensional topology the interface is integrally described by its profile. The
longitudinal dimension is obtained simply by translation. Note that a profile contains
all necessary information for the evaluation of the real area of contact, also in the case
of an isotropic surface topology. For a better understanding, the x-axis (longitudinal),
y-axis (transversal) and z-axis (normal) are indicated in this and subsequent Figures.
Furthermore, without loss of generality, suppose that motion is along the longitudinal axis.
This simplified model is an approximate description for the surface topology illustrated
in Figure 2.1.

The evaluation of the real area of contact can be based on the statistical model for
rough surfaces, presented first by Greenwood and Williamson and extended later by Fran-
cis [41, 45]. Therein, it is assumed that the mechanical contact behavior of two macroscop-
ically plane surfaces is equivalent to loading their algebraic sum, the equivalent surface,
against a smooth plane surface. This concept of the equivalent surface is illustrated in
Figure 2.2.

The solution of the problem is generalized by considering the dimensionless peak height
ζ and surface height t, which are related, see Figure 2.2, to asperity deformation δ and
the standard deviation s of the surface height by

δ

s
= ζ − t (2.1)

In addition, it is convenient [41] to define the relationship between the dimensionless peak
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radius ρ, the asperity radius R, and the standard deviation s̈ of surface curvature by

ρ =
Rs̈√
1.5

(2.2)

A Gaussian joint probability density function of dimensionless peak height and radius
is proposed to describe the topology of rough surfaces [70]

f(ζ, ρ) =
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√
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where β =
√

1.5ṡ2

ss̈
is the spectrum width parameter. The standard deviation of the surface

slope is denoted by ṡ.
This model is used to evaluate the macroscopic behavior of the surface [41]. Since

the properties of the macroscopic contact are evaluated by integration over all asperity
contacts, it would be interesting to find an integrable probability function f(ζ, ρ) instead
of the Function (2.3). Nevertheless, corresponding literature references are not known to
the author and additional investigations are outside the scope of this thesis since numerical
and approximate solutions are straightforward.

For a Hertzian contact and under the assumption of small deformations (where the
dimensionless peak radius ρ is independent of the surface height t) the normal load Pz is
related to surface elasticity modulus

E∗ =
E

2(1− ν2)
(2.4)

and the topology parameters for a line contact by

4
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L

Ri

πE∗
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i (2.5)

and for a point contact by (
3
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) 2
3
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respectively. Young’s modulus is E and ν denotes the Poisson ratio. Technical details are
well documented in the literature [100].

Finally, integration over all contacts gives the load supported by the overall interface

Pz(t) = N
∫ ∞

ζ=t

∫ ∞
ρ=0

Pzi(δi) f(ζ, ρ) dρ dζ (2.7)

where the asperity deformation δi = s (ζ − t) is specified by (2.1) and the function Pzi(δi)
is given by the either of the Relations (2.5) or (2.6). For a line contact

Pzi(δi) =
1

4
LπE∗
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The number of asperities is denoted by N and depends for line contacts on the surface
roughness and the width b of the apparent area of contact. The density of peaks has been
related [41] to the surface topology parameters by

DL =
1

2π

σ̈

σ̇
(2.9)

Therefore, the number of asperities is proportional to the width of the apparent area of
contact according to

N = DL b (2.10)

Similarly, the area of contact Ari for one asperity is used to find the real area of contact
of the interface Ar(t). For example, the real area for a line contact is

Ari = 2Lai = 2L
√

δi(Ri − δi)
δi¿Ri≈ 2L

√
δiRi (2.11)

It is assumed in (2.11) that asperity deformation does not modify its radius Ri. The real
area of contact as a function of dimensionless surface height t results after integration
over all asperities

Ar(t) = N
∫ ∞

ζ=t

∫ ∞
ρ=0

Ari(δi) f(ζ, ρ) dρdζ (2.12)

Since no analytic solution for equations of type (2.7) and (2.12) exists, numerical
methods are required. It results that the relationship between Pz and Ar is quasi linear
for small deformations where the surface height t is large. Furthermore, a brief analysis of
(2.7), (2.10) and (2.12) shows that both Pz(t) ∝ A and Ar(t) ∝ A are proportional to the
apparent area of contact A. In addition, it follows that the real area of contact Ar(Pz) as
a function of normal load is independent of the apparent area of contact.

In the literature, measurement of electrical conductance is proposed to verify exper-
imentally the dependence of the real area of contact as a function of the normal load.
For crossed cylinders as well as for flat surfaces, the electrical conductances Λ are eval-
uated as a function of normal load Pz [20]. For crossed cylinders, the measured relation
is Λ = k2

√
Pz, which agrees with theoretical results for plastic deformation. The exper-

imental results for a flat, unpolished surface show a linear dependence of the electrical
conductance Λ ∝ Pz at small loads. Unfortunately, the relationship between Λ and the
real area of contact Ar of random rough surfaces is not straightforward which reduces the
usefulness of this validation approach.

2.2 Interface Properties and Lubrication

Once the real area of contact is evaluated, it is possible to analyze the shearing properties
of these contacts. Therefore, it is necessary to observe the behavior of the interface be-
tween dry and lubricated surfaces. It has been noticed [5] that the physics of lubrication
are not the same at all speeds. This observation is motivated by the experimental investi-
gation of the friction force as a function of velocity for oil lubricated bearings by Stribeck
at the beginning of this century [90]. He observed: (i) that the coefficient of friction first
decreases for increasing velocities (this is for different applied normal forces); and (ii) that
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Figure 2.3: Lubrication regimes.

the minimum for the coefficient of friction is obtained for bigger velocities when normal
force is increased. Therefore, the velocity–friction force characteristic is often called the
Stribeck curve.

For an intuitive explanation and a detailed description of the relationship between
the relative velocity and the friction force it is useful to follow the considerations made
in the context of robot control [5]. Various regimes of lubrication are distinguished,
see Figure 2.3: dry contact, boundary lubrication and elasto-hydrodynamic lubrication.
These phenomena are characterized by different scales for the interfacial gap. The atomic
lattice constant characterizes a dry contact, the molecular size is a good estimate for
the gap size in boundary lubrication, and the surface roughness specifies the geometrical
scales for elasto-hydrodynamic lubrication at slow speeds.

2.2.1 Dry Contact

The behavior of dry contacts is described by a molecular theory of friction [92]. Although
general solutions are not yet available, particular cases have been studied. The properties
of atomically flat iron surfaces, for example, have been predicted [69]. The understanding
of the physics of dry contacts are important mainly for the design of micro-mechanisms
and space vehicles. The contacting surfaces in micro-mechanisms are often formed of
atomically flat silicon. The problems to be solved during design of space vehicles are
related to the fact that standard lubricants are rapidly evaporated in a vacuum.

2.2.2 Boundary Lubrication

Boundary lubrication is present when the velocity is insufficient to build a fluid film
between the surfaces. Displacement is related to shearing of solid-to-solid contacts. It is
often assumed that friction in boundary lubrication is necessarily more important than
in fluid lubrication at small velocities [90]. This, however, is not always the case because
certain boundary lubricants reduce the break-away force (necessary to initiate macroscopic
motion) below the kinetic friction level (the force that opposes steady motion).
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Low friction in boundary lubrication is realized by addition of molecules to the lubri-
cant that bind well to the metal surfaces without being corrosive. These molecules need
to have sufficient strength to withstand sliding forces without decomposition and yet have
low shear strength when moving relative to each other.

With modern lubrication technology it is therefore possible to obtain a monotonic
characteristic between velocity and friction force which is favorable to the elimination
of the undesirable phenomenon of stick–slip motion. The practical interest of boundary
lubricants is illustrated [39] with experimental data comparing the requirements for stable
small speed motion of: (i) a dry contact surface, with lubricated interfaces, using (ii)
paraffin oil, and (iii) a boundary lubricant. It is concluded that the boundary lubricant
produces a smaller negative steady-state velocity–friction force slope compared to paraffin
oil.

2.2.3 Elasto-hydrodynamic Lubrication

It has been recognized in the literature that many loaded contacts of low geometrical
conformity such as gears, rolling contact bearings and cams frequently behave like they
are hydrodynamically lubricated. Operating experience suggested that severe metal-to-
metal contact was not taking place, and this led to a theoretical analysis of the lubrication
conditions. The theory of elasto-hydrodynamic lubrication takes into account surface
elasticity and the viscosity–pressure characteristics [38]. The behavior of the lubricant in
the interface is modeled by the Reynolds’ equation [81].

These considerations lead to nonlinear relationships for interfacial gap and frictional
traction depending on sliding speed and normal load. The corresponding dynamic equa-
tions are presented for a journal bearing with hydrodynamic lubrication [50]. A compar-
ison between the resulting simulation data [50] and the experimental observations for a
lubricated line contact [51] shows, besides other things, a qualitative agreement of the
‘dynamics at small velocities’ illustrated in Figure 3.3c.

2.2.4 Mathematical Descriptions

Once experimental data is available for the velocity–friction force characteristics of a given
drive, a mathematical description has to be found in order to analyze control stability
and tracking performance. An overview of different formulations and references has been
presented previously [5]. A unified model for the steady-state characteristics between
velocity and friction force is

F (ẋ) = σ2ẋ + σ0g(ẋ) signẋ (2.13)

where ẋ denotes velocity, σ2 is the viscous friction coefficient, and σ0 g(ẋ) describes the
nonlinearities of velocity–friction force characteristics. The model is illustrated in Fig-
ure 3.1, where ẋ is replaced by q̇ for consistency of notations in Chapter 3. Table 2.1
contains some mathematical formulations for σ0g(ẋ) and the corresponding literature ref-
erences. The notations are in agreement with those used in Section 3.1.

For a given drive, composed of a large number of interfaces, physical considerations
that support one mathematical formulation rather than another are in general very com-
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Type Nonlinearity σ0 g(ẋ) References

Linear Fc [34]

Piecewise Linear Fs − sat(R |ẋ|, Fs − Fc) [86]

Exponential Fc + (Fs − Fc) e−|ẋ|/vs [93]

Gaussian Fc + (Fs − Fc) e−(ẋ/vs)2 [5]

Generalized Exponential Fc + (Fs − Fc) e−α |ẋ|δ [19], [59]

Laurentzian Fc + (Fs − Fc)
1

1 + (ẋ/vs)2
[51]

Table 2.1: Models describing the relationship between velocity and friction force.

plex. Thus, modeling for control purposes should be based on criteria for matching with
experimental data. The parameter identification is based on minimization of some cost
function (e.g. a weighted quadratic estimation error). The model structure is selected
afterwards in order to minimize the specified criterion.

2.3 Longitudinal Loading of Rough Surfaces

When the two primary phenomena, the real area of contact and the interface properties,
are analyzed, it is possible to describe the behavior for longitudinal loading. The approach
of finding a macroscopic model by integration of the properties for the numerous contact
spots remains an efficient method also for the analysis of longitudinal loading. In this
section, it is noted first that two particular regimes can be distinguished: (i) the behavior
before ‘break-away’, i.e. the properties for very small displacements; and (ii) the friction
force resulting from large unidirectional motions. Next, modeling of the transition between
these two regimes is discussed.

2.3.1 Distributed Element Hysteresis Model

The evaluation of the real area of contact, presented in Section 2.1, is based on the fact that
the phenomena related to friction are distributed over numerous contacting asperities. By
analogy, it is possible to evaluate the macroscopic behavior of two rough surfaces, pressed
against each other and subject to a shearing force. Although an analytic solution of the
contact properties could be found, an exact solution is outside the scope of this summary.
However, two particular situations can be distinguished: (i) if the mean shearing stress of
all asperities equals zero, then the interface behaves like a spring-damper system; and (ii)
if all junctions between asperities are broken after a large displacement, then the force
transmitted through the macroscopic interface has settled to a constant value.

Below, the relationship is established that exists between the surface model for the two
dimensional contact geometry, illustrated in Figures 2.1–2.2, the adhesion theory [12, 100],
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Figure 2.4: Distributed element hysteresis model.

and the model developed for distributed Coulomb friction elements [55].
A schematic view of the configuration considered is shown in Figure 2.4. The key

concept is to represent the behavior of a certain number of asperities by summing up the
properties of separate (spring, dashpot, slider) elements [57]. In the context considered,
see Figures 2.1, 2.2 and 2.5, each element corresponds to a contact region of width 2ai. The
stiffness, strength and viscous dissipation for each asperity are denoted by σ0i, Fsi = AriτBi

and σ1i, respectively. For dry and boundary lubricated contacts τBi is the shear strength
of the interface. The area of a particular contact spot is Ari = 2aiL for a linear and
Ari = πa2

i for a fully isotropic configuration.
This distributed element hysteresis model has the interesting property that global

performance in two particular regimes is directly related to physical parameters. For very
small displacements, where the mean shearing stress of all asperities is almost zero, all
Coulomb sliders are stuck and the system behaves linearly

J ¨̃x +

(
σ2 +

∑
i

σ1i

)
˙̃x +

(∑
i

σ0i

)
x̃ = Px (2.14)

where J is the inertia and x̃ denotes deviation from position at rest, i.e. Px(x̃ = 0) = 0.
This regime (2.14) is called presliding.

The second particular regime describes large x-displacements, where all junctions be-
tween asperities are broken. Because motion is assumed to be unidirectional, all Coulomb
sliders move after some specific displacement. Since viscous traction for dry contacts or
in boundary lubrication is small, i.e. σ2 ẋ¿ ∑

i Fsi, the tangential force results mainly
from the force needed to overcome all Fsi forces

Px(x→∞) =
∑

i

Fsi (2.15)

The literature reference [55], dealing with the distributed element hysteresis model,
focused on the evaluation of the transitional effects resulting after a sign-change of the
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Figure 2.5: Shearing of one asperity.

velocity ẋ. The developments are summarized in Section 2.3.5 and a relationship to the
Dahl friction model [32] is established. However, below, the two particular regimes (2.14)
and (2.15) are of particular relevance for model parameter identification, in Section 3.4,
and performance analysis by linearization, in Section 4.2.2.

2.3.2 Stiffness at Rest

First, the parameters describing the presliding regime (2.14) are discussed. Assume that
the stiffness at rest σ0 =

∑
i σ0i is dominated by the asperity deformation rather than

shearing of the interface. It follows that the stiffness at rest should not depend on lubri-
cation, a fact that is confirmed experimentally in Section 6.2.3.

In order to obtain a result for rough surfaces consider, without loss of generality, the
simple model of an asperity shown in Figure 2.5 (a flattened half-cylinder of radius Ri

and length L). Some basic considerations about mechanics of deformable solids lead to
the conclusion that shearing in the direction of the x-axis and the resulting displacement
∆x are related to the applied longitudinal load Px by

∆x =
Px

G

∫ √R2
i−a2

i

z=0

dz

A(z)
=

Px

G

∫ √R2
i−a2

i

z=0

dz

2L
√

R2
i − z2

and the tangential stiffness for one contact, assuming ai ¿ Ri is

σ0i =
Px

∆x
=

2GL∫√R2
i−a2

i

0
dz√

R2
i−z2

≈ 2GL

π
(2.16)

where G is the shear modulus. Therefore, it results that all contacts have the same
stiffness, and the total stiffness at rest is

σ0 = N
2GL

π

∫ ∞
ζ=t

∫ ∞
ρ=0

f(ζ, ρ) dρdζ (2.17)
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where the dimensionless surface height t is a function of supported normal load according
to (2.7). The number of asperities N is specified by (2.10).

For the contact topology, considered in this section, the numerical solution of Equa-
tions (2.7) and (2.17) shows the linear dependence σ0 ∝ Pz for small normal loads Pz.
Furthermore, the general case of tangential compliance for elastic bodies in contact is
discussed in the literature [68]. Therefore, based on these considerations it should be
possible to evaluate the stiffness at rest for any surface topology.

2.3.3 Viscous Damping for Presliding

Experimental analysis of dynamics in the presliding regime has shown the importance
of the material losses that are modeled by the term

∑
i σ1i

˙̃x in Equation (2.14). Since
material damping depends on the alloy, the mechanical surface finish and the thermal
treatment, numerical values are not tabulated in the literature. In addition, the viscous
model is only a rough representation of physical reality.

Material damping has been discussed for machine design [52, 88]; and dynamic frac-
ture [11]. Nevertheless, predictions of the parameter σ1, based on physical properties,
are outside the scope of this thesis. Therefore, the parametric identification, presented in
Section 3.4, must be applied.

2.3.4 Break-away force

It is the interfacial shear strength that dominates the break-away force (sometimes also
called static friction level); the strength of the asperities plays only a minor role. This
has been suggested at least for lubricated contacts where the influence of lubrication on
both friction level and wear are analyzed [78].

The influence of pressure on shear strength is the subject of several literature refer-
ences. For example, a nonlinear characteristic with hysteresis, due to plastic deformation,
has been observed for a conformal contact [22]. The shear strength of thin lubricant films
has been discussed for a glass sphere on glass plate contact [23]. Unfortunately, these
results do not allow predictions such as for the stiffness at rest in a given context.

An alternative approach is based on experimental results. For friction at an atomic
scale the experimental data show a linear dependence of friction force with normal load for
a Si3N4 tip sliding over surfaces of silicon, diamond, and graphite [83]. Based on the idea
of molecular attraction and repulsion [92], recent results have been presented for a sharp
tip moving over a clean atomically flat surface [47, 87]. These results have been adapted
for consideration of the interface of two atomically flat surfaces [69] and a solution of the
relations has been proposed for α-iron. Numerical results have been presented for a very
limited number of atoms [66], showing even a velocity–force relation that is similar to
macroscopically observed velocity–friction force relationship.

Nevertheless, despite all these modeling efforts, no results are known to the author
that would allow virtual prototyping of a mechanical system. This could be explained by
the difficulty in describing the chemical and physical properties of the surfaces considered.
Dominant parameters still need to be specified and tabulated.
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Although quantitative prediction of the break-away friction level seems not yet possi-
ble, the linear behavior for small loads, that is experimentally observed in Section 6.2.3,
is motivated by: (i) the linear dependence Ar ∝ Pz, and (ii) the assumption that the
interfacial shear strength τB is a constant for small pressures , i.e. Fsi = AriτB.

2.3.5 Transition from Sticking to Sliding

After analysis of the two particular operating points, very small displacements (evaluation
of the stiffness at rest) and unidirectional motion (evaluation of break-away force and the
Coulomb level), finally, it remains to find a description for the transition between these
two regimes. No really physically motivated approaches are known to the author that
would relate a particular transition shape to the material properties and surface topology
of the contacting surfaces. Nevertheless, there is a relationship between the model for
distributed element hysteresis and the Dahl friction model.

Consider the system illustrated in Figure 2.4 for small unidirectional velocities. Dif-
ferent distribution functions for failure processes have been discussed in the literature [98]
that could describe the properties of the Coulomb sliders. Assume that the distribution
of the strength of the Coulomb sliders is exponential, i.e.

ϕ(Fsi) =
1

Fs

e−Fsi/Fs (2.18)

This is not necessarily realistic but leads to a simple formulation of friction force as a
function of position. In fact, for the initial values x = 0 and Px = 0, the tangential load
as a function of displacement with ẋ > 0 is

Px(x) =
∫ σ0x

0
F ϕ(F )dF︸ ︷︷ ︸

yielded sliders

+ σ0x
∫ ∞

σ0x
ϕ(F )dF︸ ︷︷ ︸

stuck sliders

= Fs(1− e−
σ0
Fs

x)

(2.19)

Similarly, Px(x) is evaluated for negative velocities. A brief analysis of the expressions
shows that this friction model can be expressed in the following differential form

Ṗx =
dPx

dx
ẋ = σ0(ẋ− Px

Fs

|ẋ|) (2.20)

which is valid for positive and negative velocities ẋ. Note that the particular exponential
shape (2.18) of the distribution ϕ(F ) is used in the above developments only to provide
simple expressions. In fact, for any particular, but monotonic, shape of the relationship
between position and friction force, a corresponding distribution ϕ(F ) can be evaluated.

A comparison of (2.20) with the friction model proposed by Dahl in the early seven-
ties [32] shows a perfect match. The fundamental concept of Dahl was that the mathemat-
ical model of solid friction, as opposed to fluid friction, consists simply of the observation
that the time rate of change of solid friction can be expressed as

dF (x)

dt
=

dF (x)

dx
ẋ (2.21)
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where F (x) is the friction force which is a function of displacement x, but which is rate

ẋ independent. The friction function slope dF (x)
dx

is strictly positive at all times and Dahl
proposed the relation

dF (x)

dx
= σ0

∣∣∣∣1− F

Fs

signẋ
∣∣∣∣i sign

(
1− F

Fs

signẋ
)

(2.22)

in order to represent the experimentally observed phenomena. For convenience, the no-
tations used in (2.22) are adapted to the notations used herein. Later, an example of
experimental data for ball bearings has been reported [33]. In addition, it has been no-
ticed already [32] that various transition shapes, modeled by different exponents i, are
related to material properties, namely ductile and brittle materials.

Obviously, the Dahl model (2.22) with the exponent i = 1 is equivalent to the
model (2.20) resulting from the distributed element hysteresis model with the exponential
strength distribution function (2.18). Therefore, the relationship is established between
tribological studies and integrated friction modeling, based on input–output characteris-
tics. In fact, this observation represents another relevant contribution of this chapter.

2.4 Current Trends in Tribology and Summary

The current trends in tribology that are of particular interest also for the control engineer
may be classified into the following categories: handbooks and textbooks, atomic scale
phenomena, and transitions (friction as a function of velocity and position).

Handbooks and textbooks. Recently [13, 14, 102], a considerable effort
has been made in order to provide a survey of the state of the art in tribology
and to give beginners an insight into the basics of tribology. These tutorial
texts are very helpful in understanding the physics of friction.

Atomic scale phenomena. Atomic scale phenomena of friction can now
be measured [65, 67], which enables validation of theoretical considerations
like those for friction without wear [99]. Detailed studies of friction at small
normal loads [87] include experimental data. Although at the moment the
direct value of this kind of literature is not obvious to the control engineer,
the phenomena discussed will perhaps to be included into the modeling of
modern micro/nano-systems in the future.

Transitions: friction as a function of velocity and position. Besides
fundamental studies, publications are also written on the application of the
theory to particular mechanical situations. These article include some predic-
tions for the relationship between velocity and friction force [50], but also the
prediction of the relationship between relative position and friction force [31].
These practical studies will be used intensively when the results are included
into the virtual prototyping of mechanical systems: the control engineer will
be able to influence the mechanical design in order to simplify the synthesis
of a suitable controller.



22 CHAPTER 2. TRIBOLOGY

In this chapter, the physical fundamentals of friction have been presented. This is
required for the integrated friction modeling in the next chapter. The methodology of
averaging the properties for one asperity over the whole surface of contact seems to be a
generic approach that could be used for the modeling of other similar processes. However
it is noticed that the effort of physical modeling of all phenomena is excessive which
motivates the use of mathematical models that represent with ‘sufficient’ quality the
input–output properties of the system considered. In the context of control engineering,
‘sufficient’ means relevant for the analysis/synthesis of a control loop that is supposed to
achieve specified tracking and regulation performances.



Chapter 3

Integrated Friction Modeling

Objectives

• Considering of two models for friction that are well suited for controller synthesis

• Comparing of these two models in terms of their ability to predict friction force

• Presenting of a methodology for modeling of (complex) drives with friction

• Proposing of a methodology for model parameter identification

THE physics of particular friction phenomena have been discussed in Chapter 2.
Whilst this study is sufficient for mechanical design purposes, for example the choice

of the materials for a given application, it should be noted that a closed form description
is required for the models used by the control engineer. This description should represent
a number of phenomena. Therefore, such models, which are well suited for simulation or
controller synthesis, are called ‘integrated’ friction models in the sense that they integrate
a variety of phenomena in just one formulation.

Therefore, this chapter aims to present a survey of friction modeling for simulation and
control purposes and to establish an explicit link between the classical and recent modeling
approaches. Furthermore, the problem of model parameter identification, which has been
rarely discussed in the literature, is solved. In this context, the reliability of the proposed
methodology for identification should be examined thoroughly. However, herein only a
rough analysis of the quality and cost for the identification of each model parameter is
presented. A detailed discussion is outside the scope of this work which is mainly driven
by practical requirements from industry.

Whilst tribology is extensively discussed in undergraduate courses for mechanical en-
gineers, the point of view of the control engineer has only recently been introduced. Nu-
merous topics in control of drives with friction have been discussed systematically [5, 8].
A complete review of friction modeling has been presented recently [9] including a large

23
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number of literature references. From these texts it can be concluded that, basically,
friction models can be classified into kinetic friction models (KFM) and dynamic friction
models. The KFM describe friction force as a static relation between velocity and applied
external forces. They are based on the early experimental observations of Coulomb [34].
Nevertheless, the KFM provide only rough models of reality, where dynamic effects are
present. There are a large variety of approaches to including this memory associated with
friction phenomena. However, below it is proposed to concentrate discussion on the model
recently proposed by a group working at both Lund and Grenoble [27].

This chapter is organized as follows. First two widely used models are presented: the
kinetic friction model (KFM) in Section 3.1 and the Lund Grenoble (LuGre) model in
Section 3.2. Herein, the fundamental properties of each model are discussed. The two
models are compared in Section 3.3 with a singular perturbation analysis, investigating
their ability to predict the friction force of a simple drive. The results provide indications
that help in chosing the adequate model complexity for a given situation. The problem
of modeling complex mechanical systems with friction between parts in relative motion
still remains. The approach, which is briefly summarized in Appendix A, proposes a
rigorous methodology for establishing the differential–algebraic equations even for complex
mechanical systems. Finally, a methodology for model parameter identification, which is
based on four special experiments that are exciting only particular parts of the system, is
presented in Section 3.4.

3.1 Kinetic Friction Model (KFM)

In kinetic friction models (KFM) friction force F during motion is a function of velocity
q̇ only. Based on an experimental setup, proposed by the French scientist Amontons,
extended observations have been reported by de Coulomb [34]. Therein, the behavior of
a loaded slide on a flat surface for different constant pulling forces at various speeds was
measured. Because, for the setup analyzed, viscous friction was relatively small, it was
observed that kinetic friction is almost constant and opposite to the direction of motion.
This kinetic friction is called the Coulomb level and is denoted by Fc, see Figure 3.1.
Static friction, i.e. the friction force that is present when there is apparently no motion
of the slide on the plane, compensates applied force up to a certain level, known as the
break-away force Fs. The details concerning the relation of friction force as a function of
constant velocity have been discussed in Section 2.2 where one of the observations was
that Fc is not necessarily equal to Fs.

Firstly, a closed form mathematical description of the KFM is presented below which
is a mandatory introduction to all discussion following. After the model properties are
illustrated with simulation data showing the phenomenon of stick–slip motion. Finally,
the different aspects of simulation of drives with friction are reviewed.

3.1.1 Closed Form Mathematical Description

Although the KFM is used widely, a rigorous formulation of the model, including the be-
havior at zero velocity, is rarely provided in the numerous publications available currently.
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Figure 3.1: Kinetic friction model.

Consider therefore a simple drive, modeled as an inertia J with position q and control
input u

Jq̈ = u− FKFM(q̇, u)− Fg (3.1)

and the following adopted kinetic friction model

FKFM(q̇, u) = σ2q̇ + σ0g(q̇) signq̇ + (1− |signq̇|) sat(u− Fg, Fs) (3.2)

where

sat(x, M) =


M ,∀x > M

x , if −M ≤ x ≤M

−M ,∀x < −M

(3.3)

signq̇ =


+1 ,∀q̇ > 0

0 , if q̇ = 0

−1 ,∀q̇ < 0

(3.4)

σ0g(q̇) = Fse
−q̇2/v2

s + Fc

(
1− e−q̇2/v2

s

)
(3.5)

The behavior at zero velocity is described by the third term to the right-hand side of
(3.2) which is motivated by the approach of modeling variable structure systems [40]. The
meaning of the sign-function is switching between the three different models at negative,
zero and positive velocity. The concept is that friction force F is a function of velocity q̇
and applied force u.

Equation (3.5) is one of the parametric models, listed in Table 2.1, for the nonlinear
relationship between velocity and friction force. Although this model represents observed
behavior, no literature references have been found that would relate this particular (Gaus-
sian) shape to the physical phenomena of boundary and elastohydrodynamic lubrication.
Viscous friction at high speed is denoted by σ2q̇. The influence of gravity or amplifier off-
sets on the control variable is Fg, the characteristic velocity of Stribeck’s curve, is denoted
by vs.
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Figure 3.2: Properties of kinetic friction model.

3.1.2 Model Properties

An effective way to illustrate the properties of the KFM is to demonstrate its ability to
predict stick–slip motion. This phenomenon is a succession of periods of time, where
the system is apparently at rest (sticking), followed by intervals of motion (slipping).
For a brief overview of the properties of the KFM in general and of the stick–slip motion
phenomenon in particular, consider a simple drive with Coulomb friction only, i.e. Fs = Fc

and σ2 = 0, modeled by

ë = −e− kv ė + FKFM(1− ė, e + kv ė) (3.6)

with e = t−q. Time is denoted by t and the friction force FKFM(q̇, u) is specified by (3.2).
The definition of the position tracking error e = t− q corresponds to a constant velocity
reference, and the choice of the PD position controller u = e+kvė corresponds to common
practice. The present situation is comparable to the one previously considered [76] for the
study as to whether a periodic or a chaotic behavior results for the system states from a
periodic excitation signal.

The phase plane of certain trajectories, resulting from convenient parameters and
initial conditions, is shown in Figure 3.2. The domain of sticking is indicated explicitly, i.e.
the line segment in the phase plane where the system, for a period of time, is apparently
at rest (q̇ = 0) and the control action is insufficient to initiate motion (q̈ = 0). Inside
this region, the sat-function in the friction model (3.2) just compensates for the applied
control action; whilst outside the dotted area, control action is larger than the break-away
friction Fs. The two plots illustrate the behavior for the following situations: (i) in the
case of negative velocity feedback where kv > 0 it is obvious that the fixed point (1, 0)
of the system is reached asymptotically, and (ii) if positive velocity feedback is applied
(kv < 0) then an asymptotically stable limit cycle is reached.

A rigorous stability analysis [7] is outside the scope of this section. Nevertheless, cer-
tain essentials should be pointed out: The state of the system, namely x(t) = [e(t) ė(t)]T ,
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∀t > t0, exists and is uniquely defined for any initial condition x(t = t0). In addition, x(t)
is a continuous function of time. These mathematical topics of uniqueness and continuity
have been discussed more rigorously [84] and a proof of the above statements has been
presented based on the theory of differential inclusions [10].

The time derivative of the state ẋ for a transition from sticking to sliding is a contin-
uous function of the time as long as the controller u(x, t) is a continuous function of both
the state and time. However, it is obvious that the transitions from motion to sticking
are generally coupled with a discontinuity of the acceleration q̈. These two facts are very
important for the modeling of drives with flexible transmission elements where discon-
tinuous accelerations excite high frequency modes which would be negligible if all states
would evolve in a continuous manner.

The situation illustrated on the right-hand side in Figure 3.2 can also occur in the
general case if Fs > Fc; all other parameters kv, kp, etc. are assumed to be positive. The
problem of stick–slip motion, which is related to the appearance of the asymptotically
stable limit cycle, needs to be checked in detail as soon as

(
σ2 + kv + σ0

dg(q̇)
dq̇

)
< 0 within

a velocity interval around zero.

3.1.3 Simulation Aspects

A discussion of simulation aspects of drives with friction has been presented for several
model formulations [48]. In fact, a correct numerical solution of the initial value problem
is very difficult, and precision is often low at velocity reversals due to the discontinuities of
the KFM. Different solutions can be found in the literature: (i) if friction force is assumed
to be zero at rest, i.e. the last term in (3.2) is not considered, a description results which
is far from reality; (ii) if the sign-function is replaced by a saturated high gain acceleration
is possible already for small forces, which does not correspond to reality either; and (iii)
the most accurate simulation approach is the Karnopp model [58] that adapts the zero
velocity region of (3.2)–(3.4) for computer implementation

signq̇ =


+1 ,∀q̇ > m

0 , if q̇ ∈ [−m, m]

−1 ,∀q̇ < −m

(3.7)

where m is a small number, depending on the computing precision. The improvement in
the quality of computer simulation, achieved with the introduction of the dead zone (3.7),
results from a better detection of the periods of sticking by the numerical differential
equation solver.

3.2 Lund–Grenoble (LuGre) Model

The essential elements of the concepts presented in Chapter 2 are integrated in the friction
model that has been developed by researchers working at both Lund and Grenoble [27].
Whereas, herein it is one of the aims to establish a link between tribology and modeling
for control. The contributors to the LuGre model have indicated that they aimed simply
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Figure 3.3: Input–output phenomena, captured by the LuGre model.

to represent the input–output phenomena illustrated in Figure 3.3 and described in the
literature. The main elements are the following:

(i) An intuitive explanation of the friction phenomena is the bristle model [48]. The
physical paradigm underlying this model is a pair of facing surfaces with bristles
extending from each. The bristles on one surface are bonded with opposing bristles
from the other surface. The friction force contributed by each bristle is assumed
to be proportional to the strain on the bristle. When the strain on any particular
bristle exceeds a certain level then the bond is broken.

(ii) It has been observed experimentally [30, 89] that friction force is not only related to
relative velocity but is also a function of position. A typical position–friction force
hysteresis loop is shown in Figure 3.3b. This position dependence can be described
by the hysteresis model proposed by Dahl [32]. Later, Dahl’s model has been subject
to a thorough mathematical analysis [16].

(iii) Certain time dependent phenomena for unidirectional motion have been discussed
previously [82]. The postulation is that a fading memory effect is appended to
the instantaneous influence of time varying relative velocities. The corresponding
phenomena have been observed experimentally [51] for triangular velocity profiles.

(iv) In order to increase the simulation performance achieved with the ‘reset integrator
model’, it has been proposed [48] to add some viscous friction, that is active for
small displacements only. This particular viscous term has not only been added
for convenience of simulation, but also to include physical realism: the oscillations
occuring after entering into a ‘sticking’ mode vanish owing to energy dissipation
into the surrounding material.
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Firstly, this section presents a brief description of the LuGre model. The main model
properties are analyzed in a second step. Simulation of the LuGre model is in general
straightforward. Nevertheless, it is observed that certain phenomena that are not captured
by the LuGre model remain.

3.2.1 Brief Description

Consider the dynamic model [27] for a simple drive with friction, describing a rotational
inertia J with angular coordinate q and control input u

Jq̈ = u− FLuGre(q̇, z)− Fg (3.8)

FLuGre(q̇, z) = σ0z + σ1

(
q̇ − |q̇|

g(q̇)
z

)
︸ ︷︷ ︸

σ1ż

+ σ2q̇ (3.9)

ż = q̇ − |q̇|
g(q̇)

z (3.10)

where g(q̇) is specified by the Gaussian model (3.5). The friction interface between two
surfaces is considered as a contact between bristles, and the variable z denotes an addi-
tionally introduced state that models the average deflection of these bristles. The bending
of the bristles generates the friction force σ0z + σ1ż where σ0 and σ1 represent material
stiffness and damping coefficients.

Note that the analogy between the contact of bristles and the junctions formed between
some asperities of two rough surfaces is only used for a better understanding of the friction
phenomena. In addition, it is emphasized that the two extensions with respect to Dahl’s
model [32] are the following: (i) the introduction of the nonlinear relation σ0 g(q̇) between
steady-state velocity and friction force, and (ii) the modeling of viscous damping at small
displacements by the term σ1ż.

3.2.2 Model Properties

The first property of the LuGre model that is checked is the existence of a solution to the
initial value problem. For this, it is convenient to reformulate the model (3.5), (3.8)–(3.10)
for a simple drive in a state space form

ẋ =


q̇

1

J

(
−σ0z − σ1

(
q̇ − |q̇|

g(q̇)
z

)
− σ2q̇ − Fg

)

q̇ − |q̇|
g(q̇)

z


︸ ︷︷ ︸

= f(x)

+


0

u(x, t)

J

0


︸ ︷︷ ︸
= γ(x, t)

(3.11)

where the state of the system is denoted by x =
[

q q̇ z

]T

.
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Fact 3.1 Assume control action u(x, t) is bounded and continuous in the state x and the
time t, then at least one continuous solution x(t) ∈ 1(t), t ∈ [t0, t1] exists that solves the
initial value problem for the system (3.11) with initial state x(t0) = x0.

Proof. The right-hand side of (3.11) is continuous and bounded. The postulate results
from the existence theory for nonlinear ordinary differential equations (ODE), summarized
recently [71]. Although t1 > t0, control actions u(x, t) exist such that certain states escape
to infinity in finite time tcrit. In this situation t1 < tcrit.

Owing to Fact 3.1, standard ODE-solvers can be used to find a solution x(t) verifying
(3.11) and the initial condition x(t0) = x0. Nevertheless, note that dynamic step size
Runge–Kutta algorithms are very slow when the velocity q̇ is large due to the model’s
stiffness. This property is used in Section 3.3 for model order reduction with a singular
perturbation approach.

Whilst proof of the existence of a solution to the initial value problem is trivial, it
seems to be cumbersome to show also the uniqueness of this solution. In fact, the model
cannot be linearized around zero velocity q̇ = 0, and furthermore the Lipschitz condition

‖f(x2) + γ(x2, t)− f(x1)− γ(x1, t)‖ ≤ L ‖x2 − x1‖ (3.12)

is not verified globally. The Lipschitz constant L is in fact dependent on the domain
of velocities considered and increases for large velocities. Therefore, it is hard to prove
uniqueness of x(t) globally. Nevertheless, the system (3.11) conforms [24] with Lipschitz
locally (if u(x, t) is Lipschitz) and therefore, the uniqueness of x(t) is guaranteed locally,
which is sufficient for the purpose of the analysis presented below.

A second fact required for the synthesis of standard and advanced control of drives
with friction, discussed in the following chapters, is the property that the friction state is
bounded.

Fact 3.2 The set = {z : |z| ≤ sup g(·)} is an invariant set of the friction state z.

Proof. see [27]

Furthermore, note that the initial friction state satisfies z(t0) ∈ because when two
sliding surfaces touch, the junction deformation is zero, i.e. z(ttouch) = 0.

Additional elements for controller synthesis are related to statements on passivity of
maps between signals. The objective is to apply a modular design to a group of interacting
elements with the subsystems presenting all adequate properties. The corresponding
theory for interconnection of subsystems that are all dissipating energy [35, 103] enables
the analysis of the global properties even for very large systems.

Fact 3.3 The mapping q̇ 7→ z is passive.

Proof. see [27]

Furthermore, this property of passivity is employed [27] for the synthesis of a nonlinear
controller consisting of an acceleration feedforward, a PD error control and a friction
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Figure 3.4: System passivity.

observer based input–output linearization. Therein, it is shown for the nominal parameter
case that the friction estimation error, as well as the position error, decay asymptotically
towards zero for any twice differentiable reference trajectory. The drawbacks of this
approach are the two limitations: (i) velocity measurement is assumed, and (ii) the proof
is valid only for the nominal parameter case. In addition, stability with integral action in
the error controller is not shown.

Intuitively, friction is an energy dissipating phenomenon. Therefore, it is expected that
the map ũ 7→ q̇ from applied force to velocity is passive; this is of course only possible
after removing the offset Fg from the control variable by ũ = u− Fg. Unfortunately, the
LuGre model does not accord with this intuitive reasoning: the problem arises from the
σ1ż term that was originally added in order to increase damping for small displacements.
Therefore, in order to be passive, a drive with friction has to verify a minimal viscous
gain condition.

Fact 3.4 Any ‘finite energy’ force input ũ ∈ 2 results in a ‘finite energy’ velocity output
q̇ ∈ 2, if

σ2 + kv > σ1
sup g(·)− inf g(·)

inf g(·) + ε (3.13)

where ε > 0.

Proof. Consider the block diagram shown in Figure 3.4. Because the map e1 7→ q̇ is
strictly passive, the postulation results from the passivity theorem [35] in the case that
the map q̇ 7→ y is passive. This is shown by considering the storage function S2 = 1

2
σ0z

2.
Its time derivative is

Ṡ2 = σ0z

(
q̇ − |q̇|

g(q̇)
z

)

The mapping q̇ 7→ y is passive if Ṡ2 ≤ q̇y. In fact, the supply rate q̇y is

q̇y =

(
(kv + σ2 − ε) q̇2 − σ1

|q̇|
g(q̇)

zq̇ + σ1q̇
2

)
+ σ0q̇z
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where it is emphazized that the term

−σ1
|q̇|

g(q̇)
zq̇ + σ1q̇

2 = σ1

(
1− z

g(q̇)
signq̇

)
q̇2

is problematic because it is negative during periods of time where |z| > g(q̇) and
signz = signq̇. The solution for obtaining at least a passive mapping q̇ 7→ y is to re-
quire a ‘sufficiently’ large viscous damping σ2 + kv in the condition (3.13) of Fact 3.4.
Finally, the passivity theorem proves the postulation since

Ṡ2 = q̇y − (kv + σ2 + σ1 − ε) q̇2 + σ1
|q̇|

g(q̇)
zq̇ − σ0

|q̇|
g(q̇)

z2

Fact 3.2≤ q̇y −
(
kv + σ2 − ε− σ1

sup g(·)− inf g(·)
inf g(·)

)
q̇2 − σ0

|q̇|
g(q̇)

z2

≤ q̇y

For the case where estimated velocity v̂(t) = 1
Tf

(q− ∫ t
t0

v̂(τ) dτ) is used for feedback, it

must be emphasized that it is not possible to use the approach of Fact 3.4 to prove that
the velocity signal is q̇ ∈ 2. This is because the transfer function of the linear part of
the system becomes

Tfs + 1

JTfs2 + (J − εTf )s + (kv − ε)

which is not SPR for any ε > 0.

Fact 3.5 The mapping ũ 7→ q̇ with feedback of measured velocity according to
ũ = u− Fg + kv q̇ is strictly output passive if

σ2 + kv > σ1
sup g(·)− inf g(·)

inf g(·) (3.14)

Proof. When the considerations of the proof of Fact 3.4 are combined

ũq̇ = (e1 + y) q̇

ũq̇ ≥ q̇ (Jq̈ + εq̇) + σ0z

(
q̇ +

|q̇|
g(q̇)

z

)
+

(
kv + σ2 − ε− σ1

sup g(·)− inf g(·)
inf g(·)

)
q̇2

ũq̇ ≥ Jq̇q̈︸︷︷︸
= Ṡ1

+ σ0z

(
q̇ +

|q̇|
g(q̇)

z

)
︸ ︷︷ ︸

= Ṡ2

+

(
kv + σ2 − σ1

sup g(·)− inf g(·)
inf g(·)

)
︸ ︷︷ ︸

=: α

q̇2

where S1 = 1
2
Jq̇2 > 0 and S2 = 1

2
σ0z

2 > 0. Therefore

〈ũ|q̇〉T ≥ α ‖q̇‖2T
with α > 0 if the condition (3.14) holds.
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Figure 3.5: Limitations of the LuGre model.

3.2.3 Limitations

Although almost all phenomena observed for drives with friction are reproduced by the
LuGre friction model, there exists, however, a minor difference for small displacements
between the actual friction force and the predicted friction force. The phenomenon is
illustrated in Figure 3.5 by a comparison of experimental data from a vertical electro-
discharge machining axis and simulation data resulting from a convenient choice of the
model parameters. This phenomenon has already been reported in the late seventies [72].
However, the experimental technology and alternative approaches to modeling are still
the subject of research [54]. The observation is that every point of velocity reversal will
be recovered in the parametric position–friction force plot, once the force resumes the cor-
responding value (no matter how many reversals happen previously). This phenomenon
is called the reversal point memory and can be modeled, by the Preisach model for hys-
teresis [97] for example. The simulation data shown in Figure 3.5 for the LuGre model
clearly illustrates the fact that the LuGre model is not able to predict the reversal point
memory that is observed experimentally.

The modeling of this special type of frictional memory has been addressed in parallel by
two research groups [42, 53]. The resulting models represent well the observed phenomena,
but owing to their implementation of the reversal point memory there is only a small
chance of doing conventional nonlinear controller synthesis like that presented for the
LuGre model in the following chapters.

3.3 Comparison of the Two Friction Models

Clearly, the two friction models introduced in Sections 3.1–3.2 differ in complexity. For
the synthesis of a controller satisfying the specifications of a given application, a model
is required that represents dominant phenomena, but is not too complex. A singular
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perturbation approach is applied in this section in order to compare the two friction
models: an explicit separation of dynamics is presented in a first step in order to analyze
in the following step the ability to predict friction force for some particular velocity profiles,
namely unidirectional motion and velocity reversals at constant acceleration.

3.3.1 Small Parameter: Characteristic Space Constant

In order to transform the LuGre model (3.5), (3.8)–(3.10) into a standard singular per-
turbation form, set

xs =
Fs

σ0

= εx̄s = O(ε) (3.15)

where x̄s = O(1). Note that the dimension of xs is a displacement. The parameter xs is
called the characteristic space constant/displacement of the drive [4] and it is shown that
xs is constant even for varying normal forces N (unlike Fs, Fc and σ0 which are nearly
proportional to N , see Section 6.2.3). For simplicity, assume below that O(Fs) = O(Fc),
which is motivated by practice because this should be one of the major specifications for
lubricant selection. Furthermore, set

ζ =
z

ε
(3.16)

ḡ(q̇) =
g(q̇)

ε
(3.17)

which transforms the model (3.8)–(3.10) for a simple drive into

Jq̈ = u−
(
σ0εζ + σ1q̇ − σ1

|q̇|
ḡ(q̇)

ζ + σ2q̇

)
− Fg (3.18)

εζ̇ = q̇ − |q̇|
ḡ(q̇)

ζ (3.19)

The reduced order model for this system is given for ε = 0. Relation (3.19) reduces to
an algebraic equation that is solved for ζ. For zero velocity the variable ζ̄ of the reduced
order system could theoretically take any value, but since the objective here is to establish
a relationship to the reduced order KFM (3.1)–(3.5), set

ζ̄ =


ḡ(q̇) signq̇ , ∀q̇ 6= 0

sat
(

u− Fg

σ̄0

, ḡ(0)
)

, q̇ = 0
(3.20)

3.3.2 Explicit Separation of Dynamics

Denoting the deviation from the unperturbed model by η = ζ − ζ̄ and introducing the
KFM (3.2) into Equation (3.18) leads after algebraic manipulations to

Jq̈ = u−

FKFM −

εη

(
σ1
|q̇|

g(q̇)
− σ0

)
+

σ1

σ0

|q̇|
g(q̇)

(1− |signq̇|)︸ ︷︷ ︸
= 0, ∀q̇

sat(u− Fg, Fs)



− Fg

(3.21)



3.3. COMPARISON OF THE TWO FRICTION MODELS 35

Because the last term of (3.21) is always zero, the reduced order dynamics

Jq̈ = u− FKFM − Fg are only subject to the perturbation εη
(
σ1
|q̇|

g(q̇)
− σ0

)
. The pertur-

bation dynamics can be deduced from η = ζ − ζ̄, (3.19) and (3.20), leading to

ζ̇ = − |q̇|
g(q̇)

η

where it should be noted that it is not possible to write the perturbation dynamics with
the variable η only because η̇ is not defined for zero velocity q̇ = 0.

Now it is possible to express the model with a clear separation of the reduced order
model and its perturbation p

Jq̈ = u− (FKFM − p)− Fg (3.22)

p = ε (ζ − ζ̄)

(
σ1
|q̇|

g(q̇)
− σ0

)
(3.23)

εζ̇ = − |q̇|
ḡ(q̇)︸ ︷︷ ︸
≤ 0

(ζ − ζ̄) (3.24)

From Equations (3.22)–(3.24) it follows that the KFM is a reduced order form of the
LuGre model, while p plays the role of the ‘difference’ between the LuGre model and
the KFM. Unfortunately, a relationship between these two models using Tikhonov’s theo-
rem [60] is not possible because: (i) the LuGre model is not differentiable; (ii) the solution
ζ̄ (3.20) to the algebraic equation when setting ε = 0 in (3.24) is discontinuous, and (iii)
the fast subsystem (3.24) in the LuGre model is not exponentially stable, uniformly in q̇
and for all q̇.

3.3.3 Friction Force Prediction: Unidirectional Motion

Here, the two friction models KFM and LuGre are compared with a detailed discussion
of the ‘fast’ subsystem (3.23)–(3.24). Therefore, the two models are analyzed for their
difference p in predicted friction force resulting from a given (differentiable) velocity sig-
nal q̇, i.e. consider the map q̇ 7→ p. Because in general, standard Tikhonov’s theorem
cannot be used to relate the LuGre model to the KFM, only discussion of particular cases
is provided here, which has proved to be useful in comparing between the two models.

Tikhonov’s theorem can sometimes be applied locally in the regime of nonzero veloc-
ities without velocity reversals. Assume t ∈ [t0, T ] and: (i) motion is unidirectional, i.e.
signq̇(t) ≡ constant; (ii) velocity is bounded, i.e. ∃ vmax = max |q̇(t)| <∞; and (iii) ve-
locity is never zero, i.e. ∃ vmin = min |q̇(t)| > 0. Under these assumptions, the ‘fast’
subsystem (3.23)–(3.24) can be expressed in a proper singular perturbation format

p = ε η

(
σ1
|q̇|

g(q̇)
− σ0

)
(3.25)

εη̇ = − |q̇|
ḡ(q̇)︸ ︷︷ ︸
≤ 0

η − ε
dḡ

dq̇
q̈ (3.26)
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Furthermore, analyze the Lyapunov function candidate

V =
1

2
η2 (3.27)

and its derivative through the solution of the system (3.25)–(3.26) which is

V̇ = − |q̇|
εḡ(q̇)

η2 − η
dḡ

dq̇
q̈ (3.28)

There are two different cases: (i) the perturbation p decays exponentially to zero if the
second term−η dḡ

dq̇
q̈ in (3.28) is zero, and (ii) the perturbation p approaches asymptotically

some boundary layer if the term dḡ
dq̇

q̈ is bounded, i.e.

M = max

∣∣∣∣∣dḡ

dq̇
q̈

∣∣∣∣∣ <∞ (3.29)

Exponential stability is achieved if Fc = Fs i.e. dḡ
dq̇

= 0, or if q̈ = 0, i.e. at constant
velocity q̇. The derivative of the Lyapunov function satisfies under these conditions

V̇ ≤ −αη2 (3.30)

with

α = min
|q̇|

εḡ(q̇)
=

vmin

xs max
{
1, Fc

Fs

} (3.31)

therefore
|η(t)| ≤ |η0| e−αt (3.32)

the triangular inequality |a + b| ≤ |a|+ |b| in combination with (3.25) and (3.32) leads to

|p| ≤ ε

σ0 + σ1
vmax

xs min
{
1, Fc

Fs

}
 |η0| e−αt (3.33)

In other words, the perturbation p decays exponentially with a time constant Tp = 1
α

that
depends on the smallest velocity vmin and the characteristic space constant xs. Owing to
the fact that xs is O(ε) it also follows that Tp is O(ε). It should be emphasized that the
speed of convergence of the predicted friction force by the KFM towards the prediction
of the LuGre model is strongly related to the characteristic space constant xs according
to (3.31). Note that here Tikhonov’s theorem applies locally because the ‘fast’ subsystem
(3.25)–(3.26) is exponentially stable.

An asymptotically stable boundary layer is reached in the general case where
Fc 6= Fs and q̈ 6= 0. The perturbation p decays asymptotically towards the boundary
layer specified by

lim
t→∞ |p(t)| ≤ ε2

σ0 + σ1
vmax

xs min
{
1, Fc

Fs

}
 M max ḡ(q̇)

vmin

(3.34)

because

V̇ < 0 ∀ |η| > M

vmin

ε max ḡ(q̇) (3.35)
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Figure 3.6: Dynamic friction force lags KFM (simulation data).

Discussion. The second term in (3.26), i.e. −εdḡ
dq̇

q̈ is related to the dynamics observed

experimentally [51], and illustrated in Figure 3.6 with simulation data. The observed
phenomenon is a dynamic loop that friction force exhibits at ‘slow’ velocities: the fact
that the friction force lags the time varying velocity signal is a property that is not
accounted for by the KFM (dashed line). The LuGre friction model was designed in order
to represent the experimentally observed dynamic properties. The simulation results [27]
show only the qualitative behavior of the model. The singular perturbation analysis from
this section, however, explains the mechanism responsible for the hysteresis behavior.
The difference between the KFM and the LuGre model that is expressed in Equation
(3.22) by the perturbation p, is large for small velocities where dḡ

dq̇
is large, i.e. around

the characteristic velocity vs of the velocity–friction force relationship. In addition,
from (3.34) the magnitude of p increases with increasing accelerations, i.e. increasing
frequencies of the velocity signal q̇. This fact is in accordance with the experimental
observations [51] and with the simulation results [27].

For q̇ À vs, the value of dḡ
dq̇

is very small. The value of M is therefore small which
implies a small boundary layer. The KFM might therefore be an adequate representation
of reality for applications where velocity is always high. For the situation illustrated in
Figure 3.6, this is the case during periods where the velocity q̇ > 2 rad

s
. Here the LuGre

and the KFM predict approximately the same friction force. Nevertheless, it should be
emphasized that asymptotic stability of p cannot be shown.

3.3.4 Friction Force Prediction: Zero velocity transition at con-
stant acceleration

Zero velocity transitions are encountered in a large number of applications, since the
operating range of a given setup is generally bounded and sooner or later, the initial
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position will be recovered. In addition, performances show already that zero velocity
transitions are related to very difficult problems for analysis and controller synthesis owing
to the highly nonlinear system behavior. Therefore, consider for simplicity a transition
through zero velocity at t = 0 with constant acceleration a, since a general analysis has
proved to be quite cumbersome. Thus the velocity is

q̇ = at,∀t ≥ 0 (3.36)

In practice, this behavior can be achieved by an appropriate control. In addition assume
that Fs = Fc, and the fast dynamics (3.24) reduce to

ε ζ̇ = −a t ε σ0

Fs

(
ζ − ζ̄

)
(3.37)

where ζ̄ = Fs
εσ0

signq̇. Without loss of generality assume that ζ̄ = Fs
εσ0

, ∀t > 0. The general
solution for (3.37) is

ζ(t) =
Fs

ε σ0

+ C e
−
a t2 σ0

2 Fs ,∀t > 0 (3.38)

where C is an integration constant, dependent on the initial conditions. Because the
system has moved previously over a long distance, assume that the system (3.37) is
initially at rest, i.e. limt→0−(ζ − ζ̄) = 0. Owing to the continuity of the solutions to
Equation (3.37), the initial condition for (3.38) is limt→0+ ζ(t) = − Fs

εσ0
, which implies that

the integration constant C = −2 Fs
εσ0

. The model perturbation p is evaluated from the
combination of (3.23) and (3.38) for t > 0

p = 2 Fs e
−
a t2

2xs

(
1− σ1

Fs

a t
)

(3.39)

which implies

lim
t→0+

ṗ(t) = −2 σ1 a (3.40)

These theoretical results are illustrated with experimental data in Figure 3.7. The
KFM perturbation p is estimated based on Equation (3.22) and an appropriate choice
of KFM parameters. The qualitative behavior of the estimated KFM perturbation is in
accordance with Equation (3.39). In addition, Relation (3.40) is validated: the slope of p
just after the zero velocity transition depends linearly on the acceleration.

Quantitative validation of the result (3.39) can be achieved by matching the theoretical
curve for p with the experimental data shown in Figure 3.7. The estimation for the
parameters Fs and σ0, based on this experiment, is of the same order of magnitude as the
results obtained with the identification method proposed in Section 3.4.

The main conclusions that can be deduced from Equation (3.39) are: (i) the am-
plitude p(0+) of the KFM perturbation depends on the system parameter Fs only, i.e.
p(0+) = 2Fs; and (ii) the duration is influenced by both the systems parameters (xs, Fs, σ1)
and by the acceleration a.
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Figure 3.7: Zero velocity transition at constant acceleration.

3.3.5 Discussion of Model Complexity Required

This section presents a singular perturbation analysis of two friction models. The re-
lationship established between the KFM and the LuGre model shows that model order
reduction with standard singular perturbation methods is possible only for large velocities
without velocity reversals. For the particular case of zero velocity transitions at constant
acceleration, an analytical expression of the difference between the KFM and the LuGre
model is presented. It is concluded that the amplitude of this difference equals twice the
friction level Fs while duration depends both on system parameters and acceleration.

These rather theoretical results actually mean the following: in order to predict friction
for a crane used for loading containers in a harbor, the KFM is sufficient since the required
precision is several times larger than the characteristic space constant. On the other hand,
the positioning of a machine-tool axis requires the consideration of the LuGre model since
specified precision is often smaller than the characteristic space constant.

3.4 Model Parameter Identification

Classical identification methods do not apply directly to the determination of the friction
model parameters for a given setup, since friction is a nonlinear phenomenon. Therefore,
a special approach to parameter estimation is necessary [3, 4, 62]. This section includes
the description of a methodology that allows identification of all the parameters of the
LuGre friction model. For experimental data related to the concepts presented in this
section, refer to Section 6.3.3.

As illustrated in Figure 3.8, it is observed that various particular experiments can be
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Figure 3.8: Illustration of particular regimes used for identification.

used for parametric identification: (i) the steady-state characteristics of friction force as
a function of velocity (Section 3.4.1), (ii) the analysis of the system’s dynamics between
applied force and measured velocity (or position) at high speeds (Section 3.4.2), (iii) the
quasi-linear domain of the presliding regime (Section 3.4.3), and (iv) the position–force
relation, called Dahl’s curve (Section 3.4.4). A comparison of the usefulness of these
approaches is made in Section 3.4.5 where both identification quality and time necessary
to obtain the data are considered.

Note: Direct nonlinear estimation schemes based on only one, sufficiently rich experi-
ment, have failed to provide an acceptable parameter estimation.

3.4.1 Steady-State Velocity–Friction Force Characteristics

Define the steady-state by ż = 0 and q̈ = 0. The zero acceleration implies that motion is
unidirectional, i.e. signq̇ = constant. Then the model (3.5), (3.8) and (3.10) reduces to
the static relation

u = Fg + σ2 q̇ +
(
Fc + (Fs − Fc) e−(q̇/vs)

2
)

signq̇ (3.41)

Note that this relation is nonlinear in the variable q̇ as well as in the parameters Fs,
Fc, and vs. Therefore, a classical least-squares algorithm does not apply. Nevertheless,
by means of nonlinear optimization techniques, certain cost function (e.g. the Euclidian
norm of the prediction error vector) can be minimized.

In order to measure one point of the steady-state velocity–friction force characteristics,
the velocity of the system has to be kept constant for a considerable time. Since the system
is characterized by low damping and perturbations are present, this is only possible by
means of some stabilizing control (e.g. PID). In order to obtain reproducible results in
the presence of inevitable perturbations, the same path should be followed. Therefore, it
is proposed to use a triangular reference position trajectory of fixed amplitude but with
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various frequencies in order to obtain information for various velocities. Furthermore,
results can depend on the way the points on the static characteristics are stepped through.
Various speeds are therefore selected arbitrarily, which allows transformation of systematic
perturbations (e.g. temperature influences) into noise (random signals) in the measured
velocity–torque relation.

By means of the fminu-function of the Optimization Toolbox of MATLABTM, parameters
can be fitted in order to minimize the mean quadratic prediction error. A comparison
of identification results is illustrated in Figure 3.10 at the end of this section. It is easy
to estimate parameters Fc, Fg and σ2 using the steady-state characteristics. In addition,
medium quality information about Fs and vs is available.

3.4.2 High Speeds without Velocity Reversal

Parameter identification within the high speed regime is straightforward and therefore
widely used. However, unmodeled process dynamics increase the uncertainty related to the
estimated parameter values. Thus, the following description is included for completeness
only. This is because the proposed identification methodology is more sensitive to these
perturbations than the other approaches presented herein.

If velocity q̇ remains constant, the internal friction state z reaches its steady-state
value zss = g(q̇) signq̇. Moreover, for high speeds characterized by q̇ À vs, the friction
force is given by

F = Fc signq̇ + σ2 q̇ (3.42)

By substituting z = zss and ż = 0 in (3.8), the differential equation valid for this regime
is

J q̈ + σ2 q̇ = −Fg − Fc signq̇ + u (3.43)

Note that this system becomes linear in the deviation variable ũ = u− Fc signq̇ − Fg. In
fact, the transfer function from ũ to q is given by

Q(s)

Ũ(s)
=

1

σ2

s
(
1 + s

J

σ2

) (3.44)

Investigation of the system dynamics at high speeds must be done in a closed-loop.
The experimental setup is then protected against moving outside its working range. The
drawback is that the application of standard open-loop identification techniques is strongly
limited. Nevertheless, the theory for frequency response acquisition is well developed even
for closed-loop system identification [46, 63].

Measurement and process noise can be eliminated from the experimental frequency
response by the intercorrelation method. Suppose, as in Figure 3.9, that the system is
stabilized in a discrete time closed-loop configuration around a setpoint q̇r with sampling
period h. Then an excitation signal s(kh), for example a pseudo random binary noise
(PRBS), can be added to the reference or control variable u(kh). Process output is per-
turbed by w(kh) so that the actual measured signal is q̇(kh). Under a standard hypothesis
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Figure 3.9: Acquisition in closed-loop.

that the signals s(kh) and w(kh) are uncorrelated, the process Fourier transform is given
by

G(ejωh) =
[ S∗(ωh)Q(ωh) ]

[ S∗(ωh)U(ωh) ]
(3.45)

where U(ωh) and Q(ωh) are the discrete Fourier-transforms of u(kh) and q(kh), respec-
tively, while S∗(ωh) denotes the complex conjugate of S(ωh). [ · ] gives the expectation
of its argument. Note that the evaluation of the Fourier transforms for experimental
data requires the multiplication of the signals by, for example a Han-window, to eliminate
boundary effects.

The hypothesis that s(kh) and w(kh) are uncorrelated is verified for a large class of
perturbations, for example noise in analog lines. It can be shown that, for quantization
noise introduced by the analog-to-digital converter, results are reasonable so long as the
signal range is 10 times greater than the quantization step.

In general, identification methodologies for linear systems take into account unmod-
eled process dynamics resulting for example from flexible transmission elements, by ap-
propriate signal filtering. However, no approaches have been found that would reject
the influence of nonlinear model perturbations. Unfortunately, considerable position de-
pendent perturbations are often present in standard drives. These perturbations are the
torque resulting from variable reluctance, or the influence of geometric machining er-
rors of the elements in relative motion. Hence the noise signal w(kh) is dependent on
u(kh) and therefore also on s(kh). This implies that its influence cannot be eliminated
by the intercorrelation method. Thus the high velocity experiment provides little, poor
and costly information for parameters. Fortunately, identification based on data from the
high velocity regime is obsolete since it is possible, with data from the presliding and the
steady-state characteristics experiment, to estimate the inertia J and the viscuous friction
coefficient σ2, respectively. This fact is illustrated in Figure 3.10 by a comparision of the
identification results.

3.4.3 Small Displacements (Presliding)

The presliding regime is specified by small junction deformation where the internal friction
state |z| ¿ g(q̇). Equation (3.10) reduces to ż = q̇ which after integration leads to
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z = q+q0, where q0 is an integration constant related to displacement for relaxed junctions.
The system dynamics within small displacements are described therefore by

Jq̈ + (σ1 + σ2) q̇ + σ0 (q + q0) = u− Fg (3.46)

Note that this system, written in the deviation variables q̃ = q + q0 and ũ = u − Fg, is
linear. The transfer function is given by

Q̃(s)

Ũ(s)
=

1

σ0

J

σ0

s2 +
σ1 + σ2

σ0

s + 1
(3.47)

The main problem with the presliding regime analysis arises from the correct initial-
ization of the internal state variable z. This variable is related to the mean junction
deformation and z = 0 corresponds to an absence of stress. It is presumed that this
steady-state can be attained by compensating with a constant value u(t) = u0 gravity or
other offset terms identified from previously acquired steady-state characteristics. After-
wards, the system is excited, and kept in the presliding regime, by the use of torque signals
of amplitude much lower than the break-away torque. Therefore, with the proposed ex-
citation signal u(t) = u0 + uδ(t), where |uδ(t)| < 0.1 min{Fc, Fs}, open-loop experiments
become possible. Obviously, moving into and keeping the system within the region around
z ≈ 0 is a very critical point. Presently, however, there are no alternative methods to
achieve this objective than those proposed above.

Since acquisition of experimental data for the presliding regime is achieved in an
open-loop, standard identification methods apply. The identification of a parametric
model is the optimal selection of a model from a specified model set by minimizing a
given performance index. If the identification procedure converges to the global minimum
of the cost function, the resulting model provides the best real system representation
within the given model set, and for the data supplied. This remark gives rise to two well-
known issues: (i) the model validation step becomes mandatory, and (ii) different model
structures should be investigated [63]. A general linear model structure can be defined as

A(q−1) q(kh) =
B(q−1)

F (q−1)
u(kh) +

C(q−1)

D(q−1)
w(kh) (3.48)

where q−1 denotes the backward shift operator. In this chapter, only two model structures
are considered: (i) the ARX-model, where C = D = F = 1 in (3.48), and (ii) the Box–
Jenkins (BJ) structure, where A = 1.

First consider the identification of the BJ structure. It is a nonlinear optimization
problem that can be solved, for example using the Identification Toolbox of MATLABTM.
The outcome of the BJ approach gives very satisfactory results, both for the parameter
values and for the variances resulting from the use of different data supplied. Note that it
is not even necessary to evaluate deviation variables ũ and q̃ for a given data set because

constant perturbations can be integrated in the error model C(q−1)
D(q−1)

w(kh).

Next, the iterative Instrumental Variable (IV) method [101] and the standard least-
squares algorithm (LS) are discussed. Noted that the offset term in (3.46) must be removed
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by introducing the deviation variables ũ and q̃ before the ARX-model based methods (LS,
IV) are applied. Unfortunately, the LS-method is a biased estimator for the parameters of
an ARX-model if noise w(kh) is present. It has been observed experimentally [3] that the
viscous friction parameter σ1 +σ2 is particularly sensitive to measurement noise. Clearly,
the best results are obtained using BJ and IV methods. The choice between these two is
context dependent. Note that no theoretical considerations have been found addressing
convergence, neither of the nonlinear BJ nor of the iterative IV algorithm. Furthermore,
experience has shown that in general, for systems with considerable nonlinearities, meth-
ods based on linearization and on PRBS excitation lead to only medium estimation results
for the static gain of the system ( 1

σ0
in the case of presliding).

3.4.4 Dahl’s Curve

Dahl’s curve, shown in Figure 3.8, is a position–force plot acquired for very low velocities.
It illustrates the fact that friction acts like a filter, where time scale is replaced by space [16,
17]. Dahl’s curve can be used for parameter identification by means of linear methods
under the assumption that velocity is constant and small, resulting in q̈ ≈ 0 and g(q̇) = Fs

σ0
.

Then the model (3.5), (3.8) and (3.10) reduces to
ż = q̇ − σ0

|q̇|
Fs

z

u = σ0z + Fg

(3.49)

Introducing the approximation

ẋ ≈ x(kh + αh)− x(kh− αh)

2αh
=

∆x(kh)

2αh
(3.50)

where α is an identification parameter and Relation (3.50) transforms (3.49) into the
difference equation

∆u(kh) = σ0 ∆q(kh)− σ0

Fs

|∆q(kh)|u(kh) +
σ0 Fg

Fs

|∆q(kh)| (3.51)

Since the discrete model (3.51) has the form of an auto-regressive system with linear
dependence on parameters, the least-squares or the instrumental variable method can be
applied. This approach does not guarantee unbiased results because acquisition is possible
in closed-loop only (at least PID position control is required). Nevertheless, it is observed
experimentally that results for the parameter σ0 fit better measured characteristics than
the estimation of σ0 based on the small displacements experiment.

3.4.5 Discussion of Model Parameter Identification

An identification methodology to estimate the parameters of the LuGre friction model
has been proposed above. The key concept is the use of model properties to identify a
reduced number of parameters in the convenient context of linear dynamic systems. This
approach allows application of standard identification techniques.

The results, based on different experiments, are illustrated in Figure 3.10. The follow-
ing identification procedure is proposed:
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Figure 3.10: Comparison of identification results based on different experiments.

1. Steady-state characteristics: good results for Fc, Fg and σ2

− High velocity: quality insufficient

2. Presliding: good results for J and σ1 + σ2

3. Dahl’s curve: good results for Fs, Fg and σ0

Note that it is very difficult to estimate the characteristic velocity vs of the velocity–
friction force relationship. To achieve enough data points at low velocity to estimate Fs

and vs, long experimentation (10–100 hours) is mandatory. In addition, it is observed
that uncertainty attached to the contribution of gravity and offset terms remains. This
is mainly caused by the presence of position dependent perturbations, occasioned by
electromagnetic effects or surface irregularities. The relevance of this observation is that
both estimations for Fg and σ0 are influenced by the position at which the identification
experiments are carried out.

3.5 Integrated Friction Modeling: A Summary

Integrated friction modeling, as discussed in this chapter, was originally based on input–
output observations. Nevertheless, several relations exist with the physical phenomena
presented in Chapter 2.

The most important element is the normalization of the KFM by the introduction of
the dynamics that are mainly characterized by the two parameters σ0 and Fs. In a first
step, this normalization serves to improve the ability of the model to represent observed
phenomena. Furthermore, for dynamic friction models, it is always possible to establish
a causal relation between relative velocity and friction force.

The next observation that results from the comparison of the two friction models,
is the importance of the material damping, characterized by the parameter σ1. This
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contribution to the friction force, that was originally introduced for purely numerical
reasons, has shown to be well related to physical phenomena and the following chapters
show its importance in the synthesis of a stable control loop.

Finally, a complete model parameter identification methodology is proposed which is
essential for the practical application of the topics discussed herein.



Chapter 4

Synthesis of PID Controllers

Objectives

• Studying common control approaches

• Motivating and analyzing widely used PI velocity control

• Motivating and analyzing widely used PID position control

CLASSICAL controller synthesis consists of a robust perturbation rejection, imple-
mented, in common practice, with a proportional–integral–derivative (PID) control.

This approach is widely used in industry because such a simple and reliable solution is
preferred to complex methodologies, presenting the risk of machine damage in case of
failure. In order to guarantee reliability, strong stability conditions, explicit in terms of
the system parameters, should be obtained for this PID control. The resulting relations
enable the user to tune the control algorithm parameters in order to achieve a desired
robust performance.

In view of establishing these stability conditions, performances of PID control needs to
be analyzed, considering an appropriate friction model. Results for Coulomb’s model with
static friction have been presented previously [7, 91]. Therein, it has been concluded that a
minimal velocity feedback, or viscous damping, is required to achieve asymptotically stable
motion. In parallel with the group working at Lund and Grenoble [27], an alternative
extension of Dahl’s dynamic friction model has been proposed [18]. Therein, in addition
to the concept of linear space invariant systems, results have been presented for PID
position and PI velocity control. Although these results are useful for the understanding
of the performance of PID control applied to drives with friction, they do not help in
solving the issues addressed here because Bliman’s friction model [18] does not contain
a surface material damping term, like the σ1ż contribution to the LuGre friction force
which is governed by Equation (3.9).

No additional literature references have been found that consider the properties
achieved with the LuGre friction model. Therefore, velocity and position control syn-

47
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thesis is discussed in this chapter, using a PID control structure and by considering the
LuGre friction model. Global stability proofs are established using a Lyapunov analysis,
the small gain theorem, and the passivity method [35, 60, 103].

This chapter is organized as follows. In Section 4.1 it is shown that PI control is
required to stabilize the system for a given (constant) reference velocity. Furthermore, in
Section 4.2 it is demonstrated that positioning requires a PID control structure to achieve
asymptotic stability of the positioning error. An intuitive understanding of transient
behavior is difficult when analysis is based on the global, nonlinear properties of the
system. Therefore, it is also useful to discuss both control objectives (velocity control
and positioning) applying linearization techniques, where time-domain properties are well
related to the analysis tools root-locus and Bode plots. The chapter is finally concluded
in Section 4.3 with a discussion of the main results. The synthesis of enhanced control
algorithms is left to Chapter 5.

4.1 PI Velocity Control

The synthesis of complex industrial control systems is often simplified with an architec-
ture of cascaded control loops. For the electromechanical drive of a machine-tool axis
illustrated in Figure 6.10, for example, the first loop is the current control; next, there is
the velocity loop; and finally, a position loop is added. In this context of cascaded control
loops, the synthesis of velocity control is required to achieve desired global performance.

The structure of controllers implemented in industry is often restricted to PID, since
the customer prefers a simple solution, which he is able to maintain himself. Therefore,
the only choice remaining is to decide whether to use integral action or not, and whether
derivative action is required or not. The response is straightforward when recalling the
transfer function (3.44) obtained for large velocities q̇ À vs. The Laplace transform Ω(s)
of the velocity q̇(t) is here related to the Laplace transform Ũ(s) of the deviation from its
steady-state value of the control variable ũ(t) by

Ω(s)

Ũ(s)
=

1

σ2

1 +
J

σ2

s
(4.1)

To obtain a zero steady-state velocity error, PI control

u = kp

∫ t

τ=t0
(q̇r − q̇) dτ + kv(q̇r − q̇) (4.2)

is required, where kp and kv denote the controller gains.

4.1.1 Time-Domain Phenomena

The well-known result stating that high PI controller gains are appropriate for increasing
the stability is supported by the theoretical considerations presented below. Particularly,
the elimination of the stick–slip phenomenon, illustrated in Figure 4.1a, requires minimal
position and velocity gains kp and kv.
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Figure 4.1: Time-domain phenomena for PI velocity control.

An additional motivation for high gain control is related to the limited performance
of PI velocity tracking. The macroscopically observed stop time or zero velocity interval
resulting at velocity reversals is illustrated in Figure 4.1b with the reference step from
v1 to v2. This phenomenon is reduced for high controller gains and large reference steps.
However, noise amplification, flexible transmission elements etc. impose gain limits. In
practice, a compromise has to be found.

Concerning the macroscopically observed zero velocity interval, note that in reality,
the absolute zero velocity is present for some particular time instants only. The LuGre
friction model accounts for this microscopic phenomenon, whilst the KFM predicts only
the macroscopic stop time.

Finally, two particular details of the step response can be emphasized. The transition
from motion to sticking is in general quite abrupt, whereas the the break-away is performed
in a relatively smooth manner if Fs ≤ Fc. A second phenomenon could be deduced from
the singular perturbation analysis provided in Section 3.3: the performance for large
velocities, for example the step from v2 to v3 in Figure 4.1, is almost identical to the
behavior of a linear, second order system.
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4.1.2 Closed-Loop Synthesis

The closed-loop synthesis is achieved by setting the reference velocity to a constant value
q̇r = v0. In the context of friction compensation, the notion of stability implies the
following: (i) for stick–slip motion as illustrated in Figure 4.1a, the system is stable,
but not asymptotically stable; and (ii) desired regular motion is equivalent to a global
asymptotic stability.

First, the autonomous system equations ẋ = fg(x) for the model (3.5), (3.8), (3.10),
and (4.2) are written by defining the state vector

x =

 e
ė
z

 =


∫ t
τ=t0

(q̇r − q̇) dτ
q̇r − q̇

z

 (4.3)

Equilibrium points of this system are evaluated by solving fg(xss) = 0. As stability of
the steady motion is analyzed, it is further assumed that v0 6= 0. A brief analysis of the
dynamic equations results in the fact that a single isolated solution xss exists, since it has
been assumed v0 6= 0.

Furthermore, it is convenient to write the system in the deviation variables x̃ = x−xss.
This shifts the equilibrium point to the origin and cancels the constant term Fg. The
system description becomes ˙̃x = f(x̃), where

˙̃x =


f1(x̃)

f2(x̃)

f3(x̃)

 =



˙̃e

−kpẽ− (kv + σ2) ˙̃e + σ0z̃ + σ1f3(x̃)

J

v0 − ˙̃e− |v0 − ˙̃e|
g(v0 − ˙̃e)

(z̃ + g(v0)signv0)

 (4.4)

The objective of the velocity feedback controller is to guarantee regular motion which
excludes the stick–slip phenomenon. Thus, global asymptotic stability of the equilibrium
point x̃ = 0 of the system ˙̃x = f(x̃) must be checked. To achieve this objective, a three
step analysis is proposed below:

(i) It is noted in Section 4.1.3 that global stability is achieved for all physically reason-
able parameters. Therefore, system states are always bounded.

(ii) Conditions for local asymptotic stability are established next in Section 4.1.4. The
effort the lubrication industry should make to supply oils and greases leading to a
monotonic steady-state relationship between velocity and friction force is motivated
by the fact that this property guarantees local asymptotic stability.

(iii) In order to exclude the stick–slip phenomenon, conditions for global asymptotic
stability are provided in Section 4.1.5.

4.1.3 Global Stability

Firstly, stability of the control loop has to be analyzed. Intuitively, owing to the dissipative
character of friction, it appears to be natural that the states of the system (4.4) are
bounded.
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Fact 4.1 System (4.4) has bounded states iff kp > 0 and kv + σ2 > 0.

Proof. Owing to Lemma 3.2, the state z̃ is bounded. From the second row of relation
(4.4) ẽ and z̃ are related by

J ¨̃e + (kv + σ2) ˙̃e + kpẽ = σ0z̃ + σ1
˙̃z (4.5)

A linear system H with impulse response h(t) is L∞-stable iff ‖H‖∞ = ‖h(t)‖1 <∞
holds. Since J > 0, the norms ‖Hv‖∞ and ‖Hp‖∞ of the operators Hv : z̃ 7→ ˙̃e and
Hp : z̃ 7→ ẽ are bounded iff kp > 0 and kv + σ2 > 0. The relations ‖ ˙̃e‖∞ = ‖Hv‖∞ ‖z̃‖∞
and ‖ẽ‖∞ = ‖Hp‖∞ ‖z̃‖∞ complete the proof.

The practical relevance of Fact 4.1 is a strong guarantee of reliability: the machine
never enters an autodestructive regime for any ‘reasonable’ choice of the controller gains!

If however ‖ ˙̃e‖∞ or ‖ẽ‖∞ exceed admissible values, additional security switches are
necessary to turn off power in case of failure. Therefore, it would be helpful for controller
synthesis to evaluate ‖Hp‖∞ and ‖Hv‖∞ explicitly. Because analytical expressions are
relatively complex, guidelines only are sketched below. Consider the two transfer functions

Hp(s) =
σ0 + σ1s

Js2 + (kv + σ2) s + kp

(4.6)

Hv(s) =
σ0s + σ1s

2

Js2 + (kv + σ2) s + kp

(4.7)

The impulse responses of Hp and Hv are

hp(t) =



exp(−λt)

Jω1

(
(σ0 − λσ1) sin(ω1t) + σ1ω1 cos(ω1t)

)
if η < 1

exp(−λt)

J

(
(σ0 − λσ1) t + σ1

)
if η = 1

exp(−λt)

Jω1

(
(σ0 − λσ1) sinh(ω1t) + σ1ω1 cosh(ω1t)

)
if η > 1

(4.8)

hv(t) =



exp(−λt)

Jω1

(
(σ1 (λ2 − ω2

1)− σ0λ) sin(ω1t) + (σ0 − 2σ1λ) ω1 cos(ω1t)
)

if η < 1

exp(−λt)

J

(
λ (σ0 − λσ1) t + 2λσ1 − σ0

)
if η = 1

exp(−λt)

Jω1

(
(σ1 (λ2 + ω2

1)− σ0λ) sinh(ω1t) + (σ0 − 2σ1λ) ω1 cosh(ω1t)
)

if η > 1

(4.9)

with λ = kv+σ2

2J
, ω0 =

√
kp
J

, η = λ
ω0

, and

ω1 =

 ω0

√
1− η2 if η < 1

ω0

√
η2 − 1 if η > 1
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Figure 4.2: Functional analysis: dependence of ‖hv(t)‖1 on λ for η = 1.

It is useful to examine the particular case of critical damping where η = 1. In general,
i.e. if σ0 6= λσ1, there exists exactly one zero of the velocity impulse response, viz.
∃t1 : hv(t1) = 0 with

t1 =
σ0 − 2λσ1

λ(σ0 − λσ1)
(4.10)

Then it is easy to evaluate the one-norm ‖hv(t)‖1, since the indefinite integral∫
hv(t) dt = hp(t) is known

‖hv(t)‖1 =


hp(0) =

σ1

J
if t1 ≤ 0

|2 hp(t1)− hp(0)| =
∣∣∣∣∣2 (σ0 − λσ1)

Jλ
exp

(
−σ0 − 2λσ1

σ0 − λσ1

)
− σ1

J

∣∣∣∣∣ if t1 > 0

(4.11)

In order to improve understanding, it is proposed to analyze Equation (4.11) as a
function of the damping coefficient λ, resulting in the plot illustrated in Figure 4.2. The
corresponding upper bound on the velocity oscillation amplitude ‖ ˙̃e‖∞ for an eventual

periodic motion is given in the proof of Fact 4.1. Because λ ∝ (kv + σ2) ∝
√

kp for η = 1,
it can be concluded that, in the region λ < σ0

2σ1
, high gains in kp and kv reduce the

importance of the phenomenon of stick–slip motion, illustrated in Figure 4.1a. This
observation is in agreement with experimental evidence [6, 19, 77, 91].

A similar analysis is certainly possible for the general case η 6= 1 but the corresponding
developments are definitely outside the scope of this work, since the analytical results are
very complex.
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4.1.4 Local Asymptotic Stability

The results presented in this section are based on the well-known lemmas of Lyapunov’s
first (indirect) method, relating the stability/instability of a nonlinear system ˙̃x = f(x̃)

to the stability/instability of the corresponding linearized system ˙̃x = ∂f
∂x̃

∣∣∣
x̃=0

x̃.

The goal here is to motivate the effort required from lubrication industry to provide
certain properties for the steady-state relationship between velocity and friction force,
called for convenience ‘steady-state characteristics’.

Linearization

The Jacobian ∂f
∂x̃

of the nonlinear function f(x̃) specified in (4.4) is continuous in a domain

around x̃ = 0 delimited by | ˙̃e| < |v0|. This allows the use of linearization techniques to
determine local stability properties for all non-zero desired velocities. The concept is to
analyze the eigenvalues of the Jacobian

A =
∂f

∂x̃

∣∣∣∣∣
x̃=0

=



0 1 0

−kp

J
−

kv + σ2 + σ1
v0 g′(v0)

g(v0)

J

σ0 − σ1|v0|
g(v0)

J

0 −v0 g′(v0)

g(v0)
− |v0|

g(v0)

 (4.12)

where g′(v0) = dg(v)
dv

∣∣∣
v=v0

.

It is well known that the equilibrium point x̃ = 0, corresponding to desired continuous
motion, of the nonlinear system (4.4) is (locally) asymptotically stable if the matrix A is
Hurwitz. Therefore, it is aimed below to find conditions for the controller parameters kp

and kv that constrain all the eigenvalues of A to have a negative real part.

In general where Fs 6= Fc, the root-locus for the linearized system ˙̃x = A x̃ is obtained
from the equivalent block diagram depicted in Figure 4.3. It is convenient to consider the
location of the roots as a function of the position gain kp. Furthermore, deviations from
equilibrium error and position depending control are denoted by ẽ and ũp, respectively.
When the loop transfer function G(s) is determined analytically, rules for closed-loop root-
locus can be applied to give its bounds, asymptotes and critical points. Some algebraic
manipulations lead to

G(s) =

s +
|v0|

g(v0)

s (as2 + bs + c)
(4.13)

where

a = J

b = J
|v0|

g(v0)
+ kv + σ2 + σ1

v0 g′(v0)

g(v0)

c = (kv + σ2)
|v0|

g(v0)
+ σ0

v0 g′(v0)

g(v0)
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Figure 4.3: Block diagram: linearization for PI velocity control.

The open-loop transfer function G(s) has one zero (denoted by the ◦ symbol in Figure 4.4)
and three poles (× symbols). The root-locus presents two vertical asymptotes located at

xa =

3∑
i=1

pi −
1∑

j=1

zj

3− 1
=

− b

a
+
|v0|

g(v0)

2
= −

kv + σ2 + σ1
v0 g′(v0)
g(v0)

2J
(4.14)

where pi and zj denote the poles and the zeros of the transfer function G(s). Depending
on the shape of the steady-state characteristics, three cases can be distinguished: break
away friction Fs being equal, smaller and larger than the Coulomb level Fc.

A Break Away Friction Equal to the Coulomb Level

First, consider the case where the steady-state characteristics are perfectly linear. Here,
the break away friction equals the Coulomb level Fs = Fc and g′(v0) = 0. Under these
assumptions, the eigenvalues of the Jacobian matrix A are given by

λ1 =
−kv − σ2 +

√
(kv + σ2)2 − 4Jkp

2J
(4.15)
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Figure 4.4: Root-locus analysis: linearization for PI velocity control with Fs > Fc.

λ2 =
−kv − σ2 −

√
(kv + σ2)2 − 4Jkp

2J
(4.16)

λ3 = − |v0|
g(v0)

(4.17)

Thus, the nonlinear system ˙̃x = f(x̃), specified by (4.4), is (locally) asymptotically stable
if kv + σ2 > 0 because all eigenvalues λi have negative real parts. The linearized system
is overdamped if the position gain verifies

kp <
(kv + σ2)

2

4J
(4.18)

A Break Away Friction Smaller than the Coulomb Level

If the steady-state characteristics are monotonic, which implies v0 g′(v0) ≥ 0, ∀v0, then the
asymptotes of the root-locus are located in the left complex half plane. In addition, since
c > 0, the root-locus is completely in the left half plane, i.e. the system is asymptotically
stable.

These considerations prove that monotonic steady-state characteristics imply local
asymptotic stability for PI velocity control. As already mentioned, this fact motivates the
request for the lubrication industries to supply oils and greases with the desired property.
Nevertheless, note that local asymptotic stability does not exclude the existence of limit
cycles (stick–slip motion) if initial conditions are ‘sufficiently’ far from the equilibrium
point. This behavior is illustrated in Figure 4.5, where an unstable limit cycle separates
the domain of attraction of the desired equilibrium point from the unwanted attractive
limit cycle, corresponding to continuous stick–slip motion. In particular, velocity reversals
easily drive the system out of the domain of attraction of the desired equilibrium point.
Therefore, changing the direction of motion is often at the origin of undesirable ongoing
vibrations.
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A Break Away Friction Larger than the Coulomb Level

Nonmonotonic steady-state characteristics imply the existence of a domain where
v0 g′(v0) < 0. The root-locus for three possible situations, shown in Figure 4.4, illus-
trates the fact that augmenting viscous damping kv increases the range for stabilizing kp

gains. Note that a high kp is preferred since it increases the closed-loop system bandwidth.
The linearized system is always stable if the root-locus is entirely in the complex left-

half plane, see Figure 4.4a. This feature is attained if no open-loop roots are located in
the right-half plane, i.e. if b > 0 and c ≥ 0, corresponding to the condition for (local)
asymptotic stable motion

kv + σ2 > max

{
−σ1

v0 g′(v0)

g(v0)
− J

|v0|
g(v0)

, −σ0 g′(v0) signv0

}
(4.19)

If one open-loop pole is in the right-half plane and the asymptotes specified by (4.14)
verify xa < 0, then asymptotic stability of the motion depends on the position gain kp.
The intersection of the root-locus with the imaginary axis, marked with the 3 symbols
in Figure 4.4b, is evaluated by imposing a zero reminder to the polynomial division of
s (as2 + bs + c) + kp(s + |v0|

g(v0)
) by s2 + ω2. Stable motion is obtained for kp satisfying

kp > − bc

σ1
v0 g′(v0)
g(v0)

+ σ2 + kv

(4.20)

This property, namely the extinction of stick–slip oscillations for high position gains, has
been observed experimentally [77]. Note that setting the equality in (4.20) leads to a
situation where the center manifold theory has to be applied in order to decide whether
the nonlinear system is stable or not.

Finally, when the asymptotes are located in the right half plane (see Figure 4.4c), the
equilibrium point x̃ is unstable. Therefore the instability condition is

kv + σ2 < −σ1
v0 g′(v0)

g(v0)
(4.21)

4.1.5 Global Asymptotic Stability

It has been verified in Section 4.1.3 that PI velocity control is stable for any reasonable
parameter choice kp > 0 and σ2 + kv > 0. Nevertheless, attractive and unstable orbits, il-
lustrated in Figure 4.5, can exist in state space. In these situations even aperiodic/chaotic
motion within the surface separating the domains of attraction of the outer orbit and the
equilibrium point cannot be excluded a priori.

Conditions guaranteeing (local) asymptotic stability have been proposed in Sec-
tion 4.1.4, and it is even possible to decide with Relation (4.21) when stick–slip motion
is to be expected. In order to complete the analysis, a proof for global asymptotic sta-
bility is presented below in two steps: (i) conditions are provided that guarantee global
asymptotic stability of a region around the desired equilibrium point, and (ii) additional
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Figure 4.5: Limit cycles observed with PI velocity control (simulation data).

requisites make sure that this region is part of the domain of attraction of the equilibrium.
This two-step approach is motivated by the observation that zero velocity transitions are
cumbersome to handle whereas unidirectional motion can be analyzed with common tools
for nonlinear systems. Therefore, first conditions are provided, that guarantee ultimate
stability of a domain where signq̇ is constant. In the second step, the system behav-
ior within this region is analyzed to find controller parameters that provide asymptotic
stability of desired motion.

Lemma 4.1 For PI velocity regulation, governed by the dynamics (4.4), ε exists with

0 < ε < 1− α such that the positive invariant set =
{
| ˙̃e| ≤ (α + ε) |v0|

}
is reached in

finite time if

kp > 3 σ0

(
k1 +

k2

α

)
(4.22)
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Figure 4.6: Block diagram PI velocity control.

kv + σ2 >
σ0

σ1

J + 3 σ1

(
k1 +

k2

α

)
(4.23)

and

k2

2α
≤

1−

√√√√√√√√√1−
4 J

σ0

σ2
1

(
kp

σ0

+
kv + σ2

σ1

− J
σ0

σ2
1

)
(

kp

σ0

+
kv + σ2

σ1

+ J
σ0

σ2
1

)2

1 +

√√√√√√√√√1−
4 J

σ0

σ2
1

(
kp

σ0

+
kv + σ2

σ1

− J
σ0

σ2
1

)
(

kp

σ0

+
kv + σ2

σ1

+ J
σ0

σ2
1

)2

·

· min


kp

σ0

− 3

(
k1 +

k2

α

)
,
kv + σ2 − σ0

σ1

J

σ1

− 3

(
k1 +

k2

α

)

(4.24)

where α ∈ (0, 1) is a constant related to the transitional behavior, and

k1 =
sup g(·)− inf g(·)

inf g(·) ≥ 0 (4.25)

k2 =
sup g(·) + inf g(·)

inf g(·) > 0 (4.26)

It is useful to discuss briefly the conditions of the lemma before presenting its proof: Whilst
Relations (4.22)–(4.23) are relatively simple to verify, checking (4.24) is more difficult
because, for example, a fixed position gain kp specifies a closed interval of stabilizing
velocity gains kv. This interval is a function of the system parameters Fs, Fc, σ0, σ1, σ2

and J . Precise knowledge of these parameters is therefore required to specify stabilizing
gains kp and kv. This enhanced modeling effort represents a certain drawback for industrial
applications where the cost of parameter identification is often critical. Furthermore, it
should be emphasized that the conditions (4.22)–(4.24) are conservative.
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Proof. To find a function V (ẽ, ˙̃e) such that V̇ < 0,∀| ˙̃e| ≥ (α + ε) |v0| it is useful to
separate the linear and the nonlinear parts of the system (4.4).

The linear part G1 : ˙̃z 7→ ˙̃e of the system, illustrated in Figure 4.6, is governed by the
transfer function

G1(s) =
σ1s + σ0

Js2 + (kv + σ2) s + kp

(4.27)

Note that G1(jω) is positive real if conditions (4.22)–(4.23) hold. Consider the minimal
state representation ẋ = Ax + B ˙̃z and ˙̃e = Cx of G1 in controllable canonical form

x =

 x1

x2

 , A =

 0 1

−kp

J
−kv + σ2

J

 , B =

 0

1

 , C =
[

σ0

J

σ1

J

]
(4.28)

Matrices P and Q are chosen to verify the Kalman–Yakubovic–Popov conditions
1
2

(
PA + AT P

)
= −Q and PB = CT :

P =


kpσ1 + (kv + σ2) σ0

J2

σ0

J

σ0

J

σ1

J

 , Q =


kpσ0

J2
0

0
σ1 (kv + σ2)− σ0J

J2

 (4.29)

Therefore, P and Q are positive definite if (4.22)–(4.23) hold. With this choice of P and
Q, the time derivative of the function V = 1

2
xT Px is V̇ = −xT Qx + ˙̃z ˙̃e. Introduce the

notation

β :=
z̃ + g(v0)signv0

g(v0 − ˙̃e)
=

z

g(v0 − ˙̃e)
∈

[
−sup g(·)

inf g(·) ,
sup g(·)
inf g(·)

]
(4.30)

then (according to Fact 3.2)

˙̃z ˙̃e = (±β − 1) ˙̃e
2
+ (1∓ β) v0

˙̃e (4.31)

˙̃z ˙̃e ≤ sup g(·)− inf g(·)
inf g(·)

˙̃e
2
+

sup g(·) + inf g(·)
inf g(·) |v0

˙̃e| (4.32)

and

V̇ ≤ −kp

σ0

(
σ0

J
x1

)2

−
kv + σ2 − σ0

σ1

J

σ1

(
σ1

J
x2

)2

+ k1
˙̃e
2
+ k2 |v0|

∣∣∣ ˙̃e∣∣∣ (4.33)

Setting x̄1 = σ0

J
x1 and x̄2 = σ1

J
x2, and introducing ˙̃e = x̄1 + x̄2 results in

V̇ ≤ −
(

kp

σ0

− k1

)
x̄2

1 + 2k1x̄1x̄2 −

kv + σ2 − σ0

σ1

J

σ1

− k1

 x̄2
2 + k2 |v0| |x̄1 + x̄2| (4.34)

To obtain Relations (4.22)–(4.24) it is useful to group the terms x̄1 + x̄2 in (4.34)

V̇ ≤ −
(

kp

σ0

− k1 − k2

α

)
x̄2

1 + 2

(
k1 +

k2

α

)
x̄1x̄2 −

kv + σ2 − σ0

σ1

J

σ1

− k1 − k2

α

 x̄2
2−

− k2

α
(x̄1 + x̄2)

2 + k2 |v0| |x̄1 + x̄2|
(4.35)
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Figure 4.7: PI velocity regulation—Lyapunov analysis.

Because |x̄1 x̄2| ≤ x̄2
1 + x̄2

2 and because −k2

α
(x̄1 + x̄2)

2 + k2 |v0| |x̄1 + x̄2| ≤ k2

4
α v2

0 Rela-

tion (4.35) implies that V̇ < 0, ∀(x̄1, x̄2) such that

(
kp

σ0

− 3

(
k1 +

k2

α

))
x̄2

1 +

kv + σ2 − σ0

σ1

J

σ1

− 3

(
k1 +

k2

α

) x̄2
2 >

k2

4
α v2

0 (4.36)

With ∂S denoting the border of the set S, the situation, illustrated in Figure 4.7, is dis-
cussed below. The ellipsoid ∂E1, resulting from setting the equality in (4.36), is enclosed
in the circle C1 specified by

∂C1 : x̄2
1 + x̄2

2 =

k2

4
α v2

0

min


kp

σ0

− 3

(
k1 +

k2

α

)
,
kv + σ2 − σ0

σ1

J

σ1

− 3

(
k1 +

k2

α

)
(4.37)

To prove that the domain is reached in finite time, it is sufficient to show that the
domain ′ : V = 1

2
xT Px ≤ V0 is reached in finite time for an appropriately chosen V0.

The ellipsoid E2, corresponding to ′ in x̄1 and x̄2 coordinates is illustrated in Figure 4.7.
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It is useful to chose V0 such that the ellipse ∂E2 : V = V0 verifies C3 ⊂ E2 ⊂ C2 ⊂ ,
where

∂C2 : x̄2
1 + x̄2

2 = α2 v2
0

2
(4.38)

∂C3 : x̄2
1 + x̄2

2 = α2 v2
0

2

λmin(P )

λmax(P )
(4.39)

and

λmin(P )

λmax(P )
=

1−

√√√√√√√√√1−
4 J

σ0

σ2
1

(
kp

σ0

+
kv + σ2

σ1

− J
σ0

σ2
1

)
(

kp

σ0

+
kv + σ2

σ1

+ J
σ0

σ2
1

)2

1 +

√√√√√√√√√1−
4 J

σ0

σ2
1

(
kp

σ0

+
kv + σ2

σ1

− J
σ0

σ2
1

)
(

kp

σ0

+
kv + σ2

σ1

+ J
σ0

σ2
1

)2

(4.40)

The domain ′ is reached in finite time if the circle C1 is enclosed in the circle C3

which results in the condition

k2

2α
<

λmin(P )

λmax(P )
min


kp

σ0

− 3

(
k1 +

k2

α

)
,
kv + σ2 − σ0

σ1

J

σ1

− 3

(
k1 +

k2

α

)︸ ︷︷ ︸
=: c(a, b)

(4.41)

where it is useful to define

a :=
kp

σ0

b :=
kv + σ2 − σ0

σ1

J

σ1

(4.42)

Relation (4.41) is illustrated in Figure 4.8 for better understanding. A brief analysis shows
that c(a, b) is symmetric about the plane a = b and that the right side of (4.41) cannot
be arbitrarily large for large controller gains because

lim
a = b→∞ c(a, b) = 2 J

σ0

σ2
1

(4.43)

which implies that

J >
1

4α

k2 σ2
1

σ0

(4.44)

must be checked to verify the conditions of the theorem. If the actual inertia of a drive
considered is not sufficient, the present consideration motivates stabilization by means
of an additional acceleration feedback. However, this approach is rarely implemented in
practice because of the technical limitations that are related to sensor noise and actuator
saturation.
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Figure 4.8: PI velocity regulation—stability criterion.

The analysis presented above has shown that

V̇ < 0 ∀| ˙̃e| > |αv0| (4.45)

if the conditions of the theorem hold, which implies that ∀ε : 0 < ε < 1−α ∃t1 <∞ such
that

| ˙̃e(t)| < (α + ε) |v0| ∀t > t1 (4.46)

Corollary 4.1 Under the conditions of Lemma 4.1 and if the steady-state characteristics
are linear

Fc = Fs, g(v) =
Fs

σ0

, k1 = 0, k2 = 2 (4.47)

then PI velocity regulation is asymptotically stable.

Proof. Observe that the choice of α guarantees that motion is unidirectional ∀t > t1.
In this domain, the state z̃ is governed by

˙̃z = − |v0 − ˙̃e|
g(v0 − ˙̃e)

z̃ + (v0 − ˙̃e)

(
1− g(v0) signv0 sign(v0 − ˙̃e)

g(v0 − ˙̃e)

)
︸ ︷︷ ︸

= 0, if Fc = Fs

(4.48)
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Because the second term in (4.48) is zero z̃ decays exponentially towards zero such that

|z̃(t)| ≤ |z̃(t1)| exp

− t

min
|v0 − ˙̃e|

g(v0 − ˙̃e)

 ∀t ≥ t1

The system dynamics (4.4) imply also that ˙̃e and ẽ tend exponentially towards zero.

Now that it has been shown that the positive invariant set of unidirectional motion
is reached in finite time, it remains to provide conditions for the controller parameters
kv and kp guaranteeing that is part of the domain of attraction of the desired asymp-
totically stable equilibrium point. To establish general results for arbitrary steady-state
characteristics g(v) the small gain theorem is a conservative, but promising tool. There-
fore, the 2-gains of the nonlinear and the linear part of the system are evaluated below.

Lemma 4.2 Consider the system, illustrated in Figure 4.6, and the map ˙̃e 7→ y governed
by

˙̃z = − |v0 − ˙̃e|
g(v0 − ˙̃e)

z̃ + u (4.49)

y = ˙̃z (4.50)

u = Φ(˙̃e) = (v0 − ˙̃e)

(
1− g(v0) signv0 sign(v0 − ˙̃e)

g(v0 − ˙̃e)

)
(4.51)

The 2-gain γ ˙̃ey of ˙̃e 7→ y, that is ‖y‖2 ≤ γ ˙̃ey ‖ ˙̃e‖2 + β2, equals to

γ ˙̃ey =

∣∣∣∣∣∣sup
˙̃e∈

∂Φ

∂ ˙̃e

∣∣∣∣∣∣

√√√√√√√√√√1 +


sup
˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)

inf
˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)


2

(4.52)

where is specified in Lemma 4.1 and β2 is a constant depending on the initial condition
z̃(t0).

Proof. Introduce the notation

α(t) =
|v0 − ˙̃e|

g(v0 − ˙̃e)
≥ inf

˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)

= α0 > 0 (4.53)

then

y = y0 Ψ(t, 0) +
∫ t

0
Ψ(t, τ) u(τ) dτ (4.54)

where the state transition function is

Ψ(t, τ) = exp
(
−

∫ t

τ
α(τ) dτ

)
≤ e−α0 (t−τ) = Ψ0(t, τ) (4.55)
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The triangle inequality results in

‖y‖2 ≤ ‖y0 Ψ(t, 0)‖2 +
∥∥∥∥∫ t

0
Ψ(t, τ) u(τ) dτ

∥∥∥∥
2

(4.56)

and because

sup
‖u‖2 = const.

∥∥∥∥∫ t

0
Ψ(t, τ) u(τ) dτ

∥∥∥∥
2
≤ sup
‖u‖2 = const.

∥∥∥∥∫ t

0
Ψ0(t, τ) u(τ) dτ

∥∥∥∥
2

(4.57)

Parseval’s theorem leads to

‖y‖2 ≤ |y0|+ ‖u‖2
α0

(4.58)

Therefore, the 2-gain of the map u 7→ z̃, is

γuz̃ =
1

inf
˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)

(4.59)

and it follows that the 2-gain of the map u 7→ ˙̃z is

γu ˙̃z =

√√√√√√√√√√1 +


sup
˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)

inf
˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)


2

(4.60)

Finally, note that the constant 0 < β2 <∞ could be evaluated explicitly, which however
is of no use in practice.

Lemma 4.3 Consider the linear part of the system, illustrated in Figure 4.6 which is
governed by the transfer function (4.27)

G1(s) =
σ1s + σ0

Js2 + (kv + σ2) s + kp

The 2-gain γ1 of G1(s), that is ‖ ˙̃e‖2 ≤ γ1 ‖y‖2 + β1 and β1 is a constant depending on
the initial conditions, is bounded above by

γ1 ≤


σ0

kp

if kv + σ2 ≤ 2J
σ0

σ1

σ1 (kv + σ2)

2Jkp

if kv + σ2 > 2J
σ0

σ1

(4.61)

if G1 is critical- or over-damped

kv + σ2 ≥
√

4kpJ (4.62)
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Proof. Trivial.

Corollary 4.2 Under the conditions of Lemma 4.3 and for ‘large’ position gains

kp ≥ J
σ2

0

σ2
1

(4.63)

then
γ1 ≤ σ1

2 (kv + σ2)
(4.64)

Theorem 4.1 PI velocity regulation is globally asymptotically stable if the conditions of
Lemma 4.1 and Corollary 4.2 hold and if

kv + σ2 ≥ 1

2
σ1

∣∣∣∣∣∣sup
˙̃e∈

∂Φ

∂ ˙̃e

∣∣∣∣∣∣

√√√√√√√√√√1 +


sup
˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)

inf
˙̃e∈

|v0 − ˙̃e|
g(v0 − ˙̃e)


2

(4.65)

where
∂Φ

∂ ˙̃e
= g(v0) signv0 sign(v0 − ˙̃e)

g(v0 − ˙̃e) + (v0 − ˙̃e) g′(v0 − ˙̃e)

g2(v0 − ˙̃e)
− 1 (4.66)

Proof. The small gain theorem [35] guarantees that ‖y‖2 and ‖ ˙̃e‖2 are bounded. Because
the signals ẽ, ˙̃e and z̃ are bounded (Fact 4.1), also ¨̃e is bounded which guarantees that the

function φ(t) = ˙̃e
2
(t) is a uniformly continuous function on the time interval t ∈ [0,∞).

Barbalat’s lemma [60] shows that the signal ˙̃e decays to zero.

4.1.6 Relevance of the Results for PI Velocity Regulation

The condition (4.65) is conservative because of the use of the small gain theorem. Nev-
ertheless, this result is relevant for practical use because Relation (4.65) is in accordance
with the well-known observation that a small viscous damping coefficient kv + σ2 and
significant difference between static Fs and kinetic friction Fc “(...) are all favorable to
continued vibrations” [91].

The multiplication with σ1 in (4.65) is a particular property of the LuGre model.
The statement that a ‘large’ surface material damping σ1 may be at the origin of stick–
slip motion is surprising and no literature references have been found that describe this
property for experimental results.

Under the assumption that the LuGre model represents all dominant phenomena of
friction, the results presented above for PI velocity regulation should be used in the future
for an adequate design of drives: to achieve desired motion the bearing should be made of
a material with little losses (e.g. rolled steel instead of cast iron) and lubrication should
be selected so as to guarantee almost linear steady-state characteristics.
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4.2 PID Position Control

The synthesis of PI velocity control has been motivated partly by the necessity of adequate
performance within an architecture of cascaded control loops. For this approach, the
concept is that an outer loop is about 10 times slower than the corresponding inner
loop. Unfortunately, this methodology has the disadvantage that in certain situations
the separation of time scales of the control loops is incompatible with the application
considered.

This motivates the detailed analysis of PID position control presented below. A brief
study of the system leads to the decision that both integral action (for a zero permanent
error in the presliding regime of friction) and derivative action (to achieve an acceptable
overshoot) are required. Therefore, consider the control algorithm

u = kp (qr − q) + kv (q̇r − q̇) + ki

∫ t

τ=t0
(qr − q) dτ︸ ︷︷ ︸
= ui

(4.67)

where kp, kv and ki denote position, velocity and integral gains, respectively.
In order to explain transient phenomena, observed in particular domains of operation,

an analysis using the approach of linearization, considered in Section 4.2.2, is well suited.
Nevertheless, in order to exclude globally undesirable oscillations (known as the hunting
phenomenon illustrated in Figure 4.9) it is necessary to apply nonlinear techniques, for
example the passivity based discussion provided in Section 4.2.3.

4.2.1 Time-Domain Phenomena

Two typical time-domain phenomena are observed for PID position control:

(i) A limit cycle, called the hunting effect, is frequently observed as soon as the integral
action of the controller is switched on. The phenomenon is illustrated in Figures 4.9
and 6.15e.

(ii) A quite different settling time is observed for the step response (within a range of
±10% of the magnitude of the step) for small and large steps. For ‘small’ displace-
ments, the response is slow, compared to the signals measured for large reference
steps. This behavior is illustrated with experimental data in Figure 6.15a–d.

The hunting phenomenon has been extensively discussed for the KFM [7], and it has
been shown that also the LuGre friction model is able to predict this phenomenon [27].
The main difference between the KFM and the LuGre model is that the KFM predicts the
hunting effect only if Fs > Fc [7]. In contrast, it is shown below that, to exclude hunting
for the LuGre model, the position feedback gain kp must be larger than an explicit lower
bound, even in case when Fs = Fc. Although, this is not yet a proof of the existence
of a limit cycle (because the conditions stated in Theorem 4.2 are conservative) it is
nevertheless an indication of a potential problem. Difficulties are related to the surface
material damping coefficient σ1, which ideally should be made small by mechanical design.
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Figure 4.9: Time-domain phenomena for PID position control: the hunting effect.

The particular step response behavior is explained by the frequency domain consid-
erations, presented in Section 4.2.2. In addition, note that the governing parameter is
again the characteristic space constant xs, already used in Section 3.3 for the singular
perturbation analysis: a ‘small’ step is specified by a displacement of the same order of
magnitude of the characteristic space constant xs or smaller than xs.

4.2.2 Simplified PID Synthesis

The approach to parameter identification discussed in Section 3.4 is based on the fact that
there are two linear regimes, illustrated in Figure 3.8, for the nonlinear LuGre friction
model (3.5), (3.8), and (3.10). These regimes are used below for a simplified PID controller
synthesis. The results are conditions for local asymptotic stability, and indications about
local transient performance.

For high speeds without velocity reversals, characterized by q̇ À vs, assuming that z
has reached its steady-state value zss = sign(q̇) g(q̇), the system dynamics reduce to

Jq̈ + σ2q̇ + Fg + Fcsignq̇ = u



68 CHAPTER 4. SYNTHESIS OF PID CONTROLLERS

Figure 4.10: Bode analysis of the quasi linear regimes.

and the transfer function for deviation variables is

GHV (s) =
Q̃(s)

Ũ(s)
=

1

σ2

s
(
1 + s

J

σ2

) (4.68)

Similarly, the transfer function for small displacements, called presliding regime, is
obtained for |z| ¿ g(q̇)

GPS(s) =
Q̃(s)

Ũ(s)
=

1

σ0

J

σ0

s2 +
σ1 + σ2

σ0

s + 1
(4.69)

The open-loop Bode diagram for the two transfer functions (4.68) and (4.69) is shown
in Figure 4.10. Typically, the mechanical time constant Tm = J

σ2
ranges from 0.1 to 10

seconds, the eigenfrequency ω0 in the presliding regime is located around 100 rad
s

, and
the relative damping η < 1 is smaller than one. Furthermore, note that the frequency
responses match almost perfectly at ‘high’ frequencies ω À ω0

GPS(jω)

∣∣∣∣∣ ω À ω0
≈ GHV (jω)

∣∣∣∣∣ ω À ω0
≈ −1

J ω2
(4.70)

Based on these two linear regimes, used for identification, controller synthesis can be
undertaken by loopshaping. Integral action is required for zero steady-state error in the
presliding regime, described by (4.69). Derivative action is necessary to obtain a slope of
−20 dB/decade around the crossover frequency, mainly for the high velocity plot.
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Small Bandwidth Design

For classical digital controllers, sampling periods range from 1 to 5 milliseconds. There-
fore closed-loop bandwidth ωB should not exceed 100 to 600 rad/s. Controller synthesis
based on the Bode plots, shown in Figure 4.10, for the linear regimes ‘high velocity’ and
‘presliding’ provides the following results:

(i) Design for high velocity leads to a stable solution for both regimes. Nevertheless,
Figure 6.15b illustrates that this approach leads to a very slow response for pres-
liding. In addition, the integral term can be at the origin of limit cycles, called
hunting.

(ii) If controller synthesis is based on the presliding regime, it is experimentally observed
that instability occurs as soon as the system leaves the presliding regime, i.e. this
solution is locally stable only. Therefore, such an approach cannot be used for an
industrial application.

Large Bandwidth Design

New numerical controllers allow actually sampling periods below 400 microseconds.
Therefore, closed-loop bandwidth can be increased. Because the Bode plots for high
velocity and presliding in Figure 4.10 match almost perfectly at high frequencies, stable
control with excellent performance is achieved for both regimes. In addition, (4.70) shows
that only knowledge of the system’s inertia J is required for controller synthesis. This
is quite interesting since this approach turns out to be robust with respect to parameter
changes in the system. These perturbations are caused by fluctuations in manufactur-
ing (machines of the same type can have different frictional behavior), or temperature
variations during operation (e.g. difference between winter and summer).

The disadvantage of large bandwidth PID position control is an enhanced require-
ment on the measurement signal, owing to high feedback gains. Another problem that
can arise is related to the existence of flexible transmission elements between motor and
load. The corresponding mechanical resonance frequencies are found between 100 Hz and
several kHz. Resulting vibrations, observed in common practice, can be eliminated by an
appropriately designed notch-filter. However, this also requires high quality sensing. Ow-
ing to these problems, often only medium bandwidth design can be applied: in this case,
it is observed that the settling times for small and large displacements are comparable,
but it also turns out that an undesirable overshoot, illustrated in Figure 6.15c, appears
easily for large displacements.

4.2.3 Global Asymptotic Stability

A global approach to synthesis is required since the undesirable hunting phenomenon,
illustrated in Figure 4.9, can exist even if the control loop is stable for both linear regimes
(high velocity and presliding).

In order to apply the concepts of passivity theory [35], it is necessary to rearrange the
system (3.5), (3.8), (3.10) and (4.67) into the form of a ‘suitable’ block diagram. The
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Figure 4.11: Block diagram for PID position control.

term ‘suitable’ emphasizes the fact that this rearrangement can be cumbersome. A block
diagram is proposed in Figure 4.11 for the case of a constant reference position qr = 0.
The introduction of k is an artifice necessary to acquire general results since the map
q̇ 7→ ż is passive only if g(·) ≡ const.

Theorem 4.2 Chose any ε > 0 and

k =
max g(·)−min g(·)

min g(·) + ε (4.71)

The PID position control loop is globally asymptotically stable if

kpσ0 > kσ2
0 + kiσ1 (4.72)

kv + σ2 > kσ1 +
σ0

σ1

J (4.73)

Proof. In what follows, the conditions of LaSalle’s theorem [60] will be verified. Let
Ω ∈ 4 be a compact (closed and bounded) set with the property that every solution of
(3.5), (3.8), (3.10) and (4.67) which starts in Ω remains for all future time in Ω. Such a
set Ω exists, i.e. all the states of the system are bounded, because the denominator of
the transfer function

Gzq̇(s) =
(σ0 + σ1s) s2

Js3 + (σ2 + kv) s2 + kps + ki

(4.74)

describing the linear causal map z 7→ q̇ is stable if (4.72)–(4.73) hold, and because the
friction state is bounded z ∈ .

Second, find a suitable continuous differentiable function V : Ω→ such that V̇ ≤ 0
in Ω. This objective is achieved by showing: (i) the passivity of the subsystem H1 in
Figure 4.11, and (ii) the strict input passivity of H2. The transfer function

G1(s) =
(σ0 + σ1s) s

Js3 + (σ2 + kv − kσ1) s2 + (kp − kσ0) s + ki

(4.75)
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with k verifying Relation (4.71) is positive real if (4.72)–(4.73) hold. The Kalman–
Yakubovich–Popov lemma shows that a positive definite matrix P ∈ 3×3 and a pos-
itive semidefinite matrix Q ∈ 3×3 exist such that the derivative of the storage function
V = xT Px, where x ∈ 3 denotes the states of a minimal state space realization of G1(s),
is

V̇ = −xT Qx + e1 q̇︸︷︷︸
=−y2 q̇

(4.76)

Because a particular choice of k guarantees that the map H2 : q̇ 7→ y2 is strictly input
passive

y2q̇ = żq̇ + kq̇2 = (1 + k) q̇2 − |q̇| q̇
g(q̇)

z ≥
(

1 + k − max g(·)
min g(·)

)
q̇2

the time derivative of V along the solution of the closed-loop system (3.5), (3.8), (3.10)
and (4.67) is

V̇ ≤ −xT Qx−
(

1 + k − max g(·)
min g(·)

)
q̇2 (4.77)

Third, let E be the set of all points in Ω for which q̇ = 0. Relation (4.77) implies that
system trajectories tend asymptotically to this set. Let M be the largest invariant set in
E of the closed-loop system governed by

q̈ = − 1

J

(
(σ2 + kv) q̇ + kpq + ui + σ0z + σ1

(
q̇ − |q̇|

g(q̇)
z

)
+ Fg

)
u̇i = kiq

ż = q̇ − |q̇|
g(q̇)

z

It follows that the equilibrium manifold M is expressed by q̇ = 0, q = 0, z ∈ , where
is specified by Fact 3.2, and ui = σ0z + Fg. Note that M is a line segment in Ω.

The system considered is time invariant/autonomous. Therefore, LaSalle’s theo-
rem [60] implies that the equilibrium manifold M is asymptotically approached, i.e.

lim
t→∞



q

q̇

z

ui


=



0

0

z∞

ui∞


(4.78)

where z∞ ∈ is specified by Fact 3.2, and ui∞ = σ0z∞ + Fg.

4.3 Discussion of Results

For PI velocity control, a zero steady-state tracking error is achieved. Monotonic steady-
state characteristics guarantee local asymptotic stability. Global asymptotic stability
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is achieved for linear steady-state characteristics if the controller gains are large enough,
according to (4.22)–(4.24). Therefore, even if system parameters are only known to belong
to a certain domain, robust stability can be achieved. However, there is a considerable
limitation of PI velocity control, this is the macroscopically observed stop-time at velocity
reversals. For small gains and small reference velocities, the stop-time is large.

Similarly, robust stability is achieved for PID position control, if the system parameters
are known to belong to a certain domain. Global asymptotic stability of the control loop is
guaranteed if conditions (4.72)–(4.73) are verified. Stability does not imply performance.
The limitation of PID position control is the observation that small gains lead to very
different transient behavior for small and large steps. Arbitrary good performance can be
achieved with high controller gains. Nevertheless, the system model is only valid within a
certain domain (flexible transmission elements, measurement noise, actuator saturation)
which explains the technical limits on the controller gains.



Chapter 5

Enhanced Regulation and Tracking
Performance

Objectives

• Presenting a survey of methods for performance enhancement

• Proposing solutions to the problem of friction state observation

• Discussing the topic of robustness versus modeling errors

THE tracking performances, illustrated in Figures 4.1b, 6.14 and 6.15, achieved with a
standard PID control architecture are limited and sometimes do not satisfy the spec-

ifications for a given application. Furthermore, it may occur that the torque perturbation
rejection, or ‘regulation stiffness’, is not satisfactory with PID control.

Therefore it is worthwhile to search for better solutions. If the disturbances in the sys-
tem have a reasonable amplitude, it is possible to achieve the desired tracking performance
by means of model based feedforward friction compensation. In contrast, an increase of
torque perturbation rejection can only be achieved with appropriate feedback. To provide
the elements of the catalogue of solutions, presented in Chapter 6, here different control
algorithms are discussed that lead to enhanced regulation and tracking performances.

Advanced friction compensation has been subject of numerous publications indexed
recently [9]. Before the 1990s, performance enhancement was based on the KFM, there-
after dynamic models have also been considered [2, 25, 27, 94]. In fact, it is surprising
that Dahl’s friction model, which was developed in the late 1960s and early 1970s, has
been used for the synthesis of control only from the beginning of this decade [26].

Firstly in Section 5.1, this chapter presents a survey of feedforward friction compen-
sation techniques. In order to realize feedback compensation, it is necessary to discuss
friction state observers—Section 5.2. The estimated state vector resulting is used in Sec-
tion 5.3 for controller synthesis based on the approach of input–output linearization by

73
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Figure 5.1: Block diagram for model based feedforward friction compensation.

state feedback. The chapter is concluded in Section 5.4 with a summary of the results
achieved and some final remarks.

5.1 Feedforward Friction Compensation

The structure of model based feedforward friction compensation is illustrated in Figure 5.1
with a block diagram. In addition to a standard PID control, enhanced tracking perfor-
mance is achieved with the signal uff which compensates the friction that would result if
q = r. Therefore, the key concept is the fact that the compensation signal is based on the
reference signal only. Thus, the effects of friction are removed with an exogenous signal,
which permits the strong robustness results provided in Section 5.1.3: if the PID control
loop is BIBO stable, then the overall system is stable for any choice of the estimated
friction model F̂ that guarantees a bounded compensation signal uff .

5.1.1 KFM Based Compensation Applied to the LuGre Model

Feedforward friction compensation, based on the KFM, is technically straightforward for
simple drives. The friction force resulting from exact tracking of the reference trajectory
is calculated and compensated which leads to the feedforward control contribution [5]

uff, KFM = Fg + Jr̈ + σ0g(ṙ) signṙ + σ2ṙ (5.1)

where the desired reference velocity is denoted by ṙ. It has been observed [9] that algo-
rithms of type (5.1) are preferred to feedback solutions in the context of industrial appli-
cations. Experimental results achieved with KFM based feedforward compensation have
been presented previously together with a comparison of several control approaches [1].
Therein, it is shown that tracking performance is improved with nonlinear model based
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feedforward. Experimental results illustrate that the LuGre model compensation is re-
quired for small displacements of the order of the characteristic space constant xs, whilst
the KFM is sufficient for large displacements.

The KFM based friction compensation has been widely reported. Unfortunately, con-
sistent terminology has not been applied for the term ‘feedforward KFM based compen-
sation’. In certain literature references [56], a contribution uc = F̂c signq̇ to the control
action is termed ‘feedforward’ although the compensation signal uc is obviously based on
sensed velocity, representing therefore a ‘feedback’ contribution.

5.1.2 LuGre Model Based Compensation

Feedforward friction compensation, based on the LuGre model is discussed here in three
steps: (i) elaboration of an enhanced velocity control, (ii) extension to positioning, and
(iii) discussion of digital implementation issues.

Velocity Control

Model based friction compensation is required in some situations where, for example, the
stop time resulting from PI velocity control at velocity reversals (illustrated in Figure 4.1)
is not compatible with the application considered. In order to preserve stability of the PI
control loop, it is proposed to achieve tracking performance improvement by adding an
appropriate system’s inversion based feedforward.

Denoting reference velocity, acceleration and friction state by ṙ, r̈ and zr, respectively,
then a feedforward uff based on the inverse of the system (3.5), (3.8), and (3.10) is

uff,LuGre = Jr̈ + σ2ṙ + σ0zr + σ1

(
ṙ − |ṙ|

g(ṙ)
zr

)
+ Fg (5.2)

żr = ṙ − |ṙ|
g(ṙ)

zr (5.3)

The robust stability proofs for the feedforward control scheme that are presented in Sec-
tion 5.1.3 are based on the assumption that the feedforward control signal is bounded.

Fact 5.1 The feedforward control signal is bounded |uff,LuGre| < ∞ for any bounded,
differentiable and uniformly continuous reference signal ṙ

Proof. Because zr is bounded (Fact 3.2)

|uff,LuGre| ≤ J |r̈|+ M (1 + |ṙ|)

where M <∞ is a constant.
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Figure 5.2: Block diagram for cascaded control loops.

Positioning

The architecture for position control is similar to that for velocity control. It should
be stressed here that the ‘natural’ approach of cascaded loops, illustrated in Figure 5.2
should not be applied in the design procedure for the following reason: the structure of
(5.3) implies for |zr| ¿ g(vr) the presence of an integrator between the reference velocity
vr of the inner loop and the feedforward control action uff,LuGre:

żr ≈ vr if |zr| ¿ g(vr) (5.4)

Thus, if the reference velocity is generated by a PI position control loop, a double inte-
grator results between the position error and the control signal.

The above motivates the architecture, illustrated in Figure 5.1, with a PID control for
perturbation rejection and a model-based feedforward using the reference position to gen-
erate an appropriate control contribution uff that leads to enhanced tracking performance
without loss of the robust stability properties

ep = (r − q) (5.5)

u = uff,LuGre + kpep + kdėp + ki

∫ t

τ=t0
ep dτ (5.6)

where uff,LuGre is specified by Relations (5.2)–(5.3).

Implementation Issues

Digital implementation of the friction state predictor (5.3) requires particular attention
since the z-dynamics can be very fast. In order to solve this problem, an observer modi-
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fication has been proposed [2]. In fact the Euler approximation, replacing żr by

żr ≈ zr(kh)− zr(kh− h)

h
(5.7)

where h denotes the sampling period, leads to serious stability problems. As an alternative
to the observer modification, which requires additional attention for parameter tuning, it
is proposed to use a formula based on the assumption that ṙ remains constant between two
samples. Under this condition the system (5.3) is linear and its state transition operator
is

zr(kh) =

 −a1 zr(kh− h) + b0 ṙ(kh) ∀ṙ(kh) 6= 0

zr(kh− h) if ṙ(kh) = 0
(5.8)

with

a1 = − exp

(
− |ṙ(kh)|

g( ṙ(kh) )
h

)

b0 =
g( ṙ(kh) )

|ṙ(kh)| (1 + a1)

Implementing (5.8) leads to an excellent match with reality. For large velocities there is
a time-scale separation between the ‘slowly’ varying reference velocity ṙ and the ‘rapidly’
varying friction state zr: the friction state assumes almost instantaneously its steady state
value Fc

σ0
signṙ.

5.1.3 Robust Stability

The main advantage of model based feedforward friction compensation is its robustness
versus parameter uncertainties that are inherited from the PID feedback design, presented
in Chapter 4. Robust stability here means that any ‘sufficiently’ smooth and bounded
reference signal leads to a bounded output of the closed-loop system.

Fact 5.2 The tracking error for control with bounded feedforward, i.e. uff ≤Mff <∞, is
bounded for any reasonable choice of the controller parameters that guarantee asymptotic
stability of the PID-loop (discussed in Chapter 4).

Proof. The approach of proving stability is illustrated in Figure 5.3. It is observed
that the linear part of the system is driven by bounded signals: Fact 3.2 provides the
boundedness of z for any velocity q̇ and Fact 5.1 proves that uff is bounded for any
‘sufficiently smooth’ reference r. The transfer functions, relating the driving signals to the
different contributions of the system’s output, is evaluated by writing the linear subsystem
in a particular state space form. This leads for velocity control to ė

q̈

 =

 0 −1
kp

J
−kv + σ2

J


 e

q̇

 +

 1
kv

J

 ṙ +

 0
1

J

 (uff(ṙ)− σ0z − σ1ż) (5.9)
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Figure 5.3: Feedforward robustness analysis.

and for positioning to
u̇i

q̇

q̈

 =


0 −ki 0

0 0 1
1

J
−kp

J
−kv + σ2

J




ui

q

q̇

+


ki

0
kp

J

 r+


0

0
kv

J

 ṙ+


0

0
1

J

 (uff(ṙ)−σ0z−σ1ż)

(5.10)
From these state space formulations the transfer functions indicated in Figure 5.3 are
deduced directly. It is obvious that the induced infinity and two norms of all these linear
subsystems are bounded if the denominators are Hurwitz. Velocity control is therefore
stable for any kv + σ2 > 0 and kp > 0. Furthermore, position control is stable if all
coefficients of the denominators are positive and if kp (kv + σ2) > Jki, which is true if
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(4.72)–(4.73) hold.

These conditions are easily verified in practice which indicates the relevance of feed-
forward friction compensation in industrial applications: the risk of an accident owing to
an unstable control can be excluded even in the presence of considerable uncertainties in
the system’s parameters! Finally, it is emphasized that such a strong result is certainly
not expected for model based feedback friction compensation techniques.

5.1.4 Adaptive LuGre Model Based Compensation

Model based feedforward friction compensation is robustly stable, but this property does
not allow any conclusion on actual tracking performance. Asymptotic stability of the
tracking error is expected for the nominal parameter case only. It is therefore inevitable
to have to face the problems of parameter identification and adaptation.

Considerable variations of the parameter values are caused by the dependence on bear-
ing load and preload, temperature and humidity. These environmental conditions, unfor-
tunately, rarely remain constant in industrial applications. In addition, some knowledge
of control engineering is required for the use of the identification methodology proposed
in Section 3.4. These two facts motivate the elaboration of adaptive control schemes that
can serve for an ‘easy to use’ auto-tuning procedure.

Different adaptive control algorithms have been proposed previously. Based on the
assumption that either the normal preload or the environmental temperature is unknown,
the number of parameters to be estimated on-line have been considerably reduced [25].
Therein, the friction model is modified for the case where the normal preload is unknown

ż = q̇ − θ
|q̇|

g(q̇)
z (5.11)

F = σ0z + σ1ż + σ2q̇ (5.12)

where θ denotes the parameter that must be estimated on-line

˙̂
θ = γ

|q̇|
g(q̇)

ẑ (ẑ − zm) (5.13)

The signal zm is the ‘measured’ friction state, based on filtered applied torque and ve-
locity signals. The friction state estimate is ẑ and γ determines the speed of parameter
adaptation.

A more complete adaptive controller synthesis has been presented recently [94, 95].
Therein, the performance of the friction state observer has been improved and adaptation
in parallel for several parameters has been considered. Unfortunately, these authors have
reformulated the LuGre model in order to simplify their calculi which makes a comparison
with alternative approaches difficult.

Both of these previous methodologies for adaptive friction compensation make exten-
sive use of sensed velocity in both the friction state observer and in the adaptation law.
This choice allows establishment of rigorous stability proofs under certain assumptions.
Owing to the complexity of these algorithms, however, it is extremely difficult to evaluate
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Figure 5.4: Block diagram for adaptive model based feedforward friction compensation.

their robustness versus neglected system properties. Therefore, new algorithms are pro-
posed below which can be used easily and with little risk of catastrophic system behavior
in an auto-tuning phase. After this initialization procedure, that can be repeated rapidly
several times a day, fixed parameter feedforward friction compensation provides secure
operation with enhanced tracking performance.

From the block diagram, illustrated in Figure 5.4, it can be deduced that the output
of the PID controller uPID indicates the error between the real system and the model used
for feedforward. A mapping from this error signal into parameter space is achieved by
multiplication with appropriate signals. The concepts are the following: (i) adaptation is
large during periods of time when the influence of the parameter considered on the feed-
forward control signal is considerable, and (ii) the direction of adaptation is determined
based on signals taken within the feedforward block only in order to reduce the risk of
instability.

From extended experimental experience, it is observed that adaptation of the param-
eters for Dahl’s curve Fg, σ0 and Fs is: (i) very interesting from a practical point of view,
and (ii) technically straightforward for drives with linear velocity–friction force character-
istics where Fs ≈ Fc. The following ‘semi-intuitive’ adaptation laws are proposed

˙̂
Fg = αg uPID (5.14)
˙̂σ0 = α0 uPID żr (5.15)
˙̂

Fc = αc uPID signzr (5.16)

where the parameters αg, α0 and αc are chosen to be ‘sufficiently’ small, otherwise a
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certain risk exists of instability. These adaptation laws are motivated by the following
considerations.

The mean value of the PID control signal estimates the parameter Fg. Therefore,
the variation of the parameter estimation is proportional to the actual PID control. It
is obvious that the adaptation of the estimated gravity (5.14) is nothing other than an
integral term.

The choice for the adaptation of the stiffness at rest (5.15) has been designed such that
σ0 is updated only during zero velocity crossings where the amplitude of the signal żr is
considerable and where the influence of the parameter σ0 on the control action is relevant.
In addition, note that the experimental study of the control performance has shown that
the product uPID żr determines a reasonable sign for the parameter adaptation.

A brief analysis of the model results in the observation that it is very difficult to
distinguish between the influences of the parameters F̂g and F̂c. Different solutions to this
problem have been considered previously: multiplication with the sign of the reference
velocity signṙ, with the estimated friction state zr, and with the sign of the estimated
friction state signzr. Finally, after an extended experimental study, the last option (5.16)
has been retained.

Despite the fact that the adaptation laws (5.14)–(5.16) are very useful in practice, the
question of stability arises. It should be noted that the adaptation parameters αg, α0

and αc need to be ‘small’. Furthermore, it is observed experimentally that the ‘smallness’
property of the parameters is related to the amplitude and frequency of the reference signal
r, which plays the role of the excitation (necessary for adaptation). Finally, it should
be noted that instability can result from an inappropriate choice of the experimental
parameters: PID gains kv, kp and ki; adaptation gains αg, α0 and αc; shape of the reference
r, etc.

5.2 Friction State Observers

In general, the cost of industrial installations is reduced by measuring a limited number of
signals only, i.e. the full state vector is not available to the controller. Furthermore, in the
particular case of drives with LuGre model friction, it is not possible to measure the friction
state z since this signal is not a physical quantity. Therefore, it is necessary to present an
approach for efficient state estimation because enhanced feedback compensation methods,
discussed in Section 5.3, require the full state vector.

5.2.1 Tracking Error Based Correction

A tracking error based correction term is proposed in the friction state observer that has
been used in the control structure presented by the Lund–Grenoble group [27]

˙̂z = q̇ − |q̇|
g(q̇)

ẑ + k (r − q) (5.17)

where k > 0. Proofs for asymptotic tracking of reference velocity and position, respec-
tively, are available [27] making the assumption of exact parameter knowledge. Adaptive
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schemes have been analyzed [25], but still under the assumption that the shape of g(·) is
known up to a scaling factor.

The Relation (5.17) is a typical observer equation where −k (r − q) denotes the cor-
rection term. Because r − q is not necessarily bounded the observer state ẑ may not be
bounded either. Although asymptotic stability results from a global analysis of the overall
system, the fact that ẑ is not bounded a priori is a drawback because the intrinsic upper
and lower bounds of the friction state z provided by Fact 3.2 are very helpful in the sta-
bility analysis of PID control. Furthermore, it can be shown by simulation that, already
for a small parameter mismatch, bad performance results using the LuGre-approach.

5.2.2 Luenberger-like State Observer

In certain applications and for economic reasons only position measurement is available.
Thus, not only the friction state z should be observed, but also the velocity q̇. In addition,
it is known that the order of the state observer should be as small as possible in order to
simplify the problem of stabilization of the closed-loop system. The method introduced
for linear systems [64] allows reduction of the order of the state observer to the system’s
order minus the number of outputs. A friction state observer that applies this concept and
requires only position measurement has been proposed for a simple drive with friction [2].
The system (3.5), (3.8), and (3.10) is written in a state space form, with position output
y = q appearing explicitly, i.e.


ẏ = [ 1 0 ] w

ẇ = f̄(w) +

 1

J

0

 u
(5.18)

where w denotes the part of the state vector that is to be observed and

w =

 q̇

z

 (5.19)

f̄(w) =


− 1

J

(
σ0 z + σ1

(
q̇ − |q̇|

g(q̇)
z

)
+ σ2 q̇

)

q̇ − |q̇|
g(q̇)

z

 (5.20)

Furthermore, introducing the notations

L =

 l1

l2

 ∈ 2 (5.21)

ξ = ŵ − Lq (5.22)
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Figure 5.5: Block diagram of a Luenberger-like state observer for a drive with friction.

where L denotes the observer gain vector, and ξ is the observer state vector. Then a
Luenberger-like observer for the simple drive with friction is expressed by

ξ̇ = f̄(ξ + Lq) +

 1

J

0

 u−
 l1

l2

 [
1 0

]
(ξ + Lq)

︸ ︷︷ ︸
=

 l1

l2

 ˆ̇q

(5.23)

A block diagram for Relation (5.23) is shown in Figure 5.5. Note that the observer inputs
are the torque u, applied to the drive, and the measured position q.

The observation error eobs = w − ŵ is governed by

ėobs = ẇ − ˙̂w = f̄(w)− f̄(ŵ)−
 l1 0

l2 0

 eobs (5.24)

where the term f̄(w)− f̄(ŵ) can be approximated after a first order Taylor expansion of
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f̄(·) around the point ŵ, viz.

f̄(w) = f̄(ŵ) +
∂f̄

∂w

∣∣∣∣∣
w=ŵ

(w − ŵ)

leading to

ėobs = ẇ − ˙̂w ≈ ∂f̄

∂w

∣∣∣∣∣
w=ŵ

(w − ŵ)−
 l1

l2

 (q̇ − ˆ̇q) = A eobs (5.25)

Therefore, for the Luenberger-like observer of a simple drive with friction, locally and
in the nominal parameter case, stability depends on the eigenvalues of A given by

A =
∂f̄

∂w

∣∣∣∣∣
w=ŵ

−
 l1 0

l2 0



=


− 1

J

(
σ2 + σ1

(
1− ẑ

g(ˆ̇q) signˆ̇q + |ˆ̇q| g′(ˆ̇q)
g2(ˆ̇q)

))
− l1

1

J

(
σ1
|ˆ̇q|

g(ˆ̇q)
− σ0

)

1− ẑ
g(ˆ̇q) signˆ̇q + |ˆ̇q| g′(ˆ̇q)

g2(ˆ̇q)
− l2 − |

ˆ̇q|
g(ˆ̇q)


(5.26)

where the problem of deriving |ˆ̇q| at zero velocity can be solved by defining appropriately
the sign-function.

When the estimated state vector is used for control (instead of the actual state vector)
then, locally in the state space, the observer poles specified by A append to the closed
loop poles of the system. Therefore, it is useful to choose appropriately the observer error
dynamics, i.e. the eigenvalues of A.

The structure of (5.26) implies that it is not possible to assign any observer error
dynamics with an appropriate choice of the observer gain L. Extended simulation of
the continuous-time closed-loop system has shown that l2 does not improve performance.
However, a large l1 leads to a fast response of the velocity estimation error and therefore to
a good perturbation rejection: it results directly from (5.26) that, to have a considerable
effect on damping, gain l1 has to be chosen such that l1 > σ1+σ2

J
.

A second relevant property is the dependence of the dynamics on velocity. When g(·) is
modeled by a Gaussian function, it is easy to show that for large velocities |ˆ̇q| g′(ˆ̇q) = O(0).
Thus, it is possible to estimate the magnitude of the elements of A as follows

A =

 O(l1) O(ˆ̇q)

O(1) O(ˆ̇q)

 (5.27)

where, for simplicity, l2 is chosen to be zero. For large velocities, this leads to the following
poles for the observer error dynamics

p1,2 =

 −O(ˆ̇q)

−O(l1) + O(1)
(5.28)
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The observer is therefore extremely fast for large velocities which may create certain
difficulties related to digital implementation. Therefore, a modification of the observer
has been proposed [2], in order to solve this technical problem. Since the troublesome fast
observer pole is related to the z dynamics, it has been proposed instead to slow it down

by dividing the corresponding vector field component by 1 + |ˆ̇q|
vl

, where the limit velocity
vl is a design parameter. The resulting observer dynamics are

ξ̇ =



− 1

J

(
σ0 ẑ + σ1

(
ˆ̇q − |

ˆ̇q|
g(ˆ̇q)

ẑ

)
+ σ2

ˆ̇q

)
ˆ̇q − |

ˆ̇q|
g(ˆ̇q)

ẑ

1 +
|ˆ̇q|
vl


+

 1

J

0

 u−
 l1

l2

 ˆ̇q (5.29)

where the choice of vl has to be made with respect to the sampling period h, for example
by limiting the observer dynamics to 0.2ωN (Nyquist frequency). This leads to

vl = 0.2
π

h

Fc

σ0

(5.30)

An alternative problem solution uses the same algorithm (5.8) as the feedforward
friction compensation by replacing ṙ with ˆ̇q in the formulae. Because in continuous time

ξ̇2 = ˆ̇q − |
ˆ̇q|

g(ˆ̇q)
(ξ2 + l2q)︸ ︷︷ ︸

= ẑ

− l2ˆ̇q (5.31)

the state transition of the observer is governed by

ξ1(kh + h) = ξ1 − h

J

(
σ0 ẑ + σ1

(
ˆ̇q − |

ˆ̇q|
g(ˆ̇q)

ẑ

)
+ σ2

ˆ̇q − u

)
− h l1ˆ̇q (5.32)

ξ2(kh + h) =


−a1ξ2 + b0

(
(1− l2) ˆ̇q − |

ˆ̇q|
g(ˆ̇q)

l2q

)
if ˆ̇q 6= 0

ξ2 if ˆ̇q = 0

(5.33)

where the right-hand side is evaluated at kh and

a1 = − exp

(
− |

ˆ̇q|
g(ˆ̇q)

h

)

b0 =
g(ˆ̇q)

|ˆ̇q| (1 + a1)

This last algorithm has been retained for the experimental comparison, presented in Sec-
tion 6.3.7, because the direct digital implementation (5.32)–(5.33) seems to be more ade-
quate than the algorithm that results from discretization of the modified observer (5.29).
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Figure 5.6: Block diagram for input–output linearization by state feedback.

5.3 Input–Output Linearization by State Feedback

The methodology of input–output linearization by state feedback is an approach that
allows a modular, and thus simplified, synthesis of the control algorithm. The motivation
for linearization techniques, using state feedback, is to achieve a full linearization of the
dynamics or, if this is not possible, at least the linearization of the input–output behavior.

The control structure which is based on this approach is illustrated in Figure 5.6 with
a block diagram. Owing to the nonlinear characteristics of friction F , it is cumbersome to
evaluate exactly the performance that would be achieved with a standard PID controller.
Therefore, the linearizing control u = −α(x̂) + β(x̂) v is introduced. The resulting map
between the auxiliary control v and the position signal q is linear under certain assump-
tions on the observability of the system ‘drive with friction’. In a second step, emphasized
by the dashed stroke, a surrounding standard PID control loop can be closed. Then it is
straightforward to analyze the overall control performance.

5.3.1 KFM Based Compensation Applied to the LuGre Model

Friction compensation based on the LuGre model is computationally more complex than
a KFM compensation. This motivates an analysis of the performance of a control that
uses a KFM based input–output linearization approach, which has been proposed in
numerous literature references. Unfortunately, the KFM feedback compensation is rarely
applied successfully because undesirable oscillations result easily from this approach. For
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Figure 5.7: Performance of KFM friction compensation based on sensed velocity.

completeness of this text, consider the control

u = kpe+kvė+Fg +Jr̈+σ2q̇ +σ0g(q̇) signq̇ +(1−|signq̇|) Fs sign(kpe + kvė + Jr̈) (5.34)

A simplified version of the control algorithm (5.34), i.e. without acceleration feedforward
Jr̈, has been applied previously to a Toshiba robot and experimental data discussed [61].
The combination of (3.2), (3.22) and (5.34) leads to

Jë + kvė + kpe = −p(ė) (5.35)

The perturbation p, specified by (3.23) with ζ − ζ̄ = η, can be expressed as a function of
the reference ṙ, the velocity error ė = ṙ − q̇ and the deviation η from the unperturbed
model

p = −ε (ζ − ζ̄)︸ ︷︷ ︸
η

(
σ0 − σ1

|ṙ − ė|
g(ṙ − ė)

)
(5.36)

εζ̇ = − |ṙ − ė|
ḡ(ṙ − ė)︸ ︷︷ ︸
≤ 0

(ζ − ζ̄) (5.37)

For appropriate controller gains kv and kp and for ‘sufficiently’ large reference velocities
ṙ motion of the drive in closed loop is unidirectionnal. In this situation, exponential
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stability of η is achieved if Fc = Fs. The time constant corresponding to the damping of
the perturbation p is deduced from (3.31) and (3.33)

Tp =
1

α
=

xs

min(|ṙ| − |ėmax|) = O(ε) (5.38)

In this case, the position and velocity errors e(t) and ė(t) decay exponentially towards
zero. This fact is illustrated in Figure 5.7 with experimental data (it has been observed
that Fs ≈ Fc for this particular setup and with the lubricant chosen). Just after the
zero reference velocity transition, important oscillations are observed. These undesirable
vibrations disappear as soon as the reference velocity is ‘sufficiently’ large (around t =
0.5 s).

The previous analysis has shown that KFM based feedback compensation can be
applied successfully to large velocity tracking tasks. At low velocities and for positioning
tasks, undesirable chattering is observed. To achieve better performance for zero velocity
transitions, various modifications have been proposed for estimation of the actual velocity
of the drive. Many literature references discussing this topic have been cited previously [9].
Nevertheless, until now no satisfactory solutions have been presented.

5.3.2 LuGre Model Based Compensation

Consider the LuGre model (3.5), (3.8), and (3.10) for a simple drive with friction. Full
state space linearization is not achievable, neither with position nor with velocity mea-
surement, because the system’s relative degree is smaller than its order. In addition,
consideration of the friction state z as an output does not make sense in practice. There-
fore, only input–output linearization can be achieved. A brief analysis of the equation of
motion (3.8) shows that the composite control

u = σ0z − σ1
|q̇|

g(q̇)
z + v (5.39)

linearizes the relation v 7→ q̇. Note that the term σ1q̇ is not incorporated in (5.39) because
this term is: (i) useful by increasing damping, and (ii) does not introduce any nonlinearity.
Synthesis for the new control v in an additional step is straightforward using standard
linear techniques: therefore, the approach simplifies the work of the control engineer.

The composite control (5.39) has been successfully applied to various systems [2, 25,
27, 94]. However, because the friction state z is not measurable, it has been necessary
to analyze different approaches to state observation. The overall control performance is
strongly related to the properties of the state observer.

In addition, closed-loop performances and stability are related to the behavior of the
zero dynamics, i.e. the dynamics of the states for a zero output q = 0 and q̇ = 0. In this
situation, the friction state z does not decay asymptotically to zero, but retains its actual
value. This implies that for a positioning task where q̇ → 0, asymptotic tracking of the
friction state z by the observer state ẑ cannot be guaranteed.
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5.4 Discussion

Various approaches have been presented in this chapter that achieve enhanced regula-
tion and tracking performance. It is observed that pure feedforward solutions are stable
in a relatively large domain of control parameters. Excellent tracking, however, requires
knowledge of the friction parameters. The parameter estimation problem can be solved ei-
ther by the identification methodology, provided in Section 3.4, or by an adaptive scheme,
proposed in Section 5.1.4.

If considerable external perturbation is present, large loop-gains are necessary in order
to achieve the specified regulation performance. This can be realized with an input–output
linearization technique. It has been observed that the LuGre model based compensation
leads to excellent performance while the KFM based solution exhibits unacceptable chat-
tering for small reference velocities.
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Chapter 6

Applications

Objectives

• Illustrating the theoretical considerations of this thesis

• Discussing a particular actuator technology that is based on friction

• Applying PID and enhanced controller synthesis to an industrial drive

MOST previous work on friction modeling and compensation concentrates on specific
limited domains: either research was restricted to certain particular mathemati-

cal properties, or development focused on one application only, without generalization of
the results obtained. However, real improvement of performance requires an interdisci-
plinary approach, including physics, mechanics, mathematics and control engineering. In
addition, the industrial environment of the various applications should be considered for
control synthesis.

Therefore, the aim of this chapter is to illustrate the theoretical results presented pre-
viously, and also to discuss innovative techniques for high precision actuation of industrial
drives. These two possible viewpoints emphasize the relevance of the subjects studied here
for further scientific research as well as for industrial applications.

A global discussion of drives with friction has been undertaken previously for the mod-
eling and compensation of friction in an industrial PUMA robot [5]. Therein, in contrast
with standard mechanical or tribological textbooks, the topics related to lubrication and
friction have been considered from the viewpoint of the control engineer. This approach
has led to preliminary results in specifying the dominant phenomena and in identifying
the driving parameters.

Because appropriate lubricant selection is extremely important to achieve the de-
sired machine operation, first it is useful to present certain observations on lubricant
properties—Section 6.1. Thereafter two applications are examined: (i) the modeling of
an inertial drive is presented in Section 6.2, starting from a tribological study of the sur-

91



92 CHAPTER 6. APPLICATIONS

Figure 6.1: Lubricant selection.

faces in relative motion; and (ii) the identification and control of the vertical axis of an
industrial electrical-discharge machining installation is discussed in Section 6.3, ending
with a catalogue of solutions intended to help the user of drives with friction.

6.1 Lubricant Selection

In order to provide useful hints as to lubricant selection, first, the properties of different
lubricants are studied for a pair of ball bearings, manufactured by SKF (part no. BSA
206 C/DFA). The journal diameter is 30 mm, the exterior diameter is 62 mm, and the
width is 16 mm. The preload of the bearing is defined both by the tightening of the
assembly and by the machining tolerances of the balls and the races.

Different experimental velocity–friction force characteristics are shown in Figure 6.1.
Nonmonotonuous velocity–friction force characteristics are observed for Mobil Oil Vactra
No. 4 lubricant. Although all bearings are of the same dimensions, it is observed that
the bearings Fo092 and 319 do not present exactly the same characteristics for Vactra 4
lubrication because the preloading procedure has not been perfectly controlled. Finally,
it should be emphasized that the properties of oil lubricated drives can be kept extremely
stable over time by continuous lubricant refreshment.

Almost linear velocity–friction force characteristics and high friction levels are ob-
served for the grease Blasolube 302 lubricant. These approximately linear steady-state
characteristics are very useful for the synthesis of asymptotically stable control loops.
However, note that the observed behavior changes slowly with time because lubricant
refreshment is more difficult with grease than with oil.
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With another widely used grease, monotonic velocity–friction force characteristics are
observed with the test procedure considered. However, it is not possible to operate EDM
machines, manufactured by Charmilles Technologies S.A., with this grease. This is be-
cause of a particular memory effect: very large friction (several times larger than kinetic
friction Fc) is experienced for small displacements when passing over the position of a pre-
vious reversal point. Because known friction models do not represent this phenomenon,
it may become necessary to develop new friction models and associated test procedures
that enable characterization of the problems observed in practice with the alternative1

grease that had to be rejected.
Based on the observations presented above, the following decisions were made. Mobil

Oil Vactra No. 4 is used for the inertial drive, presented in Section 6.2, because stick–slip
motion is a desired phenomenon. The grease Blasolube 302 is applied to the vertical
axis used to achieve the experimental data, presented in Section 6.3, and illustrating the
results of this research work in the domain of standard and advanced control of drives
with friction.

6.2 Modeling of an Inertial Drive

Inertial slider actuators have been developed in the late 1980s [75, 80] for probe positioning
in scanning tunneling microscopes. These new actuators present the advantage that
extremely fine positioning (in the nanometer range) is possible with high accuracy and at
reasonable cost. The load mass of these actuators for microscopic applications is in the
order of up to 1 kg. Recently, this technology has been applied [21] to micro-manipulators
with loads of a few grams. A ‘smart’ design of the actuator, combining driving and guiding
functionalities, is straightforward if the transported loads are relatively small.

The inertial drive shown in Figure 6.2 has been designed and manufactured [29] at the
Institut d’automatique during the summer of 1997 for the purpose of illustrating friction
phenomena. The conversion from electrical to mechanical energy is realized with a stacked
piezoactuator which has very interesting dynamical properties.

This section is organized as follows: first, the experimental setup is described in Sec-
tion 6.2.1; then, the concepts of operation are explained in Section 6.2.2 using experimental
closed-loop data achieved with a simple control algorithm; the properties of the main fric-
tional interface are measured and discussed in Section 6.2.3; and finally, a mathematical
model is developed for the complete setup in Section 6.2.4.

6.2.1 Description of the Setup

The stacked piezoactuator, referenced by (1) in Figure 6.3, has a range of 10 µm and can
produce a force of up to 500 N. These values are compatible both with the range of the
useful friction levels and the gravity contribution for a load of several kilograms. The
small mass (2), manufactured from the male part of a V-bearing, is preloaded against

1Experimental study of the properties does not yet enable deciding whether the undesirable behavior
observed is related to this particular product only, or whether this is a general property of greases.
Therefore, it is preferred not to indicate the name of the product.
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Figure 6.2: Photograph of an inertial drive.

Figure 6.3: Drawing of an inertial drive.
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Figure 6.4: Simple stick–slip control.

the female part (3) by means of elastic rings (4). Motion from the piezoactuator to the
small mass is transmitted by a shaft (5) and the ball (6) in order to meet geometric and
stress requirements. The latter system is also preloaded. Finally, the position of the load,
which is fixed rigidly to piece (3), is measured by an incremental optical encoder (7) with
a resolution of 0.1 µm.

6.2.2 Simple Control

To increase understanding of the working principles of an inertial drive, it is worthwhile
to observe the performance resulting from the use of a simple controller, as illustrated in
Figure 6.4. The reference step of 20 µm is tracked after 11 steps (stepping mode). Final
position within a range of several microns is achieved in a smooth manner (scanning
mode).

More insight into the mechanism of operation is achieved with an analogy to a pizza
baker: to place a pizza into the oven, the pastry is slowly introduced with a spatula
which is then withdrawn rapidly; the pizza stays approximately where it is, owing to its
inertia and the limited friction force between the pastry and the spatula. Owing to this
mechanism of operation, where periods of sticking are followed by periods of slipping,
inertial actuators are also called stick–slip actuators.

For the inertial drive considered, a step consists of a fast motion of the piezo (1),
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Figure 6.5: Description of the races analyzed.

Standard deviation of the height s = 4.7185× 10−7 m

Standard deviation of the slope ṡ = 0.5703

Standard deviation of the curvature s̈ = 3.4260× 106 m−1

Density of peaks DL = 9.5611× 105 # /m

Spectrum width parameter β = 0.2464

Table 6.1: Statistical parameters of equivalent surface.

leading to slipping at the interface between the slider (2) and the load (3). The resulting
mechanical excitation is very rich in frequencies, leading to considerable vibrations. A
brief analysis of the position signal shown in Figure 6.4 indicates that the eigenfrequency of
the system is located around 600 Hz. These oscillations are caused by the relatively flexible
interface between the ball (6) and the flat surface of the slider (2). If these vibrations
cannot be eliminated by a better mechanical design, an enhanced control algorithm must
be found that increases damping.

6.2.3 Analysis of the V-Bearing

The principal part of an inertial drive is the frictional interface between the slider (2)
and the load (3). These parts have been realized in the setup considered with a linear
V-bearing. Therefore, exact study of the friction phenomena observed at the interface
between these surfaces has been necessary for the mechanical design of the prototype. In
addition, these results provide an excellent validation of the tribology theory summarized
in Chapter 2.
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Figure 6.6: Experimental verification of tribological results.

Experimental data is taken from the V-bearing, shown in Figure 6.5a. The longitudi-
nal motion is achieved with manual actuation by a micrometer screw. The experimental
setup has been equipped with a capacitive force and with an inductive position sensor
(accuracy ±40 nm). The particular non-isotropic surface topology of the contacting sur-
faces, illustrated by the microscopic view in Figure 6.5b, is a result of the workpiece finish
by milling. The surface profile of the races has been acquired, see Figure 6.5c, and the
statistical parameters indicated in Table 6.1 have been evaluated. These parameters and
the mechanical constants for the materials of the bearing can be used to evaluate nu-
merically the stiffness at rest that is predicted by Relations (2.7) and (2.17) for different
normal preload forces.

Based on the Dahl’s curve experiment, discussed in Section 3.4.4, the results shown in
Figure 6.6 are achieved. It is observed that the static friction level Fs and the stiffness at
rest σ0 depend linearly on the applied normal load. Therefore, the space constant xs = Fs

σ0

that characterizes Dahl’s curve, see Figure 3.8, is independent of normal load N : for the
dry contact its value is xs = 180 nm, and for the thick oil film xs = 50 nm.

The measured stiffness at rest is independent of lubrication, which confirms the as-
sumptions proposed in Section 2.3.2; moreover, the theoretical predictions and the exper-
imental data points match. These observations support the statement that the physics
related to the properties represented by the parameter σ0 for very small displacements,
are well understood.

In addition, it results from the plots shown in Figure 6.6 that static friction is reduced
by the oil film, applied into the interface, by approximately a factor of 3.6. The identified



98 CHAPTER 6. APPLICATIONS

Figure 6.7: Bond graph of an inertial drive.

shear strength τB for the unlubricated case is one order of magnitude larger than the
value that has been calculated for a clean crystal surface of α-iron [69]. This difference
can be explained by imperfections in the crystal structure at the interfaces between the
pair of races considered and interlocking in the x-direction due to surface roughness.

6.2.4 Modeling

The last issue to be solved is the development of a simulation model for the relatively
complex setup. The objective is to base the mechanical design on simulation data in
order to meet the specifications given with the manufacturing of one prototype only. The
requirement for the drive built at the Institut d’automatique was the possibility of actuation
in both horizontal and vertical directions where gravity components must be overcome.

When the methodology, recalled in Appendix A.1, is applied to the inertial drive
system, the bond graph shown in Figure 6.7 results. The serial ‘s’ junctions correspond
to the rigid bodies of the system (overbraces in Figure 6.7) and the parallel ‘p’ junctions
are related to the interfaces between them (underbraces in Figure 6.7).

The bond graph methodology is a very efficient technique for rapid modeling of com-
plex systems because of the following advantages: (i) the systematic assignment of bond
graph junctions to rigid bodies and interfaces accelerates modeling of the mechanical
part of the setup considered; (ii) the electrical and the mechanical parts of the system are
described with the same symbols; and (iii) the link between these two domains is straight-
forward with the concept of the transformer ‘TF’. Alternative approaches can lead to the
equations of motion also, however the risk of introducing errors is considerable compared
to a systematic methodology like bond graphs.

A voltage amplifier, denoted by EAS (effort amplifier with saturation), with gain ge
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transforms the low power signal uin into the voltage ua and the associated current ip
which flows across the piezo-crystal. For technical reasons the amplifier output current
ip is bounded by imax. The equivalent output resistance R is evaluated using the data
sheet of the amplifier. Furthermore, the response time depends on the capacitance C of
the piezo-crystal. In addition, it is proposed to use an empirical linear model ga vp for the
influence of the deformation velocity vp of the piezo. Therefore, if the amplifier current is
not saturated, the input circuit is described by

ip = C
dup

dt
+ ga vp (6.1)

ua = ge uin = R ip + up (6.2)

and if the amplifier current is saturated and as long as ua 6= geuin

ip = imax signuin = C
dup

dt
+ ga vp (6.3)

ua = R imax signuin + up (6.4)

It is known that switching between these two models for saturated and non-saturated
amplifier current can create simulation problems. However, an extended discussion of
the relevance of, and possible solutions to, these difficulties is outside the scope of this
chapter.

The mechanical part of the piezoactuator with the mobile mass mp is subject to 6
forces: (i) the driving force ga up delivered by the piezo-effect; (ii) the linear, and (iii)
the nonlinear contribution of the internal friction force fp(vp, wp); (iv) the elastic force of
the piezo-crystal ka xp; (v) the force kb(xp−xs) transmitted through the elastic ball–flat–
plane contact; and (vi) the force used for acceleration of the mass mp. The model for the
mechanical part of the piezoactuator is thus of order 3. The natural system states are
piezo position xp, velocity vp and friction state wp.

To get the state space model for the mechanical part of the piezo the rules proposed
in Section A.2 can be applied: (i) the state derivatives are the velocities and accelerations
of the rigid bodies, and (ii) the generalized force transmitted through an interface is
expressed by a causal map, between the difference of velocities at the contact and the
resulting force. This methodology leads to the system dynamics

ẋp = vp (6.5)

v̇p =
1

mp

(
ga up − σp2 vp − σp0 wp − σp1

(
vp − σp0

Fcp

|vp|wp

)
− ka xp − kb (xp − xs)

)
(6.6)

ẇp = vp − σp0

Fcp

|vp|wp (6.7)

where an empirical linear model for the driving force ga up delivered by the piezo-effect is
used. A simplified form of the LuGre friction model is describing the internal friction in
the piezoactuator. This approach has been chosen although multiple Coulomb models in
parallel have been proposed previously [44] to describe the hysteresis effect observed for
piezoactuators. The description of internal friction using the LuGre model is simply more
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efficient for virtual prototyping because the integrated modeling minimizes the number
of states and parameters and optimizes simulation speed by a continuous right-hand side
to the equations of motion ẋ = f(x, u). In addition, for simplicity it is assumed that the
maximum static friction Fsp equals the Coulomb level Fcp.

For the ball–flat–plane contact, the Hertz model could be used, leading to a cubic
relationship between the displacement and the force. However, owing to the preload
force, which is assumed to be dominant, the linearized model is certainly sufficient.

On the slider, or small mass ms, only two forces are acting besides the inertial force,
namely the transmitted force kb(xp − xs) and the interfacial friction force fi(vs − vl, wi).
The corresponding dynamics are

ẋs = vs (6.8)

v̇s =
1

ms

(
−σi2 (vs − vl)− σi0 wi − σi1

(
vs − vl − σi0

Fci

|vs − vl|wi

)
+ kb (xp − xs)

)
(6.9)

ẇi = vs − vl − σi0

Fci

|vs − vl|wi (6.10)

where xs, vs, and wi denote slider position, slider velocity, and interfacial friction state,
respectively. Although oil lubrication has been chosen for this interface, resulting in a
certain difference between the breakaway force Fsi and Fci, a simplified LuGre model
is used in Relation (6.10), but only for complexity reduction of the formulae presented
herein.

The load mass ml is driven by the interfacial friction force fi(vs − vl, wi) and slowed
down by the bearing friction fr(vl, wr)

ẋl = vl (6.11)

v̇l =
1

ml

(
−σl2 vl + σi2 (vs − vl) + σi0 wi + σi1

(
vs − vl − σi0

Fci

|vs − vl|wi

))
+

+
1

ml

(
−σl0 wr − σl2

(
vl − σl0

Fcl

|vl|wr

))
(6.12)

ẇr = vl − σl0

Fcl

|vl|wr (6.13)

where xl and vl are load position and velocity, respectively, while wr is the bearing friction
state.

The model parameter identification is still an open problem. Nevertheless, it is
possible to read a certain number of parameters from the data sheets, and to es-
timate certain additional values from physical properties (surface roughness, Young’s
modulus etc.) The remaining (unknown) parameters can be tuned interactively in or-
der to match the simulation and experimental data. This leads to the following val-
ues: C = 10−6 F, ge = 100, R = C

2π 1500
Ω, imax = 0.5 A, ga = 5.6 N V−1, ka =

560 · 106 N m−1, mp = 0.05 + 7800 · 0.025 · π 0.012

4
kg, σp0 = 109 N m−1, σp1 = 105 N s m−1,

σp2 = 0, Fcp = 500 N, kb = 107 N m−1, ms = 7800 · 0.023 kg, ml = 1 kg, σi0 =
0.2 · 109 N m−1, σi1 = 2000 N s m−1, σi2 = 200 N s m−1, Fci = 10 N, σl0 = 20× 106 N m−1,
σl1 = 5000 N s m−1, σl2 = 500 N s m−1, Fcl = 0.6 N.
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Figure 6.8: Electrical discharge machining.

6.3 Control of a Vertical Axis for EDM

The second application, presented herein, is the control of a vertical axis. This drive has
been designed and manufactured by Charmilles Technologies S.A. (Meyrin, Switzerland)
and is used for tool positioning in Electrical Discharge Machining (EDM). In order to
provide the industrial context of this work, first a brief description of EDM is presented
in Section 6.3.1. In Section 6.3.2 the vertical axis considered is described. Section 6.3.3
provides the parameter identification results. In Section 6.3.4 the tracking performance
resulting from PI velocity control is illustrated. Section 6.3.5 presents the experimental
data achieved with PID position control. In Section 6.3.6 the feedforward approaches
are discussed. Section 6.3.7 illustrates the performance achieved with the input–output
linearization approach. Finally, in Section 6.3.8 a catalogue of solutions to position control
is presented, summarizing the previous results.

In the EDM process, metal is removed by generating high frequency sparks through a
small gap filled with a dielectric fluid. This technique enables machining of complicated
shapes in hard metals, including refractory alloys. The principal domains of application
for EDM are production of molds (used for casting, injection or sintering) and dies (needed
for extrusion, cutting or heading). There are two types of EDM machines: (i) the die
sinker machine illustrated in Figure 6.8 and (ii) the wire machine.

For die sinkers, the cathode is usually the workpiece and the anode serves as the



102 CHAPTER 6. APPLICATIONS

shaping tool. Furthermore, any shape can be cut into the workpiece by matching that
of the (negative image) electrode. Although undesirable, there is some erosion of the
electrode (tool) which is called the wear and has to be minimized and controlled. The
electrode does not come into physical contact with the workpiece and, therefore, does not
exert any force (except via plasma pressure) upon it. This enables machining of extremely
fine structures. Historically, heavy hydrocarbon liquids, such as cutting oils, have been
used as dielectrics in die sinkers. Todays technological drawbacks for die sinking EDM is
the corner wear and the contamination of the dielectric.

The wire machine cuts and shapes like a jigsaw. Here water is generally used as the
dielectric. The moving cathode wire can cut at different angles into the anodic workpiece.
Although the wire and the workpiece do not come into physical contact, the wire is shaped
by the electrostatic and the hydrodynamic forces. This deformation leads to geometrical
errors on the workpiece that are reduced by an appropriate axis control. The pulse times
for wire machines are usually smaller than for die sinkers to allow high erosion rates on the
workpiece. Some erosion of the moving cathodic wire is allowed, but high erosion results
in wire breakage, the dominant practical and economic problem in wire EDM operation.

6.3.1 Brief Description of the EDM Process

A necessary condition for achieving good machining quality is to control the gap between
the electrode (tool) and the workpiece. The sparking gap ranges from about 10 to 100
microns, respectively for finish and roughing. The control problem is therefore the regu-
lation of the gap, that is measured only indirectly by processing some secondary signals
since the actual gap is not measurable.

Some concepts of modern EDM control have been described in review [79]. Therein, a
simplified linear model has been used to describe the dynamic behavior locally in the state
space. Furthermore, an adaptive control scheme has been proposed to achieve enhanced
machining performance.

The basic elements of EDM that have been subject to standards [96] are illustrated
in Figure 6.9. The vertical displacement of the electrode (tool) is clearly indicated in
the drawing that shows the workpiece and the electrode. In order to understand the
operation of EDM, consider the experimental voltage and current signals of the plots to
the right. Material removal is achieved by generating high frequency sparks through the
gap between the electrode and the workpiece. By an appropriate choice of the polarity and
other process parameters, the wear of the electrode is minimized, and material removal
on the workpiece is optimized. A complete description of the process and the concepts of
parameter selection is already available [36, 74].

The voltage and current profiles show a cycle of three phases, see Figure 6.9. First, a
high voltage is applied during the delay time td. Then, the spark is formed and machining
takes place during the period te with a machining current of Imax and a voltage across the
gap of Uarc. At the end of the cycle, the desired dielectric properties are recovered during
the pause time to. In the case of the die sinkers manufactured by Charmilles Technologies
S.A., the discharge current Imax is controlled and the discharge voltage depends on the
gap’s properties.

A plasma channel grows during the on-time te. Unlike a gas, the surrounding dense
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Figure 6.9: Operation of electrical discharge machining.

liquid dielectric restricts the plasma growth, concentrating the input energy Uarc Imax te
into a very small volume. Energy densities of up to 3 J/mm3 result, causing local plasma
temperatures to reach as high as 40’000 K. Dynamic plasma pressures rise to as much
as 3 kbar owing mainly to inertial (density) effects. Viscosity effects are thought to be
responsible for the plasma shape. During this on-time, the high-energy plasma melts
both electrode (tool) and the workpiece by thermal conduction, but limited material
vaporization occurs owing to the high plasma pressures. Furthermore, the anode first
melts rapidly owing to the absorption of fast-moving, light electrons at the start of the
pulse, but then begins to resolidify after a few microseconds. This is thought to be caused
by the expansion of the plasma radius at the anode which causes a decrease in the local
heat flux at the anode surface. Melting of the cathode is delayed in time by one or
two orders of magnitude beyond that of the anode, owing to the lower mobility of the
heavy, positive ions. Moreover, because the cathode is emitting electrons, the plasma
radius at the cathode is also much smaller, thereby behaving like a point heat source.
The temperature rise in the electrodes results from conduction and the Joule effect. It
was found that Joule heating is negligible. This is because the current density decreases
strongly with increasing depth beneath the electrode surface.

At the end of the on-time, a pause period to begins. During this period, a violent
collapse of the plasma channel and the vapor bubble occurs, causing the superheated,
molten liquid on the surface of both electrodes to explode into the liquid dielectric. While
some of this material is carried away by the dielectric, the remainder of the melt in the
cavities resolidifies into place, awaiting removal by a later spark.
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Figure 6.10: Scheme of a vertical axis drive and block diagram for EDM control.

6.3.2 Drive of the Vertical Axis and Overall Control Structure

The complete control structure of an EDM axis is illustrated in Figure 6.10 with a block
diagram. The input to the EDM process is the vertical position of the tool. This position
is combined with internal states of the EDM process to give the electrical gap width. A
typical gap voltage signal for EDM is illustrated in Figure 6.9. The input of the EDM
control is based upon an analysis of this gap voltage, realized by a complex electronic
circuit, called the gap monitor. This monitoring and the EDM control are implemented
in a multi-processor architecture that also includes some application specific integrated
circuits (ASIC). One of the outputs of this machining controller is the reference velocity
for the vertical axis.

The drive consists of a DC-motor, a belt transmission with gear ratio 1:4 and a ball
screw and nut transmission with gear ratio 5 mm/revolution. All bearings are preloaded in
order to eliminate backlash. Velocity is measured either directly with a tachometer or by
means of numerical derivation of the signal from an optical position sensor. Two position
sensors are available: an additional optical encoder of resolution 200’000 increments per
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Figure 6.11: Identification: steady-state characteristics.

revolution, mounted on the ball screw, and the standard linear encoder of resolution
0.5 µm on the tool gripper. In order to make physical sense, all parameters and signals
are reduced to motor variables in the following.

It is experimentally verified that the velocity measurement based on numerical deriva-
tion of the screw position has a better signal-to-noise ratio than the tachometer mounted
on the motor axis. The linear position sensor on the tool gripper has only a resolution
of 2’500 increments per motor revolution. All data presented in the following are based
therefore on the additional optical encoder, mounted on the screw.

The drive control is implemented in a heterogeneous architecture, including an analog
sliding mode motor current control loop, and a digital velocity and/or position control
algorithm.

6.3.3 Identification Results

Steady State Characteristics Identification results for the steady state characteristics
are shown in Figure 6.11. The 24 data points are obtained from tracking of a triangular
position reference with various amplitudes and frequencies. Owing to perturbations in
the drive, considerable uncertainties are present which are indicated by the error bars.
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Figure 6.12: Identification: dynamics for presliding.

Parameter identification is based on the optimization of the quadratic torque prediction
error. It results that the characteristics for positive and negative velocities, respectively,
is quasi linear, i.e. Fs ≈ Fc. Therefore, the parameter vs identified makes only little
sense. Furthermore, the influence of the offset term Fg appears clearly in Figure 6.11.

The comparison of the results for this and the following experiments is simplified in
the summary that is provided in Table 6.2 at the end of this section.

Dynamics in the Presliding regime Identification results for the dynamics in the
presliding regime are shown in Figure 6.12. On top, the temporal evolutions of torque
input and position output are shown. It is easily verified that the system remains within
presliding because the amplitude of the torque excitation is only 0.1Fs. At the bottom, a
comparison of different parametric identification methods is provided: least squares (LS),
least squares using deviation variables (LSdv), instrumental variables (IV) after 20 iter-
ations, instrumental variables using deviation variables (IVdv) after 20 iterations, and
Box–Jenkins (BJ). Each cross indicates the result for a set of 3000 samples at a sampling
period of 3.14 milliseconds. In order to provide an indication of reproducibility, 15 data
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Figure 6.13: Identification: Dahl’s curve.

sets are analyzed for each parameter and each method.

It is observed that the use of deviation variables is mandatory to obtain unbiased
results for the least squares and the instrumental variable methods. For the Box–Jenkins
method, the mean of the signals not need to be removed before entering the algorithm.
The different estimations for inertia J and the stiffness at rest σ0 remain within an interval
of ±10% around the mean value. The results for the damping coefficient σ1 +σ2, however,
are only reproducible within ±20%. A comparison with previous identification results [3]
shows that the reproducibility can be increased considerably by increasing the resolution
of the position sensor.

Dahl’s Curve Identification results for Dahl’s curve are illustrated in Figure 6.13. It
is observed that the estimates for the parameters Fg and Fs are in agreement with those
achieved based on the steady-state characteristics experiment. However, the comparison
of the plots for the model and those measured indicate certain differences. The parameter
σ0 that results from the iterative instrumental variable method, applied to estimate the
parameters in (3.51), is underestimating reality. A comparison of the data in Table 6.2
also indicates that the value for σ0, measured in the presliding regime, is about 5 times
larger than the value achieved from Dahl’s curve.

Better results from Dahl’s curve might be achieved if an alternative optimization cri-
terion was selected. In addition, consistency of the results from the different identification
experiments could be increased if the perturbations in the drive were reduced.
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Parameter
[unit ] Steady state Presliding IVdv Dahl’s curve

Adaptive
feedforward

J [kg m2] — 6.66× 10−4 ± 3% — —

Fg [Nm] 8.08× 10−2 ± 125% — 7.70× 10−2 ± 70% 4.82× 10−2

Fs [Nm] 3.29× 10−1 ± 20% — 2.67× 10−1 ± 20%
2.94× 10−1

Fc [Nm] 3.46× 10−1 ± 20% — —

vs

[
rad
s

]
(2.85× 10−1) — — —

σ0

[
Nm
rad

]
— 1.01× 102 ± 5% (1.80× 101) 3.13× 101

σ1

[
Nm s
rad

]
1.12× 10−1 ± 40% — —

σ2

[
Nm s
rad

]
4.13× 10−3 ± 100% — — —

σ1 + σ2

[
Nm s
rad

]
— 1.17× 10−1 ± 33% — —

xs [rad] 3.26× 10−3 ± 26% (1.48× 10−2) 9.39× 10−3

Table 6.2: Numerical values for a vertical EDM axis (in parenthesis, the values with only
limited confidence).

Summary A comparison of the results achieved from the different experiments is pro-
vided in Table 6.2. Because of the particular properties of the vertical axis drive, some
values have only limited technical meaning, this is emphasized using parenthesis. For the
other entries, the estimated reproducibility is indicated in percent around the mean value.

The considerable uncertainty for the results achieved with the steady-state character-
istics is related to a (position dependent) torque ripple that is present in the drive. This
additional perturbation is caused by: the collector of the DC-motor, machining errors in
the ball bearings, and dust that inevitably enters the mechanism after a certain time of
operation.

The evaluation of the values for the material damping σ1 and the characteristic space
constant xs requires the two experiments steady-state characteristics and dynamics in
presliding. Furthermore, excellent reproducibility is observed for the results achieved
from the dynamics in presliding.

For completeness, the parameters identified with the adaptive feedforward algorithm,
proposed in Section 5.1.4, are indicated in the last column. The experimental conditions
are specified in Section 6.3.6. Because the adaptation gains are chosen such that the
parameter values change only very slowly, the indication of confidence intervals is obsolete.
Observe that the estimation of gravity Fg is in agreement with the results from the other
experiments. Furthermore, note that the identification of the friction levels Fc = Fs and
of the stiffness at rest σ0 leads to values that are in between those achieved from Dahl’s
curve and those obtained from the steady-state and presliding experiments. The estimated
characteristic space constant xs is of the same order of magnitude for all experiments.
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Figure 6.14: Performance of PI velocity control.

6.3.4 PI Velocity Control

Experimental data achieved for the PI velocity control (4.2) with the vertical EDM axis
is shown in Figure 6.14. The control parameter values, for example the sampling period h
for digital implementation, the velocity gain kv and others, are indicated for completeness
of the presentation. In (Plot a), the transient performance for reference velocity steps
(with zero velocity crossing) is illustrated. The scaling of the axis is chosen in order to
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allow comparison for a small and a large step.

The velocity gain kv and the position gain kp are selected in order to verify the stability
requirements (4.22) and (4.23) with the mean values for the parameters, summarized in
Table 6.2. Unfortunately, the control parameters that result from a worst case analysis
cannot be implemented for technical reasons: the gains required are too large and the
measurement noise saturates the control action. For this technological reason and owing
to the limited industrial value of the theoretical developments in Section 4.1.5, checking
of additional conditions for global asymptotic stability are left to the reader.

A detailed analysis of (Plot a) shows that the reference step induces a glitch in the
applied torque. This control impulse is sufficient to drive the measured velocity very close
to the reference velocity for a short period of time. Thereafter, the measured velocity
settles to an intermediate value and regains its reference only after a time that is de-
pendent on the step size. Therefore, the observed control performance that is achieved
with PI velocity control can be acceptable for applications with generally large veloci-
ties. This conclusion expresses simply industrial experience, where model based friction
compensation schemes are rarely implemented.

However, certain risks remain with PI velocity control. The undesirable phenomenon
of stick–slip motion can appear even for drives with Fs ≈ Fc as illustrated in Figure 6.14b.
It is observed that the system’s nonlinearity is at the origin of continuous oscillations
around the setpoint. Frequencies, ranging from 10−4 to 20 Hz, have been observed pre-
viously [59]; but, as illustrated in Figure 6.14b, also larger frequency can appear. Often,
the phenomenon of stick–slip motion is amplified by the torque ripple that is generally
present in drives.

A particular property of the vertical EDM axis considered is that Fs ≈ Fc. Therefore,
the oscillations, related to the stick–slip phenomenon, must include zero velocity transi-
tions in order to excite the system’s nonlinearities that are at the origin of the observed
limit cycling.

6.3.5 PID Position Control

Various results for point-to-point tracking achieved with the PID control (4.67) are shown
in Figure 6.15a-d. The control parameters are indicated in the plots. The Bode plots
corresponding to the high velocity and the presliding regime are provided in Figure 6.16.
Because the objective of this section is to illustrate only generic properties, it is left to
the reader to check the global asymptotic stability conditions, provided in Theorem 4.2,
for each case shown.

In order to reduce undesirable control saturation effects, the reference trajectory is
low-pass filtered according to

Hlp(z) =
(1− α) z

z− α
(6.14)

with a settling time that should be compatible with the EDM application. For the exper-
imental results shown in Figure 6.15 the filter parameter is α = 0.8.

When the results for PID control are compared, it is observed that: (i) small bandwidth
PID control leads to acceptable performance for large steps (Plot a) but to large settling
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Figure 6.15: Performance of PID positioning.

times for very fine positioning (Plot b); and (ii) medium bandwidth PID control (Plots c–
d) leads to comparable settling times for small and large displacements. Further increase
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Figure 6.16: PID positioning: simplified synthesis with Bode plots.

of controller gains, i.e. large closed-loop bandwidth, requires enhanced sensing quality,
which has not been available.

In addition, note that small and medium bandwidth controller design, based on the
preslinding regime only, leads almost inevitably to unstable solutions within the high
velocity regime. This fact is displayed in (Plot c) by the badly damped oscillations, and
in (Plot e) with the initiation of the hunting effect (stable limit cycle/oscillation around
a constant reference, maintained by the system’s nonlinearity). An explanation for this
behavior can be obtained from an analysis of the corresponding Bode plots in Figure 6.16:
the phase and gain margins for the high velocity regime of case (c) are almost zero, and
even worse, the high velocity regime of case (e) is obviously unstable. The closed-loop
nonlinear system is therefore not globally asymptotically stable, although, in the presliding
regime, all controller configurations shown have excellent stability margins (infinite gain
margin and a phase margin of at least π

2
).

The relevance of an appropriate PID controller synthesis is illustrated in Figure 6.15e.
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The objective is to exclude the oscillations observed in that experiment for time t > 0.
This goal is achieved if the closed-loop regulation system (constant reference) is globally
asymptotically stable.

At the beginning of the experiment shown in Figure 6.15e, only PD control has been
applied, leading to an observable steady state error resulting from friction. About 0.8 s
before the reference step, the integral action is switched on. Immediately, the positioning
error moves towards zero, i.e. the closed-loop system is (locally) asymptotically stable.
However, it is obvious that the reference step moves the system states out of the domain
of attraction of the invariant set containing the reference position. Rapidly, a stable limit
cycle is established, called the hunting effect. The frequency of about 25 Hz for these
vibrations is relatively high compared to other experiments [27, 49], where only 0.04 and
0.3 Hz have been reported. This difference in observed frequency can presumably be
explained by the fact that Fs ≈ Fc for the vertical EDM axis considered.

6.3.6 Feedforward Friction Compensation

The interest for model based friction compensation results, for example, from an analysis
of the tracking performance achieved for a sinusoid reference of amplitude 0.2 rad ≈ 20xs

and frequency 1 Hz. The results for PD, PID, and PID with LuGre feedforward control
are shown in Figure 6.17 with plots for position, positioning error and motor torque. The
control parameters are summarized in Table 6.3.

The identification procedure completed in Section 6.3.3 required about one day for
preparing the experiments and analyzing the data. This is relatively time consuming,
and, as a more efficient approach, it is proposed to apply directly the adaptive control
scheme (5.14)–(5.16) to the simple feedforward algorithm (5.2)–(5.3), (5.6). The param-
eter adaptation with relatively small gains αg, α0 and αc leads, after about 5 minutes, to
the numerical values indicated in Table 6.2.

When tracking is achieved with PD control only, see Figure 6.17a, it is observed that
a considerable position error (about 7 mrad) is present. Performances are improved, as
illustrated in (Plot b), already to a quite acceptable level by simply adding integral action.
However the quadrature glitch, observed in the error plot after velocity reversals at time
t = 0.25 and 0.75 s, has still an amplitude of 2 mrad. Finally, excellent tracking is achieved
by the PID+LuGre-feedforward control algorithm which reduces the quadrature glitch to
about 1 mrad, see (Plot c). To illustrate the relevance of the approach, the feedforward
control signal is shown in the torque plot: feedforward control matches almost perfectly
overall control action and the PID controller concentrates on perturbation rejection.

Furthermore, the measurement noise level is indicated in the error plots by the value
for one sensor increment ∆ = 2π

50′000 = 1.25 × 10−4 rad. The quadrature glitch for PID
control is therefore 16 increments, whilst the maximum position error resulting for control
with the additional LuGre model based feedforward is only 8 encoder increments.

Real-time results comparing the performance achieved with feedforward based on the
two friction models have been presented recently [1]. However, the results achieved with
the KFM based feedforward compensation are not shown here because of the small interest
for the application considered.
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Figure 6.17: Sinus tracking: PD, PID, and PID with LuGre feedforward.

6.3.7 Input–Output Linearization by State Feedback

Performances achieved by different input–output linearization techniques are illustrated
in Figure 6.18 with the tracking behaviour for the same sinusoid reference signal as used
in the previous section. This allows comparison of maximal positioning errors max |e(t)|
and standard deviations stde(t).

Figure 6.18a shows the performance achieved: with the friction state observer (5.17),
proposed by the Lund–Grenoble group [27], the input–output linearization (5.39), and
a PID control. Internal stability problems that arise from the digital implementation of
the friction state observer have been solved using a similar approach to the feedforward
algorithm (5.8). Implementation details can be found in the C-code in Appendix B.

Although no stability proofs are available when integral action is chosen, this option
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PD PID LuGre LuGre Luenberger KFM
feedforward feedback observer feedback

h s 1.00× 10−3

kp
Nm
rad 6.00× 101 6.00× 101 6.00× 101 6.00× 101 2.00× 102 6.00× 101

kd
Nm s
rad 1.50× 10−1 1.50× 10−1 1.50× 10−1 1.50× 10−1 — 1.50× 10−1

ki
Nm

rad s — 6.00× 103 6.00× 103 6.00× 103 2.00× 104 —

F̂g Nm — — 4.82× 10−2 4.82× 10−2 4.82× 10−2 4.82× 10−2

F̂s Nm — — 2.94× 10−1 2.94× 10−1 2.94× 10−1 2.94× 10−1

σ̂0
Nm
rad — — 3.16× 101 3.16× 101 3.16× 101 —

kv
Nm s
rad — — — — 5.00× 10−1 —

αg
1
s — — 1.00× 10−2 — — —

α0 — — 1.00× 102 — — —

αc
1
s — — 1.00× 10−1 — — —

Ĵ kgm2 — — 6.66× 10−4

σ̂1
Nm s
rad — — 1.12× 10−1

σ̂2
Nm s
rad — — 4.13× 10−3

Table 6.3: Parameters for real-time experiments (position control).

is selected because experience has shown that the tracking performance can be increased.
However, note that a certain risk exists of creating an unstable control loop by the addition
of the integral action. The positioning error signal with this control approach contains
a quadrature glitch of 1.4 mrad that is about 40% larger than for the feedforward so-
lution. In addition, observe that the friction compensation signal ‘model based control’
is noisy, which is not the case for the feedforward solution. These observations lead to
the conclusion that the robust, adaptive feedforward solution is preferred to the feedback
approach.

In the next phase, the Luenberger-like observer has been implemented. The corre-
sponding results are shown in Figure 6.18b. Because velocity is estimated by the state
observer, the resulting relatively smooth signal (compared to a simple numeric derivative)
can be used for feedback in order to increase damping. The Luenberger-like observer based
algorithm has given very promising results for the tracking of reference steps [2], how-
ever, in the context of sinus reference tracking and with a sampling period of h = 1 ms
for digital implementation, the performance is very comparable to the other approaches
(feedforward and the LuGre observer). The increased complexity of the algorithm imple-
mented, the difficult tuning procedure, and the relatively low robustness versus parameter
uncertainties (compared to the feedforward solution) are the main disadvantages of the
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Figure 6.18: Sinus tracking: input–output linearization.

Luenberger-like observer based compensation approach.

Finally, the tracking performance for the KFM based feedback friction compensation
is shown in (Plot c). Persistent oscillations are observed for this particular benchmark test
because the reference velocity is never high enough to enter the region where exponential
stability is achieved. It is therefore obvious why the KFM based compensation algorithm
has only limited success in real applications.

6.3.8 Catalogue of solutions

The catalogue of solutions for position control is shown in Table 6.4. It is obvious that
the robust PD and PID algorithms require a small identification effort and that robust
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PD PID LuGre Adaptive LuGre LuGre Luenberger KFM
feedforward feedforward feedback observer feedback

Identifica-
tion effort

Robust
stability

Step
response

Sinus
tracking

Table 6.4: Catalogue of solutions for position control.

stability is easily achieved. The drawback is that the tracking performance resulting from
PD or PID control, is limited.

Model based compensation techniques require a considerable identification effort, un-
less an adaptive scheme or the simple KFM is used. Robust stability is easy to prove for
feedforward solutions, whilst no proofs are available for the complex feedback algorithms,
and worse still, it is known that the KFM based algorithm often leads to undesirable
vibrations. Excellent sinus tracking performance is achieved with the LuGre model based
algorithms. However, due to the fact that the problem of actuator saturation has not yet
been solved, only medium performance is achieved for step responses.

From these considerations, it is concluded that the ‘best’ solution for drive control
in industrial applications is formed by two phases: (i) the adaptation of the control
parameters for a suitable benchmark reference during an initialization/auto-tuning phase,
followed by (ii) a fixed parameter LuGre model based feedforward compensation during
normal machine operation. The parameters for auto-tuning can be fixed once by a control
engineer for a whole family of products. Thereafter, during the whole life-cycle of the
machine, operators can independently update the controller parameters by calling up the
initialization procedure.
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Chapter 7

Conclusions

THE results presented in this work include modeling, identification and control of
drives with friction. The topics discussed are presented from different viewpoints:

physics, mechanics, nonlinear systems analysis and digital control. Therefore, it aims
to be a user’s manual for engineers, faced with the problems encountered during control
synthesis for drives with friction. Below, the relevance of the methodologies proposed and
potential directions for further research are summarized.

7.1 Relevance of the Methodologies Proposed

The results presented previously can be classified into two categories: (i) modeling of
the drive based on technical drawings and experimental data, and (ii) synthesis of the
controller. These two phases have been illustrated in Figure 1.2 in order to provide a
context for the postulations announced in Chapter 1 and discussed in the following.

• Three experiments are necessary to identify all model parameters

• The LuGre model must be considered for applications with small displacements

• The stability analysis is simplified with a passivity based approach

• Feedforward is the best solution for input–output linearization

• An easy-to-use auto-tuning procedure is available with the adaptive feedforward
control algorithm.

During the discussion of the issues and solutions that appear in these two steps (modeling
and controller synthesis), several new results have been presented. From three experiments
it is possible to estimate all of the parameters of a simple drive with friction. This
achievement is indispensable to the usefulness of all further discussion.

Modeling for control aims to provide the adequate model complexity (number of states
and parameters) for a given application. Therefore, possible model simplifications must
be discussed. In certain particular cases, a rigorous model order reduction has been
achieved with the singular perturbation theory: modern complex models are required
in all situations with ‘small’ displacements. Applying the concepts presented, it is now
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possible to decide whether a given application requires the use of the complex LuGre
model, or whether the simple KFM describes the dominant phenomena with sufficient
precision. The governing parameter for this decision is the characteristic displacement
xs = Fs

σ0
of the drive.

To achieve excellent tracking performance, a high loop-gain approach, which is ex-
tremely sensitive to measurement noise, can be applied. An alternative methodology is
an input–output linearization that can be achieved: either by feedback, based on an esti-
mation of the actual states; or by feedforward, based on an appropriately generated control
action that compensates the friction force that would appear in the case of perfect track-
ing. For industrial applications with important security demands, simple solutions based
on a PID control loop are preferred. In practice, model based feedback compensation
approaches will probably never be important for high precision positioning applications
because of the numerous drawbacks and dangers observed previously: difficulties in guar-
anteeing stability, chattering observed in the case of parameter mismatch etc. Feedforward
model based friction compensation techniques, however, present a considerable interest
in practice because of the small additional computing power required and the simple and
safe tuning procedure.

Proofs for robust closed-loop stability have been achieved with a passivity based ap-
proach. This methodology allows a modular analysis because the input–output properties
of appropriately chosen subsystems can be used to evaluate the behavior of the overall
system. The conditions for asymptotic stability of the closed-loop are expressed with
relations in the control parameter space, for example kv > . . . In addition, it is possible to
estimate the robustness of the tracking performance with the concept of induced norms
of maps in the signal space.

Finally, a catalogue of solutions for the control of drives with friction has been pre-
sented. It shows that PID control, enhanced by adaptive feedforward, is the most interest-
ing algorithm because the identification effort is reduced, and stability of the closed-loop
results if the adaptation gains are sufficiently small. In addition, acceptable step response
and excellent sinus tracking performance is achieved. The problem of control of simple
drives with friction is therefore solved, and it is claimed that any further improvement
of tracking performance will be related to a considerable technological investment (better
sensors and motors) and scientific effort (more complex models for friction). The C-Code
for all algorithms discussed is listed in Appendix B for completeness, and for eventual
testing for other applications.

The objective of this work has been achieved: a generic solution is provided for the
synthesis of control for drives with friction. This has been accomplished through the dis-
cussion of a large variety of aspects: description of the physical phenomena, integrated
friction modeling and parameter identification, and methodologies for friction force com-
pensation.

7.2 Further Research Directions

In this work, the modeling of complex drives has been briefly discussed. However, solu-
tions to the problem of model parameter identification are not presented for these drives.
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The following situations require further investigation. For drives with several friction
interfaces, for example the inertial drive setup, it is probably necessary to increase the
number of sensors in order to identify all of the parameters of the system. The same
problem of observability arises for drives with flexible transmission elements where one
output is inpresumably sufficient also.

To extend the results on controller synthesis, the adaptive control architectures should
be analyzed in more detail. A rigorous stability analysis of the indirect adaptation law
proposed, that has been skipped herein, could, for example, be based on a singular per-
turbation analysis.

In addition, new algorithms could take into account model enhancements that describe
the reversal point memory and other phenomena. Although these new controllers will be
based on a better description of physical reality, it is not certain, however, that they will
also provide better control performance than the LuGre model based algorithms in terms
of performance and stability. Therefore, it would be interesting to know the relevance of
the modeling mismatch accepted with the LuGre model in order to provide a valuable
basis for deciding whether the LuGre model really needs to be extended or whether the
results presented in this work are sufficient to achieve the performance specified for the
application considered.
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Appendix A

Modeling of Complex Systems

Modeling and simulation are central to the design of control systems, since for complex,
large-scale, nonlinear industrial plants, the analytical design approaches known do not
apply, or require an unacceptable effort. Several software packages, see Table A.1, for
object oriented modeling have been proposed therefore in order to help mechanical design
engineers.

Nevertheless, severe problems remain for a correct description of multi-body mech-
anisms with friction, when the KFM is used. The typical computer formulation of the
KFM is based on switching between particular regions of operation. It can be observed
that the transitions between these domains are difficult, mainly when different switching
events take place simultaneously [73]. Note that the unique existence of exactly one solu-
tion for the initial value problem is not even shown mathematically for these situations,
which explains the difficulties encountered.

Fortunately, the use of the dynamic LuGre model introduces a normalization that
makes simulation straightforward. Below, it is shown that even for complex systems the
model can be transformed into a set of ordinary differential equations if the LuGre model
is used, instead of a system of difficult differential algebraic equations resulting from the
application of the KFM.

A.1 Bond Graphs for Mechanical Systems

The main problem arising when modeling large systems is that the control engineer is
easily restricted to three fundamental concepts [28]: (i) state-space models form the basis
of physics, (ii) signals capture physics, and (iii) causality forms the basis of physics. In [28],
energy or power flow methods are suggested to solve the problem of modeling complex
systems in an efficient way.

If all forces in the system are conservative, i.e. for a system without dissipation, it is
possible to use Lagrangian or Hamiltonian equations to model the mechanical device.This
approach, however, which is based on the total energy of the system, does not allow use
of the energy of subsystems. Therefore, no modular analysis is possible which presents a
considerable drawback.

To overcome these deficiencies, the bond graph representation [43] was developed in
the early 1960s. The fundamental concept that is used in bond graphs is the power
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Mechanical Dynamics, Inc. pioneered the field of mechanical system simulation, and has
remained focused on this technology since its founding in 1977. The ADAMS software is
a widely-used mechanical system simulation tool.
Web-address http://www.adams.com/

Knowledge Revolution was formed in 1989 to address the emerging market for the simula-
tion of mechanical systems. Knowledge Revolution is now one of the leading unit provider
of software that allows users to model and animate mechanical systems. The company’s
principle product Working Model, provides an environment for design, analysis, and dis-
tribution of virtual mechanical prototypes. The company’s motion simulation technology
is also used in Interactive Physics, which is used in educational physics software.
Web-address http://www.krev.com/

Dynasim was founded in 1992 by H. Elmqvist. Dynasim’s mission is to develop the software
tools that industry needs for solving demanding modeling and simulation problems. The
emphasis is on handling large, multi-domain systems efficiently. The company’s product
Dymola is a general purpose modeling language. It is suitable for modeling mechanical,
electrical, thermo-dynamical and chemical systems, etc. Bond graph methodology can be
used.
Web-address http://www.dynasim.se/

Table A.1: Software packages for object oriented modeling.

conservation law. The energy flow from one point of the system to another is denoted
in Figure A.1c by a harpoon. The power transferred is the product of the two adjunct
variables, called the effort and the flow in bond graph terminology. In the context of
mechanical systems, the force is generally assigned to the effort, and the relative velocity
represents the flow variable.

The notations and properties of bond graphs are illustrated in Figure A.1 by the
example of two masses m1 and m2, placed one above the other. A force u is applied
to mass 1, and the two masses move at speeds v1 and v2. The bond graph, Plot (c), is
formed of two types of junctions: at ‘s’ or serial junctions, all flow variables are equal
and the effort variables sum to zero; at ‘p’ or parallel junctions, the flow variables sum to
zero and the effort variables are all equal. For a mechanical setup, the serial ‘s’ junctions
correspond to the rigid bodies of the system and the parallel ‘p’ junctions are related to
the interfaces between them. For systems with distributed masses, it is possible to use
the concept of fields of masses which, however, is outside the scope of this summary.

For bond graph modeling of systems with friction, two particular elements are re-
quired. The one-port ‘R’ or resistor represents viscous friction with the effort fv = σ2 v
proportional to the flow. The second one-port ‘F’ represents the nonlinear part of the
friction force that is described by the KFM or the LuGre model.
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Figure A.1: Graphical representations of a drive with friction.

A.2 From Bond Graphs to Ordinary Differential

Equations

The bond graph representation of a mechanical system is too abstract to be handled
directly by commercial simulation software. Therefore, it is necessary to transform the
bond graph representation into differential algebraic equations. A procedure for system-
atic model transformation is available [43]. This approach is well suited to computer-aided
modeling environments. It is observed that, after elimination of intermediate variables,
four groups of equations remain: state derivatives, non-states, internal system outputs,
and system outputs

ẋ = fx(x, u, v, ż) (A.1)

z = fz(x, u, v, ż) (A.2)

w = 0 = fw(x, u, v, ż) (A.3)

y = fy(x, u, v, ż) (A.4)

where x is the vector of state variables associated with inertial and spring elements with
integral causality; z denotes the vector of non-state variables associated with inertial and
spring elements with derivative causality (ż contains the corresponding derivatives); v and
w are the vectors of additional (internal) inputs and outputs that are required to express
constraints in the system; and finally u and y denote the system’s inputs and outputs.

For an efficient simulation, it is crucial to describe the system by a set of ordinary
differential equations, i.e. only with relations of type (A.1) and (A.4). Thus it is necessary
to eliminate nonstate equations (A.2) by an appropriate assignment of causality, and to
solve all algebraic constraints (A.3) analytically.
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For drives with friction, for example the one illustrated in Figure A.1, the following
rules lead to the solution desired: (i) the state derivatives (A.1) are the velocities and
accelerations of the rigid bodies, and (ii) the generalized force transmitted through an
interface is expressed by a causal map, between the difference of velocities at this contact
and the resulting force. These two rules lead to the signal flow diagram, shown in Fig-
ure A.1b. If the LuGre model is used in the friction block ‘F’ then it is straightforward to
represent the bond graph shown in Figure A.1c by a set of ordinary differential equations,
i.e. only with relations for state derivatives and system outputs.



Appendix B

C-Code Program Listing:
Real-Time Task

THE real-time experiments have been achieved within a framework for fast real-time
applications [85] which has been developped for the MacOS version of LabVIEW.

Measured positions are sampled by a hardware clock at precisely defined time instants.
The control algorithm is called afterwards through a high priority system interrupt.

/*----------------------------------------------------------------------------------*/
/* */
/* Project : PhD Thesis "Friction Modeling, Identification and Compensation" */
/* Task : Real-Time Control of a Drive with Friction */
/* Author : Friedhelm Altpeter, Institut d’automatique, EPFL */
/* */
/*----------------------------------------------------------------------------------*/

#include <fp.h>
#include <Types.h>

#include "RT_DLL.h"
#include "fungen.h"
#include "read_position.h"

#define MAXOUTPUT (10.0)
#define TWOPI (6.28318530718)
#define DAOFFSET (1.8e-3)
#define PRECISION (1e-3)

/*--- number of states and parameters ----------------------------------------------*/
#define NB_STATES (13)
#define NB_PARAMS (36)
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/*--- control parameter declaration ------------------------------------------------*/
#define waveform (p[0]) /* signal generator */
#define amplitude (p[1])
#define frequency (p[2])
#define offset (p[3])
#define masterreset (p[4]) /* sensor resolution */
#define D_on_off (p[5])
#define Td (p[6]) /* derivative time constant */
#define I_on_off (p[7])
#define Ti (p[8]) /* integral time constant */
#define kp (p[9]) /* proportionnal gain */
#define ARW_Level (p[10]) /* anti-reset windup level */
#define ARW_on_off (p[11])
#define load_var_flag (p[12]) /* 0: motor variables, 1: load variables */
#define BO_or_BF (p[13]) /* 0: open-loop, 1: closed-loop control */
#define Km (p[14]) /* torque constant */
#define ResScrew (p[15]) /* resolution screw sensor [increments/revolution] */
#define ResLin (p[16]) /* resolution linear sensor [m/increment] */
#define comp_select (p[17]) /* compensation selector */
#define Inertia (p[18]) /* inertia [kg m^2 */
#define F_c (p[19]) /* Coulomb level [Nm] */
#define F_s (p[20]) /* break away torque [Nm] */
#define F_g (p[21]) /* gravity contribution [Nm] */
#define v_s (p[22]) /* Stribeck velocity [rad/s] */
#define s0 (p[23]) /* stiffness at rest [Nm / rad] */
#define s1 (p[24]) /* viscous friction [Nm s/rad] */
#define s2 (p[25]) /* bristle viscous friction [Nm s/rad] */
#define alpha_g (p[26]) /* adaptation gains */
#define alpha_0 (p[27])
#define alpha_c (p[28])
#define Adapt_on_off (p[29])
#define h (p[30])
#define alpha (p[31]) /* reference filter parameter */
#define klugre (p[32]) /* estimator gain proposed by LuGre */
#define l_1 (p[33]) /* Luenberger observer gains */
#define l_2 (p[34])
#define k_hatdotq (p[35]) /* velocity feedback based on Luenberger velocity

estimation */

/*--- controller state declaration -------------------------------------------------*/
#define phase (x[0]) /* phase of signal generator */
#define randval (x[1]) /* real random value */
#define ref_1 (x[2]) /* last reference and measure values */
#define ref_2 (x[3])
#define mes_1 (x[4])
#define mes_2 (x[5])
#define u_i (x[6]) /* integral contribution to control */
#define hatz (x[7]) /* friction state estimation */
#define xi_1 (x[8]) /* Luenberger observer states */
#define xi_2 (x[9])
#define hatF_g (x[10]) /* friction parameter estimations */
#define hats0 (x[11])
#define hatF_c (x[12])
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/*--- declaration of switch between control algorithms -----------------------------*/
#define NO_MODEL_BASED 0
#define LUGRE_FF 1
#define LUGRE_FB_LIN 2
#define KFM_FB_LIN 3
#define LUENBERGER 4

/*--- Gaussian model for steady state characteristics ------------------------------*/
#define g(v) ( (F_c + (F_s-F_c)*exp(-v*v/(v_s*v_s))) / s0 )

/*--- declaration of state and parameter vector ------------------------------------*/
double x[NB_STATES];
double p[NB_PARAMS];

/*--- computer simulation adapted sign function ------------------------------------*/
double signf(double x);
double signf(double x) {

if (x > PRECISION) return 1.0;
else if (x < -PRECISION) return -1.0;
else return 0.0;

}

/*--- mathematical sign function ---------------------------------------------------*/
double sign(double u);
double sign(double u) {

if (u>0.0)
return(1.0);

else if (u<0.0)
return(-1.0);

else
return(0.0);

}

/*--- saturation function ----------------------------------------------------------*/
double sat(double u, double lim);
double sat(double u, double lim) {

if (u > lim)
return(lim);

else if (u < -lim)
return(-lim);

else
return(u);

}
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/*--- control algorithm (called at every sampling period) --------------------------*/
long UserFunction(void);
long UserFunction(void){

int cc;

/**********************************/
/* definition of internal signals */

/**********************************/

double FunGenOut = 0.0; /* output of the function generator */
double u_pid = 0.0; /* PID control action */
double u_c = 0.0; /* compensator control action */
double Control = 0.0; /* total control action */
double q, dotq, ddotq; /* measure position, velocity and acceleration */
double r, dotr, ddotr; /* reference position, velocity and acceleration */
double hatdotq, hatdotz; /* estimations of velocity, friction state and friction

state derivative */

/***********************************/
/* retrieve the control parameters */

/***********************************/

for (cc=0; cc<NB_PARAMS; cc++)
Get(0,cc,p+cc);

if (masterreset)
for (cc=0; cc<NB_STATES; cc++)

x[cc] = 0.0;

if (Adapt_on_off) {
F_g = hatF_g;
s0 = hats0;
F_c = hatF_c;
F_s = hatF_c;

} else {
hatF_g = F_g;
hats0 = s0;
hatF_c = F_c;

}

/**********************************************/
/* retrieve the actual position of the system */

/**********************************************/

if (load_var_flag)
/* pion2m in load variables */
q = ((5e-3) / ResScrew) * 0.25 * ReadPositionInIncrements();

else
/* pion2rad in motor variables */
q = (4.0 * TWOPI / ResScrew) * 0.25 * ReadPositionInIncrements();
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/******************************/
/* execute function generator */

/******************************/

fungenUpdateStates(&phase, frequency, h);
fungenOutputs(&FunGenOut, phase, amplitude, offset, waveform);

/*************************/
/* some signal filtering */

/*************************/

/* evaluate outputs */
{

double ref_f;

ref_f = alpha * ref_1 + (1-alpha) * FunGenOut;
dotq = (q - mes_1) / h;
dotr = (ref_f - ref_2) / (2 * h);
ddotq = (q - 2.0 * mes_1 + mes_2) / (h * h);
ddotr = (ref_f - 2.0 * ref_1 + ref_2) / (h * h);
r = ref_1;

}

/* update states */
ref_2 = ref_1;
ref_1 = alpha * ref_1 + (1-alpha) * FunGenOut;
mes_2 = mes_1;
mes_1 = q;

/*********************************/
/* execute PID control algorithm */

/*********************************/

/* evaluate output */
u_pid = kp * (r - q);
if (D_on_off)

u_pid += kp * Td * (dotr - dotq);
if (I_on_off)

u_pid += u_i;

/* update state */
if (BO_or_BF) {

if ((Ti != 0.0) && (I_on_off))
u_i = u_i + kp * h * (r - q) / Ti;

else
u_i = 0.0;

if (ARW_on_off)
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u_i = sat(u_i, fabs(ARW_Level));
} else

u_i = 0.0;

/***************************************************************/
/* execute model based friction compensation control algorithm */

/***************************************************************/

/* evaluate friction compensation output */
switch ((int)comp_select) {

case LUGRE_FF :
u_c = Inertia * ddotr + s0 * hatz

+ s1 * ( dotr - hatz * fabs(dotr) / g(dotr) ) + s2 * dotr + F_g;
hatdotz = ( dotr - hatz * fabs(dotr) / g(dotr) );
break;

case LUGRE_FB_LIN :
u_c = Inertia * ddotr + s0 * hatz - s1 * hatz * fabs(dotq) / g(dotq)

+ (s2 + s1) * dotr + F_g;
hatdotz = ( dotq - hatz * fabs(dotq) / g(dotq) );
break;

case KFM_FB_LIN :
u_c = Inertia * ddotr + s0 * g(dotq) * signf(dotq)

+ (1 - fabs(signf(dotq))) * F_s * sign(u_pid + Inertia * ddotr)
+ s2 * dotr + F_g;

hatdotz = 0.0;
break;

case LUENBERGER :
hatdotq = xi_1 + l_1 * q;
hatz = xi_2 + l_2 * q;

u_c = Inertia * ddotr + s0 * hatz
+ s1 * ( hatdotq - hatz * fabs(hatdotq) / g(hatdotq) )
+ s2 * dotr + F_g + k_hatdotq * (dotr - hatdotq);

hatdotz = (hatdotq - hatz * fabs(hatdotq) / g(hatdotq)) - l_2 * hatdotq;
break;

case NO_MODEL_BASED :
default :

u_c = 0.0;
hatdotz = 0.0;

}

/* evaluate control action output */
if (BO_or_BF) {

Control = u_pid + u_c;
} else {

Control = FunGenOut;
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}

Control = sat(Control, 1.34); /* Amplifier limitations */

/* update states */
if (BO_or_BF) {

double a1, b0;

switch ((int)comp_select) {

case LUGRE_FF :
if (0.0 != dotr) {

a1 = -exp( -h * fabs(dotr) / g(dotr) );
b0 = (1.0 + a1) * g(dotr) / fabs(dotr);
hatz = -a1 * hatz + b0 * dotr;

}
hatdotq = dotq;
break;

case LUGRE_FB_LIN :
if (0.0 != dotq) {

a1 = -exp( -h * fabs(dotq) / g(dotq) );
b0 = (1.0 + a1) * g(dotq) / fabs(dotq);
hatz = -a1 * hatz + b0 * (dotq + klugre * (r - q));

}
hatdotq = dotq;
break;

case LUENBERGER : {
hatdotq = xi_1 + l_1 * q;
hatz = xi_2 + l_2 * q;

xi_1 += h * ( (Control - s0 * hatz
- s1 * (hatdotq - hatz * fabs(hatdotq) / g(hatdotq))
- s2 * hatdotq
- F_g) / Inertia - l_1 * hatdotq );

if (0.0 != hatdotq) {
a1 = -exp( -h * fabs(hatdotq) / g(hatdotq) );
b0 = (1.0 + a1) * g(hatdotq) / fabs(hatdotq);
xi_2 = -a1 * xi_2 + b0 * (hatdotq

- fabs(hatdotq) / g(hatdotq) * l_2 * q
- l_2 * hatdotq );

}
} break;

case KFM_FB_LIN :
case NO_MODEL_BASED :
default :

xi_1 = 0.0;
xi_2 = 0.0;
hatz = 0.0;
hatdotq = dotq;
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}
}

/************************************/
/* execute parameter adaptation law */

/************************************/

if ((BO_or_BF) && (LUGRE_FF == ((int)comp_select)) && (Adapt_on_off)) {
hatF_g += h * alpha_g * u_pid;
hats0 += h * alpha_0 * u_pid * hatdotz;
hatF_c += h * alpha_c * u_pid * sign(hatz);

Set(0,21, hatF_g);
Set(0,23, hats0);
Set(0,19, hatF_c);

}

/*********************************************************/
/* check for numerical problems (e.g. divisions by zero) */

/*********************************************************/

for (cc=1; cc<NB_STATES; cc++)
if (isnan(x[cc])) x[cc]=0.0;

/*************************/
/* output control action */

/*************************/

Control = Km * sat( Control / Km, MAXOUTPUT );
DA(0, 0.5 * ((Control / Km) - DAOFFSET) );

/***********************/
/* store signal traces */

/***********************/

SetInternal(0, r); /* Reference postion */
SetInternal(1, q); /* Screw measurement */
SetInternal(2, Control); /* Last applied torque */
SetInternal(3, u_c); /* Compensator control action */
SetInternal(4, hatz); /* Friction state */
SetInternal(5, hatdotz); /* Derivative of friction state */

return(0);
}

/*--- END OF FILE ------------------------------------------------------------------*/
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[15] P.-A. Bliman. Etude Mathématique d’un modèle de frottement sec: le modèle de
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1993–1999 École polytechnique fédérale de Lausanne, Institut d’automatique. PhD stu-
dent, research and teaching assistant.

Technical Experience

1989–1991 During studies, trainee with ALUSUISSE, Sierre

1989 (6 weeks): Machining techniques

1990 (14 weeks): Thermal treatments and the properties of aluminum

1991 (8 weeks): Quality System ISO-9000

1993-1999 Setup and maintaining of the acquisition system ‘Experimental Frequency
Response’ for the student’s laboratory.

1994-1999 Collaboration with Charmilles Technologies S.A. (Meyrin, Switzerland): Con-
trol of an electrical discharge machining axis (die sinking).

1996-1999 Development of a high precision real-time architecture for MacOS, based on
programmable logic devices (AMD families MACH4xx and MACH5xx).

143



144 CURRICULUM VITAE



List of Publications

[AARTC–95] F. Altpeter, Ch. Salzmann, D. Gillet and R. Longchamp, A General In-
strument for Real-Time Control and Data Acquisition. In IFAC Workshop on
Algorithms and Architectures for Real-Time Control, pages 323–327, Ostend, Bel-
gique, May 31–June 2, 1995.

[RAM–95] F. Ghorbel, F. Altpeter and R. Longchamp, Integral Manifold Control of a
Mechanical System with a Flexible Shaft. In Int. Conf. on Recent Advances in
Mechatronics, pages 722–727, Istanbul, August 14–16, 1995.

[MC–95] F. Altpeter, F. Ghorbel and R. Longchamp, Control of Drives with Flexible
Transmission. In IFAC Workshop on Motion Control, pages 315-322, Munich,
October 9–11, 1995.

[EM–97] F. Altpeter, D. Necsulescu and R. Longchamp, Friction Modeling and Iden-
tification Issues for Electric Drives. In Electromotion ’97, pages 149–154, Cluj-
Napoca, Romania, May 8–9, 1997.

[CIS–97] F. Altpeter, P. Myszkorowski and R. Longchamp, Identification for Control of
Drives with Friction. In IFAC Conf. on Control of Industrial Systems, volume 1,
pages 673–677, Belfort, France, May 20–22, 1997.

[IAS–97] F. Altpeter, R. Longchamp and F. Kaestli, Charmilles–EPFL : les étincelles
d’une collaboration fructueuse. Ingénieurs et Architectes Suisses, 123(15):326–329,
1997.

[ECC–97] F. Altpeter, P. Myszkorowski, M. Kocher and R. Longchamp, Friction Com-
pensation: PID Synthesis and State Control. In European Control Conference,
Session TH-M I1, Paper No. ECC192, Brussels, Belgium, July 1–4, 1997.

[ISEM–98] F. Altpeter, J. Cors, M. Kocher and R. Longchamp, EDM Modeling for Con-
trol. In 12th Int. Symp. for Electromachining, pages 149–155, Aachen, Germany,
VDI Berichte 1405, May 11–13, 1998.

[MC–98] F. Altpeter, F. Ghorbel, R. Longchamp, A Singular Perturbation Analysis of
Two Friction Models Applied to a Vertical EDM-Axis. In 3rd IFAC Workshop on
Motion Control, pages 7–12, Genoble, France, September 21–23, 1998.

[CDC–98] F. Altpeter, F. Ghorbel, R. Longchamp, Relationship Between Two Friction
Models: A Singular Perturbation Approach. In 37th IEEE Conf. on Decision and
Control, pages 1572–1574, Tampa, Florida, USA, December 16–18, 1998.

145



146 LIST OF PUBLICATIONS



Index

2-gain, 63

Adaptive control, 79, 108, 113
Area of contact

apparent, 10
real, 10, 13

Attraction
domain of, 56

Autonomous system, 50

Bandwidth, 69, 110
Barbalat’s lemma, 65
Bearing

ball, 92, 108
journal, 15
linear roller, 2
preloaded, 79, 92, 104
rolling contact, 15
V-bearing, 93, 96

Bode diagram, 68, 110
Bond graph, 98, 123
Break-away, 14, 16, 19, 24, 26

Cascaded control loops, 48, 66, 76
Characteristic

space constant, 34, 36, 39, 67, 75, 97,
108

velocity, 25, 37
Chattering, 88
Contact

Hertz, 12, 100
model, 11–13

Coulomb, 17
level, see kinetic friction level
model, see friction model KFM

Dahl, 20, 28, 44, 97
curve, see friction force–position rela-

tionship

Deviation variables, 43, 50, 107
Die sinking EDM, 101
Differential algebraic equations, 123–126
Digital implementation, 76, 85, 127

Eigenfrequency, 68
Electrical discharge machining

complete control structure, 104
process description, 102
technology, 101

Equilibrium point, 53, 56

Feedback compensation, see input–output
linearization

Feedforward compensation
LuGre model based, 75, 113
adaptive, 79
KFM based, 74

Frequency response, 41
Friction

definition, 1
model

bristle, 29
integrated, 23, 100
kinetic (KFM), 24–27
Lund–Grenoble LuGre, 27–33

position–force relationship, 20, 33,
44, 107

state
bounded, 30
observer, 81–85
predictor, 76

velocity–force characteristics, 14, 15,
37, 40, 54–56, 80, 92, 105

Grease, 92
Greenwood and Williamson, 11

Han-window, 42
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High speed, see regime
Hunting, see phenomena
Hurwitz, 53, 78

Identification
Box-Jenkins, 43
instrumental variable method, 43
intercorrelation method, 41
least-squares algorithm, 43
mean quadratic prediction error, 41

Impulse response, 51
Induced norm

infinity, 51, 78
one, 52

Inertial slider actuators, 93
Initial value problem, 30
Input–output linearization

LuGre model based, 88, 114
KFM based, 86, 116

Jacobian, 53

Kalman–Yakubovic–Popov lemma, 59
Kalman–Yakubovich–Popov lemma, 71
Karnopp, 27
KFM, see friction model KFM
Kinetic friction level, 14, 24, 81

LaSalle’s theorem, 70–71
Linearization, 53
Lubrication

definition, 1
regimes, 13–16
selection, 92

Luenberger, 82–85, 115
LuGre, see friction model LuGre

Mechanical time constant, 68
Micro-manipulators, 93
Microscopy, 93
Motion

aperiodic/chaotic, 56
regular, 50
unidirectional, 35, 63

Object oriented modeling, 123
Oil, 92

Orbit, 56
Ordinary differential equations, 123–126

Parseval’s theorem, 64
Passivity, 30–32, 69
Performance index, 109

local transient, 67
Phenomena

hunting, 66, 69, 112
input–output, 28
normal force, 12
stick–slip motion, 26, 48, 95, 110
stop time, 49
velocity regimes, 13–16

Piezoactuator, 93
model, 99

Positive invariant set, 57, 63
Positive real, 59, 71
Preisach model, 33
Presliding, see regime

Quadrature glitch, 113, 115
Quantization noise, 42

Real-time task, 127
Regime

high speed, 41, 67
presliding, 17, 19, 42, 68, 106

Reversal point memory, 33, 92
Robustness

parameter uncertainties, 77
Root-locus (closed-loop), 53

Settling time, 66
Shear strength, 15, 17, 19, 20, 98
Simple drive, 3
Singular perturbation, 33–38
Small gain theorem, 65
Smart design, 93
Stability

boundary layer, 36
experimental illustration, 113
global, 50
global asymptotic, 56, 69
local, 84
local asymptotic, 53, 67
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ultimate, 57
Static friction level, 19, 24, 97
Step response, 109, 110
Stick–slip motion, see phenomena
Stiffness at rest, 18–19, 81, 97
Stribeck, 13
Surface topology, 97

Taylor, 83
Tikhonov, 35
Triangle inequality, 64
Tribology, 1, 9

Wear, 1
Wire EDM, 102




