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Abstract

This thesis is divided into two parts. In the first one the creation of a complete numerical
tool, from the mesh generation to the data treatment, is presented. However time
consuming this part has been, this is not the most important one. The second and
more important part is concerned with the description and physical interpretation of
the results obtained with the numerical tool previously developed.

e The numerical tool, which exists in its quasi-final version since mid-1997, fully
satisfies the following requirements. It is specifically designed to study the flow in
the annular space between coaxial, differentially-rotating cylinders of finite length.
The spectral element method is used for the space discretization. The study of
transition requires the high accuracy warranted by this type of method. The
numerical scheme has also to be efficient. This requirement is satisfied, due to
the fully-explicit time scheme adopted, where both diffusive and non-linear terms
of the Navier-Stokes equations are treated explicitly, and the direct inversion of
the pseudo-Laplacian matrix applied to the pressure . This inversion is performed
in the most efficient way with a fast diagonalization technique. In the Reynolds
numbers range we are interested in, the time-step limitation due to the linear
viscous term is only slightly more stringent than the one due to the non-linear
term. The last requirement that has been fulfilled has been to design as simple a
code as possible.

The entire code is constructed from a number of well-known algorithms, fitted
together to enhance efficiency. However, the way we regularize the boundary
conditions is new. It represents the physics more precisely than Tavener et al.
[65]. There is a second original feature in our code, which is linked to the time
scheme. We derived our time discretization from the scheme of Gavrilakis et al.
[31). Their scheme cannot be applied to cylindrical coordinates as it is. We thus
had to modify it.

e The second part of the thesis consists of the numerical study of the first transitions
of the Taylor-Couette flow in a finite-length geometry. The aspect ratio between
the length of the cylinders and the gap between them has been chosen equal to
twelve; this is small enough for the effects of the upper and lower boundaries

. of the flow to be significant. It is believed that these end-effects play a non-
negligible role in the transition of the flow. On the other hand, the aspect ratio is
large enough to make qualitative comparisons with the infinite-length case, which
has been studied extensively both theoretically and numerically. The transition
process depends on a relatively large number of parameters. Our investigation
focuses on the case where the cylinders rotate in opposite directions. The study of
counter-rotating Taylor-Couette flow for a large but finite aspect ratio is the main
originality of this thesis. Furthermore, the physical mechanism of the appearance
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of the second bifurcation in classical Taylor-Couette flow, where only the inner
cylinder is rotating, is described in the light of the non-linear interaction between
velocity and vorticity.



Résumé

Ce travail de these est constitué de deux parties. La premiere a consisté 4 developper un
outil numérique dans son intégralité, de la génération du maillage jusqu’au traitement
des données. Cette partie a beau avoir pris plus de la moitié du temps imparti, ce n’est
pas la plus importante. L’accent est mis sur la seconde partie de la thése, qui concerne
la description et I'interprétation physique des résultats obtenus avec ’outil numérique
précédemment développé.

e L’outil numérique, qui existe dans sa version quasi définitive depuis mi-1997,
répond entierement aux exigences suivantes. Il est adapté a la géométrie du do-
maine fluide étudié, ’espace annulaire entre deux cylindres coaxiaux de longueur
finie. Il permet d’étudier les délicats phénomenes de transition grace a la discréti-
sation spatiale choisie, les élements spectraux, qui garantit une grande précision.
Il est efficace. Cette exigence est remplie grace au choix d’un schéma temporel
entierement explicite, a la fois sur le terme non-linéaire et sur le terme diffusif,
et a l'utilisation d’un solveur direct de diagonalisation rapide, réalisant avec un
maximum d’efficacité ’inversion du pseudo-Laplacien sur la pression. Pour les
nombres de Reynolds considérés dans cette étude, la limitation du pas de temps
due au terme linéaire visqueux est a peine plus contraignante que celle due au
terme non linéaire. En dernier lieu, le code est relativement simple.

Le code complet peut étre décrit comme ’amalgame d’algorithmes pour la plupart
déja décrits dans la littérature, assemblés de maniére a ce que le programme au
complet soit le plus performant possible. Parmi les divers ingrédients constitutifs
du code, deux ont un caractere original. Le premier est lié au traitement des
conditions aux limites singuliéres entre le cylindre et les parois horizontales qui
tournent a des vitesses différentes. Notre implémentation est dans la lignée de celle
de Tavener et al. [65], mais elle représente encore plus précisément la physique.
Le deuxieme trait original de l'outil numérique tient au schéma d’intégration
temporel. Celui-ci est basé sur un schéma développé par Gavrilakis et al. [31]. Ce
schéma, initialement prévu pour une géométrie cartésienne, n’étant pas correct si
'on souhaite I’appliquer tel quel & une géométrie cylindrique, nous 1’'avons modifié
de maniére a ce qu’il soit valable dans le cas de notre géométrie.

e L’étude numérique des premieres transitions de 1'écoulement de Taylor-Couette
en géométrie confinée constitue la seconde partie de la these. Le rapport entre la
longueur des cylindres et la distance de I’entrefer choisi dans cette étude est douze.
Cet rapport d’aspect est suffisamment petit pour que I'effet des bords supérieur
et inférieur se fasse sentir, et suffisamment grand pour pouvoir faire des compara-
isons, d’ordre qualitatif, avec les nombreux résultats théoriques et numériques
obtenus dans le cas de cylindres infinis. La transition de cet écoulement dépend



d’un relativement grand nombre de parameétres. Nous nous sommes essentielle-
ment intéressés au cas ou les deux cylindres tournent en sens opposés. L’étude de
P’écoulement de Taylor-Couette contra-rotatif dans un espace annulaire de grande
hauteur, mais de hauteur finie, constitue la principale originalité de cette these.
Par ailleurs, le mécanisme d’apparition de la deuxiéme bifurcation dans la con-
figuration de Taylor-Couette classique, ou seul le cylindre intérieur tourne, est
décrit & la lumiere de I'intéraction non linéaire entre les champs de vitesse et de
vorticité.
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Numerical symbols

Stiffness matrix in radial direction, in velocity space

Stiffness matrix in axial direction, in velocity space
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Pseudo-Laplacian matrix in radial direction for azimuthal mode k
Pseudo-Laplacian matrix in axial direction

Polynomial degree. for discretization in radial direction
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Number of mesh points
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Sobolev space of functions ¢ € £2(Y) such that its first derivative € £(T)
{¢ € H(X), dor = 0}

X =HYT)NPye(Y)
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xil NOTATION

Xo Xo = H{(T) N Png(T)

L£2(Y) Lebesgue space of square integrable functions on T

L) {p€ LX), dox = 0}

Y Y = LYT) N Py_ge(T)

Yo Yo = L3(T) N Py-2,6(Y)

A} Eigenvalues of the pseudo-Laplacian matrix in radial direction for mode k
Az Eigenvalues of the pseudo-Laplacian matrix in axial direction

Tq Grid made of all the Gauss-Lobatto-Legendre points of all the elements
T?d Grid made of all the points of T4 except the boundary points

Ty Grid made of all the inner Gauss-Lobatto-Legendre points of all the elements
T, Open sub-domain of the open domain T

IP Pressure test function on the whole domain D

v Velocity test function on the whole domain D

¢ Velocity test function on the meridian cross-section T

' Pressure test function on the meridian cross-section T

Physical symbols

2 —_R2
4 4= oo
B B= RfR%%z{—g%
d Gap between the two cylinders d= Ry, — R,
D Domain (volume)
L Length of the cylinders L=H,—-H
P Pressure characteristic scale
R, Radius of the inner cylinder
R, Radius of the outer cylinder
Re Reynolds number Re = d—VK
Re, First critical Reynolds number
Re,, Second critical Reynolds number
Ren, Third critical Reynolds number
Re, Inner cylinder Reynolds number Re, = d——}%&
Re, Outer cylinder Reynolds number Re, = 42
Ta Taylor number Ta = (R} — Rgﬁg)%ﬁi—
v Velocity characteristic scale
ve(r) Azimuthal velocity for Couette flow Ve = (0,v.,0),v.(r) =Ar+ &
2 Bottom plate height 2y = H,
29 Top plate height 2o = Hy
a Axial wavenumber a= %
i Radii ratio = g—;
r Aspect ratio = %



NOTATION xiii

A Axial wavelength

Q.(r) Angular velocity for Couette flow Q(ry=A+ %

T Characteristic time scale T =1

™D Diffusive time scale Tp = %

TC Advection time scale TC = %

T Meridian cross-section Y =)Ry, Ra[x]z1, 22|
(8) Rotation ratio U=%2

=Ql



Xiv NOTATION

“Si on s’occupe des moyens, tot ou tard on atteint la fin. Une fois qu’on a saisi ce
point, la victoire finale ne saurait faire de doute. Quelles que soient les difficultés
que nous rencontrons, quelles que soient nos apparentes défaites, il n’est pas question
de renoncer & la recherche de la Vérité qui seule est, n’étant autre que Dieu lui-méme. ”

Gandhi in “Tous les hommes sont fréres”.



Chapter 1

Introduction

Taylor-Couette flow is that which develops in the annular space between two coaxial
cylinders which are in relative motion. The fluid considered in most cases is Newtonian.
However simple this flow may seem, it exhibits a rich variety of instability patterns de-
pending, among other parameters, on the cylinders speeds [4, 40]. Although studied
extensively since the end of the last century, this flow has not yet revealed all its secrets,
and remains one of the fundamental problems in fluid mechanics. It is a paradigm for
experimental, numerical and theoretical studies of hydrodynamic stability and transi-
tion. Further, the existing direct numerical simulations (DNS) [6, 26, 37, 48, 61] enable
it to be used as a benchmark for turbulence modelling. Additionally, there are direct
industrial applications:

e as a rotating filter separator used for the separation of plasma from blood, and for
oily emulsions or particulates from combustion gases. A rotating filter separator
consists of a porous inner cylinder rotating within an outer cylindrical shell. As
a suspension travels axially in the annulus, the filtrate is withdrawn through the
inner cylinder, leaving an increasingly concentrated suspension in the annulus.
The unique advantage of rotating filtration is that plugging of the pores of the
filter with particles is greatly reduced compared to standard filtration techniques.

¢ in nuclear engineering, a Taylor-Couette device is used at CEA-Marcoule to repro-
cess spent nuclear fuel [7]. Taylor-Couette flow has interesting stirring properties
at high Reynolds numbers which makes it an alternative to already existing tech-
niques used for spent nuclear fuel reprocessing. The purpose of the Taylor-Couette
facility is to provide an intimate contact of two non-miscible fluids (aqueous and
organic liquids) in order to allow interphase diffusion of certain components. Be-
cause of their lower density, organic droplets accumulate in the regions where the
pressure is low. At high Reynolds numbers, the turbulent Taylor vortices pro-
duce enough shear deformation to generate an emulsion, thus enhancing the mass
transfer. An efficient control of the residence time in the reactor is obtained by
superimposing an axial flow.
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Taylor-Couette flow depends on the following geometric and dynamic parameters. The
geometric parameters are the aspect ratio, I' = £, with L the length of the cyhnders
and d the gap width between the cylinders (see ﬁgure 1.1), and the radii ratio, n = Rz,
where R, and R, are the inner and outer radii, respectively. Both the geometry and
the dynamics of the boundary conditions at the top and bottom of the annular space
influence the flow. The horizontal end plates are either fixed to the inner cylinder or to
the outer one; we do not consider the more general case in which the end plates rotate
independently. The dynamic parameters are the inner and outer Reynolds numbers:
Re, = M and Re, 5232-4 , respectively. When the cylinders are rotating in the same
dlrectlon, Re, and Re, are both positive, as Reynolds numbers are supposed to be, but
when they are rotating in opposite directions, Re, is chosen positive and Re; negative
by convention. Another frequent choice of dynamic parameters is the rotation ratio,
U= —2 and the Taylor number, defined as: Ta = (R2Q; — Rgﬂg)%i%;, or the square
root of thlS expression. Ta is always positive in the parameter range we are interested
in, which is defined by: Q; > 0 and Q, < 0. Finally, another dynamic parameter, which
is usually not considered, is the acceleration rate or, equivalently, the path followed in
parameter space from one state, defined by (Re;, Rey), to another. The acceleration
history between two successive flow states is indeed important for determining the final
flow state, as has been demonstrated by Burkhalter and Koschmieder [12].

Base flow

When the cylinders are of infinite length, there exists an analytical solution at low
Reynolds numbers [55] called Couette flow. The base flow velocity is v, = (0, v, 0) in
cylindrical coordinates (r, 0, z), with

R3Q, — R},

R2
R2 R2 and B = (Ql — QQ) R2 . (11)
2 T Y

B
ve(r) = Ar + g where, A = R-R

The base flow pressure is defined by:

Op. _vf
Br() T

In dimensionless form,

e for U < 0, the characteristic velocity is V = —R,(),, therefore,

2 2
n*—0 1 Ui -1
A=-L—=_ and B= :
U(1+n)an 1+n<1—4) U

e for U > 0, the characteristic velocity is V = R;Q,, hence,

—n? 2
_ V- and B= (—}—> —n—(l—U).

n(1 +mn) 1-n/) 1+n
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Figure 1.1: Taylor-Couette apparatus and flow patterns after the first bifurcation.
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First bifurcation

The stability of Taylor-Couette flow was first studied by Rayleigh [55]. Assuming the
cylinders to be of infinite length, the fluid to be inviscid, and the perturbations to be
axisymmetric, he found that the flow is stable if the square of the circulation does not
decrease with 7. This condition is now known as Rayleigh’s circulation criterion. Its
mathematical expression,

d 2
5[(271’7” V)] >0,

can be simplified to,
Av(r)>0

e In the co-rotating case, for U > 0, v, is positive so that the sign of A v.(r)
depends only on A. The radial derivative of the square of the circulation is
therefore positive, and the flow hence stable, if U > 52

e In the counter-rotating case, i.e. for U < 0, we have A < 0 and B > 0, hence,
the base velocity evolves monotonously with r from a positive value, R;Q, to a
negative value, Ry{);. Consequently, the square of the circulation first decreases
from a positive value to zero, and increases afterwards. Rayleigh’s circulation
criterion indicates therefore that this low is unstable. More precisely, we can say
that the region of the fluid near the inner cylinder is unstable, while the zone near
the outer cylinder is stable. The cylindrical surface separating these two regions
is called the nodal surface.

Synge [63] gave a mathematical proof of Rayleigh’s criterion in 1933. He later showed
that in a viscous fluid the condition U > 7? was sufficient, but not necessary, for
stability, according to linear theory [64].

In 1890, Couette [20] designed a viscometer based on the flow between cylinders. Only
the outer cylinder was rotating in his experiment. He observed that the torque trans-
mitted by the flow on the inner cylinder varied linearly with the speed of the rotating
cylinder until a critical value of the velocity was reached. Thereafter, the torque in-
creased at a greater rate than the velocity, denoting a change in flow regime. Hence,
the flow is unstable at high Reynolds numbers, even though Rayleigh’s inviscid stability
criterion is satisfied.

Mallock [47] repeated Couette’s experiments in 1896, first with the outer cylinder ro-
tating and the inner one fixed, and later with the inner cylinder rotating and the outer
one fixed. In the first case, his experiments yielded the same results as Couette’s. But,
he found no linear dependence of the torque on the velocity in the second case.

Transition to Taylor vortices It became clear from the work of Taylor [66] in 1923
that none of the second set of Mallock’s experiments corresponded to laminar, azimuthal



flows. Taylor calculated analytically the stability limit of the flow to axisymmetric
disturbances in the infinite-length case, considering this time a viscous fluid. Here, we
will only present his most important results, albeit using more up-to-date methods.
Let (vr,pr), be a slight deviation of the base Couette flow and also a solution of the
Navier-Stokes equations. We write vy = v + v and pr = p + p., with: ||v]| < ||v¢]|
and |p| < |p]- The Navier-Stokes equations are then linearized in the vicinity of
this base flow. The linearized Navier-Stokes equations are further simplified taking
the axisymmetry hypothesis into account. The resulting dimensionless equations are
expressed as follows in cylindrical coordinates:

(Z-V+x)u-20()v = -3 :
(%—V2+;15)v+2AReu = 0 , (1.2)
(& -vH)w = -2 : I

0 = (E+Yur

with: (u,v,w) the components of the perturbed velocity, v, and C(r) = Re"°£r =
Re (A + %) The Reynolds number is Re = %, with V| the characteristic velocity.
And,

2 O Lo 0’
VT o2 ror 022
Eliminating the pressure disturbance p and the perturbed axial velocity w, one is left

with a system of two equations for the two unknowns, the radial component of the
velocity, u, and the azimuthal velocity, v:

{%[(&—v%)u—wmv]+§,-(§—v2)(s%+¢)u =0 ,

13
(2-v*+%)v+24AReu 0 (1-3)

Taylor’s early experiments showed that instability led to a steady, secondary flow in the
form of toroidal vortices, regularly spaced along the axis of the cylinders. The equations
can again be simplified by analyzing the disturbance into normal modes, that is, let
(u,v) = (un,v,) exp(ot + ikz), where & is the axial wavenumber, o is the growth rate
of the perturbation, and (un,v,) only depend on r. We obtain:

{ (DD, — k? — 0)(DD, — kK®)u, = 2xk2C(r) v, ,

(DD, — k% — o)v, = 2A Reu,, (14)

d _d 1
where D represents 3- and D, = I- + ;.

The equations (1.4) define an eigenvalue problem of the form, F(n,U,Ta,k,0) = 0.
The solution of this problem is simplified considerably by the so-called principle of
exchange of stabilities, which states that when the real part of o, R(o) is zero, then
its imaginary part is also. Therefore, the neutral curve is given by ¢ = 0. The neutral
curve is the set of points in the (k,Ta) plane for which R(c) = 0. Above this curve
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the flow is unstable, and below it stable. The analysis we have made so far reproduces
the main lines of Taylor’s theory. We proceed with the analysis using the much simpler
method developed by Chandrasekhar [14] to solve this problem. Expanding v, in a set
of Fourier components that vanish on the boundary, he found an eigenvalue relation in
the form of a determinant of infinite order. Retaining only the first term of the Fourier
expansion, and using the narrow-gap hypothesis, which states that n — 1, we obtain
the following result:
(r? + o?)?

a?[1 — {16m2a cosh®(2)}/{(n2 + a?)2(sinh(a) + @)}]
Here, o = kd is the nondimensional axial wavenumber. The modified Taylor number,
T, reaches a critical value, T, = 1715, when the expression (1.5) is minimized. The
advantage of using T instead of Ta is that the critical value does not then vary with U.
The corresponding critical wavenumber is a, = 3.12. The critical value of T, derived
by Taylor is T, = 1706, not far from more recent, and also more precise estimates:
T. = 1708 for o, = 3.12. Expression (1.5) is presented in figure 1.2.

T=(1+0)Ta= (1.5)

8000 T —

7000

6000

5000

4000

3000

2000
Te

1000 1 " L " : M a
1 10

Figure 1.2: Neutral stability curve in the narrow-gap case. Above the critical Taylor
number, T, the axial wave number is no longer unique, but belongs to a finite interval,

[a—’ a+]'

The first transition is mathematically described as a super-critical, steady bifurcation,
also called the pitchfork bifurcation, from Couette flow to Taylor vortex flow.

Transition to spirals Krueger et al. [41] considered the linear problem for cylinders
rotating in opposite directions, and found that in the narrow-gap approximation, when



U is less than —0.78, the most unstable disturbance is no longer axisymmetric. As U
decreases, the most unstable mode has first an azimuthal wavenumber k = 1, but then
takes higher values in rapid succession. At the lowest value considered for U, namely
—1.25, it appears that the most unstable mode is k& = 5. Krueger et al. confirmed
these theoretical results qualitatively for the particular cases: n = 0.95 and U = 0,
and n = 0.95 and U = —1. The counter-rotating problem was treated theoretically by
Chossat and Iooss [17] for the two cases: n = 0.75 and n = 0.95. They found the first
codimension-2 points.

Let us first define the codimension of a bifurcation. According to Mullin [15], “the codi-
mension of a bifurcation may be defined to be the smallest dimension of parameter space
which contains the bifurcation in a persistent way”. In our case, once the geometric
parameters are fixed, the flow is characterized by the two dynamic parameters Re; and
Res. In this two-dimensional parameter space only codimension-1 and codimension-
2 bifurcations are expected. The codimension-1 bifurcations are obtained by varying
one parameter and holding the other. The codimension-2 bifurcations are theoretically
obtained by varying at the same time Re; and Re,. In practice a codimension-2 bifur-
cation point is found at the intersection between two codimension-1 bifurcation curves.
In this thesis, we are primarily concerned with a special kind of codimension-2 point that
we call codimension-2 point k|k+1, and we will focus on those observed in the counter-
rotating case. Such points belong to two different bifurcation curves, one indicating the
transition from the azimuthal Couette flow to a spiral regime with k& azimuthal modes,
and the other one separating Couette flow from a spiral regime with k£ + 1 azimuthal
modes. Such kinds of codimension-2 points are present in figure 5.4.

The findings of Chossat and Iooss [17] are summarized in the following tables.

codimension-2 point 0[1 1|12 2|3
(§) —-0.572 | —0.698 | —1.149

Table 1.1: codimension-2 points k|k + 1 for n = 0.75.

codimension-2 point 0[1 12 2|3 3|4 415
(§) —0.731 | —=0.763 | —0.794 | —0.875 | —1.041

Table 1.2: codimension-2 points k|k + 1 for n = 0.95.

The first transition curve, to spirals or Taylor vortices, can be found in Esser and
Grossmann [29].

Second bifurcation Davey et al. [24] showed that, for Re, = 0, with increasing
Re;, a second critical Reynolds number, Re,,, which depends on 7, is reached. At Re,,
the Taylor vortex flow becomes unstable, the instability leading to a wavy vortex flow.
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The wavy vortices have a definite frequency and move with a definite wave velocity
in the azimuthal direction. Mathematically, this second instability is a time-periodic,
super-critical bifurcation from Taylor vortex flow to wavy vortex flow. It is also called
a Hopf bifurcation. The transition to wavy Taylor vortex flow has been studied exper-
imentally by Coles [19]. One of the important observations of his experiments is the
non-uniqueness of the spatial structure: different axial and azimuthal wavenumbers are
observed at the same final Reynolds number, Re;. These different final states, at the
same value of Re; > Re,, are functions of the initial conditions and the path followed
in parameter space.

The transition from Taylor vortex flow to wavy Taylor vortex flow is also the rule
for any Re; > Renmin, with Renin = —155 £ 10, according to the stability diagram
obtained experimentally by Andereck et al. [4] for n = 0.883. However, when counter-
rotation takes place for higher absolute values of Re,, the first transitions are time-
periodic bifurcations from a Couette flow to a spirals flow, and from this regime to
interpenetrating spirals. Strikingly, at even higher counter-rotating (absolute) values of
Re,, the flow first undergoes a transition from Couette flow to interpenetrating spirals
and then directly to spiral turbulence. No path to chaos is available yet to explain such
behaviour.

The portion of the flow regimes diagram obtained experimentally by Andereck et al.
for n = 0.883 [4], that we have investigated, is reproduced in figure 1.3. The different
flow patterns observed in this region are:

e azimuthal laminar flow with weak Ekman cells, denoted by AZI,

e Taylor vortices (TV): doughnut-like, counter-rotating vortices stacked on top of
each other in the axial direction,

e spiral vortices (SPI): time-periodic, non-axisymmetric, helical vortices with one
azimuthal frequency and a correlated axial frequency,

e wavy vortices (WV): time-periodic, non-axisymmetric, Taylor vortices with one
azimuthal frequency,

e interpenetrating spirals (IPS): superposition of two spiral vortices travelling in
opposite directions,

e wavy interpenetrating spirals (WIS): superposition of wavy spiral vortices, trav-
elling in opposite directions,

e modulated wavy vortices (MWV): non-axisymmetric, Taylor vortices with two
azimuthal frequencies.
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Figure 1.3: Reproduced here is the flow-regimes diagram of Andereck et al. [4], for
n = 0.883 and I" = 30. AZI refers to the azimuthal laminar flow with Ekman vortices,
TV to the Taylor vortex flow, SPI to the spiral vortices flow, WV to the wavy vortices
flow, IPS to the interpenetrating spirals flow, WIS to the wavy interpenetrating spirals
flow, and MWV to the modulated wavy vortices according to their notations.

1.1 State-of-the-art

1.1.1 Experimental results

We are primarily interested in experiments that can be qualitatively compared to our
simulations; that is, experiments with geometric and dynamic parameters close to ours,
and, more particularly among these, the few experiments showing 2D flow fields. We
therefore only report here the work of Wereley and Lueptow [68] and Litschke and
Roesner [42].

Wereley and Lueptow (68| measured azimuthal velocity profiles for the Taylor vor-
tex, wavy vortex, modulated wavy vortex and turbulent Taylor vortex flows using laser
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Doppler velocimetry. In their experiment, the inner cylinder rotates while the outer
cylinder, together with the horizontal end plates, are fixed. The radii ratio is n = 0.844
and the aspect ratio I' = 37.5. These values are close to those of our classical Taylor-
Couette flow simulations: 7 = 0.875 and I’ = 30. The ramp rate they used to increase
the Reynolds number between successive flow states was dT’f‘? ~ 80, where the time t is
made dimensionless using the characteristic diffusion time %d. The azimuthal velocity
was measured at about 400 points per vortex pair, with typically ten points in the radial
direction and between 35 and 45 in the axial direction. For the time-dependent flows:
wavy vortex, modulated wavy vortex and turbulent Taylor vortex flow, Wereley and
Lueptow averaged in time the velocity at each measurement point to obtain a full-field
velocity profile. The total time needed to obtain one of these profiles was between four
and six hours. For the turbulent Taylor vortex flow, the number of radial points was
reduced to four while the number of axial points was kept at 40, in order that the overall
measurement time remained the same. The experimental results they obtained were
the first to confirm Davey’s analytical prediction of the velocity field for super-critical
Taylor vortex flow [23]. Their results also compared favorably with Marcus’ results [48].
Apart from this, the other point they wished to clarify concerned the Reynolds number
dependence of the flow pattern. The azimuthal velocity fields they measured indicate

two predominant effects with increasing Reynolds number:

e the magnitude of the radial gradient of azimuthal velocity near both cylinders
increases, characterizing boundary layers, while the velocity in the middle portion
of the annular gap tends to become uniform, due to turbulent mixing, and

e the radial outflow region between pairs of vortices becomes increasingly jet-like.

Litschke and Roesner [42] investigated the road to turbulence in Taylor-Couette
flow. They focused their study on the role of turbulence spots of intermittent character
on the onset of turbulence. They observed that the spots moved in the same direction
as the outer cylinder, while the interpenetrating spirals moved in the opposite direc-
tion. The interpenetrating spirals pattern are present at lower Reynolds numbers than
neccessary for turbulence spots, but remain when these spots appear. By varying the
gap width they also found that the phenomenon of spiral turbulence, which represents
a spirally shaped ribbon of turbulent flow in the annulus, could only be detected in
geometries with a small gap size, i.e. a radii ratio n = 1. They investigated the growth
of turbulent spirals for n = 0.895 and I' = 68.5 under two different boundary conditions:

e when the top and bottom plates of the cylinders are rotating with the outer
cylinder, they observed that, for a given outer Reynolds number, Re, = —2737,
an abrupt start of the rotation of the inner cylinder to Re; = 784 produced
different successive regimes. Spiral vortex structures begin to grow in the mid-
plane region, they later begin to interpenetrate, then the first turbulent spot
breaks up at mid-height. Finally, growing from midplane, turbulent regions start
to build up the regular spiral ribbon.
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e The behaviour changes dramatically if the end plates are connected with the inner
cylinder. For an outer Reynolds number of —1598 and an inner one of 586, again
reached by a sudden start, the first structures, spiral vortices as well as turbulent
spots and ribbons, can be observed near the end plates.

Litschke and Roesner’s experiment is relevant to our simulations for two main reasons.
Firstly, they studied the counter-rotating case, and secondly they used the two boundary
conditions we are interested in for the end plates: that is, fixed to the inner cylinder or
to the outer one.

1.1.2 Numerical results

We focus here on results obtained with accurate schemes and, more particularly, those
obtained with spectral methods, and on simulations taking into account the finite-length
effects in a realistic way.

Moser et al. [49] used a spectral method to study the classical Taylor-Couette flow,
where only the inner cylinder is rotating. Periodicity is assumed in both axial and
azimuthal directions. Fourier transforms are then used in those two directions. In the
radial direction, their method employs an expansion in vector functions based on Cheby-
shev polynomials, which inherently satisfy the boundary conditions and the continuity
equation. This has the advantage of treating the boundary and continuity constraints
exactly and reducing the number of variables per spectral mode.

Fasel and Booz (30] used an implicit finite-difference method to study super-critical
Taylor vortex flow. Their numerical scheme has fourth-order accuracy with respect
to space dimensions and second-order accuracy with respect to time. Although this
method is not extremely accurate, they showed their results were independent of the
mesh size, thus indicating sufficient spatial resolution. Their study pertains to axisym-
metric and axially-periodic flows. They investigated the wide gap case, for n = 0.5,
and for Reynolds numbers, Re, varying from slightly super-critical to Re ten times the
critical Reynolds number. When only the dynamic parameter Re is mentioned, it refers
to the inner cylinder, and it is assumed that Re; = 0. The evolution of the torque with
Re they present clearly shows the departure from Couette flow to Taylor vortex flow at
Re. = 68.2. The meridian cross-sections of the three velocity components, as well as
the streamlines, the pressure and vorticity contours, reveal that, as Re is increased:

e outgoing jet-like structures tend to form,
e boundary layers form while the core region tends to move as a solid-body, and

e a much larger number of harmonics is necessary to describe the flow correctly.
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Liicke et al. [43] investigated the classical Taylor-Couette flow both numerically and
experimentally for I' = 1.05 and n = 0.5066. Only the inner cylinder is rotating, while
the outer one and the end plates are held fixed. Increasing the Reynolds number, they
observed a transition from a symmetric, two-cell flow to an asymmetric flow which
asymptotically tends to a one-cell flow. They made a quantitative comparison between
numerics and experiment of the breaking of the mirror symmetry. The results agree
well except near the transition threshold, in the corner regions, where the inner rotating
cylinder touches the fixed end plates. This difference is presumably due to the treatment
of the boundary conditions at the inner corners. A small gap separates the inner cylinder
from the end plates in the experiment while this is not represented in the simulation.
One of the purposes of the numerical method proposed in chapter 3 of this thesis is to
alleviate this problem by introducing more realistic boundary conditions.

Neitzel [51] performed computations of time-dependent Taylor vortex flows in finite-
length geometries. The motion is initiated by an impulsive start of the inner cylinder
from a state of rest of the entire system. The rigid end plates are attached to the
inner cylinder and therefore begin to rotate at ¢ = 0. The flow is supposed to be
axisymmetric. The unknowns considered are the stream-function, the circulation in
the azimuthal direction, and the #-component of the vorticity. Neitzel reduced the
size of the computational domain by assuming the flow to be symmetric about the
midplane. He considered two different aspect ratios, I' = 22 and I' = 23.35 and a
unique radii ratio, n = 0.727. The case (I = 23.35,7 = 0.727) was chosen to match the
smallest experimental configuration of Burkhalter and Koschmieder [12]. Neitzel made
simulations for different ratios: RR—; = 1.03, 2, 3, 4 and 6. Here, Re = g%? denotes the
Reynolds number and Re, the critical Reynolds number from linear-stability theory for

infinite cylinders. For each of the simulations, he presents:
e the evolution of the end cell size with the Taylor to critical Taylor number ratio,
Ta _ (B>
Tac ~— (Rec) ’
o the interior cell wavelength versus TT : ,

o the amplitude histories, indicating the development of the Taylor-vortex structure,
and

e the vortex front velocity evolution with £

His results show a non-linear increase of the end cell size with the Taylor number, Ta,
and a decrease of the interior cell wavelength with Ta. The latter result is in con-
tradiction with the cusped-like behaviour found by Burkhalter and Koschmieder. The
amplitude histories Neitzel obtained clearly show that no steady state was reached for
e —1.03 and = 6. He also reported that the onset-time decreases with Rg . And,
as g:c — 1, the onset time of the Taylor vortices tends to infinity. Neitzel’s explanatlon
concerning the wrong number of vortices he found for Reynolds ratios above 4 has to
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be discarded. According to him, the fact that his simulations are axisymmetric could
be responsible for the inaccurate number of vortices obtained. We have ourselves per-
formed impulsive start simulations, also considering the axisymmetric case, and we have
found the correct number of vortices, as predicted by the linear stability theory together
with the quantization condition. However, we chose different boundary conditions. In
our case, the end plates are attached to the stationary outer cylinder, and we do not
make the mirror-symmetry hypothesis. In our opinion, the too short integration time
Neitzel used accounts for the discrepancies between his simulations and Burkhalter and
Koschmieder’s experiments. Furthermore, Neitzel observed not only the propagation of
vortices from the end plate into the interior but also the development of cells near the
midplane at the same time. This puzzling result might either be due to his choice of
symmetric boundary conditions at the midplane, which might have introduced a local
perturbation of sufficient intensity to generate Taylor vortices, or be due to the fact that
the end plates are rotating together with the inner cylinder in his case. This choice
of boundary condition is rarely found in the literature and so no comparison could be
made.

King et al. [38] conducted both laboratory experiments and numerical simulations to
determine the speed of travelling azimuthal waves on Taylor vortices in a circular Cou-
ette system with the inner cylinder rotating and the outer at rest. The dependence of
the wave speed on the Reynolds number, Re, the radii ratio, 7, the average axial wave-
length, and the number of azimuthal waves, was investigated both experimentally and
numerically. They found that the wave speed was weakly dependent on Reynolds num-
ber, aspect ratio, axial wavelength and number of waves. However, at large Reynolds
numbers, the wave speed depends primarily only on 7, increasing monotically threefold
in the range studied, i.e. 0.63 < n < 0.95. King et al. also performed an approximate
stability analysis which predicts that the wave speed at large Reynolds numbers in the
small gap limit,  — 1, approaches the value 0.563);, where 1, is the angular velocity
of the inner cylinder. Their measurements of the wave speed compare remarkably well
to this predicted value.

Marcus [48] assumes periodicity in the axial direction which enables him to use
Fourier polynomials in that direction. The azimuthal direction also is discretized using
Fourier expansions, while Chebyshev polynomials are chosen for the radial direction. He
imposes what he calls “shif-and-reflect” symmetry, that requires a p-azimuthal-waves
flow to satisfy:

u(r,0,z,t) = u(r,6+ 5=z t),
v(r,0,z,t) = v(r,0+ S5t (1.6)
w(r,0,z,t) = —wr,6+ %, —2z,t),

with ¢, the time. Time discretization is performed with a time-splitting method, and the
resulting splitting errors are removed by special Green functions. The diffusion term is
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treated implicitly and the non-linear one explicitly. He shows several 2-dimensional pro-
Jjections of the velocity field, and conjectures that the travelling waves are a secondary
instability caused by the strong radial motion in the outflow boundaries of the Taylor
vortices and are not shear instabilities associated with inflection points of the azimuthal
flow. He also demonstrates that, at the critical Reynolds number where Taylor vortex
flow becomes unstable to wavy-vortex flow, the speed of the travelling wave is equal
to the azimuthal angular velocity of the fluid at the centre of the Taylor vortices. His
results constitute a landmark in the study of wavy vortex flow.

Streett and Hussaini [61, 62] propose two spectral collocation algorithms that do
not rely on the infinite cylinders hypothesis. Hence, they use Gauss-Lobatto-Chebyshev
points in both the radial and the axial directions. The azimuthal direction is discretized
using Fourier expansions. A multi-domain technique is used in the axial direction. In
the first algorithm, they perform time discretization with a time-splitting method and
reduce the resulting slip velocity to a small value (varying between about 1078 and
10719). The second algorithm employs a staggered-mesh discretization, combined with a
multi-grid/conjugate-gradient technique. It is the most accurate of the two algorithms,
but it pertains only to the axisymmetric case. In a classical way, both algorithms
treat the diffusion term implicitly and the non-linear one explicitly. We have made
comparisons with their results in chapter 4.

Coughlin and Marcus [21) performed a mathematical analysis of the transition
from temporally periodic rotating waves to quasi-periodic modulated waves in rotating
flows with circularly symmetric boundary conditions and applied it to the flow between
concentric rotating cylinders. They used Floquet theory to deduce the functional form
of instabilities of the rotating wave, and from this derived the form of modulated wave
solution to the Navier-Stokes equations. They used the pseudo-spectral, initial-value
code of Marcus [48] to compute solutions to the Navier-Stokes equations for both ro-
tating waves and two branches of modulated waves, those discussed by Gorman and
Swinney [34, 35], and those discovered by Zhang and Swinney [70]. The first flow,
referred to as GS, is a two-travelling wave flow, while the second, referred to as ZS,
is a non-travelling modulation. They argue that the centrifugal instability beyond the
primary transition to Taylor vortex flow is important only in maintaining the basic vor-
tical structure. They describe this structure as adequate to neutralize the centrifugal
instability and suggest that the subsequent transitions to WV and MWV are due to
the instability of the outflow jet.

1.2 Choice of the parameters

The parameters characterizing Taylor-Couette flow are of two types: geometric and
dynamic. Belonging to the first class are the radii ratio, 1, and the aspect ratio, I'. The
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way the horizontal end plates are fixed, to the inner cylinder or to the outer one, or
even rotating independently from the cylinders, can be considered as both a geometric
and a dynamic parameter. The two dynamic parameters used by Andereck et al. [4]
are the inner and outer Reynolds numbers, Re; and Re,, respectively. To these two
classical dynamic parameters, we add the acceleration rate between two Reynolds pairs,
(Rey, Res), or more generally, the path followed in parameter space.

Authors N U= g—f r Fixation
Couette 0.98 00 32 to R,
Taylor 0.730.74 0.88 0.94 | —2.3 to 0.65 | 81 87 186 383
Coles 0.874 28
Andereck et al. 0.883 30 to Ry
King et al. 0.50 0.88 0.95 —2t00.2 80

Table 1.3: Parameter range studied by different authors.

1.2.1 Geometric parameters

Aspect ratio: Most simulations consider infinite aspect ratios, and most experiments
use large aspect ratios. Indeed, the aspect ratios in Taylor’s experiments varied between
81 and 383 (see table 1.3 for more detail). There are two advantages in using an infinite
aspect ratio for the simulations. The first one is that the base flow is known analytically
in that case. The second one is that, considering only transitions to axially periodic
flows like TV, WV or MWV, one can use periodic boundary conditions together with
Fourier series to discretize in the axial direction. But, according to some recent work
[15], the finite length of the apparatus has an indisputable influence on the transition
process. The finite case was therefore chosen in this thesis.

In choosing an aspect ratio, two guidelines were followed. The first one was to treat a
case already investigated experimentally to compare against and thereby validate our
results. Among the numerous experiments, we can cite Couette’s apparatus, which had
an aspect ratio of 32, King et al’s with an aspect ratio of 80, Coles’ with an aspect
ratio of 28 and Andereck et al.’s aspect ratio of 30. In order to simulate the physics
correctly, one has to use a number of spectral elements, F, proportional to the aspect
ratio. The calculation cost involved in the simulation grows as E?. And, the time for
the flow to settle is proportional to the diffusion time in the axial direction, which itself
is proportional to I'>. Hence, one is quickly limited to low values of I. The maximum
I’ attainable for simulating an unsteady flow is about 30 (to 40) for our code. The
second guideline is in contradiction with the first. It is indeed the aim of any research
to produce original results. We therefore decided to treat the case of an aspect ratio, T,
not found in the literature, or more precisely a couple (7, ') never studied before. Most
of the simulations and experiments performed for finite aspect ratios, in the range 0 to
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40, are low aspect ratios. Streett and Hussaini {61, 62] produced numerical results for
I' >~ 1. Mullin [50] and Pfister et al. [54] studied a larger range, from 0.3 to 12.4. The
experimentalists rarely investigated Taylor-Couette flow for aspect ratios smaller than
about 30, except in the work of Benjamin and Mullin [10] and in that of Pfister et al.
[54], who made comparisons with Mullin’s numerical results. The intermediate aspect
ratio we have chosen, I' = 12, is large enough to produce a more interesting path to
chaos than the now well-known period doubling route, and small enough for the flow
regimes to be distinguished if sufficient precision can be reached with the numerical
discretization.

Radii ratio: Because of the simplifications it allows, the small-gap case is often chosen
in theoretical work. It is therefore very much studied experimentally and numerically
for comparison purposes. The small-gap case is also interesting because it can have
applications in mechanical engineering for slide bearings. However, it is too difficult
to make accurate measurements in a small gap, when dealing with aspect ratios below
12. Pfister [53] therefore uses 7 = 0.5. We chose the radii ratio, n = 0.875, to compare
with Marcus’ results. The case, n = 0.875 and I = 12, we study is original, the closest
configurations being that of Mullin, = 0.5 and ' = 12, and the one of Marcus,
n = 0.875 and I = 0o. The geometric parameters and the reasons for these choices are
summarized in table 1.4

r 12 20 30

n
0.875 Original | Original | Comparison [48]

Table 1.4: Choice of the geometrical parameters.

End plates fixation: The end plates are most often attached to the outer cylinder.
This is what we call the classical fixation configuration. When the inner cylinder is
set into motion, and only this cylinder, the bifurcation to Taylor vortices is imperfect
due to the end conditions. Vortices first start growing from the Ekman cells at the
top and bottom. The growth rate is small at the beginning but then Taylor vortices
appear suddenly in the remaining Couette-flow central region. Alziary de Roquefort
and Grillaud [3] observed that at low subcritical Reynolds numbers only two counter-
rotating Ekman cells, connected at midplane, were present in the flow. Weak ghost
cells then appear in pairs until N — 2 cells (Ekman cells+ghost cells) finally occupy the
whole annulus length at a slighlty subcritical Reynolds number. Once Re, is exceeded,
N — 2 Taylor vortices replace N — 4 ghost cells, the 2 Ekman cells still remaining. The
total number of cells evolves then from N —2 to N when the transition curve is passed.
Couette [20], and later Mullin [15], used a different configuration in which the end
plates were rotating together with the inner cylinder, while the outer one was fixed.
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In his short-length, Taylor-Couette geometry, Mullin found that the rotating ends case
also produced axisymmetry-breaking bifurcations, but curiously in a wider range of the
parameter space than in the classical case.

Our finding is that, in the counter-rotating case, the classical fixation forces the instabil-
ity to appear first in the midplane region, in the form of a pair of azimuthally-partially-
developed, counter-rotating vortices which are deflected, the upper, azimuthally-unclosed
vortex towards the upper wall and the lower, unclosed vortex towards the lower wall,
so that an arrowhead spiral pattern starts to develop. The experiment of Litschke and
Roesner [42] confirms our observation. The presence of the end plates, and the way
they are fixed to the outer cylinder, may explain why the spiral patterns start forming
in the middle (see chapter 7).

According to the work of Chossat and Iooss [17], the end plates fixation configuration
is not the most important feature to determine whether the flow will bifurcate from the
Couette regime to Taylor vortices, or from Couette flow to spirals. They investigated
the first transition in the counter-rotating case for cylinders of infinite length. Bearing in
mind the results of Rayleigh [55] concerning the position of the nodal surface, Chossat
and looss’ findings tend to prove that the change from Taylor vortices to spirals is
correlated to the nodal surface position. As the rate of counter-rotation, denoted by
|O| = ’%;l, increases, the nodal surface moves from the outer cylinder towards the
inner cylinder. Our own interpretation (see chapter 7) is that the super-critical flow is
no longer the Taylor vortex flow but the spirals flow, when the corrected nodal surface
leaves the outer cylinder. This correction means that we take into account the diffusivity
by adding a buffer layer to the non-viscous unstable layer. This increases slightly the
value of the inviscid nodal radius.

1.2.2 Dynamic parameters

The counter rotating case, (Re; > 0, Rey < 0), is the least studied. The most complete
contribution is that of Andereck et al. who systematically explored the parameters
range (0 < Re; < 960, —4000 < Re, < 1200). In the range, (0 < Re;, < 960, —4000 <
Re; < 0), the different flow patterns they observed were:

e azimuthal laminar flow,

e Taylor vortices,

e spiral vortices,

e wavy vortices,

e interpenetrating spirals,

e wavy, interpenetrating spirals,

e modulated, wavy vortices,
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e intermittent turbulent spots,
e spiral turbulence, and
e featureless turbulence.

We decided to study the first transition in the counter-rotating case where some theo-
retical knowledge is also available. The theoretical investigations of Chossat and Iooss
[17], concerned with an infinite aspect ratio and two radii ratios: 7 = 0.75 and 5 = 0.95,
were a good starting point for our own study. A linear stability analysis is first needed
to extend their results to the case we chose, n = 0.875. Chossat and Iooss studied the
succession of transitions to spirals with & azimuthal modes, k ranging from 0 to 2, for
n = 0.75 (see table 1.1), and from 0 to 4, for n = 0.95 (see table 1.2). They found
the marginal stability curves for each k, as well as the codimension-2 points where the
super-critical regime jumps from a k spirals pattern to a k + 1 spirals pattern. Chossat
[16] postulates that the interpenetrating spirals observed in the Andereck et al. exper-
iments could result from the superposition of the k£ and k + 1 spiral modes, travelling
in opposite directions.

1.2.3 History parameter

The flow regime does not only depend on the geometric and dynamic parameters but
also on the path followed in parameter space to reach a given set of parameters. The
parameters we call history parameters are those that could be varied with time in a real
experiment. They thus comprise Rél, Rég and f, where * stands for time derivative. We
discard 7 from the history parameters because it is not possible to make an experiment
where 7 varies continuously, while keeping low eccentricity, surface deformation, etc.
In the case where only the inner cylinder is rotating, Burkhalter and Koschmieder [12]
produced Taylor vortices whose wavelength, A, is different from the critical wavelength,
Ac. They obtained A < A, through “sudden-start” experiments and A > A, through
“filling” experiments, i.e. in which I" varies continuously with time.

According to Coles [19], the path followed by Re,, for Re; = 0, also produces different
final states when dealing with super-critical flows. For instance, he obtained different
flow regimes when decreasing or increasing the Reynolds number to a final Reynolds
number Re > Re,.

Andereck et al. state that, when Re stays below what they call the adiabatic growth
rate, the same final state is observed whichever path is followed.

1.3 Aims of the thesis

Our first goal is to find a physical explanation to the second bifurcation of the classical
Taylor-Couette flow. Because, according to Marcus [48]: “Analytic finite-amplitude
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and linearized or truncated numerical studies have given us many mathematical de-
tails of wavy-vortex flow, and the experimental studies have supplied us with stability
diagrams, wave speed measurements and torque-Reynolds-number relations, but sur-
prinsingly little physical understanding of Taylor-Couette flow has been gained since
Rayleigh [56] explained the inviscid centrifugal instability that governs the formation
of Taylor vortices”.

One of the facts we were most puzzled about at the beginning of this thesis work
was that, depending on Re,, the first transition may either form Taylor vortices or
spirals. But, the cause for the appearance of these two different patterns is the same.
The centrifugal instability gives rise to these structures when a critical value of the
Reynolds number is exceeded. Above Re, the diffusion can no longer resist the latent
centrifugal instability. Hence, our second goal is to find out the mechanism responsible
for the appearance of spirals in the counter-rotating case.

1.4 Organization of the chapters

Apart from the introduction chapter (chapter 1), this thesis has two main parts. In the
first part, the numerical tools are set up and validated. This part is divided into an
introductory chapter, chapter 2, devoted to a description of the general features of the
spectral element method. Then, chapter 3 describes the assembling of the numerical
algorithms that constitute the whole DNS program. The last section of this chapter
treats a subset of the DNS code, dealing with the linearized Navier-Stokes equations
and periodic, axial boundary conditions. Chapter 4 addresses the validation of the
code and its performance on different computers. The validation is first concerned with
numerical tests and then by physical tests, i.e. comparison with published experiments
and simulations.

The second part of the thesis is concerned with the description and interpretation of the
results of the simulations performed with the two numerical tools described in the first
part. The first chapter of the second part, chapter 5, is devoted to the analysis of the
results obtained with the linear stability code. Then, chapter 6 deals with the classical
Taylor-Couette flow, that is when only the inner cylinder is rotating, and chapter 7

treats the counter-rotating case. Finally, conclusions and perspectives are drawn in
chapter 8.
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Chapter 2

Introduction to the spectral
element method

The spectral element technique is an extension of spectral methods. The comprehensive
book by Canuto et al. [13] describes the spectral methods. Patera later devised from
these the spectral element method [52]. More recent overviews of the method are given
by Renquist [58] and by Maday and Patera [45]. Shorter, and also good, introductions
can be found in Timmermans [67] and Couzy [22]. Spectral element methods have the
geometric flexibility of other decomposition methods, such as the h-type finite element
method [32]. The spectral element technique is similar to the p-type finite element
method proposed by Babuska et al. {9)].

The spectral element technique and, more generally, spectral methods are characterized
by the property that for problems with a sufficiently smooth solution, exponential
convergence of the approximation to the solution is obtained by expanding the solution
in a series of special functions, solutions of singular Sturm-Liouville problems. The
expansion functions classically used in spectral element methods are Fourier expansions,
Chebyshev and Legendre polynomials.

In the spectral element approximation, the domain is divided into non-overlapping,
conforming elements. The discretization process is based on a variational formulation
of the partial differential equations. The main effect of the variational approach is to
lower the continuity requirements at the element boundaries. The integral equations
appearing in the variational formulation are integrated by high-order Gauss-Lobatto-
Legendre quadrature. The variables in each element are expanded in a series of high
order polynomial basis functions. For reasons of efficiency, a tensorial basis is used.
The discrete matrix-vector system is generated in the standard Galerkin way, leading
to a block-banded system.

In the following sections, the fundamentals of spectral elements are described and a
one-dimensional, linear, elliptic model equation is given as an example.

23
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2.1 p-type weighted residual methods

In this section the concept of p-convergence of a numerical approximation method is
discussed from a general point of view. The following partial differential equation is
taken as a starting point.

Ls=f inT, (2.1)

with T an open bounded domain. Here, £: U C H — H is a continuous positive-
definite differential operator with its domain being the linear vector space U, a subspace
of a Hilbert space H, and f € C%(Y).

\Y%

inﬂls-shll v
Sh Vv

Ls=f

Lsh-f

L Vy

Figure 2.1: Galerkin weighted residual approximation method. Galerkin “best approx-
imation result”.

The class of p-type weighted residual techniques can be divided into global methods,
such as spectral methods, and methods that use any form of domain decomposition,
such as the spectral element method. The main advantage of domain decomposition
techniques is that they are able to handle complex geometries. Another consequence
is that the system matrix is block-banded, which results in less computing time and
memory storage compared to global methods. Moreover, these techniques provide a
very useful application for parallel computing, since many operations can be performed
at elemental level [22].

If a Galerkin domain decomposition method is used, the basis for the numerical scheme
is the variational or weak formulation of equation (2.1),

find an s € U C V such that
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a(s,v) = (f,v)g Yv eV, (2.2)

where the functions v € V are the trial functions, (f,v)y is the natural inner product
in V, and a(u, v) = (Lu,v)y is a bilinear form. If the bilinear form, a(., .), is continuous
and coercive, application of the Lax-Milgram lemma [18] states that problem (2.2) has
a unique solution s € V. Further approximation of V by the (N + 1)-dimensional
subspace V}, with basis (¥:)ic{0,1....,n} gives the discrete problem:

Find an s, € V}, such that

.....

a(sh,vn) = (fyvn)n Yor € Vi, (2.3)

or equivalently, find an s, € V}, such that

a(sh,wi) = (f, wi)H Vi e {0, 1, ey N} . (24)

An important result of the variational Galerkin formulation is the following lemma of
Céa [18], also known as the “best approximation result”:

HS -~ Sth < CHS - 'Uth V’Uh S Vh y (2.5)

where ||.||v denotes the norm of the space V, and C is a constant. The lemma states
that the error ||s—sh||v, called approximation error, is bounded by the smallest distance
[|s—vn||v. In other words, the approximation sy is as accurate as the best approximation
for the exact solution s in the space Vj,. This result is illustrated in figure 2.1.

For practical reasons, V}, is chosen as a space of polynomials of degree < N. The idea
behind p-type methods is to obtain a more accurate solution by decreasing the distance
inf ||s — vplly. This is done by increasing N, the polynomial degree. This approach
is called p-convergence. Before describing the spectral element discretization, we first
analyse how accurately a function s can be approximated by increasing the degree of
its approximation.

2.2 Spectral approximation

In a weighted residual approximation method, the approximate solution to the ordinary
differential equation is expanded in a truncated series of expansion functions:

Sns(z) =) sipi(z) (2.6)
=0
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with s;, the expansion coefficients and ¢;, the expansion functions. In p-type meth-
ods, convergence is achieved by letting N — oo, i.e. by increasing the degree of the
expansion.

The essential point behind spectral methods is that the expansion functions are cho-
sen such that the expansion (2.6) has the property of exponential convergence if the
approximated function is sufficiently smooth. The convergence rate is therefore deter-
mined by the smoothness of that function. In order to establish this, let us consider the
expansion of an analytical function, s, in terms of an infinite sequence of orthogonal
functions, ¢;:

s(z) = Z sipi(z) - (2.7)

If the system of orthogonal functions is complete in a suitable Hilbert space, the relation
(2.7) can be inverted. Thus, the function s can be described both through its values in
physical space and through its coefficients, s;, in spectral space.

In the case of periodic functions, the obvious expansions are Fourier expansions. A
well-known result of Fourier theory states that if a function s is periodic and analytical
with periodic derivatives, the ith coefficient of its Fourier series decays faster than any
inverse power of i, that is,

Vn > 0, 3?:0, Vi > 10, IS,;I <i ™. (28)

The exponential (or spectral) rate of convergence can also be obtained for expansions
of non-periodic functions. If the function s is expanded in a series of eigenfunctions
of singular Sturm-Liouville problems, the ith coefficient of the expansion decays faster
than any inverse power of the eigenvalue, \;, of the associated Sturm-Liouville problem,
that is,

Vn > 0, 3?:0, Vi > 19, IS,'I < /\:n . (29)

In Appendix B, more results on Sturm-Liouville expansions are given. In particular,
polynomial expansions are of importance for reasons of computational efficiency. In
Canuto et al. {13], it is shown that the only polynomial solutions to singular Sturm-
Liouville problems on [—1, 1] are encompassed in the class of Jacobi polynomials. The
two most common applications in this class are the Chebyshev and Legendre polyno-
mials. For a detailed survey of properties of these polynomials see Abramovitz and
Stegun [1]. Since Legendre-type expansions are typically used in the spectral element
method, some properties of Legendre polynomials and Legendre expansions are given
in Appendix B as well.
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2.3 Pseudo-spectral approximation

The approximation (2.6) defines a continuous transform between physical space and
spectral space. In general, the spectral expansion coefficients s; are not computed
exactly, since they depend on all values of the function in physical space. In pseudo-
spectral methods, a set of approximate coefficients, §;, is calculated using the values of
s at a finite number of interpolation points. The finite series defined by the discrete
coefficients §; is then the interpolating polynomial of s at the interpolation points. It
is given by:

Ins(z) = Z sii(z) . (2.10)

The interpolating polynomial satisfies:

INS(QT,') = S(IB,’) N Yi € {0, 1, ceey N} s (211)

where the z; are the interpolation points. Equation (2.11) gives the discrete transform
between the values s(z;) and the set of its discrete coefficients, §;.

In Canuto et al. [13], it is shown that if the interpolation points are Gauss-type quadra-
ture points, the spectral accuracy is retained in replacing the continuous transform with
the discrete transform. However, doing this adds another cause of error, called integra-
tion error. In practice, the interpolating polynomial is often written as:

Ins(z) = Zsmi(x) , (2.12)

with s; = s(z;) and ; the Lagrangian interpolant in the Gauss-type quadrature points.
Explicit values for ; and its derivatives in the collocation points, z;, are given for
Legendre interpolation in Appendix B.

2.4 A one-dimensional model equation

In order to establish the fundamentals of the spectral element technique, the following
linear, symmetric, elliptic boundary value problem in one dimension is considered:

() rHe =0 X <zl .13

s(z1) = s(za) =0.

Let us define o, # and v such that a and b satisfy:
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O0<a<a(z)<f and 0<b(z)<7, (2.14)

where a and b belong to C°(T), C°(T) being the space of continuous functions in Y.
Let us also introduce f € £2(T) with the Lebesgue space £L2(T) defined by:

£2(T) = {v | /Tv2d:r < oo} . (2.15)

The natural inner product in this space is defined as:

(u,v) = /Tu(:z)v(x)dx , Vu,ve LHY), (2.16)

with the induced norm, ||v||?> = (v,v). The basis for the numerical scheme is the vari-
ational equivalent to problem (2.13). The space of acceptable solutions is the Sobolev
space H)(T) given by:

dv

() = {v e £1)| &

€ LAY) , v(z)) = v(x2) = O} . (2.17)

The variational equivalent to problem (2.13) can be written as:
Find an s € H§(T) such that

a(s,v) = (f,v), Vv € Hy(Y) , (2.18)

where the bilinear continuous form a(.,.) is defined by:

a(u,v) = a-——dx / bu(z)v(z)dz , V u,v € Hg(Y) . (2.19)

The bilinear form a(., ) is continuous and coercive. Application of the Lax-Milgram
lemma to problem (2.18) therefore leads to a unique solution s € H}(T).

The first step in the spectral element discretization is to break up the domain T into
E non-overlapping elements T©.

T =UE, T, =UE [§,z5 + 1] , (2.20)

where the length and origin of each macro-element, Y€, are respectivelly /¢ and z§.
The next step is to discretize the space of acceptable solutions H}(T). The space of
approximation for the solution s is taken to be the (N + 1)-dimensional subspace X
of H}(Y) defined as:

Xo = Hy(T) N Pne(Y), (2.21)
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where Py p(Y) = {¢ € CO(Y),Ve € {1,2,..,N}, v € Pn(Y%)}, Pn(T¢) denoting
the space of polynomials in T¢ of degree less than N. The discrete variational problem
can now be written as: find s, € X, such that

E E

Za Sh,’Uh Te = E(f, 'Uh)Te , Vo, € Xo , (222)

e=1 ex]
where the subscript T¢ denotes the restriction to element Y¢. In general, equation
(2.22) can not be implemented without numerical quadrature. The choice of quadrature
corresponds to the choice of a discrete inner product. The high-order discretization
suggests a Gauss-type quadrature formula. Therefore, a Legendre-type quadrature is
chosen, since it has a natural weight function equal to one. For reasons to be explained

at the end of this section, Gauss-Lobatto integration is chosen. This quadrature is
defined by:

1 N
[ £6de=3 (come , ¥5 € Pu((-1,1) (2:23)
-1 k=0

where the (j are the Gauss-Lobatto-Legendre points and the pi, the Gauss-Lobatto-
Legendre weights. In order to be able to apply the quadrature, an affine transformation
is used to map each element T to the standard, or parent, element T =] - 1,1],
z € T¢ — ¢ € T. Due to this transformation, the terms in equation (2.22) can be
written as:

(s, vh) e = %%‘%"—J 4¢ + / bsn(C)un(¢)JdC | (2.24)
(f, vn)ye = /}r Fon(Q)TdC | (2.25)

The transformation Jacobian, J, is given by:

dz
= — 2.26
-5 (226)
Applying the Gauss-Lobatto-Legendre quadrature to the system (2.22) yields the fol-
lowing fully discrete problem: find s, € Xg such that

E E
Za(sh,vh)GLL = Z(f, vn)eLL » Yun € Xo - (2.27)
e=

1 e=1
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The corresponding discrete inner product (.,.)grr with induced norm ||.||gLL is given
by:

(u,v)gLL = Z Jeu(Ce)v(Ce)pr » ¥ u,v € COY) (2.28)

k=0

where J, = J((x). Furthermore, the discrete bilinear form a(.,.)grz is given by:

N

afu Vo = 3 loo) T G G +bzulCo(@)Idos ¥ v e O(Y) .
k=0

(2.29)

Here, the z; are the global points corresponding to the local Gauss-Lobatto points
(k- Equation (2.27) can be seen as the complete spectral element discretization of
the original differential equation (2.13). Again, application of the Lax-Milgram lemma
shows that the problem (2.27) has a unique solution s, € Xj.

In order to implement the discrete system (2.27), it is necessary to choose a basis for
the approximation space Xy. The choice of basis affects the form and conditioning of
the discrete equations. Moreover, it is important with respect to the inter-elemental
coupling. Therefore, a Gauss-Lobatto-Legendre Lagrangian interpolant basis is chosen
to represent a function in Xy, since the Lobatto points include the boundary points of
the reference element Y. The basis functions, (¢;(¢ )ic01...,v} satisfy:

: <1<
{ ¢; € Py , 0<i1<N, (2.30)

$:i(()=06i; , 04, 7N,

where J;; is the Kronecker symbol: its value is one when 7 = j and zero otherwise. The
approximate solution s in each element T¢ can be written as:

N
sn(@)pre = s5(@) =D _ sihil() (2.31)

1=0

where s§ = s7(z;). The approximate solution is continuous over element boundaries
since s, € HA(T). As a consequence, the coefficients satisfy:

SN|Te-1 = Sp|Te Ve € {2, ,E} . (232)

Moreover, s, must satisfy the homogeneous Dirichlet boundary conditions:

Sojr1 = SN|Ye = 0. (233)
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It is convenient to represent the source term f in terms of the basis in Xy. Substitution
of sk, frn and the test function v, into equation (2.27) in the standard Galerkin way
yields the discrete block-banded matrix system:

(A+bB)s = Bf (2.34)

or equivalently:

E N E N
oD (AL +bBR)si =) Y Bfe, Vi€ {0,1,..,N}. (2.35)

e=1 i=0 e=1 1=0

In equation (2.34), the calligraphic font adopted to denote the matrices, A, bB and B,
implies that direct stiffness has been performed. By this, we mean that the contributions
of corresponding global element boundary points are summed to ensure condition (2.32),
and the Dirichlet boundary conditions (2.33) are taken into account by eliminating from
the system the rows and columns corresponding to the boundary points. The elemental
matrices are given by:

A;i = Zk 0 (l‘k) d¢ (Ck) (Ck) ]:lpk ’ V O S 'L,] S N )
bBE, = bx:)Jipibi; , V0 <14, <N, (2.36)
B;i = Jipitsij y V 0 S 27] S N .

A detailed error analysis for linear elliptic problems is given by Maday and Patera [45].
One of their results states that if the solution and data are C*, exponential convergence
to the exact solution s is obtained for s, if N — oo.

A remark should be made about the matrix system. As already mentioned, elements
only couple at boundary nodes because of the Gauss-Lobatto interpolation. The choice
of Gauss-Lobatto numerical integration ensures an exact evaluation of the stiffness,
or diffusion, matrix A in the case of a constant coefficient a. The mass matrices bB
and B are not computed exactly. However, the use of Gauss-Lobatto integration has
two advantages. Firstly, it enables an efficient use of tensor product basis functions in
higher dimensions. Moreover, it results in diagonal mass matrices b3 and B, a property
that is very useful when approximating time-dependent problems with an explicit time-
integration.
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Chapter 3

3D Navier-Stokes solver

We have used known methods to build an efficient code. The original features of our
numerical algorithm are the foll.owing. The way we regularize the boundary conditions
is new. We present a fully-explicit algorithm for the time-marching scheme as a good
alternative to the classical implicit/explicit splitting of the diffusion and non-linear
terms, respectively. In that process, a second original feature arises. We derived our
time dicretization from the scheme of Gavrilakis et al. [31], though they used the
standard fourth-order Runge-Kutta scheme, while we use the standard second-order
Runge-Kutta scheme. The only change we made in their algorithm is the following. In
our case, that is for cylindrical coodinates, the gradient and the divergence operators
do not commute, the continuity equation has then to be enforced at each intermediate
time step of our explicit, second-order Runge-Kutta scheme.

The primitive variables, pressure and velocity, are represented by Fourier series in the
circumferential direction and by spectral elements in the radial and axial directions. By
Fourier transforming the governing equations, one obtains a two-dimensional problem
(r, z) for each Fourier mode. Then, one resorts to the weak formulation of the two-
dimensional problem with the velocity components in a polynomial space of degree N
and the pressure field in a space of degree N — 2. This procedure avoids the presence of
spurious pressure modes. For simplicity, we choose the same grid points for the velocity
and pressure expansion, i.e. the N + 1 Gauss-Lobatto-Legendre (GLL) points for the
velocity and the N — 1 inner GLL points for the pressure, as Azaiez et al. proposed in
[8]. Using a tensor product formulation, we build operators separately in each direction
(r,2), and we use the fast-diagonalization technique of Lynch et al. [44] to recover
the pressure from the direct inversion of a pseudo-Poisson operator. This method is
equivalent to inverting matrices depending on one direction only and then inverting one
diagonal matrix depending on both radial and axial directions. The inversion of the
pressure operator is the core of our solver and is performed very rapidly due to this
technique.

33
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3.1 Continuous formulation of the equations

The fluid is considered to be viscous, Newtonian, incompressible and isothermal. Hence,
the incompressible Navier-Stokes equations can be used to describe the flow.

Navier-Stokes equations These equations express the conservation of mass (3.1)
and of momentum (3.2). The continuity equation reads:

V.-v=0 VY(r,t)e Dx|[0,+00] , (3.1)

where v = v(r,t), r = (r,0, z) are the cylindrical coordinates, defined on the domain
D =|Ry, Ry[x]0,27[x]z, 2o and ¢ is the time.
The momentum equation reads:

% +(v-V)v= -—%Vp+uv2v V(r,t) € D x [0, +o0[ . (3.2)

Here p is the density of the fluid and v its kinematic viscosity. The scalar p = p(r, t)
contains both the pressure and the gravity potential, —pgz. We will call, p, the pressure
from now on.

Non-Dimensionalization We make the following choice for the characteristic scales:

d = Ry — R, the gap between the two cylinders, is the length scale. R;, is the
radius of the inner cylinder, and R, the radius of the outer cylinder.

V = |Ri§l), or |RyQy|, is the velocity scale. Here €, is the angular velocity of
the inner cylinder and €25 that for the outer cylinder.

— In the case where only the inner cylinder is rotating, V = |R;|.

— In the counter-rotating case, V = |Ry(y|.
e T=Tc= —3, is the time scale. It is the characteristic advection time.

P = pV2, is the pressure scale. It corresponds to the centrifugal force acting on
the flow.

The dimensionless continuity equation is unchanged, while the momentum equation
becomes:
1

s viv V(r,t) € D x[0,+o0] , (3.3)

ov
—a?+(v-V)v=—Vp+

where Re = -‘{/x is the Reynolds number and the physical quantities, space, time, velocity
and pressure, are scaled with respect to d, 7, V and P respectively.
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Complete set of equations Taking the boundary and initial conditions into account,
the complete set of equations is:

%_‘{ + (v:-V)v = -Vp + Vv V(r,t)e Dx[0,+00] ,
V.v = 0 Y(r,t) € D x [0,4+00] (3.4)
v = Vb Y(r,t) € 8Dx]0, +oo] '
v = \ V(r,t)e Dx {0} ,

where the velocity at the boundaries, 0D, is denoted by v, and the initial velocity field
by V;.
3.2 Weak formulation of the equations

9 discrete (r,z,t) continuous equations The azimuthal direction being periodic,
we first approximate the velocity v and the pressure p by finite Fourier series:

No/2 . Ng/2
v(r,t) = Z vi(r,z,t)exp(i k 6) , p(r,t) = Z (7, z,t) exp(i k 8) ,
k=—Ngy/2 k=—Ny/2

with k, the azimuthal wavenumber, Ny the cut-off and i the square root of —1.

We define the test functions I and II? as products of Fourier bases by continuous func-
tions of the Sobolev space H3(Y), ¢, and of the Lebesgue space L3(Y), ¥, respectively,
where Y =|Ry, Ra[x]21, 5[ and L3(T) = {v € L3(T),¥9x = 0}. These test functions
are expressed by the relations:

{ I1°(r) é(r,z) expi k)
P(r) = ¢(r,z) exp(i k 0)

We define the following scalar product of unit weight: < f,g >= | p f3, where g denotes
the complex conjugate of g.

Using a Galerkin projection, we obtain a two-dimensional problem for each of the
Fourier modes, k,

{ f-r [ + [(v- V)V, ] ¢rdrdz = fr [——Vpk + Rle v? vk] ¢rdrdz (3.5)

—f.r [V - vi]¥rdrdz = 0

We take here the opposite of the divergence equation to later have a pseudo-Laplacian
matrix that is positive.

Divergence theorem If we apply the divergence theorem to the product, ¢Vu, ¢
and u being scalar functions of (r, z), we obtain the following equation:

/V-(¢Vu)dT=/¢>V2udT+/V¢-VudT= ¢Vu-ndy,
T T T

or
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where n is the unit outward normal vector on 3T and dv the linear measure on Y. We
use this result to reduce the order of differentiation of the three Laplacian components:
V2ur, Vv, and 2wy. Thus, we replace the second-order derivatives on one term by
two first-order derivatives on two terms. Considering ¢ to be a test function belonging
to Xy, we have ¢ = 0 on 0T. The divergence theorem can therefore be simplified to:

/¢V2udT=—/V¢-VUdT.
T T

Formula for the pressure Another useful formula is:

/erde=/an<17.

Applying this formula to the scalar f = ¢ p for any test function, ¢, of Xy and bearing
in mind that V(¢ p) = ¢Vp + pV¢, we obtain :

/'qsvpd"r:—/pv(;sdr.
T T

Weak formulation of the Navier-Stokes equations Using these two formulas,
the weak formulation of the Navier-Stokes equations can be simplified to:

Jo (B + (v - V)VIe] ¢ rdrdz = [, V¢ rdrdz — & [ Vvi- Vo rdrdz (356)
~ Jx V-] rdrdz = 0 W
3.3 Spatial discretization
The section T is further decomposed in E = I x J rectangular elements: Y =

.......

J
/F rdrdz = Z/ F rdrdz (3.7)
-1 =1 Yel

and

F(r, z) rdrdz —/ d:z:/ dy Flr(z), z(y)]r(z )%—% i (3.8)

Yel
Here, (r(z), z(y)) represents the affine mapping from |—1,1[x] =1, 1[ to Y® =]r§, r§+
ge[X]z([)’ 2y + hl['
= e+ L
r(z) r? + 31(:13 +1) (3.9)
2(y) = n+5@H+1) ,

and
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Figure 3.1: T¢! =|rg, v& + ¢¢[x|24, 24 + R'[.
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Figure 3.2: Grid of 21 x 16 GLL points, local to an element.

e = Ri+371g Ve>2,
zh = n+uh Vi>2
We set r§ = R and z} = 2.
A Lagrange-Legendre interpolation is applied to the Fourier modes:

k(T, 2, t)jper = Zrzzvvk t)d) (3.10)

=0 j=0

where ¢¢} belongs to X = H)(Y) N Py,g(T). Here, Py g(Y) is the space of piecewise
test functlons ¢ = ¢f} defined on T as ¢f = h;[z(r)]h;[y(2)] on T and zero on all
the other elements T*?. The polynomial hih; is of degree N = N, x N,. The basis h;
(respectively h;) is the Lagrange interpolant of degree N, (respectively N,) associated
with the i-th (respectively j-th) Gauss-Lobatto-Legendre point of |1, 1[ (see Appendix
B and figure 3.2).

In order to eliminate spurious pressure modes, two methods can be used. In a (Py/Py)
formulation, which uses the same grid for both velocity and pressure, the inherent



3.3. SPATIAL DISCRETIZATION 39

spurious pressure modes are filtered. In a (Py/Py_2) formulation on a staggered mesh,
typically on Gauss points for the pressure and Gauss-Lobatto points for the velocity [45],
the spurious pressure modes are simply not created. We use the (Py/Py_2) formulation,
but instead of taking the pressure at the Gauss-Legendre points and the velocity at the
Gauss-Lobatto-Legendre points, we apply the modified version of Azaiez et al. [8] which
requires using the inner GLL points for the pressure. This method has the advantages
of the two former methods, it needs no filtering and also no extrapolation from the
pressure grid to the velocity grid, with the exception of the points lying on the element
interfaces. The pressure is then expanded as follows:

Ne=1N,-1
Pi(T, 2, t)per = Z Z pvk ()5 r 2), (3.11)

i=1 j=1
where 1§ belongs to Y = L2(T) N Py_y(T). Furthermore, we have 9f[r(z), z(y)] =

Bi(z)ilj (y) on Y¢! and 1/)5} = 0 elsewhere; h; (respectively h,) isthe Lagrange 1nterpola.nt
of degree N, — 2 (respectively N, — 2) associated to the i-th (respectively j-th) inner
GLL point (see Appendix B for the formula).

We use a unique discrete inner product defined on each element by the Gauss-Lobatto-
Legendre quadrature rule, which uses the same nodes as the interpolation technique,

Ny N
[ e [ ay 1aw) stwsirt@ = 33 sitirtons (312)

i=0 j=0

In the former relation, r§ = r(z;), r belonging to T and p; and p; represent the GLL
weights, defined in Appendix B. The pressure is therefore extrapolated on the interfaces
of the elements to obtain the pressure gradient on the velocity grid.

The test functions are chosen in the subspace of trial functions that verify the boundary
conditions as in [58]. Let ¢ = ¢f = hi(z)h;(y), (4,5) € {0,..., Ny} x {0,..., N;}, be the
test function for the momentum equation. It belongs to Xo = H§(Y) N Py e(Y).

Let ¥ = ¢§ = h;[x(r)]h;[y(2)] be the test function for the continuity equation. We
have ¢ € Y,, with: Yy = L£3(T) N Py_2e(T). This choice of different test functions
results in rectangular gradient and divergence matrices.

Weak formulation of the equations in cylindrical coordinates The weak for-
mulation of the Navier-Stokes equations in cylindrical coordinates can be expressed as
follows:

f‘r [Qﬂk + nl’] ¢rdrdz = fr [ 1 (VQUk — % —2ik% ] ¢rdrdz ,
Jy [8% + nlf] ¢rdrdz = [, [—lk"f‘E + 7 (V v~ 1;”2‘ + 2ik#%)] grdrdz , (3.13)
fr [3_101; +nlZ] ¢rdrdz = [; [ + 2V 2 wy] grdrdz '

- fr [ = (ru) + 'kv + a—wi‘] Yrdrdz =0 ,
where the semi-discrete Laplacian of the k-th mode of f, fi is:

1 6 8fk k2 a2fk

Ve = TBT( 87”) fk



40 CHAPTER 3. 3D NAVIER-STOKES SOLVER

The notations nl;, nlY and nlZ represent the three components of the non-linear term
(v-V)vg. The form and discretization of this term will be discussed later. In equation
(3.13), vi = (uk, vk, wi), and uy, vr and wy are the radial, azimuthal and axial velocity
components. We now consider precisely each different constituant part of the Navier-
Stokes equations.

Individual terms in the Navier-Stokes equations The time derivative, for ex-
ample, yields:

8
ﬂ¢ drdz = / ZE glrdrdz =
T

J N N. N N, ;Zk s po

Zz Z ZEZ xm)h (yn)h (l’m) (yn)5(e (s, o)g2 2 mpmpn

s=1 o=1 m=0 n=0 p=0 ¢=0
Nr N: Ny N: e l

—ZZZZ“”"’“ oW (@ ) (42) G 5 T

m=0n=0 p=0 ¢=0

N Y- dud
=33 (rB" ® B*)imjn é’;"k (3.14)
m=0 n=0

The notation ¢ is the Kronecker symbol, so that ds,0) = 1 when the doublets (e, )
and (s,0) are the same, and s, o) = 0 otherwise. We introduce the following mass
matrices, defined locally for each T¢!: (rB7);; = ;TS 6,J 5, B = pidy; 2’, where ¢° is
the width of the element Y and k!, its height. For simplicity we do not add an upper
index, e or [, on these matrices to denote the element. The definition of the tensor
product ®, and its main properties are found in Appendix B.

Another mass matrix is introduced due to terms of the form:

E;C—tﬁrdrdz =
r

J Ny N. Nr h

I Z
Z Z Z Z Zuqu s =0 6""pmg 6qn5]npn 5(6 1)(s,0)

s=1 o=1 m=0 n=0 p=0 ¢=0
T NZ V‘ z

hl
= Z EZZUPQ’C e —0, 6‘l»mpmg 5qn5jnpn 5

m=0 n=0 p=0 ¢g=0
r Nz

= Z Z i ® BZ 'mJnumnk ’

m=0 n=0

with (%)i_j = ij(s 92:

e
T]

Concerning the non-linear term, we do not perform a convolution because of the
huge number of operations it would involve, of the order of NZ for a vector of length
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Np. Instead, we transform the velocity components and their derivatives into physical
space with a fast Fourier transform (FFT), whose operational count is proportional to
Nglog Ny for a vector of length Ny, and multiply the velocity by its gradient before
transforming the result back to Fourier space. The radial and axial derivatives are
obtained by multiplying the velocity vector defined on T by the derivative matrices
local to that element, Dy; = g%d,-j and ij = ;lgrdij, respectively. The parent derivative
matrix is given by: d;; = %’;i(ni), where 7; is a GLL point of the parent element
[—1,1] x [-1,1]. The azimuthal derivative of uy is simply ikuy.

The first relevant part of the pressure gradient is the radial derivative:
J Ny N; No—1N,-1

2 e DD DRI

0n=0 u=1 g¢g=1

B (Zm) Prg(yn) (—‘fii(xm)r +h(¢m)) (yn)&e,z)(s,o)ﬂlj

4 PmPn

e 1

== 3 3 sabulenin) (55 @)+ o)) B0 L

Ne—IN:=1
= > ) (C" ® B*)iujoplhy - (3.15)
u=1l g¢=1
In equation (3.15), we use the followmg matrices defined as: G = -D7T rBr - B,

——

TB ij = PiTy h’ ( )92: Br‘ij =pi;7’]'( ) and B tj = pih (y')h

The second relevant part of the pressure gradient is the axial derivative:

J
w3 . 2 dh; g°h°
=220 0 >0 D plahulem)heun)ha(zm) 152 Wn)Btenis o Pmen

Ny N; Ny—=1N,-1 l

==Y T Y st alun) o)y ) S

Nr—1N -1

=3 N (B ® Guypy - (3.16)
u=l g=1
Here Gz = —D*T B=,

The transpose of the radial, azimuthal and axial gradient matrices can be recognized
in the continuity equation:
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10 ik Owy,
- /r [;E(ruk) + Uk + a—] Yrdrdz =

] J Nr Nz 7‘ Nt

Z ZZZZ Upak (Opm i xm)‘sqnh (Yn)

s=1 o=1 m=0 n=0 p=0 ¢=0
2 dh,, ¢ ke

+ g_H (zm)iz (:vm)rfn5qnhj (Yn))om ‘Q—Pnf‘s(el)(syo)

S

. = g9° . ; h°
+ lkv;:;k‘smnhi (Zm)pm “2'5qnhj (Yn)Pon 36(6,1)(8,0)

so g° dhy .
+ w, k‘s h(xm) mpm2 dy ( )h (yn)pn‘s(e,l)(s‘O)]

l

N, N B
== Z Zuquh xp yq)Pp 5 pq 5

p=0 q=0
Nr Ny N; l

- Z Z Z uqu (l‘m)’f‘ h’ (yq)pmpql;

m=0 p=0 ¢=0

Ny N; - ge~ hl
- Z Z lk'U;qkhi(xp)pPEhj (yq)pq§

p=0 ¢=0
N. Ny N,
- Z Z prqkh .’L'p Ppp 2 d q(y‘n)h’ (yn)
n=0 p=0 ¢=0
r Nz
- Z Z [ GT ® Bz "PJQ qu - lk(Br ® Bz)zp]q pak + (TBT X Gz)lqu qu] . (317)
p=0 ¢=0

The first distinct part of the diffusion term is the second-order radial derivative:

— Qu—k% rdr dz =

x Or or

J NT Z NT Z

- Z Z Z Z Z Z qu 92 (fi};: m)hg(Yn) %%(xm)hj(yn)rfngz_mpmpné(e,l)(s,o)

s=1 o=1 m=0 n=0 p=0 ¢=0
Z T NZ

s . el
=_ZZZZ Upgk 92 (fih m)hq(Yn) 92 (g;;( m)h (yn)ng4h PmPn

m=0 n=0 p=0 ¢=0

=) (A" ® BY)ipjquity , (3.18)
p=0 ¢=0

where the second-order radial derivative matrix is:

N,

2
A:j = —E Zrzpkdkidk;j .

k=0
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The second part of the diffusion term is the second-order axial derivative:

auk 6¢
-—8—2—& rdr dz =

J Nr N: N N,

2 dh, 2 dh; *he
- Z Z Z Z Z Z uqu d (yn)h ( )ho d (yn) " g4 pmpné(e,l)(s,o)

s=1 o=1 m=0 n=0 p=0 ¢=0
Nr z Nr z

epl
B I I) I WA 2‘?( () g )1 S

m=0 n=0 p=0 ¢=0

N N
= Z D (rBT ® Aty . (3.19)

p=0 ¢=0

The second-order axial derivative matrix is:

Afj = h[ Zpkdkzdk] .
k=0

Direct stiffness The test functions d) ; and ¢e+” correspond to the same grid point
at the interface of the elements Y¢' and Ye+1l Therefore, there are two equations
contributing to the determination of the same unknown, v§ ; = vgj”. This is true
in the other space direction as well. There are also two equations determining the
unknown, vf,{, = vfol“. There are no coinciding points on the elemental boundaries

for the pressure.

We perform the direct stiffness [58] on the local matrices obtained earlier. We use
square matrices of size (N +1) x (N + 1), where N is either N, or N, depending on the
direction we are interested in. Belonging to this category of matrices are the stiffness
matrices, A” and A?, and the diagonal mass matrices, 7B", £ and B?, which apply to
the velocity in the momentum equation. The resulting global matrix A is obtained as
follows:

[ AL . A \
Ay o ALyt AL A2,
2, . A
A = A%,O o A3 N+A3
A+ AL L Ay
\ Alo Ty
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The matrices applied to the pressure, G , rBr , B , B are rectangular of size (N, +1) x
(N, — 1) for the first three and (N, + 1) x (IV, — 1) for the last. Quantities such as the
pressure gradient are built with these kind of matrices. Although the pressure is not
defined on the interfaces, the pressure gradient is needed there because it contributes
to the velocity computation. It is obtained from all the pressure points of the elements
sharing this interface. Let us now take a family of local matrices of size (N+1) x (N ~1),

the direct stiffness to them:

[ BY .. Bl )
Bl - Blwa B - Biva
B . By
B = ’3“}31 E;@}V_l
Bl, .. Bly_,
\ By .. Bl )

The momentum and continuity equations of (3.13) become:
(rB7) @ B %% 4 Gr @ B py — (rB7) ® B* s -
(rB) @B &% 4+ kB QB p— (rB) @B s =
(E)om d s BTy (Mo g -
-G ®B* u+ikBT ®B* vy —rB" ®G* w, = 0

’ (3.20)

o O O

The velocity components uy, vy and w; are defined on the grid T4 made of all the GLL
points in each of the elements. The pressure field pi is defined on the grid Ty made
of the inner GLL points of all the elements. The terms denoted by s, sf and sZ are
defined by the relationships:

s = —nl},
_1_ Ty—1 z\ -1 r z _ 2§r_ z T z__g z
+=(rB) ® (BY) [(A @B — K= 9B + 78 ® A* — = ®B)uk
_aikZ g vk], (3.21)
r
s8 = —nlf

1 -1 zy-1 r z __ 2Br z z g z
+ 7 (rB)7 ® (8Y) [(A ®B —K— @B +18 @ A" - = ®B)vk

+ 2ikg ® B* uk] . (3.22)
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si = —nlZ + : (rBY ' ® (B*)™! [A" ®B* — kQBT QB +rB ® AZ] we - (3.23)

Re

We now define:

_ @:’;@ Bi rB" ® B*
G=| ikB" ® B* and B=| rB"® B?
rBr ® 52 rB" ® B*

In compact matrix form, the discrete equations are now:

(3.24)

B 4+ Gp —Bs, = 0 ,
—DVk =0

In (3.24), vi = (uk, Ux, wi). The three components of the source term sy are (s}, s%, s%).
~ ~T  ~T ~T ~T —~T —~T

The divergence operator is D = (" ® B? ,—ikg ®B* ,rB” ® G* ). The gradient

matrix, G , and the divergence matrix, 5, verify D=GT.

The non-linear term This term can be expressed in different forms: the rota-
tion form, w A v + -;—V(v"’), where w = V A v is the vorticity, the convective form,
(v - V)v, the conservative or divergence form, V - (v ® v), and the skew-symmetric
form, (v-V)v+1V.(v®v). The rotation form is the least expensive because only six
derivatives need to be evaluated, while nine derivatives are needed for both the convec-
tive and conservative forms, and eighteen for the skew-symmetric form. Although the
four continuous expressions do not differ for a solenoidal velocity field, they are slightly
different when they are expressed in discrete form. We use the skew-symmetric form,
in any event, because it is the only one that remains stable for long integration times
for a chaotic or turbulent flow. In the process of evaluating the non-linear term, we
use FFT transforms of length Ny, creating thus an aliasing error, that is non-negligible
from modes (Ny/2) till Ny. To prevent aliasing errors, the 3/2 rule could be used. This
consists of applying FFT transforms of length 3Ny to a modified velocity field which is
a vector of length 3V, whose first Ny modes are those of the original field and the other
2Ny modes are set to zero. However, as the cost of the evaluation of the non-linear term
is not negligible in our case, we do not use the 3/2 rule. Another way to reduce the cost
of the calculation of the non-linear term would be to use the alternating form instead
of the skew-symmetric form. This form consists in using alternately the convective and
divergence forms. This procedure is stable for long integration times for a turbulent
flow according to Zang [69]. The advantage of this form over the one we use is that
only nine derivatives need to be obtained.
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3.4 Time discretization

3.4.1 Fully-explicit scheme

In order to keep the high accuracy achieved spatially by the spectral element method,
one has to use at least a second-order scheme for the time integration. Among the
classical explicit schemes, we have considered the Adams-Bashforth scheme and the
Runge-Kutta scheme. The stability region of the second-order Adams-Bashforth scheme
(AB2) is about half as small as that of the second-order Runge-Kutta scheme (RK2);
however, the operational cost for the RK2 is twice that of the AB2. So there is no clear
advantage in choosing one rather than the other. The RK2 scheme only requires one
time step for the initialization, while two are needed for the AB2. Two velocity fields,
with three components each, and one pressure field have to be stored to be able to restart
a simulation in the case of the AB2 scheme, while only one velocity field has to be stored
before restarting a simulation in the case of the RK2 scheme. The amount of memory
needed by a DNS is such that we have chosen the least memory consuming of the two
methods, i.e. the RK2 scheme. A fully-explicit treatment of si(v) = —Re nlg(v) +
B~1Av, is chosen instead of the classical implicit linear viscous/explicit non-linear
decomposition. Here, A denotes the Laplacian operator and nl, the three components
of mode k of the non-linear term, nl}, nlf and niZ. Normally, an Uzawa operator for the
pressure has to be inverted. Inversion can be performed directly or iteratively. The most
efficient method to perform a direct inversion is the fast-diagonalization technique. As
will be seen later on, in our case it is even more efficient than any iterative method. This
technique requires the matrix to be inverted be separable. To fulfil this requirement,
the matrix first has to be derived from the discretization of a set of separate partial
differential equations. Let us consider the set of n separate partial differential equations,
Lv = s, in a discretized form. We introduce the following definition:

The n-dimensional matrix L is separable if it can be expressed as follows

L=0L®.QIR®I
+HIRLQRI®.QI

+...
+1R.QIQL;RI®..Q1
+IQ..IRL, .

In this relation, L; corresponds to the one-dimensional matrix in the i-th direction,
and I to the one-dimensional identity matrix. Unfortunately, the Uzawa matrix can
not be expressed in a separate form, because it involves rectangular matrices together
with a full inverse matrix, H ™. Hence, the fast-diagonalization technique [44, 36] can
not be applied. An iterative method would then be needed. For a three-dimensional
problem with one periodic direction, each matrix-vector multiplication involved in the
algorithm requires 2M* operations (1 addition and 1 multiplication counts for one
operation), with M3 the total number of grid points (see Appendix B). The detailed
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evaluation of the operations count is postponed until chapter 4. Each iteration step can
be achieved within approximately 10 matrix-vector multiplications. In the case of the
totally explicit choice, the pseudo-Laplacian operator for the pressure, DB-'G , can be
inverted with the fast-diagonalization method and requires therefore 6 M* operations
(see chapter 4). The solver in itself is therefore more efficient in the fully-explicit
case than in the implicit/explicit one. However, the time-step requirements are more
stringent for the former. Indeed, if an explicit treatment of the discrete Navier-Stokes
equations is chosen, two stability constraints have to be enforced on the time step At.
The first condition is imposed on the diffusion part of the operator,

At < CSD [(Ar~2+(rA6)*+Az7%)"] ,CSD < CSDpas , (3.25)

where (Ar, A8, Az) is the local mesh size at one grid point. The limiting value CSD,
can be obtained from simulations where the diffusion constraint is the most stringent.
We found CSD,,,, = 0.36 through numerous tests: we increased the time step until
a numerical instability occurred and approached afterwards the limit by a bisection
method with a precision of 0.5%. The second condition comes from the non-linear term
and is known as the CFL condition,

< CSN

A
ts Re

Ar  TA8 Az

-1
(M LI '—“’—') } JOSN < CSNpwz . (3.26)
min

where (u,v,w) are the velocity components at a given grid point. The limiting value
CSN ez 1s also obtained from numerical experiments. This limit is more problem
dependent than the limit on the diffusion term. The limiting value for CSN, CSNez =
0.2, has been obtained with a precision of the order of 10% for the few simulations we
made where the diffusion constraint was less stringent than the non-linear constraint.
A more restrictive expression of conditions (3.25) and (3.26) is:

At < CSD [Ar2, + (rminA0) 2+ AZ72] 7

min

-1
CSN || max Wlmaz |w|max
At S Re ATmin + TminA8 + AzZmin

Let us consider the case where Arpin ~ AZpin € (rAB8)min. Such a grid is well adapted
for simulations of Taylor vortex or wavy Taylor vortex flows. The first problem is
axisymmetric and the second one requires only a few azimuthal modes. In a square
element discretized in (N + 1) x (N + 1) GLL points, we have Armin ~ 3z, S0 that the
diffusion constraint allows a maximum time step Atmgr X # In our flow simulations,
[tlmaz ~ |Wlmez < |¥|mez = 1, so that the non-linear constraint simplifies to Aty
ﬁ;lN—z. From these rough estimates, we can expect the two stability constraints to
approach a similar value at a high enough Reynolds number (~ 100) for a polynomial
of degree N = 10. These estimates are qualitatively correct, as can be seen in figure 3.3.
Here we present the ratio of the maximum time step allowed by the CFL constraint to
the maximum time step imposed by the CSD constraint. It decreases with Re, the inner
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Figure 3.3: Ratio of the maximum time step allowed by the CFL constraint to the
maximum time step imposed by the CSD constraint for different simulations. The
simulations for I' = 12, I = 2, and J = 14 are represented by circles, and those for
' =30, =1, and J = 15 by triangles. In both cases n = 0.875 and N = 12. The

Reynolds number is Re = Re,.

cylinder Reynolds number. In these simulations, only the inner cylinder is rotating. At
Re = 500, the maximum time step allowed by the diffusion constraint is only 1.2 times
smaller than the time step determined by the CFL constraint alone.

3.4.2 RK2 scheme
RK2 for a model equation
Considering the model equation:

dv
pri (t,v), (3.27)

the classical, explicit second-order Runge-Kutta scheme (RK2) reads:

At At
v =" 4+ Atf[t" + o0 v+ '?f(tn’ )] . (3.28)
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RK2 scheme for the Navier-Stokes equations

Dropping the indices k of the Fourier modes for the sake of simplicity, the semi-discrete
Navier-Stokes equations (3.24) give rise to the set of ordinary differential equations:

dt 3.29
~Dv = 0 ( )

{ & — _B-1Gpis(v) ,
The RK2 scheme reads then as follows:
v+l v +At[_B—1§pn+§ +Sn+%] ’
~ 3.30
{ _Dv‘n+l — 0 : ( )

with p+2 = p(t" + &), vi+1 = v(t" + &), and s™*3 = s(vi+3).

o We first obtain v**z from v™. This first step proceeds like an Euler scheme of
time step -AQ—‘. The resulting equations can be rewritten as follows:

(50) (5)-(%) e

where f* = v* + %s" is known. Using the generalized block LU decomposition,
equation (3.31) can further be decomposed:

B 0 * Bf"
(5 ata) (5)-(T). om

and

T B¢ vits _ v*
Gm0) (5)-(5) o

The boundary conditions on the velocity are implicitly included when the diver-
gence matrix is applied. To be more precise,

N A
Dv =D(vg+l> ’

where V is the intermediate velocity field v*, restricted to Y4, and v, is the given
o

velocity on the boundary, I'y = Tg— Ya.
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e We then obtain v**! from v**3 as follows:

B g vn+1 Bfn+%
(50) (s )-("57) o

where f**2 = v + At s™*2 is known. Using again the generalized block LU
decomposition, equation (3.34) can further be decomposed into

B 0 v* Bf"+3

<_5 DB1G ) (At o ) - ( 0 ) | (3.85)
T B—lg vn-+-1 _ V*_

( 0 Z ) ( At pr+i ) - ( At p*ti ) ' (3:36)

3.5 Pressure solver

and

The pressure is obtained from the direct inversion of the pseudo-Laplacian operator
DB-1G. For solving for the pressure, we use the fast-diagonalization technique of Lynch
et al. [44]. Let us reintroduce the indices k to denote Fourier modes, and drop the upper
indices indicating the time level. We write the pressure equation, obtained via equation
(3.35), term by term so that we obtain:

58—15 Dk =
{[¢" BT + ¥B (BB | & [BF (57) ']
T —~ ~T —~
+ [B 0B B o [ (56} m
= —Al-zﬁv* . (3.37)
Here again, v* = :’il ), so that velocity boundary conditions are included in
Vb

equation (3.37).

— —1-1 e -1
Multiplying this equation by [’I‘B’T(TBT)-ITBT] ® [BZT(BZ)‘IBZ] one obtains the
separable equation:

My @ T + Tr ® Melpy. = fi, (3.38)
where:

o M = [%’rT(rBr)—le‘s?]—l [Z;“rT(rBr)-l’g7+ k?BTT(rBf)—IB“r] and
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—_— —~T ~1-1 [~—T —~
o Mz = B (B)BE| (67 ()G
The right-hand side of equation (3.38) is given by:
-1

fo= B 0B F| o[ (5 F] Aitﬁv* .

The matrices Z* and Z? are the pressure identity matrices in the radial and axial
directions, respectively. We decompose the matrices M} and M? in their respective
eigenspaces:

—— e —]
M = QNG
Mz — QZAZQZ

Here, Q’ is the e matrix of the eigenvectors of .M and Qz the ‘matrix of the eigenvectors
of Mz while A' and A* denote the eigenvalues matrices of M and M‘ respectively.
Consequently, for each mode k we obtain:

= (0L @) ®TF+T @A T, ®0° ) fi. (3.39)

The inversion of the pressure operator is the core of our solver, and is performed very
rapidly due to this technique. The pressure appears in equations (3.5) only as a gra-
dient, hence the pressure is defined modulo a constant. Once the equation for p is
expressed in the pressure eigenvector space, this constant mode is easily identified as
the unique eigenvector correspondmg to the zero eigenvalue. An easy way to regularize
the eigenvalues matrix, A’ QT +Ir® Az which we want to invert, is to replace the
inverse of the zero eigenvalue by zero. This corresponds to fixing the mean pressure
value over the whole domain to be zero. This is better than to impose the value of
the pressure at one single point, because in that case nothing will prevent the mean
pressure value from changing with time.

3.6 Boundary conditions

We impose no-slip boundary conditions on the four walls, i.e., on the two cylinders
and the bottom and top end plates. Two cases have been considered, each involving
a singularity of the velocity. The difficulty is that spectral methods generally can not
deal easily with singularities. The property of exponential convergence of the expansion
to the exact solution is indeed lost in the neighbourhood of the singularity. The error
pollutes the whole domain in the case of any classical spectral method. In a spectral
element method the solution is also poorly resolved in any macro-element containing a
singularity, but it is less harmful for the other elements. This is one of the reasons why
the spectral element formulation was chosen for this work.
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e In the first case, the end plates are fixed to the outer cylinder. A singularity

occurs on the two circles joining the end plates to the inner cylinder, that is at
(r,2) = (Ry, z1) and (7, 2) = (R, 2;), the azimuthal velocity being different on the
horizontal boundaries and on the inner cylinder. However, there is no singularity
of the velocity in the corner regions of the experimental set-up. This is prevented
by the small construction gap that exists between the inner cylinder, rotating at
angular speed €2y, and the top and bottom end plates, rotating at angular speed
;. Thus, the same gap between the inner cylinder and the two end walls is
modelled in our simulation. The flow in this gap of size € < d is supposed to be
mostly azimuthal and to evolve smoothly from the laminar, azimuthal Couette
regime near the inner cylinder to the solid-body rotation of the top and bottom
end plates.

We therefore replace the rotation velocity of the end plates, 5, by £(r) on
[R1, Ry + €] where Q(r) = Qc(r) f1(r) + Qaf2(r), with f1 and fo two C* functions
defined so that 2 evolves smoothly from Q¢ to Qs on [R;, R; + €] (see figure
3.4). Q¢ is the rotation velocity of the circular Couette flow occuring between
two cylinders of radii R, and R; + ¢ rotating at angular velocities €2; and 5,
respectively:

b
- QC( ) =a+ 2>
(R1+€)2Q2— RZO,

——5—( Fte? R and

— b= (1 -Q2)RE(Ry +¢)?
- (Ri+e)?—-RY  °

We impose both the angular velocity and its first derivative on the gap boundaries:

= QURy) = Qc(Ry) = (O,
- F(R) = G2 (R),

- Q(Ry +¢€) =y, and
- 3—?(}%1 + 6) = 0.

We choose f; and f, to be sinusoidal functions:

- fl('r) = A, sin (7—2'5%1) + B, cos (% Rﬁ:-r) and

The four constraints determine the constants A;, A2, B; and Bs.

In the second case, the singularities are found at (r,z) = (R, 2z) and (1,2) =
(R, z2). The same regularization procedure is applied, but in [Ry — €, Ry] this
time. We replace the rotation velocity of the end plates, €;, by Q(r) = Q, fi(r) +
Qc(r) f2(r) in the breach, with fi(r) = A;sin (££2=T) + Bjcos (3£2=2) and i €
{1,2}. The velocity Qc(r) = a+ 3 is the rotation velocity of the circular Couette
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Figure 3.4: Angular velocity imposed in the clearance between the inner cylinder and
the end plates to prevent a singularity. The angular velocity of the inner cylinder is
) = 1; that of the outer cylinder is Qy = —2. The inner radius is Ry = 7, the gap
width d = 1 and the clearance ¢ = 0.05d.
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flow occuring between two cylinders of radii R, — € and R,. The coefficients are
then:

_ R3a—(Rp—e)?y
a= R =(Ro=e)? and

b= (21 -Q2)(Ro—c)?RE
- R2—(Rz—¢)? :

We impose

— Q(Ry) = Qc(Ry) = Q,
- (R, = Le(Ry),

— Q(Ry—¢) = and

- ’%—?(R2 - E') =0

to determine A;, A, By and B,.

3.7 Linearized problem

We consider the case of two infinite cylinders rotating around their common axis.

3.7.1 Linearization of the equations in the vicinity of the base
flow

Let (v, pr), be a slight disturbance of the base flow and also a solution of the Navier-
Stokes equations. We write vp = v + v, and pr = p + p., with: ||v]| < |lv¢|| and
Ip| < |pc|]- We only keep the first-order perturbation terms in the equations. We
then get the dimensionless linearized Navier-Stokes equations, expressed as follows in
cylindrical coordinates:

%= Vu-p-3%-2400v-CO%
Zai _ vzv_r%+r%§_;_%2§§—2,4§eu-—0(r)% ’ (3.40)
% = Vw—az‘c(r)a_tg ,
0 = Quyly 10y ou ’

with C(r) = Re"‘T(r) = Re (A + &). Asin the first section of this chapter, the Reynolds

number is Re = &£
Because Couette flow satisfies the boundary conditions, the perturbation has homoge-

neous Dirichlet boundary conditions.

3.7.2 Spatial discretization

Choice of the basis We express u, v, w, and p in a tensor basis made of Lagrange-
Legendre interpolants in the radial direction and Fourier expansions in both azimuthal
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and axial directions. The azimuthal direction is periodic by definition. And, we know
from numerous previous studies with infinite cylinders, that the flow regime following
the base Couette flow is periodic in the axial direction. Both Taylor-vortex flow and
spiral flow are indeed axially periodic.

Expansion in Fourier directions The velocity is expanded as follows:

NO—1NZ-1
v(r,8,z,t) = Z Z Vio(T, t) exp(i k 8) exp(i 0 Z) (3.41)
k=0 o0=0
The same expression applies for any of the velocity components and for the pressure.
We introduce Z = 27"2, A being the axial period.

Equations in Fourier space The equations (3.40) being linear, there are N% x N?
independent equations to solve for each pair of Fourier modes (k, 0). Each of these has
the following form:

(. 2 . .
Uko =  Upy+ Iuf, — [lﬂ:;c +6° + lkC(T‘)] Uko + 2 [C(7) — i%] veo — Pho ,
. 2 - . . .

} o = Vo + 10}, — [l—’r%'i— + 6%+ 1kC(r)] Vko + 2 [—A Re +i%) ugo —ikpio
Wk = wl, + Lu, — [k—i + 3+ ikC(r)] Wi — 10Dk ,

L 0 = u;w + %’U,ko + iévko + 10wy,

The radial derivative is denoted by a prime: % = «’, and the time derivative by a dot:
or

% = 1. We also introduce the notation 6 = 27"0.
Expansion in the radial direction We decompose the radial domain [R;, R,] in F
subintervals [r, 7§ + ¢¢], e € {1,2,..., E}. The radial expansion of the velocity in the

interval [r¢, r§ + g°] is:

N,
Vio(Ts )lfrg msaas) = O Vero(t)BE(r) . (3.42)

n=0
The test function ¢¢ is zero in any element except [r§, r§+ g¢| where we have: ¢%[r(z)] =
hn(z). There, r(z) = r§+ % (z+1) is the affine mapping from the parent element [—1, 1]
to the e-th radial element, [rg, 7§+ g°]. As in the third section of this chapter, h,, denotes
the Lagrange interpolant based on the n-th Gauss-Lobatto-Legendre point, 0 < n < N,.

On [r§, 7§ + g°], the expansion for the pressure is:
Ny—1
Pro(Ts )|frs rstoe) = Z Prko()¥r(T) (3.43)
n=1
The test function ¢ is zero in any element except on [rE, & + ¢°], where it is defined
by ¥&[r(z)] = hn(z). The function h,, is defined in the third section of this chapter as
the Lagrange interpolant at the n-th inner GLL point, 1 <n < N, — 1.
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Ordinary Differential Equations The same steps as in the fourth section of this
chapter are taken, so that we obtain the following semi-discrete equations:

[ Biko = Aug—B|HE+8+ikC(r)| wo+2B[C(r) —ik] vo -G pro
) Bire = Av,-B LR 1 52 +ikC(r)| vko + 2B [D +i%] uko — ikB pro (3.44)
By, = Aweo— B [% L4 ikC(r)] Wio — 16 7B Pro ,
[ 0 = ~GT ko + kBT vo +16 7B wie

The terms uo, Uko, Wro and pi, NOW represent vectors in the discrete space: vi, =

(Ve ) 1<e<t , and Dko = (PE ) 1<e<]
nko OS;lS_Nr’ ( nko 1<nEN,~1

3.7.3 Time discretization

We choose the same time stepping scheme as for the 3D Navier-Stokes solver.



Chapter 4

Validation and performance

4.1 Validation

4.1.1 Analytical test cases

The key steps of the validation are presented here (see also the internal report [46]).
The validation preceded by testing each subroutine separately first, and meaningful
groups of subroutines next, and then still larger groups, until there were only three

main subparts to represent the code: creation of the source term, inversion and time
marching.

Elementary parts

We consider velocity and pressure fields as given data and compare separately each term
in the Navier-Stokes equations calculated analytically with the same term evaluated
numerically.

The velocity field we have chosen for these comparisons is divergence free and is ex-
pressed as follows:

u(r,0,z) = 1sin(8) cos(nz),
v(r,0,2) = =rsin(nr)cos(d) cos(rz), (4.1)
w(r,0,z) =  sin(nr)sin(6) sin(nz).
The pressure field is:
p(r,8,2) = sin(nr)sin(f) sin(rz). (4.2)

We performed the validation by verifying the spectral convergence of the non-linear
(both in convective and skew-symmetric forms), diffusive, pressure gradient and weak
divergence terms to the exact solution. The number of elements in each direction and
the size of the macro-elements were varied for each term. We report in figure 4.1 the
convergence diagrams obtained with 2 elements in the radial direction and 3 in the axial
direction. The sizes of the elements are 1 in the radial direction and 0.67 in the axial

o7
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direction. The polynomial degree in the azimuthal direction is 4. For low values of the
polynomial degree, N, in both radial and axial directions, the numerical convergence
curve for the divergence corresponds very closely to the theoretical convergence curve
varying as N~V. But, above N = N, = 12 (N, varies from 12 to 18 depending
on the term of the equation considered), the error for the discrete divergence starts
increasing. This increase is slow compared with the exponential decrease. The exact
representation of the sinusoidal test functions in a Lagrange polynomial basis requires
the whole set of basis functions, sin(z) = > " an ha({(z)), for z = 77 or 72, { €
[-1,1]. The coeficients, a,, of this expansion decrease exponentially with n. When
the theoretical value of a, falls below the round-off error, ¢, of the machine (around
10~¢ in single precision on the CRAY YMPM94), the calculated coefficient stays at
a plateau of level e. Furthermore, the application of the derivation matrix to a vector
is equivalent to multiplying its higher coefficients by the square of the polynomial
degree, N2. Hence, once N exceeds N, the most significant error term is no longer
the truncation error, decreasing as N~", but the error linked to the round-off error of
the computer, increasing as ¢ N2. Once the theoretical convergence curve is corrected
likewise, we call it practical convergence curve (see 4.1).

Pseudo-Poisson

The inversion of the pseudo-Laplacian, being the core of our code, we validated it
carefully.

Characterization of the pseudo-Poisson operator The pseudo-Poisson matrix,
involved in the determination of the pressure, is compared with its continuous counter-
part, the Laplacian operator. The eigenvectors of the continuous operator and of the
matrix are presented in figures 4.2 and 4.3. The eigenfunctions of the radial part of
the continuous Laplacian, %ba—r(’"%)’ are Bessel functions, while those of the axial part,
6%25, are sine and cosine functions. The discrete and continuous eigenvectors match well
if the mesh is sufficiently fine. Typically, a single sine period is resolved correctly if
the polynomial degree is higher than 8 in one element. Due to the clustering of the
GLL points near the element boundaries (the distance between successive points evolves
there as 1/N?), modes close to the N2 mode can also be captured in addition to the

expected first N modes.

All the eigenvalues (Xi and K;) of the pseudo-Poisson matrix are real and strictly
negative except the one corresponding to the constant pressure mode, which lies in the
kernel. Figure 4.4 presents the eigenvalues of .//'\71’,"c for k =0 and k£ = 1. In figure 4.5 are
shown the eigenvalues of the axial matrix M:. The first 70% of both curves behaves
like N2, with N = N, for the first figure and N = N, for the second figure, while the
remaining eigenvalues evolve as N4,
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Figure 4.1: Spectral convergence curves of the radial non-linear term, the radial Lapla-
cian, the radial pressure gradient and the weak divergence. In each case, N = N, = N,
is the polynomial degree of the expansion. For the non-linear term, whose non-zero
modes are 0 and 2, Ny = 8, and in all other three cases, where only the mode 1 is
present, Ng = 4 . The domain is discretized with I = 2 elements in the radial direction
and J = 3 elements in the axial direction. If not mentioned, the norm chosen is the
norm of the maximum, L™.
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Figure 4.2: Fourth eigenfunction of the matrix Qor of the Laplacian in
the radial direction. I = 1, and N, = 20. The line of equation
—9.9 [Y1(4.7381) - Jo(4.7381 z) — J1(4.7381) - Yy (4.7381 z)] is the continuous eigenfunc-
tion, where Jy and J, are the Bessel functions of the first kind of order 0 and 1, and
Yy and Y; the Bessel functions of the second kind of order 0 and 1. The points are the
discrete counterpart.

Inversion of the pseudo-Laplacian We verify here the spectral accuracy of the
numerical solution of equation:

Vip=f. (4.3)

To better understand the difference between a Laplacian and a pseudo-Laplacian, we
decompose equation (4.3) in two relations:

—-V:'s =

I
)

(4.4)

!
“~

The equivalent matrix form is:
—B-1 § p =
~ 4.5
{ DS = f. (4:5)

with S = ( Ss ), s being defined in ‘;‘d and s, in ['4.
b

|
2
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Figure 4.3: Fourth eigenfunction of the Laplacian in the axial direction. J = 8 and
N, =10. The line of equation — 1z sin( 3% 1) is the axial eigenvector of eigenfunctions

matrix Q*. The points are the discrete counterpart.

The resulting equation on the pressure is:

5B'I§p=f—5(;> , (4.6)
Therefore, the test on this part of the code can be performed in two different ways.
Either we choose a pressure field, p, such that its gradient is zero on the boundary,
which results in having s, = 0, and then form the source term f as the analytical
expression V2p, or we take a pressure field without any condition on the boundary,
but replace the pressure gradient by zero on the domain boundary, therefore imposing
again s, = 0, and apply the divergence matrix to this analytical expression to create
the source term f. We simply look for spectral convergence of the numerical solution of
equation (4.3) towards the given pressure field. In our validation, we performed both
tests with the pressure:

p(r,0, z) = sin(nr)sin(6) sin(7z) , (4.7)
in two different domains:

e [0.5,2.5] x [0, 27] x [—0.5, 1.5], where the normal pressure gradient cancels on the
domain boundary and
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187000
100000

10000

1000 -

Eigenvalue

269 %

Figure 4.4: Absolute value of the eigenvalues of the Laplacian in the radial direction
|Akei013 (I I =2 and N; = 16. The eigenvalue index is i. The symbols o represents

A} and + represents A7.

e [1,3] x [0,27] x [—1,1.1], where, Vp does not cancel on the domain boundary.

Only the results of the second test are presented here, in figure 4.6, because this test is
more drastic on the pressure boundary conditions.

Time-marching scheme

We have tested the validity of the time-marching scheme for two different pressure and
velocity fields defined as the product of the analytical steady fields of equations (4.1)
and (4.2) by the time functions f(t) = exp(—t) or f(t) = sin(mt).

u(r,8,z) = 2 sin(8) cos(wz) f(2),

v(r,0,2) = =rsin(nr) cos(f) cos(mz) f(t), (48)
w(r,8,z) = sin(nr)sin(f) sin(rz) f(¢), '
p(r,0,z) =  sin(nr)sin(0) sin(wz) f(¢).

We carried out three different tests starting from the simple Darcy equations to finally
treat the whole Navier-Stokes equations. The domain is the same in all three cases:
T =[1,3] x [0,27] x [-1, 1.1].
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Figure 4.5: Absolute value of the eigenvalues of the Laplacian in the axial direction
|A%(i)|. J =3 and N, = 15.

“Unsteady Darcy” equations The model equations are:

& = —Vp+finT
at _ ’ 4.9
{ V.v = Oin T. (49)
Unsteady Stokes equations The model equations are:
v .
L = Av-Vp+finT
at ]
{ Vv = 0in T. (4.10)
Unsteady Navier-Stokes equations The model equations are:
av .
5 = —nl(v)+Av—-Vp+f1n T, ]
{V-v = Oin T. (4.11)

We only present here the results of the first test. The others have the same general
behaviour. We have verified that the numerical velocity and pressure fields followed
accurately the exact solution with respect to time. We have also compared the order of
the scheme we have obtained to the order we expected, i.e. second-order time accuracy.
Figures 4.7 and 4.8 present the time evolution of the error (|| ||oo) between the calculated
and the exact velocity. We see in the first figure that when the time step ratio is ten,
the corresponding error ratio is a hundred. In the same way, when the time step ratio is
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Figure 4.6: L™ Norm of the absolute and relative error made on the pressure obtained
by inversion of the pseudo-Laplacian.

Time step Time step Time step Error ratio
Aty Aty ratio 22 | Time 0.2 Time 0.5 Time 1
10! 1072 10 99.97 99.97 99.97
102 103 10 99.99 99.99 99.99

Table 4.1: Error ratio compared with time step ratio, for w and f(t) = exp(—t).

two, in (4.8), the error ratio is four. This result is shown in a more qualitative fashion
in the following tables (4.1 and 4.2).

4.1.2 Comparison with experiments and other simulations

The purpose is to validate the full algorithm by comparing numerical results with ex-
isting experimental data. Among the many existing results, we chose the two following
experiments because they enabled us to validate separately the regularization of the
boundary conditions we had chosen on one hand and the time-stepping scheme on the
other hand. The first experiment deals with a steady flow and necessitates a regular-
ization of the boundary conditions, while the second one deals with an unsteady flow
where no regularization is needed.
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Figure 4.7: Time history of the L, error on the azimuthal velocity for three different
time steps: At, = 1071, Aty = 1072, Atz = 10~3. Time dependence is given by f(t) =

2
e~*. The order of the scheme is 2 as expected because Luzum{ai)=Veza(Bt1)leo (&1) .

"Vnum(Atz)—cha(Atz)"oo Ate
Time step Time step Time step Error ratio
Aty At ratio —2—% Time 0.1 Time 0.5 Time 0.9
1072 51073 2 4.0001 4.0001 4.0001
51073 2.51073 2 4.00002 4.00002 4.00003

Table 4.2: Error ratio compared with time step ratio, for v and f(t) = sin(t).

Validation of the regularization of the boundary conditions

We have compared our results to those obtained numerically by Streett and Hussaini
[61, 62] and also those obtained experimentally by Aitta et al. [2] for the same ge-
ometry and the same dynamic parameters. They studied the transition occuring in
Taylor-Couette flow for a radii ratio n = 0.5 and very short aspect ratios, such that
there is only one vortex pair. If the speed of the inner cylinder is smaller than a critical
value, the vortices are symmetric, but above that speed, one vortex starts to grow at
the expense of the other. Depending on the aspect ratio, this transition can be su-
percritical, for I' < 1.255, or subcritical, I' > 1.255, according to [2]. The subcritical
behaviour is observed for aspect ratios between 1.267 and 1.304 in [54]. In the supercrit-
ical case the symmetry is broken smoothly, while in the subcritical case the bifurcation
is abrupt. Whereas most numericists have simulated Taylor-Couette flow in the case of
infinite-length cylinders, such an assumption is not possible in the case of the transition



66 CHAPTER 4. VALIDATION AND PERFORMANCE

10*

10°

ity

Error on the veloc|

Figure 4.8: Time history of the L, error on the azimuthal velocity for three different
time steps: At = 2.5.1073, At, = 5.1073, Atz = 1072, Time dependence is given by
f(t) = sin(nt).

we want to study here because Ekman cells, whose characteristic velocity (between 1%
and 10% of the maximum azimuthal velocity) is small but not negligible compared with
the main flow, appear due to the presence of the end plates. We have therefore chosen
to use no slip boundary conditions on the horizontal ends. In the present case the
end plates are fixed to the outer cylinder. These three parts are motionless while the
inner cylinder is rotating. This creates a singularity of the azimuthal velocity at the
circle lines joining the end plates and the inner cylinder. We compared our simulations
with those of Streett et al.. But, the way we treat the singularity is different from theirs.

Streett et al. used high-order, weighted-residual techniques of the spectral kind in the
radial and axial directions and Fourier expansions in the azimuthal direction to perform
a direct numerical simulation of the flow. They split the velocity field in a first part,
vy, which satisfies both the boundary conditions and a Poisson equation inside the
domain, and a second part, v,, which satisfies simple homogeneous Dirichlet boundary
conditions as well as modified Navier-Stokes equations. This modification consists of
adding a source term, resulting from the splitting of the original velocity: v = v, + v..
The problem of the singularity remains on the velocity field; v, in this case.

We then decided to turn to another treatment of the boundary conditions, that pre-
sented in chapter 3. We introduce a small gap between the inner cylinder and the
two end plates in the simulation. The flow in this gap is supposed to evolve smoothly,
following a function F(r), from the laminar azimuthal Couette regime, near the inner
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cylinder, to the solid body rotation of the top and bottom end plates. The exact form
of F' is unknown. But, according to Tavener et al. [65], who did a similar study, “pro-
vided e is sufficiently small (< 0.02), the effect of the form of F' on the flow patterns
away from the immediate vicinity of the corners is negligibly small”. We demonstrate
briefly here that the radial and axial velocities that one could expect are negligibly
small. The radial velocity in the gap is supposed to be affected by the radial velocity
in the Ekman boundary layer present at the end plates, while the axial velocity is itself
under the influence of the Stewartson boundary layer developing on the inner cylinder.
Considering mass conservation, both in the gap and in the main region, we are able
to scale the maximum radial velocity in the breach as: \/Ec-;;v, and the maximum
axial velocity in the breach as: \/E;%V, V being the characteristic magnitude of the
azimuthal velocity in the main region. The Ekman number characterizing the ratio of
diffusion to inertia on a disk of characteristic radius R; moving at a differential angular
speed 2; compared with the surrounding fluid, is: Ej = Q_luﬁ?'

We observed a transition from a symmetric flow made of two equal Ekman cells to an
asymmetric one made of two cells of different sizes, as can be seen in figure 4.9. Here
is presented the time evolution of the stream function in the meridian plane, the flow
being axisymmetric. The first picture, at the upper left of figure 4.9, is taken at the
initial time. At ¢ = 0, a perturbation is introduced in which the intensity (characterized
by the stream function) of the upper Ekman cell is multiplied by a factor 1.001. The
Reynolds number of this unsteady simulation is Re; = 165. The initial symmetric flow
is unstable for this Reynolds number so that the upper Ekman cell starts to increase
until the flow reaches steady-state. The asymmetry of the final flow is characterized by
the so-called asymmetry parameter, U, first proposed by Aitta et al. [2] and also used
by Streett et al. [61, 62]:

fOL w(r = Ry + 0.14d, 2)d=

¥ = o .
Jo lw(r = Ry +0.14d, 2)|dz

The final steady-state asymmetry is ¥ = 0.82.

We repeated this study for different Reynolds numbers, from Re; = 142 to 170, and
from Re, = 170 back to Re; = 142. These simulations are summarized in figure 4.10.
Increasing the Reynolds number (the initial state is symmetric), we find that the flow
becomes asymmetric for Re; = 148. But, when decreasing the Reynolds number (the
initial state is asymmetric this time) the flow returns to symmetry for Re; = 145.
Hysteresis is observed, which is characteristic of a subcritical transition.

Our results compare very well to the simulations of Streett et al. and well also to the
experiments of Aitta et al., but less so. The difference between the experimental results
and the numerical ones may be due to a small difference in the radius for which the
asymmetry is measured, as is conjectured by Streett ef al., or to the finite clearance
existing between the rotating inner cylinder and the fixed end plates in the experiment.
In figure 4.11 is shown the variation of the asymmetry parameter, ¥, with the clearance
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Figure 4.9: Streamlines in the meridian plane. The Reynolds number is: 165, and
I' = 1.281. Here are shown 12 successive times starting from the unstable symmetric
flow and continuing until the final asymmetric flow, characterized by ¥ = 0.82. The
increment, AV, is 0.1 between each picture.

we impose numerically. From this, it appears that the larger the clearance is, the closer
the experimental and the numerical results become.

Comparison with the pulsed Taylor-Couette flow experiment

The pulsed Taylor-Couette flow is that of a fluid confined between two coaxial cylinders,
fastened together, that rotate with angular speed: Q(t) = Q, + Qo coswt. This flow
undergoes a periodic destabilization when the rotational speed, €, is increased. The
primary flow, consisting of two Stokes layers developing from each of the cylindrical
walls, bifurcates to periodically appearing Taylor vortices.

The relevant non-dimensional parameters are:

e the modulation frequency, o = off _ o being the diffusive time-scale and

v Tp !

7T, = L the characteristic pulsation time,

e v = /%, which also represents the modulation and can be expressed as the ratio
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Figure 4.10: Comparison between the the experiments of Aitta, Ahlers and Cannel, v;

the steady, (), and time-dependent, O, simulations of Streett and Hussaini; and ours,
<.

of two length scales: v = %, where 6 = 4/ fd—" is the Stokes layer thickness of an
oscillating flat plate with pulsation w.

e The Taylor number, Ta = f—zﬂf@, or equivalently,
e the Reynolds number: Re = 3-1%’-95, and

e the rotation number: r, = ifil—%!;l. This dynamic parameter is more specific to
pulsed Taylor-Couette flow.

We performed a simulation at the same geometrical and dynamical parameters as those
of Ern [27], i.e. I' = 39.4, n = 0.90. We only treat the case Q, = 0.

Primary flow The primary flow consists of two Stokes layers developing from each
of the cylindrical walls. In the case of infinitely long cylinders, the base flow is solely
azimuthal; the velocity field, v, being (0, v, 0) in cylindrical coordinates (r, 8, z). The
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Figure 4.11: At Re = 165, ¥ changes by about 10% when the clearance goes from 0 to
20% of the gapwidth.

velocity is defined by the following equation:

s _ 0 (19(rvp)
3t or (r or ) ' (4.12)

If the radius ratio, 7, is close to one, the primary flow has a simple analytical expression

[5]):

up(z, t) = vi(x) cos(ot) + va(x) sin(at) ,

where:
_ r— Rl
= R2 - Rl ’
on(z) = cos(yz) cosh(y(1 — z)) + cosh(yz) cos(y(1 - x))
e cosh(y) + cos(7) J
and
va(z) = sin(yz) sinh(y(1 — z)) + sinh(yz) sin(y(1 — z)) '

sinh(vy) + sin(7y)

In figure 4.12 is given the time evolution of the analytical solution in the narrow-gap
approximation, i.e. for n close to one, during one period. At this high value, ¢ = 24,
Stokes layers can be seen near each cylinder. Their motion is forced by that of the
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Figure 4.12: Time evolution of the analytical solution of the unsteady laminar flow.
The forcing at the boundaries is given by: Q(t) = Q,, + 0 cos(wt). Re = 1050, and
o =24
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boundaries. The core of the fluid is relatively motionless, while the motion of the
intermediate regions between the middle radius and the boundaries is both damped
and phase shifted.

The primary flow is stable at low Taylor numbers. Above T'a = 206, the flow undergoes
a periodic destabilization. Transient, axially-periodic, counter-rotating Taylor vortices
then appear.

Secondary flow Considering that the characteristic time-scale for the growth of the
perturbations is negligible compared with the time of the pulsation, a quasi-steady,
linear analysis of the flow can be performed. Another hypothesis is made concerning the
wavelength: Ern considered it small compared with the gap width, which is arguable,
the wavelength of the vortices being of the order of two gap widths. She obtained the
curve given in figure 4.13 showing the evolution of the critical Taylor number with time.
The destabilization will first appear if the Taylor number exceeds the minimum of these
curves.

One should not search for an exact match between figure 4.14, obtained in the simula-
tion, and figure 4.15, obtained in the experiment, because they do not represent exactly
the same velocity. In fact, figure 4.14 represents the history of < w(t) >= /< w?(t) >,
while figure 4.15 represents the history of < wyms(t) >= /< w2,,,(t) >, where:

210
< w(t) >=/ w2(r%,00, z,t)dz , (4.13)
25
210
<ul (t) >= / w2 (z.8)dz | (4.14)
z5
and
wl(z,t) = Jssw?(r, 8, 2, t)ds (4.15)

= f&rfzso (1,0, z,t)rdrdf .

The measurements of the axial velocity wy,(z,t) as a function of the axial position z and
the time ¢ presented here were obtained with an ultrasound Doppler velocimeter (UDV).
The relative error on the velocity measurement varies between 1.5% and 3% depending
on the ratio of the maximum velocity to the measurement scale. This apparatus does not
measure the velocity at one point (7,6, 2), but in a small circular section, S, centered
in the middle of the gap, and of diameter about two thirds of the gap. This velocity
profile is then integrated along a vertical line going from top to bottom. The top third
of the overall length is measured because the UDV is placed on the top of the apparatus.
Half of the measurements, those corresponding to the upper Ekman cell and its close
neighbourhood, are discarded. The rest are used to produce < w2 ,(t) >. The history
of the numerical velocity profile w(r%, 6o, 2,t) is obtained at the radius T3 = R, + %d.
The axial velocity is not to be measured in the middle of the gap because its value is




4.1. VALIDATION 73

Times Stability analysis Simulation Experiment

T 0.108 0.117 0.11
T2 0.450 - 0.435 0.44

Table 4.3: Times of appearance of the Taylor vortices.

close to zero for all times there. The azimuthal position 6, has no importance, the flow
being axisymmetric.

The times of appearance of the destabilization of the primary flow to transient Taylor
vortices is nearly the same according to the quasi-steady linear analysis, the simulation
and the experiment, as can be seen in table 4.3 and figures 4.13 to 4.15.

Ro=0

02 04 0.6 08 1
t/T

Figure 4.13: Evolution of the critical Taylor number during one period, T.

I.ST'

z 10+ -"
05 \/\ /\ \A /\
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Figure 4.14: Oscillations of W,,, =< w(t) > during one forcing period. The timet =1
corresponds to one pulsation period. v =1, Ta = 350.
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Figure 4.15: Oscillations of < wyms(t) > during one forcing period.

4.2 Performance

4.2.1 Performance of the algorithms
Operations cost

We estimate here the operations count for the most time-consuming parts of the code.
Let us consider a grid made of Ny Fourier planes in the azimuthal direction and I x J
elements in the meridian cross-section, i.e. the (7, z) plane. In each element, we have
(N- + 1) x (N, + 1) points. The total number of velocity mesh points is then: A, =
(IN, +1) (JN, + 1) Ng ~ IN,JN,Ny. We recall here that the grid points on the
interfaces between the elements are unique, although they belong to more than one
element. The number of pressure points is: N, = I(N, —1) J(N,—1) Ny ~ IN,JN,N,.
From now on, we approximate the number of mesh points, whether it be for the pressure
or the velocity, by N' = IN,JN,N,.

Cost of the elementary operations The elementary operations we consider are
derivatives with respect to spatial directions, and Fast Fourier Transforms (FFTs).
Each differentiation is performed locally on an element, T¢'. The operations count is
hence the product of a local matrix (defined on Y**) by a global vector of A components.

e The radial derivative costs N, A operations in floating-point arithmetic. By oper-
ation, we mean one multiplication and one addition; additions and multiplications
can be performed at the same processing speed by modern processors.

e The axial derivative costs N, N operations.

e The azimuthal derivative costs N operations. It is simply the multiplication of
each mode k by ik.

e According to [13], the Fast Fourier Transform in the direction @ costs (5p+3q+4r+
s+ 22t —6) N operations, if Ny can be factorized in products: Np = 2P39475%6",
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For Ny = 2P, we have then [5log,(Ng) — 6] NV operations for a FFT of % vectors
of length Ny.

Inversion cost To write the pressure equation (3.38) in a separable form, one first has
~ —~T —_— -
to multiply the source term £;DV* by the (globally-defined) matrices [TBT (rBT )“er’]

and [B\;T(Bz)‘lgz]—l. Although matrices ;E;T(T‘BT)_I;—B_; and E;T(Bz)‘lgz are de-
fined locally to each element, their inverse are not due to direct stiffness. The fast
diagonalization method is equivalent to multlplylng the source term, fi, by four matri-
ces which depend on one direction only, (QZ) (QT) Qz and Q and by the inverse
of a diagonal matrix depending on both radial and ax1a1 directions, A’ QT +1I ®A*.
These five matrices are defined during a pre-processing stage.
~ —T —1-1 —~T ~1-1
e Matrix vector products of z;DV* by [TBT (rB )_IT‘BT] and [Bz (Bz)‘le]
cost IN.N and JN,N operations, respectively.
e The inversion itself, as expressed in equation (3.39), needs two global matrices
for the multiplications in the radial and axial directions, costing 2(IN, + JN, )N

operatlons and one multiplication by a diagonal matrix of A components, AT
T2 + Tt ® A%, needing N operations.

The operations count for the inversion is then:

3(IN, + IN)IN + O(N) .

Cost of the evaluation of the non-linear term The full expression of the skew-

symmetric form of the non-linear term in cylindrical coordinates, (nl”, nl, nl?), is given
by:

ro— yfuy 9 wiu L O (w Buw__'—’_vz_ u?

2nl" = u81+6‘r+r60+60(r)+w62+62 T
& — Qv 4 Buy 4, wdv 4 B (2 Svw  3uy

nl” = u6r+ or +r80+80(r +w82+ Bz + r (416)
P2 Juw ;, véw , 8 w? | uw

2nl* = u8r+ +r¢90+60( )+w82+ 8z + r

The velocity components, u, v and w, expressed in Fourier space, are denoted by 4, ©
and w, respectively. All the variables are expressed in Fourier space everywhere in the
code except in the subroutine which computes the non-linear term, where both physical
and Fourier space expressions are needed.

e The number of FFTs is 12. The products 29—;—, :gz and E%g— are performed in
physical space, therefore requiring 6 FFTs from Fourier to physical space, 3 to
obtain u, v and w from @, ¥ and w, and 3 more to get a’;, % and 3“’ from %,
g—g and 3’” These expressions are then agaln Fourier transformed, so that there

are 3 more FFTs to do. The products 2 36 (“”), % (%2-) and 5 (w) require 3
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-~

FFTs; these are needed to obtain %\E, "r—z and @ from 7, "r—z and **. Azimuthal
differentiation of any component of the velocity is performed while this component
is in Fourier space.

e The number of azimuthal derivatives is 6.
e The number of radial derivatives is 6.
e The number of axial derivatives is also 6.

The overall operations cost for the skew-symmetric form of the non-linear term is then:

6(N; + N,)N + 60logy(Ng)N + QW) .

Cost of the evaluation of the diffusion termm The diffusion term is defined through
equations (3.21) to (3.23). The mass matrices, %, rB" and B?, being diagonal, their
product with a velocity component requires N operations. The product by the rigidity
matrices A" and A? is more costly, these matrices being full in each element.

e The number of matrix vector products in the radial direction is 3.
e The number of matrix vector products in the axial direction is also 3.
e The number of diagonal matrix vector products is 20.

The diffusion term operations cost is then:

3(N, + N, )N + QW) .

Operations cost for the divergence To evaluate the divergence from the operator,
~ ~T —~T _ —~T —~T —~T ~T
D= (-G~ @B ,ikB" @B 7B ©-G ),

e 3 local matrix-vector multiplications in the radial direction are needed.

e 3 local matrix-vector multiplications in the axial direction are also necessary.

Therefore, the total operations count for the divergence is:

3(N, + N,)N + OW) .

Total operations count Summing, the total operations count is then:
3(IN, + JN,)N + 12(N; + N,)N + 601log, (Ne)N + Q(N) . (4.17)

In the case where the number of grid points is the same in three directions, M = IN, =
JN, = Ny, we can simplify (4.17). The leading order of the total operations cost is
then: 6M*.
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Memory requirements

We do not use dynamic memory allocation, although FORTRAN 90 provides that pos-
sibility. The reason is that we are more concerned by computational efficiency than
by memory limitations. Operations on vectors are more easily vectorized if they are
stored close to each other. Whereas in a classical declaration of variables, these are
stored next to each other in the order they are needed, dynamic memory allocation
does not prevent the variables from being spread out through the whole memory. For
safety reasons, we also imposed the input arguments of the subroutines to be associ-
ated to different variables than the ouput arguments. To have an idea of the memory
requirements, we look for the larger terms in the code, made of N components. In the
main program, we need at the same time:

e the three components of the non-linear term,

e the three diffusion terms,

e the three pressure gradients,

e the pressure,

e the source term for the pressure equation,

¢ the diagonal matrices [Ki ®I+1Ir ®K;]‘1, k€ {0,1,...,Np — 1},
e the three components of the velocity at the current time step,

e the three components of the velocity at the previous time step, and
e the three components of the velocity in physical space.

The approximate memory requirement for the whole code is then 21N words.

4.2.2 Performance of the code

We present here the CPU time needed for each time step, S, in seconds, and the CPU
time per time step and per mesh point, Sy, in seconds also. The corresponding spatial
discretization is indicated in tables 4.4 to 4.7, where we have assumed N = N, = N,.
The maximum memory used is also written, in Mega Words (MW) on the CRAY
machines and in Mega Bytes (MB) on the NEC (one word corresponds to 8 bytes). We
also present in tables 4.5 to 4.7 the speed of the code and its more important subroutines
in Mega Flops compared with the peak performance of the respective computers.
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Computer { I J N N, N Memory | MFLOPS | Peak perf. | S, Sy

Cray YMP |2 14 12 4 |16910%|1.58 MW 111 333 0.690 | 4.08 10—°
Cray J9O [2 14 12 4 |1.6910%|1.58 MW 85 200 0.911 | 5.39 10~%
NECSX4 |2 24 10 256 1.310° 63 MB 348 210° 71.7 | 5.53 1073

Table 4.5: Percentage of time spent in each part of the code and its own speed on the
CRAY YMPM9/. The peak performance of the CRAY YMP is 333 MFLOPS.

Table 4.6: Percentage of time spent in each part of the code and its own speed on the

Table 4.4: Performance on different computers.

Part Percentage | MFLOPS
Non-linear 42 54
Inversion 23 183
Divergence 14 31
Diffusive 10 60
Pressure gradient 9 125

Part Percentage | MFLOPS
Non-linear 38 44
Inversion 28 110
Divergence 13 22
Diffusive 10 44
Pressure gradient 8 100

CRAY J90SE. The peak performance of the CRAY J90 is 200 MFLOPS.

Table 4.7: Percentage of time spent in each part of the code and its own speed on the
NEC SX4. The peak performance of the NEC SX/ is 2 GFLOPS.

Part Percentage | MFLOPS
Diffusive 29 240
Inversion 24 349

Divergence 20 244
Pressure gradient 20 332
Non-linear 6 367
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Simplicity of the codes

The DNS code, main program, together with the 16 subroutines, is made up of 4400
Fortran (Fortran 90) lines only. This is very small compared to the hundred thousand
lines of some commercial codes.

The second code, for linear stability analysis, comprising 9 subroutines plus the main
program, and it consists of 2000 Fortran lines.
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Part 11

Analysis of the transition
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Chapter 5

Linear stability analysis

5.1 Objective

Our main aim is the study of transition of Taylor-Couette flow for the counter-rotating
case. Before committing large amounts of CPU time to carry out a direct numerical
simulation (DNS), we need to know where the first transition occurs. For this flow,
theoretical results based on linear stability analysis are possible. We chose to perform
this analysis for the simpler case of infinite cylinders because the first bifurcation of
this flow is almost independent of the aspect ratio, I, as is reported in the literature
[40]. This hypothesis of infinite length cylinders has two advantages:

e The first is that we can limit the axial extension of the domain to the characteristic
wavelength, which is less than or equal to 2 non-dimensional units. In comparison,
we have used three different heights for the cylinders for the DNS: 12, 20 and 30
characteristic length-scales.

e The second advantage is that we can use Fourier expansions instead of Lagrange-
Legendre polynomials. The cost of calculating the derivatives increases as N in
the case of Fourier expansions of degree N, while it increases as N? in the case of
Lagrange expansions of degree N.

These two points make it easier to perform the analysis.

5.2 Analysis method

We only follow the first steps of the now classical linear stability analysis of Taylor-
Couette flow. As explained for instance in Drazin and Reid [25], we first linearize the
Navier-Stokes equations about the base flow which is known analytically for infinite
length cylinders. Instead of performing a normal mode analysis and ending up with an
eigenvalue relation 25, Page 94], we solve numerically the set of linear partial differential
equations (3.40) for a given perturbation. The perturbation we introduce is made of

83
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k pairs of spirals. The case k = 0 corresponds to an axisymmetric perturbation. The
meridian cut of the spiral perturbation is:

ulr(2),0,2(y)] =  Llsin(no))? (16y° — 32¢° + 16% — &) ,
vlr(z),0,2(y)] = 0, (5.1)
wlr(z),0,2(y)] = —zZ5gsin(2rz)2(y) (Byt — 8y + L8y2 - &) |

where the reduced coordinates z and y are given by:

= =R
{ Lo (5.2)
y = x-

This velocity field is solenoidal and such that w(r,0,0) = w(r,0,A) = 0. We also have
fol\ ru(r, 0, 2)dz = 0.
The azimuthal dependence is given by:

6 2
v(r,0,z) = v(r,0,z — k;\—ﬂ) V8 € [0, %] , and

v(r, 0+ 2%, 2) =v(r,6,z) .

This is not the exact solution of the eigenvalue problem [25, Page 94], but an approx-
imation, which reproduces the main features of the strongest perturbation, as can be
seen in figure 5.1.

We chose the variation of v to be sinusoidal in the radial direction, because the ex-
pansion of a sine, or cosine function has several non-zero components on a Lagrange-
Legendre polynomial basis. The same way, the axial dependence of v is chosen to be
a polynomial because its expansion in a Fourier basis has many non-zero components.
Therefore, although we do not introduce the most unstable perturbation at the be-
ginning of our calculation, it is however contained in our initial perturbation. This
perturbation will then evolve naturally with time towards the most unstable one.

We report in figure 5.2 the time evolution of the kinetic energy of the perturbation for
Re; = 210, Re; = —200, A = 1.72, k = 1 and n = 0.875. The radii ratio is the same
for all the simulations made in this section. This value, = 0.875, is also the one used
for most of the DNS presented in the next chapter. At time ¢ = 0, the perturbation
introduced is such that |u|mez ~ |W|mez ~ 1072 V, V = R,Q, being the characteristic
velocity of the base flow. Whatever supercritical Reynolds number we choose for the
simulation, the behaviour of the kinetic energy is the same as in figure 5.2. We find an
initial decrease of the energy, followed by a sharp increase and finally an exponential
growth rate. The first phase (decrease) takes place because the initial perturbation
has bigger stable components than unstable ones. After the stable perturbations have
subsequently decayed, the increase due to the unstable modes is dominating. The
growth rate we observe is the sum of all unstable perturbations. To explain this sharp
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Figure 5.1: Meridian cross-section of the perturbation introduced at time 0. Here are
shown the axial velocity contours together with the (r, z) vector field.

increase early on, we suppose that some of the unstable modes we introduced at time
t = 0 had more energy than the most unstable one. The energy of the most destabilizing
mode overwhelms all the other positive contributions in the third phase.

We know that the growth rate of the most unstable perturbation, the final one in
our case, is proportional to Re — Re., the difference between the Reynolds number
of the simulation and the critical one. In order to find the critical Reynolds number
we therefore need to record at least two time evolutions of the kinetic energy at two
different Reynolds numbers. We impose the outer Reynolds number and vary the inner
one. The critical Reynolds number we find in this way depends on the wave number, a,
we have chosen for the simulations. We then have to repeat these operations to obtain
the wave number corresponding to the minimum Re.(«). The pair of critical wave
number, ., and critical Reynolds number, Re.(c.), is the one we present in figures 5.3
and 5.4, respectively. As observed by Chossat and Iooss [17], for different radii ratios,
n = 0.75 (see table 5.1) and 1 = 0.95 (see table 5.3), we observe that the most unstable
perturbation is first axisymmetric, k = 0, and then asymmetric, with a number of spiral
pairs, k, increasing with the outer Reynolds number, |Re,| (see table 5.2). The results
we present in table 5.2 are for an aspect ratio in between the values chosen by Chossat
and Iooss. Our findings compare qualitatively well with theirs.

There is a sudden decrease of the wave number as we go from a k spiral pairs perturba-
tion to a k + 1 spiral pairs perturbation. The type of perturbation we introduce, with
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Figure 5.2: Time evolution of the kinetic energy of the perturbation, for Re, = 210,
Re, = —200, A = 1.72, k = 1 and n = 0.875. The intensity level of the initial
perturbation is 10~3 compared to the base flow characteristic velocity.
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only one vortex in the radial direction, does not seem to be adequate when k exceeds
4. This has also been noticed by Chossat et al. [17]. They could not find the strongest

perturbation beyond k = 3 for n = 0.75, or beyond k = 5 for n = 0.95.

Codimension 2 point

o1

12

213

U

-0.572

—0.698

—1.149

Table 5.1: Codimension 2 points k|k + 1 found by Chossat and Iooss for n = 0.75.

Codimension 2 point || 0|1 112 2|3 34
(§) -0.68 | —0.72 | —0.88 | —-1.29
Rey 161.7 | 168.9 190.6 | 251.6
Rey —1249| —139.6 | —191.4 | —369.9
Table 5.2: Codimension 2 points k|k + 1 for n = 0.875.
Codimension 2 point 01 112 2|3 3)4 415
U -0.731 | =0.763 | —0.794 } —0.875 | —1.041

Table 5.3: Codimension 2 points k|k + 1 found by Chossat and looss for n = 0.95.




88 CHAPTER 5. LINEAR STABILITY ANALYSIS
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Figure 5.3: Critical axial wave numbers, o, as a function of the outer Reynolds number,
Re,. The sharp increases correspond to the limit between a k mode solution and a k+1.
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Figure 5.4: Critical inner Reynolds number, Re,, as a function of the outer Reynolds

number, Rey. The preferred

number of spiral pairs, k, is also indicated.
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Chapter 6

Classical Taylor-Couette flow

We have obtained the first azimuthal laminar flows by starting the simulation from
a zero initial velocity field, with non-zero boundary conditions corresponding to the
final state. The Reynolds number jump from one simulation to another was decreased
approaching a critical Reynolds number. The relative increase of Reynolds number for
crossing a bifurcation was about 20% of the final Reynolds number. All of these simu-
lations remain steady, once the transient due to this impulsive acceleration is complete.
The typical time for the flow to establish within a reasonably small error is é‘—j, a sixth
of the diffusion time based on the total length of the cylinders.

We only consider here the case in which the inner cylinder is rotating and the end
plates are fixed to the outer cylinder. In this case, the only dynamical parameter is the
Reynolds number of the inner cylinder, Re,. It is then simply denoted by Re in this
section.

6.1 Couette flow

6.1.1 Ghost cells

Below the critical Reynolds number of the first bifurcation, weak Taylor vortices can
be seen developing slowly, by a diffusion process, from the top and bottom Ekman
cells. For such Reynolds numbers, the Navier-Stokes equations have a unique analytical
solution for cylinders of infinite length. In the case of finite cylinders, the horizontal
ends modify the flow. The difference between these two solutions is most noticeable
near the ends. Alziary de Roquefort and Grillaud 3] have made a detailed study of the
subcritical behaviour of the Taylor-Couette flow, while varying the Reynolds number.
Weak cells appear well below the first transition. The number of these cells and their
intensity increase with Re. The cell intensity, represented by |t|maz, the maximum of
the absolute value of the stream function, is vanishingly small away from the horizontal
plates. At Re = 110 and I" = 30, five cells can be distinguished near each end, as
can be seen in figure 6.2. The intensity of the fifth one, counting from bottom to mid-
height, is about 100 times smaller than the first cell intensity, as is reported in figure
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6.1. Therefore, the cells that are away from the end plates are often called ghost cells.
The two cells directly touching the top and bottom end plates are called Ekman cells.

1e-01 T - ,
q.
Vv 1e-02 | -
1 1 1 \)
1 2 3 4 5
Cell number

Figure 6.1: Cell intensity of the six first cells. The bottom cell is the cell number 1. The
intensity is denoted by v, the maximum of the absolute value of the stream function in
the cell.

6.1.2 Ekman cells

Ekman cells appear because of the inbalance between the pressure gradient, %}, and
the centrifugal force, g, in the boundary layer at each end. This inbalance itself is
linked to the no-slip boundary conditions the flow must fulfil. The velocity decreases to
zero as we move towards the stationary end plates, creating a relatively thick boundary
layer. This is because the Reynolds numbers we deal with are small. The pressure is
roughly constant across the boundary layer. The radial pressure gradient is therefore
stronger than the centrifugal force in the boundary layer generating a flow from the
outer cylinder towards the inner cylinder.
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Re R%"f— Ao | Ap
120 | 1.016 | 1.85 | 2.20
125 | 1.089 | 1.71 | 2.37
130 { 1.101 | 1.62 | 2.48

200 | 1.694 | 1.26 | 2.80

Table 6.1: Accessible range of wavelengths. The three first rows are calculated according
to the third order non-linear theory of Kogelman and Di Prima [39]. The last row is
calculated according to Riecke and Paap’s results [57]. The narrow-gap approximation
is also made.

6.2 First transition

The first transition, from Couette to Taylor vortex flow, is characterized by its critical
wavenumber and critical Reynolds number.

6.2.1 Critical wavenumber

There is a unique wavenumber accessible at the critical Reynolds number separating
Couette and Taylor vortex flows. To reach this state starting from the laminar Couette
flow requires infinite time [51]. Indeed, the evolution of the perturbation during the
changeover is governed by an expression proportional to exp[o(Re — Re.)t]. The simu-
lations therefore have to be made above the critical Reynolds number, as given by the
linear stability analysis. The axial wavenumbers, a = 27”, accessible by the so-called
supercritical Taylor vortex flow, belong to a continuous interval [a_,a,] that grows
with Re — Re.. The interval predicted by non-linear stability theory is smaller than the
one predicted by the linear theory. The accessible wavenumbers at the Reynolds num-
bers of our simulations are given in table 6.1. The first three intervals were calculated
according to Kogelman and Di Prima’s third-order, non-linear theory [39]. These early
results agree within a few percents with those obtained later by Riecke and Paap [57],
as long as the reduced Reynolds number, R%feﬂ < 1.1. Riecke and Paap were the first
to obtain quantitative agreement with existing experimental results, even far above the
critical Reynolds number. The range of accessible wavenumbers is narrower compared
to the non-linear theory if R—‘-;‘f—e" is large. We therefore calculated the interval [A_, \{]

: . Re—Re; __
according to their theory, for _eRc_cen = (.694.

Acceleration ramp

The lower values of the wavelength, A, have been attained by Burkhalter and Koschmieder
[12] in their sudden-start experiments, and the higher values from filling experiments
[12]. In our simulations, we go from subcritical to supercritical Reynolds number within
one time step. These conditions are comparable to the sudden-start experiments of
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Burkhalter and Koschmieder. It is worth noting here that the effective wavenumber
can be kept at its critical value while increasing very slowly the Reynolds number, below
the so-called quasi-steady speed [4]. This procedure is however too costly to be used in
our simulations. For an initial Reynolds number 500, increasing the Reynolds number
by ARe = 1 would need 1.75 10° time steps at the quasi-steady speed. The mean
wavelength we find at Re = 120 for aspect ratio I' = 30 is A = 1.957 in non-dimensional
units. The mean wavelength is calculated taking all cells into account except the two
end cells, as in {12]. For the aspect ratio I' = 20 and at Reynolds number Re = 200, we
find A = 1.953, while we find A = 1.912 for ' = 12 at Re = 200. The critical wavelength
given by linear theory is A\, = 2.008 in the same non-dimensional units. For each of
the aspect ratios considered here, the effective wavelength adopted by the flow in our
“sudden-start” simulations is smaller than the critical wavelength, as expected.

Quantization phenomenon

The fact that our flow domain is finite in the axial direction has a strong influence on
the flow patterns. It is referred to in the literature as the quantization problem [40]. It
has two effects:

e The number of cells has first to be an integer.

e The two end cells impose this number to be even, provided I' is an order of
magnitude greater than one.

Depending on the length of the end cells and the total number of vortices, Nr, the
inner vortices, those that do not touch the end walls, can have different lengths as
summarized in tables 6.2 to 6.4.

Nr -2 24 26 28 30 32
Apr=1212300 (2123 | 1.971 | 1.840 | 1.725
Apr =13 122832108 | 1.957 | 1.827 | 1.713
Aer =14 (2267|2092 | 1.943 | 1.813 | 1.700

Table 6.2: Mean wavelength for I’ = 30.

When supercritical, the Taylor vortex flow chooses its wavelength inside the accessible
range [A_, Ay, according to non-linear theory. The wavelength choice is further reduced
according to the quantization principle explained above.
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Np —2 14 16 18 20 22
Ape = 1.1512.529 | 2.213 | 1.967 | 1.770 | 1.609
Apr=121|2511 2198 | 1.953 | 1.758 | 1.598
Apr = 12512500 | 2.188 | 1.944 | 1.750 { 1.591

Table 6.3: Mean wavelength for I = 20.

Nr -2 8 10 12
Apr = 1.20 | 2.400 | 1.920 | 1.600
Apr = 1.22 1 2.390 | 1.912 | 1.593
Apr =125 2.375 | 1.900 | 1.583

Table 6.4: Mean wavelength for I’ = 12.

For the two simulations at Re = 200 (I' = 20 and ' = 12), far above the critical
Reynolds number, Re. ~ 120, the range of accessible wavelengths is wide. The wave-
length chosen by the flow is smaller than the critical one, as expected from the impulsive
increase of the Reynolds number, as is deduced by figures 6.3 and 6.4, respectively. The
wavenumber of the Taylor vortices is however very close to the critical wavenumber.
This is in qualitative agreement with Snyder’s findings [60]. However, no quantitative
comparison can be made because the radius ratio of his experiment is n = 0.5.

6.2.2 Critical Reynolds number

We know from Davey [23] that the square of the equilibrium amplitude of the super-
critical Taylor vortex flow scales with Re — Re.. The amplitude we choose is the radial
velocity at mid-height and mid-gap. We have performed three simulations, for I' = 30,
at Re = 120, Re = 125 and Re = 130, and have derived from these the critical Reynolds
number precisely. The value we found, Re, = 118.24, is above the critical value pre-
dicted by linear theory for 7 = 0.875. According to Roberts [59], the critical Reynolds
number in the case of infinite cylinders, for a. = 3.13 and for the radii ratio n = 0.875,
is Re, = 118.16. This small discrepancy has two possible origins:

e The simulations we used to determine the critical Reynolds number are not exactly
steady. However, the level of acceleration is so small, of the order of 1077 in the
azimuthal direction and an order of magnitude less in the other two directions,
that we may neglect it.

e The second and most important cause of the difference is the dependence of the
critical Reynolds number on the wavelength. The wavelength obtained in our
calculations being different from the critical wavelength on the neutral curve,
that is, just at the onset of the instability; the corresponding Reynolds number
has to be slightly higher than the theoretical one. This effect can be taken into
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account by looking at the critical Reynolds number corresponding to o = 3.074
(A = 1.957), instead of a. = 3.13, on the marginal curve (see figure 1.2). The
critical Reynolds number found that way is the same as the one obtained from
our simulations, within a tolerance of 1074.

As we have seen in the previous chapter, the influence of the wavenumber, o, on the
critical Reynolds number, Re.(a), is small. In our case, the relative difference between
the theoretical critical wavelength and the calculated one is 2%, while the relative
difference in Reynolds numbers is 0.1%.

Influence of the radii ratio on Re,

In figure 6.5, leaving apart the end regions, the flow is still azimuthal at Re = 150.
Indeed, we know from [59] that the critical Reynolds number of the first transition in
the flow between infinite cylinders is Re, = 168.85 for n = 0.94 and a. = 3.13 instead
of Re. = 118.16 in the case with n = 0.875 and o, = 3.13.

6.3 Supercritical Taylor vortex flow

6.3.1 Reynolds number dependence of the flow

We consider here a given geometry: I' = 12 and n = 0.875. Moreover, we only take
into account axisymmetric solutions of the Navier-Stokes equations, and we do not
investigate whether they are stable or not. However, according to Brindley and Mobbs
[11], the ratio of the critical Reynolds number for the second transition, Re,, to the
the critical Reynolds number for the first transition, Re., increases significantly as I
is reduced below 40. They report that for I' = 12, n = 0.79 and A = 1.16, %‘f ~ 5.1.
Therefore, we can expect the flow to still be axisymmetric in our case, for I' = 12,
7 = 0.875 and ER:: < %. In any event, these axisymmetric solutions are good starting
points for fully 3D computations. We studied three supercritical flows at Re = 200,
Re = 300 and Re = 400, and compared these flows with the subcritical flow at Re =
100. For each of these simulations, we present the contours in the meridian cross-section
of the stream function, v, the ratio of the azimuthal velocity squared to the radius, ”7—2,
the radial pressure gradient, p, = gg, the non-linear term in the radial direction, nl,,
the shear stress oy,, the radial vorticity, w,, and the azimuthal vorticity, ws.

The stream function in figure 6.6, corresponding to the Re = 100 results, clearly shows
the two Ekman cells, one touching the top plate and the other the bottom plate. The
azimuthal vorticity contours shows that 8 ghost cells are present, while only 2 of them
appear in the stream function figure. One would need an exponential distribution of
the stream function levels, and not a linear one as is the case here, to recover the 8
ghost cells.

The pairs of counter-rotating Taylor vortices are squeezed together in the outflow re-
gions, the more so as the Reynolds number is increased, as can be seen comparing
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the streamlines of the three supercritical flows. This indicates that the outward radial
transport of azimuthal momentum gets stronger and creates jet-like secondary flows
with increasing Re/Re,.

All of the three figures 6.6 to 6.8 show a close link between:

e 7 and wy,

v &
e *, 3£ and nl,, and

e 0y, and w;,.

More precisely, we can deduce from these figures that the equilibrium between the
radial pressure gradient and the centrifugal force is still valid if the Reynolds number is
above critical. We indeed know that if the Reynolds number is below Re,, the relation:
gf = ”T—z is exact everywhere in the flow when the cylinders are infinite, and that this
relation is approximately correct if the annular space is closed axially, the more so away
from the endplates. When the flow is supercritical we also find that gg ~ —nl, ~ ”T—z
The supercritical Reynolds numbers of figures 6.2 and 6.3 are 1.1 and 1.7 times higher
than the critical value, respectively. The deformation in the azimuthal velocity contours

is therefore more important in figure 6.3 than in figure 6.2.

6.3.2 Pressure distribution

When the flow is above the first transition, Taylor vortices appear and inward and out-
ward radial flows with them. The flow is called inward when going from outer to inner
cylinder and outward when directed from the inner to the outer cylinder. Where these
flows impact, whether on the inner or the outer cylinder, a higher pressure is observed
and where they originate, a lower pressure. Because of the superimposed positive radial
pressure gradient, and also because of the relative weakness of the inflow compared to
the (centrifugally-unstable) outflow, the low pressure zones at the intersection of the
inner cylinder with the outward flows are at a lower pressure than the corresponding
zones at the intersection of the outer cylinder with the inward flows. This finding, to-
gether with the linked observation of the pinching of the vortices in the outflow region,
may explain why the outflow has been called jet-like in the literature.

6.4 Wavy Taylor vortex flow

We present here the results of a simulation for n = 0.875, I' = 30 and Re = 180. We
know, from Brindley and Mobbs [11], that the critical Reynolds number for appearance
of wavy vortex flow, denoted by Re,, increases markedly as I' decreases. Therefore,
we chose a relatively large value T' = 30. This particular value is interesting because
it is often the one chosen by experimentalists, such as Andereck et al. [4] for instance.
According to Edwards et al. [26], the critical Reynolds number for the second bifurca-
tion, to wavy vortex flow, is Re,, = 137.2 for n = 0.87 and Re,, = 135.7 for n = 0.89.
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Using linear interpolation, we estimate Re, = 136.7 in our case, i.e. for n = 0.875. The
next transition, to modulated wavy vortex flow, occurs at Re,, = 791.2 according to
Coughlin and Marcus [21]. Our simulation at Re = 180 is therefore in the range where
the flow exhibits a wavy vortex structure.

The wavy vortex flow is periodic in the azimuthal direction. Six azimuthal modes are
present in our case. We therefore only show one 6-th of the circumference in figure 6.9.
In this picture are shown 8 meridian cross-sections of the flow for # ranging from 0 to ;—Z.
Two counter-rotating Taylor vortices are made visible by the vector field (u,w). The
position and relative strength of these two vortices oscillate with §. The 6-dependent
axial location of the outflow region between the outward jets corresponds to the axial
position of the maximum azimuthal velocity, as can be deduced by comparing the peak
of the velocity contour, v = 0.5, and the jet axial position. These jets are responsible
for the transport of azimuthal momentum from the inner to the outer wall.

The strength of the upper cell first decreases, from § = —27 to § = 2Z, and then
increases, from 6 = g—g to 8 = g—f{ . Wahile its strength diminishes, the vortex moves
downward. The downward, and later upward, motion of the two counter-rotating Taylor
vortex cells is even more obvious in figure 6.10, which shows the azimuthal vorticity
contours from 8 = 0 to ;—Z. The minimum strength of the upper cell is between 6 = ;
and 8 = %}. This corresponds to the maximum of the lower cell. For an axial origin
correctly chosen (in the middle of an inward or outward jet), the flow pattern shows the
shift-and-reflect symmetry described by Marcus [48], (u(r, 6, 2),v(r, 6, 2),w(r,0,2)) =
(u(r, 0 + &, —2z),v(r, 8 + 4 —2),—w(r,0 + &, —z)), as can be seen clearly in figures
6.9, 6.10 and 6.14.

The minimum axial location of these cells is between 6 = 3T and 6 = 47; that is, shifted
a fourth of a period compared to the azimuthal position corresponding to the minimum
strength of the upper cell.

This wavy flow pattern rotates around the axis of the cylinders as a solid body. From
figure 6.11, we obtain the wave speed 2 = 2.63/6 = 0.438. Hence, the period of the
azimuthal wave is T" = 2.28 T, where T is the rotation period of the inner cylinder.
The flow pattern, being periodic in azimuthal direction with period k = 6, the wave
speed obtained directly from figure 6.11 has to be divided by six to determine the wave
speed of the whole structure. The axial, periodic movement of the vortices is most
important at mid-height and invisible near the end plates. The axial wavelength, based
on all the vortices but the two touching the end plates, is A = 1.97, in dimensionless
units.

6.4.1 Wavy Taylor vortex flow as a perturbation to the ax-
isymmetric flow
We are able to produce numerically a physically unstable solution of the Navier-Stokes

equations at Re = 180. Because we use Fourier series in the azimuthal direction, we can
erase all the Fourier modes except the zero mode. Therefore, we can impose that the
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solution remains axisymmetric. The solution we obtain is thus the base flow that one
would use to perform a perturbation analysis. We present in figure 6.12 the perturbed
flow, that is, the difference of the wavy Taylor vortex solution and the Taylor vortex
base flow. Here are shown the contours of v — v, and the vector field (u — up, w — wy).
From 8 = 0 to —3%, a vortex, rotating clockwise, travels from the outer to the inner
cylinder, where it then disappears. Another vortex, rotating anti-clockwise this time,
reappears at a lower vertical position near the outer cylinder and travels again at a
constant height from the outer to the inner cylinder, where it vanishes. This vortex is
located in the outflow region between the original wavy Taylor vortices, and is small in
comparison. The counter-rotating vortex that is visible in the perturbed flow pattern
is, in contrast, relatively large compared to the wavy Taylor vortex.

Comparing figures 6.9 and 6.12, we learn that both the highest and lowest axial positions
of the outflow jet correspond to the disapearance of the small vortex in the perturbed
solution, that is between 6 = —54 and 0, and between 6 = 57 and ‘;Z, respectively.

In figure 6.13, we plot the kinetic energy contours of the perturbed velocity field. The
maxima of kinetic energy correspond clearly to the maximum and minimum of v — .
Most of the kinetic energy of the perturbation is due to the perturbed azimuthal velocity.

6.4.2 Relationship between velocity and vorticity

We observe in figure 6.14 a close relationship between the radial vorticity contours and
the wavy vortex cells. The strong link between w, and the velocity can also be seen in
figure 6.15, where the vector field (u,v—0.5) is plotted together with the radial vorticity
contours. To better understand the correlation between the velocity and the vorticity
fields, we write below the vorticity transport equation to identify the prevailing terms
in it. This equations is:

%—t—-{-w-Vv=v-Vw+V2w. (6.1)
In cylindrical coordinates:
%+ C(V)wr = Clw)u + A (Viw, -~ 3%
S Cws + 3= = Ol + 4 4 g(Vier— 2 +3%) L (62)
% + C(V)w: = Clww + Re V' s ’
with the advection operator, for v, given by
0 v 0
C’(v)-—u6 +r80+w$ ,
and that for w by
0 Wwo 0 0
Clw) = i v

Finally, the Laplacian operator is given by

2 _ 18( 6)+_1_8_2+.§2_
ror Or r2002 022
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As can be seen in figure 6.16, three of the six terms constituting the non-linear term

in the radial direction are negligible. These are: % u%‘:’;ﬂ and "%ﬂ Two of the
remaining terms, w%‘i} and —wr%, have the same spatlal behaviour, the first one being

slightly smaller than the second one. The non-linear term balances the diffusion term in
the whole cross-section. As can be seen in figure 6.17, four of the eight terms constitut-
ing the non-linear term in the azimuthal direction are negligible These are: ‘g;, wou

r ?

‘T’%“;ﬁ and wa—“’ﬂ The larger of the non—linear terms are w, 2 5c and wz Y which are nearly

opposite to each other. In fact, w, 2 o v w2 a is of the same order of magmtude as Ywr
and u22. Furthermore, 2w and wy & 5 T Wz a” have the same qualitative behaviour. The

or
diffusion term in the azimuthal direction balances the non-linear term, but not as well
as in the radial direction, thus indicating that the unsteady term, 65; , 1s non negligible

in portions of the meridian plane. In the axial direction, % g’;’ is negligible and the sum

u% — w, % also (see figure 6.18). The three remaining terms of the axial non—hnear
term are in decreasing order, w, ‘;.’;;’, w%ﬂ and ’r’% The Laplacian term in z, Re V3w,
and w, Y dominate. Their distribution in space differs, so that the unsteady term, 351! ,

has the same order of magnitude as these two terms.

Among all the terms mentioned here, ‘:’;‘;’, v-Vw—w-Vv and V2w, none varies markedly
either with 6 or time. Furthermore, we can point out the predominant role played by
the terms wf%" and V%, in the axial vorticity equation. The first term expresses the
axial transport of the vortices (through their radial gradient of axial velocity) due to
the radial vorticity. The second term is a diffusion term that diminishes this axial
transport. As can be seen in figure 6.18, the axial transport is maximum in the middle
of the original Taylor vortices and reaches a minimum between these centers. The
diffusion maxima correspond to the transport minima, and vice versa. The term w,.aa—';’
is nearly € independent although both w, and %—’;’ strongly depend on 6, as can be seen
in figure 6.14. This means that any increase of w, (at the origin of the advection) is
balanced by a proportional decrease of %’", which expresses the strength of the vortex,

and reciprocally.
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Figure 6.2: Contours in the meridian plane of the stream function v and the azimuthal
velocity, v, from bottom to mid-height. The radii ratio is n = 0.875. Grid of 1 x 15
elements and 13 x 13 GLL points per element.
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Figure 6.3: Contours in the meridian plane of the stream function v and the azimuthal
velocity, v, from bottom to mid-height. The radii ratio is 7 = 0.875. Grid of 2 x 22
elements and 13 x 13 GLL points per element.
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Figure 6.4: Contours in the meridian plane of the stream function ¢ and the azimuthal

velocity, v. The radii ratio is n = 0.875. Grid of 2 x 22 elements and 13 x 13 GLL
points per element.
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Figure 6.5: Contours in the meridian plane of the stream function v and the azimuthal
velocity, v. The radii ratio is n = 0.940. Grid of 2 x 14 elements and 13 x 13 GLL
points per element.
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Figure 6.6: The aspect ratio is I' = 12 and the radii ratio n = 0.875. Grid of 2 x 14
elements and 13 x 13 GLL points per element.
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Figure 6.7: The aspect ratio is I' = 12 and the radii ratio n = 0.875. Grid of 2 x 14
elements and 13 x 13 GLL points per element.
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Figure 6.8: The aspect ratio is ' = 12 and the radii ratio n = 0.875. Grid of 2 x 14
elements and 13 x 13 GLL points per element.
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Figure 6.10: Azimuthal vorticity contours in successive meridian cross-sections at Re

Figure 6.9: Vector field (u,w) and azimuthal velocity contour, v = 0.5
180.

meridian cross-sections at Re
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Figure 6.13: Contours of the kinetic energy of the perturbation, Ec, in successive
meridian cross-sections at Re = 180.
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Figure 6.14: Vector field (u,w) and radial vorticity contours in successive meridian

cross-sections at Re = 180.
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Figure 6.15: Vector field (u,v — 0.5) and radial vorticity contours on the mid-radius
cylindrical surface at Re = 180.
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Chapter 7

Counter-rotating Taylor-Couette
flow

As in chapter 6, we begin our investigations with axisymmetric simulations, which are
less computationally demanding than the complete 3D simulations and are therefore
a good way to span a relatively large number of dynamical parameters, (Re;, Res), to
find the most interesting cases. All of the simulations in chapter 7 are concerned with
the finite-length case, and more precisely with the aspect ratio I' = 12.

7.1 Axisymmetric simulations of the first transition

We investigate here the mechanism which defines the radial extent of the vortices that
appear after the first bifurcation. Our hypothesis is that this mechanism is the same
for both axisymmetric simulations and 3D simulations.

We have chosen four outer Reynolds numbers to investigate the first transition: —100,
—132, —165 and —200. According to chapter 5, above the first critical inner Reynolds
number, the Re; = —100 simulations should show an axisymmetric flow, the Re, =
—132 simulations a spiral regime with £ = 1 azimuthal mode, the Re; = —165 simu-
lations a spiral regime with k = 2 azimuthal modes and the last series of simulations,
at Rey = —200, a spiral regime with £ = 3 azimuthal modes. However, the cylinders
being of finite length here, the predictions of chapter 5 are just rough indications of
what we may find.

For all of the four series of simulations presented below, we have first performed a
calculation at the outer Reynolds numbers —100, —132, —165 and —200, and for Re; =
0, then a calculation at the same Re,, and for 0 < Re; < Re.. We finally have performed
one supercritical calculation starting from the last of the two subcritical calculations.
As we have already noticed in chapter 6, all the following figures, from 7.1 to 7.8, show
a close link between:

e 7 and wy,

e v, p and nl,, and
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® 0y, and w,.

We now describe the four series of simulations. In each of the following figures are
presented successively the streamlines, 1, and the contours of the azimuthal velocity, v,
the pressure p, the radial, non-linear term, nl,, the shear stress oy, the radial vorticity,
wr, and the azimuthal vorticity, ws. For the four subcritical simulations of figures
7.1, 7.3, 7.5, and 7.7 four small cells touching the end plates have visible streamlines.
Because they touch the end plates, we call these cells Ekman cells. Eight ghost cells
can be seen in the wp contours for the case (140, —100), six for the case (155, —132),
but none for the last two subcritical cases, (170, —165), and (180, —200). Twelve Taylor
vortices appear in figures 7.2 and 7.6, while there are ten in figures 7.4 and 7.8. These
vortices are axially elongated compared to classical Taylor-Couette flow, as can be seen
in table 7.1. As the rate of counter-rotation is increased, the vortices near the end are
damped, while the Ekman cells increase in strength, and axial extent. In figure 7.8
the four extreme Taylor vortices are weakened, and only the mid-plane vortices seem
unperturbed by the four Ekman cells. The table 7.1 indicates also a decrease of the
radial extension of the vortices, this effect being linked to the diminishing nodal radius.
The nodal radius is the radius for which the azimuthal vorticity of the base Couette
flow is zero. The base Couette flow being given in equation (1.1), the nodal radius can
be expressed by the following formula:

R, 2 _ Re; —nRe,
(E) " n2Re; — nRe,
As —Re; becomes large, the ratio of critical Reynolds numbers, Re;/Re, reaches a
constant. The nodal radius therefore also tends to an asymptotic constant value that
we call R°.
Couette flow is known to be unstable in the nodal region, that is the annular zone
R; < r £ R, in the case of an inviscid fluid. Although the fluid considered here is
viscous, the centrifugal instability, latent in the nodal region (see Rayleigh’s criterion),
remains the cause of destabilization. The roles of the viscosity are:

e first, to postpone the instability to non-zero values of the inner Reynolds number,
considering counter-rotation,

e sccond, to extend the unstable zone beyond the nodal region by diffusion.

The second role of the viscosity may seem ambiguous because instead of damping the
instability it actually enhances it.

Thus, summarizing, when the fluid is viscid, the zone of instability corresponds to the
nodal zone plus a small diffusion layer, about 20% of R, — R;.

Influence of the attachment of the end plates to the cylinders

With the end plates fixed to the inner cylinder rather than the outer, the strength of the
Ekman cells is stronger, and these occupy more space. The number of Taylor vortices
is thus reduced from six pairs to five, as can be seen in figure 7.9.
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Figure 7.1: Couette flow with four Ekman cells and eight ghost cells.
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Figure 7.2: Six pairs of Taylor vortices and four weak Ekman cells.
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Figure 7.4: Five pairs of Taylor vortices and four weak Ekman cells.
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Figure 7.6: Six pairs of Taylor vortices and four Ekman cells.
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Figure 7.9: Comparison between one simulation with end plates fixed to the outer
cylinder (two left pictures) and another with end plates fixed to the inner cylinder (on
the right). Both simulations are performed at Re; = 160 and Re; = —100.
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160 | 175 | 190 | 200
-100 | =132 { —165 | —200
12 | 10 12 10
1.766 | 1.710 | 1.628 | 1.556
0.71 { 0.65 | 0.63 | 0.58
249 | 263 | 2.58 | 2.67
R,—R,| 060 | 0.55 | 0.52 | 0.48

o I1>~] }/3??

Table 7.1: Evolution of the number of inner vortices NV, their wavelength A, their radial

extent e, and the distance from the inner cylinder to the nodal surface R, — R;, with
Re, and Re,.

7.2 'Transition to bouncing vortices

In this section, the Re, = —132 and —165 axisymmetric simulations are taken as
starting points for complete 3D simulations.

We have seen in chapter 5 that the first transition is to axisymmetric flow for Re, >
—125, and in the case of cylinders of infinite length. From the experience we gained in
chapter 6, we can predict that the reduction of I' (from oo to 12) will have a damping
effect on non-axisymmetric modes. We can therefore expect the first transition to
become non-axisymmetric for higher absolute values of the outer Reynolds number.
Expecting the axisymmetric flow at (Re; = 175, Re; = —132) to be unstable to non-
axisymmetric perturbations of mode k = 1, we introduce a perturbation, (up,0,w,),
with just one non-zero Fourier azimuthal mode. We give here the Fourier transform of
Vp in the azimuthal direction:

{ Uy(r,z) = elsin2(7ra:( ))3E exp(2iry(2))(1 + o) (7.1)
Wy(r,2) = = sin(2rz(r)) exp(2iry(2))(1 + €0) '

where ) is the expected axial wavelength, g is a random number in the interval [—1, 1],
€ (1072) is the initial level of the perturbation, and

{ z(r) =
y(2) =
The perturbation, v,, does not behave as predicted in chapter 5, but decays to zero.
The axisymmetric solution presented in figure 7.4 is therefore stable.

3
>N R.l‘lx

’ (7.2)

We introduced the same perturbation in the axisymmetric solution obtained for case
(Re; = 190, Re; = —165). This time, the mode 1 perturbation grows until a final state
is reached in which the kinetic energy of each of the simulated modes remains constant.
The figure 7.10 shows that the kinetic energy decreases exponentially as k increases.
The perturbation we have introduced initially only contained energy in mode 1. The
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Figure 7.10: Final kinetic energy, Ec, per azimuthal Fourier mode, k.
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fact that the final flow state displays energy in mode 1, and its harmonics shows, that
among the non-zero modes, only this one is able to destabilize the flow. The energy in
modes higher than 1 would otherwise grow at the expense of the first mode to produce
a different distribution of energy.

Here, the kinetic energy per azimuthal Fourier mode remains constant with time. It is
also true in the case of wavy vortex flow, as is reported in chapter 6. The whole flow
pattern behaves in both cases like a solid body, when considered in the appropriate
rotating reference frame.

Description and comparison of the new flow pattern, with wavy vortex flow
and spirals flow

According to the results we have obtained in chapter 5 for I' — oo, we would expect
the super-critical flow at Rey = —165 to form spirals. But this is not what we find.
The structure that we observe is neither wavy vortex flow, or spirals flow. We will see
later the reason why we call these structures “bouncing vortices”.

The vortex structures we observe in figures 7.11 and 7.12 are closed azimuthally, and
also display a wavy pattern, which are typical of wavy vortex flow.

But, in contrast to what is observed for wavy vortex flow, the axial movement of the
vortices is the same, wether they are at mid-height or close to the end plates, as can
be observed in figure 7.11. The amplitude of this axial displacement is also more
important. The vortex pairs are separated by a bigger distance, about 2.5 gap widths,
than for wavy vortex flow, about 2 gap widths. The strength of the vortices of each pair
remains constant (except when such a pair approaches one of the end plates), which is
not the case for the wavy vortex flow regime, where the clockwise and anti-clockwise
vortices alternate in strength. As can be seen both in figures 7.11 and 7.12, the vortices
disappear in pairs as they approach the end plates. Such a behaviour is expected for
spirals in an axially-closed domain.

Another remarkable feature of this flow is the axial shearing of the vortices that prop-
agates from top to bottom and back, as can be seen in figures 7.11 and 7.12. This
deformation wave may be related to a global secondary motion of the flow. Just af-
ter the maximal deformation reaches the bottom end plate, the lower pair of vortices
disappears and the global motion of the vortices is reversed.

The wave speed is deduced from the time evolution of the azimuthal vorticity presented
in figure 7.12. It is 52— = 0.449. Hence, the period of the azimuthal wave is T = 2.23 T,
where T, is the rotation period of the outer cylinder. We also have T = 2.93 T3, T}
being the rotation period of the inner cylinder.

We call the new flow pattern observed here “bouncing vortices” because the whole
pattern behaves like a column of counter-rotating vortices stacked on each other, and
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moving up until the top pair of vortices nearly vanishes and down until the bottom pair
also disappears and appears again.
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Figure 7.11: Successive meridian cross-sections showing the azimuthal vorticity contours
at (Re; = 190, Re, = —165).
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Chapter 8

Conclusions and perspectives

8.1 Conclusions

Tools

The DNS code developed here has proved to be efficient. The computational speed of
the code is characterized by the CPU time needed per mesh point, and per time step.
Its best value is 40us (on the Cray YMP), which corresponds to 10us per variable node
and per time step. There are two main reasons for this efficiency. The first is that it
was designed specifically for one application, namely the study of transition of a New-
tonian fluid enclosed between rotating coaxial cylinders and horizontal end plates. The
second reason is linked to the choice of the algorithms, which were perfectly adapted
to our case. Even better performances could however be achieved by improving the
implementation of these algorithms in the program. We indeed only reached 40% of
the peak performance of the Cray J90. The specific design of our code has another
advantage, the relative simplicity of its implementation.

Though our main goal was not to create an original numerical method, some of its
features are innovative. The regularization of the singular boundary conditions we
apply is new. Whereas Tavener et al. [65] only impose one tangent in the velocity
field they adopt to regularize the singularity, we impose the tangents at both ends of
the small regularization interval. Furthermore, the tangents we adopt correspond to
natural physical requirements.

The time discretization we have chosen is based on the well known second-order Runge-
Kutta scheme. The way we incorporate the boundary conditions in this scheme is also
original. The boundary conditions appearing in the pressure solver are V - v, whereas
the classical boundary conditions in that case would be V - [#- 7% v — (v - V)v]. These
two kinds of boundary conditions are in fact equivalent, but we believe that the ones
we introduce in the time marching scheme are more straightforward.

In the course of our work, we have found that however efficient the DNS code was,
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the time needed for some of the simulations was huge. For example, the simulation
of wavy Taylor vortex flow for I' = 30, » = 0.875, Re; = 180 and Re, = 0 took
two months on the Cray J90, which corresponds to about 10 days CPU. The space
discretization consisted of a polynomial degree N, = N, = 12, the number of azimuthal
modes Ny = 16, and the number of elements 1 x 30. The number of mesh point was
therefore 75088. This number is relatively small for a DNS, but the large aspect ratio
for this simulation, 30, causes very long transients. The number of time steps required
for the flow to settle is 2 10°.

We have therefore designed a second code, which performs only a linear stability analy-
sis of the base Couette flow, and have undertaken parametric studies before proceeding
with the direct numerical simulations for the most interesting parameter values. This
code is able to compute a complete transition curve, at a given 7, overnight on the Cray
J90.

Both codes have been thoroughly validated, although only the validation of the DNS
code is presented in the thesis. Numerical tests were performed before the physical ones.
We obtained very good qualitative agreement with the numerical results of Streett and
Hussaini [61]. We also found good agreement with the theoretical and experimental re-
sults of Ern [28]. The slight differences observed between our numerical results and hers
are explainable: many simplifications had to be made in the theoretical approach, and
the experimental measurements of the axial velocity we compare against are averaged
on a small surface, whereas our measures are pointwise.

Results of

linear stability analysis code With the linear stability code, we have obtained
the first transition curve for different types of perturbations in the range (0 < Re; <
300, —400 < Re; < 0). The most unstable perturbations, introduced initially in the
base Couette flow, were first axisymmetric and then non-axisymmetric, with k az-
imuthal modes, k ranging from 1 to 4. From this study, we have deduced the complete
transition curve, presented in figure 5.4, as well as the number of azimuthal modes that
can be observed in the supercritical solutions. These results are only valid for cylinders
of infinite length. This explains why we found different results with our DNS code.

DNS code We found an axisymmetric supercritical flow at Re; = —132, while we
expected a non-axisymmetric flow with one azimuthal mode from the linear stabil-
ity analysis. The supercritical flow we obtained at Re, = —165 is non-axisymmetric,
but with only one azimuthal mode instead of the two modes predicted by the the-
oretical approach. The finiteness of the cylinders tends to delay the appearance of
non-axisymmetric flows, and to diminish the number of azimuthal modes. These re-
sults are related to those obtained in the classical Taylor-Couette configuration (where
only the inner cylinder is rotating) by Brindley and Mobbs [11]. They observed that
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the second critical Reynolds number, Re,,, where the non-axisymmetric modes appear,
increased drastically as the aspect ratio, I', was decreased. We also observed in figure
6.15 that the waviness in the wavy Taylor vortex flow pattern is damped by the end
plates, i.e. influenced by the finiteness of the aspect ratio.

We have focused our investigations on two kinds of non-axisymmetric flows. The first
is the wavy Taylor vortex flow, that we have simulated for the geometrical parameters
n = 0.875 and ' = 30, and for the dynamical parameters Re; = 180 and Re; = 0.
We have found good qualitative agreement with the infinite-length, numerical results of
Marcus [48]. The azimuthal wavenumber we found is 6 and the dimensionless wavespeed
of the whole flow pattern is 0.438. We have found a close relation between the periodic
strength oscillation of the counter-rotating Taylor vortices and the periodic strength
and position oscillations of the vorticity. Furthermore, we have observed that the non-
linear combination of vorticity and velocity is of leading order in the vorticity transport
equation, and that these terms are nearly time independent. Therefore, when the ve-
locity in one of the vortices decreases, the vorticity increases in that same vortex. This
lasts for half a period and for the other half-period, the velocity grows at the expense
of the vorticity.

The other non-axisymmetric flow we have focused on is the counter-rotating regime
observed for n = 0.875 and I' = 12 at (Re; = 190, Re; = —165). Here, the number
of the azimuthal mode is one and the wavespeed is —ﬁs; = 0.449. When considered in a
reference frame rotating with the cylinders, this flow pattern is fixed. This flow, that we
call bouncing vortices flow, shares properties of both spirals flow and wavy vortex flow.
According to large aspect ratios experiments, a spirals flow was expected. The aspect
ratio we have chosen, 12, is small enough to counteract the “natural behaviour” of the
flow, so that it exhibits a new pattern. This flow may be described as the sum of the
classical Taylor vortex flow in the unstable region near the inner cylinder, and a global,
periodically-alternating, axial flow confined in the stable region. The unstable region
for the viscous flow is larger (about 20%) than the unstable region predicted by theory
for an inviscid fluid. This finding could explain why the first azimuthally-asymmetric
flow is observed for a negative value of the outer Reynolds number, the global axial
movement starting when the viscous unstable region do not reach the outer cylinder
anymore.

8.2 Perspectives

In parallel to this numerical study, a Taylor-Couette apparatus was designed and built
at the Fluid Mechanics Laboratory. The experimentalists focused on the so-called hour-
glass geometry, consisting of a straight outer cylinder and a curved inner cylinder. The
radius of the inner cylinder depends on the axial position, and is symmetric with respect
to the mid-height plane.
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A 3D algorithm able to deal with this configuration has been proposed. This algo-
rithm is based on the same principles as those described in chapter 3. The transfinite
interpolation of Gordon and Hall is used to map the original, deformed domain onto a
rectangular reference domain. Very useful simplifications can be made if the deforma-
tion of the originally square cross-section flow domain is made in one direction only, as
explains Appendix C. We treat the case where the deformation we apply is limited to
the radial direction, and obtain an algorithm that is of the order of ten times slower
than the one designed for the straight geometry. A parallel implementation is therefore
required for the calculations to stay affordable.



Appendix A

Useful formulae in cylindrical polar
coordinates

A.1 Viscous shear stress tensor

( du
Trr = 2“'@ )

o0 =21 (35 + %)

A.2 Vorticity

— 1l&
U= o
w = -1&.
From this formula, we derive: W(r,z) = [iru(r2)dz= =[] rw(rz)dr, for

Yior = 0.
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Appendix B

Spectral element method

B.1 Spectral approximation of functions

B.1.1 Singular Sturm-Liouville problem

Polynomial solutions of a singular Sturm-Liouville problem are of special numerical
interest because they can be evaluated and differentiated with high efficiency. The
Sturm-Liouville problem consists in finding the eigenfuntion f; (corresponding to the
eigenvalue );) solution of equation:

_% (G(I)%(I)> + b(l‘)f,(.’li) = /\ip(l')fi(l') on ] -1, 1[ )

The coefficient a has to belong to C;(]—1, 1[ ) and has to be strictly positive in ] -1, 1].
The coefficient b, as well as the weight function p, have to be positive on ] — 1, 1[. This
problem is said to be singular if:

a(-1)=a(1)=0.

Fourier series, Chebyshev and Legendre polynomials are classical solutions of singular
Sturm-Liouville problems.

B.1.2 Legendre polynomials

Legendre polynomials, L,, satisfy the following singular Sturm-Liouville problem:

{%((1-&)%@))+n(n+1)Ln(r) =0,
Ln(l) = L

Legendre polynomials are orthogonal with respect to weight unity scalar product:

1 2
Lo,L,= ——6b, .
/_1 2m +1 mn
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These polynomials are computed via the following reccurence relation:
(n+1)Lny1(z) = (2n+1)zLa(z) — nls-a(z),
L(x) z,
Lo(.’L‘) = 1

B.1.3 Gauss-Lobatto-Legendre weights and points

GLL weights Gauss-Lobatto-Legendre weights and points are defined so that the
quadrature rule associated with them is exact for polynomials of degree less than or
equal to 2N — 1:

ZP(xi)pi = /_1 P(z)dzx .

From the 2N equations that one can derive from this assumption, one obtains the N —1
relations Ly(z;) = 0 and the N + 1 GLL weights, p;:
2

Pi = N(N+ 1)[LN(.’L‘,;)]2 Vi = 0,...,N.

GLL points The N +1 Gauss-Lobatto-Legendre points, z;, are defined on [—1, 1] by:

To = —"1,
Lv(z) = 0 Vi=1,.,N—1,
IN = 1.

B.1.4 Lagrange-Legendre interpolants

Of degree N The Lagrange-Legendre interpolants are the Lagrange interpolants

based on the N + 1 GLL points. They are given by the following equation:
(1-2*)Ly(z)

N(N +1)Ly(zj)(z — z;)

hj(z) = —

Of degree N—2 These Lagrange-Legendre interpolants are the Lagrange interpolants
based on the N — 1 inner GLL points. They are given by the following equation:

s Ly(z)
") = )@ =)

Vz e [-1,1] Vie {1,2,..,N -1} .

B.1.5 Lagrange-Legendre interpolants derivatives

The derivatives of the Lagrange-Legendre interpolants of degree N on the N +1 GLL
points, z;, are given by:

— Ly(z:) . .
dij = ey ViIFI
dy = 0 Vi#ON,
d N(N+1)

0w = T/,
N(N+1)

dNN = 4
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B.2 Tensor product

B.2.1 Definition

The tensor product of two matrices A and B of size N x N is defined as:

(AHB ApB .. AINB\
AyB ApB ... A,nB

A®B = | 4 B A,B .. AnB

\ Av1B An2B ... AynB )
B.2.2 Properties

(A® B)(C®D) = AC®B D,
(A® B)™! A'® B!,
(A®Bju =  AUBT.

Where u is the vector array (u;;); jjevx|~v and U the corresponding matrix: Uyj = ;.

B.3 Operation count for a matrix vector multipli-
cation

In axisvmmetric geometry, one can perform a 2D matrix vector multiplication for each
azimuthal Fourier mode, Ny, instead of doing the same operation on a 3D vector. If
the matrix is a Laplacian or a Helmholtz operator, the leading order of the operation
count for a matrix vector multiplication is: (N2IN,J + N2JN,I)N,. The evaluations
of A" ® B* u and rB” ® A* u are indeed the most expensive parts of the Laplacian
calculus. If we take M = N, = N, = Ny and I = J = 1, we obtain a simpler formula
for the operation count, that is: 2M4.
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Appendix C

Navier-Stokes solver in hourglass
geometry

C.1 Mapping of the hourglass geometry

We now want to simulate the Taylor-Couette flow in a slightly modified domain. We
add a localized deformation of the gap at mid-height. This involves defining a transfor-
mation from the physical domain onto a rectangular reference domain. Such a trans-
formation, called a mapping, cannot be constructed analytically in most cases. Instead
one has to use the approximation of the unknown continuous mapping. We only need
a 2D mapping because the hourglass geometry is axisymmetric. The methods for two-
dimensionnal mappings are cast into three groups:

e Methods involving the solution of partial differential equation.
e Conformal mappings.

¢ Interpolation from the boundaries, referred to as Gordon’s transfinite interpola-
tion [33].

We have chosen the last of these options because it is the fastest computationally and
is very simple to implement.

Transfinite interpolation of Gordon and Hall To create the mesh in deformed
geometry, we use the transfinite interpolation of Gordon and Hall, that transforms the
reference square, T = [~1,1] x [—1, 1], in any quadrangular plane surface defined by its
four contours. The four contours, I'ieq1,234), of the hourglass geometry are defined by:

o Ty: ri(z,y) =ri(z) = B5Bz 4 B2l and 2 (z,9) = H,.

o I'y: mo(z,y) = Ry, and 25(x,y) = 22(y) = _fiz%ﬂxy + ﬁz;_lﬁ

o I r3(z,y) = r3(z) = B3tz + B3R and z5(z,y) = Ha.
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o Ty ra(z,y) = ra(y), and 2z4(z,9) = 24(y) = H25thy + Bty

Let us introduce the so-called linear blending functions: ®,(z) = 1—5—5, ®y(z) = 1—’;—1,
¥)(y) = 35¥ and ¥,(y) = 2. The approximate mapping is then expressed as:

r(z,y) = ®1(z)ra(y) + P2()r2 + Vi (y)ri(z) + Va(y)rs(z)
=, (2)¥1(y)ri(—1) = Po(z) V1 (y)r1(1) — 2(z) V2 (y)ri(1) — 2 (z)¥2(y)r(-1) .
) =

Knowing that: 7i(z) = r3(z) and that: 7,(—1) = r4(—1), this expression is simplified

as:

) = (152 blo) = ra(-D) +1(a)

In our case the height, z, is a linear function of y: z(y) = H25thy + Hathy

C.2 Spatial discretization

We start from the dimensionless Navier-Stokes equations (3.4), and project this system
of equations in Fourier space, as described in chapter 3, to obtain the set of §-discrete
(r, 2,t) continuous equations (3.6).

Weak formulation of the equations in T The integral over T can be expressed
as:

/F(r, z) rdrdz = / F(z,y)r(z,y)J(z,y)dzdy .
T T

In transforming the equations from Y to Y, modifications appear in the expression of
the Navier-Stokes equations. A term, J(z,y), called the Jacobian of the transformation,
appears in the formulation. It is defined by:

or 0z

J(:L', y) = 5;8_?4 )

with:

7z = 2l2a(1) — za(-1)] .
The Jacobian is then only a function of y. The two other partial derivatives of the
mapping, defined by (r(z,y), z(z,v)), are g’y (152) ri(y) and 9 = 0, where: r4(y) =

& (y).
The following relations will also be useful:

{% = —1ra@) = ra(=1)] + Lfr (1) = 1 (-1)] ,

9 __ 19z

-
or __ 10r
gz = =J° By
Lo R—

ar 0,

& = g,
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Decomposition into macro-elements The domain T is further decomposed in
I x J rectangular elements, T¢' =)z¢, 1§ + ¢°[x]yb, v4 + h'[, each of which is mapped
el

~

onto its so-called “parent element”, T = [-1,1] x [—1,1] . This mapping is affine: to
sel

(z,y) in Ye! there corresponds (¢, &) in T , such that

2(0) = s+ 5(C+1)
y(€) = w+5E+1) .

T = —1+Zf;llg’: Ve>2,
yh o= —1+300R ViI>2

i

—t1
—4—1 |
—+—

Figure C.1: Grid of the physical domain: T, in deformed geometry. The polynomial
degree is 10 in both directions and there are 3 x 5 elements. Here, r4(y) = Ry — 6[1 +
cos(my)]. And § is a few percents of the gap width, R, — R,.

~el
Ordinary differential equations Ineach macro-element T | we use the expansions

3.10 and 3.11, the corresponding test functions and the quadrature 3.12 of chapter 3.
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The Jacobian of the transformation is: J(§) = aT(&)(é‘;—;-. Let us define a(¢), b(£) and

¢(¢) such that: 7(¢, &) = a(¢)b(€) + ¢(¢). We havzg:[
ag) = 128

and

c(¢) = mifz(C)] -

We do not write the full development of the calculations this time but come directly to
the final system of ordinary differential equations:

'B’®JB‘%&+[E§®EE?+Z§7®B?—E?®TL§=] Px = s
B ® JB 9% 4 ikB ® JB* py = s

| B ©JB 4%+ [2G @ W +acG @UB: + 0B @G + B 8 G| e = o
~T —~T ~—~T —~T ~T ——T . ~T —~T
[—agr QB — G @B +B ®JB ] u + kB ® JB* ug
~T —~—~T —~T —~T —~T ~—~T —~T —~T
{ —[a2g’ QbYB* +acG”™ QUVB* +aBr ®bG* +cBT ® G ] Wy, = 0

With:

s2 = (Cyvx — E ® JBy + 2ikE @ JB*u,) — Re B' ® JB*nlf

{ spo= (Lruk— 5;1 ® JB*u, — 2ikE ® JB*v,) — Re B" ® JB*nly ,
s; = Liywy — Re B" ® JB*nl .

And:

Li = aA" @bB* +cA" ®B* — k5 @ JB* + a® A" @ bV’ B* + a’c A" @ b*B*
+aB" @ bA? + cB" @ A?
+a?*D" ® (bD*)T + acD" ® D*T + (a?D")T ® bD? + (acD")T @ D* .

Direct stiffness has been performed as indicated by the use of calligraphic letters for
the matrices.
Locally to each element T¢!, we have:

e
2

i (Erl)ij = ,,ijsijgg—e,

® B;r] = pjéij

NnI"‘

! (3
* aBj; = a5p;0,;%,

r __ e <
® cBj; = ¢ip;idi; %,
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4
e B = ;i
3
® JB;} = J;pjéij%,
® beJ = b;pjéijh?l,
2
o 0B =t (%(5)) pidy%,

2
° V°Bj = (g%(éj)) pibisty,

3] g¢ d¢
2 dh;
o G,D,:’ a;g_c_&lz'(ct)?
2 dh
i CD:] = c;g—e_dzl(g)a

7] 3/ g% d¢
T — gece2dh
e acD} 0565 5o 3¢ (&)

z _ il 2 dhy
* bDiJ =Y Ti’{l(&)’
r o_ 2 N €e T Jr Jr
B 2 k=0 Ok TEPkiily;
T o 2 N € e T r
° cAl =-2 D k=0 CETkPk ki)
3pgr . _ 2 N e\3,.e 1 r
* A =—-% 2 k=0(08) ik diidy;,
2 r o 2 N €2 A€ T
® a’cAj; = g 2 k=0lak) CiTkPk kil s
z . _ 2 N z 3z gz
o A% = —51 2k=o PRt
o bA? — 2 ZN bl 2% dz
ij = TR 20k=09Pk0kiTk;

—~—~—

e BTy, = piﬁj(Ci)%:’
e aB;; = aspihs(G) %,
e By = cSpih;(G)%,
o B = nihy(€)%,
o bB7; = bp:hy(6)E,

i jEzij = J;'Piﬁj(fz')%l,
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o ¥B7,; = 9 (&)pihs(6) Y,

o BBz = 0 (¢) iy (),
o aG" = —(aD")T B" - B,

e ¢G" = —(cD")T BT - B,

o 20" = —(a®D")T BT - B,
o acCr = —(acD™)T B — 1§;)
o G = (D" JF,

e bG* = —(bD*)" JE-.

C.3 Time discretization

The same RK2 scheme as in chapter 3 is chosen. Instead of the skew-symmetric form
of the non-linear term we prefer its alternate form which is twice as fast.

Pressure solver The different mass matrices, B , alBBr , EE; , 52\3;, E; , JB= , b7z3:’,
and b/b.’z;", are too numerous for the pseudo-Laplacian matrix to be expressed in a
separate form. The fast diagonalization method can therefore not be used. An iterative
method is needed. We propose a pre-conditionned conjugate gradient method. The best
pre-conditionner is the inverse of the pseudo-Laplace operator calculated in straight
geometry. Couzy [22] has obtained very good results using this technique.
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