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Version Abrégée

Je propose dans cette theése une analyse théorique de la dynamique des porteurs excités
par pompage optique dans des semiconducteurs confinés. J'ai examiné en détail les
conséquences de l'interaction coulombienne entre électrons et trous, qui conduit & la
formation d’états liés, appelés excitons, avec des caractéristiques analogues aux atomes
d’hydrogéne. J’ai considéré la dynamique des excitons dans des puits quantiques simples,
dans des puits quantiques placés a l'interieur d’une cavité optique (microcavité), et dans
des fils quantiques.

J’ai examiné la dynamique de relaxation des excitons dans des puits quantiques
et j’ai simulé ’évolution temporelle de la photoluminescence. Les effets combinés des
populations d’ excitons radiatifs et non radiatifs expliquent les temps de déclin observés,
qui sont beaucoup plus longs que le temps de recombinaison radiative d’un exciton
isolé. En plus, de fortes déviations de I’équilibre thermique donnent une dépendence
charactéristique de ces temps de déclin en fonction de la température.

Dans les experiences a excitation non résonnante, les porteurs sont initialement créés
dans des états a faible corrélation coulombienne. La relaxation est responsable de la
formation des états liés. J’ai examiné la formation des excitons assistée par émission
de phonons acoustiques et optiques, et j’ai calculé les temps characteristiques de ce
processus dans des puits quantiques de GaAs. La formation peut étre géminée ou
bimoleculaire. Dans la formation géminée, I’exciton est créé directement par la pompe
optique par émission d’un phonon optique. Par contre, dans la formation bimoleculaire
I’exciton est créé a partir de couples electron trou & 1’équilibre thermique. La premiére
donne une contribution seulement pendant le pompage optique, la deuxiéme, par contre,
dépend seulement de la densité de porteurs libres & disposition. Les effets de la formation
assistée par phonons sur la dynamique des porteurs, des excitons, et de 'intensité de la
photoluminescence ont été examinés en detail.

Les excitons confinés dans un puits quantique & I'intérieur d’une microcavité donnent
des modes couplés appelés polaritons. Ces polaritons présentent une relation de disper-

sion avec une branche supérieure et une branche inférieure, et leur interaction avec les
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phonons est treés différente de celle des excitons dans des puits simples. En particulier,
on remarque une région de la dispersion des polaritons ol ceux-ci s’accumulent. Cette
région ne correspond pas au minimum de la dispersion polaritonique, donc on assiste a
une forte déviation de I’équilibre thermodynamique. En plus, la diffusion par phonon
acoustique est fortement supprimée pour les polaritons de la branche inférieure, par
conséquence ’élargissement des raies optiques associé a ’excitation thermique diminue.

Finalement, la dynamique des spectres dans des fils quantiques 4 semiconducteurs a
été examinée. En effet, la recombinaison radiative baisse la densité totale des porteurs,
qui évoluent adiabatiquement, et donc restent presque en équilibre thermique. J’ai
utilisé une technique de fonctions de Green, avec un potentiel effectif de contact pour
Pinteraction coulombienne. Pour obtenir une description correcte du réle joué par les
porteurs liés et non liés, j'ai résolu ’équation de Bethe Salpeter pour la fonction de
Green a deux particules. Cette méthode a donné la possibilité d’observer dans les
spectres d’absorption du gain optique en méme temps que la résonance excitonique. En
plus, les effets de la corrélation électron trou, calculés par une méthode auto consistante
par I’équation de Bethe Salpeter, compensent la renormalisation de I'énergie de la bande

interdite et expliquent ’absence d’un déplacement du sommet de la photoluminescence.



Summary

The purpose of my thesis is to provide a theoretical analysis of the dynamics of op-
tically excited carriers in semiconductor confined systems. In particular, I will focus
the investigations on the effects due to the presence of a strong electron-hole Coulomb
correlation. The Coulomb interaction leads to the formation of hydrogen-like bound
states called excitons. The dynamics of these states is investigated in bare and cavity
embedded quantum wells, and in quantum wires.

I have investigated the dynamics of the relaxation of excitons in quantum wells due
to the interaction with acoustic phonons and I have reproduced the temporal evolution
of the photoluminescence emission. I have explained why the decay times observed in
non resonant photoluminescence experiments are much slower than the radiative recom-
bination time of a single exciton. Furthermore, deviations from the thermal equilibrium
gives a characteristic dependence of these decay times on the temperature.

The build-up of the photoluminescence is related to the relaxation by phonon emis-
sion of the excited electron-hole pairs. Initially, the pairs created at high energy are
not bound, and the formation of bound excitons occurs during the relaxation. I have
described the exciton formation due to the emission of acoustic and optical phonons, and
I have calculated the characteristic times for this process in GaAs quantum wells. The
formation can be geminate or bimolecular. In the geminate formation, the exciton is
directly created by the photon of the external pump by simultaneous emission of an op-
tical phonon, while in the bimolecular formation the exciton is created from thermalized
electron-hole pairs. In the first case the formation occurs only during the laser pump,
while in the second case the formation depends on the total density of carriers available
in the crystal. The effects of the phonon assisted formation on the overall dynamics of
free carriers, excitons and of the photoluminescence are discussed.

Excitons confined in a quantum well coupled with the photons modes of a semi-
conductor microcavity give mixed exciton-photon states called microcavity polaritons.
The dynamics of the population of polaritons, which present an energy dispersion with

an upper and lower branch, shows peculiar characteristics. In particular, a bottleneck
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region above the minimum of the lower polariton dispersion exists. In this region the
population of polaritons is accumulated, and strong deviations from the thermal equi-
librium are thus produced. Moreover, for the lower polariton states, a suppression of the
scattering by acoustic phonons produces a strong inhibition of the thermal broadening.

Finally, the dynamics of the photoluminescence spectra in semiconductor quantum
wires is investigated. The time resolved photoluminescence experiments, the radiative
recombination modifies adiabatically the total density, and the hypothesis quasi-thermal
equilibrium can be applied. The optical spectra probes a system which ranges from a
regime of ionized electron hole plasma to a gas of weakly interacting bound excitons. In
order to describe such a complex system, I have used a Green’s functions technique, and 1
have modeled the Coulomb interaction using a contact potential. This approach allows
to observe in the absorption spectra a gain region close to the excitonic resonance.
Moreover, the effects of the electron-hole correlations, calculated in a numerical self
consistent way, explain the absence of the shift of the photoluminescence emission due
to Coulomb induced band gap renormalization.



Chapter 1

Introduction

In this thesis we will give a theoretical description of the carrier dynamics in optically
excited semiconductors. In particular, we will focus on the effects of the carrier popu-
lations on the optical properties of quantum wells, quantum wires, and semiconductor
microcavities. These properties are experimentally investigated both in time resolved
and density dependent experiments, and the related theoretical analysis leads to a very
complex problem where the effects of acoustic and optical phonons have to be taken
into account. Moreover, in typical experimental conditions, the Coulomb interaction
between the excited carriers affects the optical spectra. One of the strongest effect is
provided by the electron-hole correlation, which may give rise to an enhancement of the
light emission in particular regimes of density and temperature.

At low densities, the electron-hole Coulomb correlation can be modeled using the
excitonic picture [Wannier, 1937]. The photoexcited electron and hole bind together
and propagate through the crystal in a state with a well defined center of mass wave
vector q. This excited state corresponds to an elementary excitation of the crystal in
the case of optical measurements, and is thus called ezxciton. The exciton can be built
up from a basis of Hartree-Fock states. Each element of this basis represents a single
non interacting electron hole pair with a given center of mass momentum q, and relative
momentum k: |¢pgr(q,k)). When a photon is absorbed in the sample the most general
excited state of the crystal is given by a linear superposition of these Hartree-Fock states

165-(@) = > AL (K)|orr(q k) . (1.1)
k

Due to the periodicity of the crystal, the center of mass wave vector q is a good quantum
number. The state |¢%.(q)) is an eigenstate of the the total Hamiltonian of the system
(which contains the electron hole Coulomb interaction), and the coefficients Aé(k) must
be obtained from a Schrédinger equation [Knox, 1963],[Bassani, 1975]. This equation
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can be simplified as to obtain a simple hydrogen-like equation (the Wannier equation),
and an hydrogenic envelope function for the electron hole relative motion. The index A
labels the states of the Coulomb problem. It has been explicitly shown [Sham, 1966] that
the presence of the complex structure of the electronic states in the crystal is correctly
taken into account considering the electron and the hole effective masses and the static
dielectric constant in the Coulomb interaction.

The absorption coefficient calculated using the state in Eq.1.1 as the final state is
exact for a single electron-hole pair excited in the sample [Elliott, 1957]. It can be com-
pared with the experimental spectra only when the external laser pump is a weak probe
of a crystal which is initially in the vacuum state. However, in a typical continuous wave
or time resolved experiment, the condition of single photon excitation of the system is
fairly distant from the physical reality. This is especially true for photoluminescence
experiments, in which the spontaneous emission of photons is collected from a system
with a great number of excited electron-hole pairs. Actually, when several electron-hole
pairs are created in a crystal, the optical properties have to be obtained by solving a
many body problem. The dynamics of interaction with the photon and phonon field
is also not the same as for a single electron-hole pair. In order to take into account
these many body effects, two approaches have been taken. We will refer to them as
the ezcitonic, and the fermionic approaches. In principle the two approaches are dif-
ferentiated by the choice of the starting basis which is used in the calculation, but are
equivalent. The problem, however, cannot be solved exactly and approximations which
are appropriate for different physical situations may be conveniently introduced using
both the approaches.

The excitonic approach states that when N photons excite the crystal, N excitons
are created in the sample. In this approach the concept of exciton as a new particle in
the system is introduced

|6%:(q)) = b] glvac) , (1.2)

where bf\,q is the exciton creation operator. This approach is particularly convenient
when for some physical reason the analysis of a single excitonic branch can be considered.
When a quasi thermal equilibrium is reached with a carrier thermal energy kT much
smaller than the exciton binding energy E;, or when the external pump excitation is
resonant with the lowest 1s excitonic level, the stationary and time resolved optical
properties of the system are correctly modeled restricting the discussion to the only
1s exciton branch. In fact, the full fermionic Hamiltonian, including the electron and
hole operators, can be rewritten as a microscopic excitonic Hamiltonian which includes
a hierarchy of terms to all (even) orders in bosonic operators [Hanamura, 1972]. In
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the investigation of the dynamics of carrier population, the natural parameter for the
truncation of this hierarchy is nezcap, where ap is the Bohr radius of the hydrogenic
problem, and n.;. is the total exciton density. Therefore, in the lowest approximation,
excitons in bound states can be considered as pure bosons at low density since

[bl{s,qbls,q'] = ‘sq,q’ - 0(”‘1‘113) . (1.3)

This approximation will be used in this thesis for the description of the effects on the car-
rier dynamics due to the interaction with acoustic and optical phonons. The excitonic
approach can also be used for the calculation of collision broadening of the excitons
in several semiconductor systems [Bobrysheva, 1980], [Manzke, 1984], [Braun, 1998],
[Ciuti, 1998]. We want just to notice that in the calculation of the non linear optical
response, the correct parameter for the hierarchy truncation becomes the field intensity.
Non linear optical properties have been calculated using the excitonic approach in dif-
ferent systems {Hanamura, 1977], [Combescot, 1989], [Hiroshima, 1989], [Savasta, 1996],
[Ostreich, 1998].

In the fermionic approach the crystal excited by N photons contains N electrons and
N holes. The simplest approximation is the mean-field or Hartree-Fock approximation,
where the correlations between the carriers is taken into account on average only. The
Coulomb correlation effects can be included in the absorption and emission of photons
through the dynamical response of the interband polarization to the external electro-
magnetic field. In this way, the excitonic resonance at low carrier density is correctly
reproduced, since it turn out that the dynamics equation of motion is equivalent to the
Wannier equation. This approach is used for instance in the semiconductor Bloch equa-
tions [Lindberg, 1988] and in the semiconductor luminescence equations [Kira, 1998].
We want to stress that the optical properties are calculated in a different way with
respect to the original Elliott approach. In the Elliott approach, the first step was
to calculate the correct state of the system (the exciton) using the Wannier equation.
Then the optical properties are calculated with Fermi’s golden rule. On the other hand,
in the fermionic approach the state of the crystal will still be in the Hartree-Fock ap-
proximation, but the explicit introduction of an external perturbation in the dynamical
equations yields optical spectra where the electron-hole correlations are included up to
the excitonic level. Obviously, for a single electron hole pair the two approaches co-
incide. However, when effects related to the density are considered, some physics is
missed in the Hartree-Fock approximation. This is because the occupation of the pair
population is distributed over the Hartree-Fock spectrum which is given by the free
electron-hole energies with a density dependent band gap renormalization. However, in
the kpT <« E, regime the pair population occupies the bound states levels which do
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not appear as eigenstates of the crystal at the Hartree-Fock level. Thus, new and inter-
esting phenomena such as the boser effect in semiconductor microcavities [Yura, 1994],
(Imamoglu, 1996], excitonic gain in semiconductor quantum wells [Kozlov, 1996], and
Bose-Einstein condensation of excitons, cannot be investigated. Furthermore, some
thermodynamic relations, e. g. the Saha (action mass) law describing the equilibrium
between the populations of bound exciton pairs and unbound free carriers, require a
treatment beyond the Hartree-Fock approximation [Stolz, 1979].

In this thesis we will use both the excitonic and fermionic approaches, and in the
latter case we will go beyond the Hartree-Fock approximation. In the description of
the interaction of carriers with the phonon (acoustic and optical) field we will adopt
the excitonic picture. In time resolved photoluminescence experiments in quantum well
samples the light is collected at the exciton resonance, and the effects of the exciton
population are essential for an understanding of the characteristic times. In fact, even
if the radiative recombination time of the exciton in quantum wells is very short (of
the order of 10 ps) [Andreani, 1991], the photoluminescence emission at the exciton
energy decays with a characteristic time that is much slower (several hundreds of ps)
(Martinez-Pastor, 1993], [Yu, 1995]. This can be explained considering an excitonic
population distributed over radiative and non radiative states. The slow decay of the
photoluminescence time is then understood in terms of the relaxation of excitons by
emission of acoustic phonons. We investigate this point in Chap.2, where the effects of
the relaxation by acoustic phonons and of the radiative recombination rate on the evo-
lution of the excitonic population are explicitly taken into account. We have discovered
that as the excitons in the semiconductor structure are coupled to the external world
through the electromagnetic interaction, strong deviations from the thermal equilibrium

appear. Consequences on the temperature dependence of the photoluminescence decay
time are predicted.

In non-resonant experiments the sample is excited well above the exciton resonance,
in the continuum of the electron-hole hydrogenic spectrum. We consider in Chap.3
the relaxation of the electron-hole pairs through emission and absorption of acoustic
and optical phonons starting from states in the continuum. This relaxation process
leads to the formation of bound 1s electron-hole pairs and we refer to it as an exciton
formation process. The dynamics of this process is investigated, and the effects on the
rise of the photoluminescence signal due to the relaxation by acoustic and optical phonon
identified. The Coulomb correlation of the electron-hole states in the continuum does
not strongly affect the carrier-phonon interaction, and the formation rates are calculated
by approximating the envelope functions in the continuum with plane waves. Finally,
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the thermal equilibrium between the states in the continuum and the bound states is
considered. We have found that, when the lattice thermal energy is lower than Ej, the
thermalization through phonon scattering is very slow, and an excess of unbound states

with respect to the thermal case may persist up to several hundreds of picoseconds.

One of the advantages of the excitonic basis is that the exciton-photon problem can
be solved exactly and the useful concept of polariton introduced [Hopfield, 1958]. Polari-
tons are the real excited states of the crystal and consist of mixed exciton-photon states
with a characteristic dispersion. In the investigation of the mechanisms of relaxation
by phonons it is the dynamics of polaritons which must be considered. The peculiar
dispersion of the polaritons in bulk samples has lead to the discovery of the bottle-
neck effect in the relaxation dynamics in such systems [Toyozawa, 1959], [Sumi, 1975],
[Weisbuch, 1979]. This effect can also be evidenced in the two-dimensional equivalent of
bulk polaritons, i.e., in microcavity polaritons. Microcavity polaritons are the states re-
sulting from the exact diagonalization of two-dimensional excitons confined in a quantum
well with two-dimensional cavity photons. The latter being obtained by confinement of
the photon through a planar Fabry-Pérot system [Savona, 1996], [Savona, 1998]. In the
case of quantum wells embedded in microcavities the dimensionality of the excitons in
the quantum well matches, as for the bulk case, the dimensionality of the cavity confined
photon modes. We investigate the dynamics of the population of microcavity polaritons
in Chap.4. The peculiar shape of the cavity polariton dispersion also provides a phys-
ical interpretation for the absence of thermal broadening of the lower polariton peak
at low temperatures. In fact, for lower polaritons close to the ¢ = 0 region, scattering
with acoustic phonons is strongly inhibited. We will give a comparison of the theory
predicting this effect with recent experimental results.

Our aim in Chap.5 is to go beyond the usual Hartree-Fock approximation for the
fermionic basis used in the calculation of the optical properties. We will propose a. treat-
ment where excitons are considered as composite fermions. We will take into account
both the populations of strongly correlated electron-hole bound pairs and of the weakly
correlated “free” carriers on the same footing. We will use a nonequilibrium Green'’s
functions technique which allows a self consistent numerical treatment of the equations.
The model leads to a set of very complex integral equations that can be simplified by
choosing a contact potential model for the carrier interaction, and same masses for the
electrons and the holes. This approximation represents the simplest model which en-
ables the study of both bound and free carrier populations, and can be exploited for the
analysis of new effects. Up to now, the onset of optical gain has been considered in the
regime of a degenerate e-h plasma. On the other hand, an excitonic approach results
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in a population of bosonic particles, and a gain is not expected. Using our approach
we will show that an “excitonic” gain can be obtained in a low temperature regime.
This gain is well distinguished from the usual electron-hole plasma gain because it is
obtained at lower excitation densities and presents peculiar spectral characteristics. The
self consistent calculation of the broadening and of the excitonic effects leads also to a
physical interpretation for the absence of a direct evidence of band gap renormalization
in photoluminescence spectra from quantum wires. In fact, the effects of the excitonic
correlation persist even in the regime of degenerate electron-hole plasma, and mask,
together with the broadening of the states, the band gap renormalization.
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Chapter 2

Dynamics of exciton relaxation in

quantum wells

In this chapter we give some details on the interaction of the confined excitons with
acoustic phonons and we investigate the dynamics of exciton relaxation within the 1s
exciton band. We calculate the exciton scattering rate due to acoustic phonons, and we
solve the Boltzmann equation for the exciton population, considering also the exciton
radiative recombination. Since we want to describe relaxation processes within the 1s
exciton band only, optical phonons will not contribute because the exchanged energy is
always smaller than the characteristic optical phonon energy (hwro =36 meV in GaAs
and 47 meV in AlAs). In the investigation of the exciton relaxation, we will assume an
initial distribution for the excitonic population. Some features of the exciton dynamics
do not depend on the choice of the initial distribution, while others, mainly at short
times, are affected by its shape. The shape of the initial distribution is related to the
process of exciton formation, and will be treated in Chap.3. We better focus in this
chapter on the properties which do not depend on the initial condition. The most inter-
esting measurable quantity which results to be independent on the initial condition is
the photoluminescence decay time. This characteristic time describes the dynamics of
the exciton recombination after a stationary distribution function for the exciton pop-
ulation has been reached. For a temperature kgT < E} the stationary distribution
function is not affected by the presence of excited excitonic levels { the 2s level is at
8/9E,), and by the presence of the light hole subband which is well above the contin-
uum edge in quantum wells of width less than 12 nm. The dynamics within the 1ls
band only is thus a good approximation for the modelling of the characteristic times.
It has been shown theoretically [Andreani, 1991] and experimentally [Deveaud, 1991a)
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that the exciton radiative lifetime is very short in quantum wells. However, this short
lifetime do not reflect itself in a short photoluminescence decay time in non resonant
experiments. This is due to the distribution of excitons over radiative and non ra-
diative states, which also give rise to a dependence of the decay times on the lattice
temperature. The temperature dependence of the decay time has been the subject of
many theoretical and experimental investigations, [Feldmann, 1987], [Andreani, 1991},
[Citrin, 1993], [Martinez-Pastor, 1993]. In all the previous theoretical investigation the
assumption of a thermal distribution for the exciton population has been considered.
Solving the full Boltzmann equation, we have found instead that strong deviation from
a thermal distribution can be found, mainly in the regime of low temperature. These
deviations from the thermal equilibrium affect the temperature dependence of the decay
time [Piermarocchi, 1996, Piermarocchi, 1995].

2.1 Deformation potential interaction

The main scattering mechanism for excitons interacting with acoustic phonons is pro-
vided by the deformation potential interaction. When an external pressure is applied
to a semiconductor, the lattice constant and thus the eigenstates and eigenvalues of
the crystal are modified. The effect of the pressure on the crystal is described by the
symmetric stress tensor €;;

1 Bui auj
fl](&) = '2' (63:] + a$l> s (21)

where the u(x) ! is the displacement vector. Let us consider an infinitesimal volume
dV, the expression of this element of volume after the deformation become

dV' = dV (1 + Tre;;). 2.2)
J

The change in energy for the electronic states at the bottom of the conduction band and
at the top of valence band due to the deformation of the crystal is proportional to the
relative variation of the volume

dV' —dV
TTCij = -—dVT—— ; (23)
and can be written as
AEc = a.Tre; (2.4)
AEv = a,Tre;j . (2.5)

'We will use the notation x for 3D vectors, x for 2D vectors, and z for 1D vectors
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The quantity a. — a, is measured looking at the variation of the band gap under an
hydrostatic pressure to the sample. The experimental values for the pressure dependence
of the direct band gap in bulk GaAs range from 10.6 to 15.3 meV /kbar [Landolt, 1982],
[Chang, 1984, and are in agreement with the theoretical calculation [Chang, 1984]. Us-
ing a Bulk modulus of 0.77 Mbar, we obtain a range for a, — a, from 8.6 eV to 11.8 eV.
On the other hand, the band edge deformation potentials a. and a, can not be mea-
sured separately. In the absence of direct measurements, the conduction and valence
band deformation potential have been determined by fitting theoretical calculations to
the existing free carrier mobility data. For bulk GaAs, fitting procedures has provided
a range from -7.0 eV [Wolfe, 1970] to -15.3 eV [Pfeffer, 1984] for a,. We have calculated
the exciton acoustic phonons scattering rates using different values for the for a, and
ay, and we have remarked that the scattering rates are mostly sensitive to the a, — a,
parameter. In the following we will use a. — a, =-9.7 eV [Welber, 1975], and a, =-7.0
eV [Wolfe, 1970].

Phonons represents elastic waves in the system due to the lattice vibration. The

elastic wave with a given wavevector q, and polarization g (q) read

ux) = H éﬁ%@ff_(g)(cq_eig.z + cI_le“iﬂz) (2.6)

Here p and u are the density and the longitudinal sound velocity in GaAs respectively
and V is the quantization volume. The relative compression of the volume associated
with this elastic wave is given by

Tre =V ule) = iy[50mq - e (@) (cge'™ = cfe ™). (27)

Therefore, the deformation potential interaction is due to the coupling with longitudinal
acoustic phonon modes only, and the matrix elements is proportional to \/@ .

Acoustic phonons interact with electronic states also through piezoeletric scattering.
The electric field induced by the piezoelectric effect is proportional through the piezo-
electric constant to the displacent vector u(x) . This field in the crystal interacts with
the carriers, and the dependence of the piezolectric coupling on the phonon wavevector
is thus 1 /\/@ . Furthermore, the pizoelectric interaction couples with both longitudinal
and transverse acoustic phonon modes. However, it has been shown that in typical III-V
materials the piezoelectric constant is very small and the resulting scattering rates due
to this interaction are more than one order of magnitude smaller than the rates due to
the deformation potential interaction [Stolz, 1989].

The deformation potential interaction for an electron hole pair is written in the form:
U(re,ra) = Alre)ae — Alrn)an (2.8)

15



where A(re) = V - u(X)|¢=r. and A(ry) = V - u(x)|;=r, are the relative deformations
of the lattice induced by phonons at the points where the electron and the hole are
located. The exciton phonon interaction results from the sum of the phonon-electron
and phonon-hole interaction. The Eq.2.8 can be rewritten in term of center of mass and
relative variable of the electron hole pair, and is calculated for an exciton confined in the
quantum wells. Using a separable envelope function for the exciton, the exciton-phonon
Hamiltonian corresponding to the deformation potential interaction of Eq.2.8 is given
by
Hezeph =Y Y G(a,4:)0k kvalCaq = g )blbi , (2.9)
4z qkk
where bL (by) is the creation (annihilation) operator of 2D excitons with in-plane wave
vector k, and cl 4, (Cqgq,) is the creation (annihilation) of 3D phonons with wave vector
q = (q,q;) (z is the growth direction). Translational invariance along the quantum
well plane implies the conservation of the in-plane momentum k, as explicitly shown in
Eq.2.9 by the presence of the Kronecker delta function. The z component of the wave
vector in not conserved and a sum over g, appears in Eq.2.9. The term G(q, ¢;) contains
all the parameters of the interaction and reads
h(lal® + ¢2)

G(q,q:) = i _%T—[ acIl(ja) I (g:)

—anl} (a1 (2] (2.10)

The terms Il' ( h)(|q|) and I L(h)(qz) are the superposition integrals of the exciton envelope
function with the phonon wave function (plane wave) in the in-plane and z directions
respectively. Using the exciton envelope function

R B A 211

where p is the in-plane electron-hole relative position, ap is the exciton Bohr radius,
and f, (n)(2) are the electron (hole) envelope functions in the growth direction, the
superposition integrals read

2\ —3/2
1! wmia) = <1+( h(e)lqla )) , (2.12)

@) = [ dalfe mi)er, (2.13)

where M = m, + my,. These integrals introduce cutoffs in the term G(q,q.) for |q| >
1/ap, and for ¢, > 27/Low where Low is the QW width. The latter cutoff originates
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from the electron and hole localization in the QW region described by the envelope
functions fe (n)(2). This dependence of the cutoff in I j(h) (¢.) on Low indicates that
the exciton-phonon interaction decreases for larger QWs. This cutoff becomes critical for
small QWs. In this case, the penetration in the barriers of the exciton wave function has
to be correctly included in f, (5)(2), otherwise the scattering rates are overestimated.
The cut-off in the perpendicular direction implies that the exciton phonon coupling
vanishes when the acoustic phonon wavelength is much smaller than the spatial extension
of the exciton confinement wavefunction in the growth direction. A similar interpretation
can be given for the in plane superposition integrals, in this case the comparison of the

phonon wavelength with the in plane electron hole relative position, related to the Borh
radius, determines the cut off.

2.2 Exciton acoustic phonon scattering rates

The intraband transition rate for excitons scattered by acoustic phonons is calculated
in the Born approximation. We obtain in the case of transitions involving absorption of
a phonon

2
nggfk' = 7 z l(kll(nq,Qleexc—phlnq,qz + 1>lk)l2
q:
4 (Eezc(k,) — Eezc(k) — Eph(Qa QZ)) . (2.14)

Here |k), k') are the initial and final exciton states, and |nqq,), |q,q, +1) are the initial
and final phonons states. Eezc(k) = Awezc+h%k%/2M, and Epr(q, q.) = hu(|ql? +¢2)12,
are the exciton and phonons energies respectively. The rate W]‘(‘f’jk, is then averaged over
the whole phonon ensemble, which is assumed to be in thermal equilibrium (phonon
bath). Since the in-plane wave vector is conserved in the interaction, only phonons
having q = k’'—k contribute to the ensemble average. The sum over g, may be performed

exactly in the continuum limit because of the delta function in Eq.2.14. We finally obtain

_4rL; b (k-K[*+(e2()%)

abs ka2
Wisw = 350 20V |hug0(0)]
2
x (ael(IK' ~ k|)I3(¢2) — anZh(IK' - K])I3 (D))
xnph(Eexc(kl) — Eeze(k)) (2.15)

where ¢ is the root of the argument of the delta function

1/2

A 2
Q= ((E(k )huE(k)> ~lk —k'|2> ’ (2.16)
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and npp(E) is the Bose distribution function of the phonon population. The transitions
assisted by phonon emission are calculated in a similar way, and contain a term (n,, +1)
instead of n,,. We notice that W%, depends only on |k|, |k'|, and the relative angle
0 because the interaction is isotropic. We remark that solutions of Eq.2.16 do not exist
for arbitrary values of |k|, |k/| and 8. The equation 2.16 defines a phase space for the
scattering process. If the initial exciton is at |k| = O the final |k’| must have a kinetic

energy such as

2102
RZII\C/I > huk' (2.17)
which corresponds to
2M
K> h“ = kmin - (2.18)

k’/kmin

NG GO R 0 S S B

40 L S e s
-4.0 -2.0 0.0 2.0

Figure 2.1: Scattering phase space for an exciton with fixed k.

We give in Fig.2.1 the phase space for the scattering of an exciton for a given initial
k # 0. The shadowed region corresponds to the allowed k’. The in plane component
of the emitted (gem) and absorbed phonon (ggps) are shown. We remark that forward
scattering has a larger phase space with respect to backward scattering. The form of a

18



0.025 T . T T ]
r

T=10K

0.02

0.015

0.01

dr/dk’ (mev/k ;)

0.005

0 | i L 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

k,/kmin

Figure 2.2: Scattering rate

characteristic scattering rate is given in Fig.2.2 where we plot the quantity
dl'x
dk’

as a function of k¥'. The initial value of |k| = 1.3 kmin, the temperature is 10 K and

= [ dok Wikt + Wimy)

the quantum well width is 50 A. The emission and absorption correspond to the region
above and below the initial k¥ respectively. The scattering rate has two peaks in the
absorption and emission region corresponding to ¢ = 0. This means that emission of
phonons along the quantum well plane is enhanced. The rate decreases at high energies,
this is due to the cut off in the superposition integrals. In the materials considered here
it is the cut off in I'(q?) the which dominates over I (|k’ — k).

2.3 Boltzmann equation

The Boltzmann equation for the population ny at a given in-plane k using the scattering
rates Wy_, reads

Ak =y Wiooinie (ne +1) =) Wi ioni(nw + 1) — Tienie - (2.19)
K K
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Iy is the radiative recombination rate. In the QW, a 2D exciton with in plane wave
vector k interacts with photons having the same in plane wave vector, but with all
possible values of k,. This gives rise to a large radiative recombination rate with respect
to the bulk case where the radiative recombination occurrs only through propagation
to the crystal surface [Agranovich, 1966]. We have a density of states for the radiative
decay

pllkl,w) = 30 8(B(k) ~ b= Ik +k2) =
k.

L, 2k
=== & 9(ko — |K|) , (2.20)

2m he \/lm
where kg is nwegc/c, and n is the refraction index. The function 6(k) is the Heavyside
function. We remark that the radiative recombination occurs only for states with k| <
ko. This defines the radiative zone. The radiative recombination rate for transverse
excitons with a given k is calculated by the Fermi’s golden rule using the exciton-photon
interaction Hamiltonian [Andreani, 1991), and reads
rr = Z_W_ez_éllcﬂ

k — n moc S kz ’ (2.21)

where f;, /S is the oscillator strength per unit surface for transverse excitons, and k, =
\/k3 — |k|2. For longitudinal excitons a factor k/ko replaces ko/k, in Eq.2.21. We
average the recombination rate in the whole radiative region in order to eliminate the
infrared divergence of I'y. We obtain

2F0 k‘o
<I'T>= =dk = 4T 2.22
k Akrad rad kz 0 ( )
2I'p k, 4
<TL>= / ) ) 2.23
k Akrad rad kO 3 0 ( )

where [y = (me? /nmgc)( fzy/S), Akraq is the area of the radiative zone in the k space,
and L and T indicate longitudinal and transverse excitons respectively. Assuming an ini-
tial isotropic distribution and taking into account that Wy _,) depends only on |k|, |k'|,
and the angle 8 between them, one readily sees that the distribution remains isotropic
for all times. All the exciton parameters as Bohr radius, binding energies, oscilla-
tor strengths, and masses, are taken from theoretical calculations [Andreani, 1989],
[Andreani, 1990]. We solve the Eq.2.19 by Runge-Kutta numerical integration, using
a grid of 800 |k| points in the region from 0 up to 20 ko, and 250 femtoseconds of tem-
poral step. The terms (ny + 1) are related to the bosonic character of excitons, and
correspond to stimulated emission and absorption processes in the dynamics. However

20



R —

— 10 ps
o 20m (a)

3t ~=—= 60ps i}
~==- 200 ps

— 250 ps (b)

—-— 500 ps
-=== 700 ps

Figure 2.3: Time evolution of the exciton population nx at T=50 K. The QW width is
40 A. (a) Evolution up to 200 ps. (b) Evolution after 250 ps.
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at low exciton densities, when ny < 1, their contributions is negligible. We study the
dynamics of a realistic QW system of GaAs with GaggAlp4As barriers and QW width
of 40 A. We also use m, = 0.067mg for the electron mass, and my = 0.18mg for the
heavy hole (my is the free electron mass). In this system the averaged radiative life-
times are 4 ps and 12 ps for transverse and longitudinal excitons respectively. In order
to give a rough estimation of the characteristic times coming into play in the phonon
scattering, we calculate the total rate of absorption for the excitons at k=0. We obtain a
typical absorption rate R,ps = 4T with v = 4ueV/K. This compares well with degener-
ate four wave mixing and photoluminescence linewidth measurements [Shultheis, 1986],
[Kim, 1992}, [Gammon, 1995]. Larger absorption rates are found for excitons with k # 0
because of additional phonon emission processes and because of a wider scattering phase
space. Once all the rates Wy, T'g, and the initial distribution ny(0) are known, the
rate equations can be numerically integrated to obtain the time dependence of ny. The
luminescence signal is easily extracted because it is proportional to the total number of
photons emitted in the whole solid angle per unit time

Ipp(t) o ) Tyenul(t) . (2.24)
Ik|<ko '

In Fig.2.3 we show the solution ny(t) of Eq.2.19 at different times after the non res-
onant excitation as a function of k. The initial exciton population created with an
excess energy cools down by emission of phonons. The initial condition correspond to
the assumption of exciton formation by emission of acoustic phonons. This corresponds
to a particular choice for the excitation energy in the continuum, and we will better
investigate this point in Chap.3. In this first part of the evolution, shown in Fig.2.3
(a), the total number of excitons in the radiative zone increases and the PL intensity,
shown in Fig.2.4, correspondingly rises. The exciton distribution subsequently tries to
thermalize to the lattice temperature but the coupling with photons drains the excitons
away from the radiative zone, preventing full thermalization of the excitonic popula-
tion. We see indeed that the exciton distribution is depleted in the radiative region.
Afterwards, the population maintains a stationary shape and rigidly decreases in time
as shown in Fig.2.3 (b) so that it may be parametrized as ny(t) = f5% Ny (t). The
total population, the radiative population, and the PL intensity therefore decay with the
same characteristic time 7p. This decay time may be calculated by summing Eq.2.19
over k

Niot 1 Zj<ko Ik tat
— =—————= fs a F . 2'25
Niot D 2k Mk |k|zg:ko k ) ( )

We observe that 7p depends on the fraction of excitons in the radiative region only.
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Figure 2.4: Photoluminescence signal as a function of time for non resonant excitation.

S

1000

2000

time (ps)

3000

Same parameters as in Fig.2.3. The rise time of the signal is indicated by 7p.
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2.4 Temperature dependence of the decay time

The rise of the calculated photoluminescence signal is affected by the shape of the initial
condition for the exciton population. On the other hand, in the experiment the rise of
the photoluminescence contains information on the dynamics of exciton formation, and
often a single rise time cannot be identified. In fact, a complex structure in the rise
of the photoluminescence is observed (see Chap.3). However, we have found that the
results on the stationarity of the exciton distribution function still hold independently
on the formation mechanism, and the values of the decay times do not change in an
appreciable way.

In the literature two major results about the temperature dependence of the decay
time exist: in the first one the decay time 7p is calculated through an average over
the Boltzmann distribution of the radiative recombination time, and can be obtained
from the Eq.2.25, using a Boltzmann distribution function for f§* [Andreani, 1991].
This result gives a linear dependence on the teperature of the decay time. The second
approach [Feldmann, 1987], is based on the idea that the excitons have an ad hoc defined
Coherence area, proportional to the exciton homogeneous broadening I'y, and predicts
a dependence of the decay time proportional to I'y,. In the first approach the excitons
are considered as particles with delta like spectral functions (see Chap.5) distributed
thermally over the 1s band. The second approach instead consider the excitons as
quasiparticles with a broadening 'y, the occupation of the 1s exciton band is neglected
(only k = 0 excitons are considered), and the thermal average is done over the exciton
spectral function. Citrin [Citrin, 1993] has shown in the framework of a Green’s functions
formalism that the thermal average has to be done both over the occupation of the 1s
band and over the exciton spectral function. However, depending on the ratio between
the exciton homogeneous broadening and the thermal energy the exact results reduce
to the results obtained in the two simplified approaches:

kgT
D = m,for Fh < kBT (226)
T
h for Th> kgT, (2.27)

D= UToE, (1 — e Tw/KsT)
where E) = (hkg)?/(2M) ~ 0.1meV, and only transverse excitons have been considered.
In the regime of low excitation density the homogeneous broadening due to phonon
scattering is of the order of I', ~ 4T with v = 5ueV/K, and is always smaller than the
thermal energy KgT (kg = 86peV/K). The picture of Andreani et al. is thus the most
appropriate in this case. The picture of Feldmann et al. works better in the regime of
high density where Coulomb scattering contribute to the homogeneous broadening of the
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Figure 2.5: Temperature dependence of the photoluminescence decay time 7p for a QW
of 40 A. The dashed line represcnts the full thermalization case. The dot-dashed line is
a guideline parallel to the previous one.

exciton spectral function. In fact, the formula 2.27 has been successfully employed in the
analysis of the photoluminescence decay in this regime [Eccleston, 1992]. Moreover, we
remark that also in this second case for sufficiently high temperature the same behavior
of Eq.2.26 is recovered. In our investigation, a delta like exciton spectral function
is considered, but the kinetic of the system is numerically investigated without the
assumption of the thermal equilibrium. We give in Fig.2.5 the temperature dependence
of the decay times for transverse excitons. The corresponding dependence resulting
from the assumption of full thermalization (Eq.2.26) is also shown. The decay times are
underestimated by the full thermalization picture, but the thermal slope is recovered
at high temperatures as indicated by the guideline in Fig.2.5. Furthermore, the linear
behavior does not intercept the origin of the axis, but an offset in the linear behavior
is observed. This behavior can be explained considering the role of the deviations from
the thermal distribution. In fact, we observe that the stationary shape fg'®* differs

from the thermal distribution mainly in the radiative region. This means, according
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to Eq.2.25, that recombination rates obtained by averaging over the distribution fgtet
become smaller. We show in Fig.2.6 two stationary distribution functions at different
temperatures. The deviations are smaller at higher temperature but do not vanish. Let

us discuss in detail the role of these deviations. We write the population ny as
nk = Niot(t) fi® = Nyt fp — nyc (2.28)

where f2 is the Boltzmann distribution and dny represents the deviations. We have
3k 6nx = 0 because distribution functions are normalized. Using the detailed balance
principle

Wi sxng — Wioknpy = 0 (2.29)

holding for all k and k’, and inserting Eq.2.28 into Eq.2.19, we obtain

g = — Z Wi Sk onge + Z Wk 0ny — Dgng . (230)
Kk’ k’/

In deducing Eq.2.30 from Eq.2.19 we have assumed nx <« 1 and we have neglected all
the (nx + 1) terms. We now introduce a simplified model in order to analyse the role of
the deviations from the thermal distribution. For this purpose we define two effective
levels which represent the totality of radiative and non radiative excitons respectively.
We will indicate the quantities related to the radiative and non radiative regions with
indexes R and NR respectively. We first consider the behavior of the total non radiative
population Nyg(t). Summing Eq.2.30 over |[kyg| in the non radiative zone we obtain
Nnr(t) = DY (~Wirpoknr 0nirp + Wicygokn 0nkyg) - (2.31)
knrk R
Clearly, the scattering inside the non radiative zone does not modify Ny g(t). Therefore
in Eq.2.31 we consider only exchanges between non radiative and radiative zones. We
define the total exchange rates as

WranNr(K'R) = D Wigoskng » (2.32)
knyr

WhrsR(KNR) = Y Wiyrokiy - (2.33)
K'n

These rates are flat functions of k where the deviation dny are large. We rewrite Eq.2.31
as

NNR(t) = -W4Ng, (2.34)
where we have defined éNg = ¥, dng, = —6Nyr = _Zan onkyp and W =
Wronvr + Wyro R Analogously, by summing Eq.2.19 over the radiative states, we
obtain

Ng(t) = WéNgp —T'Ng . (2.35)
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Eq.2.34 shows that a transfer of excitons from the non radiative to the radiative region

is proportional to the deviation from the thermal equilibrium § Ng. Summing Eq.2.28
over the radiative region we write

Np =) nx=aN;;—6Ng, (2.36)
kg

where o = 3y ff=1- e E1/k8T) For T > 1K a ~ E,/KgT. The dynamics of the
two effective levels is described by a linear system and can be written in the form:

( Nt ) = ( 0 n ) : ( Niot ) : (2.37)
Ng Wa —(W +T) Ng

The eigenvalues of the 2x2 matrix in the equation 2.37 are:

wW+T W4T wr wr
= - — 4 ~ — .
7‘ 2 " \/ W+ " Tw+T” (238
W4+T' W4T wr
= — — l]— —m4mMmM— ~ — .
Y2 5 3 \/ (W+I‘)24a (W+T), (2.39)

where the approximated expressions holds for a « 1/2 (T > 2K). The two modes
associated with ; and o describe the decay of the two levels with the same characteristic
time. It is clear that the decay time of the photoluminescence is given by the smaller
71 which corresponds to a constant ratio Ng/Nyy = Wa/(W +T). We remark that
this ratio reduce to the thermal one in the case of W >» I'. The main contribution to
W comes from the term Wg_,npg, as can be deduced form the sum over the final states
in Eq.2.33, and can be parametrized as W(T') = 4T, with v = 4peV/K. Using this
parametrization we obtain

1 1\ kgT kT kg
= —— ———— = . 2-
p(T) (r + W) =+ L (2.40)

7p(T') increases with a slope (kp)/(4T0E;) = 3.0 ps/K for transverse excitons as pre-
dicted in the full thermalization limit. In addition we find an offset kp/(vE;) = 150
ps. Comparison of this latter result to the calculated 7p(T) given in Fig.2.5 shows that
our simplified model slightly underestimates this offset, and the slope. This fact may
be due to the assumption of a k independent W (k). The deviations from a thermal
distribution are found also in the case of continuous wave (cw) non resonant excitation
luminescence. The shape of the distribution function, which is stationary in this case,
is very similar to the fg!%* shown in Fig.2.6. Let us finally discuss the role of localized
states in the temperature dependence of the decay times. This point has been addressed
by Citrin [Citrin, 1993] which has calculated the radiative lifetime for exciton trapped
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Figure 2.6: Normalized exciton distribution functions fﬁ““, for two different temper-
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by disorder interface. The typical lifetime are of the order of 100 ps. The average over
the localized and free exciton states gives for the decay time

1 Nfreerfree + Nioclioc

— = 2.41
TD Niot (2.41)

in the limit of low temperature the exciton population consists mainly of localized ex-
citons and the decay time observed corresponds to 1/I';,.. However, the effect of the
localized states affects the temperature dependence of the decay time also at tempera-

tures larger than the typical energies of localization. The effect on 7p of the localization
in this regime of high temperature gives

1 N, locFloc

1+

_ -1
2Iﬂfr(»:e Nfreerfree

™ (2.42)

In this limit the ratio ﬁl;l-r“:j%ﬂf; is independent on the lattice temperature is typically
on the order of unity or 10 depending on the density of interface defects. This theory
predicts thus a decrease of the slope of the linear dependence at high temperature due to
the interface roughness. We remark that in presence of localized states, a linear behavior
that intercept the origin is still predicted, while the presence of a finite intercept can be
explained only taking into account the deviation from the thermal equilibrium discussed
above. Even introducing a broadened exciton spectral function the intercept of the
linear behavior remains the origin. In fact, the offset comes from an exact compensation
between the linear dependence in T of 7p and the linear dependence of the phonon
scattering rate W = ~T. Obviously this compensation becomes difficult to observe
when other mechanisms as exciton exciton scattering and disorder interface contribute
to the scattering rate between radiative and non radiative states W.

Up to now, we have only considered the dynamics of transverse excitons. Actually,
there are four HH exciton levels: one longitudinal, and one transverse which correspond
to the ['s representation of the T; point group, and two dark excitons, whose states
belong to the representation I'y and I's. The dark excitons do not couple with the light.
We have not extended our model in order to take into account the scattering and the
dynamics of thermalization within these four exciton bands. But in order to compare
with the experimental results, we make here some qualitative considerations about the
role of this scattering in the overall dynamics of excitons. We can make two different
assumption on the way the thermalization between the four level is reached:

The first assumption is that the scattering rates between the optically active excitons
and the dark excitons are negligible, and the scattering rate between the two optically
active states is fast. When this scattering rate is faster than the radiative recombination
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rates, the populations of longitudinal and transverse excitons are equal. Therefore the
averaged radiative recombination rate is

<TE>+<If>

[ >=
<T'> 5

(2.43)

The second assumption is that a fast scattering involves all the four levels. In this case
we need a scattering mechanism between optically active excitons (J== 1) and dark

excitons (J== 2). Inserting into the rate equation the averaged radiative rate over the

four levels

<TE>+<rf>
4 Y

we calculate the corresponding dynamics. We show in Fig.2.7 (b) the decay time 7p(T)

<TI'>=

(2.44)

corresponding to the two assumption of thermalization over the optically active states
only and over the four excitonic levels.

The linear dependence of the decay time has a function of the temperature has
been experimentally measured [Martinez-Pastor, 1993] and compared with theory. The
measured slope of the linear dependence is quite larger (of about a factor 2) with respect
to the theoretical prediction from the full thermalized model (notice that in the paper
[Martinez-Pastor, 1993] the reported theoretical decay times should be divided by a
factor 2 ). The slope that we find in our calculation for a 5 nm QW ranges from 10
ps/K to 12ps/K and is quite smaller than the measured slope of 22 ps/K. We finally
remark that a clear evidence of an offset in the linear temperature dependence of the
decay time has been recently observed in good quality InGaAs/GaAs samples [Yu, 1995].
This offset is the clear signature of the presence of deviation from the thermal equilibrium
in these samples.
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Figure 2.7: Temperature dependence of 7p for a QW of 50 A corresponding to the two
hypothesis: fast scattering rate between the two optically active states (triangles), fast
scattering rates between all the four exciton spin levels {(diamonds).

31



32



Chapter 3

Exciton formation

We will now focus on the dynamics of the excitons starting from the excitation of elec-
tron hole pairs in the continuum. In a non-resonant photoluminescence experiment,
the optical pump excites free electron-hole pairs which eventually relax to form bound
excitons. In this chapter we will calculate the characteristic times of this relaxation
process which we will call exciton formation process since it results in the formation
of bound excitons. We will analyse the effects of the formation process on the rise of
the photoluminescence signal in typical experiments. During the last few years, sev-
eral experiments have been carried out in order to clarify the exciton formation process
both in bulk and QW semiconductor systems. Most experiments are based on time-
resolved techniques, which include time resolved photoluminescence of the excitonic
resonance [Damen, 1990], [Roussignol, 1992], [Blom, 1993], [Robart, 1995], and of the
free carrier continuum [Deveaud, 1993], (Kumar, 1996a], [Kumar, 1996b], time resolved
Raman spectroscopy [Prabhu, 1996], and nonlinear cross-correlated photoluminescence
[Sasaki, 1989], [Strobel, 1991}, [Emiliani, 1997]. However, the results of time resolved
experiments do not allow a clear identification of the exciton formation rate, because in
the dynamics it is difficult to distinguish between the formation process itself from the
exciton relaxation within the excitonic band. When a photon from the pump pulse is ab-
sorbed by the sample, an electron hole pair is created. The electron and the hole in this
pair have opposite momentum, and are strongly correlated. However, this correlation is
rapidly lost through scattering with the other carriers and with phonons. These scat-
tering mechanisms are the same which provide a fast thermalization within the free car-
riers. Consequently, we distinguish between two different cases: direct formation of the
exciton from the initially created electron hole pair before correlation is lost (geminate
formation) and indirect formation from thermalized electron-hole pairs (bimolecular for-

mation). The rate of geminate formation is proportional to the created pairs density, and
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is therefore linear in the pulse intensity. The bimolecular formation rate is proportional
to the probability that the thermalized electrons and holes interact, and is proportional
to the product of electron and hole densities. This is valid for a non-degenerate Fermi
gas, which corresponds to the excitation densities in most experiments. We will analyse
in detail the geminate and bimolecular formation, and the exciton dissociation process,
which is the inverse process of formation and is important when the lattice thermal en-
ergy is close to the exciton binding energy [Piermarocchi, 1997a]. Using the calculated
formation and dissociation rate we reproduce the dynamics of the photoluminescence
rise [Piermarocchi, 1997b], [Piermarocchi, 1997c]. The most interesting feature of the
photoluminescence rise consists by the presence of two characteristic times in it. The
first charateristic time is very rapid (few picoseconds) and related to the emission of
optical phonon, while the second time is of the order of several hundreds of picoseconds
and is due mainly to the relaxation by acoustic phonons emission. We have checked the
thermal equilibrium between free carriers and bound states. As for the case of radiative
versus non radiative population discussed in Chap. 2, in the regime of low temperature,
strong deviation from the action mass law (thermodynamic equilibrium between exciton
and free carrier) exists up to several hundreds of picoseconds. Consequently, during the
dynamics of the photoluminescence, an excess of free carriers with respect to the thermal
case results.

Recent experiments [Amand] show that the first rapid time appears in the photolu-
minescence even for excitation of a cold free carrier plasma, which in principle cannot
relax by emission of optical phonons. This feature is not explained by the interaction
of the carriers and excitons with phonons. A possible explaination of this effect come
from the role of Coulomb interaction in these systems. However in order to address this
point a more general approach to the exciton problem in the optical spectra is needed.
In order to obtain a satisfactory description of the build up of the photoluminescence,
the quantum kinetics of relaxation has to include the broadening of the states in a ac-
curate way. The broadening of the states affects the phase space for the scattering since
it relax the conservation energy in the transitions. This is particularly inportant for
the broadening induced by Coulomb scattering. In fact, in the picture of free carries
and bound excitons with no broadening, the formation of excitons may occur through
Auger-like processes which gives a formation rate proportional to the square of the total
density of carriers. This n? dependece, which is not observed in the experiment even
at very high densities [Strobel, 1991], is probably modified by the density dependence
of the collision broadening. In more simple way, the Fermi’s golden rule approach does
not give the correct rates since the broadening of the states it is not much smaller than
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the energy jumps in the relaxation, and introduces an additional dependence on the
density. Moreover, in order to distinguish the scattering within the continuum from the
scattering toward bound states, the energy and wavevector dependent broadening has to
be calculated with a self consistent treatement. The self consistent T matrix approach
we will proposed in Chap.5 is probably the best tools for this purpose. In fact the single
particle self energy, thus the broadening, calculated in this approximation contains both
the contribution from free and bound pairs scattering.

3.1 Geminate formation

The geminate formation process consists of three steps: excitation of en electron hole pair
by a photon, propagation of the created pair through the crystal with total momentum
close to zero, and finally conversion of the correlated pair into an exciton via interaction
with phonons. The rate of creation is therefore proportional to the density of pump
photons. We stress the fact that the electron-hole pair involved in the formation has
total zero momentum. In the geminate process, two interactions are involved: the
carrier-phonon interaction V, and the carrier-photon interaction V,. The formation rate
of an exciton with a given center of mass wavevector q, produced by a photon with energy
hw, is calculated by second order perturbation theory. The emission of optical phonons
gives the dominant contribution to this formation rate, and has a threshold at hw =
Egap + hwio — Ey. We have checked that the contribution from the acoustic phonons in
the geminate formation is four orders of magnitude smaller. The carrier optical phonon
interaction considered here is the Frolich interaction, which is due to the polarization
field created by the ions oscillating in opposite direction. Confined and localized optical
phonon mode has been shown to play a marginal role in the relaxation rate for an
electron plasma [Riicker, 1992], and the same should be valid for the exciton formation
mechanisms. Therefore we consider in the calculation the interaction of carriers with
bulk optical phonons. The formation rate by emission of optical phonons reads

2

Rihw > q) = 2~ ) (01Vylke)/ (np + 1) (k: [Vl a@)
W —_ —
1 b e o — Eyap—hzlkr|2/2y+il‘
g/

Here |0) is ground state, |k;) represents an electron-hole state with relative momentum
kr, |q) is the exciton state, and pu is the reduced electron hole mass. All the intermediate

states have zero center of mass momentum and we sum only on the relative momentum
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k, of the electron-hole pair. Furthermore, the in-plane wavevector conservation implies
that the created exciton and the emitted optical phonon have opposite momentum. The
optical phonons are in thermal equilibrium at the temperature T;, and n, is therefore
negligible in the range of considered temperatures. The sum over g, of the final phonon
is due to the breaking of the translational symmetry in the growth direction. The
energy I' gives the broadening of the intermediate states, is assumed to be frequency
independent, and is produced by the same process which thermalizes the carriers. We
have investigated the effect of this broadening on the total rate of the process, and we
have found that for I" larger than ~ 10 meV, the geminate rate decreases rapidly. This
is related to the loss of correlation in the intermediate pair for I" larger than the exciton
binding energy Ejp. In the following, we assume I to be smaller than 10 meV. We give
in Appendix A the explicit calculation of the geminate relaxation rate. The total rate
of formation is then obtained from Eq. 3.1 summing over all the final exciton states,
and can be written as a function of the pump power P and the pump frequency w as
(see App.A

(d:;:)gem = Qgem (hw) P(hw). (3.2)

We obtain for a QW of 50 A a coefficient o = 1.4 10'5(Ws)~!, for an excitation energy
of 40 meV above the band edge. We have found that (dn.:/dt) is slowly dependent
on the excitation energy above the energy threshold. For a 1 ps pump pulse and 1
KW /cm? power, about 10% cm~2 excitons are formed by the geminate process. In order
to quantify the importance of the geminate formation process, we compare it with the
total formation rate of free carriers for the same excitation conditions, and obtain

(d—nﬂ) em em hw P(fl )
(idf;) == Z:arr((hwiP(h:) = 0.05 (3.3)

dt

Here the total free carrier rate acqrr(hw)P is related to the free carrier absorption, and
is energy independent for excitation above the band edge. The equation 3.3 states that
about 5% of the carriers created by the photons flowing into the sample are directly
converted in excitons through the geminate process.

3.2 Bimolecular formation

The scattering terms in the Boltzmann equation describing the bimolecular formation
process read

(dfetg(e))fmm == > P knokexh(Kkn)ne(ke) (34)

kex )kh
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where the Fi, x, k., represents the the probability per unit time for a free electron
with wavevector ke to bind together with a free hole with wavevector kj, giving rise to
an exciton with a wavevector keyx = ke + ke. The occupation numbers for electrons and
holes are denoted by n.(ke) and np(kn). Anequation analogous to Eq. 3.4 holds also for
the hole and exciton distribution functions. The formation rate Fi k, ke, is evaluated
using the Fermi’s golden rule. For the exciton we use a two dimensional hydrogenic-like
wavefunction as in Chap. 2, and the electron-hole pair wavefunctions in the continuum
are approximated by plane waves. We will discuss this latter approximation at the end
of this section. We assume that during the evolution of the system, the free electrons
and holes are thermalized at the same temperature T,. This thermalization is produced
by fast carrier-carrier scattering. Typical thermalization times in GaAs QW are found
to be of the order ~ 100 fs for carrier density above 10!° cm~2 [Knox, 1992], which
are faster than all the other scattering times, in particular when compared to the ex-
citon formation time. In the scattering term of Eq.3.4, we use for n.(ke), and n,(kp)
equilibrium Boltzmann distribution function at 7.. Consequently, by summing Eq.3.4
over ke, we obtain an adiabatic equation for the evolution of the electronic density

Ne = (Eke ne(ke))/s

_C%T;E = — ZF(kex)nenh = —Cnenh . (3.5)
kex

The coefficient C is the bimolecular formation coefficient, which depends on both T,

and the lattice temperature 7} through the interaction with the phonons, and F(keyx) is
defined as

2\ 2
F(kex) = 2 . >~ Fico kpokax ekl Erlkn)/ksTe) (3.6)
kgT.] mempS E erth™ Rex

The carrier temperature T, immediatly after the pump pulse depends on the excess
energy AE = Epump — Egap, and is defined by kT, = AE/2. However, in the dynamics,
T, approaches the lattice temperature 7; through emission of phonons showing two
characteristic times: a short one, usually few picoseconds, associated to the emission
of optical phonons, and a longer one, of the order of several hundreds of picoseconds,
associated to acoustic phonons. The optical phonon emission drives the dynamics for
T, above 50 K. We do not consider the evolution of the temperature T, which may
be experimentally measured [Yoon, 1996}, and we evaluate the formation coefficient C
as a function of T, and T;. In Fig.3.1 we report C as a function of 1/T, for a fixed
lattice temperature T; =10 K, for a GaAs QW of 50 A. The two contributions from the
acoustic and optical phonons are shown separately. The optical phonon contribution
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Figure 3.1: The exciton formation coeflicient C as a function of the inverse of the carrier
temperature T, at a fixed lattice temperature T;=10 K.
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dominates for temperatures larger than 40 K, and in the Arrhenius plot of Fig.3.1 we
can define an activation energy of 26 meV for this process. This energy corresponds
to the difference between the optical phonon energy (Awro = 36 meV) and the exciton
binding energy (Ep = 10 meV). We conclude that the formation process at short times
is mainly governed by optical phonon emissions. For the acoustic phonon process, we
do not find any activation energy. In fact, both the emission and absorption of acoustic
phonous contribute to exciton formation. The difference between the two processes
appears clearly in their dependence on the lattice temperature T;. The optical phonon
contribution do not depend on T;, whereas the acoustic phonon one increases linearly
with T;. The qualitative difference between exciton formation by the optical and by
acoustic phonons is also clearly shown in Fig.3.2 (a), where F(E) = F(ke; = \/2ME/h?)
is plotted as a function of the energy E of the created exciton. Since optical phonons
are dispersionless, the energy exchanged in the transition is always the same, and the
distribution of the created excitons follows the shape of the thermal tail of the free
carrier at T,. The created excitons come from electrons and holes at the tail of the
Boltzmann distribution function. Even if the population at the tail is very small, the
polar interaction is so strong with respect to the deformation potential interaction, that
already for 40 K the contribution form optical phonon emision is overwhelming. The
energies exchanged by acoustic phonon emission and absorption are of the order of one
meV, and the excitons are created through quasi-elastic transitions. Therefore, excitons
from this process are formed close to the band-edge, at an energy E close to E. Similar
remarks can be done for the dissociation process (Fig.3.2 (b)). Dissociation through the
emission or absorption of acoustic phonon can occurr only if the dissociating exciton
is close to the band edge. The dissociation through absorption of an optical phonon is
instead independent on the energy od the exciton.

Several experiments have been done in order to determine directly the value of the
bimolecular coefficient C. Strobel et al. [Strobel, 1991] find C =6 cm?/s, Emiliani
(Emiliani, 1996}, [Emiliani, 1997) find C ~ 10 — 20 cm?/s, Robart et al. [Robart, 1995]
find C ~ 14 cm?/s, Kumar et al. [Kumar, 1996a}, [Kumar, 1996b] find C =0.5 cm?/s,
and Deveaud et al.[Deveaud, 1993] find C ~0.5-1 cm?/s. Small changes in the experi-
mental parameters, such as the quantum well width and the lattice temperature, should
not significantly modify the value of the bimolecular coefficient. The different values
obtained for C in different experiments can be explained taking into account the tem-
poral evolution of free carrier temperature T,, and the different techniques used in the
determination of this coefficient. It is clear, for instance, that the values C =10-20

cm? /s refer to the formation assisted by optical phonons, which corresponds to a carrier
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Figure 3.2: (a) Exciton formation rates as a function of the energy of the created exciton.

(b) Exciton dissociation rate.
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temperature larger than 40 K. These values have been estimated from cross correlated
photoluminescence experiments which investigate the dynamics of the system at early
times. The value of 14 cm?/s has been obtained by measuring the time evolution of
the homogeneous broadening of the exciton which is assumed to be proportionoal to the
free carrier density. In this case too, the determination of the bimolecular coefficient
has been carried out looking at the first 10 ps of this evolution. On the other hand
the values C' = 1-0.5 cm?/s, which has been measured looking to the temporal decay of
the photoluminescence in the electron hole continuum, has been extrapolated from the
dynamics after about 50 ps, where the carrier temperature is likely below 40 K, and refer
to the iormation assisted by acoustic phonons. Using accurate MonteCarlo simulations,
it has been shown that the contribution due to the optical phonons can also be sensitive
to the laser excess energy. At very short time the formation due to this process shows
an oscillatory behavior related to hwpo [Gulia, 1997]. This can be understood by a
contribution from the carrier population which is not yet thermalized. The contribution
from the acoustic phonon scattering is instead constant, and quantitatively not sensitive
to the details of the distribution function considered.

The characteristics of the geminate and bimolecular processes are different. The
geminate formation exists only during the pump pulse, whereas the bimolecular for-
mation takes place also at later times, and depletes the carrier population during the
exciton formation. Due to the quadratic dependence of the rate on the density of free
carriers, the temporal evolution of n. is not given by a simple exponential. However, a
characteristic formation time for n, = n; may be defined as (Cn.)~!. Typical values
for this time are in the range of 1 to 20 ps for n. of 10!° cm~2. For later times, the
dynamics becomes more complex because of exciton and carrier temperature relaxation
processes, and of the dissociation of the excitons. In order to compare the geminate and
bimolecular exciton formation rates, a given experimental condition of pump power P,
pump duration At, carrier temperature T, and lattice temperature T; has to be consid-
ered. As discussed above, the carrier temperature T, is not simply related to the excess
excitation energy AE. Here, the excess energy is always above the geminate generation
threshold. Therefore, we consider a typical range of possible carrier temperatures T,
from 50 K to 100 K which may result after the excitation [Robart, 1995], [Yoon, 1996].
The geminate formation rate is written in term of the carrier density n. created by the
pulse by approximating (dne/dt) ~ n./At and using Eq. 3.3 to obtain

(dne:c) ~ Qgem T , (3.7)
dt gem Qcarr AtF, S
where Fg is a form factor due to the shape of the laser pulse. We consider a Gaussian

pulse of full width at half maximum equal to At, and we average the geminate rate over
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the temporal width of the pulse. The correspondig Fs is 1.426. In Fig. 3.3 we report
both the geminate and bimolecular formation rates at short times as a function of n,, for
At=1 ps and T, = 50 K and 100 K, and T; =10 K. Clearly, at large carrier density, the
bimolecular formation rate dominates over the geminate rate. The crossing of the two
rates depends on both At and the carrier temperature T,. For the chosen parameters,
the crossover corresponds to n. = 10° cm~2. The crossover density decreases with
increasing At as shown in Eq.3.7. Measurements by Amand et al. {Amand, 1994] on
the relative weight of the two processes confirm that for carrier density n. above 10°
cm™2, the geminate process is negligible.

Other formation processes assisted by carrier-carrier scattering (Auger processes)
and scattering by disorder and impurities take place in any available sample. The first
process has a cubic dependence on n,., and should have a small influence for densities
lower than 10''cm=2, as shown experimentally [Strobel, 1991]. Both a direct contribu-
tion and a correction to the calculated phonon assisted rates exists due to the interface
disorder and impurities. Clearly, correction to the optical phonon assisted rates is negli-
gible, due to the large energy exchanged in the process compared to the typical broaden-
ing due to disorder effects. Acoustic phonon assisted processes may be slightly modified
by the presence of disorder, especially when the disorder inhomogeneous broadening are
larger than the typical exchanged energies of 1 meV. For large inhomogeneous broaden-
ing, we expect also that the disorder-assisted formation process becomes relevant, and
comparable to the acoustic phonon-assisted process.

Finally we want to discuss the validity of the approximation of plane waves used
for the states in the continuum. In the optical transition the effect of the electron hole
Coulomb correlation in the continuum produces in two and three dimensional systems
an enhancement of the matrix element whith respect to the calculation done without
the Coulomb corrections. This enhancement is described by a factor (Sommefeld factor)
which corrects the spectra calculated with free carriers. The matrix element for the
radiative transitions has the advantage that it does not depend on the relative and
center of mass momentum. On the contrary, in the case of the transition leading to
the exciton formation by phonons absorption or emission, the matrix element depends
on the relative momentum and on the center of mass wavevector of the initial and
final state. As a consequence, the effects of the Coulomb correlation in the continuum
cannot simply be described by a Sommerfeld factor. However, taking into account the
qualitative behaviour of the matrix elements, we can state that the optical Sommerfeld
factor (which in two dimensions is about a factor 2 at the edge of the continuum) gives

un upper limit for the Coulomb enhancement. In our approximation, the transition rate
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for the formation of a bound 1s exciton by emission of a phonon with wavevector q reads
2
Fyo xpoK—q = + > ke, K|Vpr(q, ¢.)IK — q, 1s)|*6(Ef — E;) (3.8)
gz

where K = ke + ki, and k, indicates the relative electron hole momentum. The enve-
lope functions for the in plane motion of the states in the continuum are then

eiK'R eikr'p
V5 VS

Actually, the correct envelope functions for the in plane relative motion with the e-h

ok (R)IY (p) = (3.9)

Coulomb correlation read

1 12
¥ (p) = 1 |F(m+§_"1“_ﬂ)|e~:a
xmf YR T@m+1)
1 42 etime

2k€™ (2kp)" F(m + 5 — ——,2m + 1, 2irp)
2 Kap

(3.10)

where k = /2uE;, /h? (E, is the energy due to the relative motion), and m is an integer.
F(a, 3,7) is the confluent hypergeometric function and R is the Radius of the circular
quantization surface. The most important deviations in the envelope functions of Eq.3.10
with respect to the free case in Eq.3.9 are in the region & ~ 0 and for m = 0. Let us
consider the formation by emission of a phonon q starting from one of these unbound

but strongly correlated electron-hole pair at k ~ 0 and m = 0. The transition rate is

2
Frn0,m=0K—K—q,ls = 5 > (& ~ 0,m =0,K|V,(q,9,)|K — q,15)|*6(Es ~ E))
q:

2m
=+ 2 (s~ 0,m = Olke) ke, K|Vp4(q,0:) K — g, 15)[*8(Ey — E;) (3.11)
ke

We know that the matrix element (kr, K|V,1(q,q;)|K — q,1s) (See App.A) decreases as
1/(krap)® for large k, and has a maximum in the region k, ~ 0. Then we can write

Fn~0,m=0,K—)K-—q,ls < | Z(K' ~0,m = 0|kl‘)|2Fkr~0,K—)K—q,ls (312)
ke
where
1Y (s, mlke)? = |y m(p = 0)[? (3.13)
ke

gives the optical Sommerfeld factor. The inequality 3.12 states that the Coulomb correla-
tion in the continuum cannot strongly affects the formation rates by phonon interaction.
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3.3 Formation dynamics

Our approach consists in a rate equation model where excitons, electrons and holes are
considered as three independent particle species interacting with a thermal bath of acous-

tic and optical phonons [Piermarocchi, 1997b], [Piermarocchi, 1997c}, [Marie, 1998]. Phonons
provide the mechanism for the different relaxation processes. Taking into account the
whole exciton dispersion, the rate equation reads

nx(kx) = Y Wigokx nx(kx)(nx(kx) +1) = Y Wi iy nx(kx)(nx (k) + 1)
kx' kx'
—Tixnx(kx) + Y Fiykn—kxTe(ke)nn(kn) — Dienx (kx)- (3.14)
ke kn
All wavevectors are two dimensional and refer to the in-plane directions. In Eq. (3.14)
the occupation numbers for electrons, holes and excitons are denoted by ne(ke), ns(kn),
nx (kx) respectively. All the scattering rates have been calculated using the Born ap-
proximation, and only 1s excitons have been considered. The last two terms in Eq.3.14
represent the formation and dissociation of excitons respectively, while I'y, is the radia-
tive recombination rate. By assuming a thermal, time-independent distribution function
for the free carriers, we can derive an equation for the total free carrier density n.

% ==Y Finenn + 3 Diynx(kx) . (3.15)
kx kx

where the term Fi, is given in Eq.3.6. The dissociation by optical phonons, on the

other hand, is nearly independent on the exciton energy. We remark that already at

50 K the dissociation rates are of the same order of the radiative recombination rates,

and consequently it is essential to take into account their role in the photoluminescence

dynamics.

By solving the rate equations (3.14) and (3.15), we obtain the evolution of the photo-
luminezcence signal. Only excitons with a negligible center-of-mass in plane momentum
are allowed to interact with the radiation field and thus to recombine radiatively. This
feature is a consequence of the energy and momentum conservation of the system of ex-
citons and photons. In order to obtain a photoluminescence signal, we need to populate
the excitonic states in the region at the bottom of their band. This region in the in
plane wave vector space is called radiative region. The analysis of the rise time of the
photoluminescence indicates how the excitonic states in the radiative region are popu-
lated. There are, indeed, two different ways to produce radiative excitons. The first one
consists in a direct radiative exciton formation from the free carrier plasma. This direct
formation in the radiative region is provided by the emission of optical phonons, and the
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Figure 3.4: Time evolution of the photoluminescence for three different temperature
and two excitation densities. The same temperature for the plasma and the lattice is
considered. The quantum well width is 12 nm.

created excitons are thermally distributed with the same temperature as the free carrier
plasma. The second way to populate the radiative region is provided by non-radiative
excitons which are brought by phonons into the radiative region. This second way is
related to the cooling of the exciton distribution towards the lattice temperature, and it
is generally slower than the direct formation of radiative excitons. We show in Fig.3.4
the time evolution of the photoluminescence for two different initial excitation densities
Nere. We considered the same temperature for the free carriers and lattice. At 50 K, the
initial fast rise corresponds to a direct formation of excitons in the radiative region. At
10 K, instead, the direct formation in the radiative region is strongly inhibited and only
excitons near the band edge are created by emission of acoustic phonons. The slow rise
in the time evolution of the photoluminescence thus reflects the exciton cooling towards
the radiative zone. The case at the intermediate temperature T=30 K reveals a double
structure in the time dependence of the signal. This corresponds to the presence of
both effects described above. The dependence on the initial excitation density is weak,
but we remark that for very low excitation density, our assumption of instantaneous
thermalization for the plasma becomes less realistic. A full dynamics of the free carriers
should be considered in this last case. The condition T, = T} considered in Fig.3.4 can
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Figure 3.5: Time evolution of the photoluminescence at low lattice temperature for

different values of the plasma temperature. The quantum well width is 12 nm and the
excitation density 107 cm™2.

be experimentally obtained by tuning the laser excess energy. In fact, the initial average
kinetic energy of the e-h plasma, which is proportional to the laser excess energy, can
be chosen close to kgTy. This experimental setup allows a clear analysis of the dynam-
ics of exciton formation from a photoluminescence experiment because cooling of the
e-h plasma does not take place. However, photoluminescence experiments are usually
performed with large excess energy above the e-h continuum and low lattice tempera-
ture. We consider this case in Fig.3.5, where we plot the photoluminescence dynamics
corresponding to two different values of the free carrier and lattice temperature. The
free carrier temperature is initially given by the excitation energy. Then, a fast cooling
through optical phonon emission occurs which brings the carrier to a temperature of 40
~ 50 K, corresponding to the inhibition of the optical phonon emission. Afterwards, the
only mechanism allowed to cool down the plasma to lower temperatures is the emission
of acoustic phonons which is very slow[Yoon, 1996]. Consequently, in a non resonant
experiment, even at low lattice temperature, the carrier temperature is close to the tem-
perature of 50 K during the exciton formation. However, the effect of the e-h plasma
cooling should provide a change in the photoluminescence dynamics with respect to what
predicted in Fig.3.5. In fact, for short times (less than 10 ps), the carrier temperature
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is in general larger than 50 K and we expect a faster formation rate. Furthermore, for
very long times (of the order of a few ns) the cooling due to acoustic phonon emission
should also be taken into account. The results shown in Fig.3.5 do not include these
two effects. We did not investigate the formation in presence of simultaneous cooling of
the e-h plasma because we believe that the best experimental setup for the study of the
exciton formation process corresponds to the situation discussed in Fig.3.4. The case
depicted in Fig.3.5, corresponding to T, = 10 K, can be obtained only by a resonant
creation of a cold plasma, and an ad hoc excitation should be made. Moreover, we have
remarked that the dynamics of relaxation is strongly affected by the values used for the
delectron and hole masses, and for the deformation potential, which are known with
low accuracy. We used for masses, Bohr radius, binding energies and oscillator strength
the values calculated theoretically [Andreani, 1990]. However, recent calculations have
shown that the heavy hole dispersion presents a strong anisotropy [Triques, 1997]. Since
the time evolution of the photoluminescence is very sensitive to the HH mass, we be-
lieve that the effects of the anisotropy have to be taken into account in order to obtain
a better agreement with the experimental results.
The action mass law for the 2D case reads

nx ~ 2wkl

where n., ny, and ny indicate the free electron, free carriers, and exciton densities re-

NeNyp ukBTe_E,,/KBT , (3.16)

spectively. Ej is the exciton binding energy, and y is the reduced electron-hole mass. We
analyze now the evolution of the system of excitons and free carriers towards the equi-
librium which is described by (3.16). We consider a QW of 120 A with a binding energy
for the 1s exciton of 8.7 meV, and with m,=0.08 and m;=0.17. The initial excitation
density is 1019 cm~2. We focus only on the dynamics of thermalization and consequently
we consider in the dynamics non radiative excitons. We plot in Fig. 3.6 the time evolu-
tion of the ratio n* = n.ny/nx, where the same temperature for the free carriers and for
the lattice is assumed. In the thermal equilibrium the action mass law is valid, but the
time necessary to reach this regime is strongly dependent on the lattice temperature.
The equilibrium occurs on a time scale of the order of 10 ps for a temperature of 100 K,
while at 20 K the system, even after 20 ns, is not thermalized. The value approached
by n* for long times corresponds to the one predicted by the action mass law. This
obtained dynamics indicates that at low temperature the system strongly deviates from
the equilibrium and an excess of free carriers results. For lower excitation density the
evolution toward the equilibrium does not differ sensitively. The experimental check of
the action mass law has been carried out only for temperature larger than 100 K in the
case of continuous wave photoluminescence {Colocci, 1990]. The dynamics of thermal-
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Figure 3.6: Time evolution of the ratio neny/nx. The constant value for long times
corresponds to the value predicted by the action mass law.

ization between free carriers and excitons has not yet been investigated experimentally.
We expect that in the time evolution of the photoluminescence spectrum, which can
nowadays be obtained with good energy and time resolutions [Yoon, 1996}, the equilib-
rium will take quite long to be achieved for KgT « Ep. Finally, we remark that in our
analysis we have disregareded the radiative recombination of excitons, nevertheless the

calculated times give indications on the characteristic times for the equilibrium between
free carriers and excitons.
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Chapter 4

Exciton-polariton relaxation in

microcavities

In an infinite crystal, the interaction between the radiation field and excitons is charac-
terized by translational invariance and thus wave vector conservation. A single exciton
mode couples to a single radiation mode, giving rise to coupled radiation-excitation
modes, called polaritons [Hopfield, 1958]. Close to the crossing of the dispersion curves
of the photon and the exciton, polaritons are a strong mixture of the exciton and pho-
ton. Outside this crossing region, the polariton has either larger exciton content, or
larger photon content. We refer to exciton-like and photon-like polaritons depending
on the contents of exciton and photon in the mixed modes. Polaritons in the infinite
crystal are stationary states and no phase space is left for the decay via radiative recom-
bination. Therefore they may radiate only through propagation to the crystal surface
[Toyozawa, 1959]. On the contrary, as remarked in Chap. 2, in a quantum well, be-
cause of the reduced dimensionality, the translational symmetry of the electronic states
is broken along the growth direction, hereafter denoted by z. In this case, a 2D exciton
can recombine to a continuum of photon modes with all the possible values of k£, and a
finite radiative recombination rate results [Agranovich, 1966]. We do not therefore find
strong mixture between the exciton and photon as in the bulk case.

In order to realize the two dimensional analogue of the bulk polariton, a planar
structure where both the photon and exciton are confined in the growth direction is
necessary. Semiconductor microcavities are planar devices in which the electromagnetic
field is confined by means of two parallel plane semiconductor mirrors. When a quantum
well is placed inside a microcavity, excitons are coupled to the electromagnetic modes
of this dielectric structure. Typical microcavities have a thickness of a few integer mul-
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tiples of half the photon wavelength at the exciton resonance frequency. Consequently,
an exciton is coupled to a single cavity mode according to the in-plane wave vector
conservation. Thus, this system constitutes the 2D analogous of the bulk polariton
[Savona, 1996]. In microcavities the photons have a finite lifetime which originates from
the finite transmittivity of the mirrors. This implies a radiative mechanism for micro-
cavity polaritons which, in contrast to bulk polaritons, does not involve propagation and
surface recombination.

The photoluminescence process is the result of the interplay between radiative re-
combination and energy relaxation through the interaction of excitons with phonons. In
bulk systems, the relaxation processes and the results of photoluminescence measure-
ments have been successfully understood after detailed theoretical investigations of the
dynamics of polaritons [Toyozawa, 1959, Sumi, 1975]. The effective recombination times
in these systems vary by orders of magnitude, being very short for photon-like polari-
tons, and much longer for exciton-like polaritons. When the interaction with phonons is
taken into account, the relaxation times due to phonon scattering become much longer
for the photon-like polariton than for the exciton-like polariton. This effect is due to
the reduced exciton content in the photon-like polariton and to the increased slope of
its dispersion. The combination of the increase of radiative rate and decrease of the
relaxation rate in passing from the exciton-like to the photon-like modes results in a de-
pletion of polaritons in the photon like region, and in the absence of any further energy
relaxation in this region. This overall dynamics of the 3D polariton has thus been called
a bottleneck dynamics [Toyozawa, 1959]. This dynamical effect considered above has
been observed in the bulk both in continuous wave [Weisbuch, 1979] and time resolved
experiments [Askari, 1985].

The small exciton binding energy in bulk GaAs makes the bulk polariton weak
to both large temperatures and impurity concentration. Therefore, the bottleneck ef-
fects are observed only in very pure samples at low temperature. However, these type
of dynamics may be more easily observed in a system of reduced dimensionality, like
semiconductor microcavities, where the exciton binding energies are increased and the
radiative recombination process becomes allowed. In this chapter, we will study the
dynamics of microcavity polaritons, and analyse the fundamental processes underly-
ing the photoluminescence in time resolved experiments. Particular attention will be
paid to identify the characteristic features of the microcavity polariton dynamics with
respect to the dynamics of bare quantum well excitons. As for the dynamics of bare
excitons, strong deviation from the thermal equilibrium are found. In the case of mi-
crocavity polaritons, since they are in some extent the two dimensional equivalent of
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bulk polariton, these deviation can be referred to as a two dimensional bottleneck effect
[Tassone, 1996, [Tassone, 1997]. Moreover, we will show that the modification of the
dispersion of the exciton polariton due to the coupling with the cavity mode leads to
a strong inhibition of the polariton acoustic phonon scattering. This reduced scatter-
ing rate results in a strong suppression of the homogeneous broadening which has been
observed experimentally [Stanley, 1998], {Savona, 1997b).

4.1 Relaxation and formation rates of microcavity polari-
tons

As for the bare quantum well dynamics, we identify three steps in the description of
photoluminescence from semiconductors microcavities: an excitation provided by an ex-
ternal pump, a relaxation process in which the energy of the excitation is redistributed
among the electronic states and released to the lattice, and a radiative recombination
process. In general, all these processes are characterized by different time scales. We
give in Fig.4.1 a schematic picture of the polariton dispersion and of the possible scat-
tering processes governing its dynamics and photoluminescence that we are going to
consider. These include acoustic phonon scattering within the polariton branches, po-
lariton formation from a thermal reservoir of free carriers through acoustic or optical
phonon emission, and polariton radiative recombination. Neglect of other processes like
exciton-carrier and exciton-exciton scattering is justified by the range of low carrier
densities considered. The Boltzmann equation for microcavity polaritons reads

'fli,k = Z Wj,k’—)i,k nj,k/ (Tli,k + 1) - Z Wi,k—)j,k’ ni,k(nj,kf + 1) b

JK Ik
Pignk + 9 Fig ki e(ke)nn(kn) - (4.1)

ke kn
Note that with respect to Eq.3.14 the presence of the two polariton branches (index )
has to be considered, and interbranch scattering terms appears. Moreover, dissociation
of exciton-polaritons into free carriers by absorption or emission of phonons is negligible
at the low lattice temperatures considered, and can be neglected. The terms containing
(n+1) correspond to stimulated polariton emission and is hereon approximated by unity
because of the low density considered. W;y ;s are the phonon mediated polariton
scattering rates, I'; i is the radiative recombination rate, and the last term in the right
hand side represent the source term due to the injection of polaritons from the free

carriers.

‘The scattering rates of microcavity polaritons by acoustic phonons W y_,;x/, where
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Figure 4.1: Schematic representation of the polariton dispersion, the free carrier thermal
reservoir, and the possible polariton formation processes, scattering processes by acoustic
phonon emission or absorption, and radiative recombination.
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k and k' are the in-plane microcavity polariton wave vectors, ¢, j are the branch indexes,
are calculated using the deformation potential interaction and the Born approximation,
in the same way as for the bare exciton scattering rates. Emission and absorption of
opticai phonons within the microcavity polariton bands is impossible, due to the large
LO phonon energy. The scattering rate W; x_,; x is the sum of two contributions arising
from phonon emission and absorption. The Born approximation for the absorption (-)
or emission (+) term gives:

x

2m R 2
Wi,k—)j,k’ = _h— I)‘;,k' (k,! <0q,q: IHe:cc—ph|1q,qz ) |k>Xi,k X
49z

) (th,k' — fI.Q,"k + ngg)) (nEépgg) + 1/2 +1/2). (4.2)

Here q = k' — k is the exchanged in plane momentum, Hezc_pp is the deformation
potential interaction, [nq,) is a phonon number state, |k) is the exciton state of wave
vector k, h; is the polariton energy, branch i, wave vector k, n(E(ph)) is the Bose
occupation number for phonons, and E‘(lph) = huq is the phonon energy. The X x are the
Hopfield coefficients whose square modulus gives the exciton content in the polariton
state of branch ¢, wave vector k. With respect to the case of bare quantum wells of
expression in Eq.2.14 we have a different dispersion law for the particles involved in the
scattering, and the presence of the Hopfield factors.

In order to calculate the scattering rates, we need to specify the exact energy dis-
persion §); . of the polariton modes. We consider a GaAs based realization of a one-
wavelength semiconductor microcavity having a single quantum well embedded at its
center. High-reflectivity Distributed Bragg reflectors (DBR) consisting of 24 and 20
pairs of quarter-wavelength layers respectively enclose the cavity. The exact mixed
exciton-cavity modes are calculated analytically by diagonalizing the exciton-photon
interaction, where the free electromagnetic modes of the full DBR structure are con-
sidered. We give in Fig.4.2 the polariton dispersion corresponding to the considered
structure. Two polariton branches appear denoted by n = 1 (lower polariton mode) and
n = 2 (upper polariton). The modes given here corresponds to the situation when the
detunig, defined as § = Adcqy ~ Aweze, With (Qeay = ¢/ Legyity), is zero. In some micro-
cavities the detuning can be modified since through the sample the cavity length Legyity
is not constant, and the Q,, can be changed exciting the sample on different spatial
regions . A Rabi splitting, defined as the energy difference between the two polariton
branches at k = 0, AQr = hQypper k=0 — Aliower,k=0 = 4 meV results for the considered
microcavity. In Fig. 4.3 we plot the total radiative broadening of the modes I'; for a
detuning § = 0. Radiative lifetimes are in the picosecond range, a value which is also
typical of GaAs based quantum well structures, and has been observed experimentally
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Figure 4.2: Micro-cavity polariton modes for the GaAs sample considered in this work,
at 0 = 0. The strong coupling region, and leaky modes region are indicated, the non

radiative zone corresponds to k > ko
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Figure 4.3: Micro-cavity polariton radiative recombination rate I'y for the GaAs sample
considered in this work, at § = 0. The inset shows the normal direction radiative
recombination rate as a function of the detuning 4.

[Sermage, 1996]. As for the bare quantum well, the radiative rate vanishes outside the
radiative region k < kg = Ny Qere/C, Where neq, is the cavity index of refraction. In
the inset of Fig. 4.2 we plot ;o as a function of the detuning §. We notice that this
is rather large, and is proportional to the cavity photon fraction of the polariton mode,
exception made for exciton-like modes, when § >> AQQp. We remark the presence of sev-
eral peaks for k > 0.3kg. These structure are due to the coupling of the exciton with the
leaky modes of the cavity. Leaky modes are electromagnetic modes propagating at finite
angles with respect to the growing direction through the DBE into the substrate. They
are due to the peculiar structure of the DBRs, which introduces additional resonances
in the electromagnetic field at finite angles {Savona, 1995]. We can therefore distinguish
three regions in the lower polariton dispersion which correspond to a different radiative
recombination features. The first region is the strong coupling region characterized by a
strong radiative emission in the growth direction, in our case corresponds to k < 0.3ko.
The second region, with 0.3kg < k < ko, is dominated by the leaky modes, with emission
at large angles. The third region is non radiative and correspond to k > kg. We are
going to consider the polariton dynamics for several values of the exciton cavity detun-

ing 6 = 0, hQp,-hS2p,-2hQg. For practical purposes, we have also used an analytical
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approximation to the exact dispersion, which neglects details of the dispersion effects in
the leaky modes region [Savona, 1996]. Its form is given by the usual solutions of the
polariton dispersion equations [Savona, 1995}

(Qexc,k - Qi,k)(Qcav,k - Qi,k) - Q%{/‘i (4'3)

where Qeay k = V2 /€cavk? + QZ,,. For ease of reference, we also report the expression
for the square modulii of the Hopfield coefficients:

0%,/4
Q%Z/‘l + (Qi,k - Qe:t:c,k)2

Let us finally discuss how the photoluminescence is calculated after the populations

| Xixl? =

(4.4)

resulting from the solution of Eq.4.1. The width of this peaks is practically broadened
by various effects, but here we are interested in their overall intensity. In the framework
of the rate equation model, summarized in Eq.4.1, the photoluminescence at a given
angle @ is proportional to the photon emission rate I'; xn;x into the corresponding k
vector, k = 7cq, Sin88; k/c. Here ngqy is the cavity index of refraction, and 6 is the
propagation angle in the cavity. The propagation angle in air ,;, is easily calculated
from the relation sin @/ sinf,;, = ncey. Given the large index of refraction of GaAs, we
find total internal reflection for most leaky modes. The calculation of the population
n; x therefore allows us to calculate the photoluminescence emission at any given angle
8, for either the upper or the lower polariton.

Formation of exciton-polaritons may occur through the absorption or emission of
acoustic phonons, or through the emission of optical phonons, as schematically shown
in Fig.4.1. The expression for the bimolecular formation coefficient C is similar to the
one given in Chap.3, provided the appropriate Hopfield factors for exciton content in
the final state are included. As for the bare quantum well case, the exchange of acoustic
phonons involves energies of the order of less than a meV, and polaritons are created
with large in plane momentum k in the exciton like region of the lower polariton. Since
the final states are exciton like the distribution in energy of the created exciton is the
same of Fig. 3.2. Concerning optical phonon emission, it is clearly not quasi-elastic due
to the large, dispersionless energy of the optical phonon. Thus, both lower and upper
branch polaritons are formed by this process. We notice the fact that the LO phonon
is dispersion-less, therefore the distribution in energy of the injected polaritons mirrors
that of the free carriers, times the Hopfield factor. We remark that the formation by
optical phonon can be very efficient in order to directly populate the region of the lower
polariton close to k = 0 [Pau, 1997]. This region cannot be reached by emission of
acoustic phonons due to the presence of the bottleneck region where the polaritons are
stopped.
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Figure 4.4: The lower branch (solid line) and upper branch (dashed line) polariton LO
phonon formation rates as a function of the polariton energy (the origin is fixed at the
exciton energy), at a carrier temperature Tc=60 K.

We present in Fig. 4.4 the polariton formation coefficient Fro ;j(E) as a function
of the energy of the created polariton for Tc=60 K. We notice that in the region close
to k = 0 the coefficient follows the variation of the Hopfield coefficient. Therefore
the upper polariton formation coefficient is rapidly cut-off at high energies. On the
exciton-like lower branch the formation coefficient simply shows the Boltzmann tail at
the free-carrier temperature T¢ (a temperature of 60 K is equivalent to an energy of
about 6 meV). This calculation also shows that although the formation rate is reduced
in the strong-coupling region by the presence of the Hopfield factor, it still remains
sizeable. Thus lower-branch polaritons in the strong coupling region are likely to be
directly injected by LO phonon emission, while it is unlikely for them to be injected by
intrabranch acoustic phonon scattering. Qualitative changes in the dynamics and in the
photoluminescence are thus expected for large T¢.

4.2 Polariton dynamics

The Boltzmann equation 4.1 has been numerically integrated choosing a sharply peaked
distribution for the lower branch at the energy of the exciton continuum (~ 10 meV')
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Figure 4.5: The population of the lower polaritons at different time delays after the initial
excitation, at zero detunig and T' = 50K. The inset shows a detail of the radiative region
and includes also the upper branch population at a time delay of 1 ns.

as the initial condition. This initial condition correspond to formation assisted by emis-
sion of acoustic phonons. In the first part of the evolution, up to a few hundreds of
picoseconds, both lower and upper branch polaritons at small &k are created after several
steps of phonon emission, as shown in Fig. 4.5, for T = 50 K and § = 0. The photo-
luminescence signal correspondingly rises. For longer times, the polariton distribution
reaches a quasi-stationary shape which rigidly decreases in time (Fig. 4.5, inset). The

photoluminescence signal therefore follows this decay time.

The photoluminescence decay and rise times as functions of the temperature and
detuning are shown in Fig. 4.6. The photoluminescence decay time 7p is found to be
linearly increasing with temperature. This behavior of 7p is the same one found for
the bare quantum well exciton. It is remarkable that both 7p and 7 are not much
influenced by the cavity detuning §. This fact is surprising when considering that both
radiative rates and phonon scattering rates region indeed are strongly affected in the
small k region. We notice from Fig. 4.5 that, apart from small deviations in the
radiative region, and close to k = 0, the lower branch distribution is Boltzmann like.
In particular, among the radiative states, the leaky modes region is mostly populated,
while the strong coupling region, close to k = 0 is strongly depleted. Therefore, it is
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Figure 4.6: The rise times (empty symbols) and the decay times (filled symbols) of the
photoluminescence, for different detunings.

only the leaky modes which play the fundamental role in the overall photoluminescence
dynamics. In the region of the leaky modes, the radiative recombination rates and the
phonon scattering rates are not significantly influenced by the cavity detuning §. This
justifies the result found in Fig. 4.6, where little influence on the cavity detuning, and
in fact on the presence of the cavity itself, of the characteristic rise and decay times is
found. We remark that, as for bare quantum wells (Chap 2), the fact that the finite
intercept in linear behavior in the temperature of 7p is a signature of the deviation from
the thermal equilibrium for the polariton distribution function.

We now discuss in detail the dynamics of the lower and upper branch PL rise-times.
The rise time Tp has been defined as the time necessary for the photoluminescence
signal to reach its maximum. We first notice that in a first step of the relaxation,
the excitons cool down to the bottom of the exciton-like branch (bottleneck region)
by phonon emission. At this point a bottleneck in further relaxation into the strong
coupling region is produced, like for the bulk. It is caused by a the slow down of the
phonon emission rates due to the steep polariton dispersion, together with the increased
radiative recombination rates. After the polaritons have reached the bottleneck region,
relaxation involves a single jump with a single phonon emission toward the k& = 0, as

shown in Fig.4.1. The photoluminescence emission is thus related to this single jump,
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which is immediately followed by the radiative recombination. A rather large amount of
energy is released during this last step of relaxation, which is assisted by emission of a
single acoustic phonon. This is only in apparent contrast to the claimed quasi-elasticity
in the scattering of polaritons with phonons. In fact, it results from the calculations that
the rate of scattering as a function of energy exchanged is peaked at about one meV, but
still displays long tails around this value. The broadening of this energy distribution
is both determined by the cutoffs in the superposition integrals and by the shape of
the phonon population factor n(E), which enters in the temperature dependence. As a
consequence, the rate for scattering from the bottleneck region to the k = 0 region, even
if very small, is finite. Finally, since the the emission occur after the single jump from
the bottleneck region, the build up of the photoluminescence adiabatically follows the
buld up of population at the bottom of the exciton-like branch. We conclude that the
rise time of the photoluminescence at k = 0 is only determined by the relaxation time in
the non radiative and leaky modes regions of the lower polariton branch. Therefore, it
is detuning independent. The importance of the bottleneck effects in the interpretation

of the experimental results has recently been proved through an angle resolved analysis
[Wainstain, 1998].

The upper branch photoluminescence dynamics differs considerably from the lower
branch one. In fact for the rise time there is a marked dependence on the detuning. In
particular, in Fig.4.7, we see that the rise time decreases with increasing positive detun-
ing. To explain this behaviour we remark that the only mechanism for the population of
the upper branch is interbranch scattering from excitons in the lower branch. In fact, we
already noticed that upper branch polaritons at the electron-hole continuum energy are
unlikely to be formed because of their small exciton content. The interbranch scattering
is quasielastic, always in the sense explained in detail above. Then, mostly excitons
in a portion of the lower branch having the same energy as the bottom of the upper
branch are involved in this interbranch scattering process. These “horizontal” scatter-
ing processes are evidenced in Fig. 4.1, and are allowed by the degeneracy in energy of
the upper branch and the exciton-like branch. It also happens that even in this case
Cup k=0 is larger than this populating rate. We conclude that the population n,,x—o
adiabatically follows the population of the exciton-like branch at the same energy. The
first remark, that the upper branch rise time is usually shorter than the lower branch
one, thus finds an obvious explanantion. In fact, cooling excitons reach these higher
energies well before reaching the bottom of the exciton-like band. The other remark,
that this rise time depends markedly on the detuning, as is shown in Fig. 4.7, is also
clearly explained, as for larger positive detunings the energy of the k=0 upper branch
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Figure 4.7: Rise-time 7g as a function of the lattice temperature for the upper branch
PL. Three different detunings are considered considered. The inset show the rise time
for the lower polariton branch. Here the § = — case coincide practically whith the
6 = Q case, and it is not reported in the figure.

polariton is also higher. On the opposite side of detunings, the upper branch becomes
exciton like, thus the photoluminescence rise time approaches the value found for the
lower branch, as appears in Fig. 4.7.

4.3 Polariton thermal broadening

In the following we will consider the broadening of excitons and polaritons in their fun-
damental state 1s at k = 0. We have seen that in typical III-V materials the optical
phonon energy is quite large and in experiments at Kg7T >» hwro the main contribution
to the thermal broadening comes from the acoustic phonon scattering. In the calcula-
tions of the scattering, and thus of the thermal broadening, the dispersion law of the
particles involved determines the phase space for the scattering. This phase space is
strongly different for the bare quantum well exciton and for the microcavity polaritons.
Therefore, we expect some modification in the thermal broadening for the two different
systems. Let us consider the case of bare quantum well exciton: The broadening of the
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k = 0 exciton is given by the sum of the scattering rate to all possible final states
Feze = Z Wosk (4'5)
k

Assuming the same mass for the electron and the hole, the scattering rates given in
formula 2.15 simplify, and the thermal broadening can be written as

k'dk’'
Leze = /lh 17 (k)] |IL(QS)|26[3—E(,C—/)__1 (4.6)

whith a = |ac — a,|?/27phud. E(K') is the exciton dispersion and the ¢? is given by
energy conservation through hu\/(q%)Z + k2 = E(k'). The two superposition integrals
Iy(k"), 1.(¢?) introduce cut-off in wavevector space. For the materials considered here
the important cut-off is the one in z direction. For ¢0 ~ 3n/L — QW, |I,(q?)|? give a
reduction of one order of magnitude. Neglecting the in-plane phonon dispersion with
respect to the exciton dispersion, hug? ~ E(k'), and the cut off in ¢¥ becomes a cut off
in the energy exchanged in the scattering. Therefore we approximate the superposition
integral |1, (q2)|? ~ 8(Ecu: — E), with the cut off energy defined by E.,; = hudn/Low.
Using this approximation the bare exciton thermal broadening becomes

Teze (T) =a

M, 1y g
N (4.7)

where Y = kgT/E;. In the limit kgT > E.,; we obtain the linear dependence
Iﬁerm:c(T) ~ bT (48)

Using un E.,: =3 meV corresponding to a quantum well of 10 nm, we obtain for the
slope b = 4.7ueV/K which is in good agreement with the experimental measurements
[Shultheis, 1986], and attests the validity of the approximations made.

When the quantum well is embedded in a microcavity structure the polariton at
k = 0 is a mixture of photon and exciton wheighted by the Hopfield factors given in
Eq.4.4. Let’s start with the case of lower polariton. We have to considere two different
situations. In the first one, the energy separation from the polariton at £ = 0 (at the
energy Ep), and the bottleneck region, which is approximatively at the bare exciton
energy Fe,., is larger than the cut off energy E ;. In this case the polariton dispersion
can be approximated by a parabolic dispersion with a mass My,, and the thermal
broadening becomes

M Yy g
Tpa(D) = Koo B2, Y2 [ —Fdo. (4.9)
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Thus

My,
Fpol(T) = leow,Olz"]wp_lFemc(T) y (4-10)

exc
and the polariton broadening is reduced of about four order of magnitude due to the
small polariton mass (Mpo; ~ 107 Mezc). For Eepc — Epoy < Ecye the scattering in the
bottleneck and above is allowed. In this region the density of states for the scattering is

again determined by the bare excitonic mass, therefore the thermal broadening increases.
We define a parameter

o= { Ee:zc - Epol/Ecut if Ee:z:c - Epol/Ecut <1

. (4.11)
1 lf Eezc - Epol/Ecut > 1 .
We then get
M, vy 4
_ 2 €IC 2 2
Ppa(T) = | Xiow 0" a =5 B2 Y /a VoEoi (4.12)

As before we can look at the limit KgT > E.,; and obtain the simple expression
Teze(T) ~ | Xiowo0 T (1 — @) . (4.13)

For the upper polariton both phonon emission and phonon absorption are allowed.
Using the parameter o defined above we obtain

up _ 2 Mez o 2 VY oz VY g 2 /v2

W(T) = Xupolta= 2 E2,Y (/0 ex_ld“/w T dz +a?/Y ) . (4.14)
The first term in bracket is due to phonon absorption while the second and the third
term are due to the phonon emission. The third term indicate that even at T = 0
the emission of acoustic phonon, and transition to the lower polariton branch is always
possible. This thermal broadening at T = 0 is however very small (50peV') and difficult

to observe experimentally. In the limit KgT > E.,; we obtain again the linear behavior
I‘exc(T) ~ |Xuppe‘r’0|2bT(1 + a) . (4.15)

For a close to 1 and detuning § = 0, the upper polariton slope in the temperature
dependence is the same as the bare quantum well. This slope can never be reduced for
the upper polariton, except in the case of strong positive detuning when X, per 0 goes
to zero.

The parameter a can be changed by detuning the cavity resonance with respect to
the exciton level
\/(hQR)E +02 -6

= . 4.16
a 2B (4.16)
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Figure 4.8: Experimental linewidth of upper (squares) and lower (circles) polariton as
a function of the cavity exciton detuning. Solid symbols are at 4.2 K and open symbols
are at 60 K. The dashed lines are the result of a polynomial interpolation to the low
temperature data. The solid lines are the sum of the temperature dependent acoustic
phonon scattering at 60 K calculated through the expresions 4.13 and 4.15 and the 4 K
linewidth. (Courtesy of R. P. Stanley)
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We have compared this theory with recent measurements done in very good quality
semiconductor microcavities [Stanley, 1998]. We show in Fig.4.8 the linewidth of the up-
per (squares) and lower (circles) polariton at 4.2 K (filled symbols) and 60 K. It is clear
that for detuning such that 3@%72———6 > 1 the lower polariton thermal broadening
is is given by the expression 4.10 and is thus negligible. The only contribution to the
observed broadening comes from the inhomogeneous contribution due to the interface
roughness. We remark that these samples have the smallest inhomogeneous broaden-
ing (200 p e V) ever observed up to now in III-V microcavities. This inhomogeneous
broadening does not dependent on the temperature. When the detuning is larger, then
a < 1 and the broadening follows the relation 4.12, and becomes sensitive to the rise
of temperature from 4 to 60 K. We remark that for positive detuning a contribution
from the exciton free carrier scattering broadens significantly the line of the upper po-
lariton. In order to compare the theory with the experiment the detunig dependence
of the broadening at low temperature (T=4K) has been fitted by a polynomial law.
Then the density dependent contribution due to the acoustic phonon scattering at 60
K (expressions 4.13, and 4.15) has been added to the polinomial law. The sum of the
polinomial law at 4 K with and the thermal broadening contribution is indicated in the
figure by continuous lines. The accord is very good, and no adjustable parameters are
used in the comparison of the theory with the experiment. The only fitting parameter
comes from the estimation of the cut off energy. We have considered the case of an
infinite well of 10 nm and set the cut off when the superposition integral has dropped
of one order of magnitude. We remark also that the approximation of equal masses for
the electron and the hole results to be a good approximation. In fact, the difference
between the masses, present only in the superposition integrals of Eq.2.15, is inessential
when the exchange phonon momentum is small.
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Chapter 5

Electron hole correlation in 1D

systems

Up to now, the dynamics of the carriers and the optical properties have been investigated
in the limit of low densities. We want now rise the total density of carriers in the crystal
and investigate the density dependent effects in the optical spectra. We focus on one di-
mensional systems, and the results are compared with measurements on semiconductor
quantum wires. We use a Green’s function technique, wich is one of the most powerful
tools used in many body problems. The advantage of such an approach consists in the
possibility of summing an infinite series of selected contributions (Feynmann diagrams)
in the perturbative expansion. In particular, a simple approximation which contains an
infinite sum of terms and gives rise to bound states is provided by the ladder approxi-
mation (or T matrix approximation). Using this approximation the population of both
strong correlated bound electron hole states and weakly correlated “free” carriers are
considered on the same footing in the density dependent effects [Piermarocchi, 1998a),
[Pereira, 1998] . We will introduce the concept of one particle spectral function and
explain how it is affected by the presence of bound states. The one particle spectral
function is characterized by a main quasi particle peak and by a satellite structure
(Zimmermann, 1988]. This structure accounts for all the excitons that can be formed
by the electron. The presence of both bound and free carrier population allows the cor-
rect investigation of the spectra in the temperature regime where the thermal energy is
lower than the exciton binding energy. We will show that a spectral region with negative
absorption can coexist with excitonic features. The negative absorption is the basic in-
gredient for the optical gain, and thus necessary for the onset of a laser behaviour. The
electron hole Coulomb correlation affects also the observation of the renormalization of
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the single particle energy (band gap renormalization) in the optical spectra. Using a self
consistent T matrix approach [Tassone, 1998|, [Schepe, 1998], a frequency dependent
broadening of the states is calculated and a non shifting peak in the density dependence
of the photoluminescence is obtained, in accord with the experimental observation. The
observation of a non shifting peak is explained as a consequence of the persistence of
a strong electron hole Coulomb correlation even in the regime of degenerate plasma
[Piermarocchi, 1998b].

5.1 Excitons as composite fermions

The system of interacting electrons and holes coupled to the electromagnetic field is
described by an Hamiltonian of the form

H=Hy+Hc+Hp. (6.1)

The three terms describe the free electrons, holes and photons (Hp), the Coulomb cor-
relation between electrons and holes (H¢), and the coupling of electrons and holes with
photons in the dipole approximation (Hp). The one dimensional electrons and holes
are considered as two independent species of particles, thus the effects due to the inter-
band exchange of carriers are neglected. A parabolic dispersion with the same mass is
assumed for the electron and hole bands. In the Ho we consider an effective contact
potential of the form

Vers = ad(2) , (5.2)
where the 2 is the direction along the quantum wire. An attractive delta-like potential
between the electrons and the holes gives one bound state only, and the constant a
can be chosen such to reproduce the exciton binding energy in the limit of low density.
This simplified potential reproduces the main features of the Coulomb correlation at
low densities, as the presence of bound states and the correct Sommerfeld factor above
the band edge. In the real systems 2s, 2p, ...bound levels are close to the continuum of
states, and practically indistinguishable from the continmuum due to a finite broaden-
ing. Therefore, the delta like model gives a good approximation to the optical spectra.
Furthermore, we expect that the density dependence of the calculated spectra is mainly
affected by the order at which the different many body effects are calculated, and the use
of a contact potential allows to go beyond the approximations usually made with more
realistic potentials. With the effective potential of Eq.5.2 the interaction Hamiltonian
is

He=-a Y d(k+4q,0)d' (K —q,0)c(k,0)d(K, o)

q!k’k, 76)0/
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+§ ct(k + q,0)ct (k' = g, —0)c(k, —a)e(K', 0)
q.k.k' 0

+= dt(k + q,0)d (k' ~ ¢, —0)d(k, ~0)d(K', o) (5.3)
q.k.k' o

where ¢, d (c!, d'), are the electron and hole annihilation (creation) operators respec-
tively. Due to the fermionic nature of the carriers, in the intraband term only the inter-
action with opposite spin is allowed. In fact, two identical fermions can not interact with
a contact interaction due to the Pauli exclusion principle.! The use of this manageable
potential in the case of electrons and hole in semiconductors allows the investigation
of the transition of the system from a regime where only bound states (excitons) are

present, to a regime where they ionize and an electron hole plasma results.
In the non equilibrium Green’s function formalism [Danielewicz, 1984] we deal with

four one particle Green’s Functions. The retarded and anticipated Green’s functions for
the electron are defined as

G (o,k,t,t'") = —i(T[c(o, k, t)c! (o, K, t')]+) 6(t —t'). (5.4)

G, (0,k,t,1") = i(Tc(o, k, t')c (o, K, 1)]4) Ot —1). (5.5)

where T is the time ordering operator, and the statistical averages are done with respect
to an arbitrary statistical operator (...} = Trp.... In particular, this statistical operator
can be a simple projector and describe pure quantum state. The [ ]; represents the
anticommutator. The lesser and greater correlation Green’s functions read

GS(o,k,t,t') = i(cl (0, k, t)c(o, k, 1)) . (5.6)

G2 (0,k,t,t") = —i(c' (0, k, t')c(o, K, 1)) . (5.7)

Similar expressions for the holes Green’s functions hold. The four functions of equa-
tions 5.4-5.7 can be reduced to a single Green’s function G.(r,7'), with 7 and 7' defined
on the Keldysh contour. The time defined on the Keldysh contour extends from —oo
to co, and then back to t3. Further details about the Keldysh contour are given in
Appendix B. We prefer to use here a formulation with real times and frequencies on
the Keldysh contour instead of the formulation with imaginary times and Matzubara
poles available for systems at finite temperatures [Mahan, 1981]. In fact, the solution
of the self consistent problem is by necessity numerical. Then, the analytical extension

!The contact potential interaction we consider here is equivalent to a two components Hubbard model
in the limit of infinite width of the band. Recently the Hubbard model treated within the T matrix

approximation has been proposed as a powerful tool for the investigation of correlated electronic systems
[Kagan, 1998, Kyun, 1998].
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to real frequencies, which has to be done for functions defined on the Matzubara poles,
is numerically difficult, due to the complex structure of the resulting Green’s functions.
Moreover, we are interested in extending these calculations to non equilibrium systems.
This non equilibrium analysis will help us to understand the dynamics just after excita-
tion, and when strong radiative recombination combines with slow relaxation. In view
of developments in this direction we use the non-equilibrium Green’s function technique
in the real frequencies and time domain, even if we restrict to the quasi-equilibrium,
stationary situation.

The Dyson equation for the single particle (electron or hole) G¢(7,7') Green’s func-
tion reads 2

Ge(ka T, TI) = Gg (k’ 7 T,) + f dT"dT”IG(e](k’ 7 T’,)Ze(ka T”? T”,)Ge(ka T’”a T,) . (58)

The time integrations are over the Keldysh contour. The functional dependence of the
self energy on the single particle Green’s functions determines the degree of approxi-
mation. In the T matrix approximation the functional dependence of the self energy is
given by the relation

dq
Se(k,,7) = 3 ge(a) / §f—rsz(k +¢,7,7)Ga(~g, 7, 7) (5.9)

where a = {e, h}, and the T¢ p, and T, . are solution of the Bethe Salpeter equations in
the ladder approximation

Te,h(QaTa TI) = _a6(7-7 T’) +
k
ade" d—Ge(k,T, "YGrlg — k7, 7"V Te (g, 7", 7")  (5.10)
Teelg,7,7") = ad(r,7")

}{ dr" Ge k7, 7)Ge(g — by 7y T Te (g, 7", 7). (5.11)

ge(h) = 2, and g.(e) = 1 are spin factors. We remark that the form of the Bethe
Salpeter equation given above is valid only when a contact potential, which corresponds
to a constant in the k-space, is used. For a generic instantaneous potential, in fact, tak-
ing into account the total momentum dependence, the T matrix has three wavevector
index T'(k, g, k'). We need to solve self consistently the equations 5.8, 5.10, and 5.11 con-
nected through the expression of the self energy in Eq.5.9. The self consistent T matrix
approximation for the calculation of the G, and G, is a conserving approximation: the

total density, total momentum, total energy and total angular momentum of the system

2Since the Green’s functions are diagonal in the spin index, hereafter we will drop it.
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are conserved [Baym, 1961]. We remark that a self consistent treatment is essential for
the extension of the ladder approximation to the high density regime. This point has
been checked through comparisons of results in self consistent ladder approximation and
exact solutions in Hubbard models [Buzatu, 1995].

We want to analyze density dependent effects for systems in quasi-thermal equilib-
rium, and we consider the statistical operator

p = e PUH=uN) pre=BH-uN) (5.12)

where 8 = 1/kpT. In the case of absorption measurements, the interaction with the
electromagnetic field is considered as a probe on the system. Moreover, in the photo-
luminescence modelization it provides the mechanism for the spontaneous emission. In
both cases, the electromagnetic interaction does not strongly affect the statistical prop-
ertieso of the crystal. Therefore, in the Hamiltonian H of Eq.5.12 the term Hp of Eq.5.1
is neglected.

In this stationary and thermal regime the function defined above are related by the
Kubo Martin Schwinger relations [Kadanoff, 1962

GS (k,w) = —2iImG] (k,w) f(w — pe) (5.13)
G2 (k,w) = 2iImGY (k,w)(1 — f(w — pe)) » (5.14)

where the Fourier transformation with respect to the quantity ¢ — ¢’ has been done and

f(w— e) is the Fermi function. The retarded and anticipated Green’s functions, related
in the stationary case by the simple relation

GHk,w) =G L(k,w), (5.15)

contain the information on the spectral properties of the quasiparticles, and are related
to the one particle spectral function A.(k,w):

Ae(k,w) = =21ImG} (k,w) . (5.16)

8

The correlation functions, instead contain information on the quasi particle occupation
number

G (k,t,t) = fe(k,t) (5.17)
G:(k,t,t) =1- fe(kat)- (5.18)

We plot in Fig. 5.1 the electron spectral function at k. = 0, at different densities. For
densities below 2 10* cm™1 the electron spectral function has a Lorentzian shape due
to the small constant homogeneous broadening that we have considered for the bare
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Figure 5.1: Electron spectral function at 50 K. The densities correspond to pe = up =
—20,-16,—12, -8 meV respectively.

Green’s function. With growing the density, a satellite structure appears in the low
energy side of the spectral function. This structure is located at the exciton binding
energy, below the main peak, and accounts for the correlation of the electron at k. = 0
with the holes in all populated kj, states. In some way the satellite structure describes
excitons with all values for the wavevectors of the center of mass. When this satellite
structure grows, it affects the shape of the overall spectral function. For densities above
10%, it is difficult to distinguish between the excitonic part and the free part, and a
single red shifted quasipaticle structure appears. This red shift is one half of the band
gap renormalization. We will discuss the role of band gap renormalization in the last
section of this Chapter.

5.2 Optical properties

In the dipole and rotating wave approximations, the coupling of the system of interacting
electrons and holes with the electromagnetic field is of the form:

Hp = C(q,9)(aqqJt(a) + ol ,J(q)) - (5.19)
q,9
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Here, q represents 2D wavevectors, while g are wavevectors along the wire. The C{(q, g)

is the dipole matrix element, and a is the photon annihilation operator. The quantities
J(q) are defined as

J(g) = _d(g — k)e(k) . (5.20)
k

The interaction has the form of an electron hole current interacting with the photon field.

It has been shown [Haug, 1984], that in the regime of linear response the absorption
spectrum in the normal direction is given by :

a(w) « ImP*{(w) (5.21)
where the P*is the retarded part of the current current correlation function
P*(q,t,1) = —(T[J}(q, 1) (q,1)]-)6(¢' — 1) . (5.22)

Here the [ |_ represents the commutator. The temporal evolution of the operator J
is in principle determined by the complete Hamiltonian of the Eq.5.1. However, we
want to address here the optical properties in the limit of weak coupling of the light
matter interaction. Therefore, the induced polarization due to the driving external field
is completely neglected. This means that the time evolution of the operator J and the
statistical averages are calculated without the inclusion of the photon degrees of free-
dom. Hence, polaritonic effect are not included in our discussion. This approximation is
consistent with hypothesis of thermal equilibrium for the excited carriers, because this
latter assumption imposes an isolated system to be considered. Our model is appropri-
ate for continuous wave photoluminescence experiments, where the carriers excited in
high energy states relax to a quasi-thermal equilibrium, and emit light by spontaneous
emission. The calculated absorption spectra refers to a situation where the carriers, cre-
ated in the system by an non resonant pump, first relax to a quasi equilibrium, and are
eventually probed by a weak probe. Assuming the thermal equilibrium, the spontaneous
emission spectrum, i.e. the photoluminescence, is related to the absorption spectrum by
the relation {Haug, 1984, Zimmermann, 1988)

PL{w) x a(w)g(w — 2u) , (5.23)
which correspond to
P (w) = ~ImP*(w)g(w — 2u) , (5.24)
where g(w — 2u)%, and the P<(w) is the Fourier transform of
P<(g,0,t) = —i{(J"(g,0)J (g, 1))- (5.25)

3 Actually, the 2 should be replaced by p. + un + E;. The use of the same mass for electrons the

holes and charge neutrality imply p. = pn = p. Moreover, frequencies are redefined w — w — E; in
order to simplify the notation.
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Eq.5.24 can be easily obtained the from Kubo-Martin-Schwinger relations (Eq.5.14).
The P< and P* functions look like the correlation and retareded Green’s function of
a bosonic particle. Going back to the excitonic picture, this corresponds to the boson
character of the excitonic operator built from the products of two fermion operators,
and the hydrogen-like wave functions. In the excitonic picture, however, when the
density grows the exciton operators loose their boson character, while the relation 5.24
is valid at all densities, provided that the system is at thermal equilibrium. The relation
between the rate of spontaneous emission and the current-current correlation function
in Eq.5.25 can also be obtained in a simple way from a Fermi’s golden rule approach
[Zimmermann, 1988]. In fact, the total rate of photon emission W in the Fermi’s golden

rule reads

='f’h’1§fj|< i\Hpl ) P8(Ey — Be) = + [ detilHp(O) Hp (08 (5.26)

By inserting the full expression of the Hp in the expectation value of Eq.5.26, we obtain
products of photon and current operators. The photonic and fermionic operator are
assumed to act on decoupled Fock spaces, this is consistent with the fact that polaritonic
effects are neglected. The initial state is thus described by a statistical operator of the
form p = |0) pp (0| ® pcarriers » Where |0) p represents the photon vacuum. Then, products
of photon and current operators can be decoupled in the following way:

(a(g,q,0)J'(¢,0)a’(¢,q', ) J (g, 1))
~ {(a(g,q,0)a' (q,q', t))(J(q,0)J(K',2)) . (5.27)

In Eq.5.27 we have taken into account the conservation of the electron-hole center of

mass momentum in the wire direction. The expectation value for photons is done with

respect to the photon vacuum |0)p (spontaneous emission), and thus only the terms

(a(g,q,0)at(g,q,0)) ~ 1 contributes. The rate of total spontaneous emission becomes
dt

W= [ 53 10 q)lfe e "(J'(g,0)J(*,1))
q,q9

= Y 1C(q,9)*P(g,wq0) (5.28)
qQ,9

where wq 4 is the energy of the emitted photon. Using the expression for the dipole

I (Q)ten
(lal* + ¢%)!/2
the sum on the photon modes can be rewritten in the form

matrix element

C(q,q) = (5.29)

W =3 2 [ da \/—'I‘;L—Tl I{(@PPP< (g, wq) (5.30)
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The overlap integral Iy(q) is due to the confinement of carriers in the wire. We can
now assume that the light is detected in the direction perpendicular to the wire. This

correspond to fix ¢ = 0. The photoluminescence intensity in normal direction to the
wire is thus

Ip1(g =0) = hey [ dirqolj(wao/e)2P<(0,wqq) - (531)

For quantum wires much smaller than the optical wavelength |I};(wq,0/ c)|*> ~ 1, and the
spectrum of the photoluminescence at normal emission is given by P<(0,w).

The current-current correlation function can be extended on the Keldysh contour
and can be related to the T matrix through the relation*

Pk,7,7) ~ > G(k/2-q,7,7)G(k/2+q,T,7)
q

+ Zf dr"dr"G(k/2 - q,7,7")G(k/2 + q, 7, 7")T(k, 7", 7") x
K
a.p
G(k/2 - p, 7", TG(k/2 +p, 7", 7). (5.32)

We show in Fig.5.2, and 5.3 the absorption and photoluminescence spectra in the
normal direction (¢ = 0) at 50 K, for different densities. In the absorption spectrum,
the excitonic peak is already bleached for a density of about 3 10° cm~!. However, in
the photoluminescence a well defined peak is still there at this density. The binding
energy of the exciton in the limit of low density is 10 meV. When the chemical potential
rise a region of optical gain appear for w < 2u. This gain regime correspond to a
negative absorption coefficient, and in the photoluminescence the peak of the emission
corresponds to the minimum of the absorption in the gain region. The thermal tail at
high energies, and a non Lorentzian behavior in the low energy side are observed. A blue
shift in the regime where excitons are already ionized occurs. This blue shift is due to the
rise of the chemical potential of the electron hole plasma. When the electron and hole
band are filled up the emission of photons from the electron hole pair shifts the center of
the photoluminescence emission toward the blue. The change of sign in the absorption
is at w = 2p and corresponds to the change of sign in the Bose factor, so to assure a
well defined, always positive photoluminescence through the relation 5.24. In the same

*We remark that using the expression 5.32, we are not calculating the linear response to the external
field at the same level of approximation used for the self energy. The response of the system in the
T-matrix approximation has a different expression as pointed out by Baym and Kadanoff [Baym, 1961],
and contains effects of dynamic excitonic screening on the Coulomb potential. This imply that in the
expression 5.32 f-sum rules are not automatically satisfied. However we may expect that the discrep-
ancies are negligeable, since in has been show that the self consistent ladder approximation is a good
approximation when compared with available exact solutions in Hubbard models [Buzatu, 1995].
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Figure 5.2: Absorption spectra at 50 K. The densities correspond to pe = pup
= —20,-16,—-12, -8, —4,0 meV respectively.
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Figure 5.3: Photoluminescence spectra. Same parameters of Fig.5.2.
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regime of electron hole plasma we observe a saturation of the photoluminescence peak
and of the broadening in the low energy side. This can be understood in terms of the
fermionic nature of the carriers: when the electron-hole plasma becomes degenerate the
scattering is inhibited and the broadening saturates.

5.3 Excitonic gain

In the case of thermal equilibrium, with a contact potential interaction, the absorption
coefficient in the direction perpendicular to the wire, can be rewritten in the form

0(0,0) o¢ [T [ TL (1 (ol ) 0~ ) Ak =) An (k) , (5.39)

The term 1 — f(w —w' — u) — f(w' — ) is the generalization of the Pauli blocking factor
for a system where the quasiparticles are described by arbitrary spectral functions. It
is useful the equivalence

1= flw-o' —p) = flw' ~p) = flw-uw - p)f(W - p)/g(w - 2p) (5.34)
in order to express the absorption coefficient in the form

T, h(“’)|2 dk du’

a(va) g(w u) '2_7;2_7r'f(w - - :u')f(wl - /L)Ae(kvw - w,)Ah(kvwl) ) (535)

which also allows to give a simple expression for the photoluminescence using the relation
in Eq.5.24

dk dw'

PLO,w)  [ThW)P [ 5255 fw =o' = )f (' = 1) Acl,w = ') An(k, ') . (5.36)

The optical gain is usually measured in the regime of degenerate electron-hole plasma.
density and in this regime several approximations are usually introduced: spectral func-
tions are approximated by Lorentians, Fermi function are evaluated at the peak of
these Lorentians (quasi particle approximation), and the term |T.; (w)|? in the Eq.5.33
is neglected. The results is that the absorption for normal incidence takes the form
(me = mh) 2,9
o = 0,w) dk1—2f(R%k /2m — )
21 (w — R2k2/m)? + 42
A region of negative absorption occurrs when the Pauli blocking factor (1—2f (h2k?/2m—
1)) becomes negative, which necessarily requires a chemical potential above the band
gap, and an electron hole plasma in the degenerate regime. However, using the more
general expression of equation 5.35, we can identify the inversion of the sign in the

(5.37)
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Figure 5.4: Absorption spectra at 35 K. The densities correspond to pe = up
= -10,-9,-8,-7,-5,4 meV respectively.

absorption with the position of the pair chemical potential 2u. Therefore, the inversion
of sign does not require the condition that the chemical potential is above the band
gap, but may occur in any region of the spectra below the energy corresponding to 2u,
in particular, close to the excitonic resonance. In this case we talk of excitonic gain.
We notice that the spectral functions A, p(k,w) is not vanishing in the energy region
below the gap corresponding to the exciton resonance, as can be seen in the satellite
structure in Fig.5.1. This characteristic allows the excitonic gain to appear. In Fig.5.4
the absorption spectra at T=35 K are shown. At this temperature, kgT < E} and the
effects of the presence of bound states on the optical properties are more striking. In
particular we observe a regime of densities ( ~ 2 10° cm™!) where a region of optical
gain exists togheter with an excitonic resonance. For growing density a broadening and
a bleaching of the exciton resonance occur. For densities above 5.5 10° cm™! the system
behaves as a degenerate electron-hole plasma and the gain characteristic of this regime
appear. We remark that the amplitude in the excitonic gain is smaller than electron-hole
plasma gain, but well pronounced. Moreover, the spectral shape of the two gain regions
is considerably different. In fact, the excitonic gain is spectrally confined at the exciton
resonance, while the gain in the electron hole plasma phase is broadened, and follows
the density of state of the continuum. The two gain regimes are well distinct and should
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be better experimentally observed in the case of large binding energy and small Bohr
radius.

5.4 Coulomb correlation and band gap renormalization

We have observed in Fig.5.1 that when the density of excited carrier rises, the main
peak of the one particle spectral shifts at lower energies. This effects is a consequence
of the Coulomb correlation and exchange effects which reduces the average energy of
the carriers, and is called band gap renormalization. The estimation of band gap
renormalization from optical measurements has been the subject of several investiga-
tions in quantum wires [Cingolani, 1993], [Gréus, 1996}, [Ambigapathy, 1997], and quan-
tum wells [Trankle, 1987], [Bongiovanni, 1992}, [Kulakovskii, 1989], [Deveaud, 1991b],
[Kalt, 1996]. In the case of bulk systems the band gap renormalization is observed as
a shift of the photoluminescence spectrum [Kalt, 1996]. As the dimensionality of the
system is lowered this direct observation is not so obvious. In quantum wells, at high
enough densities, the band gap renormalization may be observed as a shift of the band
edge [Trankle, 1987], (Kulakovskii, 1989], (Bongiovanni, 1992}, {Deveaud]. The main dif-
ficulty of this observation arises as a result of the broadening which may mask the edge.
Thus, in the analysis of experimental data this broadening has to be taken into account
in order to accurately determine the value of the band gap renormalization. In the one
dimensional case even at very high densities there have been no observations of a shifting
edge [Ambigapathy, 1997], [Gréus, 1996], [Cingolani, 1993]. In one dimensional systems
the observation of band gap renormalization is difficult because, besides the effects of
broadening, the e-h Coulomb correlations masks the observation of an edge in the op-
tical spectra. By comparing the experimental results with our theoretical calculation
we have evidence that although band gap renormalization does occur in a one dimen-
sional system, it can not be directly observed in the luminescence spectrum. In fact
the electron hole Coulomb correlation results in an inhibition of the recombination rate
(Sommerfeld factor) at the renormalized band edge which persists even in the regime of
a degenerate e-h plasma. This is in strong constrast to the two and three dimensional
cases where the Sommerfeld factor causes an enhancement of the optical spectra at the
band edge. In the photoluminescence, correlation effects which strongly affect the shape
of the spectra, are contained in the term |T.} (w)|? of the Eq.5.36. We show in Fig. 5.5
a plot of |T:} (w)|? for different values of the chemical potential . In the low density
limit (¢ < -10 meV) a resonance corresponding to the exciton level is dominant, and at
the band edge the T matrix vanishes for £ — E; . This behavior near the band edge
corresponds to a Sommerfeld factor which compensates the singularity (E — Eg)‘l/ 2
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Figure 5.5: T matrix

of the one dimensional joint density of states. Our potential reproduces qualitatively
the shape of the spectra obtained from a detailed calculation with a more realistic ap-
proximation for Coulomb potential [Ogawa, 1991), [Glutsch, 1993}, [Rossi, 1996]. As the
chemical potential increases both the excitonic resonance and the Sommerfeld factor are
smoothed. However, for chemical potentials above the bare band edge, a maximum at
roughly 2u is still present in the electron hole correlation. This maximum results in a
peak of the photoluminescence even in the high degenerate plasma regime. Moreover, a
minimum in |T}} (w)|? occurs at the renormalized band edge. This minimum is similar
in nature to the Sommerfeld factor, but due to a finite broadening of the states does not
vanish completely. It is the persistence of this Sommerfeld factor which prevents the
observation of a shifting peak in the low energy side of the photoluminescence spectra
similar to the one present in quantum wells and bulk systems.

In Figs.5.7 and 5.8 we show the calculated and the experimental photoluminescence
spectra; we used a value of a = 107meVem™! for the effective contact interaction. The
experiment [Ambigapathy, 1997] has been done on a V-grooved GaAs quantum wires
with a nominal thickness of 2.5 nm. The measurement of the spectra has been performed
by a time resolved photoluminescence technique, which enables to probe the density
dependence of the optical spectra with good experimental resolution. In the theoretical
calculation, densities can be rescaled in terms of the Bohr radius, which here is assumed
to be 10 nm. The position of the peak at high energy is not considerably shifted with
respect to the position of the excitonic resonance at low densities. There is no signature
of a shifting peak at low energy, even for high density, either the experimental nor in the
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Figure 5.6: Theoretical PL spectra, without the T matrix correction

theoretical spectra. However, we can see from the spectral functions in Fig.5.1 that for
the chemical potential 4 = 0 a band gap renormalization of about 20 meV is present.
We also note that the low energy tail is well reproduced by the theory. In particular
it is evident for the spectra at larger densities a change in the curvature of the tail
from a Gaussian-like to a Lorentzian like shape, as a function of energy. This change
can not be explained in term of disorder effects since it occurs at high densities, with a
broadening which is much grater than the one observed at low density. In our treatment
the frequency dependence of the broadening results from the calculation of the real and
imaginary part of the one particle self energy on the same footing. We observe in both
the experiment and the theoretical calculation a saturation of the photoluminescence
peak for 2u ~ 30meV. The high energy tail is thermal at about 50K and follows
the filling of the band. In the experiment, however, for 2u > 30meV the presence
of a second subband is evident. Therefore the theoretical treatment of intersubband
interaction should be taken into account for a better comparison with the experiment.
In order to stress the importance of the term T2 on the shape of the photoluminescence
emission, we give in Fig. 5.6 the spectra calculated without taking into account this
term. It evident a strong red shift of the edge at low energy which follows the band gap

renormalization.

The main discrepancy in the comparison of theory with the experiment is the theo-
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Figure 5.7: Theoretical PL spectra

retically predicted blue shift of the photoluminescence peak after the saturation regime
has been reached. To be more precise, this peak follows the filling of the bands, and thus
the chemical potential. This discrepancy may be due to the approximation p, = pp.
In fact, if the two bands have a different band structure (which is actually the case in
real structures), the charge neutrality of the system necessarily implies u, # pp and the
filling of the bands would occur in a different way for electrons and holes. Then, in the
Eq.5.36, where a product of two Fermi function with two different chemical potentials
would be included, this would result in a PL which follows the more stable chemical
potential, thus considerably reducing the blue shift due to the band filling. Finally,
we want to compare our approach to previous theory-experiment comparison in the lit-
erature done at the Hartree-Fock level [Gréus, 1996]. In the approach by Gréus et al.
[Gréus, 1996], the excitonic effects on the optical spectra are taken into account within
the Hartree-Fock approximation for the one particle self energy. This forced the authors
to assume a phenomenological constant broadening, and the total density and plasma
temperature are adjusted in order to best fit the shapes and the relative intensities of
the measured spectra. This procedure leads to the observation of a red shift of the peak
as the density increases, contrary to the experiment. In our approach the temperature
of the plasma is fixed, which is well verified experimentally in our case, the chemical
potential (thus the density) is changed, and a density dependent self consistent y(k,w) is
calculated. Using this procedure the shift of the photoluminescence peak is not present.
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Figure 5.8: Experimental PL spectra (Courtesy of R. Ambigapathy)

We remark that the persistence of the Sommerfeld factor at high densities can already
be obtained at the Hartree-Fock level [Rossi, 1996], and is thus contained in the Greus
approach. However, a self consistent calculation of both real and imaginary part of the
density dependent one particle self energy has to be done for a reliable prediction of
the density dependence of the optical spectra. In fact, the position of the peak in the
optical spectra cannot be related simply to the one particle shift, but depends on both
the real and imaginary parts of the self energies.
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Outlook

The largest part of this thesis has been devoted to the analysis of the interaction of exci-
tons, free carriers and polaritons with acoustic and optical phonons. From this analysis,
we have given an interpretation of some features in the optical measurements. In this
framework we can include the long decay times observed in the exciton-polariton pho-
toluminescence, the inhibition of acoustic phonon scattering of microcavity polaritons,
the extremely long rise time of the photoluminescence due to the slow formation by
acoustic phonons. However, the interaction with phonons can explain only partially the
complex phenomenology resulting from the optical measurements. A typical example of
these limitations is just provided by the interpretation of the rise time in non resonant
photoluminescence experiments in quantum wells, which is related to the model of the
exciton formation.

Recent experiments in good quality quantum well samples [Amand] show clearly
that, when the pump is well below the threshold for the formation assisted by emission
of optical phonons, the excitonic luminescence presents an initial very rapid rise time
which cannot be explained by the interaction with acoustic phonons. The explanation
of this initial, nearly instantaneous, build up of the photoluminescence is likely to be
searched in the effects of Coulomb scattering. The build up of the photoluminescence
at the energy corresponding to the excitonic resonance has been shown theoretically to
have a contribution due only to the Coulomb interaction at early times after excitation
in the continuum [Kira, 1998]. However, this result has been obtained in the Hartree-
Fock approximation, and the information on the distinction between the populations
of bound and free electron-hole pairs is ruled out. Therefore no statements about the
exciton formation can be done.

The importance of the broadening of the states is not only essential for the under-
standing of the dynamics of relaxation but also in the density dependence of the optical
spectra. We have already discussed in Chap.5 how the inclusion of single particle broad-
ening can affect the shape of the optical response. In order to be more reliable, the self
consistent T matrix approach must be extended to a more realistic potential. One of the
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limitations of the delta like potential in our treatment in Chap.5 is that the range of the
potential is zero and the effects of the screening are not taken into account. However, the
many body diagrams which in the case of Coulomb scattering give rise to the screening
effects (RPA sum) can be included in a delta like potential. In this case the screening is
represented in the potential as a renormalization of the constant in the delta function,
thus of the total strength of the potential, without regarding to the spatial dependence
of the corrections. The effects of the RPA corrections can be checked in the case of a
delta like potential through the comparison with the exact solution obtained using the
Bethe ansatz [Schlottmann, 1994]. Moreover, the effects of screening in the dynamics of
carriers and in the formation of the excitons represents an interesting topics for the in-
vestigation of the quantum kinetics in systems with strong Coulomb correlations. Some
interesting results about the build up of the screening in high excited semiconductors
have been already obtained using the technique of non equilibrium Green’s functions
introduced in this thesis [Banyai, 1998].

A different direction for the improvement in the understanding of the optical prop-
erties is represented by the effects related to the interaction of the carriers with a strong
external electromagnetic field. The interaction with a strong external field renormalizes
the electron and hole spectral functions. One of the most striking effects is represented
by the onset of a light induced gap in the quasi particle dispersion at the pump energy.
This mechanism is related to new and interesting phenomena, as the observation of a
Mollow triplet for excitation resonant with the exciton in semiconductor microcavities
[Quochi, 1998]. The possibility of investigation of these effects is strongly stimulated by
the availability of microcavity samples where the photon density of states is modified, so
to obtain an enhancement in the exciton-photon interaction (filter effect). The interplay
of these light induced effects with the Coulomb interaction is a subject deserving fur-
ther investigation, and a self consistent treatment of the one particle spectral functions is
necessary. The light induced gap can be included in the class of the polaritonic effects,
and the representation of the excitation of the crystal as polaritons leads also to the
investigation of the statistical properties of these excited states. The bosonic nature of
the polaritons has been experimentally and theoretically investigated [Tassone, 1998b],
and further investigations about the possibility of observation of Bose condensation of
these quasiparticles, which should be helped by the small mass of the lower polariton
states, are in progress [Ferndndez, 1998].

In most of the analysis on the exciton dynamics, the spatial homogeneity of the
excitation has been assumed. However, the experimental investigation of the spatial
dynamics of the excitons is nowadays possible with a very high spatial resolution. From

88



the theoretical point of view this technical possibility stimulates the investigation of the
dynamics in real space, and some description of the interplay of the exciton propagation
with the lattice vibrations at short time after the excitation has been already obtained
[Knorr, 1998]. Amongst the effects in real space, a special role is played by the effects
to the disorder on the optical properties. In the case of microcavity polaritons the the
disorder affects the broadening of the polariton and a narrower peak for the lower po-
lariton with respect to the upper polariton results. This point has been well investigated
theoretically and experimentally [Savona, 1997], [Whittaker, 1998], [Ell, 1998]. In the
scattering of light on a quantum system with disorder, the wavevector conservation in
the in plane direction is broken and the scattering of light in directions different from
the reflected one can be detected (resonant Rayleigh scattering). The investigation of
resonant Rayleigh scattering in these systems can be a very efficient tool for the in-
vestigation of the statistics of the quantum excitonic levels in presence of a disordered
potential, and it is of great interest from the point of view of fundamental physics.
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Appendix A

Geminate formation rate

The geminate exciton formation rate is calculated taking into account the interaction
of the carriers with both the external electromagnetic field and the thermal bath of
phonons. The scattering amplitude is schematically depicted in Fig.A.1. The expression
of the formation rate for a given final two dimensional 1s exciton with a fixed in plane
center of mass momentum q is given by

2

2 (0[Vy ke )/ (11 + 1) (ke | Vplq)
o |5 hw = Egap — h¥[ke|?/20 + 1T
h*|q)?
X (h‘*’ —hwpo — Egap + Ep — 2';}' ) (A1)

where hw is the energy of the pump photon. In the Eq.A.1 |0) is ground state, |k;)
represents an electron-hole state with relative momentum k., |q) is the created exciton
state. p and M are the the reduced and total electron hole mass. Due to the small
photon wavevector, all the intermediate states have zero center of mass momentum
and we sum only on the relative momentum k; of the electron-hole pair. Furthermore,

the in-plane wavevector conservation implies that the created exciton and the emitted

Photon

K=0
K=0

Figure A.1: Scattering amplitude for the geminate formation
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optical phonon have opposite momentum. The energy I' gives the broadening of the
intermediate states, is assumed to be energy independent, and is produced by the same
process which thermalizes the carriers. The exciton phonon vertex is calculated using
the Frolich Hamiltonian for bulk LO phonon interacting with electrons and holes which
reads

1/2
2rhwroe?(1/ex — 1/€0)
Vo=He-ro+Hr0 = (
P q,k{?% V(lal® +g2)

(aqq. +alqq) (oo — dlodi)disan »  (A2)
where aqq,, Cq, and dq are the optical phonon, electron and hole operators respectively.
In the calculation of the matrix element (kr|V}|q) the pair state in the continuum is
described by the envelope function

e‘ik.-p eiKR e';ke'l'e eikh‘rh

(R, p, %e, 2 |ke, K) = %‘er(ze)fh(zh) = "\/T_ﬁ—fe(ze)fh(zh) (A.3)

where R = (re + rn)/2 and p = re — ry, and f (4)(2) give the electron-hole confinement
in the well. Since the electron hole pairs are created by optical pump, we consider only
the case K = 0. For the final exciton we use the 1s hydrogenic envelope function

21 ,n e
(R, p, zey 21|15,q) = mﬁemr{e ol/aB f,(2.) fr(zn) (A.4)
B

where ap is the exciton Bohr radius. We obtain then for the matrix element

- 27r’*“*’Loe"’(l/m‘1/60))1/2
(kr|Vpl@) = ;( V(ial? + ¢2)

(@ k)1 (@) - i@ ko) Ti (a2) (A.5)

The superposition integrals in the parallel direction I, L’(Iq, kr]) are calculated using the
envelope functions in Eqs.A.3-A.4.

1/2
2 .
il — = —ilke—mpq/M|pcos8 _—p/ap
I (q, kr) (Sﬂ'a%) /(w pdp € e
1/2 .
_ o[ 2 (=i)(ep)” (4.6)
Sma} (1 + |k — mpq/M|%(ap)?)3/2° .
where we have used on
/ 0% — 197 Jo(a) (A7)
0

92



and
a

(a2 + 62)3/2

The expression for I Ll(q, k;) is obtained by changing my, with —m, in Eq.A.6. The center
of mass dependence of the envelope functions gives a Kronecker delta indicating the total

/Ooo dzxJo(br)e™ = (A.8)

center of mass wavevector conservation. The perpendicular superposition integrals are
calculated numerically as

oylas) = [ dalf ()P (A9)

taking for the functions f. (n)(z) the solution of a particle in a finite square well repre-
senting the band profile in the growth direction.

The matrix element for the interaction of the electron hole pair with the external

photon field is given by
eA

OV, lke) = (%) € Pev s (A.10)
where A is the amplitude of the external electromagnetic field, ¢ gives the polarization,

and pe, is the dipole momentum for Bloch functions at the point ' of the Brillouin
Zone.

We are interested in the quantity

(dZ§$> = %ZR(hw - q) (A.11)
gem q

which, using the properties of the delta functions in order to eliminate the integral in
the |q| can be rewritten in the form

dnex) / \K(G,q.)| ~2
( dt gem 4z q2+qg (q ) ( )

where 6(z) in the step function , and § is given by the zero of the delta function in
Eq.A.1

N <2M(hw —E, - hwpo + E,,)) 172

= - (A.13)

The function K (g, q,) is defined as

"o [ I (g.) It (q.)
/-nd"’/o e ((1 + ke — maq/MP2(aB)?)P2 (14 [ks +mtq/M\2(aB)2)3/2) ’

(A.14)
where ¢ is the angle between k; and q, and the constant C is
——M ed\’ 2 2 2aQB
B me) - —= . Al5
(27)2h2 (mc) € - tev]“wroe™(1/€c0 — 1/€0) - (n{wro) +1) ( )
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We can use the expression for the flux of electromagnetic energy incident on the sample
(summed over the photon polarizations)
A2%n? ¢

[
P(ﬁw) = Nph;flw = W;hw (A16)

where Ny, is the density of photons in the laser beam, and obtain the form given in
Eq.3.2

dnes _
( p )gem = agem (hw)P(hw) . (A.17)

In order to compare the exciton formation with the free carrier formation we consider

the following definition for the absorption coefficient for a quantum well

__ absorbed energy/(dS dt)
" incident energy/(dS dt)’

(A.18)

For energy above the threshold w and is nearly constant, and for a QW of 80 Aw = 0.007
[Andreani, 1991]. Then we can write

dn, w
e = __P-= P Al
( di )carr e Qcarr (A.19)

which, togheter with the definition of ogermn in Eq.A.17 gives the result of the Eq.3.3. In
the case of a pulsed laser we have that the total density created after the pulse is

d
ne = %Ath (A.20)

where FY is a form factor depending on the shape of the pulse which is characterised by
a FWHM of At. Then

dnex) Qgem (dne> Ggem TNc
=\ "3 =0 A21
( dt gem  Ccarr dt /carr  Qcarr OtFs ( )

which is useful in order to compare the bimolecular and the geminate formation for a

fixed total density of carriers in the system.
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Appendix B

Non equilibrium diagrammatic

expansion

The purpose of this Appendix is to give details about the differences in the diagrammatic
technique between the equilibrium and the non equilibrium Green’s functions. In the non
equilibrium case, the concept of Keldish contour allows to use the same diagrammatic
expansion as in the equilibrium case. The physical nature of the Keldish contour is
explained and we give some useful rules (Langreth and Wilkins theorem), which allows
to relate functions defined on the Keldish contour to functions defined on the ordinary

real time axis.

The causal and anticausal one particle Green’s functions are defined as

GC(t,t') = —i(Tc(t)ct (t')) (B.1)
GA(t,t') = —i(Te(t)c (') (B.2)
The operators ¢ and c' are in the Heisenberg representation, and their evolution is due

to the full Hamiltonian of the crystal 5.1. T and T are the causal and anticausal time
ordering operators.

TA@#)B(t') =6(t -t A(t)B(t') — 6(t' — t)B(t') A(t) (B.3)
TA(t)B(t') = 0(t' — t)A(t)B(t') — 0(t — t')B(t') A(¢) (B.4)
(B.5)

Since the total Hamiltonian of the Eq.5.1 is invariant under spatial translation and do
not explicitly depend on the spin of the carriers, the Green’s functions are diagonal on
the spin and wavevector indexes. In the following we will drop out these wavevector and
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spin indexes which do not play an essential role in the discussion of the equilibrium-
non equilibrium comparison.! The characteristic of non equilibrium systems is that the
average (...) is taken with respect to an arbitrary statistical operator p

(...)=Trp.... (B.6)

As explained in Chap.5, the interaction with the electromagnetic field is considered
in our approach as a probe on the system and in a first approximation do not affect
the evolution of the fermionic operators. Therefore we can introduce a perturbative
expansion with respect to carrier carrier Coulomb interaction He. The interaction

representation for the fermionic operators is related to the Heisenberg representation by
ot) = S'(t, t0)é(t)S (2, to) (B.7)

with s
S(t,to) = e i Hett) , (B.8)

the hat identifies operators in interaction representation. The operator S(t,t) is the
temporal evolution operator from the initial time ¢y to the time ¢t. Using the interaction
representation, the causal Green’s function in eq. B.1 becomes

GC(t,t') = —i(ST (00, o) Te(t)é" (¢')S (00, 1)) - (B.9)

Let us briefly remind the simplifictions that can be introduced in the eq. B.9 when the
system is in equilibrium at zero temperature, and the average is taken over the vacuum
state. We refer to [Mahan, 1981] for more details. The simplification in the zero tem-
perature case is carried on in two steps. First, an adiabatic switch on of the interaction
H¢ is considered, and for ¢ = —oo the vacuum state |0) of the crystal coincide with
the non interacting vacuum state |0)o. Second, the Gell-Mann Low theorem is used

5(00, —00)|0)o = €|0)o , (B.10)

which indicated that the state at ¢ = oo differ from the non interacting initial vacuum
state only by a phase. In other words it means that the vacuum still be the vacuum
when the time goes on. Moreover, the linked cluster theorem assures that this phase is
automatically taken into account when only connected diagrams in the diagrammatic
expansion are considered.

connected

GC(t, t') = —iei¢0(0|Té(t)éT (t')S(o0, —00)|0)p = —i o(OlTé(t)éT(t')S(oo, _oo)‘o)éuagmms
(B.11)

'We use in this Appendix the causal and anticausal Green’s function instead of the retarded and
anticipated Green’s functions defined in Chap.5 where the anticommutator between the two fermion

operator is considered. This choice is more convenient for the aim of this Appendix.

96



At this point the perturbative expansion can be obtained by developing the operator
S(00, —0) in power of Heo. At the order N the problem is reduced to the evaluation of
the expectation value of 4N + 2 fermionic operators in interaction representation, which
can be done diagrammatically using the Wick theorem.

However the simplifications due to the Gell-Mann-Low theorem cannot be introduced
when the average is taken with respect to an excited state of the system described by
an arbitrary statistical operator p at ¢ = t3. Thus the full expression B.9 must be
used in the perturbation expansion. An excited state is not transformed into itself
by the operator S(oo,tp), but into a superposition of other excited states, which may

be intuitively regarded as the result of all possible process of mutual scattering of the
particles. The causal Green’s function using

ST(00, tg) = S(to,00) = §(—00,0)S(tg, —00) (B.12)

becomes
GC(t,t') = —i(S(—o00,00)Té(t)& (t')S (00, —0)) . (B.13)

Here both the S(oco, —00), and S(—o00, 00) operators has to be expanded in the pertur-
bation theory. However, when the expansion of the term S(—00,00) is done we remark
that the the time ordering operator acts on an integrals going backward in time, and
correspond to an anticausal ordering and to an interaction with the reversed sign

S(—00,00) = TemiJ™ Aot)dt _ Teif:o Ho(t)dt' (B.14)

The Wick theorem is thus applied on averages where products of fermions operator are
both in causal and anticausal order. Therefore the causal Green’s function in Eq. B.1 is
not only expressed as a function of products of bare causal Green’s functions G§ (t,t') =
—i(Té(t)ét(¢), but also anticausal Green’s functions Gg(t,t') = —i(Té(t)él(t')), and
correlation functions Gg(¢,t') = i(é(t)ét(t')) and G3 (¢t,t') = —i(é(t)é'(¢')) appear.

The presence of the four different Green’s function in the perturbation theory can be
handled introducing the concept of Keldish contour [Schwinger, 1961, Keldysh, 1965),
depicted in Fig. B.1. The time on the contour goes from —oo to oo then back to —oo.
A time ordering operator Tx, following a clockwise orientation on the contour, and a
Green’s G*(7, 7') function can be defined

Gr(r,7") = —i(Ticé(r)é! (+') Skc) (B.15)
where the operator Sk is defined as
Sic = Tye™t $c Holrar' (B.16)
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Figure B.1: Keldish contour

When 7 and 7' are taken on the first upper branch of the Keldish contour the causal
Green’s function is obtained. The anticausal Green’s function corresponds to 7 and
7' on the lower branch, while in the correlation functions 7 and 7’ are on opposite
branches, and thus automatically ordered in the contour. The Eq. B.15 has the same
structure of the Eq. B.11, thus the same diagrammatic rules used in the case of T'= 0
can be applied. In particular, integral equations describing the sum of infinite series of
diagrams, as in the ladder approximation or random phase approximation (RPA), and
the Dyson equation have the same form as in the zero temperature case. These equations
defined on the Keldish contour can be rewritten back in a new set of equation defined on
the ordinary time axis using the Langreth and Wilkins theorem [Langreth, 1968]. This
theorem allows to express products and time integrals of two functions defined on a
contour, as a function of their retarded, anticipated, and correlation part. The theorem
can be used in an iterative way so that products and integrals in time of N functions
can be easily obtained. We refer to [Haug, 1996] for details about this theorem. The
Langreth and Wilkins relations are given in Tab.B.1. We give here some exemples about
the use of this therorem. Consider, for instance product of two functions defined on the
countour

C(r,7") = A(r,7)\B(',7) (B.17)

then the Langreth and Wilkins theorem states that the retarded part of the function C
(which is defined in term of ordinary times ¢ and t') reads

Ct(t,t') = AT (t,t")B<(t',t) + A<(t,t')B*(¢,¢) (B.18)
while for the correlation part of C we have
C<(t,t') = A<(t,t"\B<(t,1) . (B.19)
This result can be used for instance in the expression 5.9

dq . ,
2e(ka T, T,) = de(a) / ﬁZTe,a(k + q, T, T,)GQ(—qa T, T) (820)
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to obtain the expression for the retarded part of the self energy
=t (k,t,t') de /2—zT+ (k +q,t,t)GS(~q, b, t) +
Te<,a(k +4q,t,t )G;(*q) tla t) (B.21)

and for the correlation part
S<(k, 1, 1) de /——zT< (k+q,6,8)G2 (~q, ¢, 1) . (B.22)
For integration on the contour we have different rules. For

Clr,') = § dr"A(r,7")B(r", ") (B.23)
K

the retarded and correlation part of C' can be expressed in term of intergrals on the
ordinary time axis

ctt,t') = / dt" A% (t,t")BT(t",t) (B.24)
Ci(t) = / di" A* (¢, ") B<(", 1) + A<(t,#)B~ (", 1) (B.25)

These last expressions are used in the Dyson , and Bethe Salpeter integral equations
(Eqs.5.8, 5.11, 5.10). In fact, we can define the function describing all the e-h pairs with
a given center of mass ¢

He(q, 7,7 /—zG (g —k,7,7")Gr(k,7,7") (B.26)

then the Bethe Salpeter in Eq.5.10 become equivalent to the two equations:
T, (g,t,t) = —ab(t—1t") +a/dt"Heh (g,t,8") T, (q,t", ") (B.27)
Tou(gt,t) = / dt" Hjy,(g,4, )T (a, ", 1) + H3 (g, 8, t")T, (g,1", 1) (B.28)
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Contour Real axis

C=§AB C< = [A*B< + A<B-
C+=[A+B+
D = § ABC D< = [ A*B+*C< + A*B<C~ + A<B~C~

D+ = [A*B*C*

C(r, 7"y = A(1,7)B(T,7) || Ct(t,t') = AT (t,t)B<(t,t') + A<(t,t)BY(t,t') + At (t,t')B* (¢,1)
C<(t,t') = A<(t,t")B<(t,t')

C(r,m") = A(r,m")B(r',7) CH(t,t") = A<(t,t)B~(t',t) + AT (t,t')B<(¢,¢)
C<(t,t') = A<(t,t"\B>(t,t)

Table B.1: Langreth and Wilkins relations
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