
THÈSE NO 1903 (1998)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE AU DÉPARTEMENT D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Dipl. Informatik-Ing. ETH

originaire de Thayngen (SH)

acceptée sur proposition du jury:

Prof. A. Strohmeier, directeur de thèse
Prof. H.-H. Naegeli, rapporteur

Prof. A. Schiper, rapporteur
Prof. A. Wellings, rapporteur

Lausanne, EPFL
1998

REPLICATION OF NON-DETERMINISTIC OBJECTS

Thomas WOLF

i

Abstract

This thesis discusses replication of non–deterministic objects in distributed systems to
achieve fault tolerance against crash failures. The objects replicated are the virtual nodes of
a distributed application. Replication is viewed as an issue that is to be dealt with only dur-
ing the configuration of a distributed application and that should not affect the development
of the application. Hence, replication of virtual nodes should be transparent to the applica-
tion.

Like all measures to achieve fault tolerance, replication introduces redundancy in the
system. Not surprisingly, the main difficulty is guaranteeing the consistency of all replicas
such that they behave in the same way as if the object was not replicated (replication trans-
parency). This is further complicated if active objects (like virtual nodes) are replicated, and
these objects themselves can be clients of still further objects in the distributed application.

The problems of replication of active non–deterministic objects are analyzed in the
context of distributed Ada 95 applications. The ISO standard for Ada 95 defines a model for
distributed execution based on remote procedure calls (RPC). Virtual nodes in Ada 95 use
this as their sole communication paradigm, but they may contain tasks to execute activities
concurrently, thus making the execution potentially non–deterministic due to implicit tim-
ing dependencies. Such non–determinism cannot be avoided by choosing deterministic
tasking policies.

I present two different approaches to maintain replica consistency despite this non–
determinism. In a first approach, I consider the run–time support of Ada 95 as a black box
(except for the part handling remote communications). This corresponds to a non–determin-
istic computation model. I show that replication of non–deterministic virtual nodes requires
that remote procedure calls are implemented as nested transactions. Unfortunately, effects
of failures are not local to the replicas of a virtual node: when a failure occurs, nested
remote calls made to other virtual nodes must be undone. Also, using transactional seman-
tics for RPCs necessitates a compromise regarding transparency: the application must iden-
tify global state for it cannot be determined reliably in an automatic way. Further study
reveals that this approach cannot be implemented in a transparent way at all because the
consistency criterion of Ada 95 (linearizability) is much weaker than that of transactions
(serializability). An execution of remote procedure calls as transactions may thus lead to
incompatibilities with the semantics of the programming language. If remotely called sub-
programs on a replicated virtual node perform partial operations, i.e., entry calls on global
protected objects, deadlocks that cannot be broken can occur in certain cases. Such dead-
locks do not occur when the virtual node is not replicated. The transactional semantics of
RPCs must therefore be exposed to the application.

A second approach is based on a piecewise deterministic computation model, i.e., the
execution of a virtual node is seen as a sequence of deterministic state intervals. Whenever a

Abstract

ii

non–deterministic event occurs, a new state interval is started. I study replica organization
under this computation model (semi–active replication). In this model, all non–determinis-
tic decisions are made on one distinguished replica (the leader), while all other replicas (the
followers) are forced to follow the same sequence of non–deterministic events. I show that it
suffices to synchronize the followers with the leader upon each observable event, i.e., when
the leader sends a message to some other virtual node. It is not necessary to synchronize
upon each and every non–deterministic event — which would incur a prohibitively high
overhead. Non–deterministic events occurring on the leader between observable events are
logged and sent to the followers just before the leader executes an observable event. Conse-
quently, it is guaranteed that the followers will reach the same state as the leader, and thus
the effects of failures remain mostly local to the replicas.

A prototype implementation called RAPIDS (Replicated Ada Partitions In Distributed
Systems) serves as a proof of concept for this second approach, demonstrating its feasibil-
ity. RAPIDS is an Ada 95 implementation of a replication manager for semi–active replica-
tion for the GNAT development system for Ada 95. It is entirely contained within the run–
time support and hence largely transparent for the application.

iii

Résumé

Cette thèse traite de la duplication d’objets non–déterministes dans des systèmes répartis
afin de les rendre tolérants aux pannes, plus particulièrement aux défaillances par arrêt. Les
objets dupliqués sont les nœuds virtuels d’une application répartie. La duplication de nœuds
virtuels est censée être transparente pour l’application: on considère la duplication comme
un mécanisme qui n’intervient qu’au moment de la configuration de l’application et qui ne
devrait pas affecter le développement de celle–ci.

Comme toutes les mesures ayant comme but la tolérance aux pannes, la duplication
introduit de la redondance dans le système. La difficulté principale à résoudre est évidem-
ment de garantir la cohérence de tous les duplicata pour que l’ensemble de duplicata se
comporte envers les autres objets comme un objet singulier (transparence de duplication).
Le problème est encore amplifié si l’on considère la duplication d’objets actifs, qui peuvent
eux–mêmes être des clients d’autres objets dans l’application répartie.

Dans cette thèse, les problèmes de la duplication d’objets actifs non–deterministes
sont étudiés dans le cadre d’applications réparties mises en œuvre avec le langage de pro-
grammation Ada 95. Le standard ISO de ce langage définit un modèle pour l’exécution
répartie fondé sur des appels à distance (RPC). Les nœuds virtuels en Ada 95 ne communi-
quent que par des appels à distance; ils peuvent néanmoins contenir des tâches, ce qui rend
leur comportement non–déterministe en raison de certaines dépendances temporelles impli-
cites. Ce genre de non–déterminisme ne peut pas être résolu en choisissant des règles
d’ordonnancement de tâches déterministes.

Cette thèse présente deux approches différentes pour maintenir la cohérence des
duplicata malgré ce non–déterminisme. Dans la première, le support d’exécution de Ada 95
est considéré comme une boîte noire, à l’exception de sa partie responsable du traitement de
la communication entre les nœuds virtuels. Ceci correspond à un modèle de calcul non–
déterministe. Je montre que la duplication de nœuds virtuels non–déterministes nécessite
une sémantique de transactions imbriquées pour les appels à distance. Les effets de
défaillances ne sont pourtant pas locaux à l’ensemble des duplicata d’un nœud virtuel: lors
d’une défaillance, les appels à distance imbriqués faits à d’autres nœuds doivent être annu-
lés. La sémantique transactionnelle nécessite également un compromis en ce qui concerne
la transparence: l’application doit identifier son état global, car il ne peut pas être identifié
avec certitude de manière transparente dans le support d’exécution. Mais le problème le
plus sévère est sans doute qu’il est même impossible de mettre en œuvre cette approche
d’une manière transparente car le critère de cohérence de Ada 95 (linéarisabilité) est beau-
coup moins fort que celui de transactions (sérialisabilité). L’exécution d’appels à distance
comme des transactions peut donc conduire à des incompatibilités avec la sémantique du
langage de programmation lui-même. Si un sous–programme appelé à distance sur un nœud
virtuel dupliqué accomplit des opérations partiels, c.-à-d. des appels d’entrées d’objets pro-

Résumé

iv

tégés globaux, des interblocages qui ne peuvent pas être résolus sont possibles. De tels
interblocages ne surviendraient pas si le nœud virtuel n’était pas dupliqué! Il est donc indis-
pensable que la nature transactionnelle des appels à distance soit révélée à l’application.

La deuxième approche se fonde sur un modèle de calcul à étapes déterministes (piece-
wise deterministic computation model) où l’exécution d’un nœud virtuel est modélisée par
une séquence d’intervalles déterministes d’états. À chaque événement non–déterministe, un
nouvel intervalle d’état commence. J’étudie l’organisation de duplicata dans ce modèle de
calcul par le moyen de la duplication semi–active. Dans cette forme d’organisation, toutes
les décisions non–déterministes se font sur un duplicata distingué (appelé leader ou
meneur1) et tous les autres duplicata (les followers, ou suiveurs) sont forcés de suivre la
même séquence d’événements non–déterministes. Je démontre qu’il suffit de synchroniser
les suiveurs avec le meneur chaque fois que ce dernier est sur le point d’exécuter un événe-
ment observable, c’est–à–dire quand il envoie un message à un autre nœud virtuel. Il n’est
pas nécessaire de les synchroniser à chaque événement — ceci entraînerait une baisse de
performance prohibitive. Des événements non–déterministes qui surviennent entre deux
événements observables sur le meneur peuvent être enregistrés dans un journal qui est
envoyé aux suiveurs juste avant que le meneur exécute un événement observable. On garan-
tit ainsi que les suiveurs vont atteindre le même état que le meneur. Avec ce procédé, les
effets de défaillances restent presque complètement locaux aux duplicata.

Une première mise en œuvre, appelée RAPIDS (Replicated Ada Partitions In Distribu-
ted Systems), montre la faisabilité de la deuxième approche fondée sur le modèle de calcul
à étapes déterministes. RAPIDS est un gestionnaire de duplicata pour la duplication semi–
active pour le système de développement Ada 95 GNAT. Il est entièrement encapsulé dans
le support d’exécution et il est donc largement transparent pour l’application.

1. La terminologie française est loin d’être normalisée. On trouve presque toutes les combinaisons possibles
de termes dans la littérature: “copie primaire/secondaire”, “leader/suiveur”, “meneur/suiveur”, “leader/fol-
lower”, ...

v

Zusammenfassung

Diese Dissertation analysiert die Replikation von nichtdeterministischen Objekten in ver-
teilten Systemen zum Zwecke der Fehlertoleranz bezüglich Abstürzen (crash failures). Die
replizierten Objekte sind hier die logischen Knoten (virtual nodes) einer verteilten Anwen-
dung. Replikation von logischen Knoten soll für die Anwendung transparent sein: da ihre
Funktionalität unverändert bleibt, wenn Knoten repliziert werden, soll auch ihre Entwick-
lung nicht tangiert werden. Erst bei der Konfiguration der verteilten Anwendung muss die
Replikation von Knoten berücksichtigt werden.

Das Replizieren von Knoten führt — wie alle Methoden der Fehlertoleranz — zu
Redundanz im System. Erwartungsgemäss ist die Koordination der Repliken somit das
grösste zu lösende Problem. Ziel dieser Koordination ist Replikationstransparenz, d.h. ein
repliziertes Objekt soll sich gegenüber dem Rest des Systems so verhalten, als ob es nicht
repliziert wäre. Betrachtet man die Replikation von aktiven Objekten, so wird dies noch
erschwert, wenn ein repliziertes Objekt selbst Dienste von weiteren Objekten benutzt.

Die Problematik der Replikation von aktiven, nichtdeterministischen Objekten wird
in dieser Dissertation anhand der Programmiersprache Ada 95 untersucht. Der ISO–Stan-
dard dieser Sprache definiert ein Modell für die Programmierung und Ausführung von ver-
teilten Anwendungen, das im wesentlichen auf dem Konzept des Remote Procedure Calls
(RPC) beruht. Die einzelnen Knoten einer verteilten Anwendung in Ada 95 kommunizieren
zwar ausschliesslich durch RPC, können jedoch ohne weiteres Tasks beinhalten. Aufgrund
impliziter Zeitabhängigkeiten wird das Verhalten eines solchen Knotens nichtdeterminis-
tisch, selbst wenn ein deterministischer Scheduling–Algorithmus für Tasks gewählt wird.

In dieser Dissertation stelle ich zwei verschiedene Methoden für die Koordination
nichtdeterministischer Repliken vor. In einem ersten Ansatz wird die Laufzeitbibliothek von
Ada 95, mit Ausnahme der Unterstützung der Kommunikation in verteilten Anwendungen,
als “black box” betrachtet. Dies entspricht einem nichtdeterministischen Ablaufmodell. Das
Replizieren nichtdeterministischer Knoten führt dazu, dass Remote Procedure Calls die
Semantik von geschachtelten Transaktionen haben müssen. Dabei sind jedoch die Auswir-
kungen eines Absturzes nicht auf die Gruppe der Repliken eines Knotens beschränkt: tritt
ein Absturz während der Ausführung eines Remote Procedure Calls auf, so müssen alle
geschachtelten RPCs zu anderen Knoten zurückgesetzt werden. Der gravierendste Mangel
dieses Ansatzes ist jedoch, dass er nicht in transparenter Art und Weise implementiert wer-
den kann. Einerseits muss eine Anwendung ihre globalen Daten identifizieren, da diese
nicht zuverlässig automatisch erkannt werden können, andererseits ist die Konsistenzbedin-
gung von Ada 95 (Linearisierbarkeit) weniger strikt ist als jene von Transaktionen (Serial-
isierbarkeit). Damit kann eine Ausführung von Remote Procedure Calls als Transaktionen
zu Inkompatibilitäten mit der Semantik der Programmiersprache führen, falls in einem
replizierten Knoten partielle Operationen, d.h. Aufrufe von Entries von globalen Protected

Zusammenfassung

vi

Objects, ausgeführt werden. In einem solchen Fall können Deadlocks, die nicht aufgelöst
werden können und zu denen es nicht gekommen wäre, wenn der Knoten nicht repliziert
worden wäre, auftreten! Somit muss die transaktionelle Implementierung von Remote Pro-
cedure Calls zwangsläufig der Anwendung sichtbar gemacht werden, damit diese den neuen
Rahmenbedingungen Rechnung tragen kann.

Der zweite Ansatz geht von einem stückweise deterministischen Ablaufmodell
(piecewise deterministic computation model) aus. Dabei wird die Ausführung einer Anwen-
dung (bzw. eines Knotens) durch eine Sequenz von deterministischen Zustandsintervallen
abgebildet. Mit jedem nichtdeterministischen Ereignis wird ein neues Zustandsintervall
begonnen. Die Koordination mittels semi–aktiver Replikation wird untersucht. Dabei wer-
den alle nichtdeterministischen Entscheidungen auf einer ausgezeichneten Replik (dem
Leader) getroffen, während alle anderen Repliken (die Followers) diesen Entscheidungen
zu folgen haben, d.h. alle nichtdeterministische Ereignisse in der selben Reihenfolge aus-
führen müssen. Es wird gezeigt, dass eine Synchronisation zwischen dem Leader und sei-
nen Followers bei jedem extern sichtbaren Ereignis, d.h. wenn der Leader eine Nachricht an
einen anderen Knoten sendet, ausreichend ist. Es ist nicht erforderlich, die Repliken bei
jedem nichtdeterministischen Ereignis zu synchronisieren — was auf Grund des hohen
Aufwands kaum praktikabel wäre. Das Auftreten nichtdeterministischer Ereignisse auf dem
Leader zwischen zwei extern sichtbaren Ereignissen wird in einem Log aufgezeichnet.
Bevor der Leader ein extern sichtbares Ereignis ausführt, wird dieses Log allen Followers
übermittelt. Damit kann sichergestellt werden, dass diese den gleichen Zustand wie der
Leader erreichen werden. Auf diese Art und Weise können die Auswirkungen von Abstür-
zen grösstenteils in der Gruppe von Repliken verkapselt werden.

Die Implementation des Prototyps RAPIDS (Replicated Ada Partitions In Distributed
Systems) zeigt, dass dieser zweite Ansatz des stückweisen Determinismus machbar ist.
RAPIDS ist ein Replikationsmanager für semi–aktive Replikation für GNAT (ein Entwick-
lungssystem für Ada 95), der gänzlich in den Laufzeitbibliotheken verkapselt ist. Die Rep-
likation von Knoten ist somit weitgehend transparent für Anwendungen.

vii

Acknowledgements

I could not have done this work without the help of others. I am thankful for the opportunity
to express my gratitude to them here.

I thank Professor Alfred Strohmeier for having accepted me as a PhD student and for
supervising this research work. He has given me a lot of freedom in approaching the topic
of this thesis, and has given me ample opportunities to meet some of the experts in the field
by inviting them to our lab or by sending me to renowned conferences. I have profited
immensely from these encounters. I also thank Professor Strohmeier for having read draft
versions of this thesis; I think it has benefited greatly from his criticisms.

I am grateful to the jury members for having accepted to serve on my examination
board and for the time they invested to read and evaluate this work.

I am indebted to Professor Andy Wellings, who had asked the right questions at the
right time when he was visiting the Software Engineering Lab in summer 1997. I also thank
him for inviting me to participate in the 8th International Real–Time Ada Workshop
(IRTAW–8). The interactions with him proved very fruitful indeed and brought this work
back on the right track.

I also thank all the members, past and present, of the Software Engineering Lab at
EPFL for the pleasant atmosphere. Special thanks go to Stéphane Barbey, who helped me
find my ways in Ada 95, and to my office mate Jörg Kienzle for the many discussions, his
careful review of this thesis, and for his friendship in general. I also thank Nicolas Guelfi for
relieving me from some of my responsibilities in the preparation of the software engineer-
ing course 1998/99, for proofreading a first draft of the French abstract, and generally for
creating a friendly and convivial ambiance.

Very special thanks go to Hannelore — without her constant encouragement and sup-
port I might not have accomplished this work. And I thank Fabian for always smiling at me,
even when I was at times a bit short–tempered and preoccupied with my work in the final
phase of this thesis. Anyway, I thank them both for bearing so well my occasional grumpi-
ness when stress got the better of me.

This work has been supported in part by a grant of the Board of the Swiss Federal
Institute of Technology.

To Hannelore
for her constant support,

and to Fabian
for his smiles.

Table of Contents

xi

Table of Contents

Abstract.. i

Résumé .. iii

Zusammenfassung ... v

Acknowledgements ... vii

Table of Contents .. xi

List of Figures.. xv

Part I: Motivation and Fundamental Concepts

1 Introduction.. 3
1.1 Context and Objectives .. 3
1.2 Contributions of this Thesis ... 5
1.3 Thesis Organization ... 5

2 Fault Tolerance in Distributed Systems ... 9
2.1 Fault Tolerance .. 9

2.1.1 Terminology .. 9
2.1.2 Fault Classification .. 10
2.1.3 Failure Semantics... 10
2.1.4 Error Processing... 11
2.1.5 Error Confinement ... 12

2.2 Distributed Systems ... 13
2.2.1 Characteristics of Distributed Systems.. 13
2.2.2 Distributed Applications.. 13

2.3 Replication in Distributed Systems.. 14
2.3.1 Replica Consistency... 15
2.3.2 Replica Determinism ... 17
2.3.3 Group Communication .. 17
2.3.4 Replication Strategies .. 20

2.4 Software Fault Tolerance ... 21
2.4.1 Recovery Blocks.. 22
2.4.2 Conversations .. 22
2.4.3 N–Version Programming... 23
2.4.4 Transactions... 24

Table of Contents

xii

3 Distributed Systems in Ada 95... 25
3.1 Ada 95 .. 25

3.1.1 Object–Oriented Programming.. 26
3.1.2 Controlled Types ... 28
3.1.3 Protected Types ... 28
3.1.4 Asynchronous Transfer of Control .. 31

3.2 Annex E: Distributed Systems ... 31
3.2.1 The System Model ... 32
3.2.2 Partitions and Packages ... 32
3.2.3 Remote Procedure Calls .. 34
3.2.4 Distributed Objects .. 36
3.2.5 The Partition Communication Subsystem 37
3.2.6 Fault Tolerance .. 38
3.2.7 Open Computing and Ada 95 .. 38
3.2.8 GNAT .. 39

Part II: Replication in Ada 95

4 Prelude.. 43
4.1 Goals .. 43
4.2 The System Model ... 44
4.3 Replication Units.. 44

4.3.1 Protected Objects ... 44
4.3.2 Types.. 45
4.3.3 Packages .. 47
4.3.4 Partitions .. 48

4.4 Non–Determinism in Ada 95 ... 49
4.4.1 Causes of Non–Determinism in Ada 95 .. 49
4.4.2 Is Enforcing Deterministic Behavior Possible?............................... 50
4.4.3 Active Replication Using Consensus... 53

5 Non–Deterministic Replicas ... 55
5.1 The Computation Model .. 55
5.2 Coordinator–Cohort Replication.. 56
5.3 Analysis.. 56
5.4 Transactions ... 59

5.4.1 Serializability ... 59
5.4.2 Concurrency Control ... 60
5.4.3 Recovery .. 63
5.4.4 Nested Transactions... 64

Table of Contents

xiii

5.5 An Approach in Ada 95 ... 66
5.5.1 Organizing the Replicas... 67
5.5.2 Identifying the State... 68
5.5.3 Drawbacks of this Approach ... 69
5.5.4 Deadlocks .. 71

5.6 Evaluation .. 74

6 Piecewise Deterministic Replicas .. 77
6.1 Non–Determinism.. 77
6.2 The Computation Model .. 78

6.2.1 Validity of the Model... 78
6.3 Semi–Active Replication ... 79
6.4 Replica Management.. 80

6.4.1 Events .. 80
6.4.2 Coordinating the Replicas: Observable Events 81
6.4.3 Correctness of the Approach ... 82
6.4.4 Failures .. 84
6.4.5 Recovery .. 86

6.5 Interacting with the Real World... 92
6.5.1 Files.. 92
6.5.2 Terminal I/O .. 93
6.5.3 Sensors and Actuators.. 93
6.5.4 Recovering from a Failure ... 94

6.6 Summary .. 95

7 Related Work ... 97
7.1 Circus ... 97
7.2 Argus.. 98
7.3 Camelot and Avalon... 99
7.4 Arjuna and Voltan.. 99
7.5 Isis and Horus... 99
7.6 Drago.. 100
7.7 replicAda.. 101
7.8 Fault–Tolerant Concurrent C ... 101
7.9 Delta–4 ... 101
7.10 Manetho ... 102
7.11 Summary .. 102

Table of Contents

xiv

8 RAPIDS: An Implementation in Ada 95 .. 105
8.1 Overview.. 105

8.1.1 Building Distributed Applications with GLADE 105
8.1.2 The Structure of the Run–Time Support ... 106
8.1.3 A Short Tour of the PCS.. 107
8.1.4 The Tasking Implementation: An Overview of GNARL 108

8.2 Global Structure of the Replication Manager .. 110
8.3 The Group Communication Protocol... 111
8.4 Events and Event Logging ... 111

8.4.1 The Event Log ... 112
8.4.2 Synchronizing the Replicas ... 113
8.4.3 Interactions with GNARL.. 115

8.5 Group–Wide Task Identification ... 116
8.6 Message Sequence Numbers.. 117
8.7 Some Important Events.. 118

8.7.1 Internal Events ... 118
8.7.2 Clock Events .. 120
8.7.3 External Events .. 121

8.8 Remote Access Types .. 122
8.9 Failures... 127
8.10 State Transfers.. 128

8.10.1 Collecting the State.. 128
8.10.2 Transferring the State .. 130
8.10.3 Installing the State ... 130

8.11 The Configuration Language ... 131
8.12 Current State .. 132

9 Conclusion... 133
9.1 Summary of Results ... 133
9.2 Future Work ... 135

Part III: Annexes

A Bibliography ... 139

B Author and Citation Index.. 151

Curriculum Vitae ... 159

List of Figures

xv

List of Figures

Part I: Motivation and Fundamental Concepts

Chapter 2: Fault Tolerance in Distributed Systems
Fig. 2.1: Failure Semantics Hierarchy .. 11
Fig. 2.2: Idealized System Component ... 12

Chapter 3: Distributed Systems in Ada 95
Fig. 3.1: A Tagged Type Hierarchy .. 26
Fig. 3.2: Illustrating Dispatching Calls ... 27
Fig. 3.3: Protected Type for Mutual Exclusion... 29
Fig. 3.4: Protected Type with Entries ... 30
Fig. 3.5: Syntax for Asynchronous select Statements................................... 31
Fig. 3.6: Schematic View of a Remote Procedure Call 35

Part II: Replication in Ada 95

Chapter 4: Prelude
Fig. 4.1: Specification of Coordinated Types ... 46
Fig. 4.2: Deriving from a Coordinated Type .. 46
Fig. 4.3: A Simple Server Example .. 51
Fig. 4.4: Diverging States in a Multithreaded Partition 52

Chapter 5: Non–Deterministic Replicas
Fig. 5.1a: Nested RPC... 57
Fig. 5.1b: Committing Nested Calls ... 57
Fig. 5.2: Concurrent RPCs + Rollback = Domino Effect 58
Fig. 5.3: Unnecessary Abort with Timestamp Ordering................................... 62
Fig. 5.4: Schema of Replicated Partitions... 66
Fig. 5.5: Reader–Writer Deadlock .. 72
Fig. 5.6: Deadlock between a Writer and an Entry Call 73
Fig. 5.6a: Augmented Waits–for Graph.. 73
Fig. 5.7: Unresolvable Deadlock... 74

List of Figures

xvi

Chapter 6: Piecewise Deterministic Replicas
Fig. 6.1: Asynchronous select Statement.. 83
Fig. 6.2: Failures in Leader–Follower Replication ... 85
Fig. 6.3: Collecting the State... 88
Fig. 6.4: Waiting for Quiescence .. 89
Fig. 6.5: Opportunistic Checkpointing.. 90

Chapter 8: RAPIDS: An Implementation in Ada 95
Fig. 8.1: Structure of a Partition.. 106
Fig. 8.2: Structure of the PCS ... 107
Fig. 8.3a: Ada Code for a Task... 109
Fig. 8.3b: Translated Code.. 109
Fig. 8.3: Structure of the Replication Manager... 110
Fig. 8.4: Event Logging Interface ... 112
Fig. 8.5: An Example Operation Causing an Event.. 114
Fig. 8.6: Task Creation Event ... 116
Fig. 8.7: Message Format.. 118
Fig. 8.8: A PO_Locked_Event ... 119
Fig. 8.9: Locking a Protected Object .. 119
Fig. 8.10: A Clock_Event .. 120
Fig. 8.11: Logging and Replay of Delays ... 121
Fig. 8.12: Handling of an External Event ... 122
Fig. 8.13: Marshaling and Unmarshaling Remote Access Types 124
Fig. 8.14: Marshaling and Unmarshaling of Remote Access Types on Replicas 126
Fig. 8.15: The Get_State Callback.. 129
Fig. 8.16: A Checkpoint_Event ... 129
Fig. 8.17: New Configuration Language Syntax .. 131

Part I

Motivation and
Fundamental Concepts

3

Chapter 1:

Introduction

1.1 Context and Objectives

Fault tolerance has the goal of allowing an application to continue to work — maybe in a
degraded fashion — even when failures in the system executing it occur. This is especially
important in distributed systems, where a distributed application might be taken down
entirely by the failure of even only one node executing a part of it. Leslie Lamport’s famous
aphorism testifies to this:

A distributed system is one in which the failure of a computer you didn't even
know existed can render your own computer unusable.

— Leslie Lamport, 1987 (attributed)

This expresses succintly the behavior fault tolerance strives to avoid.
This thesis investigates the replication of virtual nodes in distributed applications as a

means of achieving fault tolerance in the presence of crash failures. Replication is an often–
studied topic, but most previous work was done in the context of either data replication (e.g.
caching, with the primary goal of improving performance) or the replication of determinis-
tic objects, e.g. the state machine approach of Schneider [Sch90].

Modern software systems and their programming languages often do not a priori ful-
fill the stringent condition of determinism. Applications can be multi–threaded, and server
nodes in a distributed application can handle several requests concurrently. Using the state
machine approach in such a case often amounts to crippling the system by effectively disre-
garding potential gains that multi–threading might bring and handling requests one after

Context and Objectives

4

another. This not only hurts the throughput of the system but also artificially diminishes the
expressive power of modern–day programming languages as the possible interactions
between requests to a node are restricted.

I have chosen to examine the problems of replication in distributed systems using the
programming language Ada 95 [ISO95]. Ada is mostly known for its clean integration of
concepts and structures for expressing concurrent activities in the programming language in
the form of tasks. But with the revised ISO standard for Ada, it also precisely specifies a
model for distributed execution: this is a solid foundation to build distributed applications
upon. Yet this language standard itself makes only a token reference to the subject of fault
tolerance in distributed systems:

“An implementation may allow separate copies of an active partition to be con-
figured on different processing nodes, and to provide appropriate interactions
between the copies to present a consistent state of the partition to other active
partitions.”

— [ISO95, E.1(12)]

This despite the fact that one of the strongholds of Ada is the domain of dependable sys-
tems. The programming language has a long history and excellent reputation in the develop-
ment of fault–tolerant and safety–critical systems, hence the interest of studying this point
in detail.

The above quote from the ISO language standard [ISO95, E.1(12)] clearly implies
that replication of virtual nodes (called “partitions” in Ada 95) can be provided in a manner
transparent to the application. Configuration of a distributed application is seen in the lan-
guage standard as an activity that takes places after the application has been programmed
and compiled. By giving permission to replicate some virtual nodes at configuration time,
the standard takes the view that replication is a non–functional requirement that can be dealt
with only at the very end of the development process of a distributed application. This
implies replica transparency: the application level of the replicated partition itself should
not be aware of replication. The quoted paragraph also addresses replication transparency
by stating that a replicated partition should present a “consistent state” to other active parti-
tions, which I take to mean that its behavior should be indistinguishable from that of a sin-
gleton partition. In this thesis, I examine this point in detail and try to answer the question
to what extent the assumption of transparent a posteriori replication holds.

Also, the powerful semantics of Ada 95 is usually implemented in a run–time support
that is interposed between the application and the underlying operating system. The seman-
tics of threads as they are provided by modern operating systems for instance does not
match the requirements of tasking as it is defined for Ada 95. The run–time support maps in
this case the semantic construct of a “task” onto the much lower–level entity “thread” and at
the same time implements the added functionality of tasks using whatever primitives the
operating system offers. The presence of such a run–time support offers the unique possibil-

Introduction

5

ity of implementing replication for Ada 95 not only in a transparent way, but also in a
largely portable way, whereas — had I chosen another programming language — an imple-
mentation would have in all likelihood depended much more on the peculiarities of a partic-
ular operating system.

1.2 Contributions of this Thesis

The main contributions of this work are the following:

• An analysis of replication for fault tolerance of objects that may behave non–determi-
nistically. This analysis is done in the context of Ada 95, where the objects corre-
spond to partitions, i.e., virtual nodes.

I present two different approaches to replication of non–deterministic objects. A first
approach is based upon the transparent implementation of remote procedure calls as
nested subtransactions. I show that this method is not suitable for achieving transpar-
ent replication because of an incompatibility of the semantics of concurrent execu-
tions as defined in Ada 95 and the serializability model of transactions.

A second approach assumes a piecewise deterministic computation model, in
which deterministic execution state intervals are separated by non–deterministically
occurring events. I show that this model preserves the correctness of Ada 95 partitions
and can be used to offer replication in a transparent way.

• A prototype implementation of a replication manager for Ada 95 partitions called
RAPIDS (Replicated Ada Partitions In Distributed Systems).

This implementation is a realization of the second approach analyzed, i.e. based on a
piecewise deterministic model of computation. RAPIDS implements a semi–active rep-
lication scheme and employs event logging and replay for maintaining replica consis-
tency by making all replicas go through the same execution history. Acceptable
performance is achieved by basing replica synchronization on the notion of observ-
able events: as long as only events local to the partition occur, synchronization is not
necessary.

1.3 Thesis Organization

This doctoral thesis deals with advanced topics, and I assume readers have a solid back-
ground in fault–tolerant computing. Nevertheless I have tried to structure the thesis in such
a way that it be comprehensible for any reader with a general background in computer sci-
ence. In particular, I’ll briefly recall basic principles before building upon them.

Thesis Organization

6

The structure of this thesis closely reflects the progress of my work. It is organized in
two main parts. Part I lays the basic foundations necessary for the apprehension of the later
discussion of replication in part II.

Chapter 2 is a concise overview of the basic concepts of fault–tolerant computing with
an emphasis of concepts for fault tolerance in distributed systems. After introducing the
basic terminology (following [Lap85]), I present the foundations for replication in distrib-
uted systems: consistency models, group communication, and replication management. The
chapter closes with an overview of the main software fault tolerance techniques.

Although Ada exists for more than 15 years now, the recent revision of the language
standard enhanced the language considerably. In chapter 3, I give a brief review of the most
important new features in Ada 95: support for object–oriented programming and novelties
in the tasking system. I also give an overview of the model of distributed applications
defined in the Ada 95 language standard.

Part II of this thesis starts in chapter 4 with a description of the objectives of this the-
sis and a presentation of the system model I assume. I discuss various choices of units of
replication, and I show that a distributed Ada 95 application is inherently non–deterministic
due to implicit timing dependencies.

Chapter 5 describes a first approach to replication in Ada 95. It examines the problem
under the assumption of a non–deterministic computation model. I show that remote calls
must have transactional semantics in this case. Closer analysis reveals that transactional
serializability does not integrate well with the model of tasking defined in Ada 95. I show
that transparently transforming RPCs into nested transactions when a partition is replicated
may lead to deadlocks that would not occur if the partition were not replicated and RPCs
thus did not have transactional semantics. Furthermore, these new deadlocks cannot be bro-
ken. The conclusion is that transactions cannot be added in a transparent way to Ada 95, but
should rather be offered on the language level.

In chapter 6, I have therefore adopted a different computation model based on the
assumption of piecewise deterministic executions. I show that this model also is a valid
description of executions in Ada 95, and that the semantics of the programming language
are such that replicas can be synchronized by event logging only — implicit timing depen-
dencies do not influence replica consistency. I define the set of events and show that syn-
chronization of replicas is only needed prior to events that are observable by other
partitions.

Chapter 7 gives the state of the art in this thesis’ domain in the form of a brief over-
view of some relevant previous systems, which can be broadly classed as either transac-
tional or based on a piecewise deterministic model.

Chapter 8 is a detailed description of RAPIDS (Replicated Ada Partitions In Distrib-
uted Systems), an implementation of a replication manager for the GNAT development sys-
tem based on the piecewise deterministic computation model described in chapter 6. It
begins with a short description of the structure of the run–time support and then goes on to

Introduction

7

show which parts are affected by replication management. It also describes in detail how
event logging and replica synchronization work.

Finally, chapter 9 gives a conclusion, summarizing the main results of this work and
indicating some areas for future work.

9

Chapter 2:

Fault Tolerance in Distributed Systems

In this section, I give a brief introduction to fault–tolerant computing in general, before dis-
cussing the use of replication for fault tolerance.

2.1 Fault Tolerance

What exactly is meant by fault tolerance always depends upon the context in which one
operates. It is therefore important to first define this context and the domain–specific terms
used.

2.1.1 Terminology

To discuss fault tolerance meaningfully, a definition of correct behavior of a program is
needed — otherwise, how could one know that something went awry? For the purposes of
fault–tolerant computing, the specification of the program is considered this definition of
correct behavior: as long as the program meets its specification, it is considered correct. A
deviation from the specification is considered a failure. A failure is therefore the observa-
tion of an erroneous system state, i.e., a failure is caused by an error. An error is that part of
the system state that leads to a failure of the system. An error itself is caused by some defect
in the system; those defects that cause observable errors are called faults. There may be
defects in the system that remain undetected; only those that manifest themselves as errors
are considered faults. Likewise, an error not necessarily leads to a failure: it may be a latent
error [Lap85]. Only when the error in the system state causes the system to behave in a way
contradictory to its specification, a failure occurs.

Fault Classification

10

The goal of fault tolerance is to avoid system failure in the presence of faults. When
an error occurs, it must be corrected to avoid a later potential failure: corrective actions have
to be taken to restore the system state correctly.

2.1.2 Fault Classification

Faults can be characterized in various ways. One considers the temporal characteristics of a
fault. A transient fault has a limited duration, e.g. a temporary malfunction of the system, or
a fault due to external interference. If a transient fault occurs repeatedly, it is called an inter-
mittent fault. In contrast, permanent faults persist, i.e. the faulty component of the system
will not work correctly again unless it is replaced.

Another way to classify faults is to consider the software lifecycle phase in which they
occur. Here, one can distinguish design faults (in particular software design faults) from
operational faults occurring during the use of the system.

2.1.3 Failure Semantics

Failures, i.e. deviations from a program’s specification, can manifest themselves in various
ways [Cri91]:

• Timing failures can occur in real–time systems if the system fails to respond within
the specified time slice. Both early and late responses are considered timing failures;
late timing failures are sometimes called performance failures.

• Omission failures occur when the system doesn’t respond to a request when it is
expected to do so.

• A crash failure occurs when the system stops responding at all. One generally distin-
guishes fail–silent and fail–stop behavior: with the latter, the clients of the system
have a means to detect that it has failed.

• If a failed system can behave arbitrarily, it is said to exhibit byzantine failure seman-
tics [LSP82].

Byzantine failures are the most general failure type. [LSP82] studies the problem of byzan-
tine agreement in synchronous (see 2.2.1) distributed systems, where nodes that communi-
cate by message passing over a fully connected network and that may be subject to
byzantine failures must agree within bounded time on a common decision. It is shown that
this is possible only if less than one third of the nodes fail. The problem is complicated
because a failed node might malicioisly masquerade as another one and send confusing
messages on its behalf.

If messages are authenticated, the sender of a message can always be determined reli-
ably, and any tampering with messages or masquerading a failed node might attempt can be
detected. Cryptographic techniques such as digital signatures can be used to achieve this. In
this case, agreement can be reached for an arbitrary number of failures [LSP82, BMD93].

Fault Tolerance in Distributed Systems

11

These failure semantics form a hierarchy: byzantine failures are the most general
model, and subsume all others as shown in fig. 2.1 below.

2.1.4 Error Processing

As mentioned above, errors detected in the system state must be corrected to avoid a poten-
tial system failure later on. Of course, the fault(s) causing the error also should be treated,
which means that the reason for the error must be identified and then the defect be corrected
in order to avoid that the fault causes more errors. Fault diagnosis and removal is quite dif-
ferent from error processing and is beyond the scope of this thesis.

Once an error is detected, there are several techniques that can be used to treat it. I dis-
tinguish preventive (error compensation) and corrective (error recovery) measures.

Error masking is the main preventive fault tolerance technique. It exploits redundancy
to detect errors and to mask them; a common example is triple modular redundancy (TMR):
a fault–tolerant component consists of three replicas, the output of the component is the
result of some comparator function of the three replicas’ individual outputs. Voting (i.e.,
taking the majority of replies) is one possible comparator function, but depending on the
context and the failure semantics of the replicated component, other functions such as tak-
ing the average might be adequate.

Corrective methods try to bring the system into a correct state again once an error has
been detected. There are two base cases:

• Forward error recovery attempts to construct a coherent, error–free system state by
applying corrective actions to the current, erroneous state.

• Backward error recovery replaces the erroneous system state with some previous, cor-
rect state.

Fig. 2.1: Failure Semantics Hierarchy

Fail–Stop

Crash

Omission

Timing

Authenticated Byzantine

Byzantine

Error Confinement

12

Backward error recovery requires that a previous correct state exists: such systems periodi-
cally keep a copy of a coherent state (recovery point or –line), to which they can roll back in
case of an error. Backward error recovery is a general method: because it re–installs a previ-
ous, hopefully correct system state, it does not depend on the nature of the error nor on the
application’s semantics. Its main drawback is that it incurs a certain overhead even in fail-
ure–free execution because recovery points have to be established from time to time.

Forward error recovery requires that a more or less accurate damage assessment be
made. The error must be identified in order to apply corrective actions to exorcise it. This
diagnosis for forward error recovery depends on the particular system.

2.1.5 Error Confinement

(Software) systems are not monolithic; they usually consist of several components or sub-
systems, and fault tolerance approaches must account for that. Different approaches may be
applied to different components. The composite nature of systems also means that the clas-
sification of fault, error, and failure is not absolute: a given component may perceive the
failure of a sub–component as a fault and have its own fault tolerance techniques in place to
handle it.

This hierarchic model of a system gives rise to the notion of error confinement: the
system is structured in regions beyond which the effects of a fault should not propagate
undetected. This implies that a given component be accessible to other components only
through a well–defined (and preferably narrow [Kop97]) interface. Different error confine-
ment regions may employ different means to achieve fault tolerance depending upon the
failure semantics the system component should adhere to according to its specification as
well as on the failure semantics of its sub–components.

Fig. 2.2: Idealized System Component

Normal Processing Error Processing

Failure

FailureReplyService

Reply
Service

ExceptionRequest

Request

Interface
Exception

Interface
Exception Exception

Return to normal

Local Exception

Fault Tolerance in Distributed Systems

13

The idealized error–confining system component [RX95] is shown in fig. 2.2. The
component offers services that may return replies to the component that made a service
request. If a request is malformed, the component signals this by raising an interface excep-
tion, otherwise it executes the request and produces a reply. If an exception signaling an
error occurs, error processing is activated in an attempt to handle the error. If it can be dealt
with, normal processing in the component resumes; if not, the component itself signals its
failure by an exception. It is immaterial whether exceptions are true exceptions in the sense
of Ada 95 or are indicated using exceptional replies to requests. It is even possible that some
entity external to the system component observes its failure and initiates appropriate error
processing in the users of the component.

2.2 Distributed Systems

2.2.1 Characteristics of Distributed Systems

A distributed system is a set of processing nodes (physical nodes, i.e., computers) that are
interconnected by a network allowing them to communicate with each other. I assume that
physical nodes do not share memory: they only communicate by sending messages over the
network.

Besides this physical model, a distributed system can be modeled by its temporal
characteristics. If no timing assumptions at all are made, the system is dubbed asynchro-
nous. In a synchronous distributed system, the timing behavior is constrained by the follow-
ing assumptions [HT94]:

• there is a known finite upper bound for the message transmission delay, and
• there is a known finite upper bound for the time required by any node to execute a

step, and
• on every node, there is a local clock with a known finite upper bound for clock drift

with respect to real time.

It is therefore possible to use time-outs to detect failures reliably in synchronous systems1;
in asynchronous systems, only failure suspicions can be made because a slow node or com-
munication link cannot be distinguished from a failed one.

2.2.2 Distributed Applications

I define a distributed application as an application executing on a distributed system. A dis-
tributed application is composed of virtual nodes; each virtual node is allocated to some

1. Note that all three conditions must be met to be able to detect failures reliably using time-outs. If any of
them is violated, a time-out not necessarily signifies a failure; it might be that the transmission delay was
longer than expected, or that the receiving node was slow, or that the local clock ran too fast.

Replication in Distributed Systems

14

physical node, where it is executed. The virtual nodes of an application communicate with
each other over the network by sending messages through channels to accomplish the appli-
cation’s task. A channel is a logical communication link between two virtual nodes; for the
purpose of this thesis, channels are assumed to be reliable. A message sent on a reliable
channel will eventually be received by the recipient if both the sender and the receiver do
not fail; if link failures are repaired eventually, this property can be implemented through
retransmissions of messages.

Distributed applications may exhibit a wide range of communication patterns between
their virtual nodes depending on the way they are structured and the task they shall accom-
plish. I assume throughout this thesis a client–server model: each virtual node offers ser-
vices that can be invoked by sending a message to the node. The node offering the service is
the server node, the one requesting the service by sending the message is the client node. In
order to fulfill the service request, the server node may send back a result to the client.

The classification of client and server is only meaningful in the context of one partic-
ular service invocation; it is by no means a global, static role. A virtual node acting as a
server for one service may well need a service of yet another node to implement its own
functionality: it plays the roles of client and server at the same time, but for two different
service requests. Nevertheless, it is convenient to distinguish these cases. Following the ter-
minology of Mazouni [Maz96],

• C–Components are virtual nodes that act as clients only,
• S–Components act as servers only, and
• CS–Components act as both.

2.3 Replication in Distributed Systems

Replication is one means to achieve fault tolerance in distributed systems by masking errors
in the replicated component. In this section, I discuss the fundamental concepts needed in
replication: replica consistency, group communication, and replica organization.

For the purposes of this section, a distributed application is viewed as a set of cooper-
ating objects, where an object could be one of many things: a whole virtual node, a process,
a variable, or an object in the sense of object–oriented programming. In order to render an
object fault–tolerant, it is replicated: the application maintains several identical copies of
the object that behave and are manipulated as if there existed only one copy. A copy of such
a replicated object is called a replica. A failure of a replica can be masked thanks to the
remaining replicas, which ensure that the object remains available despite the failure. Repli-
cation for fault tolerance should be transparent: clients of the object perceive the whole set
of replicas as if only one single copy of the object existed. The replicated object is this ideal

Fault Tolerance in Distributed Systems

15

object that hides and encapsulates the individual replicas. Clients cannot distinguish repli-
cated objects from solitary objects.

2.3.1 Replica Consistency

Whenever a system employs replication in some form, the issue of consistency between the
replicas of an object comes up. This is not limited to replication for fault tolerance, e.g., the
issue is also raised in distributed shared memory (DSM) implementations, where objects or
memory units (pages) may be cached on several nodes to improve performance. Consis-
tency is described by a consistency model, a specification on the behavior users of an object
may observe. Many consistency models have been proposed in the literature; for a survey
focussing on DSM, see [Mos93] or [Tan95].

Replication for fault tolerance requires a strong consistency criterion: sequential con-
sistency or linearizability. Strong consistency gives users the illusion of a non–replicated
object.

To reason about consistency criteria1, the system is modeled as a set of concurrent
sequential processes P = {p1, ..., pn} that communicate by accessing shared objects
O = {x1, ..., xm}, which are typed. An object can only be modified through the operations
defined by its type. The behavior of an object x is defined by its sequential specification, i.e.,
the sequences of operation executions on x allowed by the semantics of the object’s type in
the absence of concurrency and failures; it can be seen as the set of all possible acceptable
object histories of x. An operation on an object is total if it is defined for every state of the
object, otherwise it is partial. Partial operations can be implemented by waiting until the
object’s state is such that the operation is defined.

The execution of the system is modeled by a history H, which is a finite sequence of
events (invocations inv(o) and responses res(o) of operations o on objects). A history is
complete if it contains for each invocation a matching response. A history is sequential if its
first event is an invocation, and each invocation is immediately followed by a matching
response. An object subhistory is the subsequence of operations on object x in H. A his-
tory H is legal, if for all x, belongs to the sequential specification of object x. A process
subhistory is the subsequence of operations invoked (including the matching responses)
by process p in H. Two histories H and are equivalent if for all p ∈ P, = . The
order of events in H is denoted by the relation <. Note that < does not enforce an order on
H; e < f is just a notational convenience to express that event e precedes event f in H. (As
processes perform operations sequentially, inv(o1) < res(o1) < inv(o2) will of course always
hold for two operations o1 and o2 performed in sequence by the same process, but events of
operations related to different processes may appear in any order in a history.)

1. For some examples and for a more complete discussion, see [HW90].

H
x

H
x

H
p

H' H
p

H'
p

Replica Consistency

16

The sequential consistency criterion was first proposed in [Lam79] and later formal-
ized in various ways. The definition given here is due to [AW94]:

Definition 2.1: Sequential Consistency

• A history H is sequentially consistent if there exists an equivalent legal sequential his-
tory S.

Note that sequential consistency imposes no ordering on the events in H or S except the
order given by the sequential execution of processes (i.e., by the process subhistories).
Operations invoked by different processes appear unordered, i.e., they may be in different
orders in H and S.

Linearizability was introduced in [HW90] as an alternative consistency criterion. It
adds an ordering constraint to the above definition by defining an ordering relation <L on
operations:

• o1 <L o2 if res(o1) precedes inv(o2) in H, i.e., if res(o1) < inv(o2).

Definition 2.2: Linearizability

• A history H is linearizable if it can be completed to some history by appending
missing response events so that
– is equivalent to some legal sequential history S, and
– <L ⊆ <S.

In other words, the equivalent sequential history S must preserve the relative “real–time”
order of operations performed on objects, i.e., the order in which they appeared in H. I will
use the notation H to denote a history H satisfying the order <L.

Although linearizability is a stronger consistency criterion than sequential consistency
(any linearizable history also is sequentially consistent), it turns out that linearizability is
simpler to implement because it is a local property, i.e., a system’s history H is linearizable
if the histories of all its individual objects x are linearizable. Linearizability is also a
non–blocking property in the sense that the invocation of a total operation never causes the
process making the invocation to block. For a proof see [HW90].

More recently, a consistency criterion based on the generalization to object–based
systems of Lamport’s “happened before” relation [Lam78] has been proposed, called NRT–
Linearizability1 in [Pac95] and Normality in [GR96]. (Both names denote exactly the same
concept.) This is a weaker criterion than linearizability that still maintains the desirable
properties of locality and non–blocking; yet it is stronger than causal consistency
[ABHN91] in that it requires all processes to agree on the same history. (Causal consistency,
as defined for shared memory systems, allows different processes to “see” different orders
of not causally related write operations.)

1. “NRT” stands for “Non Real–Time”.

H
p

H'

H'

<L

H
x

Fault Tolerance in Distributed Systems

17

2.3.2 Replica Determinism

An object is deterministic if its state changes only in function of the sequence of operations
applied to the object and if each operation itself is reproducible, i.e., if it were invoked mul-
tiple times on the same state, the resulting new state would always be the same. The state
machine [Sch90] model is based upon deterministic objects. A state machine encapsulates
state that can be modified only through deterministic commands that execute atomically
with respect to each other. When a client makes a request to a state machine, the latter han-
dles the request by executing the corresponding command, which may generate some
results or output.

A sufficient condition to ensure linearizability for deterministic replicated objects
(state machines) is to make the replicas handle the same set of requests in the same order
[Sch90, GS96], i.e.

• Atomicity: If one correct replica handles a request r, all correct replicas handle r.
• Order: If one correct replica handles a request r before a request s, all correct replicas

handle r before s.

If the replicas initially are in the same state, the above conditions guarantee that all replicas
will evolve identically and clients observe a consistent behavior of the replicated object.

2.3.3 Group Communication

Standard point–to–point communication often is not well adapted to the needs of distributed
applications, especially when considering replication. The group concept is a communica-
tion abstraction offering more powerful services: a membership service, and a multicast
facility. The membership service gives each member (consistent) information about the
other members of the group, whereas the multicast facility offers a way to send messages to
all group members at once.

A fundamental problem in group communication (or in distributed systems in gen-
eral) is the consensus problem: given a set of processes1, each process proposes a value vi.
They then have to decide on one common value v of the values vi. Consensus can be defined
by the following three properties:

Definition 2.3: The Consensus Problem

• Agreement: If a correct process decides on a value v, eventually all correct processes
decide on v.

• Integrity: If a correct process decides on v, this value v has been previously proposed
by some process (v ∈ {v1, ..., vn}).

1. In order to be consistent with the terminology in the literature, I’ll use the term “process” in this sub–sec-
tion instead of “virtual node”. A distributed system is viewed as a set of processes communicating by send-
ing messages over reliable communication channels.

Group Communication

18

• Termination: Each correct process eventually decides exactly once.

Fischer, Lynch, and Paterson have shown in [FLP85] that consensus cannot be solved deter-
ministically in a purely asynchronous system with even only one crash failure. This impos-
sibility result has motivated Chandra and Toueg to introduce the notion of an asynchronous
system augmented by an unreliable failure detector [CT91].

An unreliable failure detector can be seen as a distributed oracle giving each process
in the system information about the correctness or failure of the other processes. This infor-
mation cannot be precise in an asynchronous system; the failure detector can only suspect
other processes to have failed. Failure suspicions are not static: a failure detector may cease
to suspect a process to have failed if it discovers that its suspicion was wrong. Chandra and
Toueg have defined in [CT95] different failure detectors that can be classified by two prop-
erties:

• Completeness: Eventually, every failed process is permanently suspected. If it is per-
manently suspected by all correct processes, the failure detector is said to satisfy
strong completeness; if it is suspected by some correct process, the failure detector
satisfies weak completeness.

• Accuracy defines the type of mistakes a failure detector may make in suspecting a
process:
– Strong accuracy: no process is suspected before it fails.
– Weak accuracy: some correct process is never suspected.
– Eventual strong accuracy: there is a time after which correct processes are not sus-

pected by any correct process.
– Eventual weak accuracy: there is a time after which some correct process is never

suspected by any correct process.

These two criteria define eight possible failure detectors. Of particular interest are the fail-
ure detector classes ◊S (called eventually strong, satisfying strong completeness and even-
tual weak accuracy) and ◊W (called eventually weak, satisfying weak completeness and
eventual weak accuracy). It is shown in [CHT94] that ◊W is the weakest failure detector for
solving consensus in an asynchronous system, and in [CT95] that a failure detector of class
◊S can be constructed from one of class ◊W.

The multicast primitives offered by a group allow a message to be sent to the group as
a whole, without explicitly having to know its individual members. The group serves also as
a naming construct: each group has a name, and messages can be sent (multicast) to the
group using this name as the recipient. There are various multicast primitives that can be
defined.

The simplest fault–tolerant multicast primitive is the reliable multicast.

Fault Tolerance in Distributed Systems

19

Definition 2.4: Reliable Multicast

A multicast is said to be reliable if it satisfies the following three properties:

• Validity: If a correct process multicasts a message m, it eventually delivers it.
• Agreement: If a correct process delivers a message m, all correct processes eventually

deliver m.
• Integrity: Every correct process delivers a message m only once, and only if m was

previously multicast.

Reliable multicast gives an all–or–nothing guarantee: either all correct processes deliver a
message, or none do. However, it doesn’t specify anything about the order in which pro-
cesses deliver messages sent by reliable multicast. Most uses of groups need some ordering
guarantees, though.

FIFO multicast extends reliable multicast with the additional condition that if a pro-
cess multicasts a message m1 before a message m2, then no correct process delivers m2
unless it has also delivered m1

1. Messages from different processes are unordered.
Causal multicast is similar. The additional condition in this case is based on causality

as defined by Lamport’s “happened before” relation [Lam78]: if a multicast of a message
m1 “happens before” the multicast of a message m2, no correct process delivers m2 without
delivering m1 first. Causal multicast implies FIFO multicast.

Totally ordered multicast (called atomic multicast in [HT94]) extends reliable multi-
cast with a guarantee of a different quality: if a correct process delivers a message m1 before
it delivers a message m2, then all correct processes deliver m1 before m2. Totally ordered
multicast is equivalent to the consensus problem [CT91].

Note that total order is only concerned with the delivery of messages, whereas FIFO
and causal multicasts also depend upon the relation between the sending (multicasting) of
the messages. Total order does not impose any particular order on the delivery of messages
except that all correct processes must choose the same order. This suggests that the FIFO or
causality conditions can be combined with total order, yielding totally ordered FIFO multi-
cast and totally ordered causal multicast.

View–synchronous group communication is a communication abstraction described
first in the context of the Isis project [Bir85], where it is called virtually synchronous group
communication. It is based on the notion of views: all correct processes in a group have a
consistent view of the composition of the group. As processes join and leave the group
(either voluntarily or because they fail or are suspected to have failed), the group composi-
tion changes over time, leading to a sequence of views V = {V0, ..., Vi, Vi+1, ...}. The instal-
lation of a new view in the correct processes in the group, i.e., the delivery of a view, is
called a view change.

1. See [HT94] for some comments on the subtleties of this formulation.

Replication Strategies

20

View–synchronous communication replaces the basic reliable multicast with a stron-
ger primitive called view–synchronous multicast, which imposes a total order on the deliv-
ery of messages with respect to view changes. It is defined by the basic three conditions for
reliable multicast, plus a fourth condition

Definition 2.5: View Synchrony

• View synchrony: If a process in view Vi delivers a message m and then delivers view
Vi+1, all processes in Vi that deliver Vi+1 deliver m before Vi+1.

In other words, between two views all correct processes in the group deliver the same set of
messages. View synchronous multicast is an instance of the consensus problem [GS94].

As view synchronous multicast replaces reliable multicast as the foundation upon
which the other multicast schemes are built, the FIFO, causal, or totally ordered multicasts
in view–synchronous communication also satisfy view synchrony.

2.3.4 Replication Strategies

There are different ways to organize the replicas of a replicated object. One generally distin-
guishes active, semi–active (leader–follower), passive, and coordinator–cohort organiza-
tion.

Active replicas execute in parallel. When a client sends a request to an actively repli-
cated object, all replicas handle the request and reply to the client. If the strong consistency
criterion is to be met, this implies that all replicas must behave deterministically, and that
they handle the same requests in the same sequence, otherwise, their states and hence their
output may diverge. Replicas must therefore adhere to the state machine model [Sch90].

Failures of replicas are masked. Active replicas ensure high availability of the services
offered by the replicated component. Because all replicas handle all requests in parallel, a
failure causes no synchronization overhead between replicas as for the other replication
strategies discussed below.

In passive (or primary–backup) replication, only one replica (the primary) is active. It
is the only replica that handles requests and replies to clients. Before it sends back a reply, it
transmits a checkpoint containing its new state and the reply to the other replicas (its back-
ups). If the primary fails, one of the backups becomes the new primary, handling subsequent
requests. Failures of backups are masked: a client does not notice them at all. A failure of
the primary replica while handling a request necessitates that the client who sent that
request re-send it to the new primary. If the failed primary had computed a result for the
request and already sent a checkpoint to its backups, the new primary can just return that
result. If the failure of the old primary occurred before the checkpoint was transmitted to the
backups, the new primary has to re–execute the request.

One of the assets of passive replication is that it can be employed for non–determinis-
tic S–components. [Maz96] describes a solution based on the detection of duplicate mes-

Fault Tolerance in Distributed Systems

21

sages that can handle passive replication of deterministic CS–components. Classic
checkpointing schemes can be viewed as passive replication, where the primary (and only)
copy saves the checkpoints to stable storage instead of sending them to the backups. Passive
replication offers a higher availability than checkpointing to stable storage because the
restart latency after a failure is shorter. Compared to active replication, a failure incurs a
higher overhead because some work may have been lost and clients have to re–issue
requests. Also note that passive replication cannot be used to mask byzantine failures as
there is only one single replica executing: the backups serve only as warm standbys.

Semi–active (or leader–follower) replication [Pow91] is a hybrid replica organization
technique developed within the Delta–4 project to accommodate non–deterministic replicas
with an availability nearly as high as in active replication. As in active replication, all repli-
cas receive a request, however, one replica (the leader) plays a special role. Whenever the
leader makes a non–deterministic decision, it notifies the other replicas (its followers) of its
choice. The followers are then forced to take the same decision. This guarantees that the
state evolution in all replicas is the same. In semi–active replication, only the leader replica
replies to clients. Semi–active replication will be discussed at considerable length in
chapter 6.

Coordinator–cohort replication [Bir85] is another hybrid replica organization, very
similar to semi–active replication. It has been developed in the context of the Isis toolkit.
From the point of view of the communication pattern, it is very similar to passive replica-
tion, the only difference being that all replicas receive a request. This makes it possible to
mask even failures of the primary replica; the client does not have to re–send a request.
However, only the coordinator handles the request and updates the cohort replicas by means
of checkpoints. The result is therefore determined by the execution on the coordinator,
which may be non–deterministic. If the coordinator fails, one of the cohorts becomes the
new coordinator and proceeds with execution from the last checkpoint. Checkpoints there-
fore must be coordinated with respect to output.

If requests in coordinator–cohort replication are implemented as transactions (see sec-
tions 2.4.4 and 5.4), the coordinator can be chosen on a per–request basis. This can be
exploited to achieve some load–balancing, but it requires that concurrency control be syn-
chronized between the replicas.

2.4 Software Fault Tolerance

Software that can tolerate operational faults of the system components it depends upon
(such as the malfunctioning of the underlying hardware) is called “fault–tolerant software”.
In contrast, the term “software fault tolerance” is usually understood to mean the ability of
software to cope with faults, especially design faults, within a component itself. A general,
yet concise overview and comparison can be found in [LABK90].

Recovery Blocks

22

2.4.1 Recovery Blocks

Recovery blocks [Ran75] have been introduced as a software structuring mechanism based
on backward error recovery in the early 70’s. A recovery block consists of one or more
alternatives implementing the component’s functionality, coupled with an acceptance test
that determines whether or not an alternative has functioned correctly. When a recovery
block is entered, a recovery point is established by taking a checkpoint of the component’s
state and the first, primary alternative is executed. If the results from that execution fail the
acceptance test or the alternative itself fails, the component’s state is rolled back to the
checkpoint taken initially and the second alternative is executed. This is repeated until either
an alternative passes the acceptance test or there are no more alternatives available and
therefore the whole component fails.

Recovery blocks are an inherently application–specific fault tolerance technique. The
application must provide the alternatives in a recovery block and it also must implement the
acceptance test. Alternatives may implement the same functionality in different ways, or
they may try to offer only a degraded functionality when the primary alternative fails the
acceptance test. This issue of design diversity is closely related to N–version programming,
but there are important differences (see section 2.4.3 below).

Recovery blocks can be nested: alternatives themselves can be implemented as recov-
ery blocks. If a nested recovery block fails, recovery is attempted in the enclosing recovery
block by rolling back and then executing the next alternative.

Distributed recovery blocks [Kim95] are an adaptation of the basic recovery block
scheme to achieve fault tolerance in a distributed system. A recovery block with two alter-
natives is replicated on two virtual nodes. When the recovery block is entered, both replicas
execute an alternative: one node executes the first alternative as primary alternative while
the other node chooses the second alternative as primary. If one alternative fails while the
other one succeeds, the failed one is rolled back and the node uses the other alternative to
bring its state up to date with respect to the second node. If the primary alternatives succeed
on both nodes, it is assumed that they both produce the same results.

2.4.2 Conversations

Conversations [HLMR74] are an extension of the recovery block concept to concurrent sys-
tems. If concurrently executing processes communicate with each other in the alternatives
of recovery blocks, a so–called domino effect may occur: if an alternative fails and is rolled
back, other alternatives of recovery blocks in other processes also may have to be rolled
back. To avoid this very undesirable behavior, the conversation abstraction was proposed as
a kind of a coordinated recovery block for cooperating processes. A conversation has the
following characteristics:

Fault Tolerance in Distributed Systems

23

• Upon entering a conversation a process establishes a checkpoint.
• During a conversation processes can only communicate with other processes in the

same conversation.
• If an alternative fails in one process, all processes roll back and attempt to execute the

next alternative.
• All processes leave the conversation together.

Conversations, like recovery blocks, can be nested: both support recursive system composi-
tion. Forward error recovery can also be used within a conversation to cope with failures. In
order to make a consistent recovery of the cooperating processes possible, this necessitates
an exception resolution scheme [CR86] because several exceptions may be raised concur-
rently in different processes participating in the conversation. Conversations with forward
error recovery are also known as FT–actions or atomic actions [JC86].

Conversations can be used as a software structure for fault tolerance in distributed
systems [MWR98].

2.4.3 N–Version Programming

N–version programming (NVP) [AC78] has been developed specifically to cope with
design faults. It is defined as the independent development of several (at least two) distinct
implementations of the same initial specification of a system component. All the different
versions of a component execute a request, possibly concurrently. Their results are then
passed to a decision algorithm that tries to find a consensus value from all the results. This
consensus value is then the result produced by the system component. The decision algo-
rithm is application–specific. Whereas the acceptance test of a recovery block is applied to
the single result of an alternative to determine success or failure, the decision algorithm in
NVP uses the results of all versions to arrive at a single consensus result.

The key point is the independence of the implementations, which shall avoid that
implementations share common design errors [Avi85]. NVP has evolved into an elaborate
design paradigm. Each version should be implemented by a separate team; teams ideally
should not communicate with each other to avoid that one team’s ideas influence another
team and both end up implementing the common specification by the same algorithm,
which would increase the likelihood that they committed the same design errors. Different
implementations may even be built using different hardware and development tools to avoid
common errors creep in, for instance due to a faulty compiler.

The weak point of NVP is the decision algorithm. It can be far from trivial to specify
such an algorithm, furthermore, this specification may depend heavily upon the applica-
tion’s semantics. Also, the decision algorithm itself must be fault–tolerant if the system
component using NVP is to be fault–tolerant.

Transactions

24

2.4.4 Transactions

Transactions [Gra78] are a well–known concept for structuring an application to provide
data consistency in a concurrent environment and in the presence of failures. In the world of
database applications, a transaction is an execution that is characterized by the famous
ACID properties [HR83]:

• Atomicity: a transaction gives an “all or nothing” guarantee: either all its state changes
are performed, or none are, even in the presence of failures (failure atomicity).

• Consistency: the execution of a transaction starting in a consistent state will produce
another consistent state.

• Isolation: concurrent transactions are isolated from each other; their execution has the
same effect as some serial execution order.

• Durability: once a transaction has terminated successfully (“committed”), its effects
are permanent even when a failure occurs.

From a programmer’s point of view, a transaction is a sequence of statements encapsulated
between a “beginning of transaction” statement (BOT) and an “end of transaction” state-
ment (EOT). A transaction can either commit at EOT if the execution was successful or
abort if some error occurred. If it is committed, any state change it made becomes visible to
other transactions. If it is aborted, it has no effect at all; any state changes that it might
already (tentatively) have made must be undone.

Transactions can be nested [Mos81]. Nested transactions enhance the “flat” transac-
tion model by providing modular composition of transactions, dealing with intra–transac-
tion concurrency, and offering a way to handle partial failures. They are particularly well
suited for applications in distributed systems.

The term “transaction” has a strong connotation of being limited to database systems.
In the domain of software fault tolerance, the term “atomic action” is usually used, though
this latter term has been used somewhat inconsistently lately. Some researchers use it to
denote transactions, while others use it as a synonym for conversations. Although these two
approaches can be seen as different views of the same problem [SMR93], I do not use the
term “atomic action” in this thesis to avoid possible confusions.

For a detailed discussion of transactions, the reader is referred to section 5.4.

25

Chapter 3:

Distributed Systems in Ada 95

Ada 95 is a revised and much improved version of the “classical” Ada programming lan-
guage developed originally for the United States Department of Defense to match their
requirements for a modern, safe, and efficient structured programming language. Classical
Ada was codified as an ANSI standard in 1983 and is therefore sometimes called “Ada 83”;
an equivalent ISO standard was ratified in 1987. The successor language Ada 95 is defined
by ISO standard ISO/IEC 8652:1995 [ISO95]. For an overview of the history of Ada, see
the rationale [Bar95].

In order to lay a solid foundation for the discussion in the following chapters, I give a
very brief overview of the most important new features in Ada 95 here, with an emphasis on
its provisions for the development of distributed systems.

3.1 Ada 95

Ada 95 improves over the original definition of Ada 83 in several areas, including the fol-
lowing:

• Addition of language constructs for object–oriented and incremental application
development (“tagged types” and “child packages”).

• Improvements in the area of tasking: a new construct, called “protected type”, imple-
ments passive entities that may be accessed concurrently by several tasks (monitors).

• A distribution model based on remote procedure calls is standardized.

Object–Oriented Programming

26

The last point is explained in detail below (see section 3.2 on page 31). In the remainder of
this section I will present the two other novelties, tagged and protected types, for the follow-
ing chapters assume the reader is familiar with them. (For a complete description of all the
new features in Ada 95, see the language standard [ISO95] and the rationale [Bar95].)

3.1.1 Object–Oriented Programming

Object–oriented programming in Ada 95 is based on the concepts of derivation classes
formed by type extension [Wir88a] and of single inheritance.

Type extension works by refining an existing record type by adding new components
or operations, or by modifying existing operations. Contrary to e.g. Oberon–2 [MW91], not
all record types can be extended: only tagged types can. (This language design choice was
motivated mainly by a concern for efficiency.) A tagged type is a record type defined with
the keyword tagged, or a type derived from such a tagged record type. Fig. 3.1 shows a sim-
ple tagged type with a few extensions. The derived types inherit all their ancestors’ compo-
nents and primitive operations1. New components may be added with each derivation,
inherited primitive operations may be overridden if the inherited behavior is not appropriate
for the derived type, and new primitive operations may be added.

1. In other object–oriented languages, the term “method” is often used.

Fig. 3.1: A Tagged Type Hierarchy

with Canvases; use Canvases;
package Shapes is

type Shape is
abstract tagged null record;

procedure Draw
(S : in Shape;
 Canvas : access Canvas’Class)
is abstract;

end Shapes;

package Shapes.Circles is

type Circle is new Shape with
record
-- Added components
Center : Point;
Radius : Float;

end record;

procedure Draw
(C : in Circle;
 Canvas : access Canvas’Class);

-- Inherited abstract primitive
-- operation, must be overridden.

function Radius
(C : in Circle) return Float;

-- New primitive operation;

end Shapes.Circles;

package Shapes.Rectangles is

type Rectangle is new Shape with
record
Top_Left : Point;
Bottom_Right : Point;

end record;

procedure Draw
(R : in Rectangle;
 Canvas : access Canvas’Class);

-- Inherited and overridden.

function Width
(R : in Rectangle) return Float;

-- New primitive operation;

end Shapes.Rectangles;

Distributed Systems in Ada 95

27

A particularity of the object–oriented concepts of Ada 95 is class–wide programming. It
makes explicit the dynamic polymorphism that in other object–oriented languages often is
inherent. For each tagged type T there is a corresponding class–wide type T’Class, compris-
ing the whole tree of types derived directly or indirectly from T, including T itself. Values of
such a class–wide type can hold any value of any of the types derived from T. In particular,
access–to–class–wide types may be used to reference any value of any type in the derivation
class, enabling a programmer to code e.g. heterogeneous collections.

Another common use of class–wide types is for dispatching calls, i.e., calls to primi-
tive operations where the target operation is determined at run time depending on the
dynamic type of the value of a class–wide type (i.e., depending on its tag). This is different
from most other object–oriented programming languages, where either all method invoca-
tions are dispatching (e.g., in Java), or where it must be specified at the declaration of the
method whether or not calls will be dispatching (e.g., the virtual methods in C++). In
Ada 95, the programmer can decide at each call whether or not it should dispatch. If the
controlling operand (actual parameter) of a call to a primitive operation has a class–wide
type, the call is dispatched, otherwise, the primitive operation of the type of the controlling
operand is invoked. The difference is illustrated by the code fragment in fig. 3.2.

Dispatching in Ada 95 is safe — there always exists a primitive operation to dispatch to at
run time; it is not possible to write a program that would dispatch to a non–existing method
(as it may happen e.g. in Smalltalk): the language rules do not allow this, and hence such
errors will be caught by the compiler.

Dispatching occurs only on primitive operations; it is never controlled by formal
parameters with class–wide types. A call to a subprogram that is not a primitive operation
but has formal parameters with class–wide types never dispatches. Such subprograms are
called class–wide operations. Any actual parameter that has a type in the given derivation
class may be passed in place of a formal class–wide parameter.

Fig. 3.2: Illustrating Dispatching Calls

type Shape_Ref is
access all Shape’Class;

...

declare
A_Shape : Shape_Ref := ...;
A_Canvas : aliased Canvas;

begin
Draw (A_Shape.all,
 A_Canvas’Access);
-- This call dispatches on the
-- actual type of the object
-- ‘A_Shape’ references –– this
-- might be either ‘Circle’ or
-- ‘Rectangle’ in this example.

end;

declare
A_Circle : Circle := ...;
A_Canvas : aliased Canvas;

begin
Draw (A_Circle, A_Canvas’Access);
-- This call is not dispatching:
-- the actual parameter is not of
-- a class–wide type.

end;

Controlled Types

28

Finally, Ada 95 provides abstract tagged types that may have abstract primitive oper-
ations. An abstract type defines characteristics common to all types derived from it; its
abstract primitive operations are inherited and form a specification that all types derived
from it have to adhere to. An abstract type may also have concrete primitive operations —
this is useful to express default behavior for all types derived from the abstract type. A con-
crete type derived from an abstract type must supply implementations of the inherited
abstract operations.

3.1.2 Controlled Types

Controlled types [ISO95, 7.6] have been introduced in Ada 95 to facilitate resource man-
agement within abstract data types while preserving the abstraction. To make a type con-
trolled, it must be derived from one of two standard abstract tagged types,
Ada.Finalization.Controlled or Ada.Finalization.Limited_Controlled. The controlled
type then inherits the following operations (which are invoked automatically) from these
root types:

• Initialize — is invoked whenever an object of the controlled type is created (and
there is no explicit initialization).

• Finalize — is called just before a controlled object is destroyed, i.e., goes out of
scope, is deallocated using an instantiation of Ada.Unchecked_Deallocation, or is
overwritten during an assignment.

• Adjust — is invoked for the target object in an assignment just after it has been over-
written.

(Type Limited_Controlled has of course no primitive operation Adjust, since objects of
limited types cannot be copied.) The default implementations of these three primitive oper-
ations do nothing at all. By overriding the inherited versions in the derived type, the applica-
tion developer can precisely control object creation, destruction, and assignment. This can
be used for instance to implement automatic storage management for an abstraction at the
application level without having to clutter its interface.

3.1.3 Protected Types

One of the highlights of Ada has always been its integrated model for structuring concurrent
computations using tasks and the rendezvous concept. The rendezvous model presents an
abstraction from low–level synchronization primitives such as signals or semaphores.

However, experience with Ada over the years has shown that the rendezvous alone is
not entirely sufficient to express synchronization in a convenient way. One problem is that
rendezvous basically is control–flow oriented and doesn’t lend itself easily to data synchro-
nization. Shared data often had to be encapsulated within extra tasks in Ada 83, complicat-
ing the programs and leading to poor performance.

Distributed Systems in Ada 95

29

Ada 95 therefore introduced the concept of protected types. A protected type encapsu-
lates some data items and offers synchronized access to this data through access routines.
Access routines may be read–only (expressed as functions) or read–write (procedures and
entries). The language guarantees mutual exclusion between all accesses to a protected
object with the usual semantics of multiple readers or a single writer. In this respect a pro-
tected object is equivalent to a monitor [BH73]. A simple protected object encapsulating
some data item that is to be accessed by several tasks might be written as shown in fig. 3.3
below.

C. A. R. Hoare extended this basic monitor concept in [Hoa74] with so–called “condi-
tion variables” that could be declared inside a monitor. These basically are signals. A proce-
dure of a monitor may suspend itself by waiting for the condition to become true. Another
procedure of the monitor will signal on the condition variable to indicate that the condition
has become true. In Hoare’s scheme, the wait operation relinquishes exclusion (to allow
some other task to enter the monitor on the other procedure), and a signal operation imme-
diately resumes a waiting task if there is one, making the signalling task leave the monitor.

The protected types of Ada 95 offer a similar feature, albeit in a more versatile way
and at a higher level of abstraction. It has been noted that condition variables suffer from the
same drawbacks as simple semaphores, notably that their correct use is not always easy and
that the use of explicit wait and signal operations is just as error–prone as the use of P()
and V() operations on a semaphore. Ada 95 solves this problem by introducing barriers: an
entry of a protected type may have an associated barrier, a boolean expression that is (usu-
ally) expressed in terms of the state encapsulated in the protected type. A task calling an
entry can only enter the protected object if the barrier is true; if not, the task is suspended
until the barrier becomes true. Other tasks may enter the protected object through other
entries or procedures, though. The run–time system checks at the end of each procedure or
entry call whether any barriers on which tasks are waiting have become true, and if so,
resumes a waiting task, letting it execute the entry. An example of a protected type imple-
menting a bounded buffer is given in fig. 3.4.

protected type Shared_Data is

procedure Set (Val: in Data_Type);

function Get return Data_Type;

private

Item : Data_Type;

end Shared_Data;

protected body Shared_Data is

procedure Set
(Val: in Data_Type) is

begin
Item := Val;

end Set;

function Get return Data_Type is
begin
return Item;

end Get;

end Shared_Data;

Fig. 3.3: Protected Type for Mutual Exclusion

Protected Types

30

Ada 95 enhances this model of monitors even further by offering a few more language
constructs:

• An attribute ’Count may be applied within a protected object to one of its entries to
obtain the number of tasks waiting on its barrier to become true. (“Entry’Count > 0”
corresponds to Hoare’s “condition.queue” predicate.)

• An attribute ’Caller may be used within an entry to get the task identifier of the call-
ing task.

• A requeue statement allows a programmer to requeue an entry call on the same or
some other entry (in the latter case, the parameter profile must match).

These features greatly extend the expressive power of protected types. In particular, the
requeue statement makes protected types capable of implementing preference control
schemes at the application level; an example would be a resource allocation server that
granted satisfiable requests but queued currently unsatisfiable requests for later servicing. In
Ada 83, there was no satisfactory way to implement such servers.

Max_Elems : constant Natural := ...;

type Count_Type is
new Natural range 0 .. Max_Elems;

type Index_Type is
new Natural range 1 .. Max_Elems;

type Buffer_Type is
array (Index_Type) of Data_Type;

protected type Bounded_Buffer is

entry Append (Val: in Data_Type);

entry Remove (Val: out Data_Type);

private

Buffer : Buffer_Type;
First, Last : Index_Type := 1;
Nof_Elems : Count_Type := 0;

end Bounded_Buffer;

protected body Bounded_Buffer is

entry Append (Val: in Data_Type)
when Nof_Elems < Max_Elems is

begin
Buffer (Last) := Val;
Last := Last mod Max_Elems +1;
Nof_Elems := Nof_Elems +1;

end Append;

entry Remove (Val: out Data_Type)
when Nof_Elems > 0 is

begin
Val := Buffer (First);
First := First mod Max_Elems +1;
Nof_Elems := Nof_Elems –1;

end Remove;

end Bounded_Buffer;

Fig. 3.4: Protected Type with Entries

Distributed Systems in Ada 95

31

3.1.4 Asynchronous Transfer of Control

Asynchronous transfer of control (ATC) is another important feature of Ada 95, allowing
one task to signal another task without having to use a (synchronous) rendezvous. The lan-
guage provides an asynchronous select statement of the form given in fig. 3.5.

Using the asynchronous select statement, a task may alter its flow of control depend-
ing upon the asynchronous occurrence of external events. Applications of this include for
instance mode changes in real–time systems, user interrupts or time–outs aborting lengthy
computations, or error recovery [BW95].

The abortable part of an asynchronous select statement is started if the triggering
statement is a delay that hasn’t yet expired or an entry call that is queued (or later requeued
using requeue ... with abort). If then the triggering statement completes before the abort-
able part, the latter is aborted; otherwise, the triggering statement is aborted. See [ISO95,
9.7.4] for the complete rules (which are quite subtle).

If abortion were allowed to occur at any moment during the execution of the abortable
part or of the trigger, it would be nearly impossible to maintain the consistency of the state
accessed in an asynchronous select statement. The standard therefore defines a number of
language constructs that defer abortions [ISO95, 9.8(6–11)], most notably protected actions
and the Initialize, Finalize, and Adjust operations of controlled types. During these
abort–deferred regions, abortions cannot occur: they are delayed until the abort–deferred
region is left. I will discuss these topics in more detail on page 83 in section 6.4.3.

3.2 Annex E: Distributed Systems

Ada 95 is the first programming language that defines a precise model for the development
and structuring of distributed applications in the language standard. In this section, I
present an overview of the relevant annex E of [ISO95].

Asynchronous_Select :=
select
Triggering_Alternative

then abort
Abortable_Part

end select;

Triggering_Alternative :=
Triggering_Statement
[Sequence_Of_Statements]

Abortable_Part1 :=
Sequence_Of_Statements

Triggering_Statement :=
Entry_Call_Statement |
Delay_Statement

1. Must not contain accept statements!

Fig. 3.5: Syntax for Asynchronous select Statements

The System Model

32

3.2.1 The System Model

In an abstract way, a distributed application can be viewed as a collection of cooperating
entities or program fragments (so–called “virtual nodes”) that themselves are indivisible as
far as distribution is concerned and that are distributed on various computers (or “physical
nodes”) in a network, over which they communicate with each other. This is precisely the
view Ada 95 adopts, too. A virtual node in Ada 95 is called a partition1. A partition is a col-
lection of library units, some of which constitute its interface towards the other partitions of
the application. These well–defined interfaces are given by the specifications of certain
library units that have to be marked in the source using special categorization pragmas as
belonging to the interface (see section 3.2.2 below).

Ada 95 distinguishes active and passive partitions. Passive partitions are intended to
model memory shared between virtual nodes, either physically or through a virtual distrib-
uted shared memory system, and have no thread of control associated with them. Their
interface may contain remotely accessible data objects, which can be accessed by other
(active) partitions. Active partitions do have a thread of control. Different active partitions
communicate with each other only through their interface library units by means of remote
procedure calls. Direct remote data access between active partitions does not exist in
Ada 95.

Partitions are semi–autonomous: while they only make sense as part of a larger dis-
tributed application and thus are intrinsically bound to cooperate with the other partitions,
they evolve independently from each other in matters concerning tasking, time, I/O, and so
on. The language standard does not require a distributed run–time support that might offer a
common base for such services. A direct consequence of this is that all tasks are local to a
partition; they’re not visible across partitions and hence there is no remote rendezvous in
distributed Ada 95.

The configuration of distributed applications is beyond the language standard. Except
for the restrictions mentioned below in subsection 3.2.2, it covers neither the assignment of
library units to partitions nor the allocation of partitions to physical nodes.

3.2.2 Partitions and Packages

Ada 95 has adopted a mixture of the pre– and post–partitioning approaches to the develop-
ment of distributed systems. A partition is built by assembling the various packages that it
should contain, after the application has been written and compiled. Partitioning can be
done statically or even dynamically. However, the developer has to foresee the possible par-
titionings from the onset and has to provide for them: the interfaces between partitions must
be defined in advance, before the partitions are built. This mixed approach yields the bene-

1. Not to be confused with a network partition, i.e. the rupture of communication links such that a formerly
connected network is split in several parts that cannot communicate with each other anymore.

Distributed Systems in Ada 95

33

fits of both: because partition interfaces are known at compile time, the compiler can apply
semantic checks even across partitions, thereby maintaining the type safety of the whole
application; and because partitions themselves are defined only after the compilation phase,
an application can be partitioned in different ways without recompilation, subject to the
constraints given by the “seams” (remote interfaces) provided by the developer.

 Ada 95 offers several categorization pragmas, which form a hierarchy, to define the
interfaces of the partitions of distributed applications. These pragmas must be used to class
all library units of a distributed application in one of the following five categories:

Pure packages are preelaborable stateless library units with the additional restriction
that they must not declare library–level named access types. Each partition that needs a cer-
tain Pure library unit contains its own copy of it: as it is stateless, inconsistencies cannot
arise. Logically, a pure library unit behaves as if it existed only once. Note that package
Standard in particular is a Pure package, which guarantees that one can use the standard
types in communication between active partitions.

Shared_Passive library units also must be preelaborable and must not globally declare
task types, protected types with entries, or access types to class–wide types. State (global
variables and protected objects without entries) declared in the specification of a
Shared_Passive package are directly accessible by active partitions. The constraints placed
upon these library units make sure that such accesses can never trigger a remote call to
another active partition (e.g., through dispatching). A Shared_Passive library unit can be
assigned to at most one partition.

The specifications of Remote_Types library units (“RT units”) also must be preelabor-
able. In addition, they must not declare variables in their interface. However, they may
declare access–to–subprogram types and access types to class–wide limited private types.
Any access type declared in the interface of a Remote_Types unit becomes a remote access
type. The restrictions make sure that any dereference of a value of such a remote access type
can only occur in the context of a remote call (in the case of a remote access–to–subpro-
gram type) or a remote dispatching call (remote access–to–class–wide type). Thus, remote
accesses do not provide remote data access, but serve as a means for late binding of remote
calls. (See also section 3.2.4 below.)

Pragma Remote_Call_Interface is used to designate library units (“RCI units”) declar-
ing remotely callable subprograms. Any subprogram declared in the visible part of the inter-
face of an RCI unit can be called remotely from some other active partition. The body of an
RCI unit must be assigned to exactly one active partition. RCI unit interfaces may not
declare state (i.e., variables) or limited types: this excludes also tasks and task types.

Finally, normal library units (without any of the above four pragmas) are completely
unrestricted. Each partition that needs a normal library unit has its own copy of it. Any
entity declared in a normal library unit is local to the partition it is contained in and cannot
be accessed remotely; in fact, each copy and whatever entities it declares are considered dis-

Remote Procedure Calls

34

tinct. Since there is no distributed run–time support, the state of such library units evolves
independently from that of their counterparts that might exist in other partitions.

Categorized library units form a hierarchy, in the order they are presented above. A
Shared_Passive library unit may depend only upon other Shared_Passive units or upon
Pure units. The specification of a Remote_Types unit may depend only upon other
Remote_Types units, or upon Shared_Passive or Pure units; the body of an RT unit is uncon-
strained in this respect. Units categorized as Remote_Call_Interface are similar: their spec-
ification must not depend upon normal library units, whereas there’s no such restriction on
their bodies.

The interface of a passive partition is given by the union of the interfaces of all the
Pure and Shared_Passive library units it contains. The interface of an active partition is
defined by the union of the interfaces of all Pure, Remote_Types and Remote_Call_Interface

library units it contains; normal packages contained in active partitions are not visible
across partitions.

3.2.3 Remote Procedure Calls

Communication between active partitions is based solely on the concept of remote proce-
dure calls (RPC, [BN84]), a communication abstraction for interpartition communication
built on top of simple message passing. A remote procedure call in Ada 95 is nearly trans-
parent to the application developer: excepting the categorization pragmas, both the imple-
mentation of a remotely callable subprogram as well as its call do not differ at all from a
local subroutine.

A remote procedure call can be decomposed into five distinct phases, as shown in
fig. 3.6 below. The five basic phases of an RPC are:

1. In order to send the arguments of the call over the network, they must be flattened into
a single stream of bytes. This process is called marshaling and is done transparently
for the application in the caller’s stub version of the remotely callable subprogram.
The caller’s stub also adds some identification of the routine to be invoked to this
stream of bytes. The run–time support then sends an RPC request message to the par-
tition the implementation of the desired subprogram resides on.

2. On the receiving side, the run–time support gets the information which subprogram is
to be called from the request message and invokes the corresponding receiver’s stub
procedure. The receiver’s stub then reconstructs an internal representation of the argu-
ments from the byte stream in the request message (this is called unmarshaling) and
locally invokes the correct subprogram.

3. The remotely callable subprogram executes.
4. The receiver’s stub marshals all the values returned from this subprogram, i.e. inout–

and out–parameters, function results, or even the identity of an exception, if one was

Distributed Systems in Ada 95

35

raised in step 3. The run–time support then sends an RPC answer message back to the
calling partition, containing the results of the call (if any).

5. On the calling partition, the run–time support passes this answer message back to the
caller’s stub, which then unmarshals the results and passes them back (possibly
including the raising of an exception) to the original point of call in the application.

The above describes the basic remote procedure call in Ada 95. This is called a synchronous
or blocking RPC, because the caller proceeds only after having received the answer mes-
sage. The language standard also offers so–called asynchronous or non–blocking RPCs, in
which steps 4 and 5 of the above list may be omitted and the caller may continue its execu-
tion after having sent the request message, possibly before the remotely called subprogram
has finished its execution1. Asynchronous RPCs are a way to provide a type–safe interface
to message passing in Ada 95. Asynchronously called routines cannot return results and
may have only parameters of mode in. Any exceptions they might raise are lost on the
caller’s side; they are not propagated to the calling partition. Whether a certain remotely
callable subprogram is to be called asynchronously is defined statically by applying pragma
Asynchronous to the declaration of the subprogram.

As I mentioned above, RPCs are highly transparent: the callers’ and receivers’ stubs
are generated automatically by the compiler or by a partitioning tool. The marshaling and
unmarshaling process uses the standard Stream facility of Ada 95 and is done via the

1. Note that this formulation allows asynchronous RPCs to be implemented as synchronous ones: the only
difference concerns the propagation of exceptions.

Fig. 3.6: Schematic View of a Remote Procedure Call

Application

Partition BPartition A

Stubs Stubs

PCSPCS

Comm.R
un

–t
im

e
Su

pp
or

t R
un–tim

e Support

Layer
Comm.
Layer

P(args) P

The results of the call P(args) follow the inverse route.

Distributed Objects

36

attributes ’Write and ’Read or ’Output and ’Input. An application having special needs
regarding the conversion of certain types into byte streams may provide its own implemen-
tations for these attributes; thus marshaling and unmarshaling are customizable. The mes-
sage passing protocol underlying a remote procedure call and described above is completely
hidden from the application in the PCS (Partition Communication Subsystem, see
section 3.2.5), part of the run–time support. The PCS is invoked by the stubs through a stan-
dardized interface in package System.RPC.

Remote_Types packages may declare remote access–to–subprogram types in the visi-
ble parts of their interfaces. These make dynamic remote calls possible: a variable on one
partition may contain a reference to a remotely callable subprogram on some other partition.
Again, distribution is transparent: an indirect call through a remote access–to–subprogram
differs in no way from a local indirect call. The actual call follows again the scheme shown
in fig. 3.6 above. The only difference is that the destination of the call is not known stati-
cally but only at run time.

3.2.4 Distributed Objects

The distribution model of Ada 95 also covers the realm of object–oriented programming.
The language standard uses both the new OO features and the new distribution features to
define a distributed object model, which adds great flexibility to both areas.

An object in Ada 95 always resides on the partition it was created on; despite the des-
ignation “distributed object”, it cannot be passed from one partition to another one. How-
ever, it is possible to have remote accesses to objects that reside on other partitions. In
conjunction with dispatching calls; such remote references provide remote dispatching as a
further means to dynamically designate the destination of a remote call.

A remote access–to–class–wide type may designate only class–wide limited private
types. This restriction ensures that

• the object that is referenced cannot migrate1, and
• other partitions cannot access the object’s data directly.

The language standard [ISO95, E.2.2.(16)] states that a value of a remote access–to–class–
wide type can only be dereferenced to designate the controlling operand of a dispatching
call2. This is the only way other partitions can access the referenced object.

Distributed object types are usually declared in Remote_Types packages, which can
and usually do exist in several copies in a distributed application: each partition that refer-
ences a Remote_Types package contains its own copy of it. Still, the types declared by these

1. If an implementation provided support for the migration of whole partitions, the objects contained in them
would of course migrate with them. However, an object cannot migrate separately.

2. Note that this forbids remote calls to class–wide operations, the reason being that the controlling object
might reside on some other partition than the operation, or that the operation itself might exist twice in
such a case, and it wouldn’t be clear which one to call.

Distributed Systems in Ada 95

37

physically distinct copies are considered one and the same. It is this seemingly awkward
definition which gives Remote_Types packages their power and which truly extends the
object–oriented programming paradigm to distribution.

It is possible to have objects of the same derivation class (or even of the same tagged
type) on two different partitions. A third partition may obtain remote references to these
objects in the form of values of a remote access–to–class–wide type. This third partition can
then use dispatching calls to invoke primitive operations on the partition that created the
object without having to know explicitly which partition that is. In a remote dispatching
call, the caller determines the receiver partition from the remote access value in a transpar-
ent way. The dispatching happens on the receiving partition, where the object resides. Note
that the dispatching must happen at the receiver’s side, as the class of a tagged type declared
in a Remote_Types package may well be extended in several other Remote_Types or RCI
packages, and the set of such packages may be different on each partition. Furthermore, the
derived type of the actual object referenced by the remote access may not even exist on the
caller’s side, and hence dispatching can only be done at the receiver. These steps aside, a
remote dispatching call follows exactly the steps given in fig. 3.6 for simple remote proce-
dure calls.

3.2.5 The Partition Communication Subsystem

The Partition Communication Subsystem (PCS) is that part of the run–time support of
Ada 95 that implements the remote procedure call abstraction. The standard does not spec-
ify how this is to be accomplished, but it does specify a standardized interface to the PCS
that the compiler and the callers’ and receivers’ stubs shall use. This interface is given by
the declaration of the standard package System.RPC.

Each partition is identified by a partition ID. To make a remote procedure call, the
caller’s stub calls procedure System.RPC.Do_RPC giving the partition ID of the destination
partition and the marshaled parameters of the remote call in the form of a Stream as param-
eters. A second Stream is used for passing back the marshaled results from the run–time
support to the stub once the RPC has successfully completed. Do_RPC then implements the
steps given in section 3.2.3 above to perform the remote call. For an asynchronous RPC, the
caller’s stub invokes System.RPC.Do_APC, which makes an asynchronous remote call.

On the receiver’s side, it is left undefined how exactly the receiver’s stub is invoked.
The standard assumes that there is an RPC receiver subprogram that receives all incoming
streams. It is called by the run–time support and has the task of calling the correct stub. Note
that this RPC receiver is completely transparent to the application, it is somehow provided
by the implementation [ISO95, E.5(21)]. The standard requires that this RPC receiver be
re–entrant [ibid, E.5(24)] and strongly suggests that the PCS handle RPC requests concur-
rently [ibid, E.5(25, 28)], i.e. that it handle each RPC request in a separate task.

Fault Tolerance

38

3.2.6 Fault Tolerance

The language standard for Ada 95 does not require distributed applications to be fault–toler-
ant at all. The only provision made is the predefined exception Communication_Error that
may be raised on the partition initiating a remote call when the destination partition is inac-
cessible. Apart from that, [ISO95, E.1(12)] specifically states that an implementation may
allow replication of partitions, but this is only an implementation permission, not a require-
ment.

3.2.7 Open Computing and Ada 95

What are the limits within which the above standardized model of distributed computing in
Ada 95 can be used?

Annex E of the language standard is open enough to support heterogeneous distrib-
uted systems, although it allows implementations to restrict themselves to homogeneous
systems [ISO95, E(6)]. Using Ada 95 for distributed applications in a heterogeneous envi-
ronment has some pitfalls, though. It seems as if part of the language definition was made
with the idea of homogeneous distributed systems only. [ISO95, E.2(13)] specifies that all
remote types (i.e., library–level types declared in Pure or Shared_Passive library units, or in
the declarations of Remote_Types or Remote_Call_Interface library units) must have the
same representation on all partitions that use the unit. The precondition to using Ada 95 to
program an application that is to be executed in a heterogeneous environment is therefore to
find a development system that represents all remote types identically on all platforms that
are used. Note that this also means that all standard types must be represented the same
because package Standard is categorized as Pure.

This is a severe restriction that is — in my opinion — not necessary. I am not aware of
any reasons that would support this requirement; even remote access types and remote dis-
patching can be implemented perfectly well with different representations on different parti-
tions (see section 8.8). It would suffice if the standard required that all remote types have
identical declarations on all partitions, regardless of the precise representation of these
types. This guarantees that the abstract properties of all types, even those declared in the
standard libraries, are identical on all partitions. As long as all partitions use a common,
platform–independent encoding of remote types, any necessary conversions can be done
automatically and transparently for the application when values are marshaled or unmar-
shaled in the stream attributes. A comment on this has been submitted as AI–208 to the
ARG (Ada Rapporteur Group), but has not yet been answered definitively.

Interoperability between different Partition Communication Subsystems is not cov-
ered at all by the Ada 95 language standard, as it does not codify the low–level communica-
tion protocols that shall be used to implement the high–level abstraction of remote
procedure calls. It is in general not even possible to freely choose the PCS one wants to use;
one normally has to use the one supplied by the compiler vendor. The problem is that the

Distributed Systems in Ada 95

39

specification of the interface of the PCS (System.RPC) is geared towards a particular imple-
mentation model. The Do_RPC and Do_APC routines get the routing information for an RPC
request message (i.e., which partition to send it to) by means of the Partition_ID parame-
ter. The RPC stub generated by the compiler must supply this information. It follows that
the stubs must know the destination partition’s ID up front, which in turn implies that parti-
tion IDs be assigned statically at the time the distributed application is configured. (Inside
the implementation of remote calls — and the stubs are part of this — one cannot use the
attribute ’Partition_ID to obtain the partition ID.) Not all development systems may want
to use this fairly restricted model. For instance, if partition IDs are to be assigned dynami-
cally during the elaboration of the partitions, the run–time support must include some kind
of registry for partition IDs. The RPC stubs that the compiler generates must then query this
partition ID server before calling Do_RPC or Do_APC. As a consequence, only a PCS that
adheres to a particular compiler’s conventions about this partition ID server can be used
with that compiler.

It might have been a good idea to include a more elaborate interface specification for
the PCS in the standard and to require that any implementation use only this interface to
implement remote calls1. In this way, one would have had the freedom to use the PCS of
one’s choice together with one’s preferred compiler. As it is, the compiler and the PCS are
usually tightly coupled to one another.

3.2.8 GNAT

GNAT [SB94] originally stood for “GNU New York Ada Translator”2. It is a development
system integrated into the well–known GNU environment, and it is distributed freely under
the GNU public license. It consists mainly of an Ada 95 front end for the GNU gcc compiler
system, a full implementation of the standard libraries and the standard’s annexes, special
linking utilities for Ada 95, a make utility that knows about dependencies between Ada
library units, plus a partitioning and configuration tool called gnatdist.

With GNAT, a distributed application is partitioned statically using gnatdist. This
tool accepts as input a description of the desired partitioning written in a special–purpose
configuration language. From this description, it compiles the needed library units and
assembles them into partitions. This partitioning is static. If a different partitioning of an
application is desired, gnatdist must be re–run with a new configuration file. Partitions can
also be allocated to physical nodes by means of this configuration language, but this can
also be done separately and differently for each run of the application.

The implementation described in chapter 8 of this thesis is done in the context of
GNAT, and I will give a more detailed account of some relevant aspects of this system there.

1. Note that [ISO95, E.5(1)] omits this “only”!
2. The official position from ACT, who are developing and maintaining GNAT today, is now that GNAT

means just “GNAT”...

Part II

Replication in Ada 95

43

Chapter 4:

Prelude

In this second part of my thesis, I discuss fault tolerance by replication for distributed
Ada 95 [ISO95] programs. This introductory chapter states the goals I wanted to achieve,
defines the system model I assume, and explains the fundamental problems replication in
Ada 95 entails.

4.1 Goals

The goal of this work is to render applications written in Ada 95 fault–tolerant using repli-
cation. Following the spirit of the Ada 95 language standard, which tries to keep the seman-
tic differences between centralized and distributed execution at a minimum, replication is to
be offered in a transparent way. Ideally, the application is not aware of the fact that some of
its partitions are replicated, and no special–purpose code should have to be written. I view
replication basically as a configuration issue: as I strive to maintain the usual semantics of
the programming language, an application should not have to be rewritten to accommodate
replicated partitions. This view is backed by the language standard itself. [ISO95, E.1(12)]
states that

“An implementation may allow separate copies of an active partition to be con-
figured on different processing nodes, and to provide appropriate interactions
between the copies to present a consistent state of the partition to other active
partitions.”

This implies that replication can be handled entirely within the configuration phase of a dis-
tributed application, after it has been programmed and compiled. As explained in the intro-

The System Model

44

duction in chapter 1, this means that replication should maintain both replica transparency
(i.e., transparency towards the application–level of the replicated object itself) and also rep-
lication transparency, i.e. transparency towards the other objects in the system.

In practice, the noble goal of complete transparency may be impossible to achieve.
Nevertheless, it shall be the lodestar for this work. Any non–transparencies are to be kept at
an absolute minimum, and should certainly not interfere with the defined semantics of the
language.

4.2 The System Model

Throughout this thesis I will assume the following system model: A distributed application
executes on an asynchronous distributed system. The virtual nodes of the distributed appli-
cation do not share memory, but communicate only by message passing over the network
through reliable channels. Nodes are subject only to crash failures (fail–silent behavior).
Fault tolerance is to be achieved for operational hardware faults; design faults and software
fault tolerance are not considered.

I assume that the asynchronous distributed system is augmented by a group communi-
cation layer offering view synchronous group communication and group membership infor-
mation.

Note that I do not consider real–time systems, given the assumption of an asynchro-
nous distributed system. The possible existence of passive partitions is disregarded: their
intended use is restricted to either physically shared memory, in which case measures to
ensure fault tolerance outside the scope of this thesis have to be taken, or to distributed
shared memory implementations, which I assume are responsible themselves for providing
a fault–tolerant distributed shared memory.

The distributed systems considered may possibly be heterogeneous, i.e., they may be
composed of different types of physical nodes.

4.3 Replication Units

The partition is the unit of distribution in Ada 95. But what should be its unit of replication?
It seems obvious that both should have the same granularity; nevertheless there are a few
alternatives, which I discuss in this section.

4.3.1 Protected Objects

Ledru proposed in [Led95] a scheme to replicate protected objects. Protected objects that
were to be replicated would be declared in packages marked with a new categorization
pragma Shared_Active. These packages could be assigned to several partitions. Access to

Prelude

45

the protected objects would be synchronized amongst all the replicas of an object. The main
advantage over the Shared_Passive packages defined in [ISO95] is that protected objects
might even have conditional entries. However, it is clear that this approach cannot offer fault
tolerance in our sense. It is intended only as a way to implement a distributed shared mem-
ory system and to improve the throughput of systems where read accesses to protected
objects occur more often than write accesses. By replicating the object on each partition that
wants to access it, read accesses can be handled locally, thus improving the overall perfor-
mance. Write accesses incur a coordination overhead between the replicas, though. Ledru’s
proposition uses a centralized sequencer to order accesses to a protected object. The client
packages using the shared state are not replicated in this approach.

The protected object per se is too fine grained an abstraction to provide replication for
fault tolerance. It only allows to replicate state — the code using that state is not replicated.
Upon a node failure, the application would thus be left with some copy of the state, but pos-
sibly crucial other parts of it would still be missing! Also, some restrictions are placed upon
such replicated protected objects, e.g., they must not be used as triggering statement in an
asynchronous transfer of control (ATC). The proposed approach is not fault–tolerant: if the
node running the sequencer fails, all copies of the protected objects in Shared_Active pack-
ages become inaccessible. These drawbacks notwithstanding, it is an interesting extension
of the Shared_Passive concept of Ada 95.

4.3.2 Types

In [WB96], Wellings and Burns proposed an approach to replication based on types,
inspired by both the controlled types and the facilities provided for distributed objects in
annex E of the language standard.

A new package similar to package Ada.Finalization would provide coordination
between objects of that type in a transparent manner. This new package is shown in fig. 4.1
below. Type Broadcast_Data is intended to give access to a simple broadcast facility with-
out any delivery guarantees, Reliable_Broadcast_Data should implement the semantics of
reliable multicast given in section section 2.3.3, and Atomic_Broadcast_Data is supposed to
offer a totally ordered reliable multicast. Of course, more types could be included in the
proposal for different FIFO and causal multicasts.

Any type derived from one of these three types would be a coordinated type: when-
ever the Write operation was invoked for an object of the type, it would be invoked on all
partitions holding a replica of the object. Replicas could be created easily by declaring vari-
ables of the derived type in a normal package as these packages are replicated anyway. Yet
all replicas would have the same type because the three types declared in fig. 4.1 all are
remote types. The compiler would have to generate special RPC stubs for the primitive
operations Write that would not call the standard interface to the PCS in System.RPC but an
extension offering routines to broadcast RPC requests with the required semantics.

Types

46

However, there are problems with this approach, too. As proposed, only the primitive
operation Write would be broadcast to all replicas, opening wide the door to misuses of the
feature. Consider the example in fig. 4.2 where a new type is derived from Broadcast_Data

to implement replicated counters. Calls to Read will be ordinary procedure calls local to the
partition, but so will calls to Inc and Dec! The implementation of procedure Inc must there-
fore be done in terms of Write instead of using the more natural “Value := Value + 1”, and
likewise for Dec. But there is nothing in the proposal that would forbid this second, wrong
implementation.

On a far more basic level the question arises what exactly Write is supposed to do. It
is a primitive operation of a coordinated type, so logically it should modify some variable of
that type. But which variable? The one given as parameter cannot be modified as it is of

package Coordinated_Types is
pragma Remote_Types;

type Broadcast_Data is abstract tagged private;

procedure Write (Data : Broadcast_Data)
is abstract;

type Reliable_Broadcast_Data is abstract tagged private;

procedure Write (Data : Reliable_Broadcast_Data)
is abstract;

type Atomic_Broadcast_Data is abstract tagged private;

procedure Write (Data : Atomic_Broadcast_Data)
is abstract;

private
-- Specified by the implementation

end Coordinated_Types;

Fig. 4.1: Specification of Coordinated Types

with Controlled_Types;
use Controlled_Types;
package Counters is

type Counter_Type is new Broadcast_Data with
record
Value : Integer := 0;

end record;

procedure Write (Data : in Counter_Type);

procedure Read (Data : out Counter_Type);

procedure Inc (Data : in out Counter_Type);

procedure Dec (Data : in out Counter_Type);

end Counters;

Fig. 4.2: Deriving from a Coordinated Type

Prelude

47

mode in. Is the operation a misnomer and should not be called Write but rather
Update_All_Replicas? But then, how can we find out which variable in the replicas should
be changed? Consider also local variables of a coordinated type: how could an implementa-
tion of this scheme distinguish reliably between two different instances of a local variable in
two different invocations of a subprogram? Again, the proposal makes no indication on how
this case should be handled.

Indeed, the examples in [WB96] all use coordinated types only as an interface to
some global state that in reality is implemented quite differently. The Write operation actu-
ally updates the state through side–effects; its controlling argument of the coordinated type
serves only as a data container. This can be very misleading, and the dual implementation
may cause serious maintenance problems, in particular if the state contains complex data
structures.

Coordinated types cannot be used like other types in Ada 95; they are not suited for
implementing abstract data types such as the Counter example above. They do not fit the
common notion of a type, i.e., a definition of a set of values together with a set of operations
that may be applied to them. Instead, they offer a fairly complex interface to a broadcasting
facility, which is rather prone to being misused. I think coordinated types should only be
extended in the (static) data dimension by adding new components to the record, depending
on the needs of an application, but not in the operation dimension by adding new primitive
operations for the derived types. (Following the spirit of type extension as it was defined for
the original Oberon language [Wir88b]; alas, Ada 95 does not offer a way to restrict adding
primitive operations1.)

4.3.3 Packages

A normal package in Ada 95, i.e., one that doesn’t contain a categorization pragma, is cop-
ied on each partition it is assigned to in the configuration process. In a certain sense, the
package is replicated, but there is absolutely no coordination between these copies — the
state of one particular instance of a normal package evolves independently from that of all
other instances on other partitions. Furthermore, normal packages cannot be accessed
remotely.

On the other hand, Remote_Call_Interface packages are remotely accessible, but
they can be assigned to at most one single partition, i.e. their body — and therefore their
state — exists only once in the application; it is not replicated.

A cross between these two kinds of packages might be just what is needed to express
replication in a convenient manner in Ada 95. Wellings and Burns [WB96] also considered
the introduction of a new categorization pragma Replicated_Call_Interface which would

1. I do not argue that Oberon was better in that respect: that language lacked extensibility in the operation
dimension, i.e., only data extension was supported while new primitive operations could not be added. This
flaw was later rectified in Oberon–2 [MW91].

Partitions

48

have the same restrictions as the already existing pragma Remote_Call_Interface except for
allowing the package to be assigned to several partitions. The semantics would be that each
call to a subprogram declared in the visible part of the specification of such a package
would be sent to all replicas of the package using some kind of broadcast. The proposal
leaves open how the semantics of this broadcast is chosen; one could imagine an argument
to the Replicated_Call_Interface pragma for this, or a pragma applying to a subprogram.
The assumption with this approach is of course that either all replicas were deterministic or
that any divergence of their states was not significant.

Although appealing at first sight, this approach has a number of shortcomings. First of
all, one cannot guarantee determinism in an Ada 95 partition. It is therefore the program-
mer’s responsibility to ensure the above constraint on determinism is met since the language
cannot help in any way to verify it. This runs contrary to the spirit of Ada 95, which gener-
ally tries to assist the developer in avoiding errors (e.g., the rules for access types are such
that dangling references cannot occur). Also, the approach implicitly assumes active repli-
cation; if it were to be used for passive replication, some additional requirements would
have to be satisfied: the configuration language would have to provide some way to indicate
a primary replica, and the code generated for such a package (or the underlying run–time
support) would have to be able to function either as primary or as a backup. Furthermore, it
is unclear what happens if the body of a replicated package uses other, normal packages. As
those do exist on all partitions using them, but are not coordinated among themselves,
ensuring replica determinism might become arbitrarily complicated in such a case.

On a more structural level the question arises what replication of single packages
would be good for. Assigning packages to partitions normally is more than just cutting up
the application in an arbitrary way and distributing the pieces: a partition usually groups
packages that logically belong together. Consider now what happens on a node failure.
Unless the replicated package (with pragma Replicated_Call_Interface) is the only RCI
package in a partition, the application will lack the functionalities offered by other packages
in the partition on the failed node. Therefore, it is highly likely that the RCI packages in a
partition would be either all Replicated_Call_Interface packages (if replication is
desired), or all Remote_Call_Interface packages (if replication is not required). Mixtures of
these two kinds of packages do not seem meaningful. This is a strong hint that packages are
the wrong level of abstraction for replication, and that the unit of replication should indeed
be the same as the unit of distribution: the partition.

4.3.4 Partitions

For full fault tolerance, the partition is the appropriate choice as replication unit. It corre-
sponds to the unit of distribution (virtual node) in Ada 95, and as such is also the most logi-
cal choice.

Prelude

49

Note that several partitions may be grouped together on the same physical node. This
allows an argument similar to the one made above for replicated packages: it is probable
that either all or no partitions on a given node will be replicated, and therefore the node
should be the unit of replication. While this may be true, “physical nodes” are a concept
beyond what the language standard covers, and using this even larger granularity would lead
to a loss in functionality. If one really wanted to have a mixture of replicated and non–repli-
cated packages on a node, one can still achieve this effect by appropriately assigning the
packages to partitions and then allocating several partitions on one node. This would be
impossible if the unit of replication were the node.

4.4 Non–Determinism in Ada 95

With the choice of the partition as the basic replication unit, the “replicated objects” the title
of this thesis refers to are the partitions of a distributed Ada 95 application. Partitions in
Ada 95 generally execute in a non–deterministic way. In this section, I explore the causes
for this non–deterministic behavior and give an introductory discussion of some basic
attempts to handle or avoid this.

4.4.1 Causes of Non–Determinism in Ada 95

The most obvious causes of non–determinism in the language are all related to tasking:

• Task scheduling may be non–deterministic: if there are several tasks running in a par-
tition, their interleaving and sequence of execution is not specified. In particular, pre–
emptive tasking implementations may cause problems in this respect.

• The language standard does not impose any order on the choice if more than one alter-
native of a selective accept is open. The same holds also for entries of protected
objects. ([ISO95, 9.5.3(17)]).

• As a special case of this, an arbitrary choice is made between multiple delay alterna-
tives of a selective accept that have all expired [ISO95, 9.7.1(18)].

• It is not defined when exactly the abortable part of an asynchronous select statement
is aborted when the triggering statement completes.

Explicit dependencies on time also are a source of non–determinism, in particular when
used in the context of an asynchronous transfer of control or a timed entry call. Because
there is no global notion of time and because the physical nodes the replicas of a partition
execute on may run at different speeds, timed entry calls may time out on one replica whilst
succeeding on another. The same reason may also cause a delay alternative of a selective
accept to be open at a given moment on one replica while it is still closed, i.e., has not yet
expired, on another replica.

Is Enforcing Deterministic Behavior Possible?

50

The tasking support within the run–time support will follow the same rules on all rep-
licas. Since all replicas are copies of the same partition — and are the same partition for the
rest of the distributed Ada 95 application — they all use the same task dispatching, locking,
and queueing policies. Execution may be non–deterministic in certain cases nonetheless.
Implicit timing dependencies, for instance the use of time–sliced pre–emptive task schedul-
ing, may cause executions on different replicas to diverge; and if replicas execute on true
multi–processors, all bets are off unless physical nodes are homogeneous and synchronized
hardware–wise down to the level of the hardware clock.

4.4.2 Is Enforcing Deterministic Behavior Possible?

One approach to avoiding this non–determinism is the use of special pragmas. The language
standard offers in its real time systems annex [ISO95, annex D] a couple of pragmas to
choose a particular task scheduling policy, locking policy for protected objects, or queueing
policy for entry calls. Using these or additional, new pragmas one could basically force
tasking to behave in a deterministic way, i.e. in such a way that the same task scheduling
decisions are made at each task dispatching point given the same task set. However, these
restrictions to achieve determinism are severe and greatly reduce the field of applicability of
the approach, and furthermore, it is far from easy to define a deterministic tasking scheme.
In fact, the guidelines for development of safety critical systems often forbid the use of
tasks altogether; recently, attempts to define a restricted tasking model for such systems
have been undertaken [BDR98], but the set of restrictions is impressive, tailored specifically
to the field of safety critical real–time systems, and far from transparent.

One could try to solve the problems related to time by disallowing the use of explicit
timing dependencies. The safety and security annex of the language standard [ISO95,
annex H] offers a set of restrictions that may be used in conjunction with pragma Restric-

tions. One of these restrictions is No_Delay and forbids the use of delay statements and
semantic dependence on package Ada.Calendar, but allows the use of Ada.Real_Time.
Although the latter is supposed to represent physical time as observed in the external envi-
ronment (the so–called “wall clock time”), there is no guarantee that the time bases of two
physical machines executing two replicas of a partition are synchronized. Therefore, even
this restriction is not sufficient to guarantee the deterministic behavior of a partition. Fur-
thermore, forbidding the use of delay statements is not transparent and might make it
impossible to use third–party libraries, which might contain delays without the application
(or the developer, respectively) using them ever becoming aware of this fact.

Also note that restrictions generally apply to the whole partition [ISO95, 13.12(8)],
not just to the library unit containing the pragma. This includes the run–time support, and in
particular the partition communication subsystem! Delays are frequently used in communi-
cation protocols, and the exclusion of the delay statement would make the implementation
of a PCS more difficult. (The PCS of GNAT, GLADE, does use delays.)

Prelude

51

Even if this problem were solved, e.g., through a new restriction that would apply
only to the application, but not to the run–time support itself, simply choosing deterministic
tasking policies and forbidding explicit dependencies on time would not suffice to ensure
replica determinism. Consider the simple server shown in fig. 4.3 below.

Assuming that this package is the only package of the partition, the server in fig. 4.3
offers the two operations Do_It and Reset. If it is replicated using the determinism restric-
tions sketched above, it is still possible that two replicas evolve differently because the cre-
ation of the tasks executing the RPCs is triggered by external events: the arrival of the RPC
request messages. Even if replicas are organized such that they all handle all requests in the
same order, this cannot guarantee that the time between the handling of two requests is

Fig. 4.3: A Simple Server Example

package Example is
pragma Remote_Call_Interface;

procedure Do_It;

procedure Reset;

end Example;

package body Example is

protected State is
procedure Set (I : Integer);
function Get return Integer;
procedure Inc;

private
X : Integer := 0;

end State;

protected body State is

procedure Set (I : Integer) is
begin
X := I;

end Set;

function Get return Integer is
begin
return X;

end Get;

procedure Inc is
begin
X := X + 1;

end Inc;

end State;

procedure Do_It is
begin
-- Calculate something for
-- some time, then do:
State.Inc;

end Do_It;

procedure Reset is
begin
State.Set (42);

end Reset;

end Example;

Is Enforcing Deterministic Behavior Possible?

52

exactly the same on all replicas. It is therefore possible to get different schedules as shown
in fig. 4.4.

Task scheduling — even if it is deterministic, i.e., makes the same decisions given the
same set of tasks — might lead to a situation where State.Set (42) from the Reset remote
call is executed before the State.Inc from the Do_It procedure on one replica (depicted on
the left side in fig. 4.4), while the other replica executes the two state changes in the oppo-
site order, simply because the elapsed time between the two requests is larger on the second
replica. Although both replicas treat the two external requests Do_It and Reset in the same
order, the sets of active tasks on the two replicas is not the same at all times. On replica 2,
the deterministic tasking support takes a different decision since the task executing Reset

doesn’t exist yet because the RPC request message didn’t arrive yet. As a result, the states of
the replicas diverge because they do not execute the state changes in the same order!

There is no way to synchronize the arrival and handling of RPC requests exactly since
there is no common time base between different replicas. One way to avoid this problem
would be to forbid concurrent execution of RPC requests altogether, but such an approach is
not feasible since it would result in a global serialization of requests throughout the distrib-
uted application.

The conclusion is that replicated multithreaded partitions inherently are non–deter-
ministic, even if all the non–deterministic aspects of the language are eliminated. Even if a
deterministic task dispatching policy is used to avoid implicit timing dependencies and all
explicit timing dependencies are avoided, there still remains an implicit timing dependency
that cannot be removed. There is no way to enforce determinism on the tasking level alone
— it is always necessary to enforce a common sequence of state changes.

Fig. 4.4: Diverging States in a Multithreaded Partition

Replica 1 Replica 2

Do_It

Reset

Do_It

Reset

Reset

Reset

Do_It
Do_It

Inc

IncSet

Set

Prelude

53

4.4.3 Active Replication Using Consensus

Active replication is attractive because it offers a high availability of the replicated object:
as replicas execute in parallel, failures do not incur an additional overhead. However, simple
active replication without some sort of explicit synchronization between the replicas is not
possible in Ada 95 as I have shown in section 4.4.2.

The non–determinism in fig. 4.4 stems from the fact that message deliveries are not
synchronized with task scheduling — basically, the non–determinism in the communication
layer is not accounted for. It seems that this could be remedied for active replication by forc-
ing the replicas to reach consensus (cf. section 2.3.3) on all task scheduling decisions,
including message deliveries.

On first sight, this approach seems feasible if one assumes deterministic task schedul-
ing. The basic idea is as follows. Replicas are actively replicated and execute all the same
code. Therefore they all start in the same state with the same sets of tasks. Because task
scheduling is deterministic, they will all make the same scheduling decisions in the same
order and their states will therefore evolve coherently. The only possibility for divergence
arises from message deliveries. Replicas are forced to reach a consensus as to when to
deliver a message, such that they all deliver it in the same logical moment.

With deterministic tasking, progress can be measured by the task dispatching points
[ISO95, D.2.1(4)] a task has passed. (See also the discussion of events in chapter 6.) Con-
sensus for message deliveries must then be reached on the task dispatching point at which a
message is delivered1. The most advanced task dispatching point must be taken as the com-
mon consensus value2. Those replicas that “lag behind” continue executing until this task
dispatching point is reached and deliver the message only then. In this way, they all deliver
all messages at the same task dispatching point and hence the sets of tasks continue to
evolve identically on all replicas.

In the example in fig. 4.4, replica 2 might already have completed the remote call
Do_It when replica 1 starts the consensus. As it has advanced further than replica 1, this will
be the consensus value, and consequently, replica 1 will also delay the delivery of the RPC
request message for Reset until Do_It has completed. Thus they will both interleave Do_It

and Reset in the same way (or, in this example, execute one after the other), and thus replica
consistency is ensured.

The overhead of an additional consensus for each message delivery may be signifi-
cant, but seems still tolerable. However, this scheme is not transparent: it can only work if
all timing dependencies are disallowed. This includes calls to Ada.Calendar or

1. Besides an earlier consensus needed for the totally ordered multicast necessary to ensure the ordering con-
dition given in section 2.3.2.

2. Although all replicas make the same scheduling decisions, they do not execute in lockstep: one replica may
already have advanced further than another.

Active Replication Using Consensus

54

Ada.Real_Time; and of course delay statements must not be used in a replica, otherwise rep-
licas can diverge because their clocks are not synchronized.

If these timing dependencies are to be allowed in the interest of transparency, the rep-
licas must reach consensus on each and every task scheduling decision, not just on message
deliveries! In a timed entry call for instance, all replicas must agree whether or not the entry
call timed out, and if so, when this time–out occurred with respect to other task scheduling
decisions taken during the delay. It is not sufficient if they agree only on the first condition
(whether or not a time–out occurred), and they are thus forced to track and synchronize all
task scheduling decisions, not just time–outs.

This is clearly impractical as it implies that replicas communicate over the network at
all task dispatching points to reach consensus. Forcing the replicas to execute an interactive
agreement protocol for each task scheduling decision would tremendously slow down the
partition1. In fact, one loses the main advantage of active replication, which is its high avail-
ability.

The idea of synchronizing message deliveries and task scheduling is therefore not
suitable for active replication of general partitions. Yet it should not be dismissed alto-
gether: in chapter 6, I apply a very similar idea in the context of semi–active replication.
There, the synchronization overhead can be bounded precisely because the replicas do not
have to communicate with each other for each and every scheduling decision.

In the following chapter, I consider a different approach to make all replicas follow
the same sequence of state changes. It tries to avoid synchronizing task scheduling alto-
gether by identifying state accesses and then synchronizing only those, using a coordinator–
cohort replication scheme.

1. The overhead may be fairly high even in dedicated, special–purpose systems where tasking is restricted
and where consensus only must be reached at certain points. For instance, the SIFT [WLG+78] and FTMP
[HSL78] architectures for reliable hard real–time systems (both synchronous systems using very restricted
tasking models) incur synchronization overheads of 60 to 80 percent [Pra96, p. 272]. A more recent sys-
tem, MAFT [KWFT88], which also uses a restricted tasking model, achieves better performance primarily
by delegating agreement to special hardware. The MARS project [KFG+93] also employs active replica-
tion, but again, tasking is restricted (to static scheduling even).

55

Chapter 5:

Non–Deterministic Replicas

In this chapter, I consider an approach to ensure identical evolution of all replicas’ states by
synchronizing state accesses. State accesses are identified and the execution of the replicas
is coordinated such that they all perform the accesses in the same sequence. Otherwise, the
execution of partitions is assumed to be non–deterministic: the tasking system is viewed as
a black box.

5.1 The Computation Model

In this approach, I assume the non–deterministic computation model defined for Ada 95 by
the language standard [ISO95]. Partitions that are to tolerate crash failures of physical nodes
are replicated on several physical nodes; all the replicas of a partition constitute a group.

For the purposes of discussion in this chapter, I assume a very restricted model. I only
consider S– and CS–partitions that are basically inactive; all activity is triggered by the
reception of RPC requests. As mentioned in section 3.2.5, a partition handles remote calls
concurrently: each remotely called subprogram is executed by a task. I assume that these
tasks communicate with each other only through protected objects. This model of course is
far more restrictive than what Ada 95 in general allows, but for the purpose of this discus-
sion, it is already sufficiently complicated.

The choice of this computation model has far–reaching consequences. Active replica-
tion is clearly not possible in this context. I will therefore consider a passive replication
scheme, i.e., coordinator–cohort replication. Furthermore, it is not possible to take interme-
diary checkpoints while an RPC is in progress: such a checkpoint would have to include

Coordinator–Cohort Replication

56

system state (such as the currently active task, even the current value of the PC (program
counter) and of the other registers of a physical node, the state of the stack, etc.) that is not
accessible and that might be meaningless for another replica in a heterogeneous distributed
system.

5.2 Coordinator–Cohort Replication

The coordinator–cohort replication scheme was first introduced in the context of the Isis
system [BJRA85, Bir85]. Replicas are organized as a group, and requests are multicast to
all group members. One of the replicas is designated the coordinator, the others are its
cohorts. The coordinator is the only replica that executes a request; periodically, it informs
its cohorts on its progress by sending them checkpoints. If the coordinator fails while ser-
vicing a request, one of the cohorts is appointed the new coordinator and resumes process-
ing of the request from the last checkpoint.

Checkpoints in Isis not only include the state of the data at a replica, but also the cur-
rent execution state of a request: stack, program counter, and so on. If a failed coordinator
had made nested calls to other groups since its last checkpoint, the new coordinator will
redo these calls. The receiver detects these duplicate messages and returns the retained
results from the original invocation [BJRA85]. Note that this implies that requests have
deterministic behavior. Also note that in the Isis approach, intermediary checkpoints are not
necessary, it would suffice that the coordinator inform the cohorts of state changes after a
request has terminated. If a failure occurred, the cohort would simply restart the request
from the beginning.

Requests can be handled concurrently, and the coordinator may be chosen on a per–
request basis in Isis: for each request, a different replica may be chosen as coordinator. As I
show in section 5.3 below, concurrent handling of requests requires that requests be imple-
mented as nested transactions.

5.3 Analysis

RPCs in Ada 95 (both synchronous and asynchronous ones) are defined to execute with “at
most once” semantics: if the called subprogram returns normally, its body has been exe-
cuted exactly once as the result of a call [ISO95, E.4(11), E.4.1(10)]. If the predefined
exception Communication_Error is raised on the calling partition, the remotely called proce-
dure may not have been executed.

The consequences of “at most once” semantics significantly complicate matters when
considering CS–components, i.e., a partition that is a server and a client at the same time.
Consider the scenario shown in fig. 5.1a: CS is a replicated (duplicated) partition with repli-

Non–Deterministic Replicas

57

cas R1 and R2 using coordinator–cohort replication. Some partition makes a remote call on
this replicated partition (RPC request reqA), which is multicast to the group.

The coordinator (R1) then begins executing the remote call, but to fulfill the request, it
has to make a nested remote call reqB to another partition P, which may be replicated or not.
This nested call is successful, but some time after, the coordinator R1 fails, and the cohort
R2 becomes the new coordinator and takes over. R2 “knows” there is an outstanding RPC
request reqA and that the former coordinator didn’t yet send back the reply repA (because it
didn’t receive a checkpoint yet) and thus commences executing the subprogram again.
However, due to the non–deterministic computation model, there is no guarantee whatso-
ever that the path of execution on R2 is the same as the one that had been taken on R1! It is
not even sure that R2 will redo the nested remote call to P, or if it does, that it will pass the
same parameters.

To satisfy the “at most once” requirement and to maintain the coherence of the overall
distributed state, the nested remote call to P must be undone — partition P must roll back to
the state before B was executed. Note that it cannot rely on a technique to recognize dupli-
cate invocations, discard the second one and just return the results (if any) from the first one:
it is not sure there will be a second invocation, in which case the overall behavior of the
application appears to an omniscient observer as if P executed the remote call B spontane-
ously, which violates the “at most once” rule.

Fig. 5.1a: Nested RPC Fig. 5.1b: Committing Nested Calls

R1 R2 P

t

reqA

reqB

R1 R2 P

reqA

reqB

repA

repB

repA
+State

comB

CS CS

t

repB

A
BB

A

Analysis

58

Consider now the case where R1 does not fail (fig. 5.1b). Request reqA terminates suc-
cessfully, and a reply repA is sent back to the caller. In order to be able to roll back B, parti-
tion P will have maintained some data structures. These can now be released, and CS
therefore informs P that B may now be considered permanent by sending a commitment
comB. Of course, I assume that the RPC A itself is permanent at that instant — either because
reqA is not a nested RPC request (i.e., originated on a C–component), or, if it is, because CS
received a commitment notification for it.

Undoing nested RPCs if the caller fails can have undesirable side effects if a partition
handles incoming RPC requests concurrently, as it is suggested in the Ada 95 language stan-
dard [ISO95, E.5(24, 25, 28)].

Consider the case in fig. 5.2, where partition Q, which may be replicated or not, han-
dles the two nested remote calls A2 and B2 concurrently. Partition P is replicated, and, as in
the example above, its coordinator fails after the nested call A2 has completed, but before the
“parent” remote call A1 has terminated. As shown above, this requires that the nested remote
call A2 be undone.

The problem in this scenario is that A2 may have communicated with the concurrently
running remote call B2 originating on partition R, e.g. through a protected object located on
partition Q where A2 might have written a value that B2 subsequently read. If Q rolls back to
a state before the execution of A2, it will also have to undo B2, and therefore even partition R
must undo B1 even if this remote call has already terminated successfully. The combination
of concurrent execution of remote calls and the requirement to roll back results in a poten-
tially disastrous domino effect where rollbacks proliferate throughout the distributed appli-
cation even if only one replica fails.

Remote calls under a non–deterministic computation model must therefore be syn-
chronized to avoid the domino effect. A concurrency control scheme must govern the exe-
cution of concurrent remote calls in such a way that a domino effect cannot occur:

Fig. 5.2: Concurrent RPCs + Rollback = Domino Effect

A1

A2 B2

B1

R

Q

P

B2 nested in B1A2 nested in A1

req
B2

rep
B2

rep
A2

rep
B1

req
B1

req
A2

req
A1

Non–Deterministic Replicas

59

concurrent remote calls must execute isolated from each other; the state changes a remote
call makes may become visible to other remote calls only once it has been committed. RPCs
must have transactional semantics in the non–deterministic computation model.

5.4 Transactions

Transactions are a classic software structure for managing concurrent accesses to global
data and for maintaining data consistency in the presence of failures. A transaction is a soft-
ware construct satisfying the ACID properties: (failure) atomicity, consistency, isolation,
and durability (see section 2.4.4).

The classic definition of transactions based on these four conditions is very much
database–oriented. For the purpose of fault tolerance in the context of a general–purpose
programming language, consistency and durability are problematic requirements. I view
consistency generally rather as a responsibility of the developer, who has to ensure that his
application properly maintains its data; the only consistency guarantee a transaction can
give is that its execution does not erroneously corrupt the system state. Durability also has
to be qualified: whether the updates have to be written to stable storage again depends on
the application’s specification. In the context of fault tolerance by replication, durability
shall denote the fact that all replicas are aware of the updates, which therefore can survive a
crash failure of a physical node.

5.4.1 Serializability

Isolation of transactions is ensured by a concurrency control scheme governing the execu-
tion of concurrent transactions. It schedules the operations of multiple transactions in such a
way that the consistency criterion of serializability [Pap79] is met. I define serializability
following the notation of Weihl [Wei89]1, using the concept of histories introduced in
section 2.3.1 on page 15, with the addition that denotes the subhistory of transaction t
and that the system is composed of a set of transactions T = {t1, ..., tn} and a set of objects
O = {x1, ..., xm}. Furthermore, let the concatenation of two histories be denoted by the oper-
ator •. A history H is serial if the operations of different transactions are not interleaved:

Definition 5.1: Serial and Serializable Histories

• A history H is serial in some order <T on T, if H = H = H| • ... • H| , where
ip < iq if tp <T tq for all p, q ∈ [1 .. n], p ≠ q.

• A history H is serializable in some order <T if there exists a legal equivalent serial
history .

1. For another, perhaps more classical formulation, see e.g. [Wei88].

H
t

<T ti1
tin

H' <T

Concurrency Control

60

Classical database theory defines serializability with respect to the “reads” relation
[BHG87]. Operations oi of transactions are restricted to read r(x) and write w(x) operations
on objects x. The “reads” relation <R for a history H is defined by

Definition 5.2: The “reads” relation <R

• oi <R oj if oi < oj ∧
(∃x ∈ O: oi = w(x) ∧ oj = r(x) ∧ ¬(∃o ∈ H: o = w(x) ∧ (oi < o ∧ o < oj))).

The last term of this conjuction simply expresses that no other writes on x in the history
happen between oi and oj. Transactional serializability requires that executions must be seri-
alizable in the order <R:

Definition 5.3: Serializability

• A history H is serializable if there exists an equivalent serial history .

In practice, transactional systems often implement conflict serializability, as it is simpler
and implies serializability. It is based on the notion of the conflict dependence relation:

Definition 5.4: Conflict Dependence

• Two operations oi and oj conflict if they both operate on the same object x and at least
one of them is a write operation w(x): (oi = w(x) ∧ (oj = r(x) ∨ oj = w(x))) ∨ (oj = w(x)
∧ (oi = r(x) ∨ oi = w(x))).

• oj depends on oi, written as oi <D oj, if oi and oj conflict and oi < oj.

Definition 5.5: Conflict Serializability

• A history H is conflict serializable if there exists an equivalent serial history .

Note that the definitions of serializability and conflict serializability do not depend on the
sequential specifications of the objects anymore (the equivalent serial history is not
required to be “legal”). This is because the relations <R and <D already encode legality con-
ditions for objects that can only be written or read; the type of the objects therefore becomes
unimportant. For this reason, classical databases are sometimes called untyped [BL93].

5.4.2 Concurrency Control

There are many concurrency control protocols described in the literature. Basically one dis-
tinguishes pessimistic protocols (locking or timestamp–based) and optimistic protocols.
Optimistic protocols allow concurrent transactions to proceed until they want to commit, at
which time the concurrency control component verifies that there are no conflicts, and if
there are, aborts (some of) the offending transactions. I will only consider pessimistic proto-
cols.

H' <R

H' <D

H'

Non–Deterministic Replicas

61

A classic concurrency control scheme that ensures serializability is two–phase
locking (2PL) [Pap79]. This protocol is defined by the two rules below:

Definition 5.6: Two–Phase Locking Rules

• Transactions lock the objects they access such that conflicting operations of other
transactions are blocked until the lock is released.

• Once a transaction has released a lock, it is not allowed to acquire other locks.

In order to avoid domino effects, 2PL is extended to strict 2PL by the following additional
condition:

Definition 5.7: Strict 2PL Rule

• A transaction holds all acquired locks until EOT.

Strict protocols avoid domino effects (or cascading aborts, as they are sometimes called in
the database world) because they make sure that no transaction can read a state modification
before the transaction that made it has committed. Subsequently, “2PL” always denotes
strict two–phase locking.

The conflict relation above is defined for read and write accesses, so it is only natural
to introduce read and write locks on objects. 2PL for read/write locking follows the usual
rules, i.e., multiple readers of an object are allowed, but only one writer:

• A transaction may acquire a read lock on an object only if no other transaction holds a
write lock on it.

• A transaction is granted a write lock on an object only if no other transaction holds
any lock on the object.

With locking schemes, deadlocks can occur, i.e. situations where two transactions wait for
locks on objects held by the other transaction. There are three ways to deal with this prob-
lem: deadlock prevention (scheduling transactions in such a way that deadlocks cannot
occur in the first place; this is only feasible in systems with a fairly rigid pre–defined struc-
ture), deadlock avoidance such as the wound–wait and wait–die algorithms that avoid dead-
locks at the cost of perhaps unnecessary abortions of transactions if they request a lock that
might lead to deadlock, and finally deadlock detection.

Deadlock detection examines the relations of transactions waiting to be granted locks
(the waits–for graph) for cycles (i.e., deadlocks) and resolves the deadlock by aborting a
transaction in the cycle. In a distributed setting, this is somewhat complicated by the fact
that no node has a complete view of the waits–for graph.

A completely different class of transaction scheduling algorithms ensuring serializ-
ability are timestamp–based concurrency protocols. These assign each transaction t a
unique timestamp t.ts at BOT and maintain two timestamps for each object x: x.wt records
the largest t.ts of all t that wrote the object, x.rt records the largest t.ts of any t that read it.

Concurrency Control

62

The protocol guarantees that any conflicting operations are executed in timestamp order,
aborting and restarting transactions if necessary. The basic rules are as follows:

Definition 5.8: Timestamp Ordering Rules

• If transaction t wants to perform a read operation r(x) on an object x, the scheduler
allows the read only if t.ts ≥ x.wt and sets x.rt := max (x.rt, t.ts). If t.ts < x.wt, the value
that should be read has already been overwritten, and t is aborted and restarted.

• If t wants to do a write access w(x), two checks are made: if t.ts < x.rt, or t.ts < x.wt, t
is too late and is aborted and restarted; otherwise, w(x) is executed and x.wt := t.ts.

When a transaction is restarted, it gets a new timestamp in order to avoid certain abortion.
This is different from the aforementioned wound–wait and wait–die deadlock avoidance
systems (which also are timestamp–based), where a transaction keeps its original timestamp
when it is restarted. The above two rules ensure serializability, but still allow cascading
aborts to occur. Strict timestamp–ordering is a modification to avoid cascading aborts. The
basic idea is to delay all conflicting operations of transactions tj with tj.ts ≥ ti.ts on an object
x once it has been modified by some transaction ti until ti commits1; see [BHG87] for the
details.

Timestamp ordering and 2PL are complementary concurrency control schemes —
both allow some execution histories the other doesn’t allow. It is not clear which one would
be “better” in the context of a general–purpose programming language such as Ada 95. On
the one hand, two–phase locking may deadlock and require deadlock resolution; on the
other hand, timestamp ordering is deadlock–free (as no waiting occurs), but may cause
unnecessary aborts as in fig. 5.3.

In this example, the long–running transaction t1, which has a smaller timestamp than
t2, is aborted and restarted because the object x has already been written by t2 by the time t1
tries to read it. Transaction t1 is therefore considered to be “too late” and is aborted,

1. The resulting strict protocol is still deadlock–free as waiting occurs only if tj.ts ≥ ti.ts.

Fig. 5.3: Unnecessary Abort with Timestamp Ordering

Transaction t1

BOT

BOT

Transaction t2

time

r(x) -- t1.ts < x.wt

EOT

w(x) -- x.wt := t2.ts

EOT

t1.ts < t2.ts

Non–Deterministic Replicas

63

although waiting for t2 to commit before performing r(x) would have been a perfectly
acceptable solution in this case. (Note that t1 is aborted in both basic and strict timestamp
ordering because its timestamp is too small.)

In multi–version concurrency control schemes, each write operation w(x) produces a
new version of x, so writes can never conflict. Read operations r(x) not necessarily return
the “latest” version of x; the scheduler is free to make them read from older versions. The
benefit is that late read operations do not cause the issuing transaction to be aborted. The
correctness criterion is extended to one–copy serializability, i.e., a multi–version history
HM is one–copy serializable if there exists an equivalent one–copy serial history H such
that if ti <R tj, then ti is the last transaction preceding tj that wrote to any version of the
objects involved in the “reads from” relation. Both 2PL and timestamp ordering can be used
for multi–version concurrency control. For an extended discussion of these topics, see
[BHG87].

5.4.3 Recovery

The (failure) atomicity property of transactions is implemented by a recovery manager. It
guarantees that the state contains only the effects of committed transactions in case of a fail-
ure (or a voluntary abort of a transaction).

Recovery techniques for databases usually distinguish three different classes of recov-
ery: abort recovery, which is concerned with undoing effects of a single transaction when an
abort occurs; crash recovery dealing with restoring the database in non–volatile memory to
a consistent state despite the loss of data in volatile memory (buffers etc.); and archive
recovery, which restores the database after a media failure such as a head crash on the hard-
disk.

For abort recovery, there exist two basic approaches [HR83]:

• Update–in–place, where write accesses w(x) are performed immediately and the old
values of the objects (their before–images) are retained in an undo log. If a transaction
commits, its undo log is simply discarded; if it aborts, the undo log is used to restore
the original object states.

• Deferred update, where write accesses w(x) append entries to a redo log (also called
an intentions list). Subsequent reads get the latest value from the redo log (after–
images). If a transaction commits, the changes recorded in the redo log are applied to
the state; if it aborts, the redo log is discarded.

Crash recovery uses logs to implement failure atomicity. Transactions write their undo and
redo entries in this log; they also write abort and commit entries to it. The log is forced onto
stable storage when a transaction commits, and before state updates (write–ahead logging).
This log on stable storage is used after a node crash incurring loss of the volatile memory to
reconstruct the state: transactions for which the log contains a commit entry but whose

<R

Nested Transactions

64

effects have not yet been reflected in the state are redone, those for which no commit entry
exists are undone. Recovery in classical transactional databases in discussed in numerous
publications, see e.g. [BHG87, MHL+92, Wei93, Mad98].

In distributed systems, additional complexity is caused by the requirement that all the
virtual nodes that participate in a transaction reach agreement on whether to commit or
abort the transaction. The most common solution to this atomic commitment problem is the
two–phase commit protocol [Gra78, ML83]. In this protocol, one participant acts as a coor-
dinator. The protocol has two phases: in the preparation phase, the coordinator collects each
node’s opinion on whether to abort or commit; in a second phase, the coordinator then sends
the decision to all participants. This protocol is blocking: if the coordinator fails at an inop-
portune moment, participants may remain blocked waiting for the decision to arrive. The
three–phase commit solves this problem for reliable networks, but incurs a vastly higher
performance penalty and is much more complicated. Another approach is to note the close
similarity of atomic commitment to the consensus problem, and in fact, this road has
recently led to non–blocking atomic commitment protocols that are simpler than three–
phase commit ([BT93, GLS95]).

5.4.4 Nested Transactions

Nested transactions [Ree78, Mos81] extend transactions to allow nesting, which makes the
whole concept interesting for general–purpose programming languages and also for distrib-
uted systems. Standard transactions are a sequence of simple operations that access the
state. With nested transactions, an operation of a transaction itself may be another subtrans-
action, which in turn may have still further subtransactions. This gives rise to a tree of trans-
actions, whose root is called a top–level transaction. Subtransactions that have no further
child transactions are called leaf transactions; leaves need not be at the same level in the
transaction tree.

Many models for nested transactions have been proposed; I will stick with Moss’s
original definition:

Definition 5.9: Nested Transactions

• A subtransaction executes concurrently and atomically with respect to its parent trans-
action and to all its sibling subtransactions.

• A subtransaction can commit or abort independently of its siblings or its parent.
• A subtransaction is isolated from its siblings and its parent.
• State accesses are done only in leaf transactions.1

1. This is a purely conceptual simplification. If the parent of a subtransaction should access the state, this can
always be modeled by encapsulating these accesses in yet other (leaf) subtransactions. Implementations
can “optimize away” these additional subtransactions.

Non–Deterministic Replicas

65

If a (sub)transaction aborts, all its children (even if they already have committed) are
aborted, too, its state changes are undone and its parent is notified, which may then take
appropriate actions, e.g., retrying the aborted subtransaction, or trying to accomplish the
work to be done by some other means, or aborting itself. A commit of a subtransaction is
only conditional: if the parent transaction is later aborted, the subtransaction’s state changes
will still be undone. Only the commitment of top–level transactions is definitive. When a
subtransaction commits, its state changes become visible only within its parent’s subtree —
other transactions (and their children) cannot “see” them, as transactions execute atomically
and isolated from each other.

The serialization correctness criterion also applies to nested transactions [RA94].
From a parent transaction’s point of view, a subtransaction is just another (indivisible) oper-
ation taking place between any two other operations. Hence, if the subtransaction is exe-
cuted serially between these two operations, the overall behavior will be correct. Thus the
requirements for concurrency control become:

Definition 5.10: Serializability for Nested Transactions

• The history H must be serializable with respect to top–level transactions.
• The subhistories of all parent transactions t must be serializable with respect to t’s

children.

Two–phase locking can be adapted to nested transactions using lock inheritance. Whenever
a subtransaction aborts, its state changes are undone and the locks it is holding are released;
when it commits, all the locks it is holding are passed on to its parent. The rules for 2PL
read/write locking for nested transactions are as follows [Mos85]:

Definition 5.11: 2PL for Nested Transactions

• A subtransaction t is granted a write lock on an object only if all other transactions
holding a lock on that object are ancestors1 of t.

• A subtransaction t is granted a read lock only if all holders of write locks on that
object are ancestors of t. (Note that t’s superiors — by definition — do not access the
state concurrently with t, so no conflict arises.)

• When a subtransaction t aborts, all its locks are discarded. If any of its superiors hold
locks on the same objects as t does, they continue to do so.

• Upon commit of a subtransaction t, the locks are inherited by t’s parent.

These rules ensure serializability for nested transaction histories; a proof is given
in [Lyn83].

1. I follow Moss’s terminology here: ancestor is the reflexive ancestor relation in the transaction tree, i.e., a
(sub)transaction is an ancestor of itself; superior denotes the non–reflexive ancestor relation.

H
t

An Approach in Ada 95

66

Timestamp ordering may also be used for serializing nested transactions: [Ree78]
used a multi–version timestamp ordering scheme for concurrency control.

Abort recovery in nested transactions can be seen as maintaining a stack of versions
for each object accessed by the subtransactions. Whenever a transaction accesses an object
for the first time, it pushes its current value on the stack and subsequently modifies the ver-
sion at the top of the stack. When a subtransaction commits, its version replaces that of its
parent (if any; i.e., if the parent had its own version of the object, one pops twice and then
pushes the child’s version again; if the parent hadn’t accessed the object yet, nothing has to
be done); when it aborts, it simply pops its version from the stack. This stack concept can be
implemented directly (giving a kind of deferred–update algorithm) as in Argus [LS83], or
using update–in–place and keeping the before images in an undo log. Note that because a
subtransaction only commits tentatively, the commit decision can be taken locally. Only the
commitment of a top–level transaction requires using a full–fledged atomic commitment
protocol.

5.5 An Approach in Ada 95

The basic idea of this approach to allow replication of non–deterministic partitions is
sketched in fig. 5.4 below.

A partition is split in two parts: a general, unrestricted, non–deterministic part, and an
encapsulated, deterministic part holding the coordinated state of the partition. Remote calls
execute in the non–deterministic part and access the coordinated state only through a nar-
row interface. The replica manager enforces a common sequence of state accesses on all
replicas. It does not, however, try to coordinate the task scheduling of concurrent remote
accesses.

Fig. 5.4: Schema of Replicated Partitions

reqA

repA

reqB

repB

acc3

acc2

acc1

State, accessed via
deterministic access

Non–deterministic,
unrestricted part

Run–Time
Support

routines

acc3

acc2

acc1

Run–Time
Support(acc1, acc2, acc3)

Replica 1 Replica 2

Non–Deterministic Replicas

67

5.5.1 Organizing the Replicas

Replicas in the nondeterministic computation model can be organized using the coordina-
tor–cohort protocol. Each (nested) RPC is handled as a (nested) transaction. Only the coor-
dinator executes remote calls; the cohorts only replay the state accesses in the same
sequence as they happened on the leader. Therefore, only the coordinator executes non–
deterministically, while its cohorts only record the effects this non–deterministic execution
has on the state.

There are close similarities regarding transactions between coordinator–cohort repli-
cation and databases: the cohorts assume the role of stable storage. For recovery, there are
two cases to distinguish:

• The coordinator executing a request fails and one of the cohorts becomes the new
coordinator and re–executes the request from scratch after having aborted all nested
remote calls that already had been made by the request.

• The (replicated) client that had issued the request fails, and the new coordinator of the
client instructs the coordinator that ran the request as a subtransaction to abort it.

The first case is similar to crash recovery in databases. During failure–free operation, the
coordinator uses a deferred update scheme with respect to its cohorts: it sends them — upon
the request’s top–level commit or periodically — its intentions list, i.e. the list of state
changes the request makes on the coordinator. When a top–level request is committed, the
cohorts replay these changes to bring their states in synch with that of the coordinator.

The coordinator also informs its cohorts about any nested remote call it is about to
make so that the cohorts are aware of them and can abort them should the coordinator fail
before the request is committed. In this failure case, the cohorts discard the intentions list of
the request, abort all nested actions, and then the new coordinator restarts the request from
scratch.

The second case corresponds to abort recovery in database systems. The coordinator
for a request must collect enough information to be able to abort the request at any time1,
even though it committed locally. Locally, the coordinator might use an update–in–place
scheme, retaining before images of all objects modified by a request in an undo log until the
top–level commit for that request arrives. If a request has to be aborted, the coordinator can
use these before images to undo the request’s (i.e., the subtransaction’s) state changes. It
also instructs its cohorts to abort the request, which makes them simply discard the request’s
intentions list since they didn’t replay the intentions list yet. When aborting a transaction,
the coordinator will also abort all its nested subtransactions.

So far, I have assumed that the coordinator is chosen statically: the same replica is the
coordinator for all requests. This may be a good idea, because it automatically makes sure
that once a subtransaction has committed locally, other subtransactions of the same top–

1. Until the top–level commit, at which point the undo log may be discarded.

Identifying the State

68

level transaction can see the state changes. (Note that the cohorts update their state only
once the top–level commit arrives.) It may, however, cause the coordinator to become a per-
formance bottleneck as it has to do all the work while its cohorts are more or less idle. If the
coordinator is to be chosen on a per–request basis to exploit parallelism and to get some
load balancing, two modifications of the above scheme are necessary. First, cohorts have to
replay a request’s intention list as soon as the request commits locally on the coordinator,
and they have to maintain undo information (before images) for this to support a possible
later abort. In this way, the states of all replicas agree upon the modifications made by
locally committed subtransactions, and other subtransactions of the same top–level transac-
tion can be executed on any replica. Secondly, concurrency control, e.g. locking, must be
synchronized between the replicas in a group: locks must be acquired in the same sequence
on all replicas. The techniques described in [Bir85] can be used to optimize coordination of
locks between replicas.

5.5.2 Identifying the State

In section 4.4 I have shown that a common sequence of state changes must be enforced
among all the replicas of a partition in order to guarantee their consistency. In section 5.5.1
above, I have sketched a way to achieve this goal using coordinator–cohort replication by
collecting an intentions list on the coordinator that is replayed on the cohorts. But what con-
stitutes the state of a partition in Ada 95? Obviously, one cannot simply define the state as
all global objects residing on the partition: global objects might be hidden in third–party
libraries unbeknownst to the application or the replica manager in the run–time support.
With such a definition of state, a transparent solution, i.e., collecting the intentions list with-
out interacting with the application, is impossible.

It is therefore necessary to restrict the notion of “state” in some way. This is inevitably
coupled with a loss of transparency because the application must somehow either implicitly
know or explicitly specify what is to be considered “state”.

I chose to breach the transparency rule using a new pragma called Replicated that
would apply to packages [Wol97]. While clearly not transparent, this method integrates well
with the handling of other aspects related to distribution in Ada 95: interface units of a par-
tition already must be marked by one of the categorization pragmas. Using the new pragma,
the application (or rather, its developer) can clearly identify which objects are crucial to the
partition and must be synchronized among the replicas. If the partition is not replicated, a
Replicated package will behave exactly like a normal package.

Basically, a Replicated package encapsulates global objects that are accessible only
through access subprograms and entries of protected objects declared in the visible part of
the package’s specification. The compiler could easily recognize these subprograms and
transparently add the necessary calls to the replica manager in run–time support to log them
in the intentions list — this transformation is very similar in structure to the way RPC stubs

Non–Deterministic Replicas

69

for Remote_Call_Interface packages are generated. The Replicated pragma requires that
the visible part of the package’s specification contain only protected objects and subpro-
grams. Furthermore, the body of a Replicated package must be deterministic (otherwise,
replaying the coordinator’s intentions list on the cohorts might give different results); i.e.,
the body must not contain tasks or task types, nor protected objects with entries other than
those declared in the specification, nor any semantic dependencies on Ada.Calendar or
Ada.Real_Time, nor any delay statements. It also shall not contain asynchronous select

statements. Finally, a Replicated package shall depend semantically only upon Pure or
other Replicated packages, because the parameters to the access routines must also be
logged in the intentions list, requiring marshaling, which is defined only for types declared
in packages categorized by one of the distribution pragmas. Dependencies upon
Remote_Type packages are forbidden because their bodies are unconstrained [ISO95, E.2(9)]
and thus may behave non–deterministically.

With all these constraints, Replicated packages cannot provide the mechanisms
needed to handle replication correctly in the context of distributed objects (see
section 3.2.4). Expanding their definition to encompass this concept seems not a good idea:
Replicated packages are internal to a partition while Remote_Types packages by their very
nature are part of the interface of a partition. As mentioned above, Remote_Types packages
may be non–deterministic, making them useless for this approach of handling replication. A
second new pragma Replicated_Types is needed, which has the same restrictions as
Remote_Types, but additionally requires that the body be deterministic. Again, the invoca-
tions of primitive operations through remote access–to–class–wide types can be logged in
the intentions list1.

5.5.3 Drawbacks of this Approach

The above idea of splitting a partition in two parts and encapsulating the “state” in the deter-
ministic part has some shortcomings in spite of its apparent simplicity. There are three main
problems:

• The approach is not totally transparent, yet it doesn’t integrate transactions as first–
class objects in the language. This leads to some usage problems.

• An implementation of the scheme in a (nearly) transparent way would be very com-
plex and difficult to realize.

• Since RPCs are supposed to become transactions transparently, deadlocks that may
occur must be dealt with transparently.

1. I’ll return to the problem of how to synchronize remote access values among the replicas in chapter 8. A
similar technique could be used here.

Drawbacks of this Approach

70

Subsequently, I briefly discuss the first two points without going into too much detail
because of the issue of deadlocks, which is discussed in the next subsection (5.5.4) and
which made me abandon this approach altogether.

The main usage problem is that while specifying the state using pragmas integrates
well into the standard model of distribution, using this state does not. An application
designer must consciously decide which global objects shall be replicated, and concentrate
all handling of these objects in packages that then can be marked with pragma Replicated.
The package is a fairly coarse–grained tool for structuring the state; it might sometimes lead
to unnecessarily complicated designs.

Further difficulties occur when distributed objects are used in a replicated partition.
Although Replicated_Types packages provide a way to implement distributed objects that
exist on all replicas, with primitive operations that are invoked on all replicas, their use is
subject to some subtle conditions. First, derivations of a tagged type declared in a
Replicated_Types package may only happen in other Replicated_Types packages — other-
wise, the derived type might make use of non–deterministic features, which would destroy
the state coherence of the replicas. Secondly, a partition that is to be replicated must not
contain other distributed objects (i.e., with types declared in standard Remote_Types pack-
ages). Such objects would only exist on the coordinator because they are not replicated,
which would cause major problems after a failure of the coordinator because the new coor-
dinator might suddenly receive dispatching remote calls on distributed objects that do not
exist. The application developer must exercise great care to make sure that a replicated par-
tition uses only Replicated_Types packages for its distributed objects. Contrary to the first
constraint on derivation, this condition could only be checked at configuration time.

Concerning an implementation of this scheme, there is an important number of intrac-
table problems that have to be solved. Any call to a subprogram or an entry of a protected
object declared in the visible part of a Replicated package or to a primitive operation of a
type declared in the visible part of the specification of a Replicated_Types package consti-
tutes a state access.

First and foremost, the transformation a compiler would have to do for Replicated or
Replicated_Types packages is — except for toy examples — complex. The compiler would
have to generate code to log each state access with the replica manager in the run–time sup-
port so that the latter can send this log to the cohorts to allow them to bring their state up to
date. Objects encapsulated within Replicated and Replicated_Types packages must be
recoverable, and it would be the compiler’s job to automatically add the necessary data
structures and calls to support packages. Basically, the types of the objects in the package
must be rewritten to support recoverability. The compiler would also have to add the neces-
sary support for concurrency control, e.g., by adding a transactional lock or timestamps to
each Replicated package and protected object declared in the visible part of the specifica-
tion as well as to each object of a tagged type declared in Replicated_Types packages.

Non–Deterministic Replicas

71

Another major difficulty is hidden within the implementation of protected objects in
the run–time support. Entries of a protected object not necessarily are executed by the task
that originally made the call. If an entry call is queued, it may well happen that some other
task executes the entry on the caller’s behalf later on. Such an implementation may not work
if 2PL is used as the concurrency control scheme and the transaction locks are not inte-
grated with the implementation of protected objects. The implementation of protected
objects in the tasking support must therefore be aware of transactional RPCs; the tasking
system cannot be considered a “black box”!

There is yet another reason why this approach requires integration with the tasking
system. The tasks that execute an RPC request must be identified: a transaction identifier
(TID) [FHZ97] must be associated with each task. If a remotely callable subprogram itself
creates subtasks, these too must get an identifier marking them as belonging to a particular
transaction. One could use the standard package Ada.Task_Attributes to associate TIDs
with tasks. However, there’s no way to transparently get a particular task’s parent, nor is
there any way in standard Ada 95 to have a routine of the replication manager be invoked
each time a task is created!1 The standard packages (e.g. Ada.Task_Identification) do not
provide any way to find the Task_ID of the task that created a given task. Yet this informa-
tion is known within the tasking system in the run–time support and the implementation of a
replication manager has to access it, which necessitates an addition to the interface of the
tasking system.

As far as a possible implementation is concerned, this approach requires elaborate
cooperation of the run–time support with the code generated by the compiler. The transfor-
mations a compiler has to perform for Replicated packages are complicated and intricate,
especially for adding recoverability to user–defined types. Adding concurrency control is
only slightly simpler, and must be coordinated with the implementation of the tasking sys-
tem. Yet these implementation difficulties can certainly be overcome, although the resulting
system may not be elegant. However, by far the biggest problem of the idea to give RPCs
the semantics of nested transactions is that deadlocks can occur.

5.5.4 Deadlocks

Assuming that the Ada 95 application has been written correctly and does not deadlock
when partitions are not replicated, it must be guaranteed that replication does not cause new
deadlocks to appear, or, at the utmost, that they can be dealt with in an appropriate manner,
i.e., in a way that preserves the semantics of standard Ada 95.

1. Using a controlled task attribute added with Ada.Task_Attributes doesn’t help: first, there’s no guar-
antee whatsoever that the Initialize primitive operation of the attribute was called when the task is cre-
ated because the attribute need not be created until the first access to it [ISO95, C.7.2(28)]; and second,
there’d still be the problem of getting the parent task’s Task_ID and TID to calculate the new task’s TID.

Deadlocks

72

The classical minimal deadlock situation in transactional systems arises when two
transactions compete for access to the same two objects in the opposite order, as in the
example in fig. 5.5 below.

Here, two concurrent RPCs, i.e., nested transactions, access two protected objects x1
and x2. Transaction t1 first writes object x1 and then wants to read x2, transaction t2 first
writes x2 and then tries to read x1. If the interleaving of operations is such that both transac-
tions first perform the write operations, there’s a deadlock between t1 and t2. Note that in
Ada in general this does not result in a deadlock — it’s the two–phase locking that causes it,
because locks must be held until the end of the transaction to ensure strictness. There are
several ways to resolve this simple deadlock:

• One of the two transactions could be aborted and restarted. This is the brute–force
approach.

• A simple deadlock prevention scheme would be to require that all transactions lock all
objects in the same order. Unfortunately, this would require that the compiler be able
to analyze precisely which objects a certain RPC (transaction) will access, which in
general is not possible as Ada 95 allows the dynamic creation of objects.

• A timestamp–based protocol would not run into a deadlock, but would abort and
restart one of the transactions anyway.

• A multi–version protocol (of either the timestamp ordering or the locking variety)
could be used. This in fact would avoid this particular deadlock without aborting
either transaction, but (assuming multi–version timestamp ordering and t1.ts < t2.ts)
transaction t1 would not read the value t2 wrote into x2, but the value it contained
before t2’s write operation w(x2).

The protected objects of Ada 95 not only allow read and write accesses, but also conditional
entries. This gives rise to a new class of deadlocks that are not detectable by looking for a
cycle in the waits–for graph. An example is given in fig. 5.6, where transaction t1 accesses a
protected object x through entry e (and is granted a write lock on x at the same time).

Fig. 5.5: Reader–Writer Deadlock

time

Transaction t1 Transaction t2

w(x1)

r(x2)

w(x2)

r(x1)

The waits–for Graph

t1 t2

x2

x1

waits for
lock on

is locked by

is locked by
waits for
lock on

Non–Deterministic Replicas

73

The current state of x does not permit the operation on x to be performed, so e
requeues on another entry f of the same object x whose barrier will become true as soon as
the state of x changes such that the operation can be performed. Transaction t2 then wants to
do the write access to x that would do exactly this state change, but it will remain blocked
because t1 still holds the write lock on x it acquired upon entering e. (Note that the lock can-
not be released upon requeueing, as this would violate the conditions of strict 2PL.) Again,
normal operation of an Ada 95 programs does not deadlock in this situation because the
mutex of a protected object is released when the requeue is done.

A multi–version protocol doesn’t help at all in this case — t1 has to wait for t2’s write
access, one cannot let it access an “old” value. The only solution to resolve this deadlock
would be to abort t1 and restart it later (after t2 has done its write access); alas, the waits–for
graph has no cycle, therefore a traditional deadlock detector wouldn’t even find this kind of
deadlock!

One could try to resolve this by
augmenting the basic waits–for graph by
adding edges that express waiting on an
entry queue for the barrier to become
true, yielding the graph shown in fig. 5.6a
for the above example. This augmented
graph does contain a cycle, which furthermore involves only transaction t1, so t1 would be
(correctly) aborted. Once restarted, t1 could execute normally once t2 had committed, possi-
bly even without requeueing on entry f.

 Timestamp ordering could also be used to avoid the deadlock. Assuming t1.ts < t2.ts,
progress will be made until t1 tries to enter f: at that moment, t1 is aborted because
t1.ts < x.wt (see def. 5.8). When t1 is restarted, it gets a new timestamp t1.ts > t2.ts and there-
fore can execute normally, possibly even without requeueing on f. Note however that strict
timestamp ordering would deadlock: t1 would be waiting on x’s entry queue while t2 would
be delayed until t1 had committed, which it could do only if t2 were allowed to proceed.

The combination of the cases in figs. 5.5 and 5.6 results in a program structure that
dooms the whole approach. An example is shown in fig. 5.7,which basically has the same
structure as fig. 5.5 except for replacing the read accesses with entry calls whose barriers

Fig. 5.6: Deadlock between a Writer and an Entry Call

Transaction t1 Transaction t2

e(x)
 requeue on f(x)

w(x)

time

t2 x t1
is locked bywaits for

lock on

Waits–for Graph

Fig. 5.6a: Augmented Waits–for Graph

t2 x t1
is locked bywaits for

lock on

waits on barrier

Evaluation

74

can only become true if the write access of the other transaction is first executed. Assuming
the interleaving of operations shown in fig. 5.7, both transactions first execute the write
access. Transaction t1 then makes its entry call on object x2 and is blocked despite the bar-
rier being open because the object is locked by t2. The same happens with transaction t2 and
object x1. Suppose now that t1 is aborted in an attempt to break the deadlock. At that
moment, t2 could basically proceed with its entry call as t1 no longer locks the object. How-
ever, it will remain blocked because now the barrier is closed! (Recall that the assumption is
that t1’s write access opens the barrier, but this write access has just been undone.)

As a result, this not at all uncommon case that works perfectly well in normal Ada 95
will always deadlock when the partition is replicated! Furthermore, the deadlock cannot be
broken: one transaction will always be blocked by the two–phase locking rules while the
other one will block on the application–defined entry barrier!

A similar situation would arise if strict timestamp ordering was used instead of 2PL.
Assuming that t1.ts < t2.ts, t1 would be aborted when it tried to make its entry call e(x2)
(because t1.ts < x2.wt, see def. 5.8 above). The other transaction t2 could then proceed and
make its entry call e(x1), which would block immediately on its barrier because t1’s write
access was undone. Transaction t1 would be restarted with a new timestamp t1.ts > t2.ts and
execute its w(x1) operation, causing x1.wt to become t1.ts. Now transaction t2 could basi-
cally enter e(x1) as t1 just changed the state such that the barrier became true, but it would
be aborted immediately because now t2.ts < t1.ts... and so on, ad infinitum. Once again, the
above situation works perfectly well in standard Ada 95.

5.6 Evaluation

In order to guarantee the consistency of the state of replicated Ada 95 partitions it is neces-
sary to make all replicas execute all state accesses in the same order. Partitions in Ada 95
inherently are multithreaded, and hence the order in which requests start executing is of no

Fig. 5.7: Unresolvable Deadlock

time

Transaction t1 Transaction t2

w(x1)

e(x2)

w(x2)

e(x1)

Augmented waits–for Graph

t1 t2

x2

x1

waits for
lock on

is locked by

is locked by
waits for
lock on

waits on
barrier

waits on
barrier

Non–Deterministic Replicas

75

importance. To avoid a costly domino effect, concurrent request executions must have the
semantics of transactions.

The aforementioned implementation difficulties aside, a transparent implementation
of such an approach is not feasible. Even using transactions, the effects of a failure are not
local to the group of replicas as nested remote calls need to be undone. This forces a parti-
tion to maintain undo information to be able to roll back already executed requests. Even
non–replicated partitions must execute remote calls as transactions if they are invoked from
a replicated partition!

A further intrinsic problem with any transparent implementation of RPCs as transac-
tions are long or unrelated subtransactions. The semantics an application implements in a
transaction are sometimes such that the action need not be a properly nested subtransaction.
Virtually all transaction systems offer a way for the application to define that certain nested
transactions should actually be new top–level transactions. This mechanism can consider-
ably improve the efficiency of nested transactions. In the approach presented in this chapter,
it is not possible to provide such a feature without violating transparency even more.

The final and fatal problem of the approach has been discussed in section 5.5.4 above:
transactional concurrency control may lead to deadlocks. The interactions of the semantics
of the programming language Ada 95 and serializability are such that there may occur dead-
locks that no concurrency control scheme can resolve. The fundamental issue is that the
consistency criteria of the programming language and of transactions are incompatible. The
protected objects of Ada 95 implement linearizability (cf. section 2.3.1) trivially by mutual
exclusion while transactions require serializability as the consistency criterion. Serializabil-
ity, being a blocking property, places much more rigorous restrictions on concurrency than
linearizability does. Deadlocks may occur even if all operations are total — however, these
can be dealt with by aborting and restarting one of the transactions involved. But the exist-
ence of partial operations (i.e., conditional entries of protected objects in Ada 95) may
result in deadlock situations that are impossible to resolve and that do not occur when the
partition is not replicated! If RPCs are transparently turned into transactions, innocuous
code that works perfectly well when a partition is not replicated might suddenly block when
it is.

The application must be aware of this possibility and be written in such a way that
these unbreakable deadlocks cannot occur. This is an implicit constraint that may be rather
difficult to adhere to without the help of sophisticated development tools. I see two possible
remedies for this severe problem:

• Transactions can be offered on the language level, in a non–transparent way, or
• one allows only protected objects without entries in the state of a replicated partition.

The first is certainly a possibility worth exploring, but runs counter to my goals of offering
fault tolerance by replication in a transparent manner. Still, if transactions were introduced
as a construct visible to the application, deadlock situations of the type shown in fig. 5.7

Evaluation

76

above would be acceptable (albeit unfortunate): the developer would be using transactions
consciously in this case, and taking care of the potentially problematic interactions between
entry calls on protected objects and transactional serializability was thus the application’s
responsibility.

The second is a rather brutal and unsatisfactory fix: if no entries of protected objects
in the Replicated packages are allowed, these become awfully similar to standard
Shared_Passive packages, and the implementation would be scarcely more than a compli-
cated and contorted way to implement a distributed shared memory.

For all these reasons I finally decided to drop this approach and to pursue instead the
approach presented in chapter 6.

77

Chapter 6:

Piecewise Deterministic Replicas

6.1 Non–Determinism

In the preceding chapter, I have shown that replication under the assumption of the non–
deterministic computation model of the Ada 95 language standard [ISO95] must be based
upon transactional semantics for remote operations, and that this cannot be achieved in a
transparent manner due to incompatibilities of the consistency models of Ada 95 (lineariza-
bility) and of transactions (serializability).

It seems therefore that the non–deterministic computation model leads to a dead end
as far as transparent replication is concerned. Can we assume another computation model
that would offer a way to side–step the problems encountered in chapter 5?

What are the fundamental causes of non–determinism in Ada 95? The list in
section 4.4 deals only with language constructs and their definitions. The non–determinism
perceived at the language level is caused ultimately by deliberate underspecification. The
language standard abstracts from particular implementations. Abstractions are a way to
focus on important issues, to mask details of a system that are deemed not important for the
purposes of the discussion at hand — in this case, for the specification of the programming
language.

On the language level, there’s no way to avoid this non–determinism. One can, how-
ever, descend at a lower level of abstraction and contemplate the problem on the level of the
run–time support of Ada. In chapter 5 I discussed a solution at the abstraction level of the
language, in particular, I considered the run–time support as a black box, except for the
PCS. In this chapter, I will assume a white–box view of the run–time support and especially

The Computation Model

78

of the tasking support. As I will show, this indeed yields a model that is far better suited for
transparent replication of Ada 95 partitions.

The other fundamental reason for non–determinism in Ada 95 (besides deliberate
underspecification) is the implicit dependence on time. As I have shown in section 4.4.2, it
is not possible to exorcise this source of non–determinism. However, the semantics of
Ada 95 are such that the behavior of correct applications is independent of timing. Here, the
abstractions made in the language standard provide a way to circumvent the timing issue
altogether.

6.2 The Computation Model

I assume the full computation model defined in the Ada 95 language standard. I only
assume that the execution of a partition consists of a sequence of piecewise deterministic
state intervals [SY85, Eln93]. Whenever a non–deterministic event occurs in the partition, a
new deterministic state interval is started. The goal of replication management is to guaran-
tee that all replicas go through the same sequence of state intervals, which clearly implies
that the same non–deterministic events occur in the same order and at the same logical
moment on all replicas.

A non–deterministic event in an Ada 95 partition can be either an external event such
as the delivery of an RPC request message sent by some other partition or an internal event
such as a task scheduling decision. Each task within a partition itself follows a piecewise
deterministic execution path. The nondeterministic choices made whenever one task inter-
acts with another one separate the state intervals of the tasks. The execution of the whole
partition can be seen as a set of parallel sequences of state intervals, one sequence for each
task.

6.2.1 Validity of the Model

The abstractions in the language standard guarantee that a correct Ada 95 application is
independent of the precise moments tasks access the state; the result does not depend upon
the precise interleaving of executions.

Instead, global state that is to be accessed concurrently by more than one task must be
protected by appropriate synchronization in Ada 95 (e.g., through protected objects):
accesses to one object always happen in some sequential order. A program execution in
Ada 95 is deemed erroneous if two tasks ever try to access the same unprotected object
simultaneously. More precisely, the language standard requires that accesses be sequential,
i.e., actions of different tasks on the same objects are only allowed if the action of one task
signals the action of the other task. [ISO95, 9.10(3–10)] lists the precise conditions under
which signaling in this sense occurs.

Piecewise Deterministic Replicas

79

In summary, global state in Ada 95 must be either encapsulated in protected objects,
or be protected against concurrent accesses by appropriate application–level synchroniza-
tion using rendezvous; otherwise the application is erroneous! Without loss of generality,
one may assume that any global data is encapsulated in protected objects1. Because pro-
tected objects implement linearizability (cf. def. 2.2; mutual exclusion is the basic imple-
mentation of a sequential specification), and because linearizability is a local property, the
execution of the whole application is linearizable. Any interleaving of piecewise determin-
istic state intervals that will occur in a correct Ada 95 application will yield a global linear-
izable history.

The net result of the signaling semantics of concurrent execution of Ada 95 applica-
tions is that only the observed execution history is significant, irrespective of timing. There-
fore, synchronization of replicas using the piecewise deterministic model can be achieved
by recording this history on one replica and forcing all other replicas to follow the same his-
tory. That way, timing differences between the replicas that may occur due to the absence of
a common time base have no effect on the correctness of the execution.

6.3 Semi–Active Replication

The semi–active replication model [BHV+90] has been introduced in the Delta–4 project
[Pow91] to overcome deficiencies in both the passive and the active replication models: in
the former, there’s an important recovery latency after a failure; the latter requires determin-
istic replicas. Semi–active replication supports non–deterministic replicas while offering an
availability nearly as high as active replication.

In the semi–active (or leader–follower) model of replication, all replicas execute
incoming requests. One replica is designated the leader: it is responsible for taking all non–
deterministic decisions. These decisions are propagated to the other replicas — the follow-
ers — that then are forced to take the same decisions.

The Delta–4 Extra Performance Architecture (XPA) [VBB+91] uses the notion of
pre–emption points to coordinate replicas in the leader–follower model. These are pre-
defined points in a replica at which pre–emption may occur. The leader sends a synchroni-
zation message to its followers each time it

• delivers a request, and
• reaches a pre–emption point.

Followers are always executing one step behind the leader; i.e., one synchronization mes-
sage behind it. In Delta–4’s XPA, requests are multicast to the group using reliable, not
totally ordered multicast. Synchronization messages from the leader to the followers also

1. The case where a protected object acts as a lock for some unprotected data is functionally equivalent; and
synchronization at the application level through rendezvous also can be modeled by protected objects.

Replica Management

80

use reliable multicast only, ordering is implemented in a higher layer. (Synchronization
messages contain enough information so that the followers can detect and wait for missing
messages.)

Semi–active replication is based on the notion of view–synchronous communication
(see section 2.3.3). Without view synchrony, different followers might deliver a synchroni-
zation message in different views. An example showing how this could lead to inconsisten-
cies between replicas is given in [Maz96, pp. 86f].

Contrary to the coordinator–cohort model, where a new coordinator can be chosen for
each request, the leader is chosen statically: at any time, there is only one leader in a group
of replicas; it is the leader for all requests. Two requests may interact through internal
events, and the precise nature and sequence of this interaction is determined on the leader.

6.4 Replica Management

Global data that is accessed concurrently must be protected by protected objects in Ada 95
(or declared atomic using the pragma Atomic, but I will not consider this rather special
case). For state accessed (directly or indirectly) by remotely callable subprograms this
means that all the state must be contained in or at least be protected by protected objects
because even two calls to the same remotely callable subprogram may execute concurrently.

6.4.1 Events

Deterministic state intervals are demarcated by the occurrence of non–deterministic events.
I distinguish external and internal events.

External events occur at any interaction of the partition with the rest of the system and
account for non–determinism in the communication support. An external event can be:

• The delivery of an RPC request message sent by some other partition.
• Sending an RPC answer message back to the calling partition to return the results of a

remote call.
• Sending an RPC request message to some other partition.
• Reception of an RPC answer message from some other partition.

Internal events are all non–deterministic events that can occur within a partition. They cover
all task dispatching points [ISO95, D.2.1(4)], signaling actions, and events related to abort
deferral. This includes:

• The decision, which entry in a select statement is accepted.
• The outcome of timed and conditional entry calls.
• Entering and leaving protected actions, in particular locking and unlocking of pro-

tected objects.

Piecewise Deterministic Replicas

81

• Queueing and requeueing on entry calls.
• The creation, termination, and abortion of tasks.
• Abortion of an abortable part of an asynchronous select statement.
• Entering and leaving the Initialize or Finalize primitive operations of Controlled

and Limited_Controlled types.
• Assignments of Controlled objects.

A special kind of internal events are local calls to subprograms whose results depend upon
state outside the application, e.g. system calls. An example is the Clock function in the stan-
dard package Ada.Calendar, which returns an approximation of “wall clock” time. I will
discuss this kind of event in detail in section 6.5.

Logging these events on the leader and replaying them on the followers in the same
order is sufficient to guarantee that all replicas evolve in the same manner. It is not neces-
sary to synchronize the replicas down to the level of machine instructions (impossible in a
heterogeneous system) or simple Ada statements — which might be arbitrarily complicated
if not impossible: consider for instance a partition running on a multiprocessor, where dif-
ferent tasks might execute on different processors.

6.4.2 Coordinating the Replicas: Observable Events

Semi–active replication has the advantage that no global order on incoming requests must
be imposed on the communication protocol level at the replicas. Since replicas coordinate
the order of events, it would make no sense to impose an ordering on requests. Consistent
ordering is only imposed on the delivery of the synchronization messages the leader sends
to its followers, whereas clients of a replicated partition may use a relatively simple reliable
multicast primitive for sending requests instead of a much more complicated and expensive
totally ordered multicast. The replicas themselves, however, must agree on the order of
events, which could be implemented similarly to the approach used in Delta–4 [VBB+91,
pp. 244f] or by using a FIFO multicast for intra–group synchronization1.

Multicasting a synchronization message within the group each time an event occurs
most probably would incur a prohibitively high performance overhead as internal events in
particular are bound to occur very frequently. Fortunately, this is not necessary. As long as
the effects of state intervals remain purely local to the leader, the followers need not be
informed of any events. The followers must be brought up to date only when and if the
effects become observable to the rest of the system. This leads to the notion of observable
events: if the leader sends information to any other partition in the system (or outputs some-
thing), this data depends upon the precise sequence of state intervals executed, and follow-
ers must be guaranteed to go through the same sequence of state intervals in order to
produce the same observable event. All other events have purely local effects — should the

1. FIFO order is sufficient because only the leader ever sends synchronization messages.

Correctness of the Approach

82

leader fail, the rest of the system is still in the same state as if they hadn’t happened at all,
and a follower, once it has become the new leader, may make different choices without dis-
turbing the overall consistency of the application. Synchronization is therefore needed only
before an observable event occurs. An observable event is one of the following:

• Sending an RPC answer message back to the client.
• Sending an RPC request message to some other partition.

Between observable events, the leader logs any occurrences of external and internal events
by buffering them in an event log. Just before an observable event is about to happen, the
leader multicasts this event log to the followers. Only then it may proceed and perform the
observable event. I call the path of execution described by the event log an extended state
interval as it my contain many simple state intervals together with the events relating them.
Each observable event starts a new extended state interval. When a follower receives an
event log from the leader, it proceeds with the execution, replaying the logged event out-
comes and thereby recreating the extended state interval. It does not replay the initial
observable event, though: since the leader already executed it, doing so would only result in
a duplicate invocation. Instead, the followers will just use the logged outcome of the event.
When an event occurs that is not in the log, this signifies that the whole log has been
replayed, and the follower blocks until it receives the next event log from the leader, or until
it becomes the new leader itself due to a failure of the former leader.

In general, the leader starts a new extended state interval each time an observable
event occurs. But it is free to define additional points in the execution that also start new
extended state intervals, i.e., that also make it send its event log to the followers. For
instance, the leader can start a new extended state interval whenever its event log buffer
threatens to overflow.

6.4.3 Correctness of the Approach

In section 6.2.1 I have already shown that the correctness of Ada 95 applications does not
depend on implicit timing dependencies such as the precise interleaving of executions of
concurrent tasks. The signaling model of concurrent accesses to objects in the global state
defined in [ISO95, 9.10(3–10)] has the effect that all such accesses to the same object effec-
tively happen in some sequential order, separated by signaling actions. The set of internal
events defined above encompassing all these situations, the execution histories of all repli-
cas will be identical to the history observed on the leader.

If a partition violates the signaling model by accessing an unprotected object in differ-
ent tasks, event logging cannot guarantee that all replicas perform the accesses in the same
order. Since a replication scheme must only ensure consistency for correct partitions, it is
quite acceptable to have replicas of a partition that does contain unprotected accesses to
shared objects diverge. Replicating an erroneous partition will not make it correct!

Piecewise Deterministic Replicas

83

This leaves only modifications of state local to a task to be considered. Given two
tasks that each modify a local object, it is immaterial which access happens first on a global
“wall clock” time scale. The two accesses cannot possibly affect one another, for they hap-
pen in different state intervals of different tasks during which there is — by definition — no
communication between the tasks. If any task synchronization finally occurs, this consti-
tutes a non–deterministic event, terminating the state intervals. Logging and replaying of
the events in the same order will guarantee identical evolution of state intervals on all repli-
cas.

Asynchronous abortions of either tasks or sequences of statements (cf. section 3.1.4)
might basically cause the replicas’ states to diverge if the abortion didn’t happen at pre-
cisely the same logical moment during execution.

For instance, in the asynchronous
select statement shown in fig. 6.1, the
abortable part is started if the entry call on
the protected object Trigger is not selected
immediately or is requeued. If the triggering
statement completes, the abortable part is
aborted (provided it had been started and
didn’t complete already). This abortion
might happen basically at any time (after Do_It_1, or after Do_It_2, or even during Do_It_1

or Do_It_2, or during the evaluation of their parameters), in the case of replication even at
different times during the execution of the abortable part on any two replicas. Such asyn-
chronous aborts may be problematic even in a centralized application, as even then it is
nearly impossible to make sure the state accessed by the abortable part remains consistent in
the face of abortion. Furthermore, if an assignment (other than to a controlled object, see
below) is disrupted by the abortion, the target object of the assignment may become abnor-
mal [ISO95, 9.8(21)], and any uses of values of abnormal objects are considered erroneous
in the language standard [ISO95, 13.9.1]. The critical sections of abortable parts (in the
sense of making modifications that might have an influence on the further execution) must
therefore be implemented as abort–deferred regions. The language defines several con-
structs that defer abortion [ISO95, 9.8(6–11)], in particular, protected actions as well as ini-
tialization, finalization, and assignment of controlled objects cannot be aborted. The
abortion takes place only once the abort–deferred construct is completed. The abort–
deferred regions and also the possible triggers of such asynchronous aborts again are all
subsumed by the above list of internal events. By replaying the event log on the followers, it
is therefore guaranteed that an abort happens between the same two abort–deferred regions
as on the leader, which is sufficient to maintain the semantics of Ada 95 given that any crit-
ical state modification in an abortable part is done within an abort–deferred region.

Internal events correspond to the concept of pre–emption points in Delta–4. True task
pre–emption (time–slicing; or even true parallelism in the case of tasks executing on differ-

Fig. 6.1: Asynchronous select Statement

select
Trigger.Wait_To_Occur (...);

then abort

Do_It_1 (...);
Do_It_2 (...);

end select;

Failures

84

ent processors of a multi–processor system) does not enter the picture at all, because consis-
tency is defined purely by the visible effects an execution has on the state. Given the
language rules on signaling, abortion, and abort deferral, coordinating state accesses by
replaying the observed event history is sufficient to guarantee consistent state evolution.

6.4.4 Failures

Failures in the leader–follower model of replication have to be handled differently depend-
ing on the role the failed replica had assumed. When a follower fails, nothing has to be done
— except possibly reconfiguring the distributed application by starting a new replica to
restore the original replication degree (see section 6.4.5 below). Because a follower never
interacts with the rest of the system beyond the group of replicas, its failure cannot possibly
have any effects on the distributed application.

Upon a failure of the leader, one of the followers must become the new leader. The
new leader then resumes execution at the point the former leader had last communicated to
the followers. It first re–executes any pending events in the event log. Once the event log is
exhausted, the new leader simply continues executing, henceforth logging events as they
occur and sending its event log to the remaining followers before each observable event.

Although the old leader may have progressed since it had sent its event log for the last
time before its failure, the rule that synchronization must take place before any observable
event ensures that any actions of the failed leader could not affect the system. This is similar
to write–ahead logging in databases, where all necessary information for undoing or redo-
ing an action must be in the log before the state may be updated. Here, the replicas must
have received the leader’s decisions that led to an observable event before the leader may
execute this event. This is illustrated in fig. 6.2.

The leader R1 of a replicated CS–component started executing a request reqA, made a
nested remote call reqB to some other partition P, waited for the result, and continued pro-
cessing reqA before it finally failed. Just before it performed reqB, it sent its event log for the
extended state interval S1 to its followers R2 and R3, which replay the log to execute S1.
When R1 fails, a view change occurs and follower R2 becomes the new leader and continues
execution from just after S1. Note that the extended state interval S3 may well be different
from S2 (except for the initial observable event reqB, which is guaranteed to be identical),
but since S2 could not possibly have affected any other part of the system except R1 itself,
the application’s overall state is still consistent.

Note that in the example in fig. 6.2, I assume that communication with a group of rep-
licas is always by reliable multicast: even the reply repB is multicast from P to all replicas.
R2 therefore doesn’t need to re–execute reqB at the very beginning of S3 if the answer
already arrived. If the view change due to the failure of R1 had occurred before repB had
arrived, R2 could not just wait for the reply: the former leader R1 might have failed at point
π, i.e., after having synchronized the extended state interval S1, but before having started S2

Piecewise Deterministic Replicas

85

by sending the RPC request reqB. Instead, the new leader R2 has to (re–)do any observable
event unless it can deduce that the event already had been done by the former leader (as is
the case if it did receive repB). This includes asynchronous RPCs, to which there are no
replies. The same reasoning also applies to RPC answer messages sent by the leader. If R2
fails after point ρ, R3 will become the new leader. It cannot know whether or not R2 already
sent back repA to the client, so R3 has no choice but execute the reply (again).

The above implies that partitions must be able to deal with duplicate messages for
both incoming RPC requests and incoming RPC answers. Messages must therefore be
tagged with unique, system–wide identifier. Repeated answer messages are simply ignored.
If a request message is delivered several times, the request is only executed the first time.
Repeated requests then return the result of the first invocation. A follower encountering an
observable event (i.e., at the very beginning of an extended state interval) during replay does
not have to redo the action because it knows with absolute certainty that the leader did
indeed perform the operation. Duplicate sending of messages can only occur if the leader
fails after an observable event, but before the next synchronization.

Duplicate message detection cannot be avoided unless both the leader, all its follow-
ers, and the destination partition can agree whether or not a particular message has been
sent and delivered. This would be the case if they all were part of the same group, so that a

Fig. 6.2: Failures in Leader–Follower Replication

R1 R2 P

t

reqA

reqB

R3

repB

repA

sync

sync

View change

S1

S3

S2

Client

S4

π

ρ

Recovery

86

request or answer message could be sent atomically by a reliable multicast to the destination
partition and to all replicas of the sender at the same time. For this to be possible, both par-
titions would have to be in group: a group would have to be created for each pair of commu-
nicating partitions. Given n partitions, this would require the creation of O(n2) groups in the
worst case where any partition communicates with all the n–1 other partitions. Furthermore,
such a grouping would increase network traffic considerably because the destination parti-
tion would not only get the RPC request or answer message addressed to it, but also all
intra–group synchronization messages, even though those are significant only for the fol-
lowers — the destination partition can only discard them.

What would be needed is a group communication primitive supporting atomic send-
ing of messages to multiple (two) groups [SR96]. This paper proposes a primitive for totally
ordered multicast of a message m to several groups. The message m in this case would con-
tain the request for the destination partition and the extended state interval for replica syn-
chronization. A minor deficiency would still be that the destination partition would also get
this synchronization information, which is meaningless for it. Maybe a primitive for send-
ing two messages to two groups atomically would be more appropriate1.

6.4.5 Recovery

The method of organizing replicas described so far ensures the consistency of followers
when the leader fails. Unfortunately, the replication degree decreases with each failure. It is
therefore highly desirable to be able to add new followers to the group by restarting replicas
of the partition to replace failed ones.

Once a new replica has been elaborated and started, its first interaction with the rest of
the system will be to join the group of replicas. This leads to a view change in the group,
installing a new view including the new follower. The group composition is therefore
dynamic. As part of this view change protocol, the new replica must obtain the current state
of the other group members. In this subsection, I’ll explore the question of how to organize
this state transfer.

In a homogeneous system, the state transfer amounts to taking a system–level check-
point on one of the replicas that also were in the previous view and installing this check-
point on the new replica, which then can resume execution in a state that is consistent with
the rest of the group. The system checkpoint is a snapshot of the internal state of the repli-
cas: it includes the data space, but also all relevant system information such as program
counter, stack, task states, and so on. Note however that the state transfer cannot simply be
done by installing a memory image of one of the current followers in the new replica. This

1. Note that a reliable multicast implementation already needs to do duplicate message detection. However,
here one needs a second duplicate message detection scheme at a higher level. It would be beneficial if this
high–level duplicate message detection could exploit the fact that such a facility already exists in the (hid-
den) low–level protocols of the group communication layer.

Piecewise Deterministic Replicas

87

would not be entirely correct: any reference to physical devices such as communication
channels, terminals, or files must be recreated in a meaningful and consistent fashion on the
new replica; furthermore, if files are not shared, any file that has been written to must be
included in the state.

I will not discuss how to take such a system checkpoint: this is beyond the scope of
this thesis. Checkpointing multithreaded processes is a research topic in its own right. The
well–known libckpt checkpointing library for Unix [PBKL94] is limited to sequential pro-
grams. The Condor process manager [LTBL97] for Unix systems is limited to single pro-
cesses that do not communicate with other processes (though it is being enhanced recently,
see [PL96]). A more recent development called STAR [SF98] assumes piecewise determinis-
tic behavior of processes, but assumes that the only non–deterministic events are message
deliveries and hence is also limited to single–threaded processes.

In heterogeneous environments, such system–level checkpoints cannot serve to imple-
ment the state transfer. The system–specific data they contain is meaningless on a different
physical node unless nodes were homogeneous. Yet the new replica must somehow be
brought up to date with respect to the other replicas in the group. There are two problems in
organizing the state transfer:

• How to identify the state, and how to collect and install it?
• How to guarantee that the new replica starts executing at the right point in the flow of

control?

In a heterogeneous system, dynamic groups are feasible only for a restricted subset of all
possible partitions, as I will show below: only partitions where all activity is directly trig-
gered by incoming RPC requests and where all tasks that are created by the application (not
by the run–time support) eventually complete, and where elaboration of the partition’s
library units does not create tasks, can be replicated dynamically. For all other partitions,
only static replication is feasible in a heterogeneous environment.

Given that a true checkpoint cannot be taken in a heterogeneous environment, there is
no way to transfer the state transparently. The only solution is to have the application itself
collect and install the state. A partition that is to be replicated must offer two subprograms
called Get_State and Put_State. The run–time support invokes these subprograms at appro-
priate times during the view change to implement the state transfer. Get_State is invoked on
one of the old group members to collect the group’s current state, which is then sent to the
new replica. On the newly joining group member, the run–time support then calls Put_State
with the just received state. Put_State should then install this state in the new replica. Sub-
sequently, I will use the term “checkpoint” to designate such an application–level check-
point taken by Get_State.

The Get_State and Put_State subprograms may be far from trivial. Get_State must
traverse the whole state of the application and marshal it, even if some objects do not have
remote types (pointers in particular!). In this case, the application must implement its own,

Recovery

88

representation–independent encoding. It also must deal properly with third–party libraries
whose source code may not be available; such libraries must be encapsulated in wrapper
packages that do store enough information that will be collected by Get_State such that
Put_State can recreate an equivalent state. If the partition modified any files, they must be
considered part of the “state”, too, and Get_State must include information in the check-
point allowing Put_State to bring the file on the new replica up to date.

The second question is much harder. There is no way the new replica can resume exe-
cution at an arbitrary point in the control flow for this implied that one could actually take a
system checkpoint including tasking state, stack, program counter, and so on. The new rep-
lica can only start executing requests from the beginning. Unless corrective measures are
taken, this may lead to inconsistencies as is illustrated in fig. 6.3.

In this figure, the leader replica of a replicated partition is shown. It is executing three
requests A, B, and C concurrently, each in its own task, when a view change occurs because
a new replica joins the group, and the state must be collected using Get_State and trans-
ferred to the new replica. The three requests shown are exactly the three important cases to
consider. Request A already has completed by the time the view change occurs: its reply has
already been sent to the client. All its effects are reflected in the state, and the new replica
doesn’t have to do anything for this request. Request C has not yet been started, although
the request message has been delivered before the view change. Again, the new replica has
nothing to do for this request, as it didn’t have any effect on the collected state yet. How-
ever, the request message for C must be forwarded to it because this request will affect the
state, but the new replica didn’t receive the request message as it wasn’t yet a member of the
group. This would mean that later on, the new replica would receive synchronization mes-
sages from the leader containing events involving a request it didn’t know about!

Both these requests are easy to handle correctly. Request B, on the other hand, is more
problematic as it is in progress when the view change occurs. A first problem is that since
the request is active, it may hold resources, i.e., it may currently be active within a protected
action. Since Get_State is an application–level subprogram, it must acquire read access to
these resources, too. This implies that the run–time support must delay the invocation of

Fig. 6.3: Collecting the State

deliver(reqC)

deliver(reqB)

deliver(reqA)
A

B

C

Checkpoint

π
t

deliver(view_change)

Piecewise Deterministic Replicas

89

Get_State until all currently active requests have reached points where they do not hold
exclusive access to some global data item.

Furthermore, the new replica, being unable to resume execution of this request pre-
cisely at point π, can only restart B from scratch. However, the state it receives already con-
tains B’s effects up to π, and re–executing it will therefore make these state changes twice
on the new replica, which may cause its state to diverge from that of the other replicas. Read
accesses prior to π that are re–executed on the new replica may return the wrong values,
since the state at π may be different than the state on the leader at the time the read access
was executed originally. How to solve this problem?

A first approach is similar to the one taken in chapter 5 for the state in the transac-
tional model of RPCs. The state must be identified somehow (e.g., using the pragma Repli-

cated), and the replica manager in the run–time support not only logs events, but for any
state access, it also logs the returned values (if any). This log is sent together with the state
to the new replica, which can then re–execute request B from scratch, returning the logged
results of B’s state accesses prior to π instead of re–executing them. The major drawback
with this scheme is that “state” would have to be restricted nearly as much as in chapter 5, in
particular, types used in the interface to the state would all have to be remote types because
to include them in the log, they must be marshaled. This would require elaborate support
from the compiler to insert instructions to marshal the results and log the accesses.

Another approach is to assume that all RPCs eventually complete and to wait for qui-
escence before collecting the state, i.e., to delay calling Get_State until all currently active
requests (like request B in fig. 6.3) have completed. Requests that arrived before the view
change but that didn’t start yet are queued and will be started only once the checkpoint has
been taken. This situation is shown in fig. 6.4.

 Collecting the state would be delayed until B has completed, and request C would be
queued — its execution would be deferred until after the state had been collected. Once the
state has been collected, it is sent together with all queued requests to the new replica. This
avoids the problem at the cost of introducing an arbitrarily high latency for the join of a new
replica. But again the synchronization mechanisms of Ada 95 complicate matters: request B

Fig. 6.4: Waiting for Quiescence

deliver(reqC)

deliver(reqB)

deliver(reqA)
A

B

C

t

Checkpoint
deliver(view_change)

Recovery

90

might actually be waiting on an entry barrier of a protected object that will be set to true
only by request C! In this case, the replica manager would wait in vain for a quiescent state
as B would never complete.

Because queueing on an entry call is an internal event, the replica manager is aware of
such blocked RPCs, though. It can basically detect this situation and decide to allow some
of the deferred requests to execute in the hope that the blocked requests will be unblocked,
delaying the checkpoint further until finally a quiescent state was reached. It might even
make some “intelligent” guesses as to which of the deferred requests might be likely to
unblock the blocked requests: by observing past execution history, it could note that certain
remotely callable subprograms are likely to access certain protected objects, and could
choose a deferred request for execution that usually accesses the protected objects other
calls are blocked upon. This heuristic would increase the probability that blocked requests
would be able to continue and complete soon. However, even such a heuristic could not
guarantee that a quiescent state would eventually be reached.

Yet another approach is to simply ignore the blocking problem as shown in fig. 6.5. A
checkpoint would be taken whenever a quiescent state is detected. When a view change
occurs, the run–time system might — in an attempt to minimize the data to be sent for the
state transfer — try to take a new checkpoint, but if the situation was not quiescent, the new
replica would simply get the last checkpoint together with the log of all extended state inter-
vals since then, plus all messages delivered since then (reqB and reqC in the example). This
simple scheme actually does not introduce any waiting for quiescence during a view
change. The start-up latency of the new replica may be quite high all the same, since the log
of all extended state intervals since the last checkpoint taken at a quiescent state may be
arbitrarily long.

A severe problem with any checkpointing scheme based on the notion of quiescence
are autonomous tasks within the replica, i.e. tasks that do not terminate. An example might
be a global task that constantly updates some global object with a sensor reading. If such
tasks are present, there would never be a quiescent state after the initial state and thus no

Fig. 6.5: Opportunistic Checkpointing

deliver(reqC)

deliver(reqB)

deliver(reqA)
A

B

C

Checkpoint

t

deliver(view_change)

Piecewise Deterministic Replicas

91

checkpoint could ever be taken, causing the log of extended state intervals to become very
long indeed over time.

Active tasks at the time a checkpoint is taken complicate matters anyway. Not only
may they hold resources, but they also must be recreated on the new replica. In general, the
run–time support has not enough information to accomplish this feat. For instance, it
doesn’t even know where the code for a task’s body is! The compiled code passes a refer-
ence to the body to the run–time support routine for creating a task all right, but this refer-
ence would be meaningless on the new replica. Also, even if a task could be recreated
correctly, the problem of resuming execution at the right point in its flow of control remains.
Logging all its actions and replaying this log on the new replica is impractical: first, this log
may be arbitrarily long, and second, it may contain events based upon interactions with
tasks that do not exist anymore.

Global tasks created during the elaboration of a partition may cause problems of a
somewhat different nature for recovery. In the absence of tasks, elaboration is a sequential
process performed by the environment task. If elaboration of the partition creates global
tasks, these may interact with each other. When a new replica is elaborated, such tasks
should therefore be started. But they might work with the wrong data: Set_State can be
called only once the partition has been elaborated, and state transfer requires that tasks be
started (or replayed) only once the new state has been installed.

For all these reasons, transparent state transfer in the presence of arbitrary tasks is not
possible in a heterogeneous environment. For an implementation, I will therefore make the
following assumptions:

• State transfer is implemented by taking a checkpoint calling an application–level sub-
program Get_State. This checkpoint is installed on the new replica by another appli-
cation–level subprogram Put_State.

• If the state contains any objects with types that are not remote types, these subpro-
grams must encode them appropriately in order to be able to recreate these objects
again in a heterogeneous system.

• I also assume that replicated partitions are S– or CS–components. All activity is trig-
gered by the delivery of remote requests.

• Elaboration of the partition does not create tasks, and any tasks created directly or
indirectly through a remotely callable subprogram eventually complete.

• The replica manager supports dynamic groups, i.e. recovery of replicas, only under
the quiescence assumption: from time to time, there is a moment at which no remotely
callable subprogram is active and at which a new checkpoint can be taken. A new rep-
lica gets the last checkpoint plus the event logs for all extended state intervals since
then.

Recovery is the one aspect of replication that is not transparent in my approach. Transpar-
ency is only maintained for static groups, i.e., groups where replicas can only fail. With this

Interacting with the Real World

92

restriction, semi–active replication of partitions for fault tolerance offers k–resilient objects
[LS90], i.e., objects that can tolerate up to k failures.

The only related work for general, portable checkpointing for heterogeneous environ-
ments I am aware of is c2ftc [RS96, RS97] and its successor porch [Str98]. c2ftc uses
source–to–source compilation of C programs, heavily instrumenting the original code to
maintain a portable shadow version of the memory (both stack and heap). Checkpoints must
be manually indicated in the original source code by calling a system function checkpoint.
c2ftc automates taking and installing checkpoints across binary incompatible platforms,
i.e. it does the work supposed to be done by the Get_State and Set_State subprograms in
my more traditional approach. However, C being a purely sequential programming lan-
guage, c2ftc does not deal with problems arising due to multithreading. Its successor porch
is intended to function within the context of a programming language called Cilk, a multi-
threading extension to C developed at the MIT. Cilk’s concept of multithreading is fairly
limited, though, in particular, it doesn’t seem to have a concept corresponding to entry bar-
riers in Ada 95.

6.5 Interacting with the Real World

Interaction of replicated partitions with the real world is always problematic, as the real
world normally does not have any of the “nice”, well–defined properties of Ada 95 parti-
tions. In this section, I discuss some of the problems.

6.5.1 Files

If replicas access files, the handling of file operations depends upon the nature of the file
system. If each physical node executing a replica has its own, non–shared file system, I
assume that they are identical in the beginning. In this case, nothing special has to be done
for file accesses: as all replicas will follow the same sequence of state intervals as on the
leader, they will all open the same files and perform the same operations on them in the
same order. Therefore, corresponding files on the different file systems belonging to the dif-
ferent physical nodes on which replicas reside will evolve identically. Failures do not pose
problems either: if a replica fails, the associated local file system becomes inaccessible for
the rest of the Ada 95 application and the question of whether all files are in a consistent
state becomes moot. Files can be seen in this case as an extension of a replica’s state to sec-
ondary storage.

If all the physical nodes executing the replicas of a partition have access to one single
shared file system1, there are two cases. If the file server is part of the Ada 95 application,

1. I will not consider the case where some replicas of a partition share a file system while other replicas of the
same partition have their own file systems.

Piecewise Deterministic Replicas

93

i.e., if it is a partition of the application, all accesses to it automatically are remote calls. File
system accesses are normal observable events, and their handling doesn’t differ in any way
from that of normal observable events. The implementation of the standard packages for
handling files (Ada.Text_IO, Ada.Wide_Text_IO, Ada.Direct_IO, Ada.Sequential_IO, and
Ada.Streams.Stream_IO) must cooperate with the replica manager in the PCS to log and
replay these events. Like any partition, the file server must be able to deal correctly with
duplicate messages.

If the shared file system is provided by an operating system, the situation changes
somewhat. Access to such a file server is through normal operating system calls made
within the standard Ada 95 packages for handling files such as e.g. Ada.Text_IO or
Ada.Streams.Stream_IO, not through Ada 95 remote calls. This means that one cannot
assume that the file server be smart enough to discard duplicate accesses — it has no way to
recognize duplicate messages as such. It is therefore impossible in this case to ensure con-
sistency of the file system in all cases; the replicas alone cannot always decide whether or
not a particular access has been made. Cooperation of the file server is needed to enable the
leader to perform the access to the file system atomically with the synchronization of the
extended state interval. (See also footnotes 1 and 2 on page 94.)

6.5.2 Terminal I/O

Terminal I/O is very similar to file I/O. The user can be seen as a separate partition. Writing
on the terminal corresponds to sending it a message, input from the terminal is equivalent to
receiving an answer message. Note that this means that either the terminal is smart enough
to handle duplicate messages as discussed in section 6.4.4 or that stuttering may occur: if
the leader fails, a new leader may repeat some terminal outputs, and it may request certain
inputs again.

6.5.3 Sensors and Actuators

Sensor readings present some interesting problems because their values usually are very
sensitive to timing — which is the main reason for my not considering real–time applica-
tions. Because reading the same sensor at different times may yield different results (as
might simultaneously reading different sensors that are supposed to monitor the same con-
dition), followers cannot re–read the sensor. Sensor accesses must instead be considered
system events: followers replay all sensor accesses by returning the results obtained on the
leader1.

This is exactly what is done for Ada.Calendar.Clock (which is also a sensor reading
in a way). Note that if time as returned by Ada.Calendar.Clock should be monotonic, the

1. By returning an “old” value as the sensor reading, the follower is of course no longer synchronized with
the real world. This is one of the reasons why I excluded real–time applications from my considerations.

Recovering from a Failure

94

time base [ISO95, 9.6(6, 23), D.8(34–36)] must be coordinated between the replicas. Clock
drift or allocating replicas on physical nodes that lie in different time zones might otherwise
cause time to “jump backwards” between two extended state intervals when the leader fails.

Actuators such as robot arms commanded by a replicated partition can be seen as
another kind of output devices, similar to terminals or file systems. They too must be smart
enough to handle duplicate messages, otherwise the device might be instructed several
times to perform some action it had already done.

6.5.4 Recovering from a Failure

Failures of real–world entities are not of interest for discussing replication: even a non–rep-
licated partition has to handle these cases gracefully on the application level. I therefore
assume that if the file system, or the sensor, or the actuator fails, the application developer
has foreseen this case and programmed appropriate recovery mechanisms into the applica-
tion.

Unfortunately, failure of the leader is not transparent as far as “dumb” output devices
are concerned. If a file server or an actuator cannot properly deal with duplicate messages,
then the new leader cannot simply pursue its computation. It depends upon the semantics
the application defines for the observable event what corrective action (if any) is necessary.
In general, actions for which the application requires at–most–once semantics need correc-
tive actions, while at–least–once actions may be simply repeated. Any corrective action
must employ forward recovery — the real world cannot roll back. For example, if the output
device is a cash dispenser and the observable event is a message instructing it to dispense
$100, at–most–once semantics is probably desired: the new leader must only re–execute this
event if the ATM didn’t already dispense the money. Presumably, the application could
query the cash dispenser’s state to find out whether or not this has happened1. If the event
was a command to close the lid of the cash dispensing slot, at–least–once semantics might
be appropriate and the new leader might simply re–execute the event, thus closing the lid
really well.

A generic, transparent solution for this problem seems not feasible, as there are just
too many application and environmental dependencies. The implementation discussed in
chapter 8 does not try to handle this case, but offers an interface for applications to define

1. Note the race condition here: if the former leader sent the request message for dispensing the money
before failing, but the message didn’t arrive yet at the cash dispenser by the time the new leader makes its
query, it is still possible that the cash dispenser will dispense the money twice. This can be avoided only if
the cash dispenser still is smart enough to ignore old messages, i.e., if both the ATM and the application
use some kind of application–level2 message sequence numbering or FIFO protocol. [SC91] doesn’t even
mention this problem.

2. For this reason it is not possible to use this approach to handle an OS–level shared file system: the mes-
sages sent between the local OS kernel and the remote file server are beyond the control of the Ada 95
application, and therefore this race condition makes it impractical to try to have the new follower deter-
mine whether or not to execute a write access by first querying the file’s state (e.g., file size or data).

Piecewise Deterministic Replicas

95

their own observable events, replay them, and implement the appropriate switch–over
actions for them.

6.6 Summary

The piecewise deterministic computation model is well suited for transparent replication of
partitions. Replica consistency can be guaranteed by using a semi–active replication scheme
based on view–synchronous group communication and forcing the follower replicas to fol-
low the execution history observed on the leader. This is achieved by logging all non–deter-
ministic events on the leader and informing the followers of this recorded event sequence
before each observable event. The followers then replay events in the order logged.

Effects of failures are mostly local to the group; there is no rollback involved as with
the approach based on a non–deterministic computation model described in the previous
chapter. The only exception of this are failures of the leader replica after an observable
event, but before the next synchronization of its followers. In this case, the new leader can-
not tell whether the former leader failed before or after having executed the observable
event, and it is therefore possible that the new leader executes this event a second time. For
this reason, receiver–based duplicate message detection is mandatory. Duplicate message
detection can be avoided only if observable events can be executed atomically with the syn-
chronization of the followers.

In a heterogeneous distributed system, arbitrary partitions can be replicated only stati-
cally. Such statically replicated partitions are k–resilient objects: a partition replicated k+1
times can tolerate up to k crash failures. Dynamic replication, i.e., the recovery or replace-
ment of failed replicas at run time, is only possible in a heterogeneous system if the repli-
cated partition fulfills a series of constraints such that all activity of the partition is triggered
only by remote calls, and that these remote calls eventually terminate. Only under the quies-
cence assumption can new replicas be brought up to date with respect to the already running
replicas. If all replicas of a partition execute on homogeneous physical nodes where sys-
tem–level checkpoints including the tasking state can be taken, dynamic groups are possible
without such restrictions.

Replication transparency (i.e., transparency towards other partitions in the system) is
given at the application level, although partitions must be able to handle duplicate messages
correctly at the system level. Yet the application level remains unaffected by this. Replica
transparency, i.e. transparency towards the application level of the replicated partition itself,
is also maintained, but only for k–resilient partitions. If recoveries are included in the
model, state transfers necessitate the cooperation of the application level of the replicated
partition.

97

Chapter 7:

Related Work

This section gives an overview of the state of the art in the domain of transactions in pro-
gramming languages (i.e., outside the database–specific context) and of replication. I dis-
cuss some exemplary systems only, many others do of course exist. Clouds [DRAR91] and
CHORUS [LJP93] for instance, two operating systems offering transactions as the prime
structuring mechanism for processes, are not discussed because they’re not directly in line
with the integration of replication in a programming language.

The transactional systems comprise Argus, Camelot/Avalon, Arjuna, Isis, and Drago;
Delta–4 and Manetho are two systems based on a piecewise deterministic computation
model. Fault–tolerant Concurrent C is an early attempt to offer replication for fault toler-
ance for a general–purpose programming language that has certain similarities with Ada.

7.1 Circus

The Circus system [Coo85], developed 1984 – 85, is a system to transparently replicate pro-
gram modules. A module in Cooper’s terminology corresponds to an Ada 95 partition, but
is assumed to behave deterministically. Replicas of a module form a troupe. The notion of
replicated procedure calls was introduced to capture the many–to–many pattern of commu-
nication in RPCs between troupes. As troupes (and their members, the replicated modules)
are deterministic, no coordination (and thus, no communication between troupe members)
is necessary.

Initially, Circus did not allow any intra–module concurrency; only one RPC could be
active at any time in a module. Later, the approach was extended to use transactions to han-

Argus

98

dle concurrent RPCs; however, each RPC itself still had to be deterministic. At the time of
publication of [Coo85], these transactions apparently were not implemented. In the paper,
an extremely optimistic consistency protocol was proposed: replicas in a troupe would exe-
cute without any synchronization. When a transaction wanted to commit, the clients of the
troupe would be notified, which then would deadlock if it was detected that any two troupe
members tried to commit transactions in a different order. This deadlock would then have to
be broken by aborting some transactions. It seems to me that this overly optimistic protocol
would cause far too many aborts.

7.2 Argus

Argus is a programming language and run–time system to support the construction of fault–
tolerant distributed programs. It was developed at MIT in the 80’s (1981 – 88) [Lis88]. The
programming language Argus is based on CLU.

A distributed application in Argus is structured as guardians [LS83] that encapsulate
some state that is only accessible through RPCs. Remotely callable procedures are called
handlers; they provide the only interface of guardians. A guardian’s state is split into a vol-
atile and a persistent state (atomic objects, [WL85]). Only the persistent state of a guardian
can survive failures.

Remote calls in Argus are based on the concept of nested transactions [Mos81]. The
Argus language offers constructs for application–level transactions, i.e., transactions are an
integrated part of the language. Subtransactions can be executed concurrently using a spe-
cial language construct (the cobegin statement). The transaction executing this cobegin

statement is blocked until all the children have terminated; i.e., parent transactions cannot
execute concurrently with their children. Guardians can handle requests concurrently, but
Argus’ tasking model is limited, and implemented within the Argus run–time support
[LCJS87]. Deadlock detection is not provided.

Replication of guardians originally was not taken into account [Lis85]; failures were
not masked. Implementing RPCs as nested transactions at least guarantees a consistent state
of the persistent atomic objects. Operations on failed guardians must be re–issued by the cli-
ent after recovery of the failed guardian (or the parent transaction might try something else,
as it is informed of the abort of its child).

More recently, the Argus system has been augmented by transparent replication
[Ghe90] of guardians using a primary–backup replication scheme based on viewstamped
replication [Oki88].

Related Work

99

7.3 Camelot and Avalon

Camelot [SE+87] is a facility for distributed transaction processing running on top of the
Mach operating system. It was developed at Carnegie Mellon University in the late 80’s
(1985 – 92) as a successor of TABS [SD+85]. Avalon [EMS91] is a programming language
for use with Camelot. It is heavily inspired by Argus, but extends a more widely used pro-
gramming language: C++ instead of CLU. Avalon integrates nested transactions into C++;
it follows the same restricted tasking model (cobegin statement) as Argus.

The main novelty of Camelot/Avalon is the use of a hybrid atomicity model [FLW92]:
different objects in the system may employ different concurrency control schemes. An
application designer can choose between locking or timestamp–based concurrency control.

7.4 Arjuna and Voltan

The Arjuna [SDP91] platform for reliable distributed systems was developed at the Univer-
sity of Newcastle upon Tyne, UK from 1985 on. Arjuna extends C++ by remote procedure
calls and nested transactions. It uses its own preprocessor for RPC stub generation and runs
on standard Unix. Arjuna is built upon the object–action model [SMR93].

Transactions are explicit; in fact, the Arjuna libraries make a lot of the internal classes
visible (e.g., locks). It employs strict 2PL for concurrency control [PS88], although that
could be changed by subclassing and overriding of methods.

Replication of objects is possible in Arjuna, albeit not transparently [PSWL95]: per-
sistent objects must make explicit use of inherited operations for locking and state restora-
tion. Although [LS90] describes a protocol for active replication of deterministic objects,
Shrivastava states in [Shr94] that only passive object replication is allowed.

The Voltan system [SEST92], also developed at Newcastle, takes a different
approach. It is based upon leader–follower replication, but currently only handles single
threaded replicas [BLS98]. Limited non–determinism is handled (such as querying the
clock, or non–determinism due to time–outs). Voltan is not transparent at all: it comes in the
form of C++ libraries implementing the support for semi–active replication, but the applica-
tion is responsible of using these libraries appropriately.

7.5 Isis and Horus

Isis [BR94] was the first group communication system based on the notion of view syn-
chrony (or virtual synchrony). It offers the abstraction of a group together with operations
for determining group membership and a set of multicast communication primitives with
various semantics.

Drago

100

Isis is known in the first place for this model of group communication, but the Isis
toolkit also includes a transaction manager [GBCR93] built on top of the group abstraction.
Birman describes in [Bir85] the use of replication and transactions for building reliable dis-
tributed applications. Replicas are organized in a coordinator–cohort fashion; the coordina-
tor may be different for each request. Although Birman never clearly describes his assump-
tions about the computational model, it can be deduced that replicas may be multithreaded,
but that each transaction itself must behave deterministically, otherwise, the recovery proto-
col described in [Bir85] would not work correctly. Isis’ transaction toolkit supports nested
transactions; remote calls are viewed as nested transactions. This is not transparent, though:
the application is offered e.g. constructs to declare new top–level transactions and to abort
voluntarily.

Isis is the direct precursor of Horus [RBM96], a redesign for improving performance.
Horus is very modular and improves Isis in several ways. It introduces a couple of new fea-
tures, such as anonymous groups. ([GBCR93] mentions that using Isis groups to hold all the
participants of a nested transaction tree leads to poor performance due to unnecessary
accesses to a name server and a high rate of group joins and deletions.)

Both Isis and Horus are libraries; their use is not transparent if an application uses
them directly.

7.6 Drago

Drago [MAAG96] is a recent (from 1994 on) language developed in Spain (Technical Uni-
versity of Madrid and University of Las Palmas de Gran Canaria). It has been designed and
implemented as a fault–tolerant, distributed extension of Ada 83. Fault tolerance is achieved
by (active) replication of virtual nodes, which are called agents in Drago and which are very
similar to Ada’s tasks. Like a task, agents have entries. The system ensures that all repli-
cated agents accept entries in the same sequence.

Replicas in Drago form groups; all the replicated agents must be deterministic
[GMAA97] (in particular, they must not contain local tasks). Drago also exploits groups as
a naming abstraction by offering so–called cooperative groups whose member agents may
be different and may behave non–deterministically. Replication is not transparent: a devel-
oper has to declare replicated agents as such in the source code.

Drago has been extended to include transactions [PJA98]. It follows more or less the
traditional nested transaction approach except for allowing a parent transaction to execute
concurrently with its children and for supporting multithreaded transactions. Transactions
are a language construct (blocks encapsulated by begin/end transaction statements); the
system uses locking for inter–transaction concurrency control, while concurrency control
between the threads of a single transaction must be handled explicitly in the application
using rendezvous.

Related Work

101

The group concept is extended to cover transactional groups (both replicated and
cooperative); transactional groups must be called from within a transaction and may them-
selves only call other transactional groups. Transactional agents handle requests from the
same client serially, but requests from different clients are handled concurrently. The
authors claim that replica consistency was guaranteed through deterministic scheduling.
(But see the discussion of fig. 4.4 in section 4.4.2, page 50 of this thesis.)

7.7 replicAda

The replicAda system [HGC97], currently under development at the University Carlos III in
Madrid, is an approach similar to mine to offer transparent replication of partitions for
Ada 95. It is based on the same principles: a group communication toolkit is used; replicas
of a partition form a group. The main difference is that they assume partitions to be deter-
ministic, which they suppose is achieved by appropriate use of pragma Restriction (cf. the
discussion in section 4.4.2 on page 50).

7.8 Fault–Tolerant Concurrent C

Fault–Tolerant Concurrent C (FTCC) [CGR88] is an extension of Concurrent C, which
extends the C language with constructs for concurrency similar to those in Ada. Concurrent
C has processes that communicate by rendezvous: processes have entries (just like Ada
tasks), and there are select and delay statements similar to those of Ada. Processes can cre-
ate other processes, but nesting of processes is not supported.

In FTCC, the programmer can explicitly create a process that is replicated. However,
it is the programmer’s responsibility that this semi–actively replicated process behaves
deterministically. FTCC only guarantees that all replicas will make the same choices when a
non–deterministic language construct is encountered (select or delay). This is a first step
towards the piecewise deterministic model.

FTCC differs from Ada 95 in the choice of the unit of distribution and replication: in
Ada 95, it is the partition, which may contain local tasks and which can handle multiple
requests concurrently, whereas in FTCC, it is the process (task), which can handle requests
only serially, as there is no nesting of processes.

7.9 Delta–4

Delta–4 [Pow91] was an ESPRIT project (1986 – 1992) on fault tolerance by replication. It
provides an open architecture for developing fault–tolerant applications. It is very general in
nature, offering several models based upon various failure assumptions [PCD90]. Replica-

Manetho

102

tion schemes are classed as active [CPR+92], passive [SB89], or semi–active [BS93] repli-
cation. Delta–4 comes in two flavors: the Delta-4 OSA (Open Systems Architecture), and
the Delta-4 XPA [BHV+90] (Extra Performance Architecture). The latter is targeted at the
real–time world; it restricts the system to fail–silent components, and introduces semi–
active replication.

Active replicas in Delta–4 must be deterministic (as usual). Passive and semi–active
replication can be used for non–deterministic replicas, but then the assumption of fail–silent
hosts must be guaranteed, e.g., by using a fail–silent network adapter (NAC). The Delta–4
architecture requires such NACs to be present in the system; they run some of the replica
coordination protocols. NACs themselves always are fail–silent, whereas hosts may be sub-
ject to byzantine failures in active replication if the application has been configured to
accommodate for it. Delta–4 assumes a synchronous network [Pow94].

7.10 Manetho

Developed at Rice University 1989 – 1993, Manetho [Eln93] is a system for transparent
replication of processes in the V–System. It uses message logging [EZ94] and rollback
recovery [EZ92a] using coordinated checkpointing. Client processes in Manetho are sup-
posed to be piecewise deterministic; the system maintains an antecedence graph that
describes the occurrence of non–deterministic events such as message receipts or schedul-
ing decisions. Manetho makes heavy use of the features of the V–System to take and install
checkpoints and also to optimize checkpointing. It also handles interactions of the applica-
tion with the operating system kernel specially (system calls).

In [Eln93], Elnozahy states that replication is used for server availability; a leader–
follower strategy is used [EZ92b]. The leader tracks non–deterministic internal events and
delivers them like any other external event, allowing the followers to correctly replay them.
Although described, it seems that the implementation does not support tracking of non–
deterministic (internal) events [Eln93], limiting the approach to use replication only for
deterministic S–components. Insofar, my work is the exact complement to his: my approach
implements replication for fault tolerance of non–deterministic S– and CS–components,
while Manetho can handle non–deterministic C–components.

7.11 Summary

The systems discussed can be classed in various ways. On the one hand, there are transac-
tional systems (Argus, Camelot/Avalon, Arjuna, and Drago), and systems based on a piece-
wise deterministic model (Manetho). Some systems do not fit exactly in these two
categories. Isis is a general group–communication toolkit that also includes a transaction

Related Work

103

manager; Delta–4 is a general architecture, but its XPA definition is based on a piecewise
deterministic computation model. Fault–tolerant Concurrent C, replicAda, and Voltan all in
some ways assume piecewise determinism, but handle only a subset of all possibly occur-
ring non–deterministic events.

On the other hand, one can class these systems by their integration into programming
languages. Argus, Avalon, and Drago are programming languages with integrated transac-
tions. FTCC tries to incorporate replication in a programming language. Arjuna, Voltan, and
Isis are toolkits in the form of libraries. Manetho and replicAda are attempts at transparent
fault tolerance, in the case of Manetho based on message logging and coordinated check-
pointing.

The transactional systems have proved useful, but they all operate in the context of
programming languages that have a less rich semantics than Ada 95. The tasking (thread-
ing) facilities in these languages are restricted (Argus) or absent altogether (C++, where
threads are created by means of system library calls). Tasking in Ada 95 makes it impossi-
ble to use this transactional approach in a transparent way due to the incompatibility of
transactional concurrency control and the rich semantics of the features provided by
Ada 95: application–defined scheduling control by means of barriers of protected objects
may lead to unbreakable deadlocks that do not occur when RPCs do not have transactional
semantics. Also, none of the transactional systems are transparent: transactions are an appli-
cation–level construct for structuring computations.

The two systems based on a piecewise deterministic model (Manetho and Delta–4)
are similar to my approach. Manetho is closely coupled to a particular operating system (V–
System). Replication is supported by Manetho’s implementation only for deterministic S–
and CS–components. Delta–4 is a very general, elaborate framework for reliable distributed
systems, and to a certain extent the approach described in chapter 6 and its implementation
(RAPIDS, chapter 8) can be seen as an application of concepts of Delta–4’s XPA to the spe-
cific case of Ada 95.

105

Chapter 8:

RAPIDS: An Implementation in Ada 95

This chapter discusses RAPIDS: “Replicated Ada Partitions In Distributed Systems”, an
implementation of semi–active replication as described in chapter 6 for the GNAT develop-
ment system for Ada 95. I start with a general overview of this development system before
detailing some of the finer points of the implementation.

8.1 Overview

The GNAT distribution includes an implementation of annex E of the Ada 95 language stan-
dard called GLADE [PT98]. It consists of two parts: an implementation of the run–time sup-
port for annex E — i.e., an implementation of the PCS —, which is called Garlic [KPT95],
and a tool (gnatdist) allowing developers to configure their distributed applications. The
compiler also takes part in this implementation of annex E as it generates the appropriate
stubs for the remotely callable subprograms.

8.1.1 Building Distributed Applications with GLADE

Annex E of the Ada 95 language standard has been designed with the goal that the differ-
ences between centralized and distributed Ada 95 applications be as small as possible.
Apart from the categorization pragmas with their associated restrictions and the fact that
exceptions raised in asynchronously called remote subprograms are lost, the usual seman-
tics of Ada 95 has been preserved in the distributed case.

Once a distributed application has been written, it must still be configured: library
units must be assigned to partitions and partitions must be allocated on physical nodes. In

The Structure of the Run–Time Support

106

the GNAT system, this configuration process is done off–line using a textual description
written in a special–purpose configuration language [KNP96]. This configuration file is pro-
cessed by gnatdist, which invokes the compiler to generate the appropriate stubs and links
all the necessary run–time support routines to the library units in a partition, producing one
executable per partition. It can also generate a starter application for the distributed applica-
tion that automatically launches all partitions on their respective physical nodes. This
attempt to give users the illusion of a centralized application can also be circumvented by
suppressing starter generation and launching partitions manually.

8.1.2 The Structure of the Run–Time Support

The goal of transparent replication is largely met by implementing all replication–related
activities within the run–time support of GNAT. Fig. 8.1 is a rough graphical representation
of the structure of an Ada 95 partition in GNAT and shows the different components of this
run–time support.

The run–time support consists of three main components:

• the PCS, whose implementation for GNAT is called Garlic,
• the tasking implementation, called GNARL (GNU Ada Run–time Library), and
• the implementations of all the standard library units.

The PCS itself depends upon the tasking implementation: Garlic executes RPC requests
concurrently in separate tasks. It also uses some of the standard library units, for example
Ada.Unchecked_Deallocation. Most of the standard library units do not directly use GNARL,
except for the few standard packages dealing with tasks such as Ada.Task_Information.
Both GNARL and the PCS are normally invisible for the application. The compiler automat-
ically generates the necessary calls to GNARL for all tasking constructs of the language, and
the PCS is usually only accessed by the compiler–generated stubs for remotely callable sub-
programs.

PCS

GNARL

User–level Code

OS

Standard
Library Units

Compiler–generated
Calls

Fig. 8.1: Structure of a Partition

RAPIDS: An Implementation in Ada 95

107

The shaded regions in fig. 8.1 correspond to the new replication manager: replication
support permeates all three components of the run–time support. On the one hand, the rep-
lica manager has to be part of the PCS to be able to handle remote communications cor-
rectly; on the other hand, it must also be integrated with the tasking support to implement
event replay of internal events. Finally, the replica manager offers an interface to its event
log in a child package of System.RPC. This interface can be used by the implementation of
the standard library units or by the application to define additional events and the necessary
actions for replaying them.

8.1.3 A Short Tour of the PCS

The interface of the PCS is standardized in package System.RPC, discussed earlier in
section 3.2.5. Fig. 8.2 shows the basic structure of GNAT’s implementation of the PCS,
called Garlic.

The standardized interface of System.RPC is based upon the implementation of pack-
age System.Garlic.Heart, which implements all the low–level message handling for
remote subprogram calls. When a task makes a remote call, the caller’s stub marshals the
arguments and invokes System.RPC.Do_RPC, which in turn passes the stream containing the
marshaled arguments and the Partition_ID of the destination partition to Garlic. Garlic
then dynamically chooses the right message transmission protocol for the channel to that
partition in System.Garlic.Heart and sends the RPC request. It also maintains the relation-
ship between RPC request messages and the corresponding answers: the sending task enters

Fig. 8.2: Structure of the PCS

System.Garlic.Heart

System
Garlic

Protocols

System.RPC

S
y
s
t
e
m
.
R
P
C
.
P
o
o
lA

 c
al

le
r’

s
st

ub
A

 receiver’s stub

Concrete Protocols
(e.g., TCP, UDP, ...)

outgoing
RPC request

incoming
RPC answer incoming RPC request

outgoing RPC answer

dispatching calls

= Tasks

The Tasking Implementation: An Overview of GNARL

108

the message sequence number of the request in a global list of pending requests and then
blocks until the answer has arrived.

Physical protocols are all derived from an abstract tagged type declared in package
System.Garlic.Protocols. Garlic invokes these protocols only through dispatching opera-
tions, it does not statically depend upon protocol implementations like System.Garlic.TCP.
Upon its elaboration, each protocol registers itself with Garlic. Garlic also contains a table
indicating which protocol is to be used on which channel. This table is generated by the
configuration tool gnatdist according to the configuration file. The choice of the message
transmission protocol can thus be made at configuration time, and only those protocols that
actually are needed must be linked to the executable of a given partition.

Each protocol typically contains a task that waits for incoming messages. Whenever a
message arrives, it simply forwards it to System.Garlic.Heart, which then checks the mes-
sage format to determine whether it’s an incoming request or an answer message. If it’s an
answer message, the task that sent the corresponding request in unblocked and given the
message content for unmarshaling the remote call’s results.

If an RPC request message arrives, an anonymous task is started in System.RPC.Pool

to execute the remotely called subprogram. This task invokes the correct stub procedure to
unmarshal the message content, execute the subprogram, and marshal the results. Once the
stub has completed, the anonymous task passes the stream containing the marshaled results
back to System.Garlic.Heart, which then sends the RPC answer message back to the call-
ing partition1.

8.1.4 The Tasking Implementation: An Overview of GNARL

GNARL, the tasking implementation for GNAT, has been designed to be maximally portable.
System dependencies are encapsulated in a very low–level layer called GNULLI (GNU Low–
Level Interface). The tasking semantics of Ada 95 are implemented using this interface,
using whatever kinds of threads and locks the underlying operating system offers.

GNARL maintains a task control block (TCB) for each Ada 95 task, containing all the
necessary information such as its stack size, its parent task, its priority, its entry queues, and
so on. The TCBs of all tasks are linked together and stored in a global task list. Each task in
Ada 95 has an associated Task_ID, which is implemented in GNAT as an access to the task’s
TCB: this uniquely identifies all tasks and gives GNARL direct access to its internal informa-
tion given a simple Task_ID. The global task list is protected against concurrent accesses by
latches — efficient, simple locks provided by GNULLI.

GNARL offers a procedural interface for use by the compiler. The compiler generates
calls to GNARL’s subprograms for each tasking construct in Ada 95. Fig. 8.3 shows a much

1. For efficiency reasons, System.RPC.Pool uses a pre–allocated pool of such anonymous tasks and re–
uses them for successive remote calls. Dynamic task creations and destructions thus occur only if more
RPCs are handled concurrently than there are tasks in this task pool.

RAPIDS: An Implementation in Ada 95

109

simplified example that shows the basic principle (the true translation is much more compli-
cated due to task termination, finalization, exceptions, and abort deferral). The select state-

ment is translated into a call to GNARL’s Selective_Wait subprogram, which waits until an
entry call occurs and then returns the index of the chosen entry. The compiled code then
uses this index to execute the code corresponding to the entry.

All tasking–related language constructs are implemented ultimately by calls to
GNARL. Task creation for instance is done by calling Create_Task with — amongst other
data — an access to the task’s code, i.e., to the procedure implementing it, as a parameter.
Calling an entry also is translated into a call of a subprogram of the form Task_Entry_Call

(T’Task_ID, Entry_Index, ...), which takes care of queueing the entry call (making the
caller wait) if that is necessary.

The compiler and GNARL also are closely intertwined in the implementation of pro-
tected objects. The data of a protected object is stored in a record that has some additional
hidden fields for entry queues and a latch used to implement mutual exclusion. Procedure
and function calls on a protected object call GNARL to lock and unlock the object’s latch.
Entry calls are also translated into calls to GNARL, which manages the entry queues and
blocks and wakes up tasks as needed.

task body T is

begin -- T
loop
select
accept A do
-- A’s body

end A;
or
accept B do
-- B’s body

end B;
or
terminate;

end select;
end loop;

end T;

procedure T is

procedure A is ...
-- With A’s body

procedure B is ...
-- With B’s body

begin -- T
loop
declare
Chosen_Entry : Entry_Index;

begin
Selective_Wait
(Terminate_Mode,
 Chosen_Entry);

case Chosen_Entry is
when 1 => A;
when 2 => B;
when others => null;

end case;
end; -- block

end loop;
end T;

Fig. 8.3a: Ada Code for a Task Fig. 8.3b: Translated Code

Global Structure of the Replication Manager

110

8.2 Global Structure of the Replication Manager

The replication manager is responsible for implementing semi–active replication. It imple-
ments both roles of replicas: on the leader replica, it builds the event log and transmits it at
each observable event to the followers; on the follower replicas, it forces the partition to fol-
low the execution history described by the event log and handles view changes. The replica-
tion manager is built around three main data structures:

• the event log,
• a list of system tasks for which no events are logged, and
• a status indicator telling whether the replica is the leader or a follower.

The event list is accessed from several places: the tasking support logs and replays internal
events, the PCS logs and replays external events, and finally the standard library units (and
the application) may log and replay additional events, e.g. system events such as accesses to
Ada.Calendar.Clock. Fig. 8.3 shows the global structure of the replication manager.

The system task list contains the task IDs of all tasks for which the replication man-
ager is not to do event logging and replay: these are all the tasks that are used within the
PCS and the replication manager itself. If event replay were active for these tasks, the PCS
and the replication manager would try to execute identically on all replicas, which must be
avoided because the run–time support on the followers must do different things than on the
leader.

Fig. 8.3: Structure of the Replication Manager

System Tasks

Events

GNARL

System.Garlic.GCT

(Group Communication
Toolkit)

System.RPC System.RPC.Replication

System.Garlic.Rapids

Message Flow

Event Logging

Event Replay

System Task Info

(1)

1. Group–internal synchronization messages are forwarded
by System.Garlic.Heart to the replication manager.

GARLIC

RAPIDS: An Implementation in Ada 95

111

There are three different interfaces for event logging and replay. The PCS uses direct
calls to the replication manager. The standard library units use a public interface in a child
package of System.RPC. (The Ada 95 language standard explicitly allow such an extension
for providing additional interfaces, see [ISO95, E.5(26)].) Finally, internal events are logged
and replayed by GNARL using callbacks to avoid making the tasking implementation depend
statically on the replication manager.

8.3 The Group Communication Protocol

The group communication protocol assumed in the system model presented in section 4.2 is
implemented as a new protocol that is added to Garlic. Any group communication protocol
can be used for implementing semi–active replication provided it is based on view syn-
chrony and offers reliable and reliable FIFO–ordered multicast. The current implementation
is based on PHOENIX [MFSW95, Mal96], a view–synchronous group communication tool-
kit developed at the Operating Systems Lab at EPFL.

PHOENIX’ model of computation includes a limited form of concurrency between
requests based on the model of coroutines. However, managing concurrency is largely left
to the application using PHOENIX. Since the coroutine model of PHOENIX does not integrate
well with the tasking model implemented in GNARL, it was not possible to use the PHOENIX

libraries directly within the Ada 95 run–time support. Instead, a small daemon application
running on each physical node that executes a replica of a partition acts as a front end for
PHOENIX. This is a separate application written in C++ (because the PHOENIX library offers
a C++ interface) that provides a simple IPC interface to PHOENIX’ group communication
protocol. The Ada 95 group communication protocol only communicates with this C++
front end through IPC; the connection between the two is a bidirectional FIFO link. Because
the Ada 95 partition and the daemon execute in different processes, Ada 95 tasks and the
coroutines of PHOENIX do not interfere.

The interface to the group communication protocol is implemented like any other pro-
tocol as a derivation from the abstract protocol type in System.Garlic.Protocols. It offers
the standard protocol interface with primitive operations to send messages. (Note that proto-
cols have no primitive operation for receiving messages; they are active entities that forward
received messages to System.Garlic.Heart.)

8.4 Events and Event Logging

Events are described by types derived from an abstract tagged root type Event, and the event
log is implemented in System.Garlic.Rapids as a heterogeneous FIFO list that stores
objects of the class–wide type Event’Class.

The Event Log

112

8.4.1 The Event Log

The public interface of the event log in System.RPC.Replication is shown in fig. 8.4 below.

When the Log subprogram is invoked, a copy of the event given as parameter is
appended to the event log, provided the call occurs on the leader replica and the calling task
is not one of the system tasks that are ignored. The component The_Task is set to the group–
wide task ID (see section 8.5) of the calling task. If Log is called on a follower, or the calling
task is a system task, the subprogram does nothing at all.

The Get subprogram is used to retrieve a logged event from the log. When it is called,
it waits until the frontmost event in the event log is an event whose component The_Task
matches the calling task’s group–wide task ID and that has precisely the same type, i.e., the
same external tag. It then sets the parameter Is_Valid to true and returns the event. If the
event log contains no entries at all, the subprogram continues waiting until either the desired
event finally appears (following a reception of an event log from the leader) or the partition

package System.RPC.Replication is

type Event is abstract tagged private;

procedure Log (E : in Event’Class);
-- Append a copy of the event to the event log, if the replica is
-- the leader.

procedure Get (E : in out Event’Class;
 Valid: out Boolean);

-- Blocks the calling task until an event of the precise type (not
-- the class!) of the actual parameter for the calling task is
-- scheduled (Valid = True) or the log is exhausted and the replica
-- now is a leader (Valid = False). The event remains in the log!

procedure Remove;
-- Removes the frontmost event from the log.

procedure Send_Log;
-- Sends the log to the followers and then empties it.

private

type Task_GWID is ...;
-- Group–wide task IDs, see section 8.5.

No_Task : constant Task_GWID;

type Event is abstract tagged
record
The_Task : Task_GWID := No_Task;

end record;

for Event’External_Tag use “System.RPC.Replication.Event”;

end System.RPC.Replication;

Fig. 8.4: Event Logging Interface

RAPIDS: An Implementation in Ada 95

113

becomes the new leader (after a failure of the former leader). If Get is called on a leader or
the calling task is a system task, it only sets Is_Valid to false and returns immediately.

The Remove subprogram removes the frontmost entry in the event log, thereby
unblocking one other waiting Get call.

The Send_Log subprogram is used to send intra–group synchronization messages. If
called on the leader, it multicasts the event log to all replicas of the partition using the reli-
able FIFO–ordered multicast primitive provided by the group communication protocol and
returns only when this synchronization message has been received. Only at that time the
leader replica may continue — any time before it is not guaranteed that the followers could
reproduce the observable event the leader is about to execute. On a follower, this subpro-
gram has no effect.

To send the event log, Send_Log traverses the event log and marshals all events con-
tained therein. Some care must be exercised when marshaling and unmarshaling the event
log. The leader uses the class–wide stream attribute Event’Class’Output for all events in
the event log for marshaling. The followers read in the event log using Event’Class’Input.
These attributes use the external tag of the tagged type (written by the class–wide ’Output

attribute) to identify which derivation to read. However, the default value for this external
tag is implementation–defined [ISO95, 13.3(75f)] — for all the standard says, it might well
be derived from the type’s internal tag, and there’s no guarantee whatsoever that corre-
sponding tagged types get the same internal tags on different replicas. It is therefore neces-
sary to explicitly assign each type derived from the type Event an external tag using a
representation clause of the form shown in fig. 8.4 above. Furthermore, events may contain
components that have access types (like the Checkpoint_Event in fig. 8.16 on page 129):
such events also must have explicitly defined stream attributes ’Write and ’Read.

8.4.2 Synchronizing the Replicas

The use of this interface to the event log is rather simple. Any operation corresponding to an
event must be implemented following the pattern given in fig. 8.5 below. Note that there
must not be any non–deterministic events involving the task executing The_Operation

between the synchronization with the followers (Send_Log) and the execution of the event
(in the statement Do_Action in the example). Also, using this pattern, the extended state
interval recorded in the event log not necessarily starts with an observable event: because
there may be several tasks active, it is quite possible that some other task logs events
between the Do_Action statement and the logging of the event. This doesn’t matter, though,
because the Send_Log performed before Do_Action ensures that all followers will get to the
point where The_Operation will perform the observable event Do_Action.

While it is not necessary to execute an event atomically with logging it, event replay
on the followers must happen atomically. Consider as an example two tasks that call a pro-
cedure of a protected object. Obviously, the tasking support must first get the latch of the

Synchronizing the Replicas

114

protected object and then log the event (following the pattern in fig. 8.5). During replay, the
follower must first wait for the event, then lock the protected object, and only then may it
remove the event from the event list. If this sequence is not observed, there is no guarantee
that the tasks actually are granted access to the protected object in the order logged.

This rule for handling event replay is a general one, it is not limited to the above
example of tasks accessing a protected object. Event replay can be implemented safely by
always following the sequence:

1. Wait for the event to be scheduled (frontmost in the log) using Get.
2. Execute the event.
3. Remove the frontmost event, which is the one gotten in step 1, from the log.

This allows atomic execution of an event during replay: other tasks remain blocked until the
event is finally removed from the event log.

with System.RPC.Replication;
package An_Example is

type Op_Event is new System.RPC.Replication.Event with
record
-- The characterizing data of the event.

end record;

for Op_Event’External_Tag use “An_Example.Op_Event”;

procedure The_Operation (...) is

The_Event : Op_Event;
Is_Valid : Boolean;

begin -- The_Operation
System.RPC.Replication.Get (The_Event, Is_Valid);
if Is_Valid then
-- We’re a follower, use ‘The_Event’ to perform the operation.
System.RPC.Replication.Remove; -- Once done, remove the event.

else -- We’re the leader
-- If it’s an observable event, send the log
System.RPC.Replication.Send_Log;
-- Go ahead and execute the event
Do_Action;
-- Log all characterizing data of the event
The_Event := (Event with ...);
System.RPC.Replication.Log (The_Event);

end if;
end The_Operation;

end An_Example

Fig. 8.5: An Example Operation Causing an Event

RAPIDS: An Implementation in Ada 95

115

8.4.3 Interactions with GNARL

The event log, possibly being accessed concurrently from GNARL, the PCS, and the standard
library units, must guarantee mutual exclusion for all operations. The accesses from GNARL

in particular pose a few subtle problems in this respect.
To avoid having to fully integrate the tasking implementation with the PCS, which

would be rather messy because then the PCS couldn’t use the task concept anymore, I chose
to have GNARL access the event log via upcalls. These callbacks are implemented by adding
global variables of access–to–subprogram types to GNARL. By default, these variables are
initialized to null, and GNARL makes an upcall only when they really refer to some routine.
When System.Garlic.Rapids is elaborated, it installs access routines for its event log in
them, and henceforth the tasking support will invoke them, thus logging (and replaying)
events.

All subprograms in the tasking support that correspond to an internal event (e.g., task
creation (System.Tasking.Stages.Create_Task), or selecting a call queued on a task entry
(System.Tasking.Rendezvous.Selective_Wait), or making an entry call on a protected
object (System.Tasking.Protected_Objects.Protected_Entry_Call)) have been rewritten
to match the pattern shown in fig. 8.5, using upcalls to retrieve, log, or remove events. Plac-
ing these upcalls within GNARL must be done with great care. Because of possible concur-
rent accesses, the event log itself uses tasking constructs (and thus GNARL) to ensure mutual
exclusion, i.e., upcalls from GNARL to the replication manager may result in recursive invo-
cations of GNARL! The global tasking data structures within GNARL must therefore all be
unlocked: GNARL must not hold any latch when an upcall is made, otherwise the partition
may deadlock! It is not possible to temporarily release a latch in the tasking support when
making an upcall as the deadlock freedom of GNARL itself relies on a strict policy defining
the order in which latches must be locked and released. Luckily, it was possible to find in all
cases a place for the upcalls where GNARL doesn’t hold any latches anyway.

The event log in System.Garlic.Rapids cannot be implemented using protected
objects to ensure task–safe manipulations. To break the aforementioned recursive invoca-
tion of GNARL, either GNARL or the callback routines must be able to recognize recursive
accesses. The way protected objects are handled by the compiler and GNARL, they cannot be
used for this purpose as individual protected objects cannot be identified within the run–
time support. The event log is therefore encapsulated in a task, which can be identified at
run time through its Task_ID. Whenever a callback is invoked with an event involving this
event logging task, it does not access the event log but returns immediately, thereby termi-
nating the recursion. Any rendezvous with this task is effectively ignored for event logging
and replay.

The same technique is also used to encapsulate the list of system tasks, which are also
ignored for event logging and replay. The tasks encapsulating the two lists must be handled

Group–Wide Task Identification

116

specially, though. They cannot simply be treated like other system tasks: the whole scheme
must be anchored somewhere!

8.5 Group–Wide Task Identification

Each event includes an identification of the task involved in the event (the component
The_Task of type Event in fig. 8.4). The standard Task_IDs of Ada 95 only have a meaning
within one single replica of a partition. If that partition is replicated, the replica manager has
to make sure that the same tasks in different replicas get the same task ID.

Normally, task IDs in GNAT are implemented as pointers to the corresponding task
control blocks (TCBs) within GNARL. If the partition is replicated, there is no guarantee that
TCBs of corresponding tasks are allocated at the same address, and this scheme cannot be
used for group–wide task IDs. An additional indirection is called for, mapping pointers to
TCBs to integral values. The tasking support of GNARL has been changed by adding a new
field in the TCB containing this group–wide task identifier. This is simply a unique integral
value generated by the replication manager1.

Whenever a task is created, the
leader logs an internal event with the
structure given in fig. 8.6. The type
Task_GWID is the group–wide task identi-
fier of the new task. When a follower cre-
ates a task, it allocates its internal data structures (e.g., the TCB) as usual. It then gets the
event from the log it received from the leader and uses the Task_GWID found there for the
new task.

Bootstrapping this process of assigning group–wide task IDs necessitates that all rep-
licas agree on a common identification of the environment task. Because the precise value
of the group–wide task identifier is of no importance, I have chosen an arbitrary value which
is hardcoded in the replication manager: all replicas assign the environment task the value
one as its group–wide identifier.

The standard type Task_ID remains unchanged. One cannot do very much with values
of type Task_ID: except for the operations declared in Ada.Task_Identification

[ISO95, C.7.1], Ada.Task_Attributes [ibid, C.7.2], Ada.Dynamic_Priorities [ibid, D.5],
and Ada.Asynchronous_Task_Control [ibid, D.11], they can only be copied and compared.
The implementation of the operations in the aforementioned packages must be changed,
though: most of them must be implemented as internal events using event logging and

1. Note that one cannot use e.g. the numeric interpretation of some part of the TCB’s address as allocated on
the leader. After a failure, the new leader may allocate new TCBs for new tasks, and their group–wide IDs
might coincide with old ones that were still generated on the former leader if they were derived from stor-
age addresses. A numbering scheme independent of storage addressing must be used instead.

type Create_Task_Event is new Event with
record
Child : Task_GWID;

end record;

Fig. 8.6: Task Creation Event

RAPIDS: An Implementation in Ada 95

117

replaying, and Ada.Task_Identification.Image must be changed to use the task’s group–
wide ID to construct the string image of the Task_ID (which is allowed according to
[ISO95, C.7.1(7)]: the string image is implementation–defined), otherwise any two replicas
might evolve differently because the string images might be different.

8.6 Message Sequence Numbers

I have shown in section 6.4.4 that partitions (whether replicated or not) must be able to han-
dle duplicate messages and in particular duplicate invocations gracefully. To this end, the
PCS adds unique identifiers to all messages. A message sequence number is the combina-
tion of the partition ID of the sending partition and a monotonically increasing sequence
number within that partition.

Ignoring repeated RPC answer messages is easy: if a leader receives an answer mes-
sage (which is tagged with the sequence number of the corresponding request) for which it
has no outstanding request, the answer is simply discarded. Followers discard answer mes-
sages only if the sequence number is smaller than or equal to that of the last stored answer
message from that particular partition; otherwise, the message is stored for later use either
during replay of the leader’s event log or to avoid needlessly sending an RPC request mes-
sage if the leader should fail.

Handling repeated invocations is similar. Each partition retains the results of a partic-
ular RPC request, i.e., the corresponding RPC answer message it sends back. If an RPC
request arrives with a sequence number for which there is a retained result, this result from
a prior invocation is returned. If a request that is still being handled arrives, the new request
is discarded. The PCS maintains a list of the message sequence numbers of all currently
active requests for this latter case.

Retaining results implies some sort of garbage collection, otherwise a partition would
need to be able to store infinitely many answer messages. Garbage collection can also be
implemented using the message sequence numbers. A partition basically needs a way to
know which results have been received by the client. The simplest way to ensure this is to
have the client to include in each request message it sends an expiration number: the highest
message sequence number of stable requests. A request is stable if the result was received in
an already completed extended state interval, and if all requests with lower message
sequence numbers also are stable. All retained results for requests with message sequence
numbers lower than this expiration number may be discarded.

The format of a message sent for an RPC thus becomes as shown in fig. 8.7. The PCS
newly maintains a message sequence number for each partition. Formerly, it used only a
single global counter for all messages sent, but this no longer suffices to implement expira-
tion numbers, as garbage collection of retained results at one partition might be delayed if

Some Important Events

118

some other partition was slow. Expiration numbers also are maintained on a per–partition
basis.

Assignments of message sequence numbers are internal events in order to guarantee
that all replicas assign the same sequence numbers to corresponding messages. If this were
not the case, duplicate messages could not be detected — the message sequence number is a
system–wide unique identifier for the message, and therefore all replicas must choose the
same ID for corresponding messages.

In practice, the domain of message sequence numbers is finite. At some point, a
wrap–around from the highest sequence number to the lowest one occurs, and the receiver
partition would basically have to be informed of this in order to be able to correctly garbage
collect retained results. Superposing a protocol for this boundary case on the normal RPC
protocol is complex. The main problem is that for some time after a wrap–around, a parti-
tion may have to deal with both old message sequence numbers generated before the wrap–
around and new ones. Unfortunately, these new (low) values are indistinguishable from very
old ones that also may be low.

I have adopted a pragmatic solution that avoids this difficulty altogether. Message
sequence numbers are implemented as values in the range from 0 to 264 (i.e., using 64bit
integers). This range is large enough such that a wrap–around will not occur in any imagin-
able application1.

8.7 Some Important Events

8.7.1 Internal Events

Internal events all concern tasking decisions. The common abstract ancestor type called
Event (shown in fig. 8.4) has one component recording the group–wide task ID of the task
that initiates the event. All other tasking–related events are derived from this root type. An
example is the Create_Task_Event shown in fig. 8.6 above.

1. A quick back–of–the–envelope calculation shows that even if one million messages were sent per second,
64bit message sequence numbers will wrap around only after some 584’542 years!

Fig. 8.7: Message Format

Message Content
Expiration Number

Message Sequence Number (of the corresponding

Message Type (RPC request or RPC answer)

request, if it’s an RPC answer)

RAPIDS: An Implementation in Ada 95

119

Another example is shown in
fig. 8.8: a PO_Locked_Event is added to
the event log whenever a task obtains the
latch of a protected object. It is used to
log which task gains access to a protected object. Note that protected objects cannot be
identified globally within the run–time support: they do not have unique IDs, like tasks do.
Only logging the identity of the tasks (but not of the object they gain access to) suffices
because each individual task executes sequentially. Any particular access to a protected
object corresponds thus to exactly one PO_Locked_Event.

The compiler translates each call of a function or procedure of a protected object by
including calls to GNARL at the beginning and end of the subprogram to lock and unlock the
protected object: an initial call to System.Tasking.Protected_Objects.Lock, and a closing
call to System.Tasking.Protected_Objects.Unlock. The Lock subprogram, whose code is
shown in fig. 8.9, waits until it can acquire the latch of the protected object and then gets it.

The callback to the replication manager invoked by Call_PO_Lock_Hook ultimately
calls the Get access routine of the event log, with an event of type PO_Locked_Event as argu-
ment. On a leader, this is a no–op, and returns False in Is_Valid. The leader then goes on
and tries to acquire the latch of the protected object through Write_Lock. Once it has got the

type PO_Locked_Event is
new Event with
null record;

Fig. 8.8: A PO_Locked_Event

Fig. 8.9: Locking a Protected Object

procedure Lock (Object : access Protection’Class) is
-- A ‘Protection’ object contains the hidden data allocated for each
-- protected object: the latch, entry queues, etc.

Ceiling_Violation : Boolean;
I_Am_A_Follower : Boolean; -- 1

function Task_ID_Self return Task_ID renames Tasking.Self;
-- Gives access to the Task_ID of the calling task.

begin
-- This is an upcall to the replication manager.
Call_PO_Lock_Hook (The_Task => Task_ID_Self,
 Is_Valid => I_Am_A_Follower);
-- ‘Object.L’ is the latch of the protected object.
Write_Lock (Object.L’Access, Ceiling_Violation);
if I_Am_A_Follower then
Call_Remove_Hook; -- Upcall

else
Call_PO_Locked_Hook (The_Task => Task_ID_Self); -- Upcall

end if;
if Ceiling_Violation then
Raise_Exception (Program_Error’Identity, “Ceiling Violation”);

end if;
end Lock;

1. The shaded regions show the code added for replication management

Clock Events

120

latch, it logs a PO_Locked_Event with the Task_ID of the calling task through the callback
Call_PO_Locked_Hook. On a follower, the Get routine invoked from Call_PO_Lock_Hook

waits until an event of type PO_Locked_Event with a group–wide task ID matching that of
the given task is first in the event list. It then returns that event and sets Is_Valid to True.
The follower then also tries to acquire the latch: barring a potential ceiling violation, this
will always succeed immediately because any other task that might try to access the same
protected object is still blocked in its call to Call_PO_Lock_Hook. Once it has got the lock, it
removes the event from the event list using the callback Call_Remove_Hook.

Other internal events are implemented in GNARL in the same spirit. There are call-
backs and corresponding event types for all the tasking events identified in section 6.4.1,
and the subprograms in GNARL implementing these events have been changed accordingly
by inserting callbacks for event logging and replay. System events, i.e., non–deterministic
events not directly linked to tasking, also are handled in this way.

8.7.2 Clock Events

Events describing querying the clock, e.g.
through Ada.Calendar.Clock, are handled
specially. A Clock_Event as shown in
fig. 8.10 is used for event logging. The
event contains the time value the event
produced on the leader, and followers will
return this value instead of their own current time. In addition, followers also store the dif-
ference of the leader’s time and their own time. After a failure of the leader, the new leader
will correct all subsequent accesses to its clock by this difference. In this way, it is made
sure that time never runs backwards for the application: the whole group logically always
runs on the initial leader’s time, even after a failure of that initial leader.

This also applies to absolute delay statements (delay until): their expiration time is
equally adjusted. Because delay expirations also are internal events, it doesn’t actually mat-
ter for how long exactly a task containing a delay statement is delayed: the outcome will be
replayed according to the event log; only the logical time order is respected. All delay state-
ments are translated into absolute delays within GNARL and implemented in a subprogram
Timed_Delay. This subprogram newly has a structure corresponding to the pseudo–code
shown in fig. 8.11.

As shown, a delay statement generates two events: one for its start, and a second one
when it expires. The Call_Delay_Start_Hook callback ultimately invokes the Get routine to
get the starting event. On the leader, it returns immediately (leaving Expiration unmodi-
fied). The leader then logs the expiration time and maps it — as it is expressed in the initial
leader’s time frame — to its own local time frame before delaying and finally logging the
expiration event.

type Clock_Event is new Event with
record
Year, Month, Day : Integer;
Seconds : Duration;

end record;

Fig. 8.10: A Clock_Event

RAPIDS: An Implementation in Ada 95

121

On a follower, Call_Delay_Start_Hook waits for the starting event to be scheduled
before returning. When it does return, Expiration contains the expiration time on the
leader. The follower removes this event from the log and waits for the expiration event to be
scheduled by calling Call_Delay_Expired_Hook. When that upcall returns, there are two
possibilities:

• The follower has become the leader of the group because the former leader has
failed in the meantime. The moment the replica becomes the new leader,
Call_Delay_Expired_Hook returns with I_Am_A_Follower set to False. In this case, the
new leader (and former follower) must actually delay until the expiration time (after
converting it to its own time frame) and then log an expiration event.

• The replica is still a follower, and the Call_Delay_Expired_Hook upcall returns with
I_Am_A_Follower set to True because the event is scheduled. In this case, it suffices to
remove that event.

8.7.3 External Events

External events are special inasmuch as followers do not replay them. Followers do not
physically send RPC requests to other partitions; they only behave as if they did and wait
for an answer to arrive. It wouldn’t actually hurt to send RPC requests from a follower
because the duplicate message detection at the receiver’s side would take care of such
redundant requests, but assuming that all communication with a group of replicas is by reli-
able multicast, it isn’t necessary. RPC answer messages also are not sent by followers: the
leader is the only replica that interacts with the system beyond the group of replicas.

procedure Timed_Delay
(Self : in Task_ID;
 T : in Time) is

Expiration : Time := T;
I_Am_A_Follower : Boolean;

begin -- Timed_Delay
Call_Delay_Start_Hook
(Self, Expiration,
 I_Am_A_Follower);

if not I_Am_A_Follower then
-- Leader
Call_Delay_Start_Log_Hook
(Self, Expiration);

Map_To_Local_Time (Expiration);
OS_Delay_Until (Expiration);
Call_Delay_Expiration_Hook
(Self);

else
-- Follower
Call_Remove_Hook;
Call_Delay_Expired_Hook
(Self, I_Am_A_Follower);

if not I_Am_A_Follower then
-- This follower has meanwhile
-- become the leader!
Map_To_Local_Time
(Expiration);

OS_Delay_Until (Expiration);
Call_Delay_Expiration_Hook
(Self);

else -- Still a follower...
Call_Remove_Hook;

end if; -- Has become leader?
end if; -- Is leader?

end Timed_Delay;

Fig. 8.11: Logging and Replay of Delays

Remote Access Types

122

Events corresponding to incoming RPC messages identify the appropriate messages
only through their message sequence numbers. Since all messages to the group are broad-
cast reliably, it is guaranteed that all replicas have received or will receive them. It is not
necessary to include the message itself in the events logged!

Sending an RPC request message is implemented according to the code outlined in
fig. 8.12.

Note that external events must be logged even though followers do not replay them.
Logging observable events, i.e., events corresponding to sending a request or an answer
message, allows followers to avoid re–executing them during replay, and logging events
corresponding to message receptions allows replicas to delay handling of incoming requests
while taking checkpoints (see section 8.10).

8.8 Remote Access Types

Special care must be taken to handle distributed objects in a replicated partition correctly.
The standard’s basic model of remote access types is that of a fat pointer: a remote access
value is a tuple containing both the local address of the distributed object within the parti-
tion it resides on and the Partition_ID of the said partition. Remote accesses can only be

type Send_Status is
(Success, Failure);

type RPC_Call_Event is
new Event with
record
Msg_ID : Sequence_Number;
Result : Status;

end record;

...

procedure Send_Request
(Dest : in Partition_ID;
 By : in Protocol_Ref;
 Id : in Sequence_Number;
 Msg : access Param_Strem_Type)

is

Send_Event : RPC_Call_Event;
Status : Send_Status;
Seq_Num : Sequence_Number
:= Id;

Im_A_Follower : Boolean := False;

begin -- Send_Request
Get (Send_Event, Im_A_Follower);
if not Im_A_Follower then
Send_Log;
-- ‘Send’ is dispatching!
Send
(By, Dest, Id, Msg, Status);

-- Update internal data
-- structures as needed
Send_Event :=
(Event with Msg_ID => Id;
 Result => Status);

Log (Send_Event);
else
-- Follower: update data
-- structures as if we had sent
-- the msg.
Remove;
Status := Send_Event.Result;
Seq_Num := Send_Event.Msg_ID;

end if; -- Is leader?
if Status = Failure then
raise Communication_Error;

end if; -- Sending worked OK?
...

end Send_Request;

Fig. 8.12: Handling of an External Event

RAPIDS: An Implementation in Ada 95

123

stored, compared, passed around from one partition to another, and dereferenced in the con-
text of a remote dispatching call. To do a remote dispatching call, the caller uses the
Partition_ID part of the remote access value to identify the destination partition to which it
then sends the request for remote dispatching. The destination partition then uses the local
address part of the remote access value to identify at run–time the object that is referenced.

This simple scheme does not work reliably when partitions are replicated. Even in a
homogeneous distributed system, there is no guarantee that different replicas allocate corre-
sponding objects at the same addresses. There are two issues that need to be addressed to
handle remote access types:

• Heterogeneity: how can remote access be implemented in a heterogeneous system,
where different partitions might use different representations of remote access values?

• Replication: how can they be implemented such that all replicas agree upon the object
referred to by a particular remote access value?

The solutions to both problems are translation tables. The basic principle is that each parti-
tion and each replica of a partition maps its local representation to a common external repre-
sentation for any given remote access value.

Remote access values in heterogeneous distributed systems can be implemented using
a translation at the partitions using them. A partition P can obtain a remote access to an
object residing on some other partition Q only as the result of a remote subprogram call
to Q. What P actually receives is of course the marshaled representation of the remote
access value. In the classical “fat pointer” model, P then unmarshals the value and subse-
quently uses this unmarshaled value.

In a heterogeneous distributed system, this approach may fail because P’s representa-
tion of an access value may not be able to store an access value local to partition Q. Con-
sider a case where a partition Q uses the pair <Partition_ID, 64bit local address> as a
remote access value, while another partition P uses the representation <Partition_ID, 32bit
local address>. Clearly, P’s representation cannot hold an unmarshaled remote access
from Q: the 32bit local address cannot store a 64bit address local to Q.

The solution is a simple hashing scheme. Instead of using the unmarshaled value of
the remote access value, P uses the marshaled version. This is feasible because no opera-
tions that would depend on the precise value of the “local address” part are possible with a
remote access value. Whenever a partition receives a marshaled remote access, it stores this
marshaled representation in some data structure. Internally, it uses a local representative for
this stored marshaled value; this representative contains a reference to the stored marshaled
value. Partitions only have to have a common way to extract the Partition_ID part of the
remote access value; the precise format of the “local address” part may remain unknown as
the only partition that will ever need to use it is the one that generated it: the one the object
resides on. Whenever a remote access value is passed on from one partition to another, the
stored original marshaled representation is actually used.

Remote Access Types

124

This change in the handling of remote access values can be implemented transpar-
ently in the implementation of the stream attributes used for marshaling and unmarshaling
them. In GNAT, the default stream attributes for all standard types are defined in a package
called System.Stream_Attributes. For each occurrence of a stream attribute (’Read, ’Write,
’Input, or ’Output) of a standard type, the compiler actually generates a call to a subpro-
gram of this package. Changing the implementation of the marshaling and unmarshaling
routines for remote access types according to the pseudo–code given in fig. 8.13 automati-
cally implements the proposed hashing scheme for all remote access types1.

1. In the interest of clarity, I have slightly oversimplified the pseudo–code in figures fig. 8.13. Of course, one
does not store the whole remaining Stream in Store_Value but only that portion that corresponds to the
marshaled remote access value (including the Partition_ID). During marshaling, one marshals the local
address part in a Stream_Element_Array and uses ’Output to append that to the stream instead of the
System.Address’Write shown above. An analogous operation is then needed instead of Sys-
tem.Address’Read when unmarshaling. A similar caveat must be made for fig. 8.14 below: not the
whole remaining stream is logged and put in the translation table but only the relevant part. Because these
manipulations are rather tricky and only obscure the pseudo–code, I have left them out.

procedure Marshal_Remote_Access
(Stream : access Root_Stream_Type;
 Item : in Remote_Access)

is
My_ID : Partition_ID := ...
-- Get ID of this partition from
-- the PCS.

begin -- Marshal_Remote_Access
Partition_ID’Write
(Stream, Item.ID);

if Item.ID = My_ID then
-- It’s a remote access to some
-- object on this partition:
-- marshal ‘Item’.
System.Address’Write
(Stream, Item.Addr);

else
-- It’s a remote access to some
-- other partition: use stored
-- value!
Append_To_Stream
(Stream,
Stored_Value (Item.Addr));

end if;
end Marshal_Remote_Access;

function Unmarshal_Remote_Access
(Stream : access Root_Stream_Type)
return Remote_Access

is
My_ID : Partition_ID := ...
-- Get ID of this partition from
-- the PCS.
Local_Value : Remote_Access;

begin -- Unmarshal_Remote_Access
Partition_ID’Read
(Stream, Local_Value.ID);

if Local_Value.ID = My_ID then
-- It’s a remote access to an
-- object in this partition:
-- really unmarshal it!
System.Address’Read
(Stream, Local_Value.Addr);

else
-- It’s a remote access to an
-- object on some other parti-
-- tion: store marshaled version
-- in a global data structure,
-- return a handle to the stored
-- value.
Local_Value.Addr :=
Store_Value (Stream);

end if;
return Local_Value;

end Unmarshal_Remote_Access;

Fig. 8.13: Marshaling and Unmarshaling Remote Access Types

RAPIDS: An Implementation in Ada 95

125

In order to avoid memory leaks, the local representatives for remote access values
should be implemented as controlled types. If the type Remote_Access itself is derived from
Ada.Finalization.Controlled, reference counting can be used to discard the stored mar-
shaled representation allocated by Store_Value once there’s no longer any local representa-
tive referencing it.

In this way, partitions on heterogeneous nodes can work with remote access values
despite having different internal representations for remote access types, in particular their
“local address” part. The only partition that ever really unmarshals a local address is the one
that originally marshaled it; all other partitions only copy the original marshaled representa-
tion.

When a partition is replicated, a second problem comes up: the replication manager
must make sure that all replicas agree upon which remote access value refers to which
object. If they did not agree, a failure of the leader might result in erroneous execution. The
new leader must be able to handle remote access values that were generated by its predeces-
sor. The solution for this case is similar to the one described above, but this time a transla-
tion table is used on the replicas for remote access values that refer to objects on the
replicated partition. (In the above case, translation is done for remote access values referring
to objects on other partitions.)

The leader replica marshals remote accesses to its objects as described above. In addi-
tion, it also logs this marshaling as an internal event in the event log. The log entry contains
the marshaled representation of the remote access. Whenever a follower encounters such a
log entry during replay, it adds the pair <Leader’s marshaled remote access, Follower’s
local value of the remote access> to a translation table. When the follower becomes the
new leader, it always checks this table upon unmarshaling a remote access: if it receives a
marshaled remote access that is in the table, it uses the corresponding local entry in the table
as the unmarshaled value. It also checks the table whenever it is about to marshal a remote
access value referencing an object on the partition: if an entry is found, it uses the former
leader’s marshaled representation! In this way, other partitions always get unique and stable,
unchanging remote access values for one particular distributed object, and therefore com-
parisons of remote access values and remote dispatching calls continue to work even if a
leader replica fails. The pseudo–code for the marshaling and unmarshaling operations
(’Write and ’Read) is shown in fig. 8.14.1

Note that there are now two different tables involved! For remote access values refer-
encing objects that reside on other partitions, there’s a table that stores the original mar-
shaled representation of the remote access and returns a local handle (address) for it. This
translation is not necessary for an application executing on a homogeneous distributed sys-
tem. A second table is used on replicas to translate the leader’s marshaled remote access
values into local equivalents on the followers, guaranteeing that all replicas use the same

1. Note that the pattern given in fig. 8.5 reappears in the central part of Marshal_Remote_Access.

Remote Access Types

126

marshaled values for accesses to replicas of the same object. This second translation is
always needed when a partition is replicated, even in homogeneous distributed systems.

A replica should remove entries in this translation table whenever the referenced
object ceases to exist, otherwise there is a possible memory leak and the translation table
will progressively grow to unbounded size. The compiler should therefore implement dis-

procedure Marshal_Remote_Access (Stream : access Root_Stream_Type;
 Item : in Remote_Access)

is
My_ID : Partition_ID := ...
-- Get ID of this partition from the PCS.

begin -- Marshal_Remote_Access
if Item.ID = My_ID then
-- ‘Item’ is a remote access to some object on this partition.
-- Check the translation table to see if there’s already a value.
declare
S : Translation_Ref := Translated_Value (Item);

begin
if S /= null then
Append_To_Stream (Stream, S.Marshaled_Value);

else -- No, this value is a new one!
declare
E : Marshaling_Event;
Im_A_Follower : Boolean;

begin
Replication.Get (E, Im_A_Follower);
if Im_A_Follower then -- We’re a follower!
-- Add entry to translation table, using the value from the
-- logged event.
Add_Translation (E.Marshaled_Value, Item);
Append_To_Stream (Stream, E.Marshaled_Value);
Replication.Remove;

else -- We’re the leader!
-- Marshal item; don’t use Item’Write: recursive call!
Partition_ID’Write (Stream, Item.ID);
System.Address’Write (Stream, Item.Addr);
Add_Translation (Stream, Item);
-- Log event
E := (Event with Marshaled_Value => Stream);
Replication.Log (E);

end if;
end; -- block

end if; -- Value found in translation table?
end; -- block

else
-- It’s a remote access to some other partition: use stored value!
Append_To_Stream (Stream, Stored_Value (Item.Addr));

end if;
end Marshal_Remote_Access;

Fig. 8.14: Marshaling and Unmarshaling of Remote Access Types on Replicas

RAPIDS: An Implementation in Ada 95

127

tributed objects as having a hidden component of a controlled type whose Finalize opera-
tion deallocates the object’s entry in the translation table if one exists1.

8.9 Failures

A failure of a replica in the group changes the group’s composition and thus provokes a
view change. PHOENIX delivers a view change message containing the new group composi-
tion to all members in the new view.

The leader replica can silently ignore these messages — if it has not failed, it contin-
ues to be the leader. A follower, however, may have to take action upon receiving a view
change message: if the leader fails, one of the followers must become the new leader. The
leader election protocol in this case is very simple and requires no extra communication: the

1. Note that the Ada Rapporteur Group decreed in AI–126 that Ada.Finalization is a Remote_Types
package.

function Unmarshal_Remote_Access (Stream : access Root_Stream_Type)
return Remote_Access

is
My_ID : Partition_ID := ...
-- Get ID of this partition from the PCS.
Local_Value : Remote_Access;

begin -- Unmarshal_Remote_Access
Partition_ID’Read (Stream, Local_Value.ID);
if Local_Value.ID = My_ID then
-- ‘Item’ is a remote access to an object in this partition.
-- Check the translation table.
declare
S : Translation_Ref := Translated_Value (Stream);

begin
if S /= null then
Local_Value.Addr := S.Local_Value;

else
-- Nothing found: the “local address” part has indeed been
-- generated on this replica! Really unmarshal it!
System.Address’Read (Stream, Local_Value.Addr);

end if;
end; -- block

else
-- It’s a remote access to an object on some other partition: store
-- marshaled version in a global data structure, return a handle to
-- the stored value.
Local_Value.Addr := Store_Value (Stream);

end if;
return Local_Value;

end Unmarshal_Remote_Access;

Fig. 8.14 (continued): Marshaling and Unmarshaling of Remote Access Types...

State Transfers

128

group composition in PHOENIX’ view change message is ordered, and the first replica in this
list becomes the new leader.

The new leader first continues replaying whatever events it still has in its event log to
bring itself up to date with the last known state of the former leader. Messages arriving dur-
ing this replay are buffered until the event list has been fully replayed. Only then the replica-
tion manager switches to leader mode, unblocking the delayed message deliveries.
Subsequently, the replica assumes the role of the leader of the group.

8.10 State Transfers

When a new replica joins the group to replace a failed one, a view change with an ensuing
state transfer occurs: the new replica receives the current state from one of the group mem-
bers. This sub–section discusses the implementation of state transfers in RAPIDS.

8.10.1 Collecting the State

Given the possibility of a heterogeneous distributed system, state transfers are implemented
based on quiescence as discussed in section 6.4.5. It is assumed that

• replicated partitions are only S– or CS–components, where all activity basically is
triggered by incoming RPC requests, and

• there are quiescent moments in the execution of a partition where no remote calls are
active.

The full list of conditions has been given in section 6.4.5 on page 91. Under these assump-
tions, a partition is quiescent when the aforementioned list of currently active requests is
empty. An anonymous task that is to handle an incoming remote call request registers itself
and the request message with the replication manager and unregisters when it is done han-
dling the request, i.e., after it has sent back the corresponding answer message or, if the
remote call was asynchronous, when the remotely called subprogram has terminated. Tak-
ing a checkpoint consists of the following steps:

• Event logging is blocked. This makes all tasks that try to log an event block. The only
tasks that — by the quiescence assumption — could be active and try to log events are
system tasks within the PCS itself. They could try to log RPC_Request_Received

events for RPC requests that arrived since quiescence was detected. By blocking
them, they are effectively delayed until the checkpoint has been taken.

RAPIDS: An Implementation in Ada 95

129

• A system task is started that calls the
Get_State subprogram, which the
application installed as a callback
routine in the run–time support,
using the interface in package Sys-

tem.RPC.Replication shown in
fig. 8.15. If no Get_State subpro-
gram is installed, the replication
manager obviously does not even try
to take a checkpoint.

• The Get_State subprogram collects the application’s state, marshaling it into the
given Param_Stream_Type. When Get_State has terminated, the system task collects
all relevant state within the PCS and adds it to that stream.

• It then atomically adds a checkpoint
event containing the collected state
as shown in fig. 8.16 to the event list
and unblocks event logging, allow-
ing normal processing to continue.

When a view change occurs, newly joining replicas get the last checkpoint plus all the
logged events since then as their initial state. This means that System.Garlic.Rapids main-
tains not one event list but two:

• The first one is used for normal synchronization and has been discussed in
section 8.4.1 above. It is built on the leader and purged whenever the list’s contents
are sent to the followers at an observable event. It therefore contains at most one
extended state interval. On the followers, this list is emptied successively during
replay.

• The second one may cover a longer interval than the first one: it contains all events
that occurred since the last checkpoint and may comprise several extended state inter-
vals. It always starts with a checkpoint event, and it is purged whenever a new check-
point is being taken. This second event log is called the shadow log.

Whenever an event is removed from the first list, it is actually appended to the second one.
On the leader, this happens when a synchronization message is sent; on a follower, this
occurs each time an event is removed after having been replayed.

Followers do not replay checkpoint events. As the event already contains the mar-
shaled state as it had been collected on the leader, calling Get_State on a follower would be
simply superfluous. Whenever a checkpoint event is the first event in a follower’s event log,
it purges its shadow event log and then puts the checkpoint event onto the shadow log. Sub-
sequent events are added to the shadow log whenever they are replayed.

package System.RPC.Replication is

...
type State_Collector is access
procedure
 (State : access Param_Stream_Type);

procedure Install
(Collect : in State_Collector);

...

end System.RPC.Replication;

Fig. 8.15: The Get_State Callback

type Checkpoint_Event is new Event with
record
The_State : Param_Stream_Access;

end record;

Fig. 8.16: A Checkpoint_Event

Transferring the State

130

8.10.2 Transferring the State

When a view change from view Vi to a new view Vi+1 occurs and a state transfer is neces-
sary (i.e., some of the replicas in Vi+1 joined the group), the PHOENIX group communication
protocol guarantees the following:

• On a group member that also was in view Vi, PHOENIX invokes a callback get_state

to get the current state of the group. This callback occurs after delivery of the view
change, but before any message for view Vi+1 is delivered.

• On a newly joining replica, a put_state callback is invoked after the new view has
been delivered, but before any message delivery for this view. The put_state callback
passes the state collected by get_state to the new replica.

Both these callbacks are implemented in the C++ wrapper daemon by sending a message
through IPC to the connected Ada 95 partition and waiting for a reply. At the PCS,
get_state and put_state thus arrive as normal messages, but the order guaranteed by
PHOENIX is maintained because of the FIFO link between the daemon and the partition.

When the leader gets a get_state message, it returns its shadow event log to PHOE-

NIX. If the get_state message happens to arrive while the state is being collected by the
application–level Get_State subprogram invoked when quiescence is detected, the replica
manager first lets Get_State terminate. When a follower receives this message, it first con-
tinues replaying events until its main event log is exhausted. Only then does it return its
shadow event log to PHOENIX. The state PHOENIX gets is thus always the same, regardless of
the replica that collected the state.

Note that the leader does not have to interrupt execution of requests that are active
when the get_state message arrives and is handled. The only events that could possibly
interfere with a state transfer would be those that also caused accesses to the shadow event
log: observable events. Observable events cause the event log to be sent to the followers in a
synchronization message. The coherence of the shadow log is guaranteed if Send_Log first
sends the log1, then waits until this synchronization message is delivered, and only then
moves the events to the shadow log. This works because a multicast in PHOENIX is also
delivered on the sender, and because PHOENIX delivers messages only once the state transfer
via get_state and put_state has been done. Activities of requests being handled during the
state transfer will therefore be sent to all followers — including the replicas that have newly
joined — in the next synchronization message.

8.10.3 Installing the State

A replica that joins a group always assumes the role of a follower. (Unless it is the first one
to join the group, which is thereby created: this replica is the initial leader. But this special

1. Using a reliable FIFO–ordered multicast, cf. section 8.4.1.

RAPIDS: An Implementation in Ada 95

131

bootstrapping case is not of interest here because there is no state transfer involved.) The
first message it delivers after having joined the group is a view change, followed by a
put_state operation with the stream obtained via get_state on one of the old group mem-
bers. It installs this state by making an upcall to an application–defined subprogram
Put_State, which is defined and installed within the replication manager in the same way
(using an access–to–subprogram) as the Get_State subprogram. If the application didn’t yet
install such a Put_State callback, the replication manager waits until this happens. In this
way, the application can first complete its elaboration before a state is to be installed.

8.11 The Configuration Language

Currently, there is only one parameter that
can be specified in the configuration lan-
guage: the fact that a partition is repli-
cated, and on which physical nodes these
replicas shall be allocated to. The syntax
of the configuration language [KNP96]
has been slightly changed by adding a
new keyword replicated to the definition
of a partition as shown in fig. 8.17. The Defining_Identifier_List declares a number of
partitions, possibly initialized by assigning some Ada units to them. The keyword repli-

cated now indicates that these partitions are replicated, enforcing a couple of constraints on
the further definitions for these partitions:

• Starter generation must be suppressed. This restriction is planned to be removed in the
future, but for the time being, partitions must be launched manually.

• There must be no main subprogram for the partition.
• A group communication protocol must be used for communicating with the partition.

The last restriction is an implicit one: the configuration tool gnatdist currently has no way to
know whether a certain protocol is a group communication protocol.

Further extensions for specifying parameters of replication have not yet been added to
the configuration language, but should be. It would for instance be convenient to be able to
specify the maximum size of the event log for each replica. Currently, this value is a hard–
coded constant, and whenever the event log is full, the leader replica sends it to its followers
before logging a new event, even if this new event is not an observable event. By choosing
the size of the event log, one can thus influence the degree of synchronization between the
replicas to a certain extent.

Another extension planned is the specification of the application–defined Get_State

and Put_State subprograms for state transfers in the configuration language. This would

Partition_Declaration :=
Defining_Identifier_List “:”
[“replicated”] “Partition”
[“:=” Enumeration_Of_Ada_Units].1

1. See [KNP96] for an overview of the full syntax of
gnatdist’s configuration language.

Fig. 8.17: New Configuration Language Syntax

Current State

132

make state transfers more transparent to the application: these subprograms could be devel-
oped apart, and added to the partition only at configuration time. Currently, these subpro-
grams must be an integral part of the application.

8.12 Current State

The implementation described in this chapter is not completed, alas. While the group com-
munication protocol of PHOENIX is integrated via the daemon process described in
section 8.3 and the basic support for event logging and replay of internal and external events
is functional, crucial parts are still under development. In particular, state transfers do not
work yet, interactions with the environment (e.g. files) are not yet handled, and the configu-
ration language extensions are not yet complete (as mentioned above).

Event logging and replay is implemented only for events that can be intercepted
within the run–time system. Some internal events cannot be handled in this way, though,
and the cooperation of the compiler is required. These events are:

• Events due to assignments of controlled types. Such assignments are abort–deferred
regions, but they cannot be intercepted in all cases within the run–time support. The
compiler would have to generate calls to RAPIDS to log and replay such events.

• Accesses to global objects protected by pragma Atomic. Again, the compiler would
have to translate accesses to atomic objects in such a way that the replication manager
can log and replay them.

• The handling of remote accesses. The representation of remote access types should be
a controlled type, and distributed objects should have a hidden component, also of a
controlled type, both in order to be able to correctly garbage collect obsolete mar-
shaled representations in the translation tables (cf. section 8.8). The compiler would
have to be changed to cope with these changes of data structures.

These compiler changes have not been made: despite GNAT’s availability in source form,
they constitute significant changes well beyond the scope (and the time limit!) of this thesis.

The standard library has not yet been rewritten to do event logging and replay where
needed.

133

Chapter 9:

Conclusion

In this final chapter, I summarize the main results and show some perspectives for future
work.

9.1 Summary of Results

In this thesis, I have studied the problem of replica consistency in the transparent replication
of non–deterministic objects (partitions) in distributed Ada 95. Partitions in Ada 95 are gen-
erally multithreaded, which causes them to exhibit a non–deterministic behavior. This non–
determinism is due to deliberate underspecification in the language standard and to inherent
timing dependencies in concurrent execution.

The general approach to replication I took is based on the notion of group communi-
cation: all the replicas of a partition form a group, which abstracts from and encapsulates
the individual replicas. The replicated partition should behave the same way as if it was not
replicated. Replication transparency is thus to be achieved not only towards the application,
but preferably also (on the system level) towards other partitions. The choice of the compu-
tation model of the replicas greatly influences the way replicas can be organized within the
group and the level of transparency that can be achieved. Two different computation models
and their consequences for replication have been investigated.

The non–deterministic computation model precludes the use of an active replication
scheme and necessitates the isolation of concurrent remote requests in order to avoid a dom-
ino effect. Remote procedure calls between objects must thus be implemented as nested
transactions, similar to the interactions between guardians in Argus. It turns out that this

Summary of Results

134

approach is inappropriate for Ada 95: serialization of transactions may conflict with the
standard semantics of the programming language, which ensures linearizability. With trans-
actional semantics, concurrent execution of remote calls that perform partial operations may
result in unbreakable deadlocks. As a result, the semantics of the programming language
Ada 95 cannot be preserved: a partition that works correctly when not replicated might
deadlock when it is replicated. Transactions are therefore not a suitable concept for trans-
parently replicating partitions in Ada 95: a distributed application would have to be devel-
oped with this restriction in mind. Replication transparency is also compromised on the
system level inasmuch as the effects of a failure are not local to the group of replicas as
other partitions have to roll back remote calls originating on the partition where a replica
has failed.

The piecewise deterministic computation model assumes that an execution consists of
a sequence of deterministic state intervals and non–deterministically occurring events,
where each non–deterministic event terminates a deterministic state interval and starts a
new one. This model corresponds better to the semantics of the programming language and
leads directly to semi–active (or leader–follower) replication of partitions. By recording the
execution history, i.e. the sequence of non–deterministic events that occur, on the leader and
replaying it on the followers the consistency of all replicas is guaranteed. Replica synchro-
nization is based on the notion of observable events: only the leader ever interacts with
other partitions of the distributed application, and the recorded history must be sent to the
followers only at each such interaction. As long as the effects of the leader’s execution are
local to the leader itself, no synchronization is necessary. Because synchronization occurs
before each interaction of the leader with the rest of the system, effects of failures remain
purely local to the group of replicas: replication transparence on the system level is main-
tained except for the need for receiver–based duplicate message detection.

Replica transparence towards the application is only given if replicas can only fail (k–
resilient objects). Recovery of replicas necessitates a state transfer from the group to the
newly joining replica. Throughout this thesis, I have assumed a very general system model
allowing heterogeneous distributed systems. A direct consequence of this is that the state
transfer cannot be accomplished transparently in an automatic way. Instead, the application
must collect and install the state itself, using routines that are invoked through callbacks
from the (otherwise transparent) replication manager. Also, the concurrent nature of Ada 95
partitions restricts state transfers in heterogeneous systems to partitions that adhere to a
rather restricted execution model. State transfers are only possible for partitions fulfilling
the quiescence assumption, ruling out in particular all partitions that contain autonomous
tasks.

As a feasibility study, a prototype replication manager called RAPIDS for the GNAT
development system for Ada 95 has been developed. Although not completed, this imple-
mentation shows that semi–active replication can be implemented transparently in the run–
time support of Ada 95 (again with the exception of state transfers).

Conclusion

135

9.2 Future Work

One direction of future work is certainly concerned with implementation: the current proto-
type should be completed, the standard library should be adapted, and the configuration tool
should be extended to allow for a greater flexibility in configuring distributed applications
with replicated partitions.

Another step is the implementation of the necessary compiler changes to be able to
log and replay the remaining internal events: the handling of remote access types, and
accesses to atomic variables.

A performance evaluation of RAPIDS still has to be done. The end–to–end perfor-
mance of RAPIDS depends heavily on the performance characteristics of the group commu-
nication protocol used and hence is not of prime interest. Besides this network overhead, the
performance of a replicated partition depends primarily on the speed of the event logging on
the leader. An isolated performance analysis of the event logging (and replay) part might
prove interesting. At the current stage, such an evaluation would be premature as RAPIDS

has not at all been conceived for optimal speed — there are too many obvious places that
should be optimized somewhat before engaging in serious performance analysis.

The current implementation of semi–active replication in RAPIDS contains no provi-
sions to bound the de–synchronization of followers with respect to their leader. If a follower
is significantly slower than its leader, it will receive a new event log before having replayed
all of the previous extended state interval, and it will therefore lag behind by more and more
extended state intervals over time. An intra–group protocol could be added to RAPIDS to
bound this effect.

I also think that state transfer should be re–examined under the assumption that repli-
cas execute (even in heterogeneous distributed systems) on a homogeneous subset of physi-
cal nodes. This assumption might alleviate some of the problems of state transfer.

Another future development might be to investigate the use of group communication
at the application level, e.g. for offering “cooperative groups” in the sense of Drago.

Part III

Annexes

139

Annex A: Bibliography

[ABHN91] Ahamad, M.; Burns, J. E.; Hutto, P. W.; Neiger, G.: “Causal Memory”, in
Proceedings of the 5th International Workshop on Distributed Algorithms
(WDAG ’91), pp. 9 – 30, Lecture Notes in Computer Science 579, Springer
Verlag, Oct. 1991.

[AC78] Avizienis, A.; Chen, L.: “N-Version Programming: A Fault–Tolerant
Approach to Reliability in Software Operation”, in Proceedings of the 8th

International Symposium on Fault–Tolerant Computing Systems (FTCS–8),
1978.

[Asp98] Asplund, L. (Ed.): Ada–Europe ’98, Uppsala, Sweden, June 1998, Lecture
Notes in Computer Science 1411, Springer Verlag, 1998.

[Avi85] Avizienis, A.: “The N–Version Approach to Fault–Tolerant Software”, IEEE
Transactions on Software Engineering SE–11(6), Dec. 1985,
pp. 1491 – 1501.

[AW94] Attiya, H.; Welch, J. L.: “Sequential Consistency versus Linearizability”,
ACM Transactions on Computer Systems 12(2), May 1994, pp. 91 – 122.

[Bar95] Barnes, J. (Ed.): Ada 95 Rationale, Lecture Notes in Computer Science
1247, Springer Verlag, 1997; Intermetrics, Inc., 1995.

[BC85] Birrell, A. D.; Cheriton, D. (Eds.): 10th ACM Symposium on Operating Sys-
tem Principles, Orcas Island WA, USA, Dec. 1985, ACM SIGOPS Operating
Systems Review 19(5).

[BDR98] Burns, A.; Dobbing, B.; Romanski, G.: “The Ravenscar Tasking Profile for
High Integrity Real–Time Programs”, in Asplund [Asp98], pp. 263 – 275.

[BH73] Brinch Hansen, P.: Operating System Principles, Prentice Hall, 1973.

[BHG87] Bernstein, P. A.; Hadzilacos, V.; Goodman, N.: Concurrency Control and
Recovery in Database Systems, Addison–Wesley, 1987.

[BHV+90] Barrett, P. A.; Hilborne, A. M.; Veríssimo, P. et al.: “The Delta–4 Extra Per-
formance Architecture XPA”, in Proceedings of the 20th International Sym-

Bibliography

140

posium on Fault–Tolerant Computing Systems (FTCS–20), pp. 481 – 488,
Newcastle upon Tyne, UK, June 1990.

[Bir85] Birman, K. P.: “Replication and Fault–Tolerance in the Isis System”, in Bir-
rell; Cheriton [BC85], pp. 79 – 86.

[BJRA85] Birman, K. P.; Joseph, T. A.; Räuchle, T.; el Abbadi, A.: “Implementing
Fault–Tolerant Distributed Objects”, IEEE Transactions on Software Engi-
neering SE–11(6), June 1985, pp. 502 – 508.

[BL93] Bernstein, A. J.; Lewis, P. M.: Concurrency in Programming and Database
Systems, Jones & Bartlett, 1993.

[BLS98] Black, D.; Low, C.; Shrivastava, S. K.: “The Voltan application programming
environment for fail–silent processes”, Distributed Systems Engineering
5(2), June 1998, pp. 66 – 77.

[BMD93] Barborak, M.; Malek, M.; Dahbura, A.: “The Consensus Problem in
Fault–Tolerant Computing”, ACM Computing Surveys 25(2), June 1993,
pp. 171 – 220.

[BMS94] Birman, K. P.; Mattern, F.; Schiper, A. (Eds.): Theory and Practice of Dis-
tributed Systems – International Workshop, Dagstuhl Castle, Germany, Sept.
1994, Lecture Notes in Computer Science 938, Springer Verlag, 1995.

[BN84] Birrell, A. D.; Nelson, B. J.: “Implementing Remote Procedure Calls”, ACM
Transactions on Computer Systems 2(1), 1984, pp. 39 – 59.

[BR94] Birman, K. P.; van Renesse, R.: Reliable Distributed Computing with the Isis
Toolkit, IEEE Computer Society Press, 1994.

[BS93] Barrett, P. A.; Speirs, N. A.: “Towards an integrated approach to fault toler-
ance in Delta–4”, Distributed Systems Engineering 1(2), 1993, pp. 59 – 66.

[BT93] Babaoglu, Ö.; Toueg, S.: “Non–Blocking Atomic Commitment”, in Mul-
lender, S. (Ed.), Distributed Systems, chapter 6, pp. 147 – 168, Addi-
son–Wesley, 2nd ed., 1993.

[BW95] Burns, A.; Wellings, A. J.: Concurrency in Ada, Cambridge University Press,
1995.

[CGR88] Cmelik, R. F.; Gehani, N. H.; Roome, W. D.: “Fault–Tolerant Concurrent C:
A Tool for Writing Fault–Tolerant Distributed Programs”, in Proceedings of
the 18th International Symposium on Fault–Tolerant Computing Systems
(FTCS–18), pp. 56 – 61, Tokyo, Japan, June 1988.

Bibliography

141

[CHT94] Chandra, T. D.; Hadzilacos, V.; Toueg, S.: “The Weakest Failure Detector for
Solving Consensus”. Technical Report TR94–1426, Department of Computer
Science, Cornell University, Ithaca NY, USA, 1994.

[Coo85] Cooper, E. C.: “Replicated Distributed Programs”, in Birrell; Cheriton
[BC85], pp. 63 – 78.

[CPR+92] Chérèque, M.; Powell, D.; Reynier, P. et al.: “Active Replication in Delta–4”,
in Lala; Koren [LK92], pp. 28 – 37.

[CR86] Campbell, R. H.; Randell, B.: “Error Recovery in Asynchronous Systems”,
IEEE Transactions on Software Engineering SE-12(8), 1986, pp. 811 – 826.

[Cri91] Cristian, F.: “Understanding Fault–Tolerant Distributed Systems”, Communi-
cations of the ACM 34(2), Feb. 1991, pp. 56 – 78.

[CT91] Chandra, T. D.; Toueg, S.: “Unreliable failure detectors for asynchronous
systems”, in Proceedings of the 10th Annual ACM Symposium on Principles
of Distributed Computing, pp. 325 – 340, Aug. 1991.

[CT95] Chandra, T. D.; Toueg, S.: “Unreliable Failure Detectors for Reliable Distrib-
uted Systems”. Technical Report TR95–1535, Department of Computer Sci-
ence, Cornell University, Ithaca NY, USA, 1995.

[DRAR91] Dasgupta, P.; Richard J. LeBlanc, J.; Ahamad, M.; Ramachandran, U.: “The
Clouds Distributed Operating System”, Computer 24(11), Nov. 1991,
pp. 34 – 44.

[Eln93] Elnozahy, E. N.: Manetho: Fault Tolerance in Distributed Systems using
Rollback Recovery and Process Replication, PhD Thesis, Rice University,
Houston TX, USA, Oct. 1993.

[EMS91] Eppinger, J. L.; Mummert, L. B.; Spector, A. Z. (Eds.): Camelot and Avalon
— A Distributed Transaction Facility, Morgan Kaufmann, 1991.

[EZ92a] Elnozahy, E. N.; Zwaenepoel, W.: “Implementation and Performance of
Transparent Rollback–Recovery in Manetho”. Technical Report TR92–197,
Rice University, Houston TX, USA, 1992.

[EZ92b] Elnozahy, E. N.; Zwaenepoel, W.: “Replicated Distributed Processes in
Manetho”, in Lala; Koren [LK92], pp. 18 – 27.

[EZ94] Elnozahy, E. N.; Zwaenepoel, W.: “On the Use and Implementation of Mes-
sage Logging”, in Proceedings of the 24th International Symposium on
Fault–Tolerant Computing Systems (FTCS–24), pp. 298 – 307, June 1994.

Bibliography

142

[FHZ97] de Ferreira Rezende, F.; Härder, T.; Zielinski, J.: “Transaction Identifiers in
Nested Transactions: Implementation Schemes and Performance”, The Com-
puter Journal 40(5), 1997, pp. 245 – 258.

[FLP85] Fischer, M.; Lynch, N. A.; Paterson, M.: “Impossibility of Distributed Con-
sensus with One Faulty Process”, Journal of the ACM 32(2), 1985,
pp. 374 – 382.

[FLW92] Fekete, A.; Lynch, N. A.; Weihl, W. E.: “Hybrid Atomicity for Nested Trans-
actions”, in Proceedings of the 4th International Conference on Database
Theory (ICDT ’92), pp. 216 – 230, Berlin, Germany, Oct. 1992, Lecture
Notes in Computer Science 646, Springer Verlag, 1991.

[GBCR93] Glade, B. B.; Birman, K. P.; Cooper, R. C.; van Renesse, R.: “Light–weight
process groups in the Isis system”, Distributed Systems Engineering 1(1),
1993, pp. 29 – 36.

[Ghe90] Ghemawat, S.: Automatic Replication for Highly Available Services, MS
Thesis MIT-LCS-TR-473, Laboratory for Computer Science, MIT, Cam-
bridge MA, USA, Jan. 1990.

[GLS95] Guerraoui, R.; Larrea, M.; Schiper, A.: “Non–Blocking Atomic Commitment
with an Unreliable Failure Detector”, in Proceedings of the 14th Symposium
on Reliable Distributed Systems, pp. 41 – 50, Bad Neuenahr, Germany, Sept.
1995, IEEE Computer Society Press, 1995.

[GMAA97] Guerra, F.; Miranda, J.; Alvarez, A.; Arévalo, S.: “An Ada Library to Pro-
gram Fault–Tolerant Distributed Applications”, in Proceedings of
Ada–Europe ’97, pp. 230 – 243, London, UK, June 1997, Lecture Notes in
Computer Science 1251, Springer Verlag, 1997.

[GR96] Garg, V. K.; Raynal, M.: “Normality: A Consistency Condition for Concur-
rent Objects”. Technical Report PI–1015, IRISA, Rennes, France, May 1996.

[Gra78] Gray, J. N.: “Notes on Database Operating Systems”, in Operating Systems:
An Advanced Course, pp. 393 – 481, Berlin, 1978, Lecture Notes in Com-
puter Science 60, Springer Verlag, 1978.

[GS94] Guerraoui, R.; Schiper, A.: “Transaction model vs Virtual Synchrony model:
bridging the gap”, in Birman et al. [BMS94], pp. 121 – 132.

[GS96] Guerraoui, R.; Schiper, A.: “Fault Tolerance by Replication in Distributed
Systems”, in Strohmeier [Str96], pp. 38 – 57.

Bibliography

143

[HGC97] de las Heras-Quirós, P.; González-Barahona, J. M.; Centeno-González, J.:
“Programming Distributed Fault–Tolerant Systems: The replicAda
Approach”, in Proceedings of Tri-Ada ’97, pp. 21 – 29, St. Louis MO, USA,
Nov. 1997.

[HLMR74] Horning, J. J.; Lauer, H. C.; Melliar-Smith, P.; Randell, B.: “A Program
Structure for Error Detection and Recovery”, in Lecture Notes in Computer
Science 16, pp. 177 – 193, Springer Verlag, Springer Verlag, 1974.

[Hoa74] Hoare, C. A. R.: “Monitors: An Operating System Structuring Concept”,
Communications of the ACM 17(10), Oct. 1974, pp. 549 – 557.

[HR83] Härder, T.; Reuter, A.: “Principles of Transaction–Oriented Database Recov-
ery”, ACM Computing Surveys 15(4), 1983, pp. 287 – 317.

[HSL78] Hopkins, A. L., Jr.; Smith, T. B., III; Lala, J. H.: “FTMP: A Highly Reliable
Fault–Tolerant Multiprocessor for Aircraft”, Proceedings of the IEEE
66(10), Oct. 1978, pp. 1221 – 1239.

[HT94] Hadzilacos, V.; Toueg, S.: “A Modular Approach to Fault–Tolerant Broad-
casts and Related Problems”. Technical Report TR94–1425, Department of
Computer Science, Cornell University, Ithaca NY, USA, 1994.

[HW90] Herlihy, M. P.; Wing, J. M.: “Linearizability: A Correctness Criterion for
Concurrent Objects”, ACM Transactions on Programming Languages and
Systems 12(3), July 1990, pp. 463 – 492.

[ISO95] ISO: International Standard ISO/IEC 8652:1995(E): Ada Reference Manual,
Lecture Notes in Computer Science 1246, Springer Verlag, 1997; ISO, 1995.

[JC86] Jalote, P.; Campbell, R. H.: “Atomic Actions for Software Fault Tolerance
using CSP”, IEEE Transactions on Software Engineering SE–12(1), 1986,
pp. 59 – 68.

[KFG+93] Kopetz, H.; Fohler, G.; Grünsteidl, G. et al.: “Real–Time Systems Develop-
ment: The Programming Model of MARS”, in Proceedings of the Interna-
tional Symposium on Autonomous Decentralized Systems, pp. 190 – 199,
Kawasaki, Japan, Mar. 1993.

[Kim95] Kim, K. H.: “The Distributed Recovery Block Scheme”, in Lyu [Lyu95],
chapter 8, pp. 189 – 209.

[KNP96] Kermarrec, Y.; Nana, L.; Pautet, L.: “GNATDIST: a configuration language
for distributed Ada 95 applications”, in Proceedings of Tri-Ada ’96,
pp. 63 – 72, Philadelphia PA, USA, Dec. 1996.

Bibliography

144

[Kop97] Kopetz, H.: Real–Time Systems — Design Principles for Distributed Embed-
ded Applications, Kluwer Academic Publishers, 1997.

[KPT95] Kermarrec, Y.; Pautet, L.; Tardieu, S.: “GARLIC: Generic Ada Reusable
Library for Interpartition Communication”, in Proceedings of Tri-Ada ’95,
pp. 263 – 269, Anaheim CA, USA, Nov. 1995.

[KWFT88] Kieckhafer, R. M.; Walter, C. J.; Finn, A. M.; Thambidural, P. M.: “The
MAFT Architecture for Distributed Fault Tolerance”, IEEE Transactions on
Computers 37(4), Apr. 1988, pp. 398 – 405.

[LABK90] Laprie, J.-C.; Arlat, J.; Béounes, C.; Kanoun, K.: “Definition and Analysis of
Hardware– and Software–Fault–Tolerant Architectures”, IEEE Computer
23(7), July 1990, pp. 39 – 51.

[Lam78] Lamport, L.: “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem”, Communications of the ACM 21(7), July 1978, pp. 558 – 565.

[Lam79] Lamport, L.: “How to Make a Multiprocessor Computer That Correctly Exe-
cutes Multiprocess Programs”, IEEE Transactions on Computers C–28(9),
Sept. 1979, pp. 690 – 691.

[Lap85] Laprie, J.-C.: “Dependable Computing and Fault Tolerance : Concepts and
Terminology”, in Proceedings of the 15th International Symposium on
Fault–Tolerant Computing Systems (FTCS–15), pp. 2 – 11, Ann Arbour MI,
USA, June 1985.

[LCJS87] Liskov, B. H.; Curtis, D.; Johnson, P.; Scheifler, R.: “Implementation of
Argus”, in Proceedings of the 11th ACM Symposium on Operating System
Principles, pp. 111 – 122, Austin TX, USA, Nov. 1987, ACM SIGOPS
Operating Systems Review 21(5).

[Led95] Ledru, P.: Distributed Programming in Ada with Protected Objects, MS The-
sis, Dept. of Computer Science, University of Alabama, Huntsville AL,
USA, Nov. 1995.

[Lis85] Liskov, B. H.: “The Argus Language and System”, in Distributed Systems:
Methods and Tools for Specification — An Advanced Course, pp. 342 – 430,
Lecture Notes in Computer Science 190, Springer Verlag, 1985.

[Lis88] Liskov, B. H.: “Distributed Programming in Argus”, Communications of the
ACM 31(3), Mar. 1988, pp. 300 – 312.

Bibliography

145

[LJP93] Lea, R.; Jacquemot, C.; Pillevesse, E.: “COOL: System Support for Distrib-
uted Programming”, Communications of the ACM 36(9), Sept. 1993,
pp. 37 – 46.

[LK92] Lala, J. H.; Koren, I. (Eds.): 22nd International Symposium on Fault–Toler-
ant Computing Systems (FTCS–22), Boston MA, USA, July 1992.

[LS83] Liskov, B. H.; Scheifler, R.: “Guardians and Actions: Linguistic Support for
Robust Distributed Programs”, ACM Transactions on Programming Lan-
guages and Systems 5(3), 1983, pp. 381 – 404.

[LS90] Little, M. C.; Shrivastava, S. K.: “Replicated K–Resilient Objects in
Arjuna”, in Proceedings of the 1st IEEE Workshop on Replicated Data,
Houston TX, USA, Nov. 1990.

[LSP82] Lamport, L.; Shostak, R.; Pease, M.: “The Byzantine Generals Problem”,
ACM Transactions on Programming Languages and Systems 4(3), 1982,
pp. 382 – 401.

[LTBL97] Litzkow, M.; Tannenbaum, T.; Basney, J.; Livny, M.: “Checkpoint and
Migration of Unix Processes in the Condor Distributed Processing System”.
Technical Report TR–97–1346, Computer Sciences Department, University
of Wisconsin, Madison WI, USA, 1997.

[Lyn83] Lynch, N. A.: “Concurrency Control for Resilient Nested Transactions”, in
Proceedings of the 2nd ACM SIGACT–SIGMOD Symposium on Principles of
Database Systems, pp. 166 – 181, Atlanta GA, USA, Mar. 1983.

[Lyu95] Lyu, M. R. (Ed.): Software Fault Tolerance, John Wiley & Sons, 1995.

[MAAG96] Miranda, J.; Alvarez, A.; Arévalo, S.; Guerra, F.: “Drago: An Ada Extension
to Program Fault–Tolerant Distributed Applications”, in Strohmeier [Str96],
pp. 235 – 246.

[Mad98] Madria, S. K.: “A Study of the Concurrency Control and Recovery Algo-
rithms in Nested Transaction Environment”, The Computer Journal 40(10),
1998, pp. 630 – 639.

[Mal96] Malloth, C.: Conception and Implementation of A Toolkit for Building
Fault–Tolerant Distributed Applications in Large–Scale Networks, PhD The-
sis #1557, Dept. of Computer Science, Swiss Federal Institute of Technol-
ogy, Sept. 1996.

Bibliography

146

[Maz96] Mazouni, K.: Étude de l’invocation entre objets dupliqués dans un système
réparti tolérant aux fautes, PhD Thesis #1578, Dept. of Computer Science,
Swiss Federal Institute of Technology, Lausanne, Switzerland, 1996.

[MFSW95] Malloth, C.; Felber, P.; Schiper, A.; Wilhelm, U.: “Phoenix: A Toolkit for
Building Fault–Tolerant, Distributed Applications in Large–Scale Net-
works”, in Workshop on Parallel and Distributed Platforms in Industrial
Products, San Antonio TX, USA, Oct. 1995.

[MHL+92] Mohan, C.; Haderle, D.; Lindsay, B.; Pirahesh, H.; Schwarz, P.: “ARIES: A
Transaction Recovery Method Supporting Fine–Granularity Locking and
Partial Rollbacks Using Write–Ahead Logging”, ACM Transactions on
Database Systems 17(1), Mar. 1992, pp. 94 – 162.

[ML83] Mohan, C.; Lindsay, B.: “Efficient Commit Protocols for the “Tree of Pro-
cesses” Model of Distributed Transactions”, in Proceedings of the 2nd ACM
SIGACT/SIGOPS Symposium on Principles of Distributed Computing, Mon-
treal, Canada, Aug. 1983.

[Mos81] Moss, J. E. B.: Nested Transactions: An Approach to Reliable Distributed
Computing, PhD Thesis MIT/LCS/TR–260, MIT, Cambridge MA, USA,
Apr. 1981.

[Mos85] Moss, J. E. B.: Nested Transactions: An Approach to Reliable Distributed
Computing, MIT Press, 1985.

[Mos93] Mosberger, D.: “Memory Consistency Models”. Technical Report TR 93/11,
University of Arizona, Tucson AZ, USA, 1993.

[MW91] Mössenböck, H.; Wirth, N.: “The Programming Language Oberon–2”. Tech-
nical Report 160, Institut für Computersysteme, ETH Zürich, Switzerland,
May 1991.

[MWR98] Mitchell, S.; Wellings, A. J.; Romanovsky, A.: “Distributed Atomic Actions
in Ada 95”. Technical Report YCS–98–298, Dept. of Computer Science, Uni-
versity of York, UK, 1998.

[Oki88] Oki, B. M.: Viewstamped Replication for Highly Available Distributed Sys-
tems, PhD Thesis MIT-LCS-TR-423, Laboratory for Computer Science,
MIT, Cambridge MA, USA, May 1988.

[Pac95] Pacull, F.: Concepts et méchanismes pour la mise en oeuvre d’un environne-
ment d’édition coopérative sur un réseau à grande échelle, PhD Thesis
#1335, Dept. of Computer Science, Swiss Federal Institute of Technology,
Lausanne, Switzerland, 1995.

Bibliography

147

[Pap79] Papadimitriou, C. H.: “The Serializability of Concurrent Database Updates”,
Journal of the ACM 26(4), Oct. 1979, pp. 631 – 653.

[PBKL94] Plank, J. S.; Beck, M.; Kingsley, G.; Li, K.: “libckpt: Transparent Check-
pointing under Unix”. Technical Report CS–TR–94–242, Department of
Computer Science, University of Tennessee, Knoxville TN, USA, Aug.
1994.

[PCD90] Powell, D.; Chérèque, M.; Drackley, D.: “Fault–Tolerance in Delta–4”, in
Proceedings of the 4th ACM SIGOPS Workshop on Fault Tolerance Support
in Distributed Systems, pp. 122 – 125, Bologna, Italy, Sept. 1990, ACM
SIGOPS Operating Systems Review 25(2).

[PJA98] Patiño-Martinez, M.; Jiménez-Peris, R.; Arévalo, S.: “Integrating Groups
and Transactions: A Fault–Tolerant Extension of Ada”, in Asplund [Asp98],
pp. 78 – 89.

[PL96] Pruyne, J.; Livny, M.: “Managing Checkpoints for Parallel Programs”, in
Proceedings of the IPPS ’96 Workshop on Job Scheduling Strategies for Par-
allel Processing, pp. 140 – 154, Honolulu HI, USA, Apr. 1996.

[Pow91] Powell, D. (Ed.): Delta–4: A Generic Architecture for Dependable Distrib-
uted Computing, volume 1 of ESPRIT Research Reports, Project 818/2252
— Delta–4, Springer Verlag, 1991.

[Pow94] Powell, D.: “Distributed Fault Tolerance: Lessons from Delta–4”, IEEE
Micro 14(1), Feb. 1994, pp. 36 – 47.

[Pra96] Pradhan, D. K.: Fault–Tolerant Computer System Design, Prentice Hall,
1996.

[PS88] Parrington, G. D.; Shrivastava, S. K.: “Implementing Concurrency Control in
Reliable Distributed Object–Oriented Systems”, in Proceedings of the 2nd

European Conference on Object–Oriented Programming (ECOOP ’88),
pp. 243 – 249, Oslo, Norway, Aug. 1988.

[PSWL95] Parrington, G. D.; Shrivastava, S. K.; Wheater, S. M.; Little, M. C.: “The
Design and Implementation of Arjuna”, Usenix Computing Systems Journal
8(3), 1995.

[PT98] Pautet, L.; Tardieu, S.: “Inside the Distributed Systems Annex”, in Asplund
[Asp98], pp. 65 – 77.

Bibliography

148

[RA94] Resende, R. F.; Abbadi, A. E.: “On the serializability theorem for nested
transactions”, Information Processing Letters 50(4), May 1994,
pp. 177 – 183.

[Ran75] Randell, B.: “System Structure for Software Fault Tolerance”, IEEE Trans-
actions on Software Engineering SE–1(2), 1975, pp. 220 – 232.

[RBM96] van Renesse, R.; Birman, K. P.; Maffeis, S.: “Horus: A Flexible Group Com-
munication System”, Communications of the ACM 39(4), Apr. 1996.

[Ree78] Reed, D. P.: Naming and Synchronization in a Decentralized Computer Sys-
tem, PhD Thesis MIT/LCS/TR–205, MIT, Cambridge MA, USA, Sept. 1978.

[RS96] Ramkumar, B.; Strumpen, V.: “Portable Checkpointing and Recovery in Het-
erogeneous Environments”. Technical Report ECE–96-6-1, Department of
Electrical and Computer Engineering, University of Iowa, Iowa City IA,
USA, 1996.

[RS97] Ramkumar, B.; Strumpen, V.: “Portable Checkpointing for Heterogeneous
Architectures”, in Proceedings of the 27th International Symposium on
Fault–Tolerant Computing Systems (FTCS–27), pp. 58 – 67, Seattle WA,
USA, June 1997.

[RX95] Randell, B.; Xu, J.: “The Evolution of the Recovery Block Concept”, in Lyu
[Lyu95], chapter 1, pp. 1 – 21.

[SB89] Speirs, N. A.; Barrett, P. A.: “Using Passive Replication in Delta–4 to Pro-
vide Dependable Distributed Computing”, in Proceedings of the 19th Inter-
national Symposium on Fault–Tolerant Computing Systems (FTCS–19),
pp. 184 – 190, Chicago IL, USA, June 1989.

[SB94] Schonberg, E.; Banner, B.: “The GNAT Project: A GNU–Ada 9X Compiler”,
in Proceedings of Tri-Ada ’94, pp. 48 – 57, Baltimore MD, USA, Nov. 1994.

[SC91] Seaton, D.; Chérèque, M.: “Input/Output: Interfacing the Real World”, in
Powell [Pow91], chapter 12, pp. 307 – 328.

[Sch90] Schneider, F. B.: “Implementing Fault–Tolerant Services using the State
Machine Approach”, ACM Computing Surveys 22(4), Dec. 1990,
pp. 299 – 319.

[SD+85] Spector, A. Z.; Daniels, D. et al.: “Distributed Transactions for Reliable Sys-
tems”, in Birrell; Cheriton [BC85], pp. 127 – 146.

[SDP91] Shrivastava, S. K.; Dixon, G. N.; Parrington, G. D.: “An Overview of the
Arjuna Distributed Programming System”, IEEE Software 8(1), Jan. 1991.

Bibliography

149

[SE+87] Spector, A. Z.; Eppinger, J. L. et al.: “High Performance Distributed Trans-
action Processing in a General Purpose Computing Environment”, in Pro-
ceedings of the 2nd International Workshop on High–Performance
Transaction Systems, pp. 220 – 242, Pacific Grove CA, USA, Sept. 1987,
Lecture Notes in Computer Science 359, Springer Verlag, 1987.

[SEST92] Shrivastava, S. K.; Ezhilchelvan, P. D.; Speirs, N. A.; Tully, A.: “Principal
Features of the Voltan Family of Reliable Node Architectures for Distributed
Systems”, IEEE Transactions on Computers 41(5), May 1992,
pp. 542 – 549.

[SF98] Sens, P.; Folliot, B.: “The STAR Fault Manager for Distributed Operating
Environments: Design, Implementation, and Performance”, Software —
Practice & Experience 28(10), Aug. 1998, pp. 1079 – 1100.

[Shr94] Shrivastava, S. K.: “Lessons Learned from Building and Using the Arjuna
Distributed Programming System”, in Birman et al. [BMS94].

[SMR93] Shrivastava, S. K.; Mancini, L. V.; Randell, B.: “The Duality of Fault–Toler-
ant System Structures”, Software — Practice & Experience 23(7), July 1993,
pp. 773 – 798.

[SR96] Schiper, A.; Reynal, M.: “From Group Communications to Transactions in
Distributed Systems”, Communications of the ACM 39(4), Apr. 1996.

[Str96] Strohmeier, A. (Ed.): Ada–Europe ’96, Montreux, Switzerland, June 1996,
Lecture Notes in Computer Science 1088, Springer Verlag, 1996.

[Str98] Strumpen, V.: “Compiler Technology for Portable Checkpoints”, submitted
for publication, http://theory.lcs.mit.edu/~strumpen/porch.ps.gz, 1998.

[SY85] Strom, R. E.; Yemini, S.: “Optimistic Recovery in Distributed Systems”,
ACM Transactions on Computer Systems 3(3), Aug. 1985, pp. 204 – 226.

[Tan95] Tanenbaum, A. S.: Distributed Operating Systems, Prentice Hall, 1995.

[VBB+91] Veríssimo, P.; Barrett, P. A.; Bond, P.; Hilborne, A. M.; Rodrigues, L.;
Seaton, D.: “Extra Performance Architecture (XPA)”, in Powell [Pow91],
chapter 9, pp. 211 – 266.

[WB96] Wellings, A. J.; Burns, A.: “Programming Replicated Systems in Ada 95”,
The Computer Journal 39(5), 1996, pp. 361 – 373.

[Wei88] Weikum, G.: Transaktionen in Datenbanksystemen, Addison–Wesley, 1988.

Bibliography

150

[Wei89] Weihl, W. E.: “Local Atomicity Properties: Modular Concurrency Control
for Abstract Data Types”, ACM Transactions on Programming Languages
and Systems 11(2), Apr. 1989, pp. 249 – 283.

[Wei93] Weihl, W. E.: “The Impact of Recovery on Concurrency Control”, Journal of
Computer and System Sciences 47, 1993, pp. 157 – 184.

[Wir88a] Wirth, N.: “Type Extensions”, ACM Transactions on Programming Lan-
guages and Systems 10(2), Apr. 1988, pp. 204 – 214.

[Wir88b] Wirth, N.: “The Programming Language Oberon”, Software — Practice &
Experience 18(7), July 1988, pp. 671 – 690.

[WL85] Weihl, W. E.; Liskov, B. H.: “Implementation of Resilient, Atomic Data
Types”, ACM Transactions on Programming Languages and Systems 7(2),
Apr. 1985, pp. 244 – 269.

[WLG+78] Wensley, J. H.; Lamport, L.; Goldberg, J. et al.: “SIFT: Design and Analysis
of a Fault–Tolerant Computer for Aircraft Control”, Proceedings of the IEEE
66(10), Oct. 1978, pp. 1240 – 1255.

[Wol97] Wolf, T.: “Fault Tolerance in Distributed Ada 95”, in Proceedings of the 8th

International Real–Time Ada Workshop, pp. 106 – 110, Ravenscar, UK, Apr.
1997, ACM Ada Letters XVII(5).

151

Annex B: Author and Citation Index

A

Abbadi, A. E.
see [RA94]

[ABHN91].. 16
[AC78] ... 23
Ahamad, M.

see [ABHN91], [DRAR91]
Alvarez, A.

see [GMAA97], [MAAG96]
Arévalo, S.

see [GMAA97], [MAAG96], [PJA98]
Arlat, J.

see [LABK90]
[Asp98] .. 139
Asplund, L.

see [Asp98]
Attiya, H.

see [AW94]
[Avi85]... 23
Avizienis, A.

see [AC78], [Avi85]
[AW94] .. 16

B

Babaoglu, Ö.
see [BT93]

Banner, B.
see [SB94]

[Bar95] ... 25, 26
Barborak, M.

see [BMD93]
Barnes, J.

see [Bar95]

Barrett, P. A.
see [BHV+90], [BS93], [SB89],

[VBB+91]
Basney, J.

see [LTBL97]
[BC85] ..139
[BDR98] ...50
Beck, M.

see [PBKL94]
Béounes, C.

see [LABK90]
Bernstein, A. J.

see [BL93]
Bernstein, P. A.

see [BHG87]
[BH73]..29
[BHG87].................................60, 62, 63, 64
[BHV+90] ...79, 102
[Bir85]19, 21, 56, 68, 100
Birman, K. P.

see [Bir85], [BJRA85], [BMS94],
[BR94], [GBCR93], [RBM96]

Birrell, A. D.
see [BC85], [BN84]

[BJRA85] ...56
[BL93] ..60
Black, D.

see [BLS98]
[BLS98] ..99
[BMD93] ..10
[BMS94]...140
[BN84]..34
Bond, P.

see [VBB+91]
[BR94] ..99
Brinch Hansen, P.

see [BH73]

Author and Citation Index

152

[BS93] .. 102
[BT93].. 64
Burns, A.

see [BDR98], [BW95], [WB96]
Burns, J. E.

see [ABHN91]
[BW95] .. 31

C

Campbell, R. H.
see [CR86], [JC86]

Centeno-González, J.
see [HGC97]

[CGR88]... 101
Chandra, T. D.

see [CHT94], [CT91], [CT95]
Chen, L.

see [AC78]
Chérèque, M.

see [CPR+92], [PCD90], [SC91]
Cheriton, D.

see [BC85]
[CHT94]... 18
Cmelik, R. F.

see [CGR88]
[Coo85] .. 97, 98
Cooper, E. C.

see [Coo85]
Cooper, R. C.

see [GBCR93]
[CPR+92] ... 102
[CR86].. 23
[Cri91].. 10
Cristian, F.

see [Cri91]
[CT91].. 18, 19
[CT95].. 18
Curtis, D.

see [LCJS87]

D

Dahbura, A.
see [BMD93]

Daniels, D.
see [SD+85]

Dasgupta, P.
see [DRAR91]

de Ferreira Rezende, F.
see [FHZ97]

de las Heras-Quirós, P.
see [HGC97]

Dixon, G. N.
see [SDP91]

Dobbing, B.
see [BDR98]

Drackley, D.
see [PCD90]

[DRAR91] ..97

E

el Abbadi, A.
see [BJRA85]

[Eln93]..78, 102
Elnozahy, E. N.

see [Eln93], [EZ92a], [EZ92b], [EZ94]
[EMS91] ...99
Eppinger, J. L.

see [EMS91], [SE+87]
[EZ92a]...102
[EZ92b] ..102
[EZ94] ..102
Ezhilchelvan, P. D.

see [SEST92]

F

Fekete, A.
see [FLW92]

Felber, P.
see [MFSW95]

[FHZ97]..71
Finn, A. M.

see [KWFT88]
Fischer, M.

see [FLP85]
[FLP85] ..18
[FLW92]...99

Author and Citation Index

153

Fohler, G.
see [KFG+93]

Folliot, B.
see [SF98]

G

Garg, V. K.
see [GR96]

[GBCR93] .. 100
Gehani, N. H.

see [CGR88]
[Ghe90] .. 98
Ghemawat, S.

see [Ghe90]
Glade, B. B.

see [GBCR93]
[GLS95] ... 64
[GMAA97]... 100
Goldberg, J.

see [WLG+78]
González-Barahona, J. M.

see [HGC97]
Goodman, N.

see [BHG87]
[GR96] ... 16
[Gra78]... 24, 64
Gray, J. N.

see [Gra78]
Grünsteidl, G.

see [KFG+93]
[GS94].. 20
[GS96].. 17
Guerra, F.

see [GMAA97], [MAAG96]
Guerraoui, R.

see [GLS95], [GS94], [GS96]

H

Haderle, D.
see [MHL+92]

Hadzilacos, V.
see [BHG87], [CHT94], [HT94]

Härder, T.
see [FHZ97], [HR83]

Herlihy, M. P.
see [HW90]

[HGC97]...101
Hilborne, A. M.

see [BHV+90], [VBB+91]
[HLMR74]..22
[Hoa74]...29
Hoare, C. A. R.

see [Hoa74]
Hopkins, A. L., Jr.

see [HSL78]
Horning, J. J.

see [HLMR74]
[HR83]..24, 63
[HSL78]..54
[HT94] ..13, 19
Hutto, P. W.

see [ABHN91]
[HW90]...15, 16

I

[ISO95]....................Throughout this thesis!

J

Jacquemot, C.
see [LJP93]

Jalote, P.
see [JC86]

[JC86] ...23
Jiménez-Peris, R.

see [PJA98]
Johnson, P.

see [LCJS87]
Joseph, T. A.

see [BJRA85]

K

Kanoun, K.
see [LABK90]

Author and Citation Index

154

Kermarrec, Y.
see [KNP96], [KPT95]

[KFG+93] ... 54
Kieckhafer, R. M.

see [KWFT88]
Kim, K. H.

see [Kim95]
[Kim95].. 22
Kingsley, G.

see [PBKL94]
[KNP96]... 106, 131
[Kop97] .. 12
Kopetz, H.

see [KFG+93], [Kop97]
Koren, I.

see [LK92]
[KPT95] ... 105
[KWFT88].. 54

L

[LABK90] .. 21
Lala, J. H.

see [HSL78], [LK92]
[Lam78].. 16, 19
[Lam79].. 16
Lamport, L.

see [Lam78], [Lam79], [LSP82],
[WLG+78]

[Lap85]... 6, 9
Laprie, J.-C.

see [LABK90], [Lap85]
Larrea, M.

see [GLS95]
Lauer, H. C.

see [HLMR74]
[LCJS87] .. 98
Lea, R.

see [LJP93]
[Led95]... 44
Ledru, P.

see [Led95]
Lewis, P. M.

see [BL93]

Li, K.
see [PBKL94]

Lindsay, B.
see [MHL+92], [ML83]

[Lis85] ..98
[Lis88] ..98
Liskov, B. H.

see [LCJS87], [Lis85], [Lis88], [LS83],
[WL85]

Little, M. C.
see [LS90], [PSWL95]

Litzkow, M.
see [LTBL97]

Livny, M.
see [LTBL97], [PL96]

[LJP93] ...97
[LK92] ..145
Low, C.

see [BLS98]
[LS83]...66, 98
[LS90]...92, 99
[LSP82] ..10
[LTBL97] ...87
[Lyn83]...65
Lynch, N. A.

see [FLP85], [FLW92], [Lyn83]
Lyu, M. R.

see [Lyu95]
[Lyu95]...145

M

[MAAG96] ...100
[Mad98] ..64
Madria, S. K.

see [Mad98]
Maffeis, S.

see [RBM96]
[Mal96]...111
Malek, M.

see [BMD93]
Malloth, C.

see [Mal96], [MFSW95]
Mancini, L. V.

see [SMR93]

Author and Citation Index

155

Mattern, F.
see [BMS94]

[Maz96].. 14, 20, 80
Mazouni, K.

see [Maz96]
Melliar-Smith, P.

see [HLMR74]
[MFSW95] ... 111
[MHL+92] .. 64
Miranda, J.

see [GMAA97], [MAAG96]
Mitchell, S.

see [MWR98]
[ML83]... 64
Mohan, C.

see [MHL+92], [ML83]
[Mos81].. 24, 64, 98
[Mos85].. 65
[Mos93].. 15
Mosberger, D.

see [Mos93]
Moss, J. E. B.

see [Mos81], [Mos85]
Mössenböck, H.

see [MW91]
Mummert, L. B.

see [EMS91]
[MW91].. 26, 47
[MWR98]... 23

N

Nana, L.
see [KNP96]

Neiger, G.
see [ABHN91]

Nelson, B. J.
see [BN84]

O

Oki, B. M.
see [Oki88]

[Oki88]... 98

P

[Pac95] ...16
Pacull, F.

see [Pac95]
[Pap79] ...59, 61
Papadimitriou, C. H.

see [Pap79]
Parrington, G. D.

see [PS88], [PSWL95], [SDP91]
Paterson, M.

see [FLP85]
Patiño-Martinez, M.

see [PJA98]
Pautet, L.

see [KNP96], [KPT95], [PT98]
[PBKL94] ...87
[PCD90] ...101
Pease, M.

see [LSP82]
Pillevesse, E.

see [LJP93]
Pirahesh, H.

see [MHL+92]
[PJA98]...100
[PL96]...87
Plank, J. S.

see [PBKL94]
[Pow91]21, 79, 101, 147
[Pow94] ..102
Powell, D.

see [CPR+92], [PCD90], [Pow91],
[Pow94]

[Pra96] ..54
Pradhan, D. K.

see [Pra96]
Pruyne, J.

see [PL96]
[PS88]...99
[PSWL95]...99
[PT98]...105

Author and Citation Index

156

R

[RA94] ... 65
Ramachandran, U.

see [DRAR91]
Ramkumar, B.

see [RS96], [RS97]
[Ran75] .. 22
Randell, B.

see [CR86], [HLMR74], [Ran75],
[RX95], [SMR93]

Räuchle, T.
see [BJRA85]

Raynal, M.
see [GR96]

[RBM96] .. 100
[Ree78]... 64, 66
Reed, D. P.

see [Ree78]
Resende, R. F.

see [RA94]
Reuter, A.

see [HR83]
Reynal, M.

see [SR96]
Reynier, P.

see [CPR+92]
Richard J. LeBlanc, J.

see [DRAR91]
Rodrigues, L.

see [VBB+91]
Romanovsky, A.

see [MWR98]
Romanski, G.

see [BDR98]
Roome, W. D.

see [CGR88]
[RS96] .. 92
[RS97] .. 92
[RX95] ... 13

S

[SB89] .. 102
[SB94] .. 39

[SC91] ..94
[Sch90] ...3, 17, 20
Scheifler, R.

see [LCJS87], [LS83]
Schiper, A.

see [BMS94], [GLS95], [GS94],
[GS96], [MFSW95], [SR96]

Schneider, F. B.
see [Sch90]

Schonberg, E.
see [SB94]

Schwarz, P.
see [MHL+92]

[SD+85] ..99
[SDP91] ..99
[SE+87]...99
Seaton, D.

see [SC91], [VBB+91]
Sens, P.

see [SF98]
[SEST92] ..99
[SF98]...87
Shostak, R.

see [LSP82]
[Shr94]..99
Shrivastava, S. K.

see [BLS98], [LS90], [PS88],
[PSWL95], [SDP91], [SEST92],
[Shr94], [SMR93]

Smith, T. B., III
see [HSL78]

[SMR93]...24, 99
Spector, A. Z.

see [EMS91], [SD+85], [SE+87]
Speirs, N. A.

see [BS93], [SB89], [SEST92]
[SR96] ..86
[Str96]...149
[Str98]...92
Strohmeier, A.

see [Str96]
Strom, R. E.

see [SY85]
Strumpen, V.

see [RS96], [RS97], [Str98]

Author and Citation Index

157

[SY85].. 78

T

[Tan95]... 15
Tanenbaum, A. S.

see [Tan95]
Tannenbaum, T.

see [LTBL97]
Tardieu, S.

see [KPT95], [PT98]
Thambidural, P. M.

see [KWFT88]
Toueg, S.

see [BT93], [CHT94], [CT91], [CT95],
[HT94]

Tully, A.
see [SEST92]

V

van Renesse, R.
see [BR94], [GBCR93], [RBM96]

[VBB+91]... 79, 81
Veríssimo, P.

see [BHV+90], [VBB+91]

W

Walter, C. J.
see [KWFT88]

[WB96] .. 45, 47
[Wei88] .. 59
[Wei89] .. 59
[Wei93] .. 64
Weihl, W. E.

see [FLW92], [Wei89], [Wei93],
[WL85]

Weikum, G.
see [Wei88]

Welch, J. L.
see [AW94]

Wellings, A. J.
see [BW95], [MWR98], [WB96]

Wensley, J. H.
see [WLG+78]

Wheater, S. M.
see [PSWL95]

Wilhelm, U.
see [MFSW95]

Wing, J. M.
see [HW90]

[Wir88a] ...26
[Wir88b] ...47
Wirth, N.

see [MW91], [Wir88a], [Wir88b]
[WL85] ...98
[WLG+78] ..54
[Wol97] ..68
Wolf, T.

see [Wol97]

X

Xu, J.
see [RX95]

Y

Yemini, S.
see [SY85]

Z

Zielinski, J.
see [FHZ97]

Zwaenepoel, W.
see [EZ92a], [EZ92b], [EZ94]

159

Curriculum Vitae

I was born in 1965 in Schaffhausen, Switzerland, and grew up in the nearby village of
Thayngen. In 1985 I completed college with a “Matura Typus C” (scientific bias) and went
on to Zurich, where I studied computer science at the Swiss Federal Institute of Technology
(Eidgenössische Technische Hochschule Zürich, ETHZ). After five years of intensive stud-
ies I received the MS degree/engineering diploma (Dipl. Informatik–Ingenieur ETH) in
1991. My diploma thesis, which was supervised by Prof. Niklaus Wirth, was entitled “M2:
Ein Modula–2 Front–End für OP2” and dealt with the development of a Modula–2 compiler
for the Oberon system.

From 1991 to 1995 I worked in a small company called HIWARE AG as a senior soft-
ware engineer and developer, developing ANSI–C and Modula–2 cross–compilers for
embedded systems. After four years, I decided to quit and to go back to university to pursue
a PhD.

Since 1995, I have been working as a research and teaching assistant at the Labora-
toire de Génie Logiciel (Software Engineering Lab) at the Swiss Federal Institute of Tech-
nology in Lausanne (Ecole Polytéchnique Fédérale de Lausanne, EPFL). Since autumn
1998, I am a lecturer at EPFL.

