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Dank gilt ihm auch für die Freundschaft, die uns während all dieser Jahre verbunden
hat.
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meinem Freund und Kollegen, Dr. Martin Schumacher von der Lonza AG, danken.
Weiterhin gilt mein Dank Stefan Lauwiner von der Lonza AG, Prof. J. Besse und dem
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Abstract

This dissertation is concerned with the development of a methodology and appropriate
tools for the investigation of chemical reaction systems using measured data. More
specifically, the determination of reaction stoichiometry and kinetics from concentration
or, preferably, spectral measurements is considered.

The main contribution of this work is the derivation of a nonlinear transformation of
the dynamic model that enables the separation of the evolution of the states into three
parts: (i) the reaction-variant part (related to the reactions), (ii) the reaction-invariant
and flow-variant part (related to the inlet and outlet streams), and (iii) the reaction-
and flow-invariant part (related to the initial conditions). This transformation is very
helpful in the analysis of concentration and spectral data.

Dynamic model

First-principles models of reaction systems are gaining importance in chemical and
biotechnological production. They can considerably reduce process development costs
and be used for simulation, model-based monitoring, control, and optimization, thus
leading to improved product quality, productivity, and process safety. These models
include information regarding both the chemical reactions and the operational mode
of the reaction system.

For the analysis of these models, it is important to distinguish between the states that
depend on the reactions and those which do not. The concept of reaction invariants
is extended to include the flow invariants of reaction systems with inlet and outlet
streams. A nonlinear transformation of the first-principles dynamic model to normal
form is proposed. Model reduction, state accessibility, and feedback linearizability are
analyzed in the light of this transformation.

Concentration data

Concentration data collected from reaction systems are highly structured, a result of
the underlying reactions and the presence of material exchange terms. It is shown
that concentration data can be analyzed in the framework of the three-level decom-
position provided by the transformation to normal form. The resulting factorization,
termed the factorization of concentration data, enables (i) the separation of the reac-
tion and flow variants/invariants and (ii) the segregation of the dynamics (extents of
reaction, integral of flows) from the static information (stoichiometry, initial and inlet
concentrations).

Using the factorization of concentration data, it is possible to isolate the reaction
variant part by subtracting the reaction-invariant part from measured concentrations.
The reaction-variant part is often unknown, since it depends on the kinetic description
(typically the main difficulty in modeling chemical reaction systems). In contrast, the
reaction-invariant part is usually known or measured. It is shown that, in cases where
the reaction variants can be computed from the concentrations of a few measured
species, the concentrations of the remaining species can be reconstructed using the
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known reaction-invariant part.

Target factor analysis has been used successfully with concentration data to determine,
without knowledge of reaction kinetics, the number of reactions and the corresponding
stoichiometries. It is shown that, when only the reaction-variant part of the data is con-
sidered, existing target factor-analytical techniques can be readily applied. However, if
target factor analysis needs to be applied directly to measured concentrations, knowl-
edge of reaction-invariant relationships is required to specify necessary and sufficient
conditions for the acceptance of stoichiometric targets.

Spectral data

In current practice, concentration measurements during the course of a reaction are
generally not available, neither on-line nor off-line. Owing to new measurement tech-
nologies, spectral measurements are now available in both the laboratory and pro-
duction. Various spectral instruments enable non-destructive indirect concentration
measurement of most of the species in-situ/on-line during the course of a reaction.
Measurements are available at high sampling rates and delay-free at low costs. Fur-
thermore, in most cases, the spectral data are linear, i.e., the mixture spectrum is a
linear combination of the pure-component spectra weighted by the concentrations. It
is shown that the three-level interpretation provided by the transformation to normal
form is applicable to spectral data from reacting mixtures.

Similarly to traditional wet-chemical analysis methods, a calibration model must also
be estimated that provides concentration estimates from spectral measurements. All
calibration methods require that a new spectrum lies in the space spanned by the
calibration spectral data (space-inclusion condition). To verify this space-inclusion
condition, it is proposed to build a calibration model for the reaction-variant part only.
Once the reaction variants are predicted from a new spectrum, the (known) reaction
invariants can be added to reconstruct the concentrations.

Concentration measurements for some species of interest are often not available due
to difficulties/costs in sampling, sample preparation, and development of analytical
techniques. Thus, traditional calibration of spectral measurements for the purpose of
concentration estimation is not possible. Instead, explicit or implicit knowledge about
the kinetic structure will be used (prior knowledge about the reaction-variant part),
thus enabling the formulation of factor-analytical methods as a calibration problem.

For pedagogical reasons, the results are developed for isothermal, constant-density re-
action systems with inlet and outlet streams. The results are then extended to various
scenarios such as reaction systems with varying density and temperature. Further-
more, factorizations of concentration data are presented that include temperature or
calorimetric measurements. Several special cases are considered, encompassing con-
tinuous stirred-tank reaction systems, semibatch and batch reaction systems, systems
with reactions in quasi-equilibrium conditions, and non-reacting mixtures with closure.



Version abrégée

Cette dissertation traite du développement d’une méthodologie et d’outils appropriés
pour l’étude de systèmes réactionnels chimiques sur la base de mesures experimen-
tales. Plus particulièrement, on considère la détermination de la stœchiométrie et de
la cinétique sur la base de mesures de concentration ou, de préférence, de mesures
spectrales.

La contribution principale de ce travail réside dans la dérivation d’une transformation
non linéaire du modèle dynamique qui permet de séparer l’évolution des états en trois
parties: (i) la partie liée aux variants réactionnels (réactions), (ii) la partie liée aux
invariants réactionnels et variants de flux (entrées et sorties), et (iii) la partie liée aux
invariants réactionnels et de flux (conditions initiales). La transformation s’avère très
utile par l’analyse de mesures de concentration et spectrales.

Modèle dynamique

Les modèles de connaissance de systèmes réactionnels gagnent de l’importance dans
le développement et la production chimiques et biotechnologiques. Ils sont très utiles
pour la simulation, la supervision, la commande, et l’optimisation, qui mènent tous
à une amélioration de la qualité du produit, de la productivité et de la sécurité du
processus. Ces modèles incluent l’information concernant les réactions chimiques et le
mode opératoire du système réactionnel.

Pour l’analyse de ces modèles, il est important de distinguer les états qui dépendent des
réactions de ceux qui n’en dépendent pas. Dans ce travail, le concept d’invariants réac-
tionnels est étendu pour inclure les invariants de flux pour les systèmes réactionnels avec
entrées et sorties. On propose une transformation non linéaire du modèle dynamique
vers une forme normale. Les concepts de réduction du modèle, d’accessibilité d’état et
de linéarisabilité par feedback sont ensuite analysés à partir de cette transformation.

Mesures de concentration

Les mesures de concentration obtenues à partir de systèmes réactionnels sont corrélées
entre elles du fait de la présence de réactions et de termes d’alimentation du réacteur.
On démontre que les mesures de concentration peuvent être analysées dans le cadre
de la décomposition à trois niveaux basée sur la transformation sous forme nor-
male. La factorisation résultant, appelé factorisation des mesures de concentra-
tions, permet (i) la séparation de variants/invariants réactionnels et de flux, et (ii)
la séparation des éléments dynamiques (avancements de réaction, effets des débits
d’alimentation) de l’information purement statique (stœchiométrie, concentrations ini-
tiales et d’alimentation).

La factorisation des mesures de concentrations permet d’isoler la partie liée aux vari-
ants réactionnels en soustrayant des concentrations mesurées la partie connue liée
aux invariants réactionnels. En effet, les variants réactionnels sont souvent inconnus,
puisqu’ils dépendent de la description cinétique qui représente la difficulté principale de
modélisation des systèmes réactionnels. En revanche, la partie liée aux invariants réac-
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tionnels est habituellement connue ou mesurée. On démontre que, dans les cas où les
variants réactionnels peuvent être calculés à partir des concentrations de quelques sub-
stances mesurées, les concentrations des autres substances peuvent être reconstruites
en utilisant la partie connue liée aux invariants réactionnels.

L’analyse factorielle avec cibles a été employée avec succès sur des mesures de con-
centration pour déterminer, sans connaissance de la cinétique de réaction, le nombre
de réactions et les stœchiométries correspondantes. On démontre que, en considérant
uniquement la partie liée aux variants réactionnels des mesures, l’analyse factorielle est
applicable. Cependant, si l’analyse factorielle doit être appliquée directement sur des
mesures de concentration, la connaissance de certains invariants réactionnels est exigée
afin de pouvoir spécifier des conditions nécessaires et suffisantes pour l’acceptation des
cibles stœchiométriques.

Mesures spectrales

Dans la pratique, les mesures de concentration ne sont généralement pas disponibles
pendant la réaction. Grâce à de nouvelles technologies de mesure, les mesures spec-
trales sont maintenant disponibles en laboratoire et en production. Divers instruments
permettent une mesure indirecte et non destructive de concentration pour la plupart
des substances, in-situ et en-ligne pendant une réaction. Les mesures sont disponibles
à des fréquences d’échantillonnage rapides, sans retard et à de faibles coûts. En outre,
dans la plupart des cas, les mesures spectrales sont linéaires, c’est-à-dire que le spectre
d’un mélange est une combinaison linéaire des spectres des composants purs pondérés
par les concentrations. On démontre que l’interprétation à trois niveaux basée sur la
transformation sous forme normale est également applicable aux mesures spectrales de
mélanges réactionnels.

Comme avec les méthodes traditionnelles d’analyse, il convient également d’estimer
un modèle de calibration afin d’estimer des concentrations à partir de mesures spec-
trales. Toutes les méthodes de calibration exigent qu’un nouveau spectre se situe dans
l’espace déterminé par les mesures spectrales de calibration (condition d’inclusion).
Pour vérifier cette condition, on propose de développer un modèle de calibration unique-
ment pour la partie liée aux variants réactionnels. Une fois ceux-ci estimés à partir
d’un nouveau spectre, les concentrations sont calculées en y ajoutant la contribution
des invariants réactionnels (connue à partir des conditions expérimentales).

Les mesures de concentration pour certaines substances d’intérêt ne sont souvent pas
disponibles dû aux difficultés/coûts dans le prélèvement, la préparation d’échantillon
et le développement des techniques analytiques. Ainsi, la calibration traditionnelle
de mesures spectrales pour l’estimation de concentrations n’est pas possible. Pour
pallier au manque de mesures de concentration, la connaissance explicite ou implicite
de la structure cinétique est utilisée, permettant ainsi de formuler l’approche d’analyse
factorielle comme un problème de calibration.

Pour des raisons pédagogiques, les résultats sont développés pour les systèmes réaction-
nels isothermes, de densité constante et avec entrées/sorties. Les résultats sont ensuite
étendus à d’autres scénarios tels que les systèmes réactionnels à densité et température
variables. On présente aussi des factorisations de mesures de concentrations qui per-
mettent d’inclure des mesures de température. Plusieurs cas spéciaux sont considérés:
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les systèmes réactionnels continus de type CSTR, les systèmes réactionnels en semi-
batch et batch, les systèmes avec des réactions en pseudo-équilibre, et les mélanges non
réactionnels avec contraintes sur les concentrations.





Nomenclature

Matrices

Matrices are denoted by capital boldface latin or greek letters. If not otherwise stated
in the main text, the matrix dimension is the one given in parentheses.

Latin letters

A spectral matrix (K × L) A dynamic matrix (n × n)

B regressor matrix B input matrix (n × m)

C molar concentration matrix
(K × S)

Cp,in diagonal matrix of the
specific heat capacities of
the inlets (p × p)

D molar concentration matrix
in reaction-variant form
(molar RV-concentration
matrix; K × S)

E matrix of extinction
coefficients or
pure-component spectra
(S × L)

F, G noise matrices F general matrix function

H spectral matrix in
reaction-variant form
(RV-spectral matrix; K × L)

I identity matrix

J projection matrix Jc centering matrix (special
projection matrix)

L matrix used in Section 3.1
(S × ς − R)

M
diag (m(1), m(2), . . . ,m(K))
(K × K)

Mw diagonal matrix of molecular
weights (S × S)

M matrix used in Section 3.1

N stoichiometric matrix
(R × S)

P/P abstract/physical loading
matrix

P selection matrix; matrix
used in Section 3.1
(S × S − R)

Q matrix used in Section 3.2.3
(S × S − ς)

Q matrix used in
Section 3.1(S × S − ς)

Qin matrix of transformed inlet
volumetric flowrates for K
observations (p × S)

R, R†,
R‡

rotation matrices Rr matrix of transformed
kinetic rates for K
observations (R × S)

T/T abstract/physical scores
matrix

U input or design matrix
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Latin letters (continued)

V diagonal matrix of V for K
measurements (K × K)

W weight fraction matrix
(K × S)

X matrix of reaction variants
(K × R)

Y output matrix

Z matrix of reaction invariants
and flow variants (K × p)

Greek letters

Γ transpose of the
reaction-invariance matrix
(S × N)

Θ reaction spectral matrix NE
(R × L)

Λ diag (λ(1), . . . , λ(K))
(K × K)

Σ matrix of singular values or
eigenvalues in decreasing
order

Υ matrix of left singular
vectors

Φ diagonal matrix related to
density

Ω matrix of right singular
vectors

Vectors

Vectors are denoted by boldface small latin or greek letters or boldface symbols.

Latin letters

a spectrum (L-dim.) b column of B or B

c molar concentrations
(S-dim.)

d molar concentration vector
in reaction-variant form
(molar RV-concentrations;
S-dim.)

e pure-component spectrum
(L-dim.)

f noise vector

h spectral vector in
reaction-variant form
(RV-spectral vector; L-dim.)

−∆hR vector of reaction enthalpies
[J/mol] (R-dim.)

k vector of equilibrium
constants

m baseline slope (K-dim.)

m masses of the various species
(S-dim.)

n reaction stoichiometry
(S-dim.)

n number of moles (S-dim.) p column of P or P
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Latin letters (continued)

q volume flowrates (p-dim.) qT extended flow vector

r reaction rates (R-dim.) t column of T

T temperature vector
(K-dim.)

u column of U

w weight fractions (S-dim.) x vector of reaction variants
(R-dim.)

x state vector y output vector

z reaction-invariant and
flow-variant vector (p-dim.)

z transformed state vector

Greek letters

α, β coefficient/constant vectors γ column of Γ; constant vector

ε error vector θ parameter vector

λ channel number vector
(L-dim.)

ν inlet mass flow-rates
(p-dim.)

ρ̄ pure-component density
vector (S-dim.)

υ column of Υ

ω column of Ω

Symbols

0 vector or matrix of
appropriate dimension with
all elements being 0

1 vector or matrix of
appropriate dimension with
all elements being 1

Scalars

Scalars are denoted by plain small or capital latin or greek letters. Chemical species
are abbreviated by Xi, i = 1, . . . , S.

Sb has two meanings depending on the context: (i) “Sb species” means the set of
species tagged by Sb, and (ii) “a+Sb” means the sum of a and the cardinality Sb of the
particular species subset Sb. Similarly, Rb has two meanings depending on the context:
(i) “Rb reactions” means the particular reaction subset, and (ii) “a + Rb” means the
sum of a and the cardinality Rb of the particular reaction subset Rb.

Small latin letters

c molar concentration [M] cp specific heat capacity [J/◦K]

f, g, h scalar functions g entry in Γ
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Small latin letters (continued)

k time instant k mass action function

m number of inputs m total mass [g]

mj mass of the jth species in a
mixture [g]

n number of states

nij stoichiometric coefficient of
the jth species in the ith
reaction

n element of n

p number of inlet streams or
inputs

q number of outputs

p pressure; peak number qin inlet volumetric flowrate [l
h−1]

qout outlet volumetric flowrate [l
h−1]

r reaction rate [M h−1]

rij elementary function of cj for
the ith reaction

t time [h]

u element of U; input w weight fraction [wt-%]

wn mole fraction [n-%] w window size

x extent of reaction or
reaction variant [mol]

z reaction invariant and flow
variant [l]

Capital latin letters

A number of factors (principal
components, etc.)

A heat-transfer area [m2]

B number of number of batch
runs, additions, or
experiments

E normalized activation energy
[K]

I index set K number of observations
(measurements, objects,
etc.)

K equilibrium constant L number of channels
(wavelengths, wavenumbers,
peaks, etc.)

Mw molecular weight [g mol−1] M stirrer torque [Nm]

N number of types of atoms,
electrical charges, etc.

O instrumental output

Q̇co heating/cooling power and
dissipated heat power [J/h]

R number of reactions

R gas constant S number of reacting species
(see Chapters 2–4); number
of absorbing species (see
Chapter 5)
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Capital latin letters (continued)

Sk number of known species for
which the concentrations are
measured in the calibration
step

Sm number of species for which
the concentrations are
measured (see Chapter 4);
number of absorbing species
observed in the selected
spectral data (see
Chapter 5)

Srn number of non-absorbing
reaction species

Sna number of non-reacting
absorbing species

Sp number of species known a
priori to be present in the
mixture for which the
pure-component spectra are
available

Sr the total number of reacting
species

Sra number of non-absorbing
reacting species

St total number of species

Sta the total number of
absorbing species

Sx number of species that have
nonzero elements in Cx; the
total number of species that
have nonzero elements in Cx

with Cx fulfilling
Cx,n = R‡ Cx (see
Section 5.3.1)

T temperature in [◦C] or [K] U global heat transfer
coefficient through the wall
in [W m−2 K−1]

V total volume [l] Q̇sti dissipated stirring power
[J/h]

Small greek letters

α, β, γ,
ϑ, η, µ

coefficients/constants γsn number of atoms, electrical
charges, etc. of the nth type
in the sth species

δ dilution; Dirac impulse ε error

θ parameter κ nominal (or specific) rate
constant or pre-exponential
factor

λ state related to the outflow;
channel number,
wavelength, wavenumber,
etc.

ν inlet mass flowrate [g h−1];
wavenumber

ρ density [g l−1] ρ̄ pure component density [g
l−1]
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Small greek letters (continued)

σ singular value; standard
deviation

ς rank of [NT, Cin]

ω angular speed [(rad) s−1]

Operators, spaces, and special functions

AUTO(·) autocorrelation of a vector C(·) covariance matrix

diag (y);
diag (Y)

diagonal matrix containing
the elements of the vector y;
vector containing the
diagonal elements of the
matrix Y

D differential or difference
operator

D(·) dispersion matrix

∆ difference EE the standard deviation of
the embedded error or the
average additive prediction
error or the bias

IE the standard deviation of
the extracted or estimation
error

ME the standard deviation of
the measurement error

N (·) null space of a matrix NEE normalized bias

NIE normalized estimation error NRMS normalized root mean
squared error

prank (·) pseudo-rank or
approximate-rank of a
matrix

rank (·) mathematical rank of a
matrix

R(·) correlation matrix or
reachable set

IRp×q real space of dimension p by
q

RMS root mean squared error Sc (·) subspace spanned by the
columns of a matrix
(column space)

Sr (·) subspace spanned by the
rows of a matrix (row space)

V (·) variance

τ transformation
(diffeomorphism)

V neighborhood

‖ · ‖F Frobenius or Euclidian
(matrix) norm

‖ · ‖p p-norm of vectors and
matrices

≡ definition := redefinition
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Subscripts

Small letters

a abstract c related to c, or partial
derivative with respect to c;
related to calibration set

cv related to cross validation d dependent

e extended ext external

f final g augmented (appended)

i, j running indices id independent

in inlet stream k related to the Sk species

l locally; dependent m related to the Sm species

max maximal min minimal

n new; related to mole fraction n related to n

rn related to the Srn species na related to the Sna species

o observed out related to outlet streams

p dimension of 1 or 0-vectors;
related to projection error;
related to the Sp species

q related to inlet streams

r related to the Sr species;
related to reaction variants

ra related to the Sra species

s setpoint; partition t related to the St species;
partition

ta related to the Sta species tar target

u unmeasured; unknown,
interferent

w related to weight fractions

x experimental x related to x

y, z partitions z related to z or Z

Capital letters

A related to the number of
factors

L related to number of
channels

R related to the reactions T partial derivative with
respect to temperature T ;
related to temperature

Symbols

0 initial (I) without a quantity I
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Symbols (continued)

− before + after

Superscripts

Superscripts can have different meanings when applied to scalars, vectors or matrices.

Unique meaning

b identifier of a subset of
species

p product

r reactant T transpose of a vector or
matrix

− consumed; before limit ∗ optimal

⊥ orthogonal complement � related

Applied to matrices

+ unique Moore–Penrose
pseudo-inverse

+T pseudo-inverse transpose

−1 inverse −T inverse transpose

Applied to scalars

+ produced − consumed

Accents

Accents can have different meanings when applied to scalars, vectors or matrices.

Unique meaning

ȧ derivative with respect to
time; finite difference with
respect to time

â estimate

ã noisy or random quantity á at a final state or at
equilibrium

Applied to matrices

Āc column mean-centered Ār row mean-centered
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Applied to vectors

ā mean āc column mean

ār row mean

Applied to scalars

ā maximal a minimal
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Introduction

1.1 Motivation

In recent years, constantly changing market conditions have forced many chemical pro-
ducers to move to the turbulent world of multiproduct plants in order to provide rapid
product changeovers. The economic environment calls for reduced development times
with the goal of shorter times to market. Also, while guaranteeing safety and environ-
mental aspects, product quality and productivity improvements of existing chemical
processes become increasingly important to compete against other providers, espe-
cially when product patents expire. Consequently, the important goals of the chemi-
cal, pharmaceutical and biotechnological industries can be summarized as follows: (i)
short development time (e.g., fast scale-up) and (ii) safe manufacturing of products of
reproducible quality in short production times.

The chemical reactor is the heart of a chemical plant. It involves chemical reactions
that convert specific feed material (or reactants) into marketable products. For reasons
such as safety, product quality, and productivity, inlet and outlet streams are often used
in industry. Furthermore, since isothermal operation is sometimes difficult to achieve
or simply undesirable (nonoptimal), the temperature is varied through external heat-
ing/cooling. The resulting reaction system encompasses the reactions and the physical
processes (inlets/outlets, heating/cooling, etc.).

Operating strategies (e.g., initial conditions, feeding profiles), monitoring methods
(e.g., for product quality), and control designs (e.g., for reactor temperature, pH)
of reaction systems are developed rather conservatively from laboratory tests (in the
process development phase) and then, in some cases, adjusted and improved slowly
over time on the production units. The reason for this commonly-encountered proce-
dure is often the lack of a reasonable first-principles model and appropriate chemical
measurement methods that can provide frequent concentration estimations at low cost.

First-principles models describe the state evolution (the concentrations, the tempera-
ture, and the volume) by means of conservation equations of differential nature (molar
balances, heat balance, continuity equation) and constitutive equations of algebraic
nature (e.g., equilibrium or rate expressions). They usually include information re-
garding both the underlying reactions (e.g., stoichiometry1, heats of reaction, reaction

1In biotechnological reaction systems, yield coefficients are often used instead of stoichiometries.
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rates) and the operational mode of the reaction system (e.g., initial conditions, material
exchange terms, operational constraints).

Two types of concentration measurements are commonly found in industry: weight
fraction and molar concentration. However, concentration measurements during the
course of a reaction are not generally available, neither on-line nor off-line. If concen-
trations are measured, they are mostly used to provide post-production quality control
assessment and demonstrate waste discharge compliance (American Chemical Society
et al., 1996).

Concentrations are rarely analyzed for samples taken during the course of a reac-
tion. There are several reasons for this, including difficulties/costs in sampling, sam-
ple preparation, and development of the wet-chemical analysis methods. Owing to
new measurement technologies, spectral measurements (such as vibrational or emission
spectroscopy) are now available in both the laboratory and production. Various spec-
tral instruments enable non-destructive indirect concentration measurement of most
species in-situ/on-line during a reaction. Measurements are available at high sampling
rates, low costs and delay-free.

Based on these measurements and prior knowledge regarding the reaction system, it
would be challenging to meet the industrial goals mentioned above by solving the
following problems:

(P1) Quantitative estimation/prediction of concentrations.

(P2) Building first-principles models.

(P3) Monitoring, control, and optimization of reaction systems.

The solution to Problem P2 usually reduces time and costs in the laboratory as it en-
ables simulation of various scenarios, and the solution to Problem P3 typically makes
production processes safer and more efficient. First-principles models also play a key
role in solving Problem P3. The availability of concentration estimates (solution to
Problem P1) forms the basis for solving Problems P2 and P3: For building first-
principles models, concentration estimates must be available off-line, while for mon-
itoring, control, and optimization of reaction systems, it is necessary to have them
on-line.

This dissertation develops a methodology and appropriate tools that help solve the
three problems for homogeneous reaction systems with inlet and outlet streams.

Quantitative estimation/prediction of concentrations

For traditional wet-chemical analyses, a calibration model for the estimation of concen-
trations is typically required. This holds true also for the estimation of concentrations
from spectral data. For building a calibration model, all the species expected to be
present in a mixture of unknown concentrations must be available and varied inde-
pendently. For non-reacting (static) calibration data, numerous mixtures with concen-
trations selected according to an experimental plan are usually prepared (Box et al.,
1978). The difficulty with this approach is that possibly highly-reactive intermediates
must be available — a requirement that is often difficult and sometimes impossible
to meet. This difficulty is circumvented by taking samples during the course of the
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reaction. This way, the intermediates are produced by the reactions, and the need to
vary them externally disappears.

However, the concentration measurements of such samples are often difficult to obtain
for the reasons mentioned above. Thus, traditional calibration for the purpose of
concentration estimation is often not feasible. For such situations, factor-analytical
techniques are available to estimate concentrations from spectral measurements. They
require some prior knowledge of, for example, the kinetic structure.

Concentration data contain superposed information regarding both the underlying re-
actions (reaction-variant part) and the operational mode of the reactor (including the
rates of mixing and transport processes; reaction-invariant part). It would be very help-
ful to be able to separate these two parts and to identify the reaction stoichiometries
(and the reaction rates) directly from the reaction-variant part.

Building first-principles models

The rates of transport processes can usually be estimated adequately from the prop-
erties of e.g. the individual species, the flow characteristics (Perry and Green, 1984).
However, the kinetic description represents the main difficulty in modeling chemical
reaction systems. For most industrially-relevant reactions, the kinetic parameters can-
not be estimated reliably from theory and, thus, must be determined experimentally
from concentration data. This estimation requires the system stoichiometry and can-
didate kinetic structures to be available. In practice, however, it would be preferable to
identify the reaction stoichiometries from the available data independently of reaction
kinetics. In other words, instead of fitting a global model (stoichiometric and kinetic)
to measured data, it would be better to proceed in two steps: (i) determine the re-
action stoichiometries and extents of reaction from measured data without knowledge
of kinetics, and (ii) determine the kinetic structure for each reaction individually from
the corresponding extent of reaction computed in the first step. Only that step is
considered in this dissertation.

Postulate

For batch reaction systems, the reaction invariants are constants. However, for reaction
systems with inlet and/or outlet streams, some of the reaction invariants vary with the
inlet and/or outlet streams. For such systems, the concept of flow variants/invariants
can help in the analysis of reaction systems.

The following postulate can be formulated:

The concept of reaction and flow variants/invariants helps in the analysis of
methods for solving Problems P1–P3. Furthermore, this concept is crucial for
fine-tuning methods such as multivariate calibration and curve-resolution tech-
niques.

This postulate, which forms the basis of this dissertation, needs to be investigated and
proven. For this purpose, three representations will be derived for reaction systems
and reaction data: a first-principles dynamic model, a factorization of concentration
data, and a factorization of spectral data. In the three representations, the concept
of reaction and flow variants/invariants will enable to separate the contribution of the
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reactions (reaction variants) from the direct contribution of the inlet streams (reaction
invariants and flow variants) and the terms related to the initial conditions (reaction
and flow invariants).

1.2 State of the art

Reaction variants/invariants

For the analysis of first-principles models, it is important to distinguish between the
states that depend on the reactions and those which do not. A linear transformation
was proposed by Waller and Mäkilä (1981) to separate the reaction-variant states (same
dimension as the number of independent reactions) from the reaction-invariant states.
This transformation requires the knowledge of stoichiometry but not of kinetics. Even
when inlet and outlet streams are present, the reaction invariants can be separated from
the reaction variants by the transformation proposed by Waller and Mäkilä (1981).
However, the reaction invariants are influenced by the flows and, thus, evolve with
time (Fjeld et al., 1974). The transformation of Waller and Mäkilä (1981) does not
separate out the reaction and flow invariants.

Concentration measurements

Concentration measurements are often used for discriminating among reaction mecha-
nisms (stoichiometry and kinetics) proposed by the chemist, and for estimating param-
eters in kinetic models (Himmelblau et al., 1967; Hill, 1977; Perry and Green, 1984).
These activities usually require the knowledge of candidate kinetic structures.

When the kinetic structure is not available, concentration data can still be used for
two important activities: identification of stoichiometric models (using target factor
analysis, TFA) and on-line state reconstruction.

TFA is a useful multivariate analysis tool to determine the number of independent
reactions and the corresponding stoichiometries (Hamer, 1989; Bonvin and Rippin,
1990). However, the approach is restricted to cases where the reaction-variant part in
the measured data can be isolated from the reaction-invariant part.

On-line state reconstruction enables to reconstruct the concentrations of the species
of interest from those species which are routinely measured on-line. Under certain
conditions, on-line state reconstruction can also be implemented without knowledge of
kinetics. An advantage of this method is that it only requires an estimate of the initial
concentrations of the species to be reconstructed. Bastin and Dochain (1990) showed
that asymptotic convergence to the true concentrations can be guaranteed (asymptotic
observer).

Spectral measurements

Spectral data are typically analyzed using multivariate calibration or curve resolution
methods (e.g., factor analysis) depending on whether or not measured concentrations
are available.

Multivariate calibration methods can predict concentrations from measured spectral
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data on the basis of a calibration model (Martens and Naes, 1989; Brown, 1993). For
the species of interest, the spectra and the corresponding concentrations are usually
available for some observations (e.g., from wet-chemical analyses). The calibration
model is also valid when the concentrations of some interferents (species of no inter-
est) are unknown in the calibration step (Krutschkoff, 1967; Martens and Naes, 1989;
Crocombe et al., 1984; Haaland and Thomas, 1988). Also, it is a well-known fact that
the region of applicability is wide enough to include a certain class of nonlinear models
(Gemperline et al., 1991; Bak and Larsen, 1995).

Most of the calibration methods have been developed for non-reacting spectral data. In
contrast to non-reacting mixtures, however, data from reacting mixtures are structured
due to the underlying chemical reactions, and (black-box) calibration methods often
fail due to collinearity of concentrations.

Factor-analytical techniques involve two steps: (i) principal component analysis (Jack-
son, 1991), (ii) rotation of scores and loading matrices into physically-meaningful quan-
tities using prior knowledge about the underlying system and the type of instrumental
response. They have been used successfully for non-reacting mixtures to resolve the
pure-component spectra and the corresponding concentrations from spectral data. For
a detailed review, the reader is referred to Malinowski (1991); Tauler et al. (1995);
Gemperline (1989); Hamilton and Gemperline (1990); some important FA techniques
include TFA (Malinowski, 1991), evolving factor analysis (EFA; Maeder, 1987; Keller et
al., 1992; Brereton and Elbergali, 1994; Toft, 1995), iterative target factor analysis (IT-
TFA; Vandeginste et al., 1987), alternating regression (AR; Karjalainen, 1989; Tauler
et al., 1995), interactive self-modeling multivariate analysis (Windig, 1990); window
evolving factor analysis (WEFA; Keller and Massart, 1991; Malinowski, 1992), incre-
mental target factor analysis (IncTFA; Prinz, 1992), heuristic evolving latent projection
(HELP; Kvalheim and Liang, 1992).

TFA can be used to individually test the existence of candidate species (described
by pure-component target spectra) in spectral data. Once pure-component target
spectra for all species absorbing in the unknown mixtures have been accepted, the
corresponding concentration matrix can be reconstructed. However, the problem with
such an approach is that pure-component target spectra must be available from a
database.

For some types of spectral instruments (e.g., mid-infrared, nuclear magnetic resonance,
mass spectroscopy), normalized pure-component target spectra exist, which can be
used for spectral identification or finger printing using TFA (de Jong, 1991; Vogels et
al., 1993). However, they cannot be used for quantitative concentration estimation.
Also, for numerous types of spectral instruments, pure-component target spectra are
not available from a database, since they often depend on the specific instrument, the
experimental conditions, and physico-chemical interactions between the species (Burns
and Ciurzak, 1992).

Most of the FA techniques rely on the assumption that the rank of the spectral data is
determined by the number of absorbing species. For reacting mixtures, however, this
assumption is usually not satisfied.
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1.3 Objectives of the dissertation

This work contributes to the system-theoretical analysis of dynamic reaction models.
It introduces the concept of reaction and flow variants/invariants. In the light of this
concept, model reduction, state accessibility and the construction of a linearizing feed-
back are investigated. Furthermore, special emphasis is drawn on the implications
with regard to this concept on the utilization of concentration and spectral data. More
specifically, the following activities are studied: (i) the reconstruction of concentrations
for all species from the concentrations of a few measured species (on-line state recon-
struction), (ii) the identification of stoichiometric models based on concentration data
using TFA, and (iii) the estimation of concentrations from spectral measurements using
multivariate calibration and factor analysis. For the three representations proposed in
this dissertation, Table 1.1 summarizes the corresponding objectives and tools used.
Note that most of the tasks do not require knowledge of kinetics.

Reaction and flow variants/invariants

The concept of reaction invariants of Waller and Mäkilä (1981) will be extended to
include flow invariants of reaction systems with inlet and outlet streams, thus leading
to a decomposition of the state evolution into reaction and flow variants/invariants. In
contrast to Waller and Mäkilä (1981) who used a linear transformation, a nonlinear
transformation will be proposed here. Furthermore, the concept will be extended to
include the heat balance equation. Model reduction, state accessibility, and feedback
linearizability will also be studied.

Concentration measurements

Concentration data will be analyzed using the knowledge gained from the system-
theoretical analysis of the dynamic model. A data pre-treatment will be proposed that
separates the reaction-variant and reaction-invariant parts.

The convergence of the asymptotic observer proposed by Bastin and Dochain (1990)
will be studied in the light of the reaction and flow variants/invariants.

The TFA results of Hamer (1989) and Bonvin and Rippin (1990) will be extended to
handle measured concentration data directly. Furthermore, the case of unmeasured
species will be considered. Special emphasis will be given to the specification of neces-
sary and sufficient conditions for the acceptance of stoichiometric targets.

Spectral measurements

Spectral data from reacting mixtures are factorized using the knowledge gained from
the two previous analyses. Also, a data pre-treatment will be proposed that separates
the reaction-variant and reaction-invariant parts. Certain useful results regarding the
determination of the number of reactions and absorbing species from spectral data will
be derived.

For the calibration of reacting spectral data, methods will be proposed that specify the
validity range of a calibration model in terms of the experimental conditions of a new
process run. Furthermore, methods will be proposed that enable choosing the reaction
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Table 1.1. The representations proposed in this dissertation for investigating reaction sys-
tems with the corresponding objectives and tools. There is also an indication of whether
or not kinetic knowledge is required.

Dynamic model Factorization of
concentration data

Factorization of
spectral data

Objectives
in this
study

Study of system
properties

On-line state
reconstruction;
Stoichiometric modeling

Concentration
estimation

Tools used

Model reductiona Asymptotic observera Calibrationa

State accessibilitya Target factor analysisa Factor analysisc

Feedback
linearizabilityb

a No knowledge of kinetics.
b Knowledge of kinetics required only for implementing of the linearizing feedback.
c Some knowledge of kinetic structure required.

invariants for the new set independently of those of the calibration set.

For situations where concentration measurements are not available for calibration, FA
will be used. Methods will be proposed that (i) render most existing FA methods
applicable to reacting spectral data, and (ii) construct a calibration set from implicit
or explicit knowledge of kinetic structure with the goal of substituting for the missing
calibration concentration measurements. The latter FA method will be formulated in
the framework of calibration of reacting spectral data.

1.4 Organization of the dissertation

For pedagogical reasons, the results of this dissertation are developed for isothermal,
constant-density reaction systems with inlet and outlet streams (basic dynamic model).
The results are then extended to various scenarios such as reaction systems with varying
density and temperature. Also, factorizations of extended concentration data that
include temperature or calorimetric measurements will be presented. Furthermore, for
spectral data, results are first developed under the assumption that all species both
react and absorb. The results are then extended to take into account the presence of
non-absorbing reacting species and/or of non-reacting absorbing species.

Several special cases are considered. These include continuous stirred-tank reaction
systems, semibatch and batch reaction systems, systems with reactions in quasi-
equilibrium conditions, and non-reacting mixtures with closure.

The main concepts and results are illustrated by simulated examples. For the sake
of readability, the numerical values of the parameters for the simulated examples and
the proofs of the main results are pushed to Appendices A and H, respectively. Fur-
thermore, the main assumptions for the various representations (dynamic model and
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factorizations of concentration and spectral data) are given in Appendix D.

An introduction to the main tools used in this dissertation such as on-line state re-
construction, TFA, multivariate calibration, and FA are given in Appendices B (linear
algebra) and C (statistics). The applications of these tools to reaction systems are pre-
sented in the particular sections of the main text. The factorization of general (linear)
spectral data is derived in Appendix F, and a non-exhaustive list of instruments, for
which the results developed in this dissertation are applicable, is provided. Local rank
useful for factor analysis of spectral data is studied in Appendix G.

Chapter 2 derives the basic dynamic model, its extensions, and special cases of re-
action systems. Based on this dynamic model, the concept and some implications of
reaction and flow variants/invariants are introduced in Chapter 3. Chapter 4 analyzes
concentration data by introducing a factorization of concentration data. Furthermore,
the importance of this factorization on the following two activities is illustrated: on-
line state reconstruction and stoichiometric modeling. Based on the knowledge gained
in the previous chapters, Chapter 5 derives a factorization of spectral data and il-
lustrates its importance on the following two activities: multivariate calibration and
curve-resolution (factor analysis) for the estimation of concentrations from spectral
data. Chapter 6 presents concluding remarks and an outlook for future work.
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Modeling chemical reaction systems

In current practice of the chemical/biotechnological industry, after screening experi-
ments have been performed, response surface models (RSM; Box et al., 1978) are often
used in process development to describe the relationships between some important fac-
tors (e.g., initial conditions, catalyst type) and responses (e.g., quality and productivity
measures). Since the structure is usually highly empirical (e.g., a polynomial model
including linear, quadratic and interaction terms), RSMs are only valid within the ex-
perimental range. Thus, if the goal of an RSM is to determine the optimal values of
dominant factors, numerous experiments using widely varying conditions are required
for building the RSM.

Alternatively, first-principles models (kinetic and thermodynamic) can be used to sim-
ulate a wide range of conditions outside the experimental range (extrapolation). This
way, process development and process design using flowsheet programs along with tools
for capacity planning and scheduling for complete production lines can be greatly sim-
plified, and, for example, the large costs of pilot experiments can often be avoided.
Furthermore, model-based monitoring, control, and optimization in both process de-
velopment and production can be used, thereby leading to improved product quality,
productivity, and process safety.

Herein, a first-principles (dynamic) model for nonisothermal homogeneous reaction
systems with inlet and outlet streams and varying density will be derived.

Without loss of generality, it will be assumed throughout the dissertation that (i)
the reactions are independent, i.e., both the stoichiometries (describing the reaction
network) and the reaction kinetics are linearly independent and the stoichiometries are
constant, and (ii) the inlets are independent, i.e., both the inlet concentrations and
flowrates are linearly independent and the inlet concentrations are constant.

In many practical applications, however, the stoichiometries and/or kinetics are linearly
dependent. In some cases, the stoichiometries can even be time-varying. Furthermore,
owing to variability in the raw materials or in the preprocessing steps, the inlet con-
centrations might vary and/or be linearly dependent. Also, the inlet flowrates might
be linearly dependent due to feeding at proportional rates. For meeting the assump-
tions just mentioned, two transformations will be proposed: the transformation to
independent reactions and the transformation to independent inlets.

For modeling, control and optimization of reaction systems, it is important to be able to
influence the reactions in a desired manner by manipulating the available experimental
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conditions (initial conditions, input variables). In the context of experimental planning
for modeling, it will be shown that impulse additions and multiple process runs can be
cast in the framework of generalized inlet streams that can be handled in a way similar
to standard inlet streams.

In the next section, the basics of stoichiometry and kinetics are briefly revisited. Sec-
tion 2.2 introduces the transformation to independent reactions and provides useful
results regarding the theoretical stoichiometric space of a reaction system. Section 2.3
derives the mole and heat balance equations, and the continuity equation for reaction
systems with (i) constant density and temperature (basic model), (ii) varying density
and constant temperature, and (iii) constant density and varying temperature. Exten-
sions to the basic model are provided in Section 2.4 such as (i) expression of the mole
balance equations in weight fractions, (ii) varying inlet concentrations (transformation
to independent inlets), and (iii) impulse additions and multiple process runs (gener-
alized inlets). Special cases are studied in Section 2.5 such as continuous stirred-tank
reaction systems (CSTRs), batch and semibatch reaction systems, and systems with
reactions in quasi-equilibrium conditions.

2.1 Reaction network and kinetics

2.1.1 Reaction network

A chemical reaction converts specific feed material (or reactants) into certain products.
It follows a quantitative relationship that is usually described by the stoichiometry.

Let Xj denote the jth reacting species (j = 1, . . . , S), where S denotes the total
number of reacting species. The reaction network involves a set of R coupled irreversible
reactions that are described as:

S∑
j=1

n−
ij Xj →

S∑
j=1

n+
ij Xj, n−

ij, n+
ij ≥ 0, i = 1, . . . , R (2.1)

with n−
ij and n+

ij being nonnegative numbers expressing the relative number of moles
of the jth component that is consumed or produced by the ith reaction (Perry and
Green, 1984).

The species subsets X r and X p are particularly useful throughout this work:

• A reactant is a species that appears on the left-hand side of at least one reaction:

X r = {Xj| n−
ij > 0 for some i}, Ir = {j| n−

ij > 0 for some i}.

Let also Iri denote the set of indices for the reactants involved in the ith reaction.

• A product is a species that appears on the right-hand side of at least one reaction:

X p = {Xj| n+
ij > 0 for some i}, Ip = {j| n+

ij > 0 for some i}.
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If a species Xj is both reactant and product in the Reaction i and if n+
ij > n−

ij > 0,
then it is called an autocatalyst; if n+

ij = n−
ij > 0, then Xj is a catalyst. In contrast to

catalysts, solvents are not considered as one of the S reacting species and, thus, does
not appear in the reaction scheme.

By defining the stoichiometric coefficient nij ≡ n+
ij − n−

ij, the R × S stoichiometric
matrix N becomes:

N =

⎡⎢⎣n11 n12 · · · n1S

. . . . . . . . . . . . . . . .

nR1 nR2 · · · nRS

⎤⎥⎦ . (2.2)

Thus, reactants and products have negative and positive entries in N, respectively.

Reversible reactions refer to the case in which conversion of reactants to products is
far from complete, and the reverse reaction becomes important. A reversible reaction
is usually denoted as:

S∑
j=1

n−
ij Xj �

S∑
j=1

n+
ij Xj, n−

ij, n+
ij ≥ 0. (2.3)

However, similarly to Bastin et al. (1992), the consistency with the description of a
system of irreversible reactions (2.1) requires to encode the reversible reaction (2.3) as
two separate irreversible reactions:

S∑
j=1

n−
ij Xj →

S∑
j=1

n+
ij Xj,

S∑
j=1

n+
ij Xj →

S∑
j=1

n−
ij Xj,

n−
ij, n+

ij ≥ 0. (2.4)

Thus, each reversible reaction is accounted for twice in the reaction network given by
(2.2):

N =

⎡⎢⎢⎢⎣
. . . . . . . . . . . . . . . . . . .

ni1 ni2 · · · niS

−ni1 −ni2 · · · −niS

. . . . . . . . . . . . . . . . . . .

⎤⎥⎥⎥⎦ . (2.5)

Remark 2.1 (Yield coefficients in biotechnological reaction systems)
In biotechnological reaction systems, nij denotes a yield coefficient , i.e., the consump-
tion or production rate of the jth species in the ith reaction per consumption or
production rate of a normalizing species. The coefficient of the normalizing species is
defined as 1. The major difference between stoichiometric coefficients in chemical and
biotechnological reaction systems is that, in chemical reaction systems, nij usually is
an integer, while in biotechnological reaction systems, it is typically a real number.
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Example 2.2 (Reversible reaction — esterification)
Catalyzed by sulfuric acid (X5), ethanol (X1) reacts with acetic acid (X2) in a reversible
reaction to produce acetic acid ethyl ester (X3) and water (X4). The reaction network
and the stoichiometric matrix are according to (2.5):

X1 + X2 + X5 � X3 + X4 + X5 (2.6) with N =

[
−1 −1 1 1 0
1 1 −1 −1 0

]
.

Note that since n−
i5 = n+

i5 = 1, ni5 = 0 (i = 1, 2). Thus, R = 2 and S = 5. All species
are reactants and products, i.e., Ir = Ip = {1, 2, . . . , 5}.

Example 2.3 (Cyclic reaction)
Consider three consecutive reactions where X1 reacts to X2, X2 to X3, and X3 to X1.
Since the initial reactant X1 is also the final product of the consecutive reactions, this
reaction system is called cyclic.

X1 → X2 → X3 → X1 (2.7) with N =
[−1 1 0

0 −1 1
1 0 −1

]
.

All the species are reactants and products and, thus, Ir = Ip = {1, 2, 3}.

Example 2.4 (Parallel reactions — dimerisation and hydration)
1-phenyl-1-butoxyethan (X3) is produced in a hydration reaction from styrene (X1)
and n-butanol (X2). In an irreversible side reaction, X1 dimerizes to (trans)-1,3-
diphenylbut-1-ene (X4). There also exists a diastereoisomere of X4, (cis)-1,3-diphenylbut-
1-ene. However, the two diastereoisomeres are considered here as one species (see the
chemical structures in Appendix A.4). The main reaction can be modeled as:

(a) An irreversible reaction. Thus:

X1 + X2 → X3

2X1 → X4 (2.8)
with N =

[
−1 −1 1 0
−2 0 0 1

]
.

The reactants and products can be identified as Ir = {1, 2} and Ip = {3, 4},
respectively.

(b) A reversible reaction. Thus:

X1 + X2 � X3

2X1 → X4 (2.9)
with N =

[−1 −1 1 0
1 1 −1 0
−2 0 0 1

]
.

The reactants and products can be identified as Ir = {1, 2, 3} and Ip = {1, 2, 3, 4},
respectively.

Example 2.5 (Ethanolysis reaction system)
In two successive irreversible ethanolysis reactions (de Vallière, 1989), phthalyl chloride
monoethyl ester (X3) and phthalic diethylester (X5) are produced from phthalyl chloride
(X1) and ethanol (X2). Both reactions also produce hydrochloric acid (X4). It is
assumed that X2 also reacts with X4 in a reversible side reaction to ethyl chloride
(X6) and water (X7). The reaction system can be described by the following reaction
scheme:



2.1. Reaction network and kinetics 13

X1 + X2
r1−→ X3 + X4

X3 + X2
r2−→ X5 + X4

X4 + X2
r3� X6 + X7 (2.10)

with N =
[−1 −1 1 1 0 0 0

0 −1 −1 1 1 0 0
0 −1 0 −1 0 1 1
0 1 0 1 0 −1 −1

]
.

Thus, R = 4 and S = 7. The reactants and products can be identified as Ir =
{1, 2, 3, 4, 6, 7} and Ip = {2, 3, 4, 5, 6, 7}, respectively.

2.1.2 Reaction kinetics

Let the molar concentration cj(k) be defined as:

cj(k) ≡ nj(k)

V (k)
, ∀j = 1, . . . , S, (2.11)

where nj is the number of moles of the jth species, and V the reactor volume. The
unit is usually given in [mol l−1] or, abbreviated, in [M].

The reaction rate, ri, expresses the rate of reactants consumption or products forma-
tion in the ith reaction. It often is a nonlinear function of the S-dimensional molar
concentration vector c, satisfying Assumptions A1–A2 (see Appendix D). The R reac-
tion rates are represented in the R-dimensional vector of reaction rates r, also called
the reaction kinetics or conversion rates.

In many practical applications, a reaction rate can be modeled as (Bastin et al., 1992):

ri(c, θ
i) = κi

S∏
j=1

rij(cj, θ
ij), θi ≡

⎡⎢⎢⎢⎣
κi

θi1

. . .

θiS

⎤⎥⎥⎥⎦ , (2.12)

where κi is a nominal (or specific) rate constant . The elementary kinetic function rij

with the corresponding kinetic parameter vector θij (j ∈ Iri) represents the influence
of cj on the ith reaction rate. In vector notation,

r = r(c, θ), (2.13)

where θ is the kinetic parameter vector containing θi for i = 1, . . . , R.

Basically, three extreme situations can be distinguished:

(S1) Xj does not affect the reaction rate ri:

rij(cj) = 1.

(S2) Xj is an activator for the ith reaction, i.e., it positively affects the reaction rate ri.
This can be modeled by a positive, monotonic increasing and concave function
of cj:

rij(cj) ≥ 0,
∂rij(cj)

∂cj

> 0,
∂2rij(cj)

∂c2
j

< 0.
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(S3) Xj is an inhibitor for the ith reaction, i.e., it negatively affects the reaction rate
ri. This can be modeled by a positive, monotonic decreasing and convex function
of cj:

rij(cj) ≥ 0,
∂rij(cj)

∂cj

< 0,
∂2rij(cj)

∂c2
j

> 0.

From knowledge of the reaction mechanism, the elementary kinetic functions can be
derived (see Ch. 4 of Perry and Green, 1984)). In many practical situations, however,
the exact reaction mechanism is unknown, and a model for the reaction rates cannot
be derived from the stoichiometry. Thus, the elementary kinetic functions must be
modeled empirically. For example, the three extreme situations S1–S3 can be modeled
by a single rational fraction:

rij(cj, θ
ij) =

(
αij + βij cj

1 + γij cj

)ϑij

, θij =
[
αij βij γij ϑij

]T

, (2.14)

where αij, βij, and γij are constant nonnegative coefficients, and ϑij a constant coef-
ficient. For ϑij = 1, the asymptotes are given by limcj→0 rij = αij and limcj→∞ rij =
βij/γij for γij 	= 0. Thus, equation (2.14) represents the kinetics of an activator when
βij/γij > αij, and of an inhibitor when βij/γij < αij (see Figure 2.1a and b). By com-
bining two elementary functions (2.14), activation at low concentrations and inhibition
at high concentrations can be modeled (see Figure 2.1c):

rij(cj, θ
ij) =

(
αij,1 + βij,1 cj

1 + γij,1 cj

) (
1 + βij,2 cj

1 + γij,2 cj

)
with

βij,1βij,2

γij,1γij,2

< αij,1, αij,1 (βij,2 − γij,1 − γij,2) + βij,1 > 0,

(2.15)

where θij = [αij,1, βij,1, βij,2, γij,1, γij,2]
T. Table 2.1 lists some of the commonly found

reaction types and corresponding coefficients.

Remark 2.6 (Catalyzed reaction systems)
In contrast to an autocatalyst, a catalyst Xj does not get consumed by the reaction
and, thus, nij = 0. However, the catalyst may influence the elementary kinetic function

(a) (b) (c)rij

cj

αij

βij

γij

rij

cj

αij

βij

γij

rij

cj

αij,1

βij,1βij,2

γij,1γij,2

1

Figure 2.1. Elementary kinetic function rij(cj) modeling: (a) an activator, (b) an inhibitor,
and (c) an activator at low concentrations and inhibitor at high concentrations. It is
assumed that γij , γij,1, γij,2 	= 0.
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Table 2.1. Reaction types and corresponding coefficients of the elementary kinetic functions
rij .

Model αij βij γij ϑij

Power law (linear)

c
ϑij

j

0 1 0 	= 0 (= 1 if linear)

Michaëlis–Menten
cj

µm+cj

0 µ−1
m µ−1

m 1

Hyperbolic inhibition
µh

µh+cj

1 0 µ−1
h 1

rij in a nonlinear manner depending, e.g., on transport phenomena (see Ch. 4 of Perry
and Green, 1984)).

2.2 Independent reactions

2.2.1 Practical situations of dependent stoichiometries and ki-
netics

In practice, reactions can exhibit (S1) linearly-dependent stoichiometries, (S2) linearly-
dependent reaction rates on the time interval [t0, tK ], and (S3) time-varying stoi-
chiometries. Note that the reaction rates r(t) are said to be linearly dependent on
the time interval [t0, tK ] if there exist real numbers α1, α2, . . . , αR, not all zero, such
that αTr(t) = 0 for all t ∈ [t0, tK ], where α = [α1, . . . , αR]T (Chen, 1984). Otherwise,
r(t) is said to be linearly independent on [t0, tK ].

Some practical Situations S1–S3 are listed next.

(S1) Linearly-dependent stoichiometries can occur, for e.g.:

• Reversible reactions. In (2.5), the two rows in N are multiples of each other
with the factor −1.

• Reaction systems with R > S. Since rank (N) ≤ min(R,S) = S (see
Appendix B.2 for the definition of rank), the stoichiometries of (S − R)
reactions are linearly dependent.

• Cyclic reactions.

(S2) Linearly-dependent kinetics on the interval [t0, tK ] can occur, for e.g.:

• Reaction systems in dynamic equilibrium. After a transition time, the kinetic
rates become linearly dependent (see Example 2.4a below)

• Biotechnological reactions due to the coupling of energy production and
consumption (Duboc, 1997).

(S3) Some biotechnological reaction systems exhibit time-varying yield coefficients
(stoichiometries) due to:
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• Changing energy coupling (Duboc, 1997).

• Changing reaction conditions such as temperature or pH during a batch or
from batch to batch (Chen et al., 1995).

2.2.2 Theoretical stoichiometric space and transformation to
independent stoichiometries

Consider Situation S1 (with constant stoichiometries and linearly-independent kinetics)
where RN rows of N are linearly independent (rank (N) = RN). Thus, N can be
decomposed as follows:

N = Pr1Ň, (2.16)

where Ň is an RN ×S matrix containing the RN linearly-independent stoichiometries,
and Pr1 an R × RN matrix of full rank.

Let Γ be an S×N matrix, where γsn indicates the number of atoms, electrical charges,
etc. of the nth type in the sth chemical species, and N the number of quantities
conserved. For example, a column of Γ can contain the molecular weights of the S
chemical species. Note that Γ is a matrix with only nonnegative elements.

Since any possible reaction (characterized by nT, a row of N) must necessarily satisfy
the conservation equation for the N conserved quantities, it follows:

ΓTn = 0N or nTΓ = 0T

N (2.17)

and, for the R reactions:

NΓ = 0R×N or ΓT NT = 0N×R. (2.18)

In mathematical terms, the reaction stoichiometries must lie in the null space of
the reaction-invariance matrix ΓT (Waller and Mäkilä, 1981; Bonvin and Rippin,
1990). However, the reaction-invariance matrix only determines the stoichiometric
space spanned by rows of N or RN, where R is an R×R matrix of full rank. In other
words, the stoichiometric matrix can be determined from ΓT except for a rotation ma-
trix. For this, it is sometimes said that ΓT determines the theoretical stoichiometric
space. From the structure of Γ, certain useful results will be derived.

Proposition 2.7 The following properties result from (2.18):

(a) The number of independent reactions obeys RN < S.

(b) (S − RN) linearly-independent columns of Γ are required to span the complete
null space of N, and thus, N ≥ S − RN .

(c) For any γ × S concentration matrix Č, if rank
(
Č Γ

)
= γ, then rank

([
N
Č

])
=

RN + γ.

(d) For any nonzero concentration vector c, c /∈ Sr (N), where Sr (·) denotes the
subspace spanned by the rows of a matrix (row space).

(See Appendix H.1 for proof)
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2.2.3 Transformation to independent kinetics

Consider Situation S2 (with constant linearly-independent stoichiometries) where Rr

elements of r are linearly independent on [t0, tK ]. Thus,

r(t) = Pr2ř(t), (2.19)

where ř(t) is a vector containing the Rr linearly-independent reaction rates on [t0, tK ],
and Pr2 an R × Rr matrix of full rank.

2.2.4 Transformations to independent reactions

Consider the (general) case that describes Situations S1–S3. A transformation will
be proposed that takes a system with linearly-dependent time-varying stoichiometries
and/or reaction rates to a system with linearly-independent stoichiometries and re-
action rates. This transformation uses the concept of independent reactions for the
reaction term that expresses the reactant consumption and product formation. The
reaction term is most easily understood for an S-component mixture exhibiting R reac-
tions with constant temperature, density, and pressure and no inlet and outlet stream.
It is generally assumed that the reaction system is homogeneous, i.e., mixing is ideal
and the concentrations in the outlet(s) are equal to that inside the reactor. For such
reaction systems, the dynamic behavior is completely described by the following molar
balance equations (Perry and Green, 1984):

ċ = NT r(c), c(0) = c0, (2.20)

where c0 is the initial molar concentration vector and . NTr(c) models the reaction
term.

Definition 2.8 (Independent reactions) A set of reactions is said to be indepen-
dent if both the stoichiometries and the kinetics are linearly independent (on the time
interval [t0, tK ]), and the stoichiometries are constant.

Two transformations to independent reactions are proposed: (T1) for time-varying N
and (T2) for constant N.

(T1) Let K be the number of time instants considered, and t0 and tK the initial and
final time instants, respectively. Consider the reaction term NT(k) r(k) for the
kth time instant in the time interval [t0, tK ], and let the S × K matrix FR be
defined as:

FR ≡ [NT(1) r(1), . . . ,NT(K) r(K)]. (2.21)

Let R� ≡ rank (FR). Using for example singular value decomposition (SVD; see
Appendix B.3), FR can be expressed as

FR = N�T Rr, (2.22)

where N� is the R� × S constant linearly-independent (abstract) stoichiometric
matrix and Rr the R� × K matrix of the corresponding linearly-independent
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(abstract) reaction rates for the K time instants considered. The R�-dimensional
reaction rate vector r�(k) at the kth time instant is the kth column of Rr. Thus,

NT(k) r(k) = N�T r�(k). (2.23)

(T2) For constant N, it is proposed to proceed as follows:

(a) Select the RN rows of N that are linearly independent according to (2.16).

(b) Select the Rr elements of r that are linearly independent on the time interval
[t0, tK ] according to (2.19).

(c) From (2.16) and (2.19), compute an RN × Rr matrix defined as

Pr ≡ PT

r1 Pr2. (2.24)

(d) For the case RN ≥ Rr, construct the constant linearly-independent stoi-
chiometric matrix N� = PT

r Ň, and the linearly-independent reaction rate
vector r�(k) = ř(k), with R� = Rr. Otherwise, N� = Ň and r�(k) = Pr ř(k)
with R� = RN . Thus, the number of independent reactions R� is given by
min(RN , Rr). In summary, the following transformation is obtained:

NT r(k) = ŇT Pr ř = N�T r�(k). (2.25)

The structure of (2.20) is conserved for time-varying linearly-dependent stoichiometries
and reaction rates except for the following redefinitions: N := N�, r := r�, and
R := R�. Thus, the assumption that the stoichiometries and the reaction rates are
linearly independent and the stoichiometries are constant, is without loss of generality.

Examples will illustrate Transformation T2 for Situations S2 and S3.

Example 2.2a (Dependent stoichiometries I; cont’d from page 12)
Assume power-law kinetics, r = [κ1c1c2c5, κ2c3c4c5]T. Since only one row of N is
linearly independent (say, the first), RN = 1 and

N =

[
1
−1

] [
−1 −1 1 1 0

]
= Pr1 Ň.

Since the reaction rates are linearly independent, it follows that Rr = R = 2, Pr2 = IR,
and Pr = PT

r1, where IR is the R-dimensional identity matrix. Furthermore, since
RN < Rr, it follows that R� = RN = 1 and

N� = Ň =
[
−1 −1 1 1 0

]
, r� = Pr r = r1 − r2.

Example 2.3a (Dependent stoichiometries II; cont’d from page 12)
Assume power-law kinetics, r = [κ1c1, κ2c2, κ3c3]T. Since rank (N) = 2, it is sufficient
to select two linearly-independent stoichiometries, e.g., the stoichiometries of the first
two reactions. Thus, RN = 2 and

N =
[

1 0
0 1
−1 −1

] [
−1 1 0
0 −1 1

]
= Pr1 Ň.
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Since the reaction rates are linearly independent, it follows that Rr = R = 3, Pr2 = IR,
and Pr = PT

r1. Furthermore, since RN < Rr, it follows that R� = RN = 2 and

N� = Ň =

[
−1 1 0
0 −1 1

]
, r� = Pr r =

[
r1 − r3

r2 − r3

]
.

The physical reaction pathway X1 → X2 → X3 → X1 is reduced to X1 → X2 → X3,
where the third (physical) reaction is accounted for in the reaction rates of the two
independent reactions.

Example 2.4a (Dependent kinetics; cont’d from page 12)
Consider the irreversible parallel reaction system (2.8). Assume power-law kinetics for
the second reaction, r2 = κ2c

2
1. Furthermore, let us assume that and the first kinetic

rate being linearly dependent on the second one for c2 > 0, or zero otherwise:

r1 =

{
α r2, ∀ c2 > 0
0, otherwise.

This type of kinetics is called discontinuous and linearly-dependent kinetics. Since only
one element of r is linearly independent (say, the second), Rr = 1 and according to
(2.19):

r =

[
α

1

]
r2 = Pr2 ř.

Two cases can be distinguished:

(a) c2 = 0: Since only the second reaction is active, N� = [−2, 0, 0, 1] and r� = r2.
(b) c2 > 0: Since the stoichiometries are linearly independent, it follows that RN =

R = 2, Ň = N, Pr1 = IR, and Pr = Pr2. Furthermore, since RN > Rr,
R� = Rr = 1 and

N� = PT
r Ň = PT

r N =
[
−(2 + α) −α α 1

]
, r� = ř = r2.

From N�, the following non-physical pathway is obtained: (2 + α)X1 + αX2 →
αX3 + X4. This is equivalent to (2.8).

Example 2.9 (Dependent kinetics and stoichiometries)
Consider the following reaction network:

X1 � X2 → X3 → X4 (2.26) with N =
[−1 1 0 0

1 −1 0 0
0 −1 1 0
0 0 −1 1

]
.

Assume the kinetic rates of the last two reactions to be linearly dependent on the first
two: r = [r1, r2, α r1, β r2]T with α and β being positive coefficients. Since only the
first, third, and fourth stoichiometry are linearly independent, RN = 3 and according
to (2.16):

N =
[

1 0 0
−1 0 0
0 1 0
0 0 1

] [−1 1 0 0
0 −1 1 0
0 0 −1 1

]
= Pr1 Ň.

Also, since only two elements of r are linearly independent (say, the first two), Rr = 2
and according to (2.19):

r =
[

1 0
0 1
α 0
0 β

] [
r1

r2

]
= Pr2 ř.
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Thus,

Pr = PT
r1Pr2 =

[ 1 −1
α 0
0 β

]
.

Since Rr < RN , R� = Rr = 2 and

N� = PT
r Ň =

[
−1 (1 − α) α 0
1 −1 −β β

]
, r� = ř =

[
r1

r2

]
.

From N�, the following non-physical reaction pathway is obtained:

X1 + αX2 → X2 + αX3

X2 + β X3 → X1 + β X4.

This is equivalent to (2.26).

2.3 Dynamic models for reaction systems with inlet

and outlet streams

In Section 2.2, a dynamic model for isothermal, isobaric, constant-density homogeneous
reaction systems with no inlet and outlet stream was derived. Here, the assumptions of
constant temperature and density and of no inlet and outlet stream are removed. It is
solely assumed that the pressure-dependency of the physical properties (e.g., density,
heat capacity) is negligible. The dynamic behavior of an S-component mixture will
be described by: (i) S mole balance equations for c, (ii) one continuity equation for
V , (iii) one heat balance equation for T , and (iv) the corresponding initial conditions.
Figure 2.2 illustrates a reactor with the different terms needed to build the balance
equations.

Cin, Tin, qin

c, T , qout

c, T , V
N, r,
−∆hR

Figure 2.2. Reaction system with p inlet and q outlet streams.
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Without loss of generality, it is assumed that (1) the reaction term is modeled in terms
of R independent reactions, (2) only one outlet stream is present, and (3) both the
inlet concentrations and the inlet volumetric flowrates are linearly independent, and
the inlet concentrations are constant. The first assumption was studied in Subsec-
tion 2.2, and the second and third assumptions will be discussed in Subsections 2.3.1
and Subsection 2.4.2, respectively.

2.3.1 Mole balance equations

The mole balance equations for a homogeneous reaction system with p inlet and q
outlet streams, S species, and R independent reactions are given by:

d(V c)

dt
= NT r(c, T ) V + Cin qin − qout c, (V c)(0) = V0c0, Cin ≡ [c1

in, c
2
in, · · · , cp

in],

(2.27)

where Cin is the S × p inlet molar concentration matrix, ci
in the molar concentrations

of the ith inlet stream, qin the p-dimensional vector of volumetric flowrates, and V0 the
initial volume.

Note that r is now also a function of T . It can be modeled by the Arrhenius equation:

κi = κi0 e−E/T , E =
E�

R
,

where κi0 is the frequency factor, E� the activation energy, and E the activation energy
normalized by the gas constant, R.

Owing to the assumption of homogeneity,

qout = 1T

q qout, (2.28)

where 1q is an q-dimensional vector with all elements 1.

The last two terms in (2.27) indicate the reactants being supplied to and the prod-
ucts/reactants removed from the system (the so-called material exchange terms).

2.3.2 Continuity equation

The continuity equation is given by:

ṁ = 1T

p ν in − νout, m(0) = m0, (2.29)

where m is the total mass, ν in and νout the p-dimensional inlet mass flowrate vector
and outlet mass flowrate, respectively, and m0 the initial total mass.

Using the density, ρ, equation (2.29) can be rewritten as:

d

dt
(ρ V ) = ρ V̇ + V ρ̇ = 1T

pΦin qin − ρ qout, (2.30)
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which gives:

V̇ =
1

ρ
1T

pΦin qin − qout − V

ρ
ρ̇, V (0) = V0 (2.31)

with Φin ≡ diag (ρ1
in, . . . , ρp

in), ρi
in the density of the ith inlet stream, and V0 the initial

volume.

Let ρ depend on c and T , ρc ≡ ∂ρ/∂c be an S-dimensional vector, and ρT ≡ ∂ρ/∂T .
With ρ̇ = (ρT

c ċ + ρT Ṫ ) and ċ calculated from (2.27) as:

ċ = NT r(c, T ) +
1

V
Cin qin − qout

V
c − V̇

V
c (2.32)

equation (2.31) becomes:

V̇ =
1

ρ
1T

pΦin qin − qout − 1

ρ
ρT

c

(
V NT r + Cin qin − qout c − V̇ c

)
− V

ρ
ρT Ṫ . (2.33)

Solving (2.33) for V̇ gives with V (0) = V0:

V̇ =
1

ρ − ρT
c c

[(
1T

pΦin − ρT

c Cin

)
qin + (ρT

c c − ρ) qout − V ρT

c NT r − V ρT Ṫ
]
. (2.34)

2.3.3 Heat balance equation

Under the assumptions that the pressure-dependency of the physical properties and
the mixing enthalpies are negligible, the heat balance equation reads:

d (m cp T )

dt
= V (−∆hT

R) r(c, T ) + TT

in Cp,in ν in − T cp νout + Q̇ext, T (0) = T0, (2.35)

where cp is the specific heat capacity, ∆hR the R-dimensional vector of reaction en-
thalpies, Tin the p-dimensional inlet temperature vector, Cp,in the p-dimensional diag-
onal matrix with elements being specific heat capacities of the inlet streams, Q̇ext the
external heat power (see Remark 2.10 below), and T0 the initial temperature.

The structures of (2.27) and (2.35) are similar except for the additional term Q̇ext in
(2.35). Also, the accumulation terms of (2.27) and (2.35) are somewhat different, since
the total mass m appears in (2.35), while the volume appears in (2.27). However, by
introducing the auxiliary variables T † ≡ cp ρ T and T†

in ≡ Cp,in Φin Tin, (2.35) can be
brought into a form where the volume appears in the accumulation term:

d
(
V T †)
dt

= V (−∆hR)T r(c, T ) + T†T
in qin − T † qout + Q̇ext, T †(0) = T †

0 . (2.36)

Remark 2.10 (Modeling of Q̇ext)
The main sources of external heat power Q̇ext are external heating/cooling power, Q̇co,

and dissipated stirrer power, Q̇sti, i.e., Q̇ext = Q̇co + Q̇sti. For both terms, models are
proposed below.

In practical applications, heating or cooling power is transferred to the reaction system
using, for example, a jacket. Thus, by assuming constant heat capacity for the jacket
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flow stream, cp,co, the heat balance equation for the jacket can be derived as (Perry
and Green, 1984):

mco cp,co

dTco

dt
= νco cp,co (Tco,in − Tco,out) + Q̇co, Q̇co = U A (T − Tco),

where mco is the total mass of the heating/cooling liquid in the jacket, Tco, Tco,in,
and Tco,out the average, inlet, and outlet temperature of the heating/cooling liquid,
respectively, νco the mass flowrate of the heating/cooling liquid, U the overall heat
transfer coefficient through the wall, and A the heat-transfer area. Note that for
the control of the reactor temperature T , νco is commonly chosen as the manipulated
variable. Also, an additional relationship between Tco, Tco,in, and Tco,out. In practice, it
is often assumed that Tco,out = Tco.

If the residence time mco/νco in the jacket is small with respect to the smallest time
constant of the reaction system, the dynamic of the jacket can be neglected by using
the concept of singular perturbation (Keener, 1988) and, thus:

Q̇co = νco cp,co (Tco,out − Tco,in) . (2.37)

Since the quantities on the right side of (2.37) are often measured, Q̇co can be estimated.
This is contrast to Q̇co = U A (T −Tco) where U and A are usually difficult to estimate
(and might vary during the course of the reaction).

The dissipated stirrer power Q̇sti can be modeled as:

Q̇sti = M ω,

where M is the stirrer torque and ω the angular speed. Both M and ω can be measured
and, thus, Q̇sti estimated.

2.3.4 Overview of dynamic models

The (basic) model for reaction systems with constant density and temperature is given
in Table 2.2. Its extensions to varying density and temperature are also provided. For
the three models, Assumptions A1–3 are verified (See Appendix D).

Let n be the S-dimensional vector of the number of moles with n = V c. For the first
two models in Table 2.2, n and V are considered the (S + 1) states and qin and qout

the (p + 1) linearly-independent inputs.

For the model with varying temperature, the following quantities are defined: nT ≡[ n
(V T †)

]
(S+1×1), cT ≡ [ c

T † ], (S+1×1), NT ≡ [N, −∆hR] (R×S+1), CT,in =
[

Cin 0S

T†T
in 1

]
(S + 1 × p + 1), and qT in =

[ qin

Q̇ext

]
(p + 1 × 1). (2.40) shows that the external heat

flowrate Q̇ext is considered as an additional inlet stream (pT ≡ p + 1) and the modified
temperature (V T †) is modeled as an additional species (ST = S + 1). Thus, such a
system includes (ST + 1) states and (pT + 1) inputs.

In the case of time-varying reaction enthalpies that are linearly dependent on the
stoichiometries, the number of independent reactions R� is determined by Transfor-
mation T1 in Subsection 2.2.4 with the redefinition N(k) := NT (k), where NT (k) ≡
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ṅ
=

d
(V

c)

d
t

=
V

N
T
r(c)

+
C

in
q

in −
q

o
u

t c,
n

(0)
=

V
0 c

0
=

n
0

V̇
=

1

ρ−
ρ

Tc
c [(1

Tp Φ
in −

ρ
Tc
C

in )
q

in
+

(ρ
Tc
c−

ρ
)

q
o
u

t −
V

ρ
Tc
N

T
r ]

,
V

(0)
=

V
0

(2.39)

N
on

iso-
th

erm
al

ρ
=

c /
(2.27),
(2.34),
(2.35)

ṅ
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[N(k), −∆hR(k)], and ∆hR(k) the R-dimensional linearly-dependent time-varying re-
action enthalpy vector.

In the case of time-varying inlet concentrations, modified temperature, and a linearly-
dependent external heat flowrate, the number of independent inlets pT is determined
by the transformation presented in Subsection 2.4.2 except for Cin(k) := CT,in(k),
qin(k) := qT,in(k), and p := pT .

2.4 Extensions

In this section, the following extensions to the basic model (see 2.38) are provided:
(i) expression of the mole balance equations in weight fractions, (ii) varying inlet con-
centrations (independent inlets), and (iii) impulse additions and multiple process runs
(generalized inlets)

2.4.1 Reaction systems expressed in weight fractions

When the density varies, it is often useful to express the dynamic model in terms of
weight fractions, wj, (i = 1, . . . , S) defined as:

wj =
mj

m
, ∀j = 1, . . . , S, 1T

Sw = 1, (2.41)

where mj is the mass of the jth species and w the S-dimensional weight fraction vector.
Note that the weight fractions are closed, since 1T

Sw(k) = 1. The unit is usually given
in [wt.-%].

Model (2.38) can be rewritten in terms of weight fractions. By substituting: (i) V c =
M−1

w m, (ii) Cin qin = M−1
w Winν in, and (iii) qout c = νout M

−1
w w into equation (2.38):

ṁ =
d(mw)

dt
=

m

ρ(w)
NT

w rm(w, m) + Win ν in − νout w,

ṁ = 1T

pν in − νout,

with Nw = NMw, Win =
[
w1

in, · · · ,wp
in

]
,

m(0) = m0 w0 = m0

m(0) = m0, (2.42)

where m is an S-dimensional vector indicating the masses of the various species, rmthe
R-dimensional reaction rate vector expressed as a function of w and m, wi

in the weight
fractions of the ith inlet stream (without loss of generality, assumed to be constant),
ν in the p-dimensional inlet mass flowrate vector, νout the outlet mass flowrate, Mw =
diag (Mw,1, . . . , Mw,S), Mw,i the molecular weight of the ith species, and ρ(w) the
density expressed as a function of w.

2.4.2 Varying inlet concentrations

Practical situations with time-varying inlet concentrations are listed below.

(1) Variability in the raw materials or in the preprocessing steps,
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(2) Gaseous outlet from liquid reactions. In this case, the corresponding outlet
flowrate qin(t) is negative.

Similarly to the transformation in Section 2.2, a transformation will be proposed that
takes the system with linearly-dependent inlet streams of varying inlet concentrations
to a system with linearly-independent inlet streams of constant inlet concentrations.
This transformation uses the concept of independent inlet streams.

Definition 2.11 (Independent inlet streams) A set of inlet streams is said to be
independent if (i) both the inlet concentrations and the corresponding flowrates are
linearly independent (on the time interval [t0, tK ]), and (ii) the inlet concentrations are
constant.

Consider the inlet term Cin(k)qin(k) and 1T

pqin(k) at the kth time instant in the time
interval [t0, tK ], and let the S ×K matrix Fin, and the p×K matrix Qin be defined as:

Fin ≡ [Cin(1)qin(1), . . . ,Cin(K)qin(K)], Qin ≡ [qin(1), . . . ,qin(K)]. (2.43)

Let α ≡ rank (Fin). Fin can be decomposed using, for example, SVD such that

Fin = C̄in Q̄in, (2.44)

where C̄in and Q̄in are the S × α matrix of constant (abstract) inlet concentrations
and the α×K matrix of corresponding (abstract) inlet volumetric flowrates for the K
time instants considered, respectively. α represents the number of species that can be
independently manipulated by the inlet streams. The α-dimensional inlet volumetric
flowrate vector q̄in(k) at the kth time instant is the kth column of Q̄in (k = 1, . . . , K).

The effect of time-varying inlet concentrations on the volume is eliminated by an ad-
ditional inlet stream qin,aug:

V̇ = 1T

pqin − qout = 1T

αq̄in − 1T

αq̄in + 1T

pqin − qout

= 1T

α+1 q�
in − qout

q�
in ≡

[
q̄in

qin,aug

]
, qin,aug ≡ 1T

pqin − 1T

αq̄in,

(2.45)

where q�
in is the (α + 1)-dimensional inlet volumetric flowrate vector. For qin,aug = 0,

which is the case when Cin is constant, the addition of one (α + 1) does not apply.

The S × (α + 1) constant inlet concentration matrix C�
in is defined as:

C�
in ≡

[
C̄in 0S

]
. (2.46)

With definition (2.46):

Cin(k)qin(k) = C̄in q̄in(k) = C�
in q�

in(k), 1T

pqin(k) = 1T

α+1q
�
in(k). (2.47)

The structure of (2.38) is conserved for varying inlet concentrations with the following
redefinitions: Cin := C�

in, qin := q�
in, and p := α+1. Thus, the assumption that the inlet
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concentrations and the flowrates are linearly independent and the inlet concentrations
are constant, is without loss of generality.

Since the decomposition in (2.44) is non-unique, non-negativity constraints can be
imposed in the decomposition procedure to guarantee nonnegative entries in both C̄in

and Q̄in.

Example 2.4b (Varying inlet concentrations; cont’d from page 12)
Assume a constant-density semibatch reaction system (2.8) or (2.9) with p = 2 in-
let streams. Figure 2.3a shows the corresponding inlet flowrates qin. Two cases are
considered for the 4 × 2 inlet concentration matrix Cin [M]:

(a) Constant Cin: Cin,C1 =
[

8 3
3 7
2 6
1 0

]
,

(b) Case C1 but with varying concentrations of X1 in both inlets: Cin,C2(t) =[
c1in(t) c2in(t)

3 7
2 6
1 0

]
.

The concentration profiles of the time-varying inlet concentrations are given in Fig-
ure 2.3b.
For Case C1, α = 2 = p, since Cin,C1 is constant and linearly independent, and the
flowrates are linearly independent. Thus, qin,aug,C1 = 1T

2qin,C1 − 1T
2 q̄in,C1 = 0, and the

addition of one does not apply (p := α).
For Case C2, α = 3. Since α is a function of the number of species with time-varying in-
let concentrations, α in Case C2 is the same in either of the two scenarios: time-varying
inlet concentration of Species X1 varied in a single (not shown) or both inlet streams.
Furthermore, since qin,aug,C2 = 1T

2qin,C2 − 1T
3 q̄in,C2 	= 0, the number of independent

inlet streams is p := α + 1 = 4. Figure 2.4 shows the corresponding flowrates q�
in(k).

Non-negativity constraints are imposed on (2.46) to guarantee nonnegative entries in
both C�

in and Q�
in. The corresponding matrix of independent inlet concentrations is

obtained as:

C�
in,C2 =

[
118.53 149.20 24.50 0
73.11 105.2 9.56 0
54.50 89.94 5.84 0
14.30 0.50 4.11 0

]

2.4.3 Generalized inlets and outlets

In practical applications, three variation modes for a reaction system can usually be
found:

(V1) inlet streams with each containing a particular or a mixture of species,

(V2) impulse additions with each containing a particular or a mixture of species,

(V3) multiple batch runs with different initial conditions.

All three variation modes can be cast in the framework of generalized inlets and outlets,
as it will be shown in the following proposition. The proposition uses the principle that
every initial condition can be considered as an impulse (Chen, 1984).

Proposition 2.12 Variation modes V2–V3 for a reaction system can be cast in the
framework of generalized inlets and outlets by properly redefining Cin, qin, and qout.
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Proof:
The two variation modes are analyzed separately, and redefinitions for Cin, qin, and qout

are provided. For simplicity of notation, it will be assumed that all runs are in batch
mode, and the initial concentrations c1

0 of the first batch run are the initial conditions
for the reaction system with generalized inlets and outlets:

c0 := c1
0. (2.48)

(V2) Impulse additions during the course of a reaction can be considered as a special
case of inlet streams. Thus, the jth impulse addition with concentrations cj

∆

corresponds to the jth generalized inlet stream with inlet concentrations:

cj
in := cj

∆. (2.49)

The corresponding (generalized) inlet volumetric flowrate, qj
in, can be modeled as

a Dirac impulse, δ, at time instant tj:

qj
in(t) := δ(t − tj) V j

∆, (2.50)

where V j
∆ is the amount of volume added. Note that the generalized outlet

volumetric flowrate qout is 0.

(V3) Let cj
0 and V j

0 denote the initial concentrations and volume of the jth additional
batch run, respectively. Then:

cj
in := cj

0. (2.51)

The starting phase of the jth additional run has two steps: (i) emptying the
reactor from the (j − 1)st run with final concentrations, ćj−1, and volume, V́ j−1,
at the final time instant t́j−1 and (ii) filling the reactor with species having ini-
tial concentrations, cj

0, and volume, V j
0 . The two steps can be formalized in

mathematical terms.

Let time t be monotonically increasing from batch to batch: t ∈ ]
∑j−1

i=1 t́i,
j∑

i=1

t́i].

With this redefinition of the time axis, the emptying step involves a Dirac in the
generalized outlet stream at time instant tj0 ≡

∑j−1
i=1 t́i with

qout(t) := δ(t − tj0) V́ j−1. (2.52)

The filling step is equivalent to an impulse addition. Thus, from (2.50), the
generalized inlet stream becomes:

qj
in(t) := δ(t − tj0) V j

0 , (2.53)

�

Based on the above discussion, “inlets and outlets” and “generalized inlets and outlets”
will be used in an equivalent manner in the remainder of this dissertation.
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Example 2.13 (Generalized inlets and outlets)
The three variation modes are illustrated by means of an isothermal, constant-density
reaction system (2.38), involving R = 2 independent reactions and conducted in a
solvent X6 (modified example of Amrhein et al., 1996):

2X1 → X2 + X3

X2 → X4 + 2X5 (2.54)
with N =

[
−2 1 1 0 0
0 −1 0 1 2

]
For the first reaction, power-law kinetics are assumed, i.e., r1(c1) = κ1 c2

1, while for the
second, power-law kinetics with auto-catalyzation by X4, i.e., r2(c2, c4) = κ2 c2 c4. Let
c = [c1, c2, c3, c4, c5]T.
Four runs are conducted: a batch run R1 with one impulse addition of X1 at t = 5h
(V 1

∆ = 2 �), two batch runs R2 and R3, and one semibatch run R4 with a single
continuous inlet of a mixture of X1 and X4. The initial concentrations of Runs R1, R2,
and R4 are the same (see Appendix A.2 for the parameters).
Three cases are studied. Cases C1, C2, and C3 consider Run R1, Runs R2 & R3, and
Runs R2 & R4, respectively. Figures 2.5 and 2.6 present for Cases C1–C3 the time
evolutions of the concentrations c and the (physical) inlet volumetric flowrate qin and
the volume V of Run R4.
The initial and inlet concentrations of the reaction system with generalized inlet and
outlet streams for the three cases are:

c0,C1 = c0,R1, Cin,C1 = cT
∆,R1

c0,C2 = c0,R2, Cin,C2 = cT
0,R3

c0,C3 = c0,R2, Cin,C3 =

[
cT

in,R4

cT
0,R4

]

Thus, for Cases C1 and C2, the concentrations of the generalized inlet correspond
to the concentrations of the impulse addition and the initial conditions, respectively.
For Case C3, two generalized inlets are required with corresponding inlet concentra-
tions containing the initial and inlet concentrations of Run R4. The flowrates of the
generalized inlets are given as:

q1
in,C1(t) = δ(t − t1) V 1

∆, t ∈ [0, 14] h with t1 = 5 h, V 1
∆ = 2 �

q1
in,C2(t) = δ(t − t20) V 2

0 , t ∈ [0, 12] h with t20 = 7 h, V 2
0 = 15 �

q1
in,C3(t) see qin,R4 in Figure 2.6d

q2
in,C3(t) = δ(t − t20) V 2

0 , t ∈ [0, 14] h with t20 = 7 h, V 2
0 = 10 �

(2.55)

and the outlet flowrates as:

q1
out,C2(t) = δ(t − t20) V́ 1, t ∈ [0, 12] h with t20 = 7 h, V́ 1 = 10 �

q1
out,C3(t) = δ(t − t20) V́ 1, t ∈ [0, 14] h with t20 = 7 h, V́ 1 = 10 �

For Cases C1–C3, according to (2.55), the generalized inlet volumetric flowrates are
zero before the impulse addition, the additional batch run, and the additional semibatch
run, respectively. An impulse can be observed in qin of Cases C1–C2, and qin,1 of Case
C3.
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2.5 Special cases

In this section, the dynamic reaction models is considered for the following special cases:
CSTRs, semibatch and batch reaction systems, and reactions in quasi-equilibrium con-
ditions. All special cases are based on the assumptions of constant density and temper-
ature but could easily be extended to the cases of varying density and/or temperature.

2.5.1 CSTR, semibatch and batch reaction systems

2.5.1.1 CSTR

In a CSTR, V (t) = V0 and, thus, (2.38) becomes:

ṅ =
d(V c)

dt
= V NT r(c) + Cin qin − qout c,

V̇ = 0 = 1T

p qin − qout,

n(0) = V0c0 = n0,

V (0) = V0.

(2.56)

From V̇ = 0, it follows that qout = 1T

pqin. Thus, the number of linearly-independent
inputs is p. Note that for consistency with the subsequent study, V is considered a
state and the corresponding equation is retained.

2.5.1.2 Semibatch reaction systems

Owing to the absence of an outlet stream (qout = 0), (2.38) becomes:

ṅ =
d(V c)

dt
= V NT r(c) + Cin qin,

V̇ = 1T

p qin,

n(0) = V0c0 = n0,

V (0) = V0.

(2.57)

2.5.1.3 Batch reaction systems

Owing to the absence of inlet and outlet streams (qin = 0, qout = 0), (2.38) turns into
(2.20):

ṅ = V0 ċ = V0 NT r(c),

V̇ = 0,

n(0) = V0c0 = n0,

V (0) = V0.
(2.58)

Note that similarly to the CSTR, V is considered a state and the corresponding equa-
tion is retained. Furthermore, c = n/V0, and thus, (2.20) is obtained.

2.5.2 Systems with reactions in quasi-equilibrium conditions

When reactions are in quasi-equilibrium conditions (Hill, 1977), the corresponding con-
centrations can be determined from algebraic equilibrium relationships. These rela-
tionships are usually derived from the mass action law. Important cases include fast
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neutralization, redox, precipitation, and complexation reactions (Titration, 1954, 1957;
Oehme and Richter, 1987).

First, the mass action law that determines the rates of the reactions in quasi-equilibrium
is introduced.

Mass action law

Consider the situation of a system with Ra independent reactions in quasi-equilibrium
conditions and the remaining Rb = (R−Ra) independent reactions far from equilibrium.
Assume, without loss of generality, that the first Ra independent reactions are in quasi-
equilibrium conditions. This induces a partition in N and r and, thus, n in (2.38)
becomes:

ṅ =
d(V c)

dt
= V

[
NT

a NT
b

] [
ra(c)

rb(c)

]
+ Cin qin − qout c, n(0) = V0c0 = n0. (2.59)

In titration applications (pH-control, etc.), the mass action law is often used to specify
ra in (2.59) (Izquierdo-Ridorsa et al., 1997; Dyson et al., 1997). Let Ki be the equi-
librium constant of the ith reaction. Typically, the corresponding mass action law is
given by:

ki(c) = Ki, i = 1, . . . , Ra, (2.60)

where ki is a function depending on c. Let k = [k1, . . . ,kRa ]
T be an Ra-dimensional

vector function. Then, by differentiating (2.60) with respect to time:

0Ra =
dk(c)

dt
= Jk

dc

dt
, Jk ≡ dk

dc
, (2.61)

where Jk is the Ra ×S Jacobian matrix of k with respect to c. Computing ċ explicitly
from (2.59) and multiplying by Jk,

0Ra = J�
kra + Jk [NT

b rb + β(V, c)] with β(V, c) ≡ Cin qin/V − 1T

pqin

V
c, J�

k ≡ JkNT

a ,

(2.62)

where β is an S-dimensional vector and J�
k an Ra × Ra matrix. Assuming the inverse

of J�
k to exist, (2.62) can be solved for ra:

ra(c, V ) = − (J�
k)

−1
Jk [NT

b rb + β(V, c)] . (2.63)

For Ra = R, (2.63) becomes

r(c, V ) = − (J�
k)

−1
Jkβ(V, c) (2.64)

with J�
k = JkNT.

Note that the equilibrium constants Ki (i = 1, . . . , Ra) do not appear explicitly in the
mole balance equations (2.59). However, they influence them implicitly through the
initial concentrations, since the initial concentrations of Ra out of the S species are
determined by the mass action law (2.60).
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Dynamic model

For simplicity of notation, it is assumed that all R independent reactions are in quasi-
equilibrium conditions. For example, in the case of neutralization titrations (Amrhein,
1998), bases (acids) or mixtures of bases (acids) are continuously fed to a reaction
system with an optional outlet. Since equilibrium is almost instantaneously reached
with the additions, the reaction system does not depend on time anymore. Thus,
the system equations (mole balances and continuity equations) can be reparameterized
with respect to any other variable, s, (such as the pH), that is monotonically increasing.
The monotonicity is guaranteed by:

ds

dt
≥ 0, s(0) = s0, (2.65)

where s0 is the initial condition of s. Since ṅ = dn
ds

ṡ and V̇ = dV
ds

ṡ, c and V in (2.38)
are reparameterized in terms of the new independent variable s:

dn

ds
=

d(V c)

ds
= V NT r(c)/ṡ + Cin qin/ṡ − qout c/ṡ,

dV

ds
= 1T

p qin/ṡ − qout/ṡ,

n(0) = V0c0 = n0,

V (0) = V0,

(2.66)

where V0, c0, and n0 are the initial conditions at s = s0.



3

Reaction and flow
variants/invariants in dynamic

models

In the previous chapter, dynamic models for reaction systems with inlet and outlet
streams were derived in terms of independent reactions and inlets. These models
include information regarding both the chemical reactions (stoichiometry and kinetics)
and the operational mode of the reactor. For the analysis, it is important to distinguish
between the states that depend on the reactions and/or evolve with time and those
which do not. A transformation has been proposed by Waller and Mäkilä (1981) to
separate the reaction-variant space (same dimension as the number of independent
reactions) from the reaction-invariant space. For reaction systems without inlet nor
outlet streams, the concentration vector can be reconstructed by integrating only the
reaction variants.

For considerations of safety and productivity, however, the reactors used in the pro-
duction of specialty chemicals are often of the semibatch type (systems with inlets), or
run continuously (systems with inlet and outlets). The aim of this chapter is to extend
the concept of invariance to include flow invariants of reaction systems with inlet and
outlet streams. A transformation to normal form is proposed herein that performs a
three-level decomposition of the states into: (i) the evolution of the independent reac-
tions, (ii) the influence of the inlet and outlets streams, and (iii) the behavior of the
reaction and flow invariants (see also Srinivasan et al., 1998). No kinetic information
(except for the assumption of independent kinetics) is necessary for the analysis.

The proposed transformation to normal form is important for the analysis of dynamic
models, concentration measurements, and spectral measurements of reaction systems.
It will be shown how this transformation helps determine the minimal dimensionality
of dynamic models (i.e., the minimal number of differential equations) and analyze
control-relevant properties such as state accessibility and feedback linearizability. The
important results regarding state accessibility proposed by Bastin and Lévine (1993)
can be readily derived from the transformation to normal form. Under certain condi-
tions, the system can be proven to be feedback linearizable, and the linearizing control
can be obtained easily.

For simplicity, reaction systems with constant temperature and density are considered
first using the basic model derived in Section 2.3.4. Then, the assumptions of constant
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temperature and density are relaxed, and indications for constructing the transfor-
mation to normal form are provided. Furthermore, the following special cases are
considered: continuous stirred-tank reaction systems (CSTRs), semibatch and batch
reaction systems, and systems with reactions in quasi-equilibrium conditions.

The chapter is organized as follows: Section 3.1 develops the transformation to normal
form and presents a simulated example. The implications of this transformation are
discussed in Section 3.2. Extensions to the basic model are provided in Section 3.3,
and special cases are studied in Section 3.4.

3.1 Transformation of the basic dynamic model to

normal form

The concept of reaction invariants is extended in this section to include flow invariants
of chemical reaction systems with inlet and outlet streams. A transformation to normal
form is introduced that allows the separation of: (i) the evolution of the independent
reactions, (ii) the influence of the inlet and outlet streams, and (iii) the behavior of
the reaction and flow invariants. Resulting from this transformation to normal form,
model reduction, state accessibility, and feedback linearizability will be analyzed. More
importantly, this transformation will be used in Section 4.1 to derive a model for molar
concentration measurements.

The transformation to normal form for the basic model (2.38) is derived next.

3.1.1 Reaction invariants in the absence of inlet and outlet
streams

The aim here is to transform the basic dynamic model (2.38) in a form suitable for
decoupling reaction variants and invariants. As a first step towards understanding
reaction invariants, a chemical reaction system without inlet nor outlet streams (batch
reaction system of constant volume) is considered:

ṅ = V NT rn(n),

V̇ = 0,

n(0) = n0,

V (0) = V0,
(3.1)

where rn,V is the R-dimensional reaction rate vector, which is a function of n and V ,
and n0 the initial number of moles. Though there are (S + 1) differential equations
in (3.1), it is shown below that the reaction system has intrinsically only R states or
directions in which n evolves with time, since there are only R independent reactions.
The other (S + 1 − R) directions in n are unaffected by the reactions and are termed
the invariants of the reaction system (Waller and Mäkilä, 1981).

The state space will be separated into: (i) an R-dimensional vector space that evolves
due to the R independent reactions (the reaction variants), and (ii) the (S + 1 − R)-
dimensional reaction invariants (one corresponding to the constant volume). The ideas
of Moore–Penrose pseudo-inverse (denoted by superscript +; see Appendix B.4) and
completion of space will be used for this purpose. Let P ∈ IRS×(S−R) be a matrix with
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orthonormal columns that satisfies: (i) rank ([NT, P]) = S, and (ii) NP = 0R×(S−R).
Then, the linear transformation that separates the R-dimensional reaction variants z1

and the (S + 1 − R)-dimensional reaction invariants z2 and V in n and V is given by⎡⎢⎣z1

z2

V

⎤⎥⎦ =

⎡⎢⎣N+T n

PT n

V

⎤⎥⎦ . (3.2)

Substituting (3.2) in (3.1) and using rz(z, V ) for the reaction rates in the new coordi-
nates gives:

ż1 = V rz(z, V ),

ż2 = 0S−R,

V̇ = 0,

z1(0) = N+Tn0,

z2(0) = PTn0

V (0) = V0.

(3.3)

n is reconstructed from z1 and z2 by

n = NTz1 + Pz2. (3.4)

In (3.4), the relation (NTN+T + PPT = IS) was used. Note that the term Pz2 is
constant, since it contains the reaction invariants.

In Perry and Green (1984), the extent of Reaction i, xb,i, is defined as ẋb,i ≡ V ri with
xb,i(0) = 0R. Thus, z1 equals xb except for initial conditions.

Remark 3.1 (Construction of P)
The (S−R) columns of P span the null space of N (see Appendix B.1 for the definition
of the null space). Therefore, one way to construct P is by singular value decompo-
sition (SVD) of N (see Appendix B.3). P is the matrix of the right singular vectors
corresponding to the zero singular values of N.

3.1.2 Reaction invariants in the presence of inlet and outlet
streams

Even when inlets and outlets are present, the reactions affect only an R-dimensional
space. The reaction invariants can be separated using the transformation (3.2). Ap-
plying (3.2) to (2.38) with c = n/V gives,

ż1 = V rz(z, V ) + N+TCin qin − (qout/V ) z1,

ż2 = PT Cin qin − (qout/V ) z2,

V̇ =
(
1T

pqin

) − qout,

z1(0) = N+Tn0,

z2(0) = PTn0,

V (0) = V0.

(3.5)

n is reconstructed from (3.4). Note that, though z2 and V are reaction invariants,
they do not remain constant. Thus, the system evolution is no longer restricted to an
R-dimensional space as previously; it evolves in a larger space. A similar conclusion
was drawn by Fjeld et al. (1974).
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In the absence of inlets and outlets, both isolating the R-dimensional manifold in which
n evolves and spotting the (S +1−R) reaction invariants are the same problem. This
is because the variation in n is caused only through the R independent reactions. In
contrast, in the presence of inlets and outlets, the variation in n and V is not only due
to the reactions but also to flows (inlets and outlets). Thus, isolating the manifold in
which n and V evolve means finding and eliminating those states which are invariant
with respect to both reactions and flows.

3.1.3 Reaction and flow invariants

The key aim of this chapter is to provide a three-part decomposition of the system
equations (2.38). The first part is that which is affected by the R independent reactions
(reaction variants). Among the reaction invariants, the second part picks those states
which evolve with the flows (reaction invariants and flow variants). The third part
consists of those states which remain constant (reaction and flow invariants). The inlet
and outlet streams will be treated separately, since the inlet streams enter linearly while
the outlet streams nonlinearly in the system equations. Thus, in the absence of outlet
streams, the transformation to normal form proposed to this effect is linear while, in
the presence of outlet streams, it is nonlinear.

The dimension of the reaction-variant space is R. As it will be shown below, the
dimension of the manifold in which the transformed states evolve is given by ς + 1,
where ς ≡ rank ([NT, Cin]). This means that the dimension of the manifold increases
with every inlet stream whose concentrations are independent of the rows of N and the
remaining inlet concentrations. First, it is assumed that ς = R + p. It will be shown
that the dimension of the reaction-variant space is R, that of the reaction-invariant
and flow-variant space is p + 1, and that of the reaction and flow-invariant space is
S − ς. Next, the transformation to normal form will be developed, and it will then be
generalized to include the case of ς < R + p.

In comparison with (3.2), the completion of the state space involving n and V takes a
three-level structure. Let L ∈ IRS×(ς−R) and Q ∈ IRS×(S−ς) be matrices with orthonor-
mal columns that satisfy the following conditions: (i) rank ([NT, L, Q]) = S, (ii) NT,
L and Q are mutually orthogonal, (iii) QTCin = 0S−ς×p, (iv) LTCin is invertible.

For the application of the three-part decomposition of n, the transformation to normal
form (3.2) must be changed as follows: (i) instead of P, an S×(ς−R) matrix, M, must
be chosen that renders MTCin = I(ς−R), which is achieved by choosing M ≡ L(CT

in L)−1;
(ii) N+TCin qin must be eliminated. For this, an additional projection matrix (IS −
CinM

T) is formulated that, by construction of M, satisfies (IS − CinM
T)NT = NT.

With these modifications, the linear transformation of n reads:

⎡⎢⎣z1

z2

z3

⎤⎥⎦ =

⎡⎢⎣N+T (IS − CinM
T) n

MT n

QTn

⎤⎥⎦ (3.6)
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and

ż1 = V rz(z, V ) − (qout/V ) z1,

ż2 = qin − (qout/V ) z2,

ż3 = −(qout/V ) z3,

V̇ =
(
1T

pqin

) − (qout/V ) V,

z1(0) = N+T (IS − CinM
T) n0,

z2(0) = MTn0,

z3(0) = QTn0,

V (0) = V0,

(3.7)

where z1, z2, and z3 are vectors of dimension R, p, and (S − ς), respectively. For the
elimination of the term (qout/V ), a nonlinear transformation can be used:[

x

λ

]
=

[
z/(V − 1T

p z2)

V − 1T

p z2

]
, (3.8)

where x and λ are the transformed states of dimension (R+S+p−ς) and 1, respectively.
By introducing a nonzero scaling factor η, the following theorem that formulates the
so-called normal form of (2.38) is proposed.

Theorem 3.2
Let ς = rank ([NT, Cin]) = (R + p). Then, a diffeomorphism T : [ n

V ] ↔ [ x
λ ] exists that

transforms model (2.38) into:

ẋ1 = h(x2) rx(x),

ẋ2 = qin/λ,

ẋ3 = 0S−ς ,

λ̇ = −qout/h(x2),

x1(0) = η N+T (IS − Cin MT)n0,

x2(0) = η MTn0,

x3(0) = η QT n0,

λ(0) = 1/η,

(3.9)

where

h(x2) = η (V0 − 1T

pMTn0) + 1T

px2, (3.10)

and x1, x2, and x3 are vectors of dimension R, p, and (S− ς), respectively, η a nonzero
arbitrary constant, rx the R-dimensional reaction rate vector expressed in terms of x,
M = L(CT

in L)−1, L ∈ IRS×(ς−R), and Q ∈ IRS×(S−ς) matrices with orthonormal columns
that satisfy: (i) rank ([NT, L, Q]) = S, (ii) NT, L and Q are mutually orthogonal, (iii)
QTCin = 0S−ς×p, (iv) LTCin is invertible.

The transformation to normal form T is one-to-one and can be written as follows using
g(n, V ) = η (V0 − 1T

pMTn0)/(V − 1T

pMTn):

[
n

V

]
→

[
x

λ

]
:

⎡⎢⎢⎢⎣
x1

x2

x3

λ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
g(n, V )N+T (IS − Cin MT)n

g(n, V ) MTn

g(n, V ) QT n

1/g(n, V )

⎤⎥⎥⎥⎦ (3.11)

[
x

λ

]
→

[
n

V

]
:

[
n

V

]
=

[
λ (NT x1 + Cin x2 + Qx3)

λ h(x2)

]
. (3.12)

(See Appendix H.2 for proof)
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The matrices Q and L required in Theorem 3.2 can be constructed similarly as in

Remark 3.1 by noting that the columns of Q and L span the null spaces of
[

N
CT

in

]
and[

N
QT

]
, respectively. Note that the concentrations can be reconstructed from (3.12) as:

c = n/V = (NT x1 + Cin x2 + Qx3)/h(x2). (3.13)

The transformation to normal form is global in nature, since V (t)− 1T

pMTn(t) = 0 for
all t if and only if V0 − 1T

pMTn0 = 0. If V0 − 1T

pMTn0 = 0, then g is defined using de
l’Hospital’s rule (see proof of Theorem 3.2).

Theorem 3.2 can easily be extended to the case where ς < R + p. For this, the
matrix M is redefined using the pseudo-inverse of (CT

in L) instead of the inverse such
that M := L (CT

in L)+. It will be shown in Subsection 3.1.4 that, in this case, the
transformation to normal form is no longer one-to-one.

Corollary 3.3 For ς < R + p, the transformed model (3.9) represents (2.38), where
M := L (CT

in L)+. The relation [ x
λ ] → [ n

V ] is defined by (3.12). (See Appendix H.2 for
proof)

3.1.4 Discussion

The results obtained in Theorem 3.2 and Corollary 3.3 are summarized in Table 3.1.
Though a rigorous interpretation of the results is difficult due to the nonlinear term in
the transformation to normal form, an intuitive meaning for the various parts of x can
be given. The R-dimensional reaction variants are described by x1, while x2 captures
the p-dimensional flow part affected directly by the inlets. The (S − ς)-dimensional
reaction and flow invariants are x3, whereas λ is related to the outflow.

The third row depicts the differential equations that explain why the interpretation
of the states outlined earlier is possible. The fourth and fifth rows summarize the
reconstruction of the original states n and V from x and λ. With this transformation
to normal form, c (sixth row) and n (third row) are decomposed along the directions
determined by the columns of: (i) NT, (ii) Cin, and (iii) the reaction and flow-invariant
matrix Q. In contrast to n, c is not directly influenced by the outflow through λ.
Note that x2 and λ form the flow variant space. However, since λ enters nonlinearly in
the reconstruction of n and V , it is given a special symbol. h(x2) describes the direct
influence of the inlet streams on the volume. Alternatively, the volume is reconstructed
by taking into account the outlet stream through λ.

In the last row, the dimensions of the various spaces are given. The transformed system
is of dimension (S +R + p− ς +1), whereas the original system has dimension (S +1).
Thus, if ς < (R+p), there is an increase in dimension as a result of the transformation
to normal form, and the transformation is not one-to-one. An example is given as
illustration next.

Example 3.4 (Rank deficient
[
NT Cin

]
)

Consider a reaction system with two independent reactions (R = 2): X1 → X2, X2 +
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Table 3.1. Summary of the transformation to normal form.
Original Reaction Reaction invariants Reaction and Reaction invariants

space variants and flow variants flow invariants and flow variants

(Inlets) (Outlet)

x1 x2 x3 λ

ẋ1 = h(x2) rx(x) ẋ2 = qin/λ ẋ3 = 0 λ̇ = −qout/h(x2)

n = (NT x1 + Cin x2 + Qx3) · λ

V = h(x2) · λ

c =
(NT x1 + Cin x2 + Qx3)

h(x2)

IRS+1 IRR IRp IR(S−ς) IR1

X3 → X4. When X1 and X2 are fed as two different inlets (p = 2), then[
NT Cin

]
=

[−1 0 cin,1 0
1 −1 0 cin,2

0 −1 0 0
0 1 0 0

]
and ς = 3 < R + p = 4. This is due to the fact that feeding X1 along with the reaction
X1 → X2 is equivalent to feeding X2. This redundancy is reflected in the loss of rank
in [NT, Cin].

Owing to redundancy, a clear separation of the influence of reactions and flows is no
longer possible. One way to handle this is to explain the same effect by more than
one state, thus, artificially increasing the dimension of the state space (see Table 3.1).
Thus, among the (p + 1) states present in [ x2

λ ] and constituting the reaction-invariant
and flow-variant space, at most (ς−R+1) are linearly independent (i.e., original space
(S + 1) — reaction variant space (R) — reaction and flow-invariant space (S − ς)).

Example 2.5a (Simulated example; cont’d from page 12)
The dynamic model in normal form is illustrated on a semibatch reaction system (R = 3
and S = 7), namely the ethanolysis reaction system described in Example 2.5 on

page 12 with N =
[−1 −1 1 1 0 0 0

0 −1 −1 1 1 0 0
0 −1 0 −1 0 1 1

]
. Since S = 7, the dynamic model is of order 8

(including the volume as the last state). The reaction rates are assumed to follow the
power law:

r1 = κ1c1c2, r2 = κ2c2c3, r3 = κ3c2c4 − κ4c6c7.

The numerical values for κi (i = 1, . . . , 4) are [11.07, 8.93, 12.00, 8.02] M−1 h−1.
Semibatch operation with p = 2 inlet streams and no outlet will now be studied with
Cin chosen such that rank ([NT, Cin]) = R + p. In this way, the transformation to
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Figure 3.1. Time profiles (Example 2.5a) of: (a) the inlet volumetric flowrates qin, and (b)
the volume V .
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Figure 3.3. Time profiles (Example 2.5a) of: (a) x1, and (b) x2.

normal form (diffeomorphism) of Theorem 3.2 can be illustrated. Ethanol (V0 = 1.5 l
with 2 wt. % water) in 80 wt. % solvent (dimethyl sulfoxide) is initially placed in a
vessel, i.e., c0 = [0, 4.2, 0, 0, 0, 0, 0.22]T M. The first inlet stream contains phthaloyl
dichloride, and the second an ethanol/water mixture, i.e., c1

in = [4.9, 0, 0, 0, 0, 0, 0]T M
and c2

in = [0, 20, 0, 0, 0, 0, 1.5]T M. The profiles of the inlet volumetric flowrates and
the volume are given in Figure 3.1, and those of the concentration in Figure 3.2.
Model (2.38) can be reduced to (R + p) = 5 differential equations as given in The-
orem 3.2: λ̇ = 0, since qout = 0, and there are (S − R − p = 2) reaction and flow
invariants. With the choice η ≡ 1, λ(t) = λ0 = 1 and x3(t) = x3(0) = V0Q

Tc0. From
(3.9) and (3.12), the reduced model and the reconstructed concentrations c read:

[
ẋ1

ẋ2

]
=

[
h(x2) rx(x)

qin

]
, x1(0) =

[−0.034
−0.023
−0.065

]
, x2(0) =

[
−0.007
0.209

]
,

c = (NT x1 + Cin x2 + Qx3) /h(x2),

V = h(x2),

(3.14)

where

Q =

[
0 −0.014 0.329 −0.343 0.657 −0.550 0.194
0 0.049 0.222 −0.172 0.444 0.536 −0.659

]T

and x3 = [−0.028, 0.094]T. The time profiles of x1 and x2 are shown in Figure 3.3. x1,1

and x1,2 are monotonically increasing, which is characteristic for irreversible reactions,
while x1,3 has a increasing and decreasing part, which is characteristic for reversible
reactions. x2,1 and x2,2 are monotonically increasing, since they are the integral of the
(positive) inlet flowrates.
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3.2 Some implications

The transformation to normal form of dynamic reaction models with independent inlet
and outlet streams proposed in Section 3.1 clearly shows the evolution of n in three
different spaces: the stoichiometric space (Sc (NT)), the inlet space (Sc (Cin)), and the
invariant space (Sc (Q)). Such a separation has immediate implications for model-order
reduction, state accessibility, and linearization by feedback.

The concepts of model-order reduction, state accessibility, and linearization by feed-
back are studied in the light of reaction variants and invariants of chemical reaction
systems under the usual assumptions (constant density and temperature), i.e., the
basic model. It will be shown in Subsection 3.3 that the other models presented in
Subsection 2.3.4 also have a normal form similar to that of the basic model. Thus,
model-order reduction, state accessibility, and linearization by feedback can readily be
extended.

3.2.1 Model-order reduction

From (3.9), it is clear that only (R + p+1) differential equations need to be integrated
to determine the trajectories. In addition, a set of (S− ς) constants must be computed
from the initial conditions. For S > (R + p), the analysis and design of controllers,
observers and optimizers can be achieved with the reduced model of (R + p + 1) states
if the initial conditions n0 and V0 are known.

3.2.2 State accessibility

The notion of accessibility is one of the key concepts in nonlinear control theory, since
it is closely related to the possibility of moving the states via the manipulated variables
(inputs). Accessibility corresponds to the ability of reaching a subspace of the state
space in final time. First, a definition for state accessibility is provided. Then, acces-
sibility of chemical reaction systems is studied using the formulation of the dynamic
model in normal form (3.9).

The set of reachable states at time T is introduced:

Definition 3.5 (Reachable set R(x0, T )) Let R(x0, T ) be the reachable set from x0

at time T > 0 for which trajectories remain in the neighborhood V of x0 for t ≤ T . In
other words, there exists a set of control inputs that steers the system from the initial
state x0 at time 0 to the final state xf ∈ R(x0, T ) at time T such that the evolution of
x(t) satisfies x(t) ∈ V, 0 ≤ t ≤ T .

Definition 3.6 (Local strong accessibility) A system is said to be locally strongly
accessible from a state x0 ∈ X , where X denotes the space of states, if the reachable
set R(x0, T ) has a non-empty interior for all neighborhoods V of x0 and any T > 0
sufficiently small.

Note that accessibility is by definition a local concept. To test on global accessibility,
the local property must be validated for every initial point of the entire space.
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It is obvious from the transformation to normal form in Theorem 3.2 that: (i) x3 is
inaccessible, and (ii) x2 and λ are (locally strongly) accessible from the inlet and outlet
streams. Moreover, a part of x1 can be inaccessible depending on the kinetics. Thus,
the dimension of the inaccessible part is at least (S − ς), which leads to the following
corollary.

Corollary 3.7 The maximum dimension of the locally strongly accessible part is (ς+1),
where ς = rank ([NT, Cin]).

Therefore, if local strong accessibility of the full state is required, the dimension of x3

should be zero (i.e., ς = S) implying that the number of inlet streams should be at
least (S − R) (i.e., p ≥ S − R).

Corollary 3.8 ς = S is a necessary condition for local strong accessibility.

These results have been reported by Bastin and Lévine (1993) for reaction systems with
inlets normalized by the volume. This way, they were able to disregard the volume as an
additional state, and the maximum dimension of the locally strongly accessible part was
found to be ς. Here, the influence of the volume is considered explicitly. Furthermore,
deriving the results from the transformation to normal form in Theorem 3.2 provides
an alternate proof to Bastin and Lévine (1993).

Another interesting aspect of the transformation to normal form is that the dynamics
of the inaccessible part can be transformed to ẋ3 = 0S−ς , which is marginally stable.

3.2.3 Linearization by feedback

Different approaches exist to linearize a nonlinear system by state feedback (Isidori,
1989; Nijmeijer and van der Schaft, 1990; Vidyasagar, 1993). A linearized system has
the advantage that an external linear control loop can be designed using linear con-
trol theory (Chen, 1984). Here, input state feedback linearization or, briefly, feedback
linearization (FL; diffeomorphism) of the dynamic model in normal form (3.9) is stud-
ied. First, the definition of feedback linearizability and, then, linearizing feedback for
chemical reaction systems are presented.

Definition 3.9 (Feedback linearizability) A system is feedback linearizable around
x0, if a neighborhood of x0 exists for which a transformation T and a feedback law
consisting of an m-dimensional vector field p, an m × m invertible matrix Q, and an
m-dimensional external input vector v with

z = T (x)

u = p(x) + Q(x)v
(3.15)

transforms the state vector x into a new nl-dimensional state vector z that evolves
according to the linear dynamic model:

ż = Az + Bv, (3.16)

where A and B are matrices of dimension nl × nl and nl × m, respectively.
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System
FL-control

Linearized system: ż = Az + Bv

z = T (x)u = p(x) + Q(x)v
v u x z

Figure 3.4. Feedback linearized (FL) system.

The concept of feedback linearization is illustrated in Figure 3.4. In practice, the
nonlinear feedback law is usually difficult to obtain. For particular reaction systems, a
linearizing feedback was found (e.g., Rothfuss et al., 1996; Aguilar et al., 1997; Valluri
et al., 1998). However, these approaches use the knowledge of kinetics structure. Here,
under only minor assumptions on the kinetics that will be pointed later, the dynamic
model in normal form is used for the construction of the linearizing feedback.

Consider the system (3.9) without the inaccessible part x3. The reduced system is
given by:

ẋ =

⎡⎢⎣ẋ1

ẋ2

λ̇

⎤⎥⎦ =

⎡⎢⎣f1(x)

0p

0

⎤⎥⎦ +

⎡⎢⎣ 0R×m

(1/λ)Ip 0p

0T

p −1/h(x2)

⎤⎥⎦ u, u ≡
[
qin

qout

]
, (3.17)

where u is the m-dimensional input vector, and m and n the dimensions of u and x,
respectively with, in this case, m = (p + 1) and n = R + m.

It will be shown that, for the case of ς = (R + p), (3.17) is feedback linearizable by: (i)
constructing the diffeomorphism T and the linearizing feedback that consists of p(x)
and Q(x), and (ii) assigning the new external inputs v.

By differentiating ẋ1 with respect to time,

ẍ1 =
∂f1
∂x1

f1 + Ju, J ≡
[
(1/λ) ∂f1

∂x2
(−1/h(x2))

∂f1
∂λ

]
, (3.18)

where J is an R×m matrix. Under the assumption that Js ∈ IRR×R is invertible with
J = [Js, Jt], (3.18) can be solved for u and, furthermore, p(x), Q(x), and v can be
constructed accordingly:

u =

[
−J−1

s
∂f1
∂x1

f1

0m−R

]
+

[
J−1

s −J−1
s Jt

0m−R×R Im−R

] [
ẍ1

ẋ2,v

]
=: p(x) + Q(x)v, (3.19)



3.3. Extensions 47

where x2 =
[ x2,u

x2,v

]
with x2,u and x2,v being (R + p − m)- and (m − R)-dimensional

vectors, respectively. From the choice of the new external inputs v in (3.19), the
linearized system (3.16) is obtained with

z ≡

⎡⎢⎣ x1

ẋ1

x2,v

⎤⎥⎦ , A =

⎡⎢⎣ 0R×R IR 0R×m−R

0R×R 0R×R 0R×m−R

0m−R×R 0m−R×R 0m−R×m−R

⎤⎥⎦ , B =

⎡⎢⎣ 0R×R 0R×m−R

IR 0R×m−R

0m−R×R Im−R

⎤⎥⎦ .

(3.20)

where z is an (R + m)-dimensional vector, and A and B matrices of dimension n × n
and n × m, respectively.

The condition of Js being invertible is not very restrictive, especially when only in-
dependent reactions are considered. If only non-reacting species are added, it is clear
that they will not affect the reaction rates, and Js will not be invertible. Note that
the condition of Js being invertible implies that the number of inputs m ≥ R. Thus, if
different reacting species in at least R inlets are fed to the reaction system, the invert-
ibility condition of Js can be met easily. Since only R inputs are required to guarantee
the invertibility condition of Js, the remaining (m−R) inputs are superfluous and are,
thus, not necessary to control the R reaction variants.

The invertibility condition is only a sufficient condition for feedback linearizability.
An example illustrating the conservatism of this condition is given next. Consider the
semibatch reaction system X1 +X2 → X3 and X1 +X3 → X4 with second-order kinetics
and X2 being fed (m = p = 1, R = 2). Although the invertibility condition is not
satisfied, since m < R, it can easily be verified that the system is feedback linearizable.

3.3 Extensions

In Section 3.1, the dynamic model in normal form (3.9) was derived for the cases of
constant density and temperature. In this section, it is considered for the three exten-
sions: (i) reaction systems with varying density, (ii) nonisothermal reaction systems,
and (iii) reaction systems expressed in terms of weight fractions. Based on these ex-
tensions, the dynamic reaction model in normal form (3.9) of any combination of the
(relaxed) assumptions could easily be derived and are, therefore, omitted here.

3.3.1 Reaction systems with varying density

Even in the case of varying density, n and V in (2.39) can still be transformed as
in Theorem 3.2, if h is redefined using the following algebra. Substituting V = hλ
in d

dt
(ρ V ) of (2.30) and using (3.9) gives d

dt
(ρ h) = 1T

p Φin (qin/λ) = 1T

pΦinx2. After
integrating both sides, the following redefinition of h results:

h(x, λ) := (η�(ρ0V0 − 1T

pΦinM
Tn0) + 1T

p Φin x2)/ρ(x, λ), (3.21)

where η� is an arbitrary integration constant. Since from (3.11) and (3.12) g =
h(x, λ)/V and using (3.21), g(n, V ) := η�(ρ0V0 − 1T

pΦinM
Tn0)/(ρV − 1T

pΦinM
Tn).
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An important difference between the original definition of h in (3.10) and the redefini-
tion (3.21) is that, since ρ depends on both x and λ, the redefined h depends not only
on x2 but also on λ and the entire x vector.

Usually, the inlet mass flowrates ν in = Φinqin are known, since Φin is assumed to be
constant and available and the inlet volumetric flowrates qin are available.

However, since the varying density ρ is usually unknown, the outlet mass flowrate
νout = ρ qout cannot be calculated from qout, and conversely. For νout being known, λ̇ in
the transformed system (3.9) can be rewritten as:

λ̇ = −qout/h(x, λ)

= −νout/(η
�(ρ0V0 − 1T

pΦinM
Tn0) + 1T

p Φin x2). (3.22)

Thus, λ and also x2 (see 3.9), are independent of ρ, which implies that λ and x2 are
reaction invariants.

In summary, the structure of the reaction system in normal form (3.9) is conserved
for varying-density reaction systems with the redefinition of h given in (3.21). With
volumetric flowrates, the interpretation of the three-part decomposition discussed in
Section 3.1.4 is not possible due to coupling through the density. Alternatively, if the
mass flowrates are available, the interpretation of the three-part decomposition is still
valid, since λ and x2 are independent of the density (see 3.22).

3.3.2 Nonisothermal reaction systems

First, the dynamic model in normal form for nonisothermal reaction systems will be
derived. Then, state accessibility and linearization by feedback will be studied.

Non-negligible external heat flowrate (Q̇ext 	= 0)

Model (2.40) can be transformed to normal form (3.9) with the following redefinitions:
n := nT , N := NT , Cin := CT,in, qin := qT,in, S := ST , and p := pT . However, since
h = V/λ and, thus, depends only on the inlet volumetric flowrates:

h(x2,n) = η (V0 − 1T

pMTn0) + 1T

px2,n, (3.23)

where x2 =
[ x2,n

x2,T

]
with x2,n and x2,T corresponding to qin and Q̇ext, respectively.

From the dimensions of x1 (R) and x3 (ST − ς), it can be concluded that the number
of reaction variants is the same as in the isothermal case (R), while the dimension of
the reaction-invariant and flow-variant space is increased by one (pT +1 = p+2). Note
that ST = (S + 1) and rank ([NT, CT,in]) = rank ([NT

T , Cin]) + 1. Thus, since both the
number of (pseudo-)species and ς are increased by one, the number of reaction and
flow invariants (ST − ς) is the same as in the isothermal case. This can intuitively be
explained by the temperature varying with the external heating independently of both
the reactions and the flows. The dimension of the inaccessible part x3 remains the
same as in the isothermal case, since the external heat flowrate Q̇ext can be used as an
additional input to control the additional state (V T †).

The dimension of the Jacobian matrix J (see 3.18) is R×(p+2), the extra column being
due to the external heat flowrate Q̇ext used as an additional input. Thus, a system that
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is not feedback linearizable in the isothermal case (an invertible Js does not exist) may
become feedback linearizable in the nonisothermal case (an invertible Js exists). In
other words, the external heat flowrate can be used to control the reaction variants in
addition to the state V T †.

Negligible external heat flowrate (Q̇ext = 0)
If rank ([NT, Cin]) = R + p, then rank ([ NT

T CT,in ]) = R + p. Since (ST − ς) = (S +
1 − ς), the number of reaction and flow invariants is increased by 1. This means that
the additional state (V T †) is inaccessible in the absence of external heat flowrate.
Intuitively, the temperature cannot vary independently of the concentrations without
external heat flowrate.

3.3.3 Reaction systems expressed in weight fractions

Since (2.42) and (2.38) are structurally the same, the model in normal form (3.9) is
also valid for reaction systems expressed in weight fractions by redefining the following
quantities: n := m, c := w, N := Nw, r := rm, Cin := Win, qin := ν in, qout := νout,
V := m. However, x1 also directly depends on ρ:

ẋ1 := (h(x2)/ρ(x, λ))NT

wrx(x). (3.24)

3.4 Special cases

In this section, the dynamic model in normal form (3.9) is considered for the two special
cases: (i) CSTRs, semibatch and batch reaction systems, and (ii) reactions in quasi-
equilibrium conditions. These special cases are based on the assumptions of constant
density and temperature, but could easily be extended to the cases of varying density
and/or temperature.

3.4.1 CSTR, semibatch and batch reaction systems

In the derivation of the model in normal form (3.9), it was assumed that the inlets
and the outlet are independent. In certain important special cases, however, qout is not
independent, for example, for (i) CSTRs (qout = 1T

pqin), (ii) semibatch reaction systems
(qout = 0), and (iii) batch reaction systems (qout = 0, qin = 0). Below, the dynamic
models in normal form will be derived for these cases. Since the initial conditions of the
dynamic models in normal form can easily be derived from (3.9), they are suppressed
to simplify readability. Then, the dimension of the reaction-invariant and flow-variant
space and state accessibility will be analyzed for CSTRs, semibatch and batch reaction
systems.

CSTR

Since the volume remains constant, the nonlinear transformation (3.8) of V to λ is not
required to get to normal form and, thus, a transformation similar to (3.6) can be used
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to transform system (2.56):

ẋ1 = h(x2) rx(x), ẋ2 = h(x2)qin/V, ẋ3 = 0S−ς , V̇ = 0. (3.25)

The forward transformation (3.11) still holds. However, since the reconstruction of n
in (3.12) depends on λ, which is undefined in (3.25), the reconstruction of n for CSTRs
becomes:

n =
V

h(x2)
(NT x1 + Cin x2 + Qx3). (3.26)

Since V̇ = 0, the number of reaction and flow invariants is increased by one (S− ς +1).

Semibatch reaction systems

The model in normal form (3.9) simplifies, since λ̇ = 0 implies λ(t) = λ0 and V =
λ0 h(x2). Thus, for (2.57),

ẋ1 = h(x2) rx(x), ẋ2 = qin/λ, ẋ3 = 0S−ς , λ̇ = 0. (3.27)

Note that the transformation given by (3.11)–(3.12) is linear, since g(n, V ) = 1/λ0 = c/.
Since λ̇ = 0, the number of reaction and flow invariants is increased by one (S− ς +1).

Batch reaction systems

The model in normal form (3.27) simplifies, since V (t) = V0 and qin = 0 implies
h(x2) = η (V0 − 1T

pMTn0) and ς = R. Thus, for (2.58),

ẋ1 = η (V0 − 1T

pMTn0) rx(x), ẋ3 = 0S−R, λ̇ = 0. (3.28)

Since λ̇ = 0, the number of reaction and flow invariants is increased by one (S−R+1).

Discussion

As discussed in Section 3.1.4, the reaction-invariant and flow-variant space has a max-
imum dimension of (ς −R + 1) ≤ p + 1. In the special cases of CSTRs, and semibatch
and batch reaction systems, that space cannot have dimension larger than p, since
there are only p independent flows. Combining these two elements, the dimension of
the reaction-invariant and flow-variant space is determined as min(ς − R + 1, p).

For the special cases considered above, the dimension of the reaction-invariant and
flow-variant space min(ς − R + 1, p) equals p for either of the following two cases: (i)
ς = (R + p), and (ii) ς = R + p − 1. This means that the number of accessible states
is not reduced even when the concentrations of one inlet stream are dependent on the
stoichiometry and the concentrations of the remaining inlet streams. Intuitively, this
is due to the volume becoming accessible in the case of ς = (R + p − 1) as discussed
below.

The addition of solvent is considered as an example for ς = R + p − 1. The inlet
concentration matrix has the form Cin := [c1

in, . . . , c
(p−1)
in , 0S]. The last column of

Cin is zero, since the solvent is not one of S reacting species. If it is assumed that
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rank
(
[NT, c1

in, . . . , c
(p−1)
in

)
] = R + p − 1, then rank ([NT, Cin]) = R + p − 1. Intu-

itively, when the outlet is not independent, the addition of solvent changes the volume,
thereby diluting other species and affecting n and V . Note that, for the tangent-

linearized model with no outlet stream and rank
(
[NT, c1

in, . . . , c
(p−1)
in

)
] = R + p − 1,

local controllability of the volume by solvent addition has been proven by Dochain and
Chen (1992). However, the work presented herein proposes global results for nonlinear
chemical reaction systems.

3.4.2 Systems with reactions in quasi-equilibrium conditions

The reparameterization of systems with reactions in quasi-equilibrium conditions (see
2.66) leads to the following dynamic model in normal form:

dx1

ds
= h(x2) rx(x)/ṡ,

dx2

ds
= qin/(λ ṡ),

dx3

ds
= 0S−ς ,

dλ

ds
= −qout/(h(x2) ṡ),

(3.29)

where the initial conditions of x and λ remain the same as in (3.9).

3.5 Summary

A generic nonlinear transformation to normal form for reaction systems with inlet and
outlet streams was presented in this chapter. It leads to a normal form in which the
reaction and flow invariants can be easily identified.

Based on the dynamic model in normal form, it was shown that order reduction of the
dynamic model is possible under certain conditions, thereby enabling more efficient
simulation and design of controllers, observers, and optimizers. State accessibility, a
key concept in nonlinear control theory, was analyzed without the knowledge of kinetics.
A linearizing feedback was constructed in a straightforward manner, which holds under
minor assumptions on the kinetics.

The results obtained for constant-density, isothermal reaction systems (basic model)
were extended to varying-density and non-isothermal situations, and to reaction sys-
tems expressed in weight fractions. Furthermore, special cases were studied such
as CSTRs, semibatch and batch reaction systems. Systems with reactions in quasi-
equilibrium conditions were also considered. Note that the results obtained are global
in nature as they deal with the full-fledged nonlinear system and consider general ex-
pressions for the reaction rates (no explicit knowledge about the kinetic structure; this
is also valid for the extensions and the special cases). In summary, major insight is
gained by using the normal form which, in turn, can help perform simulation, analysis,
control, and optimization more efficiently. It will be shown in the next two chap-
ters that the proposed transformation to normal form is the basis for the analysis of
concentration and spectral measurements from reaction systems.





4

Reaction and flow
variants/invariants in the

factorization of concentration data

Chemical analysis is a critically important enabling technology essential to every phase
of chemical science, product and process development, and manufacturing control
(American Chemical Society et al., 1996). New knowledge and insight provided through
chemical measurement greatly accelerate progress in chemical science, biotechnology,
materials science, and process engineering by providing reliable data to evaluate chem-
ical, biotechnological and pharmaceutical reaction processes.

In practice, two types of chemical measurements are commonly found: weight fraction
and molar concentration. In most standard wet-chemical analyses, the composition
is measured in weight fractions. Alternatively, many types of spectral measurements
provide indirect information about molar concentrations (see Chapter 5).

The techniques discussed here are applicable to both molar concentration and weight
fraction measurements, though only the former will be discussed in detail. Also, the
case of unmeasured species is investigated. Such a situation can occur when some
species either are difficult to measure or do not contain any additional information.

For the analysis of concentration data from reaction systems, a factorization of con-
centration data will be derived from the transformation to normal form proposed in
the previous chapter. Concentration data will be factorized into three parts: (i) the
reaction-variant part (related to the reactions), (ii) the reaction-invariant and flow-
variant part (related to the inlet and outlet streams), and (iii) the reaction- and flow-
invariant part (related to the initial concentrations and initial volume). Based on this
factorization, it will be shown that the concentration data lie in a hyperplane of typi-
cally lower dimension than the number of species. Thus, linear statistical methods for
the analysis of dynamic and/or static information are directly applicable.

In many practical applications, it is useful to separate the information related to the
reaction-variant part from that related to the reaction-invariant part. This goal is
achieved by data pre-treatment to reaction-variant form that subtracts the reaction-
invariant part (the material exchange terms and the initial conditions) from measured
concentrations, leaving the reaction-variant part. The resulting factorization of con-
centration data in reaction-variant form has the additional advantage that it separates
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information related to the reaction dynamics (reaction variants) from static informa-
tion (stoichiometry). Data in reaction-variant form also lie in a hyperplane of lower
dimension than the number of species, and linear statistical methods are also applica-
ble to such data. The two methods that are studied in this chapter are: (i) target factor
analysis (TFA) for the determination of the stoichiometries (static information) and (ii)
on-line reconstruction of concentration of unmeasured species via the reconstruction of
the reaction variants (dynamic information).

The kinetic description still represents the main difficulty in modeling chemical reac-
tion systems. For most industrially-relevant reactions, the kinetic parameters cannot
be estimated reliably from theory and, thus, must be determined experimentally. This
estimation requires the system stoichiometry and candidate kinetic structure(s) to be
known. TFA has been used successfully with reaction data to determine, without knowl-
edge of reaction kinetics, the number of independent reactions and the corresponding
stoichiometries. Here, the applicability of TFA techniques to reaction data on the basis
of concentration measurements is analyzed.

Often in practice, not all species of interest are measured. In cases where the reac-
tion variants can be computed from the concentrations of a few measured species, it
will be shown that the concentrations of the remaining species (of interest) can be
reconstructed using the known reaction-invariant part. For both TFA and on-line
state reconstruction, the rank of the concentration data and methods that change the
dimension of the null space of selected matrices will play an important role.

For pedagogical reasons, data from a single isothermal constant-density reaction run are
considered first. Then, extensions to data from nonisothermal, varying-density reaction
systems and to process runs with different stoichiometries are provided. Furthermore,
the following special cases are considered: CSTRs, semibatch reaction systems, systems
with reactions in quasi-equilibrium conditions, reaction systems expressed in weight
fractions, and non-reacting data with closure.

The chapter is organized as follows: Section 4.1 introduces (i) the factorization of con-
centration data, (ii) the experimental concentration matrix, (iii) data pre-treatment to
reaction-variant form and the factorization of concentration data in reaction-variant
form, and (iv) the factorization of concentration data for the case of unmeasured
species. Section 4.2 investigates the rank and the dimension of the fundamental sub-
spaces of the different data matrices, and it proposes methods to change the dimension
of null spaces. Section 4.3 studies on-line state reconstruction and stoichiometric mod-
eling using TFA. Extensions to the basic factorization are provided in Section 4.4, and
special cases are studied in Section 4.5.
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4.1 Factorization of concentration data

4.1.1 Derivation of the factorization of concentration data and
extended stoichiometry

Let c(k) be the concentrations measured at the kth time instant. Using (3.13), it can
be expressed as:

cT(k) =
1

h(x2(k))

[
xT

1 (k) xT
2 (k) 1

] ⎡⎢⎣ N

CT
in

xT
3QT

⎤⎥⎦ , (4.1)

where the matrix

[
N

CT
in

xT
3 QT

]
is constructed such that (i) it contains only constant quan-

tities and (ii) the vector [xT
1 (k), xT

2 (k), 1] contains a minimum number of elements. In
(4.1), c(k) depends implicitly on the initial concentrations c0 and volume V0 through
the initial conditions of x and λ in (3.9). Thus, the initial conditions c0 and V0 need
to be stored in the space spanned by the (S − ς) columns of Q (basis vectors).

A transformation is derived next that leads to reconstructed concentrations c(k) that
depends explicitly on the initial conditions c0 and V0. This way, the initial condi-
tions c0 and V0 are stored in the one-dimensional space spanned by c0 and V0. This
transformation is based on a difference formulation for x in (3.9) with respect to the
corresponding initial conditions. The arbitrary nonzero constant η is chosen as η = 1:

x(k) ≡ x1(k) − V0 N+T (IS − CinM
T) c0,

z(k) ≡ x2(k) − V0 MT c0,

0S−ς = x3 − V0 QT c0,

(4.2)

where x is the R-dimensional vector of reaction variants and z the p-dimensional vector
of reaction invariants and flow variants. Note that η = 1 implies λ(0) = 1.

Theorem 4.1
Let Assumptions A1–7 in Appendix D be verified. The concentrations c(k) from reac-
tion systems described by (2.38) are factorized as

cT(k) =
1

h(z(k))

[
xT(k) zT(k) V0

] ⎡⎢⎣ N

CT
in

cT
0

⎤⎥⎦ ≡ xT

eNe

with h(z(k)) ≡ V0 + 1T

pz(k),

(4.3)

where xe is an (R + p + 1)-dimensional vector and Ne is the extended stoichiometric
matrix of dimension (R + p + 1)×S. (4.3) is termed the factorization of concentration
data. For K observations, the factorization of concentration data becomes:

C =
{

H−1
[

X Z V0 1K

]} ⎡⎢⎣ N

CT
in

cT
0

⎤⎥⎦ = Xe Ne

with H ≡ V0 IK + diag (Z1p)

(4.4)
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and X being the K × R matrix of reaction variants, Z the K × p matrix of reaction
invariants and flow variants, V01K the K-dimensional vector of reaction and flow in-
variants, Xe an K×(R+p+1) matrix, and H a K-dimensional diagonal scaling matrix
computed from (4.5) for K observations. (See Appendix H.3.1 for proof)

The main advantage of deriving the factorization of concentration data (4.4) from the
transformation to normal form (3.9) is the availability of a strong interpretation of the
different terms in (4.3). This is in contrast to an alternate derivation of (4.3) given
in Appendix E.1 which derives (4.3) directly from (2.38). Note that the derivation
of (4.3) (and 4.4) is independent of the knowledge of kinetics. Furthermore, only in
the special case of reaction systems with no outlet (qout = 0, λ(t) = 1) is the reaction
extent xb,i equal to the reaction variant xi.

V (k) and λ(k) are related by (3.12): V (k) = h(x2(k)) λ(k) with h(x2(k)) defined as in
(3.10). With the choice of η = 1, a similar relation for h can be found with respect to
the new coordinates (x and z):

V (k) = h(z(k)) λ(k), (4.5)

or for H,

H = VΛ−1, (4.6)

where V ≡ diag (V (1), V (2), . . . , V (K)) and Λ ≡ diag (λ(1), λ(2), . . . , λ(K)).

Since concentration data are generated from a reaction system, x and z in the fac-
torization of concentration data (4.4) implicitly follow the following set of differential
equations:

ẋ = h(z) r(c),

ż = qin/λ,

λ̇ = −qout/h(z),

x(0) = 0R,

z(0) = 0p,

λ(0) = 1,

(4.7)

where (4.7) is obtained by differentiating (4.2) with respect to time, and transforming
the initial conditions with η = 1.

Note that x, z, and c0 are quantities relative to the initial time t0. Thus, Xe and Ne

are defined with respect to t0, and changing t0 change both Xe and Ne.

The results of Theorem 4.1 are summarized in Table 4.1. The factorization of concentra-
tion data (4.4) gives a complete description of the spaces in which the concentrations
lie: the R-dimensional reaction-variant space (Sc (NT)), the p-dimensional reaction-
invariant and flow-variant space (Sc (Cin)), and the one-dimensional reaction- and
flow-invariant space (Sc (c0)). Thus, the concentrations c(k) lie in a lower-dimensional
hyperplane spanned by the rows of Ne (Sr (Ne)). For most varying-volume reaction
systems, the hyperplane contains the origin, as it is illustrated by Figure 4.1 (see 4.5.2
for a special case where the origin is not contained).

The variability of C is typically determined by its rank (fourth row in Table 4.1). Since
the three spaces are non-orthogonal, the rank of C can be less than min(R + p + 1, S)
(see Section 4.2 below). Furthermore, the rows of H−1X are the coordinates in the
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Table 4.1. Overview of the factorization of concentration data.
Original Reaction Reaction invariants Reaction and Reaction invariants

space variants and flow variants flow invariants and flow variants

(Inlets) (Outlet)

x z V0, c0 λ

C =
H−1×

(XN + ZCT
in + V01K cT

0 )

rank (C) R min(p, S) 1

V = H · Λ

c1

c2

c3

0
c0

c(t)
t = t0

t = tf

Sr
(Ne)

Figure 4.1. Geometric interpretation of the factorization of concentration data. Concen-
trations c evolve in a lower-dimensional hyperplane spanned by the rows of Ne (Sr (Ne)).

reaction-variant space, the rows of H−1Z the coordinates in the reaction-invariant and
flow-variant space, and the rows of V0H

−11K the coordinates in the reaction- and flow-
invariant space. Factorization (4.4) separates the dynamics (Xe) from the static part
(Ne). However, experimental conditions influence directly both Xe and Ne (see also
next subsection).

The dimensions of the reaction-variant space (R) and reaction-invariant and flow-
variant space (p; see Table 3.1) correspond to their ranks. However, the dimension
of the space in which the reaction and flow invariants x3 (S − ς) lie differs from its
rank (one), since the reaction and flow invariants are constant.

Example 2.13a and Example 2.2b below illustrate the different terms and the geometric
interpretation of the factorization of concentration data by means of simulated reaction
systems, respectively.
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Figure 4.2. (a) The reaction-variant vector x, (b) the reaction-invariant and flow-variant
vector z, and (c) the scaling factor h of Example 2.13a. For legends of c and x, see
Figure 2.5 (Runs R2 and R4 for t ∈ [0, 7]h and t ∈]7, 14]h, respectively).
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Example 2.13a (Extended stoichiometry; cont’d from page 31)
The different terms of the factorization of concentration data are illustrated by means
of Case C3 of Example 2.13 (R = 2, S = 5). Figures 4.2 presents the time evolution of
the reaction-variant vector x, the reaction-invariant and flow-variant vector z, and the
scaling factor h.
The reaction variants x are strongly monotonically increasing functions, which is char-
acteristic of irreversible reactions. z is zero for the batch run R2 and nonzero for the
additional semibatch run R4. A step change can be observed in z1 at the time the
second run is considered. As expected, z2 strongly monotonically increases due to
continuous feeding.

Example 2.2b (Evolution of c in a hyperplane; cont’d from page 18)
Consider a constant-density esterification reaction with one inlet stream and one outlet
stream (S = 5). The initial concentrations are c0 = [2, 11, 0, 0.2, 0.01]T and the
inlet concentrations Cin = 2 c0, i.e., the initial and inlet concentrations are linearly
dependent. Figure 4.3 shows the evolution of the concentrations, the flowrates and the
volume.
Owing to the linear dependence of the initial and inlet concentrations, Sr (Ne) =
Sr

([
N
cT
0

])
. Thus, the concentrations evolve on a two-dimensional plane of the five-

dimensional concentration space c1–c5. Figure 4.4 illustrates graphically this evolution
in the three-dimensional space c1–c3.

4.1.2 Experimental concentration matrix

The evolution of the concentrations is determined by the R reaction variants and (p+1)
reaction invariants. The reaction variants are inherent to the chemical reaction systems,
while the reaction invariants can be manipulated (or varied) externally by the choice of
the experimental (or operational) conditions. These conditions are summarized in the
(p + 1) × S experimental concentration matrix Cx and the corresponding K × (p + 1)
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Figure 4.3. Example 2.2b: (a) The concentrations c, (b) the flowrates qin and qout, and (c)
the volume V .
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Figure 4.4. Example 2.2b: Geometric interpretation of the factorization of concentration
data. Evolution of the concentrations of Species X1, X2, and X3 on a two-dimensional
plane.

matrix Zx including the reaction invariants:

Cx ≡
[
CT

in

cT
0

]
, Zx ≡

[
Z V01K

]
. (4.8)

With these definitions,

C = Xe Ne with Ne =

[
N

Cx

]
, Xe = H−1

[
X Zx

]
. (4.9)

Let Sx denote the number of species that can be varied via the initial concentrations
c0 or the inlet concentrations Cin or, formulated in mathematical terms, have nonzero
elements in Cx. In practical applications, often only Sx < S species are available for
variation, as it will be discussed below.

4.1.3 Factorization of concentration data in reaction-variant
form

In this subsection, concentration data is transformed to reaction-variant form in order
to isolate the reaction-variant part. The resulting factorization of concentration data
in reaction-variant form is also studied.

Theorem 4.2
Let Assumptions A1–7 in Appendix D be verified. If Cin, V0, c(k), qin(k), and qout(k)
are known/measured, then an S-dimensional concentration vector in reaction-variant
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form (RV-concentration vector), d(k), that relates directly to x(k) and N can be
defined from (4.3):

d(k) ≡ h(z(k)) c(k) − Cin z(k) − V0 c0 = NT x(k). (4.10)

The operation to this effect is termed data pre-treatment to reaction-variant form.
For K observations, a K × S concentration matrix in reaction-variant form (RV-con-
centration matrix), D, can be constructed from (4.10) that relates directly to X and
N:

D ≡ HC − ZCT

in − V0 1K cT

0 = HC − Zx Cx = XN. (4.11)

(4.11) is termed factorization of concentration data in reaction-variant form (factoriza-
tion of RV-concentration data). (See Appendix H.3.1 for proof)

The factorization of RV-concentration data (4.11) is particularly useful as it enables
the separation of information related to the reaction dynamics (X) from structural
information (N). The experimental conditions such as the material exchange terms
and the initial conditions affect the pre-treated data indirectly through the reaction
variants. However, their direct contribution is removed and, thus, the rows of the RV-
concentration matrix, d(k), lie in an R-dimensional hyperplane spanned by the rows
of N (Sr (N); see Figure 4.5). In other words, removing the experimental conditions
is equivalent to removing the reaction-invariant part, i.e., leaving only the reaction-
variant part in D.

The crucial point in data pre-treatment to reaction-variant form is that the volume
must be known. If the density is constant, the volume can be reconstructed from (2.38)
upon knowledge of V0, qin, and qout, which are known by assumption (see Theorem 4.2).

If data pre-treatment to reaction-variant form is not possible due to qin and qout being
unknown (e.g., unknown disturbance such as leakage), the concentration matrix C
must be used directly.

d1

d2

d3

0
d(t)

t = t0

t = tf

Sr
(N)

Figure 4.5. Geometric interpretation of the factorization of concentration data in reaction-
variant form. RV-concentrations d evolve in an R-dimensional hyperplane spanned by the
rows of N (Sr (N)).
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An alternate data pre-treatment that removes the reaction invariants is provided in
Appendix E.2. It is based directly on (2.38). However, similarly to the alternative
derivation of (4.3), it lacks the interpretation of the reaction variants.

Example 2.2c (Evolution of d in a hyperplane; cont’d from page 59)
Figure 4.6 shows the evolution of the RV-concentrations. Since there is only one single
independent reaction, the RV-concentrations evolve on a line of the five-dimensional
RV-concentration space d1–d5 (see Figure 4.7 in the three-dimensional space d1–d3).

4.1.4 Case of unmeasured species

First, some useful notation will be introduced. For both a particular species subset
and its cardinality, the same notation is used. Thus, Sb has two meanings depending
on the context: (i) “Sb species” means the set of species tagged by Sb, and (ii) “a+Sb”
means the sum of a and the cardinality Sb of the particular species subset Sb.

An important case that will be dealt with herein is when only Sm < S reacting species
are measured because the remaining (S − Sm) species are either difficult to measure
or do not contain any additional information. The subscript m denotes that part of a
quantity which corresponds to the Sm measured species (known part), and subscript u
that part of a quantity which corresponds to the Su = (S − Sm) unmeasured species
(unknown part). Without loss of generality, it is assumed that the first Sm species are
measured. The known and unknown species also provide a partition in C, Cin, c0,

D, N, Ne, and Γ, i.e., C = [Cm, Cu], Cin =
[

Cin,m

Cin,u

]
, c0 =

[ c0,m
c0,u

]
, D = [Dm, Du],

N = [Nm, Nu], Ne = [Ne,m, Ne,u], and Γ =
[

Γm
Γu

]
. Also, note that

Cm = Xe Ne,m, Dm = HCm − ZCT

in,m − V0 1K cT

0,m = XNm. (4.12)
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Figure 4.6. The RV-concentrations d of Example 2.2c. For legend, see Figure 4.3.
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Figure 4.7. Example 2.2c: Geometric interpretation of the factorization of RV-concentra-
tion data. Evolution of the RV-concentrations of Species X1, X2, and X3 on a line in
direction Sr (N).

4.2 Rank analysis of concentration data matrices

The rank and the dimension of the fundamental subspaces (column and row spaces,
null space) of the concentration and RV-concentration data matrices are essential for
the comprehension of the remainder of this work. In addition to the analysis of the rank
and the dimension of the fundamental subspaces, methods that modify the dimension
of the null space will be proposed.

The rank of a matrix Y determines the dimension of the fundamental subspaces in
which Y lives or, equivalently, the variability (Lay, 1994, see also Appendix B.2 for
the definition and some properties of the rank). The fundamental subspaces include the
column and row spaces, and the null space (see Appendix B.1 for the definition of the
fundamental subspaces of a matrix, and Appendices B.2.1, and B.3 for the dimension
and the numerical construction of the null space, respectively).

Subsection 4.2.1 investigates the rank of various data matrices. Subsection 4.2.2 com-
ments on the dimension of the corresponding null spaces (or, briefly, nullity) and on
methods that change the nullity.

4.2.1 Rank of selected matrices

The ranks of C, Xe, Ne, D, Cm, Dm, and of the column-mean centered C denoted by
C̄c (see Appendix F.1.2) are investigated next.

Let Y denote any of the four matrices: C, D, Cm, Dm. Then, the rank of Y determines



64 Reaction and flow variants/invariants in the factorization of concentration data

the dimension of the hyperplane in which the row vectors (e.g., concentrations, RV--
concentrations) of Y evolve.

Rank of C
Theorem 4.3
Let Assumptions A1–7 in Appendix D be verified. Then, the rank of C is bounded by:

R + 1 ≤ rank (C) ≤ min(R + p + 1, S). (4.13)

(See Appendix H.3.2 for proof)

The lower bound of the rank of C is greater than R since each of the R independent
reactions is assumed to be active on a time interval of the K observations (Assumption
A7) and, according to Proposition 2.7d, the initial concentrations c0 do not lie in the
row space of N and, thus, cause a rank increase of 1. The upper bound is determined
by the smallest outer dimension of C (S, since K > S by Assumption A6) and the
inner dimension of Xe and Ne (R + p + 1).

Conditions to guarantee rank (C) = min(R + p + 1, S) are given next as a corollary to
Property B.10.

Corollary 4.4 Let Assumptions A1–7 in Appendix D be verified. Then, the following
properties hold:

(a) If rank (Xe) = (R + p + 1), then rank (C) = rank (Ne).

(b) If rank (Ne) = (R + p + 1), then rank (C) = rank (Xe).

(c) If p < S − R − 1, then rank (C) < S.

If the rank of either Xe or Ne is full, then according to Corollary 4.4a–b, the rank of C
is determined by the rank of the (possibly rank-deficient) matrix Ne or Xe, respectively.

For the case rank (C) = (R + p + 1), the variability or, equivalently, the rank of the
concentration matrix C is determined by the dimensions of the following three parts:
the reaction-variant part (dimension R), the reaction-invariant and flow-variant part
(dimension p), and the reaction and flow-invariant part (dimension 1). Note that
rank (Ne) = S implies p ≥ S − R − 1. However, if p < S − R − 1, then C is rank
deficient (see Corollary 4.4c).

Rank of Xe

The rank of X is full due to the definition of the independent reactions (see Defini-
tion 2.8). Furthermore, since 1K /∈ Sc (X), rank ([X, 1K ]) = (R + 1). Thus, the rank
of Xe is always full for batch runs. The transformation proposed in Subsection 2.4.2
guarantees full rank of the modified inlet flowrates and, thus, Z is also of full rank.
Therefore, the only situation of rank-deficient Xe is when some columns of Z lie in the
column space of [X, 1K ]. This situation can occur, for example, when the concentra-
tions of some of the species are kept constant by feedback control with qin being the
manipulated variables (see Example 2.2d).

Experimental conditions are formulated next that guarantees full rank of Xe.
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Proposition 4.5 Let Assumptions A1–7 in Appendix D be verified. If the p generalized
inlets are of the type

(a) additional batch runs,

(b) impulse additions at different time instants, or

(c) inlet flowrates with abrupt changes at different time instants,

then rank (Xe) = R + p + 1. (See Appendix H.3.2 for proof)

Proposition 4.5 provides three conditions to achieve full rank of Xe. These conditions
can easily be guaranteed by appropriate experimental planning. Changing each inlet
flowrate at different time instants guarantees linear independence of the flowrates.
Furthermore, the abrupt changes guarantee independence of the columns of Z and X,
since the reaction variants cannot exhibit a discontinuity. Note that for additional runs
with inlet streams, the corresponding inlet flowrates must appropriately be chosen as
indicated in Proposition 4.5.

Example 2.2d (Feedback control of X1; cont’d from page 18)
Consider a constant-density semibatch esterification reaction with X1 being fed at
concentration cin,1 > 0 (R = 1, p = 1). The initial concentrations are c0 =
[c1,0, c2,0, 0, 0, c5,0]T with c1,0, c2,0, c5,0 > 0. The concentration of X1 is kept con-
stant by feedback control at a given setpoint c1,s = c1,0 using qin as the manipulated
variable. From (2.38), it follows that

0 != ċ1,s = −r + (cin,1 − c1,s) qin/V,

and a feedback law for qin can be constructed:

qin = α V r (4.14)

with α = 1/(cin,1−c1,s). Thus, X1 must be fed at a flowrate proportional to the reaction
rate. Since there is no outlet, λ(t) = 1. From (4.14) and the definition of x and z, it
follows that z(k) = α x(k) for all k, or, z = αx. Since rank (Ne) = R + p + 1 = 3,
by invoking Corollary 4.4b, rank (C) = rank (Xe). Since the first element of x is
0, it follows that 1K /∈ Sc (x) and, thus, rank ([x, 1K ]) = R + 1 = 2. Since Xe =
V−1[x, z, V01K ] = V−1[x, αx, V01K ], it is concluded that rank (C) = rank (Xe) =
2 < (R + p + 1) = 3.

Rank of Ne

The rank of N is full due to the definition of the independent reactions (see Defini-

tion 2.8). Furthermore, since according to Proposition 2.7d c0 /∈ Sr (N), rank
([

N
cT
0

])
=

(R+1). Thus, the rank of Ne is always full for batch runs. An example of rank-deficient
Ne is when, for reaction systems with p < (S − R − 1) inlet streams, one or several

rows of Cin lie in the row space of
[

N
cT
0

]
.

To guarantee full rank of Ne, it is useful to have rank (Cx) = (p + 1). This is a
practical assumption, since Cin and c0 are usually known. For computing the rank of
Ne of reaction systems with inlet streams, N must be known. However, this is often
not the case in practice. Thus, for reaction systems with inlet streams, the knowledge
of N is often the bottleneck in the computation of the rank of Ne (or C).
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Rank of C̄c

In practical applications, the column-mean-centered or time-differentiated C is often
used. As can be seen from Property B.7, column-mean centering or differentiation with
respect to time cause a rank drop by one if and only if its column space contains the
1K-vector.

Rank of D

Proposition 4.6 Let Assumptions A1–7 in Appendix D be verified. Then,

rank (D) = R. (4.15)

(See Appendix H.3.2 for proof)

It can be seen from (4.15) that the rank of D is determined by the number of indepen-
dent reactions R, since the effects of the reaction invariants have been removed. Thus,
in contrast to C, the rank of D can be determined exactly. Furthermore, D is always
rank deficient, since R < S (see Proposition 2.7a).

Rank of Cm and Dm

When the concentrations of only Sm < S species are measured, then the rank of
Dm may be less than the total number of independent reactions R. The rank of Dm

determines the number of observed independent reactions, Ro.

When Ro < R, then (R − Ro) rows of Nm are linear combinations (denoted by the
(R − Ro) × Ro matrix Γr) of the remaining Rm ones (denoted by the Ro × Sm matrix
No):

Nm =

[
No

ΓrNo

]
, (4.16)

or

Nm = NPm = PN No, Pm =

[
ISm

0S−Sm×Sm

]
, PN ≡

[
IRo

Γr

]
, (4.17)

where Pm and PN are matrices of dimension S × Sm and R × Ro, respectively. Using
PN , the K × Ro matrix of observed reaction variants Xo is defined as:

Xo ≡ XPN =
[

X1 X2

] [
IRo

Γr

]
= X1 + ΓrX2, (4.18)

where X1 and X2 are submatrices of X of dimension K × Ro and K × (R − Ro),
respectively. Thus, Dm (see 4.12) can be rewritten as:

Dm = XNm = XPN No = Xo No. (4.19)

Equivalently, Cm becomes:

Cm = Xe Ne,m = Xe,o Ne,o, Xe,o ≡ H−1
[
Xo Zx

]
, Ne,o ≡

[
No

Cx,m

]
, (4.20)
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where Xe,o and Ne,o are matrices of dimension K × (Ro + p+1) and (Ro + p+1)×Sm,
respectively. Thus, the rank of Cm may also be less than that of C.

Proposition 4.7 Let Assumptions A1–7 in Appendix D be verified. Let the number
of observed independent reactions be defined by Ro ≡ rank (Dm). Then,

Ro ≤ rank (Cm) ≤ min(Ro + p + 1, Sm). (4.21)

(See Appendix H.3.2 for proof)

In contrast to C (Sm = S), c0,m for Sm < S can lie in Nm and, thus, the rank of Cm can
equal that of Dm (lower bound on the rank of Cm). The upper bound is determined
by the smallest outer dimension of Cm (Sm) and the inner dimension of Xe,o and Ne,o

(Ro + p + 1).

Example 4.8 (Ro < R)
Consider a batch reaction system with S = 4 reacting species and R = 2 independent
reactions (Amrhein et al., 1996):

2X1
κ1−→ X2

κ2−→ X3 + 2X4.

Let c0 = [c1,0, 0, c3,0, 0]T with c1,0 	= 0, c3,0 	= 0.
Two cases are considered: (C1) all species are measured (cm,C1 = c), (C2) Species X3

and X4 are measured (cm,C2 = [c3, c4]T).
In Case C1, according to Corollary 4.4b, rank (Cm,C1) = R + 1 = 3 (see also Subsec-
tion 4.5.2 below). In Case C2, Ne,m,C2 becomes

Ne,m,C2 =

[
Nm,C2

cT
0,m,C2

]
=

⎡⎢⎣ 0 0
1 2

c3,0 0

⎤⎥⎦ . (4.22)

From (4.22), it can be seen that the first reaction cannot be observed, since none of the
two species X1 and X2 involved in the first reactions are measured. Thus, Ro = 1 < R
and rank (Ne,m,C2) = 2.

4.2.2 Nullity of selected matrices

The nullities (i.e., the dimension of the null space) of C, D, Cm and Dm are studied
next. Furthermore, nullity-reducing and nullity-increasing operations are proposed.

4.2.2.1 Formulation

To set the stage, certain useful mathematical results are listed next, which are then
discussed.

Proposition 4.9 Let Assumptions A1–7 in Appendix D be verified. Then, for Sm ≤ S
measured species, the nullities of Cm and Dm are given by:

max(Sm − Ro − p − 1, 0) ≤ dim (N (Cm)) = Sm − rank (Cm) ≤ Sm − Ro,

dim (N (Dm)) = Sm − rank (Dm) = Sm − Ro.

(4.23)
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If Sm = S, then

max(S − R − p − 1, 0) ≤ dim (N (C)) ≤ S − R − 1,

dim (N (D)) = S − R.
(4.24)

(See Appendix H.3.2 for proof)

The nullity of a matrix is determined by its column dimension and rank. When the
concentrations of only Sm < S species are measured and the rank of Dm is Ro = R,
then the null space of Dm is smaller than that of D. For Ro < R (see Subsection 4.2.1),
however, the nullities of D and Dm can also be equal. Similar statements also hold for
Cm and C.

Let Y represent any of the four data matrices considered: C, D, Cm, or Dm. Nullity-
changing operations are defined next.

Definition 4.10 (Nullity-changing operations) Let d− and d+ denote the nullities
of Y− (K × S−) before and Y+ (K × S+) after the nullity-changing operation, i.e.,

d− ≡ dim (N (Y−)) = S− − rank (Y−) , d+ ≡ dim (N (Y+)) = S+ − rank (Y+) .
(4.25)

The change in nullity is defined as:

∆d(Y−,Y+) ≡ d+ − d−. (4.26)

If ∆d < 0 (∆d > 0), then the operation is said to be nullity reducing (increasing).

4.2.2.2 Nullity-reducing operations

Experimental rank-increasing methods

Proposition 4.11 Let Assumptions A1–7 in Appendix D be verified. Let S− = S+ = S
and R− = R+ = R, where the subscripts − and + denote a quantity before and after
variation using any of Variation modes V1–V3 on page 28, respectively. Then, the
following properties hold for the nullity change ∆d:

(a) For (p+ − p−) additional generalized inlets, ∆d ≤ 0.

(b) If, in addition to (a), rank (C−) = (R + p− + 1) and rank (C+) = (R + p+ + 1),
then ∆d = p− − p+ < 0.

(c) If rank (C+) = S, then d+ = 0 and ∆d = −d−.

(See Appendix H.3.2 for proof)

Proposition 4.11 says that, since Variation modes V1–V3 on page 28 are cast in the
generalized inlets, they are equivalent with respect to a rank increase of C. Proposi-
tion 4.11a shows that additional generalized inlets can increase but never decrease the
rank. If rank (C−) = (R + p− + 1) and rank (C+) = (R + p+ + 1), then each additional
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generalized inlet increases the rank by one (see Proposition 4.11b). In some cases, the
additional generalized inlets increase the rank of C+ to S, in which case, the nullity of
C+ is zero (see also Subsection 4.2.2).

Note that a rank increase is possible only up to the point where rank (C+) = S. If
additional variations are performed, no further rank increase can be observed (∆d = 0).

Maximal attainable rank

In practical applications, often only Sx species are available for independent variation
of the initial and inlet concentrations. Thus, the rank of C can at most (R + Sx)
or, in other words, the minimal nullity of C is S − R − Sx. To maximally increase
the rank of C with a minimal set of generalized inlets, the ranks of Xe and Ne must
be full. Furthermore, to guarantee C to be of full rank S, at least (S − R) species
should be available for independent variation or, in other words, the number of species
unavailable for variation should not exceed R.

Proposition 4.5 proposes methods to guarantee full rank of Xe. To guarantee full
rank of Ne, N must usually be known for the specification Cx. However, if all S
species are available for independent variation (Sx = S), then rank (Cx) = S and,
thus, rank (Ne) = S. In such a case, R generalized inlets are superfluous, but with the
advantage that the knowledge of N is not required.

Example 2.13b (Variation modes, linear dependence in Ne, column-mean
centering; cont’d from page 31)
The experimental rank-increasing operations are illustrated by means of the reaction
system explained in Example 2.13 (R = 2, S = 6). It is assumed that S− = S+ = S.
The first reaction is assumed to be of either type (i) power law with r

(1)
1 (c1) = κ1 c2

1,

or (ii) inhibition with r
(2)
1 (c1, c5) = k11 c21

1+k12 c5
.

Six runs are conducted: the first four runs are the same as in Example 2.13, and
Runs R5 and R6 are semibatch runs with one inlet stream. Key difference between
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Figure 4.8. The concentrations c [M] of: (a) Run R5 and (b) Run R6 of Example 2.13b.
For legend of c, see Figure 2.5 on page 30.
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R5 and the other runs is the kinetics of the first reaction. The initial concentrations
of R6 involve Species X3 that is not initially present or added in the other runs (see
Appendix A.2 for the parameters). Figure 4.8 shows the concentration profiles of Runs
R5 and R6. The feed and volume profiles of Runs R5 and R6 are the same as for Run
R4 (see Figure 4.2d and e).
Five cases are considered. Case C1: Run R2; Case C2: (a) Run R1, (b) Runs R2 &
R3, (c) Run R4; Case C3: (a) Runs R1 & R4, (b) Runs R1 & R3 & R4; Case C4: Runs
R1 & R4 & R5; Case C5: Runs R1 & R3 & R4 & R6.
Table 4.2 summarizes the ranks of C, Xe, and Ne for Cases C1–C5. For all the cases,
rank (Xe) = (R + p + 1), since the conditions specified in Proposition 4.5 are verified.
Thus, by invoking Corollary 4.4a, the rank of C is determined by the rank of Ne.
C of a single batch run R2 (Case C1) is rank deficient with rank (C) = rank (Ne) = R+
1 = 3. In Case 2, variations such as a single impulse addition, appending an additional
batch run, or a single continuous feed increase the rank by one with respect to batch
run R2 (∆d = −1), since the corresponding concentrations are linearly independent of
the initial concentrations of the (first) batch run R2. Case C3 illustrates stepwise rank
increase from 4 (Case 2) to 5 (Case 3a; ∆d = −1) and from 5 to full rank S = 6 (Case
3b; ∆d = −1).
Rank deficiency in Ne occurs for the following cases: C2b, C3a–b, C4, C5. The reasons
are various. Cases C2b, C3a–C3b are rank deficient, since the initial concentrations
are the same for Runs R1–4.
For Case C4, although the initial and inlet concentrations, and the kinetics of Run
R5 are different from Runs R1 and R4 (Case C3a), no rank increase can be observed
when appending Run R5 to Runs R1 & R4 (∆d = 0). This is because (i) the initial
concentrations, the impulse addition concentrations, and the inlet concentrations of
Runs R1 and R4 already span the entire subspace for Species X1, X4, and X6, i.e.,
rank (Cx,C3a) = 3 = Sx, and (ii) the initial and inlet concentrations of Run R5 only
involve these three species and, therefore, c0,R5, cin,R5 ∈ Sc (Cx,C3a).
For Case C5, appending Run R6 to Runs R1 & R4 & R5 (Case C3b) does not increase
the rank (∆d = 0), since the rank of CC3b is already full. Thus, although the initial
concentrations of R6 involve Species X3, which is not present in Cx,C3b, c0,R6 ∈ Ne,C3b,
i.e., the subspace for X3 is spanned by the rows of Cx,C3b and N.

Table 4.2. Computed ranks of C, Xe, and Ne for Cases C1–C5 (R = 2, S = 6). The
number of (generalized) inlets p is also listed. R1: batch + one impulse addition; R2:
batch; R3: batch; R4: semibatch with one inlet stream; R5: semibatch with one inlet
stream and different kinetics; R6: semibatch with one inlet stream and different kinetics.
See Table A.4 for initial and (generalized) inlet concentrations.

Rank of Rank of

Case p C Xe Ne Case p C Xe Ne

C1 (R2) 0 3 3 3 C3a (R1,R4) 3 5 6 5

C2a (R1) 1 4 4 4 C3b (R1,R3,R4) 4 6 7 6

C2b (R2,R3) 1 4 4 4 C4 (R1,R4,R5) 5 5 8 5

C2c (R4) 1 4 4 4 C5 (R1,R3,R4,R6) 6 6 9 6
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Example 2.2e (Linear dependence in Xe; cont’d from page 65)
Two runs are conducted for the constant-density esterification reaction. Run R1 is a
batch reaction with c0 = [c1,0, c2,0, 0, 0, c5,0]T with c1,0, c2,0, c5,0 > 0 and Run R2 the
semibatch reaction under feedback control as described in Example 2.2d.
For both runs, the rank of Ne is full, i.e., rank (Ne,R1) = R+1 = 2 and rank (Ne,R2) =
R + p + 1 = 3. Thus, by invoking Corollary 4.4b it follows that rank (C) = rank (Xe),
i.e., the rank of C is determined by the rank of Xe.
In Example 2.2d it was already shown that rank (Xe,R1) = rank ([x, 1K ]) = R + 1 = 2.
Since rank (Xe,R2) = 2 (see Example 2.2d), it follows that rank (CR1) = rank (CR2).
Thus, if the additional feed is constraint by the feedback law (4.14), then the rank does
not increase with respect to the batch Run R1 (∆d = 0).

Measuring fewer species

The nullity of the concentration matrix can be affected by measuring fewer species.

Proposition 4.12 Let Assumptions A1–7 in Appendix D be verified, and the sub-
scripts − and + denote a quantity related to more and fewer measurements, respec-
tively. If S− = S and rank (C−) = R+p+1, then measuring less species (S+ = Sm < S)
leads to the nullity reduction ∆d of the corresponding concentration matrices C− and
C+:

max(Sm − S + R − Ro, R + p + 1 − S) ≤ ∆d ≤ Sm − S + R − Ro + p + 1. (4.27)

(See Appendix H.3.2 for proof)

Measuring fewer species can reduce but never increase the nullity. The same results
also hold for D− and D+ with the redefinition (p + 1) := 0.

4.2.2.3 Nullity-increasing operations

The pre-treatment of C and Cm to reaction-variant form D (see 4.11) and Dm (see
4.12), respectively, is a nullity-increasing operation, as shown next.

Proposition 4.13 Let Assumptions A1–7 in Appendix D be verified. Then,

1 ≤ ∆d(C,D) ≤ min(p + 1, S − R),

0 ≤ ∆d(Cm,Dm) ≤ min(p + 1, Sm − Ro).
(4.28)

(See Appendix H.3.2 for proof)

When subtracting the reaction-invariant part from C, Proposition 4.13 shows that the
nullity increases at least by 1 but maximally by min(p+1, S−R). Alternatively, when
subtracting the reaction-invariant part from Cm, the nullity stays can increase by as
much as min(p + 1, Sm − Ro).
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4.3 Some implications

4.3.1 On-line state reconstruction

In many practical situations, the concentrations of some species of interest are diffi-
cult to measure on-line (e.g. biomass or glucose in biotechnological reactions). Con-
sequently, it is desirable to reconstruct them, without knowledge of kinetics, from the
concentration of the species that are routinely measured on-line (e.g. CO2 or O2 in
biotechnological reactions). In this subsection, the well-known asymptotic observer of
Bastin and Dochain (1990) is analyzed in the light of reaction and flow variants/in-
variants, and certain useful results regarding the observation error are provided.

It is shown below that if the concentrations, cm, of Sm ≥ R species are measured,
the reaction variants x can be estimated, without knowledge of kinetics, under certain
minor assumptions. Upon estimating x, the concentration vector cu of the remaining
Su = (S − Sm) species can be reconstructed from (4.3).

Proposition 4.14 Let Assumptions A1–7 in Appendix D be verified. Let the con-
centrations cm of Sm ≥ R species be measured, and Nm be the R × Sm submatrix
of N corresponding to these Sm species. Given N, Cin, qin, qout, c0, and V0, if NT

m

has a unique left pseudo-inverse, the reaction variants x can be reconstructed without
knowledge of reaction kinetics using

x̂ = N+T

m (h(z) cm − Cin,mz − V0cm,0) , (4.29)

where the subscript m denotes a quantity corresponding to the Sm measured species.
From (4.29), the concentrations of the remaining (S − Sm) species, cu, can be recon-
structed using

ĉu = (NT

ux̂ + Cin,uz + V0cu,0) /h(z), (4.30)

where the subscript u denotes a quantity corresponding to the Su unmeasured species.

Let only an estimate of the initial concentrations of the Su species be available, ĉu,0.
Then the estimation error εu ≡ ĉu − cu, with ĉu being the estimated concentrations, is
given by

εi
u(k) = V0ε

i
u,0/h(z(k)), i = 1, . . . , Su, (4.31)

where εi
u is the ith element of εu. If the inlets are present at least intermittently, then

the estimation error asymptotically converges to zero. (See Appendix H.3.3 for proof)

Since the reconstructed reaction variants x̂ in (4.29) are independent of the (unmea-
sured) initial concentrations cu,0, the RV-concentration vector du of the Su unmeasured
species are, in principle, correctly reconstructed:

du = NT

ux. (4.32)

However, the concentrations cu can exhibit an estimation error due to inaccurate es-
timate of the initial concentrations cu,0. Fortunately, asymptotic convergence to the
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true concentrations can be guaranteed. The asymptotic convergence can intuitively be
explained from (4.31). The numerator term is constant while the denominator mono-
tonically increases if the inlets are present at least intermittently. h(z) tends to infinity
with time, thereby pushing the error to zero. Since ĉi

u does not depend on ĉj
u,0 (i 	= j),

an initial concentration error of any species does not propagate on the concentration
estimates of the remaining species.

It can be seen from (4.31) that the error εu tends to zero only due h(z) going to infinity.
Thus, since h = V/λ, either the volume goes to infinity or λ goes to zero. Both imply
that infinite dilution is necessary to make the estimation independent of the initial
concentration estimates.

Note that, under the assumption that the concentrations of more R species are mea-
sured, the procedure presented here only provides an estimate at the kth time instant
from a measurement at the kth time instant. If it is desirable to estimate concentra-
tions for all time instants (past, present, future) from past and present measurements,
then observer techniques relying on the knowledge of reaction kinetics should be used
(Soroush, 1997). In some cases, these techniques work also when the concentrations of
less R species are measured.

Example 2.5b (Ethanolysis reaction system; cont’d from page 12)
It is assumed that the concentrations of Species X1, X4, and X7 are measured with
additive zero-mean Gaussian noise with standard deviations 2.8%, 3.3%, and 1.5%,
respectively, and the volume is reconstructed perfectly from the continuity equation.
Furthermore, it is assumed that the initial concentrations of all the species are perfectly
known except that of the (unmeasured) Species X2: ĉ2,0 = 3.9 M (true c2,0 = 4.2).
Figure 4.9 shows the reconstructed concentrations of the unmeasured species, ĉu =
[ĉ2, ĉ3, ĉ5, ĉ6]T. Since the pseudo-inverse of NT

m =
[−1 0 0

1 1 −1
0 0 1

]
is unique and the initial

concentrations are correct, the concentrations of Species X3, X5, and X6 are recon-
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Figure 4.9. Example 2.5b: concentrations of the Su unmeasured species: (–) true, (– –)
reconstructed. Right axis for X2 and left axis for the remaining species.
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structed without offset.
Since there is no outlet, h(z) = V . Thus, the asymptotic convergence to the true
concentrations observed for Species X2 is only due to the increase in volume (see Fig-
ure 3.1b).

4.3.2 Modeling of the stoichiometries using target factor anal-
ysis (TFA)

The kinetic description still represents the main difficulty in modeling chemical reac-
tion systems. For most industrially-relevant reactions, the kinetic parameters cannot
be estimated reliably from theory and, thus, must be determined experimentally. This
estimation requires the system stoichiometry and candidate kinetic structures to be
available. In practice, however, it would be preferable to identify the reaction stoi-
chiometries from the available data independently of reaction kinetics. In other words,
instead of fitting a global model (stoichiometric and kinetic) to measured data, it would
be better to proceed in two steps: (i) determine the reaction stoichiometries and reac-
tion variants from measured data without knowledge of kinetics, and (ii) determine the
kinetic structure for each reaction individually from the corresponding reaction variant
computed in Step i. For Step ii, the interested reader is referred to the literature on
kinetic modeling (Himmelblau et al., 1967; Hill, 1977; Perry and Green, 1984).

Target factor analysis (TFA) is a useful multivariate analysis tool to determine, with-
out knowledge of reaction kinetics, the number of independent reactions and the cor-
responding stoichiometries. It was initially used by Bonvin and Rippin (1990) to de-
termine the number of independent reactions and the corresponding stoichiometries
from composition measurements. Composition data can be collected from various
experimental setups (isothermal or nonisothermal, isobaric or non-isobaric, batch or
semibatch reactors, reactors with or without an outlet stream, etc.) so long as the
reaction-variant part in the measured data can be isolated from the reaction-invariant
part (material exchange terms and initial conditions).

The identification of stoichiometric models using factor-analytical techniques requires
the composition of all the species to be measured and expressed in mass units (Hamer,
1989) or number of moles (Bonvin and Rippin, 1990). In many cases, concentrations
of only a limited number of species are available. Also, concentration and weight
fraction measurements are those which are found commonly in practice. To convert
concentration (weight fraction) measurements into number of moles (masses), knowl-
edge of reactor volume (mass) is required. In many practical situations, the volume is
unknown, since it depends on the inlet and outlet streams and the density. This rep-
resents a bottleneck in applying existing TFA techniques to measured concentration
data.

Herein, the applicability of TFA to concentration data from reaction systems for de-
termining the number of independent reactions and the corresponding stoichiometries
and reaction variants is analyzed. Data in reaction-variant form D will be used to
enable direct application of existing TFA techniques. In addition, TFA is generalized
to the situation where concentration measurements must be used directly, i.e., data
pre-treatment to reaction-variant form is not possible.
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Existing TFA techniques rely on the fact that the measured concentration vectors
must lie in the row space of the stoichiometric matrix (the reaction-variant space) or,
in other words, the null space of the measured data matrix should coincide with that of
the stoichiometric matrix N. The concentration matrix C has a row space, the space
spanned by the reaction variants and invariants, larger than that of N. Data pre-
treatment to reaction-variant form eliminates the reaction-invariant part so that the
rows of D and of N span the same space. Thus, the null space of D and N coincide,
and unambiguous determination of the number of independent reactions and target
testing are possible.

A TFA methodology is proposed to handle concentration measurements C directly for
which the nullity is smaller than that of N. In such a case, for unambiguous target
testing, conditions related to the reaction invariance matrix ΓT (see Subsection 2.2.2)
are proposed. Once a stoichiometric model has been determined, a major advantage
of this methodology is that the volume can be reconstructed from concentration mea-
surements without knowledge of density and reaction kinetics.

In many practical situations, only some of the reacting species can be measured (partial
concentration measurements; Cm or Dm). A nullity problem, similar to that faced
while handling concentration measurements C directly, is encountered. Consequently,
for unambiguous target testing, conditions related to the reaction-invariance matrix
will also be proposed.

To stay in the spirit of this dissertation, all results are first presented for chemical
reaction systems with constant density and temperature. It will be shown in Subsec-
tions 4.4.1 and 4.4.2 that, since the structures of the factorization of concentration
data for reaction systems with varying density and temperature remain the same, the
results of this subsection can readily be extended to the cases of varying density and
temperature.

Subsection 4.3.2.1 briefly reviews some basics of the TFA procedure applied to reac-
tion data. In Subsection 4.3.2.2 and 4.3.2.3, TFA results with pre-treated and raw
measured concentration data are presented, respectively. Subsection 4.3.2.4 discusses
the results obtained. In Subsections 4.4.1, 4.4.3, and 4.5.2, TFA is considered for reac-
tion systems with varying density, weight fraction measurements, and batch reaction
systems, respectively. Subsection 4.3.2.5 concludes this subsection by illustrating the
TFA procedure using batch and semibatch reaction systems with varying volume and
density.

4.3.2.1 Preliminaries

A brief review of TFA is provided next. For more details, see Appendix C.3. Let Y be
an K ×S noise-free matrix of rank A that is described by a linear factorization, i.e., it
can be described by two physical matrices X and N of dimension K × A and A × S,
respectively:

Y = X N. (4.33)

TFA consists of two steps: (i) determination of the abstract matrices Xa and Na that
have the same column and row spaces as X and N, respectively, and (ii) rotation of
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Xa and Na into physical ones (estimates of X and N). For the first step, principal
components analysis is usually used (PCA; see Appendix C.1). In TFA, the second
step is performed by individual testing of targets ntar of dimension S (i.e., possible
rows of N that are assumed to be available from prior knowledge) on the row space
of Y. Once A targets have been accepted (appended in N), X can be determined as
YN+.

Here, it is desired to identify the stoichiometric matrix N from Y, where Y typically
represents D or C. Thus, X and N correspond to either X and N or Xe and Ne.
Stoichiometric targets ntar (i.e., possible rows of N that are assumed to be available
from prior knowledge) are used for target testing. Bonvin and Rippin (1990) applied
TFA to the RV-concentration matrix D (see 4.11). However, if data pre-treatment to
reaction-variant form is not possible, target testing must be applied directly to C (see
4.4).

Remark 4.15 (Discrimination of reaction pathways)
TFA enables to identify only R independent stoichiometries N from Y. Thus, it is
only possible to discriminate between candidate reaction pathways whose row spaces
are different. In many practical situations, however, candidate reaction pathways have
the same row space and, therefore, cannot be discriminated on the basis of the data Y
only. Consider, for example, seven candidate reaction pathways involving three species:

(1) X1 → X2, X1 → X3: nT
tar,11 =

[
−1 1 0

]
, nT

tar,12 =
[
−1 0 1

]
(2) X1 → X2 → X3: ntar,21 = ntar,11, nT

tar,22 =
[
0 −1 1

]
(3) X1 → X3 → X2: ntar,31 = ntar,12, nT

tar,32 =
[
0 1 −1

]
(4) X1 → X2 → X3, X1 → X3: ntar,41 = ntar,11, ntar,42 = ntar,22, ntar,43 = ntar,12

(5) X1 → X2 → X3 → X1: ntar,51 = ntar,11, ntar,52 = ntar,22, nT
tar,53 =

[
1 0 −1

]
(6) X1 → X2, 2X2 → X1 + X3: ntar,61 = ntar,11, nT

tar,62 =
[
1 −2 1

]
(7) X1 → X3, X1 + X3 → 2X2: ntar,71 = ntar,12, nT

tar,72 =
[
−1 2 −1

]
.

A matrix of independent reactions describing all seven pathways is

N =

[
−1 1 0

−1 0 1

]
.

It can easily be verified that the stoichiometric targets of the seven physically-different
reactions ntar,11, ntar,12, ntar,22, ntar,32, ntar,53, ntar,62, and ntar,72 are accepted by TFA
using N or, equivalently, Y. One way to discriminate between the various reaction
pathways is to fit a kinetic model to the reaction data Y. However, this step is beyond
the scope of this dissertation.
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4.3.2.2 TFA applied to concentration data in reaction-variant form

All species measured

If the data are brought in reaction-variant form (4.11) so that Sr (D) = Sr (N), target
testing can be unambiguously performed. The result to this effect is stated below:

Proposition 4.16 Let Assumptions A1–7 in Appendix D be verified. Let Cin, V0,
c(k), qin(k), and qout(k) of reaction systems described by (2.38) be known/measured for
all k. Then, the following properties hold:

(a) The number of independent reactions can be determined from D in (4.11) as

R = rank (D) . (4.34)

(b) ntar ∈ Sr (N) iff εp(ntar,D) = 0, where εp(ntar,D) is the least-squares error of
ntar on the row space of D (see C.15).

(c) Once N has been determined (e.g., after having accepted R stoichiometric tar-
gets), X and the vector of reaction rates r(k) can be reconstructed.

(See Appendix H.3.4 for proof)

Unmeasured species

The above proposition uses data pre-treatment to reaction-variant form so that existing
TFA techniques can be applied when the concentrations of all species are measured.
In the presence of unmeasured species, however, unambiguous target acceptance is no
longer possible using Proposition 4.16. Though true targets will not be rejected, false
targets can be accepted, which is illustrated next: Let nm,tar represent the part of the
target that corresponds to the measured species. Although nm,tar /∈ Sr (Nm) implies
ntar /∈ Sr (N), nm,tar ∈ Sr (Nm) does not imply ntar ∈ Sr (N). To get necessary and
sufficient conditions for the acceptance of the targets, reaction-invariant relationships
contained in Γ are used.

Theorem 4.17
Let Assumptions A1–7 in Appendix D be verified. Let Cin,m, V0, cm(k), qin(k),
and qout(k) of reaction systems described by (2.38) be known/measured for all k. If
rank (Γu) ≥ S−max(Sm, R), then ntar ∈ Sr (N) iff εp(nm,tar,Dm) = 0 and nT

tar Γ = 0T

N .
(See Appendix H.3.4 for proof)

The assumption that Γ is known is not very restrictive when all S species can be chem-
ically identified. Biotechnological reaction systems represent an important exception
since, very often, the biomass composition is only approximately known.

Theorem 4.17 indicates that either (i) as many relationships from the reaction-
invariance matrix are needed as there are unmeasured species, or (ii) rank (Γu) =
rank (Γ) = S − R. In the latter case, target testing can be performed directly on the
reaction-invariance matrix Γ, without the need for measured data, since the columns
of Γ span the null space of N (see Proposition 2.7b).
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4.3.2.3 TFA applied to concentration data

All species measured

In Subsection 4.3.2.2, TFA of concentration data in reaction-variant form was discussed.
The crucial point in data pre-treatment to reaction-variant form is that qin and qout

(and V0) need to be known. Furthermore, in the case of varying-density, the density
must be known. However, if these quantities are unknown, TFA must be applied to
the measured concentrations C (see 4.4) rather than to the unknown D (see 4.11).

When TFA is applied to C, unambiguous target acceptance is no longer possible. This
is due to the rank of C being larger than R (the row space of C is larger than that
of N or, equivalently, the null space of C is smaller than that of N). The situation
is similar to that of unmeasured species discussed above: although true targets will
not be rejected, false targets can be accepted. To resolve this ambiguity and provide
necessary and sufficient conditions, it is again proposed to use the reaction-invariant
relationships contained in Γ.

Theorem 4.18
Let Assumptions A1–7 in Appendix D be verified and c(k) of reaction systems described
by (2.38) be measured for all k. If Xe is full rank, and rank (Cx Γ) = p + 1, then the
following properties hold:

(a) The number of independent reactions can be determined from C as

R = rank (C) − p − 1. (4.35)

(b) ntar ∈ Sr (N) iff εp(ntar,C) = 0 and nT
tar Γ = 0T

N .

(c) Given Cin, V0, and qout(k) for all k, once N has been determined (e.g. after having
accepted R stoichiometric targets), the time profiles V (k), z(k) (and qin(k)), x(k),
and r(k) can be reconstructed.

(See Appendix H.3.4 for proof)

Theorem 4.18 states that, by using the knowledge of the reaction-invariance matrix,
unambiguous target testing is possible when concentration data are used directly. In
particular, if either εp(ntar,C) 	= 0 or nT

tar Γ 	= 0T

N , then ntar /∈ Sr (N).

The two assumptions of Theorem 4.18, rank (CxΓ) = (p + 1) and Xe of full rank,
should be viewed as experimental planning conditions rather than restrictions. Given
(p+1) linearly-independent columns of Γ, it is always possible to plan the experiments
(choice of Cx) such that rank (CxΓ) = p + 1. Also, Proposition 4.5 gives methods to
experimentally guarantee full rank of Xe.

Unmeasured species

A link between the use of Dm and that of C in TFA is apparent. One reaction-invariant
relationship is required for every unmeasured species and for every inlet stream present.
Also, the presence of the initial concentrations in C requires an invariant relationship.
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In the extreme case where Su = (S − R) or (p + 1) = (S − R), target testing relies
exclusively on the reaction-invariant relationships and disregards the data.

For the case of unmeasured species, target testing on Cm is proposed that combines
the two concepts developed for Dm (Theorem 4.17) and C (Theorem 4.18).

Theorem 4.19
Let Assumptions A1–7 in Appendix D be verified and cm(k) of reaction systems de-

scribed by (2.38) be measured for all k. If Xe is full rank and rank
([

Cx,m Γm

Γu

])
=

S − max(Sm − p − 1, R), then ntar ∈ Sr (N) iff εp(nm,tar,Cm) = 0 and nT
tar Γ = 0T

N .
(See Appendix H.3.4 for proof)

4.3.2.4 Discussion

The results for target testing can be summarized as follows. For unambiguous target
testing, the nullity of the data matrix should be (S − R), i.e., it should equal that of
the stoichiometric matrix. However, the measured concentration matrix C has a null
space that is smaller than (S−R) due to the explicit presence of the reaction invariants
(the effects of inlet streams and initial conditions).

If the flowrates and the initial volume are known and all species are measured, con-
centration data can be pre-treated so that the nullity is increased to (S −R) (see also
Proposition 4.13). For all the other cases, ambiguity arises in the testing procedure
when considering only the projection error of the targets on the available data. To
resolve the ambiguity, a subspace of the theoretical stoichiometric space has to be
known. The size of this subspace depends on the number of measured species Sm and
the number of reaction invariants:

rank (Γ) ≥ S − max(Sm − α,R),

where α = rank (Cx) = (p + 1) for C and Cm, while α = 0 for D and Dm.

According to Proposition 4.13, pre-treatment of Cm to reaction-variant form can im-
prove the discrimination power with respect to stoichiometric targets. However, con-
trary to pre-treating C, nullity increase cannot be guaranteed when pre-treating Cm,
since the number of observed independent reactions Ro can be smaller than the total
number of independent reactions R. Note that the number of reaction-invariant rela-
tionships necessary for unambiguous target testing is independent of Ro, since the goal
of TFA is to determine the total number of independent reactions R.

An advantage of using C is that, once the extended stoichiometric space has been
determined, the (possibly varying) volume can be reconstructed.

4.3.2.5 Simulated example

The theoretical results presented above are illustrated on the reaction system described
in Example 4.8 on page 67 (S = 4, R = 2). Simulations are conducted for the case of
varying density and temperature. The first reaction follows the power law, while the
second reaction is autocatalyzed by X3. Thus,

r1(c1, T ) = κ1(T ) c2
1, r2(c2, c3, T ) = κ2(T ) c2 c3
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with κi following the Arrhenius law κi(T ) = κi,0 exp(−E∗
i /T ). The total density is

expressed as:

ρ(w, T ) =
S∑

i=1

wi ρ̄i(T ), ρ̄i(T ) = αi (T − βi)
2 + γi, ∀i = 1, . . . , 4, Tmin < T < Tmax,

with ρ̄i being the pure component density of Species i dependent on temperature T in
the interval [Tmin, Tmax] and the coefficients αi, βi, and γi. A temperature profile T (t)
(see Figure 4.10a) is imposed. The numerical values of the parameters are given in
Appendix A.3. The reaction-invariance matrix ΓT is

ΓT =

[
ΓT

1

ΓT

2

]
=

[
50 100 75 12.5

122 244 66 89

]
, (4.36)

where the first row of ΓT is the vector of molecular weights.

Two operating modes are studied: batch (b), and semibatch (sb). The initial con-
centrations and the concentrations of the inlet stream are cT

0 = [19, 0, 0.505, 0] M and
cT

in = [16.15, 0, 0, 0] M, respectively. In semibatch mode, reactant X1 is fed at 373 K
with the inlet rate shown in Figure 4.10b. The volume, density, and concentration pro-
files of the reaction system in batch and in semibatch modes are shown in Figure 4.10
and Figure 4.11, respectively.

C and D are constructed according to (4.4) and (4.11), respectively, with K = 100
observations equidistantly spaced. For the purpose of illustration, c(k) is corrupted by
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Figure 4.10. Simulated TFA example: (a) Temperature T , (b) inlet mass flowrate νin, (c)
volume V , and (d) density ρ for the batch (−) and semibatch (−−) reaction systems.
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Figure 4.11. concentrations c for the simulated TFA example: (a) the batch and (b)
semibatch reaction systems.

Table 4.3. Projection errors of true (t) and false (f) reaction targets (nT
tar,t = [−2, 1, 0, 0],

nT
tar,f = [1, 1,−2, 0]) in batch mode for different noise levels.

εp of ntar,t on εp of ntar,f on

σ C D C D

0 0 0 1.836 2.009

0.05 0.008 0.012 1.837 2.012

0.1 0.018 0.031 1.842 2.020

Table 4.4. Projection errors of true (t) and false (f) reaction targets (nT
tar,t = [−2, 1, 0, 0],

nT
tar,f = [1, 1,−2, 0]) in semibatch mode for different noise levels.

εp of ntar,t on εp of ntar,f on

σ C D C D

0 0 0 0 2.009

0.05 0 0.012 0 2.012

0.1 0 0.032 0 2.021
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Table 4.5. Verification of nT
tar,iΓ = 0T

2 for true (i = t) and false (i = f) reaction targets
(nT

tar,t = [−2, 1, 0, 0], nT
tar,f = [1, 1,−2, 0])

i nT
tar,i Γ1 nT

tar,i Γ2

t 0 0

f 0 234

Table 4.6. Projection errors of true (t) and false (f) reaction targets (nT
tar,t = [−2, 1, 0, 0],

nT
tar,f = [1, 1,−2, 0]) in semibatch mode for different noise levels and unmeasured species.

εp of ntar,t on εp of ntar,f on

σ Dm,C1 Dm,C2 Dm,C1 Dm,C2

0 0 0 0 1.789

0.05 0 0.006 0 1.789

0.1 0 0.017 0 1.791

multiplicative zero-mean Gaussian noise with 3 different standard deviations, σ: 0, 0.05,
0.1. Since the sample covariances of Na used to compute εp in (C.15) depend strongly
on the particular noise added (Jackson, 1991), extreme values for εp can occur. To
avoid this, the εp values for 1000 calibration sets corrupted by different noise sequences
are considered (Monte–Carlo simulation). The average of εp for each noise level is
calculated. For a more detailed discussion on the impact of noise on TFA, the reader
is referred to Bonvin and Rippin (1990); Malinowski (1991) and Appendix C.4.1.

Two stoichiometric targets are tested using C and D obtained from both the batch
and the semibatch reaction systems: a true stoichiometric target nT

tar,t = [−2, 1, 0, 0],
which corresponds to the stoichiometry of the first reaction, and a false stoichiometric
target nT

tar,f = [1, 1,−2, 0]. As can be seen in Tables 4.3 and 4.4, the true stoichiometric
target is always accepted, since εp ≈ 0 for both modes and, for the reaction in semibatch
mode, the conditions nT

tar,tΓ = 0T

2 and rank (CxΓ) = p + 1 = 2 are fulfilled. However,
when only the projection error on the data matrices is considered, then for C from the
reaction in semibatch mode, the false stoichiometric target is (erroneously) accepted.
Yet, Table 4.5 shows that it is rejected by the condition nT

tarΓ = 0T

2 : though Γ1 cannot
detect the false target (nT

tar,fΓ1 = 0; ntar,f was chosen to that effect to stress the need
for two linearly-independent columns of Γ), Γ2 can (nT

tar,fΓ2 	= 0).

The pseudo-ranks of C and D, based on the reduced F-test with 95% confidence limit
(see C.32), for the simulated batch and semibatch reaction systems correspond to the
ranks predicted by equations (4.35) and (4.34): (i) the rank of C equals (R+1) = 3 for
the batch mode and (R+p+1) = 4 for the semibatch mode, and (ii) rank (D) = R = 2
for both the batch and semibatch modes.

Two cases are considered regarding the problem of unmeasured species: in Case C1,
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the concentrations of only Species X1 and X3 are measured from the reaction system in
semibatch mode, while in Case C2, Species X1, X3, and X4 are measured for the same
mode. As can be seen in Table 4.6, the true stoichiometric target is always accepted
based on the projection error alone since εp(nm,t,tar,Dm) ≈ 0 for both cases. Further-
more, the false stoichiometric target is rejected on Dm in Case C2. However, similarly
to C in semibatch mode, the false stoichiometric target is (erroneously) accepted by
Dm in Case C1.

In Case C1, Dm is useless for target testing. For unambiguous target testing, Theo-
rem 4.17 requires rank (Γu) = S −max(Sm, R) = 2, which implies rank (Γ) ≥ 2. Thus,
at least two linearly-independent reaction-invariant relationships must be available,
which is the case with (4.36). Table 4.5 shows that the false target is rejected by the
condition nT

tarΓ = 0T

2 .

In Case C2, the false target is rejected by Dm. Thus, the reaction-invariant relation-
ships of Theorem 4.17 remain to be verified for the true target: rank (Γu) must be 1,
which implies rank (Γ) ≥ 1. Thus, at least one reaction-invariant relationship must be
available, either Γ1 or Γ2. The condition nT

tar,tΓi = 0 is fulfilled for i = 1, 2 and, thus,
the true target is (correctly) accepted.

Note that two linearly-independent columns of Γ are assumed to be known to enable
TFA using C in semibatch mode (p + 1 = 2) or Dm in Case C1 (Su = 2). In this
example, however, (S − R) also equals 2. Thus, target testing can unambiguously be
performed on Γ without knowledge of C or Dm, i.e., from nT

tar,tΓ = 0T

2 and nT
tar,fΓ 	= 0T

2

it can be directly concluded that ntar,t and ntar,f is a true and a false stoichiometry,
respectively.

It is interesting to note that the projection errors on C in semibatch mode are identi-
cally 0 also in the noisy case, since C is of full rank (R + p + 1 = S = 4). Therefore,
any S-dimensional stoichiometric target will be accepted with projection error being
0 when considering only the projection on C. A similar remark also applies to Dm in
Case C1, since Dm is of full rank Sm = 2.

4.4 Extensions

In Section 4.1, the factorization of concentration data (4.4) and (4.11) were derived
for the cases of constant density and temperature, and process runs with the same
stoichiometries. In the following subsections, each assumption is relaxed separately.
Based on these extensions, the factorization of concentration data from reaction sys-
tems for which any combination of the assumptions is relaxed can easily be derived
and are, therefore, omitted here. However, reaction systems expressed in weight frac-
tions is studied, and extensions of the factorization of concentration data to include
temperature or calorimetric measurements are introduced.

4.4.1 Reaction systems with varying density

The elements of H are now determined by:

h(x, z, λ) := (V0ρ0 + 1T

pΦinz)/ρ(x, z, λ). (4.37)
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This expression was obtained by choosing η = 1 and substituting z from (4.2) into
(3.21).

4.4.2 Nonisothermal reaction systems

Since the temperature only appears in r(c, T ) which, in turn, appears in the (unknown)
vector x, the factorization of concentration data from exothermic/endothermic reaction
systems conserve the structures of (4.4) and (4.11).

4.4.3 Reaction systems expressed in weight fractions

Since the dynamic models for weight fractions (see 2.42) and concentrations (see 2.38)
are structurally similar, the results obtained herein for concentrations can be extended
directly to weight fraction measurements.

With the quantities defined in Subsection 2.4.1, the factorization of weight fraction
data become:

W =
{

H−1
m

[
X Z m0 1K

]} ⎡⎢⎣ Nw

WT
in

wT
0

⎤⎥⎦ =: Xe Ne, Hm ≡ MΛ−1, (4.38)

Dw ≡ HmWM−1
w − ZWT

inM
−1
w − m0 1KwT

0M
−1
w = XN, (4.39)

where W is the K × S weight fraction matrix, M = diag (m(1), m(2), . . . ,m(K)),
and Hm a diagonal scaling matrix of dimension K. For the construction of D, it
was assumed that m0, Mw, Win, w0, w(k), ν in(k), and νout(k) are either known or
measured for K observations.

Note that the extended stoichiometric matrices for weight fractions and concentrations
are different and, thus, also the row spaces. However, the row spaces of D and Dw are
the same (space spanned by the rows of N). Note that, in contrast to the computation
of D (4.11), the volume V need not to be known for the computation of Dw (4.39).
This might represent a decisive advantage of weight fraction data over concentration
data in chemical reaction systems with varying density. The following corollary results
from Proposition 4.16 for weight fraction measurements in reaction-variant form (4.39).

Corollary 4.20 Let Assumptions A1–7 in Appendix D be verified. Let Win, m(0),
Mw, w(k), ν in(k), and νout(k) of reaction systems described by (2.42) be known/meas-
ured for all k. Then, the following properties hold:

(a) The number of independent reactions can be determined from Dw in (4.39) as

R = rank (Dw) . (4.40)

(b) ntar ∈ Sr (N) iff εp(ntar,Dw) = 0.

(c) Once N has been determined (e.g., after having accepted R stoichiometric tar-
gets), the reaction-variant matrix X can be reconstructed. If, furthermore, the
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volume V (k) is known for all k, then the vector of reaction rates r(k) can be
reconstructed.

If the mass is unknown, a corollary of Theorem 4.18 for weight fraction measurements
W is stated below.

Corollary 4.21 Let Assumptions A1–7 in Appendix D be verified. If rank (Wx Γ) =

(p + 1) with Wx =
[

WT
in

wT
0

]
and Xe is full rank, then the following properties hold:

(a) The number of independent reactions can be determined from W as

R = rank (W) − p − 1. (4.41)

(b) ntar ∈ Sr (N) iff εp(ntar,W) = 0 and nT
tar Γ = 0T

N .

(c) Given Win, m0, and νout(k) for all k, once N has been determined (e.g. after
having accepted R stoichiometric targets), the time profiles z(k) (and ν in(k)) and
x(k) can be reconstructed. In addition, if the volume V (k) is known, the reaction
rates r(k) can be computed.

A notable difference in using C and W is that, though the volume can be reconstructed
from C according to Theorem 4.18c, it cannot be obtained from W. Not knowing the
volume prevents the computation of the reaction rates r(k) from W.

4.4.4 Process runs with different stoichiometries

In the case of various process runs, the S species can undergo chemical reactions
exhibiting different linearly-independent stoichiometries, i.e., the row spaces of the
various stoichiometric matrices can be distinct.

Factorization of concentration data

Let Kj denote the number of observations of the jth process run (j = 1, . . . , B). Then,

C :=

⎡⎢⎣C1

. . .

CB

⎤⎥⎦ = Xe Ne = H−1
[

X Zx

] [
N

Cx

]
, D :=

⎡⎢⎣D1

. . .

DB

⎤⎥⎦ = XN (4.42)

N :=

⎡⎢⎣N1

. . .

NB

⎤⎥⎦ , Cx :=

[
CT

in

CT
0

]
, X :=

⎡⎢⎣ X1 · · · 0K1×RB

. . . . . . . . . . . . . . .

0KB×R1 · · · XB

⎤⎥⎦ , (4.43)

Zx :=

⎡⎢⎣ Z1 · · · 0K1×pB V 1
0 1K1 · · · 0K1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0KB×R1 · · · ZB 0KB · · · V B
0 1KB

⎤⎥⎦ , Cin :=
[
C1

in · · · CB
in

]
,
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H :=

⎡⎢⎣V1(Λ1)−1 · · · 0KB×KB

. . . . . . . . . . . . . . . . . . .

0K1×K1 · · · VB(ΛB)−1

⎤⎥⎦ , C0 ≡
[
c1

0 · · · cB
0

]
, (4.44)

with R =
∑B

j=1 Rj, p =
∑B

j=1 pj, K =
∑B

j=1 Kj, C (K ×S), D (K ×S), Xe (K ×R +
p + 1), X (K ×R), Zx (K × (p + 1)), Ne (R + p + 1×S), N (R×S), Cx ((p + 1)×S),
V̄ (K × K), V0 (K × B), Cin (S × p), and C0 (S × B).

To stay consistent with the definition of R being the number of independent reactions,
it is assumed that rank (N) = R, i.e., the stoichiometries of the different reaction
systems are mutually linearly independent.

Note that the structures of the factorization of concentration data (4.4) and (4.11) are
conserved by (4.42).

Example 2.4c (Multiple runs and dependent kinetics; cont’d from page 19)
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Figure 4.12. (a) The concentrations c, and (b) the reaction variants x of Example 2.4c.
The legend for (a) is: X1 (◦), X2 (×), X3 (∗), X4 (�); and the legend for (b): first
reaction (–), second reaction (– –). (Run R1 and R2 for t ∈ [0, 1.67]h and t ∈]1.67, 4.17]h,
respectively).
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Consider the irreversible parallel reaction system (2.8) with linearly-dependent kinetic
rates for c2(t) > 0:

r1(t) =

{
0.3 r2(t) c2(t) > 0
0 otherwise.

Two batch runs R1 and R2 are conducted with c0,R1 = [3, 0, 0, 0]T M and c0,R2 =
[3, 2, 0, 0]T M. c0,R1 has been chosen such that only the second reaction is active in
the first process run, whereas the initial concentrations c0,R2 activates both reactions
in the second process run (see Appendix A.4 for the parameters). Figure 4.12 presents
the concentrations c, and the matrix of reaction variants x of the two runs. It can
be seen that for Run R1, the variant of the first reaction is zero, as expected, since
the first reaction is not activated. Furthermore, it can be seen that for Run R2, the
reaction variants are proportional (linearly dependent).
Three cases are studied. Cases C1, C2, and C3 consider Run R1, Run R2, and Runs R1
& R2. For Cases C1 and C2, according to Cases C1–C2 in Example 2.4b on page 28:

NC1 =
[
−2 0 0 1

]
, NC2 =

[
−2.3 −0.3 0.3 1

]
.

Note that due to the linearly-dependent kinetics, the number of independent reactions
in Case C2 is only R = 1. Thus, Cases C1 and C2 can be considered as reaction systems
with two different linearly-independent stoichiometries. When appending Runs R1 and
R2 (Case C3), then according to (4.43), one way to construct N is to append the
stoichiometries of NC1 and NC2. Here, however, the augmented stoichiometric matrix
can also be chosen to be the stoichiometric matrix of the physical reactions:

NC3 =

[
−1 −1 1 0
−2 0 0 1

]
with Cin,C3 = cT

0,R1.

Rank-increasing operation

Let S = S+ = S−. By appending concentration data from a reaction system with pj

inlet streams and Nj to concentration data whose rows of the stoichiometric matrix
N− do not lie in the subspace spanned by the rows of Nj, the stoichiometric matrix
of the augmented data matrix becomes R+ = R− + Rj. Since (i) the initial and inlet
concentrations and the stoichiometries of the jth run may be linearly dependent on
the rows of Ne,−, and (ii) a variation can never reduce the rank, then only an interval
for the rank increase ∆d can be given: 0 ≤ ∆d ≤ (Rj + pj + 1). This is illustrated in
the example below.

Example 2.4d (Multiple runs and dependent kinetics; cont’d from pageon the
facing page)
The numbers of independent reactions of Run R1 and R2 (Cases C1 and C2 in Exam-
ple 2.4c, respectively) are R1 = R2 = 1. Furthermore, the rank of C of Run R1 (Case
C1 ) is given by rank (CC1) = rank (Ne,C1) = 2, since the rank of Xe,C1 is full.
Consider the case of appending Runs R1 and R2 (Case C3 in Example 2.4c). Then,
N− = NC1 and, since the row spaces of NC1 and NC2 are distinct, N+ =

[
NC1
NC2

]
. Since

the initial condition of Run R2 is linearly independent, rank (C+) = rank (Ne,+) = 4
and, thus, a rank increase occurs with ∆d = R2 + 1 = 2.
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4.4.5 Factorization of extended concentration data

Extensions of the factorization of concentration data to include temperature or calori-
metric measurements are studied. Furthermore, for Sm < S measured species, it will be
shown that temperature/calorimetric measurements can contain (valuable) additional
information to the concentration measurements.

Factorization of concentration data

Calorimetric measurements describe the total heat production or consumption due to
chemical reactions. They represent one-channel responses constructed from various
measured quantities such as reactor temperature, inlet temperatures, inlet and outlet
flowrates, and external power.

Bonvin and Rippin (1990) have proposed to augment composition change data from
constant-volume, constant-density reaction systems with calorimetric measurements.
Here, the methodology is extended to chemical reaction systems with inlet and outlet
streams. If calorimetric measurements cannot be constructed, measurements of the
reactor temperature from nonisothermal reaction systems can be used instead. It is
shown below how the factorization of concentration data (4.4) and (4.11) must be
modified to include temperature or calorimetric measurements.

Similarly to the factorization of concentration data (4.4) for the isothermal case, one
can write:

CT ≡
[
C T†

]
=

{
H−1

[
X Z V0 1K

]} ⎡⎢⎣ NT

CT
T,in

cT,0

⎤⎥⎦ ≡ Xe,T Ne,T , (4.45)

where T† is the K-dimensional modified temperature vector (see 2.36), the dimensions
of CT , Z, Ne,T , and Xe,T are K×ST , K×pT , (R+pT +1)×ST , and K× (R+pT +1),
respectively. The elements of λ and the rows of X and Z are described by:

ẋ := h(zn) r(c),

ż := qT,in/λ,

λ̇ = −qout/h(zn),

x(0) = 0R,

z(0) = 0pT
,

λ(0) = 1,

(4.46)

where z = [ zn
zT ] with zn and zT corresponding to qin and Q̇ext, respectively. (4.45) is

called the factorization of extended concentration data.

If Cin, Cp,in, Tin, Φin, c(k), T †(k), Q̇co(k), Q̇sti(k), qin(k), qout(k), and cp(k) are known
or measured for K observations, a K×ST extended RV-concentration matrix, DT , can
be constructed from (4.45) that relates directly to X and NT :

DT ≡
[
D dT

]
= HCT − ZCT

T,in − V0 1K cT

T,0 = XNT , (4.47)

where dT is the K-dimensional calorimetric vector. (4.47) is called the factor-
ization of extended concentration data in reaction-variant form. Note that in an
isothermally-controlled reaction system, the reactor temperature stays constant, i.e.,
T† = T0cp,0 ρ0 1K , while the calorimetric measurements dT may still vary with respect



4.5. Special cases 89

to time. Thus, only the factorization of extended concentration data in reaction-variant
form is useful in such a case.

Note that all the results derived for the factorization of concentration data (4.4) and
(4.11) are readily applicable to (4.45) and (4.47) for which C := CT , D := DT ,
Xe := Xe,T , Ne := Ne,T , Cx := Cx,T , N := NT , p := pT , and S := ST .

Rank increase for Sm < S

For Sm < S measured species,

DT,m ≡
[
Dm dT

]
, NT,m ≡

[
Nm −∆hR

]
(4.48)

CT,m ≡
[
Cm T†

]
, Ne,T,m ≡

⎡⎢⎣ Nm −∆hR

CT
in,m T†

in

cT
0,m T †

0

⎤⎥⎦ , (4.49)

where DT,m, NT,m, CT,m, and Ne,T,m are matrices of dimension K × (Sm + 1), (R +
1) × (Sm + 1), K × (Sm + 1), and R + pT + 1 × (Sm + 1), respectively.

Proposition 4.22 Let Assumptions A1–4 and A6–7 in Appendix D be verified. Fur-
thermore, assume that concentration measurements for Sm < S species and tempera-
ture/calorimetric measurements from reaction system (2.40) are available, and the Ro

observed independent reactions have a significant heat effect. Then, the following prop-
erties hold:

(a) If (−∆hR) /∈ Sc (Nm), then

rank (DT,m) = rank (Dm) + 1 = Ro + 1, (4.50)

where DT,m is defined as in (4.48).

(b) If (−∆hR) /∈ Sc (Nm) and rank (Xe,T ) = R + pT + 1, then

rank (CT,m) = rank (Cm) + 1 ≤ min(Ro + p + 1, Sm) + 1, (4.51)

where CT,m is defined as in (4.49).

(See Appendix H.3.2 for proof)

Proposition 4.22 says that appending of calorimetric measurements to the RV-concen-
tration matrix leads to a rank increase of 1, if (−∆hR) /∈ Sc (Nm). This situation can
be encountered when Sm < S. If, in addition, Xe,T is full rank, then rank increase of 1
is also observed for concentration data. Thus, in such cases, calorimetric/temperature
measurements contain (valuable) additional information.

4.5 Special cases

In this section, factorization of concentration data are considered for the following
special cases: (i) continuous stirred-tank reaction systems (CSTR), (ii) batch or semi-
batch reaction systems, and (iii) reactions in quasi-equilibrium conditions. Further-
more, non-reacting data exhibiting closure are studied. All special cases are based on
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the assumptions of constant density and temperature but could easily be extended to
the cases of varying density and temperature.

4.5.1 CSTR

For CSTRs, V (t) = V0. Thus, from (4.5), h(z(k)) = V0/λ(k), and the factorization of
concentration data conserve the structures of (4.4) and (4.11). Thus,

C =
1

V0

Λ
[
X Z V0 1K

] [
N

CT
in

cT
0

]
, D = V0Λ

−1 C − ZCT

in − V01KcT

0 , (4.52)

4.5.2 Batch and semibatch reaction systems

For reaction systems in semibatch mode (qin 	= 0p, qout = 0), Λ = IK and, for reaction
systems in batch mode (p = 0, qout = 0), Λ = IK and V = V0IK . Thus, the factorization
of concentration data (4.4) and (4.11) for semibatch and batch reaction systems simplify
to:

C = V−1
[
X Z V0 1K

] [
N

CT
in

cT
0

]
, D = VC − ZCT

in − V01KcT

0 , (4.53)

C =
[

1
V0

X 1K

] [
N
cT
0

]
, D = V0 (C − 1KcT

0 ). (4.54)

Rank analysis

First, the rank of C from batch reaction systems is studied. Then, a non-exhaustive
list of practical situations is examined in which column-mean centering of C causes a
rank drop. This is equivalent to checking whether the column space of C contains the
1K-vector.

Proposition 4.23 Let Assumptions A1–7 in Appendix D be verified. Then, the rank
of C of batch reaction system is determined by:

rank (C) = R + 1. (4.55)

(See Appendix H.3.5 for proof)

Proposition 4.23 says that the rank of C of batch reaction systems is determined exactly
by the number of independent reactions plus 1 from the initial conditions.

For Ne being full rank, it is shown next that, in the special cases of single or multiple
runs of constant-density batch and semibatch reaction systems, 1K ∈ Sc (C), since
1K ∈ Sc (Xe).

Proposition 4.24 Let Assumptions A1–7 in Appendix D be verified. For single or
multiple runs of constant-density batch and semibatch reaction systems, if rank (C) =
R+p+1, then 1K ∈ Sc (Xe). A similar result holds for constant-density batch reaction
systems. (See Appendix H.3.5 for proof)
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c1

c2

c3

0

c0

c(t)

t = t0

t = tf

Sr
(N)

Figure 4.13. Geometric interpretation of the factorization of concentration data from a
constant-density batch reaction system. The concentrations c evolve in an R-dimensional
hyperplane spanned by the rows of N (Sr (N)).

For a single constant-density batch run, it is seen from (4.54) that the 1K-vector is
always contained in the column space of Xe. Thus, a rank drop of one occurs when
column-mean centering C. For multiple constant-density batch runs, the rank drops by
column-mean centering only if Xe and Ne are of full rank. Note that this also includes
the case of C being of rank S when rank (Ne) = S = R + p + 1. For constant-density
semibatch reaction systems, rank drop by one occurs both for single and multiple runs
if rank (C) = R + p + 1.

For constant-density batch reaction system, Figure 4.13 illustrates that the concen-
trations c evolve in an R-dimensional hyperplane spanned by the rows of N (Sr (N)).
Note that the hyperplane does not include the initial concentrations or the origin, the
reason for the rank drop by one upon column mean centering of C. This can also be
observed for constant-density semibatch reaction systems

Note that the rank of concentration data from non-reacting mixtures with closure (see
Section 4.5.4 below) also drops by one when column-mean centered, since such data is
equivalent to data from constant-density batch reaction systems.

A rank drop can provide valuable structural information: Assuming rank (C) = R +
p + 1, a rank drop by one upon mean centering C indicates that (i) there is no outlet
stream and (ii) the density remains constant.

Furthermore, for constant-density batch reaction systems,

C̄c = Jc (1K cT

0 + D) = D/V0 + 1KcT

0 = D̄c (4.56)

H̄c = D̄c E = C̄c E = Āc. (4.57)

Similarly, since Ẋe = [Ẋ, 0K ], it follows that

Ȧ = Ḣ; Ċ = Ḋ (4.58)
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It follows from (4.57) and (4.58) that

rank
(
C̄c

)
= rank

(
D̄c

)
= rank

(
Ċ

)
= rank

(
Ḋ

)
. (4.59)

Target factor analysis

For batch reaction systems, the two assumptions of Theorem 4.18 are implicitly verified.
rank (cT

0Γ) = 1 as can be seen from Proposition 2.7c. For the proof of rank (Xe) =
rank ([X, 1K ]) = R + 1, see Proposition 4.5. Also, only one column of Γ is required.

4.5.3 Systems with reactions in quasi-equilibrium

The factorization of concentration data from systems with reactions in quasi-equilibrium
conserve the structures of (4.4) and (4.11) for which x, z, and λ in (4.7) are simply
reparameterized in terms of s:

dx

ds
= r(c) V/(λ ṡ),

dz

ds
= qin/(λ ṡ),

dλ

ds
= −qout

V ṡ
λ, (4.60)

where the initial conditions for x, z, and λ remain the same as in (4.7).

4.5.4 Non-reacting data with closure

Non-reacting mixtures with closure (i.e., with one or several constraints acting on the
concentrations) can be cast in the form of the factorization of concentration data for
reacting mixtures. Consider the situation where a weighted sum of the concentrations
remains constant:

Cβ = α1K , (4.61)

where α is a scalar and β a vector with elements β1, β2, . . . , βS. Without loss of
generality, it is assumed that β1 = 1. Then, the concentration matrix (4.61) can be
written as

C = C�
[
−β� IS−1

]
+ 1K

[
α 0T

S−1

]
=

[
C� 1K

] [
−β� IS−1

α 0T

S−1

]
= Xe Ne, (4.62)

where β� is β without the first element, and C� a K × S − 1 submatrix of C without
the first column.

Non-reacting concentration data with closure (4.62) can be considered as a special case
of data from constant-density batch reaction systems (4.54) with

X := V0C
�, N :=

[
−β� IS−1

]
, cT

0 :=
[
α 0T

S−1

]
, (4.63)

R := (S − 1), and unity volume (V0 = 1).

The RV-concentration matrix becomes: D = XN = V0C
� [−β�, IS−1].

Thus, for the closure problem, an equivalent reaction pathway is:

βi Xi → X1, ∀i = 2, . . . , S.
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4.6 Summary

Based on the transformation to normal form, a factorization of concentration data
was derived that explicits the reaction and flow variants/invariants (the factorization
of concentration data). Data pre-treatment to reaction-variant form was proposed,
which subtracts the reaction-invariant part from the measured concentrations (the
factorization of concentration data in reaction-variant form). This way, information
related to the reaction dynamics can be separated from stoichiometric information. It
will be shown in the next chapter that the factorization of concentration data play an
important role in the analysis of spectral measurements.

Based on the factorization of concentration data, it was possible, without knowledge
of reaction kinetics, (i) to reconstruct on-line the concentrations of all species from the
concentrations of a few measured species, thereby providing new results on the asymp-
totic behavior of the estimates, and (ii) to identify experimentally the stoichiometry of
a complex reaction system using TFA.

The results obtained for constant-density, isothermal reaction systems (basic dynamic
model) were extended to varying-density and non-isothermal situations, to reaction
systems expressed in weight fractions, and to process runs with different stoichiome-
tries. Furthermore, the factorization of concentration data were extended to include
temperature or calorimetric measurements, as it was shown that these measurements
can provide valuable additional information when the concentrations of not all species
are measured.

Special cases such as CSTRs, semibatch and batch reaction systems, systems with
reactions in quasi-equilibrium conditions, and non-reacting data with closure were also
considered.





5

Reaction and flow
variants/invariants in the

factorization of spectral data

In the previous chapter, factorization of concentration data from reaction systems was
proposed. In current practice, however, analytical concentration measurements are not
generally available during the course of a reaction. If concentrations are measured, they
are mostly used to provide postproduction quality control assessment and demonstrate
waste discharge compliance (American Chemical Society et al., 1996).

In rare cases, the concentrations of a limited number of species are analyzed for a few
samples taken during the course of a reaction. There are several reasons for this: (i)
A species concentration is measured mostly through wet-chemical analyses. Owing
to high toxicity/reactivity and/or extreme reaction conditions, sampling and sample
preparation are often difficult or even impossible; (ii) the development of analytical
methods (including validation) is often time consuming and costly; (iii) regarding pro-
cess monitoring, control, or optimization, another disadvantage of direct concentration
measurements is that the time delay between the sampling and the analysis result is
usually large (e.g., about 10min for on-line gas chromatographs); (iv) since usually only
one process analyzer is available, the long chemical analysis time limits the number of
samples that can be taken during a reaction.

Owing to new measurement technologies, spectral data (a one-dimensional signal
per observation) are now available both in the laboratory and production (see Ap-
pendix F.1.1 for a non-exhaustive list of spectral instrument types). Numerous spectral
instruments enable non-destructive indirect concentration measurement of most of the
species in-situ/on-line during the course of reaction. Measurements are available at
short sampling times (often less than a second) at low costs and delay free.

However, similarly to traditional wet-chemical analysis methods, a model must be
estimated that provides concentration estimates. Numerous types of spectral data are
linear, i.e., the mixture spectrum is a linear combination of the pure-component spectra
weighted by the concentrations (linear model; see Appendix F.1.1). Thus, factorization
of spectral data from reacting mixtures (reacting spectral data) can be derived based on
the factorization of concentration data. Consequently, linear statistical methods are
also applicable to spectral data. The two methods that are studied in this chapter are:
multivariate calibration and curve-resolution (factor analysis; FA) for the quantitative
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estimation of concentrations from reacting spectral data.

Factorization of spectral data will be studied for chemical reaction systems under the
usual assumptions of constant density and temperature. Furthermore, it is assumed
that all species both react and absorb (have a non-zero spectrum) and the corre-
sponding pure-component spectra are linearly independent. Since the factorization
of concentration data of the extensions in Subsection 4.4 have the same structure as
that of the basic factorization of concentration data, the approaches derived herein
can readily be extended to the cases of varying density and/or temperature (under
the assumption that the pure-component spectra are temperature independent). Fur-
thermore, the following extensions are studied: (i) presence of non-absorbing reacting
species, (ii) presence of non-reacting absorbing species, (iii) linearly-dependent pure-
component spectra, (iv) spectral data from process runs with different stoichiometries,
and (v) the factorization of spectral data extended by temperature or calorimetric
measurements.

The chapter is organized as follows: Section 5.1 introduces the factorization of spectral
data (the factorization of spectral data and the factorization in reaction-variant form)
for measurements from reacting mixtures. Section 5.2 investigates the ranks of the
spectral matrices and methods to reduce their nullity. Section 5.3 studies calibration
and factor analysis. Extensions to the basic factorization are provided in Section 5.4.

5.1 Factorization of spectral data

The factorization of general (linear) spectral measurements is briefly reviewed next.
Then, the factorization of spectral data from reacting systems are derived.

5.1.1 Factorization of general spectral data

It is assumed that (i) spectral data are available from instruments that measure
absorbances and depend linearly on molar concentrations (Assumption A8 in Ap-
pendix D) and (ii) all species both react and absorb (Assumption A12). The following
definition will be useful herein.

Definition 5.1 (Number of absorbing species) Let S be the number of absorbing
species that cause a linearly-independent instrumental response.

Let a(k) denote the spectral (absorbance) vector of an L-channel instrument at the
observation instant k. For unit pathlength and Beer’s law being valid,

aT(k) = cT(k)E, (5.1)

where E is the S × L pure-component spectra matrix. For K observations, (5.1) can
be written in matrix form as:

A = CE (5.2)

with A being the K × L spectral (absorbance) matrix.
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(5.2) is the factorization of spectral absorbances. However, this factorization is equally
valid for other types of spectral data provided they obey the linear relationship (fac-
torization of general spectral data; see Appendix F for a list of such instruments).
Furthermore, depending on the type of instrument and data pre-treatment used (see
Appendix F.1.2), E can represent (i) the pure-component spectra as a function of
wavelengths, wavenumbers, or number of integrated peaks, or (ii) the first or second
derivative of the pure-component spectra.

5.1.2 Factorization of spectral data from reacting systems

Factorization of spectral data from reacting systems are presented under the assump-
tion that all species both react and absorb.

Substituting (4.4) into (5.2) leads to the factorization of spectral data:

A = CE = Xe Ne E = H−1 XNE + H−1 ZAin + V0 H−1 1K aT

0 (5.3)

with Ain ≡ CT
inE denoting the spectra of the inlet streams (inlet spectra) and aT

0 = cT
0 E

the initial spectrum. The (p + 1)×L experimental spectral matrix Ax is defined using
Cx:

Ax =

[
Ain

aT
0

]
= CxE. (5.4)

Similar to the definition of D (see 4.11), let the K×L spectral matrix in reaction-variant
form (RV-spectral matrix) H be defined as:

H ≡ HA − ZAin − V0 1K aT

0 = HA − ZxAx = DE = XNE. (5.5)

(5.5) is termed the factorization of spectral data in reaction-variant form (factorization
of RV-spectral data).

V0, qin(k), and qout(k) for all k need to be known for the computation of Z and H in
(5.5). Furthermore, the initial and inlet spectra a0 and Ain or, equivalently, Ax need to
be known. Note that the computation of H does not involve the concentration matrix
C, which is a clear advantage over the alternate data pre-treatment in Appendix E.2.
Thus, (4.11) represents a generic data pre-treatment for spectral measurements.

Remark 5.2 (Initial concentrations)
It is assumed that the reaction is conducted isothermally. In practical applications,
however, there is often a heating phase before the first measurement a0 at time t0.
Thus, especially for fast reactions, the concentrations of the species initially placed in
the reactor, c�

0, can be significantly different from c0 at t0. Thus, in such a case, c0

must be measured or estimated.

The contribution of the inlet and initial spectra are subtracted so that the spectral
data contain only the influence of the reaction variants. However, if ZAin cannot be
computed, then one may want to choose another data pre-treatment, as given in the
next remark.
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Remark 5.3 (Subtracting only the initial concentrations and spectrum)
The modified RV-concentration D� (K ×S) and RV-spectral matrices H� (K ×L) are
defined as:

D� ≡ HC − V0 1K cT

0 =
[

X Z
] [

N

CT
in

]
= X�

e N�
e

H� ≡ HA − V0 1K aT

0 = D� E,

(5.6)

where X�
e and N�

e are matrices of dimension K × (R+ p) and (R+ p)×S, respectively.
For the computation of D�, the knowledge of C, V0, qin(k), and qout(k) for all k is
required, and for H�, that of A, V0, qin(k), and qout(k) for all k.

5.2 Rank analysis of spectral matrices

5.2.1 Rank of selected matrices

The ranks of A and H are investigated next. According to the definition in Prop-
erty B.3, the matrices A and H are rank deficient if their ranks are less than L.
However, since the spectral matrices A and H are linked to C and D through E,
respectively, rank deficiency of A and H is defined as follows (and not directly from
Property B.3).

Definition 5.4 (Rank deficiency of A and H and full rank of A) The K × L
matrices A and H are said to be rank deficient, if their ranks are less than the number
of absorbing species S, i.e., rank (A) < S and rank (H) < S, respectively. The rank of
A is said to be full, if rank (A) = S.

In many applications to spectral data, A is rank deficient, and data pre-treatment such
as column-mean centering affects the rank. The rank of spectral data matrices from
constant-density batch reaction systems has been investigated by Amrhein et al. (1996).
Rank deficiency of a particular constant-density batch system with fast equilibrium
reactions was also observed by Nørgaard and Ridder (1994). Some indications about
the rank of spectral data matrices from constant-density reaction systems with inlet
streams have been provided by Garland et al. (1997). Here, the ranks of A and H from
varying-density reaction systems with inlet and outlets are studied.

Proposition 5.5 Let Assumptions A8–11 in Appendix D be verified. Then,

rank (A) =rank (C) , rank (H) = rank (D) = R

rank
(
Āc

)
= rank

(
C̄c

)
, rank

(
H̄c

)
= rank

(
D̄c

) (5.7)

(See Appendix H.4.1 for proof)

As far as the ranks of the spectral matrices A and H (or Āc and H̄c) are concerned,
if the pure-component spectra of the S absorbing species are independent (rank (E) =
S), then the ranks are determined by the ranks of C and D (or C̄c and D̄c; see
Section 4.2.1), and it suffices to study the ranks of C and D (or C̄c and D̄c) to
comment on the ranks of A and H (or Āc and H̄c), respectively.
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5.2.2 Nullity-reducing operations

In calibration and factor analysis of spectral data (see Subsections 5.3.1 and 5.3.2
below), maximizing the rank or, equivalently, minimizing its nullity will become im-
portant.

The experimental rank-increasing operation proposed in Subsection 4.2.2.2 can also
be applied to spectral data. In addition, an alternative rank-increasing operation is
proposed that is essentially non-experimental. It appends pure-component spectra to
A in an attempt to increase its rank. For both methods, rank (E) = S is assumed.
Alternatively, Subsection 5.2.2.3 proposes channel selection for nullity reduction.

5.2.2.1 Experimental rank-increasing operations

In Subsection 4.2.2.2, an experimental rank-increasing operation for the concentration
matrix C was proposed. This method is directly applicable to spectral data.

It is important to note that since the rank of C can be computed from the rank of
A, the values of the elements of the experimental concentration matrix Cx are not
required to be explicitly known for the rank-increasing operation. Thus, the following
two situations can be handled:
(i) Although the concentrations c�

0 of the species initially placed in the reactor are
usually known, the initial spectrum a0 may be taken at a later time instant and, thus,
does not correspond to c�

0 (see Remark 5.2). In such a case, the values of the initial
concentrations c0 are unknown and so the corresponding entries in Cx.

(ii) The mixtures for the experimental rank-increasing operation are usually prepared
by putting together species of known amounts, and experimental design guarantees
linear independence of these mixtures (rank (Cx) = p + 1). An alternative possibility
of generating such mixtures is to take samples from the running reaction and pass
them through a separation process (e.g., a distillation column) in an attempt to break
the linear dependencies in C resulting from the underlying reactions. For this, the
separation does not need to be complete and, thus, the concentration values of the
corresponding mixture may be unknown.

5.2.2.2 Non-experimental rank-increasing method

An alternative way of rank increasing is proposed. Assuming the number of absorbing
species S to be known, the key idea is as follows: When absorbing species are known
to be present in the mixture, their pure-component spectra (e.g., available from a
database) can be appended to A in an attempt to increase the rank of the augmented
spectral matrix. The procedure is the following:

Let Sp be the number of species known a priori to be present in the mixture for which
the pure-component spectra are available. Without loss of generality, it can be assumed
that the last Sp rows of E are the pure-component spectra of the Sp species:

Ep = Fp E, Fp =
[

0Sp×(S−Sp) ISp

]
. (5.8)
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The spectral matrix can be augmented to an (K +Sp)×L matrix, Aaug, by appending
Ep to A:

Aaug ≡
[
A

Ep

]
(5.9)

By substituting (5.3) into (5.9),

Aaug = Caug E = Xaug

e Naug

e E,

Caug ≡
[
C

Fp

]
, Xaug

e ≡
[

Xe 0K×Sp

0Sp×(R+p+1) ISp

]
, Naug

e ≡
[
Ne

Fp

]
,

where Caug, Xaug
e , and Naug

e are matrices of dimension (K + Sp) × S, (K + Sp) × (R +
p + 1 + Sp), and (R + p + 1 + Sp) × S, respectively.

Corollary 5.6 Let Assumptions A1–12 in Appendix D be verified. Proposition 4.11
holds with the following redefinitions: C− := A, C+ := Aaug, Xe,− := Xe, Xe,+ :=
Xaug

e , Ne,− := Ne, Ne,+ := Naug
e , R+p− +1 := R+p+1, R+p+ +1 := R+p+1+Sp,

and (p− = S − R − 1) := (p− = S − R − 1 − Sp).

The condition to guarantee full rank of Xaug
e is given in the corollary below.

Corollary 5.7 (Full rank of Xaug
e ) Let Assumptions A1–7 in Appendix D be verified.

If rank (Xe) = (R+p+1), then rank (Xaug
e ) = (R+p+1+Sp) is trivially satisfied.(See

Appendix H.4.1 for proof)

Corollary 5.7 shows that, as far as the rank of Xaug
e is concerned, appending a pure-

component spectrum is equivalent to appending a batch run. Compared to the exper-
imental rank-increasing operations, fewer inlets are required to reach rank (Aaug) = S
since the condition becomes p ≥ S − R − 1 − Sp.

Instead of appending pure-component spectra to A, it is also possible to append mix-
ture spectra with known concentrations (of species known to be present in the unknown
mixture) to A. In such a case, Fp needs to be defined appropriately.

The main advantage of the proposed procedure is that it requires less experimental
effort for rank increase of the spectral matrix. When Sp pure-component spectra are
available only for some of the Sx species with Sp < Sx, a hybrid method for rank
increase can be envisaged: (i) the rank of the spectral matrix is partially increased
by appending Ep to A such that rank (Aaug) > rank (A). (ii) An experimental rank-
increasing procedure uses the remaining (Sx − Sp) species for independent variation in
an attempt to increase the rank of A to its maximal attainable rank min(R + Sx, S).

5.2.2.3 Channel selection for reducing the number of observed absorbing
species

First, some notations of Chapter 4 are redefined. Let S be the total number of ab-
sorbing species, Sr the total number of reacting species, and Sm and Ro the numbers
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of absorbing species and independent reactions observed in the selected spectral data,
respectively.

Channel selection methods can be used to select only spectral regions where a few of
the Sr reacting species absorb (S < Sr). It is assumed that before channel selection,
all species both absorb and react (Assumption A12 in Appendix D). After channel
selection this assumption is relaxed to the case where some of the reacting species does
not absorb. However, it is assumed that all the absorbing species do react.

Since channel selection is equivalent to measuring the concentrations of fewer (reacting)
species (see Subsection 4.2.2.2), the number of the independent reactions Ro observed in
the selected spectral data may be less than the total number of independent reactions R.
The following result with respect to channel selection is a corollary to Proposition 4.12.

Corollary 5.8 Let Assumptions A1–11 in Appendix D be verified, and the subscripts −
and + denote a quantity before and after channel selection, respectively. If (i) all species
both absorb and react before channel selection (S− = S), (ii) rank (A−) = R + p + 1,
and (iii) rank (E+) = S+, then channel selection (S+ = Sm < S−) leads to the nullity
reduction ∆d of the concentration matrices C− and C+ corresponding to the spectral
matrices A− = C−E− and A+ = C+E+, respectively:

max(Sm − S + R − Ro, R + p + 1 − S) ≤ ∆d ≤ Sm − S + R − Ro + p + 1. (5.10)

Channel selection can reduce but never increase the nullity of the concentration ma-
trices corresponding to the spectral matrices A− and A+. To attain rank S+, the
channels must be so chosen that rank (A+) = S+. The same results also hold for H−
and H+ with the redefinition (p + 1) := 0.

5.3 Some implications

5.3.1 Multivariate calibration

Multivariate forward calibration allows predicting the concentrations of the species of
interest from new spectra (see Appendix C.2 for a brief review of calibration in general
and Appendix F.2 for the reasons why multivariate forward calibration was chosen).
For the calibration of the species of interest, the spectra and the corresponding con-
centrations must be available for a few observations (e.g., from non-reacting mixtures
of known concentrations or wet-chemical analyses of reacting mixtures).

Calibration methods require that a new spectrum lies in the space spanned by the
calibration spectral data (space-inclusion condition) and the pure-component spectra
of the absorbing species are linearly independent. The space-inclusion condition rep-
resents an a posteriori condition for the applicability of a calibration model, since it
requires the generation of a spectrum from a new experimental run. However, it would
be desirable to know a priori whether the space-inclusion condition will be fulfilled,
i.e., before the generation of a spectrum from a new experimental run. In practical
applications, this goal is usually achieved by guaranteeing the following conditions for
the calibration data: (i) the absorbing species present in calibration set should include
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those in the new set, and (ii) the rank of the calibration spectral data equals the number
of absorbing species. For non-reacting (static) calibration data, Condition ii can often
be met, assuming that all the absorbing species are available for linearly-independent
composition variation. Numerous mixtures with concentrations selected according to
an experimental plan are usually prepared (Box et al., 1978). However, also possibly
highly-reactive intermediates must be available — a requirement that is often difficult
and sometimes impossible to meet.

This problem is circumvented by taking calibration samples during the course of the
reaction (reacting calibration data). This way, the intermediates are produced by the
reactions, and the need to vary them externally disappears. This advantage over non-
reacting calibration data may justify the additional costs of sampling, sample prepara-
tion, and wet-chemical analyses. For the verification of Condition ii in case of reacting
calibration data, it is proposed to use nullity-reducing operations for the calibration
data (rank-increasing operations and/or channel selection; see Subsection 5.2.2) in an
attempt to reduce to zero the nullity of the calibration concentration matrix.

However, there are many practical situations where the nullity-reducing operations
cannot be applied, e.g., when the required species are not all available for independent
variation, or when the spectral data exhibit highly-overlapped bands. For such cases,
Condition ii cannot be guaranteed, and an alternative method for the verification of
the space-inclusion condition must be found. For this purpose, a method based on
the pre-treatment of both the calibration and the new data to reaction-variant form
is proposed. This way, the resulting calibration model only predicts that part of the
concentrations corresponding to the new spectrum which is usually unknown due to
unknown kinetics, namely the reaction-variant part. To obtain the concentrations, the
typically known reaction-invariant part (such as the initial conditions and the effects
of the inlet and outlet streams) must be added. Both the nullity-reducing operations
and the data pre-treatment to reaction-variant form enable free specification of those
terms of the new runs related to the reaction invariants.

This subsection is organized as follows: Subsection 5.3.1.1 presents calibration for gen-
eral rank-deficient concentration and spectral data in the cases of calibration data with
and without interferents. For reacting mixtures, Subsection 5.3.1.2 proposes conditions
to check the space-inclusion condition before the generation of a new spectrum. Subsec-
tion 5.3.1.3 focuses on methods that enable the choice of the experimental concentration
matrix for the new set independently of the calibration set. Subsection 5.3.1.4 summa-
rizes the space-inclusion results, and Subsection 5.3.1.5 illustrates them by a simulated
example.

5.3.1.1 Prediction in the case of rank-deficient spectral data

For simplicity of notation, the results that follow are stated for the noise-free case.

Let S denote the number of the union of absorbing species present in both the calibra-
tion and the new data, Sk the number of those absorbing species for which calibration
concentrations are available by a reference method (called known species or species of
interest), and Su the number of the remaining absorbing species (called interferents or
unknown species), with S = Sk + Su.
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The prediction of concentrations from a new spectrum an will be addressed using a
calibration model that is based on calibration data with either (i) no interferent or (ii)
Su interferents. The subscript n indicates a quantity related to a new spectrum.

Concentrations of all species available for calibration

For the case that the concentrations of all (absorbing) species are measured (i.e.,
Sk = S; no interferent in the calibration data), the forward calibration model with
the spectral data A being the inputs and the concentration data C the outputs is:

C = AB, (5.11)

where B is an L × S regressor matrix.

Proposition 5.9 Let rank (E) = S. Then, the concentrations of the S species are
predicted correctly from a new spectrum, an, using forward calibration:

ĉT

n = aT

n B̂, where B̂ = A+ C, (5.12)

iff an ∈ Sr (A). (See Appendix H.4.2 for proof)

Proposition 5.9 says that when (rank-deficient) spectral and concentration data follow
(5.11), the concentrations ĉn are predicted correctly from a new spectrum an under
the following two assumptions: (i) an ∈ Sr (A), i.e., the new spectrum an lies in
the row space of the calibration spectral data A (space-inclusion condition), and (ii)
rank (E) = S.

The space-inclusion condition an ∈ Sr (A) can be checked by calculating εp(an,A), the
projection error of an on the row space of A using (C.15).

Proposition 5.9 is valid independently of the regression method used. The difference
between the various regression methods such as principal component regression (PCR;
Jackson, 1991), partial least squares (PLS; Wold, 1966; Wold and Lyttkens, 1970), a
modification of PLS (SIMPLS; de Jong, 1993; Phatak and de Jong, 1997), and con-
tinuum regression (CR; Stone and Brooks, 1990; Phatak et al., 1992) with respect to
calibration comes from the way in which noise in A and/or C is handled. Since noise
handling is not an issue in this work, it is simply referred to Appendix C.2.2 for a short
review that illustrates how the forward calibration problem is solved in the framework
of bilinear models using biased regression methods such as PCR and SIMPLS.

Concentrations of some species unavailable for calibration

Let the concentrations of (absorbing) Sk ≤ S species be available for calibration. Thus,
the concentrations of Su = (S−Sk) species (interferents) are not for calibration. Then,
(5.11) can be partitioned into the known and unknown parts of the concentration
matrix:

C =
[

Ck Cu

]
= A

[
Bk Bu

]
,

Ck = CJk = ABk, where Jk ≡
[

ISk

0Su×Sk

]
, (5.13)
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Cu = CJu = ABu, where Ju ≡
[
0Sk×Su

ISu

]
, (5.14)

with subscripts k and u denoting the parts of a quantity corresponding to the Sk and
Su species, respectively. Thus, the forward formulation enables the separation of the
concentrations corresponding to the known and unknown species into two decoupled
submodels, and the following corollary to Proposition 5.9 can be formulated.

Corollary 5.10 Let rank (E) = S. If an ∈ Sr (A), then the concentrations of the Sk

known species are predicted correctly using forward calibration:

ĉT

k,n = aT

n B̂k, where B̂k = A+ Ck. (5.15)

Contrary to the case of no interferent, an ∈ Sr (A) is only a sufficient condition for
correct prediction of ck,n from an. Thus, for an /∈ Sr (A), there are cases where ck,n is
correctly predicted. However, ck,u will then be in error. The necessary conditions are
provided in Appendix F.2.

Although the remainder of this subsection assumes no interferent to be present in
the calibration data, all the calibration-related results also apply to the case with
interferents being present. However, for reasons similar to those in Corollary 5.10, the
necessity of the conditions only holds for the case of no interferents.

5.3.1.2 Space-inclusion condition for reacting calibration data

Proposition 5.9 was stated for the general case of rank-deficient data. In this subsection,
it is assumed that the rank deficiency is due to underlying reactions in the calibration
and new data (see Proposition 5.5), i.e., the calibration concentrations are measured
from samples taken during the course of reaction run(s), and the calibration model is
used to predict concentrations based on spectra from a new reaction run.

To verify a priori the space-inclusion condition an ∈ Sr (A), experimental conditions in
terms of the experimental matrix and the stoichiometric matrix of both the calibration
and the new data will be specified.

It is assumed that (i) the absorbing species in the new set are a subset of those in
the calibration set, (ii) rank (E) = S, and (iii) either rank (A) = S or rank (A) =
R + p + 1 < S.

From (4.8),

Cx =
[

CT
in

cT
0

]
, Ne =

[
N

Cx

]
, Cx,n =

[
CT

in,n

cT
0,n

]
, Ne,n =

[
Nn

Cx,n

]
, (5.16)

where Cx (p + 1 × S) and Cx,n (pn + 1 × S) are the experimental matrices for the
calibration and the new sets, p and pn the corresponding number of (generalized)
inlets, N (R×S) and Nn (Rn ×S) the corresponding stoichiometric matrices, and Ne

(R + p + 1× S) and Ne,n (Rn + pn + 1× S) the corresponding extended stoichiometric
matrices. Note that the number of independent reactions and the stoichiometries are
allowed to differ between the calibration and the new data.
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Proposition 5.11 If rank (A) = S, then an ∈ Sr (A). (See Appendix H.4.2 for proof)

Proposition 5.11 shows that the space-inclusion condition an ∈ Sr (A) is trivially sat-
isfied when the calibration spectral matrix A is full rank.

When the calibration spectral data A is possibly rank deficient, i.e., rank (A) = (R +
p+1) ≤ S, an additional condition must be specified for the verification of an ∈ Sr (A),
as shown next.

Proposition 5.12 Let Assumptions A1–12 in Appendix D be verified, rank (A) =
(R + p + 1), and R an (Rn + pn + 1) × (R + p + 1) matrix of full rank. If

Ne,n = RNe, (5.17)

then an ∈ Sr (A). (See Appendix H.4.2 for proof)

Proposition 5.12 shows that, in the case of rank-deficient calibration spectral data, if the
row spaces of the extended stoichiometric matrices, in which the spectral measurements
of the calibration and the new sets live, are the same, then one can be sure that the
space-inclusion condition is satisfied. The conditions Ne,n = RNe can be checked by
knowing Ne,n and Ne and computing the Frobenius norm of εp(Ne,n,Ne) (see C.16):
If εp = 0, then Ne,n = RNe is satisfied. Note that

Ne,n =

[
Nn

Cx,n

]
= RNe =

[
RN

RC

]
Ne, which implies Nn = RNNe and Cx,n = RCNe,

(5.18)

where RN and RC are matrices of dimension Rn×(R+p+1) and (pn +1)×(R+p+1),
respectively. Thus, both the stoichiometries and the initial and inlet concentrations of
the new set must lie in the row space of Ne.

Note that Proposition 5.12 is independent of the initial volume V0,n. Also, since no
assumption on Xe,n was made, the kinetics rn and the inlet flowrates qin,n(t) can be
arbitrary and even dependent, i.e., rank (Xe,n) < (Rn + pn + 1).

To check the condition Ne,n = RNe in Proposition 5.12, both the experimental and
the stoichiometric matrices of both the calibration and the new sets must be known. In
many practical situations, however, the stoichiometries are unknown, but the reactions
are the same for both the calibration and the new sets (i.e., Nn = N). For such a
situation (and its generalized form Nn = R† N), the following corollary can be stated.

Corollary 5.13 Let Assumptions A1–12 in Appendix D be verified, rank (A) = (R +
p + 1), Nn = R† N, and R† and R‡ matrices of full rank of dimension Rn × R and
(pn + 1) × (p + 1), respectively. If

Cx,n = R‡ Cx, (5.19)

then an ∈ Sr (A). (See Appendix H.4.2 for proof)

Since the initial and inlet concentrations of the new set must lie in the row space of Cx,
which is smaller than that of Ne, Corollary 5.13 provides a more conservative sufficient
condition than Proposition 5.12. However, the condition Cx,n = R‡ Cx is easier to
check than the condition Ne,n = RNe, since it does not require the knowledge of N.
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5.3.1.3 Methods for meeting the space-inclusion condition for reacting cal-
ibration data

For meeting the space-inclusion condition an ∈ Sr (A), Proposition 5.12 and Corol-
lary 5.13 showed that the experimental concentration matrix of the new set Cx,n must
be so chosen that the condition Cx,n = RC Ne and the condition Cx,n = R‡ Cx are
satisfied, respectively. However, it would be desirable to choose Cx,n independently of
the calibration set. The next two subsections propose methods to that effect.

Nullity-reducing operations

Proposition 5.11 showed that the space-inclusion condition is trivially satisfied if
rank (A) = S can be guaranteed, thereby enabling the specification of Cx,n inde-
pendently of the calibration data.

Nullity-reducing operations and maximal attainable rank The idea is to elim-
inate the null space of the concentration matrix corresponding to calibration spectral
matrix A = CE by using the nullity-reducing operations proposed in Subsection 5.2.2
(experimental and non-experimental rank-increasing operations; channel selection for
reducing the number of observed absorbing species).

Let Sx be redefined as the total number of species that have nonzero elements in Cx

with Cx fulfilling (5.19), i.e., the species that can be varied linearly independently in the
calibration set include those in the new set. In practical applications, often only Sx < S
species are available for independent variation of the initial and inlet concentrations
(see also Subsection 5.2.2.1). Thus, the rank of A can be at most (R + Sx). Even in
such a case, guaranteeing rank (Cx) = Sx gives a free choice of Cx,n for the Sx species,
as shown in the next corollary that follows from Corollary 5.13.

Corollary 5.14 Let Assumptions A1–12 in Appendix D be verified, Nn = R† N and
rank (A) = R + p + 1. If rank (Cx) = Sx(= p + 1), then an ∈ Sr (A).

Reacting vs. non-reacting calibration data In many practical calibrations, non-
reacting mixtures of well-defined composition are prepared for which the spectra are
measured (non-reacting calibration data). The resulting calibration model is then often
used to predict the concentrations from spectra measured in reacting mixtures.

Non-reacting calibration data are a special case of reacting calibration data with Ne =
Cx. According to Proposition 5.12, Ne,n = RNe guarantees space inclusion. Thus, not
only the initial and inlet concentrations Cx,n, but also the Rn×S stoichiometric matrix
Nn of the new set must lie in the row space of Cx. In other words, possibly highly-
reactive absorbing intermediates that are produced by the Rn independent reactions
in the new set must be available for linearly-independent composition variation in the
calibration set. Unfortunately, the latter assumption is often difficult, and sometimes
even impossible, to verify.

In reacting calibration data, these intermediates are implicitly included, thereby in-
creasing the rank of the spectral calibration data by R. Thus, R (possibly) intermedi-
ates are not required for linearly-independent variation during the calibration phase.
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Data pre-treatment to reaction-variant form

The disadvantage of nullity-reducing operations is that they require the availability of
(S−R) or (Sm−Ro) species for linearly-independent variation of the reaction-invariant
part.

This paragraph proposes a method that is based on the pre-treatment of the calibration
and the new data to reaction-variant form. It does not require the availability of Sx =
(S −R) or Sx = (Sm −Ro) species. The resulting calibration model only predicts that
part of the concentrations that is usually unknown due to unknown kinetics, namely
the R-dimensional reaction-variant part. To obtain an estimate of concentrations, the
(usually known) reaction-invariant part (such as initial conditions and effects of the
inlet and outlet streams) of the new data must be added. Propositions 5.9 and 5.12
will be stated in terms of the data pair {H, D}. Since the proofs are similar to those
of Propositions 5.9 and 5.12, they are omitted here.

Theorem 5.15
Let Assumptions A1–12 in Appendix D be verified and the following quantities be
known/measured: (i) for calibration, A, Ain, C, Cin, V0, qin(k), and qout(k) for all k,
and (ii) for prediction, an, a0,n, Ain,n, V0,n, qin,n(k), and qout,n(k) for all k. Then, the
RV-concentrationsdn for the S species are predicted correctly using forward calibration:

d̂T

n = hT

n B̂d, where B̂d = H+ D, (5.20)

iff hn ∈ Sr (H), with B̂d being the estimate of an L × S regressor matrix, and D and
H defined as in (4.11) and (5.5), respectively.

If, furthermore, c0,n and Cin,n are known/measured, then the concentrations of the S
species can be predicted by:

ĉn =
λn

Vn

(
d̂n + Cin,nzn + V0,n c0,n

)
. (5.21)

Theorem 5.15 is based on the calibration and new data, both pre-treated to reaction-
variant form. If the space-inclusion condition hn ∈ Sr (H) is verified, the resulting
calibration model (5.20) predicts the R-dimensional reaction-variant part of the con-
centrations. To obtain an estimate of the concentrations cn, the reaction-invariant part
(c0,n and Cin,n) of the new data must be added.

In the presence of interferents, (5.20) and (5.21) become

d̂T

n,k = hT

n B̂d,k, B̂d,k = H+ Dk,

ĉn,k =
λn

Vn

(
d̂n,k + Cin,n,kzn + V0,n c0,n,k

)
.

(5.22)

Proposition 5.16 Let Assumptions A1–12 in Appendix D be verified. hn ∈ Sr (H) if
Nn = R† N.

Proposition 5.16 tells that the space-inclusion condition hn ∈ Sr (H) is satisfied by
guaranteeing that the rows of Nn lie in the row space of N. Since the latter condition
is independent of the reaction invariants, the initial and inlet concentrations of the new
set can be freely chosen. Note that Nn = R† N is trivially satisfied when the reaction
system is the same for both the calibration and the new runs.
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Remark 5.17 (Subtracting only the initial concentrations and spectrum)
Consider the situation where the inlet concentrations, the inlet spectra, and/or the
inlet flowrates of either the calibration or the new set are not available. Then, A
and C can be pre-treated to H� and D� using (5.6), respectively. Similarly to (5.20),
calibration can be performed for the (pre-treated) calibration pair {H�,D�}. The
sufficient condition for meeting the space-inclusion condition h�

n ∈ Sr (H�) becomes

εp(
[

Nn
Cin,n

]
,
[

N
Cin

]
) = 0, i.e., in contrast to calibration using data in reaction-variant

form, also the inlet concentrations Cin,n of the new set is dependent on the calibration
set (εp(Cin,n,

[
N

Cin

]
) = 0).

5.3.1.4 Discussion of the space-inclusion results

Subsection 5.3.1.1 showed for general rank-deficient spectral data that if the space-
inclusion condition an ∈ Sr (A) is verified, then the concentrations of the species of
interest can be predicted from new spectra, even in the presence of interferents.

If rank deficiency in the spectral data is caused by reactions,

Subsection 5.3.1.2 proposed sufficient conditions to check a priori the space-inclusion
condition an ∈ Sr (A), i.e., before the generation of an. In Subsection 5.3.1.3, methods
were proposed to help choose the experimental concentration matrix and/or the sto-
ichiometries of the new set independently of the calibration set. For all results, it is
assumed that (AA1) A and an are available, and (AA2) the calibration experimental
concentration matrix Cx is so chosen that the R independent reactions are present and
active in the calibration set.

Table 5.1 gives an overview of the sufficient conditions required for meeting the space-
inclusion depending on the corresponding calibration pair ({A,Ck} or {H,Dk}), the
knowledge required to enable meeting the sufficient conditions, and implications of
the sufficient conditions with respect to the possibility of choosing the stoichiometries
and/or the experimental concentration matrices (initial and inlet concentrations) of the
new set independently of the calibration set. Table 5.2 indicates the knowledge required
and proposes guidelines to meet the various expressions of the sufficient conditions in
Table 5.1.

Five different sets of sufficient conditions are proposed that guarantee the space-
inclusion condition an ∈ Sr (A), and one sufficient condition that guarantees the
space-inclusion condition hn ∈ Sr (H). For the first two sufficient conditions regarding
an ∈ Sr (A) (5.23 and 5.24), the stoichiometries Nn and the experimental concentra-
tion matrix Cx,n of the new set are fixed by the choice of those of the calibration set.
The difference between both is that if the reaction system is the same for both the
calibration and the new set, then, in contrast to (5.23), the knowledge of the (possibly
unknown) stoichiometries is not required for (5.24), since the choice of Cx,n does not
depend on N. However, (5.24) is more conservative than (5.23), as it is illustrated by
Examples 5.18 and 5.19 below.

For (5.25)–(5.28), the experimental concentration matrix Cx,n can be chosen indepen-
dently of the calibration set. In addition, the stoichiometries can be chosen freely
for (5.26) and (5.27), and the experimental concentration matrix of the calibration
set for (5.28). The full-rank conditions in (5.26) and (5.27) can be met by using the
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Table 5.2. Knowledge required and guidelines proposed to meet the various expressions of
the sufficient conditions in Table 5.1.

Expression Knowledge required Guidelines

rank (A) = R+p+1
N; Cx; Sx ≥ p+1,
p ≤ S − R − 1

Experimental or non-experimental
rank-increasing operations
(Subsections 5.2.2.1 or 5.2.2.2)rank (A) = S S; Sx ≥ S−R, (p ≥ Sx−1)

rank (A+) = Sm
Sm; Sx,m ≥ Sm − Ro,
(p ≥ Sx,m − 1)

Channel selection (Subsection
5.2.2.3)

εp(Ne,n,Ne) = 0 N, Nn; Cx, Cx,n
Proper choice of Cx,n or Nn

depending on N and/or Cx
εp(Nn,N) = 0 N, Nn

εp(Cx,n,Cx) = 0 Cx, Cx,n

rank (Cx) = Sx Cx; p = Sx − 1
Linearly-independent variation of
all Sx species

rank-increasing operations proposed in Subsections 5.2.2.1–5.2.2.3. The disadvantage
with these conditions is that at least (S − R) or (Sm − Ro) species must be available
for linearly-independent variation, respectively1. However, often less than (S − R) or
(Sm − Ro) are available for linearly-independent variation. For such a case, (5.25) can
be applied, which suggests to vary the available Sx species independently such that
full rank of Cx is guaranteed. In contrast to (5.26) and (5.27), however, N and Nn

cannot be freely specified for (5.25), and no other species can be present in the initial
and inlet concentrations of the new set than the Sx species in the calibration set.

Example 5.18 (Conservatism of the sufficient conditions in (5.24))
Consider the batch reaction system X1 → X2 → X3 with all three species absorbing
(S = 3 R = 2, p = 0), and assume rank (E) = S. According to Propositions 5.5 and
4.23, A and Ne are full rank (R + p + 1) = 3 = S when cA,0 	= 0. Thus, according to
(5.26), the initial concentrations Cx,n and the stoichiometries Nn of the new set can be
arbitrary. This is also found in (5.23), since the condition εp(Ne,n,Ne) = 0 is trivially
satisfied.
According to (5.24), the following two conditions are required for meeting the space-
inclusion condition an ∈ Sr (A): (i) for meeting the condition εp(Nn,N) = 0, the
stoichiometries of the new set must be a linear combination of those of the calibration
set, and (ii) the condition εp(Cx,n,Cx) = 0, which imposes c0,n = α c0, where α is a
constant. This illustrates the conservatism of the sufficient conditions in (5.24).

Example 5.19 (Rank-increasing operations)
Consider the following reaction system with one inlet stream (p = 1): X1 → X2 +
X3, X2 → X4 +X5. It is assumed that all five species absorb (S = 5), the reactions are
the same for both the calibration and the new sets (εp(Nn,N) = 0), and only Species

1Note that the channels must be so chosen that the Sk species are a subset of the Sm selected
species.
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X1 and X2 can be used in the experimental concentration matrices of the calibration
and the new sets, i.e., Sx = 2. Let c0 and cin be so chosen that rank (Cx) = 2 = Sx.
Although rank (A) = R+p+1 = 4 < S, Cx,n can be freely specified, since the sufficient
conditions in (5.25) are met.

The disadvantage of (5.25)–(5.27) is that certain conditions for the Sx species in cali-
bration set and/or new set must be fulfilled (in addition to Assumption AA2). This dis-
advantage is not encountered in (5.28), since the reaction-invariant part is subtracted
from the spectral and concentration measurements (data pre-treatment to reaction-
variant form). In contrast to (5.26) and (5.27), however, (5.28) involves the knowledge
of N and Nn. Data pre-treatment to reaction-variant form requires the knowledge
of the reaction invariants including the inlet spectra Ain of both the calibration and
new sets. In practical applications, this might be a drawback, since the inlet spectra
measured externally can be different from those inside the reacting mixtures due to
changing chemical-physical interactions (Burns and Ciurzak, 1992).

In Table 5.1, channel selection is used for attaining full rank of the spectral matrix,
i.e., a special case of (5.25). In addition, channel selection can be applied to (5.23)–
(5.25) and (5.28), where the projection errors of the extended stoichiometries, the
stoichiometries, and the experimental concentration matrices must be computed for
the Sm species.

5.3.1.5 Simulation study

Data generation (Example 2.13c)

Certain aspects of the space-inclusion results are illustrated by means of an isother-
mal, varying-density semibatch reaction system (2.54), involving R = 2 independent
reactions and conducted in a solvent X6. Two types of reaction rates are studied for
the first reaction:

(1) Elementary reaction:

r
(1)
1 (c1) = κ1 c2

1

(2) Inhibited reaction:

r
(2)
1 (c1, c5) =

κ11 c2
1

1 + κ12 c5

The reaction is conducted in a non-absorbing solvent X6. The vectors c ≡ [c1, c2, c3, c4,
c5]

T, ct ≡ [cT, c6]
T, and ck = [c1, c2]

T represent the concentrations of the S = 5
absorbing species, all St = 6 species, and the Sk = 2 known (measured) species,
respectively. See Appendix A.2 for the numerical values of the parameters.

Four different runs are generated. Table 5.3 lists the numerical values of the number of
observations K, the initial volume V0, the final batch time tf , the initial concentrations,
the inlet concentrations c0, and the kinetic expression used for the first reaction. Note
that the inlet streams do not contain solvent.
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Table 5.3. Number of observations K, initial volume V0 [l], final batch time tf [h], initial
concentrations ct,0 [M], and inlet concentrations cin [M] for the Runs R1–R4.

ct,0 cin

Run K V0 tf X1 X2 X3 X4 X6 X1 X4 Kinetics r1

R1 85 10 7 13.73 0 0 0.86 3.22 8.55 8.55 r
(1)
1

R2 73 15 6 8.41 0 0 1.68 8.41 16.15 0 r
(2)
1

R3 61 15 5 13.49 2.41 0 0.96 1.20 8.55 8.55 r
(1)
1

R4 73 15 6 8.94 1.12 8.94 0.71 3.58 16.15 0 r
(2)
1

The concentration profiles are presented in Figure 5.1. The density, volume, and feed
profiles for the 4 runs R1–R4 are illustrated in Figure 5.2. Figure 5.3 depicts the
(highly-overlapping) pure-component spectra (L = 301) of all absorbing species, gen-
erated from real NIR pure-component spectra. These are used to construct A.

Three cases are considered:

(C1) Calibration set: Run R1 (p = 1 generalized inlet). New set: Run R2.

(C2) Calibration set: Run R1 (p = 1 generalized inlet). New set: Run R3.

(C3) Calibration set: Runs R1 and R3 (the corresponding concentration and spectral
matrices are appended with respect to the common column order; column-wise
appending; p = 2 generalized inlets, since the inlet concentrations of Runs R1
and R3 are the same). New set: Run R4.

Key differences between Runs R1 and R2 (Case C1) are the inlet concentrations, the
feed profiles, and the kinetics of the first reaction. As far as the feed is concerned, the
number of species involved is also different. However, the set of species initially present
in the reactor are the same, though the concentrations are different. Comparing Runs
R1 and R3 (Case C2), it can be noted that the kinetics, the inlet concentrations and the
feed profiles are the same. However, the initial concentrations for R3 involves Species
X2, which is not initially present in the calibration run R1 but is produced by the first
reaction (in both the calibration and new runs). Finally, the initial concentrations of
R4 (Case C3) involves Species X3, which is not present initially in calibrations runs R1
and R3 but is produced by the second reaction (in both the calibration and new runs).

Nullity reduction and data pre-treatment to reaction-variant form

Calibration models are built using the pairs {A,Ck} and {H,Dk} according to (5.15)
and (5.22).

A hypothetical Case C4 that uses nullity reduction is introduced. Assume that Species
X2 does not absorb. This is equivalent to saying that channel selection has been
performed according to Subsection 5.2.2.3 with S− = 5 and S+ = Sm = 4. Case C4 is
similar to Case C2 but for X2 not absorbing, i.e., the calibration set is based on Run
R1, and the new set on Run R3. A calibration model is built, in which the prediction
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of only Species X1 is considered (Sk = 1) using the calibration and prediction pair
{A,Ck} with Ck = c1.

Statistical considerations

The spectral data of all calibration and new sets are corrupted by noise generated by
multiplying the signal by a number from a uniform distribution in the range [−0.01,
0.01] (multiplicative or heteroscedastic noise). Such noise was experimentally deter-
mined for spectra in the MIR range using ReactIR 1000 (ReactIR, 1994). Also, Ck is
corrupted by Gaussian noise generated with a standard deviation chosen as 2.5% of
the maximum of the column-means of Ck.

The internal (fit) and external prediction performances of the calibration models based
on the calibration and the new set, respectively, are compared as a function of the
number of principal components (PCs) retained in the calibration model (see Ap-
pendix C.4.2).

The normalized root mean squared error (NRMS; see C.39) is calculated for both the
calibration set (NRMSc) and the new set (NRMSn). For each of the noisy calibration
sets, a calibration model is estimated and cross validated (CV) to determine the number
of significant PCs (see Appendix C.4.2.2). Here, a leave-one-block-out CV with a block
size of 4 spectra and the average of 3 random shuffles in time direction is used.

Since the sample covariances of principal components strongly depend on the particular
noise added (Jackson, 1991), extreme values for NRMS can occur. To avoid this,
the NRMS values for 200 calibration sets corrupted by different noise sequences are
considered (Monte–Carlo simulation). The averages of NRMSc and NRMScv for all
noisy calibration sets are calculated.

For each calibration model, the prediction performance of 200 noisy new sets is studied.
As far as the new sets are concerned, the averages of both NRMSn and Ĉk,n for each
combination of a noisy calibration set with all noisy new sets are calculated, thereby
performing 200 × 200 simulation runs in total.

Discussion of the results

The following results are presented in Table 5.4 for Cases C1–C4: (i) the ranks of the
noise-free spectral matrices A and H of the calibration sets, (ii) the projection errors
for Ne and N, and (iii) the projection error for Cx. From CV, the optimal numbers
of PCs, A∗, to retain in the calibration models (PCR and SIMPLS) correspond to the
rank predicted in Table 5.4. Furthermore, Table 5.4 contains the NRMSn of SIMPLS
for the calibration pair given in curly brackets and A∗. The ranks of the noise-free
matrices A and H for Cases C1–C4 are (R + p + 1) and R, respectively.

For Case C1, the sufficient conditions (5.24) for space inclusion are fulfilled (see Ta-
ble 5.4) and, thus, correct external prediction is expected. Figure 5.4 shows the NRMS
for external prediction, cross validation, and internal prediction for the calibration pair
{A,Ck} as a function of (i) the number of principal components (PC) retained in the
calibration model and (ii) the regression methods PCR and SIMPLS. Using A∗ = 4, the
concentrations of Species X1 and X2 are correctly predicted (internally, cross validation,
externally) from the calibration sets (see Figure 5.4). Note that, since the prediction
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Table 5.4. Numerical results for Cases C1–C4 with S = 5, R = 2, Sk = 2, p = 1, and
rank (E) = S: (i) the ranks of the noise-free matrices A and H of the calibration sets, (ii)
the projection errors for Ne and N, (iii) the projection error for Cx, and (iv) NRMSn of
SIMPLS for the calibration pair given in curly brackets and A∗ given by the ranks in (i).
The cases where the space-inclusion condition an ∈ Sr (A) or hn ∈ Sr (H) is not met are
marked bold.

Case C1 Case C2 Case C3 Case C4

R1/R2 R1/R3 (R1+R3)/R4 R1/modified R3

rank (A) = R + p + 1 4 4 5 4

rank (H) = R 2 2 2 2

εp(Ne,n,Ne)
a 0 1.6 0 0

εp(Nn,N)a 0 0 0 0

εp(Cx,n,Cx)
a 0 2.4 8.94 0

NRMSn{A, Ck} 0.024 0.342 0.038 0.026

NRMSn{H, Dk} 0.024 0.022 0.027 0.023
a For Case C4, the projection errors of the extended stoichiometries, the sto-

ichiometries, and the experimental concentration matrices are computed for
the Sm species.

performance of PCR and SIMPLS for A∗ is nearly the same (also for Cases C2–C4),
only the concentrations predicted from the SIMPLS model are shown in Figures 5.5
and 5.6, which compare true and predicted concentrations.

The other scenarios where the sufficient conditions for space inclusion are fulfilled are:
(i) In Cases C1–C4 for the calibration pair {H,Dk}, since the same reaction network
is considered for both the calibration and the new sets, the condition εp(Nn,N) = 0 is
trivially fulfilled. (ii) In Case C3 for the calibration pair {A,Ck}, since the rank of the
spectral matrix is increased to S = 5 by appending the spectral data of Run R3 to those
of Run R1, the space-inclusion condition an ∈ Sr (A) is trivially fulfilled according to
(5.26). (iii) In Case C4 for the calibration pair {A,Ck}, since the rank of the spectral
matrix is full (rank (A+) = 4 = Sm) after “channel selection” (Ro = R = 2), the space-
inclusion condition an ∈ Sr (A) is trivially fulfilled according to (5.27). As expected
from the sufficient conditions, Figures 5.5 and 5.6 show that the concentrations of
Scenarios i–iii are well predicted.

For Case C3 using the calibration pair {A,Ck}, Table 5.4 shows that εp(Cx,n,Cx) 	=
0, while εp(Ne,n,Ne) = 0. This is due to the fact that for Case C3, Species X3 is
present in Cx,n but not in Cx. However, it cannot be concluded from (5.24) that
the concentrations will be predicted correctly, since (5.24) represents only sufficient
conditions. This illustrates the conservatism of the sufficiency of condition (5.24).

For Case C2 using the calibration pair {A,Ck}, εp(Ne,n,Ne) 	= 0 and εp(Cx,n,Cx) 	= 0
(see Table 5.4). This is due to Species X2 being initially present in the new set, but
absent initially in the calibration set. Note that Species X2 is present also in the
calibration set since it is produced by the first reaction. However, the corresponding
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concentrations depend linearly on the concentrations of the remaining species due to
the reactions. Thus, the calibration data do not span the extra dimension necessary to
predict the concentrations of the new Run R3. By the violation of the sufficient con-
ditions in (5.23) and (5.24), there usually is a high possibility that the space-inclusion
condition an ∈ Sr (A) is not fulfilled, and the concentrations are not predicted cor-
rectly. Figure 5.5b shows that the concentrations are not predicted correctly. Note
that, in contrast to Case C2, εp(Cx,m,n,Cx,m) = 0 for Case C4, since the effect of
Species X2 is eliminated.

In general, better prediction performance is obtained by using the pair {H,Dk} com-
pared to {A,Ck} (see NRMSn in Table 5.4). This is only true when the terms related
to the reaction invariants (e.g., the initial and inlet concentrations and the inlet spec-
tra of the calibration and the new sets, the inlet flowrates and the volume) are known
perfectly. For such cases, the noise is restricted to a lower-dimensional space (here,
2-dimensional), which often results in better performance.

An interesting unexplained case occurs when 6 PCs are retained in Case C2 with
calibration pair {A,Ck}: the concentration of Species X1 is correctly predicted using
SIMPLS, though Species X2 is not predicted correctly.

5.3.2 Multivariate curve-resolution techniques (FA)

As mentioned earlier, concentration measurements of some species of interest are often
not available (due to difficulties/costs in sampling, sample preparation, and develop-
ment of analytical techniques) and, thus, calibration of spectral measurements for the
purpose of concentration prediction is not possible.

For such situations, factor analysis (FA) or multivariate curve-resolution techniques
have been used successfully for non-reacting mixtures to resolve the concentrations
and the corresponding pure-component spectra from spectral data. It involves two
steps: (i) PCA (see Section C.1), (ii) rotation of scores and loading matrices into
physically-meaningful quantities using prior knowledge about the reaction system and
the type of instrumental response.

FA methods are used to resolve the rotational ambiguities and, in some cases, also
the intensity ambiguities (see also Appendix C.3). For non-reacting species, Manne
(1995) provides conditions for the unique resolution of the rotational ambiguity. For
the quantitative estimation of concentrations and pure-component spectra, an external
standard must be provided.

Most of the FA techniques rely on the assumption that the rank of the spectral data
is determined by the number of absorbing species S and, thus, the column and row
spaces of the spectral data correspond to those of the (unknown) concentration and
pure-spectra matrices, respectively.

For reacting mixtures, however, this assumption is generally not satisfied due to rank-
deficient spectral matrices, as was shown in Section 5.2.1. If a sufficient number of
species is available for independent variation of the initial and inlet concentrations,
Amrhein et al. (1996) proposed to use nullity-reducing operations that guarantee rank
S for the reacting spectral data (see Subsection 5.2.2).
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Figure 5.6. Example 2.13c: Predicted concentrations of Species X1 using SIMPLS for Case
C4. (◦) true, (×) predicted from {A, c1}. The optimal number of principal components
A∗ retained in the calibration model is 4.

In this subsection, FA methods will be proposed for the quantitative estimation of
concentrations for all the species at all the observations from (rank-deficient) reacting
spectral data (resolving both the rotational and the intensity ambiguities). In contrast
to standard FA methods, the proposed FA methods are usually not able to estimate
the pure-component spectra. It will be assumed that the pure-component spectra are
not available, nullity-reducing operations may not guarantee rank S for the reacting
spectral data, but the reaction-invariant part is known. Thus, the (unknown) reaction-
variant part of the spectral data (i.e., also of the concentration data) remains to be
estimated. It will be shown that, since no concentration measurement is available for
calibration, some implicit or explicit information regarding the kinetic structure need
to be available for the construction of a calibration set. Similarly to calibration, a
space-inclusion condition must be verified.

Subsection 5.3.2.1 formulates the problem of quantitative concentration estimation
from reacting spectral data using factor analysis. In Subsection 5.3.2.2, methods to
determine the number of independent reactions and absorbing species from reacting
spectral data are discussed. Subsections 5.3.2.3 and 5.3.2.4 propose various rotational
methods based on the knowledge of kinetic structure (explicit information) and the
presence of irreversible or reversible reactions (implicit information), respectively. Sim-
ulated examples illustrate the proposed methods.

5.3.2.1 Factor analysis as a calibration problem

The goal is to estimate the concentration matrix C, i.e., the concentrations of all S
species at all K observations. It will be shown that concentration estimation of some of
the S species is possible as well. Let Assumptions A1–12 in Appendix D be verified and
the spectral matrix and the quantities necessary to reconstruct the reaction invariants
be known/measured.
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Since the reaction-invariant part of C is known, only the reaction-variant part remains
to be estimated. However, in contrast to the calibration methods proposed in Sub-
section 5.3.1, no calibration concentration measurement is available. Instead, prior
knowledge regarding the kinetic structure or the type of reactions will be used to con-
struct the calibration concentrations. The following prior-knowledge candidates are
considered:

(K1) Non-negativity of concentrations,

(K2) Stoichiometric matrix N,

(K3) Structure of the R reaction rates r(c, θ) with unknown parameters θ,

(K4) Type of the reactions (reversible vs. irreversible),

(K5) Identity of the species/reaction that cause local rank changes (see Appendix G
for the definition of local rank).

Knowledge K3 considers explicit information, while Knowledge K4 uses implicit infor-
mation regarding the kinetic structure.

With the knowledge/measurement of A, Ax, V0, qin(k) and qout(k) for all k, the spectral
data can be brought to reaction-variant form H (see 5.5):

H = XΘ, Θ ≡ NE, (5.29)

where Θ is the R×L reaction spectral matrix. A and H are assumed to be noise free.

Let Cr be a Kr×S matrix defined as Cr ≡
[

Cx

Ć

]
, where Ć is a Ḱ×S submatrix of C that

contains concentrations during the ongoing reactions. Furthermore, let Ar (Kr × L)
and Á (Ḱ ×L) be the spectral matrices corresponding to Cr and Ć, respectively. Let
Dr be the corresponding Kr × S submatrix of D, Xr be the corresponding Kr × R
submatrix of X, and Hr the corresponding Kr × L submatrix of H.

The pair {Ar,Cr} forms a constructed calibration set, while each row of A, an (n =
1, . . . , K), can be considered as a new spectrum. And similarly for the pair {Hr,Dr}
and the rows of H, hn (n = 1, . . . , K).

The results obtained in Subsection 5.3.1.1 apply directly to the problem of estimating
C from a calibration model that is built from the calibration pair {Ar,Cr} with the
following redefinitions: A := Ar, C := Cr. Note that the case of resolving some of
the species concentrations (partial resolution) is treated in Subsection 5.3.1.1 in the
framework of interferents. Thus, this subject is not treated any further here.

Next, the space-inclusion results obtained in Subsection 5.3.1.2 will be adapted to the
FA problem.

Proposition 5.20 Let Assumptions A1–12 in Appendix D be verified. If rank (Ar) =
S, then an ∈ Sr (Ar).

Proposition 5.21 Let Assumptions A1–12 in Appendix D be verified and R an (R +
p + 1) × Kr matrix. If

Ne = RCr, (5.30)

then an ∈ Sr (Ar).(See Appendix H.4.3 for proof)
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Both Propositions 5.20 and 5.21 provide (a priori) conditions for the resolution of C
on the basis of A and {Ar,Cr}.
If rank (Cx) = S (assuming all the species to be available for linearly-independent
variation), then rank (Ar) = S and, thus, according to Proposition 5.20, the space-
inclusion condition is trivially met. In this case, no concentration Ć must be known/-
estimated during the course of the reaction.

Proposition 5.21 says that concentration Ć must be known/estimated during the course
of the reaction such that the rows of Cr span the entire row space of Ne. Note that
Xe can be rank deficient.

Next, the results obtained in Subsection 5.3.1.3 will be adapted to the FA problem.
Theorem 5.15 applies with the following redefinitions: H := Hr, D := Dr. To guar-
antee the space-inclusion condition hn ∈ Sr (Hr), the condition Nn = R† N must be
met (Proposition 5.16). This condition is trivially met if rank (Dr) = rank (Xr) = R
is guaranteed.

However, for meeting rank (Xr) = R, R must be known. In the following subsection,
methods will be discussed that attempt to determine R from spectral data. The esti-
mation of Ć and Xr from Knowledge K1–5 is the subject of Subsections 5.3.2.3 and
5.3.2.4.

5.3.2.2 Determination of R and S

Next, methods to determine R and S from spectral data are discussed.

Determination of R

From Proposition 5.5, rank (A) = rank (C), and rank (H) = rank (D). Thus, for the
determination of R, it suffices to study the ranks of C and D when all the species both
absorb and react.

Corollary 5.22 Let Assumptions A1–12 in Appendix D be verified. Then, the number
of independent reactions R can be determined from K × S spectral matrix A:

(a) If Ain, A, V0, qin(k), and qout(k) of reaction systems described by (2.38) are
known/measured for all k, then R can be determined from H in (5.5) as

R = rank (H) . (5.31)

(b) If rank (CxΓ) = p + 1 and Xe is full rank, then R can be determined from A in
(5.3) as

R = rank (A) − p − 1. (5.32)

Corollary 5.22a shows that, if data pre-treatment to reaction-variant form (5.5) is
possible, the number of independent reactions R can be determined directly from H.

If data pre-treatment to reaction-variant form is not possible, the number of indepen-
dent reactions R must be determined from A. However, similarly to C (see Theo-
rem 4.18), this is only possible by verifying certain reaction-invariant relationships.
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On the determination of S

The number of absorbing species S in a reacting mixture is often unknown a priori
and, thus, the (column dimension of the) stoichiometric matrix N is also unknown. In
such a case, it is desirable to determine S from spectral data in a way similar to that
proposed for R in the previous subsection. However, it will be shown that this goal is
impossible to attain, even with the assumption rank (E) = S.

The previous subsection presented methods for the determination of R from the spectral
matrix A or RV-spectral matrix H. For the determination of the number of absorbing
species S from A, the rank of A or, equivalently, C must be increased to S. Thus,
data pre-treatment to reaction-variant form as used for H is not useful, and the focus
will be on the analysis of A or C.

To guarantee rank (C) = S, according to Corollary 4.4, the two conditions rank (Xe) =
(R + p + 1) and rank (Ne) = S must be guaranteed. Full rank of Xe can be experi-
mentally guaranteed according to Proposition 4.5. To guarantee rank (Ne) = S, either
S must be known to guarantee rank (Cx) = S (which implies rank (Ne) = S) or, when
rank (Cx) < S, N (i.e., also its column dimension S) must be known for the compu-
tation of rank (Ne). Thus, the determination of S from A is a fundamental problem
that cannot be solved!

5.3.2.3 Rotation — explicit use of kinetic structures

This subsection discusses the estimation of Ć (or Xr) from knowledge of the kinetic
structure and spectral measurements. It is assumed that the stoichiometric matrix
(Knowledge K2) and the structure of the reaction rates r(c, θ) (Knowledge K3) are
known. Thus, the concentrations are completely described by (4.3) and (4.7) except
for the unknown reaction rate parameters θ.

For such a scenario, various methods have been proposed to estimate the unknown
reaction rate parameters directly from the spectral data by solving a constrained non-
linear regression problem (Sylvestre and Maggio, 1974; Koch, 1977; Sheiner, 1984, 1985,
1986; Gampp et al., 1988; Maeder and Zuberbühler, 1990; Perkampus and Kaufmann,
1991; Crouch, 1993; Lamberti et al., 1993; Mottola, 1993; Bugnon et al., 1994; Dyson
et al., 1997; Van Stokkum, 1997). However, no formal proof for correct resolution in
the case of rank-deficient spectral data has been provided. Here, a rigorous proof is
provided.

Two approaches are proposed: (M1) estimation of Ć from measured (rank-deficient)
spectral data A, and (M2) estimation of Xr from measured/reconstructed spectral
data in reaction-variant form H. Let Assumptions A1–12 in Appendix D be verified.
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For Approach M1, the following constrained nonlinear regression problem is solved:

min
θ

JA, JA ≡ ‖A − A(θ)‖ = ‖ [
IK − C(θ)C+(θ)

]
A‖

s.t. ẋ(θ) = r(c, θ) V/λ, x(0) = 0R,

ż = qin/λ, z(0) = 0p,

λ̇ = −qout

V
λ, λ(0) = 1,

c(θ) = (NT x(θ) + Cin z + V0c0) /h(z)

C(θ) = H−1 (X(θ)N + ZCT

in + V01KcT

0 ) ,

(5.33)

where JA is the cost to minimize, ‖ · ‖ an appropriate matrix norm (e.g., the Frobenius
norm), and A(θ), x(θ), X(θ), c(θ), and C(θ) the K ×L spectral matrix, the reaction
variants, the K × R matrix of reaction variants, the concentrations, and the K × S
concentration matrix calculated from the dynamic model, respectively.

The second expression for JA was obtained by assuming rank (A) = A. Thus, C =
TPT and A = TPT E with T, P being full-rank matrices of dimension K×A and S×A,
respectively. Therefore, A(θ) = C(θ)E = C(θ)C+(θ)A = T (PTP) (T+T)PTE =
A. This way, (5.33) minimizes the projection error of A on the column space of C by
optimizing the reaction rate parameters θ.

The solution to the optimization problem is θ̂ with the corresponding estimate Ĉ =
Ĉ(θ̂). Thus, Ć is implicitly estimated.

For Approach M2, the following cost function is minimized with respect to θ:

JH ≡ ‖H − H(θ)‖ = ‖ [
IK − X(θ)X+(θ)

]
H‖ (5.34)

subject to the same constraints as in (5.33), where H(θ) is the K × L RV-spectral
matrix estimated from the dynamic model. Note that (5.34) minimizes the projection
error of H on the column space of X by optimizing the reaction rate parameters θ. The
solution to this optimization problem is θ̂ with the corresponding estimate X̂ = X̂(θ̂).
Thus, an estimate of Xr is obtained as X̂r = X̂ with Kr = K.

Note that no theoretical advantage of one of the proposed approaches over the other
can be stated.

Example 2.2f (Parameter estimation of a reversible reaction; cont’d from
page 18)
The esterification reaction described in Example 2.2a (R = 2, S = 4, i.e., the catalyst
X5 does not absorb) is conducted isothermally in semibatch mode with ethanol X1 being
fed with the volumetric flowrate qin shown in Figure 5.7a. The mixture initially placed
in the reactor has concentrations c�

0 = [2.90, 14.20, 0, 0]T M and volume V0 = 0.5 l.
The first spectrum a0 is taken at time t0 after a 10-minute heating-up phase with
corresponding concentrations c0 = [2.65, 13.95, 0.25, 0.25]T M. Figure 5.9 depicts the
pure-component spectra of all absorbing species (L = 101) which are used to construct
A (K = 100). Gaussian noise with standard deviation 0.041 is added to A. The
evolution of the noisy Ã is illustrated in Figure 5.7b.
For the estimation of C, it is assumed that (i) the reaction kinetics follow the power law,
i.e., the reaction rate is given by r = κ1 c1 c2 −κ2 c3 c4, (ii) the density is constant, and
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Figure 5.7. Example 2.2f: (a) The inlet volumetric flowrate qin, and (b) the time-evolving
spectra (first spectrum indicated by dashed line; every second spectrum shown).
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(iii) c�
0 is known. In addition to the parameters κ1 and κ2, the initial concentration of

water (X4) at time t0 will be estimated (θ := [κ1, κ2, c0,4]T). The initial concentrations
of the remaining species are computed from (4.29) and (4.30), where the measured
species correspond to the estimated water concentration (z = 0, since the flowrate is
assumed to be zero during the heating-up phase).
θ is estimated by solving the nonlinear regression problem (5.33) with ‖ · ‖ being the
Frobenius norm. Table 5.5 lists the simulated (true) values θt, the initial guesses θ0,
and the optimal estimates θ̂. The difference between the true values and the optimal
estimates can be attributed to noise. Figure 5.8 shows that the concentrations are
correctly estimated (no visible difference).

5.3.2.4 Rotation — use of final conditions

This subsection discusses the estimation of Ć (or Xr) from certain conditions that
result from the knowledge of the reaction type (reversible or irreversible).

Problem formulation

If explicit expressions for the reaction rates are not available, then so-called “model-
free” FA methods must be used for the resolution of C. Here, rotation for (i) a set of
irreversible reactions with the presence of limiting species, and (ii) a set of reversible re-
actions is studied. It will be shown that for such reaction types, the rotational problem
can be solved without the knowledge of explicit expressions for the kinetic structure.
Saurina et al. (1998) and Izquierdo-Ridorsa et al. (1997) considered special cases of a
set of irreversible first-order and reversible reactions, respectively. Furthermore, they
used an iterative approach based on alternating regression (AR; see Appendix C.3.2.4).

Here, techniques will be proposed that estimate C for a general set of irreversible
or reversible reactions. For irreversible reactions, the solution will be obtained non-
iteratively. The proposed techniques rely on the estimation of the concentration or the
reaction variants at those time instants for which (i) all the R independent irreversible
reactions have disappeared due to the presence of limiting reactants, or (ii) all the R
independent reversible reactions have reached equilibrium. The corresponding condi-
tions are termed final conditions. Several experiments will be conducted for which the
final concentrations (or reaction variants) are appended to form Ć (or Xr).

For reaction types i or ii, the reaction rates ri(t) converge asymptotically to 0 for
t → ∞ for all R independent reactions. In practice, due to noise, it is assumed that

Table 5.5. The true values θt, the initial guesses θ0 for the nonlinear regression prob-
lem (5.33), and the estimates θ̂ for Example 2.2f.

Parameter θt θ0 θ̂

κ1 [M−1 h−1] 0.0300 0.0800 0.0305

κ2 [M−1 h−1] 0.0100 0.0010 0.0129

c4,0 [M] 0.1924 0 0.1306
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the reaction rate rb(t) of Reaction b is negligible for t ≥ t́b, when rb(t) is less than or
equal to a given limit rb:

rb(t) ≤ rb, ∀t ∈ [t́b, tK ], (5.35)

where tK corresponds to the time instant of the final observation K. The aim of Sub-
sections 5.3.2.4 and 5.3.2.4 is to provide conditions and algorithms for the estimation
of Ć (or Xr).

Irreversible reaction systems

Let Assumptions A1–12 in Appendix D be verified. Furthermore, it is assumed that (i)
rank (Xe) = R + p + 1, and (ii) a set of R independent irreversible reactions is present
(Knowledge K4). From the latter assumption follows that, in the absence of feeding
after a certain time instant, if the consumption of a reactant Xj is greater than its
production rate, the concentration cj and the consumption rates of the corresponding
reaction rates ri become asymptotically zero:

lim
t→∞

cj(t) = 0, lim
cj→0

ri(c1, . . . , cj, . . . , cS) = 0 for i = {s | j ∈ Irs}. (5.36)

B experiments are conducted. Let Rb denote the subset of the R reactions that are
present in the bth experiment and, similarly, Sb the subset of the S species. Let t́b denote
the time instant for which all Rb reactions of the bth experiment have (asymptotically)
terminated, and ćb the corresponding (final) concentrations. The initial and inlet
concentrations of the m experiments are appended to give Cx.

Let Ax ≡ rank (Cx) and A ≡ rank (Ar). From rank (E) = S, rank (Xe) = R+p+1, and
Ne = RCr, it follows that rank (A) = rank (Ne) = A. Thus, for the calibration pair
{Ar,Cr}, (A−Ax) final conditions are required that satisfy Ne = RCr. Alternatively,
for the calibration pair {Hr,Dr}, R final conditions are required.

Next, a guideline for the choice of the calibration pair {Ar,Cr} or {Hr,Dr} is pro-
vided:

(a) If Ax > A − R, then calibration based on the pair {Ar,Cr} is preferred, since
only (A − Ax) < R final conditions are required (Ć with Ḱ = A − Ax).

(b) If Ax < A − R, then calibration based on the pair {Hr,Dr} is preferred, since
only R < (A − Ax) final conditions are required (Xr with Kr = R).

(c) If Ax = A − R, then calibration based on either {Ar,Cr} or {Hr,Dr} can be
selected, since both calibration sets require R final conditions.

For the estimation of the final condition ćb of the bth experiment, the following proce-
dure is proposed:

(S1) Choose the experimental conditions in such a way that the Rb reactions (asymp-
totically) terminate at distinct time instants in the time interval [t0,b, tK,b]. This
can be checked a posteriori by the following algorithm:

(a) Determine Rb using (5.31): Rb = rank (Hb), where Hb is the RV-spectral
matrix for the bth experiment.



128 Reaction and flow variants/invariants in the factorization of spectral data

(b) Determine the termination instants of individual reactions by applying EFA
backward in time on pre-treated submatrices of Hb. The approximate-rank
is estimated using the methods described in Appendix C.4.1.2.

(c) If Rb local approximate-rank reductions are observed, then the assumption
of termination at distinct time instants is verified.

(P2) Termination of the reactions at distinct time instants guarantees that Rb reactants
run out at distinct time instants. Thus, the Rb-dimensional concentration vector
ćm,b will be zero at the final instant t́b: ćm,b = 0Rb

. Let assume, without loss
of the generality, that the first Rb species are the limiting species. Then, the
concentrations of the remaining (Sb−Rb) species, ću,b, are estimated from (4.29):

ˆ́cu,b =
λ́b

V́b

[
NT

u
ˆ́xb + Cb

in,uźb + V b
0 cb

u,0

]
, ˆ́xb = N+T

m

(−Cb
in,mźb − V b

0 cb
m,0

)
,

(5.37)

where the subscripts b, m, and u denote quantities related to the bth experiment,

the Rb reactants, and (Sb−Rb) remaining species, respectively. Thus, ćb =
[

ćm,b

ću,b

]
.

The following remarks are in order:

• If a reactant is known to be responsible for the termination of two or more
reactions in the B experiments, then its concentrations can be predicted for
all K observations without explicit expressions for the kinetic structure (partial
resolution). However, for the concentration estimation of the remaining species,
explicit expressions for the kinetic structure are required.

• The choice of Cx is important to guarantee the space-inclusion condition in
Proposition 5.21, since it is present in Cr and, furthermore, it indirectly in-
fluences Ć and Xr.

• The identity of the limiting reactant responsible for the termination of a par-
ticular reaction of an experiment may be unknown. However, the identity of
the limiting reactants responsible for the termination of all the reactions of an
experiment must be determined from chemical insight (Knowledge K5), since lo-
cal (approximate-)rank reductions can have several reasons (for a non-exhaustive
list, see Appendix G.1).

Example 2.4g (Limiting reactant X2 in irreversible reactions; cont’d from
page 12)
Consider the irreversible parallel reaction system (2.8) (R = 2). Assume power-law
kinetics, i.e., r1 = κ1c1 c2 and r2 = κ2c

2
1. Furthermore, it is assumed that all four

species absorb (S = 4).
Two batch runs are conducted (B = 2). The first batch run is conducted with c0,1 =
[3, 0, 0, 0]T M and V0,1 = 0.5 l, where c0,1 was chosen such that only the second
reaction (2X1 → X4) is activated. The second run corresponds to that presented in
Example 2.4f in Appendix G.1.2. Thus, Cx = [ 3 0 0 0

3 0.8 0 0 ]. Figure 5.10 presents the
concentrations and RV-concentrationsof the first batch run for K = 200 observations.
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Figure 5.10. (a) The concentrations c1, and (b) the RV-concentrationsd1 of the first batch
run in Example 2.4g. See Figure 4.12 on page 86 for legend of the species.
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in Example 2.4g. (–) true, (– –) estimated using {Ar,Cr}. See Figure 4.12 on page 86 for
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Figure 5.12. The concentrations of: (a) the first batch run, and (b) the second batch run
in Example 2.4g. (–) true, (– –) estimated using {Hr,Dr}. See Figure 4.12 on page 86
for legend of the species.

Uniform noise in the range [-0.0039, 0.0039] is added to A1. The matrix Ã2 is noisy as
well (see Example 2.4f. Ã =

[
Ã1

Ã2

]
.

From R = 2, Ax = rank (Cx) = 2, and A = rank (Ar) = 4, it follows that Ax =
A − R = 2. Thus, calibration based on either {Ar,Cr} or {Hr,Dr} can be selected,
since both calibration sets require R = 2 final conditions.
From EFA backward in time applied to the column-mean-centered H̃1 (not shown), it
can be concluded that the second reaction (the only reaction in this run) terminates
after about 11.5 h (R1 = 1). Furthermore, it was already shown in Example 2.4f that
the two reactions in the second batch run terminate at distinct time instants (R2 = 2).
Thus, the concentrations of Species X1 and X2 at the final observations of both batch
runs are known to be zero. Therefore, Xr can be estimated with

Dr,m =

[
−V 1

0 c1
1,0 0

−V 2
0 c2

1,0 −V 2
0 c2

2,0

]
and Nm =

[
−1 −1
−2 0

]

as X̂r = Dr,m N+
m =

[
0 0.5 V 1

0 c1
1,0

0.5 V 2
0 c2

2,0 0.5 V 2
0 (c2

1,0 − c2
2,0)

]
.

(5.38)

Cr is estimated as Ĉr =
[

Cx,m Cx,u

Cm Ĉu

]
, where Cm = 02×2 and Cu estimated from (5.37).

Ĉ predicted from the calibration models based on {Ar,Cr} and {Hr,Dr} are shown in
Figures 5.11 and 5.12, respectively. In contrast to the prediction from the calibration
model based on {Ar,Cr}, the concentrations are correctly predicted from the calibra-
tion model based on {Hr,Dr}. The reason for this difference was already stated in
Subsection 5.3.1.5: Since the terms related to the reaction-invariant part are known
perfectly, the noise is restricted to a lower-dimensional space (here, 2-dimensional),
which results in much better performance with {Hr,Dr}.
Figure 5.12 shows that the estimated concentrations for Species X1 exhibit a small
offset from the true value. This offset is due to the incorrect assumption in Cr that
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X1 is not completely consumed at the end of the batch runs and, thus, the assumption
that the concentration is perfectly 0 is not verified.
In summary, for the resolution of the concentrations of all four species, B = 2 exper-
imental runs were required. Furthermore, by appropriate choice of the experimental
concentration matrix Cx, it was possible to activate only the second reaction in the
first batch run. This way, rank (Cr) = S and rank (Xr) = R are satisfied and, thus,
also the space-inclusion conditions.

Reversible reaction systems

Let Assumptions A1–12 in Appendix D be verified. Furthermore, it is assumed that
a set of R independent reversible reactions is present (Knowledge K4). Then, in the
absence of feeding after a certain time instant, reversible Reaction b reaches equilibrium,
if the production and consumption rates (summarized in rb) corresponding to this
reaction become (nearly) equal or, equivalently, rb becomes negligible. An approach
based on the calibration pair {Hr,Dr} will be proposed next.

Let B be the number of experiments conducted. Let Hr (B × L) and Xr (B × R)
denote the matrices containing the L-dimensional RV-spectral vectors, h́b, and the
R-dimensional reaction-variant vector, x́b, for each experiment b after all reactions
have (asymptotically) reached equilibrium at k ≥ ḱb. Let ćb denote the S-dimensional
concentration vector of the bth experiment at equilibrium, and Hb the RV-spectral
matrix of the bth experiment.

Let Assumptions A1–12 in Appendix D be verified and N be known. Furthermore, it
is assumed that the structure of the mass action laws (2.60) of all reactions are known
but with unknown equilibrium constants K.

A procedure that is based on the two-step FA-approach is proposed for the estimation
of Xr. In the first step of FA (see also Appendix C.3), the abstract matrices Xa (K×R)
and Θa (R × L) of X and Θ, respectively, are computed from H using PCA:

H = Xa Θa. (5.39)

In the second step of FA, an R × R rotation matrix R is estimated so as to estimate
the physically-meaningful quantities X and Θ = NE:

X̂ = XaR, Θ̂ = R−1Θa, (5.40)

where X̂ and Θ̂ are the estimates of X and Θ, respectively.

The following procedure for the estimation of Xr is proposed:

(S1) Conduct B ≥ (R + 1) experiments where the reaction invariants of each exper-
iment are so chosen that (i) all reactions are in equilibrium at the end of the
experiment, and (ii) rank (Hr) = R. The first condition can be checked e.g. by
computing the approximate-rank of a column-mean-centered submatrix of Hb for
the R last observations2.

(S2) From (2.60):

ki(ćb) = Ki, ∀i = 1, . . . , R, b = 1, . . . , B. (5.41)

2All reactions are in equilibrium when the approximate-rank is zero.
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Since Ki is constant (i = 1, . . . , R), it is the same for all experiments. Thus, the
following set of R (B − 1) equations can be derived:

kj(ć1) = kj(ćb), ∀j = 1, . . . , R, i = 2, . . . , B. (5.42)

(S3) Compose H by appending all Hb. Compute the abstract space Xa from (5.39).

Select from Xa those rows, ˆ́xa,b, that correspond to ḱb (b = 1, . . . , B). Thus,
from (5.40),

ˆ́x
T

b = x́T

a,b R, i = 1, . . . , B. (5.43)

Express ćb in (5.42) as a function of the (unknown) rotation matrix R using (4.3):

kj(x́
T

a,1 R) = kj(x́
T

a,b R), ∀i = 1, . . . , R, b = 2, . . . , B. (5.44)

(S4) Solve (5.44) for R, leading to an estimate of Xr.

Note that at least (R + 1) experiments must be conducted, since all R2 elements of R
are unknown and R (B − 1) equations are available:

R (B − 1) ≥ R2 ⇒ B ≥ R + 1. (5.45)

Furthermore, in Subsection 5.3.2.4, it was required that the irreversible reactions ter-
minate at distinct time instants. Here, the reversible reactions are not required to
reach equilibrium at distinct time instants.

(5.42) represents a set of nonlinear algebraic equations that may contain multiple so-
lutions (Press et al., 1994). In such a case, prior knowledge such as non-negativity
of the estimated concentrations Ĉ (Knowledge K1) may be needed to help select the
physically-meaningful solution.

An alternative approach is the following: By performing B1 experiments in addition
to the minimum required number (R + 1),

(
B

R+1

)
sets of algebraic equations (5.42) can

be generated, with B = (R + 1 + B1), and each has a solution set. The intersection
of all the solution sets contains the true physical solution. It is hoped that, by this
approach, the intersection set becomes smaller with increasing B and, thus, selection
of the true physical solution becomes easier.

Example 2.2h (Esterification; cont’d from page 18)
It is assumed that all reacting species absorb except for the sulfuric acid and, thus,
S = 4 (R = 1). Two batch runs are conducted with c0,1 = [3, 14, 0, 0]T M and
V0,1 = 0.5 l and c0,2 = [14, 2, 0, 0]T M and V0,2 = 0.8 l, respectively. Figure 5.13
presents the concentrations of both batch runs for K = 100 observations (solid curves).
Gaussian noise is added to A1 and A2 with standard deviations 0.038 and 0.042,
respectively.
Following the procedure presented above:

(a) B = (R + 1) = 2 experiments are conducted. From the approximate-rank of the
column-mean centered submatrix of H̃b for the 8 last observations (b = 1, 2), it is
confirmed that equilibrium is reached at the end of each experiment: t́1 = t́2 = 2 h.
The final RV-spectral vectors ´̃hb of each experiment is selected from H̃b, and
appended to Hr. The condition prank (Hr) = R is verified.
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Figure 5.13. The concentrations of: (a) the first batch run, and (b) the second batch run
in Example 2.2h. (–) true, (– –) estimated. See Figure 5.8 on page 125 for legend of the
species.

(b) The mass-action law for the esterification reaction at equilibrium reads:

K =
ć3,b ć4,b

ć1,b ć2,b
, b = 1, 2, (5.46)

where ḱb = 100 for b = 1, 2. Since the (unknown) value of K is constant, the
following equation (R (B − 1) = 1) can be derived:

ć3,1 ć4,1

ć1,1 ć2,1
=

ć3,2 ć4,2

ć1,2 ć2,2
. (5.47)

(c) H̃ =
[

H̃1

H̃2

]
. The 200 × 1 matrix Xa is obtained from PCA of H̃ by retaining

the first factor (R = 1). The 100th and 200th element (row) of Xa is selected
where the first and second batch are (approximately) at equilibrium, respectively:
x́a,1 = x100

a , x́a,2 = x200
a .

Since R = 1, the rotation matrix R = R is a scalar. Thus, with ˆ́xb = R x́, b
(b = 1, 2),

ˆ́cb = NT ˆ́xb/V0,b + c0,b = RNTx́, b/V0,b + c0,b, b = 1, 2. (5.48)

Substituting (5.48) in (5.47), an equation for the unknown rotation scalar R is
obtained.

(d) The initial estimate of R is set to 5. (5.47) is solved for R under non-negativity
constraints for the estimated concentrations. R̂ = 1.21 and X̂r = [1.309, 1.490]T

are obtained, which are in good agreement with the true values R = 1.17 and
Xr = [1.39, 1.52]T, respectively.

The concentration profiles of both batch runs are estimated correctly as shown in
Figure 5.13 (dotted lines).



134 Reaction and flow variants/invariants in the factorization of spectral data

5.4 Extensions

In Section 5.1, the factorization of spectral data (5.3) and (5.5) were derived under the
assumption that all species both react and absorb. In the following two subsections,
this assumption will be relaxed, and the presence of non-absorbing reacting species
and non-reacting absorbing species will be considered. Furthermore, the assumption
of linearly-independent pure-component spectra will be relaxed, and the factorization
of spectral data extended by temperature/calorimetric measurements will be studied.

5.4.1 Non-absorbing reacting species

There are two main reasons why not all reacting species may absorb:

(R1) By physics: Some reacting species do not absorb in the spectral regions of in-
terest. This happens, for example, for solid-liquid reactions, where the spectrum
of only those reacting species are measured that are in the liquid phase (using
e.g. an attenuated-total-reflection probe, ATR). An example for solid-liquid reac-
tions is a biotechnological process involving a Saccharomyces cerevisiae culture
(Cannizzaro, 1998). This process was followed by an ATR FTIR probe. The
non-absorbing reacting species is the (solid) biomass, while ethanol, glucose, and
sugars are the species that both react and absorb.

(R2) By purpose: In calibration or factor analysis, it is sometimes useful to select
spectral regions of interest using the channel selection method proposed in Sub-
section 5.2.2.3.

Let Sr be the total number of reacting species, Sra the number of reacting and absorbing
species, and Srn the number of non-absorbing reacting species with Sr ≡ Sra + Srn.
Furthermore, let R be the total number of independent reactions.

The number of absorbing species S is redefined as S := Sra, and the S × L pure-
component matrix as

E := Era, (5.49)

where the subscript (·)ra denotes quantities related to the Sra species. Then, the K×Sr

matrices Dr and Cr corresponding to the Sr reacting species can be partitioned as
follows:

Dr =
[

Dra Drn

]
, Cr =

[
Cra Crn

]
, (5.50)

where the subscript rn denotes quantities related to the Srn species. Such a partitioning
implies for Nr (R × S) and Ne,r (R + p + 1 × S):

Nr =
[

Nra Nrn

]
, Ne,r =

[
Ne,ra Ne,rn

]
=

[
Nra Nrn

Cx,ra Cx,rn

]
. (5.51)

The (redefined) K × S concentration matrices D and C corresponding to the S ab-
sorbing species are related to Dr and Cr through an Sr × S matrix Pra.

D := DrPra = Dra, C := CrPra = Cra, Pra ≡
[

ISra

0Srn×Sra

]
. (5.52)
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Similarly,

N := NrPra = Nra, Ne := Ne,rPra = Ne,ra =

[
Nra

Cx,ra

]
, (5.53)

where N and Ne are matrices of dimension R × S and (R + p + 1) × S, respectively.
X and Xe are defined as usual.

Since non-absorbing reacting species correspond to the case of unmeasured species in
Subsection 4.1.4, all the results in Subsection 4.2 corresponding to the rank of Cm

and Dm apply directly to the concentration matrices Cra and Dra corresponding to
A and H with the following redefinitions, respectively: Cm := Cra, Dm := Dra, and
Sm := Sra.

5.4.2 Non-reacting absorbing species

In many practical applications, reactions are catalyzed and/or conducted in a mixture
of solvents. Catalysts and solvents may absorb in the spectral regions of interest. In
such cases, they represent non-reacting absorbing species.

Let Sna be the number of non-reacting absorbing species. The number of absorbing
species S is redefined as S := Sr + Sna (Sra = Sr), and the S × L pure-component
matrix as

E :=

[
E

Ena

]
, (5.54)

where the subscript na denotes quantities related to the Sna species.

Since the Sna non-reacting species do not react by definition,

N :=
[

N 0R×Sna

]
, (5.55)

where the stoichiometric matrix N is augmented by a R × Sna zero-matrix. Thus, the
K × S RV-concentration matrix D and the concentration matrix C corresponding to
the S absorbing species are redefined as

D :=
[

D 0K×Sna

]
, C :=

[
C Cna

]
, (5.56)

with

Ne :=

[
N 0R×Sna

Cx Cx,na

]
, Cx :=

[
Cx Cx,na

]
, (5.57)

where the redefined (p + 1) × S experimental concentration matrix Cx contains the
experimental concentrations of both the Sr reacting absorbing and the Sna non-reacting
absorbing species. X and Xe are defined as usual.
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5.4.3 Linearly-dependent pure-component spectra

In the spectral regions of interest, the pure-component spectra of some of the species
might be similar or identical to a linear combination of the remaining species. Thus,
some of the species have linearly-dependent pure-component spectra. This phenomenon
is usually known under spectral overlap (Tauler et al., 1995).

Let Sta be the total number of absorbing species, and Sd the number of absorbing
species for which the pure-component spectra are linearly dependent on those of the
remaining Sid absorbing species with Sta = Sid + Sd. S is redefined as the number of
independently absorbing species S := Sid, and the S × L pure-component matrix as

E := Eid, (5.58)

where the subscript id denotes quantities related to the Sid species. Assuming that the
first Sid rows of the Sta×L instrumental matrix, Eta, correspond to the pure-component
spectra of the Sid species, it follows:

Eta ≡
[
Eid

Ed

]
= PEE, PE ≡

[
ISid

ΓE

]
, (5.59)

where PE is an Sta × S matrix, and the subscripts ta and d denote quantities related
to the Sta and Sd species, respectively.

Since H = DtaEta = (DtaPE)E and A = CtaEta = (CtaPE)E,

D := DtaPE, N := NtaPE,

C := CtaPE, Ne := Ne,taPE, Cx := Cx,taPE.
(5.60)

Comparing the redefinitions of D (or C) in (5.60) with that in (5.52), it can be seen
that Dta and Dr (or Cta and Cr) are multiplied from the right by the matrices PE

and Pra, respectively. Thus, also in the case of linearly-dependent pure-component
spectra, the number of independent reactions observed by D (or C) may be less than
the total number of independent reactions. Therefore, all the results in Subsection 4.2.1
corresponding to the rank of Cm and Dm apply directly to the concentration matrices
Cra and Dra corresponding to A and H with the following redefinitions, respectively:
Cm := CtaPE, Dm := DtaPE, and Sm := Sid.

5.4.4 Factorization of extended spectral data

Based on the factorization of extended concentration data derived in Subsection 4.4.5,
the factorization of spectral data encompassing temperature/calorimetric measure-
ments are derived. It is assumed that E is of full rank S and independent of tem-
perature.

Appending the additional data vectors T† and dT to the spectral and RV-spectral
matrices, respectively, leads to:

AT ≡
[

A T†
]

= Xe,T Ne,T ET , (5.61)
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HT ≡
[

H dT

]
= XNT ET , (5.62)

where AT and HT are K×(L+1) spectral matrices, Xe,T and Ne,T as defined in (4.45),
and NT as defined in Subsection 2.3.4, and ET the (S + 1) × (L + 1) pure-component
spectra matrix defined as

ET ≡
[

E 0S

0T

L 1

]
. (5.63)

(5.63) shows that the (S + 1)st pure-component spectrum is modeled as a species that
has a unity absorbance at a single channel number distinct from the L channels of the
remaining S absorbing species.

5.5 Summary

Spectral data from reacting mixtures were studied from the perspective of the factor-
ization of concentration data developed in the previous chapter. Based on this insight,
new results for both calibration and FA for the purpose of estimating/predicting con-
centrations from spectral data were obtained.

The rotation step in FA was formulated as a calibration problem. To account for the
lack of calibration concentration measurements in FA, explicit or implicit knowledge
about the kinetic structure was used.

The goals of calibration and stoichiometric modeling using TFA can now be compared.
In calibration, the objective is to collect calibration data in which new data can fit,
while in TFA, the objective is to collect data that provide the best discrimination power
for proposed targets. This leads to nullity-change operations in opposite directions: in
calibration, it is aimed at reducing the nullity of the spectral calibration data (or of
the underlying concentration matrix). In TFA, however, it is aimed at increasing the
nullity of the concentration data.

As far as data pre-treatment to reaction-variant form is concerned, a calibration model
based on pre-treated data predicts the reaction variants from a new spectrum, while
in TFA, targets can be discriminated directly on the pre-treated data with the goal of
identifying the reaction-variant space.

The results obtained under the assumption that all species both react and absorb
were extended to the situations characterized by the presence of non-absorbing react-
ing species, non-reacting absorbing species, and linearly-independent pure-component
spectra. Furthermore, the factorization of spectral data were extended to include temp-
erature/calorimetric measurements (extended spectral data). This way, the results
obtained for extended concentration data are directly applicable to extended spectral
data.
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Final remarks and outlook

6.1 Main theoretical results and their significance

Motivated by the industrial needs to estimate concentrations and identify reaction
pathways without the knowledge of kinetics, a nonlinear transformation was proposed
to bring the dynamic model of homogeneous reaction systems to normal form (dynamic
model in normal form). As a result, the concept of reaction and flow variants/invariants
enables the segregation of the state evolution (concentrations, volume, temperature)
into three parts: (i) the part related to the reactions (reaction variants), (ii) the part
related to flows such as inlet and outlet streams and external heat flow (reaction in-
variants and flow variants), and (iii) the part related to the initial conditions (reaction
and flow invariants).

As a direct consequence of this segregation, novel factorizations for measured concen-
tration, temperature, and spectral data were derived. Data pre-treatment to reaction-
variant form was proposed to remove the direct contribution of the (usually known)
initial conditions and inlet streams (i.e., the reaction-invariant part) from measured
concentration and spectral data. This way, the reaction-variant part, which is related
to the underlying reactions to be studied, can be extracted (factorizations of data in
reaction-variant form). For spectral data, the proposed data pre-treatment is generic,
since it does not involve the knowledge of the (unknown) concentrations.

Table 6.1 summarizes the practical problems addressed in this dissertation, the tools
used to solve them, and the corresponding practical implications. Also, the benefits to
the chemist/engineer in the laboratory (academia, vendors, industry) and production
(industry) are provided.

The main results of Chapters 3–5 are now analyzed with respect to their practical
importance.

Transformation to normal form

The concept of reaction variants/invariants has been around for nearly 25 years. A
linear transformation enables the separation of reaction variants and invariants. When
the latter remain constant, they can be eliminated from the dynamic model, and only
R differential equations remain to be integrated. Unfortunately, this straightforward
situation holds only for batch reactors, since the presence of inlet and outlet streams
affects the reaction invariants. Thus, the system evolves due to the reactions and flows
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in a larger space. A major contribution of this work has been to introduce a nonlinear
transformation that enables to single out the reaction and flow variants, i.e., those
terms that remain constant and can be dropped from the dynamic model. It is this
transformation that enables the analysis of concentration and spectral data (discussed
next) through appropriate factorizations.

Factorization of concentration data

The analysis of a reaction system (investigation of reaction network and kinetics) is
often based on measured concentration that, typically, depend on both reactions and
flows. Fortunately, these dependencies can be separated using the transformation to
normal form, and the following very important linear relationship results, C = XeNe.
This way, the measured concentration data is factorized into Xe (which contains dy-
namic information related to the reaction variants, the reaction invariants and flow
variants, and the reaction and flow invariants) and Ne (the extended stoichiometric
matrix that contains only structural information, N,Cin and c0).

When the reaction variants are known, which is often the case, the concentration
data can be pre-treated to reaction-variant form for analysis, D = XN, where X is
the matrix of reaction variants. Thus, it becomes straightforward to identify reaction
stoichiometries using TFA.

If pre-treatment to reaction-variant form cannot be obtained (e.g., because the flowrates
are unknown), then one must work with the measured concentrations C directly. The
applicability of TFA is a bit more tricky, and only necessary conditions for the accep-
tance of proposed targets have been available. A side but important result of this work
has been the generation of necessary and sufficient conditions for the acceptance of
targets using some reaction-invariant relationships. Furthermore, the important case
of unmeasured species (i.e., when not all the reacting species are measured) has been
solved satisfactorily.

Factorization of spectral data

The estimation of concentrations from spectral measurements has become increasingly
important in industry. This work has brought the natural factorization of spectral
data, A = CE, to the reaction-variant form H = XE, which is ideally suited for the
analysis of reaction systems.

Most of the published work regarding the estimation of concentrations is limited to
spectral data matrices of rank S (full-rank). However, in the case of reacting mixtures,
the spectral data matrix is very often rank deficient, and the available results do not
apply. This work has recognized this problem and proposed useful techniques for
solving it (e.g., experimental rank augmentation, channel selection).

For the estimation of concentrations from spectral measurements, multivariate calibra-
tion is the method of choice. It, however, requires that a new spectrum lies in the
space spanned by the calibration spectral data (space-inclusion condition). This work
proposed a priori conditions that must be fulfilled by the calibration data in order
to meet the space-inclusion requirement. In reaction-variant form, these conditions
reduce very simply e.g. to the requirement that the reaction system is the same for
both the calibration and the new runs.
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Often in practice, there are too few or even no measurements for calibration purposes.
Multivariate curve-resolution techniques can then be used to compute C from A (e.g.,
FA techniques and additional information to resolve the rotational and intensity am-
biguities that are typical of FA). However, this approach requires rank (A) = S, which
often does not hold for reacting mixtures. For this particular situation, this work
proposed to use partial kinetic information to resolve the ambiguities. For instance,
given the measured (rank-deficient) spectral matrix A, the stoichiometry and the ki-
netic model with the unknown parameters θ, an optimization approach can solve for θ
and, consequently, also for C. When explicit expressions for the reaction rates are not
available, the ambiguities can be solved using implicit knowledge of the type of reac-
tions (e.g., all reactions reversible or irreversible). The proposed techniques rely on the
estimation of the reaction variants at those time instants for which all the reversible re-
actions have reached equilibrium, or all the irreversible reactions have disappeared due
to the presence of limiting reactants. A guideline for an experimental plan for several
experiments was proposed that must be conducted and for which the final conditions
are used to compute the reaction variants.

6.2 Experimental results

Various tools were successfully tested in the laboratories of Lonza Ltd., Visp, Switzer-
land, and the Chemical Department of the Engineering School of Wallis (ISW) in
Sitten, Switzerland. Amrhein et al. (1998) illustrated the versatility of the proposed
calibration methods by the calibration of water concentration with absorbance data
(near-infrared (NIR) and mid-infrared (MIR)) for the esterification reaction described
by (2.6) and conducted in the laboratories of Lonza. For the same reaction system,
the yield of the ester was optimized on-line based on concentration estimates from
NIR measurements (calibration model obtained from FA) and a kinetic model directly
fitted on NIR measurements using FA (Perspektive, 1997; Amrhein et al., 1997). For
a diketene reaction conducted in semibatch mode in the laboratories of Lonza, the ef-
fect of various catalysts and temperature levels were analyzed by fitting kinetic models
on MIR spectral measurements (unpublished for proprietary reasons). For a parallel
reaction involving styrene and n-butane (2.8) conducted in semibatch mode in the lab-
oratories of ISW, the yield of 1-phenyl-1-butoxyethan was optimized on-line using the
same methodology as mentioned for the esterification reaction (yet unpublished). In
addition, reaction system (2.8) was feedback linearized.

6.3 Outlook

Although this work presented several solutions to the problem of the efficient use
of concentration and spectral data for the study of reaction systems, there remain
numerous important problems whose solutions would help chemists and engineers in
their daily tasks.

This work proposed a nonlinear transformation for homogeneous reaction systems de-
scribed by ordinary differential equations. For inhomogeneous reaction systems, a
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species lives in one or several phases, and the mass exchange between the various
phases is usually explained by additional algebraic and/or differential equations. It
would be a challenging task for future work to extend the concept of reaction and flow
variants/invariants to such systems. Also, numerous reaction systems can be described
by partial differential equations (e.g., tubular reactors, fixed-bed reactors). For such
systems, Waller and Mäkilä (1981) proposed a transformation that separates the re-
action variants and invariants. If the transformed boundary conditions of the reaction
invariants are constant over the reactor length, the number of partial differential equa-
tions can usually be reduced. It would be interesting to be able to extend the results
obtained in this dissertation for lumped systems to distributed parameter systems.

Last but not least, most of the results regarding reaction data were developed for
the noise-free case, while the simulated examples were usually presented for noisy
concentration and spectral data. A rigorous statistical study to investigate the influence
of noise on the various techniques proposed constitutes an important future research
direction. Especially, the advantages and disadvantages of the data formulation in
reaction-variant form for the case of inaccurate knowledge of the reaction invariants
would be interesting to study. Also, the discrimination power of concentration and
spectral data for various stoichiometric targets and candidate kinetic models using
TFA and FA, respectively, would be worth a careful investigation.
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Appendices





A

Numerical values for the simulated
examples

A.1 Esterification of ethanol and acetic acid — Ex-

amples 2.2

Table A.1 lists the numerical values of the molecular weights, the pure-component
densities and the reaction rate coefficients of Example 2.2.

Table A.2 lists the numerical values of the initial concentrations, the inlet concentra-
tions c0, the number of observations K, the initial volume V0, and the final batch time
tf of the simulated esterification reaction of Example 2.2.

A.2 Consecutive reactions — Example 2.13

The concentration vector of all the species is ct = [c1, c2, c3, c4, c5, c6]
T. The to-

tal mass density varies with concentration as ρ(ct) =
√

cT
t Mw ρ̄, where ρ̄ is the 6-

dimensional vector of pure-component mass densities. The numerical values of the
parameters are given in Table A.3.

Six different runs are generated. Table A.4 lists the numerical values of the initial
concentrations, the inlet concentrations c0, the number of observations K, the initial

Table A.1. Parameter values for Example 2.2.

parameter value unit

{Mi} [46.08, 60.06, 88.12, 18.02, 98.08] g mol−1

{ρ̄i} [774, 1028, 876, 992, 1814] g l−1

[k1, k2] [0.03, 0.01] l mol−2 min−2
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Table A.2. Initial concentrations ct,0 [M], inlet concentrations cin [M], number of obser-
vations K, initial volume V0 [l], and final batch time tf [min] for the runs R1–R3 of
Example 2.2f.

ct,0 cin/c∆

Run K V0 tf X1 X2 X3 X4 X5 X1 X5

R1 100 0.5 120 2.9 14.2 0 0.23 0 16.15 0

R2 100 0.5 120 5 5 0 0 0.23 0 0

R3 100 0.5 120 2.9 14.2 0 0 0.23 0 0

Table A.3. Parameter values for the simulated consecutive reactions.

parameter value unit

{Mw,i} [50, 80, 20, 50, 15, 40] g mol−1

{ρ̄i} [867.5, 1357.6, 809.0, 912.8, 712.0, 789.2] g l−1

[κ1, κ11, κ2] [0.028, 0.280, 0.278] M−1 h−1

κ12 1.000 M−1
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volume V0, the final batch time tf , and the kinetic expression used for the first reaction
in Example A.2.

A.3 Consecutive reactions — Simulated example

on page 79

The numerical values of the parameters of the simulated example on page 79 are given
in Table A.5.

A.4 Parallel reactions — Examples 2.4

The numerical values for the kinetic parameter of the simulated parallel reactions in
the Examples 2.4b, d, e, and f are given in Table A.6.

Table A.4. Initial concentrations ct,0 [M], inlet concentrations cin [M], number of observa-
tions K, initial volume V0 [l], and final batch time tf [h] for the six runs R1–R6 of the
simulated consecutive reactions in Example A.2.

ct,0 cin/c∆

Run K V0 tf X1 X2 X3 X4 X6 X1 X4 Kinetics/Inlet

R1 85 10 7 13.73 0 0 0.86 3.22 4 0 r
(1)
1 /impulse

R2 85 10 7 13.73 0 0 0.86 3.22 0 0 r
(1)
1 /–

R3 61 15 5 13.49 2.41 0 0.96 1.20 0 0 r
(1)
1 /–

R4 85 10 7 13.73 0 0 0.86 3.22 8.55 8.55 r
(1)
1 /continuous

R5 73 10 7 8.41 0 0 1.68 8.41 16.15 0 r
(2)
1 /continuous

R6 73 10 7 8.94 1.12 8.94 0.71 3.58 16.15 0 r
(2)
1 /continuous
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Table A.5. Numerical values for the simulated reaction system on 79.

Parameter Value Unit

V0 1.5 l

{Mw,i} [50, 100, 75, 12.5] g mol−1

κ1,0, κ2,0 0.028, 0.278 M−1 h−1

E1, E2 1.5e-3, 2.0e-3 K

{αi} [0.3, 0.4, 0.05, 0.1] g l−1 K−2

{βi} [368, 371, 367, 372] K

{γi} [800, 1300, 900, 700] g l−1

Table A.6. Kinetic parameter values for the simulated parallel reactions.

Example κ1 [M−1 h−1] κ2 [h−1] κ3 [M−1 h−1]

2.4b on page 28 – 2.4 –

2.4d on page 87 0.24 0.3 2.4

2.4e on page 197 1.8 2.4 –

2.4f on page 200 0.09 0.02 –
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X1 + X2 � X3

2X1 → X4

Figure A.1. Parallel reaction system with styrene (X1). (a) 1-phenyl-1-butoxyethan (X3)
is produced in a hydration reaction from X1 and n-butanol (X2). (b) X1 dimerizes to
(trans)-1,3-diphenylbut-1-ene (X4) and its diastereoisomere, (cis)-1,3-diphenylbut-1-ene.
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Preliminaries on linear algebra

In this appendix, some preliminaries on linear algebra are provided. They include
definitions of the fundamental subspaces of a matrix (null, row, and column spaces;
their orthogonal complements), the corresponding dimensions and their relation to the
rank, properties of the rank, the numerical construction of the fundamental subspaces
by singular value decomposition, and the construction and properties of the pseudo-
inverse. The appendix concludes with a brief review of orthogonal projection and its
relation to the least-squares problem and the explicit construction of the null space.

B.1 Null, row, and column spaces, and their or-

thogonal complements

The following definitions hold for the fundamental subspaces of an m × n matrix Y,
involved in the linear transformation u = Y b:

(D1) Null space: The null space or kernel of Y is the set N (Y) of all solutions to
the homogeneous equation 0m = Y b. In set notation,

N (Y) = {b : b ∈ IRn and Y b = 0m.}
(D2) Row space: The row space of Y is the set Sr (Y) of all linear combinations of

the rows of Y. In set notation,

Sr (Y) = {b : u ∈ IRm and b = YT u.}
(D3) Column space: The column space or range or image of Y is the set Sc (Y) of

all linear combinations of the columns of Y. In set notation,

Sc (Y) = {u : b ∈ IRn and u = Y b.}

It is convenient to note that

if Y = XZ, then Sc (Y) ⊂ Sc (X) and Sr (Y) ⊂ Sr (Z) .

The set of all vectors υ that are orthogonal to the subspace W of IRn is called the
orthogonal complement of W and is denoted by W⊥. Then, the following relationships
between the orthogonal complements of the fundamental subspaces of Y hold (see Lay,
1994, p.339).
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Theorem B.1
The orthogonal complement of the row space of Y is the null space of Y, and the
orthogonal complement of the column space of Y is the null space of YT:

S⊥
r (Y) = N (Y) , S⊥

c (Y) = N (YT) .

It follows that

Sr (Y) = Sc (YT) and Sc (Y) = Sr (YT) .

Theorem B.1 is graphically illustrated in Figure B.1.

B.2 Rank and dimension

The mathematical rank of a matrix Y (denoted by rank (Y)) is the number of linearly-
independent rows and columns of Y.

In this section, the dimensions of the different fundamental subspaces related to the
rank and some properties of the rank is discussed.

B.2.1 Dimension

The dimensions of the fundamental subspaces of Y are related as shown next (see Lay,
1994, p.238).

Theorem B.2
The dimensions of the row and column space of Y are equal to the rank r of Y, i.e.,
dim (Sr (Y)) = dim (Sc (Y)) = rank (Y) = r, which also satisfies:

rank (Y) + dim (N (Y)) = n, rank (YT) + dim (N (YT)) = m. (B.1)

Y

0

IRn IRm

Sr (Y)

Sc (Y)N (Y)

N (YT)

Figure B.1. The fundamental subspaces of an m × n matrix Y involved in the linear
transformation u = Y b.
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Theorem B.2 uses the following property of the rank:

rank (Y) = rank (YT) (B.2)

(B.1) tells that the dimension of the null space or nullity of Y is given by the difference
between the number of columns of Y and its rank. Table B.1 lists the dimensions of
the different fundamental subspaces of Y.

B.2.2 Properties of the rank

Some properties of the rank are listed below. For the basics of rank, it is referred to
Magnus et al. (1988).

The rank of a matrix Y is at most the minimum of its dimension:

Property B.3 Let Y be an m × n matrix. Then,

rank (Y) ≤ min(m,n). (B.3)

Y is said rank deficient, if its rank is less than the minimum of its dimension, i.e.,
rank (Y) < min(m,n).

Property B.4 If Y can be decomposed into two matrices T (m × r) and P (n × r),
Y = TPT, then

rank (Y) ≤ min (rank (T) , rank (P)) . (B.4)

Linear dependency of either the rows or the columns of Y is closely linked to its rank. If
Y contains linearly-dependent rows or columns, it can be decomposed into two matrices
of full rank:

Property B.5 If the last (m − A) rows of Y are linearly dependent on the first A
ones, then Y can be decomposed into an m × A matrix T and an n × A matrix P:

Y = TPT with T =

⎡⎢⎣IA

T1

⎤⎥⎦ , (B.5)

where T1 is an (m − A) × A matrix. A similar property holds for the columns also.

Table B.1. Dimensions of the fundamental subspaces of the m×n matrix Y. rank (Y) = r.

Space IRn N (Y) Sr (Y) Sc (Y)

Dimension n n − r r r

Space IRm N (YT) Sc (YT) Sr (YT)

Dimension m m − r r r
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Column-mean centering of Y will be become important in factor analysis. If the
1m-vector lies in the column space of Y, then a rank drop of one can be observed.
Alternatively, a rank drop of one can be observed when Y is a wide matrix (m < n)
of full rank. Otherwise, column-mean centering does not cause a rank drop:

Property B.6 Let Ȳc = Jc Y be the column-mean-centered matrix of Y, where Jc ≡
Im − 1

m
1m1T

m is the m × m centering matrix. Then, the bounds on the rank of Ȳc are
given by

rank (Y) − 1 ≤ rank
(
Ȳc

) ≤ min(rank (Y) , m − 1). (B.6)

In addition, iff 1m ∈ Sc (Y), then

rank
(
Ȳc

)
= rank (Y) − 1; 1m ∈ Sc (Y) , (B.7)

else rank
(
Ȳc

)
= min(rank (Y) , m − 1). A similar property holds for row centering

also.

Proof:
Since Jc is an idempotent matrix, its rank is determined by the trace:

rank (Jc) = tr (Jc) = m − 1. (B.8)

Since Ȳc = Jc Y is expressed as a product of two matrices, by Property B.4,
rank

(
Ȳc

) ≤ min (rank (Y) , m − 1). Since the null space of Jc has dimension 1,
the dimension of the column space of Y can be reduced at most by one. Thus,
rank

(
Ȳc

) ≥ rank (Y) − 1. Since the basis for the null space of Jc is the vector 1m,
rank reduction is ensured if this vector 1m is in the column space of Y. Else, the rank
remains intact, only to be reduced if rank (Y) = m. �

It is shown below that regarding the rank, differentiation in observation direction is
similar to column-mean centering:

Property B.7 Let Ẏ denote the matrix differentiated in observation direction (in this
case, calculating the backward differences along the columns of Y). The bounds on the
ranks of Ẏ are given by

rank (Y) − 1 ≤ rank
(
Ẏ

)
≤ min (rank (Y) , m − 1) . (B.9)

In addition, iff 1m ∈ Sc (Y), then

rank
(
Ẏ

)
= rank (Y) − 1, (B.10)

else rank
(
Ẏ

)
= min (rank (Y) , m − 1). A similar property holds for finite differences

along the rows also.

Proof:
Since the first (m − 1) rows of Dc are linearly independent and the last row is 0T

m,
rank (Dc) = m − 1. Since Ẏ = Dc Y is expressed as a product of two matrices, by
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Property B.4, rank
(
Ẏ

)
≤ min (rank (Y) , m − 1). Since the null space of Dc has

dimension 1, the dimension of the column space of Y can be reduced at most by one.

Thus, rank
(
Ẏ

)
≥ rank (Y) − 1. It can be seen that the basis for the null space of

Dc is the vector 1m, since Dc 1m = 0m. So, rank reduction is ensured if 1m is in the
column space of Y. Else, the rank remains intact, only to be reduced if rank (Y) = m.

�

It is shown below that when 1m ∈ Sc (Y), subtracting the first row of matrix from all
the rows is similar regarding the rank to column-mean centering and differentiation in
observation direction:

Property B.8 Let Y0 be defined as:

Y0 ≡ Y − 1myT

0 , (B.11)

where y0 denotes the first row of Y. Iff 1m ∈ Sc (Y), then

rank (Y0) = rank (Y) − 1. (B.12)

Proof:
⇒: If 1m ∈ Sc (Y), then Y can be expressed as

Y =

[
Y† 1m

] ⎡⎢⎣U

yT
0

⎤⎥⎦ , Ys =

⎡⎢⎣0T

n

Y‡

⎤⎥⎦ , (B.13)

where Y†, Y‡, and U are matrices of dimension m × (n − 1), (m − 1) × (n − 1), and
(n − 1) × n, respectively, with 1m /∈ Sc

(
Y†) and y0 /∈ Sr (U). Thus, Y0 becomes

Y0 = Y†U. (B.14)

Thus, rank (Y0) = (n − 1). Since rank (Y) = n, rank (Y0) = rank (Y) − 1 follows.

⇐: Without loss of generality, Y can be decomposed as:

Y =

[
Y† β

] ⎡⎢⎣U

yT
0

⎤⎥⎦ , Ys =

⎡⎢⎣0T

n

Y‡

⎤⎥⎦ , (B.15)

where β is an m-dimensional vector. Assume that β 	= 1m and 1m /∈ Sc

(
Y†). Then,

from (B.11), Y0 becomes:

Y0 = Y†U + (β − 1m)yT

0 . (B.16)

Since 1m /∈ Sc

(
Y†) and y0 /∈ Sr (U) by construction, for rank (Y0) = rank (Y) − 1 to

hold, (β − 1m) must be 0m. This is contradicted by the initial assumption and, thus,
Property B.8 follows. �

In factor analysis and calibration, increasing the rank of Y plays an important role.
In many practical applications, the rank of a data matrix can be increased by one.
The corresponding rank-increasing matrix can be written as an outer product of two
vectors. If these vectors do not lie in the column or row space of Y, a rank increase of
one can be observed under certain mild assumptions:
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Property B.9 Let Y be an m × n matrix of rank A that can be decomposed into two
matrices T (m × A) and P (n × A), Y = TPT, with T and P being matrices of full
rank. Let U be a matrix constructed as: U = Y + αyT

ref . If yref and α do not lie in
the column space of P and T, respectively, then

rank (U) = min(rank (Y) + 1, m, n); yref /∈ Sc (P) , α /∈ Sc (T) . (B.17)

Proof:
U = TPT + αyT

ref can be written as

U =

[
T α

]
︸ ︷︷ ︸

T�

⎡⎢⎣PT

yT
ref

⎤⎥⎦
︸ ︷︷ ︸
(P�)T

,

where T� and P� are matrices of dimension m× (A + 1) and n× (A + 1), respectively.
If α /∈ Sc (T) and yref /∈ Sc (P), then T� and P� are of full rank. Property B.9 holds
trivially from Properties B.3 and B.4. �

If no information about T and P in Property B.4 is available, only an upper bound
for the rank of Y could be provided. However, if the rank of one of these matrices is
full, then the rank of Y is determined by the (possibly) rank-deficient matrix.

Property B.10 Let U (m × s) be decomposed into two matrices T (m × A) and Q
( s × A), U = TQ. Then, the following properties hold:

(a) If rank (Q) = A, then rank (U) = rank (T).

(b) If rank (T) = A, then rank (U) = rank (Q).

Proof:
For the proof of Property B.10a, consider rank (U) ≤ min (rank (T) , rank (Q)) by
invoking Property B.4. Also, by Property B.3, rank (T) ≤ A and by assumption
rank (Q) = A. Since rank (T) ≤ rank (Q), it follows that rank (U) ≤ rank (T). The
situation rank (U) < rank (T) arises only, when some of the rows of T are orthogonal
to the subspace spanned by the rows of Q. Since Q is of full rank, the rows of Q span
the entire A-dimensional subspace. So, no row of T can be orthogonal to the row space
of Q unless it is a row with all zeros. Thus, rank (U) = rank (T) and Property B.10a
follows. rank (U) = rank (Q) and Property B.10b follow from rank (T) = A by invoking
Property B.10a. �

Property B.10 can be extended directly to Y being composed of three matrices:

Property B.11 Let Y (m×n) be decomposed into three matrices T, Q, and P (n×s),
Y = UPT = TQPT. If rank (P) = s, then the following properties hold:

(c) rank (Y) = rank (U).

(d) If rank (Q) = A, then rank (Y) = rank (T).

(e) If rank (T) = A, then rank (Y) = rank (Q).
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B.3 Orthogonal bases and the singular value de-

composition (SVD)

In this section, singular value decomposition (SVD; Golub and Van Loan, 1983) of the
m×n matrix Y is used to compute the orthogonal bases of the fundamental subspaces.
Yet, the orthogonal basis (see Lay, 1994, p.343) and the SVD (see Lay, 1994, p.430) of
Y are defined first.

Theorem B.12 (Orthogonal basis)
Let {υ1, . . . ,υr} be an orthogonal basis for a subspace W of IRn. Then, each y in W
has a unique representation as a linear combination of u1, . . . ,ur. In fact, if

y = α1u1 + · · · + αrur,

the weights (coordinates) αi (i = 1, . . . , r) can be computed as:

αi = uT

i y/(uT

i ui) ∀i = 1, . . . , r.

Theorem B.13 (Singular value decomposition)
Let Y be an m× n matrix with m > n. Then, there exists a decomposition of Y such
that:

Y = ΥΣΩT, Σ =

⎡⎢⎣diag (σ1, σ2, . . . , σn)

0(m−n)×n

⎤⎥⎦ , (B.18)

where Σ is the m×n singular value matrix containing the singular values σi in decreas-
ing order (i = 1, 2, . . . , n), Υ = [υ1, . . . ,υm] and Ω = [ω1, . . . ,ωn] the m × m and
n × n unitary matrices composed of the left and right singular vectors corresponding
to Σ, and diag (a1, . . . , aA) an A-dimensional diagonal matrix containing the elements
a1, . . . , aA.

Let rank (Y) = r. Then, the following properties of the SVD regarding the fundamental
subspaces of Y are in order:

(P1) The set of the left singular vectors

{υ1, . . . ,υr} form an orthonormal basis for Sc (Y). (B.19)

(P2) Since S⊥
c (Y) = N (YT),

{υr+1, . . . ,υm} is an orthonormal basis for N (YT). (B.20)

(P3) Since Y ωi = σiυi for 1 ≤ i ≤ r, and σi is 0 iff i > r, it is concluded that

{ωr+1, . . . ,ωn} is an orthonormal basis for N (Y). (B.21)

(P4) From (B.19) and (B.20), the orthogonal complement of N (YT). Interchanging
Y and YT, it follows that N⊥ (Y) = Sc (YT) = Sr (Y). Thus, from (B.21),

{ω1, . . . ,ωr} is an orthonormal basis for Sr (Y). (B.22)
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B.4 Pseudo-inverse

First, the Moore–Penrose (MP) pseudo-inverse is defined, which is useful because of
its existence and uniqueness (Magnus et al., 1988). Then, some properties of the MP
pseudo-inverse are provided that are used implicitly for some proofs in this dissertation.
The section concludes with the numerical construction of the MP pseudo-inverse using
SVD.

Definition B.14 (Moore–Penrose pseudo-inverse) An n×m matrix U is the MP
pseudo-inverse of a real m × n matrix Y, if

Y UY = Y (B.23)

UY U = U (B.24)

(Y U)T = Y U (B.25)

(UY)T = UY (B.26)

The MP pseudo-inverse of Y is denoted as Y+.

Proposition B.15 The following properties hold for a MP pseudo-inverse (for proof
see Magnus et al., 1988):

(a) Y+ = Y−1 for non-singular Y,

(b) (Y+)
+

= Y,

(c) (YT)+ = (Y+)
T
,

(d) Y+ = Y, if Y is symmetric and idempotent,

(e) Y Y+ and Y+ Y are idempotent,

(f) Y, Y+, Y Y+, and Y+ Y have the same rank,

(g) YT Y Y+ = YT = Y+ Y YT,

(h) YT (Y+)
T

Y+ = Y+ = Y+ (Y+)
T

YT,

(i) (YT Y)+ = Y+ (Y+)
T
, (Y YT)+ = (Y+)

T
Y+,

(j) Y (YT Y)+ YT Y = Y = Y YT (Y YT)+ Y,

(k) Y+ = (YT Y)+ YT = YT (Y YT)+,

(l) Y+ = (YT Y)−1 YT, if Y has full column rank,

(m) Y+ = YT (Y YT)−1, if Y has full row rank,

(n) Y = 0m×n ↔ Y+ = 0n×m,

(o) Y U = 0m×m ↔ U+ Y+ = 0m×m,

(p) Y+ U = 0n×n ↔ YT U = 0n×n.

Proposition B.16 (Construction of Y+) Let rank (Y) = r. Then, the MP pseudo-
inverse of Y can be constructed by:

Y+ = Ωr Σ−1
r ΥT

r , (B.27)

where the subscript r denotes a submatrix corresponding to first r singular values.

Proof:
The proof uses the unitary properties of Ωr and Υr in (B.18). �



B.5. Orthogonal projection and the least-squares problem 161

B.5 Orthogonal projection and the least-squares

problem

In this section, the relations between orthogonal projection and the least-squares solu-
tion are provided. Also, an explicit expression of the null space of a matrix is derived
that complements the numerical solution by SVD in Section B.3. Also, the empirical
dispersion (or cross-product), covariance, and correlation matrices are defined.

B.5.1 Orthogonal projection

Theorem B.17 (The orthonormal decomposition theorem)
Let W be a subspace of IRn that has an orthogonal basis. Then, each u ∈ IRn can be
written uniquely in the form

u = û + ε,

where û ∈ W, ε ∈ W⊥, and (̂·) denotes an estimated or predicted quantity. In fact, if
the columns of Υ = [υ1, . . . ,υr] form an orthonormal basis of W , then the orthogonal
projection of u onto W becomes:

û = Pu, P ≡ ΥΥT, (B.28)

with the corresponding projection error:

ε = u − û = (In − P) u. (B.29)

B.5.2 Least-squares problem and its dual

Let Y be an m × n matrix, and u and b vectors of dimension m and n, respectively.
The least-squares solution to

u = Y b (B.30)

is a vector b that makes Y b as close as possible to u in the Euclidian norm (least
squares) sense:

min
b

‖u − Y b‖2, (B.31)

where ‖ · ‖2 denotes the Euclidian norm of a vector. It is shown next that the least-
squares solution is closely related to the orthogonal projection of u on a subspace of
Y.

Theorem B.18 (The least-squares solution)
Let rank (Y) = r. Then, the least-squares solution to (B.31) is given by

b̂ = Y+u, (B.32)
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with Y+ from (B.27). Thus, û is the orthogonal projection of u onto the column space
of Y, spanned by the columns of Υr:

û = Y b̂ = (Y Y+)u = Pu u, Pu ≡ Υr ΥT

r (B.33)

with Pu being an m × m projection matrix. The corresponding least-squares error is
given by:

ε̂e = u − û = (Im − Pu) u. (B.34)

The proof can be found in Lay (1994).

The dual problem to (B.30) is

min
u

‖b − YT u‖2 with b = YT u. (B.35)

Then, b̂ corresponding to the least-squares solution, û = Y+Tb, is the orthogonal
projection of b onto the row space of Y, spanned by the rows of ΩT

r :

b̂ = YT û = (Y+Y)b = Pb b, Pb ≡ Ωr ΩT

r , (B.36)

with Pb being an n × n projection matrix. The corresponding least-squares error is
given by:

ε̂e = b − b̂ = (In − Pb) b. (B.37)

B.5.3 Relation between projection error and null spaces

The projection errors of the least-squares problem (see B.34) and its dual (see B.37)
involve the following two projection matrices:

Ju ≡ Im − Pu = Im − Y Y+ = Im − Υr ΥT

r ,

Jb ≡ In − Pb = In − Y+Y = In − Ωr ΩT

r .
(B.38)

Since Υr and Ωr are unitary matrices, rank (Ju) = (m − r) and rank (Jb) = (n − r).

The null space of Y (or YT) is an implicit definition. An equivalent explicit definition
of these null spaces are provided next.

Proposition B.19 Let rank (Y) = r and Jb and Ju be defined as in (B.38). Then,

N (Y) = Sc (Jb) , N (YT) = Sc (Ju) . (B.39)

Proof:
For N (Y) = Sc (Jb), Y Jb = 0m×n must be proven. Substituting Y = Υr Σr ΩT

r and
Jb = In − Ωr ΩT

r , it follows that Y Jb = Υr Σr ΩT

r − Υr Σr (ΩT

r Ωr)Ω
T

r = 0m×n. The
proof of N (YT) = Sc (Ju) follows the same lines and is, therefore, omitted here. �

Note that the null spaces of Y and YT are zero if rank (Y) = n or rank (Y) = m,
respectively. Thus, in such cases the projection errors εe become trivially zero.
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B.5.4 Dispersion, covariance, and correlation

The dispersion (cross-product), empirical covariance, and empirical correlation matri-
ces of an m × q matrix U and an m × n matrix Y are defined as:

D(U,Y) ≡ UTY

C(U,Y) ≡ 1

m − 1
ŪT

c Ȳc =
1

m − 1
UTJcY

R(U,Y) ≡ diag (C(U,Y))−1/2 C(U,Y) diag (C(U,Y))−1/2 ,

(B.40)

with diag (G) being a diagonal matrix containing the diagonal elements of G. Note
that, since Jc is a projection matrix, it follows that J2

c = Jc. For simplicity of notation,

D(U) = UTU, C(U) = 1
m−1

UTJcU, and R(U) = diag (C(U))−1/2 C(U) diag (C(U))−1/2.
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Statistical methods

The following methods are briefly reviewed: (i) principal component analysis (PCA),
(ii) multivariate linear calibration, (iii) factor analysis (FA), and (iv) methods for
estimating the optimal structures of (a) PCA and FA models for “best” fit, and (b)
PCA, calibration, and FA models for “best” prediction performance.

C.1 Principal component analysis (PCA)

PCA is a useful tool for data compression and information extraction of collinear or
near-collinear data by finding combinations of factors that describe major trends in
the data. This collinearity means that a data matrix will have some dominating types
of variability that carry most of the available information. Redundancy and smaller
noise variability can be removed by PCA.

Subsection C.1.1 formulates the problem of PCA, and Subsection C.1.2 provides a
numerical solution using singular value decomposition (SVD).

C.1.1 Problem formulation

Let Ỹ be an m × n noisy matrix with Ỹ = [ỹ1, . . . , ỹn]. PCA expresses the main
information in the variables ỹi (i = 1, . . . , n) by a lower number of new variables t̂a

(a = 1, . . . , A), the so-called principal components (PCs) or scores of Ỹ, with the
number of PCs (factors) A being A < n. The scores contain useful information on
how the observations relate to each other. Mathematically, PCA relies upon a spectral
decomposition (Lay, 1994) of the dispersion, empirical covariance or correlation of Ỹ
(see B.40). For simplicity of notation, only the decomposition based on the dispersion
matrix (see B.40) of Ỹ is studied next. The formulation of PCA using the covariance
or the correlation of Ỹ matrices (see B.40) are straightforward and, therefore, omitted
here.

PCA relies on a linear model that decomposes Ỹ into a sum of outer products of the
scores ta and the loadings pa to give:

Ỹ = TPT + F̃, (C.1)
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where F̃ is an m × n random noise matrix including measurement noise and model
inadequacies, T the m × A scores matrix, and P the n × A loadings matrix. Thus,
with only A PCs collected, the data matrix Ỹ can be approximated by

Ŷ = T̂ P̂T, F̂ = Ỹ − Ŷ, (C.2)

where T̂ and P̂ are the m×A estimated scores matrix and the n×A estimated loading
matrix, respectively, and F̂ the estimated residuals.

The (estimated) loadings contain useful information on how the variables relate to
each other. Furthermore, they represent the first A orthonormal eigenvectors of the
dispersion matrix ỸTỸ, which can be calculated successively by solving the following
constrained optimization problem for a = 1, . . . , A:

p̂a = arg max
pa

pT

a(ỸTỸ)pa, (C.3)

subject to the constraints

pT

apa = 1,

tT

atj = 0, ∀j > a,

ta = Ỹ pa,

(C.4)

i.e., the scores are forced to be mutually orthogonal to each other and the loadings are
normalized to 1. From the maximum principle of real symmetric matrices (Keener,
1988), it follows from (C.3)–(C.4) that

(ỸTỸ) p̂a = σ̂2
a p̂a with σ̂2

a ≡ t̂T

a t̂a, a = 1, . . . , A, (C.5)

where σ̂2
a is the ath eigenvalue of the dispersion matrix with σ̂2

1 ≥ σ̂2
2 ≥ · · · ≥ σ̂2

A.
Likewise, it can be shown that the estimated scores represent the first A eigenvectors
of Ỹ ỸT, scaled to length σ̂a (a = 1, . . . , A).

Since the scores are related to the eigenvalues of the dispersion matrix by σ̂2
a ≡ t̂T

a t̂a,
PCA explains parts of the data variability by the eigenvalues of the dispersion matrix.
Because the eigenvalues are in descending order, the first pair {t̂1, p̂1} captures the
greatest amount of information (variability) of any pair of the decomposition in the
sense of the maximization problem (C.3).

For Ỹ and any pair {t̂a, p̂a}, due to P̂TP̂ = IA, it follows from (C.2) that

T̂ = Ỹ P̂, (C.6)

i.e., the scores vector t̂a is a linear combination of the rows of Ỹ weighted by the loading
vector p̂a. In other words, the loadings p̂a (a = 1, . . . , A) represent the new orthogonal
basis vectors for the row space of Ŷ, and the elements of t̂a are the new coordinates
(or projections) of the rows of X on the new basis vectors p̂a (a = 1, . . . , A). This
property gives rise to special algorithms for estimating eigenvalues and eigenvectors
(see also next subsection).
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C.1.2 Numerical solution by SVD

There exist several algorithms to perform PCA of Ỹ such as the nonlinear iterative
partial least-squares (NIPALS) algorithm (Wold, 1966) or SVD (see Appendix B.3).
The latter is summarized next.

From (B.18), Ỹ can be approximated by:

Ŷ = ΥA ΣA ΩT

A, ΣA = diag (σ1, σ2, . . . , σA) , (C.7)

where Ŷ is the m × n data matrix reconstructed by retaining the first A significant
factors, ΣA the A-dimensional diagonal singular value matrix composed of the first A
singular values, and ΥA and ΩA unitary matrices of dimension the m × A and n × A,
respectively, corresponding to ΣA.

(C.7) can be related to (C.2) by

Ŷ = T̂ P̂T with T̂ = ΥA ΣA, P̂ = ΩT

A,

F̂ = Ỹ − Ŷ =

min(m,n)∑
j=A+1

σjυjω
T

j .
(C.8)

Since T̂TT̂ = Σ2
A, the eigenvalues of the approximated dispersion matrix are the first A

squared singular values of Ỹ. Thus, equations (B.18) and (C.8) can be used to perform
PCA of Ỹ.

C.2 Calibration

Subsection C.2.1 reviews calibration based on a bilinear model, and Subsection C.2.2
presents two regression methods that are used herein to solve the calibration problem,
namely PCR and SIMPLS.

C.2.1 Prediction

Let a bilinear model (Martens and Naes, 1989) link an n-dimensional input vector
(e.g., an spectrum with n channels) with and a q-dimensional output vector (e.g., a
concentration vector of q species) for m observations, and let Ỹ be the corresponding
m× n noisy input matrix and Ũ the corresponding m× q noisy output matrix. Then,

Ỹ = TPT + F̃Y ,

Ũ = TQT + F̃U ,
(C.9)

with F̃Y and F̃U being random noise matrices including measurement noise and model
inadequacies of dimension m × n and m × q, respectively, T the m ×A scores matrix,
and P and Q loading matrices of dimension (n × A) and (q × A), respectively. Also,
let F(·) be a matrix function that guarantees

W = F(Ỹ, Ũ), T = Ỹ W, (C.10)
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where W is an n×A weighting matrix. Then, the closed-form calibration model (C.9)
becomes

Ũ = Ỹ B + G̃ (C.11)

with B being a q × n regressor matrix and G̃ an m× q matrix including measurement
errors and model inadequacies.

Theorem C.1
Let the pair {Ỹ, Ũ}, following the bilinear model (C.9)–(C.10), be available for cali-
bration. Then, the prediction of un for a given ỹn following (C.9)–(C.10) is:

ûT

n = ỹT

n B̂, where B̂ = I(Ỹ, Ũ) Ũ with I(Ỹ, Ũ) = Ŵ T̂+, T̂ = Ỹ Ŵ,
(C.12)

where I(Ỹ, Ũ) indicates an inverse function that depends on the regression method
used (see Subsection C.2.2 below).

Proof:
Note that ŴPT ≈ In, i.e., Ŵ is an estimate of the pseudo–inverse of PT, i.e., an
estimate of P. Then T̂ = Ỹ Ŵ, and using the standard least-squares solution for Q
gives Q̂T = T̂+ Ũ, where T̂+ = (T̂T T̂)−1 T̂T. The internal prediction of Ũ is

Û = T̂ Q̂T = Ỹ
(
Ŵ Q̂T

)
≡ Ỹ B̂ (C.13)

where B̂ = Ŵ Q̂T = Ŵ T̂+ Ũ.

Since a new measurement ỹn satisfies (C.9), ỹT
n = tT

n PT + fT
A,n. Then, (C.12) can be

used for prediction of ûn from ỹn, since

ỹT

n B̂ ≈ tT

n PT Ŵ Q̂T = tT

n Q̂T = ûT

n. (C.14)

�

The assumption that both the calibration and the new data follow the bilinear model

(C.9)–(C.10) implies that ỹn ∈ Sr

(
Ỹ

)
. Note that condition ỹn ∈ Sr

(
Ỹ

)
can be

checked by computing the least-squares error εp(ỹn, Ỹ) of ỹn on the row space of Ỹ:

εp(ỹn, Ỹ) ≡
∥∥∥ỹT

n

(
Im − Ỹ+ Ỹ

) ∥∥∥
2
. (C.15)

ε2
p is also known as the squared-sum-of-errors or residuals used to test on lack of fit.

For the simultaneous test of Kn new spectra, (C.15) becomes

εp(Ỹn, Ỹ) ≡
∥∥∥Ỹn

(
Im − Ỹ+ Ỹ

) ∥∥∥
fro

, (C.16)

where ‖G‖fro is the Frobenius norm of G, defined as ‖G‖fro = (tr (GTG))1/2 with tr (·)
being the trace of a matrix.
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Remark C.2 (Additive nonlinearities)
Additive nonlinearities for the input matrix can be handled in calibration. Consider

Ỹnl = Y + TnlP
T

nl + F̃Y (C.17)

with Ỹnl being the m×n measured input matrix, Y the m×n matrix containing useful
signal, Tnl and Pnl the m × Anl scores matrix and the n × Anl loading matrix, respec-
tively, corresponding to the additive nonlinearities, and Anl the number of factors of
the additive nonlinearities. Theorem C.1 holds also for such data with the redefinition
Ỹ := Ỹnl. Thus, as long as the condition ỹn ∈ Sr

(
Ỹnl

)
is guaranteed, the additive

nonlinearities will not interfere with the prediction of un from a new input ỹn.

C.2.2 Regression methods

Calibration in Theorem C.1 is addressed under the assumption that an estimate Ŵ
obeying (C.10) is available. In the next two paragraphs, Ŵ and I(Ỹ, Ũ) are stud-
ied for PCR and SIMPLS, the two regression methods that are used throughout this
dissertation.

C.2.2.1 PCR

PCR consists of two steps (Jackson, 1991): (S1) PCA of Ỹ by retaining A factors, and
(S2) multiple regression of the columns of Ũ on the scores matrix T̂. The two steps
are summarized for the calibration pair {Ỹ, Ũ}:
(S1) From the solution of the constrained optimization problem (C.3)–(C.4) for all

a = 1, . . . , A:

max
pa

pT

a(ỸTỸ)pa

s.t. ‖pa‖2 = 1

tT

a tj = 0 ∀j > a.

(C.18)

Ŵ is identified as Ŵ(Ỹ) = P̂ = Ω.

(S2) The regression step is given in (C.12). Since T̂+ = Σ−1
A ΥT

A, the inverse function

becomes I(Ỹ) = Ŵ T̂+ = ΩA Σ−1
A ΥT

A, which is the pseudo-inverse of Ŷ (see
also Appendix B.4).

C.2.2.2 SIMPLS

In SIMPLS, I(Ỹ, Ũ) is obtained from an iterative algorithm (de Jong, 1993) that solves
the following constrained optimization problem for all a = 1, . . . , A:

max
wa,qa

wT

a (ỸTŨ)qa

s.t. ‖wa‖2 = 1

‖qa‖2 = 1

tT

a tj = 0 ∀j > a,

(C.19)
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where ta = Ỹwa. It can be seen from (C.19) that the cross-product matrix ỸTŨ is
maximized. Note that without the constraint tT

a tj = 0, there is only one solution: w1

and q1 are the first left and right singular vectors of the n × q cross-product matrix
ỸT Ũ. However, with the constraint a set of orthogonal factors of Ỹ is obtained.

If there is only one output (univariate output), then qa = 1 and, thus, the constraint
‖qa‖2 = 1 in (C.19) is trivially satisfied. In this case, the solution to (C.19) is non-
iterative.

C.3 Factor analysis

The term “factor analysis” (FA) is quite ambiguous in the literature. In chemometrics,
FA or multivariate curve-resolution method means a procedure consisting of two steps:
(i) PCA, (ii) rotation of scores and loading matrices into physically-meaningful ones
using prior knowledge. In statistics, FA means the investigation of correlations of
random variables (Hamer, 1989). The statistical FA is sometimes called “orthodox
FA” or “nonlinear FA” by physicists or chemists (Paatero and Tapper, 1993). Here,
the chemometric definition of FA is used.

The two FA methods considered in this dissertation are target factor analysis (TFA;
Malinowski, 1991; Bonvin and Rippin, 1990) and AR. First, PCA is explained in the
light of FA. Then, TFA and AR are briefly reviewed.

C.3.1 PCA

Let Y be an m×n noise-free matrix of rank A that is described by a linear factorization,
i.e., it can be described by two physical matrices, T and P, of dimension m × A and
n × A, respectively:

Y = T PT. (C.20)

In the noisy case, PCA (see Appendix C.1) estimates the (approximate) spaces for T

and P:

Ỹ
PCA
= TPT + F̃

Ŷ = T̂ P̂T.
(C.21)

The column space of Ŷ corresponds to that of T̂. The row space of Ŷ corresponds to
the column space of P̂.

C.3.2 Rotation

First, the problem of rotation is formulated, and the concepts of intensity and rotational
ambiguities are introduced. In Subsection C.3.2.2, the concepts of selectivity and zero-
factor windows are revisited. In Subsection C.3.2.3, TFA will be used to resolve the
rotational ambiguity, and in many cases the intensity ambiguity. Subsection C.3.2.4
presents AR. Depending on the constraints available, the intensity ambiguity can be
resolved in addition to the rotational ambiguity.
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C.3.2.1 Problem formulation

In the second step of FA, an A×A rotation matrix, R, is determined so as to estimate
the physically-meaningful quantities T̂ = T̂R and P̂T = R−1P̂T.

There are two classes of ambiguities associated with curve-resolution methods, namely
intensity and rotational ambiguities (see Tauler et al., 1995, and the references therein).
Most curve resolution methods do not resolve the intensity ambiguity, that is, each
column of the estimated matrices T̂ and P̂ will be scaled by some unknown factor.
This is not a serious problem in qualitative identification (e.g., spectral identification,
finger printing), but is a serious problem in quantification.

However, a somehow more serious problem is the rotational ambiguity, which generally
occurs when two or more linearly-independent factors are present. Each factor or
column of T̂ and P̂ will be an unknown linear combination of the true columns of T

and P, respectively.

C.3.2.2 Selectivity and zero-factor windows

Let assume that the complete data matrix Y is described (globally) by A factors.
No rotational ambiguity arises for any submatrix of Y that contains a single factor
(selectivity) since the submatrix is of rank one. Thus, it can be uniquely decomposed
into an outer product of two vectors. Alternatively, when a particular factor is absent
in a submatrix of Y and present in the remaining part of Y (zero-factor window), then
the rotational ambiguity for that particular factor can also be resolved. Selectivity and
zero-factor windows can be viewed as those regions where one or several of the A factors
become locally linearly dependent. These regions can be determined by evolving factor
analysis (see Appendix C.4.1.3 below).

For those factors where neither a zero-factor window nor a selective region is present,
the extent of the rotational ambiguity can be considerably reduced if appropriate con-
straints are used. Note that these constraints are dependent on the type of data under
investigation.

C.3.2.3 Target factor analysis (TFA)

In TFA, A targets ptar of dimension n (i.e., possible rows of PT that are assumed to be
available from prior knowledge) are tested individually to check whether or not they
lie in the row space of P̂T. Let Ri ≡ R−1. Then, the matrices R and T are estimated
as:

R̂i = PT P̂, R̂ = R̂−1
i , T̂ = T̂ R̂. (C.22)

Note that owing to orthonormality of the columns of P̂, (P̂T)+ was written as P̂ in
(C.22). Herein, the projection error (see C.15) is used as the acceptance criterion in
the target testing step (Bonvin and Rippin, 1990), i.e., εp is the projection error (C.15)

of ptar on the row space of P̂T:

εp(ptar, Ỹ) =
∥∥∥pT

tar

(
In − Ỹ+ Ỹ

) ∥∥∥
2
≈

∥∥∥pT

tar

(
In − P̂ P̂T

) ∥∥∥
2
. (C.23)
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Let δ be a threshold to be defined. If εp(ptar, Ỹ) < δ, then the target ptar is accepted.
Note that in the noise-free case,

εp(ptar,Y) = 0 ⇔ ptar ∈ Sr

(
P̂T

)
⇔ ptar /∈ N

(
P̂T

)
. (C.24)

C.3.2.4 Alternating regression (AR)

AR consists of iteratively solving a constrained multivariate linear least-squares prob-
lem and its dual (see Appendix B.5.2 for the solution to unconstrained multiple linear
least-squares problem).

Given the linear statistical model:

U = YB + G̃, (C.25)

with U and Y being matrices of dimension m×n and m×A, respectively, B the A×n
regressor matrix, and G̃ the m×n random matrix including model inadequacies. Then,
the constrained multivariate linear least-squares problem can be formulated as:

min
B

‖Û(B) − U‖2

s.t. C(B),
(C.26)

where C(·) denotes the constraints on B, Û(B) the estimate of U based on (C.25), and
U the m× n approximated data matrix. Note that U and Y are known, and B and G̃
unknown.

Let T0 denote the initial estimate of T. Then, for the first iteration step of AR (i = 1),
the first least-squares problem is computed with U := Ŷ, Y := T0, and B := (PT)1,
where P1 is the estimate of P in the first iteration step. Thus, the solution of

max
P1

‖Û(P1) − U‖2

s.t. U = T0 (PT)1 + G̃

C(P1)

(C.27)

is P̂1. The second least-squares problem of the first iteration step is computed with
U := ŶT, Y := P̂1, and B := (TT)1, where T1 is the estimate of T in the first iteration
step. Thus, the solution of

max
T1

‖Û(T1) − U‖2

s.t. U = P̂1 (TT)1 + G̃

C(T1)

(C.28)

is T̂1. For the ith iteration step of AR, the matrices U, Y, and B corresponding to the
two constrained multivariate linear least-squares problems are given in Table C.1.
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Table C.1. Alternating regression (AR) at the ith iteration step: matrices corresponding
to (α) a constrained multivariate linear least-squares problem and (β) its dual.

Problem U Y B

(α) Ŷ T̂i−1 (PT)i

(β) ŶT P̂i (TT)i

C.4 Structure selection

In this section, methods for estimating the optimal structures of (a) PCA and FA
models for “best” fit, and (b) PCA, calibration, and FA models for “best” prediction
performance are examined. These include methods for pseudo-rank estimation (see
Subsection C.4.1 below) and prediction-based methods (see Subsection C.4.2 below).

C.4.1 Methods for pseudo-rank estimation

Methods for pseudo-rank estimation are important in PCA and FA of a matrix Y.
These methods can be applied on the complete matrix Y (see Appendix C.4.1.2 below),
or on submatrices of Y (local method; see Appendix C.4.1.3).

C.4.1.1 Problem formulation

The pseudo-rank A of a matrix is defined as the rank of a matrix in the absence of
measurement error. Pseudo-rank estimation is a major problem in multivariate data
analysis (Faber et al., 1994). Malinowski (1991) classifies the methods for pseudo-rank
estimation into two categories:

(1) Methods based on the knowledge of the experimental error. These methods rely
on the “external” comparison of the eigenvalues with experimental error. They
can be further divided into methods based on the knowledge of the mean and/or
the variance of the experimental error.

(2) Methods requiring no knowledge of the experimental error. These methods rely
on the fact that the signal-to-noise ratio is significantly large and, therefore, the
relative magnitude between the signal and noise eigenvalues is high (“internal”
comparison). Empirical rules are usually applied (empirical methods).

The experimental error usually includes measurement noise and model inadequacies.
Since no information about the model inadequacies is available, empirical methods for
pseudo-rank estimation are used in this study. A clear drawback of these methods is
that they all depend on a threshold value, εA, that must be defined properly based
on either empirical or statistical criteria. In the absence of such a threshold value,
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it is common practice to compare pseudo-rank estimates using various pseudo-rank
estimation methods (Malinowski, 1978; Hopke, 1989).

Let Ỹ denote an m× n noisy data matrix. Most of the pseudo-rank estimation meth-
ods rely on deleting some of the smallest singular values of Ỹ, assuming that they
contribute only to noise in Ỹ. However, this assumption is only true in some special
cases since the measurement error1 (ME; F̃ in C.21) affects both the embedded error
(IE) associated with the first A dominant singular values of Ỹ and the extracted error
(EE) associated with the remaining (A − A) singular values, where A ≡ min(m, n).
Under the assumption of equal error variance associated with each element of Ỹ, the
following theoretical relationship exists between the standard deviations of the various
error terms (Malinowski, 1991):

(ME)2 = (IE)2 + (EE)2, IE =
√

A/A ME, EE =
√

(A − A)/A ME. (C.29)

From this equation, it can be seen that the embedded error is negligible only for
A � A. Otherwise, analysis results based on the reconstructed data matrix Ŷ in (C.2)
are distorted.

For data exhibiting smooth responses such as concentration profiles from chemical
reaction systems, the pseudo-rank can be estimated by looking at the scores or/and
loadings: scores or/and loadings that represent real signal will be smooth, whereas
those representing noise will be scattered.

C.4.1.2 Pseudo-rank estimation

Only those methods that are used in this work are shortly revisited. They include
methods based on: (i) the singular values using visual inspection, the Scree test, or the
reduced F-test, and (ii) the singular vectors using the autocorrelation.

Let prank
(
Ỹ

)
denote the pseudo-rank of Ỹ. The estimation procedure of the pseudo-

rank A of Ỹ is generally formulated as: Find A such that

∆(a, Ỹ) ≤ εA, ∀a = 1, . . . , A, (C.30)

where ∆ is a measure that depends on the ath factor.

Visual Inspection. By plotting the singular values σa of Ỹ (i.e., ∆(a, Ỹ) = σa)
with respect to the increasing index, the pseudo-rank is visually found/estimated as
the cut-off point for the Ath singular value with σA ≤ εA. It should be noted that the
magnitude and the spacing of the singular values is strongly scale-dependent.

Scree Test. According to Cattell (1966), the pseudo-rank is based on the residual
percent variance (RPV) RPV(a, Ỹ) of Ỹ (i.e., ∆(a, Ỹ) = RPV(a, Ỹ)) computed as:

RPV(a, Ỹ) ≡ 100

A∑
j=a

σ2
j (Ỹ)

A∑
j=1

σ2
j (Ỹ)

, (C.31)

1‘Error’ and ‘uncertainty’ are used as interchangeable terms.
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where σj is the jth singular value of Ỹ.

Reduced factor F-test. The reduced factor F-test from Malinowski (1988) is origi-
nally based on the assumption of normally distributed measurement noise. However,
it is also often used as empirical method: the pseudo-rank is based on the reduced
F-statistics F (1, A − a) of Ỹ (i.e., ∆(a, Ỹ) = F (1, A − a)) computed as:

F (1, A − a) =

A∑
j=a+1

(max(m, n) − j + 1) (A − j + 1)

(max(m,n) − a + 1)(A − a + 1)

σ2
a

A∑
j=a+1

σ2
j

(C.32)

with εA := 1 − α and α the quantile to be specified.

Autocorrelation. According to Shrager and Hendler (1982), the pseudo-rank is
based on the autocorrelation AUTO(ya) of the scores or loading vectors ya of Ỹ (i.e.,
∆(a, Ỹ) = AUTO(ya)) computed as:

AUTO(ya) =
m̌∑

k=2

ya(k) ya(k − 1), (C.33)

where ya(k) is the kth element of ya, and m̌ the corresponding dimension of ya (either
m or n). Shrager and Hendler (1982) proposed εA = 0.5 as a threshold value to test
on smoothness.

It is well known that the autocorrelation is the energy of the low-frequency part of ya

and, thus, it is ideally suited to measure smoothness. Since singular-vector matrices
are unitary matrices, the maximal value of AUTO(ya) is 1, a case that occurs when ya

is a horizontal line (the extreme case of a smooth signal).

C.4.1.3 Local methods

The original version of evolving factor analysis (EFA; Gampp et al., 1985) is based
on repetitive SVD analysis of submatrices of a data matrix that is gathered from an
ordered (evolutionary) process. Usually, one looks at the evolution of the singular
values to comment on the local pseudo-rank (an integer). However, EFA can generally
be based on a repetitive pseudo-rank analysis rather than SVD analysis, where any
pseudo-rank estimation method can be used.

In forward EFA, pseudo-rank analyses are performed on a series of matrices constructed
by successively adding observations to the previous matrix in an ordered sequence.
When a significant factor appears, the pseudo-rank will increase. Backward EFA is
initiated by starting the pseudo-rank analysis with the last few observations and sys-
tematically adding observations in the reverse order of collection. The resulting pseudo-
rank analysis maps out the disappearance of a significant factor (i.e., appearance in the
reverse order). In window evolving factor analysis (WEFA; Keller and Massart, 1991;
Malinowski, 1992), pseudo-rank analysis is performed on a window of w observations
that slides over the entire matrix. WEFA can also be performed simultaneously in
both dimensions of Ỹ with a two-dimensional window of size wm × wn. The results
can be visualized in a contour plot or local rank map (Geladi and Wold, 1987).
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C.4.2 Prediction-based structure selection

C.4.2.1 Prediction error

A prediction error can be defined in various ways depending on the available data and
the linear statistical model used (PCA, calibration formulation, regression method,
etc.). Common error measures include:

(1) Root mean squared error (RMS). It is defined for the ith output as

RMSi ≡ 1

m
‖f̂U,i‖2 ∀i = 1, . . . , q, (C.34)

where f̂U,i are the residuals of the ith output for m observations defined as:

f̂U,i ≡ ũi − ûi ∀i = 1, . . . , q, (C.35)

with ûi being the m-dimensional vector of the ith output predicted from the
model.

(2) Average additive prediction error or bias estimated by:

ÊEi ≡ 1

m

m∑
k=1

f̂U,i(k), (C.36)

(3) Prediction intervals for each output.

The first two error measures are usually estimated by performing predictions on ob-
servations for which the output values are known. Both measures give an average
prediction error that is characteristic for the calibration model rather than for an in-
dividual observation (Faber and Kowalski, 1997). This is in contrast to methods that
estimate the prediction intervals for individual observations and that do not require
the knowledge of output values. Such methods include Monte–Carlo techniques such as
the bootstrap (Efron and Tibshirani, 1986). For PCR and PLS, analytical expressions
for the prediction intervals have been derived by Phatak et al. (1993); Denham (1997);
Faber and Kowalski (1997). Since in Section 5.3.1 the validity of the calibration model
is the central focus rather than the prediction intervals for the individual observations,
it suffices to consider the first two error measures (the RMS and the bias), which are
the subject of the next paragraph.

The estimated prediction (RMS) and interference errors (underlying bias) are linked
via the following relationship (Martens and Naes, 1989):

RMS2
i = ÎE

2

i + ÊE
2

i , (C.37)

where ÎE
2

i is the squared estimation error or residual variance of the ith output defined
as:

ÎE
2

i =
1

m

m∑
k=1

(
f̂U,i(k) − ÊEi

)2

. (C.38)
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Note that, since the extracted (EE) and embedded errors (IE) in PCA (see C.29) are
closely related to the bias and the residual standard deviation in regression, the same
symbols are used. Furthermore, ÎEi is also known as the standard error of prediction
(SEP) where m−1 is replaced by (m−1 − 1).

It is important to note that the RMS in (C.34) is an estimate of the true RMS, since
the predicted output values ûi are compared in (C.35) with the noisy reference output
values ũi instead of the noise-free ones ui. According to DiFoggio (1995), the RMS
defined in (C.34) is called the apparent RMS (see C.35) as opposed to the actual RMS
obtained for noise-free reference outputs.

To facilitate the comparison between (i) outputs with values of different magnitude
and (ii) different data sets, the normalized RMS, bias, and estimation error are used
herein:

NRMSi ≡ RMSi/‖ui‖2, N̂EEi ≡ ÊEi/‖ui‖2, N̂IEi ≡ ÎEi/‖ui‖2 ∀i = 1, . . . , q.
(C.39)

Internal and external validation. The two most commonly used procedures for
the determination of the RMS and the bias are cross validation and prediction testing
on an independent data set (Martens and Naes, 1989).

M -block cross validation estimates statistical models by leaving out distinct segments
of M observations for which the output values are predicted. This step is repeated
M times. From the differences between the predicted and the output observations
left out, prediction errors are estimated (NRMScv,i and NEEcv,i). Then, all calibra-
tion observations are used to estimate the final statistical model and prediction errors
(NRMSc,i and NEEc,i). Since cross validation estimates prediction errors based on
observations present in the model-building set (e.g., the calibration set in calibration),
it is also called internal validation. For data with correlated observations (e.g. data
from chemical reaction systems), common practice has shown that M can be chosen
larger than 1 (Wise, 1991).

Note that the segments in internal validation must be chosen such that each segment
and the remaining model-building observations span the same space. Similarly, the
test set must be chosen such that test set and the model-building set span the same
space.

For a set of observations not present in the calibration set, prediction errors NRMSn,i

and NEEn,i are obtained from the statistical model (external validation). Since exter-
nal validation more closely assesses the predictive ability of the calibration model for
new observations, it is obviously better than internal validation. However, external
validation is rather wasteful, since the observations used for testing are not available
to build the calibration model.

C.4.2.2 Model structure selection

In PCA or regression techniques such as PCR or SIMPLS, one free parameter, the
number of factors A retained in the model, must be chosen based on stopping rules
for model structure selection (Martens and Naes, 1989). Since each factor models an
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independent contribution to the data (e.g., an interfering phenomenon in the spectral
data), the number of factors required depends on the number of independent contri-
butions to the data. If the goal is “best” prediction, the stopping rule must find an
optimal number of factors, A∗, for which the prediction error of the calibration model
reaches a minimum.

According to (C.37), the prediction error (RMSn or RMScv) is composed of two main

contributions: the bias (ÊEi) and the estimated variance (ÎE
2

i ). The bias can be in-
terpreted as the systematic error due to unmodeled useful signal, and the estimated
variance is caused by random measurement noise. The two contributions to the predic-
tion error have opposite trends with increasing number of factors. This is illustrated
schematically in Figure C.1 which represents the variance–bias tradeoff in PCA, PCR,
and PLS: the modeling error decreases with increasing number of factors, while the sta-
tistical uncertainty (estimated variance) increases with increasing model complexity.
Note that discarding relevant factors leads to underfitting, while modeling too many
phenomena leads to overfitting (fitting the noise).

The following procedure for the choice of the optimal number of factors A∗ is adopted
(Martens and Naes, 1989):

(1) Computation of the prediction error for different number of factors based on
either internal or external test sets (internal or external validation).

(2) Selection of A∗ with the lowest (N)RMS.

In practice, a shallow valley can occur in the (N)RMS curve as a function of the number
of factors. Then, following the parsimony principle (Osten, 1988), the statistical model
with the lowest number of factors should be chosen.

In the case of spectral data, when the pure-component spectra and/or the concentration
profiles are expected to be smooth, then, alternatively to the choice of A∗ based on the
(N)RMS curve, A∗ could be determined by visual inspection or the autocorrelation of

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

            
            
            

RMS2

ÊE
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Figure C.1. Variance–bias tradeoff as a function of model complexity.
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the loadings, weights, or scores of the statistical candidate models. This is equivalent
to pseudo-rank estimation of Ỹ (see Subsection C.4.1).

Example C.3 (Model selection based on internal or external validation)
Consider non-reacting mixtures involving S = 4 absorbing species. Let Xi denote the
ith absorbing species (i = 1, . . . , S). The pure-component spectra of the four species
are given in Figure C.2 (L = 120).
Three issues are illustrated here for the prediction of the concentrations of X3 from
spectra based on a calibration model: (i) bias-variance-tradeoff, (ii) internal vs. external
validation for model structure selection, and (iii) model structure selection based on
visual inspection of the loadings. For this purpose, a calibration set is designed using
a three-level full-factorial plan with the lower and upper concentration limits for the
four species being {[1, 2.5]; [0.2, 2]; [0.5, 1]; [0.8, 3]}. This results in Kc = 81 mixtures.
A test set with Kn = 40 mixtures is generated randomly for concentrations between
the given lower and upper limits. A of both calibration and test sets are corrupted
by noise generated by multiplying a number from a uniform distribution in the range
[−0.05, 0.05] by the signal. Also, Ck is corrupted by noise generated from the Gaussian
distribution with standard deviation being 10% of the maximum of the column-means
of Ck. Since PCR and SIMPLS give similar results, only those for SIMPLS are shown.
It is desirable that the calibration model with minimum RMS also has a negligible
bias. This leads to (almost) unbiased prediction intervals (Faber and Kowalski, 1997).
However, this goal is difficult to achieve in a situation described schematically by
Figure C.1, where low bias can only be obtained by increasing the model complexity
beyond the minimum prediction error NRMSn. However, here, the bias essentially goes
to zero for four or more factors retained, while the estimated variance increases slowly
(see Figure C.3a). Fortunately, this often happens for spectral data from chemical
applications where the number of true factors is rather small compared to the number
of observations and channels.
Internal validation is performed by leave-one-out-cross validation. Figure C.3b illus-
trates that the fit (NRMSc) improves steadily with increasing number of factors and,
therefore, NRMSc cannot be used for choosing the optimal number of factors A∗.
Alternatively, both internal and external validation procedures determine an optimal
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Figure C.2. Pure-component spectra E for Example C.3.
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number of factors at A∗ = 4 = S as expected. This nicely illustrates the versatility of
internal validation for model structure selection, which has the additional advantage
over external validation that it does not require an external test set. The prediction
error at A∗ = 4 is NRMS = 8.7 %, which is in good agreement with the added Gaussian
noise level of 10 %. Furthermore, NRMSn is slightly larger than NRMScv owing to
the fact that, contrary to the internal test sets used in CV, the external test set is not
used for calibration.
Figure C.4 shows that the first four weight vectors ŵi (i = 1, . . . , 4) are smooth. This
can be attributed to the pure-component spectra of the four species being smooth.
However, the fifth one is already scattered due to noise. Consequently, alternatively
to internal or external validation, the optimal number of A∗ = 4 can also be deduced
from visual inspection of the weight vectors.





D

Assumptions for the various
representations

The following assumptions generally hold:

(A1) ri(c) ≥ 0 ∀i, i.e., the reaction rates are nonnegative rational functions that do
not depend explicitly on time.

(A2) ri(c) = 0 if cj = 0 for some j ∈ Iri. This condition is due to the physical fact
that Reaction i only takes place if all its reactants are present or, equivalently, it
does not take place if one of its reactants is absent.

(A3) The reaction system is modeled in terms of R independent reactions and p inlet
streams with constant, linearly-independent inlet concentrations and volumetric
flowrates. Thus, rank (N) = R and rank (Cin) = p. Furthermore, mixing is ideal
and the concentrations in the outlet(s) are equal to that inside the reactor.

For the basic model, it is further assumed that:

(A4) Reactor and inlet densities are constant and equal and, thus, ρ = ρi
in (i =

1, . . . , p),

(A5) Reactor and inlet temperatures are constant and equal and, thus, T = T i
in (i =

1, . . . , p),

For the factorization of concentration data, the following assumption is usually made
in addition to Assumptions A1–5:

(A6) K ≥ max(S, R + p + 1),

(A7) Each of the R independent reactions is active on a time interval during the K
observations.

For the factorization of reacting spectral data, the following assumptions are usually
made in addition to Assumptions A1–7:

(A8) The factorization of general spectral data (5.2) holds.

(A9) L ≥ max(S, R+p+1). Without loss of generality, assume channels to be ordered
in increasing order.
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(A10) E is independent of temperature, pressure, and pH.

(A11) rank (E) = S, i.e., the pure-component spectra of the S absorbing species are
linearly independent.

(A12) All species both react and absorb.



E

Alternate derivation of (4.3) and
alternate data pre-treatment

E.1 Alternate derivation of (4.3)

In Subsection 4.1.1, the factorization of concentration data c(k) (see equation 4.3) was
derived from the transformation to reaction-variant form. This led to the interpretation
of x, z, and V0 being the reaction-variant vector, reaction-invariant and flow-variant
vector, and reaction and flow invariant, respectively. Alternatively, it is shown next that
(4.3) can also be derived directly from (2.38) without the use of the transformation
to reaction-variant form. However, the latter derivation lacks the interpretation of
factorization of concentration data derived in Theorem 4.1.

The direct integration of (2.38) with respect to time from t = 0 to tk leads to:

c = NT x�/V + Cin z�/V − c�
out/V + V0 c0/V (E.1)

where the R-, p-, and S-dimensional vectors x�, z�, and c�
out are defined as ẋ� ≡ V r(c),

ż� ≡ qin, and ċ�
out ≡ qout c with initial conditions arbitrarily set to zero. The main

problem with formulation (E.1) is that c depends on its integral c�
out. To avoid this, an

auxiliary state λ is introduced that is as defined in (4.7). Combining (2.38) and (4.7)
gives:

d

dt

(
V c

λ

)
= NT r(c) V/λ + Cin qin/λ (E.2)

Let the R- and p-dimensional vectors x and z be defined as in (4.7). From (4.7), the
extent of the ith reaction reads:

xi(tk) =

tk∫
0

V (t)

λ(t)
ri(c(t)) dt. (E.3)

Then, integrating (E.2) and (4.7) with respect to time from t = 0 to tk:

cV/λ − c0 V0 = NT x + Cin z. (E.4)

Equation (4.3) is obtained after some algebraic manipulations of (E.4).
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E.2 Alternate data pre-treatment

If Cin, c0, c(k), qin(k), qout(k), and V (k) are either known or measured, then an alter-
native way of computing the data vector d�(k), similar to d(k), exists. By rearranging
(E.1), d�(k) can be computed using (Harmon et al., 1995):

d�(k) ≡ V (k) c(k) − V0 c0 − Cin z�(k) + c�
out(k) = NTx�(k). (E.5)

For K observations, D� = X� N is obtained with X� being a K × (R + p + 1) matrix.

Note that c(k) is used explicitly and implicitly for the computation of c�
out(k). It

is important to compare the precision with which d(k) and d�(k) can be computed.
Usually, the number of observations of qin and qout is large and, thus, guarantees a high
precision of the states Ṽ (k), z(k), and z�(k) by numerical integration. In contrast, the
number of observations of c(k) is small, leading to imprecision in the computation of
c�

out. The larger the variation of qout between subsequent observations of c, the larger
the error in c�

out. Thus, compared to d�(k), d(k) has the advantages of higher precision
and lower computational cost ((p + 1) vs. (p + S) differential equations to integrate).



F

Spectral measurements and
calibration

F.1 Spectral measurements

F.1.1 Instrument

The instrumental response a is often the result of the pre-linearized instrumental output
O using a pre-linearizing transform fL(O) such as the natural logarithm of the inverse
of the transmission in absorption spectroscopy (Burns and Ciurzak, 1992):

a = fL(O). (F.1)

Following the tensorial terminology introduced by Sánchez and Kowalski (1988a,b)
into the field of calibration, a scalar instrumental response is a zeroth-order tensor, a
vector instrumental response a first-order tensor, and an instrumental matrix response
a second-order tensor.

Here, only responses from first-order instruments are considered. Let a(k, �) and a(k)
be the response at the �th channel and the complete L-dimensional response vector at
L channels, respectively, for the kth observation instant:

a(k, �) =
S∑

s=1

cs(k) es(�) or aT(k) = cT(k)E, (F.2)

where c = [c1, . . . , cS]T is the S-dimensional concentration vector, es(�) is the instru-
mental coefficient of the sth species at the �th channel, E the S × L matrix of instru-
mental coefficients (pure-component spectra or instrumental matrix). The response a is
said to be linear, if it is a linear combination of the S (time-invariant) pure-component
spectra weighted by the concentrations of the S species c.

For K observations, (F.2) reads:

A = CE (F.3)

with A being the K × L response matrix and C the K × S concentration matrix.
Equation (F.3) describes the factorization of general (linear) spectral data.

Three different types of concentration measures cj(k) for the jth species at observation
k are considered here.
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(1) The molar concentration cj(k) is defined as in (2.11).

(2) The weight fraction wj(k) is defined as in (2.41).

(3) The mole fraction wn,j(k) is defined as:

wn,j(k) ≡ cj(k)

1T

Sc(k)
, ∀j = 1, . . . , S, 1T

Swn(k) = 1, (F.4)

where c is the S-dimensional molar concentration vector, and wn the S-dimensional
mole fraction vector. Note that 1T

Sc(k) is equivalent to
∑S

s=1 cs(k) and the mole
fractions are closed, since 1T

Swn(k) = 1. The unit is usually given in [n-%].

A channel number can correspond to: (i) a wavelength λ e.g. in [nm], (ii) a wavenum-
ber or frequency ν e.g. in [cm−1], (iii) the number p of an integrated peak, (iv) the
mass/electron charge (m/e) peak, (v) the cross-polarization contact time tcp, or (vi)
the retention time tr. An observation instant k can be a sample number or more
specifically a time instant tk.

For various types of first-order instruments such as absorption (NIR, MIR, UV/VIS),
emission, optical rotary dispersion (ORD), mass spectroscopy (MS), nuclear magnetic
resonance (NMR), gas chromatography (GC), liquid chromatography (LC), table F.1
presents the corresponding response a(k, �) as a function of the instrumental output O
and the pre-linearizing transform, the concentration cs(k), the instrumental coefficient
es(�), and the channel type �. For more details about the particular measurements it is
referred to the literature listed in Table F.1. Note that excitation/emission fluorescence
spectroscopy, GC/MS or LC/UV are second-order instruments. However, to use these
types of measurements as data from first-order instruments, it is assumed that only
one column or row of the measured matrix is analyzed.

F.1.2 Data pre-treatment

The types of data pre-treatment considered herein are: (i) channel selection, (ii) remov-
ing of outliers, (iii) filtering, (iv) mean centering, (v) differentiation, (vi) normalization,
(vii) auto-scaling, and (viii) baseline elimination. The last four pre-treatment types
ii–vii can be carried out either in the observation or in the channel direction.

Channel selection
Let A� denote the K × L� spectral matrix, where L� is the total number of available
channels. Then,

A = A� PL, (F.5)

where A is the K × L spectral matrix, PL an L� × L matrix, and L the number of
selected channels.

Removing outliers
Observations/variables showing some types of departure from the bulk of the data
are usually called outliers or abnormal observations/variables. In both calibration
and factor analysis, outliers may be detrimental to the quality of the predictor or the
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interpretability, respectively. In prediction, it is important to have some type of error
warning to avoid individual mistakes (Martens and Naes, 1989). Outliers may occur for
many different reasons such as laboratory errors, observations from another population,
and instrument errors. Thus, outlier detection and possible rejection (removing) is
important.

A way to deal with outliers is to use robust statistical methods (Huber, 1981). Based
on certain statistical assumptions about the data, most robust methods downweight
observations with high influence (outliers). However, outliers may sometimes be highly
informative and not at all erroneous. In calibration, for example, an observation may
be an outlier only because it alone spans a certain type of important variability in
the data. Therefore, in this dissertation the approach is adopted that only detects
the outliers and let the user decide what to do with it, rather than implicitly treating
them using robust methods. Various methods for outlier detection are available in
the literature. For example, Martens and Naes (1989) (Chap. 5) present methods for
outlier detection in regression problems, Steinhauser (1996) addresses the impact of
influential observations and the masking problem of multiple outliers in factor analysis,
and Walczak and Massart (1995) presents a robust method as a detection tool for
outliers.

Filtering
For the elimination of high-frequency noise in spectral data with localized signal details
such as sharp bands in MIR spectral data, denoising using wavelets have shown to be a
powerful filtering technique (Vetterli and Kovačević, 1995). Denoising can be applied
in channel or observation direction.

Mean centering
The column-mean-centered matrix of A denoted by Āc, is given by

Āc = A − 1K āT

c = Jc A with āT

c =
1

K
1T

K A (F.6)

the column mean. From (F.3), column-mean centering leads to

Āc = C̄c E, (F.7)

Row-mean centering leads to Ār = CĒr, where Ar and Er are row-mean-centered
matrices.

Differentiation
Let

Dc ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

. . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1

0 0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(F.8)

be the K × K backward finite difference matrix, and Ȧ = Dc A denote the spectral
matrix obtained by taking finite differences along the columns of A. Since E is assumed
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to be time-invariant, it follows from (F.3):

Ȧ = ĊE, (F.9)

When differentiated with respect to channel number,

dA

dλ
= C

dE

dλ
(F.10)

since C is independent of the channel number.

Normalization and auto-scaling
Normalization is performed on either the columns (rows) of A such that each column
(row) has a Euclidian norm of 1. Auto-scaling of A in column direction is a data
pre-treatment composed of two sequential steps: (1) column-mean centering and (2)
division of each column by its standard deviation.

Baseline elimination
One specificity of spectral data compared to concentration data is that an instrumental
shift can cause baseline problems. A nonzero reference spectrum is always present (e.g.
spectrum of air or of the solvent). This causes the rank of A to be larger than rank (C),
since rank analysis considers the air/solvent as an extra absorbing species. Here, the
removal of the additional nonzero singular value(s) caused by the baseline and its time
variation is considered.

Time-invariant baseline:
Usually, the reference spectrum is subtracted from the spectral matrix before any
analysis is performed. However, if the reference spectrum is not subtracted, then it can
be considered as the spectrum of a substance whose concentration remains unchanged.
Mathematically stated, one column of the K×(S+1) concentration matrix Ct remains
constant with

Ct ≡
[

cbase C

]
=

[
1K C

] ⎡⎢⎣ cbase 0T

S

0S IS

⎤⎥⎦ ,

A = Ct Et, Et =

⎡⎢⎣eT
base

E

⎤⎥⎦ ,

(F.11)

where it was assumed, without loss of generality, that the first column of C remains
constant, and cbase is a constant pseudo-concentration for the baseline. As can be seen
from (F.11), a pure-component spectrum ebase can be attributed to the baseline.

By (i) subtracting a reference spectrum, (ii) column-mean centering, or (iii) differenti-
ation with respect to time, any time-invariant contribution of the measurement device
to the spectrum can be eliminated since 1K ∈ Sc (Ct) and Property B.6. However,
time-dependent changes in the baseline will not be corrected this way.

Baseline with time-varying abscissa:
If A can be decomposed into

A = abase 1
T

L + A1, (F.12)
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then differentiating with respect to the channel number leads to

dA

dλ
=

dA1

dλ
, (F.13)

where abase is the abscissa of the baseline abase signifying the time variation of a baseline
parallel to the channel axis.

Analogous to a time-invariant contribution of the measurement device, any channel-
independent contribution abase can be eliminated by differentiating once with respect
to channel number, while differentiation with respect to time will not help.

Among time-varying baselines, the case where the baseline is parallel to the channel
axis, has been discussed above. Alternatively, if the baseline varies linearly with the
channel number, the second derivative with respect to channel number has to be used
to eliminate the effect.

Baseline with time-varying abscissa and slope:
If the baseline varies linearly with the channel number, then

A = abase 1T

L + mλT + A1, (F.14)

where m is the baseline slope, λ the channel vector, and abase and m contain the
variation of the abscissa and slope of the baseline with respect to time, respectively.
When the spectral matrix is differentiated twice along the channel direction, then

d2A

dλ2
=

d2A1

dλ2
. (F.15)

F.2 Advantages of multivariate forward calibration

Especially in the case when the spectrum of the analyte is overlapped with other species
(e.g. in NIR spectra), multivariate calibration methods have been shown to improve
analysis precision, accuracy, reliability, and applicability of spectral analyses relative
to the more conventional univariate methods of data analysis (Haaland, 1992). Rather
than attempting to find and use only an isolated spectral feature, multivariate methods
derive their power from the simultaneous use of multiple regions in each spectral mea-
surement. Thus, the problem of spectral interferences can be eliminated with the use
of any one of the numerous multivariate calibration methods. For practical purposes,
it is important to quantify the concentrations of only the species for which calibration
concentrations are available (known species or species of interest) in a complex mixture
irrespective of the presence of other species (unknown species or interferents).

The difference between the various multivariate calibration methods are a result of the
model relating spectral intensities and concentrations and the assumptions made in the
models about the errors. The present distinction of the various calibration methods
concerns predictive vs. causal modeling (see Martens and Naes, 1989, for other ways
of classification). Two calibration model types are distinguished (Krutschkoff, 1967):
the forward (or inverse) and the reverse (or classical) calibration model. For spectral
data, the forward (predictive model) and the reverse (causal model) are given by

C̃ = AB + G̃, (F.16)
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Ã = CE + F̃, (F.17)

respectively, where G̃ and F̃ are matrices of random errors or model inadequacies.
From (5.11) and (F.17), it can be seen that forward and reverse calibration means
regressing C̃ on A and Ã on C, respectively. The forward and reverse calibration
methods give predictors with different statistical properties since the error structures
are different. However, the difference is small if the noise levels in C̃ and/or Ã are low
(Martens and Naes, 1989).

The reverse formulation requires the columns of C to be linearly independent (or,
equivalently, to be of full column rank; Krutschkoff, 1967). This assumption is a major
disadvantage, since all interfering sources (chemical or physical) need to be known and
included in the calibration. Furthermore, all the species need to be linearly indepen-
dently varied; an assumption that can usually be verified for non-reacting mixtures by
the use of experimental planning methods (Box et al., 1978).

The original forward formulation requires full column rank of A. For the verification of
this assumption, channel selection methods must be applied (Gemperline, 1989; Brown,
1992, 1993; Lucasius et al., 1994). This represents a major disadvantage since subopti-
mal channel selection can introduce problems such as poor baseline modeling and noise
inflation from the collinearity problem (Haaland and Thomas, 1988). However, this
assumption can be relaxed using the framework of bilinear models together with e.g.
PCR or PLS (see Appendix C.2; Martens and Naes, 1989). Owing to the disadvantage
of the reverse formulation, only the (multivariate) forward formulation is studied.

Remark F.1 (Necessary conditions for an ∈ Sr (A))
For the specification of necessary conditions for an ∈ Sr (A), note that an /∈ Sr (A) and
rank (E) = S imply the corresponding (complete) concentration vector cn /∈ Sr (C).
With cT

n = tT
nC and cT

k,n = CJk,

cT

n = tT

nC + c⊥T, cT

k,n = tT

nCJk + c⊥TJk, (F.18)

where c⊥ is the orthogonal complement to Sr (C), i.e., c⊥ /∈ Sr (C).

It can easily be verified that Q+TQT and EP+TQ span the same row space and
c⊥TEP+TQ = 0T

S. Then,

ĉT

k,n = aT

n B̂k = cT

n EB̂k = (tT

nC + c⊥T)EP+TQJk = tT

n CJk. (F.19)

Comparing (F.18) with (F.19) shows that ĉk,n is offset with respect to ck,n by c⊥T Jk,
i.e., the component that lies outside Sr (C) cannot be predicted. However, if Sk, Q
and c⊥T are chosen so that c⊥T Jk = 0Sk

(necessary conditions), then the prediction is
correct.
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Local rank

Local rank analysis is used for the detection of local rank changes (decreasing or in-
creasing) in time or channel direction. It will be shown that local rank analysis in
time direction can provide valuable information about (i) chemical reactions such as
start or termination of one or more reactions, or/and (ii) a change in operation such
as start and stop of feeding. Alternatively, it will be shown that only under restrictive
assumptions, local rank analysis in channel direction of spectral data from reacting
mixtures determines regions where one or several species do or do not absorb.

It is assumed that: (i) R is the total number of independent reactions that occur during
the complete time considered, (ii) each reacting species absorbs in at least one of L
channels, and (iii) the complete pure-component spectra of all the S absorbing species
are linearly independent, i.e., rank (E) = S.

The following definitions are useful in this section.

Definition G.1 (Local rank change) Let an m × n noise-free matrix Y be parti-
tioned into

Y =

⎡⎢⎣Y−

Y+

⎤⎥⎦ , (G.1)

where Y− and Y+ are matrices of dimension m− × n and m+ × n, respectively, with
m = m− + m+ and m+, m− ≥ n. Let

d ≡ rank (Y+) − rank (Y−) . (G.2)

If d > 0, it is said that Y exhibits a local rank increase of d, and if d < 0, it is said
that Y exhibits a local rank reduction of (−d).

The pseudo-rank of a matrix (denote as prank (·)) was introduced in Appendix C.4.1.2
as the rank of a matrix in the absence of measurement error. Here, the concept of
approximate-rank is introduced for noise-free matrices. If a signal becomes arbitrarily
small, its contribution to the the variability of the matrix may become negligible. Thus,
since most of the pseudo-rank estimation methods rely on some variance criterion of
the residuals, it is proposed to use them also for the determination of the approximate-
rank.
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Definition G.2 (Local approximate-rank reduction) Let an m × n noise-free
matrix Y be partitioned as in (G.1). Y is said to have a local approximate-rank
reduction of d with

d ≡ prank (Y+) − prank (Y−) , (G.3)

where prank (·) is redefined as the approximate-rank of a matrix.

Definition G.3 (Linear dependence, approximate-rank, and rank deficiency)
If rank (Y) < n, then the columns of an m × n matrix Y are linearly dependent. If
prank (Y) < n, then the columns of an m × n matrix Y are linearly dependent in the
approximate-rank sense. For both cases, it is said that Y is rank deficient.

First, local rank changes in time direction due to the underlying chemical reaction
system and, then local rank changes in channel direction due to selectivity are studied.

G.1 Local rank in time direction

Rank changes in the concentration matrices C and D mainly occur in time direction
due to operating or kinetic changes. A rank change can occur in the sense of both
mathematical rank and approximate-rank. It will be shown that a mathematical rank
change is due to a discrete event in the generalized inlets (e.g. additional batch runs,
start/stop of feeding, addition of a mixture), i.e., the rank changes abruptly in Z. Such
rank changes were discussed in Subsections 5.2.2.1 and 5.2.2.2. In this section, only
local rank changes in X are considered.

It will be shown that the discrete event in the generalized inlets can also cause a discrete
(mathematical) rank increase in X (e.g. start of a reaction). Alternatively, it will be
shown that a rank change in the approximate-rank sense can be due to the reaction
kinetics, i.e., the approximate-rank changes locally in X, which is not directly linked
to a discrete event in the generalized inlets.

Practical situations for local mathematical and approximate-rank changes in X are
studied in the next two subsections. Since only local rank changes in X are considered,
it suffices to analyze the local rank of the RV-spectral matrix H and the corresponding
RV-concentration matrix D.

G.1.1 Local mathematical rank change in X

The column dimension of X is determined by the total number of independent reactions
R that take place during K observations. An example for local mathematical rank
change of X is provided next.

For data from reaction systems with different stoichiometries, consider H to be com-
posed of 2 runs exhibiting different linearly-independent stoichiometries with Rj inde-
pendent reactions (j = 1, 2). Locally, the rank is R1 in the observation interval [1, K1],
and R2 in ]K1, K1 + K2]. A local mathematical rank change of d = |R2 − R1| occurs
at the (K1 + 1)st time instant. This can easily be generalized to the case of B runs
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exhibiting different linearly-independent stoichiometries. Note that the stoichiometries
of the different runs can be mutually linearly dependent of each other. A special case
is the activation of additional reactions.

Example 2.4e (Activation of an additional reaction; cont’d from page 12)
Consider the reversible parallel reaction system (2.9). Assume power-law kinetics, i.e.,
r1 = κ1c1 c2 − κ2c3 and r2 = κ3c

2
1. It is assumed that all four species absorb (S = 4).

One batch run is conducted with c0 = [3, 0, 0, 0]T M. At t = 0.33 h, a mixture of volume
V∆ = 0.2 l is added with c∆ = [0, 10, 0, 0]T M. Similarly to Example 2.4c on page 28,
c0 was chosen such that only the second reaction is active in the beginning, whereas
the inlet concentrations cin activates the second reaction (see Appendix A.4 for the
parameters). Figure G.1 presents the concentrations and RV-concentrations for K = 60
observations. Figure G.2 depicts the pure-component spectra of all absorbing species
(L = 80), which are used to construct A. Gaussian noise with standard deviation of
0.0066 is added to A. Figure G.1 shows that before the addition, the concentrations
and RV-concentrations of Species X2 and X3 are zero, since the first reaction is not
activated. Since noise is added, mathematical rank must be replaced by pseudo-rank.
The pseudo-rank of H̃ is 2 = R as expected. Figure G.3 illustrates the reaction variants
and EFA forward in time applied to submatrices of H̃ with pseudo-rank estimation
based on visual inspection of the singular values. Figure G.3b shows that the second
singular value becomes significant after the addition and, therefore, it correctly predicts
the start of a new reaction induced by the addition (compare also with Figure G.3a).
The identity of the reaction, however, cannot be determined from EFA, and must
be deduced from physical insight. Thus, the global stoichiometric matrix is given by
N =

[
N1
N2

]
with N1 = [−2, 0, 0, 1] and N2 = [−1, −1, 1, 0].

Note that with this design of the experimental concentration matrix, i.e., Cx =
[

c1
∆

cT
0

]
,

it was possible to decouple the first reaction from the second one. Such an approach
will be useful in the resolution of the concentrations from spectral data using factor-
analytical methods (see Subsection 5.3.2.4).
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Figure G.1. (a) The concentrations c, and (b) the RV-concentrations d of Example 2.4e.
See Figure 4.12 on page 86 for legend. Addition at t = 0.33 h (dotted vertical line).
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Figure G.2. Pure-component spectra E for Example 2.4e. For legend, see Figure 4.12 on
page 86.
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Figure G.3. Example 2.4e: (a) The reaction variants x, and (b) EFA forward in time
applied to submatrices of H̃ with pseudo-rank estimation based on visual inspection of
the singular values. Legend for (a): (–) first reaction, (– –) second reaction. Addition at
t = 0.33 h (dotted vertical line) and noise level at εA = 0.03 (dashed horizontal line).
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G.1.2 Local approximate-rank change in X

Local approximate-rank change can occur due to the reaction rate, rb, becoming linearly
dependent/independent on the remaining (R−1) reaction rates for t → ∞. In practice,
owing to noise, it is assumed that the reaction rate rb(t) is linearly dependent on the
remaining ones in the sense of Definition G.3 for t ≥ t́:

rb(t) ≈
∑
j �=b

αjrj(t), ∀t ≥ t́, (G.4)

where αj is a coefficient, and t́ the time instant for which rb(t) is linearly dependent.

Let rank (E) = S and N be constant, and the reaction variant xl(k) (l = 1, . . . , R) be
decomposed as:

xl(k) = x́l + ∆xl(k), x́l ≡
t́l∫

t=0

V (t) rl(t)/λ(t) dt, ∀k ∈ [ḱ, K], (G.5)

where x́l is the reaction rate integrated up to time instant t́ (with the discrete-time
equivalent ḱ), and ∆xl(k) the reaction variant change relative to x́l with ∆xl(k) ≡
xl(k) − x́l. Thus, (G.4) in terms of the reaction variants becomes with (G.5):

∆xb(k) ≈
∑
j �=b

αj∆xj(k), ∀k ∈ [ḱ, K]. (G.6)

With ∆xl(k) = (xl(k) − x́l), (G.6) becomes:

xb(k) ≈
∑
j �=b

αjxj(t) + β, β = −
R∑

j=1

αjx́j, αb ≡ −1, ∀k ∈ [ḱ, K]. (G.7)

(G.7) shows that although the reaction rate rb is linearly dependent on the remaining
ones, the reaction variant xb is usually independent of the remaining ones due to the
(unknown) constant β.

Let X and H be partitioned as:

X =

⎡⎢⎣X−

X+

⎤⎥⎦ , H =

⎡⎢⎣H−

H+

⎤⎥⎦ , (G.8)

with X− and X+ being matrices of dimension k × R and (K − k) × R, respectively,
and H− and H+ matrices of dimension k × L and (K − k) × L, respectively.

Without loss of generality, assume that rb is the reaction rate of the first reaction.
Then, for the last (K − ḱ) observations, the (K − ḱ) × R matrix of reaction variants,
X́, (approximately) becomes with (G.7):

X́ =

[
Xi 1K−ḱ

] ⎡⎢⎣α IR−1

β 0T

R1

⎤⎥⎦ = Xi,e R, α ≡
[
α2 α3 · · · αR

]
, (G.9)
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where Xi is an (K − ḱ)× (R − 1) matrix containing the linearly-independent reaction
variants rj (j 	= b) on each row, Xi,e and R matrices of dimension (K − ḱ) × R and

R × R, respectively, and α an (R − 1)-dimensional vector. Thus, H́ becomes with
(G.9):

H́ = Xi,e RNE. (G.10)

From (G.9) and (G.10), it can be seen that 1K−ḱ lies (approximately) in Sc

(
H́

)
. For

the elimination of 1K−ḱ, either of the following three data pre-treatment methods of H́
can be applied according to Properties B.6–P-Rank-5b: (D1) column-mean centering,
(D2) differentiation with respect to time, and (D3) subtraction of the first row of H́.
Thus, ḱ (i.e., the start of that region where rb becomes linearly dependent/independent)
can be determined from backward/forward EFA (see Appendix C.4.1.3) based on the
approximate-rank of the pre-treated H+.

Two practical situations are depicted where one or several reaction rates become lin-
early dependent on the remaining ones in the sense of Definition G.3:

(S1) Presence of limiting species in a set of irreversible reactions: Assume a set of
R irreversible reactions. Then, in the absence of feeding after a certain time
instant, if the consumption of a reactant Xj is greater than its production rate,
the concentration and the Rb consumption rates rb(c1, . . . , cj, . . . , cS) containing
Xj as a reactant become asymptotically zero. This is a special case of linear
dependence on the remaining (R − Rb) reaction rates with the coefficients αj

being zero.

(S2) Reversible reactions in equilibrium: Assume that a reversible reaction asymptot-
ically reaches equilibrium for k ≥ ḱ. Then, the corresponding reaction rate rb

becomes asymptotically zero. Similarly to Situation S1, this is a special case of
linear dependence on the remaining (R − 1) reaction rates with the coefficients
αj being zero.

One practical situation where one or several reaction rates become linearly independent
of the remaining ones in the sense of Definition G.3 is depicted. Assume that a reaction
is auto-catalyzed and its reaction rate rb is negligibly small for k < ḱ. Similarly to
Situations S1 and S2, this is a special case of linear dependence on the remaining
(R − 1) reaction rates with the coefficients αj being zero. For k ≥ ḱ, however, rb

becomes significant or, equivalently, rb becomes linearly independent of the remaining
ones.

Four examples are presented next.

Example 2.4f (Limiting concentration of species X2 in irreversible reactions;
cont’d from page 12)
One batch run is conducted with c0 = [3, 0.8, 0, 0]T M and V0 = 0.8 l. c0 was chosen
such that the concentration of X1 is in excess, and the concentration of X2 is the limiting
concentration for the first reaction (see Appendix A.4 for the parameters). Figure G.4
presents the concentrations and RV-concentrations for K = 200 observations. The
pure-component spectra are the same as in Figure G.2. Uniform noise in the range
[-0.0046, 0.0046] is added to A.
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Figure G.4. (a) The concentrations c, and (b) the RV-concentrations d of Example 2.4f.
See Figure 4.12 on page 86 for legend. Termination of the first reaction at t́ = 1.7 h
(dotted vertical line) according to Figure G.5b.
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Figure G.5. Example 2.4f: (a) The reaction variants x, and (b) EFA backward in time
applied to column-mean-centered submatrices of H̃ with approximate-rank estimation
based on visual inspection of the singular values. Legend for (a): (–) first reaction, (– –)
second reaction. Termination of the first reaction at t́ = 1.7 h (dotted vertical line) under
the assumption of noise level εA = 0.02.
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Figure G.4 shows that the concentration of Species X2 rapidly approaches 0 (limiting
concentration) and the concentration of Species X3 reaches its final value.
The pseudo-rank of H̃ is 2 = R as expected. Figure G.5 illustrates the reaction variants
and EFA backward in time applied to column-mean-centered submatrices of H̃ in time
direction with approximate-rank estimation based on visual inspection of the singular
values. As can be seen from Figure G.5b, the second largest singular value decreases
rapidly and disappears in the noise at level εA = 0.02. Thus, a local approximate-rank
reduction of 1 occurs at time instant t́ = 1.7 h. Under the assumption of irreversible
reactions and the presence of limiting species concentrations, this can be interpreted as
the termination of a reaction. Another rank drop can be observed at 11.7 h indicating
the termination of the second reaction. In summary, it can be concluded under the
assumption of irreversible reactions, the presence of limiting species concentrations,
and the knowledge of N, that the first reaction (X1 + X2 → X3) terminates before the
second one (2X1 → X4). This is confirmed in Figure G.5a, where the reaction extent of
the first reaction stays approximately constant after t́ = 1.7 h, and that of the second
reaction after 11.7 h.

Example 2.2g (Reversible reaction in equilibrium; cont’d from page 18)
One batch run is performed with c0 = [5, 5, 0, 0]T M. The initial concentration of the
sulfuric acid is 0.23 M (see Appendix A.1 for the numerical values of the parameters).
The concentration and RV-concentration profiles are presented in Figure G.6. Fig-
ure 5.9 depicts the pure-component spectra of all absorbing species (L = 101), which
are used to construct A. Gaussian noise with standard deviation of 0.038 is added to
A. Figure G.6 shows that the concentrations and RV-concentrations of all the species
approximately reach equilibrium after about 1 h.
The pseudo-rank of H̃ is 1 = R as expected. Figure G.7 illustrates the reaction variant
and EFA backward in time applied to column-mean-centered submatrices of H̃ in time
direction with approximate-rank estimation based on visual inspection of the singular
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Figure G.6. (a) The concentrations c, and (b) the RV-concentrations d of Example 2.2g.
Termination of the first reaction at t́ = 0.5 h (dotted vertical line) according to Fig-
ure G.7b. See Figure 5.8 for legend.
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Figure G.7. Example 2.2g: (a) The reaction variants x, and (b) EFA backward in time
applied to column-mean-centered submatrices of H̃ with approximate-rank estimation
based on visual inspection of the singular values. Termination of the first reaction at t́ =
0.5 h (dotted horizontal and vertical lines) under the assumption of noise level εA = 0.03.

values. Figure G.7b shows that the largest singular value decreases rapidly and disap-
pears in the noise at level εA = 0.03. Thus, a local approximate-rank reduction of 1
can be estimated at time instant t́ = 0.5 h. Under the assumption of reversible reac-
tions, the local approximate-rank reduction can be interpreted as the reaction having
reached the equilibrium. Owing to the bad signal/noise ratio, the local approximate-
rank reduction takes place before the time instant determined visually from Figure G.6
(1 h).

Example 2.13e (Linearly-dependent reaction rates; cont’d from page 31)
Consider Run R3 of Example 2.13 on page 31 (constant-density semibatch reaction
system). It is assumed that all reacting species absorb except for the solvent (S =
5). Figure G.8 shows the profiles of the concentrations and RV-concentrations, and
Figure G.9 depicts the pure-component spectra of all absorbing species (L = 80),
which are used to construct A. Uniform noise in the range [-0.04, 0.04] is added to A.
The pseudo-rank of H̃ is 2 = R as expected. Figure G.10a shows that the two
(unknown) reaction variants become asymptotically parallel after about 5 h, mean-
ing that the corresponding reaction rates become linearly dependent in the sense of
Definition G.3. Thus, for t ≥ 5 h, the produced species X2 is immediately con-
sumed by the second reaction, and a pathway equivalent to (2.54) can be found as
2X1 → X3 + X4 + 2X5 (see also Example 2.4a on page 19).
Figure G.10b illustrates EFA backward in time applied to column-mean-centered sub-
matrices of H̃ with approximate-rank estimation based on visual inspection of the
singular values. The second largest singular value decreases rapidly and disappears
in the noise at level εA = 7.6. Thus, a local approximate-rank reduction of 1 occurs
at time instant t́ = 3 h. Under the assumption of an irreversible reaction system
and the absence of limiting species concentration, this rank drop can be interpreted
as the reaction having reached linearly-dependent reaction rates. Owing to the bad
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Figure G.8. (a) The concentrations c, and (b) the RV-concentrations d of Example 2.13e.
Linearly-dependent reaction rates at t́ = 3 h (dotted vertical line) according to Fig-
ure G.10b.
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Figure G.9. Pure-component spectra E for Example 2.13e. For legend, see Figure G.8.
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Figure G.10. Example 2.13e: (a) The reaction variants x, and (b) EFA backward in time
applied to column-mean-centered submatrices of H̃ with approximate-rank estimation
based on visual inspection of the singular values. Legend for (a): (–) first reaction, (–
–) second reaction. Linearly-dependent reaction rates at t́ = 3 h (dotted horizontal and
vertical lines) under the assumption of noise level εA = 7.6.

signal/noise ratio, the local approximate-rank reduction takes place before the time
instant determined visually Figure G.10a (5 h).

Example 2.13f (Auto-catalyzed reaction system; cont’d from page ??)
The second reaction is auto-catalyzed by X4. Since the concentration of X4 is small
in the beginning, the corresponding (unknown) reaction variant is also small. With
increasing concentration of X2 produced by the first reaction, more X4 is produced,
which, in turn, increases the reaction rate of the second reaction.
Figure G.11b illustrates EFA forward in time applied to column-mean-centered sub-
matrices of H̃ with approximate-rank estimation based on visual inspection of the
singular values. The second largest singular value becomes significant for time instants
t ≥ t́ = 0.6 h. Under the assumption that the reaction system is irreversible and auto-
catalyzed, this rank increase can be interpreted as the time instant where the second
reaction rate becomes significant or, equivalently where both reaction rates become
linearly independent.

G.2 Local rank in channel direction

In practical applications, the reacting species do not absorb in the all spectral regions
of interest. There exist spectral regions where only a single reacting species absorbs
such as discrete bands in FTIR, mass spectroscopy, Raman. These selective regions
play an important role in the resolution of concentrations from spectral data using
FA methods (see Tauler et al., 1995, and the references therein). For non-reacting
mixtures, local rank analysis in channel direction can detect such regions as rank-one
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Figure G.11. Example 2.13f: (a) The reaction variants x, and (b) EFA forward in time
applied to column-mean-centered submatrices of H̃ with approximate-rank estimation
based on visual inspection of the singular values. Legend for (a): (–) first reaction, (– –)
second reaction. Linearly-independent reaction rates at t́ = 0.6 h (dotted horizontal and
vertical lines) under the assumption of noise level εA = 2.7.

regions (Geladi and Wold, 1987). For reacting mixtures, however, it will be shown
that rank-one or, more generally, rank-A regions in channel direction can also occur
for regions with more than one or A absorbing species, respectively. Thus, in contrast
to non-reacting mixtures, prior knowledge is necessary to interpret rank-A regions as
spectral regions with A absorbing species.

WEFA with window size of w channels is a useful tool for the detection of local rank
regions in channel direction (see Appendix C.4.1.3). Let A(�, w) denote the corre-
sponding spectral matrix in the spectral region [�, � + w[. Let Sm(�, w) denote the
number of species that locally absorb, and the subscript m the quantities related to
these Sm species.

Thus, the factorization of spectral data for the local region becomes:

A(�, w) = CPm(�, w)Em(�, w) = Xe Ne Pm(�, w)Em(�, w), (G.11)

where Pm is an S × Sm matrix that selects those S columns which correspond to the
Sm species, and Em the corresponding Sm × w pure-component spectra matrix. It
is assumed that rank (Em(�,w)) = Sm(�, w), i.e., the pure-component spectra of the
Sm(�, w) in the spectral region are linearly independent, implying that w ≥ Sm(�, w).
Note that rank (Pm(�, w)) = Sm(�, w). The following proposition is formulated.

Proposition G.4 Let Assumptions A1–10 in Appendix D be verified, and rank (Em(�, w)) =
Sm(�, w). If Sm = 1, then rank (A(�, w)) = 1. For reacting mixtures, if Sm > 1, then

A = rank (A(�,w)) does not imply Sm = A. (G.12)

Proof:
For simplicity of notation, the arguments (�,w) are suppressed for the proof. Since
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rank (Em) = Sm, by invoking Property B.10a, it follows:

rank (A) = rank (CPm) ≤ min(rank (Xe) ,Ne,mPm) ≤ (R + p + 1, Sm). (G.13)

If Sm = 1, then rank (A) = rank (cm) = 1. Alternatively, if Sm > 1 and (R + p + 1) <
Sm, then rank (A) < Sm follows from (G.13). �

For reacting and non-reacting mixtures, Proposition G.4 says that if only one species
absorbs in region [�, �+w[, then the rank of A(�, w) is also one. For reacting mixtures,
however, if more than one species absorbs in a spectral region, then the rank of A(�, w)
does not necessarily correspond to the number of absorbing species (see Section 5.2.1).
More importantly, the rank of A(�, w) can even be 1. Thus, selective regions cannot
unambiguously be determined from the local rank analysis of A in channel direction.

WEFA can also be performed simultaneously in both dimensions of A. Then, Propo-
sition G.4 still holds with the arguments (�, w) replaced by ({k, �}, {wm, wn}), i.e., a
two-dimensional window of size wm×wn slides over the entire two-dimensional matrix
A with {k, �} being the coordinates of the upper left corner of the window.





H

Proofs

H.1 Modeling chemical reaction systems

Proposition 2.7 on page 16:
The following properties result from (2.18):

(a) The number of independent reactions obeys RN < S.

(b) (S − RN) linearly-independent columns of Γ are required to span the complete
null space of N, and thus, N ≥ S − RN .

(c) For any γ × S concentration matrix Č, if rank
(
Č Γ

)
= γ, then rank

([
N
Č

])
=

RN + γ.

(d) For any nonzero concentration vector c, c /∈ Sr (N), where Sr (·) denotes the
subspace spanned by the rows of a matrix (row space).

Proof:
(a) Since NΓ = 0R×N , Γ lies in the null space of N. Thus, rank (N) + rank (Γ) ≤ S
(Waller and Mäkilä, 1981). Since rank (Γ) > 0 and rank (N) = RN , RN < S.

(b) Since rank (N) = RN , dim (N (N)) = S − RN , where dim (N (·)) denotes the
dimension of the null space of a matrix. Thus, (S − RN) linearly-independent vectors
of dimension S are required to span the null space of N. Since Γ lies in the null space
of N (see 2.18), these vectors must lie in Sc (Γ).

(c) Proposition 2.7c will be shown by contradiction. Assume rank
([

N
Č

])
< RN + γ.

Then, there exists a row of Č, ci, such that

cT

i = αT N +
∑
j �=i

βjc
T

j

or cT

i Γ = αT NΓ +
∑
j �=i

βjc
T

j Γ.

Since NΓ = 0R×N , cT
i Γ =

∑
j �=i βjc

T
j Γ, which implies rank

(
Č Γ

)
< γ contradicting

the assumption of c.
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(d) It is easy to verify that there exists a column of Γ, γ, that has no zero element
(e.g. the molecular weights). Since c and γ have only nonnegative entries and, by
assumption, c 	= 0S, cT γ 	= 0 follows immediately. Thus, rank (cT γ) = 1 and, from c,
rank

([
N
cT

])
= RN + 1, implying c /∈ Sr (N). �

H.2 Reaction and flow variants/invariants in the

dynamic model

Theorem 3.2 on page 39:
Let ς = rank ([NT, Cin]) = (R + p). Then, a diffeomorphism T : [ n

V ] ↔ [ x
λ ] exists that

transforms model (2.38) into:

ẋ1 = h(x2) r(x),

ẋ2 = qin/λ,

ẋ3 = 0S−ς ,

λ̇ = −qout/h(x2),

x1(0) = η N+T (IS − Cin MT)n0,

x2(0) = η MTn0,

x3(0) = η QT n0,

λ(0) = 1/η,

(H.1)

where

h(x2) = η (V0 − 1T

pMTn0) + 1T

px2, (H.2)

and x1, x2, and x3 are vectors of dimension R, p, and (S−ς), respectively, η a nonzero
arbitrary constant, r the R-dimensional reaction rate vector expressed in terms of x,
M = L(CT

in L)−1, L ∈ IRS×(ς−R), and Q ∈ IRS×(S−ς) matrices with orthonormal columns
that satisfy: (i) rank ([NT, L, Q]) = S, (ii) NT, L and Q are mutually orthogonal, (iii)
QTCin = 0S−ς×p, (iv) LTCin is invertible.

The transformation to normal form T is one-to-one and can be written as follows using
g(n, V ) = η (V0 − 1T

pMTn0)/(V − 1T

pMTn):

⎡⎢⎣n

V

⎤⎥⎦ →

⎡⎢⎣x

λ

⎤⎥⎦ :

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x1

x2

x3

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
g(n, V )N+T (IS − Cin MT)n

g(n, V ) MTn

g(n, V ) QT n

1/g(n, V )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(H.3)

⎡⎢⎣x

λ

⎤⎥⎦ →

⎡⎢⎣n

V

⎤⎥⎦ :

⎡⎢⎣n

V

⎤⎥⎦ =

⎡⎢⎣λ (NT x1 + Cin x2 + Qx3)

λ h(x2)

⎤⎥⎦ . (H.4)

Proof:
The construction of the transformation to normal form was shown in the text. However,
(i) the global nature of the transformation and (ii) the reconstruction of the original
states n and V from x and λ remain to be proven.
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(i) To proof the global nature of T , it will be proven that g(n, V ) is always defined. Let
a ≡ V − 1T

pMTn and ζ ≡ V0 − 1T

pMTn0. Since from (H.3), a = η ζ λ. Differentiating
the latter equation with respect to time, and noting V = h(x2) λ, it follows that

ȧ = η ζ λ̇ = −η ζ qout/h(x2) = (η ζλ) qout/(h(x2) λ)

= −qout

V
a, a(0) = V0 − 1T

pMTn0.
(H.5)

Since qout and V are positive, a(t) = V (t) − 1T

pMTn(t) 	= 0 for all t if a(0) = V0 −
1T

pMTn0 	= 0. If a(0) = V0−1T

pMTn0 = 0, then from (H.5), a(t) = V (t)−1T

pMTn(t) =
0 for all t. In such a case, g is defined by invoking de l’Hospital’s rule.

(ii) The relationship [ z
V ] → [ x

λ ] is given in (3.8). The inverse can be obtained after a
few algebraic manipulations as: ⎡⎢⎣z

V

⎤⎥⎦ =

⎡⎢⎣ x λ

h(x2) λ

⎤⎥⎦ . (H.6)

According to (3.6), the number of moles n satisfies:

z =

⎡⎢⎢⎢⎢⎣
N+T (IS − CinM

T)

MT

QT

⎤⎥⎥⎥⎥⎦n. (H.7)

Multiplying both sides of (H.7) by [NT, Cin, Q] and noting that NT N+T+LLT+QQT =
IS, [

NT Cin Q

]
z =

(
NT N+T (IS − CinM

T) + Cin MT + QQT
)

n

=
(
NT N+T + (LLT + QQT)CinM

T + QQT
)

n

=
(
NT N+T + LLT + QQT

)
n = n. (H.8)

Substituting z = x λ into (H.8) leads to n = λ (NT x1 +Cin x2 +Qx3) and, hence, the
theorem follows. �

Corollary 3.3 on page 40:
For ς < R + p, the transformed model (3.9) represents (2.38), where M := L (CT

in L)+.
The relation [ x

λ ] → [ n
V ] is defined by (3.12).

Proof:
The only difference between Corollary 3.3 and Theorem 3.2 is that M = L(CT

in L)+.
Since LLTCinM

T = L(LTCin)(L
TCin)

+LT = LLT, however, the equation NTN+T +
LLT + QQT = IS in the proof of Theorem 3.2 still holds and, hence, the corollary
follows. �
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H.3 Reaction and flow variants/invariants in the

factorization of concentration data

H.3.1 Factorization of concentration data

Theorem 4.1 on page 55:
Let Assumptions A1–7 in Appendix D be verified. The concentrations c(k) from reac-
tion systems described by (2.38) are factorized as

cT(k) =
1

h(z(k))

[
xT(k) zT(k) V0

] ⎡⎢⎢⎢⎢⎣
N

CT
in

cT
0

⎤⎥⎥⎥⎥⎦ ≡ xT

eNe

with h(z(k)) ≡ V0 + 1T

pz(k),

(H.9)

where xe is an (R + p + 1)-dimensional vector and Ne is the extended stoichiometric
matrix of dimension (R+p+1)×S. (4.3) is termed the factorization of concentration
data. For K observations, the factorization of concentration data becomes:

C =

{
H−1

[
X Z V0 1K

]} ⎡⎢⎢⎢⎢⎣
N

CT
in

cT
0

⎤⎥⎥⎥⎥⎦ = Xe Ne

with H ≡ V0 IK + diag (Z1p)

(H.10)

and X being the K × R matrix of reaction variants, Z the K × p matrix of reaction
invariants and flow variants, V01K the K-dimensional vector of reaction and flow in-
variants, Xe an K × (R + p + 1) matrix, and H a K-dimensional diagonal scaling
matrix computed from (4.5) for K observations.

Proof:
For simplicity of notation, the dependency on time instant k is suppressed in the proof.

With η = 1, h(x2) = λ/V , and (4.2) substituted into (4.1),

c =
{
NTx + Cinz + V0

[
NTN+T(IS − CinM

T) + CinM
T + QQT

]
c0

}
/h(z).

From (H.8), (NTN+T(IS − CinM
T) + CinM

T + QQT) = IS, and thus, (H.9) holds.
(H.10) is obtained from (H.9) for K observations. �

Theorem 4.2 on page 60:
Let Assumptions A1–7 in Appendix D be verified. If Cin, V0, c(k), qin(k), and qout(k)
are known/measured, then an S-dimensional concentration vector in reaction-variant
form (RV-concentration vector), d(k), that relates directly to x(k) and N can be defined
from (4.3):

d(k) ≡ h(z(k)) c(k) − Cin z(k) − V0 c0 = NT x(k). (H.11)
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The operation to this effect is termed data pre-treatment to reaction-variant form. For
K observations, a K × S concentration matrix in reaction-variant form (RV-concen-
tration matrix), D, can be constructed from (4.10) that relates directly to X and N:

D ≡ HC − ZCT

in − V0 1K cT

0 = HC − Zx Cx = XN. (H.12)

(4.11) is termed factorization of concentration data in reaction-variant form (factoriza-
tion of RV-concentration data). Proof:
Since V0, qin(k), and qout(k) are assumed to be known, V (k) can be computed from
(2.38). z(k) and λ(k) are computed from (4.7). Then, (H.11) is derived from (H.9) by
simple algebraic manipulations. �

H.3.2 Rank

Theorem 4.3 on page 64:
Let Assumptions A1–7 in Appendix D be verified. Then, the rank of C is bounded by:

R + 1 ≤ rank (C) ≤ min(R + p + 1, S). (H.13)

Proof: According to Property B.4 and Assumption A2.6–7, rank (C) ≤ min(rank (Xe),
rank (Ne)) = min(R + p + 1, S).

Let Č ≡
[
X V01K

] [
N
cT
0

]
. For the proof of rank (C) ≥ R+1, note that: (i) c0 /∈ Sr (N)

(see Proposition 2.7d), and (ii) 1K /∈ Sc (X) due to the first of X being zero. From (i)
follows that rank (Ne) ≥ R+1, and from (ii) rank (Xe) ≥ R+1. Thus, rank

(
Č

)
= R+1

by invoking Property B.10. Since rank (C) ≥ rank
(
Č

)
, rank (C) ≥ R + 1 follows. �

Proposition 4.5 on page 65:
Let Assumptions A1–7 in Appendix D be verified. If the p generalized inlets are of the
type

(a) additional batch runs,

(b) impulse additions at different time instants, or

(c) inlet flowrates with abrupt changes at different time instants,

then rank (Xe) = R + p + 1.

Proof:
The conditions for rank (Xe) = (R+p+1) are proven individually for each generalized
inlet type.
(a) additional batch runs: For p additional batch runs with an optional outlet, Ki the
number of observations of the ith batch run (i = 1, . . . , p + 1), and K =

∑p+1
i=1 Ki, it
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can be easily verified that

X�
e = HXe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0K1 0K1 · · · 0K1 V 1
0 1K1

X2 V 2
0 1K2 0K2 · · · 0K2 0K2

X3 0K3 V 3
0 1K3 · · · 0K3 0K3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp+1 0Kp+1 0Kp+1 · · · V p+1
0 1Kp+1 0Kp+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(H.14)

with X�
e being an K×(R+p+1) matrix. Since the first row of Xj is 0T

R, 1Kj /∈ Sc (Xj)
for j = 1, . . . , p + 1. Thus, X�

e is of full rank. Since VΛ−1 is also full rank, then by
invoking Property B.10a, Xe is full rank.

(b) impulse additions of single species or mixtures at different time instants: For p
impulse additions, let Ki denote the number of observations before the ith impulse
addition (i = 1, . . . , p) and Kp+1 the number of observations after the pth impulse
addition. It can be easily verified that

X�
e = HXe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0K1 0K1 · · · 0K1 V 1
0 1K1

X2 V 1
∆ 1K2 0K2 · · · 0K2 V 1

0 1K2

X3 V 1
∆ 1K3 V 2

∆ 1K3 · · · 0K3 V 1
0 1K3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp+1 V 1
∆ 1Kp+1 V 2

∆ 1Kp+1 · · · V p
∆ 1Kp+1 V 1

0 1Kp+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(H.15)

with X�
e being an K × (R + p + 1) matrix. Since the first row of X1 is 0T

R, it follows
that 1K1 /∈ Sc (X1). Thus, the (R + p + 1)th column of X�

e is independent of its first
R columns. Also, assuming the number of rows of X1 to be greater than (R + 1), it is
concluded that [X1, 1K ] is of full rank (R + 1). Thus, the vector 0K of the (R + 1)th
column of X�

e can be expressed only as a trivial combination (all coordinates are zero)
of both the first R columns and the (R + p + 1)th column of X�

e. Thus, the (R + 1)th
column is linearly independent of both the first R columns and the (R+p+1)th column
of X�

e. By induction, X�
e is of full rank. Since VΛ−1 is also full rank, then by invoking

Property B.10a, Xe is full rank.

(c) inlet flowrates with abrupt changes at different time instants: It is easy to guarantee
experimentally that rank ([Z, 1K ]) = p+1. Furthermore, 1K is trivially independent of
X, since the first row of X is 0KT

R and, therefore, rank ([X, 1K ]) = R + 1. The crucial
part is to verify that the columns of X are independent of the ones of Z. However, this
can easily be guaranteed if all inlet flowrates are changed abruptly at least over one
time interval. Then, the columns of X are independent of those of Z (rank (Z) = p),
since even with a discontinuous inlet, reaction rates do not exhibit a discontinuity. �

Proposition 4.6 on page 66:
Let Assumptions A1–7 in Appendix D be verified. Then,

rank (D) = R. (H.16)
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Proof:
From (4.11) follows that rank (D) ≤ min(rank (X) , rank (N)). It is obvious that
rank (N) = rank (X) = R due to the independence of reaction stoichiometries and
kinetics. Thus, rank (D) ≤ R. The equality in (H.16) comes from Property B.10. �

Proposition 4.7 on page 67:
Let Assumptions A1–7 in Appendix D be verified. Let the number of observed indepen-
dent reactions be defined by Ro ≡ rank (Dm). Then,

Ro ≤ rank (Cm) ≤ min(Ro + p + 1, Sm). (H.17)

Proof:
rank (Dm) = Ro implies rank (Xo) = rank (No) = Ro. Since Cm = Xe,o Ne,o,
rank (Xe,o) ≤ Ro + p + 1, Sm, and rank (Ne,o) ≤ min(Ro + p + 1, Sm), rank (Cm) ≤
min(rank (Xe,o,Ne,o)) ≤ min(Ro + p+ 1, Sm). The lower bound of the rank of Cm says
that in some cases, rank (Cm) = rank (Dm) = Ro. The rank of Cm can never be less
than that of rank (Dm), since addition of columns to Xo to give Xe,o and addition of
rows to No to give Ne,o can never decrease the rank. �

Proposition 4.9 on page 67:
Let Assumptions A1–7 in Appendix D be verified. Then, for Sm ≤ S measured species,
the nullities of Cm and Dm are given by:

max(Sm − Ro − Sx,k, 0) ≤ dim (N (Cm)) = Sm − rank (Cm) ≤ Sm − Ro,

dim (N (Dm)) = Sm − rank (Dm) = Sm − Ro.

(H.18)

If Sm = S, then

max(S − R − p − 1, 0) ≤ dim (N (C)) ≤ S − R − 1,

dim (N (D)) = S − R.
(H.19)

Proof:
From (B.1) follows dim (N (Cm)) = Sm − rank (Cm) and dim (N (Dm)) = Sm −
rank (Dm). Since rank (Cm) ≤ min(Ro + Sx,k, Sm) (see (H.17)) and rank (Dm) = Ro,
equation (H.18) follows. Since, for Sm = S, (R + 1) ≤ rank (C) ≤ min(S, R + p + 1)
(see 4.13) and rank (D) = R (see H.16), equation (H.19) follows. �

Proposition 4.11 on page 68:
Let Assumptions A1–7 in Appendix D be verified. Let S− = S+ = S and R− = R+ = R,
where the subscripts − and + denote a quantity before and after variation using any of
Variation modes V1–V3 on page 28, respectively. Then, the following properties hold
for the nullity change ∆d:

(a) For (p+ − p−) additional generalized inlets, ∆d ≤ 0.

(b) If, in addition to (a), rank (C−) = (R + p− + 1) and rank (C+) = (R + p+ + 1),
then ∆d = p− − p+ < 0.

(c) If rank (C+) = S, then d+ = 0 and ∆d = −d−.
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Proof:
(a) C− = Xe,−Ne,− and C+ = Xe,+Ne,+. Variation modes V1–V3 append columns
and/or rows to Xe,−, and append columns to Ne,−. Such an operation never decreases
the ranks of Xe and Ne and, thus, rank (Xe,+) ≥ rank (Xe,−) and rank (Ne,+) ≥
rank (Ne,−). Thus, rank (C+) ≥ rank (C−). Furthermore,

∆d = d+ − d− = (S − rank (C+)) − (S − rank (C−)) = rank (C−) − rank (C+) .
(H.20)

Thus, ∆d ≤ 0.

(b) Proposition 4.11 follows from the substitution of the two expressions rank (C−) =
(R + p− + 1) and rank (C+) = (R + p+ + 1) into (H.20).

(c) Since rank (C+) = S, it follows that d+ = dim (N (C+)) = 0 and ∆d = d+ − d− =
−d−. �

Proposition 4.12 on page 71:
Let Assumptions A1–7 in Appendix D be verified, and the subscripts − and + de-
note a quantity related to more and fewer measurements, respectively. If S− = S and
rank (C−) = R + p + 1, then measuring less species (S+ = Sm < S) leads to the nullity
reduction ∆d of the corresponding concentration matrices C− and C+:

max(Sm − S + R − Ro, R + p + 1 − S) ≤ ∆d ≤ Sm − S + R − Ro + p + 1. (H.21)

Proof:
From the assumptions S− = S and rank (C−) = R + p + 1, it follows that d− = S −
rank (C−) = S−R−p−1. From (4.23) follows max(Sm−Ro−p−1, 0) ≤ d+ ≤ Sm−Ro.
Thus, from δd = d+ − d− follows (H.21). �

Proposition 4.13 on page 71:
Let Assumptions A1–7 in Appendix D be verified. Then,

1 ≤ ∆d(C,D) ≤ min(p + 1, S − R),

0 ≤ ∆d(Cm,Dm) ≤ min(p + 1, Sm − Ro).
(H.22)

Proof:
From S−min(R+p+1, S) ≤ d− = dim (N (C)) ≤ (S−R−1) and d+ = dim (N (D)) =
S−R follows that 1 ≤ ∆d(C,D) ≤ (S−R)−(S−min(R+p+1, S)) = min(p+1, S−R).
Similarly, from Sm − min(Ro + p + 1, Sm) ≤ d− = dim (N (Cm)) ≤ (Sm − Ro) and
d+ = dim (N (Dm)) = Sm − Ro follows that 0 ≤ ∆d(Cm,Dm) ≤ (Sm − Ro) − (Sm −
min(Ro + p + 1, Sm)) = min(p + 1, Sm − Ro). �

Proposition 4.22 on page 89:
Let Assumptions A1–4 and A6–7 in Appendix D be verified. Furthermore, assume that
concentration measurements for Sm < S species and temperature/calorimetric mea-
surements from reaction system (2.40) are available, and the Ro observed independent
reactions have a significant heat effect. Then, the following properties hold:
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(a) If (−∆hR) /∈ Sc (Nm), then

rank (DT,m) = rank (Dm) + 1 = Ro + 1, (H.23)

where DT,m is defined as in (4.48).

(b) If (−∆hR) /∈ Sc (Nm) and rank (Xe,T ) = R + pT + 1, then

rank (CT,m) = rank (Cm) + 1 ≤ min(Ro + p + 1, Sm) + 1, (H.24)

where CT,m is defined as in (4.49).

Proof:
(a) rank (Dm) = rank (Nm) = Ro and rank (X) = R from the definitions of Ro and
R, respectively. From rank (X) = R, it follows that rank (DT,m) = rank (NT,m) by
invoking Property B.10a. Since (−∆hR) /∈ Sc (Nm) by assumption, it follows from
(4.48) that rank (NT,m) = (Ro + 1) and, thus, (H.23).

(b) From rank (Xe,T ) = R + pT + 1, it follows that rank (Xe) = R + p + 1. Thus, by
invoking Property B.10a, rank (Cm) = rank (Ne,m) and rank (CT,m) = rank (Ne,T,m).
Since rank (Ne,m) ≤ min(Ro + p + 1, Sm) from Proposition 4.7 and (−∆hR) /∈ Sc (Nm)
by assumption, it follows from (4.49) that rank (Ne,T,m) ≤ min(Ro + p + 2, Sm + 1) =
(min(Ro + p + 1, Sm) + 1) and, thus, (H.24). �

H.3.3 On-line state reconstruction

Proposition 4.14 on page 72:
Let Assumptions A1–7 in Appendix D be verified. Let the concentrations cm of Sm ≥ R
species be measured, and Nm be the R×Sm submatrix of N corresponding to these Sm

species. Given N, Cin, qin, qout, c0, and V0, if NT
m has a unique left pseudo-inverse, the

reaction variants x can be reconstructed without knowledge of reaction kinetics using

x̂ = N+T

m (h(z) cm − Cin,mz − V0cm,0) , (H.25)

where the subscript m denotes a quantity corresponding to the Sm measured species.
From (4.29), the concentrations of the remaining (S − Sm) species, cu, can be recon-
structed using

ĉu = (NT

ux̂ + Cin,uz + V0cu,0) /h(z), (H.26)

where the subscript u denotes a quantity corresponding to the Su unmeasured species.

Let only an estimate of the initial concentrations of the Su species be available, ĉu,0.
Then the estimation error εu ≡ ĉu − cu, with ĉu being the estimated concentrations, is
given by

εi
u(k) = V0ε

i
u,0/h(z(k)), i = 1, . . . , Su, (H.27)

where εi
u is the ith element of εu. If the inlets are present at least intermittently, then

the estimation error asymptotically converges to zero.
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Proof:
The measured and unmeasured concentrations induce the following partition in (4.3):

h(z) c = h(z)

⎡⎢⎣cm

cu

⎤⎥⎦ =

⎡⎢⎣NT
m

NT
u

⎤⎥⎦x +

⎡⎢⎣Cin,m

Cin,u

⎤⎥⎦ z + V0

⎡⎢⎣cm,0

cu,0

⎤⎥⎦ . (H.28)

From (4.7), the states z and λ can be reconstructed from qin, qout and V0. Owing to
the existence of N+T

m by assumption, x can be reconstructed from cm leading to (H.25).
Having reconstructed x, (H.26) follows.

Since ĥ(ẑ) = h(z) due to the assumption of perfect knowledge of qin, qout and V0,
(H.27) is obtained from (H.26). Since h(z) = V0 + 1T

pz, the inlets are present at
least intermittently for k → ∞, then h(z) → ∞ and, therefore, 1/h(z) → 0. Thus,
limk→∞ εi

u(k) = V0ε
i
u,0 limt→∞ 1/h(z(k)) = 0 (i = 1, . . . , Su). Thus, d

dt
(h εu) = ḣ εu +

h ε̇u = 0Su . Since ḣ = 1T

pqin/h, the error dynamics are given by:

ε̇u = −V0 δ εu,0, (H.29)

where δ = (1T

pqin)/V is the so-called dilution term. If at least one of the inlet flowrates
is nonzero for k → ∞, then δ > 0. Thus, the error dynamics (H.29) are stable, and
εu converges asymptotically to 0Su . Consequently, the result proposed by Bastin and
Dochain (1990) is obtained:

lim
t→∞

ĉu = cu, δ > 0. (H.30)

�

H.3.4 Target factor analysis applied to reaction data

Proposition 4.16 on page 77:
Let Assumptions A1–7 in Appendix D be verified. Let Cin, V0, c(k), qin(k), and qout(k)
of reaction systems described by (2.38) be known/measured for all k. Then, the follow-
ing properties hold:

(a) The number of independent reactions can be determined from D in (4.11) as

R = rank (D) . (H.31)

(b) ntar ∈ Sr (N) iff εp(ntar,D) = 0, where εp(ntar,D) is the least-squares error of
ntar on the row space of D (see C.15).

(c) Once N has been determined (e.g., after having accepted R stoichiometric tar-
gets), X and the vector of reaction rates r(k) can be reconstructed.

Proof:
(a) It follows from (4.11) that rank (D) ≤ min(rank (X) , rank (N)). It is obvious that
rank (N) = rank (X) = R due to the independence of reaction stoichiometries and
kinetics. Thus, rank (D) ≤ R. The equality in (H.31) follows from Property B.10.
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(b) Since R < S (from Proposition 2.7a), Property b follows immediately from (C.15)
and (4.11):

εp(ntar, D) = ‖nT

tar

(
IS − D+D

) ‖2 = ‖nT

tar

(
IS − N+N

) ‖2. (H.32)

(c) The reconstruction of X proceeds according to the TFA procedure described in
Subsection 4.3.2.1. Since V (k) and qout(k) (and thus λ(k)) are assumed to be known,
r(k) can be calculated from (4.7) for all k. �

Theorem 4.17 on page 77:
Let Assumptions A1–7 in Appendix D be verified. Let Cin,m, V0, cm(k), qin(k),
and qout(k) of reaction systems described by (2.38) be known/measured for all k.
If rank (Γu) ≥ S − max(Sm, R), then ntar ∈ Sr (N) iff εp(nm,tar,Dm) = 0 and
nT

tar Γ = 0T

N .

Proof:
Since rank (Γu) ≤ min(Su, N), the condition rank (Γu) = S−max(Sm, R) = min(Su, S−
R) implies min(Su, S − R) ≤ min(Su, N). In turn, this inequality implies either
N ≥ Su or N ≥ S − R. Thus, the condition rank (Γu) = min(Su, S − R) implies
that N ≥ min(Su, S −R) columns of Γ are known. Therefore, the right pseudo-inverse
of Γu is unique.

With N satisfying (2.18) and rank (Γu) = min(Su, S − R) by assumption:

[
Nm Nu

] ⎡⎢⎣Γm

Γu

⎤⎥⎦ = 0R×N or Nu = −NmΓm Γ+
u . (H.33)

⇒: If ntar ∈ Sr (N), then nT
tar Γ = 0T

N from (2.18). Also, ntar ∈ Sr (N) implies
nm,tar ∈ Sr (Nm), which leads to εp(nm,tar,Dm) = 0.

⇐: εp(nm,tar,Dm) = 0 implies nm,tar ∈ Sr (Nm), i.e., nT
m,tar = αT Nm. Alternatively,

nT
tarΓ = 0N leads to nT

u,tar = −nT
m,tar Γm Γ+

u . Combining the two relationships and
using (H.26), it follows that nT

u,tar = αT Nu. Thus, nT
tar = [nT

m,tar, nT
u,tar] = αTN and,

therefore, ntar ∈ Sr (N). �

Theorem 4.18 on page 78:
Let Assumptions A1–7 in Appendix D be verified. Let c(k) of reaction systems described
by (2.38) be measured for all k. If Xe is full rank, and rank (Cx Γ) = p + 1, then the
following properties hold:

(a) The number of independent reactions can be determined from C as

R = rank (C) − p − 1. (H.34)

(b) ntar ∈ Sr (N) iff εp(ntar,C) = 0 and nT
tar Γ = 0T

N .

(c) Given Cin, V0, and qout(k) for all k, once N has been determined (e.g. after having
accepted R stoichiometric targets), the time profiles V (k), z(k) (and qin(k)),
x(k), and r(k) can be reconstructed.
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Proof:
(a) Since rank (CxΓ) = (p + 1) by assumption, it follows from Proposition 2.7c that
rank (Ne) = (R + p + 1). Also, it is assumed that rank (Xe) = (R + p + 1). This leads
to rank (C) = (R + p + 1) by invoking Property B.10a, and Theorem 4.18a holds.

(b) If ntar ∈ Sr (N), then εp(ntar,C) = 0 from (4.4) and nT
tar Γ = 0T

N from (2.18)
(necessary condition). For the sufficient condition, consider εp(ntar,C) = 0 and nT

tar Γ =
0T

N . εp(ntar,C) = 0 is equivalent to ntar being in the row space of Ne:

nT

tar = αT N + βT Cx. (H.35)

With N satisfying (2.18), it follows that:

nT

tar Γ = αT NΓ + βT Cx Γ = βT Cx Γ = 0T

N . (H.36)

Since Cx Γ is full rank, β = 0p+1 and nT
tar = αT N. Thus, ntar ∈ Sr (N), and Theo-

rem 4.18b follows.

(c) Since Cin and c0 are assumed to be known, Xe can be computed once N has been
obtained via target testing. From (4.4), Xe can be partitioned as

Xe =

[
H−1 X H−1 Z V0 H−1 1K

]
. (H.37)

It follows that h−1(k) = λ(k)/V (k) for all k can be obtained from the last column of
Xe, since V0 is assumed to be known. Thus, knowing qout(k), λ(k) can be computed
using (4.7). With the knowledge of λ(k), the volume V (k) can be reconstructed using
the known value of λ(k)/V (k).

X and Z can be directly obtained from (H.37). Then, using (4.7), the reaction rates
r(k) can be reconstructed. Similarly, qin(k) can be obtained from (4.7). �

Theorem 4.19 on page 79:
Let Assumptions A1–7 in Appendix D be verified. Let cm(k) of reaction systems de-
scribed by (2.38) be measured for all k. If Xe is full rank and rank

([
Cx,m Γm

Γu

])
=

S − max(Sm − p − 1, R), then ntar ∈ Sr (N) iff εp(nm,tar,Cm) = 0 and nT
tar Γ = 0T

N .

Proof:
⇒: If ntar ∈ Sr (N), then nT

tar Γ = 0T

N from (2.18). Also, ntar ∈ Sr (N) implies
nm,tar ∈ Sr (Ne,m), which leads to εp(nm,tar,Cm) = 0.

⇐: εp(nm,tar,Cm) = 0 implies nm,tar ∈ Sr (Ne,k), i.e., nT
m,tar = αT Nm + βT Cx,k.

Alternatively, nT
tarΓ = 0T

N leads to

nT

m,tar Γm + nT

u,tarΓu = αT Nm Γm + βT Cx,k Γm + nT

u,tarΓu = 0T

N . (H.38)

Solving for β and nu,tar,

[
βT nT

u,tar

]
= −αT Nm Γm

⎡⎢⎣Cx,k Γm

Γu

⎤⎥⎦
+

. (H.39)
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Since by definition
[

Cx,k Γm

Γu

]
is full rank, its pseudo-inverse is unique and, thus, β

and nu,tar have a unique solution. It can easily be verified by substitution into (H.38)
that the unique solution of (H.39) is β = 0(p+1) and nT

u,tar = αT Nu. Finally, since
nT

u,tar = αT Nu, it follows that nT
tar = [nT

m,tar, nT
u,tar] = αTN and, thus, ntar ∈ Sr (N).

�

H.3.5 Special cases

Proposition 4.23 on page 90:
Let Assumptions A1–7 in Appendix D be verified. Then, the rank of C of batch reaction
system is determined by:

rank (C) = R + 1. (H.40)

Proof:
Since 1K /∈ Sc (X), rank ([X, 1K ]) = (R + 1). By invoking Corollary 4.4a, rank (C) =
rank (Ne). Since according to Proposition 2.7d, c0 /∈ Sr (N), it follows that rank (Ne) =
R + 1 and, thus, the proposition. �

Proposition 4.24 on page 90:
Let Assumptions A1–7 in Appendix D be verified. For single or multiple runs of
constant-density batch and semibatch reaction systems, if rank (C) = R + p + 1, then
1K ∈ Sc (Xe). Proof:
Single runs: First, the proof for column-mean centering is given. The condition
rank (C) = (R + p + 1) implies rank (Ne) = rank (Xe) = R + p + 1. For constant-
density batch reaction systems, V (k) = V0 and λ(k) = 1 for all k. Since V = V0 IK

and Λ = IK , it can be seen from Xe = H−1 [X, Z, V01K ] that the last column of Xe

contains the 1K-vector.

For constant-density semibatch reaction systems, V̇ (k) = 1T

p qin(k) and λ(k) = 1 for

all k. Thus, V̇ = 1T

p qin = 1T

p ż or, for K measurements:

Z1p = (V − V0 IK) 1K . (H.41)

With (H.41), it can be seen that Sc (Xe) contains the 1K-vector:

Xe

⎡⎢⎢⎢⎢⎣
0R

1p

1

⎤⎥⎥⎥⎥⎦ = V−1 (V1K − V0 1K + V0 1K) = 1K .

Multiple runs: The proof is given for column-mean centering. The condition rank (C) =
(R+p+1) implies rank (Ne) = rank (Xe) = R+p+1. From Property B.6, it follows that
it is sufficient to proof that Sc (Xe) contains a 1K-vector. First, the rank of spectral
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data from a constant-density batch reaction system is studied. Note that V = Λ = IK .
Then, from (H.14) and (H.15), Xe becomes

Xe,I3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0K1 0K1 · · · 0K1 V 1
0 1K1

X2 V 2
0 1K2 0K2 · · · 0K2 0K2

X3 0K3 V 3
0 1K3 · · · 0K3 0K3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp+1 0Kp+1 0Kp+1 · · · V p+1
0 1Kp+1 0Kp+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Xe,I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0K1 0K1 · · · 0K1 V 1
0 1K1

X2 V 1
∆ 1K2 0K2 · · · 0K2 V 1

0 1K2

X3 V 1
∆ 1K3 V 2

∆ 1K3 · · · 0K3 V 1
0 1K3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp+1 V 1
∆ 1Kp+1 V 2

∆ 1Kp+1 · · · V p
∆ 1Kp+1 V 1

0 1Kp+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Summing up the last (p + 1) columns of Xe,I3 leads to the 1K vector and, hence, the
1K vector lies in the column space of Xe,I3. Similarly, the 1K vector lies in the column
space of Xe,I2, since its last column is already the 1K vector.

The rank of spectral data from a constant-density semibatch reaction system is studied

now. Note that Λ = IK . Let V :=

[
V1 ··· 0K1×K1

...
...

...
0Kp+1×Kp+1 ··· Vp+1

]
. For simplifying the

notation, the dimensions for 1 and 0 are suppressed in the following two equations.
Then,

VXe,I3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
X1 Z1 0 · · · 0 0 · · · 0 V 1

0 1

X2 1 (ź1)T Z2 · · · 0 V 1
∆ 1 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XB+1 1 (ź1)T 1 (ź2)T · · · ZB+1 0 · · · V B+1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

VXe,I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
X1 Z1 0 · · · 0 0 · · · 0 V 1

0 1

X2 1 (ź1)T Z2 · · · 0 V 1
∆ 1 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XB+1 1 (ź1)T 1 (ź2)T · · · ZB+1 V 1
∆ 1 · · · V B

∆ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Let p =

∑B+1
j=1 pj. In case of excitation by B additional process runs, it is known from

(H.3.5) that the (B + 1) process runs contain the 1K vector for, e.g., the first process
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run (columns (R + 1) to (R + p1), and (R + p + B + 1)) and, for the (B + 1)th process
run (columns (R +

∑B
j=1 pj + 1) to (R + p), and (R + p + B)). Hence, summing up the

last (p + B + 1) columns of Xe,I3 leads to the 1K vector and, hence, the 1K vector lies
in the column space of Xe,I3. A similar conclusion can be drawn for Xe,I2. �

H.4 Reaction and flow variants/invariants in the

factorization of spectral data

H.4.1 Rank analysis of spectral matrices

Proposition 5.5 on page 98:
Let Assumptions A8–11 in Appendix D be verified. Then,

rank (A) =rank (C) , rank (H) = rank (D) = R

rank
(
Āc

)
= rank

(
C̄c

)
, rank

(
H̄c

)
= rank

(
D̄c

) (H.42)

Proof:
Since rank (E) = S by assumption, the proposition follows by invoking Property B.11a.�

Corollary 5.7 on page 100:
Let Assumptions A1–7 in Appendix D be verified. If rank (Xe) = (R + p + 1), then
rank (Xaug

e ) = (R + p + 1 + Sp) is trivially satisfied.

Proof:
From the definition of Xaug

e , it is obvious that rank (Xaug
e ) = rank (Xe) + Sp. Since by

assumption rank (Xe) = (R + p + 1), the corollary follows. �

H.4.2 Calibration

Proposition 5.9 on page 103:
Let rank (E) = S. Then, the concentrations of the S species are predicted correctly
from a new spectrum, an, using forward calibration:

ĉT

n = aT

n B̂, where B̂ = A+ C. (H.43)

iff an ∈ Sr (A).

Proof:
⇒: The spectral matrix A can be rank deficient, A = rank (A) < S. Since rank (E) =
S by assumption, (5.3) and (4.4) can be formulated in the framework of a bilinear
model (C.9)–(C.10) with the spectral data A being the inputs and the concentration
data C the outputs:

A = TPT, PT = QT E,

C = TQT,
(H.44)
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where T is the K × A scores matrix, and P and Q the loading matrices of dimension
L × A and S × A, respectively.

From (H.44), A+ = P+TT+. Thus,

B̂ = A+ Ck = P+T(T+ T)QT = P+TQT. (H.45)

In the equation above, T+T = IA was used. By hypothesis, the new data obey
an ∈ Sr (A), i.e., aT

n = tT
nA. Since, in addition, rank (E) = S, it follows that cT

n = tT
nC.

The prediction is then given by:

ĉT

n = aT

n B̂ = tT

n T (PT P+T)QT = tT

n TQT = tT

n C

= cT

n. (H.46)

In the equation above, PTP+T = IA was used.

⇐: Since rank (E) = S by assumption, an /∈ Sr (A) implies the corresponding (com-
plete) concentration vector cn /∈ Sr (C). The proof proceeds by contradiction. Let
ĉT

n 	= cT
n. For cn ∈ Sr (C), it follows that cT

n = tT
nC. It can be easily verified that

Q+TQT and EP+TQ span the same row space. Then,

ĉT

n = aT

n B̂ = cT

n EB̂ = tT

nCEP+TQ = tT

n C = cT

n (H.47)

This is in contradiction to the assumption above. Thus, the correct prediction ĉn = cn

implies an ∈ Sr (A). �

Proposition 5.11 on page 105:
If rank (A) = S, then an ∈ Sr (A).

Proof:
Since rank (A) = S by assumption, then from Property B.10 rank (C) = rank (E) = S.
Thus, the rows of C span the entire S-dimensional space and, therefore, cT

n = tT
nC and

aT
n = tT

n A. It follows that an ∈ Sr (A). �

Proposition 5.12 on page 105:
Let Assumptions A1–12 in Appendix D be verified, rank (A) = (R + p + 1), and R an
(Rn + pn + 1) × (R + p + 1) matrix of full rank. If

Ne,n = RNe, (H.48)

then an ∈ Sr (A).

Proof: Since rank (A) = (R + p + 1) and rank (E) = S by assumption, rank (C) =
(R + p + 1) follows from Proposition 5.5. Thus, from Corollary 4.4b, rank (Xe) =
rank (Ne) = R + p + 1. From rank (Xe) = (R + p + 1), it follows that X+

e Xe = IR+p+1.
Then, with cT

n = xT
e,nNe,n, Ne,n = RNe, and A = Xe Ne E, it follows that

aT

n = xT

e,n Ne,n E = xT

e,n RNe E = xT

e,n RX+
e (Xe Ne E) = tT

n A, (H.49)

where tT
n = xT

e,n RX+
e . Thus, an ∈ Sr (A). �

Corollary 5.13 on page 105:
Let Assumptions A1–12 in Appendix D be verified, rank (A) = (R+p+1), Nn = R† N,
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and R† and R‡ matrices of full rank of dimension Rn × R and (pn + 1) × (p + 1),
respectively. If

Cx,n = R‡ Cx, (H.50)

then an ∈ Sr (A).

Proof: If Nn = R† N and Cx,n = R‡ Cx, then

Ne,n =

⎡⎢⎣ Nn

Cx,n

⎤⎥⎦ =

⎡⎢⎣ R† N

R‡ Cx

⎤⎥⎦ =

⎡⎢⎣ R† 0Rn×p+1

0pn+1×R R‡

⎤⎥⎦
⎡⎢⎣ N

Cx

⎤⎥⎦ = RNe. (H.51)

Since Ne,n = RNe, from Proposition 5.12, it follows that an ∈ Sr (A). �

Corollary 5.14 on page 106:
Let Assumptions A1–12 in Appendix D be verified, Nn = R† N, and rank (A) = R +
p + 1. If rank (Cx) = Sx, then an ∈ Sr (A).

Proof: If rank (Cx) = Sx, by the definition of Sx, Cx,n ∈ Sr (Cx). The result follows
from Corollary 5.13. �

H.4.3 Factor analysis

Proposition 5.21 on page 121:
Let Assumptions A1–12 in Appendix D be verified and R an (R + p + 1)×Kr matrix.
If

Ne = RCr, (H.52)

then an ∈ Sr (Ar).

Proof:
Since Ne = RCr by assumption, it follows that C = XeNe = R†Cr, where R† is a
K × Kr matrix with R† ≡ XeR. Thus, A = R†Ar and, thus, an ∈ Sr (Ar). �
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