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Abstract

When assessing the economic viability of a wind farm, the estimation of the on-site

wind power potential is perhaps the most important step. The most common way of

evaluating the wind power potential of an area of interest consists of making on-site

measurements for a period of one year. In order to take account of the inter-annual

variation of wind speed, the one year of data are normally correlated with data

recorded at a reference site where long-term data (typically >10 years) are available.

A correlation analysis is formulated for the concurrent data sets at the reference and

prediction sites. This correlation is then used to transform the long-term wind speed

at the reference site to the long-term wind speed that would have been expected at

the prediction site had long-term measurements been made at this site.

An alternative approach is also used, which consists of establishing site-to-site

relationships using a numerical model to simulate meteorological situations which

are typical for the area of interest. These relationships are then used to transpose the

known long-term wind statistics of the reference site to the prediction site. Such an

approach is applied in this work to the region of Chasseral & Mt-Crosin. The wind

data available for a period of 16 years at Chasseral are transposed to the Mt-Crosin

site where they are then compared to the data measured at the location of the

installed wind farm.

Over complex terrain, the linearised models traditionally used for wind power

potential assessment fail to reproduce accurate wind fields. Therefore, to be applied

to mountainous terrain such as that found in Switzerland, the approach relying on

numerical simulation requires the development and validation of a numerical tool

capable of simulating wind fields over complex topography. As the numerical model

would have to deal with relatively steep slopes requiring a fine horizontal (50-100m)

and vertical resolution (~5-10m in the lowest levels), a fluid dynamics model was

used which solves the complete set of Navier-Stokes equations with k-ε turbulence

closure. The standard version of the model used (CFX4) is modified in a novel way to

extend its field of application so that atmospheric phenomena could be simulated

which are typical of the meso-scale. The modified version solves the flow equations

with the anelastic approximation (deep Boussinesq) and assuming a background

rotation of the wind field (with the high altitude wind field following the geostrophic

approximation).

In the first part of this work, the numerical model is validated. The results obtained

in this phase show that for meteorological situations for which the wind at the

ground is coupled to the high altitude wind, the numerical model is able to

satisfactorily reproduce:

• the flow in the surface layer, reproducing the effects associated with the ground

roughness, roughness change, or heat flux through the ground;



2

• the flow in the Ekman layer together with the interaction between the free flow

thermal stability conditions and the boundary layer;

• the linear and non-linear effects associated with the perturbation induced by a

mountain in a stably stratified flow.

In the second stage of this work, an extension of the standard Measure-Correlate-

Predict method is presented to calculate the wind speed distribution at the prediction

site, from transposition relationships and from the wind statistics at the reference

site. The validity of the underlying assumptions is confirmed using concurrent data

sets that were collected at both the reference and prediction sites. To evaluate the

accuracy that can be achieved with the transposition assumptions, a back-prediction

is performed using the transposition relationships obtained using the observations.

Different types of transposition relationships have been investigated.

Finally, the transposition methodology is applied to calculate the wind speed

conditions at Mt-Crosin from the Chasseral data, using the transposition

relationships calculated by the numerical model for a range of meteorological

situations typical for the area considered. The Mt-Crosin to Chasseral sector wind

speed ratios calculated by the numerical model tend to slightly underestimate those

observed. The mean wind speeds obtained from the transposition are

underestimated by 7% to 18% at the three measuring mast locations on Mt-Crosin.

The yearly energy output that can be produced by a wind turbine in these conditions

is underestimated by 8% to 36%. For a further period, the actual energy production

of the three installed wind turbines has been compared with the model prediction at

hub height, which showed that the transposition results underestimate the actual

yearly production by 22% to 24%.

From the transposition of the long-term data at Chasseral (16 years), with the

relationships obtained by the numerical model, a wind power potential of between

470 MWh/year (Côte Est) and 596 MWh/year (Côte Nord) is predicted using the

characteristics of a Vestas-V44 wind turbine.

From the work presented here, it appears that for well-exposed sites such as those

located along the Jura Crest, the methods developed are able to give a wind power

potential prediction with a similar accuracy as a one year measurement campaign

performed on site.



Résumé

Lors de l’établissement de la rentabilité économique d’un parc éolien, la

détermination du potentiel de vent à disposition sur le site constitue une étape

primordiale. La pratique la plus courante pour évaluer le potentiel éolien d’une

région particulière consiste à effectuer des mesures sur le site sur une période d’une

année. Afin de diminuer l’incertitude du résultat associée à la variabilité des

conditions de vent d’une année à l’autre, les données annuelles sont corrélées avec

des données enregistrées sur une plus longue période (typiquement > 10 ans) à une

station de référence. Les relations obtenues par corrélation sont utilisées pour

transformer les données à long terme au site de référence pour retrouver les données

à long terme au site de prédiction.

Une autre approche est aussi utilisée qui consiste à établir des relations entre les

conditions de vents entre un site de réference et un site d’intérêt par l’intermédiaire

de la simulation numérique des situations météorologiques typiques de la région en

question. Ces relations sont ensuite utilisées pour transposer sur le site d’intérêt les

statistiques de vent connues pour le long terme au site de référence. Une approche

similaire est appliquée dans le présent travail pour la région de Chasseral & Mt-

Crosin. Les 16 ans de données disponibles à Chasseral sont transposées sur le site de

Mt-Crosin, où elles sont ensuite comparées avec les données mesurées à

l’emplacement du parc éolien installé sur le site.

En terrain accidenté, les modèles linéarisés, utilisés traditionnellement pour

l’estimation du potentiel éolien, ne reproduisent pas les champs de vent de manière

satisfaisante. C’est pourquoi, pour être appliquée aux terrains complexes tels que

ceux rencontrés en Suisse, l’approche se basant sur la simulation numérique

nécessite le développement et la validation d’outils numériques aptes à simuler les

champs de vents en terrain accidenté. Compte tenu des pentes relativement élevées

et de la résolution requise (50-100m en horizontal, ~5-10m en vertical) avec lesquelles

le modèle numérique devra fonctionner, notre choix s’est porté sur un modèle de

dynamique des fluides complet, résolvant les équations de Navier-Stokes non-

linéaires ainsi qu’un modèle de turbulence de type k-ε. Des modifications ont été

apportées à la version standard du modèle retenu (CFX4) de manière à pouvoir

étendre son champ d’application à la simulation de phénomènes atmosphériques

caractéristiques de la méso-echelle. Ces modifications constituent un apport original

de la thèse. Dans la version modifiée, les équations sont résolues avec

l’approximation anélastique (‘deep Boussinesq’). Une hypothèse supplémentaire

admet que l’écoulement atmosphérique en altitude vérifie l’approximation

géostrophique.

Dans la première partie de ce travail, l’essentiel de l’effort a été consacré à la

validation du modèle numérique. Les résultats obtenus dans cette phase ont permis
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de montrer que pour les situations météorologiques où le vent au sol est couplé au

vent en altitude, le modèle numérique est capable de reproduire de manière

satisfaisante:

• l’écoulement dans la couche de surface en reproduisant les effets associés à la

rugosité, au changement de rugosité, au flux de chaleur au sol

• l’écoulement dans la couche d’Ekman ainsi que l’interaction entre les

conditions de stabilité thermique de l’écoulement libre et la couche limite

• les effets linéaires et non-linéaires associés à la perturbation induite par une

montagne sur un écoulement thermiquement stable.

Dans la deuxième phase du travail, une extension des méthodes de Mesure-

Corrélation-Prédiction a été proposée pour calculer la distribution de vitesse au site

de prédiction. La validité des hypothèses à la base de la transposition a été vérifiée à

partir de données simultanées relevées au site de référence at au site de prédiction.

Afin d’évaluer la précision de la prédiction atteignable avec les hypothèses de

transposition, une application de la méthode a été effectuée à l’aide de relations de

transposition établies à partir des observations. Différents types de relations de

transposition ont été testés.

Finalement, la méthode de tranposition a été appliquée pour recalculer les conditions

de vent à Mt-Crosin à partir des données de Chasseral, en utilisant des relations de

transposition calculées à l’aide du modèle numérique pour une gamme de situations

météorologiques typiques de la région considérée. Les rapports de vitesse entre les

sites de Mt-Crosin et Chasseral calculés par la modèle sous-estiment légèrement ceux

observés en moyenne par secteur. Les vitesses moyennes obtenues suite à la

transposition des données de Chasseral par les résultats du modèle numérique sont

sous-estimées de 7% à 18% aux trois mats de mesure sur le site de Mt-Crosin.

L’énergie annuelle qui peut être produite par une éolienne dans les mêmes

conditions de vent est sous-estimée de 8% à 36%. Pour une autre période de mesure,

les données de production des trois éoliennes installées ont été comparées avec les

prévisions du modèle à la hauteur de la nacelle. Les résultats de la transposition

sous-estiment les productions réelles annuelles de 22% à 24%.

La transposition des 16 ans de données au site de Chasseral en utilisant les résultats

du modèle numérique prédit un potentiel éolien pour le site de Mt-Crosin variant

entre 470 MWh/an (Côte Est) et 596 MWh/an (Côte Nord), pour la caractéristique de

puissance d’une machine de type Vestas-V44.

Les travaux effectués dans le cadre de cette thèse montrent que pour des sites

exposés tels ceux situés sur les Crêtes du Jura, les méthodes développées permettent

d’évaluer le potentiel éolien sur un site avec une précision du même ordre de

grandeur que celle qui peut être obtenue par une campagne de mesure d’une année

sur le site même.
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1 Introduction

When assessing the economic viability of a wind farm, the estimation of the on-site

wind power potential is perhaps the most important step. The most common practice

to evaluate the wind power potential of an area of interest consists of performing on-

site measurements. To obtain a proper representation of the seasonal variations of

the prevailing wind conditions, one year of data collection is the minimum period

required. But even then, uncertainty in the evaluated potential remains and can be

non-negligible, due to the inter-annual variation of the wind conditions. Cherry

(1980) found from data collected at potential wind farm sites which were at exposed

locations that the uncertainty in the estimates of the site-means drops quickly in the

first few years, with typical values of 12% of the mean wind speed after one year

reducing to 6-7% after 4 years1. The corresponding uncertainty for the energy density

is typically 30-35% after one year going down to 17-22% after 4 years. Further

increasing the length of the recording period led to a marginal reduction of the

uncertainty in the estimated wind speed and energy density of the site. Salmon and

Walmsley (1997) came to similar conclusions from the analysis of wind speeds for 5

pairs of stations chosen to cover various types of terrain and topography conditions.

They concluded that an absolute minimum of 1 year of monitoring is needed.

Increasing the monitoring period to two years significantly reduced the uncertainty

of the results, while using a monitoring period between 1 and 2 years may worsen

the estimates compared to only 1 year of data.

To improve the quality of the wind power estimate at the prediction site, the yearly

data are often extrapolated to the long term by correlating them with data recorded

over a longer period (typically ten years) at a reference site. This long-term

extrapolation is based on a statistical correlation performed on the concurrent data

sets recorded at both the reference and prediction sites. Using the relationships

between both sites obtained from the correlation, the average wind conditions at the

prediction site are reconstructed from the long-term data at the reference site (see the

illustration in Figure 1.1). The accuracy that can be obtained with these so-called

Measure-Correlate-Predict methods (MCP) strongly depends on the climatological

conditions of the area as well as on the distance between the reference and prediction

site. According to Salmon and Walmsley (1997) who looked at pairs of stations

separated by 60 to 170 km, using 1 year of data leads typically to an error of the order

of 4-10% in the average wind speed estimate. Taking into account data from a nearby

                                                     
1 The order of magnitudes of the values given here apply to extratropical regions and

should not be considered as representative for tropical regions.
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reference station to make a long-term extrapolation reduces the error by about one

third.

reference site

prediction site

1) correlation2) reconstruction

time scale

1.1.80 1.1.96 12.12.96

Figure 1.1. Illustration of the Measure-Correlate-Predict methods used to reduce the

uncertainty in the long-term prediction inferred from short-term data collected at the

prediction site. Relationships between the reference and prediction site are obtained from

correlation of the concurrent datasets. These relationships are used to reconstruct the long-

term data at the prediction site using the actual long-term data at the reference site.

To evaluate the wind power potential of a site from available long-term data at a

nearby site, another approach has been proposed, which makes use of a numerical

simulation of the wind conditions over the area of interest to establish relationships

between the reference and prediction site. The main advantage of operational

numerical models is the time (and possibly cost) saving relative to a complete field

measurement programme. The second advantage is the ability to assess the wind

speed at several locations around the main area of interest.

Another way to take advantage of numerical models is to use them in conjunction

with a classification of the meteorological situations prevailing over the area of

interest. The models are then used to simulate all of the situations entering the

classification, and the wind statistics at a location of interest are obtained by

combining the various simulated flow fields, weighed by the probability of

occurrence of the meteorological situation. The same procedure is then applied at the

location of the reference station, which in this case is only used to check the quality of

the method. This approach has been used e.g. by Adrian et al (1996), using the model

KAMM (Adrian & Fiedler, 1991) and by Mengelkamp et al (1996) who used the

model GESIMA (Kapitza & Eppel, 1992 and Eppel et al, 1995). Both classified the

type of situation by performing a cluster analysis on a limited number of parameters



3

describing the atmospheric state. From the simulations of the 120-140 different

situations, they reconstructed the ground wind statistics.

The quality of this method obviously depends on the representativeness of the

classification used and on the model’s ability to simulate the wind fields. Similar

studies have been performed in the realm of climate downscaling using regional

hydrostatic models initialised from ECMWF analyses (Frey-Buness et al, 1995, and

Fuentes and Heimann, 1996). These showed that ‘statistical-dynamical downscaling

remains an efficient alternative for diagnostic climate studies’. Fuentes and Heimann

(1996) showed that some features of the wind and temperature variables close to the

ground could be reproduced. They also underline that some discrepancies remain

between the observations and predictions confirming the need for a classification of

the meteorological situations including all the situations representative for the

region. Depending on the area of interest, this implies that transient situations also

need to be included in the classification.

Over relatively flat terrain, a program like WA
s
P (see ‘European Wind Atlas’ by

Troen and Petersen, 1989) can be used to obtain a reasonable estimate of the wind

power potential for a region, from sector-wise histograms of wind speed frequencies

at the reference station. This program is able to account for the effects of obstacles,

roughness and topography. It has been shown however that in very complex terrain,

the linearised flow models, one of which is used in the WA
s
P package, are not able to

satisfactorily reproduce the effects of the topography on the flow fields (see e.g.

Meteonorm Vent, 1990, Botta et al, 1992, and Barnard, 1991). Over complex terrain,

3D full Navier-Stokes solvers with a turbulence parameterisation scheme appear to

be more appropriate tools for the simulation of flow configurations showing flow

separation and strongly non-linear effects (see e.g. Raithby & Stubley, 1987 or Alm &

Nygaard, 1993). Some developments in the simulation of atmospheric flow fields

over complex terrain have already been made at the Laboratory of Energy systems,

EPFL, using the Navier-Stokes solver ASTEC (Lembessis, 1992, Hertig, 1993,

Montavon, 1995).

The present work is an attempt to further develop and validate a numerical tool

together with a methodology for the wind power potential evaluation over very

complex topography such as that encountered in Switzerland.

The questions arising in this context are essentially of two kinds:

1. Do we have a numerical model which is able to reproduce the wind conditions

over topography like that of the Swiss Jura or the Alps with sufficient accuracy to
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be used for wind power potential assessment? What kind and what amount of

information are required to feed the numerical model?

2. Can we reconstruct the wind statistics at a location of interest from the statistics

at a reference site using simple relationships between both sites? If so, what kind

of relationships can be observed? How should we define the numerical

simulations to be able to reproduce them? How many different types of

meteorological situations do we need to consider in order to reproduce the local

climatology? How can we classify these situations?

In order to solve flow fields at a very fine resolution (down to 50 m in the horizontal

with the ability to cope with steep slopes and narrow valleys, it is necessary to use a

non-hydrostatic model (Wippermann, 1981). The numerical model that is chosen for

the present work is CFX4 (CFX, 1997), a general purpose Navier-Stokes solver.

Besides its robustness and powerful meshing facilities, it also offers large flexibility

to the user, allowing the introduction of additional source terms in the equations and

permitting supplementary equations to be solved.

The experience acquired with the first generation ASTEC code was transferred to the

CFX4 solver within this work. Some additional implementations were included in

the fluid model so that it could deal with the simulation of atmospheric flow fields

covering several kilometres in the vertical. This involved the modification of the

energy conservation equation, which has been formulated in terms of the potential

temperature, the implementation of modified buoyancy terms in the vertical velocity

equation and in the turbulence parameterisation. The option to work with variable

ground roughness has been introduced and the Coriolis force has been implemented.

Section 5.2 gives a summary of the standard version of the numerical model, while

the modifications are presented in Section 5.3.

Before trying to answer the first question above for complex terrain conditions, we

performed several validation tests to assess CFX4’s ability to reproduce more simple

flow configurations. These validations are presented in Appendix A to D, starting

from the most simple flow configuration and increasing the complexity as one

progresses through the appendices. The choice of presenting the validations in

appendices was made to increase the readability of this work, and does not suggest

that they be of minor significance. In fact, they represent most of the original

contribution of the thesis.

The first tests deal with the model’s ability to reproduce a 2D neutral boundary layer

growth over a flat plate for various ground roughness conditions, as well as with
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roughness change. These tests were done without including the Coriolis force and

the results are shown in Appendix A.

After having shown that the model is able to successfully reproduce the effect of

ground roughness over flat terrain, we proceeded with the validation of the

modifications made to the ε−k model and the inclusion of the Coriolis force. To that

end, simulations over flat terrain were performed to see how the Ekman spiral is

induced depending on the stability conditions of the free flow and stability

conditions of the surface layer. The simulated boundary layer and Ekman spiral

development were compared to analytical formulations, to other numerical models

or to measurements depending on their respective availability. In particular, it was

shown that the developments described by Zilitinkevich et al. (in press), who

propose a parameterisation of the Ekman spiral depending on the roughness

conditions at the ground, on the free flow stability (through the use of the Brunt-

Väisälä frequency) as well as on the heat flux conditions at the ground (through the

Monin-Obukhov length), are able to provide u  and v  profiles for the boundary layer,

which are in good agreement with the numerical model results.

The next series of tests concerned the implementation of the potential temperature

equation and its coupling with the vertical velocity equation. To that end,

simulations were performed over a 2D theoretical mountain feature perturbing an

incoming horizontal stably stratified atmospheric flow. A comparison of the

simulated flow fields with analytical solutions from linear mountain wave theory

was done for the quasi-neutral and for the hydrostatic case. For non-hydrostatic

situations as well as for strongly non-linear flow situations such as the January 1972

Boulder foehn event, the comparison was made with other numerical models or with

observations. These results are given in Appendix C.

To end the validation part for flow situations governed by the geostrophic wind, a

3D validation was performed over the Askervein Hill site (located in Scotland) which

has the advantage of having a very well documented measurement campaign and

against which many numerical models have been tested. The results for this 3D

situation are presented in Appendix D.

A way to evaluate the wind power potential on the site is presented in Chapter 2

together with a transposition methodology to obtain the wind distribution and the

underlying assumptions.

For the part of the work dealing with the application of the proposed methodology,

we concentrated on the complex terrain area around the site of Chasseral and Mt-

Crosin, along the Jura chain. The reason for the choice of the Mt-Crosin site is the

availability of wind data that were collected during the feasibility study preceding
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the recent installation of 3 wind turbines on the site. The site of Chasseral, with 15

years of data, was selected as a reference station because of its proximity to the Mt-

Crosin site and mostly because it is the highest summit in the area. It therefore has

the advantage of being well coupled to the high altitude wind conditions over the

area. Details about the region of interest can be found in Chapter 3.

The validity of various types of relationship which are postulated to relate the wind

speed at the prediction and reference site is investigated in Chapter 4 using

concurrent datasets recorded at the locations of Chasseral, Mt-Crosin, Neuchâtel and

La Chaux-de-Fonds. The accuracy that can be achieved for both the average wind

speed and wind energy when performing a wind data transposition is evaluated by

means of back predictions.

Finally, the numerical model performance in reproducing the observed relationships

between the prediction and reference site is investigated. This starts with the

presentation in Chapter 6 of simulation results that were performed over the

Chasseral and Mt-Crosin area for two wind directions (essentially parallel and

perpendicular to the Jura chain) and for various atmospheric conditions. This is

followed in Chapter 7 by the derivation of site-to-site relationships calculated by the

numerical model and the application of the transposition methodology to obtain the

wind speed distribution at Mt-Crosin from the wind direction and wind speed

distribution of Chasseral. A comparison of the predicted wind power potential for

the Mt-Crosin site with the actual production data is made for the year 97.

A more detailed sensitivity study testing the effect of the atmospheric and ground

conditions on the simulated transposition relationships is presented in Chapter 8.

This allows us to assess the limitations associated with the proposed transposition

methodology and to draw some conclusions about how to enhance the method in

future developments.

The conclusions summarise the achievements realised in this work and give an

overview of further developments that could be made in future work.
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2 Wind power potential evaluation and transposition
methodology

The wind speed distribution (also called ‘probability density function’ for the wind

speed) at a potential wind power installation site is usually determined by

performing a measurement campaign on the site itself for typically one year. To

reduce the uncertainty due to the inter-annual variation of climatic conditions, some

more work is usually done to take into account additional information about the

local climate that would be representative in the long term.

This can be done in essentially two ways:

I. The first way consists of assuming that site-to-site relationships exist such

that the wind climate at the prediction site can be obtained from transposing

the wind climate of the reference site. The nature of the assumed

relationships might be physical, as is postulated when using a numerical

model to try to reproduce them, or purely statistical as in the application of

measure-correlate-predict (MCP) methods.

II. The second way, also called ‘statistical-dynamical approach’ (Adrian et al,

1996, Mengelkamp et al, 1996), assumes that the local wind conditions are

determined by the frequency distribution of larger scale atmospheric

conditions that can be classified. This approach relies on the following

assumptions:

1. an atmospheric situation can be characterised by a limited number of

parameters, like the geostrophic wind speed and direction, the vertical

thermal stratification of the atmosphere, the ground heat flux, etc…

2. the synoptic scale system is modified by the local topography and flux

conditions and this effect can be reproduced by a meso-scale model

(top-down approach)

3. two situations with the same set of parameters lead to the same flow

pattern at the ground

4. both the reference and prediction sites are under the influence of the

same atmospheric situation

If these assumptions are true, then we can hope to classify the meteorological

situations and attribute them a probability of occurrence. Simulating with a

numerical model all the situations in the classification should allow us to

reconstruct the wind distribution at the site of interest. This procedure is

summarised in Figure 2.1, inspired by Mengelkamp et al (1996). In this

second approach, the ground-based measurements are essentially used to
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assess the quality of the procedure. These locations with well known

statitistics can also be used to analyse the results in more details and help for

the identification of particular effects that might not be properly accounted

for when using a too simple classification. In this sense, they could give an

indication of how the classification should be refined and what kind of

additional parameter it could include.

Ground measurements

& soundings

Ground measurements

& soundings

Classification of the

 meteorological 

situations

Classification of the

 meteorological 

situations

Local wind statistics by

 combining the simulation results

 weighed with the frequency of occurrence

Local wind statistics by

 combining the simulation results

 weighed with the frequency of occurrence

Simulation of 

each typical situation

Frequency of 

occurrence of each 

typical situation

Figure 2.1. Schematic of the statistical-dynamical approach to obtain the wind climate over an

area of simulation.

No attempt is made in this work to reconstruct the wind statistics at the prediction

site using the ‘statistical-dynamical approach’ mentioned above. To do this we

would require a classification of the atmospheric situations occurring over the area

that would be made according to parameters appropriate for the numerical

simulation. De Buman (1994) showed that the existing classifications, such as that

proposed by Schüepp (1979) or that of Hess and Brezowsky (1977) adapted by Perret

(1987) to the case of Switzerland, all show the same problem in this context: being

proposed with the purpose of classifying daily conditions, they are not able to take

into account the dynamical processes that determine the local wind conditions.

Therefore, they cannot be used as useful classifications in the sense of the ‘statistical-

dynamical’ approach described above. To be able to reproduce the local

development of the wind conditions, it would be preferable to classify the situations

in terms of homogenous events.
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Kaufmann (1996) performed a cluster analysis on hourly data from 49 weather

stations in an area covering some 50x50 km and located some 50 km to the north-east

of our domain of interest (area around Basel). He obtained 12 clusters determining 12

flow patterns at ground from his classification. When trying to identify the obtained

clusters using the classification proposed by Dütsch (1985) or that by Schüepp (1979)

or the one by Hess and Brezowsky (1977), he could not find any obvious

correspondence. The area for which the cluster analysis was done is quite close to the

region of Chasseral and presents a similar kind of topography, since it is crossed by

the Jura chain. We were therefore expecting that the classification obtained there

could also be used for the Chasseral area. Using the classification for the purpose of

simulation is not trivial however, since it appears, as shown by Kaufmann, that the

situations belonging to a single cluster can be attributed to several high altitude wind

directions (implying sometimes a rotation of 180°!). Also he did not obtain a good

correlation of the vertical temperature gradient with the cluster category. These

observations mean either that

• 12 clusters are not enough to describe the local climatology so that there is a

good correspondence between the physical parameters categories and the cluster

type,

• or that the physical parameters like geostrophic wind direction or vertical

temperature gradients are not appropriate to describe the atmospheric situations

(the vertical temperature gradient might be better considered in association with

the geostrophic wind speed through a Froude number)

• or worse, it could also mean that assumptions 2 and 3 are far from valid for the

type of topography considered.

To try a statistical-dynamical approach, it might be better to start from a cluster

analysis performed on vertical profiles recorded over the area, as was done by

Mengelkamp (1996). This could be done based on the analysis of the Payerne

soundings presented by Furger (1990). Pursuing this classification work so that it

would be applicable for the purpose of simulation would require further work,

which appears to be beyond the scope of the present study.

Since the required information is not available to apply a complete statistical-

dynamical approach as described above, we will try to perform something similar,

starting from a very simple classification of the meteorological conditions occurring

over the area, and using the Chasseral wind statistics instead of those obtained from

the synoptic conditions. Fallot (1991) showed by comparing the wind roses and

sector mean wind speeds, that the wind conditions at the reference site of Chasseral

are representative of the wind conditions from the Payerne soundings at 700hPa
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(~3000m ASL). Therefore, instead of reproducing relationships between the synoptic

wind conditions and the wind conditions at the prediction site when performing the

numerical simulations we will look for relationships between the reference site of

Chasseral and the prediction site of Mt-Crosin. Simplifying the statistical-dynamical

approach with this assumption has the drawback that it starts from a ground station,

where the prevailing wind conditions are already influenced by the local conditions.

However, compared to the method starting with the synoptic wind conditions for

which only a few records a day are available, it has the advantage that it provides

better wind statistics, with hourly data collected in a continuous mode.

When using the numerical model to obtain the wind statistics at the prediction site, a

transposition methodology was applied, which is similar to an MCP method,

assuming the existence of site-to-site relationships that will be obtained from the

numerical simulations. It is postulated therefore that the relationships between the

reference and prediction site are of a physical nature and that they can be

reproduced by the numerical model.

After reviewing the traditional MCP methods in the next section, an extension of

these methods is presented in Section 2.2, together with the formalism proposed to

calculate the wind speed distribution at the prediction site.

2.1 Traditional methods for the prediction of the wind power

potential at a site

The extension of the short-term statistics recorded at a site of interest is traditionally

done using the measure-correlate-predict (MCP) method. This method is of the type I

as presented above, i.e. it essentially assumes the existence of a relationship between

the wind conditions prevailing at the reference and prediction site. The second

assumption is that the existing relationships obtained from the short term are the

same for the long term.

The nature of the site-to-site relationship used in the MCP methods is purely

statistical. When performing a linear regression for one particular sector at the

reference station, we mix data that were recorded for very dissimilar atmospheric

conditions. No differentiation is made between records obtained during an event

that showed a strong advective character over the entire troposphere or one that was

definitely dominated by convective phenomena.
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In the standard MCP method (see e.g. Meteonorm vent), simultaneous data sets of

wind speed and direction recorded at both the reference and prediction site are

grouped according to the wind direction at the reference site. A regression analysis is

performed for each wind sector to produce relationships allowing us to obtain the

wind speed at the prediction site, when knowing the wind speed and direction at the

reference site. These relationships are then used to calculate the long-term mean

wind speed at the prediction site from the long-term sector mean wind speed at the

reference site.

The kind of relationships that are postulated between the wind speed at the reference

site ( refv ) and prediction site ( predv ) are often simple linear relationships such that

iirefipred cvmv +⋅= ,  with slopes im  and intercepts ic  varying with the wind direction at

the reference site (index i ).

Starting from the normalised sector wind speed probability density function (PDF) at

the reference site )(
, refvf
irefθ  

and knowing the sectorwise distribution )( refg θ , the mean

wind speed at the prediction site is then:
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The relationship above shows that the mean wind speed at the prediction site is

easily obtained from the knowledge of the sector mean wind speed at the reference

site. This kind of behaviour is only true due to the assumption of simple linear

relationships between both sites. For non-linear types of relationship, the mean wind

speed at the prediction site can no longer be expressed in terms of the sector mean

wind speed at the reference site2.

When applying the standard MCP method, no information is obtained concerning

the sector variation of the wind speed at the prediction site. For cases where sector

information would be required, Woods & Watson (1997) proposed a matrix MCP
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method, which allows the derivation of the wind rose at the prediction site as well as

the sector mean wind speed.

Only a brief description of the matrix method will be given below. From a

simultaneous set of wind speed and direction at the reference and prediction site, a

population matrix ( )jipP ,=  is calculated with the matrix element ijp  representing the

frequency of occurrence of wind records with sector i  at the reference site and sector

j  at the prediction site. This matrix gives a full description of the angular

distribution during the measurement period. To eliminate the matrix bins that

contain an insignificant fraction of the total number of measurements, matrix

elements ijp  below a threshold value (typically 5%) are set to zero. From the filtered

matrix, two additional matrices are formed:

• a matrix ( )jiwW ,=  that represents the population matrix P normalised such that

1, =∑
j

jiw  for each wind direction i  at the reference site. The matrix element jiw ,

represents in this case the conditional probability of having a wind blowing in

the sector j  at the prediction site, when it is blowing from the sector i  at the

reference site.

• a matrix ( )jizZ ,=  that represents the population matrix P normalised such that

1, =∑
i

jiz  for each wind direction j  at the prediction site. The matrix element jiz ,

represents the conditional probability of having a wind blowing in the sector i  at

the reference site, when it is blowing from the sector j  at the prediction site.

These matrices obtained from the short-term measurements are assumed to be

representative of the long term as well. The long-term wind rose at the prediction site

( jp ) is then obtained from the long-term wind rose at the reference site ( ip ), using:

eq. 2.3 ∑ ⋅=

i

ijij pwp ,

To calculate the long-term sector mean wind speed at the prediction site from the

reference site, relationships are again needed, which are obtained from regression

analysis. Like in the standard MCP method, it is usually postulated that the site to

site relationship are linear.

Two variations of the matrix MCP methods were proposed by Woods & Watson. In

the first one, which will be called ‘MMCP ref’ below, the regression is performed on

data sorted according to the wind direction i  at the reference site. Regressions are

performed for each sector i  yielding the slopes and intercepts im  and ic . In the

second method, the wind speed data are sorted according to the wind direction j  at

the prediction site (called ‘MMCP pred’), giving the slopes and intercepts jm  and jc .

The sector long-term mean wind speed for the direction j  at the prediction site is

calculated from:
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eq. 2.4 ∑ +⋅=

i

iirefijijpred cvmzv )( ,,,  in the ‘MMCP ref’ method

eq. 2.5 j

i

irefjijjpred cvzmv +⋅⋅= ∑ )( ,,,  in the ‘MMCP pred’ method

The overall mean wind speed at the prediction site is then

eq. 2.6 ∑ ⋅=

j

jpredjpred vpv ,

with the wind rose jp  calculated above (eq. 2.3).

Which method between ‘MMCP ref’ and ‘MMCP pred’ gives the best results is site

dependent. Woods & Watson found that in general, when the sector correlation is

good there is little difference between the two, while when the correlation is poor

better results are obtained with the second method.

The three MCP methods presented will be applied to transpose the Chasseral data to

5 sites in the vicinity. This will be done as a back-prediction both to evaluate the

applicability of the correlation methods over the very complex topography of the

Jura Chain and to estimate the accuracy of the prediction using various transposition

relationships. The results from this application will be shown later on (Chapter 4),

where they will be compared with results obtained from a transposition

methodology introduced below, from which, the wind speed distribution at the

prediction site is obtained, and not only the mean wind speed.

2.2 Transposition of the wind speed probability density

function assuming the existence of site-to-site relationships

The mean wind speed is certainly a good indicator of the wind conditions prevailing

on a site. However, two sites with the same mean wind speed can have very different

energy densities. From the point of view of wind power assessment, it is therefore

important to have some information about the wind speed probability density

function. In this sense, the mean wind speed transposition methods presented in the

previous section are not sufficient for the estimation of the wind power potential on a

prediction site. We will therefore present an extension of these methods applied to

transpose the data in order to get the wind speed distribution at the prediction site.

2.2.1 Particular case: transposition of Weibull distributions

For reference sites where the sector wind speed distributions can be represented by

distributions of a Weibull type and for simple site-to-site relationships of the type

eq. 2.7 iirefipred cvmv +⋅= ,
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the wind speed distribution at the prediction site can be reconstructed. This is done

using the properties of the Weibull distribution under a simple variable

transformation as presented in Appendix G.

Let the wind speed PDF for the sector i  at the reference site be represented by the

Weibull distribution

eq. 2.8 
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The probability of having a wind speed between refv and refref dvv +  in the wind
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where ip  stands for the probability that the wind blows from the direction i .

If the reference and prediction sites are related by eq. 2.7 we can substitute the

variables and get
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Replacing iimA by iB , we get

eq. 2.11 pred
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Using a similar approach as the standard MCP method, we obtain the wind speed

PDF )(vh  at the prediction site from summing over all the sectors, such that

eq. 2.12 pred
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In other words, the probability density function at the prediction site is a

combination of the sector Weibull distributions at the reference site, which are

shifted by the intercept ic . The iA  parameters of the original sector distributions are

multiplied by the slope im  of the linear relation, while the ik  remain unchanged.

Similarly, in the case of a transformation given by

eq. 2.13 ib

irefipred vav ,⋅=

we end up with a wind speed distribution at the prediction site which is
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eq. 2.14 ∑
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with iii bkk /=′  and b

i AaB ⋅=  (see Appendix G).

As long as we can postulate simple relationships such as eq. 2.7 or eq. 2.13 between

the reference and prediction site, the prediction site wind speed distribution can be

represented by a combination of the sector Weibull distributions of the wind speed at

the reference site. For other types of site-to-site relationship the transformation of the

distribution is more complex and no such simple summation can be done.

2.2.2 More general case: transposition of a general distribution from two-

parameter relationships

Under the assumption of existing relationships between the wind conditions

prevailing at the reference site ),( refrefv θ  and the wind conditions at the prediction

site ),( predpredv θ  we express:

eq. 2.15 ),(1 predpredref vHv θ=

eq. 2.16 ),(2 predpredref vH θθ =

(in other words: the wind speed at the reference site depends on both the wind

speed and direction at the prediction site, and so does the wind direction).

These relationships can be rewritten as:

eq. 2.17 )),(),,((),( 21 predpredpredpredrefref vHvHv θθθ =

and more generally we have for the transformation relation and its inverse

operation:

eq. 2.18

),(),(

and

),(),(),(

    

1

refrefpredpred

predpredpredpredrefref

vFv

vFvHv

θθ

θθθ

=

==
−

If we have a one-to-one relationship between the wind conditions prevailing at both

sites, as written in eq. 2.18, then, when wind blows at the reference site with

),( refrefv θ  it blows at the prediction site with the values ),(),( refrefpredpred vFv θθ = . This

way, the probability of occurrence of both must be the same.
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Let  ),( refrefref vf θ  and ),( predpredpred vh θ  be the probability density functions of the wind

velocity and direction at both the reference and prediction sites, with the following

conditions:

eq. 2.19 1),( =⋅⋅∫∫ refrefrefrefref ddvvf θθ

eq. 2.20
1),( =⋅⋅∫∫ predpredpredpredpred ddvvh θθ

The probability of having a wind blowing with the velocity and direction between

),( refrefv θ  and ),( refrefrefref ddvv θθ ++  at the reference site and a wind between

),( predpredv θ  and ),( predpredpredpred ddvv θθ ++  at the prediction site can be written as (e.g.

Bury, 1986):

eq. 2.21
predpredpredpredpredpredpred

refrefrefrefrefrefref

ddvvhv

ddvvfv

θθθ

θθθ

⋅⋅=

⋅⋅=

),(),(y Probabilit

),(),(y Probabilit

From the statement that these probabilities must be equal, we have the following

equation that relates the wind probability density function of the reference site with

the one of the prediction site:

eq. 2.22 refrefrefrefrefpredpredpredpredpred ddvvfddvvh θθθθ ⋅⋅=⋅⋅ ),(),(

With the help of the transformation between the reference and prediction site wind

conditions, we can, express the second part of eq. 2.22 versus the variables

),( predpredv θ  (Jacobian transformation):

eq. 2.23 ,

predpred

predpredpredpred

ref

predpredpredpredrefpredpredpredpredpred

ddv
H

v

HH

v

H
HHf

ddvFvFfddvvh

θ
∂θ

∂

∂

∂

∂θ

∂

∂

∂

θθθθ

⋅⋅⋅−⋅⋅=

⋅⋅⋅=⋅⋅
−−

1221
21

ation transform theofJacobian  

11

),(

                                                                                           

)),((),(

This is equivalent to

eq. 2.24
predpredpredpred

refpredpredpred

H

v

HH

v

H
HHfvh

∂θ

∂

∂

∂

∂θ

∂

∂

∂
θ

1221

21 ),(),( ⋅−⋅⋅=

This last relationship is the one that defines the site-to-site data transposition,

provided the functions 1H  and 2H  are known.

2.2.3 Simplified case: data transposition from one-parameter relationships

The wind data transposition can be simplified if we consider that the relationship F ,

between the wind conditions at the reference and prediction site, can be split in two

kinds of single-parameter functions.
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eq. 2.25
)(

)(

refpred

refpred

T

vVv
ref

θθ

θ

=

=

(e.g. if we consider twelve sectors, then we have twelve relationships between the

velocity values of both sites and one relationship between the wind directions).

With this assumption, we have a one-to-one relationship between the wind direction

of both sites, without any angle dependence. This simplification does not allow us to

take into account the fact that, due to different atmospheric stability conditions, it

may be possible to encounter meteorological situations for which one wind direction

at the reference station corresponds to two different wind directions at the

transposition site. In other words, this latter assumption considers that the effect of a

change in atmospheric stability (Froude number) on the direction transposition

function is negligible.

For the establishment of the site-to-site transposition relationship in this simplified

version, each sector will be treated separately, assuming that the probability

densities of velocity and direction are statistically independent. Accordingly, the

probability density function  ),( refrefref vf θ  will be replaced by a function

)()( refref gvf
ref

θ
θ

⋅  for each sector, where )( refg θ , the angular PDF obeys:

eq. 2.26 1)(
36

1
, =∑

=i
irefg θ

)( refvf
refθ , the probability density functions (PDF) of the wind speed at the reference

site for the wind sector refθ  obeys the equality

eq. 2.27 1)( =⋅∫ dvvf
refθ

       for all refθ

In this expression, the wind direction refθ  is only a parameter and no longer a

variable.

The PDF for the wind velocity at the reference site (all sectors included) is then:

eq. 2.28 )()()( k

k

gvfvf
k

θ
θ

⋅= ∑

Considering the assumed relationship eq. 2.25 between the prediction and reference

site velocity, we obtain the following expression for the PDF of the wind velocity at

the prediction site (marginal probability, Bury, 1986):

eq. 2.29 [ ] )(
)(

)()(

1

1

k

k

g
v

vV
vVfvh k

kk
θ

∂

∂
θ

θθ
⋅⋅=

−

−

∑
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The term 
v

vV
k

∂

∂
θ

)(1−

in eq. 2.29 is the Jacobian corresponding to the simplified

transformation.

If, for example, the transposition relationships were taken to be simple

proportionality relations such as:

eq. 2.30 refkpred vav ⋅= )(θ

then, introducing eq. 2.30 in eq. 2.29 leads to the transposition relation:

eq. 2.31 )(
)(

1
)

)(
()( k

kk k

g
aa

v
fvh

k
θ

θθ
θ

⋅⋅= ∑

The application of this simple transposition will be presented in Section 4.3 using

transposition coefficients )( ka θ  that are evaluated by means of the numerical

simulation performed over the Chasseral and Mt-Crosin area.
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Figure 2.2. Schematic illustrating how the data transposition is performed when having a

single-valued relationship instead of a one-to-one relationship between the reference and

prediction site.

Note: the analytical transposition methodology presented above formally requires

the existence of one-to-one relationships between the pairs ),( refrefv θ  and ),( predpredv θ .

For practical purposes, a wind data transposition is still possible even if we have a

single-valued relationship mapping the wind conditions at the reference site to the

prediction site. In the latter case, the wind speed and direction at the reference site
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),( ,, krefirefv θ  are binned into a matrix ( )
kifF ,

~
= . The probability of occurrence kif ,  of

each pair of ),( ,, krefirefv θ  mapped onto the pair ),( ,, npredmpredv θ  are then added to

determine the probability matrix ( )
nmhH ,

~
=  of the wind speed and direction at the

prediction site (see Figure 2.2).

2.3 Wind power potential for a specific wind turbine

Once the probability density function )(vf  of the wind speed at a given site is

known, it is possible to evaluate the amount of energy that a wind turbine can

produce in one year. The machine power characteristic function )(vP  is thereby

needed. The latter is usually established by the turbine manufacturer for working

conditions corresponding to an air density of 1.22 kg/m3 and turbulence intensity of

10%.

The yearly power output of a single machine, for a wind distribution )(vf , can be

calculated as:

eq. 2.32 [ ]kWhdvvfvPE
co

ci

vv

vv

            )()(87601 ⋅⋅= ∫

=

=

where

civ  is the cut-in wind speed (wind speed at which the machine starts

to produce electricity)

cov  is the cut-out wind speed (wind speed at which the machine is

shut down for safety reasons)

For the wind power potential evaluation of the Mt-Crosin site, we will use the power

characteristics of the Vestas-V44 600 kW machine given in Table 2.1. Three machines

of this type were actually installed on the site in October 96 (see Figure 3.2 for their

location on site). The power curve that has been established for an air density of 1.06

kg/m3 should be appropriate for the average temperature conditions prevailing at

the altitude of the Mt-Crosin site. For a wind speed higher than 4.5 m/s, the turbines

are coupled to the grid and start to generate electricity, and they are stopped when

the wind speed at hub-height exceeds 20 m/s (Figure 2.3).
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Table 2.1. Power characteristic function of

the Vestas V44-600kW machine at two

different air density conditions (Source:

Vestas-Danish Wind Systems A/S).

v P(v) at ρ =1.22

kg/m3

[kW]

P(v) at ρ =1.06

kg/m3

[kW]

1 0 0
2 0 0
3 0 0
4 0 0
5 30.4 24.7
6 77.3 65.2
7 135 115
8 206 176
9 287 246

10 371 320
11 450 393
12 514 461
13 558 517
14 582 557
15 594 581
16 598 593
17 600 598
18 600 599
19 600 600
20 600 600
21 0 0
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Figure 2.3. Power characteristics of the

Vestas V44-600kW machine at two

different air density conditions (Source:

Vestas-Danish Wind Systems A/S).

2.4 Wind power potential for a wind farm.

Since operating conditions vary from site-to-site, correction factors are applied to eq.

2.32 in order to account for various losses, when evaluating the power potential of a

wind farm. The above expression is modified to:

eq. 2.33 [ ]kWhdvvfvPE
co

ci

vv

vv

arrayavailTm               )()(8760 ∫

=

=

⋅⋅⋅⋅⋅⋅= ηηηη
ρ

The correction factors 
ρ

η , Tη , availη , arrayη  take into consideration air density (
ρ

η ) and

turbulence Tη  effects, availability ( availη ) and interactions between machines ( arrayη ).

They are briefly discussed below.

ρ
η     As the air density (due to altitude) and turbulence conditions of the prediction

site do not necessarily correspond to the ones at which the power

characteristics were established, correction factors must be applied to take

into account such effects. If the power characteristics of the machine are
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available for air density conditions valid for the site, then these are to be

preferred for evaluating eq. 2.33. If no such corrected curve is available, then

a simple efficiency factor normalsite ρρη
ρ

/=  can be employed. However, it

should be pointed out that these two procedures are not exactly equivalent.

Namely, the correction factor is applied for all velocity classes and reduces

the power output of all of them. This way, correcting the output with 
ρ

η

assumes that the nominal power output of the machine is never reached. In

reality, the power curve at lower air density reaches the rated power, but for

velocity classes that are higher than at normal air density. Applying 
ρ

η  for all

the velocity classes underestimates the power output that the machine can

produce.

Tη      Turbulence acts differently on the machine power output, whether it is

observed at low or high wind velocities. For the lower velocities, turbulence

tends to increase the machine power output, while at higher velocities it

reduces the output. However, it is not simple to estimate the effect of

turbulence on the global energy output (c.f. Sheinmann & Rosen, 1992). This

would require a dynamic treatment of the machine behaviour and control,

which is beyond the scope of the present project. However, as turbulence

intensity higher than 10% leads to a reduction of the yearly energy

production and as it is expected to be in the range of typically 25% for a site

in complex terrain such as Mt-Crosin, the power reduction factor Tη  will be

applied, in order to take into account losses due to turbulence.

availη   To also consider possible machine unavailability, a further factor availη  will be

used in the evaluation of the yearly energy output of a single wind turbine.

arrayη   The fact that the machines are installed at the site in an array of finite

dimensions also leads to losses due to machine interactions (for particular

wind directions some machines lie in the wake of others). This effect can be

accounted for by introducing a further arrayη . Although arrayη  is normally

expected to be a function of wind direction and position in the array, a global

value of arrayη  will be included here since such calculations involve detailed

micro-siting considerations.

The total output of the complete wind farm is the sum of the contributions of each

single wind energy converter, which can be written as:

eq. 2.34 [ ]kWhdvvfvPE
N

k

k

vv

vv

arrayavailTwf

co

ci

            )()(8760
1

∑ ∫
=

=

=

⋅⋅⋅⋅⋅⋅= ηηηη
ρ

N is set to the total number of wind turbines, and the wind distribution )(vf k  is that

valid at the location of the k-th machine.
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Evaluation of eq. 2.34 is carried out here for VestasV44 600kW machines. According

to the constructor, and in order to keep the losses due to machine interactions under

a reasonable threshold, it is recommended to leave a minimal distance of 210 m

between successive turbines, along the most frequent wind direction. In the direction

perpendicular to this, the minimal distance is 170 m. Noting that the most frequent

winds in the area blow from the south-west and east-north-east directions, the

manufacturer recommendations have been observed when installing the three wind

turbines on the Mt-Crosin site (see Figure 3.2). We therefore expect that the losses

due to machine interactions remain small for this particular wind farm geometry.

When evaluating the power potential of the Mt-Crosin site, we will use the following

values for the correction factors:

0.1=arrayη

9.0=Tη (c.f. Sheinmann & Rosen, 1992)

97.0=availη

87.022.1/06.1 ==
ρ

η

The actual values that were obtained for ηavail  during the year 1997 for the three

machines on the Mt-Crosin site are given in Table 2.2. Considering the fact that the

machines were installed in autumn 1996, we expect that the availability values given

in Table 2.2 represent lower estimates of the value than will be reached for the long

term. Difficulties occurred at the beginning, when commissioning the machines,

which reduced the availability for the year 1997 (this was particularly the case for

wind turbine No.1). Hence, adopting 0.97 for ηavail  when evaluating the power

potential should be a conservative assumption for the site of Mt-Crosin.

Table 2.2. Availability3 during the year 97 of the three wind

turbines installed on the Mt-Crosin site.

Availability [%]
Period 1.97-12.97

Wind turbine 1 94.9
Wind turbine 2 97.2
Wind turbine 3 97.8

                                                     
3 The availability is defined here as the percentage of hours during which the turbine

is available to operate.
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3 Description of the area of application

3.1 Terrain

The site to site wind data transposition will be attempted for the region of Chasseral-

Mt-Crosin using the ANETZ meteorological station of Chasseral as a reference site

and the area of the Mt-Crosin wind farm as a transposition site (also called prediction

site).

The area of interest is situated along the Jura mountain chain, in the north west of

Switzerland. This mountain range is characterised by a succession of mountains and

valleys essentially aligned on a SW-NE axis. At its southern edge the Jura range is

limited by the Swiss Plateau at an altitude of 400-500m ASL and at its northern edge

by the lower altitude hilly terrain of Franche-Comté. The rectangle in Figure 3.1,

showing the outline of the simulation domain allows one to locate the region with

respect to the complex topography which characterises the country. The reference

station of Chasseral is on the top of the most elevated summit of the Jura mountain in

that region and the wind conditions prevailing there are directly connected to the

geostrophic wind conditions (see Ehinger et al, 1990). The most relevant

characteristics of the Chasseral site are listed below according to Ehinger et al:

• Altitude: 1599 m.

• Swiss kilometric co-ordinates: 571'290 / 220'320.

• The site is the most elevated summit in a radius of 50 km.

• The topographical features in the region are aligned in the SW-NE direction (c.f.

Figure 3.1).

• The soil is covered with grass and isolated groups of rocks.

• The measuring instruments are located on an intermediate level platform of a

telecommunication tower.

• The wind measuring instrument is of the SIAP type (appropriate for high wind

speed measurements and cold temperature conditions, which are common for

the area) and it is located 60 m above ground level to the south of the

telecommunication tower.

The prediction site used to test the applicability of the transposition methodology is

located on Mt-Crosin (~1200 m ASL). This site is situated along the Mt-Soleil range

some 6-7 km northwest from the Chasseral reference station and separated from the

latter by the St-Imier valley (~750 m ASL). The choice of Mt-Crosin as a prediction

site was motivated by the fact that wind data are available that were recorded during
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a one year measurement campaign which was followed by the installation of three

wind turbines.

Figure 3.1. Distribution of the ANETZ meteorological stations on the Swiss topography and

location of the Chasseral and Mt-Crosin area. (Source: ISM, SMA, Zurich.).

The orientation of the Mt-Crosin and Mt-Soleil range is more or less aligned in the

same direction as the other topographic features of the region (i.e. SW-NE direction).

Other relevant characteristics of the transposition site are summarised below:

• The hills flanks are covered with forests and the site itself is a grass pasture land

on which isolated trees or groups of trees can be found.

• The site has been equipped with three measuring masts, one of them (Côte

Nord) with instruments at 10 m above ground level only, and the two others

(Côte Sud and Côte Est) with instruments at 10 and 30 m.

• The measuring instruments are cup anemometers, for which no calibration curve

is available (Baumgartner, personal communication). Concerning the

anemometers choice for the Mt-Crosin site, two aspects should be pointed out

that may influence the quality of the measurements in a non-negligible way:

1. Cup anemometers are known for their sensitivity to vertical velocity.

Although this vertical component is not interesting for the energy

production, it is present in flows over highly complex terrain and

depends on the direction from which wind approaches the measuring

point. As a consequence, the wind velocities that are registered by the



25

cup anemometer overestimate the actual horizontal velocity, which is

the useful component from the point of view of energy production.

2. The second aspect is related to the climatic conditions that prevail for

a site located at an altitude of 1200 m, as Mt-Crosin. Namely, for

temperatures below 0° C, the cup anemometers can be frozen, and

record no velocity values. Therefore the data recorded at Mt-Crosin

need to be considered with care relative to this aspect.

A detailed map of the Mt-Crosin site together with the measuring instruments and

wind turbine locations is presented in Figure 3.2. The exact locations, altitude and

level above ground level of the measurement masts are summarised in Table 3.1.

Wind turbine 3

Wind turbine 2

Wind turbine 1

Côte Nord

Côte Est

Côte Sud

Figure 3.2. Detail topography of the Mt-Crosin site showing the position of the

measuring masts and wind turbines. (Extract of the chart no. 1125 (Chasseral)

reproduced by permission of the Swiss Federal Office of Topography,

20.7.1998).
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Table 3.1. Location and altitude of the measurement stations at Chasseral and Mt-Crosin.

station name co-ordinates altitude (ASL)
[m]

Height above ground of the
instruments [m]

Chasseral 571’290/220’320 1599 60

Côte Nord 567’900/225’740 1256 10

Côte Sud 567’850/225’200 1238 10, 30

Côte Est 568’325/225’700 1245 10, 30

3.2 Data

3.2.1 Chasseral long term data set

The estimation of the wind power potential at Mt-Crosin will be done using a long

term data set for Chasseral4 that covers the time period starting from the 1st of

January 1982 to the 31st of December 1997. Hourly averaged data will be used.

Before calculating the wind distribution at the reference site, a data correction was

applied in order to take into account instrumental effects on the measured wind

value. This was done according to the calibration curve of a SIAP type instrument

(see Appendix J), which was determined in the wind tunnel facilities of the LASEN

by Ehinger et al (1990).

No other level of data correction for Chasseral will be considered, even if this may be

questionable, due to influence of the telecommunication tower on which the mast is

installed. This effect is however expected to be important only for northerly wind

directions, for which the instrument is in the wake of the tower. Since these

directions are not the most frequent ones (Figure 3.3) and we therefore expect the

wind measurements done at Chasseral to be representative of the wind conditions

prevailing at the summit.

The data are sorted into velocity and direction classes. Velocity intervals of 1m/s are

defined, so that the velocity class n corresponds to velocity lying in the interval

1+<< nvn . Direction intervals of 10° are defined, so that the direction class j

corresponds to direction in the interval 510510 +<<− jj θ . For the period

considered, the wind rose for the Chasseral location from the long-term wind

measurements can be seen in Figure 3.3. Two predominant groups of wind

directions occur: the first one corresponds to winds blowing from the south-western

                                                     
4 Hourly and 10 minutes averaged meteorological data from the Chasseral ANETZ

station (60 m above ground) are available from February 81 on a regular basis.

Source: ISM, SMA, Zurich.
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to north-western directions, and the second one to winds blowing from the east (so-

called ‘bise’).

The wind speed probability density function (PDF) at Chasseral, corrected for

calibration errors, is presented in Figure 3.4). All the hours with undefined value for

either the wind direction or wind speed were attributed to the zero wind speed

class, explaining the peak in the PDF of Chasseral for this class. The average wind

speed corresponding to the distribution of Figure 3.4 is of 7.44 m/s. The Weibull

distribution (with the parameters 36.8=A  and 6.1=k ) best representing this

measured distribution has also been plotted. The latter was determined by a linear

regression on the values of )))(1ln(ln( vF−−  plotted versus )ln(v , where )(vF  stands

for the cumulative Weibull distribution (see Appendix G).
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Figure 3.3. Wind rose for Chasseral, obtained

from 16 years of hourly averaged wind records.
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3.2.2 Mt-Crosin data sets

Hourly averaged wind data were collected at the three locations of Côte Nord, Côte

Sud and Côte Est on the Mt-Crosin (see Figure 3.2) for the wind farm feasibility

study. Measurements at 10 and 30 m above ground were recorded at both Côte Sud

and Côte Est, while the site of Côte Nord was only equipped with a 10m high mast.

These data were kindly provided by Meteotest. Together with the simultaneous

wind records at Chasseral, they have been used:

1. to determine how far the simple assumptions of the transposition methodology

can be considered as appropriate

2. to give an estimate of the accuracy that can be expected from the data

transposition

3. to test the model ability to reproduce the behaviour of the wind velocity at Mt-

Crosin as a function of the wind velocity at Chasseral.

The raw data at the three locations were carefully checked, and questionable data

corresponding to periods with non-operational or frozen instruments were

eliminated. The characteristics of the remaining data sets are summarised in Table

3.2 and Table 3.3. The corresponding probability density functions and wind roses

for the Mt-Crosin stations are given in Figure 3.6 to Figure 3.8, together with the

simultaneous distributions for Chasseral.

Table 3.2. Parameters summarising the availability of the Mt-Crosin measuring stations.

Period of
availability

Max. possible
number of data

[hours]

Number of hours with
records available at both Mt-

Crosin and Chasseral

Côte Nord (10m) Feb. 94- May 95 11640 6455
Côte Sud (30 m) Feb. 94- Apr. 95 10896 6467
Côte Est (30 m) Dec. 94- Aug. 95 6576 4669

It should be stressed that the average wind speeds and natural power density5 at the

various measuring masts were calculated with a probability density function that

was normalised with the total number of defined values, without including the

undefined ones in the zero wind speed bin. As a consequence, the average wind

speeds obtained from the short-term data are not representative of the expected

longer-term value. This can be seen from the values of Table 3.3 where the average
                                                     
5 The natural power density of a site is defined as ∫ ⋅= dvvvPPn

3
)(

2

1
ρ , with ρ the air

density and )(vP  the wind speed probability density function of the site.
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wind speed at the station of Chasseral significantly exceeds the value of 7.44 m/s,

which was obtained from the 16 years of measurements.

For the same reason, the natural power density obtained for the three measurement

locations on the Mt-Crosin site are not representative of the wind power potential

available on site. From the values given in Table 3.3, one could be tempted to

conclude that the site of Côte Est shows the best potential. This is not true however,

and again, this is only due to the fact that the period over which measurements were

available simultaneously at Côte Sud and Chasseral was windier than the period

with measurements at Côte Nord and Côte Est.

Table 3.3. Average wind speed and natural power density for the Mt-Crosin measuring

stations. Chasseral average wind speeds for the corresponding period are also given.

Average
wind speed

[m/s]

Natural power density

with 3/05.1 mkg=ρ
6

[W/m2]

Average wind speed at
Chasseral for the

simultaneous data  [m/s]

Côte Nord (10m) 5.2 163 9.1
Côte Sud (30 m) 5.3 153 7.9
Côte Est (30 m) 5.6 229 9.5

When comparing the Chasseral wind roses shown in Figure 3.8 with those of Figure

3.6 and Figure 3.7 we can see that the sector distribution of the concurrent data set

Chasseral-Côte Est is slightly different from those obtained for the periods with

concurrent data at Côte Sud and Côte Nord. For the period with data at Côte Est, we

can clearly see that the most frequent wind directions are the 200° to 230° wind

directions, with frequencies higher than 5%. For the two other periods (of Figure 3.6

and Figure 3.7), the south-west to north-west wind sectors are more evenly

distributed within the 200° and 280° sectors. For the south west to north west winds,

the wind rose for Chasseral obtained for the period with simultaneous data at Côte

Est appears to be more representative of the long term (Figure 3.3) than those for

Côte Sud and Côte Nord. For the east to north-east wind directions the converse is

observed.

                                                     
6 The value of 1.05 for the density is representative for the average temperature

conditions on Mt-Crosin.
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Figure 3.6. Simultaneous probability density function and wind rose at the stations of Côte

Nord and Chasseral.
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Figure 3.7. Simultaneous probability density function and wind rose at the stations of Côte

Sud and Chasseral.
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Figure 3.8. Simultaneous probability density function and wind rose at the stations of Côte

Est and Chasseral.

Some channelling can also be observed from the Mt-Crosin wind roses, which is not

visible in the wind roses of Chasseral. It can be observed that on Mt-Crosin, the

peaks in the sector distribution are sharper than they are for Chasseral. For the winds

with a northern component, there is a definite blocking effect due to the Chasseral

range which tends to rotate the north-east winds at Mt-Crosin in a clockwise
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direction and the north-west winds in an anticlockwise direction (Figure 3.9). Why

the rotation for the east winds is stronger at Côte Nord than at the two other sites is

not clear.

Figure 3.9. Illustration of the effect of channelling that a mountain range produces on the

winds for altitudes lower than the crest. The north-east winds are rotated clockwise and

become more easterly winds. Conversely, the north-west winds are rotated anticlockwise and

become more westerly winds.
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4 Wind data transposition from observations and
assessment of the validity of the transposition
assumptions

Both the usual MCP methods and the transposition of the complete wind speed

distribution rely on the assumptions of existing relationships relating the wind speed

at the prediction site to the wind speed at the reference site. The success and

accuracy of the prediction will depend on the validity of this assumption. In MCP

methods, the relationships are obtained from concurrent datasets recorded at both

the prediction and reference site. Before applying any transposition, we will

investigate the behaviour of the prediction site to reference site wind speed ratio, in

order to see what kind of relationship between the sites can exist. This will be

presented in Section 4.1.

The first step in the evaluation of the transposition method will consist of performing

a so-called back-prediction. Then the relationships obtained from concurrent datasets

for a given period will be used to transpose the reference site data for the same

period to the prediction site. Comparing the transposition results with the data

measured on the prediction site during this particular period will allow us to

estimate the accuracy that can be obtained with the assumption of existing

correlations. Testing various types of site-to-site relationships should also help us to

determine which one best predicts both the average wind speed and wind energy

density observed on the site.

The back-prediction will be applied in Section 4.2 and 4.3 for the three sites of Mt-

Crosin as well as for the less exposed ANETZ stations of Neuchâtel and Chaux-de-

Fonds. Being located at lower altitudes, these stations are less directly coupled to the

geostrophic wind conditions. Their wind roses show the effects of significant

channelling that can be associated with the presence of topographic features (the Jura

chain for Neuchâtel, and the orientation of the valley for Chaux-de-Fonds). Since the

matrix MCP method is meant to improve the results in the case of significant rotation

of the wind vector, it will therefore be interesting to see if it outperforms the

standard MCP method when predicting the sector mean wind speeds for these

stations. When performing the back-predictions, we will use the longest possible

data set available for all the pairs of stations considered. For the Mt-Crosin sites, data

are only available for short term periods (see Chapter 3), whereas for the sites of

Neuchâtel and Chaux-de-Fonds we will use 16 years of data, covering the period

between January 1982 and December 1997.
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4.1 Relationships between the reference and prediction sites

4.1.1 Wind speed ratios from hourly observations

Plotting the hourly wind speeds recorded at the Mt-Crosin site of Côte Nord versus

the wind speed at Chasseral for various wind directions (Figure 4.1) shows a more or

less linear relationship between the two sites. The linear function cvmv refpred +⋅=

obtained from regression has also been plotted (dark line). The proportionality

relationship refpred vav ⋅= , with a  obtained from averaging the wind speed ratios for

each data pair, has been drawn as a light line. It would be difficult when comparing

the plots to decide which of the two relationships best represents the observations.

This would be even more difficult when looking at the similar plots showing the

wind speed at Chaux-de-Fonds versus the wind speed at Chasseral (Figure 4.2). In

the latter case, the correlation between the two sites is rather poor. This is not so

surprising however, when knowing that the station of Chaux-de-Fonds is located in

a topographical depression where thermal winds occur and can significantly affect

the local climatology.
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Figure 4.1. Hourly wind speed at the Mt-Crosin site of Côte Nord vs. hourly wind speed at

Chasseral for concurrent data sets (period: Feb. 1994- May 1995). All data with the wind

direction at Chasseral in the interval a) 240° ±5° and b) 60°±5°.

Systematically performing the linear regression analysis on the concurrent data sets

led to the parameters m  and c  and regression coefficients7 r  given in Table 4.1 for

                                                     
7 The regression coefficient for a set of N records ix  and iy  is defined as

( ) ( )∑ ∑∑ ∑

∑ ∑ ∑
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−
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Côte Nord and Table 4.2 for Chaux-de-Fonds. This was done for data binned into

sectors of 30° width, centred around the sector value (i.e. the sector 0° contains data

between –15° and +15°). To reduce the error that could arise due to the known

calibration difficulties that arise with SIAP type instruments, we only considered

data which were above the threshold wind speed of 5 m/s at Chasseral when

performing the regression. For the prediction stations, we used a threshold wind

speed of 0.5 m/s (sensitivity threshold of the instrument). Since, for wind power

potential estimation, we are most interested in the strong wind situations these

restrictions on the low wind speed cases should help to improve the

representativeness of the relationships that will be used for the transposition. The

parameters with indices ‘ref’ (or ‘pred’) were obtained from data sorted according to

the reference (or prediction) site wind direction. The same tables can be found in

Appendix H for the stations of Côte Sud, Côte Est and Neuchâtel.
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Figure 4.2. Hourly wind speed at Chaux-de-Fonds vs. hourly wind speed at Chasseral. All

data with the wind direction at Chasseral in the interval a) 240° ±5° and b) 60°±5°. For clarity

purpose, only two years of concurrent data sets (years 1982-1983) have been plotted, instead

of the 16 years available.

As can be seen from the values given, the correlation between the site of Côte Nord

and Chasseral is acceptable for the most frequent wind directions (30°-60° and 210°-

300° when binning according to the reference station wind direction) but rather poor

for the others. Between the sites of Chasseral and Chaux-de-Fonds, the correlation is

even poorer with only one sector with r  over 0.6 when binning according to the

reference direction and two when binning according to the prediction wind

direction. Moreover, the highest correlations between Chasseral and Chaux-de-

Fonds are obtained for the less frequent sectors, which is not very encouraging for

the wind data transposition.
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Table 4.1. Parameters from the linear regression relating the sites of Côte Nord and Chasseral

(short term data). (see text for details).

Sector
refc refm refr predc predm predr

0 1.49 0.47 0.17 2.26 0.20 0.30

30 1.67 0.32 0.60 3.35 0.11 0.12

60 1.11 0.31 0.64 1.79 0.33 0.66

90 2.07 0.31 0.46 1.91 0.20 0.48

120 3.41 0.10 0.10 2.46 0.33 0.53

150 2.33 0.31 0.23 2.65 0.09 0.23

180 1.94 0.54 0.75 2.76 0.30 0.38
210 2.37 0.42 0.67 1.63 0.52 0.75
240 0.83 0.50 0.69 1.01 0.48 0.69
270 -0.14 0.53 0.79 1.33 0.40 0.71

300 0.21 0.39 0.82 0.55 0.35 0.80

330 0.96 0.35 0.63 0.55 0.37 0.80

Table 4.2. Parameters from the linear regression relating the sites of Chaux-de-Fonds and

Chasseral (16 years of data). (see text for details).

Sector
refc refm refr predc predm predr

0 3.29 -0.12 -0.12 1.46 0.10 0.28

30 2.45 0.18 0.34 2.43 0.11 0.25

60 2.12 0.16 0.34 1.84 0.20 0.39

90 1.16 0.19 0.39 1.12 0.22 0.42

120 1.33 0.07 0.14 1.32 0.14 0.42

150 0.39 0.25 0.37 -0.29 0.35 0.74

180 -0.03 0.37 0.67 0.97 0.21 0.49
210 0.56 0.27 0.51 0.43 0.31 0.62
240 0.49 0.30 0.47 0.86 0.24 0.46
270 0.50 0.29 0.54 0.97 0.11 0.34

300 0.82 0.17 0.58 1.32 0.07 0.26

330 1.46 0.05 0.23 1.20 0.09 0.30

The average sector wind speed ratios relating the stations of Côte Nord and

Chasseral, as well as those relating Chaux-de-Fonds and Chasseral are given in Table

4.3. These were again calculated for the data sorted according to the wind direction

at Chasseral (labelled ‘ref’) and according to the direction at the prediction site

(labelled ‘pred’).

The wind speed ratios, together with their standard deviation, were also calculated

for data binned as a function of the Chasseral wind direction with 10° classes. The

behaviour of the so-obtained wind speed ratios as a function of the wind direction is

plotted in Figure 4.3.a for the three sites on Mt-Crosin and in Figure 4.4.a. for the

ANETZ stations of Neuchâtel and Chaux-de-Fonds. The standard deviation of this
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ratio is shown in Figure 4.3.b and Figure 4.4.b. In each sector, the values of the wind

speed ratio and standard deviation were considered to be representative only where

more than 30 records were available. Due to this restriction (and to the fact that we

only have short term data) a gap can be seen in the plots for the northern wind

directions (sectors -10° to 10°) and eastern to southern (sector about 110° to 180°) at

the sites on Mt-Crosin. For the sites of Chaux-de-Fonds and Neuchâtel, with 16 years

of data, all the wind directions are represented.

Table 4.3. Sector wind speed ratios between the sites of Côte

Nord and Chasseral and between Chaux-de-Fonds and

Chasseral.

Côte Nord Chaux-de-Fonds

Sector
refa preda refa preda

0 0.79 0.53 0.49 0.32

30 0.52 0.68 0.52 0.45

60 0.45 0.55 0.40 0.44

90 0.63 0.46 0.34 0.39

120 0.73 0.71 0.30 0.38

150 0.77 0.53 0.32 0.32

180 0.80 0.72 0.38 0.34
210 0.64 0.68 0.34 0.36
240 0.58 0.58 0.36 0.34
270 0.52 0.54 0.35 0.23

300 0.42 0.42 0.27 0.25

330 0.48 0.44 0.25 0.27
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Figure 4.3. a) Mt-Crosin to Chasseral wind speed ratio, b) Standard deviation of the wind

speed ratio for the three sites of Côte Nord, Côte Sud and Côte Est versus the wind direction

at Chasseral. Values obtained with the data sets described in Chapter 3, i.e. 16 months for

Côte Nord, 15 months for Côte Sud, and 9 months for Côte Est.
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Compared to the two other sites on Mt-Crosin, the site of Côte Nord shows in

general lower wind speed ratios. The reason for this is essentially to be found in the

fact that the measurements were taken at 10m above ground instead of the 30m for

the sites of Côte Sud and Côte Est.  Apart from this difference, the three sites on Mt-

Crosin show a similar behaviour of the wind speed ratio versus the wind direction.

The variation of the Mt-Crosin to Chasseral wind speed ratio with the wind direction

at Chasseral does not seem to be particularly well related to the fact that the wind

blows parallel or perpendicular to the main relief axis. In fact for the wind blowing

from the 60° sector (more or less parallel to the mountain chain), we observe a

minimum in the wind speed ratio, whereas for the wind 240° direction (also more or

less parallel), we tend to observe a local maximum. The tendency of the wind speed

ratio to increase for the north wind (340° to 20° sector) is probably exaggerated

compared to reality, considering the shadowing effect of the telecommunication

tower on the Chasseral anemometer for these wind directions. As a consequence, the

wind speed ratio from the observations is suspected to be artificially increased.

The standard deviation of the wind speed ratio obtained for the Mt-Crosin sites is

relatively high compared to the ratio itself, with values that represent typically some

20% to 50% of the ratio for Côte Nord and Côte Sud. The site of Côte Est shows even

larger standard deviations. Whether this would correspond to a real site

characteristic (e.g. larger turbulence) or reveals some instrumental problems at Côte

Est is not clear. The strength of the standard deviation already indicates that the

simple assumption according to which the wind speed at Mt-Crosin would be

proportional to the wind speed at Chasseral, with a proportionality factor depending

on the wind direction only, is a coarse approximation to the real situation.
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Figure 4.4. a) Neuchâtel to Chasseral and Chaux-de-Fonds to Chasseral wind speed ratio, b)

Standard deviation of the wind speed ratio versus the wind direction at Chasseral. Values

obtained using 16 years of data (January 1982 to December 1997).
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The Chasseral to Neuchâtel and Chasseral to Chaux-de-Fonds wind speed ratios

obtained from the observations show generally lower values than the ones obtained

for the Mt-Crosin site. As the two sites of Neuchâtel and Chaux-de-Fonds are at

lower altitudes, they are less directly coupled to the geostrophic wind and generally

exhibit lower wind speeds. The fact that the wind speed ratio at Neuchâtel shows

higher values for the ‘bise’ situations (wind direction between 0° and 90° at

Chasseral) than for the south-west to north-west situations might be due to the

particular shape of the wind speed profiles typically observed in these cases. Furger

(1990) found that ‘bise’ wind speed profiles exhibit stronger winds in the lower levels

than at high altitude (jet type profiles). The standard deviation of the measured wind

speed ratio for the site of Neuchâtel and Chaux-de-Fonds are even more significant

than the ones of Mt-Crosin reaching values up to 35%-80% of the ratio itself.

In addition to the sector variation of the wind speed ratio, its wind speed

dependency was also investigated. Figure 4.5 shows the behaviour of the Côte Nord

to Chasseral wind speed ratio for the 240° and 60° wind directions. The ratio shows a

decreasing tendency with increasing Chasseral wind speed with significant

variations about this tendency. For Chasseral wind speeds lower than 5 m/s the

wind speed ratio can vary by a factor of 10 within a wind speed class (see e.g. wind

speed 4 m/s for the 240° wind direction). For higher wind speeds (v> 10 m/s), the

records for the wind speed ratio within one wind speed class cluster around an

average value, but still show significant variation around it.
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Figure 4.5. Ratio between the Côte Nord and Chasseral wind speed for the wind direction a)

240° and b) 60°.
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Averaging the wind speed ratios obtained in each Chasseral wind speed and

direction classes led to the behaviour presented in Figure 4.6.a) to f) for the three sites

of Mt-Crosin and in Figure 4.7.a) to d) for Chaux-de-Fonds and Neuchâtel.

From the plots versus the Chasseral wind speed, we can observe that:

• up to a wind speed of 10m/s at Chasseral the wind speed ratio decreases

tendency for all the stations

• for higher wind speeds, the ratio seems to stabilise at a constant value.

However, some wind directions still show a decreasing ratio (300° at Côte Sud,

330° at Côte Est and Neuchâtel) while for others (270° at Côte Nord and

Neuchâtel, 180° at Chaux-de-Fonds) the ratio starts to increase again above

10m/s at Chasseral

From the Mt-Crosin plots versus the Chasseral wind direction we can see that:

• the higher ratios are clearly associated with the lowest wind speed

• the smallest wind speeds seem to be concentrated around the less frequent

sectors (120° to 180°).

The plot for Neuchâtel versus the wind direction indicates that the ratio variation

with the wind direction is more or less the same for all the Chasseral wind speed

classes. We have in this case a maximum of the ratio occurring for the 60° wind

direction, a minimum around 150°-180° followed by another maximum around 270°,

and this independent of the wind speed class. This behaviour can however not be

observed in the general case. In fact we can see from the Chaux-de-Fonds data versus

the wind direction, that the minimum that can be observed for the lower wind speed

(2 and 4 m/s) around the 150° direction corresponds more to a maximum for the

wind speed classes 10 and 15 m/s.  Considering the relative sparseness of data, this

kind of comparison is difficult to make from the Mt-Crosin plots versus the wind

direction.

From the above results (Figure 4.5), it appears that the approximation of a wind

speed ratio only depending on the reference station wind direction is certainly not

true when considering isolated records. However when averaging the observed

ratios within the Chasseral wind speed classes, it can be seen from Figure 4.7 that for

most of the sectors and for Chasseral wind speeds above ~7 m/s, the average ratio

remains more or less constant when the Chasseral wind speed is changed. This

feature is not so obviously apparent in the Mt-Crosin plots (Figure 4.6) probably due

to the relatively sparse datasets.
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Cote Nord,  hourly data
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Cote-Sud,  30 m,  hourly data
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Cote Est, 30 m, hourly data
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Figure 4.6. Mt-Crosin to Chasseral wind speed ratio vs. Chasseral wind speed and direction

for the three sites of Côte Nord (a and b), Côte Sud (c and d) and Côte Est (e and f). The labels

for the symbols stand for the Chasseral wind direction in a, c, and e, and for the Chasseral

wind speed in b, d, f.  Values obtained with the data sets described in Chapter 3, i.e. 16

months for Côte Nord, 15 months for Côte Sud, and 9 months for Côte Est.
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Chaux-de-Fonds, hourly data
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Neuchâtel, hourly data
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Figure 4.7. Wind speed ratio vs. Chasseral wind speed and direction for the sites of Chaux-

de-Fonds (a and b), and Neuchâtel (c and d). The labels for the symbols stand for the

Chasseral wind direction in a, and c, and for the Chasseral wind speed in b, and d. Values

obtained with 16 years of data (January 1982 to December 1997).

Considering the behaviour observed above for the wind speed ratios )(θa  (Figure 4.6

and Figure 4.7), the evaluation of the sector mean value for )(θa  using only

simultaneous records with a wind speed above the threshold of 5 m/s at Chasseral

should tend to slightly underestimate its value. From the point of view of wind

power assessment, this should lead to an underestimation of the available wind

power potential of the site, which would bring us on the conservative side in terms

of viability for a wind farm. When performing a prediction either with an MCP

method or with a transposition of the entire distribution, using relationships from

measurements, we will therefore use relationships established from records with a

wind speed higher than 5 m/s at Chasseral.
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4.1.2 Wind speed ratios during homogeneous events

Looking at events, which show a reasonable persistence like established ‘bise’

situations or west-south west wind situations, we can in fact observe that, for

situations where the wind direction at Chasseral remains more or less constant over

several hours, the ratio between the wind at Mt-Crosin and at Chasseral show

significant fluctuations. This demonstrates again the level of simplification associated

with the assumption of a wind speed ratio that would only vary with the wind

direction at the Chasseral station. This is illustrated by Figure 4.8 for a ‘bise’ situation

that established overnight between the 11th and 12th of June 1994.
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Figure 4.8. Time evolution of the measured a) wind direction, b) wind speed at the site of

Chasseral, Côte Nord and Côte Sud for a persisting ‘bise’ situation over the period between

the 11th of June (18h) and the 14th of June 1994 (9h). c) Mt-Crosin to Chasseral wind speed

ratio.

For some 36 hours (from the 12th at 0h) the wind speed at Chasseral fluctuated

around some 16 m/s and the wind direction remained in the sector 45°±15°. We can
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observe from Figure 4.8.a that the time evolution of the wind direction at both

Chasseral and Mt-Crosin are practically in phase over the whole episode, which is a

good indication that both stations are under the influence of the same meteorological

phenomenon. This correlation between both sites is no longer visible in the wind

speed plots (Figure 4.8.b) and this results in a strong fluctuation of the Mt-Crosin to

Chasseral wind speed ratio (Figure 4.8.c). The behaviour observed here indicates that

though the wind direction is reasonably stationary, the wind speed ratio exhibits

strong variations. This feature was observed for several events and seems to be more

the rule than the exception.

4.2 Results from back-predictions using MCP Methods

Standard and matrix MCP methods have been developed to derive long-term

predictions of the mean and sector mean wind speeds at the prediction site. In this

section, we will apply them not for the sake of the long-term prediction but to see

how far the underlying assumptions in the methods are able to reproduce the

measured wind speed at the prediction site from the short-term dataset at the

reference site.

For this application, we chose to show the transposition from Chasseral to the site of

Côte Nord. Some results for Chaux-de-Fonds will also be shown. The population

matrix ( )jipP ,=  representing the number of records with the wind direction i  at the

reference site (row index) and j  at the prediction site (column index) is given below.

It shows a strong diagonal dominance.

Population matrix ( )jipP ,=  for the sites of Chasseral and Côte Nord (Feb 94-May 95)

Prediction site index J Æ
Secteur 0 30 60 90 120 150 180 210 240 270 300 330

0 21 67 52 18 8 1 2 2 1 8 3 7 190

30 16 39 229 60 5 1 0 0 1 0 3 2 356

60 7 8 83 182 46 0 3 3 0 1 1 1 335

90 4 2 32 215 206 3 4 5 1 0 1 0 473

120 1 8 12 41 127 18 6 3 1 2 1 1 221

150 4 6 5 15 54 28 52 32 3 2 2 1 204

180 1 3 6 12 31 16 85 212 34 18 6 2 426

210 2 1 10 8 15 10 70 573 333 49 10 2 1083

240 1 1 6 2 7 8 20 102 580 323 14 4 1068

270 7 3 2 2 4 0 9 57 147 661 84 10 986

300 13 7 1 3 4 0 1 12 26 205 249 95 616

330 139 71 3 3 5 2 0 3 7 15 71 178 497

216 216 441 561 512 87 252 1004 1134 1284 445 303
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Eliminating the bins with the frequency of occurrence lower then the threshold value

of 5%, and normalising for the wind directions at the reference site, we end up with

the matrix )( , jiwW =  that will be used to predict the wind rose at the site of Côte

Nord. Repeating the operation and normalising for the wind directions at the

prediction site gives the matrix )( , jizZ = , used to evaluate the sector mean wind

speed at the prediction site. Both matrices are also presented below for the case of

Chasseral and Côte Nord.

Matrix Wij (*100) for the sites of Chasseral and Côte Nord (Feb 94-May 95)

Prediction site index J Æ
Secteur 0 30 60 90 120 150 180 210 240 270 300 330

0 13.3 42.4 32.9 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

30 0.0 11.9 69.8 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

60 0.0 0.0 26.7 58.5 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

90 0.0 0.0 7.1 47.5 45.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

120 0.0 0.0 6.1 20.7 64.1 9.1 0.0 0.0 0.0 0.0 0.0 0.0 100

150 0.0 0.0 0.0 8.3 29.8 15.5 28.7 17.7 0.0 0.0 0.0 0.0 100

180 0.0 0.0 0.0 0.0 8.6 0.0 23.5 58.6 9.4 0.0 0.0 0.0 100

210 0.0 0.0 0.0 0.0 0.0 0.0 7.2 58.7 34.1 0.0 0.0 0.0 100

240 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 57.7 32.1 0.0 0.0 100

270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 15.5 69.7 8.9 0.0 100

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.3 45.4 17.3 100

330 30.3 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 38.8 100

43.6 69.8 142.5 164.7 162.8 24.6 59.4 151.1 116.7 139.1 69.7 56.1

Matrix Zij for the sites of Chasseral and Côte Nord (Feb 94-May 95)

Prediction site index J Æ
Secteur 0 30 60 90 120 150 180 210 240 270 300 330

0 11.1 37.9 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 62.1

30 8.5 22.0 57.8 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.4

60 0.0 0.0 21.0 36.5 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.4

90 0.0 0.0 8.1 43.2 44.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.7

120 0.0 0.0 0.0 8.2 27.4 22.5 0.0 0.0 0.0 0.0 0.0 0.0 58.1

150 0.0 0.0 0.0 0.0 11.6 35.0 22.9 0.0 0.0 0.0 0.0 0.0 69.5

180 0.0 0.0 0.0 0.0 6.7 20.0 37.4 22.5 0.0 0.0 0.0 0.0 86.6

210 0.0 0.0 0.0 0.0 0.0 12.5 30.8 60.7 31.4 0.0 0.0 0.0 135.5

240 0.0 0.0 0.0 0.0 0.0 10.0 8.8 10.8 54.7 27.2 0.0 0.0 111.5

270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 13.9 55.6 20.8 0.0 96.3

300 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.2 61.6 34.8 120.6

330 73.5 40.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 65.2 196.4

100 100 100 100 100 100 100 100 100 100 100 100
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The diagonal dominance is no longer so obvious when looking at the matrix

)( , jiwW =  for the sites of Chasseral and Chaux-de-Fonds. In this case, we can clearly

see the channelling leading to an accumulation of records for the 60° and 240° wind

directions at Chaux-de-Fonds, which corresponds to the direction of the valley where

the anemometer is located.

Matrix Wij (*100) for the sites of Chasseral and Chaux-de-Fonds (Jan 82-Dec 97)

Prediction site index J Æ
Secteur 0 30 60 90 120 150 180 210 240 270 300 330

0 22.6 47.1 14.3 0.0 0.0 0.0 0.0 0.0 8.8 0.0 0.0 7.2 100

30 12.1 51.3 36.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

60 8.2 34.2 50.3 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

90 9.9 31.7 43.8 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

120 8.6 16.8 28.0 24.7 12.4 0.0 0.0 0.0 9.6 0.0 0.0 0.0 100

150 6.8 8.5 10.3 9.1 6.1 6.2 16.3 10.8 15.5 10.3 0.0 0.0 100

180 0.0 0.0 0.0 0.0 0.0 0.0 15.4 37.3 32.0 15.2 0.0 0.0 100

210 0.0 0.0 0.0 0.0 0.0 0.0 5.4 36.4 46.4 11.7 0.0 0.0 100

240 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.3 70.8 9.9 0.0 0.0 100

270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 73.4 10.6 0.0 0.0 100

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.9 52.2 24.1 9.8 0.0 100

330 17.4 8.9 0.0 0.0 0.0 0.0 0.0 0.0 18.4 17.2 17.7 20.3 100

85.7 198.6 183.2 55.6 18.5 6.2 37.1 133.8 327.1 99.1 27.5 27.5

The evaluation of the Côte Nord mean wind speed and wind rose is made using eq.

2.2 to eq. 2.6, with the linear and proportional relationships using the regression

parameters given in Table 4.1 and Table 4.3.

Figure 4.9 shows the results for the wind rose predictions at both Côte Nord and

Chaux-de-Fonds. For a direct comparison, the same scale is used in both figures for

the frequency. The predicted wind roses correspond so well to those measured that it

is barely possible to differentiate them on the plots8. For the site of Chaux-de-Fonds,

the wind rose is very different from that of Chasseral, indicating a strong channelling

of the flow along the valley direction. At Côte Nord however, as could already be

guessed from the diagonal dominance in the population matrix, the wind rose does

not differ much from the wind rose measured at the reference site. These

comparisons show that the matrix MCP method is able to reproduce the wind rose

                                                     
8 In fact, it is expected to have a perfect matching between the measurements and the

prediction, when performing a back-prediction with a threshold value of 0% when

filtering the population matrix. The slight difference obtained here is a consequence

of the 5% threshold value.
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quite accurately in a back-prediction, also in the presence of significant topographical

effects.
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Figure 4.9. Measured (dashed) and predicted (continuous dark line) rose at a) Côte Nord and

b) Chaux-de-Fonds. The Chasseral wind rose has also been plotted (grey continuous).

The results for the sector mean wind speeds obtained from the various MCP

methods are compared to the on site measurements in Figure 4.10 for the site of Côte

Nord and in Figure 4.11 for the site of Chaux-de-Fonds. As far as the sector mean

wind speed is concerned, both the linear and simple proportionality relationships

perform well.

Concerning the choice of the MCP methods, it appears that the matrix method using

relationships obtained for data binned according to the prediction site wind direction

produces better predictions than the other methods.
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Figure 4.10. Measured and predicted sector mean wind speed at the site of Côte Nord

obtained from the various MCP methods. a) assuming proportionality relationships, b)

assuming linear relationships with intercept.
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For the site of Côte Nord, a summary of the measured and predicted sector mean

wind speeds is given in Table 4.4, together with the relative errors of the predictions.

The MMCP pred method performs very well for the most frequent wind directions at

Mt-Crosin (60° to 120° and 210° to 270°). For the sectors where the average wind

speed varies in a non-monotonic way with sector (30° to 150° sectors in Figure 4.10),

the MMCP pred method noticeably outperforms the standard method. This is due to

the fact that the standard method does not account for direction changes between the

reference and prediction site. The MMCP ref method tends to smooth the mean sector

wind speed curve and the improvement relative to the standard MCP method is not

obvious.
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Figure 4.11. Measured and predicted sector mean wind speed at the site of Chaux-de-Fonds

obtained from the various MCP methods. a) assuming proportionality relationships, b)

assuming linear relationships with intercept. (back-prediction with 16 years of data)

Table 4.4. Comparison of the measured and predicted sector mean wind speed at the site of

Côte Nord, using simple proportionality relationships. (back-prediction with short term

data).

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-pred Meas. MCP-std MMCP-ref MMCP-pred

0 2.8 3.7 4.0 3.3 -15 12 21
30 4.7 3.5 4.3 3.45 35 3 25
60 3.7 4.2 4.3 4.45 -18 -7 -3
90 3.9 3.8 3.3 3.33 18 15 -2

120 2.8 3.5 3.9 4.11 -32 -14 -6
150 2.4 4.2 3.1 2.55 -8 64 23
180 5.7 5.6 5.8 4.21 36 32 37
210 7.5 6.9 7.2 7.42 1 -8 -3
240 6.4 6.6 6.4 6.6 -4 0 -3
270 5.3 5.4 5.6 5.45 -3 -1 2
300 4.3 4.4 4.1 4.15 4 6 -1
330 3.7 3.9 3.7 3.81 -4 2 -2
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The overall predicted mean wind speeds for the five prediction sites have been

calculated for the three MCP methods, also using the two types of site to site

relationship. The results are summarised in Table 4.5 to Table 4.9. These show that:

• all three methods give excellent back-predictions for the overall wind speed

(maximum absolute relative error: 10%)

• for the back-prediction of the overall mean wind speed, the standard MCP

gives results that are as good as the matrix MCP methods.

• except for one case, the standard MCP method systematically underpredicts the

mean wind speed

• the quality of the overall wind speed back-prediction obtained with both types

of linear relationships is about the same. It cannot be decided from the

transposition of the average wind speed, which relationship should give a better

wind power prediction.

The detailed results for the other transposition sites are given in Appendix H.

Table 4.5. Overall average wind speed back-prediction for the site of Côte Nord.

Overall average wind speed:
5.2 m/s

Using relationships

refpred vav ⋅= )(θ

Using relationships

)()( θθ cvmv refpred +⋅=

Predicted
[m/s]

Relative
error %

Predicted
[m/s]

Relative
error %

Standard MCP 5.2 -0.5 5.2 -0.3
MMCP ref 5.2 0.7 5.2 0.6
MMCP pred 5.2 1.6 5.2 0.6

Table 4.6. Overall average wind speed back-prediction for the site of Côte Sud

Overall average wind speed:
5.3 m/s

Using relationships

refpred vav ⋅= )(θ

Using relationships

)()( θθ cvmv refpred +⋅=

Predicted
[m/s]

Relative
error %

Predicted
[m/s]

Relative
error %

Standard MCP 5.2 -1.8 5.2 -0.6
MMCP ref 5.3 0.8 5.3 0.8
MMCP pred 5.3 0.4 5.3 0.4

Table 4.7. Overall average wind speed back-prediction for the site of Côte Est

Overall average wind speed:
5.6 m/s

Using relationships

refpred vav ⋅= )(θ

Using relationships

)()( θθ cvmv refpred +⋅=

Predicted
[m/s]

Relative
error %

Predicted
[m/s]

Relative
error %

Standard MCP 5.6 0.2 5.5 -1.4
MMCP ref 5.9 5.4 5.7 2.3
MMCP pred 6.2 10.3 5.8 4.3



49

Table 4.8. Overall average wind speed back-prediction for the site of Chaux-de-Fonds

Overall average wind speed:
3.1 m/s

Using relationships

refpred vav ⋅= )(θ

Using relationships

)()( θθ cvmv refpred +⋅=

Predicted
[m/s]

Relative
error %

Predicted
[m/s]

Relative
error %

Standard MCP 3.0 -1.7 2.9 -3.9
MMCP ref 3.1 1.9 3.0 -0.6
MMCP pred 3.1 1.8 3.0 -2.0

Table 4.9. Overall average wind speed back-prediction for the site of Neuchâtel.

Overall average wind speed:
2.9 m/s

Using relationships

refpred vav ⋅= )(θ

Using relationships

)()( θθ cvmv refpred +⋅=

Predicted
[m/s]

Relative
error %

Predicted
[m/s]

Relative
error %

Standard MCP 2.8 -2.5 2.8 -3.6
MMCP ref 3.0 2.1 2.9 0.3
MMCP pred 3.0 3.4 2.9 0.3

Note: Another reason why the stations of Neuchâtel and Chaux-de-Fonds are

interesting is the fact that they are, like Chasseral, operational since 1977 and 1979

respectively. They can therefore be used to test the assumption according to which

the transposition relationships determined for a short-term period are representative

of the long term. This was done for the station of Neuchâtel, using transposition

relationships of the kind )()( θθ cvmv refpred +⋅=  obtained from data of the year 1982.

Transposing the 16 years of data from Chasseral to Neuchâtel with these

relationships led to an error for the predicted mean wind speed of 0.3% for the

standard MCP method, 5.6% for the ‘MMCP ref’ method, and 5.8% for the ‘MMCP

pred’ method.

4.3 Results from back-predictions using the transposition of the

wind distribution

To further evaluate the validity of the assumptions on which the transposition relies,

we calculated the wind distributions at the 5 prediction sites of Côte Nord, Côte Sud,

Côte Est, Neuchâtel and La Chaux-de-Fonds, using the method presented in Section

2.2. Again the transposition was done for both the linear and proportional

relationships. These were calculated for data binned according to the Chasseral wind

direction in steps of 10° (see Figure 4.3 and Figure 4.4 for the sector variation of the

wind speed ratios). For the application of the transposition methodology, we linearly

interpolated the wind speed ratios for the wind directions where no record was

available.



50

The wind speed probability density function obtained from the transposition are

compared to those measured in Figure 4.12 for the sites of Neuchâtel and Chaux-de-

Fonds, and in Figure 4.13 for the sites on Mt-Crosin. For the assumption of

proportionality relationships, the average wind speed corresponding to the

calculated distributions are given in Table 4.10 together with the annual wind energy

that would be produced by a Vestas-V44 wind turbine in the same wind conditions.

The relative errors of the transposed average wind speed and wind energy

production are also given. Table 4.11 gives the same for the assumption of linear

relationships such as )()( θθ cvmv refpred +⋅= .
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Figure 4.12. Comparison of the transposed and measured wind speed distributions at the

sites of Chaux-de-Fonds and Neuchâtel.
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Cote-Nord
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Figure 4.13. Comparison of the transposed and measured wind speed distributions at the

three sites of Côte Nord, Côte Sud and Côte Est.
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As was already seen in the previous section, both types of site-to-site relationship

produce good predictions of the overall average wind speed (absolute relative error

less then 2.6% for refpred vav ⋅= )(θ  and less than 3.5% for the linear relationships

)()( θθ cvmv refpred +⋅= ).

However, as can be seen from the frequency diagrams for the 5 sites, the assumption

of simple proportionality relationships produces better results for the wind speed

distribution than the assumption of linear relationships. We can see that due to the

shift associated with the intercept c imposed on the original distribution (see also

Appendix G), the lower wind speed classes are systematically underpredicted when

using a linear transformation. Since the slopes m of the linear relationships are

generally smaller than the average wind speed ratio, a transposition with a linear

relationship also tends to underestimate the transposed wind values for high wind

speed conditions at the reference site.

To illustrate this effect, we started from a Weibull distribution with parameters A=8.6

and k=1.6 (quite typical values for the Chasseral wind distribution) and transformed

it with the linear and proportional relationships. As an example, the transformation

parameters were chosen to be m=0.16, c=2.12 and a=0.4, which are the regression

constants relating the Chasseral and Chaux-de-Fonds sites for the 60° wind direction.

The transformed Weibull distributions, together with the initial one are plotted in

Figure 4.14.
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Figure 4.14. Transformation of a Weibull distribution under a linear relationship

)()( θθ cvmv refpred +⋅=  and under a proportional relationship 
refpred vav ⋅= )(θ . The original

distribution (labelled ‘ref’) is given by the parameters A=8.6 and k=1.6.



53

This clearly shows why, under a linear transformation with positive intercept, we

obtain a distribution that underestimates the frequency of the lowest and highest

wind speed classes. Another consequence of this observation is that if both the linear

and proportional transformations produce transposed distributions that reproduce

the average wind speed with good accuracy, the linear transformation will

underestimate the wind power potential relative to the proportional transformation.

This is what can actually be observed from the comparisons of the yearly energy

production given in Table 4.10 and Table 4.11. If the error on the mean wind speed

prediction is of the same order for both types of relationship, the linear one gives

stronger underpredictions than the proportional relationship. This is particularly

sensitive for the site of Neuchâtel and Chaux-de-Fonds, for which the introduction of

an intercept strongly reduces the slope of the transformation.

Table 4.10 shows that with the relationship parameters used for the transposition, we

quasi-systematically underpredict the average wind speed. This is probably a

consequence of the fact that we only considered wind speed above 5 m/s at

Chasseral, hence neglecting the wind speed ratios above the average that were

obtained for the lower wind speed categories (see Figure 4.6 and Figure 4.7). The

associated yearly energy production is overestimated by 0.3% to 10% for the Mt-

Crosin sites, when using the proportionality relationships whereas it is

underestimated with the linear relationships.

Table 4.10. Comparison of the measured and transposed average wind speed and yearly

energy production. The transposition was done assuming the simple proportionality

relationship 
refpred vav ⋅= )(θ  with proportionality factors obtained from measurements9.

Station
name

Average wind speed
[m/s]

Yearly energy production
[MWh/year]

Measured Transposed Relative
error

Measured Transposed Relative
error

Côte Nord 5.2 5.2 -1% 806 806 0.3%
Côte Sud 5.3 5.2 -2% 800 817 2%
Côte Est 5.6 5.6 0.1% 983 1012 10%
Neuchâtel 2.9 2.8 -3% 220 134 -39%
Chaux-de-
Fonds

3.1 3.0 -2% 241 162 -33%

                                                     

9 The relative errors given here were calculated with 
meas

measpred

v

vv

v

v −
=

∆
. Due to

rounding of the wind speed values given in the table, there might be a difference

between the values given for the relative errors and the ones that can be directly

calculated from the rounded wind speed.
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It is worthwhile noting that the larger relative errors on the energy production

estimate occur for the low wind speed sites of Neuchâtel and Chaux-de-Fonds, for

which the wind power potential is weak anyway. The significant error for these sites

is also a consequence of the fact that the energy production concerns the tail of the

wind speed distribution ( smv /5≥ ). For the case of Chaux-de-Fonds these wind

speed categories only represents some 10% of the time. Estimating the relative error

of the predicted natural power density of the site over the entire range of wind speed

would lead to a relative error of 26% instead of the 33% given in Table 4.10.

Table 4.11. Comparison of the measured and transposed average wind speed and yearly

energy production. The transposition was done assuming the linear relationship

)()( θθ cvmv refpred +⋅=  with )(θm  and )(θc  obtained from linear regressions on the

measurements.

Station
name

Average wind speed
[m/s]

Yearly energy production
[MWh/year]

Measured Transposed Relative
error

Measured Transposed Relative
error

Côte Nord 5.2 5.2 0.1% 806 739 -8%
Côte Sud 5.3 5.3 -0.1% 800 712 -11%
Côte Est 5.6 5.5 -1% 983 830 -10%
Neuchâtel 2.9 2.8 -4% 220 61 -72%
Chaux-de-
Fonds

3.1 3.0 -3% 241 89 -63%

The assumption of a linear relationship )()( θθ cvmv refpred +⋅=  between the reference

and prediction site is in fact, in terms of the wind speed ratio, a two-parameter

relationship, such that:

eq. 4.1 refrefrefpred vvav ⋅= ),(θ

with the function

eq. 4.2
v

c
mva

i

ii

)(
)(),(

θ
θθ +=

Another two-parameter relationship was considered to do the data transposition,

which was

eq. 4.3 ib

ii vava ⋅=),(θ

The sector dependent parameters )( iia θ  and )( iib θ  in this relation were determined

by linear regressions on the equations )ln()ln()ln( refiipred vbav += . The resulting values,

together with the 2
r  regression coefficients for the site of Chaux-de-Fonds are given

in Table 4.12. The relationship above represents well the wind speed dependency of
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the wind speed ratios for the north-west to east wind directions (sectors 320° to 80°).

This is not so for the frequently occurring south-west winds, where neither eq. 4.2

nor eq. 4.3 is appropriate to represent the averaged wind speed ratios obtained from

the measurements. This is illustrated in Figure 4.15 for the 60° and 240° wind

directions, where the mean wind speed ratio from the observations is plotted

(crosses), together with those obtained from eq. 4.2 and eq. 4.3.

Table 4.12. Regression parameters for the two-parameter relationship eq. 4.3 relating Chaux-

de-Fonds and Chasseral. (from 16 years of data).

Sect ia ib 2
r Sect ia ib 2

r Sect ia ib 2
r

0 2.160 -0.966 0.972 120 1.171 -0.770 0.910 240 1.094 -0.420 0.679
10 1.899 -0.739 0.903 130 1.122 -0.787 0.785 250 0.922 -0.324 0.549
20 1.699 -0.600 0.959 140 1.137 -0.782 0.900 260 0.984 -0.339 0.478
30 1.444 -0.494 0.959 150 0.858 -0.456 0.719 270 0.978 -0.399 0.716
40 1.536 -0.552 0.944 160 0.870 -0.455 0.633 280 0.978 -0.441 0.853
50 1.395 -0.528 0.948 170 0.878 -0.397 0.675 290 0.805 -0.392 0.855
60 1.397 -0.553 0.954 180 0.841 -0.331 0.510 300 0.747 -0.420 0.859
70 1.379 -0.575 0.968 190 0.791 -0.276 0.533 310 0.813 -0.526 0.879
80 1.417 -0.631 0.981 200 0.986 -0.389 0.719 320 0.858 -0.596 0.934
90 1.096 -0.546 0.880 210 0.963 -0.397 0.722 330 1.014 -0.694 0.954

100 1.058 -0.580 0.797 220 1.164 -0.514 0.894 340 1.285 -0.789 0.984
110 1.174 -0.732 0.933 230 1.050 -0.441 0.790 350 2.008 -0.925 0.976
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Figure 4.15. Chaux-de-Fonds to Chasseral wind speed ratio (crosses) and best fitting power

function (thick line) for the a) 240° wind direction b) 60° wind direction. The function that

corresponded to the linear regression )()( θθ cvmv refpred +⋅=  for these sectors have also been

plotted (thin line).
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Using eq. 4.3 to perform the wind data transposition led to the mean wind speed and

yearly energy output prediction given in Table 4.13. It appears that, for both the

average wind speed and energy output, the prediction made with this type of

relationship is less accurate than the previous ones.

Finally we also attempted to transpose the Chasseral wind speed data using a mean

wind speed ratio for each site, without considering its directional dependency. The

results for the mean wind speed and yearly energy output obtained with this

assumption are summarised in Table 4.14. Surprisingly enough, this simplified

assumption leads to results which are only slightly less accurate than the ones

produced with the sector dependent wind speed ratio (compare with Table 4.10).

This is probably a consequence of the fact that, for the most frequent wind sectors,

the wind speed ratio does not vary significantly from the average value.

Table 4.13. Comparison of the measured and transposed average wind speed and yearly

energy production. The transposition was done assuming the relationship 
1+

⋅=
b

refpred vav

Station
name

Average wind speed
[m/s]

Yearly energy production
[MWh/year]

Measured Transposed Relative
error

Measured Transposed Relative
error

Côte Nord 5.2 5.1 -3% 806 663 -18%
Côte Sud 5.2 5.1 -3% 800 649 -19%
Côte Est 5.6 5.4 -4% 983 748 -19%

Neuchâtel 2.9 2.9 0.6% 220 60 -73%
Chaux-de-

Fonds
3.0 3.2 5% 241 114 -53%

Table 4.14. Comparison of the measured and transposed average wind speed and yearly

energy production. The transposition was done assuming the simple proportionality

relationship 
refpred vav ⋅=  without considering direction dependency in the proportionality

factors obtained from measurements.

Station
name

Average wind speed
[m/s]

Yearly energy production
[MWh/year]

Measured Transposed Relative
error

Measured Transposed Relative
error

Côte Nord 5.2 5.1 -2% 806 820 2%
Côte Sud 5.2 5.1 -3% 800 839 5%
Côte Est 5.6 5.6 -0.2% 983 1011 10%

Neuchâtel 2.9 2.8 -3% 220 128 -42%
Chaux-de-

Fonds
3.0 3.0 -3% 241 167 -31%
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Though we showed that the simple proportionality assumptions are not exactly valid

for isolated events, it appears that on average, this approximation leads to a

reasonable estimate of the mean wind speed and energy production. It appears in

fact that the introduction of additional parameters through the use of monotonically

decreasing transposition function does not improve the quality of the prediction. It

seems therefore that the behaviour we observed from Figure 4.6 and Figure 4.7

showing a stabilising or even increasing wind speed ratio with increasing wind

speed at the reference site is significant and is better reproduced overall by a

constant wind speed ratio, independent of the wind speed.

Therefore, if one wants to increase the level of complexity in the data transposition

by including the wind speed variation of the transposition coefficient, it is very

important that the parameterisation taking this into account allows a better

representation than the average value. Considering the different behaviours

observed in different sectors (see Figure 4.15), this is not easily done with a two-

parameter function for the wind speed ratio. Using sector dependent quadratic

functions gave results with about the same accuracy as the constant ratio

assumption, but no real improvement.

Since they gave better results for the transposed wind speed distributions than the

two-parameter relationships, we will use the simple proportionality relationships for

the transposition using the simulation results. The results obtained in this chapter are

quite encouraging as far as the transposition methodology is concerned. The next

steps in the method will consist of showing that the numerical model is able to

reproduce the observed values of the wind speed ratio with good accuracy. If this

appears to be the case then we might hope for relative errors around 5% for the

average wind speed prediction and around 10-20% for the wind energy prediction

on the Mt-Crosin site.
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5 Numerical model

5.1 Review of the existing models for wind power potential

assessment

The numerical models used to simulate atmospheric flows over complex terrain from

the point of view of wind power potential assessment can be separated into two

categories: the diagnostic and prognostic models.

The diagnostic models (also called kinematic models) are not able to account for the

time evolution of a given meteorological situation. This type of model only produces

stationary wind fields. In addition to the stationarity assumption, these models make

other simplifying assumptions to solve the flows over topography. This class of

model includes, for example those that essentially solve the continuity equation

(‘mass-consistent models’) or the linearised models (based on the developments

proposed by Jackson & Hunt). These models, by resolving simplified terms of the

fluid dynamics equations, have the advantage of a relatively low cost in terms of

memory and CPU time. Moreover, their initialisation is relatively easy and requires

few data (essentially a few wind vector values). However the application of these

types of model is limited to the particular case of relatively flat topography (slopes

lower than 20%) and for which thermal effects are not dominant. For steeper slopes

or to reproduce the effects of flow separation downwind of summits, we need to

have recourse to more complex models, which solve the entire set of fluid dynamics

equations (mass, momentum and energy conservation as well as turbulence closure)

or to physical modelling. For transient situations, which might be governed by

thermal effects (land/sea breeze, mountain/valley breeze, heat island, etc), a

prognostic model should be used.

For the various model categories mentioned above, a short description is given

below. For more details concerning their use, as well as to compare their results with

measurement campaigns, one can refer to the book ‘Modelling of Atmospheric Flow

Fields’ by Lalas & Ratto (1996).

5.1.1 Mass-consistent models (diagnostic)

The mass-consistent models produce wind fields satisfying the mass conservation

equation for the discrete computational mesh characterising the simulation domain.

The horizontal resolution for this type of model can vary between 50 m to some 5

km. It is possible to take into account the effects of thermal stability by introducing
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an additional parameter favouring either mass continuity adjustment in the vertical

(for neutral or unstable cases) or in the horizontal plane (for stable situations).

The mass-consistent models can be initialised with a wind field that is interpolated

from a situation for which the geostrophic wind speed as well as wind vectors at a

few ground locations are known. For some of these models, initialisation is carried

out by fixing only a vertical wind profile according to an analytical expression

depending on the geostrophic wind speed, ground roughness and stability

conditions. Though these models are able to produce results also in steep slope

situations, they will not be able to account for the effects of flow separation

downwind of topographic features. The wind fields obtained this way essentially

reflect the imposed initial solution and their results must be interpreted with care.

Among this type of models one can quote (non-exhaustive list): NOABL (Traci et al.

1977), AIOLOS (modified version of NOABL, Tombrou & Lalas, 1990), WIND

(modified version of AIOLOS, Ratto et al, 1990), CONDOR (Moussiopoulos et al,

1988).

5.1.2 Linearised Models (diagnostic)

In addition to the mass conservation equation, the linearised models solve the wind

field in the computational domain, satisfying a simplified momentum conservation

equation. No equation is solved for the energy conservation. This type of model is

therefore not appropriate for situations in which thermal stratification of the flow

plays a significant role, or for breeze type situations.

The so-called linearised models are based on the theory developed by Jackson &

Hunt (1975) and assume that the flow perturbation induced by the topography is

small relatively to a solution that would be described by a logarithmic wind profile

close to the ground. The set of linearised equations is solved by decomposing the

variables describing the perturbation, projecting them on a basis of orthogonal

functions (Fourier decomposition in the x and y direction for Cartesian co-ordinates,

and Bessel function decomposition for a mesh in cylindrical co-ordinates). An

analytical solution in z is obtained for the different variables. The solution for the

wind field in physical space is calculated by performing an inverse transformation of

the Fourier and Bessel mode. Due to the linearisation, the use of such models is

restricted to topographies with moderate slopes (< 20%).

For turbulence closure, a first order scheme is generally used. Examples of this type

of model are MS3DJH/3R (Walmsley et al, 1986), MSFD (Beljaars et al, 1987)

(Cartesian co-ordinates) as well as BZ (cylindrical co-ordinates, Troen & De Baas,
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1986). The BZ model is the orographic model used to take into account the effect of

topography in the WA
s
P programme that was used for the development of the

European Wind Atlas (Troen & Petersen, 1989).

5.1.3 Non-linear models (prognostic)

As was mentioned earlier, when the terrain is extremely complex (steep slopes,

succession of hills or mountain chains) and when the effects associated with thermal

stratification (mountain waves, flow blocking) or with the diurnal cycle can no

longer be neglected, we need to have recourse to prognostic models, which include a

better parameterisation of the underlying physics.

Among the non-linear models, some result directly from developments realised in

the field of meso-scale meteorology. In this category, we find for example the model

KAMM (Adrian & Fiedler, 1991), GESIMA (Kapitza & Eppel, 1992 and Eppel et al,

1995), MEMO (Moussiopoulos, 1996) or TVM (Thunis, 1995). Some others stem from

general Navier-stokes solvers, originally conceived to calculate ‘industrial’ types of

flow, which have been adapted for atmospheric flows. Examples of these are e.g.

TASCFLOW (Raithby et al, 1987) or PHOENICS (Alm & Nygaard, 1993). For

turbulence parameterisation, these models use either a first order closure scheme

(mixing length) (KAMM, GESIMA, MEMO and TVM) or a k-ε closure scheme

(TASCFLOW, PHOENICS).

Compared to the diagnostic models, the non-linear prognostic models are more

sensitive to input data and require more data for both the model initialisation and

boundary conditions. They are also more expensive in terms of computer resources.

If we wish to comment on the abilities of the different types of models, we can refer

to the literature review in Appendix D where the models have been tested on the

relatively gentle topography of Askervein Hill. Comparing their results with the

observations allows one to draw the following conclusions:

- The diagnostic models (linearised or mass-consistent) give good results

upwind and at the top of the mountain. On the downwind side however, where flow

separation occurs, they clearly overestimate the wind speed.

- Only the non-linear models are able to accurately reproduce both the flow

deceleration upwind and downwind of the mountain as well as its acceleration at the

summit.

The good performance of the simplified models, for the particular case of Askervein

Hill, is due on the one hand to the relatively flat mountain profile and on the other
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hand to the fact that the measuring conditions correspond to strong wind situations

where the thermal stability conditions can be considered as neutral.

For more complex terrain conditions (succession of mountains, non-negligible

stability effects), in which many wind farms are installed, these simple models are no

longer appropriate tools to reproduce the wind fields. The full Navier-Stokes solvers

appear to be more promising from the point of view of wind power assessment. With

this in mind, the code that is used in this work is the CFX4 flow solver (CFX, 1997),

which is such a general purpose Navier-Stokes solver. The standard version together

with the additional implementations that were made are described in the following

sections.

5.2 Standard CFX4

5.2.1 Numerical model equations

The default equations solved by CFX4 are formulated in the flux form. These are the

standard averaged equations used in fluid mechanics:

Continuity equation:
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Teff µµµ +=  is the effective fluid viscosity which, with the adoption of an eddy-

viscosity model, is the sum of the molecular viscosity and turbulent viscosity
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 is the total fluid pressure p plus contributions

associated with the turbulent kinetic energy k and flow divergence are added. When

the gravity vector is considered in the simulation, the hydrostatic contribution is

removed.
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Energy conservation equation:

eq. 5.4
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λ  the fluid thermal conductivity

T  the real temperature

)(
2

1 222
WVUhH +++=  the total enthalpy ( h  being the static enthalpy)

Pc  the specific heat at constant pressure

σ
H

 the turbulent Prandtl number for heat

The energy conservation equation is closed using a constitutive equation relating the

static enthalpy h  to pressure and real temperature.

In addition to the equations listed above, the model allows the solution of transport-

diffusion equations for additional scalars ϕ :
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where Γ  is the scalar diffusion coefficient

S  source/sink terms specified by the user

Various turbulence closures are available within the standard version of CFX4.

Among them we only present the ε−k  model (Launder & Spalding, 1972), with two

conservation equations for the turbulent kinetic energy k  and turbulent dissipation

rate ε:
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and the turbulent viscosity:

eq. 5.10
ε

ρµ
µ

2
k

CT =

The default values for the turbulence model constants are 44.11 =C , 92.12 =C , 03 =C ,

09.0=
µ

C , and 7179.0=
ε

σ , 1=kσ , 9.0=Hσ .

The complete set of equations is solved on a non-staggered grid by means of a finite

volume approach, all the variables being defined at the centre of the control volumes.

Pressure and velocity are coupled through the iterative SIMPLE algorithm (Van

Doormal & Raithby, 1984). To avoid chequerboard oscillations between pressure and

velocity, the normal velocity components at the control volume faces are interpolated

by means of the Rhie & Chow algorithm (Rhie & Chow, 1983). More details on the

numerical model characteristics and flow solver options can be found in the CFX-4.2

user guide (CFX, 1997).

5.2.2 Wall treatment for the velocity and potential temperature specifying

the ground boundary condition.

The ground of the computational domain is treated as a rigid wall. A problem with

the ε−k  model is that it does not reproduce accurately the turbulence close to the

wall when the mesh is too coarse. To avoid the need for an extremely fine resolution

at ground, a special treatment is therefore applied, using wall functions to specify the

behaviour of the flow variables close to the ground. The wall function concept

assumes that, for a control volume adjacent to the ground, the velocity vector is

tangential to the ground surface. Hence, the advection term through the ground

surface disappears for all variables.

Two further assumptions are made for the behaviour of the velocity profile and for

the turbulent energy dissipation rate ε  close to the ground:

Assumption 1: the boundary layer is fully developed and the velocity profile is

determined by:

eq. 5.11 ++++
<= 0for                           zzzu    (viscous sub-layer)

eq. 5.12 ++++
>= 0for                )ln(

1
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κ
   (logarithmic region)

where +
z and u

+ are dimensionless distance and velocity defined as:
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eq. 5.14
*u

u
u =

+

with

eq. 5.15 u* =
τ

ρ
 the friction velocity,

ν  the kinematic viscosity and

τ  the wall shear stress.

The continuity of the velocity profile at +

0z  requires that E  and +

0z satisfy:
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The default model values for E  and +

0z  are E =9 793. and 225.110 =
+

z .

Assumption 2: the production term balances the dissipation term in the equation for

k  close to the wall.

In other words, assuming equilibrium close to the wall, we obtain the following

equation for ε :
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The turbulent kinetic equation for k  is solved for the control volumes adjacent to the

ground, with the above parameterisation for ε  and with a treatment of the

production terms using variables interior to the flow, as well as the boundary

conditions for the velocity and temperature.

The wall shear stress τ  is then obtained from the values of k  and used to formulate

the ground boundary condition for the velocity.
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The velocity close to the ground can be separated into parts parallel and

perpendicular to the ground surface (bold symbols stand for vectors)

eq. 5.21 U U U U U n n U n n= + = − ⋅ + ⋅par perp ( ( ) ) ( )

With the wall function approximation, the perpendicular component disappears,

while the parallel component is proportional to the wall shear stress ττ.. For a non-

moving ground face, we have:

eq. 5.22
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with MT  given by:

eq. 5.23














>
⋅⋅

<

=

++

+

++

0

2
1

2
1

0

for      
)ln(

for                     

zz
Ez

zz
z

TM
κτρ

µ

For a control volume adjacent to the ground (cf. Figure 5.1), the flux of momentum

I
U

i for the i-th component of the velocity through the ground surface bA  is

eq. 5.24 i

b

A
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b
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Figure 5.1. Schematic representation of a control volume adjacent to the ground.

The advection term in the above equation disappears with the assumption that the

velocity component perpendicular to the ground face vanishes. Using eq. 5.22, this

becomes

eq. 5.25 ))(( ii

PMb

i

parMbAU
nUTAUTAI

b
i nU ⋅−⋅⋅=⋅⋅=

with i

PU  the velocity at the centre of the control volume (point P).
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5.2.3 Ground roughness and ground heat flux parameterisation

In the case of rough ground, the same treatment as above is applied for the ground

boundary condition of velocity with a modified wall multiplier MT  to take into

account the ground roughness length 0z
 
. The wall multiplier for a rough wall is

modified to:

eq. 5.26
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For the additional scalars, and hence for the potential temperature θ , a similar

treatment is applied, using

eq. 5.27 )(
)(
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with 
θ

J  the potential temperature flux through the wall

eq. 5.28
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and wθ  the wall potential temperature.

From eq. 5.15 and eq. 5.28, eq. 5.27 can be rewritten as

eq. 5.29
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where 
θθ

µ Γ=Pr .

To simulate the logarithmic behaviour of the temperature profile in the element

closest to the ground, the wall multiplier for the potential temperature is set to:

eq. 5.30
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5.3 Additional implementations and assumptions to simulate

atmospheric flow fields

The standard version of the code works with the energy conservation equation and

buoyancy term in the vertical velocity equation formulated in terms of the real

temperature T.  Also, the pressure term appearing in the momentum conservation

equation is defined as a deviation from a hydrostatic reference state for which the

pressure linearly decreases with altitude. This makes it inappropriate for simulating

stratified atmospheric flows with a vertical extent of several kilometres.

To better represent the fact that static stability in the atmosphere is defined relatively

to an adiabatic reference state, we implemented an energy conservation equation in

terms of the potential temperature θ
10. This variable has the advantage of being

conserved along the flow trajectories when only adiabatic processes are involved (see

Appendix E). Also, the buoyancy term can easily be described as a function of the

potential temperature when defining a reference state for the atmosphere, which

corresponds to a hydrostatic equilibrium. To implement the potential temperature

equation, we used the option given by the model allowing us to solve an additional

transport-diffusion equation for a new scalar variable.

For the purpose of solving atmospheric flow fields, the numerical model equations

are solved with the deep Boussinesq approximation, neglecting the effect of

temperature variations on density, except in the buoyancy term, which is introduced

in the vertical velocity equation. In all the other terms, the density is kept constant

with time to a reference hydrostatic reference profile )(zhρ .

The Coriolis force is added in the momentum conservation equations for u and v

components to reproduce the effect of the Earth’s rotation on the boundary layer

wind speed profiles. We thereby assume that the high altitude wind vector geoiU ,

follows the geostrophic approximation, linking the large scale horizontal pressure

gradient to the geostrophic wind in such a way that geofU
x

p
,2ρ=

∂

∂
and geofU

y

p
,1ρ−=

∂

∂
.

Consideration of the order of magnitude of the various terms in the vertical

momentum equation shows that the contribution of the Coriolis force for w  can be

neglected.

The continuity and modified momentum conservation equations read:

• Continuity equation in the anelastic approximation:

eq. 5.31 0
)(

=

i

ih

x

U

∂

ρ∂

                                                     
10 Up to now no moist process have been considered with CFX4. Therefore, we will

only use the dry potential temperature along this work.
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• Momentum conservation equation:

eq. 5.32
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where )sin(2 ϕΩ=f  is the so called Coriolis parameter ( Ω stands for the angular

velocity of rotation of Earth and ϕ  for the latitude of the location).

5.3.1 Potential temperature equation, and definition of a hydrostatic

reference state

Instead of solving the energy equation for the enthalpy (eq. 5.4), we solve the energy

conservation for the potential temperature θ  11, which is more appropriate for

atmospheric situations than the real temperature T . The equation for the potential

temperature reads (see Appendix E):
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This is an advection-diffusion equation for the variable θ  similar to the scalar

equations that the standard version of CFX4 can solve (eq. 5.5). The sources in eq.

5.33 represent the radiative or latent heat flux that can appear for non-adiabatic

processes (evaporation, condensation).

A reference hydrostatic state (denoted by the subscript ‘h’) is defined, which

corresponds to an atmosphere in hydrostatic equilibrium. Starting from a real

temperature profile )(zT , the hydrostatic pressure profile )(zph  is obtained by

numerically integrating gdzzdp hh ⋅−= )(ρ , assuming the ideal gas law )(zRTphh =ρ is

true for each altitude z. The hydrostatic potential temperature profile is calculated

from pcR

hh zppTz
/

0 ))(/()( =θ .

Assuming that the departure of the atmospheric state from the hydrostatic reference

state is small and that the Mach number of the flow is low, an approximate form for

the buoyancy term gh )( ρρ −  is derived (see Appendix F):

)()( h

h

h

h θθ
θ

ρ
ρρ −=−

This expression is used in order to couple the modified momentum and energy

conservation equations (eq. 5.32 and eq. 5.33).

                                                     
11 The potential temperature is defined as pcR

ppT
/

0 )/(=θ , where T  is the real

temperature, 0p  is the reference pressure at sea-level, p  the total pressure, R  the gas

constant for dry air and pc  the specific heat of air at constant pressure.
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5.3.2 Introduction of a buoyancy source term in the k-εε model depending

on the potential temperature

To take into account the fact that the atmospheric static stability influences the

production and destruction of the turbulence, a buoyancy term (eq. 5.9) is included

in the ε−k  model. In the standard version, the density gradient used to compute G

is written in terms of the real temperature T  with the assumption that the

Boussinesq approximation is valid. Since we are solving the energy conservation

equation formulated in terms of the potential temperature we need to redefine the

buoyant source term G  as a function of the vertical potential temperature gradient.

This was re-introduced in the turbulence model, following the formulation proposed

by Duynkerke (1988). After the modification, the equations for k  and ε  read:
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with the turbulent viscosity

eq. 5.36
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the shear production term:
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the buoyancy production term formulated in terms of the potential temperature

eq. 5.38
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and an additional turbulent diffusion term

eq. 5.39 
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The differences relative to the default ε−k  model are:

• The introduction of a buoyancy term depending on the potential temperature,

which acts as a sink for turbulent kinetic energy when the atmosphere is stably

stratified ( 0>∂∂ zθ ), and which is only active in the equation for ε when positive

(i.e., when the atmosphere is unstable)
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• The introduction of an additional turbulent diffusion term as a source in the ε

equation, which in a similar way to the buoyancy term is only active when

positive (c.f. Duynkerke, 1988).

• The model constants which differ from the default values. Duynkerke proposes

the following values for the atmosphere: 46.11 =C , 83.12 =C , 033.0=
µ

C , and

38.2=
ε

σ , 1=kσ , 9.0=Hσ
12. The constant 

µ
C  is determined from the assumption

that in the neutral surface layer 22

* )/( kuC =
µ

 and using measurements performed

by Panofsky & Dutton (1984) for *u  and k  close to the ground. 2C  is derived

from experimental results of grid turbulence decay, while 1C  was obtained from

experimental results in shear dominated turbulent flows.

                                                     
12 The constants 1C  and 2C  are linked to the critical Richardson number through the

relationship )1(21 cRiCC −= (c.f. Duynkerke, 1988). The choice of 46.11 =C , 83.12 =C

corresponds to a critical Richardson number 2.0=cRi .
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6 Simulations over the Chasseral & Mt-Crosin sites

6.1 Simulation domain

The wind fields over the Chasseral and Mt-Crosin region are calculated by the model

over a simulation domain which covers an area of 45 km along the x direction and

51.56 km along the y-direction. As can be seen from Figure 3.1, the three ANETZ

stations of Chasseral, Neuchâtel and La Chaux-de-Fonds are included in the

simulation domain. The site of Payerne, belonging to the international network of

aerological stations and from which a balloon sounding to measure the wind,

temperature and humidity profile is launched twice a day, lies just outside. The

domain has a vertical extent of 10 km. Its orientation has been chosen so that both

Chasseral and Mt-Crosin lie in the constant x-plane in the middle of the simulation

domain. As a consequence the domain x-axis is rotated by 32° with respect to the

East-West direction. The centre point of the domain (569’595 and 223’030 in Swiss co-

ordinates) lies exactly halfway between Chasseral and Mt-Crosin. To increase the

horizontal resolution in the immediate surroundings of Chasseral and Mt-Crosin, the

domain is made of 15 blocks (numbered B1, to B15) with varying number of cells and

varying cell distributions as presented in Figure 6.1. The block dimensions, number

of cells and type of cell distribution applied for each block are summarised in Table

6.1. The finest horizontal resolution is of 50 x 50 m around Chasseral and Mt-Crosin,

while the coarsest resolution is of about 4.5 x 4.5 km for the cells close to the

boundaries.

The ground of the simulation domain has been projected on the surface topography

for the area. The surface file was built using data with a horizontal resolution of 25m

for the central part of the domain (blocks B5, B8 and B11) and 250m for the external

part. The topographic data were obtained from the Swiss federal office for

topography. Figure 6.2 shows a three-dimensional view of the simulation domain,

with the locations of both the Chasseral and Mt-Crosin sites. The topography, which

is actually seen by the model, is presented in Figure 6.3 for the whole simulation

domain. Note that the altitude difference between the Swiss Plateau and the

Chasseral summit is of some 1200m. Also, the St-Imier valley, between the Chasseral

and Mt-Crosin sites is some 700m lower than the Chasseral summit.
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Mt-Crosin

Chasseral

20.9 km

12 elements

20.9 km

12 elements

3.2 km

22 elements

51.56 km

45.0 km

20.9 km

12 elements

3.36 km

22 elements

3.04 km

8 elements

3.36 km

22 elements

20.9 km

12 elements

x,   J

y,   I

(0,0)

B1 B2 B3

B4

B7

B10

B13

Figure 6.1. Schematic view (not to scale) of the simulation domain, showing the type of cells

distributions in the horizontal plane. The actual numbers of elements and subdomains

dimensions are given in the drawing.

Mt-Crosin
Chasseral

44.9 km

51.6 km

10 km

Figure 6.2. Three-dimensional view of the simulation domain and

topography, with location of the Chasseral and Mt-Crosin sites.
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Table 6.1. Parameters describing the horizontal cell distribution in the 15 blocks forming the

simulation domain.

Block name x-direction

Lx

[km]
Number
of cells

Cell distribution Geom.
progr.
factor

x∆  min
[m]

x∆ max
[m]

B1, B3,
B13, B15

20.9 12 Geom. progr. 1.250 586 4488

B2, B14 3.2 22 Symm. geom. progr. 1.199 50 307
B4, B6, B10, B12 20.9 12 Geom. progr. 1.250 586 4488
B5, B11 3.2 22 Symm. geom. progr. 1.199 50 307
B7, B9 20.9 12 Geom. progr. 1.250 586 4488
B8 3.2 22 Symm. geom. progr. 1.199 50 307

Block name y-direction

Ly

[km]
Number
of cells

Cell distribution Geom.
progr.
factor

y∆  min

[m]

y∆ max

[m]

B1, B3,
B13, B15

20.9 12 Geom. progr. 1.250 586 4488

B2, B14 20.9 12 Geom. progr. 1.250 586 4488
B4, B6, B10, B12 3.36 22 Symm. geom. progr. 1.208 50 331
B5, B11 3.36 22 Symm. geom. progr. 1.208 50 331
B7, B9 3.04 10 Regular 1.000 304 304
B8 3.04 10 Regular 1.000 304 304

In the vertical, 20 elements are distributed in two different layers (see Figure 6.4).

Between 2000 and 10000 m, 10 elements are distributed according to a geometric

progression given by a factor 2.12 =f . For the lowest part of the domain, between the

ground and 2000 m, 10 other elements are distributed in a terrain-following mesh,

which also follow a geometric progression. The factor of the geometric progression

for this layer varies between 1.4 and 1.5 depending on the altitude difference

between the level at 2000 m and the ground. The resulting height above ground for

the cell centres of the levels 1 to 6 are given in Table 6.2 for the Chasseral and the Mt-

Crosin locations. Level 4, at 61 m above ground for Chasseral will be taken as the

representative level for the Chasseral station. For the stations of Côte Sud and Côte

Est, where measurements at 30 m above ground were recorded, the third level will

be taken as representative of the measurement point. For the station of Côte Nord,

data were available at 10 m above ground only. For the latter the second model level

will be considered as representative, bearing in mind that this choice might result in

a slight overestimation of the predicted wind speed, since the model cell centre lies at

14 m above ground level.
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Chasseral

Mt-Crosin

Figure 6.3. Topography of the Chasseral Mt-Crosin area as seen by the model. The rectangle

outlines the limit of the domain for which we will restrict ourselves when presenting results

in a horizontal plane.

Table 6.2. Height above ground for the 6 lowest

grid levels of the simulation domain.

Chasseral Mt-Crosin

Level Height (m) Level Height (m)

1 5 1 4
2 17 2 14

3 35 3 29

4 61 4 52

5 97 5 89

6 150 6 144

A summary of the horizontal Swiss and model co-ordinates for the various locations

around the Mt-Crosin and Chasseral area is presented in Table 6.3. Information
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about the closest model grid node co-ordinates has also been included, where I and J

stand for the cell numbering in the y- respectively x direction13.

 2000 m

10000 m

10 elements

10 elements

Geometric

progression

with factor f2

Geometric

progression

with factor f1

Figure 6.4. Schematic view of the simulation domain, showing the type of cell distributions in

the vertical plane. The upper layer, between 2000 and 10000m consists of 10 elements

following a geometric progression with a factor 1.2, whereas the lower layer, below 2000 m, is

made of 10 elements, whose sizes also follow a geometric progression with factors varying

between 1.4 and 1.5.

Table 6.3. Location of the various sites in terms of model co-ordinates. I and J given for the

model grid nodes stand for the cell numbering along the y- and x-directions respectively. The

model co-ordinates are relative to the domain origin, which lies at the point (564’190, 189’242)

in Swiss co-ordinates.

Swiss co-ordinates
[m]

Model co-ordinates
[m]

Closest grid node

x y I J X [m] Y [m]

Chasseral 571’290 220’320 22’500 22’584 23 24 22’504 22’546
Côte Nord 567’900 225’740 22’500 28’976 54 24 22’525 28’985
Côte Sud 567’850 225’200 22’171 28’545 48 19 22’179 28’509
Côte Est 568’325 225’700 22’839 28’717 50 28 22’819 28’729
Wind turbine 1 567’846 225’667 22’416 28’943 53 22 22’420 28’934
Wind turbine 2 567’846 225’308 22’225 28’639 49 19 22’179 28’628
Wind turbine 3 568’000 225’154 22’274 28’427 47 20 22’274 28’367

In the first step, all the simulations performed in the present work were done

assuming a constant ground roughness of 0.03m for the whole domain. At a later

stage, an attempt was made to take into account a more realistic roughness length

                                                     
13 For optimal program vectorisation, the I direction was set in the direction with the

bigger number of elements, i.e. in the y-direction.
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distribution over the area. A roughness length map was inferred from the soil

occupation map published by the Swiss Federal Office for Topography (scale of the

map 1:300000). We thereby used four roughness classes to characterise the type of

terrain, the first roughness class being attributed to lake surfaces, the second one for

crops, the third for forests and the fourth for towns. Table 6.4 shows the roughness

values that were used in the simulation for each roughness class. These values are in

agreement with those proposed by Wieringa (1986) apart from the forested area for

which the value of 1 postulated here is slightly higher than the value of 0.75 given by

Wieringa. Though the difference between these two values does not appear to be

very significant, we will see later on that it affects the simulated site-to-site

relationships in a significant way. The horizontal distribution of the roughness

classes (shading) that we used for the simulations is shown in Figure 6.5, together

with the underlying topography. It should also be added at this point that the

available roughness map has a rather coarse resolution (2 km in the horizontal). Due

to this, most of the Mt-Soleil range (and hence the site of Mt-Crosin itself) is

considered as forested area, which will tend to overestimate the roughness length of

the area. This also will have to be taken into account when analysing the results.

Table 6.4. Roughness classes and corresponding roughness lengths for

the various types of soil occupation. (Wieringa, 1986).

Roughness
class

Roughness length
[m]

Type of
terrain

1 0.0002 Lake
2 0.05 Crops
3 1.0 Forest
4 1.6 Town

6.2 Numerical schemes

Regarding the numerical aspects of the simulations, it could be shown from the work

presented in Appendix C that to properly reproduce the expected mountain wave

phenomena the use of an advection scheme of at least second order was required.

For the example of application over the Chasseral and Mt-Crosin area, we used a

second order upwind advection scheme for the velocity components and a modified

quadratic upwind scheme for the potential temperature (CCCT, 3rd order).

The equations were solved using an adaptive time stepping method (implicit

backward differencing), for which the time step during the simulation is changed

depending on the convergence ease/difficulty encountered by the solver. The time
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steps used in this context vary between 1.5 s and 12 s, with most of the simulation

done with a time step of 12 s. This upper value for the time step seems to be the

maximum that can be used with the model resolution used for the Chasseral and Mt-

Crosin area. Further increasing the time step led to diverging solutions in the case of

low wind speeds and high stability conditions (i.e. for Froude numbers lower than

unity). The variable time stepping procedure chosen was the following:

• The initial time step was 6 s,

• The time step length is doubled, when 5 consecutive time steps are converged,

• If the solution is not converged after the maximum number of iterations allowed

within a time step, then the solution is recalculated from the solution at the

previous time step, using a time step length which is divided by two,

• If the solver fails to converge when using the minimum time step length, the

calculation is stopped.

A wall boundary condition is used for the ground with the variables at the ground

being determined with the wall treatment given in Section 5.2.2. The top boundary is

allocated a pressure boundary condition. Inlet boundary conditions are used for the

lateral domain faces with incoming flow, while pressure boundaries are used in case

of outflow (see Appendix L for the definition of the various types of boundary

conditions). Table 6.5 summarises the numerical parameters retained for the

simulations performed over the Chasseral and Mt-Crosin area.

Table 6.5 Simulation conditions used for the Chasseral & Mt-Crosin area.

Turbulence model k-ε

Turbulence model
constants

Duynkerke values

Advection scheme Higher upwind
CCCT

Wind speed
Potential temperature

Boundary condition type
(see Appendix L for
definition)

Inlet
Pressure
Wall (no slip)
Pressure

Inflow boundaries
Outflow boundaries
Ground
Top

Under relaxation factors 0.5
0.5

Wind speed
Potential temperature

Time step Variable ( st 125.1 <∆< )

Maximum number of
iterations per time step

15

Density profile Hydrostatic (deep Boussinesq)
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6.3 Simulation results

In the following wind fields simulated over the Chasseral and Mt-Crosin area will be

presented to illustrate the significance of the combined topography and atmospheric

stratification effects on the very complex terrain. Results will be shown for two

different wind directions: the first set with a high altitude wind blowing from the

sector 240°, which is essentially aligned with the mountain chain (and with the

model x-axis), and the second set with a high altitude wind direction 330°,

perpendicular to the Jura mountain range (i.e. parallel to the model y-axis).
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Figure 6.5. Horizontal roughness distribution (shading) over the simulation domain inferred

from the soil occupation map for the area (source: Swiss Federal Office for Topography). The

roughness values corresponding to the 4 roughness classes can be found in Table 6.4. Light

grey zones stand for lower roughness lengths, dark grey ones for higher roughness lengths.

The underlying topography is also given by the isolines, in steps of 100 m.
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The simulations presented below have been initialised with velocity profiles

following the Zilitinkevich formulation (see Appendix B). The use of this formulation

also means that we will have a rotation of the wind vector with altitude

corresponding to the Ekman spiral. Hence, for a high altitude wind parallel to the

main mountain chain direction, we will have a wind field close to the ground turned

anticlockwise, implying the existence of a flow component perpendicular to the

mountain chain in the boundary layer. The equations are solved in the deep

Boussinesq approximation. The boundary conditions at the model inflow boundaries

are kept constant with time at the same values as the initial solution.

6.3.1 The 240° geostrophic wind direction

For the high altitude 240° wind direction, the effect of the atmospheric stability and

heat flux conditions at the ground were investigated. As will be shown with the

results presented below, the atmospheric stratification plays a major role in the wind

field development over the complex topography such as that around Chasseral. This

will be illustrated with 3 simulation results that were obtained for situations with

zero heat flux through the ground with various thermal stratification and high

altitude wind speed conditions (see Table 6.6). For all the three simulations, we

assumed the atmosphere to be stratified with a constant vertical temperature

gradient. The ground roughness was set to 0.03m for the whole simulation domain.

A fourth simulation will be presented for the 240° geostrophic wind direction

showing the effect of ground cooling on the wind field development and the

formation of down slope winds in the domain (katabatic winds14).

For the neutrally stratified case (simulation NN), the wind field at the first level of

nodes (4-5 m above ground) over the central part of the domain is presented in

Figure 6.6. The shading corresponds to the horizontal wind speed. The limits

between two wind speed classes are given by black isolines, with an isoline step of 1

m/s. To help locate the sites of interest, the topography was indicated by white

isolines, in steps of 200m. The length of the wind vector is proportional to the wind

speed and the wind vector density gives an idea of the model resolution, with higher

densities for both the Chasseral and Mt-Crosin areas. The wind field presented in

Figure 6.6 corresponds to the model solution after an integration time of 1h 35’ (600

time steps). The required CPU time was ~17h on a DEC ALPHA EV56 processor (375

Mhz, 640 Mw).
                                                     
14 We will use the term of ‘katabatic wind’ as a synonym of downslope winds as

defined in Atkinson (1989).
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Table 6.6. Parameters defining the wind speed profiles, temperature profiles and ground

boundary conditions for the simulations done with a geostrophic wind from the 240°

direction.

Simulation
name

G
[m/s]

zT ∂∂ /

[K/km]

Ground
temperature

condition

Roughness
[m]

Froude15

NN 10 -9.7 Zero heat flux 0.03 4.6
NS1 10 -6.5 Zero heat flux 0.03 0.8
NS2 5.0 -6.5 Zero heat flux 0.03 0.4

SS1 4.7 -9.5, for z < 2000m
-7.0, for z > 2000m

0.03 ~0.4

The resulting wind field for the neutrally stratified atmosphere does not show major

channelling effects. The wind vectors close to the ground show more or less the same

direction as the initial solution (rotated anticlockwise with respect to the high

altitude wind due to the initial Ekman spiral). The influence of the topography can

be seen with the induced flow acceleration or slowdown. The wind speed is

increased when passing the highest elevations and reaches its maximum value

around the Chasseral location, with a value of some 7 m/s. On the Mt-Crosin site,

the wind speed is about 5 m/s.  The minimum wind speed (< 2 m/s) can be observed

in the ‘Combe Grède’, a steep and very narrow valley, immediately downwind of

Chasseral and aligned perpendicularly with the main mountain features in the area.

When looking at a vertical cross-section through a constant y  plane and going

through the Chasseral location (Figure 6.7), the horizontal wind speed does not show

any significant influence due to the topography. From the vertical velocity plot

(Figure 6.8), we can see that in the case of neutral stratification, the perturbation of

the flow field induced by the topography is essentially confined to the lowest 2000m

above ground, with positive vertical velocities upwind of the highest elevation and

negative vertical velocities downwind.

The time evolution of the solution has been monitored for the model nodes closest to

the locations of Côte Nord (10 m AGL), Côte Sud (30 m AGL) and Côte Est (30 m

AGL) at Mt-Crosin as well as for the Chasseral site (60 m AGL). The horizontal wind

speed and wind direction for these locations have been plotted versus time in Figure

                                                     

15 The Froude number is obtained using 
z

g
HGFr

∂

∂
=

θ

θ0

, with H the height

difference between the Chasseral summit and Swiss Plateau altitude ( mH 1200≅ ).
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6.9.a and b. The ratio of the wind speed at Mt-Crosin to the wind speed at Chasseral

is shown in Figure 6.9.c for the pairs Chasseral-Côte Nord, Chasseral-Côte Sud, and

Chasseral-Côte Est.

Figure 6.6. Wind field calculated by the model for a geostrophic wind of 10 m/s, blowing

from the 240° direction. The initial atmosphere was neutrally stratified (-9.7 K/km for the real

temperature gradient). The results shown here correspond to the first level of grid cells (4-5 m

above ground) for the central part of the simulation domain. For clarity only one vector in

two has been drawn. The black isolines give the horizontal wind speed values in steps of 1

m/s, while the white isolines represent the topography in steps of 200 m.

Combe Grède

Chasseral

Mt-Crosin

St-Imier valley

Plateau de Diesse
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Figure 6.7. Vertical cross-section showing the horizontal wind speed distribution along a

constant y-plane through Chasseral. The situation has been initialised with a neutral

temperature profile and with a geostrophic wind speed of 10 m/s blowing from the 240°

sector. Shading and isolines give the wind speed in steps of 1 m/s. The z levels are given in m

above sea-level, and the ground is represented in dark grey.

Figure 6.8. Same as Figure 6.7 for the vertical velocity component. Steps between isolines: 0.25

m/s.

West East
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As can be seen from the time evolution, the solution reaches a converged state after

about 1 h, which is slightly less than the required time for the inlet boundary

condition to be propagated across the whole domain (size of the domain: 50 km, high

altitude wind speed: 10 m/s).
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Figure 6.9. Time evolution of the wind speed (a) and direction (b) for the model nodes closest

to the locations of Côte Nord, Côte Sud, Côte Est and Chasseral, for a neutrally stratified

atmosphere. c) Ratio of the Mt-Crosin to Chasseral horizontal wind speed.

A similar situation as the one presented above was performed, introducing a more

realistic thermal stratification for the area (simulation NS1). The initial hydrostatic

equilibrium was computed using a real temperature gradient of –6.5 K/km

throughout the entire troposphere, and the high altitude wind speed was set to 10

m/s. The results after 4 h for this simulation are presented in Figure 6.10 to Figure

6.12.

Contrary to what was obtained for the neutrally stratified case, the channelling

effects are very significant in the presence of a stable stratification. Major wind vector

deflection can be seen upwind of the Chasseral mount as well as on the upslope

towards Mt-Crosin in the St-Imier Valley. Significant blocking also occurs as can be
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seen with the strong wind speed reduction over the ‘Plateau de Diesse’ upwind of

Chasseral, resulting in wind speeds lower than 1 m/s. Flow speed up takes place

when passing the highest elevations again. The wind speed at Chasseral reaches a

value of 8 m/s, which is higher than for the neutrally stratified situation. It should

also be stressed that the maximum wind speed (~10 m/s) at this level occurs further

north, on the eastern flank of the ‘Combe Grède’ (co-ordinates 22000; 25000).

Figure 6.10. Same as Figure 6.6 for an initial stable thermal stratification given by a real

temperature gradient of –6.5 K/km.

From the vertical cross-sections of both wind speed (Figure 6.11) and vertical velocity

(Figure 6.12), we can see that the flow perturbation for the stably stratified case is no

longer confined to the lowest levels as it was the case for the neutrally stratified
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situation. Moreover, the induced flow acceleration is stronger in the presence of a

stratified atmosphere (compare Figure 6.7 and Figure 6.11).

Figure 6.11. Same as Figure 6.7 for an initial stable thermal stratification given by a real

temperature gradient of –6.5 K/km. Steps between isolines: 1 m/s.

Figure 6.12. Same as Figure 6.8 for an initial stable thermal stratification given by a real

temperature gradient of –6.5 K/km. Steps between isolines: 0.5 m/s.
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Vertical profiles were extracted at various locations along a constant x plane going

through Chasseral and Mt-Crosin. These locations were chosen on the Swiss Plateau,

the Plateau de Diesse, at Chasseral, on the southern flank of the St-Imier valley as

well as on the Mt-Crosin site (see Figure 6.23 for the definition of the exact locations).

The horizontal wind speed profiles obtained with a stable stratification (continuous

lines) are compared to the ones from a neutrally stratified atmosphere (dashed lines)

in Figure 6.13 for three of the above listed locations. The comparison clearly shows

that the introduction of a more realistic stable stratification drastically modifies the

simulated wind profiles. For the neutral case, the wind speed profile obtained on the

Swiss Plateau, over a rather flat topography, exhibit wind speeds that are only

slightly lower than those obtained over the elevated sites of Chasseral and Mt-

Crosin. For the stably stratified atmosphere, the results are completely different: the

profiles at both Chasseral and Mt-Crosin exhibit a strong speed-up whereas the one

on the Swiss Plateau, upwind of the Jura Chain, shows a significant reduction in the

lowest 1000m above ground, which is due to the blocking of the flow caused by the

mountain range.

For the stable case, the simulated potential temperature profiles are shown in Figure

6.14 for the five locations mentioned previously. The sites are located at different

altitudes, and since the profiles are plotted as a function of the height above ground,

they appear to be horizontally shifted in the graph, the highest sites showing the

highest potential temperature. Consequently, at the zero heat flux boundary

condition set at the ground, a neutral layer develops in the lowest levels (z < 200-

300m above ground) for the upwind locations on the Swiss Plateau and ‘Plateau de

Diesse’. An interesting effect can also be seen when comparing the potential

temperature profiles taken at the locations labelled St-Imier and Diesse. These

profiles are taken above ground stations located at the same altitude. Therefore, these

were the same when initialising the model. As can be seen from Figure 6.14, the

potential temperature profile obtained on the southern flank of the St-Imier valley

shows a temperature increase below 1000m relative to that obtained on the ‘Plateau

de Diesse’. This can be identified as a foehn effect16, with a warming of the air mass

on the downwind side of the Chasseral chain (see also Figure 6.23 for a definition of

the profiles locations). The maximum temperature difference between two levels

                                                     
16 Some authors use the term ‘foehn’ for a warm downdraft behind a mountain range

only in association with precipitation formation on the upwind side. In the case

presented above, we do not have any precipitation. We thereby extend the notion of

‘foehn’ to include situations for which no latent heat release is involved.
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with the same altitude over the Plateau de Diesse and St-Imier is of 2.9 K. The

maximum difference is reached at 400m above ground.
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For the stably stratified case, the time evolution of the wind speed and direction at

the nodes closest to the Chasseral and Mt-Crosin measurement masts is presented in

Figure 6.15.a and b, whereas the Mt-Crosin to Chasseral wind speed ratio is shown in

Figure 6.15.c. After some strong oscillation during the first hour, the solution tends

towards a converged state. After more than 2 hours, a slight oscillation is still visible

in the wind speed values, with a period of some 5500s. The oscillation is also visible

in the wind speed ratio, since the wind speed variations at Chasseral and Mt-Crosin

are out of phase. From the wind direction plot, we can see that, even after 6 h of

simulation, the convergence for this stably stratified situation has not exactly been

achieved. For the stable stratification, the wind direction at Chasseral tends to more

or less the same direction as for the neutrally stratified atmosphere (around 220°).

This is not true however for the Mt-Crosin sites. For the neutrally stratified case, the

wind at Mt-Crosin was rotated clockwise, relatively to the Chasseral direction,

whereas for the stably stratified atmosphere we have the opposite.
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Figure 6.15. Time evolution of the wind speed (a) and direction (b) for the model nodes

closest to the locations of Côte Nord, Côte Sud, Côte Est and Chasseral, for a stably stratified

atmosphere. c) Ratio of the Mt-Crosin to Chasseral horizontal wind speed.

Comparing the values obtained for the Mt-Crosin to Chasseral wind speed ratios

(between 0.69 and 0.71 for the stably stratified case, and between 0.8 and 0.86 for the

neutrally stratified case), we can already conclude that the thermal stratification of

the atmosphere will play a major role when determining the site to site relationships

to be used in the wind data transposition.

Further reducing the Froude number of the simulation, we performed an additional

simulation with the same stratification conditions as above (vertical real temperature

gradient of –6.5 K/km), with a high altitude wind speed of 5 m/s.  The horizontal

wind speed distribution (not shown) shows similar characteristics as the one in

Figure 6.10, with even more pronounced blocking effects on the ‘Plateau de Diesse’

upwind of Chasseral and channelling effects in the St-Imier valley. The wind speed

regime obtained with this atmospheric condition is favourable for the formation of

mountain waves, as can be observed from the vertical cross-sections of the horizontal

wind speed (Figure 6.16) and vertical velocity component (Figure 6.17) (solution after

4 h). The perturbation induced by the topography affects the entire troposphere.
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Figure 6.16. Vertical cross-section of the horizontal wind speed for a geostrophic wind of 5

m/s from the 240° sector. The initial atmospheric stability was given by a real temperature

gradient of –6.5 K/km. Steps between isolines: 0.5 m/s. Simulation time: 4h.

Figure 6.17. Vertical cross section of the vertical wind velocity for a geostrophic wind speed

of 5 m/s from the 240° sector. The initial atmospheric stability was given by a real

temperature gradient of –6.5 K/km. Steps between isolines: 0.5 m/s
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As before the wind speed profiles in Figure 6.18 show a significant wind speed

reduction for the profile obtained over the Swiss Plateau and a strong speed up over

the highest Mt-Crosin and Chasseral elevations. A major difference with the previous

simulation, however, concerns the fact that with 5 m/s for the high altitude wind, we

get a higher wind speed at Mt-Crosin than at Chasseral for the levels below 300 m.

This observation again shows the significance of the atmospheric stability (defined in

terms of the Froude number) for the establishment of relationships between the wind

at Mt-Crosin and the wind at Chasseral. For the potential temperature profiles

(Figure 6.19), we obtain similar results compared to what was observed with the

higher geostrophic wind speed. The essential difference with the reduced high

altitude wind speed is that the neutral boundary layer developing upwind of the

Jura chain is smaller. Also, the layer in which the simulated potential temperature

departs from the original profile is smaller, when the high altitude wind speed is

reduced.
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As can be seen from Figure 6.20 it appears that the convergence of the solution is

even more difficult for the 5 m/s geostrophic wind speed than it was for the 10 m/s

case. After 1 ½ hour of simulation the wind direction at the three measuring stations
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of Mt-Crosin are more or less stable. This is however not exactly the case at

Chasseral, where it is not even obvious that the direction has been stabilised after 6

hours of simulation. After the initial oscillations that can be observed during the first

hour of simulation, the wind speed at both Chasseral and Mt-Crosin keeps changing,

rising to the value of 5m/s at Mt-Crosin and then oscillating around this value. At

Chasseral, after having been reduced to some 4.5 m/s, the wind speed increases

again to values slightly higher than 5 m/s. These simultaneous wind speed changes,

which are partly in antiphase, drastically affect the Mt-Crosin to Chasseral wind

speed ratio. The latter goes from some 0.65 after 1 h of simulation to some 1.1 one

hour later, and further reduces to about 0.95.
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Figure 6.20. Time evolution of the wind speed (a) and direction (b) for the model nodes

closest to the locations of Côte Nord, Côte Sud, Côte Est and Chasseral, for a stably stratified

atmosphere with a high altitude wind speed of 5 m/s. (c) Ratio of the Mt-Crosin to Chasseral

horizontal wind speed.

To make sure that the simulated variation was not merely due to some spurious

numerical effects which could have been related to convergence criteria, that might

have been too loose, we run exactly the same situation imposing stricter

convergence, thereby increasing the number of iterations within the time steps. The

time evolution of the stricter solution (not shown) appeared to be the same as the one

presented in Figure 6.20. Therefore, we expect the time evolution presented below to
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correspond to physical transient effects and not just to numerical convergence

problems. In the relatively weakly stratified case (simulation NS1 with the non-

dimensional mountain height 1/1
≈=

−
GNHFr ), the transient effects might be related

to the formation of mountain waves, whereas in the more strongly stratified situation

NS2 ( 5.2/1
≈=

−
GNHFr ) they could be explained by atmospheric vortex shedding

associated with flow splitting as shown by Schär and Durran (1997).

The effect of reducing the high altitude wind speed, when keeping the atmosphere

stable, tends to increase the Mt-Crosin to Chasseral wind speed ratio. We can in fact

observe from Figure 6.20.c that after 1 ½ hours of simulation, the wind speed ratio

stays above 0.9, which is significantly higher than the value of 0.7 obtained with the

10 m/s geostrophic wind speed case. Apart from showing again the strong

sensitivity of the relative wind speeds at Chasseral and Mt-Crosin to the simulation

conditions, the present situation also points out the difficulty inherent to the non-

stationarity of the obtained solutions in situations with Froude numbers much lower

than unity (either strong stability or weak winds).

The three simulations presented above for the 240° geostrophic wind direction were

calculated assuming a zero heat flux through the ground. To test the effect of a

ground cooling on the wind field development, a simulation was done starting with

initial conditions representative of a late afternoon summer situation, with a weak

southwest wind at high altitude. We therefore set a wind profile according to the

Zilitinkevich parameterisation, with a geostrophic wind speed of 4.7 m/s. The

thermal stratification was quasi-neutral below 2000m ( kmKzT /5.9/ −=∂∂ ) and stable

aloft ( kmKzT /7/ −=∂∂ ). A ground cooling was imposed on the model with a potential

temperature decrease of –2 K/h during the first hour and –1 K/h later on.

As a first remark, we can note that due to the change in the stratification conditions

(neutral stratification below 2000m and slight reduction of the stability aloft) the

mountain waves that appeared in the previous simulation are no longer as strong

(compare Figure 6.22 to Figure 6.16). Whether the introduction of ground cooling

also had an effect on the mountain wave reduction is not clear.

Figure 6.21 shows the wind field obtained after 4 h of simulation at the first level of

grid nodes. We can clearly see the development of katabatic winds with slopes

oriented towards the north-west exhibiting positive v velocity components (along the

y direction) and slopes oriented towards the south-east showing negative ones. The

time evolution of the induced breeze is illustrated by means of vertical cross-sections

showing the wind vectors in a plane perpendicular to the mountain range after 2h,

4h and 6h and 20’ (Figure 6.23 to Figure 6.25). Vertical profiles of the v velocity

component (Figure 6.27, Figure 6.29 and Figure 6.31) and potential temperature
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(Figure 6.28, Figure 6.30 and Figure 6.32) are also plotted for the 5 locations

presented in Figure 6.23.

Figure 6.21. Wind field calculated by the model for a geostrophic wind of 4.7 m/s, blowing

from the 240° direction for a situation with ground cooling (see text for details about the

simulation conditions). The results shown here correspond to the first level of grid cells (4-5

m above ground) after 4 h of simulation.

After two hours of simulation, the breeze has formed and reaches the foot of the Jura

chain. However, it still has not reached the location where the profiles over the Swiss

Plateau have been extracted. In fact, the v velocity profile obtained at this location

still shows positive v velocities, under the influence of the inlet boundary condition

which is set at the southern face of the domain. Two hours later, the downslope wind
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progressed over the Swiss Plateau and is about to reach the southern end of the

domain (see Figure 6.24). Since we applied Dirichlet type boundary conditions on the

velocity components and potential temperature at the southern face of the domain

without varying them with time, we do not expect that the solution behaves like it

would for a real situation after the breeze has reached the domain boundaries. In

fact, in a real situation, we would have cold air advection from the south, that would

be brought by a breeze induced by the Alps and Pre-Alp chain. Such a situation

usually ends up with the formation of a pool of cold air over the Swiss Plateau, with

an inversion height around 1200m above sea level (Fallot, personal communication).

To properly simulate this phenomenon, we would need either to extend the

simulation domain to include the Alps and their effects or to trigger the inlet

boundary conditions to reproduce the effect of the Alps. Both of these workarounds

appear to be beyond the scope of the present work and will not be attempted at this

stage.

Nevertheless letting the model continue with this conflict between the boundary

conditions and the breeze, we obtained a solution after 6 hours and 20 minutes

(Figure 6.25), still showing the presence of the downslope winds over the Jura chain,

but with the winds reducing on the Swiss Plateau. Beyond this time, the model had

some convergence difficulties and the calculation was stopped.

Figure 6.22. Vertical cross-section along a constant y-plane through Chasseral showing the

horizontal wind speed after 4 hours of simulation for the simulation with ground cooling.
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Figure 6.23. Vertical cross-section along a constant x-plane through Chasseral and Mt-Crosin,

showing the development of katabatic winds after 2 hours of simulation. The vertical lines

define the 5 locations at which vertical profiles were extracted.

Figure 6.24. Same as Figure 6.23 after 4 hours of simulation.
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Figure 6.25. Same as Figure 6.23 after 6 hours and 20 minutes of simulation.

The simulated breeze layer depth and intensity were compared to an improved

version of the Prandtl model (1942) which was proposed by Hertig (1983, 1986). The

latter is a model that allows us to compute the wind speed and potential temperature

profiles for katabatic winds developing over a slope of known characteristics as a

function of the temperature perturbation (Figure 6.26). Prandtl (1942), assuming that

the breeze develops on an infinite slope and parallel to it proposes the following

expressions for the katabatic winds:
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B = vertical potential temperature gradient

ϕ = slope angle

TM KK , = mechanical, resp. thermal diffusivities
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Figure 6.26. Vertical profiles of the horizontal velocity u  and potential temperature

perturbation θ ′  for a downslope wind. (source: Hertig).

The breeze layer thickness is defined as the first level at which the wind speed

vanishes, i.e. at lnt ⋅= π . The maximum wind speed is reached at the height 
4

max

l
n

π
= .

Experiments show however that the breeze intensity and thickness also depend on

the slope length. This was taken into account by Hertig who modified the Prandtl

formulation to include the slope length. The modification yields:
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The breeze layer thickness is therefore vt lh ⋅= π  and the height at which the

maximum wind speed occurs is 
4

max
vl

h
π

= . The constant A appearing in eq. 6.5 for the

wind speed profile is a constant that needs to be calibrated. From wind tunnel

simulations and with relatively laminar flow, Hertig obtains a value of 1.71 for A.
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Fallot (1992) compared this formulation with breeze observations recorded in the

Haute-Gruyère and found that this model gave reliable results for the katabatic

winds, taking a value of 1 for A.

The maximum breeze intensity and layer thickness after 4 hours have been evaluated

with the above expressions, using A=1, for the two locations called Diesse and St-

Imier. The mechanical and thermal diffusivities were approximated to 0.8 and 0.9,

which correspond to representative values simulated by the model in the area. The

thermal expansion coefficient was set to 1/273 K-1. For the vertical potential

temperature gradient we took the initial gradient that was used below 2000 m (i.e.
4

103
−

⋅=B K/m). The values of the other parameters together with the results are

given in Table 6.7. A comparison of the numerical and analytical model values shows

a fairly good agreement between the predicted breeze layer thickness. For the breeze

intensity, it appears that the numerical model gives wind speeds that agree quite

well with the analytical method, underestimating them by some 13-17%. Due to the

steeper slope on the St-Imier side compared to the Plateau de Diesse side, the breeze

developing on the St-Imier side is expected to be thinner and faster than the one on

the Plateau de Diesse. This tendency is reproduced by the numerical model.

The simple analytical model above assumes that there is no wind apart from the

katabatic wind developing on the slope. In the simulation, this assumption was not

exactly fulfilled, since, in addition to the main flow component along the x-axis, we

had in fact a v velocity component in the boundary layer, which is associated with

the Ekman spiral. Considering this departure from the analytical model assumptions,

and taking into account the fact that the topography of the area is more complex than

assumed by the simple slope model used to derive the analytical expressions, it

appears that the katabatic winds simulated by the numerical model show reasonable

characteristics.

Table 6.7. Breeze layer thickness and intensity obtained from the analytical

and numerical models for the locations of Diesse and St-Imier (simulation

time: 4 hours). The parameters needed for their evaluation are also given.

Diesse St-Imier

Analytical Numerical Analytical Numerical

)sin(ϕ 0.177 0.229

x [m] 4400 3500

0θ∆ [K] 5 5

vt lh ⋅= π  [m] 103 118 92 65

maxu [m/s] 3.6 3.0 3.7 3.2
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Figure 6.27. Vertical profiles of v velocity

component after 2 hours of simulation for

the situation with ground cooling.
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Figure 6.28. Vertical profiles of potential

temperature after 2 hours of simulation for

the situation with ground cooling.
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Figure 6.29. Vertical profiles of v velocity

component after 4 hours of simulation for

the situation with ground cooling.
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Figure 6.30. Vertical profiles of potential

temperature after 4 hours of simulation for

the situation with ground cooling.
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Figure 6.31. Vertical profiles of v velocity

component after 6 hours and 20 minutes of

simulation for the situation with ground

cooling.
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Figure 6.32. Vertical profiles of potential

temperature after 6 hours and 20 minutes

of simulation for the situation with

ground cooling

The time evolution of the wind speed, wind direction and Mt-Crosin to Chasseral

wind speed ratio for the katabatic wind simulation are presented in Figure 6.33.

Apart from the sudden wiggle observed at Chasseral after 4 hours, the simulated

wind speed tends to converge fairly rapidly. After 2 hours of simulation, the Mt-

Crosin to Chasseral wind speed ratio is relatively stable at a value around 0.98 for the

site of Côte Nord and around 1.05 for both Côte Sud and Côte Est.  Comparing the

simulation NS2 (Figure 6.20) to the present one, which was similar, apart from the

ground cooling and the initial neutral stratification below 2000m, we can see that the

wind speed ratio tends to converge to a higher value for the simulation with ground

cooling. However, it is difficult to conclude whether this is really an effect of the

ground cooling, or an effect of the neutral stratification of the lowest layer. To sort

out this question, some more sensitivity tests have been done, which are presented in

Section 8.2.
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Figure 6.33. Time evolution of the wind speed (a) and direction (b) for the model nodes

closest to the locations of Côte Nord, Côte Sud, Côte Est and Chasseral, for the simulation

with ground cooling (simulation SS1). (c) Ratio of the Mt-Crosin to Chasseral horizontal wind

speed.

6.3.2 The 330° geostrophic wind direction

For the 240° wind direction, some noticeable differences could be observed in the

flow field development between the neutrally and stably stratified atmosphere.

Though the flow direction was essentially aligned with the main mountain axis, we

could see some mountain waves forming when the flow stability was increased. For

flow situations with the 330° wind direction, perpendicular to the main mountain

axis, the difference in the flow behaviour is much more pronounced.

Two runs were performed which show this, the first one with a high altitude wind

speed of 10 m/s, neutrally stratified, and the second one with a high altitude wind

speed of 5 m/s and a thermal stratification given by 5.6/ −=∂∂ zT  K/km. A detailed

vertical cross-section along a constant x-plane through Chasseral and Mt-Crosin is

shown for both the neutrally and stably stratified cases in Figure 6.34 and Figure

6.35. The wind vectors are plotted together with the horizontal wind speed. The

wind enters the domain from the right (corresponding to North-Northwest). The

most striking difference between the two results is the appearance of the wind field

calculated downwind of Chasseral. In the neutrally stratified case, we end up with
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almost no wind in the wake of Chasseral, whereas for the stably stratified situation,

the opposite behaviour is obtained. In the latter case wind speed of more than 10

m/s can be observed immediately downwind of Chasseral. Note that this is more

than twice the geostrophic wind speed that was set to 5 m/s for the initial field.

Figure 6.34. Detailed vertical cross-section along a constant x-plane through Chasseral and

Mt-Crosin, showing the horizontal wind speed (shading and isolines) as well as the wind

vectors. The situation was initialised with a geostrophic wind speed of 10 m/s from the 330°

sector, with a neutral atmospheric stratification (real temperature gradient of –9.7 K/km).

Steps between isolines: 1 m/s.

The very strong flow acceleration is due to resonance phenomena associated with

mountain wave generation (similarly to what was measured in the Boulder foehn

event presented in Appendix C). This mountain wave production can best be seen in

the vertical cross-sections showing the vertical velocity (Figure 6.36) and the

potential temperature (Figure 6.37). With vertical velocities of more than 2 m/s, we

are in the presence of strong wave generation and the perturbation induced by the

topography propagates throughout the entire troposphere. We can also observe from

the potential temperature plot the strong downdraft downwind of Chasseral

associated with the downward displacement of the 300 K potential temperature

isoline.

Chasseral

Mt-Crosin
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Figure 6.35. Same as Figure 6.34 for the stably stratified atmosphere ( 5.6/ −=∂∂ zT  K/km),

with a high altitude wind speed of 5 m/s. Steps between wind speed isolines: 1 m/s.

Figure 6.36. Vertical cross-section along a constant x-plane through Chasseral and Mt-Crosin

(whole domain extent), showing the vertical velocity component (shading and isolines). The

situation was initialised with a high altitude wind speed of 5 m/s and a stably stratified

atmosphere ( 5.6/ −=∂∂ zT  K/km). Isolines steps: 1 m/s.
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Figure 6.37. Same as Figure 6.36 for the potential temperature. Steps between isolines: 2.5 K.

In the St-Imier valley, a cavity type flow is obtained for both the neutrally and stably

stratified cases, with a major wind speed reduction in the valley. As can be seen from

Figure 6.38 for the stably stratified case, the model generates some return flows close

to the ground on the slope downwind of Mt-Crosin and on the Plateau de Diesse.

Figure 6.38 also clearly shows that with a very stable atmosphere, the maximum

wind speed does not appear on the highest elevations but downwind of the

mountain crest. The maximum wind speed of more than 8 m/s obtained in this case

at 4 m above ground level is significantly higher than the geostrophic wind speed.

With the simulations presented in this chapter, we could see that the flow pattern

and wind speed distribution at the ground changes significantly when changing the

stability conditions. Since on average for Swiss latitudes the free flow stratification of

the atmosphere is stable (-6.5 K/km for the US standard atmosphere, 1966) and far

from neutral, it is important to have a numerical model that is able to take these

effects into account when simulating atmospheric flows over complex terrain. After

having shown qualitatively17 the model’s ability to reproduce interesting phenomena

such as flow channelling, mountain waves, foehn effects, rotor formation or

downslope winds, we will proceed in the following chapters with some more

                                                     
17 Some of these effects were validated in a quantitative way in the appendices (C and

D essentially).
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simulations and sensitivity tests to quantify the effects that changes in the

atmospheric conditions will have on the site-to-site relationships needed for the

application of the transposition methodology.

Figure 6.38. Same as Figure 6.6 for a geostrophic wind of 5 m/s blowing from the 330° sector.

The initial atmospheric stratification is given by a real temperature gradient of –6.5 K/km.

Steps between wind speed isolines: 1 m/s.
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7 Wind data transposition using the numerical
simulation results

The numerical model has been successfully validated for various flow conditions (see

Appendix A to D) essentially over flat and hilly terrain. We also showed in Section

4.3 that the transposition methodology performed with proportionality relationships

obtained from the analysis of wind data was able to give a good prediction of the

wind speed distribution at the site of Mt-Crosin. The object of the present chapter is

to perform a similar transposition with sector wind speed ratios obtained from

numerical simulations. For this task, we will restrict ourselves to the prediction sites

of Mt-Crosin and not consider the sites of Chaux-de-Fonds and Neuchâtel. The

reason for this choice is the proximity of the latter locations to the model boundaries,

and the coarse horizontal resolution (~1-4km) of the simulation domain around these

sites. For this reason, the wind speed calculated at the closest mesh points to the

Chaux-de-Fonds and Neuchâtel locations cannot be representative of the very local

wind conditions.

To see how the numerical model performs on the very complex terrain conditions

encountered in the area of Chasseral and Mt-Crosin, we will compare some of the

model results with observations for a real event (Section 7.1) and for ‘average wind

conditions’ (Section 7.2). The wind speed ratios obtained by the numerical simulation

will then be used to calculate the Mt-Crosin wind distributions from the Chasseral

data. These will be compared with those measured in Section 7.3. Since monthly

energy production and turbine availability data for the year 97 were provided by

Juvent S.A, a transposition was also done at hub height for this period, from which

the wind power potential of the site was inferred and compared to the measured

values (Section 7.4)18. Finally a wind power potential map for the whole Mt-Crosin

area was elaborated from the long term data recorded at Chasseral.

7.1 Simulation of a real event

We simulated the persistent ‘bise’ event of the 12th of June 1994, using the

temperature and wind profiles (Figure 7.1) from the Payerne soundings for this date

                                                     
18 Unfortunately, no wind speed data for the same period are available on the Mt-

Crosin site. Consequently, we will not be able to simultaneously compare the

transposed wind speed distributions and the energy production.
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(0h UTC) as initial conditions. For the boundary conditions to be given at the domain

inlet, we kept the temperature profile constant with time while the wind speed

profiles were linearly interpolated with time from the sounding of the 12th and 13th of

June 1994 (0h UTC). For the ground roughness we used a variable distribution as

given in Figure 6.5.

The simulation was performed for 6 hours, keeping the ground heat flux zero during

the run. Considering the fact that we set a uniform solution as initial guess and since

we apply the sounding profiles uniformly at both the inlet north and east face of the

simulation domain, we do not expect the model to be able to reproduce the time

evolution with good accuracy. Moreover, for this particular wind direction, it should

be kept in mind that the Payerne sounding is more representative of the conditions

prevailing at the model outlet than at the inlet boundary. The profile might actually

be influenced by the presence of the Jura topography.
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Figure 7.1. Initial and boundary conditions used to simulate the real situation of the 12th of

June 1994. a) Wind speed (thick lines), wind direction (thin lines) and b) real temperature

profiles from the Payerne soundings of the 12th (continuous line) and 13th of June 1994, 0h

UTC (dashed line).

Despite these rough approximations in the model initialisation, we can still observe

from Figure 7.2 that the model predictions are in qualitative agreement with the

observations. The Chasseral wind speed is well reproduced, while the wind speeds

at Côte Nord and Côte Sud are underpredicted by ~27% and 21% respectively,
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implying an underprediction of the wind speed ratio. As expected from the

observations, the simulation produces a higher wind speed at the site of Côte Sud

than at the site of Côte Nord. Although the absolute wind direction is not so well

reproduced, the difference between the Chasseral and Côte Nord wind direction

corresponds well to that observed.

As will be seen later on (Section 8.3), the fact that we reproduce the Chasseral wind

speed pretty well but underpredict the wind speed at Mt-Crosin might be due to

slightly excessive roughness values for the forested areas.
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Figure 7.2. Comparison of the observations (thin lines) and simulation results (thick lines) for

the persistent ‘bise’ situation of the 12th of June 1994. a) Wind direction, b) wind speed and c)

Mt-Crosin to Chasseral wind speed ratio.
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7.2 Transposition relationships obtained from numerical

simulations for ‘average wind conditions’

The sector wind speed ratios needed for the one-parameter wind data transposition

will be calculated from a set of simulations performed for stably stratified

atmospheric conditions, also using the variable roughness distribution of Figure 6.5.

The simulation conditions were defined following a simple classification of the

situations that was proposed by Fallot & Hertig (1991). From one year of wind data

at Chasseral and on the Ajoie Plateau, he sorted the situations into two groups (see

Appendix K). The first one is characterised by situations that are essentially

advective (57.4% of the cases), showing persistent winds on the Ajoie Plateau, and

the second one is thermally dominated (42% of the cases), with variable (breeze)

winds in Ajoie. The advective situations correspond to the stronger wind conditions.

From the point of view of wind power potential they represent therefore the most

interesting cases. As a first approximation, the variable wind situations will be

discarded and we will assume that only the advective situations are important for

the transposition we are interested in.

To define the set of simulations to be performed, Fallot (personal communication)

proposed a simplified classification, using only two types of temperature profiles.

The first type of temperature profile with a constant gradient of –7.0 K/km should be

representative of the south-west to north advective situations while the second type,

showing a more stable stratification below 1400m should be representative for the

‘bise’ situations (north to east advective situations). Following this suggestion, we

finally simulated the set of stably stratified situations presented in Table 7.1,

concentrating on the most frequently occurring wind directions. The wind speed

profiles for these simulations were initialised with the Zilitinkevich formulation

(Appendix B) setting the model parameters so as to reproduce as close as possible the

advectively dominated situations of Table K.1.

The wind speed ratios obtained from this simple classification for the sites of Côte

Nord and Côte Sud are shown in Figure 8.7 (circles), where they can be compared to

the mean observed values (continuous line). The standard deviation of the observed

wind speed ratio around its mean value has also been plotted (dashed line).

We can see that except for the 190° and 240° wind directions at Côte Nord and the

30°, 190° and 240° wind directions at Côte Sud, the simulated ratios compare quite

well with those observed. For the north and south winds we do not have sufficient

data to validate the results. Generally, when the simulated wind speed ratio departs
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significantly from the mean measured value, it underestimates the observed value.

Again, this might indicate that we used too large roughness lengths for the area (see

Section 8.3).

Table 7.1. Set of parameters defining the stable situations representative of the average

advectively dominated situations. Shaded cells correspond to model input parameters.

geostrophic
wind direction

[°]

Vertical temperature
gradient
[K/km]

Friction
velocity
[m/s]

Resulting
Chasseral wind

speed
[m/s]

Resulting
Chasseral

wind direction
[°]

30 -4.5 for z<1400m ASL
-7.0 above

0.12 4.5 15.5

60 -4.5 for z<1400m ASL
-7.0 above

0.23 7.8 38

70 -4.5 for z<1400m ASL
-7.0 above

0.3 8.5 57

80 -4.5 for z<1400m ASL
-7.0 above

0.3 8.6 75

120 -4.5 for z<1400m ASL
-7.0 above

0.2 7.2 129

210 -7.0  for all z 0.53 14.8 185
240 -7.0  for all z 0.53 13.6 220
250 -7.0  for all z 0.42 11.1 241
260 -7.0  for all z 0.4 10.7 263
270 -7.0  for all z 0.4 10.9 282
300 -7.0  for all z 0.3 11.5 314
330 -7.0  for all z 0.3 12.5 329
360 -4.5 for z<1400m ASL

-7.0 above
0.1 4.5 361

Côte Nord

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 60 120 180 240 300 360

Chasseral direction

V
(M

t-
C

r
o

si
n

)/
V

(C
h

a
ss

e
ra

l) observations

simulations

Côte Sud

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 60 120 180 240 300 360

Chasseral direction

V
(M

t-
C

r
o

si
n

)/
V

(C
h

a
ss

e
ra

l) observations

simulations

Figure 7.3. Wind speed ratios at Côte Nord and Côte Sud obtained from the simulation of the

set of stable situations (circles) as defined by the Fallot classification. The simulations were

run with a variable ground roughness as in Figure 6.5. The mean observed values

(continuous line) are also given together with the standard deviation around the average

(dashed lines).
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For the set of simulations presented above, we also compared the simulated direction

change between the Chasseral and Mt-Crosin as a function of the Chasseral wind

direction with that observed. Figure 7.4 shows that apart from the north-east wind

directions (20°to 40°), the general variation of the direction change with the Chasseral

wind direction is fairly well reproduced, though there seems to be a shift of some 15°

between the observed and simulated values.
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Figure 7.4. Simulated (symbols) and mean observed (line) direction change between the

Chasseral and Mt-Crosin sites.

7.3 Wind data transposition and comparison with the observed

distributions

The wind speed ratios obtained from the numerical simulations of the stable

situations representing the advective situations of the Fallot classification (Figure 7.3)

were linearly interpolated as a function of the Chasseral wind direction, in steps of

10°. These were then used to transpose the Chasseral wind data to the Mt-Crosin

sites producing the wind speed distributions shown in Figure 7.5 to Figure 7.7. The

transposed distributions compare quite well with those observed, though we tend in

this case to underpredict the wind speed. This could already be expected from the

comparison of the simulated and observed wind speed ratios (Figure 7.3). Using the

Mt-Crosin transposed distributions, we end up with a prediction of the mean wind

speed and yearly energy output on the Mt-Crosin site that are underestimated by 7%

to 18% and 8% to 36%, respectively (Table 7.2).
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The results for the wind data transposition obtained from the simulations with

variable roughness with the simplified Fallot classification are remarkably good. The

accuracy of the prediction is typically of the same order of what can be achieved

when performing one year of measurements on the prediction site itself.

Table 7.2. Mean wind speed and yearly energy output obtained with proportionality factors

obtained from the numerical simulations, considering the set of stably stratified situations

defined in Table 7.1. Simulations performed with a variable ground roughness.

Station
name

Average wind speed
[m/s]

Yearly energy production
[MWh/year]

Measured Transposed Relative
error

Measured Transposed Relative
error

Côte Nord 5.2 4.3 -18% 806 517 -36%
Côte Sud 5.3 4.4 -16% 800 536 -33%
Côte Est 5.6 5.2 -7% 983 851 -8%
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Figure 7.5. Comparison of the observed (black) and transposed (light grey) wind speed

distributions at Côte Nord, obtained from the set of simulation presented in Table 7.1. The

simulations were run with a variable roughness length as in Figure 6.5.



113

Cote-Sud

 wind speed probability density function

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 wind speed class [m/s]

P(v) [% ]

measurements

transposition  from simulations,

classification Fallot, variable roughness

Figure 7.6. Same as Figure 7.5 for the site of Côte Sud.
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Figure 7.7. Same as Figure 7.5 for the site of Côte Est.

The fact that we obtain a better predictions for the site of Côte Est than for the sites of

Côte Sud and Côte Nord is certainly related to the fact that the transpositions are

done for different periods with different wind roses at Chasseral (see Section 3.2.2).

Comparing the Chasseral wind roses for the various concurrent datasets, we could

observe that the 240° to 270° wind directions occur more often in the wind rose

concurrent with data at Côte Sud and Côte Nord, than in that concurrent with Côte

Est. Since for these wind directions (particularly for the 240°) we clearly underpredict
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the wind speed ratio, we tend to underestimate the wind speed at the transposition

site in these cases. We also observed that the Chasseral wind rose concurrent with

data at Côte Est seems to be more representative of the long term for the south-west

to north-west wind directions. We can therefore hope that the relative error for a

long-term transposition might be of the same order of magnitude as that obtained for

Côte Sud than for the other sites.

7.4 Transposition at the hub height level for the year 97 and

comparison with the actual production data

The wind speed ratios shown in Figure 7.3 were calculated for the measurement

heights at Mt-Crosin. To transpose the Chasseral wind data to the wind turbine hub

height (45m) we used the wind speed ratios calculated for the third level of cells

(29m above ground at Mt-Crosin) and the vertical gradient of the wind speed

between the third and fourth level of cells (29m and 52m). The modified wind speed

ratio is obtained from:

eq. 7.1
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which results from the fact that one can write the wind speed at the wind turbine

hub height th  as
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∂
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and from the proportionality assumption between the Mt-Crosin and Chasseral wind

speed implying that CHLMTC vamv ⋅= )()30( θ  and CHLtMTC vahv ⋅′= )()( θ .

The vertical gradient of the wind speed at Mt-Crosin, which was obtained from the

simulations, is presented in Figure 7.8, while the corrected wind speed ratio for the

height of 45m at Mt-Crosin is plotted in Figure 7.9.

Using a simple power law19 to calculate the wind speed at hub height from the level

of 30 m with an exponent value of 25.0=α  would imply a factor of 1.11 between the

30m and 45m wind speeds. The value of this factor, when calculated from the

numerical simulation results, varies from sector to sector between 1.1 and 1.22 for the

                                                     
19 The power law α)()()( 2121 zzzvzv =  is often used to obtain the wind speed at the

level 1z  from the known wind speed at the level 2z , with an exponent α  depending

on the turbulence conditions on the terrain (see e.g. Davenport, 1963). Typically for

areas surrounded by woods, one would expect a value of about 0.25 for α .
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site of Côte Nord (mean value 1.16), between 1.11 and 1.31 for Côte Sud (mean value

1.19) and between 1.13 and 1.27 for Côte Est (mean value 1.19). In other words,

calculating the wind speed values at 45 m with the numerical model results leads

therefore to higher wind speeds at hub heights than the use of the simple power law.
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Figure 7.8. Wind shear at the three sites of

Côte Nord, Côte Sud and Côte Est

calculated by the model between the third

and fourth levels of cells (29 and 52m

above ground level).

Figure 7.9. Mt-Crosin to Chasseral wind

speed ratios to transpose the data at 45 m

above ground at Mt-Crosin.

Using the corrected wind speed ratios calculated for the model grid nodes closest to

the actual wind turbine locations, we transposed the Chasseral monthly wind speed

data for the year 97 at hub height. The monthly power output for these three

locations was then inferred using the power characteristics of the Vestas-V44

machine and the monthly-predicted wind speed distributions. For each generator,

we took into account the monthly availability to reduce the estimated power output

accordingly. For the efficiency factor associated with losses due to higher turbulence,

we used a value of 0.9. The resulting energy output predictions are plotted in Figure

7.10 to Figure 7.12 together with the actual production data. Table 7.3 to Table 7.5

gives the detailed figures. For the complete year, the predictions are compared to the

production data in Table 7.6.

As could be expected from the results of the wind data transposition to the

measuring heights (Table 7.2) that were performed with the same set of simulations,

we tend to systematically underpredict the actual values. Month by month the

prediction errors can be quite significant (up to –57%), and this is related to the fact
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that one month is a too short period to be represented by average situations. Over the

year, however, the prediction errors reduce between –22% and –24%.
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Figure 7.10. Comparison of the predicted (light grey) and measured (dark grey) monthly

production data for the wind turbine no.1 for the year 1997.

0

20000

40000

60000

80000

100000

120000

97-01 97-03 97-05 97-07 97-09 97-11

m
o

n
th

ly
 e

n
e

r
g

y
 p

r
o

d
u

c
ti

o
n

 [
k

W
h

]

production data, turbine no.2

model prediction

Figure 7.11. Comparison of the predicted (light grey) and measured (dark grey) monthly

production data for the wind turbine no.2 for the year 1997.
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Figure 7.12. Comparison of the predicted (light grey) and measured (dark grey) monthly

production data for the wind turbine no.3 for the year 1997.

The maximum relative error occurs for all the three stations during the less windy

month (August). The month of July, also showing a relatively low energy output is

not as badly predicted. An explanation of these different behaviours can be found

when plotting the sector distribution of the wind speeds higher than 12 m/s (Figure

7.13) for these two months. It appears that the 220° to 270° wind directions are much

more frequent in August than in July, and we could see from Figure 8.7 that the

simulated wind speed ratios for these directions clearly underestimate the observed

values.

Table 7.3. Monthly production data for the wind turbine no.1 and comparison with the

monthly energy output prediction.

month N
hours

N hours with
data at

Chasseral

Availability
[%]

Energy
production

[kWh]

Energy
prediction WT1

[kWh]

EE /∆

[%]

97-01 744 676 99.9 40449 31297 -23%
97-02 672 634 90.8 99267 87655 -12%
97-03 744 700 81.6 38518 32305 -16%
97-04 720 674 93.3 58167 46225 -21%
97-05 744 684 90.7 60824 47096 -23%
97-06 720 675 86.7 49447 30673 -38%
97-07 744 677 99.9 26746 17437 -35%
97-08 744 649 99.9 20212 8600 -57%
97-09 720 609 100.0 26844 14673 -45%
97-10 744 665 99.6 78686 60650 -23%
97-11 720 643 99.9 62662 51333 -18%
97-12 744 734 96.9 88023 77446 -12%
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Table 7.4. Monthly production data for the wind turbine no.2 and comparison with the

monthly energy output prediction.

month N
hours

N hours with
data at

Chasseral

Availability
[%]

Energy
production

[kWh]

Energy
prediction WT2

[kWh]

EE /∆

[%]

97-01 744 676 99.3 24411 27069 11%
97-02 672 634 96.3 103635 75150 -27%
97-03 744 700 97.2 41449 35749 -14%
97-04 720 674 93.1 49890 43771 -12%
97-05 744 684 99.7 60420 42241 -30%
97-06 720 675 99.7 43521 26357 -39%
97-07 744 677 93.7 17867 14747 -17%
97-08 744 649 95.6 15333 6887 -55%
97-09 720 609 97.5 18031 12815 -29%
97-10 744 665 98.3 62231 51901 -17%
97-11 720 643 97.1 46815 35233 -25%
97-12 744 734 98.8 73913 64794 -12%

Table 7.5. Monthly production data for the wind turbine no.3 and comparison with the

monthly energy output prediction.

month N
hours

N hours with
data at

Chasseral

Availability
[%]

Energy
production

[kWh]

Energy
prediction WT3

[kWh]

EE /∆

[%]

97-01 744 676 93.8 23512 25619 9%
97-02 672 634 94.3 102490 74589 -27%
97-03 744 700 98.8 46106 38548 -16%
97-04 720 674 99.0 56986 46625 -18%
97-05 744 684 99.1 62923 42412 -33%
97-06 720 675 99.6 48062 26914 -44%
97-07 744 677 100.0 22513 16537 -27%
97-08 744 649 99.9 17593 7718 -56%
97-09 720 609 93.2 19081 12365 -35%
97-10 744 665 97.3 61929 51026 -18%
97-11 720 643 99.9 48472 36500 -25%
97-12 744 734 98.5 74950 66640 -11%

Table 7.6. Measured and predicted energy output for the year 1997 for the

three turbines on the Mt-Crosin site.

Energy production
year 97
[MWh]

Energy prediction
by the model

[MWh]

EE /∆

[%]

WT1 650 505 -22
WT2 558 437 -22
WT3 585 445 -24
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Figure 7.13. Sector frequency distribution of the Chasseral wind speeds higher than 12 m/s

for the months of July and August 1997.

From the above results obtained with the variable roughness distribution it appears

that the transposition methodology based on the numerical simulation results is

already a powerful tool to estimate the wind power potential of sites located on high

altitude sites along the Jura chain. Also, the fact that the relative prediction error is

fairly constant over the various wind turbine locations shows that the transposition

has been able to distinguish between the most and less favourable sites. In this light,

the wind data transposition appears to be useful also in the perspective of wind

turbine micrositing.

For the sites considered, the accuracy of the predicted wind power potential is of the

same order of magnitude as that which can be achieved when performing one year

of measurements on site.

7.5 Long-term prediction and wind power potential map for the

Mt-Crosin area

After having validated the numerical model, tested the validity of the assumptions

and controlled the applicability of the wind data transposition for short period data

sets, we finally come to the application for which all the developments presented in

this contribution were designed for. We will perform a wind data transposition to

predict the long-term wind speed distribution at the Mt-Crosin site, starting from the

long-term wind statistics at Chasseral.
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Applying the transposition methodology on the 16 years of data collected at

Chasseral and using the wind speed ratios obtained from the numerical simulation

(Figure 7.9), we calculated wind speed distributions at 45m above ground over the

whole simulation domain as shown in Figure 7.14 for the site of Côte Nord.
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Figure 7.14. Long term transposed wind distribution for the site of Côte Nord at 45 m above

ground level. The best fitting Weibull distribution is also plotted.

The predicted long-term mean wind speeds at 45m above ground for the three

measurement locations are summarised in Table 7.7. The A and k parameters of the

Weibull distributions best representing the transposed wind distributions are also

given. The shape parameter k of the transposed Weibull distribution is more or less

constant over Mt-Crosin (less than 2% variation between the sites), whereas the A

parameter varies by some 10%. Among the three sites, Côte Nord with 5.7 m/s at 45

m above ground exhibits the highest wind speed and shows the most favourable

wind power potential. The site of Côte Est would be the least productive site with 5.2

m/s.

The corresponding yearly energy output for a Vestas-V44 wind turbine has been

calculated, assuming a 3% loss due to machine unavailability and 10% loss due to

increased turbulence conditions. The resulting spatial distribution of the so-obtained

yearly energy output is shown in Figure 7.15 for the Mt-Crosin area. From this map

the most favourable location on this site appears to be located around the co-

ordinates (22.5 km, 29.3 km) with a potential of 645 MWh/year (11% higher than the

evaluated potential at the location of the wind trubine No.1). Such a map can be used

to decide where to locate the wind generators, keeping in mind that local obstacles
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such as isolated groups of trees have not been considered when performing the

evaluation.

Figure 7.15. Long-term estimated wind power potential map for the Mt-Crosin site (shaded)

calculated from the 16 years of data recorded at the Chasseral reference station. The

topography is given with the black isolines. Crosses show the locations of the installed wind

turbines, while squares represent the measurement masts. The x and y coordinates refer to

the origin of the simulation domain presented in Figure 6.3.

Between the location of Côte Est and Côte Nord, we have a factor 1.33 between the

predicted yearly energy output for a distance between the sites which is only 430m.

This difference in the power potential of the two locations is impressive. If we

assume that the relative errors we had for the short term prediction at measurement

height (Table 7.2) are representative of the long-term errors, then this factor of 1.33 is

even a conservative value of the real factor, since the underprediction was stronger

for the site of Côte Nord than for Côte Sud.

Considering that the transposition using the numerically simulated wind speed

ratios tends to underpredict the actual wind distribution, the long-term predicted
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mean wind speed and yearly energy output given in Table 7.7 are expected to be

conservative predictions for the actual Mt-Crosin conditions.

Table 7.7. Predicted long-term average wind speed and parameters of the Weibull

distribution at 45 m above ground level for the three sites of Côte Nord, Côte Sud and Côte

Est. The yearly energy output for a Vestas–V44 power characteristics is also given.

Weibull parametersAverage wind
speed
[m/s]

A [m/s] k

Predicted
energy output20

[MWh/year]

Côte Nord 5.7 5.9 1.68 596
Côte Sud 5.3 5.5 1.67 493
Côte Est 5.2 5.3 1.65 470
WT1 5.4 5.4 1.70 580
WT2 5.1 5.1 1.75 483
WT3 5.2 5.2 1.76 493

                                                     
20 Evaluation using efficiencies of 9.0=Tη , 0.1=arrayη , 97.0=availη .
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8 Sensitivity tests and limits of the method

As could already be concluded from the results showing the time evolution of the

wind speed ratios presented in Section 6.2, these exhibit a strong sensitivity to the

atmospheric conditions. In the present chapter we will further investigate the effect

of a change in the atmospheric conditions on the resulting wind speed ratios, testing

their sensitivity to changes of:

• geostrophic wind speed,

• thermal stratification,

• ground cooling,

• roughness.

Wind data transpositions will also be attempted with simulation results calculated

for various conditions that are not necessarily appropriate to represent the local

climatology of the Chasseral area. This will be done in order to assess the error on the

transposition results that can be induced by a poor knowledge of the local terrain or

wind conditions to be used as initial or boundary conditions.

8.1 Stability conditions and geostrophic wind speed

For the 240° and 330° wind directions, some simulations were performed, for various

vertical temperature gradients and various geostrophic wind speed values. The wind

speed ratios obtained from these are plotted for the site of Côte Sud and for the 240°

geostrophic wind direction versus the resulting Chasseral wind speed in Figure 8.1.a

and versus the Froude number of the simulation in Figure 8.1.b. The same results for

the 330° geostrophic wind direction are shown in Figure 8.2. The various symbols

used in the figures refer to the vertical real temperature gradient of the simulation.

As can be observed from Figure 8.1.a and Figure 8.2.a, the wind speed ratio for the

same wind speed at Chasseral can vary significantly when the stratification is

changed, and the variation is not a monotonic function of the vertical temperature

gradient . This can be seen e.g. for the 240° geostrophic wind direction, where, for a

wind speed of 12 m/s at Chasseral, the more stable case (-6.5 K/km) and the less

stable case (-9.0 K/km) give higher wind speed ratios than the intermediate stability

defined by –8.0 K/km. Even more surprising, two situations with the same

stratification conditions and same Chasseral wind speed can result in wind speed

ratios that can differ by a factor as large as 1.6. See e.g. the 330° geostrophic wind

direction (Figure 8.2.a) showing wind speed ratios of 0.4 and 0.65 that are obtained
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for a vertical real temperature gradient of –7.0 K/km for a Chasseral wind speed

around 14 m/s. These two different wind speed ratios correspond in fact to two

different values of the geostrophic wind speed.
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Figure 8.1. Wind speed ratio for the 240° geostrophic wind direction for various stability

vertical temperature gradients and geostrophic wind speeds. a) Ratios vs. resulting Chasseral

wind speed. b) Ratios vs. simulation Froude number. The simulations were performed with a

constant ground roughness of 0.03m.

When plotted versus the Froude number of the simulation (defined as a function of

the geostrophic wind speed) (Figure 8.1.b and Figure 8.2.b), the calculated wind

speed ratios appear to align along a trend function. For the 240° geostrophic wind

direction, apart from one simulation, which shows a significant departure from the

curve, the points align quite well on an analytical expression of the form

eq. 8.1 )exp()exp( FredcFrbaratio ⋅−−+⋅−=

with Fr  the Froude number of the simulation and the constants a=3.2, b=0.9, c=1.15,

d=3.0, e=0.5.

For the 330° wind direction, it is not so obvious that the points show a behaviour

depending on the Froude number of the simulation. When still trying to reproduce,

for the 330° wind direction, the behaviour of the wind speed ratio in terms of the

Froude number with eq. 8.1, we obtain the set of constants a=5.0, b=3.6, c=0.65, d=4.1,

e=2.6. For the latter case, it should however also be mentioned that since the main

flow component is perpendicular to the Jura range, the amplitude of the mountain

waves is more significant than for the 240° direction. For this reason it is more

difficult to reach a stationary state. For some situations, such a stationary state does

not necessary exist. Moreover, due to vertical gradients in the wind speed, it is not

easy to define a single value for the geostrophic wind speed to be used to calculate
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the Froude number. Both these reasons imply a larger uncertainty in both the values

of the wind speed ratio and the Froude number, which might explain the larger

dispersion observed in Figure 8.2.b.

The sites of Côte Nord and Côte Est show the same type of behaviour as shown here

for Côte Sud.

Cote Sud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30

Chasseral wind speed

V
(M

t-
C

ro
si

n
)/

V
(C

h
a

ss
e

ra
l)

dT/dz=-6.0 K/km dT/dz=-8.0 K/km

dT/dz=-7.0 K/km dT/dz=-9.0 K/km

     

Cote Sud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

Froude f(G)

V
(M

t-
C

ro
si

n
)/

V
(C

h
a

ss
e

ra
l)

dT/dz=-6.0 K/km dT/dz=-8.0 K/km

dT/dz=-7.0 K/km dT/dz=-9.0 K/km

a) b)

Figure 8.2. Same as Figure 8.1 for the 330° geostrophic wind direction and from simulations

performed with a variable ground roughness.

Another interesting feature shown by the simulations is the variation of the

simulated Chasseral wind direction as a function of the Froude number (Figure 8.3).
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Figure 8.3. Resulting Chasseral wind direction vs. Froude number of the simulation for the a)

240° geostrophic wind direction and b) 330° wind direction.
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It appears that for all the simulations, the Chasseral wind direction shows an

anticlockwise rotation relative to the geostrophic wind speed. From similarity

theories over flat terrain (see Appendix B), we would expect for a given thermal

stratification that the absolute value of the cross isobar angle (difference between the

geostrophic and ground wind direction) would increase when the geostrophic wind

speed (or Froude number) is reduced (see Figure 8.4)
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Figure 8.4. Expected behaviour of the wind direction at ground

relative to the geostrophic wind direction for various stability

conditions (northern hemisphere, flat terrain).

This is not the case in Figure 8.3, since we can see that the simulations with the

lowest Froude numbers show wind directions at Chasseral that are close to the 330°

geostrophic wind direction, whereas the largest Froude numbers show a larger

departure of the Chasseral wind direction from the geostrophic wind direction. It

appears in fact that the Ekman spiral that is set as an initial condition is not

conserved during the run. The influence of topography is strong enough to impose a

rotation of the wind vector at Chasseral so that the tendency that is present in the

initial solution is reversed. As would be expected from theory (see, e.g. Stull, 1988, or

Banta et al, 1990), this rotational effect due to the topography is stronger for low

Froude numbers than for high ones.

If we assume that the behaviour shown by the model results is representative of the

real atmosphere, then it is not so surprising that, when plotted versus the Chasseral

wind speed, the observed wind speed ratios show the significant scatter visible in

Figure 4.5. If one wants to classify the situations and attribute them a value for the

wind speed ratio, it seems from Figure 8.1 and Figure 8.2, that the combined

geostrophic wind speed and thermal stratification of the free flow are better

considered through the use of the Froude number for the simulation. This gives a

Geostrophic wind direction

Wind direction at ground



127

strong indication that this non-dimensional number should be taken into account

when classifying the meteorological situations over an area of interest.

Noting the trend shown above in terms of the Froude number, we tried to identify

the same behaviour in the observed wind speed ratios. From temperature data

recorded at the ground based stations of Chasseral (1599m ASL), Chaux-de-Fonds

(1018m ASL), Neuchâtel (485m ASL) and Jungfraujoch (3580m ASL, some 100 km to

the south-east of Chasseral) we calculated vertical real temperature gradients for

each concurrent record. Using this gradient and the Chasseral wind speed for each

concurrent record, we derived a Froude number from

eq. 8.2
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The observed wind speed ratios were then binned according to the Chasseral wind

direction and Froude number. Figure 8.5.a and b shows a comparison of the

observed and simulated wind speed ratios versus the Froude number calculated as a

function of the Chasseral wind speed. For the simulated values, we used the vertical

temperature gradient of the simulations to compute the Froude number, whereas for

the observed data we used temperature records from Chasseral and Jungfraujoch. It

should also be stressed before making the comparison between the observations and

simulations, that concerning the wind direction it is difficult to have equivalent sets

of data. First, we do not have hourly measurements of the geostrophic wind

direction, and secondly, from the model point of view, we can only set the high

altitude wind direction, without knowing a priori what the resulting Chasseral wind

direction will be. Looking at the resulting Chasseral wind direction for the 240° and

330° geostrophic wind direction (Figure 8.3), we decided to compare the simulated

ratios for the observed Chasseral wind direction 220° and 320° respectively.

As can be seen from Figure 8.5 plotting the ratios versus the Froude number did not

help reduce the scatter of the wind speed ratios and align them along a trendline.

The values obtained from the numerical simulations were also plotted (triangles).

The model values for the 240° wind direction tend to overpredict those measured.

For the 330° wind direction the model values tend to give a lower envelope to the

observations with Froude numbers below unity. For higher Froude numbers, the
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scatter of the simulated results appears to be well representative of that observed21.

The overprediction for the 240° geostrophic wind directions is related to the fact that

these simulations were done with a roughness length of 0.03m over the whole

domain, which is certainly too low for the actual terrain conditions. The 330°

predictions were simulated with a variable roughness as shown in Figure 6.5, which

shows larger roughness values that should be more representative of the site.
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Figure 8.5. Côte Nord to Chasseral observed (diamonds) and simulated (triangles) wind

speed ratio versus a Froude number calculated according to eq. 8.2 with the Chasseral wind

speed and using the temperature gradient between Chasseral and Jungfraujoch. a) 220° and

b) 320° Chasseral wind direction for the observations.

Concerning the fact that the behaviour in terms of the Froude number is not so

apparent from the observed data, it might be worth pointing out that:

- The Froude number for the observed data was calculated with the Chasseral

wind speed. It is also influenced by the atmospheric stability conditions, and

does not vary linearly with the geostrophic wind speed. Hence, the Froude

number calculated with the Chasseral wind speed does not contain the same

information as the Froude number obtained from the geostrophic wind speed.

- The vertical temperature gradient to obtain the Froude number for the

observations is calculated from ground based stations and might therefore not be

representative of the free flow stability conditions. Trying to use different pairs of

ground stations (Chasseral and Neuchâtel or Chasseral and Chaux-de-Fonds) did

                                                     
21 When plotted against a Froude number calculated with the Chasseral wind speed

instead of the geostrophic wind speed, the trend for the wind speed ratio is no longer

so good, which explains the larger scatter of the simulated ones presented in Figure

8.5.b compared to Figure 8.2.b.
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not improve the behaviour of the observed wind speed ratios as a function of the

Froude number.

In the light of the above remarks, it is possible that the associated error in the

calculation of the Froude number is responsible for a significant part of the large

scatter of the observed wind speed ratio. It would therefore be interesting to repeat

the analysis with data obtained from vertical profiles of wind speed and temperature

recorded over the area, to see whether the behaviour of the simulated wind speed

ratio as a function of the Froude number can be observed in natural atmospheric

flows.

Another possible explanation for the large scatter in Figure 8.5 is related to the fact

that the type of vertical profiles we used for both the wind speed and temperature do

not cover the wide range of profiles that can actually be observed in nature. The type

of wind speed profile we used to obtain Figure 8.1 and Figure 8.2 assumes that we

have barotropic conditions, which is certainly not appropriate to represent all the

situations. In addition to significant wind speed shear, the actual observed vertical

profiles also show wind direction shear (see e.g. Furger, 1990). Inversions in the

temperature profiles are also common and are responsible for a reduced coupling

between the various layers. Further physical phenomena such as the ground heating

or cooling or the latent heat release can also significantly affect the local flow

conditions.

The main conclusion that can be drawn regarding the combined effect of the vertical

stratification and geostrophic wind speed is that the wind speed ratio is extremely

sensitive to their variation. Depending on how we define our simulation conditions

for e.g. the 330° wind direction we can end up with a Mt-Crosin to Chasseral wind

speed ratio varying between 0.35 and 0.72! In terms of the wind data transposition,

using one value instead of the other means a factor 2 between the predicted wind

speeds. This shows clearly that if we want to reproduce the observed sector average

wind speed ratio we need to define our simulation conditions in such a way that they

represent the ‘average situation’ for this particular direction. This observation clearly

highlights the fact that the numerical model, even if it were perfect, cannot be used

for a wind power potential estimation without a classification of the meteorological

situations occurring over the area of interest.
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8.2 Ground heat flux

The effect of a ground heat flux on the simulated wind speed ratio was tested

through the application of a ground cooling. We imposed a cooling rate of –2.0 K/h

on the ground potential temperature during the first hour, following by a cooling

rate of –1.0 K/h for the next 6 hours.

Compared to the same situations performed with zero heat flux through the ground,

the wind speed ratio obtained with the ground cooling was increased in some

situations and reduced in others. For the 240° wind direction, this behaviour

appeared to be consistent with the behaviour shown in Figure 8.1. More precisely,

when starting with atmospheric conditions corresponding to a Froude number in the

region where the wind speed ratio increases with the Froude number (Zone II in

Figure 8.6), imposing a ground cooling leads to a reduction of the wind speed ratio.

This is consistent with the fact that the ground cooling tends to stabilise the

atmospheric conditions, and hence reduces the Froude number of the simulation.

Conversely, when starting with atmospheric conditions corresponding to a Froude

number in Zone I, imposing a ground cooling also leads a reduction of the Froude

number and hence to an increase in the simulated wind speed ratio.

Typical values of the change in the wind speed ratio due the ground cooling are

given in Table 8.1 for the 240° wind direction.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5

Froude 

w
in

d
 s

p
e
e

d
 r

a
ti

o

Figure 8.6. Typical behaviour of the wind speed ratio as a function of the Froude number of

the simulation. When imposing a ground cooling, we tend to reduce the initial Froude

number of the simulation (moving to the left). Therefore, for an initial solution in Zone I, the

imposition of a ground cooling implies an increase in the wind speed ratio. In Zone II we

have the opposite tendency.

Zone II
Zone I



131

Table 8.1. Order of magnitude of the effect of ground cooling on the wind speed ratios for

two simulations with different initial Froude numbers done for the 240° geostrophic wind

direction.

Côte Nord Côte Sud Côte Est Côte Nord Côte Sud Côte EstInitial
Froude
number rationeutralratio  /∆

After 2 hours
rationeutralratio  /∆

After 6 hours

3.6 -4% -5% -5% -9% -13% -12%
1.22 +2% +9% +8% +5% +22% +18%

In an attempt to include the thermally dominated situations in the transposition

methodology the behaviour observed here could be incorporated as a modification of

the wind speed ratio depending on the sign of the ground heat flux.

8.3 Ground roughness

Another parameter in the simulations, which appears to play a major role in the

resulting wind speed ratios is the ground roughness. To test its influence, the set of

stable situations summarised in Table 7.1 was repeated using a constant ground

roughness of 0.03m. Compared to the variable roughness map used previously, the

use of 0.03m significantly reduces the mean roughness over the domain. This value is

certainly too low compared to the actual terrain conditions and it will only be used to

appreciate the effect of the roughness on the calculated wind speed ratios.

For both the sites of Côte Nord and Côte Sud, we plotted the wind speed ratios

obtained with the reduced roughness in Figure 8.7 (diamonds). For comparison, the

values previously obtained with the variable ground roughness were also given

(circles). A consequence of the roughness reduction is an overall increase in the wind

speed ratios.

Compared to the results obtained with the variable ground roughness, the increase

of the calculated wind speed ratio can be explained by the following:

• the Chasseral wind speed has not been changed much with the introduction of

lower roughness lengths. This is due to the fact that the Chasseral anemometer

location is on an exposed ridge at 60m above ground. The wind speed at this

level is therefore not affected so much by the surface layer. In fact, though the

roughness length at Chasseral has been decreased (0.05m instead of 0.03m), the

Chasseral wind speed is not systematically increased.

• at Mt-Crosin, the wind speed at 10m and 30m above ground is significantly

increased. This is due to the fact that the measurement locations on the Mt-Crosin
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lie on a gentle slope, in the surface layer. There is therefore a longer fetch over

which the wind profiles are affected by the local roughness. With a reduced

roughness, and a same geostrophic wind condition we therefore obtain an

increased wind speed at 10m or 30m above ground.

Côte Nord

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 60 120 180 240 300 360

Chasseral direction

V
(M

t-
C

r
o

si
n

)/
V

(C
h

a
ss

e
ra

l) obs.

constant roughness

variable roughness

Côte Sud

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 60 120 180 240 300 360

Chasseral direction
V

(M
t-

C
r
o

si
n

)/
V

(C
h

a
ss

e
ra

l) obs.

constant roughness
variable roughness

Figure 8.7. Wind speed ratios at Côte Nord and Côte Sud obtained from the set of stable

situations (diamonds) defined in Table 7.1. Diamonds: simulations with constant mz 03.00 = ,

circles: variable ground roughness as in Figure 6.5. The mean observed values (continuous

line) are also given together with the standard deviation about the average (dashed lines).

The strong sensitivity of the results to the estimated ground roughness demonstrates

that this parameter must be considered with extreme care when attempting to

perform a wind data transposition from numerical simulations. The quality and

precision of the roughness data is a key factor determining the accuracy of the

investigated site-to-site relationships. In the case we presented here, we can say that

the roughness distribution we used is certainly too coarse (horizontal resolution: 2

km). As a consequence, most of the Mt-Crosin surroundings are set to a forested

area, which does not correspond to the real terrain. Moreover, the roughness length

of 1m that we used for the forested area might also be a bit exaggerated.

For the 270° geostrophic wind direction (Chasseral wind direction ~280°), two

additional simulations were performed to test the influence of different roughness

values. For the first test, the variable roughness map was used with a local reduction

of the roughness length to 0.05m over an area covering some 600 x 600 m on the Mt-

Crosin site. Similarly to what was seen for the case of Askervein Hill (Appendix D),

the local modification of the roughness length did not significantly affect the

resulting wind speed ratios. For the second test, we used a variable roughness map
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as in Figure 6.5, taking a value of 0.8m22 instead of 1m for the roughness length of the

forested areas. Reducing the roughness length this way implied an increase of the

simulated wind speed ratio by 3% at Côte Sud and Côte Est and by 5% at Côte Nord.

This different sensitivity of the various stations is due to the fact that the measuring

instruments at Côte Nord are located at 10m AGL, whereas they are at 30m AGL for

the two other sites.

As observed from the two additional simulations that were described above, the

tendency to underestimate the sector proportionality factors might be explained by

slightly to high roughness values more than by a too coarse resolution of the

roughness map. However, since the latter behaviour might not necessarily be

observed for all the wind directions, it would still be interesting to see how the

results would be changed when using a roughness map that has the same resolution

as the numerical model.

8.4 Neutral static stability

Finally, we will present some results showing the consequences of neglecting the

static stability of the atmosphere on the simulated wind speed ratios.

A set of 12 simulations was thereby performed for a geostrophic wind speed of 10

m/s, with a vertical temperature gradient of –9.7 K/km (quasi-neutral), by varying

the geostrophic wind direction by steps of 30°. These simulations were done

assuming a constant ground roughness of 0.03m. As the conditions chosen (quasi-

neutral stratification and geostrophic wind speed that is constant with the wind

direction) are not at all representative of the climatology of the area, it is not expected

that they will lead to wind speed ratios that agree with the observations. These runs

are only done to evaluate the order of magnitude of the errors when using the code

as a black box, without any valuable input about the type of situations that occur

over the area of interest.

For both the sites of Côte Nord and Côte Sud, the resulting wind speed ratio is

plotted in Figure 8.8 (triangles) versus the resulting Chasseral wind direction and

compared to the average ratios obtained from the observations. For comparison, we

also plotted the wind speed ratios obtained previously with the set of stable

situations representative of the local climatology (diamonds).

                                                     
22 The value of 0.8m corresponds more to the value recommended in the European

Wind Atlas.
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With the use of a neutrally stratified atmosphere, and constant geostrophic wind

speeds, the wind speed ratios are increased for most of the wind directions. The

increase can be very significant for some of the sectors (about 40% at Côte Sud for the

resulting Chasseral wind direction 220° and 300° to 330°) and negligible for others

(wind direction ~40° at Chasseral). The change in the simulation conditions can also

lead to a slight reduction in the wind speed ratio (sector 20° or 190°).

For the most frequent wind directions at Chasseral (30° to 90° and 210° to 330°), the

wind speed ratios lie even above the range of variation that would be given by the

standard deviation. Also, the agreement of the sector variation of the simulated and

measured wind speed ratio is not good.
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Figure 8.8. Wind speed ratios obtained from neutral (triangles) and the set of stable situations

(diamonds) as defined by the Fallot classification (see Table 7.1). The mean observed values

(continuous line) are also given together with the standard deviation about the average

(dashed lines).

8.5 Effects on the transposed wind speed distribution

The transposed wind distributions obtained from the set of simulations performed

with a constant roughness length of 0.03m are shown in Figure 8.9 for the

measurement locations of Côte Nord. Both results obtained from the stable situations

representing the advective situations entering the Fallot classification (dark grey) and

from the neutral simulations (light grey) are plotted. For comparison, the observed

wind speed distributions (black) has also been included in the diagram.

The comparison clearly shows that the transposition done this way produces too

high wind speeds. From Table 8.2 we can see that the neutral simulations that were

done with a roughness length of 0.03m lead to an overestimation of 25% to 41% for
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the mean wind speed. The corresponding estimated yearly energy output is

overestimated by 81% to 100%. With the introduction of stable conditions, the

overestimation is reduced but the relative errors on the predicted mean wind speed

(4%-19%) and yearly energy output (19%-55%) are still large (see Table 8.3).

The transposed distributions on the sites of Côte Sud and Côte Est presented a

similar behaviour as the site of Côte Nord.
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Figure 8.9. Comparison of the observed (black) and transposed wind speed distributions at

Côte Nord, obtained from numerical simulations with a neutral stratification (light grey), and

from the set of simulation presented in Table 7.1 (hatched). The simulations were run with a

roughness length of 0.03m.

Table 8.2. Mean wind speed and yearly energy output obtained with proportionality factors

from the numerical simulations, only considering a neutrally stratified atmosphere.

Station
name

Average wind speed
[m/s]

Yearly energy production
[MWh/year]

Measured Transposed Relative
error

Measured Transposed Relative
error

Côte Nord 5.2 7.0 35% 806 1618 101%
Côte Sud 5.3 6.6 25% 800 1450 81%
Côte Est 5.6 7.9 41% 983 1907 94%
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Table 8.3. Mean wind speed and yearly energy output obtained with proportionality factors

obtained from the numerical simulations, considering the set of stably stratified situations

defined in Table 7.1.

Station
name

Average wind speed
[m/s]

Yearly energy production
[MWh/year]

Measured Transposed Relative
error

Measured Transposed Relative
error

Côte Nord 5.2 6.0 16% 806 1197 49%
Côte Sud 5.3 5.5   4% 800 948 19%
Côte Est 5.6 6.6 19% 983 1424 55%

If one wanted to take advantage of the tendencies observed from the sensitivity tests

performed in this chapter when performing the wind data transposition, then we

could no longer use the simple methodology starting from the reference station wind

statistics. We would require in this case a classification of the meteorological

situations that would include parameters such as the geostrophic wind direction gθ ,

geostrophic wind speed G , the Froude number of the simulation Fr  (from the free

flow stability conditions and geostrophic wind speed) as well as the ground heat flux

grJ . In this case, each point ( )
grg JFrG ,,,θ  would be attributed a frequency of

occurrence ( )
grg JFrGf ,,,θ .

Trendlines such as those shown in Figure 8.1 or Figure 8.2 could be determined for

the ratio between the prediction site and geostrophic wind speeds by performing a

dozen simulations for each of the 12 geostrophic sectors23. Each point in the

classification could be mapped to the prediction site in a similar way as presented in

Figure 2.2 to obtain the wind speed distribution at the prediction site from

eq. 8.3 ∑
=⋅

=

lkji
vGJFra

lkjipred
predjlki

JFrGfvh
,,,

),,(
),,,()(

θ
θ

The wind speed ratio ),,( grg JFra θ  would be a function of the geostrophic wind

direction gθ  and Froude number Fr , with a correction taking into account the effect

of the ground heat flux grJ . This would be one way to refine the transposition

methodology in order to take into account a larger range of atmospheric situations

and have a better representation of the local climatology.

Such a refinement would be quite expensive in terms of measurements (vertical

profiles and geostrophic wind speed are not necessarily available and if so certainly

not as hourly data), classification work and CPU time to perform the additional

                                                     
23 The ratio between the Mt-Crosin and the geostrophic wind speeds also appears to

be a function of the Froude number. So does the ratio between the Chasseral and

geostrophic wind speeds.
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simulations. This refinement would bring a valuable piece of information that would

be useful to perform a data transposition in the bottom of valleys where thermal

effects play a significant role. However, for sites potentially interesting for wind

power application (more exposed, located on a ridge), the increase in complexity in

the transposition methodology does not ensure that the transposition results will be

significantly improved (see also Section 4.3).

Considering the amount of additional work that this refinement would require it is

considered to be beyond the scope of the present work.
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9 Conclusions and further work

The present work concerned the development and testing of a numerical tool,

together with a transposition methodology for wind power assessment over complex

topography.

To this end, several modifications were made to the CFX4 flow solver, to make it

suitable for solving atmospheric flows. Since for the meteorological scales considered

in this work (meso-γ to meso-β scale following the classification by Orlanski, 1975)

this kind of implicit full Navier-Stokes solver is not commonly used, it was felt that a

model validation was required. The validation was therefore done firstly to check

that the implementations made to CFX4 were done properly and secondly to give

confidence in the model’s ability to reproduce atmospheric flows.

Comparing the model results with empirical formulations or with observations

showed that over flat terrain, the effect of ground roughness or a roughness change

on the boundary layer development was properly accounted for. For purely 2D

neutral boundary layers (i.e. for boundary layers where the effect of the Earth’s

rotation is not significant), it was found that for smooth ground conditions the

simulated wind speed profiles are in good agreement with the Coles velocity defect

profile. It also appeared for both smooth and rough conditions, that the simulated

wind profiles could be represented very accurately by an analytical formulation

proposed by Alexandrou.

In the case where we assume that the incoming flow entering the domain is fully

developed and its turbulence characteristics are in equilibrium with the ground

roughness conditions representative of the area, it would be very useful to have a

parameterisation of the wind speed, k  and ε  profiles to be used as inlet boundary

conditions. This can avoid the need to extend the simulation domain upwind of the

area of interest and therefore reduce the cost of the simulation (reduced domain size

and CPU time). From this point of view the Alexandrou formulation is a very useful

tool since it provides wind speed, as well as the k  and ε  profiles which describe a

turbulent boundary layer in equilibrium. This could be demonstrated from

simulations performed over the real terrain of Askervein Hill.

The introduction of a buoyancy term formulated in terms of the potential

temperature in the ε−k  model allowed the effect of the free flow stability on the

development of the entire boundary layer to be taken into account. The model results
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presented in Appendix B, where the Ekman layer development over flat terrain was

reproduced, were in relatively good agreement with results from other models and

from laboratory data. It was also shown that for a range of roughness up to 0.1m, for

free flow stratification given by zT ∂∂ /  between –6.5 and –9.8 K/km and for various

geostrophic wind speeds, the Zilitinkevich parameterisation, with a modified set of

constants, is suitable for representing the resulting u  and v  profiles simulated by the

model. For cases where a heat flux through the ground was applied, the model and

the Zilitinkevich parameterisation agree only for situations with moderate ground

cooling ( hKtT /5.0/ −<∂∂ ). From the work presented in Appendix B.4, it appears that

the Zilitinkevich formulation is very useful in providing the numerical models with

an initial solution and a boundary condition for the u  and v  profiles in the case

where it becomes important to properly represent the Ekman spiral and when

relatively few data are available.

From simulations performed over a 2D theoretical mountain profile, for a stably

stratified atmosphere, it could also be shown that the model is able to reproduce flow

features like mountain waves for both linear and strongly non-linear situations.

Therefore, the model appears be able to simulate phenomena that would be more

representative of the meso-β scale and take into account their effect on the flow

development close to the ground.

For flow situations which exhibit a good coupling between the ground and high

altitude, i.e. situations where the boundary layer development is governed by the

free flow wind speed, it could be shown from the validation tests reviewed above

that the model is able to satisfactorily reproduce both the flow development close to

the ground and at higher levels.

For flow situations with significant thermal effects close to the ground, reasonable

solutions for the downslope winds developing along the Jura chain were obtained.

The breeze intensity and breeze layer thickness simulated by the numerical model

agree fairly well with the analytical expressions given by Hertig. Some comparisons

with the numerical model TVM (Thunis, 1995) were also performed for the

simulation of a land-sea breeze system with the evolution of a convective cell

associated with the diurnal cycle. These agree quite well with the results presented

by Thunis, but are not shown in the present contribution, for the reason that it is felt

that some more validation work would be required for the simulation of thermally

dominated situations.
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Another question which remains unanswered concerning the numerical model is the

choice of appropriate turbulence constants to simulate atmospheric flows. So that the

simulations are able to reproduce the non-dimensional turbulent kinetic energy close

to the ground measured by Hinze, or Panofsky & Dutton, the set of constants

proposed by Duynkerke would be more suitable than the standard values. The wind

speed profiles measured by Bradley behind a smooth-to-rough transition were also

slightly better reproduced by the model when using the set of constants proposed by

Duynkerke. However from the 3D simulations over Askervein Hill, the superiority of

Duynkerke constants relative to the standard constants could not be fully

demonstrated. We showed from this validation case that both the standard and

Duynkerke’s turbulence model constants lead to horizontal wind speed distributions

that are in good agreement with the observations. When the standard constants are

used, good results are obtained with a roughness length of 0.03m, whereas for

Duynkerke’s constants, it was required to assume a roughness reduction over the hill

to reproduce the horizontal wind speed distribution. When the normalised turbulent

kinetic energy profile over the hill top is accurately reproduced with the standard

model constants, the vertical profile of the speed-up ratio is not well reproduced for

the lowest 5 m AGL. On the other hand, the profile of the speed up ratio is very well

reproduced when using the constants given by Duynkerke, but then we obtain an

overestimation in the turbulent kinetic energy profile.

Concerning the site to site wind data transposition, we proposed an extension of the

standard MCP method applied to reproduce the wind probability density function at

the prediction site from the wind direction and wind speed distribution at the

reference site.

A back-prediction was performed, using various types of site-to-site relationships

obtained from concurrent data sets, to obtain the wind speed distributions at the

elevated prediction sites of Mt-Crosin as well as at the less exposed sites of Chaux-

de-Fonds and Neuchâtel. From this we found that:

• With both the linear relationship )()( θθ cvmv refpred +⋅=  and the simple

proportionality relationship refpred vav ⋅= )(θ  between the reference and prediction

sites, we were able to obtain a good prediction of the mean wind speed. The

relative error between the predicted and measured mean wind speed was less

than 5% for the five sites considered.

• When evaluating the yearly energy output that could be obtained from a

Vestas-V44 wind turbine using the predicted wind speed distribution, we found
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that the proportionality relationships gave better results than the linear

relationships with a non-zero intercept.

As derived from the observations, the assumption of a constant wind speed ratio for

a given reference site wind direction is far from valid when considering hourly

concurrent records. It appears however that using average sector wind speed ratios

to perform the transposition leads to a good prediction of the transposed wind speed

distribution. Generally, the use of two-parameter instead of one-parameter

relationships worsened the transposition results. Simply increasing the complexity of

the transposition relationships by adding one more parameter to represent the

behaviour of the observations does not ensure that the transposition will be

improved.

Though slightly underestimated, the observed sector wind speed ratios were fairly

well reproduced by the numerical model, when using a roughness distribution more

or less representative of the area and performing simulations with atmospheric

conditions that closely correspond to the average observed situations.

Transposing the short-term Chasseral wind data to the Mt-Crosin site using the wind

speed ratios calculated by the numerical model, the Mt-Crosin wind speed

distributions were calculated at the three measurement locations and were compared

to those observed. This showed that the energy output which would be produced by

a Vestas-V44 in these conditions is underpredicted by 8% to 36% and the mean wind

speed by 7% to 18%. When predicting the wind speed distribution at the wind

turbine hub heights and comparing with the actual production data for the year 1997,

the yearly energy output was underestimated by 22% to 24% for the three machines.

When comparing the production data month by month, the relative errors of the

prediction were more significant, showing the strong sensitivity of the results to the

fact that from one month to another, the meteorological situation occurring are

distributed differently. When the wind directions for which the simulated wind

speed ratios depart from the observations occurred more frequently than on average

during a given month, a larger error in the monthly prediction is obtained.

The results obtained for the transposition made with the relationships established by

the numerical model show that this model is a valuable tool for the wind power

potential assessment over complex terrain. In fact, the accuracy obtained for the

prediction is typically of the same order of magnitude as that which can be achieved

with one year of measurements on site.
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From the numerical simulations performed with various geostrophic wind speeds

and free flow stratification conditions, it could be observed that, for a given

geostrophic wind direction, the wind speed ratio is a function of the Froude number

of the simulation and is extremely sensitive to a variation in this parameter. When

imposing a ground cooling, the simulated wind speed ratios were modified in a way

that is coherent with the behaviour in terms of a Froude number.

In addition to the sensitivity to the atmospheric stability conditions, the simulated

wind speed ratios are also very sensitive to the ground roughness conditions.

Assuming that the strong sensitivities observed for the calculated wind speed ratios

are correct, it was concluded that a good numerical tool to simulate the wind fields

over the area of interest is not sufficient to perform an accurate wind data

transposition. In addition to the model, it is necessary to have some more

information about the typical meteorological situations occurring, in the form of a

classification. Fortunately, it is possible to obtain good results for the wind data

transposition, when using a very simple set of situations representative of the

average meteorological conditions observed in a dozen wind directions. This was

verified at least for the well-exposed site of Mt-Crosin, but might not necessarily be

true for lower altitude sites, which often lie below thermal inversion levels. For these

cases, instead of using the simple transposition methodology used in this work, it

might be better to apply one that would be more like a ‘statistical-dynamical’

approach mentioned earlier.

With this in mind and from the point of view of further work, it is suggested, using

the Payerne soundings and ground data from several stations, that the various

climatic situations are sorted in two groups: one for the advectively and one for the

thermally dominated situation. From the tendencies observed for the simulated wind

speed ratios it might be a good idea to classify the meteorological situations as a

function of the geostrophic wind speed and direction, and Froude number of the free

flow. It would then be informative to see whether all the days belonging to a given

cluster would correspond to a similar flow pattern at the ground. This could be done

e.g. for the area around Basel, using the REKLIP data set and by applying a

classification similar to that carried out by Kaufmann. The essential difference with

the approach used by Kaufmann would be the consideration of a top-down

approach, starting from the physical parameters including the Froude number of the

simulations, which appears to be an essential parameter from the numerical model

results.

If this approach is successful, than one could try to repeat the work also considering

the thermally dominated situations.
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The reason for doing such a classification starting from the geostrophic conditions is

that it is expected to be representative of a larger area than just the Chasseral and Mt-

Crosin immediate surroundings. It could then be used make wind data

transpositions over most of the Jura chain.

From the numerical model point of view, so that one could deal with a larger range

of meteorological situations, it would be worth including moist processes, as well as

a soil model. To reproduce real events, it would be necessary to couple the numerical

model with a larger scale model that could provide the time dependent boundary

conditions. It should however be borne in mind, that due to the high computing time

required to perform a simulation, it will not be possible in the immediate future to

use such a model for the purpose of weather forecasting.

Concerning the good agreement that was observed when comparing the numerical

model results with the Zilitinkevich parameterisation for the Ekman spiral

development over flat terrain, it would be interesting to further investigate this type

of boundary layer development by comparing the results with observations. This is

to be the subject of further work using data collected over the Greenland ice sheet

during well developed katabatic flows with rather low synoptic forcing.

And finally, to further evaluate the origin of errors in the wind data transposition, it

would be useful to continue with the wind measurement campaign on the Mt-Crosin

site. Considering the complex terrain of the area, the machine characteristics that

were used to calculate the predicted energy production might not be appropriate for

the actual Mt-Crosin site conditions, given that turbine performance can be

influenced by local turbulence. Also the profiles that were calculated on site by the

numerical model were not validated. Since the wind speed vertical gradients

obtained by the model were used to transpose the wind data to the turbine hub

height, it would be useful to investigate the variation of the wind speed over the

turbine rotor more thoroughly.
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A Boundary layer growth over a 2D flat plate for neutral
atmospheric conditions (without including the Coriolis
force)

In the following Sections A.1 to A.3, simulation results are shown for the development

of a two-dimensional neutral boundary layer over flat terrain. The idea behind the

various tests performed in this part was to check the implementation of the ground

roughness using the wall treatment presented in Section 5.1.2 for both smooth and

rough terrain conditions.

Local drag coefficients and boundary layer height obtained with an incoming uniform

velocity profile have been compared to experimental results available from the literature

(Rebuffet, 1969, and Wood, 1982).

The wind speed profiles obtained with the model for both smooth and rough ground

surfaces have been compared to two analytical formulations:

• One given by Coles (1956) valid for profiles developing over a smooth surface

• One proposed by Alexandrou (1996) (see Appendix I), which has the advantage of

being able to reproduce profiles developing over both smooth and rough surfaces.

And finally, simulation results with a non-uniform roughness distribution were

compared to Bradley’s measurements for smooth-to-rough and rough-to-smooth

transitions (Bradley, 1968).

A.1 Smooth plate with incoming uniform wind profile

The growth of a neutral turbulent boundary layer over a flat plate simulated by the

numerical model has been compared to theoretical and experimental results. For this

purpose, 2D simulations were performed with a computational domain similar to the

one presented in Figure A.1. The horizontal length of the domain L
x 

was of 1000 m,

separated into 100 elements of increasing size which follows a geometric progression

with a factor of 1/0.95. The vertical length L
y
 was 200 m and was divided into 20

elements, with element’s size also varying according to a geometric progression. The

latter progression is given by a factor 1.44.

As boundary conditions at the domain entrance, we fixed a uniform wind speed profile

with m/s 5)( ==
∞

UzU . For the turbulence variables we assumed a low turbulence level,

setting k and ε  to 4
10

− , the default model values.
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Ly

Lx

Uin

Figure A.1. 2D computational domain used to simulate the boundary layer growth.

A.1.2 Local drag coefficient

For a turbulent boundary layer developing over a flat plate without horizontal pressure

gradients, von Karman gives the following semi-empirical expression for the evolution

of the local drag coefficient C f  as a function of xR  the Reynolds number along the main

flow direction:

eq. A.1 2.0059.0 −
⋅= xf RC (for 6105 ⋅<xR )

with the definitions

eq. A.2 C Uf =
∞

τ ρ( )1
2

2 and

eq. A.3 R U xx =
∞

ν

This behaviour for C f  has been empirically verified for Reynolds number up to 6105 ⋅

(Rebuffet, 1969).

From other theoretical calculations von Karman derived an implicit formulation for

C f which reads:

eq. A.4
1

17 4 15 10
C

R C
f

x f= + ⋅. . log ( )

Instead of the implicit expression for C f , Michel proposed an explicit relationship of the

form

eq. A.5 C Rf x= ⋅
−0 0368

1
6.

which also compares well to experimental results (c.f. Rebuffet (1969), p. 102).

For a uniform incoming wind profile given by U z U( ) = =
∞

5 m/s , the local drag coefficient

at ground obtained by the numerical simulation has been plotted versus Rx  and

compared to the explicit relationships given by von Karman and Michel (Figure A.2).
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As can be seen from Figure A.2, the model results compare very well with both

formulations for Reynolds numbers between 5
105 ⋅ and 6

105 ⋅ . For higher Reynolds

numbers, above which the von Karman formulation (eq. A.1) is no longer verified, the

model results conform well to the formulation given by Michel (eq. A.5). The

underestimation of the local drag coefficient for Reynolds numbers smaller than 5
105 ⋅  is

not a problem as such. As explained in Schlichting (1968), the expressions given above

for the local drag coefficient are valid with the assumption that the flow is turbulent at

the entrance of the simulation domain already. With the default values for the turbulent

variables set at the model inlet, the incoming flow is laminar and changes downstream

to a turbulent flow. The distance at which the transition occurs depends on the

turbulence intensity of the incoming flow.

Drag coefficient

flat plate without roughness
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Reynolds number along main flow direction
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theory, von Karman

theory, Michel

Figure A.2. Comparison of the local drag coefficient obtained from the

simulation with empirical formulations.

A comparison of the model simulated drag coefficient with the implicit relationship (eq.

A.4) proposed by von Karman was also done. For that purpose, the behaviour of both

C f  and ( . . log ( ))17 415 10

1
+ ⋅

−
R Cx f  were plotted in Figure A.3.

For values of xR  larger than 6
105 ⋅  both curves compare very well, hence verifying the

implicit relationship eq. A.4. For 5
105 ⋅ < xR < 6

105 ⋅  there is still a reasonable agreement

between both curves, but the agreement starts really to break down for values of xR

lower than 5
105 ⋅ , for the same reason as mentioned above.
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sqrt(Cf) model from 1/(1.7 + 4.15 log Rx Cf)

Figure A.3. Comparison of the right and left-hand side terms appearing in the

implicit equation (eq. A.4) for fC obtained by the model[M3].

A.1.2 Velocity profiles

The velocity profiles resulting from the simulation of a neutral flow over a smooth plate

without pressure gradients have been compared to the analytical formulations

presented by Coles (1956) and by Alexandrou (1996). Both formulations were proven to

reproduce experimental results. The Coles formulation is reproduced below, while

Alexandrou’s formulation is given in Appendix I.

A.1.2.1 Coles formulation

When representing the boundary layer wind speed profile by an analytical expression,

the distinction is usually made between the internal region of the boundary layer,

where the profile verifies the so-called law of the wall, and the external region, where

the profile is given by a velocity defect law.

For the internal region, the theoretical non-dimensional velocity profile in the

logarithmic region follows the relationship

eq. A.6 Cyu +=
++

ln
1

κ

with the non-dimensional wind speed 
*u

u
u =

+  and the non-dimensional distance from

the wall 
ν

*uy
y

⋅
=

+ .
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Formulated in terms of the wall variables, the above relationship becomes (Cousteix,

1989):

eq. A.7
















+

















⋅⋅=
∞

∞
C

CyUC
Uu

ff

2
ln

1

2 νκ

with  5 =C , 4.0=κ (von Karman constant) and 
∞

U  the free stream velocity.

In the external region, the velocity profile is expressed in the form of a velocity defect

law, such as:

eq. A.8
hu

uU y
=          )(

*

ηηφ=
−

∞

where h stands for the boundary layer height.

Assuming the existence of the logarithmic region, Coles (1956) proposed a velocity

defect profile of the form

eq. A.9 φ η
κ

η
κ

ϖ η( ) ln( ) ( ( ))= − +
′

−
1

2
B

From a systematic comparison with experimental results, Coles retains the following

formulation for ϖ :

eq. A.10 ϖ πη= −1 cos( )

The parameter B’ is not a universal constant. It is related to the local drag coefficient C f

and the boundary layer height h . Considering that for the limit η→0 , the defect law

must correspond to the logarithmic law, the following relationship between B′ , C f  and

 h  can be derived:

eq. A.11
κνκ

B
C

huC

u

U f ′
++==

−∞
2

)ln(
1

)
2

( *

*

2
1

Assuming that eq. A.11 is verified, then the velocity defect law (eq. A.8) is only a

function of the boundary layer height h  and friction velocity *u  (or drag coefficient C f ).

The simulated velocity profiles were fitted to the velocity defect law (eq. A.8). Since we

used the drag coefficient fC  calculated by the model, the only parameter remaining to

be fitted is the boundary layer thickness h . Repeating the fit for several distances

downwind of the entrance of the computational domain gave the boundary layer

heights shown in Table A.1. The values of B′  inferred from eq. A.11 were also reported.

These increase with the downstream distance x, reaching a value of 0.5 for the largest

x’s.

Figure A.4 shows two velocity profiles obtained from the numerical simulation (isolated

symbols) at the arbitrary distnaces x=205 m and x=926 m. The logarithmic profile (eq.

A.6) as well as the best fit for the velocity defect law have also been plotted for
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comparison. The agreement between the simulation results and the theoretical

formulation given by Coles is very good.

Table A.1. Boundary layer thickness h  and B′  values resulting from

fitting profiles at varying distances with the velocity defect law.

Downstream distance

[m]

boundary layer thickness

[m]

B’

12 0.225 0.414
102 1.39 0.459
205 2.53 0.495
498 5.73 0.502
793 8.71 0.498
926 9.84 0.502

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00

U [m/s]

y [m] 

x = 205 m, model

x = 205 m, log law

x= 205 m, defect law

x = 926 m, model

x = 926 m, log law

x = 926 m, defect law

Figure A.4. U velocity profiles for a boundary layer developing over a smooth surface.

Model calculated profiles are compared to the logarithmic and velocity defect law.

In addition to the comparison with the Coles profiles, we also compared the simulated

profiles for the smooth case with the formulation proposed by Alexandrou (Appendix I).

In the latter, the parameters to be varied during the fit are the boundary layer thickness

h  and the constant c
1. For the friction velocity *u , we used the value calculated by the

numerical model. The parameters values resulting from the fitting procedure at the fetch

x=205 m and x=926 m are presented in Table A.2, together with the values of a, c and B

obtained by Alexandrou when fitting Klebanoff’s measurements on a flat smooth plate.

Comparing both sets of values shows that we obtain a constant c, which exceeds by 10%

the one given by Alexandrou. This difference is probably due to the fact that when

                                                     
1 See Appendix I for the definition of the three constants a, c and B appearing in the

Alexandrou formulation.
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fitting Klebanoff’s data, Alexandrou had the friction velocity as an additional parameter

to be fitted, whereas in our case, it is given by the numerical model result. Considering

that a change of 1% in the friction velocity implies a change of 3% in the value of the

constant c obtained from the fit, the difference of 10% between both values can easily be

explained by a difference in the friction velocity.

One can note that the boundary layer height obtained with Alexandrou’s formulation

are higher than the one resulting from the fit using the Coles velocity defect law (see

Table A.1 and Table A.2). The approximation in eq.I.6 proposed for B is verified to

within 5%.

A comparison of the simulated and analytical wind speed profile is given in Figure A.5,

which shows that the analytical formulation given by Alexandrou is also very

appropriate to represent the model results.

Table A.2. Parameters resulting from fitting the model calculated profiles with

Alexandrou’s formulation at the downstream distances x=205 m and x=926 m.

x=205 m x=926 m

Alexandrou’s results fitting

Klebanoff’s measurements for a

smooth plate

c (varied during fit) 0.183 0.183 0.166

ca /1= 5.453 5.453 6.022

h  (varied during fit) 3.193 m 12.446 m

B  (calculated from eq.I.2) 9.873 11.15 7.326
B  (expected from eq.I.6) 9.549 10.82

*u  
(from the model) 0.155 0.142

0.01

0.10

1.00

10.00

100.00

1000.00

2 2.5 3 3.5 4 4.5 5 5.5

U [m/s]

Y [m]

Alexandrou, x = 926 m

model, x = 926 m

Alexandrou, x = 205 m

model, x = 205 m

Figure A.5. u  velocity profiles for a boundary layer developing over a smooth surface.

Model calculated profiles are compared to Alexandrou’s formulation for the

downstream distances x=205 m and x=926 m.
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A.1.3 Boundary layer height

For a zero pressure gradient boundary layer development over smooth terrain, von

Karman established the following relationship for the boundary layer height h , which is

defined as the height at which 
∞

= Uhu )( :

eq. A.12 fCxh ⋅⋅= 38.0

Figure A.6 presents the boundary layer height versus the horizontal Reynolds number.

The continuous line is for the von Karman relationship. The values for h  resulting from

fitting the velocity defect law is represented by triangles, while crosses are used for the

boundary layer height obtained from fitting Alexandrou’s formulation. Again, the

agreement between the model values and the von Karman formulation is very good. It is

even better when the boundary layer height is established by fitting the simulated

profiles with Alexandrou’s formulation.

Boundary layer height

flat plate without roughness

0.01

0.1

1

10

100

1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

Rx

h [m]

von Karman

fitting Coles

formulation

fitting Alexandrou's

formulation

Figure A.6. Comparison of the boundary layer heights obtained

by fitting the velocity defect law and Alexandrou’s formulation

with the von Karman relationship.

A.2 Rough plate with incoming uniform wind profile

Similar simulations with uniform incoming velocity profiles have been performed for a

rough surface. The ground roughness was introduced by modifying the wall multiplier

MT  according to the treatment presented in Section 5.1.2 setting a fixed value for the

roughness length 0z .
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A.2.2 Drag coefficient

Extending the experimental results obtained by Nikuradse for flows in rough pipes to

the case of a rough plate, Schlichting (1968) gave the following interpolation formula for

the local drag coefficient in terms of the equivalent sand roughness sk :

eq. A.13

5.2

21 log

−














⋅+=

s

nnf
k

x
ccC  with 87.21 =nc and 58.12 =nc

The above expression is valid for 2
10 < skx / < 6

10 .

The equivalent sand roughness is inferred using the fact that, in the logarithmic region,

the relationship given by Nikuradse

eq. A.14 N

s

B
k

y

u

u
+= ln

1

* κ

must represent the same profile as given by

eq. A.15
0*

ln
1

z

y

u

u

κ
=

This requires that sk  and 0z  obey

eq. A.16 )exp(0 Ns Bzk κ=

The constant NB  assumes different values, depending on the range of roughness. For the

completely rough regime ( 70
*

>
ν

uk s ), Nikuradse’s experiments show that 5.8=NB .

The drag coefficient resulting from three simulations with the roughness lengths

mz 02.00 = , mz 002.00 =  and mz 00002.00 =  is shown in a log-log representation versus the

Reynolds number R
x
 in Figure A.7 (continuous lines). For comparison, the values of fC

obtained from the interpolation formula eq. A.13 are also presented (dashed lines). For

the lower value of the ground roughness ( mz
5

0 102 −
⋅= ), the simulated drag coefficient

could be reproduced by eq. A.13 without any modifications, whereas for the rougher

simulations, the constant 1nc  needed to be changed to 3.31 =nc  so that the simulations

and analytical expressions agree. Considering that eq. A.13 was obtained using

experimental results that were performed with low roughness conditions, and since the

model reproduced the behaviour of the drag coefficient for low roughness values, we do

not consider this different behaviour between the model results and analytical

expression to be a problem. It would however be interesting to do a comparison with

data obtained for higher roughness conditions.
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Drag coefficient

flat plate with varying roughness length
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Z0 = 0.002 m

Schlichting modified

Z0 = 2. E-5 m

Schlichting

Figure A.7. Local drag coefficient for simulations performed at varying

roughness lengths, compared to the interpolation formula eq. A.13

given by Schlichting (1968).

A.2.3 Velocity profiles

Concerning the velocity profiles, the same fitting operation as for the smooth case was

repeated, using the formulation given by Alexandrou. For a roughness length of 0.02 m,

an example of a simulated profile at the downstream distance x=926 m is presented in

Figure A.8, together with the best fitting profile. For comparison, the logarithmic profile

for the corresponding roughness length and friction velocity is also plotted. The

agreement between the simulated and logarithmic profiles in the logarithmic region

shows that the ground roughness is correctly taken into account.

The parameters resulting from fitting the profile at the fetch x=926 m, for varying

roughness lengths, are given in Table A.3. One can observe that the value of c (and hence

a as well) varies only slowly from one simulation to the other. Whether these constants

should effectively be constant for any boundary layer with zero pressure gradient or not

is not yet clear. At this point one should mention that the small variation observed in c

might be due to the fact that we do not exactly have a zero pressure gradient in the

simulations. In fact, we can observe a slight increase in the free stream velocity due to

uniform velocity profile at the entrance of the simulation domain and the momentum

decrease in the boundary layer. For each of the simulations, the value of

eq. A.17
x

U

u

h

∂

∂
β

∞
−=

*

has been reported. Though not exactly 0, the values of β  remain small, so that we can

consider that the zero pressure gradient assumption is valid.
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Rough plate

Z0 = 0.02 m
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Figure A.8. U velocity profile for a boundary layer developing over a

rough surface with mz 02.00 = . Model calculated profile at 8106.2 ⋅=xR

is compared to the log law and Alexandrou’s formulation.

The change in the surface roughness strongly affects the boundary layer height h  and

the parameter B. Using eq.I.5 the roughness length resulting from the best fit has also

been recalculated. As can be seen from the values given in Table A.3, the best-fit profiles

exhibit a roughness length which slightly overestimates the roughness length

introduced for the ground parameterisation. The overestimate decreases with increasing

ground roughness, with an overestimate of about 25 % for a z
0
 of 2. 10-5 m down to 5%

for a z
0 
of 0.02 m.

Table A.3. Parameters resulting from fitting the model calculated profiles

with Alexandrou’s formulation at x=926 m for varying roughness lengths.

z
0
=0.00002 m

x=926m

z
0
=0.002 m

x=926 m

z
0
=0.02 m

x=926 m

c (varied during fit) 0.182 0.184 0.184

ca /1= 5.49 5.44 5.44

h  [m] (varied during fit) 13.34 21.24 28.63

B (calculated from eq.I.2) 10.58 6.55 4.62

0z  (expected from eq.I.5 2.53 10-5 0.0023 0.0212

*u  
(from the model) 0.148 0.210 0.263

xUuh ∂∂β
∞

⋅−= *
-3.61 10 -3 -8.09 10 -3 -1.41 10-2
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A.2.4 Boundary layer height

Some studies have attempted to include the effect of the roughness length (or roughness

change) in the boundary layer development. Shir (1972) starting from the

proportionality relationship 8.0
xh ∝  which is applicable for the smooth case (see

Schlichting, chap 21) proposed the following expression in the case of a roughness

change:

eq. A.18 )/(8.0

02011
02012)/(

zzf
xzzfh

+
=

Similarly and to be consistent with the observation we made in Figure A.6 that the

boundary layer height obtained with CFX4 for the smooth case behaves more like
92.0

xh ∝  (see eq. A.12 and eq. A.5), we tried a formulation of the type

eq. A.19 )(92.0

010
02)()(

zf
xzfzh

+
=

with the functions 2.0

0101 )( zczf ⋅=  and )ln(
1

)(
0

0

2

02

sz

z

c
zf −= . In the former, sz0  represents the

default model smooth ground condition, whereas 0z  would be the one specified for a

rough ground. The boundary layer heights obtained by the model for the three different

roughness lengths are plotted versus xR  in Figure A.9. The isolated points are the values

obtained by fitting the simulated profiles with Alexandrou’s formulation, while the

dashed lines represent the behaviour given by eq. A.19 with values of 27.01 =c , 852 =c

and 6

0 101 −
⋅=sz . In addition to being able to reproduce the model results in a satisfactory

way, eq. A.19 also agrees fairly well with the relationship 8.02.0

0 xzh ∝  suggested by Wood

(1982).
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Figure A.9. Boundary layer height versus Reynolds number in the flow

direction for three different roughness lengths. Point values are obtained from

fitting the model-simulated profiles with Alexandrou’s formulation.

Continuous lines represent the behaviour expected from eq. A.19.
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A.3 Roughness change- comparison with Bradley’s experiments

From the results presented above, it appears that the ground treatment is appropriate to

simulate the behaviour of a neutral boundary layer over smooth or rough terrain. The

next step was to check the model behaviour in the presence of a roughness change. The

following experiment was designed to compare the model results with the

measurements reported by Bradley (1968), who performed a series of experiments on a

little-used air field located in New South Wales. He measured a variation of the surface

shear stress as well as velocity profiles downwind of a smooth to rough (resp. rough to

smooth) transition. The surface shear stress was measured using drag plates. Bradley

reports roughness lengths of 0.0025 m for the rough surface (spikes) and 0.00002 m for

the smooth one (tarmac).

The computational domain we used to simulate the roughness transition has the same

dimensions as the one used for the constant ground roughness (L
x
=1000 m, L

y
=200 m).

The only difference with the previous domain is that we used a symmetric geometric

progression for the element size in the horizontal direction, with a factor of 1.138. The

roughness transition was applied exactly at the middle of the domain (x=500 m).

Ly

Lx

Figure A.10. 2D computational domain to simulate roughness change.

The wind speed profile at the entrance of the domain was set to follow the formulation

presented by Alexandrou (1996), with a value of 183.0=c  and B  was chosen so that the

profiles of u , k  and ε  were in equilibrium with the roughness length specified in the

first half of the domain.

Bradley presented results for the spatial variation of the shearing stress in the form of

normalised shearing stress versus the horizontal distance (fetch) downwind of the

roughness transition. He used the upwind value of the shearing stress ( sτ ) to normalise

his measurements. Figure A.11 presents the model predicted spatial variation of the

normalised shearing stress (continuous line) compared to Bradley’s measurements
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(circles), for the case of a smooth to rough transition. Two simulations were done with

z r0

3
2 5 10, .= ⋅

− m, the first one with 5

,0 10.2
−

⋅=sz m and the second one with an even smaller

value in the smooth part with 6

,0 10.2
−

⋅=sz m. The same results for a rough to smooth

transition are shown in Figure A.12.

Most of the spatial variation of the shearing stress occurs within 2-5 m downwind of the

transition. For the smooth to rough transition, the model predicts an overshoot just after

the roughness change for the ratio τ τ s . The overshoot is followed by a rapid decrease of

τ τ s . A slight oscillation is visible around 1 m behind the transition with a local

minimum appearing. Although Bradley suggests that such a minimum also appears in

the measurements in the region of 2-3 m, the scatter in the observed values is too large to

comment on the significance of this feature.

The slower recovery that could be seen in the case of a rough to smooth compared to a

smooth to rough transition is also reproduced by the model.

Generally, for the smooth to rough transition, the results obtained with a roughness of
5

10.2
−

⋅ m for the tarmac surface slightly underpredict the observations, while with a

value of 6
10.2

−
⋅ m the model slightly overpredicts them. For the rough to smooth case,

the best agreement between the observations and simulation is obtained with
5

,0 10.2
−

⋅=sz m.

shear stress, smooth to rough transition
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Figure A.11. Normalised shearing stress

versus horizontal distance downwind of a

smooth to rough transition. Continuous

line: model results, circles: Bradley’s

measurements. ( sz ,0  according to legend

and z r0

3
2 5 10, .= ⋅

− ).

Figure A.12. Normalised shearing stress

versus horizontal distance downwind of a

rough to smooth transition. Continuous

line: model results, circles: Bradley’s

measurements. ( sz ,0  according to legend

and z r0

3
2 5 10, .= ⋅

− ).
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The development of the velocity profiles downwind of the roughness transition is

presented in Figure A.13, for the case of a smooth to rough transition with 6

,0 10.2
−

⋅=sz m

and z r0

3
2 5 10, .= ⋅

− m. The profiles are normalised with the values at z=209 cm. Bradley’s

measurements are represented with isolated symbols, with the distance from the

roughness transition indicated in the legend. Dashed lines stand for model results at the

closest grid cells to the fetches where profiles were measured by Bradley. The

logarithmic profiles obtained with a roughness length of 6
10.2

−
⋅ m (continuous dark line)

and 3
105.2

−
⋅ m (continuous light line) were also plotted. The comparison between the

observations and model results shows a good agreement. Also, the height of the

developing inner layer corresponds fairly well with Bradley’s observations.
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Figure A.13. Development of the velocity profiles downwind of a smooth to rough transition.

Profiles are normalised with the wind speed at z=209 cm. Continuous lines: log law

corresponding to the unperturbed profiles over smooth (dark) and rough terrain (light).

Dashed lines: model results. Isolated symbols: Bradley’s observations .
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Note: This simulation presented above with 6

,0 10.2
−

⋅=sz m gave better results than the

one performed with 5

,0 10.2
−

⋅=sz m. In the latter case, the profiles closest to the roughness

transition could not be satisfactorily reproduced (c.f. Figure A.15).

The simulation results presented in Figure A.11 to Figure A.13 were obtained with the

turbulence model constants that were suggested by Duynkerke (1988) for the ε−k

model, i.e. using Cµ= 0.034, C
1
=1.46, C

2
=1.83 and σε=2.38. Using the default values

decreased the ratio sττ  within the first metre downwind of the roughness change,

whereas it increased it for further distances downstream (Figure A.14). The maximum

difference is reached at a fetch of 2.2 m downwind of the transition with an increase of

26% for sττ . Further downstream, this difference is reduced to 3-4% after 500m. The

slight oscillation with the local minimum that appeared at about 1 m behind the

roughness transition is more obvious when using the default model constants.

shear stress, smooth to rough transition

0

2

4

6

8

10

0 5 10 15

x [m]

/
s

default k-e model

Bradley's measurements

Figure A.14. Same as Figure A.11 using the default turbulence

model constants assuming a roughness length of 6
10.2

−
⋅ m for the

tarmac and 3
105.2

−
⋅ m for the spikes.
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Figure A.15. Same as Figure A.13 for 5

,0 10.2 −
⋅=sz and 3

,0 105.2 −
⋅=rz .
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B Boundary layer growth and Ekman spiral
development over flat terrain

As presented in Section 5.2.2.  some additional source terms were introduced in the

ε−k  model to take into account the effect of the vertical stratification on the

production/destruction of turbulent kinetic energy and dissipation rate. The Coriolis

force was also added in the momentum equations for the u  and v  velocity

components. (No effect of the Coriolis force was considered in the turbulence

model).

To check that both implementations were done successfully, simulations of the

boundary layer and Ekman spiral development were done over flat terrain,

assuming horizontally uniform conditions (i.e., horizontal gradients x∂∂  and y∂∂

identically vanishing).

B.1 Test case definition

The simulation domain was a column with the dimensions 1x 1 x 9 km, consisting of

2x2x25 elements. Along the vertical, 25 elements were distributed according to a

geometric progression (factor 1.35), the element closest to the ground having a

height of 1.7 m, and the one closest to the top a height of 2335 m.  To ensure that no

horizontal gradients can be established, periodic boundary conditions were set for

all the four lateral sides of the flow domain. The geostrophic wind speed G is

assumed to be aligned with the x-axis. At the top boundary, the velocity components

are set to Gu = , 0=v  and 0=w .

The model is initialised with a uniform wind profile, also with Gu = , 0=v  and

0=w . The initial turbulent kinetic energy is set to 1 and the initial dissipation rate to

0.3.

Various initial real temperature profiles were used, essentially to test the effect of the

static stability in the free flow on the profile development.

The ground treatment presented in Section 5.2.2 is used for the velocity to specify the

friction due to the ground roughness. The same treatment is applied for the potential

temperature. When simulating neutral situations, the potential temperature flux

through the ground was set to zero, whereas for stable/unstable situations, the

potential temperature at ground was reduced/increased assuming a constant

cooling/heating rate.
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Section B.2 presents the development of the surface profiles for both wind speed and

temperature for the neutral, stable and unstable cases. For all the three situations,

comparisons with the Businger profiles are given.

The effect of the static stability in the free flow on the development of the entire

boundary layer profiles was investigated for situations with zero heat flux through

the ground. These results are presented in Section B.3 .

Considering that, starting with a uniform wind speed profile, several physical hours

are required for the boundary layer to develop, it would be difficult with the present

computational resources to perform similar simulations over real terrain, with a

domain containing some 60000 to 100000 cells. On the other hand, the type of

profiles set at the inlet boundaries can significantly affect the development of the

flow solution inside the domain (see Appendix D). Consequently, we found that it

would be most interesting to obtain analytical expressions for the profiles to be set as

initial guesses and boundary conditions depending on the ground roughness, static

stability of the free flow, and surface buoyancy flux. Such a parameterisation would

be particularly useful when only sparse measurements are available to determine the

situation to be simulated. An attempt to produce analytical expressions for the

average u  and v  profiles exactly follows the formulation proposed by Zilitinkevich

et al (in press) and is presented in Section B.4.

B.2 Surface profiles development

B.2.1 Monin-Obukhov similarity theory

In their similarity theory, Monin-Obukhov assume that any dimensionless

characteristics of the turbulence in the buoyancy dominated surface layer can be

expressed in terms of *u , z , θg  and θ ′′w  (see e.g. Garratt, 1992). The effect of

stratification in the description of turbulent transport and mean profiles can be

represented through the non-dimensional height Lz=ζ , where the Monin-

Obukhov scaling length L is defined by:

eq. B.1

θ
θ

κ ′′

−=

w
g

u
L

3

*

For the case where we take the x-axis along the mean surface wind direction, we get

v= 0 in the surface layer. The non-dimensional gradient form of the u component

profile can be written as:
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eq. B.2 )(
*

ζ
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M
z
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z
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∂

∂

Note that for the neutral case limit ( ∞→L ), we have 1→ΦM , so that a logarithmic

form of the wind speed profile is obtained, with

eq. B.3
)

ln()(
0

*

z

zu
zu

κ
=

Similarly we have for the potential temperature:
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From the above expressions and using the flux gradient relationships

eq. B.5
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we get for the turbulent Prandtl number tP :

eq. B.7 )(ζf
K

K
P

M

H

H

M
t =

Φ

Φ
==

The analytical forms of the Φ  functions have been extensively studied in the past

using surface observations of wind speed and potential temperature profiles. These

observations suggest the following expressions for MΦ  and HΦ , for moderate ranges

of ζ  (c.f. Businger et al, 1971):

• for 05 <<− ζ  (unstable cases): 

eq. B.8 41

1 )1()( −
−=Φ ζγζM

eq. B.9 21

22 )1()( −
−=Φ ζγαζH

• for 10 << ζ  (stable cases):

eq. B.10 ζβζ 11)( +=Φ M

eq. B.11 ζβαζ 22)( +=ΦH

Evaluating the constants from observations, Businger et al (1971) give the following

set:

eq. B.12 35.0=κ , 74.02 =α , 151 =β , 92 =β , 7.41 =γ  and 7.42 =γ

while Dyer (1974) proposes:

eq. B.13 41.0=κ , 12 =α , 161 =β , 162 =β , 51 =γ  and 52 =γ
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Integration of the gradient forms of the wind and temperature profiles gives (see

Garratt (1992) for an exact derivation):

eq. B.14 )()ln(
0*

ζ
κ

M
z

z

u

u
Ψ−=

eq. B.15 )()ln(
)(

*2

0
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θα

θθκ

H

Tz

z
Ψ−=

−

where Tz  is such that 0θθ = at Tzz = , which needs not necessarily be 0z .

For stable situations ( 0>ζ ), we have

eq. B.16 ζβζζ 1)()( −=Ψ=Ψ HM

Whereas for unstable cases ( 0<ζ )

eq. B.17
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eq. B.18 )
2

1
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y
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+
=Ψ ζ  with 21

2 )1( ζγ−=y

B.2.2 Simulated surface profiles

B.2.2.1 Neutral case

Simulation results for the wind speed and potential temperature profiles after 24

hours (1 h 10’ CPU time on a DEC ALPHA EV56 processor, 375 Mhz) are presented

in Figure B.1 and Figure B.2 for a neutral situation, i.e. a situation for which the heat

flux at ground was set to 0. With a vertical gradient of –9.8 K/km for the real

temperature profile, the initial state for that case corresponds to a neutral

stratification of the external flow.
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Figure B.1. Wind speed profile for a

situation with zero potential temperature

flux through the ground.
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Figure B.2. Potential temperature profile

for the same conditions as in Figure B.1.
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The ground roughness was set to 0002.00 =z m, the Coriolis parameter to 410−
=f s-1

and the geostrophic wind speed to 10=G m/s. The model gives a friction velocity of

272.0* =u m/s.

In addition to the model results (crosses), the Businger profiles (continuous line) for

the corresponding *u , 0z  and *θ  were plotted in Figure B.1 and Figure B.2. The

comparison shows that the model results are in good agreement with the theoretical

formulation.

B.2.2.2 Stable case

Similarly we simulated stable situations, specifying a ground cooling with cooling

rates of –0.2 K/hour, -0.5 K/hour, and –1.0 K/hour. Figure B.3 and Figure B.4

present the wind speed and potential temperature profiles after 10 hours of

simulation for a situation with 01.00 =z m, 4
10−

=f s-1, 10=G m/s and

5.0−=∂∂ tθ K/hour at ground. The initial vertical temperature gradient was

0.8−=∂∂ zT  K/km. The friction velocity calculated by the model is 266.0* =u m/s.

For comparison, the Businger profiles for a value of 075.0* =θ  and *u , 0z

corresponding to the model results were also plotted. The potential temperature flux

at ground for this particular case is 024.0** −=− θρu  corresponding to a Monin-

Obukhov length of 67=L m. In the surface layer ( 20<z m), the correspondence

between the analytical profiles and model results is fairly good.
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Figure B.3. Wind speed profile for a stable

situation where the stability of the

atmosphere is induced by a ground

cooling of –0.5 K/hour. (See text for other

parameters).
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Figure B.4. Potential temperature profile

for the same situation presented in Figure

B.3.
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B.2.2.3 Unstable case

An unstable situation was also simulated, setting a ground heating of +0.2 K/hour.

The other parameters were 01.00 =z m, 410−
=f s-1 and 10=G m/s. The free flow

stratification is given by a vertical real temperature gradient of .8−=∂∂ zT 0 K/km.

For the friction velocity the model gives 381.0* =u  m/s. The model results are

compared to the Businger formulation in Figure B.5 and Figure B.6.
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Figure B.5. Wind speed profile for an

unstable situation, where a ground heating

of +0.2 K/hour drives the instability. The

overall atmospheric stability is maintained

by a stable stratification of the free flow.

(See text for other parameters).
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Figure B.6. Potential temperature profile

for the same situation as Figure B.5.

Although the potential temperature profile is in good agreement with the analytical

formulation within the surface layer ( mz 70< ), this is not the case for the simulated

wind speed profile. The latter is better represented by a logarithmic profile (eq. B.3)

over the whole extent of the boundary layer ( mz 700< ).

B.3 Atmospheric boundary layer development for neutral

situations testing the effect of static stability

By definition, neutral situations correspond to conditions with zero heat flux

through the ground. In these conditions, due to the turbulent mixing in the

boundary layer, a neutral layer (characterised by a zero potential temperature lapse

rate) forms close to the ground in an initially stable atmosphere. The depth of the
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boundary layer developing can be strongly influenced by the static stability of the

free flow (see e.g. Duynkerke (1988), or Zilitinkevich et al. (1998)). For real

atmospheric conditions, purely neutral situations, with zero heat flux through the

ground and with neutral static stability of the free flow are very rare occurrences (if

ever observed).

For situations without heat flux through the ground, it is common practice to relate

the boundary layer height h to the friction velocity u
*
 and the Coriolis parameter f,

using the Rossby-Montgomery relationship fuCh h *= . The range of values found in

the literature for the ‘constant’ hC  is quite big, since for neutral conditions they can

vary between ∼0.16 and ∼1 depending on how they are determined. Mason &

Thomson (1987), using a LES model, found a boundary layer height of about fu*6.0

from the simulation of a neutral case. Wyngaard et al (1974) simulated a neutral

atmospheric boundary layer using a second order closure model and found a

boundary layer height of fu*7.0 . As quoted in Duynkerke (1988), Deardorff (1972)

obtained a boundary layer height between fu*45.0 and fu* , also using a LES

model.

Nicholls (1985) from observations of a well-mixed Ekman layer over sea concludes

that for near-neutral and barotropic conditions the boundary layer height was

limited to fu*2.0 . Observational data from the ‘Leipzig wind profile’ (Lettau, 1950)

also indicates a boundary layer height between fu*16.0  and fu*2.0 .

To summarise, it appears that model results give values of the boundary layer height

around fu*6.0  for the neutral atmospheric boundary layer, whereas observations

give fu*2.0 .

As already concluded by Duynkerke (1988), it is probable that the discrepancy

between the observations and simulations is due to the very strong sensitivity of the

boundary layer development to the static stability of the free flow. It appears indeed

that some stability effect could be very important in the case of the Leipzig wind

profile, since Lettau reported that from the sounding of Lindenberg (in the ‘same air

mass’) a rather uniform lapse rate of –6.5 K/km could be observed. As mentioned in

Duynkerke (1988), some stability effects can also be seen in the potential temperature

profiles measured by Nicholls, who reported that a neutral profile was observed up

to the height of fu*2.0 , above which a stable region existed with potential

temperature gradients of 1-3 K/km.

In the following sections, the behaviour of CFX4 regarding this issue will be

presented. First some comparisons between results obtained with and without the

modification of the ε−k  closure scheme will be shown. The validity of the

modification will be demonstrated by comparing the simulated profiles with

observations and with results presented by other authors.
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B.3.1 Comparison of results obtained with the modified turbulence model

and with the standard version

Figure B.7 to Figure B.11 show the comparison of the model calculated profiles

obtained with the modified version of the turbulence model (continuous line) and

with the standard version of the code (dashed line). The variables were plotted in a

non-dimensional form versus the non-dimensional height */ uzf .

These results were obtained with a zero heat flux through the ground, a real

temperature lapse rate of 7.9−  K/km, a roughness length of 0.0002m and a Coriolis

parameter 410−
=f  s-1. We chose these parameter values following Duynkerke (1988),

in order to be able to compare our results with the ones he presented. The model

calculated friction velocity is 273.0* =u m/s.

Figure B.7 presents the non-dimensional turbulent kinetic energy profile, while

Figure B.8 shows the non-dimensional turbulent diffusion profile. It can already be

observed from these two graphs that the modification of the ε−k  model has very

important effects on the way the boundary layer develops. From the 2

*/ uk  profile,

we can infer a boundary layer height of about fu*35.0  with the modified version,

whereas with the standard version, we would have fuh *5.1> . The behaviour of the

turbulent diffusion is also very different. Without the modification, we get a

turbulent diffusion constantly increasing up to a height of ~ fu*  reaching a

maximum value of 0.083 and then slowly decreasing. With the modifications, the

calculated turbulent diffusion profile reaches a maximum of 0.025 at the height of

fu*14.0  to decrease rapidly to zero at the height of ~ fu*35.0 . For the diffusion

profile in neutral conditions, Wippermann (1973) (quoted in Lalas & Ratto, 1996)

proposed the following behaviour :

eq. B.19 ))/(6.7exp(
764.0

*
2

*

hzz
u

f

u

ft
−=

ρκµ

This behaviour is also plotted in Figure B.8 (continuous thin line), which shows that

the modified version of the turbulence model gives more realistic results than the

standard one. The significant difference between the maximum values obtained with

CFX4 and the diffusion profile given by Wippermann is probably due to the use of a

different vertical stratification. The latter parameter strongly influences the

development of the boundary layer as will be shown below.

Figure B.9 shows the effect of the modification on the non-dimensional stress tensors
2

*/ uwu ′′−  and 2

*/ uwv ′′ . Non-dimensional velocity defect profiles for the u and v

velocity components are given in Figure B.10 and Figure B.11, where gu  and gv

stand for the geostrophic wind components. From these profiles again, the same
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conclusion can be drawn, i.e. without the modification, the model overestimates the

boundary layer height.
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Figure B.7. Non-dimensional turbulent

kinetic energy profiles for a neutral

situation. Continuous line: modified ε−k

model, dashed line: standard version of

CFX4.
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Figure B.8. Non-dimensional turbulent

diffusion profiles. Continuous thick line:

modified ε−k  model, dashed line:

standard version of CFX4, continuous thin

line: Wippermann formulation.
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Figure B.9. Non-dimensional stress

tensors 2

*/ uwu ′′−  and 2

*/ uwv ′′  profiles.

Continuous line: modified ε−k  model,

dashed line: standard version of CFX4.



B-10

0

0.5

-5.0 5.0 15.0

(u
g
-u)/u

*

z
 f

/u
*

Figure B.10. Non-dimensional velocity

defect profile for the u velocity

component. Continuous line: modified

ε−k  model, dashed line: standard

version of CFX4.
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Figure B.11. Non-dimensional velocity

defect profile for the v velocity component.

Continuous line: ε−k  model, dashed line:

standard version of CFX4.

B.3.2 Comparison with other models and observations

The two neutral simulations presented in the previous section, which only differed

by their real temperature lapse rate are compared in Figure B.12 to Figure B.16 to

results from a neutral simulation by Duynkerke and to laboratory data obtained by

Hinze (1975) .

The most striking feature that can be seen from all of these figures is the extreme

sensitivity of the boundary layer height to the tiny change in the stratification of the

free flow. Slightly increasing the stability of the external flow by changing the lapse

rate from –9.8 K/km to –9.7 K/km reduced the boundary layer height from

fu*86.0 to fu*35.0 . The effect of changing this parameter will be investigated in

more details in next section. Otherwise, the profiles obtained with CFX4 present a

behaviour that is qualitatively very similar to the one obtained by Duynkerke (1988)

and Hinze (1975).
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Figure B.12. Non-dimensional turbulent

diffusion profiles. Light continuous line:

CFX4 with a lapse rate of –9.8 K/km, dark

continuous line: CFX4 with a lapse rate of

–9.7 K/km, long-dashed line: Duynkerke

(1988), short-dashed line: Hinze (1975).
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Figure B.13. Non-dimensional turbulent

kinetic energy profiles. Light continuous

line: CFX4 with a lapse rate of –9.8 K/km,

dark continuous line: CFX4 with a lapse

rate of –9.7 K/km, long-dashed line:

Duynkerke (1988), short-dashed line:

Hinze (1975).
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Figure B.14. Velocity defect profile for u.

Light continuous line: CFX4 with a lapse

rate of –9.8 K/km, dark continuous line:

CFX4 with a lapse rate of –9.7 K/km,

dashed line: Duynkerke (1988).
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Figure B.15. Velocity defect profile v. Light

continuous line: CFX4 with a lapse rate of

–9.8 K/km, dark continuous line: CFX4

with a lapse rate of –9.7 K/km, dashed

line: Duynkerke (1988).



B-12

- u'w'/u
*
 2

0

0.5

1

0 0.5 1 1.5

v'w'/u
*
 2

z
f/

u
*

 

Figure B.16. Non-dimensional stress

tensors 2

*/ uwu ′′−  (light) and 2

*/ uwv ′′

(dark) profiles. Continuous lines: CFX4

with a lapse rate of –9.7 K/km (thick), and

with a lapse rate of –9.8 K/km (thin),

dashed lines: Duynkerke (1988).

B.3.3 Effect of the stratification of the free flow

To further investigate the significant effect of the free flow stability on the

development of the boundary layer, some more simulations were done with real

temperature lapse rates of –9.0 K/km, -8.0 K/km and –6.5 K/km. All of these were

performed with the ground heat flux set to zero, with a roughness length of 0.0002m

and the Coriolis parameter 410−
=f  s-1. As can be seen from Figure B.17, the cross

isobar angle1 of the Ekman spiral increases with increasing stability of the free flow.

The potential temperature profiles ( Figure B.18) shows the creation of a neutral layer

over the ground up to a height that strongly depends on the initial potential

temperature gradient. Above the neutral layer, a transition layer exist with a slightly

stronger stability than the initial one, and finally above this layer one finds the free

flow region with the same stability conditions as initially set. As already mentioned,

the increase of stability in the free flow tends to significantly decrease the boundary

layer height. Determining the latter from the non-dimensional kinetic energy profiles

                                                     

1 The cross isobar angle is defined as the angle between the geostrophic wind vector

and the ground wind vector.
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would lead to the values given in Table B.1 for the ‘constant’ hC  in the Rossby –

Montgomery relationship.

Table B.1. Values of the normalised boundary layer height for

neutral situations with various free flow stratification conditions.

Ground Initial real
temperature

gradient

C
h

No heat flux -9.8 K/km 0.86

No heat flux -9.7 K/km 0.35

No heat flux -9.0 K/km 0.20

No heat flux -8.0 K/km 0.16

No heat flux -6.5 K/km 0.14

The range of values for hC  obtained when varying the stability of the free flow

covers the range that can be found in the literature. As was already shown by

Duynkerke the external stability might explain why Nicholls and Lettau found a

boundary layer height of about fu*2.0 . This tends to be confirmed for the Leipzig

wind profile (Lettau, 1950) by Figure B.19 and Figure B.20, in which the observations

are better reproduced by the simulation with a lapse rate of –6.5 K/km. For the

Nicholls observations, Figure B.20 to Figure B.22 would suggest that the

observations are best reproduced by a situation with a lapse rate between –8.0 and –

9.0 K/km. In the velocity defect profile for the u component (Figure B.20), the

simulations results show some negative values, whereas Nicholls measurements do

not. As already pointed out by Duynkerke, this might reveal a problem with the

measurements since we expect from the Ekman equations for the boundary layer

(see later on, eq. B.21) that the integral ∫ −
h

g dzuu
0

)(  vanishes2. The simulated kinetic

energy profile (Figure B.23) tends to underestimate the turbulent kinetic energy

measured by Nicholls in a similar way to what was obtained by Duynkerke.

                                                     

2 The integral ∫ −
h

g dzuu
0

)(  does not exactly vanish for the presented model results.

This is certainly related to the lack of resolution in the vertical for the upper part of

the boundary layer height.
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and observations from Lettau, 1950

(diamonds), and from Nicholls, 1982
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In conclusion, we can say that the implementation of additional source terms taking

into account the effect of stability in the production/destruction of turbulence
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significantly improves the solutions. With these modifications, CFX4 is able to

reproduce the results and behaviour that were presented by Duynkerke (1988) and

other authors.

B.4 Parameterisation of the wind profiles taking into account

ground roughness, free flow static stability and ground heat

flux

From the results presented in Section B.2 and Section B.3, it would be very useful to

obtain a parameterisation of the wind profiles and boundary layer height depending

on the roughness and heat flux conditions at the ground and also including the effect

of the stratification of the free flow.

In an attempt to do so, we will follow the similarity theory proposed by Zilitinkevich

et al (in press), and test how far the model results for various types of situations can

be reproduced by the Zilitinkevich formulation. The latter was chosen because it also

takes into account the effect of the external free flow stability in addition to the

ground roughness and surface layer stability, which makes it unique.

B.4.1 Similarity theory model for wind profile and drag law in the

planetary boundary layer

B.4.1.1 Rossby-number similarity for neutral flows

For steady state situations, which are neutral, horizontally homogeneous, and

barotropic (no vertical gradient of the geostrophic wind speed) expressions for the

wind profiles in the inner and outer layer of the atmospheric boundary layer can be

inferred from similarity considerations. In the inner layer (constant flux layer), the

scaling length is given by the ground roughness 0z , whereas in the outer layer, the

scaling length is a combination of the geostrophic wind speed G  and the Coriolis

parameter f and is given by fG / . The relation

eq. B.20 )/( 0* zfGFGu ⋅=

is in the form of a drag law, expressing the friction velocity at ground *u  in terms of

the geostrophic wind speed G  and the surface Rossby number of the flow 0/ fzGRo = .

The quantity 2

* )/( GuCG =  is called geostrophic drag coefficient.

For the above mentioned approximations, the momentum equations in the

atmospheric boundary layer can be simplified to

eq. B.21 zwvuuf g ∂′′∂−−−= /)()(0
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eq. B.22 zwuvvf g ∂′′∂−−= /)()(0

In a non-dimensional form, the equations can be rewritten as

eq. B.23 )/(/)/(/)( *

2

** uzfuwvuuu g ∂′′−∂=−

eq. B.24 )/(/)/(/)( *

2

** uzfuwuuvv g ∂′′∂=−

The above non-dimensional form is only valid in the outer layer, since fu /*  is not an

appropriate scaling length close to the ground. With this scaling, the velocity defect

profiles become independent of the surface Rossby parameter and can be expressed

as

eq. B.25 )/(/)( ** uzfFuuu xg =−

eq. B.26 )/(/)( ** uzfFuvv yg =−

This way of writing the velocity defect law is the Rossby similarity theory of the

neutral and barotropic boundary layer. It suggests that the boundary layer height is

proportional to fu /* , hence the relationship fuCh h /*=  known as the Rossby-

Montgomery formula for the boundary layer height.

In the surface layer, the non-dimensional form is changed using the roughness

length 0z  as the scaling length, so that eq. B.23 and eq. B.24 become:

eq. B.27 )/(/)/(/))(/(  0

2

***0 zzuwvuuuufz g ∂′′−∂=−

eq. B.28 )/(/)/(/))(/( 0

2

***0 zzuwuuvvufz g ∂′′−∂=−−

The left-hand side of eq. B.27 and eq. B.28 can be at most 2

*0 / uGzf  or equivalently

2

*

1 )/( uGRo
− . In the limit of high Rossby numbers, the left-hand sides vanish, and the

momentum fluxes in the surface layer are then constant (Tennekes, 1982). The wind

speed in the surface layer has a constant direction and does not feel the effect of the

Coriolis force. For a co-ordinate system with the x-axis along the surface wind, the

wind profiles are such that

eq. B.29 )/(/ 0* zzfuu x=

eq. B.30 0/ * =uv

Now, eq. B.25 and eq. B.26 are not valid in the limit 0/ * →uzf , whereas eq. B.29 and

eq. B.30 can not be used for ∞→0/ zz . Asymptotic matching (van Dyke, (1975)

Wilcox, (1995)) is used to make the solutions overlap in the so-called matching layer.

The procedure leads to the relationship

eq. B.31 κ1/constant)/( * ==∂∂ zuuz

In the surface layer, to be consistent with eq. B.29 integration of eq. B.31 leads to
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eq. B.32 )/ln(/ 0* zzuu =κ

while in the outer layer, to be consistent with eq. B.25 we obtain

eq. B.33 0** )/ln(/)( Aufzuuu g +=−κ

For the v component, asymptotic matching gives 0=v  with

eq. B.34 fBuv g sgnconstant/ 0* −==κ

Since in the overlap layer both eq. B.32 and eq. B.33 must be verified, we get a

relationship for the geostrophic wind speed

eq. B.35 00** )/ln(/ Azfuuu g −=κ

This equation, together with eq. B.34 (so called drag law or resistance law), allow the

derivation of an implicit expression for the geostrophic drag coefficient

eq. B.36 
{ }[ ]

{ }[ ]2

0

2

0

212

2

0

2

00*

22

*

)ln(/

)/ln(/)/(

BACRo

BAzfuGuC

G

G

+−⋅=

+−==

κ

κ

For the cross isobar angle (angle between the surface and geostrophic wind) we

obtain:

eq. B.37 210 sgnsin GCf
B

⋅⋅−=
κ

α

Hence for the neutral barotropic and steady-state atmospheric boundary layer, eq.

B.36 allows the determination of the friction velocity in terms of the parameters G ,

f  and 0z . The values taken by the constants 0A  and 0B  are still a matter of debate.

Table B.2 gives a non-exhaustive review of typical values found in the literature

for 0A  and 0B  in neutral situations.

The Rossby similarity theory can be extended for non-neutral situations, in which

case the 0A  and 0B  constants appearing in the drag law are no-longer constants but

become functions of the stability parameters µ  and λ  defined as

eq. B.38 Lfu /*=µ

eq. B.39 fN /=λ

where L  is the Monin-Obukhov length and 
z

g
N

∂

∂
=

θ

θ
the Brunt-Väisälä frequency.

For non-neutral situations, typical values for 0A  and 0B  are given in Table B.3. Many

different empirical formulations have been proposed for the 0A  and 0B  as a function

of the surface stability parameter µ , showing a very big scatter. We will not go in

more details about these, but rather refer to the reviews given by Zilitinkevich (1989)

or Landberg (1994) about the existing formulations.
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Table B.2. Values of the constants 0A  and 0B  obtained from various sources for a

neutral atmospheric boundary layer.

Authors Origin of the data
0A 0B

Favre et al (1976) Not specified 2.0 4.0

Mason & Thomson (1987) LES simulation 1.2 2.3

Andren & Moeng (1993) LES data 0.8 2.0

Caldwell et al. (1972) laboratory experiments 2.0-3.0 1.3-3.6

Zilitinkevich et al (1967) atmos. observations 1.5 5.3

Yamada (1976) atmos. observations 1.855 3.020

Nieuwstadt (1981) atmos. observations 1.9 2.3

Hess et al (1981) atmos. observations 1.1±0.5 4.3±0.7

Troen & Petersen (1989) atmos. observations 1.8 4.5

Table B.3. Values of the constants 0A  and 0B  for non-neutral situations.

Origin of the data
0A 0B

Clarke (1970) Very unstable, atmos.
Observations 100−=µ

5.0 2.0

Clarke (1970) Very stable, atmos.
Observations 100=µ

-20 21

From the bottom to the top of the boundary layer, the wind vectors (obeying eq. B.25

and eq. B.26) rotate with height following a spiral (so called ‘Ekman spiral’) as

schematically illustrated in hodograph form in Figure B.24 (thick curve). The height

z increases when moving towards the right along the spiral. In the inner layer

( czz < ), the wind direction is constant with height, whereas in the Ekman layer

( hzz c << ) the wind vector turns to adjust to the geostrophic wind vector G.  Two co-

ordinates systems have been defined, the first one (x-y system) with the x-axis along

the geostrophic wind vector and the second one (x’-y’ system) with the x-axis along

the surface stress vector (also corresponding to the wind direction at ground). The

cross-isobar angle is also shown which is defined as the angle between the surface

and geostrophic wind vectors.
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Figure B.24. Hodograph of the wind vectors V in the boundary layer

forming the Ekman spiral.

B.4.1.2 Zilitinkevich parameterisation for the wind profiles

In their approach to obtain a formulation for the u and v profiles for the neutral,

steady state and barotropic boundary layer, Zilitinkevich et al (in press), based on

symmetry and self-consistency requirements, proposed analytical expressions for u

and v yielding

eq. B.40 








+++=

3

3

2

21

0

* )ln()( ηηη
κ

aaa
z

zu
zu               with      

h

z
=η

eq. B.41 [ ]3

3

2

212
)ln()( ηηηηη

κ
bbb

fh
zv +++−−=

With this formulation, the x-axis is along the wind direction at ground.

From the condition that the wind velocity equals the geostrophic wind velocity at

the top of the boundary layer ( hz = ), we obtain

eq. B.42 10* )/ln(/ Azhuu g −=κ

eq. B.43 1*/ Buv g −=κ

with

eq. B.44 )( 3211 aaaA ++−= )( 3211 bbbB ++= δ

Cross isobar angle
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where

eq. B.45 */ ufh κδ ≡

is a non-dimensional rotation rate.

The ia  and ib  coefficients, and therefore 1A  and 1B  are specified in terms of the flow

governing parameters, which are the boundary layer height h, the Coriolis parameter

f, the friction velocity *u , the Monin-Obukhov length L characterising the heat flux

conditions through the ground and the Brunt-Väisälä frequency N accounting for the

thermal stratification of the free flow.

For a steady state situation, Zilitinkevich et al (in press), using dimensional analysis

arguments, expressed the ia  and ib  coefficients in terms of the dimensionless

parameters δ , µ  and λ  (eq. B.45, eq. B.38 and eq. B.39). Taking into account further

considerations relative to the boundary conditions which must apply at both ground

and boundary layer top for the velocity profiles and momentum fluxes, Zilitinkevich

et al (in press) obtained the following relationships for the ia  and ib  coefficients:

eq. B.46 Π+−= 31a  Π−=
2

3
2a Π+=

3

2

3

2
3a

eq. B.47 Π+=
~4

21
δ

b Π−=
~

2

3
2b Π+−=

~

3

2

3

4

3

1
21

δ
b

where Π  and Π
~

 are defined such that:

eq. B.48 *

2 // uNhCLhCC NLR ++≡Π δ

eq. B.49 *

2
/

~
/

~~~
uNhCLhCC NLR ++≡Π δ

RC , RC
~

, LC , LC
~

, NC  and NC
~

 are dimensionless constants that need to be determined

empirically.

To close the model, so that the u and v profiles are fully determined by the analytical

formulation given above, we still need an analytical expression for the boundary

layer height h. This is provided by Zilitinkevich and Mironov (1996), who proposed

a multi-limit diagnostic method ending up with a relationship of the form

eq. B.50 






 Π−+Π= 0

22

0

*2
4

2

1
hh C

f

u
Ch

where

eq. B.51
irsris CCCC

λµλµ
+++≡Π 0

hC , sC , iC , srC , irC are additional constants, which need to be estimated empirically.
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It can be noted that in the limit of a purely neutral case ( 0=N  and ∞→L , implying

that 0=λ  and 0=µ ), the above equation for the boundary layer height h tends

towards the Rossby-Montgomery relationship

eq. B.52
f

u
Ch h

*
=

From eq. B.45 ,eq. B.46 and eq. B.47, 1A  and 1B  can be rewritten as

eq. B.53 Π−=
6

1

3

7
1A

eq. B.54 )
~16

2(
6

1
21 Π++=

δ
δB

Comparing eq. B.34 and eq. B.35 with eq. B.42 and eq. B.43, and furthermore using

the Zilitinkevich relationship (eq. B.50) for the boundary layer height allows us to

derive relationships for the 0A  and 0B  ’constants’ appearing in the drag law:

eq. B.55
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eq. B.56 )
~16

2(
6

1
210 Π++==

δ
δBB

Relying on LES data by Mason and Thomson (1987), Zilitinkevich et al (in press)

adopt for the truly neutral case 2.10 =A  and 3.20 =B . From these values and using

5.0=hC , they obtain tentative estimates of 7≈RC  and 0
~

≈RC . For the other model

constants they suggest:

5.4≈LC , 4.01.0 −≈NC , 7
~

−≈LC , 5.1
~

−=NC

10≈sC , 20≈iC , 1≈srC , 7.1≈irC

B.4.2 Model results and drag law

CFX4 was used to simulate boundary layer profiles for various types of conditions,

with and without ground heat flux, with various free flow stratification conditions,

and for various roughness lengths and geostrophic wind speeds. In addition to test

the agreement between the numerical simulations and the Zilitinkevich formulation,

the idea behind this was also to check whether the model followed the Rossby-

similarity theory for the neutral situations.

A summary of the parameters characterising the various simulations that were

performed is given in Table B.4 for neutral cases and in Table B.5 for the stable cases.
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Results for the cross isobar angle and geostrophic drag coefficient 21

GC  versus the

Rossby number of the flow are presented in Figure B.25 and Figure B.26. Triangles,

diamonds and crosses are obtained with simulations with zero heat flux through the

ground (neutral situations), whereas circles correspond to stable situations with a

constant ground cooling applied. For the triangles and diamonds, the model was

initialised with a quasi-neutral stratification (-9.7 K/km), while crosses were

obtained for a stable external stratification (-8.0 K/km). All the simulations were

performed with a Coriolis parameter 410−
=f  s-1 except for the diamonds, which

were calculated for various values of f  (see Table B.4). In addition to the model

results, a line was plotted which represents the behaviour that would be expected for

)sin(α  and 21

GC  from the drag law (eq. B.36 and eq. B.37) with 5.10 =A  and 8.20 =B .

As it appears from the figures, these values of 0A  and 0B  represent fairly well the

model results for the neutral situations with quasi-neutral stratification. These values

are higher than the ones obtained by LES simulations, and generally lower than the

ones estimated from atmospheric observations (c.f. Table B.2).
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Figure B.25. Sine of the cross isobar angle

vs. natural logarithm of the Rossby

number. See text for details.

Figure B.26. Geostrophic drag coefficient

vs. natural logarithm of the Rossby

number. See text for details.

It can be observed from Figure B.26 that a change in the free-flow stratification does

not significantly affect the behaviour of 21

GC , whereas from Figure B.25 it influences

the cross isobar angle. This points out the sensitivity of 0B  to a change in the external

stratification. A decrease in the value of f  has a similar effect as an increase in the

free flow stability (both imply an increase in the non-dimensional parameter λ ).

Imposing a ground cooling affects more significantly the behaviour of both cross

isobar angle and geostrophic drag coefficient. With a stable surface layer developing
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over ground, the drag coefficient is reduced and the opening of the Ekman spiral

becomes more important.

Table B.4. Parameters characterising the simulated neutral situations. Shaded cells

correspond to model input.

Simul.
name

f

[s-1]
0z

[m]

G

[m/s]
Ground

heat
flux

z

T

∂

∂

[K/km]

*u

[m/s]

α

[°]

µ

[10-3]
λ δ

S0 1.·10-4 2.·10-4 10 0 -9.7 0.273 10.6 5.02 18.1 1.023
S1 1.45·10-4 0.1 5 0 -9.7 0.245 16.3 1.69 12.5 1.127
Z1 1.·10-4 0.01 10 0 -9.7 0.359 13.7 3.59 18.1 1.024
Z2 1.·10-4 0.1 10 0 -9.7 0.434 17.0 4.34 18.1 1.024
F1 5.·10-5 0.01 10 0 -9.7 0.358 17.9 7.16 36.2 0.815
F2 1.4·10-4 0.01 10 0 -9.7 0.375 12.1 2.68 12.9 1.116
G1 1.·10-4 2.·10-4 5 0 -9.7 0.143 11.7 1.43 18.1 1.027
G2 1.·10-4 2.·10-4 20 0 -9.7 0.522 10.2 5.22 18.1 1.023

NIS1 1.·10-4 2.·10-4 10 0 -9.0 0.276 11.9 2.76 51.1 0.710
NIS2 1.·10-4 2.·10-4 10 0 -8.0 0.279 13.6 2.79 76.7 0.587
NIS3 1.·10-4 2.·10-4 10 0 -6.5 0.278 16.3 2.78 103.9 0.500
NIS2Z2 1.·10-4 0.001 10 0 -8.0 0.310 16.1 3.10 76.7 0.586
NIS2Z3 1.·10-4 0.01 10 0 -8.0 0.366 17.7 3.66 76.7 0.586
NIS2Z4 1.·10-4 0.1 10 0 -8.0 0.438 23.4 4.38 76.7 0.586

Table B.5. Parameters characterising the simulated stable situations. Shaded cells correspond

to model input.

Simul.
name

f

[s-1]
0z

[m]

G

[m/s]
Ground
cooling
[K/h]

z

T

∂

∂

[K/km]

*u

[m/s]

α

[°]

µ

[10-3]
λ δ

ST1 1.·10-4 0.01 10 -1.0 -8.0 0.227 42.7 68.8 76.7 0.167
ST2 1.·10-4 0.01 10 -0.5 -8.0 0.266 36.7 39.5 76.7 0.230
ST3 1.·10-4 0.01 10 -0.2 -8.0 0.314 31.7 19.9 76.7 0.312
ST2ISZ2 1.·10-4 1.·10-4 10 -0.5 -8.0 0.216 30.6 49.5 76.7 0.203
ST2ISZ3 1.·10-4 0.001 10 -0.5 -8.0 0.240 34.0 46.5 76.7 0.210

Summarising the effect of the parameter changes over the boundary layer

development, a list of the values of 0A  and 0B  best fitting the model results can be

found in Table B.6. It is interesting to stress that for the simulation performed with

zero heat flux though the ground and with an external free flow stability of –6.5

K/km (value corresponding to the assumed ‘standard atmosphere’ lapse rate), we

obtain a value of 2 for 0A  and 4.2 for 0B , which come closer to the values resulting

from atmospheric observations.
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Table B.6. Summary of the 0A  and 0B  values best fitting the CFX4 results.

Simulation
name

0A 0B Simulation
name

0A 0B

S0 * 1.35 2.80 NIS3 * 2.00 4.20
S1 1.55 2.40 NIS2Z2 * 1.95 3.75
Z1 * 1.45 2.75 NIS2Z3 * 1.90 3.50
Z2 * 1.45 2.80 NIS2Z4 * 1.90 3.80
F1 2.35 3.60
F2 1.57 2.32
G1 * 1.45 2.95 ST1 * -1.25 12.5
G2 * 1.30 2.80 ST2 * -0.5 9.5

ST3 * 1.3 7.0
NIS1 * 1.70 3.10 ST2ISZ2 * 0.2 9.85
NIS2 * 1.80 3.55 ST2ISZ3 * 0.2 9.75

B.4.3 Calibration of the Zilitinkevich model constants to fit CFX4 results

Trying to minimise the difference between the Zilitinkevich parameterisation and

the model results for all the simulations marked with a * in Table B.6 (16

simulations), we obtained the values of the constants presented in Table B.7.

Assuming that the constants appearing in the parameterisation are universal

constants, the fitting procedure was done simultaneously over the 16 simulations.

The differences were minimised using a least square approach, applied for the u and

v velocity components as well as for the wind speed.

Regarding the reliability of this result, we should stress that the values obtained this

way are very sensitive to a change in the set of profiles used for the fits. Adding or

removing one profile from the set significantly affects the resulting model constants.

This was particularly true for RC , RC
~

, LC
~

, iC  and irC , but also for hC  which varied

typically between 0.45 and 0.8. From this observation, it is therefore not surprising

that some of the resulting constants show values, which are very different from

those obtained by Zilitinkevich et al (in press). Since they estimated their own values

by fitting measurements and simulation results, we can therefore expect that the

values they gave contain as much uncertainty as those obtained here. Some more

comparisons would be required of profiles obtained from both sets of constants and

from observations for which the free flow stability conditions would be measured. It

might also be well inspired to perform some simulations over a larger range of µ

and λ  values to reduce the uncertainty in the fitted model constants.
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Table B.7. Comparison of Zilitinkevich constants with the

ones obtained fitting CFX4 simulation results.

Zilitinkevich
constants

CFX4 constants

NC 0.1-0.4 0.45

LC 4.5 6.63

RC 7 5.48

NC
~ -1.5 -0.74

LC
~ -7 -9.68

RC
~ 0 5.24

hC 0.5 0.73

sC 10 9.31

iC 20 78.3

srC 1 2.63

irC 1.7 3.36

To test the internal coherence of the results obtained with the fitting procedure, we

compared the 0A  and 0B  values obtained directly from the simulations (Table B.6)

with those calculated with the Zilitinkevich formulation (eq. B.55 and eq. B.56) using

the constants resulting from the fitting procedure. The comparison is presented in

Figure B.27 and Figure B.28. Symbols in the figures are exactly the same as for Figure

B.25. For a perfect match between theory and model results, the symbols should lie

along the solid line. Though this is not exactly the case, the correspondence is still

good.
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Figure B.27. 0A  best fitting the model

results vs. 0A  from eq. B.55 using the

constant values from Table B.7 (2nd

column). Symbols are the same as for

Figure B.25.
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Figure B.28. 0B  best fitting the model

results vs. 0B  from eq. B.56 using the

constant values from Table B.7 (2nd

column). Symbols are the same as for

Figure B.25.
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Regarding the simulated wind speed profiles, a comparison of the model results

with the Zilitinkevich formulation3 is presented in Figure B.29 and Figure B.30 for a

case with zero heat flux through the ground for two different roughness lengths

(simulations S0 and Z1, as described in Table B.4). These two situations were

simulated with a lapse rate of –9.7 K/km.  From Figure B.29 and Figure B.30 we

obtain a good agreement between the analytical formulation and the model results.

                                                     

3 We applied a rotation on the u and v component to align them so that the

geostrophic wind is along the x-axis as fixed in the numerical model.
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Figure B.29. Non-dimensional Ekman

spiral for two neutral cases with neutral

static stability and varying roughness

length (simulations S0 and Z1).
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Zilitinkevich formulation.
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Figure B.30. Wind speed profiles for two

neutral cases with neutral static stability

and varying roughness length (simulations

S0 and Z1). Comparison of model results

and Zilitinkevich formulation.

To further compare the analytical and simulated profiles, the absolute and relative

errors for the u  and v  velocity component as well as for the wind speed as a

function of the non-dimensional height hz /=η  were calculated (Table B.8). With

maximum relative errors of 2% resp. 1.7%, these demonstrate again the very good

agreement for the u  velocity component and for the wind speed From the error

values, it appears that the v  velocity component is reasonably well reproduced by

the Zilitinkevich formulation up to a non-dimensional height of 0.25. Above, the



B-28

analytical formulation underpredicts the simulated v  component. The reason for this

more significant difference for v  is related to the fact that we do not have a very fine

resolution in the upper part of the boundary layer. Since in this region, the v

component varies rapidly with η , the errors due to a too coarse resolution have a

significant impact on the quality of the solution. Moreover, since v  becomes small at

the top of the boundary layer, a small absolute error becomes significant in relative

terms. Nevertheless, as can be seen from the diagrams, we can state that the

Zilitinkevich parameterisation can suitably be used as initial and boundary

conditions for a neutral situation, with neutral stratification conditions of the free

flow.

Table B.8. Relative and absolute difference between the Zilitinkevich formulation and

numerical model result (simulation S0) for the u and v velocity component and wind speed.

hz /=η u v Wind speed

uu /∆ u∆ vv /∆ v∆

)(

)(
22

22

vu

vu

+

+∆ )( 22
vu +∆

0.815 0.9% 0.32 40.3% 0.09 0.9% 0.09
0.603 1.1% 0.42 84.7% 1.08 1.3% 0.13
0.445 1.1% 0.41 46.3% 1.09 0.9% 0.09
0.329 2.0% 0.71 25.6% 0.82 1.7% 0.17
0.242 1.8% 0.65 16.1% 0.62 1.6% 0.16
0.178 1.4% 0.49 9.8% 0.42 1.2% 0.12
0.131 0.8% 0.28 7.1% 0.33 0.7% 0.06
0.096 0.4% 0.11 4.8% 0.23 0.2% 0.02
0.070 0.2% 0.06 3.6% 0.18 0.3% 0.02
0.051 0.5% 0.15 2.3% 0.12 0.6% 0.05
0.037 0.7% 0.22 1.3% 0.07 0.8% 0.06
0.026 0.9% 0.27 1.1% 0.06 0.9% 0.07
0.018 0.9% 0.24 0.2% 0.01 0.9% 0.07
0.012 0.8% 0.22 0.1% 0.01 0.8% 0.06
0.008 0.6% 0.16 0.5% 0.02 0.6% 0.04
0.005 0.4% 0.08 1.4% 0.06 0.3% 0.02
0.002 0.1% 0.03 1.4% 0.06 0.2% 0.01
0.001 0.3% 0.06 2.5% 0.10 0.4% 0.02

Max 2.0% 0.71 84.7% 1.09 1.7% 0.17
Min 0.1% 0.03 0.1% 0.01 0.2% 0.01
Average 0.8% 0.27 13.8% 0.30 0.8% 0.07

A similar comparison is presented in Figure B.31 and Figure B.32 for a situation with

zero heat flux through the ground and with a free flow stratification given by a lapse

rate of –8.0 K/km (simulation NIS2Z2). For this case as well, it appears from the

plots that the Zilitinkevich formulation is appropriate to parameterise the calculated

velocity profiles. From the errors on the profiles given in Table B.9 the same

conclusions can be drawn for the initially stable case as for the neutrally stratified
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situation. Though the maximum errors in this case are slightly higher than for the

previous case, the u  velocity component and the wind speed profiles are very well

reproduced by the parameterisation. The v  velocity component shows the same

difficulties in the stable case as in the neutrally stratified case.
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Figure B.31. Non-dimensional Ekman

spiral for a neutral case with external

stability (simulation NIS2Z2). Comparison

of model results and Zilitinkevich

formulation.
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Figure B.32. Wind speed profiles for a

neutral case with external stability

(simulation NIS2Z2). Comparison of

model results and Zilitinkevich

formulation.

Comparisons between the simulated profiles and Zilitinkevich formulation for two

stable situations (simulations ST1 and ST3) are given in Figure B.33 and Figure B.34.

The flow stability is imposed by setting a constant ground cooling. For the situation

with a moderate cooling of –0.2 K/h, the Zilitinkevich formulation reproduces the

simulated profiles fairly well. For the more stable situation, where the ground

cooling is set to –1 K/h, the agreement between the model results and the analytical

formulation is no longer so good. With the constants obtained by the fitting

procedure, the Zilitinkevich formulation overestimates the wind speed in the surface

layer and underestimates it close to the top of the boundary layer.

For the situation with the stronger ground cooling (–1 K/h) the relative and absolute

differences between the numerical results and the analytical formulation for the u , v

and wind speed profiles have been calculated (Table B.10). Compared to the neutral

cases, the maximum relative difference on both the u  and wind speed profiles have

been significantly increased, with values of 28.5% and 26.3%. For the v  velocity

component, the difference between the analytical formulation and the numerical
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results shows the same disagreement in the upper part of the boundary layer as for

the neutral situations. Even for the lower levels, the agreement breaks down with

relative differences around 16%.

To possibly improve the representativity of the Zilitinkevich parameterisation for the

stable cases, it might be worth trying to perform some more simulations, with a

wider range of λ  and µ  values. Another thing that might have to be considered

would be an increase in the model resolution in the upper part of the boundary

layer. This would allows us to better take into account the layer showing a rapid

decrease of the v  velocity component when fitting the profiles and determining the

model constants.

Table B.9. Relative and absolute difference between the Zilitinkevich formulation and

numerical model result (simulation NIS2Z2) for the u and v velocity component and wind

speed.

hz /=η u v Wind speed

uu /∆ u∆ vv /∆ v∆

)(

)(
22

22

vu

vu

+

+∆ )( 22
vu +∆

0.928 0.8% 0.24 96.1% 0.05 0.8% 0.08
0.686 2.5% 0.80 96.1% 1.92 2.3% 0.23
0.506 1.4% 0.47 50.4% 2.09 2.4% 0.24
0.373 1.9% 0.61 23.1% 1.30 1.0% 0.11
0.275 2.7% 0.85 10.4% 0.67 2.2% 0.21
0.202 2.5% 0.76 4.9% 0.34 2.1% 0.20
0.148 2.0% 0.57 2.7% 0.19 1.7% 0.16
0.108 1.4% 0.40 2.4% 0.17 1.2% 0.11
0.078 0.9% 0.23 3.0% 0.20 0.6% 0.05
0.056 0.4% 0.11 3.8% 0.25 0.2% 0.01
0.040 0.2% 0.05 4.1% 0.26 0.1% 0.01
0.028 0.0% 0.00 4.7% 0.29 0.3% 0.02
0.019 0.1% 0.03 5.2% 0.31 0.5% 0.03
0.012 0.0% 0.00 5.0% 0.29 0.3% 0.02
0.007 0.4% 0.08 5.2% 0.28 0.0% 0.00
0.004 0.9% 0.16 4.9% 0.24 0.5% 0.03
0.001 1.1% 0.17 5.2% 0.22 0.6% 0.03

Max 2.7% 0.85 96.1% 2.09 2.4% 0.24
Min 0.0% 0.00 2.4% 0.05 0.0% 0.00
Average 1.1% 0.33 19.2% 0.53 1.0% 0.09
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Table B.10. Relative and absolute difference between the Zilitinkevich formulation and

numerical model result (simulation ST1) for the u and v velocity component and wind speed.

hz /=η u v Wind speed

uu /∆ u∆ vv /∆ v∆

)(

)(
22

22

vu

vu

+

+∆ )( 22
vu +∆

0.964 12.4% 5.77 150.4% 5.25 12.1% 1.29
0.706 28.5% 12.59 77.3% 6.46 26.3% 2.69
0.515 7.6% 3.00 51.9% 7.22 13.3% 1.27
0.373 7.1% 2.42 21.0% 3.62 0.7% 0.06
0.268 12.6% 3.66 3.0% 0.55 7.9% 0.61
0.191 14.0% 3.40 7.2% 1.32 11.5% 0.79
0.133 12.4% 2.54 12.4% 2.16 12.4% 0.76
0.091 8.9% 1.52 15.0% 2.41 11.7% 0.62
0.059 4.1% 0.59 16.2% 2.37 10.1% 0.47
0.036 1.5% 0.18 16.3% 2.14 7.8% 0.31
0.018 6.9% 0.67 16.4% 1.85 5.9% 0.20
0.005 12.8% 0.89 16.2% 1.39 3.7% 0.09

Max 28.5% 12.59 150.4% 7.22 26.3% 2.69
Min 1.5% 0.18 3.0% 0.55 0.7% 0.06
Average 10.7% 3.10 33.6% 3.06 10.3% 0.76

From the results presented here, it was felt that for the sake of producing wind

profiles to be used as initial and boundary conditions in the case where no
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observations are available, the Zilitinkevich parameterisation would already be

useful as such. It would however be very interesting to see whether it compares well

with atmospheric measurements when using the set of parameters obtained from the

fitting procedure (Table B.7).

Another piece of useful information that can be derived from the Zilitinkevich

parameterisation is the boundary layer height behaviour as a function of the stability

parameters λ  and µ . Using eq. B.50, with the values of the constants obtained from

fitting the 16 simulation profiles, the normalised boundary layer height )//( * fuh  has

been plotted in Figure B.35. The maximum value for the normalised boundary layer

height appears at the origin ( 0== λµ ) and is equal to 72.0=hC .

We can see from Figure B.35 that for small values of λ  (weak stability of the free

flow), the normalised boundary layer height )//( * fuh  varies very strongly with a

change of λ . Changing the stratification of the external flow from purely neutral

( 0=λ ) to a situation with a vertical gradient of –9.7 K/km for the external flow

already leads to a value of λ  of order 20. This already implies a reduction of

)//( * fuh  from 0.72 to about 0.42. Again, the behaviour presented in Figure B.35 is

consistent with the fact that numerical models, which are able to deal with purely

neutral situation, predict a value of )//( * fuh  around 0.7, whereas observations, for

which pure neutrality can barely be observed, gives much lower values of )//( * fuh

around 0.2.
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The boundary layer height also decrease when µ  increases. A noticeable effect of the

surface stratification is only observed for values of µ  above 1 ( )10(/ 4

*

−
Ο≈Lu ). This

behaviour however needs to be considered with care, since the simulations used for

the fitting procedure presented essentially values of L  in the range 30-200, as well as

some situations with very large values of L  (around 105 and 106), but nothing in-

between.
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C Validation of the implementation of the potential
temperature equation

Instead of using the standard enthalpy equation to satisfy the first principle of

thermodynamics, we implemented an equation for the potential temperature and

introduced a buoyancy source term in the vertical velocity equation, which is written

as a function of the potential temperature.

The aim of the present appendix is to demonstrate, from test situations for which

analytical solutions are available, as well as from comparisons with observations,

that the implementation was done properly and that a full Navier-Stokes solver is

able to satisfactorily reproduce flow features typical for the mesoscale.

A short introduction to linear mountain wave theory and its application over two-

dimensional mountain features will be presented in the next section. Analytical

solutions for the flow perturbation generated by a theoretical mountain profile will

be derived for the two particular situations of hydrostatic mountain waves and

quasi-neutral flow. These will provide two test cases for the validation of the

numerical model.

Solutions from CFX4 for intermediate conditions leading to the formation of non-

hydrostatic lee-waves will also be presented and compared to results from the non-

hydrostatic version of TVM (Thunis, 1995) as well as to results from RAMS (Tripoli

and Cotton, 1982). And finally simulation results will be shown reproducing the

strongly non-linear extreme foehn event that was recorded over Boulder (Colorado)

in January 1972. CFX4 results are compared to observations and with numerical

results presented by Peltier and Clark (1979) and by Thunis (1995).

C.1 Introduction to linear mountain wave theory

The presence of a mountain barrier can significantly affect the behaviour of the

atmospheric flow field in its proximity. As an example, one can quote the formation

of thermal winds, which can be generated by differential heating/cooling of air

masses located at mountain summits or at the bottom of valleys. For the case of a

well-established atmospheric flow, under the influence of a synoptic scale situation, a

mountain chain can modify the general direction of the flow. In addition to the

important amplifications imposed to the horizontal velocity component, it can be

noted that the presence of relief can induce very impressive vertical wind speeds.

Colson (1954) mentions a pilot’s experience who reported having observed vertical
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velocities reaching values up to 40 m/s. For stable free flow stratification conditions,

hydrostatic mountain waves can form throughout the entire troposphere. Waves

propagating horizontally in the lee of the mountain ('trapped lee waves') can also be

observed. For an excellent review of various observations made to characterise

atmospheric flows over mountainous terrain one can refer to the publication of

Queney et al (1960).

The theoretical aspects presented below are inspired by Holmboe and Klieforth

(1957) and deal with the various flow regimes that an air mass can undergo when

crossing a mountain barrier. From the point of view of the numerical model

validation, we will restrict ourselves to the particular case of a theoretical bell-shaped

mountain (‘witch of Agnesi’ mountain shape), for which, in a linearised

approximation, analytical solutions can be found that describe the perturbed flow.

The mountain profile considered (Figure C.1) is given by the expression

eq. C.1
22

2

)(
ax

ah
xh

m

+

⋅
=

with:   mh the maximum mountain height

a the mountain half-width (distance at which the mountain height is

half the maximum height)

The reference atmospheric state (without any perturbation induced by the

orography) corresponds to a horizontal flow in the x direction, with an identically

vanishing vertical wind speed. In this reference state the atmosphere is assumed to

be in hydrostatic equilibrium.
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Figure C.1. Theoretical bell-shaped mountain profile.
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In a three-dimensional situation, the presence of the mountain forces the flow to go

up or round the mountain. For the two-dimensional case however, the only

remaining option for the air parcel is to go over the obstacle. The type of flow regime

that can be observed in an atmosphere perturbed by a mountain feature will depend

on the flow stability conditions. In the following, we will try to summarise this for

the particular case of a dry atmosphere (i.e. more precisely for conditions in which no

evaporation/condensation processes can affect the energy balance of the

atmosphere).

The equation for the vertical displacement ξ  of an air parcel around its equilibrium

level is

eq. C.2 0)(
)( *

2

2

=
−

+ t
T

g
dt

td
ξ

γγξ

where

ξ  = vertical displacement of the air parcel (m)

t = time (sec)

g = acceleration due to gravity (m/s2)

T = real temperature (K)
*

γ = vertical real temperature gradient (lapse rate) of a dry adiabatic

atmosphere (K/m) (defining the neutral stratification)

=−= zT ∂∂γ  vertical real temperature gradient (lapse rate) for the

actual atmospheric (K/m)

For the particular case of an atmosphere with neutral stratification ( *
γγ = ), an air

parcel moved out of its equilibrium position will also be in equilibrium with the

atmospheric conditions at the level at which it will have been displaced. Therefore it

will not experience any buoyancy force.

For a stably stratified atmosphere however, the density of the moved air parcel will

be changed relatively to the density of the ambient air mass. The density difference

will be such that the buoyancy force acting on the air parcel will force it back to its

original level. In such a stable situation ( *
γγ < ), an air parcel in a horizontally

moving air mass will oscillate around its equilibrium level. The frequency of the

oscillation will be determined by the Brunt-Väisälä frequency 
z

g
N

∂

∂
=

θ

θ
. If this

frequency also coincides with frequencies of other atmospheric processes, (e.g. with

the Fourier modes of the terrain perturbation), resonance can occur which can lead to

important modifications of the flow pattern. Lee waves can be generated which
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horizontally propagate over some 50 kilometres, or vertically throughout the entire

troposphere.

To quantitatively develop a theory of mountain waves in a stably stratified

atmosphere, the following assumptions are made:

1. The flow perturbation induced by the topography is weak, so that the flow

equations can be linearised.

2. The effects of condensation, heat conduction and radiation can be neglected. The

same is assumed to be valid for the friction term in the Navier-Stokes equations.

3. The scales under consideration (meso-scale) allow us to neglect the effect of the

Earth rotation.

C.1.1 Variables of state for the atmosphere

The atmosphere can be described by the following variables:

),()( zxuzu + horizontal velocity component

),( zxw vertical velocity component

),()( zxpzp + pressure

),()( zxz ρρ + density

),()( zxTzT + real temperature

Variables with overbars describe the unperturbed atmospheric state, whereas the

others represent the difference between the perturbed and unperturbed atmosphere.

C.1.2 Equations and linearisation

With the above mentioned assumptions 1-3, the equations describing a two-

dimensional stationary ( 0=∂∂ t ) flow become:

continuity

eq. C.3 0))((
)(

)( =
∂

∂
+

∂

∂
++

∂

+∂
+

∂

∂
+

z

w

x

u

z
w

x
uu ρρ

ρρρ

momentum conservation

eq. C.4
x

p

z
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x
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energy conservation

eq. C.6
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ideal gas law

eq. C.7 )( TTR
pp

+=
+

+

ρρ

where

eq. C.8 vp ccR −= gas constant

eq. C.9 RTc γ
~2

= square of the speed of sound

eq. C.10
v

p

c

c
=γ

~

After linearisation and with some manipulations, a second order differential

equation for the vertical velocity can be derived, which reads:

eq. C.11 0)
1

(
2

2

22

2

2

2

=
∂

∂
−

∂

∂
++

∂

∂
−

∂

∂
+

∂

∂
w

z

u

uz

u

u

S

u

g

z

w
S

z

w

x

w
M

β

with

eq. C.12 )ln(
ρ

M

z
S

∂

∂
=

eq. C.13 )ln( θβ M
z∂

∂
=

where

eq. C.14
2

2

1
c

u
M −=  stands for the difference of the flow Mach number from unity

eq. C.15 pc
R

p

p
T )( 0

=θ  represents the potential temperature

eq. C.16 Pa 10013.1 5

0 ⋅=p  is the sea-level reference pressure

With the substitution,

eq. C.17 ),(1
0

0

zxw
M

M
w ⋅=

ρ

ρ

a simplified equation can be written for 1w  which yields:

eq. C.18 0)( 1

2

2

1

2

2

1

2

=⋅+
∂

∂
+

∂

∂
⋅ wzl

z

w

x

w
M
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with

eq. C.19
2

2
2

2

2 1

2

1

4

1
)(

z

u

uz

S
S

z

u

u

S

u

g
zl

∂

∂
−

∂

∂
+−

∂

∂
+=

β

gβ  being the square of the Brunt-Väisälä number and

S being the heterogeneity of the atmosphere

The parameter l is commonly known as the Scorer parameter.

(Note: variables with a subscript ‘0’ stand for values at sea level)

C.1.3 Method of resolution

The differential equation for the vertical wind speed is to be solved in the half plane

z>0, subject to the boundary conditions:

1. At ground, the flow vectors are tangential to the mountain profile. For a mountain

shape given by h(x) the requirement of tangency implies:

eq. C.20
))(,())((

))(,(

xhxuxhu

xhxw

dx

dh

+
=

With the additional assumption that the mountain is small, the ground boundary

condition can be approximated by

eq. C.21
))((

)0,(

xhu

xw

dx

dh
=

For a case where the wind shear is weak, and considering that at ground 1ww = , the

boundary condition becomes:

eq. C.22
)0(

)0,(

)0(

)0,( 1

u

xw

u

xw

dx

dh
==

2. At the top of the simulation domain, we have a condition of vanishing kinetic

energy term 2

2

1
w⋅ρ  in the vertical.

Hence, we have:

eq. C.23 0
2

1
lim

2

1
lim

2

1

0

02

2222
==⋅

∞→+∞→+

w
M

M
w

zxzx

ρ
ρ

For M  varying slowly with height, this is equivalent to the condition

eq. C.24 0lim 122
=

∞→+

w
zx

The equation for 1w  is solved using a Fourier decomposition with

eq. C.25 )sin()(ˆ),( ,1,1 kxzwzxw kk ⋅=
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Introducing kw ,1  in the differential equation for 1w , we obtain for each mode )(ˆ
,1 zw k

the differential equation

eq. C.26 0ˆ))((ˆ
,1

22

,1 =⋅−+
″

kk wkMzlw

The Fourier decomposition is also applied to the mountain profile h(x), giving

eq. C.27 )cos()(ˆ)( kxkhxhk ⋅=

The boundary conditions for )(ˆ
,1 zw k  are then:

eq. C.28 )(ˆ)0()0(ˆ
,1 khkuw k ⋅⋅−=

and

eq. C.29 0)(ˆlim ,1 =
∞→

zw k
z

For a function ),( zkW satisfying the differential equation eq. C.26, the following

expression is then a solution for the vertical velocity equation with the wave number

k:

eq. C.30 )sin(
)0,(

),(
)(ˆ)0(),,(

0

0
kx

kW

zkW
khku

M

M
zxkw ⋅⋅⋅⋅⋅

⋅

⋅
−=

ρ

ρ

The vertical velocity w  being a superposition of the modes ),,( zxkw , the solution to

the problem will essentially depend on the behaviour of the functions ),( zkW . If for

any value of k, the function ),( zkW never becomes 0, then the Fourier integral for the

vertical velocity component w  will be defined.

In the case where the denominator vanishes for one or several values of k, the Fourier

integral can not be evaluated directly. A solution for w  can be obtained applying the

Cauchy theorem, in which case, the main contribution to the integral will depend on

the behaviour of the function in the vicinity of the singularity.

C.1.4 Solution for the particular case of a uniform flow over a ‘Witch of

Agnesi’ mountain profile

In the following, we will only treat the particular case of uniform flow over a bell-

shaped mountain, with the mountain profile given by eq. C.1. The Fourier

decomposition of the mountain profile gives the components

eq. C.31 )cos()(ˆ)( kxkhxhk ⋅=

with

eq. C.32 ka

m eahkh
−

⋅=)(ˆ
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The atmospheric conditions used are given by the following wind and temperature

profiles:

The wind profile is chosen such that smuzu /10)( 0 ==  over the whole vertical extent,

whereas the thermal stratification is given by:

eq. C.33 zTzT ⋅−= γ0)(

with γ= 6.5 K/km constant over the whole troposphere. 0T  is the real temperature at

ground.

With the additional assumption that the flow Mach number is low over the whole

atmosphere ( 1≅M ), an analysis of the order of magnitude of the various terms

appearing in the Scorer parameter shows that the latter simplifies to

eq. C.34

Tu

g

S
Tu

g

S
dz

d

u

g
zl

γγ

γγ

θ

θ

−
≅

−
−

=

−=

*

2

2
*

2

2

2

2

4

1

4

11
)(

The last approximation, neglecting the density variation with height with regard to

the effect of thermal stratification, is only valid in the case of a stably stratified

atmosphere ( *
γγ ≠ ).

Assuming that the Scorer parameter is independent of the altitude z, the equation to

solve for )(ˆ
,1 zw k  becomes:

eq. C.35 0ˆ)(ˆ
,1

22

,1 =−+
″

kk wklw

The general solution of eq. C.35 is

eq. C.36 zlkzlk

k eBeAzw
2222

)(ˆ
,1

−+−−
⋅+⋅=

Using the ground boundary condition allows a first equation to be derived for the

constants A and B:

eq. C.37 ka

m eahikuBA
−

⋅⋅⋅⋅=+ )0(

The solution for the vertical velocity component reads (Fourier integral over the

single modes):

eq. C.38 dkeBeAdkezwzxw
zklkxizklkxiikx

k ∫∫
−−−+

⋅+⋅=⋅⋅=
)()(

,11

2222

Re)(ˆRe),(
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To apply the boundary condition for the case ∞→z , we need to distinguish two

types of modes:

• 
22

lk > , in which case the solution for the vertical velocity component can be

written as dkeeBeeAzxw
ikxzlkikxzlk

∫ ⋅⋅+⋅⋅=
−−−

2222

Re),(1 . So that the latter remains

bounded for ∞→z , the constant B needs to be zero.

• 
22

kl > . For these values of k, the amplitude of the modes remains bounded for

any value of z. The condition requiring that the modes must be of finite

amplitude is no longer sufficient to impose a condition on A and B. Durran (1990)

applies for these circumstances a ‘radiation’ condition, according to which the

energy flux transported by the waves at a sufficiently high altitude can only be

transported away from the obstacle. This condition also requires according to

Eliassen and Palm (1960) that the constant B is zero.

Taking the boundary conditions into account, the solution becomes:

eq. C.39





 ⋅⋅⋅+⋅⋅⋅⋅= ∫∫
∞

−−−
dkeekhikdkeekhikuzxw

ikx

l

zlkikxzklil 2222

)(ˆ)(ˆRe)0(),(
01

For the ‘witch of Agnesi’ mountain profile, ones obtains:

eq. C.40
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ikx
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2222

2222

0

01

Re)0(

Re)0(),(

∂

∂

Queney studied in details the various types of solutions for the above problem. The

behaviour of the resulting flow field and the type of waves that can develop

essentially depend on the non-dimensional numbers al  (characteristic width of the

mountain multiplied by the Scorer parameter) and lhm  (maximum mountain height

multiplied by the Scorer parameter). A good review of the expected type of flows

depending on the atmospheric conditions is given by Thunis (1995).

From this point onwards, we will restrict ourselves to the presentation of solutions

for the two limiting cases where the characteristic mountain width is much larger

than the natural vertical wavelength of the flow 1−
l  ( 1>>al ) as well as for the

opposite situation ( 1<<al )). As long as the mountain maximum height is not too

important ( 1<<lhm ), linear theory as presented above can be applied. Non-linear

effects become significant for values of lhm  of the order of 1 (Miles & Huppert, 1969).
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C.1.4.1 Quasi-neutral flow situation

In the case where 1<<al  (narrow mountain, weak atmospheric stability, strong

winds) we have a quasi-neutral flow blowing over the obstacle. In this case, the

analytical solution is obtained setting 0=l . The vertical velocity 1w  is then calculated

from:

eq. C.41













 ⋅⋅⋅⋅≅ ∫
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01 Re)0(),( dkeee
x

ahuzxw
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m
∂
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After integration, the solution for 1w  becomes:

eq. C.42
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Remark:

For a real atmosphere in quasi-neutral conditions, the heterogeneity term zS ∂∂= ρln

appearing in the Scorer parameter can no longer be neglected relative to the thermal

stratification contribution. When the relative variation of the heterogeneity with the

altitude is non-negligible, the assumption in the derivation of an analytical solution

that the Scorer parameter remains constant with height is therefore not true for the

case of a deep Boussinesq approximation. As a consequence, the analytical solution

for the quasi neutral situation (eq. C.42) only makes sense with the additional

assumption that the density is constant with height (‘shallow Boussinesq

approximation’, 0ln =∂∂=− zS ρ ).

C.1.4.2 Hydrostatic mountain waves

In the opposite approximation 1>>al  (wide mountain, strong atmospheric stability,

relatively weak winds) hydrostatic mountain waves are generated. For this situation,

the solution for the vertical velocity component is obtained from eq. C.40, neglecting

the value of k relative to the one of l in the root of the exponential. We therefore get:

eq. C.43
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The analytical solution for w , valid for a uniform stratified flow field over a bell-

shaped mountain, is obtained by integrating eq. C.43 and reads:

eq. C.44
( )

( )
222

22
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cos2sin
)0(
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∂
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C.2 Simulations

All the simulation results presented in this appendix have been computed for a two-

dimensional domain. The type of treatment applied to the variables at the various

domain boundaries is summarised in Table C.1 for the horizontal and vertical wind

speed, potential temperature, pressure, turbulent kinetic energy and dissipation rate.

The ground is treated as a wall, assuming free slip conditions when comparisons are

made with analytical solutions and with no-slip conditions when comparing with the

observations of the Boulder foehn event. Dirichlet boundary conditions are applied

at the entrance as well as at the top of the simulation domain . For the domain outlet,

von Neumann conditions are applied, assuming the flow to be fully developed at the

model exit.

For the cases with a stably stratified atmosphere, where the model is used in a

laminar flow mode, some additional viscosity is introduced in a damping layer

( mzm 2500010000 << ), to prevent any wave reflection at the top boundary.

Table C.1. Type of boundary condition used at various boundaries, and treatment applied to

the flow variables.

Variable Ground Entrance Outlet Top

wall inlet mass flow
boundary

inlet

Velocity Free slip/
No Slip

Dirichlet Neumann Dirichlet

Temperature Dirichlet Dirichlet Neumann Dirichlet

Pressure Neumann Neumann Neumann

Turbulent
kinetic energy

Log. Wall
treatment

Dirichlet Neumann Dirichlet

TKE
dissipation

Log. Wall
treatment

Dirichlet Neumann Dirichlet
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C.2.1 Neutral case, shallow Boussinesq approximation

The following test consists of simulating a neutral flow above a mountain with

maximum height m 500=mh  and half-width km 10=a . The model is initialised with a

constant horizontal wind speed profile of 10 m/s and a vertical wind speed of 0 m/s

over the whole domain. The simulation is done without any buoyancy force

implemented (corresponding to a zero vertical gradient of potential temperature

0=z∂∂θ ).

The boundary condition at the entrance of the computational domain (x= -50 km in

the plots) is kept constant with time. The simulation is done with a density constant

with height (shallow Boussinesq approximation), to fulfil the requirement of a

constant Scorer parameter over the whole vertical extent.

For such simulation conditions, the Scorer parameter is therefore zero and simulation

results will be compared to the analytical solution obtained in the approximation

1<<al  (eq. C.42).

The horizontal and vertical dimensions of the domain are kmLx  100=  and kmLz  28= .

The domain is divided into 65 elements in the horizontal and 41 in the vertical.

Simulation conditions are summarised in Table C.2.

Table C.2 Simulation conditions used for the case of a neutral flow over the

theoretical bell-shaped mountain.

Turbulence model None (laminar flow mode)

Damping layer None

Advection scheme Hybrid: upwind-centred
differences

Wind speed

Boundary condition type
(see Appendix L for
definition)

Inlet
Mass flow boundary
Wall (free slip)
Inlet

Entrance
Exit
Ground
Top

Under relaxation factors 0.3 Wind speed

Time step 30 s

Density profile Constant (shallow Boussinesq)

Ground temperature 288 K

Thermal stratification neutral 0=z∂∂θ

Wind speed 10 m/s

Mountain maximum
height

500 m

Mountain half-width 10 km
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Figure C.2 presents the simulation results for the vertical wind speed (continuous

line), which can be compared to the analytical solution (dashed line). For reader’s

ease, results are only plotted up to an altitude of 15 km. Points in the figure represent

the centre of the control volumes forming the mesh. The mountain profile is shown

in black. Wind speed labels are given in m/s.

The simulated flow enters the domain from the left. The solution for the vertical

wind speed is symmetrical with regard to the mountain summit. It gives some

positive vertical wind speeds on the upwind side and some negative ones

downwind. The comparison between the model predicted vertical velocity

component (continuous line) and the analytical solution (dashed line) shows that the

model reproduces very well both the spatial distribution and the amplitude of the

phenomenon.
0
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Figure C.2. Vertical wind speed from the numerical simulation of

the neutral case with the shallow Boussinesq approximation. (See

text for more details).

C.2.2 Hydrostatic mountain waves

The situations considered in the present section allow us to validate the formulation

of the energy conservation equation in terms of the potential temperature

implemented in the numerical model.

With that aim in mind, the generation of hydrostatic mountain waves will be

attempted for a stably stratified flow situation over a mountain of 500 m high and

with a half-width of 10 km.  Hydrostatic mountain waves are produced in situations
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where the buoyancy term in the equation for the vertical velocity component is

sufficiently strong to balance the term of the vertical pressure gradient. This type of

situation, which is well reproduced by a hydrostatic model, is a good test to

determine how far a full Navier-Stokes solver is able to reproduce this limiting case

with good accuracy.

C.2.2.1 Shallow Boussinesq approximation

The simulation conditions used for the flow are given by:

• Shallow Boussinesq approximation with a reference density of   22.1=ρ kg/m3.

• Constant vertical potential temperature gradient kmKz /3.3+=∂∂θ  over the

whole vertical extent.

• Horizontal wind speed of 10 m/s, constant over the whole vertical extent.

For the conditions mentioned, the Scorer parameter l  is:

eq. C.45 1-33 m  1005.1103.3
290

81.9

10

1 −−
⋅=⋅=l

We therefore have 10=al . In such a situation, linear mountain wave theory predicts

the formation of internal gravity waves, propagating vertically throughout the entire

troposphere. The corresponding vertical velocity obeys eq. C.44 with a periodicity

given by the wavelength km
l

 0.62 == πλ . The maximum amplitude of the vertical

velocity is sm
a

Uh
w m / 5.0max,1 == . Since in this situation, the density has been kept

constant with height, the amplitude of the waves is also constant. Table C.3 gives a

summary of the simulation conditions for the hydrostatic mountain waves with the

shallow Boussinesq approximation, while Figure C.3 shows the expected analytical

solutions for the u  and v  velocity components for the corresponding situation.

Figure C.4 shows the simulation results after 100 time steps of 30 s each. The

mountain waves are progressively coming from downstream and form above the

mountain. After 300 time steps the waves are reaching the top of the simulation

domain (Figure C.5). The simulated vertical wavelength is about 5.7 km and is in

fairly good agreement with the theoretical value (λ~6 km).

The amplitude of the simulated wave of vertical velocity is 0.5 m/s, which fully

agrees with the theoretical prediction.
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Figure C.3. Analytical solution for the expected u (left) and v (right) velocity components for

the shallow Boussinesq hydrostatic case.

Table C.3. Simulation conditions used for the case of a stratified flow, inducing some

hydrostatic waves above the theoretical bell-shaped mountain.

Turbulence model None (laminar flow mode)

Damping layer Linearly increasing viscosity from

mskg /108.1 5−
⋅ to mskg /103  for

kmzkm 2510 <<

Advection scheme Higher upwind (2nd order)
CCCT (3rd order, modified
quadratic upwind)

Wind speed
Temperature

Boundary condition type
(see Appendix L for
definition)

Inlet
Mass flow boundary
Wall (free slip)
Pressure

Entrance
Exit
Ground
Top

Under relaxation factors 0.3
0.7

Wind speed
Potential temperature

Time step 30 s

Density profile Constant (shallow Boussinesq)

Ground temperature 288 K

Thermal stratification stable 3103.3 −
⋅=z∂∂θ

Wind speed 10 m/s

Mountain maximum
height

500 m

Mountain half-width 10000 m
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Figure C.4. Simulation results after 100 time steps for the stably stratified case generating

hydrostatic waves with the shallow Boussinesq approximation. The stratification conditions

are given by a potential temperature gradient of 3.3 K/km and a constant wind speed of 10

m/s blowing into the domain.

0
.0

0.0

0
.1

0
.0

0.0

0.0

0
.0

0
.1

0.1

0
.1

0
.2

0
.3

0
.2

0.4

0
.1

0
.3

-0
.1

-0
.1

-0
.1

-0.1

-0
.1

-0
.2

-0
.1

-0
.3

-0
.2

-0
.4

-0
.3

-0
.2

-50 -25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

vertical wind speed

10

10

10

1
0

1
0

11

9

9

12

1
1

8

10

13

9

14

7
1
2

1
1

-50 -25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

horizontal wind speed

Figure C.5. Same Figure C.4 as after 300 time steps.
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Figure C.6. Same as Figure C.4 after 1000 time steps.

It can be seen that there are some perturbations to the solution for the vertical

velocity at the domain entrance. This is due to some wave reflection occurring at the

inlet boundary where the boundary condition does not exactly correspond to the

condition used for the theoretical development. However, as can be seen from Figure

C.6, even after 1000 time steps of simulation, this perturbation remains close to the

entrance and does not adversely affect the solution. This difficulty can be alleviated,

using a mass flow boundary condition at the entrance to the domain, where the flux

through the whole entrance is specified to correspond to a mass flux associated with

a constant velocity profile of 10 m/s.  A simulation result after 500 time steps for this

case is presented in Figure C.7. The problem however, when imposing a mass flow

boundary condition, is that after a reasonably long simulation time (some 1000 time

steps), the mass flow at the entrance surface is no longer homogeneously distributed

and we tend to observe a flow acceleration in the lower part of the troposphere and a

deceleration in the upper part. As a consequence, the flow regime changes and we

drift towards a situation which is non-hydrostatic (al is reduced in the lower part of

the atmosphere due to the increase in the velocity) with trapped lee waves

propagating horizontally forming downwind of the mountain. (see Figure C.8).
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Figure C.7. Simulation results after 500 time steps for the same conditions as presented in

Figure C.4, with the difference that the entrance boundary condition is a mass flow boundary

condition.
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Figure C.8. Same as Figure C.7 after 1000 time steps.

It should be added at that point that the simulation results presented above needed

the introduction of a viscous damping layer in the upper part of the simulation

domain, where the viscosity was linearly increased from its normal value (1.8e-5) at

10000m to 1000 m2/s at 25000m. Without the damping layer, some spurious wave

reflection occurred at the top of the domain, which after 1000 time steps significantly

altered the simulation result (see Figure C.9 showing the vertical velocity

distribution after 1000 time steps without any damping layer).
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Figure C.9. Horizontal and vertical velocity distribution after 1000 time steps without the

viscous damping layer. (Other simulation conditions as in Figure C.6).

Another important remark, which needs to be made, is that we need to use a 2nd

order advection scheme to be able to reproduce the wave pattern of Figure C.3. If we

only use the default hybrid upwind and central differencing scheme, we get a

distribution of vertical velocity which produces the same wavelength as the

theoretical one, but the amplitude of the waves is not properly reproduced. With the

default scheme, we were only able to get waves with an amplitude decreasing with

altitude (see Figure C.10).
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Figure C.10. Vertical velocity distribution after 1000 time steps using the default hybrid

upwind and central differencing advection scheme.
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To test the model reaction to changes in the atmospheric stability, some additional

simulations were performed for various stratification conditions (not presented

here). After this sensitivity study, the same conclusions as above remain valid, which

are:

• The vertical wavelength associated with the initial stability conditions is well

reproduced by the model.

• The amplitude of the waves are quite well reproduced. The code only tends to

underestimate the wave amplitude at high altitudes. This however is certainly a

consequence of the artificially increased viscosity, which was introduced to

reduce the spurious wave reflection occurring at the top boundary condition.

C.2.2.2 Deep Boussinesq approximation

Another simulation was performed, with a density profile corresponding to an

atmosphere in hydrostatic equilibrium with the potential temperature profile

specified (deep Boussinesq approximation). Apart from this modification, the

simulation conditions are exactly the same as the ones presented in the previous

section.

From the analytical solution (eq. C.44) we expect similar behaviour as before, with

the difference that the amplitude of the waves should increase with height, instead of

being constant.

The simulated vertical velocity component (time step 300) for this case is compared

to the analytical solution in Figure C.11. Here again, except in the viscous damping

layer, the correspondence between the model solution and the theoretical prediction

is fairly good.

C.2.3 Non-hydrostatic mountain waves

Between the two extreme approximations of neutral conditions ( 1<<al ) and stable

conditions leading to the production of hydrostatic mountain waves ( 1>>al ), one

can find intermediate situations for which the buoyancy term in the vertical velocity

equation is important, but not to such an extent that it balances the vertical pressure

gradient term. For cases with 1≈al , no analytical solution can be derived. Using

asymptotic methods however, a solution can be obtained for regions far away from

the mountain (Queney (1948) and Smith (1979)). Figure C.12 shows an example of

such asymptotic behaviour for a situation with hydrostatic waves propagating

vertically and non-hydrostatic waves propagating horizontally downwind of the
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topography. Scorer (1949) mentions that with a Scorer parameter varying abruptly

with height, as can be the case in the presence of an inversion such as at the

tropopause level, the hydrostatic waves generated by the mountains can be partially

reflected downwards at the discontinuity. Interference between downward and

upward propagating waves can lead to the resonant production of so called ‘trapped

lee-waves’ propagating horizontally downwind of the mountain crest (Figure C.13).

The nature of these waves is non-hydrostatic, and they are distinguished by the fact

the lines of constant phase in the streamline displacement are vertical. Since the

streamlines can be associated with the potential temperature isolines (for an

adiabatic atmosphere), the above is equivalent to saying that the crests of the

potential temperature isolines are aligned vertically in the zone with trapped-lee

waves.
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Figure C.11. Comparison of the simulated vertical velocity component (left) with the

theoretical distribution (right) for a stratified situation with a potential temperature gradient

of 3.3 K/km and a constant wind of 10 m/s blowing into the domain. The simulation was

performed with a hydrostatic density profile (deep Boussinesq approximation).

C.2.3.1 Shallow Boussinesq approximation

To simulate a case with 1=al , the model is initialised with the following atmospheric

conditions:

• A wind speed of 20 m/s constant over the whole vertical extent.
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• A real temperature gradient of -6.5 K/km ( z∂∂θ = +3.3 K/km) below 11000m,

and a constant real temperature above ( z∂∂θ = +9.0 K/km). The Scorer

parameter in the troposphere is 4
105

−
⋅  m-1.

• Shallow Boussinesq approximation with a reference density of   22.1=ρ kg/m3.

Figure C.12. Asymptotic solution (after Queney, 1948) for the streamline displacement in a

flow generating non-hydrostatic waves behind a theoretical mountain, for a Scorer parameter

independent of the altitude z.

Figure C.13. Asymptotic solution for the streamline displacement in a flow generating

trapped lee-waves behind a theoretical mountain, for a Scorer parameter varying with the

altitude z.

The simulations are performed on a bell-shaped mountain with a half-width of 2 km

and a maximum height of 1000 m. The simulation domain for this case has a
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horizontal dimension of kmLx  120=  (65 elements) and a vertical dimension of

kmLz  28=  (25 elements). Table C.5 gives a summary of the simulation conditions.

Results after 100 time steps (3000s) are presented in Figure C.14 for a) the potential

temperature, b) the difference between the total and hydrostatic pressure, c) the

vertical wind speed component and d) the horizontal wind speed component.

Hydrostatic waves, formed above the mountain are inclined towards the downwind

side of the mountain. After 300 (Figure C.15) and 500 time steps (Figure C.16), waves

appear for altitudes between 2 and 7 km which propagate downwind. These waves

are trapped lee waves formed through constructive interference of waves reflected

downwards at the discontinuity at the tropopause. They are visible in both the plots

of the potential temperature and vertical velocity component.

0

0

0

0

1

2

0

1
2

00

3

1

0

0

0

-1
-2

-3

-4

-1

-25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

vertical wind speed

20

2
0

2
0

2
0

2
0

18

1
8

22

2
4

2
2

1
8

0

2
4

2
2

2
0

20

-25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

al1_100_dc

horizontal wind speed

295

300

305

310

315

320

325

330

335
340

345
350

355
360

365
370

375
380

385

390
395

-25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

potential temperature

0

0
0

50

0

0

-5
0

-5
0

0
0

-5
0

-50

-1
0
0

0

-2
0
0

-5
0

-1
0
0

-1
5
0

-5
0

-25 0 25 50

0.0

2.5

5.0

7.5

10.0

12.5

15.0
[k

m
]

pressure difference

Figure C.14. Simulation results after 100 time steps for the situation with stably stratified flow

generating non-hydrostatic mountain waves. The incoming wind speed was set to 20 m/s,

the potential temperature was 3.3 K/km for the whole troposphere and 9.8 K/km above. a)

potential temperature, b) pressure, c) vertical wind speed, d) horizontal wind speed.
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Since no analytical solution is available for the validation of this particular case, we

will only be able to compare our model results with simulations results presented by

other authors. Thunis (1995) simulated the same flow configuration with the non-

hydrostatic version of TVM. Figure C.17 presents the time evolution he obtained for

the vertical velocity component over a bell-shaped mountain defined by a half-width

of 2 km and a maximum height of 1000m. Results produced with RAMS with the

same simulation conditions are presented in Figure C.18. A comparison between the

three models is summarised in Table C.4. It appears that all the three models agree

fairly well for the prediction of the horizontal wavelength of the trapped lee waves,

with a wavelength between 11 and 13 km.  Concerning the amplitude and location of

the first lobe of positive vertical velocity on the lee side, the prediction of CFX4 lies in

the range of predictions of the two other models.
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Figure C.15. Same as Figure C.14 after 300 time steps.



C-25

Table C.4. Comparison of flow features obtained with CFX4, TVM and RAMS for the

simulation of non-hydrostatic waves calculated with the shallow Boussinesq approximation

(   22.1=ρ kg/m3) and the same set of parameters as in Figure C.14.

Amplitude and location of the first lobe of positive
vertical velocity in the lee side

Horizontal lee
wavelength

CFX4 3.16 m/s x = 7.6 km, z = 6.2 km 10-12 km

TVM ∼ 3.25 m/s x ≅ 7.0 km, z ≅ 8.0 km ∼ 11 km

RAMS ∼ 2.75 m/s x ≅ 7-8 km, z ≅ 8.0 km ∼ 13 km
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Figure C.16. Same as Figure C.14 after 500 time steps.
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Table C.5. Simulation conditions used for the case of a stably stratified flow generating

non-hydrostatic mountain waves in the lee of a theoretical bell-shaped mountain.

Turbulence model None (laminar flow mode)

Damping layer Linearly increasing viscosity

from mskg /108.1 5−
⋅ to

mskg /103  for kmzkm 2510 <<

Advection scheme Higher upwind (2nd order)
Higher upwind (2nd order)

Wind speed
Temperature

Boundary condition
type
(see Appendix L for
definition)

Inlet
Mass flow boundary
Wall (free slip)
Inlet

Entrance
Exit
Ground
Top

Under relaxation
factors

0.3
0.7

Wind speed
Potential temperature

Time step 30 s

Density profile Constant (Shallow Boussinesq)

Ground temperature 288 K

Thermal stratification Stable 3103.3 −
⋅=z∂∂θ  (for z<11000 m)

3108.9 −
⋅=z∂∂θ  (for z>11000 m)

Wind speed 20 m/s

Mountain maximum
height

1000 m

Mountain half-width 2 km

In all the simulations presented above, we used a 2nd order upwind advection scheme

(HUW) for the wind velocity and potential temperature. A simulation with exactly

the same parameters as the simulation presented in Figure C.14 was performed using

the default mixed upwind and central differences advection scheme (1st order). As

can be seen from Figure C.19 the latter did not reproduce the formation of waves

downwind of the mountain. With the first order advection scheme, results after 300

time steps only show the formation of hydrostatic waves.
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Figure C.17. Time evolution of the vertical

wind speed component obtained with the

non-hydrostatic version of TVM (Thunis,

1995), for the same simulation conditions

used here to reproduce the formation of

non-hydrostatic waves

Figure C.18. Potential temperature and

vertical wind speed obtained with an

incompressible and non-hydrostatic

version of RAMS, for the same simulation

conditions used here to reproduce the

formation of non-hydrostatic waves.



C-28

0

0

1

2
1

3

0

0

1

2

1

-1

-1

-2
-3

-4
-5

-1

-25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

vertical wind speed

20

2
0

2
0

18

2
0

2
2

1
82

4

2
6

2
4

1
8

1
6

1
4

1
6

-25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

al2_300

horizontal wind speed

295

300

305

310

315

320

325

330

335

340

345
350

355
360

365370
375

380

385

390

-25 0 25 50

[km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0
[k

m
]

potential temperature

0

0
0

50

0

5
0

0

0
0

-50

-1
0
0

-1
5
0

0

-5
0

-25 0 25 50

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[k
m

]

pressure

Figure C.19. Same as Figure C.14 after 300 time steps, for a simulation done with the default

mixed upwind and central differences advection scheme.

C.2.3.2 Deep Boussinesq approximation

To test the sensitivity of the results to the approximation of a constant density, a

simulation was performed with exactly the same set of parameters as the one of the

previous section. The difference was that we imposed a density changing with height

(deep Boussinesq), according to a profile in hydrostatic equilibrium with the

temperature profile specified. The results for this case are presented in Figure C.20

(time step 300) and Figure C.21 (time step 500). The change of the density profile

(with the associated reduction of inertia in the higher elevations) significantly affects

the amplitude of the waves building on the lee side. The maximum vertical positive

velocity (located some 10 km downwind at an altitude of approximately 7.5km) now
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exceeds the value of 5 m/s, instead of the 3.2 m/s obtained with the shallow

Boussinesq approximation.

The reduction in the density at higher levels also implies an increased production of

waves in the upper part of the domain, above the discontinuity of the tropopause (at

11 km).
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Figure C.20. Same as Figure C.14 after 300 time steps, for a simulation with a hydrostatic

density profile (deep Boussinesq).

C.2.4 Strongly non-linear situations (January 1972 Boulder foehn event)

The simulations presented earlier in Sectors C.2.1 to C.2.3 were performed for flow

situations that were homogeneous over the whole tropospheric extent with 85.0<lhm .

According to Long (1953), the value of 0.85 corresponds to the limit for a

homogeneous atmosphere above which non-linear effects start to dominate. For a
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multi-layer atmosphere, non-linearity can already be significant for values of lhm  as

low as 0.3. In the present section, the model will be run to simulate a non-linear flow

situation to test its ability to reproduce this category of flow situations. The test case

chosen for this purpose is the well-documented severe foehn event that was recorded

at Boulder (Colorado) in January 1972. This event was used by several authors

(Klemp & Lilly 1978, Peltier & Clark 1979, Durrran & Klemp 1983) who compared

their model results with the observations of the day.
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Figure C.21. Same as Figure C.14 after 500 time steps, for a simulation with a hydrostatic

density profile (deep Boussinesq).

Vertical slices of the potential temperature and horizontal wind velocity obtained

from observation by plane in the region of Boulder are presented in Figure C.22 and

Figure C.23 (source Klemp & Lilly 1978). Isolines of observed potential temperature

show the presence of waves building downstream of the mountain crest (wind blows
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from the west) as well as a very strong descent of air originating from the higher

troposphere. Wind speeds exceeding 60 m/s were recorded at Boulder on the eastern

flank of the Rocky Mountains.

For the numerical simulation, the mountain profile for the region is idealised and

represented by a bell-shaped mountain with a maximum height of 2000m, and a half-

width of 10 km. The simulation domain has a dimension of kmLx  120=  (60 elements)

in the horizontal and kmLz  25=  (25 elements) in the vertical.

Wind and temperature profiles used by Peltier & Clark (1979) are taken to initialise

the numerical model. These profiles (see Figure C.24 and Figure C.25) were derived

from meteorological soundings measured at the station of Grand Junction located

some 300 km upwind of Boulder. Compared to the actual measurements, Peltier &

Clark slightly modified the wind profile, reducing the wind speed above 13000m to

20 m/s instead of the observed 30 m/s. Without the modification, the numerical

model used by Peltier & Clark was not able to reproduce the extreme wind speeds of

60 m/s, whereas it did with the reduction in the high altitude wind speed. A

summary of the simulation conditions is presented in Table C.6.

Table C.6. Simulation conditions used to simulate the January 1972 Boulder foehn event.

Turbulence model ε−k  (modified)

Damping layer none

Advection scheme Higher upwind (2nd order)
CCCT (3rd order, modified
quadratic upwind)

Wind speed
Temperature

Boundary condition
type
(see Appendix L for
definition)

Inlet
Mass flow boundary

Wall (no slip, mz 01.00 = )

Inlet

Entrance
Exit
Ground
Top

Under relaxation
factors

0.3
0.7

Wind speed
Potential temperature

Time step 30 s

Density profile Hydrostatic (Deep
Boussinesq)

Thermal stratification Stable See Figure C.25

Wind speed See Figure C.24

Mountain maximum
height

2000 m

Mountain half-width 10000 m
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Figure C.22. Vertical slice of potential temperature observed by plane in the region of Boulder

for the severe foehn event of January 1972. (Klemp & Lilly, 1978).

Figure C.23. Same as Figure C.22 for the horizontal wind speed component.
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Time evolution of the simulation results for the potential temperature, pressure,

vertical and horizontal wind speed is presented for the time steps 100 (Figure C.26),

160 (Figure C.27), 200 (Figure C.28) and 240 (Figure C.29). An significant

displacement (more than 4 km downwards) of the potential temperature isolines can

already be observed after 100 time steps together with an overturning of the flow

above the mountain at altitudes between 7.5 and 11km. In this region, some wave-

breaking occurs, inducing some back flows (negative horizontal wind velocity).

Downhill of the summit, the horizontal wind speed reaches a maximum value of the

order of 35 m/s, whereas at higher altitudes (around z=5000m) the flow is

accelerated up to wind speeds of the order of 65 m/s. Waves start to form

downstream.

After 160 time steps (4800 s), these waves are clearly distinguishable. The descent of

potential temperature isolines is more pronounced and displacements of the order of

5.5 km can be observed. The region where the potential temperature isolines are

tightly packed, immediately downhill of the summit, coincides with the zone of

maximum acceleration of the flow. In this region, horizontal wind speeds greater

than 65 m/s can be seen. The highest wind speeds close to the ground are obtained

some 10 km downwind of the mountain’s highest elevation. At time step 240 (Figure

C.29), the maximum wind speed close to the ground reaches a value of some 57 m/s

which is only slightly lower than the maximum of 60 m/s that was recorded at

Boulder.
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Even if the wind speed and potential temperature distributions presented in Figure

C.22 and Figure C.23 are obtained from measurements which were not exactly

simultaneous, and which consequently must be interpreted with care, it can be stated

that the numerical model results reproduce fairly well the strongly non-linear

process involved.
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Figure C.26. Simulation results after 100 time steps (3000 s), for the severe foehn at Boulder a)

potential temperature, b) pressure, c) vertical wind speed, d) horizontal wind speed.
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Figure C.27. Same as Figure C.26 after 160 time steps (4800 s).
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Figure C.28. Same as Figure C.26 after 200 time steps (6000 s).
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Figure C.29. Same as Figure C.26 after 240 time steps (7200 s).

Figure C.30. Simulation results for the potential temperature and horizontal wind speed

obtained by Peltier and Clark. Steps between the isolines: 10 m/s for the wind speed, 5° K for

the potential temperature.
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Figure C.31. Time evolution for the horizontal wind speed calculated with the non-

hydrostatic version of TVM (Thunis, 1995).
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A comparison of the model solution at time step 200 with the results presented by

Peltier and Clark (Figure C.30) show that both results look very similar, qualitatively

as well as quantitatively.

From time step 240, one can also see some zones with negative horizontal wind

speeds close to the ground, corresponding to regions where rotors form in the wake

of the mountain.

Thunis (1995) presented the time evolution of solutions obtained with TVM for the

same simulation conditions. His results for the horizontal wind speed are

reproduced in Figure C.31. Contrarily to what can be observed with CFX4, TVM

generates some return flows close to the ground before generating some at high

altitude. Apart from the fact that TVM produces bigger rotors in the wake of the

mountain than CFX4, both models give comparable results.

Remark: Concerning the advection scheme used for the velocity components and

potential temperature, it can be pointed out that, similarly to what was noticed in the

previous sections, a simulation using the default ‘mixed upwind and central

difference scheme’ was not able to reproduce the formation of waves in the lee of the

mountain. A second order advection scheme seems to be a pre-requisite to

satisfactorily reproduce oscillations associated with buoyancy effects in the

atmosphere.

Results obtained with the first order advection scheme are presented in Figure C.32

to Figure C.35 for the time steps 100 (t=3000 s), 160 (t=4800 s), 200( t=6000 s) and 240

(t=7200 s). The maximum wind speed close to the ground also reaches a value

around 56 m/s (time step 240). However, the overall amplitude of the phenomenon

is reduced with the more diffusive 1st order scheme. The displacement of the

potential temperature isolines, the vertical wind speeds and the maximum horizontal

wind speeds are reduced. The rotors in the wake of the mountain are no longer

reproduced with the default advection scheme.
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Figure C.32. Same results as Figure C.26 (time step number 100) for a mixed upwind and

central difference advection scheme.
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Figure C.33. Same results as Figure C.27 (time step number 160) for a mixed upwind and

central difference advection scheme.
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Figure C.34.. Same results as Figure C.28 (time step number 200) for a mixed upwind and

central difference advection scheme.
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Figure C.35. Same results as Figure C.29 (time step number 240) for a mixed upwind and

central difference advection scheme.
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D Three dimensional wind field over real terrain
(Askervein Hill)

As a last validation test case for situations dominated by the geostrophic wind, we

chose to simulate the flow conditions around the real terrain of the Askervein Hill

site. This choice was essentially motivated by the fact that a large amount of

literature exists, which documents not only the measurement campaign, but also

some physical and numerical modelling of the flow behaviour around this rather

gentle topographic feature. A short review of the existing literature about Askervein

Hill is presented in Section D.1. A description of the site and simulation conditions

used in this work will be given in Section D.2 and Section D.3, while the simulation

results will be compared to the observations later on.

D.1 Short literature review

The Askervein Hill area has been the subject of an extensive observation campaign

over the years 1982-1983. An overview of the Askervein Hill project is given by

Taylor and Teunissen (1987). An analysis of the mean wind variation at a fixed

height above ground, along three measurement lines, has been performed by Salmon

et al (1988) for various incident wind directions. Mickle et al (1988) studied vertical

profiles of wind and turbulence at the hill top as well as at a reference station located

upwind of the hill for winds blowing from the wind direction 210°.

In addition to the field experiment, wind tunnel simulations at three different length

scales were performed by three different research groups and are documented in

Teunissen et al (1987). The authors of these simulations concluded that the wind

tunnel tests reproduced very well the changes in mean flow speed-up. They used

various roughness conditions for the model surfaces and recognised that the changes

in surface roughness only affected the flow on the lee side of the hill, as far as the

mean wind speed is considered. The use of an excessively smooth surface tended to

result in an overestimation of the flow speeds in the hill wake. The rough-surfaced

model, on the other hand, was able to reproduce the spatial variation of the flow

speed up along the measurement lines. Concerning turbulence variables, Teunissen

et al. (1987) conclude that the changes in the longitudinal-component turbulence

level σ
U
 is qualitatively well modelled and sometimes even quantitatively. They also

point out that, when switching from a smooth to a rough surface, the significant

change of the turbulence level in the approaching flow did not significantly affect the
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behaviour of the longitudinal-component turbulence level. The effect of a roughness

change was more important for the spatial variation of the mean flow variables.

The Askervein Hill experiment has also been used by many authors to test their

numerical model ability to reproduce wind fields over real topography. For

linearised models, detailed comparisons between observed and simulated

normalised horizontal wind speed have been presented by Beljaars et al (1987)

(model MSFD with k-ε closure) and Walmsley & Salmon (1984) (model MS3DJH/3).

A general conclusion from the use of the linearised models to predict the spatial

distribution of wind speed is that the results are in good agreement with the

observations for the upwind side and near the summit of the hill (see e.g. Salmon et

al, 1988). However, in the lee of the mountain, where flow separation possibly

occurs, linear models tend to overpredict the mean wind speed (Beljaars et al, 1987).

Various 3D fully non-linear models have also been used to simulate wind fields over

Askervein Hill. Raithby et al (1987), Glekas et al (1996) and Alm & Nygaard (1993)

tested 3D full Navier-Stokes code, solving the equations by means of a finite-volume

approach and using a k-ε two equations model for turbulence closure. All of them

used the assumption of neutrally stratified flow and neglected buoyancy effects in

the vertical velocity equation.

Alm & Nygaard (1993) presented results for the spatial variation of the mean wind

along the three measurement lines and showed that they are in good agreement with

the observations, also in the lee of the hill.

Glekas et al (1996) compared simulated and observed spatial distribution of the mean

velocity along the A and AA measurement lines only (see Figure D.1 for definition).

They obtained results which they qualify as ‘satisfactory’, even if the maximum

overspeed value over the hill was not well-predicted. Testing various domain size

and various grid resolution, they showed that the spatial distribution of the mean

wind speed is strongly dependent on the boundary condition and model resolution.

To decrease the sensitivity of the results to the boundary values, they suggest using a

nesting procedure to isolate the boundaries from the region of interest.

Raithby et al (1987) proposed a more extensive numerical study, comparing not only

the mean wind speed at constant height above ground, but also considering vertical

profiles of variables like direction changes, turbulent kinetic energy, and stress

tensors. From simulations done for the 210° and 180° wind directions, they also came

to the conclusion that the predicted mean flow variables, flow speed-up and angle

are in good agreement with the observations. Compared to a linearised model, the

simulation results are more accurate in the lee of the hill. When analysing vertical
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profiles of turbulent kinetic energy and turbulent stresses, they found large

discrepancies between simulated and observed values. From this, they suggest that

the k-ε turbulence model might be inadequate to properly reproduce such flows.

In a more recent paper, reviewing the various studies that were done using the

Askervein Hill experiment results, Walmsley and Taylor (1995) give a summary of

the unresolved questions related to this particular case study. These questions

mainly concern the following topics:

A roughness length of 0.03 m has been suggested to be representative for the whole

region around Askervein Hill. Several authors however contest the use of a constant

roughness length for the whole domain. From vertical profile measurements (Mickle

et al (1988)) or from numerical simulations assuming varying roughness length

(Zeman & Jensen (1987)), they suspect that the hill top surrounding surface might be

smoother than the surroundings of the reference measuring station. To reduce the

discrepancy between observed and simulated mean wind speed profiles in the

lowest 1-4 m, Zeman and Jensen would need to decrease the roughness length to

about 0.001 m. Walmsley and Taylor (1995) on the other hand do not believe this

significant roughness change to be realistic and expect that other effects might

explain the difference between observed and simulated profiles in the lowest levels.

In their view, a satisfactory explanation for the near-surface wind speed profiles over

the hilltop is still lacking.

Various formulations to determine the inner-layer depth have been compared to

values derived from the observed vertical profiles as well as from the simulated

profiles. Which formulation, among the ones proposed by Jackson and Hunt (1975),

Jensen et al (1984) or Britter et al (1981), is more appropriate is still a matter of debate.

The role of flow distortion in the lee of the hill, due to the presence of other terrain

features, is not yet completely understood. Walmsley and Taylor (1995) suggest that

further numerical tests with an extended topography would bring valuable

information to help answer this question.

D.2 Site description

D.2.1 Topographical and roughness data

Askervein Hill is located on the West Coast of South Uist, an island of the Outer

Hebrides off the west coast of mainland Scotland. The hill is quite isolated and close

to elliptical in shape with a major axis of about 2 km and a minor axis of about 1 km.

The major axis is aligned in a NW-SE direction. The hilltop is at an altitude of 126 m

while the surroundings are at about 10 m above sea level.
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As described by Taylor and Teunissen (1987) ‘the ground cover around the hill is

mainly heather, grass, low scrub and some flat rocks’. They consider that the surface

roughness on the hill and in the surrounding terrain can be taken as uniform. From

the analysis of wind profile measurements at a site called the reference site (RS),

located some 2.8 km upwind of the hill for south-westerly flows, Taylor and

Teunissen proposed a roughness length of 0.03 m that would be representative for

the site.

The topographical data for the Askervein Hill area were kindly provided by J.

Walmsley, who also supplied a roughness length map.

For convenience at the results analysis stage, the data were transformed to place the

so-called mountain central point (CP) in the middle of the computational domain

and the x and y co-ordinates were rotated clockwise by an angle of 47.3° to align the

mountain major axis along the y direction. To get the altitudes at the co-ordinates

corresponding to the grid resolution, a bilinear interpolation was performed using

the rotated data. The site topography so obtained (isolines) is presented in Figure

D.1.

The simulations that will be presented below were done assuming a constant

roughness length of 0.03 m over the whole simulation domain. Some additional runs

were also done with a spatially varying roughness length and are presented

elsewhere (Montavon, 1998). For these simulations, the spatial distribution of the two

roughness classes used is also given in Figure D.1, where the dark shaded areas

correspond to a roughness length of 0.0001 m and the light shaded area to a

roughness length of 0.03m.

D.2.2 Definitions

The measurement campaign of the Askervein Hill field experiment is extensively

documented in the literature referenced in Section D.1. It is not our purpose to

describe it again, but since many terms used as reference terms in the original

literature will be used in this work, it seems convenient, for the reader’s ease to give

some more information about it.

The following abbreviations will be used to describe particular locations on the site:

Abbrev. location

HT Hill top             (intersection between the A and B lines)
CP Centre Point     (intersection between the AA and B lines)
RS Reference site
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Mean wind speed measurements were collected at 10 m above ground along three

lines of masts:

• one along the hill major axis (referred to as line B), going through both HT and CP

• two lines perpendicular to the major axis, one through HT (line A) and one

through CP (line AA).

Line A

Line AA

Line B

47.3°

x

y

Figure D.1. Topography (isolines) and roughness length distribution (shading) for the

Askervein Hill area. Light grey corresponds to a roughness length of 0.03m, while dark grey

is for a roughness length of 0.0001m. (Source: adapted from data provided by J. Walmsley).

D.3 Simulation conditions

D.3.1 Computational domain

The domain used for the simulations over Askervein Hill consisted of 60 x 82 x 15

elements. The dimensions of the domain were 3 km in the x direction, 4.1 km in the y

direction (corresponding to the hill major axis) and 3 km in the vertical. The element

size was varied according to a symmetric geometric progression in the horizontal

given by a stretching factor of 1/0.95. In the vertical, the element size followed a

normal geometric progression with a stretching factor of 1.53, the smallest element

being close to the ground. A summary of the parameters used for the grid

construction is presented in Table D.1.
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The ground and the top boundaries were deformed to correspond to the topography

presented in Figure D.1. The top deformation has been done to ensure that all the

control volumes in a given layer are at the same height above ground. The choice of

the stretching factor in the vertical was conditioned by the fact that we wanted to

have the centre point of the third level of cells lying at 10 m above ground, the height

at which the mean wind speed measurements were recorded. This choice avoided

the need for an additional interpolation at the results analysis stage. The

corresponding computational domain is presented in Figure D.2.

Figure D.2. Domain used for the simulation of atmospheric flows above

Askervein Hill.

Table D.1. Parameters defining the grid used for the simulation of the wind

fields over Askervein Hill.

direction dimension
[m]

number of
elements

elements
distribution

element’s size [m]

largest smallest

x 3000 60
symmetric
geometric

progression,
r=1/0.95

95.5 21.5

y 4100 82
symmetric
geometric

progression,
r=1/0.95

116.8 15.0

z 3000 15
geometric

progression,
r=1.53

1041 2.7
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D.3.2 Boundary conditions

The ground level of the computational domain was allocated a ‘wall’ boundary

condition, with the variables at the ground being determined by means of wall

functions as explained in Section 5.2.2. This wall treatment basically assumes that the

velocity profiles follow a logarithmic law close to the ground, with a velocity vector

tangential to the surface. The second assumption is that the rate of dissipation

balances the rate of production of turbulent kinetic energy.

For the vertical boundaries x = 0 or x = x
max

, and y = 0 or y
max

, the type of boundary

condition used for the simulation depends on the mean flow direction. Figure D.3

shows a schematic representation of the computational domain seen from above.

Inlet boundary conditions are set for the two boundaries at which the flow enters the

domain, while pressure boundaries are set at the two faces with outgoing flow. (See

Appendix L for the definitions of the various boundary condition types). The top of

the domain is also set to be a pressure boundary.

y

x

φ

(0,0)

W E

N

S

pressure boundary

inlet boundary

Uin

Figure D.3. Schematic of the computational domain seen from above.

Definition of the boundary condition type for the vertical boundaries,

depending on the main flow direction. Borders with entering flow are

attributed ‘inlet’ boundary condition type (continuous line), while

borders with outgoing flow are set to be pressure boundaries (dashed

line).
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All the pressure boundaries are set a value of 0 for the pressure p′ , assuming thereby

that the total pressure corresponds to the hydrostatic reference state. The conditions

used for the velocity components, turbulent kinetic energy and dissipation rate at the

inlet boundaries are identical to the initial solution described below.

D.3.3 Initial solution

As input to solve the flow field equations, the model requires an initial solution. The

vertical profiles used to initialise the flow variables are also used for the ‘inlet’

boundary conditions, and the latter are kept constant with time during the

simulation.

For the strong wind conditions prevailing for the cases to be simulated, as well as

from the fact that the stability conditions can essentially be considered as neutral (see

Salmon et al, 1988), we expect boundary layer heights of the order of 1500m to

develop over the area. Since for the lowest 10% of the boundary layer (typically 150m

in these cases), the wind direction is constant with height, and considering that the

mountain height is less than 120m, we do not expect the Ekman spiral and the

Coriolis force to significantly affect the solution over the Askervein Hill terrain. The

simulations presented below are obtained without including the effect of the Coriolis

force, either in the model equations, or in the profiles used as entrance boundary

conditions.

The model was initialised following a formulation proposed by Alexandrou (1996)

(see Appendix I), who derived an alternative formulation to express the mean

velocity profile of a two dimensional turbulent boundary layer flow. Instead of using

the boundary layer height h  and the roughness length 0z  as scaling height for the

profiles, he used a dissipation length 
ε

l  together with the boundary layer height h .

For the Alexandrou model constants we used c=0.183 and B  was set according to eq.

I.5 to correspond to a roughness length of 0.03 m with the boundary layer height h

calculated from the relationship

eq. D.1
f

u
h

⋅
=

6

*

which corresponds to typical values obtained from observations (cf Appendix B,

Section B.3).

Figure D.4 shows a typical velocity profile from Alexandrou’s formulation, which

was used as initial and boundary condition for the simulation. These profiles were

obtained with the set of constants summarised in Table D.2. The values of the friction

velocity and ground roughness were chosen to correspond to the values best

representing the measured profile at RS for the run MF03-D (wind direction: 210°, cf.



D-9

Raithby et al., 1987). The corresponding dissipation rate and normalised turbulent

kinetic energy1 profiles are given in Figure D.5 and Figure D.6 respectively. Two

turbulent kinetic energy profiles are presented for two different values of 
µ

C

( 09.0=
µ

C  is the standard value for the k-ε model, and 034.0=
µ

C  is the value

proposed by Duynkerke, 1988).

U velocity profile

1

10

100

1000

10000

0 5 10 15 20

U [m/s]

z [m]

log law

Alexandrou

Figure D.4. Typical wind speed profile from the Alexandrou

formulation used as initial and boundary conditions for simulations

over Askervein hill.

Normalised turbulent kinetic energy

1

10
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1000

10000

0 0.005 0.01 0.015 0.02 0.025 0.03

k' 

z [m]

Alexandrou, cmu=0.034

Alexandrou, cmu=0.09

Figure D.5. Typical normalised kinetic energy profile from the

Alexandrou formulation used as initial and boundary conditions for

simulations over Askervein hill. The two different profiles are

obtained for different values of 
µ

C .

                                                     
1 The normalised turbulent kinetic energy k’ is defined such that k k u z m' / ( )= =

2 10 .
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Turbulent dissipation rate

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1

ε [m2/s3]

z [m]

Alexandrou

Figure D.6. Typical dissipation rate profile from the

Alexandrou formulation used as initial and boundary

conditions for simulations over Askervein hill.

Table D.2. Constants determining the profiles presented in

Figure D.4, Figure D.5 and Figure D.6.

Alexandrou
formulation

u*  [m/s] 0.654

fuh 6*=  [m] 1090

c  [-] 0.183

B [-] 7.91

D.3.4 Simulation results for the 210°, 180°, 235° and 270° wind directions

Simulations were performed for various flow directions and the behaviour of the

mean wind speed at 10 m above ground level along the three A, AA and B lines was

compared with the measurements.

The first simulation was done for a wind blowing from the 210° sector

(corresponding to φ= 12.7° in our model). The initial and ‘inlet’ profiles were set

according to the Alexandrou formulation with the parameter values given in Table

D.2. A constant ground roughness of 0.03 m was used. The atmosphere was set to be

stable with a vertical real temperature gradient of -6.7 K/km over the whole vertical

extent of the simulation domain (3000m). The density of the atmosphere is set to be

constant in time and corresponds to the hydrostatic equilibrium state determined by

the temperature profile. All the runs presented here, except one, have been
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performed using the standard values for the turbulence model constants, i.e. using

Cµ= 0.09, C
1
=1.44, C

2
=1.92 and σε=1.217.

D.3.4.1 Horizontal mean wind speed variation

In Figure D.7 the normalised mean horizontal wind speed2 at 10 m above ground

level obtained from the simulation (lines) are compared to the measurements

(isolated symbols) which were recorded during the simultaneous runs MF03-D and

TU03-B (210° wind direction) as described in Taylor and Teunissen (1987). The

measured values were actually read from the paper by Salmon et al (1988). Mean

wind speeds are presented along the A line (Figure D.7a), AA line (Figure D.7b) and

B line (Figure D.7c). Model results are extracted for several lines close to and parallel

to the measurement lines. The only reason for extracting several parallel profiles to

compare with one measurement line was to make sure that we would not have a

high sensitivity of the results to an error in representation of the measurement masts

locations. As will be seen later on, no drastic change in the solution behaviour can be

seen when comparing e.g. the J44, J45 or J46 lines. Table D.3 gives the definition and

exact location of the labels used later on.

Table D.3. Definition of the line labels in terms of co-ordinates

AA line A line B line

label distance from

meas. line [m]

label distance from

meas. line [m]

label distance from

meas. line [m]

J44 -10.9 J60 0.2 I29 -32.9
J45 6.2 J61 39.0 I30 -10.8
J46 24.2 J62 79.8 I31 10.8

The vertical angle of the velocity vector relative to the horizontal is plotted in Figure

D.7d and compared to the measurements for both the A and AA line. A positive

value indicates an ascending flow. Figure D.7e presents the change of direction of the

horizontal wind velocity relative to the wind direction used at the boundary. A

positive change indicates a clockwise rotation of the wind vector.

                                                     
2 The normalised horizontal wind speed is defined as ~ /

,10 ,10
v u v u v

h m m ref m ref m
= + +

10

2

10

2 2 2 .

Since the exact location of the reference station was not included in the simulation

domain, we chose a reference point located in the domain 900 m upwind of the hill,

along the A line.
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As can be seen from Figure D.7a and b, the velocity decrease upwind of the hill, the

increase over the summit and the velocity reduction in the lee of the hill are fairly

well reproduced by the numerical model. The agreement between measurements

and simulations along the AA line is excellent. Along the A line, the agreement is not

exactly as good with the overspeed over the hill top being underpredicted by about

0.2/1.9 (10 %) and the wind speed in the lee of the hill overpredicted by 0.13/0.33

(about 40 %). From Figure D.7c, it can also be noticed that the model generally tends

to slightly underpredict the overspeed along the mountain major axis. The

overprediction in the normalised wind speed at locations between 1500 and 2000 m

south-east of the hilltop is probably due to the fact that the interpolated topography

does not exactly represent the real topography.

Concerning the wind direction, Figure D.7d shows that the angle of the velocity

vector relative to the horizontal (so-called upwash angle) is well reproduced. For the

horizontal change of direction with respect to the incoming wind direction, the

behaviour along the A and AA lines is qualitatively reproduced. Upwind of the hill,

the observations tend to show an anticlockwise rotation of about 10°-15° between the

wind at CP (AA line) and the wind at HT (A line). Such a rotation is also predicted

by the model, with a smaller amplitude however than the observed one (some 5°).

The increased anticlockwise rotation in the lee of the hill observed along the A line is

captured by the simulation, with an amplitude that is underpredicted by about 10

degrees compared to the observations.

The horizontal wind speed distribution over the whole simulation domain is

presented in Figure D.8. Grey shading represents the wind speed values. The white

isolines separate wind speed classes of 1 m/s. The Askervein Hill topography is

indicated by means of the black isolines. Altitude difference between two

consecutive topography isolines is 20 m.  To give an idea of direction changes, the

wind vectors were also plotted. The flow features that can be observed on this figure

are very similar to the ones that were presented by Raithby et al (1987). The most

striking feature is the strong overspeed region along the main hill axis. A stagnation

region with a slight wind speed reduction in the upstream region can be seen. The

most significant reduction is observed in the lee of the hill, with wind speed values

as low as 3.3 m/s (to be compared with a value of 9.3 m/s at the entrance and a

maximum value of 16.3 m/s close to the hill top). The strong wind speed reduction

in the lee of the mountain is accompanied by an anticlockwise rotation of the velocity

vectors, which is even more pronounced when looking at lower levels (not shown).
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After some 1000 m behind the hill crest, the flow seems to have recovered to its

original wind speed. And it appears that secondary hills present in the domain also

affect the flow.
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line B, normalised horizontal wind speed
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Figure D.7. Normalised wind speed along the measurement lines A, AA and B (figures a-c),

vertical angle (figure d) and wind direction change (figure e) at 10 m above ground level for a

simulation with incoming 210° wind direction. Model results are drawn with lines, while the

isolated symbols correspond to the observations.
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Figure D.8. Wind field at 10 m above ground level over the Askervein topography for an

incoming wind blowing with the 210° direction. Grey shading gives the horizontal wind

speed scale. Wind speed classes of 1 m/s are separated by black isolines. For clarity purpose,

only one vector in four has been plotted. The topography is represented by means of white

isolines.
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Simulations were also performed for the 180°, 235° and 270° wind directions. Except

for the incoming 235° wind direction, for which the friction velocity u*  has been set

to 0.42 m/s, the simulation conditions for these simulations were exactly the same as

for the 210° wind direction. As far as measurements were available, the mean wind

and direction variation at 10 m above ground have been compared to the

observations. For that purpose, results from the runs MF01-D and TU01-B (direction:

180°), the run MF2.29b (direction: 235°) and the run MF04-C (direction: 270°) were

used (Salmon et al, 1988).

The comparisons presented in Figure D.7 to Figure D.11 show that the model is able

to satisfactorily reproduce the horizontal variation of the mean flow properties at 10

m above ground level.
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Figure D.9. Same as Figure D.7 for the wind direction 180°. (Source: Salmon et al., 1988).
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line A, normalised horizontal wind speed
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line B, normalised horizontal wind speed
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Figure D.10. Normalised wind speed along the A and B line for the 235° wind direction.

Model results are drawn with lines, while the isolated symbols correspond to the

observations. (Source: Salmon et al., 1988).
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Figure D.11. Normalised wind speed along the AA and B line for the 270° wind direction.

Model results are drawn with lines, while the isolated symbols correspond to the

observations. (Source: Salmon et al., 1988).

D.3.4.2 Vertical profiles

Figure D.12 shows, for the lowest 100 m above ground, the behaviour of the

horizontal wind speed (Figure D.12a), normalised turbulent kinetic energy k’ (Figure

D.12b) and the fractional speed up ratio3 ∆S (Figure D.12c) at hill top for the 210°

                                                     
3 The fractional speedup ratio ∆S (also called ‘overspeed ratio’) is defined according

to ∆S z
v z v z

v z

h h ref

h ref

(~)
(~) (~)

(~)

,

,

=

−

 and the normalised turbulent kinetic energy k’ by

k k v mref' / ( )=
2 10 .
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wind direction. To appreciate the effect that the choice of the reference location can

have on the results, the horizontal wind speed at the entrance and at the reference

point have also been plotted in Figure D.12a. It can be seen from the present

simulation that the wind speed profile at the reference location has not been changed

much compared to the inlet profile. This observation tends to support that, for the

chosen boundary conditions, the incoming flow is in equilibrium.
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Figure D.12. Vertical profiles of horizontal wind speed (a), normalised turbulent kinetic

energy k’ (b) and fractional speed up ratio ∆S over the hill top. The wind speed profiles at the

domain entrance as well as the reference profile have also been plotted in (a). Isolated

triangles stand for measurements at the hill top (source: Raithby et al, 1987) and lines are for

profiles obtained from the numerical simulation at various locations (I= 29, 30, 31 and 32)

along the J= 61 line (see Table D.3 for the definition of the exact locations in metres).

From Figure D.12b, it appears that the behaviour of the simulated k’ profile is in good

agreement with the observations, with the simulated values slightly overpredicting

the measurements. For the heights above ground which are of interest for wind

energy applications (between 20 and 100 m), the speed up ratio is quite well
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reproduced. For lower levels however, the values obtained for ∆S clearly

underpredict the measurements.

D.4 Sensitivity study

To obtain a better understanding of the effects of the various flow parameters and

model constants on the resulting flow pattern, a sensitivity study was performed for

the 210° wind direction. The latter considered the effects of

• the vertical resolution and total vertical extent of the computational domain

• the atmospheric stability by varying the vertical temperature gradient.

• the friction velocity used to determine the profiles at the inlet boundary

conditions

• the ground roughness by using various constant ground roughnesses, by

introducing a roughness length in the domain which differs from the one used at

the entrance and finally by spatially varying the roughness length,

• the turbulence profiles at the entrance by changing the type of profiles used

for the k and ε parameterisation.

And finally, simulations were also performed with various turbulence models. This

last step included the use of an algebraic stress model, of a differential stress model

as well as the k-ε turbulence model with modified constants.

The results of the sensitivity study are extensively presented elsewhere (Montavon,

1998), and we will only review here the conclusions which could be drawn:

• As far as wind power potential evaluation is concerned, the obtained results

show that the vertical resolution adopted seems to be sufficient and the flow

acceleration above the hill was well reproduced for levels located at more than 10

m above ground. An increase in the vertical resolution did not bring any

significant improvement of the results.

• With the relatively small vertical dimension of the hill, static stability effects can

be considered as negligible for the case of relatively strong winds.

• Keeping all the other parameters constant and changing the friction velocity *u

only affected the absolute values of the flow variables, but not the normalised

values. At this point, it should be stressed that the friction velocity can be

considered as a scaling variable for the case of Askervein Hill because of the fact

that the topography is not very high and that static stability effects are negligible.

• From simulations done with an homogeneous roughness length (same

roughness length over the whole domain and for the profiles set at the entrance),

it can be observed that:
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1. the maximum overspeed along the hill major axis is reduced when the

roughness length is decreased,

2. the wind speed reduction in the lee of the hill becomes less important when

the roughness length is decreased,

3. the change of roughness length does not significantly affect the upwash angle

(angle of the wind vector relative to the horizontal),

4. upwind of the hill, the direction change in the horizontal plane is not

modified by a change in the roughness length. However, it can be seen that

the amplitude of the anticlockwise rotation between the hill top and the lee

region decreases with decreasing roughness length,

5. a decrease in the roughness length tends to decrease the values of the speed

up ratio ∆S  in the lowest levels

6. the normalised turbulent kinetic energy profile is significantly reduced when

the roughness length is decreased.

• From simulations done with homogenous ground roughness but with inlet

profiles corresponding to a different roughness value, conclusion 5 above is no

longer true. In the case where the roughness length in the simulation domain is

reduced compared to the one characterising the inlet profiles, the speed up ratio

is increased in the lowest levels (lower than 10 m above ground), without being

significantly altered in the higher levels.

• It appeared that the consideration of local roughness changes (like the

distribution presented in Figure D.1) had no significant impact on the wind speed

distribution. For a roughness change to show an effect, it needs to take place over

distances larger than a few hundred meters upwind of the location considered.

However, it was also shown that a roughness change located a few kilometres

upwind of the hill would affect the flow development on the terrain.

• The model results appear to be very sensitive to the type of profiles set for k and

ε as inlet boundary conditions. For situations where the k and ε profiles are not in

equilibrium with the flow conditions, the model results were as if there were a

roughness change. Situations using e.g. constant values for k and ε at the entrance

present simulation results similar to the case of a smooth to rough transition,

causing an excessive reduction of the wind speed in the hill wake. The strong

sensitivity to the boundary conditions requires that the latter are fixed carefully.

Otherwise, misleading conclusions could easily be drawn regarding the values of

other model parameters like the roughness length or the turbulence model

constants. This observation can actually be considered as one of the strongest

limitations of the model since in most of the cases, which are to be simulated, we
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only have a very poor knowledge of the turbulence conditions to be used at the

model entrance.

• If reliable information is not available regarding the values to be specified for

the stress tensor at the entrance to the simulation domain, the use of more

sophisticated turbulence models does not bring better results than the simpler k-ε

model.

Taking advantage of the many observations obtained from the sensitivity study, we

tried to improve the simulation results, with particular attention to the speed up ratio

in the lowest 10 m. At this stage, remembering that the wind speed profile, the

turbulence characteristics of the approaching flow, together with the equilibrium or

non-equilibrium that they describe, appear to be very significant for the evolution of

the flow field in the simulation domain, we tried to set them so that they gave a

better agreement with the observations available at the reference station. Keeping in

mind that, for a wind blowing from the 210° direction, there is a flat uniform fetch of

about 3-4 km between the coastal line and Askervein Hill, and looking at the vertical

profiles of wind speed measured at the reference station for the run MF03-D (see

Figure D.13a) it seems quite possible that the flow approaching the Askervein Hill

area is still affected by the roughness change associated with the sea-land transition.

To see how the ‘history of the flow’ can change the results on the domain, we made

an additional simulation with entrance profiles obtained from a two-dimensional run

simulating the development of a boundary layer over flat terrain behind a roughness

change for a neutral free flow stratification. The 2D case assumed that the profiles of

the wind speed, turbulent kinetic energy and dissipation at the entrance represent

atmospheric conditions in equilibrium with a roughness value of 0.0001m, which

would describe smooth conditions typical for the sea. The formulation used for this

purpose was again the formulation given by Alexandrou. The profiles at the entrance

to the 2D domain have the characteristics given in Table D.4. For this simulation

again, the turbulence model constants were set to the standard ones, with Cµ= 0.09,

C
1
=1.44, C

2
=1.92 and σε=1.217. The ground roughness of both the 2D and 3D

simulation domain was set to 0.03m

Profiles of wind speed, turbulent kinetic energy and turbulent dissipation rate were

extracted from the 2D simulation at a fetch of 4 km behind the roughness change (see

Figure D.13a to c). They were then utilised as initial and boundary conditions for the

3D Askervein Hill domain.
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Table D.4. Parameters characterising the inlet profiles used as inlet

boundary condition for the 2D simulation with roughness change.

ground roughness 0.01 m
friction velocity 0.42 m/s
boundary layer height 700 m
free stream velocity 19 m/s
c (constant in Alexandrou formulation) 0.1
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Figure D.13. Normalised wind speed (a), normalised turbulent kinetic energy and dissipation

rate profiles resulting from the 2D simulation after a fetch of 4 km behind a roughness change

(continuous line) for the standard turbulence model constants. The profiles are compared to

the analytical profiles used for the simulation for the 210° wind direction presented in D.3.4

and to values observed at the reference site (isolated triangles) (source Raithby et al, 1987).

Compared to the analytical formulation that was used previously, the wind speed

profile after the roughness change exhibits, for heights above 30 m, a behaviour

which is more similar to the one that was observed at the reference station, with a

higher wind speed for levels above 30 m (see Figure D.13).  The normalised turbulent

kinetic energy profile however seems to slightly underpredict the measured values.
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This effect might be due to the fact that we used the standard model constant for µC ,

which might be slightly too high for atmospheric flows. No observations for the

dissipation rate were available, so that it can not be stated whether the profile used

for ε is appropriate or not.

The results of the 3D simulation are presented in Figure D.14 and Figure D.15.
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Figure D.14. Same as Figure D.7 for a simulation using the profiles presented in Figure D.13

as boundary conditions.

From Figure D.14a and b, it can be seen that both the maximum overspeed and

maximum wind speed reduction along the A and AA lines are well reproduced by
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the simulation. Figure D.14c shows a noticeable improvement of the maximum

overspeed prediction along the hill major axis. The simulated vertical profile of

normalised turbulent kinetic energy over the hill top compares very well with the

observations, while the overspeed ratio prediction has also been improved, with the

profile agreeing with the measurements down to a height of 5 m above ground. This

improvement of the vertical profile of ∆S is definitely related to the fact that the

velocity profile at the entrance of the simulation domain gives higher velocities for

levels above 30m. Among the various simulations that were performed using the

standard turbulence model constants, the one shown here best reproduces the

observations.
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Figure D.15. Same as Figure D.12 for a simulation using the profiles presented in Figure D.13

as boundary conditions.

Apart from the prediction of the speed up ratio in the lowest 5 m above ground, the

results presented above are good, even though the kinetic energy profile specified at

the entrance of the domain underestimates the values that were measured at the

reference site. Despite the good agreement obtained between the observations and
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measurements, there are still some questions, which remain unanswered regarding

the choices to be made to simulate atmospheric flows. One of these questions

concerns the values to be used for the turbulence model constants. Instead of the

standard values (Cµ= 0.09, C
1
=1.44, C

2
=1.92 and σε=1.217), Duynkerke (1988)

suggested the modified set Cµ= 0.034, C
1
=1.46, C

2
=1.83 and σε=2.38, which should be

more appropriate for atmospheric flows. To illustrate the influence of such a choice,

the simulation presented above was repeated with the set of constants proposed by

Duynkerke. The profiles 4 km downwind of the roughness change, obtained from the

2D simulation for this case are presented in Figure D.16. Changing the model

constants (more particularly reducing the value of Cµ) tends to increase the

normalised turbulent kinetic energy profile close to the ground. A comparison with

the observations at the reference site shows that, for that particular case, the

prediction of the kinetic turbulent energy profile is improved.
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Figure D.16. Normalised wind speed (a), normalised turbulent kinetic energy and dissipation

rate profiles resulting from the 2D simulation after a fetch of 4 km behind a roughness change

(continuous line) for the turbulence model constants proposed by Duynkerke. The profiles

are compared to the analytical profiles used for the simulation for the 210° wind direction

presented in D.3.4 and to values observed at the reference site (isolated triangles) (source

Raithby et al, 1987).
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The 3D simulation results using the profiles calculated after a fetch of 4 km as

entrance boundary conditions are given in Figure D.17 and Figure D.18 for the

Duynkerke turbulence model constants. Here also, compared to the case using the

standard model constants, we can notice an increase in the normalised kinetic

turbulent kinetic energy close to the ground (c.f. Figure D.17b). As a consequence, we

observe a much stronger reduction of the normalised wind speed in the wake of the

hill, especially visible along the A line (Figure D.18a). A further implication of this

significant wind speed reduction behind the mountain is a significant modification of

the upwash angle and direction change of the flow along the A line. With the

reduction of Cµ, the simulated flow behaves as if the ground roughness (and hence

the turbulence intensity close to the ground) would be excessive.
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Figure D.17. Same as Figure D.15 using the profiles presented in Figure D.16 as inlet

boundary conditions, and with the turbulence model constants proposed by Duynkerke.
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line A, normalised horizontal wind speed
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Figure D.18. Same as Figure D.14 using the profiles presented in Figure D.16 as inlet

boundary conditions, and with the turbulence model constants proposed by Duynkerke.

Using the turbulence constants proposed by Duynkerke, it appears that the quality of

the simulation results could only be restored when simultaneously assuming that the

roughness length above the hill was reduced. Such a simulation was performed,

taking the profiles of Figure D.16 as inlet boundary conditions, and reducing the

roughness length over the 3D simulation domain to 0.005m instead of the 0.03m used

previously. The horizontal and vertical profiles for this simulation are shown in

Figure D.19 and Figure D.20. With the roughness reduction over the Askervein Hill

domain, the excessive wind speed reduction in the wake is no longer observed.
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line A, normalised horizontal wind speed
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Figure D.19. Same as Figure D.18 but using a roughness length of 0.005m over the 3D

domain, instead of the 0.03m previously used.

The associated significant changes in the upwash angle and direction change also

disappeared. The most spectacular improvement is observed for the vertical profile

of the speedup ratio, which is now well reproduced also for the lowest levels (Figure

D.20c). With the decrease in the ground roughness, the normalised kinetic energy

profile over the hilltop has been reduced but still overestimates the measured values

(Figure D.20b). From the roughness reduction we also obtain a slight overestimation

of the normalised wind speed upwind of the hill along the A and AA line. This might
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be an indication that the roughness reduction to be applied should not be applied to

the entire simulation domain, but rather the hill itself as was already pointed out by

Mickle et al (1988) or Zeman & Jensen (1987).
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Figure D.20. Same as Figure D.17 but using a roughness length of 0.005m over the 3D

domain, instead of the 0.03m previously used.

To close this appendix about the validation of the model to simulate 3D wind fields

over real topography, we can say that the model was able to satisfactorily reproduce

the observed flow behaviour.

Using the standard values for the turbulence model constants, we obtained a very

good agreement between the observations and model predictions for the horizontal

profiles of average wind speed, upwash angle and vertical profile of normalised

turbulent kinetic energy above the hill top. Good agreement was also achieved for

the horizontal profiles of direction change. The vertical profile of the speed up ratio

could only be well reproduced for levels higher than 5 m above ground over the hill

top. The best simulation results with the standard turbulence model constants was

obtained with entrance profiles calculated 4km downwind of a roughness change
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representing the sea-land transition. The roughness length associated with the sea

was set to 0.0001m while the one over land was 0.03m.

Changing the turbulence model constants to the values suggested by Duynkerke,

which seems more appropriate for atmospheric flows (see, e.g., Duynkerke, 1988,

Raithby et al, 1987), slightly changes the conclusions of this study. With the modified

model constants we are also able to satisfactorily reproduce the observed flow field

over Askervein Hill, but with the requirement that the roughness length over the hill

itself is reduced, confirming similar conclusions which were drawn by Mickle et al

(1988) or Zeman & Jensen (1987). Instead of the 0.03m suggested by Taylor &

Teunissen (1987) as an homogeneous value for the roughness length to be used over

the site, we found that a value of 0.03 m is certainly representative of the area close to

the reference mast, while a value of 0.005m would be more appropriate for the hill

itself. The prediction of the speed up ratio was considerably improved for the lowest

levels (< 5m) when using the modified turbulence model constants, but at the same

time with this modification the model tends to systematically overpredict the

turbulence intensity over the hill.

From the results presented above, we can not give a definitive conclusion regarding

the choice of constants to be used in the k-ε model to simulate atmospheric flows.

From observations recorded during the 1983 Askervein Hill experiment, Raithby et al

(1987) report values of 2

*/ uk  between 4.2 and 5.4. Using the relationship

µ
Cuk /1/

2

* = , which is valid close to the ground, we get a range of variation of Cµ 

between 0.034 and 0.057. With CFX4, we could get very good results with both

standard and Duynkerke’s value for 
µ

C  by changing other parameters for which

some uncertainty remains. These model constants could certainly be tuned to even

refine the results obtained so far. However, considering the sensitivity of the model

results to the inlet and ground boundary conditions, we would need to reduce the

uncertainty in these parameters before attempting such a tuning. It would definitely

be interesting to increase the confidence level in the constants to be used in the

turbulence model. However, at this stage, we feel that, from the point of view of a

numerical simulation of a flow field over more complex topographies (succession of

various hills), the limiting factor will be more related to the relatively poor

knowledge of the profiles to be specified for the turbulence variables at the model

inlet.
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E Formulation of the energy conservation equation in
terms of the potential temperature θ .

First law of thermodynamics:

eq. E-1 αpddhdTcdu v −==

 (Note: u stands for the internal energy of the fluid and α for the specific volume1)

Ideal gas law:

eq. E-2 RTp =α

eq. E-3
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Applying the first law of thermodynamics, we obtain:
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Using the relationships:

                                                     
1 The specific volume is defined as mV /=α , V being the volume and m the mole

mass.
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eq. E-9 Rcc vp +=

and eq. E-2, eq. E-8 becomes:
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The energy conservation equation formulated in terms of the potential temperature

is therefore:

eq. E-11
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where the right-hand side of the equation represents the non-adiabatic heat

exchanges.

From the identity
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the energy conservation equation for the potential temperature can be written in flux

form as:

eq. E-13
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For purely adiabatic processes, the energy conservation equation is therefore a

simple advection-diffusion equation for the potential temperature, with a vanishing

diffusion term. Hence for processes without radiative heat flux or latent heat release

( 0=dtdh ), the potential temperature is conserved along the flow trajectories, which

makes it a very convenient variable to simulate atmospheric processes.

Note: In general, a diffusion term is reintroduced in eq. E-13 to account for turbulent

mixing.
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F Hydrostatic equilibrium and derivation of the
buoyancy term.

For an atmosphere in hydrostatic equilibrium, with a vertical real temperature

profile given by T
h
(z), the vertical profile of hydrostatic pressure p

h
(z) is obtained by

integration of the relationship:

eq. F-1
dzg

zRT

p

dzgdp

h

h

hh

⋅−=

⋅⋅−=

)(

ρ

For an isothermal atmosphere, integration yields:

eq. F-2 )exp()0()( z
RT

g
pzp

h

hh −=

For a more realistic situation, where the real temperature varies with the altitude,

integration is done in a discrete way, assuming that for each level iz  the real

temperature is constant, having the value )( izT .

The hydrostatic density profile is then calculated from the ideal gas law:

eq. F-3
)(

)(
)(

zTR

zp
z

h

h

h
⋅

=ρ

Similarly, the hydrostatic potential temperature profile is inferred from:

eq. F-4
pc

R

h

hh
zp

p
zTz
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)()(θ

For the derivation of the buoyancy term appearing in the vertical velocity equation

as a function of the potential temperature, we first assume that the departure of the

atmospheric conditions from the hydrostatic equilibrium is small. For this

assumption, we can write:

ρρρ ′+= h θθθ ′+= h

eq. F-5 ppp h
′+= TTT h

′+=

with hρρ <<′ , hθθ <<′ , hTT <<′ , and hpp <<′

From the perfect gas law and the definition of the potential temperature we obtain:

eq. F-6
T

dTd

p

dp
+=

ρ

ρ

eq. F-7
p
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c
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T

dTd
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−=
θ

θ
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which leads to:

eq. F-8
p

dp

c

Rdd

p

⋅
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θ

θ

ρ

ρ

If the Mach number of the flow is much smaller than unity, the second term in eq. F-8

can be neglected, and we end up with the approximation:

eq. F-9
θ

θ

ρ

ρ dd
−=

or equivalently:

eq. 10 )()( h

h

h

h θθ
θ

ρ
ρρ −=−

which is the expression that will be used to couple the energy conservation equation

with the momentum conservation equation for the vertical velocity component.
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G Weibull distributions

G.1 Properties

The Weibull distribution is defined as

eq. G.1
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The mean wind speed for a wind speed distribution following eq. G.1 is

eq. G.2 ∫∫
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With the substitution k

A

v
y )(=  and dyy

k

A
dv

k )11( −
=  this simplifies to

eq. G.3 [ ]∫
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In a similar way we obtain for the higher order momentum of the variable v

eq. G.5 )1(
k

m
Av

mm
+Γ⋅=

G.2 Cumulative distribution

The cumulative Weibull distribution is given by ))(exp(1)()(
0

k

v

A

u
vdvfvF −−=′⋅′= ∫  and

it obeys the equation )ln()ln()))(1ln(ln( AkvkvF ⋅−⋅=−− . Plotting )))(1ln(ln( vF−−  versus

)ln(v  allows one to easily determine the A and k parameters of the distribution.

G.3 Behaviour of the Weibull distribution under a variable

transformation

The probability of having a wind speed between 1v  and 11 dvv +  is

eq. G.6 1
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Under a linear variable transformation such as

eq. G.7 cvmv +⋅= 12

eq. G.6 becomes

eq. G.8 222
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The distribution in terms of the variable 2v  is therefore

eq. G.9
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which is a shifted Weibull distribution with the same shape parameter k  and a

modified wind speed parameter mAB = .

Under a transformation of the type

eq. G.10 b
vav 12 ⋅=

the Weibull distribution is transformed into

eq. G.11
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which after some manipulation simplifies to

eq. G.12
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with bkk /=′  and b
AaA ⋅=′ . In other words the wind speed transformation according

to eq. G.10 transforms the Weibull distribution with parameters A  and k  into

another Weibull distribution with the parameters bkk /=′  and b
AaA ⋅=′ .
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H Results from the application of the MCP methods

H.1 Chasseral Côte-Nord

H.1.1 Matrices

Population matrix ( )jipP ,=  for the sites of Chasseral and Côte Nord

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 21 67 52 18 8 1 2 2 1 8 3 7 190

30 16 39 229 60 5 1 0 0 1 0 3 2 356

60 7 8 83 182 46 0 3 3 0 1 1 1 335

90 4 2 32 215 206 3 4 5 1 0 1 0 473

120 1 8 12 41 127 18 6 3 1 2 1 1 221

150 4 6 5 15 54 28 52 32 3 2 2 1 204

180 1 3 6 12 31 16 85 212 34 18 6 2 426

210 2 1 10 8 15 10 70 573 333 49 10 2 1083

240 1 1 6 2 7 8 20 102 580 323 14 4 1068

270 7 3 2 2 4 0 9 57 147 661 84 10 986

300 13 7 1 3 4 0 1 12 26 205 249 95 616

330 139 71 3 3 5 2 0 3 7 15 71 178 497

216 216 441 561 512 87 252 1004 1134 1284 445 303

Matrix Wij (*100) for the sites of Chasseral and Côte Nord

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 13.3 42.4 32.9 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

30 0.0 11.9 69.8 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

60 0.0 0.0 26.7 58.5 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

90 0.0 0.0 7.1 47.5 45.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

120 0.0 0.0 6.1 20.7 64.1 9.1 0.0 0.0 0.0 0.0 0.0 0.0 100

150 0.0 0.0 0.0 8.3 29.8 15.5 28.7 17.7 0.0 0.0 0.0 0.0 100

180 0.0 0.0 0.0 0.0 8.6 0.0 23.5 58.6 9.4 0.0 0.0 0.0 100

210 0.0 0.0 0.0 0.0 0.0 0.0 7.2 58.7 34.1 0.0 0.0 0.0 100

240 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 57.7 32.1 0.0 0.0 100

270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 15.5 69.7 8.9 0.0 100

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.3 45.4 17.3 100

330 30.3 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 38.8 100

43.6 69.8 142.5 164.7 162.8 24.6 59.4 151.1 116.7 139.1 69.7 56.1
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Matrix Zij for the sites of Chasseral and Côte Nord

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 11.1 37.9 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 62.1

30 8.5 22.0 57.8 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.4

60 0.0 0.0 21.0 36.5 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.4

90 0.0 0.0 8.1 43.2 44.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.7

120 0.0 0.0 0.0 8.2 27.4 22.5 0.0 0.0 0.0 0.0 0.0 0.0 58.1

150 0.0 0.0 0.0 0.0 11.6 35.0 22.9 0.0 0.0 0.0 0.0 0.0 69.5

180 0.0 0.0 0.0 0.0 6.7 20.0 37.4 22.5 0.0 0.0 0.0 0.0 86.6

210 0.0 0.0 0.0 0.0 0.0 12.5 30.8 60.7 31.4 0.0 0.0 0.0 135.5

240 0.0 0.0 0.0 0.0 0.0 10.0 8.8 10.8 54.7 27.2 0.0 0.0 111.5

270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 13.9 55.6 20.8 0.0 96.3

300 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.2 61.6 34.8 120.6

330 73.5 40.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 65.2 196.4

100 100 100 100 100 100 100 100 100 100 100 100

H.1.2 Transposition from proportionality relationships refpred vav ⋅=

Table H.1. Mean sector wind speed ratios for the Mt-Crosin sites obtained from data binned

according to the Chasseral (
refm ) and Mt-Crosin (

predm ) site wind direction. Threshold wind

speed at Chasseral: 5m/s, at Mt-Crosin: 0.5 m/s.

Côte Nord Côte Sud Côte Est

Sector
refm predm refm predm refm predm

0 0.79 0.53 0.86 0.66 0.71 0.35

30 0.52 0.68 0.61 0.63 0.55 0.43

60 0.45 0.55 0.60 0.72 0.55 0.54

90 0.63 0.46 0.79 0.77 0.72 0.63

120 0.73 0.71 0.85 0.62 0.98 0.31

150 0.77 0.53 0.75 0.51 0.92 0.35

180 0.80 0.72 0.77 0.66 0.63 0.69
210 0.64 0.68 0.68 0.65 0.62 0.70
240 0.58 0.58 0.69 0.68 0.62 0.66
270 0.52 0.54 0.62 0.64 0.57 0.55

300 0.42 0.42 0.50 0.50 0.48 0.48

330 0.48 0.44 0.58 0.59 0.46 0.33
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Figure H.1. Comparison of the measurements and MCP prediction using proportionality

relationships for a) the sector mean wind speed and b) the wind rose.

Table H.2. Comparison of the measured and predicted sector mean wind speed at the site of

Côte Nord, using simple proportionality relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 2.8 3.7 4.0 3.3 -15 12 21
30 4.7 3.5 4.3 3.5 35 3 25
60 3.7 4.2 4.3 4.5 -18 -7 -3
90 3.9 3.8 3.3 3.3 18 15 -2

120 2.8 3.5 3.9 4.1 -32 -14 -6
150 2.4 4.2 3.1 2.6 -8 64 23
180 5.7 5.6 5.8 4.2 36 32 37
210 7.5 6.9 7.2 7.4 1 -8 -3
240 6.4 6.6 6.4 6.6 -4 0 -3
270 5.3 5.4 5.6 5.5 -3 -1 2
300 4.3 4.4 4.1 4.2 4 6 -1
330 3.7 3.9 3.7 3.8 -4 2 -2

H.1.3 Transposition from relationships of the type cvmv refpred +⋅=
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Figure H.2. Comparison of the measurements and MCP prediction using linear relationships

for the sector mean wind speed.
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Table H.3. Parameters from the linear regression relating the sites of Côte Nord and

Chasseral.

Sector
refc refm refr predc predm predr

0 1.49 0.47 0.17 2.26 0.20 0.30

30 1.67 0.32 0.60 3.35 0.11 0.12

60 1.11 0.31 0.64 1.79 0.33 0.66

90 2.07 0.31 0.46 1.91 0.20 0.48

120 3.41 0.10 0.10 2.46 0.33 0.53

150 2.33 0.31 0.23 2.65 0.09 0.23

180 1.94 0.54 0.75 2.76 0.30 0.38
210 2.37 0.42 0.67 1.63 0.52 0.75
240 0.83 0.50 0.69 1.01 0.48 0.69
270 -0.14 0.53 0.79 1.33 0.40 0.71

300 0.21 0.39 0.82 0.55 0.35 0.80

330 0.96 0.35 0.63 0.55 0.37 0.80

Table H.4. Comparison of the measured and predicted sector mean wind speed at the site of

Côte Nord, using linear relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 3.2 3.7 3.7 3.3 -3.7 11.4 14.2
30 4.6 3.6 4.0 3.5 32.8 5.4 16.5
60 3.6 4.1 4.4 4.5 -19.0 -6.8 -1.7
90 4.0 3.9 3.4 3.3 21.0 17.8 0.6

120 3.8 4.0 4.2 4.1 -7.7 -3.8 3.0
150 3.3 4.7 3.2 2.6 28.2 84.4 24.6
180 5.8 5.7 5.2 4.2 38.2 36.2 23.1
210 7.3 6.7 7.1 7.4 -1.6 -9.2 -4.4
240 6.3 6.5 6.4 6.6 -4.8 -2.1 -3.4
270 5.3 5.4 5.4 5.5 -3.5 -1.7 -0.1
300 4.2 4.3 4.0 4.2 1.4 4.0 -4.0
330 3.6 3.8 3.7 3.8 -6.3 -0.5 -3.6
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H.2 Chasseral Côte-Sud

H.2.1 Matrices

Population matrix ( )jipP ,=  for the sites of Chasseral and Côte Sud

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 42 25 30 7 5 3 6 3 1 1 3 14 140

30 18 105 100 38 8 4 13 2 0 0 1 3 292

60 8 22 129 143 16 2 8 8 0 0 0 3 339

90 4 12 98 303 25 9 12 6 0 0 2 4 475

120 6 10 28 137 57 21 7 2 2 0 9 4 283

150 8 3 20 58 36 55 64 27 9 6 3 3 292

180 1 5 12 38 16 39 138 145 33 29 4 3 463

210 3 3 20 37 11 18 124 423 278 56 8 4 985

240 2 7 3 17 6 19 38 157 546 234 16 7 1052

270 2 3 2 8 5 8 23 49 222 525 70 15 932

300 15 6 4 7 3 10 15 14 25 246 297 49 691

330 102 15 28 12 3 8 11 3 5 16 145 175 523

211 216 474 805 191 196 459 839 1121 1113 558 284 6467

Matrix Wij (*100) for the sites of Chasseral and Côte Sud

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 35.6 21.2 25.4 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 100

30 6.9 40.2 38.3 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

60 0.0 7.5 43.9 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

90 0.0 0.0 23.0 71.1 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

120 0.0 0.0 11.5 56.4 23.5 8.6 0.0 0.0 0.0 0.0 0.0 0.0 100

150 0.0 0.0 7.7 22.3 13.8 21.2 24.6 10.4 0.0 0.0 0.0 0.0 100

180 0.0 0.0 0.0 9.0 0.0 9.2 32.7 34.4 7.8 6.9 0.0 0.0 100

210 0.0 0.0 0.0 0.0 0.0 0.0 14.1 48.0 31.6 6.4 0.0 0.0 100

240 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.8 58.3 25.0 0.0 0.0 100

270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 25.6 60.6 8.1 0.0 100

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.6 50.2 8.3 100

330 22.7 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.2 38.9 100

65.2 68.9 156.1 227.9 43.2 39.0 71.4 115.2 123.3 140.4 90.5 59.0
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Matrix Zij for the sites of Chasseral and Côte Sud

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 23.7 14.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.0

30 10.2 58.7 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 93.0

60 0.0 12.3 31.2 22.3 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.8

90 0.0 6.7 23.7 47.3 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 93.2

120 0.0 0.0 6.8 21.4 35.4 13.0 0.0 0.0 0.0 0.0 0.0 0.0 76.5

150 0.0 0.0 0.0 9.0 22.4 34.0 16.5 0.0 0.0 0.0 0.0 0.0 81.9

180 0.0 0.0 0.0 0.0 9.9 24.1 35.7 18.7 0.0 0.0 0.0 0.0 88.4

210 0.0 0.0 0.0 0.0 6.8 11.1 32.0 54.7 26.6 5.3 0.0 0.0 136.5

240 0.0 0.0 0.0 0.0 0.0 11.7 9.8 20.3 52.2 22.1 0.0 0.0 116.1

270 0.0 0.0 0.0 0.0 0.0 0.0 5.9 6.3 21.2 49.5 13.7 6.3 102.9

300 8.5 0.0 0.0 0.0 0.0 6.2 0.0 0.0 0.0 23.2 58.0 20.5 116.3

330 57.6 8.4 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.3 73.2 174.3

100 100 100 100 100 100 100 100 100 100 100 100

H.2.2 Transposition from proportionality relationships refpred vav ⋅=

The sector wind speed ratios used for the transposition from Chasseral to Côte Sud

can be found in Table H.1.
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Figure H.3. Comparison of the measurements and MCP prediction using proportionality

relationships for a) the sector mean wind speed and b) the wind rose.
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Table H.5. Comparison of the measured and predicted sector mean wind speed at the site of

Côte Sud, using simple proportionality relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 2.8 3.8 4.2 3.9 -26 -1 8
30 5.0 4.6 4.5 4.9 2 -7 -7
60 4.8 4.5 4.9 5.0 -5 -10 -3
90 4.7 4.2 4.4 4.9 -5 -15 -11

120 3.2 3.8 3.1 3.6 -9 6 -13
150 2.3 4.1 2.9 3.2 -29 28 -8
180 4.7 5.1 4.8 4.0 17 27 19
210 6.4 6.1 5.7 5.7 12 7 0
240 6.8 6.4 6.5 7.0 -3 -8 -7
270 5.6 5.7 6.0 5.8 -3 -2 3
300 4.7 4.6 4.3 4.5 4 3 -3
330 3.9 4.2 4.4 3.6 10 17 23

H.2.3 Transposition from relationships of the type cvmv refpred +⋅=

Table H.6. Parameters from the linear regression relating the sites of Côte Sud and Chasseral.

Sector
refc refm refr predc predm predr

0 1.47 0.57 0.21 3.05 0.20 0.64

30 1.09 0.47 0.71 2.02 0.39 0.71

60 1.19 0.45 0.72 2.47 0.38 0.58

90 2.84 0.36 0.51 1.28 0.59 0.61

120 2.88 0.33 0.35 1.71 0.36 0.52

150 1.19 0.53 0.44 2.14 0.21 0.31

180 0.87 0.64 0.78 2.70 0.26 0.36
210 1.68 0.50 0.66 1.04 0.52 0.77
240 0.97 0.59 0.68 1.20 0.56 0.70
270 1.36 0.46 0.69 1.94 0.42 0.63

300 1.77 0.29 0.69 1.52 0.32 0.73

330 2.16 0.27 0.59 2.27 0.25 0.61
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Figure H.4. Comparison of the measurements and MCP prediction using linear relationships

for the sector mean wind speed.

Table H.7. Comparison of the measured and predicted sector mean wind speed at the site of

Côte Sud, using linear relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 3.3 4.0 4.3 3.9 -14 3 12
30 5.0 4.6 4.8 4.9 2 -5 -2
60 4.8 4.7 5.1 5.0 -6 -7 1
90 5.0 4.6 4.6 4.9 1 -8 -6

120 4.1 4.2 3.5 3.6 17 20 -2
150 2.8 4.4 3.4 3.2 -13 38 5
180 4.8 5.2 4.6 4.0 20 30 14
210 6.3 6.1 5.7 5.7 11 6 -1
240 6.8 6.4 6.6 7.0 -4 -9 -7
270 5.6 5.6 5.9 5.8 -4 -3 1
300 4.5 4.5 4.3 4.5 1 1 -4
330 4.0 4.2 4.1 3.6 12 18 15
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H.3 Chasseral Côte-Est

H.3.1 Matrices

Population matrix ( )jipP ,=  for the sites of Chasseral and Côte Est

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 35 40 28 7 3 2 15 12 28 36 37 28 271

30 28 77 64 8 1 1 11 16 46 51 23 26 352

60 17 49 132 22 2 1 13 10 40 42 12 7 347

90 7 12 77 81 7 4 15 33 32 15 22 10 315

120 8 5 21 31 9 3 4 7 10 6 11 7 122

150 3 4 4 16 12 5 12 20 5 14 7 3 105

180 4 4 12 16 7 10 72 45 21 20 16 4 231

210 9 18 37 24 6 4 111 453 74 28 13 6 783

240 10 14 25 37 9 2 41 176 249 39 28 8 638

270 7 10 31 30 2 4 20 50 249 142 22 7 574

300 19 28 27 27 2 0 23 25 88 181 47 17 484

330 38 20 23 22 3 2 13 17 56 97 112 44 447

185 281 481 321 63 38 350 864 898 671 350 167 4669

Matrix Wij (*100) for the sites of Chasseral and Côte Est

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 14.2 16.2 11.3 0.0 0.0 0.0 6.1 0.0 11.3 14.6 15.0 11.3 100

30 8.9 24.4 20.3 0.0 0.0 0.0 0.0 0.0 14.6 16.2 7.3 8.3 100

60 0.0 17.2 46.3 7.7 0.0 0.0 0.0 0.0 14.0 14.7 0.0 0.0 100

90 0.0 0.0 31.4 33.1 0.0 0.0 0.0 13.5 13.1 0.0 9.0 0.0 100

120 7.7 0.0 20.2 29.8 8.7 0.0 0.0 6.7 9.6 0.0 10.6 6.7 100

150 0.0 0.0 0.0 19.8 14.8 0.0 14.8 24.7 0.0 17.3 8.6 0.0 100

180 0.0 0.0 5.9 7.9 0.0 0.0 35.6 22.3 10.4 9.9 7.9 0.0 100

210 0.0 0.0 0.0 0.0 0.0 0.0 17.4 71.0 11.6 0.0 0.0 0.0 100

240 0.0 0.0 0.0 6.8 0.0 0.0 7.6 32.5 45.9 7.2 0.0 0.0 100

270 0.0 0.0 6.2 6.0 0.0 0.0 0.0 10.0 49.6 28.3 0.0 0.0 100

300 0.0 6.6 6.4 6.4 0.0 0.0 0.0 5.9 20.8 42.8 11.1 0.0 100

330 10.3 0.0 6.2 0.0 0.0 0.0 0.0 0.0 15.1 26.2 30.3 11.9 100

41.0 64.5 154.3 117.4 23.5 0.0 81.5 186.5 216.1 177.2 99.8 38.2
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Matrix Zij for the sites of Chasseral and Côte Est

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 23.8 17.2 6.7 0.0 0.0 5.6 0.0 0.0 0.0 6.1 12.7 22.4 94.5

30 19.0 33.2 15.2 0.0 0.0 0.0 0.0 0.0 6.0 8.7 7.9 20.8 110.9

60 11.6 21.1 31.4 8.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 79.2

90 0.0 0.0 18.3 29.6 14.0 11.1 0.0 0.0 0.0 0.0 7.6 8.0 88.5

120 0.0 0.0 0.0 11.3 18.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 37.6

150 0.0 0.0 0.0 0.0 24.0 13.9 0.0 0.0 0.0 0.0 0.0 0.0 37.9

180 0.0 0.0 0.0 0.0 14.0 27.8 27.0 6.2 0.0 0.0 0.0 0.0 75.0

210 0.0 7.8 8.8 8.8 12.0 11.1 41.6 62.6 9.7 0.0 0.0 0.0 162.3

240 6.8 0.0 5.9 13.5 18.0 5.6 15.4 24.3 32.7 6.6 9.6 0.0 138.4

270 0.0 0.0 7.4 10.9 0.0 11.1 7.5 6.9 32.7 24.1 7.6 0.0 108.2

300 12.9 12.1 6.4 9.9 0.0 0.0 8.6 0.0 11.5 30.8 16.2 13.6 122.0

330 25.9 8.6 0.0 8.0 0.0 5.6 0.0 0.0 7.3 16.5 38.5 35.2 145.6

100 100 100 100 100 100 100 100 100 100 100 100

H.3.2 Transposition from proportionality relationships refpred vav ⋅=

The sector wind speed ratios used for the transposition from Chasseral to Côte Est

can be found in Table H.1.
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Figure H.5. Comparison of the measurements and MCP prediction using proportionality

relationships for a) the sector mean wind speed and b) the wind rose.



H-11

Table H.8. Comparison of the measured and predicted sector mean wind speed at the site of

Côte Est, using simple proportionality relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 3.3 4.4 2.8 2.5 34 76 13
30 4.5 4.8 3.7 3.2 41 49 15
60 5.3 5.3 4.9 5.0 6 6 -2
90 4.6 5.3 5.4 4.8 -4 11 13

120 3.7 5.0 2.2 2.0 84 147 10
150 3.1 5.0 2.7 2.6 21 92 3
180 4.7 6.7 7.6 5.6 -16 20 38
210 8.4 7.7 8.7 8.8 -4 -13 -1
240 7.0 6.2 7.1 6.5 7 -5 8
270 6.0 5.0 5.2 5.1 19 -1 2
300 4.6 4.6 4.1 3.9 20 18 6
330 4.1 4.1 2.6 2.9 41 43 -11

H.3.3 Transposition from relationships of the type cvmv refpred +⋅=

Table H.9. Parameters from the linear regression relating the sites of Côte Est and Chasseral.

Sector
refc refm refr predc predm predr

0 2.80 0.20 0.21 1.92 0.08 0.31

30 3.36 0.12 0.21 2.18 0.13 0.41

60 1.13 0.41 0.62 3.02 0.20 0.44

90 3.38 0.23 0.20 4.18 0.10 0.18

120 2.67 0.49 0.18 2.22 -0.03 -0.12

150 4.37 0.01 0.00 2.02 0.04 0.15

180 1.75 0.42 0.66 2.59 0.36 0.54
210 1.52 0.49 0.61 1.52 0.56 0.71
240 0.68 0.54 0.59 1.75 0.46 0.57
270 2.13 0.34 0.52 2.01 0.30 0.59

300 1.93 0.24 0.52 2.65 0.14 0.29

330 2.59 0.14 0.30 1.65 0.13 0.35
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Figure H.6. Comparison of the measurements and MCP prediction using linear relationships

for the sector mean wind speed.

Table H.10. Comparison of the measured and predicted sector mean wind speed at the site of

Côte Est, using linear relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 3.7 4.3 2.6 2.5 49 73 3
30 4.3 4.6 3.3 3.2 36 46 5
60 5.1 5.2 4.8 5.0 2 4 -4
90 4.8 5.3 5.1 4.8 0 11 6

120 4.5 5.4 2.0 2.0 125 169 -1
150 4.4 5.2 2.3 2.6 70 101 -11
180 4.9 6.6 6.6 5.6 -12 18 18
210 8.2 7.5 8.4 8.8 -7 -15 -4
240 6.8 5.9 6.7 6.5 4 -9 2
270 5.7 4.7 4.8 5.1 13 -6 -5
300 4.3 4.4 3.8 3.9 11 14 -1
330 3.8 4.0 2.6 2.9 32 40 -9
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H.4 Chasseral Neuchâtel

H.4.1 Matrices

Population matrix ( )jipP ,=  for the sites of Chasseral and Neuchâtel

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 731 1173 1851 845 314 248 244 99 93 112 97 241 6048

30 279 1481 3377 1101 128 74 97 44 53 46 23 47 6750

60 146 1514 4978 996 138 100 62 48 60 55 22 38 8157

90 170 1150 4714 1485 297 148 134 71 120 134 51 53 8527

120 116 439 1356 716 244 242 295 117 99 115 63 45 3847

150 106 229 698 362 217 311 428 140 100 90 44 44 2769

180 129 275 743 407 266 407 649 498 591 298 141 91 4495

210 210 619 1813 855 501 478 704 1081 4848 2982 432 164 14687

240 163 566 1446 676 356 338 532 1053 4510 4517 647 153 14957

270 133 425 969 554 307 299 570 1169 4041 4761 1170 234 14632

300 293 426 840 480 368 460 647 1005 2693 3454 1788 760 13214

330 922 712 1196 713 465 514 570 446 907 1285 1140 1516 10386

3398 9009 23981 9190 3601 3619 4932 5771 18115 17849 5618 3386 108469

Matrix Wij (*100) for the sites of Chasseral and Neuchâtel

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 14.9 23.9 37.7 17.2 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

30 0.0 24.9 56.7 18.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

60 0.0 20.2 66.5 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

90 0.0 15.6 64.1 20.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

120 0.0 13.3 41.2 21.7 7.4 7.4 9.0 0.0 0.0 0.0 0.0 0.0 100

150 0.0 9.6 29.3 15.2 9.1 13.0 17.9 5.9 0.0 0.0 0.0 0.0 100

80 0.0 6.7 18.0 9.8 6.4 9.8 15.7 12.0 14.3 7.2 0.0 0.0 100

210 0.0 0.0 15.7 7.4 0.0 0.0 0.0 9.3 41.9 25.8 0.0 0.0 100

240 0.0 0.0 12.5 0.0 0.0 0.0 0.0 9.1 39.1 39.2 0.0 0.0 100

270 0.0 0.0 8.0 0.0 0.0 0.0 0.0 9.7 33.4 39.3 9.7 0.0 100

300 0.0 0.0 8.0 0.0 0.0 0.0 0.0 9.5 25.6 32.8 17.0 7.2 100

330 10.3 7.9 13.3 8.0 0.0 0.0 6.4 0.0 10.1 14.3 12.7 16.9 100

25.2 122.1 370.9 131.3 29.3 30.2 49.0 55.6 164.3 158.6 39.3 24.1



H-14

Matrix Zij for the sites of Chasseral and Neuchâtel

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 28.1 16.3 9.5 10.0 9.4 7.5 0.0 0.0 0.0 0.0 0.0 8.8 89.5

30 10.7 20.5 17.3 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.6

60 0.0 21.0 25.5 11.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 58.3

90 6.5 15.9 24.1 17.6 8.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.1

120 0.0 0.0 6.9 8.5 7.3 7.3 6.7 0.0 0.0 0.0 0.0 0.0 36.8

150 0.0 0.0 0.0 0.0 6.5 9.4 9.7 0.0 0.0 0.0 0.0 0.0 25.7

180 0.0 0.0 0.0 0.0 8.0 12.3 14.8 9.5 0.0 0.0 0.0 0.0 44.6

210 8.1 8.6 9.3 10.2 15.0 14.5 16.0 20.6 28.5 17.5 8.3 0.0 156.6

240 0.0 7.8 7.4 8.0 10.7 10.3 12.1 20.0 26.5 26.6 12.5 0.0 142.0

270 0.0 0.0 0.0 6.6 9.2 9.1 13.0 22.3 23.8 28.0 22.6 8.5 143.0

300 11.2 0.0 0.0 5.7 11.0 14.0 14.7 19.1 15.8 20.3 34.5 27.6 174.1

330 35.4 9.9 0.0 8.5 13.9 15.6 13.0 8.5 5.3 7.6 22.0 55.1 194.7

100 100 100 100 100 100 100 100 100 100 100 100

H.4.2 Transposition from proportionality relationships refpred vav ⋅=

Table H.11. Mean sector wind speed ratios for the Neuchâtel site obtained from

data binned according to the Chasseral (
refm ) and Neuchâtel (

predm ) wind

direction. Threshold wind speed at Chasseral: 5m/s, at Neuchâtel: 0.5 m/s.

Neuchâtel

Sector
refm predm

0 0.39 0.31

30 0.45 0.30

60 0.44 0.40

90 0.43 0.38

120 0.39 0.21

150 0.33 0.22

180 0.28 0.27
210 0.29 0.33
240 0.32 0.35
270 0.33 0.31

300 0.29 0.34

330 0.29 0.39
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Figure H.7. Comparison of the measurements and MCP prediction using proportionality

relationships for a) the sector mean wind speed and b) the wind rose.

Table H.12. Comparison of the measured and predicted sector mean wind speed at the site of

Neuchâtel, using simple proportionality relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-pred Meas. MCP-std MMCP-ref MMCP-pred

0 1.7 2.4 2.2 1.9 -11 28 17
30 3.3 3.1 2.3 2.1 55 44 9
60 4.1 3.2 3.1 3.1 33 3 0
90 3.3 2.9 3.0 2.5 30 16 20

120 1.8 2.5 1.6 1.4 30 77 17
150 1.2 2.3 1.7 1.4 -9 71 21
180 1.6 2.4 2.1 1.7 -6 45 26
210 3.0 2.8 3.0 2.6 15 7 13
240 3.0 3.0 3.4 3.8 -21 -23 -12
270 3.1 2.9 2.9 3.4 -9 -13 -13
300 2.8 2.8 3.1 3.1 -11 -11 -1
330 2.3 2.4 3.2 3.0 -25 -19 6

H.4.3 Transposition from relationships of the type cvmv refpred +⋅=
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Figure H.8. Comparison of the measurements and MCP prediction using linear relationships

for the sector mean wind speed.
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Table H.13. Parameters from the linear regression relating the sites of Neuchâtel and

Chasseral.

Sector
refc refm refr predc predm predr

0 2.09 0.001 0.001 1.86 0.01 0.01

30 1.93 0.18 0.30 0.82 0.17 0.36

60 1.82 0.22 0.41 1.47 0.20 0.35

90 1.41 0.24 0.37 2.05 0.07 0.10

120 1.23 0.17 0.19 1.36 -0.01 -0.04

150 1.91 -0.03 -0.04 0.97 0.06 0.20

180 0.22 0.24 0.58 1.10 0.09 0.28
210 0.48 0.24 0.49 1.07 0.18 0.45
240 0.48 0.26 0.48 1.23 0.23 0.49
270 0.45 0.27 0.55 1.27 0.18 0.43

300 0.88 0.19 0.53 0.77 0.25 0.45

330 1.26 0.12 0.31 1.04 0.25 0.37

Table H.14. Comparison of the measured and predicted sector mean wind speed at the site of

Neuchâtel, using linear relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 2.1 2.5 1.9 1.9 11 31 2
30 3.2 3.0 2.2 2.1 52 44 2
60 3.9 3.2 3.0 3.1 27 2 -2
90 3.2 2.9 2.6 2.5 29 16 5

120 2.0 2.5 1.3 1.4 45 79 -9
150 1.8 2.4 1.4 1.4 31 74 1
180 1.5 2.4 1.8 1.7 -8 45 6
210 2.9 2.7 2.7 2.6 11 3 5
240 3.0 2.9 3.4 3.8 -22 -25 -12
270 3.0 2.8 3.0 3.4 -12 -16 -11
300 2.7 2.7 3.0 3.1 -14 -14 -3
330 2.2 2.4 3.1 3.0 -27 -21 2
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H.5 Chasseral Chaux-de-Fonds

H.5.1 Matrices

Population matrix ( )jipP ,=  for the sites of Chasseral and Chaux-de-Fonds

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 1113 2321 703 115 6 4 27 85 432 129 96 354 5385

30 667 2829 2023 202 7 2 15 32 170 49 19 108 6123

60 571 2386 3503 510 38 6 18 27 135 36 24 114 7368

90 627 2001 2761 918 200 31 28 37 229 82 41 151 7106

120 210 408 681 600 301 93 82 80 233 147 73 75 2983

150 151 189 228 202 136 138 361 239 343 229 112 69 2397

180 100 97 101 71 43 97 556 1347 1156 550 164 77 4359

210 106 65 114 56 27 148 781 5245 6685 1689 254 57 15227

240 75 81 124 60 32 132 523 2676 9802 1364 181 39 15089

270 80 74 81 41 16 94 448 2211 10127 1465 248 97 14982

300 245 122 125 69 21 48 285 1636 6147 2843 1150 459 13150

330 1597 819 228 87 13 13 70 476 1690 1578 1623 1862 10056

5542 11392 10672 2931 840 806 3194 14091 37149 10161 3985 3462 104225

Matrix Wij (*100) for the sites of Chasseral and Chaux-de-Fonds

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 22.6 47.1 14.3 0.0 0.0 0.0 0.0 0.0 8.8 0.0 0.0 7.2 100

30 12.1 51.3 36.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

60 8.2 34.2 50.3 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

90 9.9 31.7 43.8 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

120 8.6 16.8 28.0 24.7 12.4 0.0 0.0 0.0 9.6 0.0 0.0 0.0 100

150 6.8 8.5 10.3 9.1 6.1 6.2 16.3 10.8 15.5 10.3 0.0 0.0 100

180 0.0 0.0 0.0 0.0 0.0 0.0 15.4 37.3 32.0 15.2 0.0 0.0 100

210 0.0 0.0 0.0 0.0 0.0 0.0 5.4 36.4 46.4 11.7 0.0 0.0 100

240 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.3 70.8 9.9 0.0 0.0 100

270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 73.4 10.6 0.0 0.0 100

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.9 52.2 24.1 9.8 0.0 100

330 17.4 8.9 0.0 0.0 0.0 0.0 0.0 0.0 18.4 17.2 17.7 20.3 100

85.7 198.6 183.2 55.6 18.5 6.2 37.1 133.8 327.1 99.1 27.5 27.5



H-18

Matrix Zij for the sites of Chasseral and Chaux-de-Fonds

Prediction site index J Æ
Sector 0 30 60 90 120 150 180 210 240 270 300 330

0 24.3 22.4 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.2 67.2

30 14.6 27.3 20.9 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.1

60 12.5 23.0 36.2 21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.7

90 13.7 19.3 28.5 37.7 29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 128.7

120 0.0 0.0 7.0 24.7 44.3 12.4 0.0 0.0 0.0 0.0 0.0 0.0 88.4

150 0.0 0.0 0.0 8.3 20.0 18.4 12.2 0.0 0.0 0.0 0.0 0.0 58.9

180 0.0 0.0 0.0 0.0 6.3 12.9 18.8 10.3 0.0 5.8 0.0 0.0 54.1

210 0.0 0.0 0.0 0.0 0.0 19.7 26.4 40.0 20.4 17.8 7.8 0.0 132.1

240 0.0 0.0 0.0 0.0 0.0 17.6 17.7 20.4 29.9 14.4 0.0 0.0 100.0

270 0.0 0.0 0.0 0.0 0.0 12.5 15.2 16.9 30.9 15.4 7.6 0.0 98.5

300 0.0 0.0 0.0 0.0 0.0 6.4 9.6 12.5 18.8 30.0 35.1 17.2 129.5

330 34.9 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.6 49.6 69.6 178.6

100 100 100 100 100 100 100 100 100 100 100 100

H.5.2 Transposition from proportionality relationships refpred vav ⋅=

Table H.15. Mean sector wind speed ratios for the Chaux-de-Fonds site

obtained from data binned according to the Chasseral (
refm ) and Chaux-de-

Fonds (
predm ) wind direction. Threshold wind speed at Chasseral: 5m/s, at

Chaux-de-Fonds: 0.5 m/s.

Chaux-de-Fonds

Sector
refm predm

0 0.49 0.32

30 0.52 0.45

60 0.40 0.44

90 0.34 0.39

120 0.30 0.38

150 0.32 0.32

180 0.38 0.34
210 0.34 0.36
240 0.36 0.34
270 0.35 0.23

300 0.27 0.25

330 0.25 0.27
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Figure H.9. Comparison of the measurements and MCP prediction using proportionality

relationships for a) the sector mean wind speed and b) the wind rose.

Table H.16. Comparison of the measured and predicted sector mean wind speed at the site of

Chaux-de-Fonds, using simple proportionality relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 2.1 2.7 2.4 2.3 -5 18 5
30 3.9 3.1 3.3 3.3 17 -6 1
60 3.9 3.3 3.5 3.5 10 -8 0
90 2.7 2.6 2.8 2.5 8 4 12

120 1.4 1.8 2.2 2.1 -31 -11 3
150 1.3 2.6 2.5 3.0 -56 -11 -16
180 2.3 2.9 2.9 2.7 -18 7 6
210 3.6 3.3 3.5 3.7 -2 -11 -5
240 3.6 3.3 3.3 3.4 7 -1 -1
270 3.3 2.9 2.2 2.0 66 48 9
300 2.6 2.5 2.3 1.9 37 27 18
330 2.0 2.1 2.1 2.0 3 9 8

H.5.3 Transposition from relationships of the type cvmv refpred +⋅=
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Figure H.10. Comparison of the measurements and MCP prediction using linear relationships

for the sector mean wind speed.
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Table H.17. Parameters from the linear regression relating the sites of Chaux-de-Fonds and

Chasseral.

Sector
refc refm refr predc predm predr

0 3.29 -0.12 -0.12 1.46 0.10 0.28

30 2.45 0.18 0.34 2.43 0.11 0.25

60 2.12 0.16 0.34 1.84 0.20 0.39

90 1.16 0.19 0.39 1.12 0.22 0.42

120 1.33 0.07 0.14 1.32 0.14 0.42

150 0.39 0.25 0.37 -0.29 0.35 0.74

180 -0.03 0.37 0.67 0.97 0.21 0.49
210 0.56 0.27 0.51 0.43 0.31 0.62
240 0.49 0.30 0.47 0.86 0.24 0.46
270 0.50 0.29 0.54 0.97 0.11 0.34

300 0.82 0.17 0.58 1.32 0.07 0.26

330 1.46 0.05 0.23 1.20 0.09 0.30

Table H.18. Comparison of the measured and predicted sector mean wind speed at the site of

Chaux-de-Fonds, using linear relationships.

Sector Wind speed (m/s) Relative error (%)

MCP-std. MMCP-ref MMCP-
pred

Meas. MCP-std MMCP-ref MMCP-
pred

0 2.8 2.7 2.2 2.3 23 21 -4
30 3.8 3.2 3.2 3.3 15 -4 -2
60 3.7 3.2 3.5 3.5 3 -10 -1
90 2.7 2.6 2.7 2.5 5 3 7

120 1.7 1.9 2.1 2.1 -20 -7 2
150 1.4 2.6 2.4 3.0 -53 -12 -19
180 2.2 2.8 2.8 2.7 -20 4 1
210 3.5 3.2 3.4 3.7 -6 -14 -7
240 3.5 3.2 3.2 3.4 4 -5 -4
270 3.2 2.8 2.0 2.0 61 42 -1
300 2.5 2.3 1.9 1.9 29 20 1
330 1.9 2.1 1.9 2.0 -3 7 -1
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I Analytical formulations for the boundary layer
profiles

I.1 Alexandrou’s formulation

Using the boundary layer thickness h and the dissipation length lε as scaling

variables for the boundary layer, Alexandrou (1996) proposes the following

formulation for the u  velocity profile over a flat plate with zero pressure gradient

eq. I.1 
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where hz=η , κ stands for the von Karman constant and a, c and B are constants of

the model. In order to ensure the logarithmic behaviour of the profile close to the
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The advantage of Alexandrou’s formulation is that it is valid for rough as well as for

smooth terrain conditions.

For rough terrain, characterised by a roughness length 0z , the usual way of

describing the velocity profile in the proximity of the ground is to use a relationship

of the form

eq. I.3 )ln(
1

0* z
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Recognising that the velocity profile from Alexandrou’s formulation must tend to a

logarithmic profile for small values of η , one obtains the following to relate 0z
 
to the

constants of Alexandrou’s model:

eq. I.4 )ln()ln()ln(
0

κ−+= B
ch

z

z

z

Identifying the parts that do not depend on z, this becomes
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Whereas for smooth conditions, Alexandrou obtains the approximation
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The profile used to initialise the turbulent dissipation rate is

eq. I.7
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A profile for the turbulent kinetic energy k was obtained from the assumption that

eq. I.8
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where ∂ ∂u z/ is obtained from eq. I.1:
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For a boundary layer developing over flat smooth terrain, Alexandrou showed that

his formulation was able to fit Klebanoff’s measurements (Alexandrou, 1996) for the

mean velocity profiles with c taking the value of 0.166 and B being set to 7.326.

Simulating the boundary layer development over flat terrain with CFX4, we found

that, for both smooth and rough ground conditions, the mean velocity profiles could

be fitted by Alexandrou’s formulation, with a value of the constant c which varied

between 0.182 and 0.184 (see appendix A section A.2.2).

I.2 Deaves & Harris formulation

The parameterisation proposed by Deaves and Harris (1978) for the wind speed

profile is briefly described below.

Within the boundary layer, ( hz <<0 ), the wind speed is set to be a function of z , the

height above ground level, according to:

eq. I.11 
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with a1 5 75= . , a a2 11 2= − , a3 4 3= − / and a4 0 25= . , κ being the von Karman constant.

Above the boundary layer height ( hz ≥ ), the wind speed is set to the value of the

geostrophic wind speed G. The value of u
*

is determined for a given geostrophic

wind speed and roughness length z
0
 by solving:
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eq. I.12
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Eq. I.12 follows from eq. I.11 with the substitution Ghu =)(  where the boundary layer

height is given by:
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From experiments in nearly homogeneous shear flows along the x direction, Harris

et al (1977) obtain the following relationships for the diagonal elements of the stress

tensor
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Deaves and Harris proposed an ‘empirical expression matching most of the known

dataset’ for the standard deviation of the velocity σ along the main flow direction

which reads
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and which will finally be used to initialise the profile for the turbulent kinetic energy

with

eq. I.16 2
σ=k

The turbulent energy dissipation rate ε is obtained from
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the dissipation rate becomes:

eq. I.19
























⋅⋅+








⋅⋅+








⋅⋅+








⋅+⋅

−

⋅=

4

4

3

3

2

21

2
3

* 4321

)1(

h

z
a

h

z
a

h

z
a

h

z
a

z

h

z

u

κ
ε

A comparison between the Deaves and Harris and the Alexandrou formulation for a

situation defined by the parameters given in Table I.1 is given below.

Up to an altitude of about 100m, the mean velocity profiles are the same. Above this

height, the Deaves & Harris formulation gives higher wind speeds. The turbulent



I-4

dissipation rates of both formulations present a very similar behaviour. The most

striking difference between these two formulations concerns the turbulent kinetic

energy profiles. The values of k’ obtained from Deaves & Harris are generally higher

than the ones obtained from Alexandrou. Moreover, the behaviour of the k’ profiles

are quite different. When the Deaves & Harris profiles show increasing values from

the ground reaching a maximum for k’ between 20 and 30 m and then decreasing

again until the top of the boundary layer, the Alexandrou formulation predicts a

more or less constant value of k’ for the lowest 70 m of the atmosphere, followed by a

slower decrease until the top of the boundary layer.

Table I.1. Constants determining the profiles presented in Figure I.1, Figure

I.2 and Figure I.3.

Deaves and Harris
formulation

Alexandrou
formulation

u*  [m/s] 0.654 0.654

z0   [m] 0.03 -

fuh 6*=  [m] 1090 1090

c  [-] - 0.183

B [-] - 7.91

U velocity profile

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

0 5 10 15 20 25

U [m/s]

z [m]

Deaves and Harris

Alexandrou

Figure I.1. Comparison of velocity profiles from the

Deaves & Harris and Alexandrou formulation for

same ground roughness and friction velocity. Profiles

used for initial and boundary conditions.
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Turbulent dissipation rate

1

10

100

1000

10000
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2/s3]
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Figure I.2. Comparison of turbulent dissipation rate

profiles from the Deaves & Harris and Alexandrou

formulation for same ground roughness and friction

velocity. Profiles used for initial and boundary

conditions.

Normalised turbulent kinetic energy
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Figure I.3. Comparison of normalised turbulent kinetic

energy profiles from the Deaves & Harris and

Alexandrou formulation for same ground roughness

and friction velocity. Profiles used for initial and

boundary conditions.
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J Calibration curves for SIAP and SCHASTA type
instruments

SIAP
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v instrument (m/s)

wind tunnel velocity (m/s)

Figure J.1. Calibration curve for the SIAP anemometer.

The analytical expressions corresponding to the fits presented in Figure J.1 are the

following ones:
v(instr) = a + b⋅ v          for :  v > 5 m / s

= c + d ⋅v + e ⋅v
2         v < 5 m / s

with:
a = 0.92

b = 1

c = 2.4

d = 0.3

e = 0.08

Note: v(instr)  is the velocity measured by the instrument when the wind blows with a

velocity v .
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schasta
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Figure J.2. Calibration curve for the SCHASTA anemometer.

The analytical expressions corresponding to the fits presented in Figure J.2 are the

following ones:

v(instr) = a + m ⋅v                 for:   v < 10  m / s

= a + m ⋅v − b ⋅ (v − c)        v > 10  m / s 

with:
m = 0.97

a = 0

b = 0.3

c = 9.75

Note: v(instr)  is the velocity measured by the instrument when the wind blows with a

velocity v .
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K Simple classification of the meteorological situations
occurring over the Chasseral area.

From one year of wind data recorded at Chasseral and on the Ajoie Plateau, Fallot &

Hertig (1991) sorted the occurring meteorological situations into two groups. The

first one is characterised by situations that are essentially advective (57.4% of the

cases), showing persistent winds on the Ajoie Plateau, and the second one is

thermally dominated (42% of the cases), with variable (breeze) winds in Ajoie.

For all the situations, Fallot calculated, for twelve wind directions, their frequency of

occurrence, the mean wind speed at Chasseral and the mean thermal stratification

and ended up with the values given in Table K.1 and Table K.2. The situations

showing variable wind at Chasseral were attributed to an additional bin labelled

‘var’.

The vertical temperature gradients were calculated with ground temperatures

measured at two stations showing an altitude difference of 400m. The temperature

gradients so-obtained are strongly affected by local effects and might therefore not be

representative of the free flow stratification. This explains why, especially for the

thermally dominated situations Fallot obtains such a big range of variation for the

vertical temperature gradients.

Table K.1. Chasseral mean wind speed and mean vertical temperature gradient for situations

showing persistent winds in Ajoie. The frequency of occurrence of the situation is also given.

Chasseral wind
direction

[°]

Chasseral wind
speed
[m/s]

Frequency of
occurrence

[%]

Vertical temperature
gradient
[K/km]

30 6.94 3.3 -4.8
60 9.04 2.6 -4.4
90 9.68 4.0 -4.4

120 6.51 0.8 -5.3
150 6.17 0.1 -6.5
180 10.13 1.0 -6.5
210 13.47 11.1 -5.8
240 11.57 7.9 -6.9
270 10.45 11.5 -7.2
300 12.13 7.4 -7.3
330 9.32 6.4 -8.8
360 6.31 1.0 -6.8
Var. 6.17 0.3 -9.0

Average 10.79 57.4 -7.7
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Table K.2. Same as Table K.1 for breeze situations in Ajoie.

Chasseral wind
direction

[°]

Chasseral wind
speed
[m/s]

Frequency of
occurrence

[%]

Vertical temperature
gradient
[K/km]

30 6.29 2.3 -4.1 to +1.8
60 6.34 1.2 -8.7 to –2.2
90 5.18 4.0 -8.8 to +0.9

120 4.51 2.3 -6.2 to –0.8
150 6.51 0.8 -6.3 to –1.2
180 5.43 1.2 -7.4 to +0.5
210 6.86 8.3 -2.0 to –0.1
240 7.04 2.6 -5.4 to –0.8
270 5.73 4.5 -7.4 to –0.5
300 5.77 3.1 -5.7 to –2.9
330 4.78 1.4 -5.7 to –0.4
360 4.93 1.6 -6.7 to –2.1
Var. 2.60 9.3 -5.4 to –0.1

Average 5.23 42.6 -5.4 to +0.1
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L Boundary conditions types.

According to the terminology used in the CFX4 user guide (CFX, 1997), the various

types of boundary conditions used in this work are the so called inlet, pressure, wall,

symmetry and periodic boundary conditions. The kind of treatment applied to the

flow variables for the various boundary condition type is briefly summarised below.

L.1 Inlet

All the flow variables ( u , v , w , θ , k  and ε ) apart from the pressure are imposed

Dirichlet boundary conditions at an inlet face.

For the pressure, a Neumann boundary condition is used.

L.2 Pressure

At pressure boundaries, Dirichlet boundary conditions are used for the pressure.

For outflow situations through a pressure boundary, Neumann boundary conditions

(zero normal gradients) are set for the velocity components, for k  and ε  as well as

for the potential temperature. In this case, the type of conditions specified is

equivalent to the assumption of fully developed flow through the boundary face. It

should therefore be avoided to have strong terrain slopes close to pressure

boundaries.

For inflow situations, the velocity components as well as k  and ε  are imposed

Neumann boundary conditions (zero normal gradients). The potential temperature is

imposed Dirichlet conditions

L.3 Mass flow boundaries

The mass flow boundary condition is similar to the pressure boundary condition,

with the difference that pressure is imposed a Neumann instead of a Dirichlet

boundary condition.
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L.4 Wall

At a wall boundary both the free slip/no slip boundary conditions are available for

the velocity components. Unless otherwise specified, the wall boundary condition for

the potential temperature assumes a zero flux through the wall.

A special treatment is applied for the k  and ε  variables close to the wall as described

in Section 5.2.2. The behaviour of the velocity and potential temperature close to the

wall is considered through wall functions.

L.5 Symmetry

At symmetry planes, all variables are mathematically symmetric across the boundary

apart from the normal velocity which is antisymmetric.

L.6 Periodic boundaries

The periodic plane boundary condition is quite straightforward, with all the

variables having the same values at both ends of the computational domain (periodic

planes).
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