ON THE GENERATION OF LOCALLY CONSISTENT
SOLUTION SPACES IN MIXED DYNAMIC
CONSTRAINT PROBLEMS

THESE N° 1826 (1998)

PRESENTEE AU DEPARTEMENT D'INFORMATIQUE
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Esther GELLE

Ingénieure informaticienne dipldmée EPF
originaire d'Ebikon (LU)

acceptée sur proposition du jury:

Prof. B. Faltings, directeur de thése
Prof. E. Freuder, rapporteur
Dr O. Lhomme, rapporteur
Prof. I. Smith, rapporteur

Lausanne, EPFL
1998

Abstract

The development of industrial products such as cars, mechanical tools as well as civil
engineering structures includes the task of identifying components and arranging them in
a product structure. This task is commonly called configuration. It can be formalized as
a constraint satisfaction problem (CSP), which provides a concise mathematical model for
combinatorial tasks. A CSP is defined by the variables of interest, each with a domain of
possible values, and a set of constraints which restrict the allowed value combinations. The
formulation of a configuration task as a CSP gives flexibility required to apply complex
optimization criteria during search which often cannot be expressed by a single utility
function.

Solving a CSP corresponds to finding a consistent assignment to the variables that
satisfies all constraints. Solution methods for CSPs encompass consistency and search
techniques. Consistency techniques are preprocessing methods which remove inconsistent
value combinations before search thus reducing the search space. Furthermore, a dynamic
CSP model (DCSP) makes possible the introduction of new variables and constraints during
problem resolution. However, CSP techniques have been weak for handling mized (discrete-
continuous) as well as dynamic problems.

In this thesis, I present a new algorithm for solving DCSPs with mixed, continuous
and discrete, constraints. It isolates and approximates the solution sets of a DCSP by
local consistency techniques. To this purpose, local consistency techniques for continuous
constraints had to be enhanced and integrated with existing discrete local consistency
methods. Some advantages of this algorithm are:

1. It can solve problems in which the existence of a variable depends on a decision taken
over a continuous value domain.

2. Different locally consistent solution spaces can be compared, thus providing addi-
tional information for decision making.

3. Local consistency techniques are also applied to search for a single solution within
the resulting locally consistent solution spaces. These techniques are particularly
efficient for searching in continuous domains.

The algorithm proposed is applied to a number of different problems such as conceptual
bridge design, design of steel structures, configuration of trains, and industrial mixers.

i

Résumé

Le développement de produits industriels, comme par exemple une voiture, une piéce mé-
canique mais également une structure métallique en génie civil, implique I’identification des
composants du produit ainsi que leur arrangement dans ’espace. Cette tache est apellée
configuration. Elle peut étre formalisée comme un probléme de satisfaction de contraintes
(CSP en anglais), qui fournit un modeéle mathématique concis pour des problémes combi-
natoires. Un CSP est défini par un ensemble de variables caractérisant le probléme et un
ensemble de contraintes qui restreignent les combinaisons de valeurs des variables dans une
solution. La formulation d’une tache de configuration comme CSP permet d’appliquer des
critéres d’optimisation complexes pendant la recherche qui ne peuvent guére s’exprimer
sous la forme d’une fonction objective.

Résoudre un CSP correspond & trouver une assignation de valeurs aux variables qui
satisfait toutes les contraintes. Les méthodes pour résoudre un CSP incluent des techniques
de consistance et de recherche. Les techniques de consistance permettent de découvrir
des combinaisons de valeurs incompatibles et de les enlever avant de lancer la recherche
d’une solution. Elles visent ainsi & réduire ’espace de recherche. En outre, un modéle
de CSP dynamique, appelé DCSP en anglais, permet d’'introduire de nouvelles variables
et contraintes pendant la recherche. Cependant, les méthodes de résolution actuelles de
CSP ne sont pas bien adaptées aux problémes miztes (traitant des données continues et
discrétes) et dynamiques.

Dans cette thése, je présente un nouvel algorithme de résolution de DCSP défini sur des
contraintes discrétes et continues. L’algorithme trouve une approximation de 1’ensemble
de solutions du DCSP par des méthodes de consistance locale. Pour parvenir a ce but, des
techniques de consistance locale pour les contraintes continues ont été améliorées et inté-
grées dans un algorithme comprenant des méthodes de consistance locale pour contraintes
discretes. Les avantages de 1’algorithme proposé sont:

1. Des problémes dans lesquels 1’existence d’une variable dépend d’un choix dans le
domaine continu peuvent étre résolus.

2. Les espaces de solution localement consistants peuvent étre comparés, ce qui fournit
des informations complémentaires utile & la prise de décision.

3. Les techniques de consistance locale sont aussi appliquées & la recherche d’une solu-
tion individuelle dans un espace localement consistant. Ces algorithmes sont partic-
uliérement efficaces dans le domaine continu.

iii

v

L’algorithme proposé est appliqué a différents problémes réels comme la conception
préliminaire de ponts, la conception de structures métalliques en génie civil, la configuration
de trains ou de mixers industriels.

Zusammenfassung

Die Entwicklung und Optimierung von Produkten wie Autos, mechanische Werkzeuge und
Gebdudestrukturen besteht unter anderem darin, Einzelkomponenten aus einem Katalog
zu bestimmen sowie deren Anordnung im Endprodukt festzulegen. Dieser Teil der Produk-
teentwicklung wird als Konfiguration bezeichnet. Konfiguration ist ein kombinatorisches
Problem und kann daher als Constraint Satisfaction Problem (CSP) mathematisch mod-
elliert werden. Ein CSP besteht aus Variablen und Constraints. Jede Variable besitzt
eine Wertemenge aus der ihr ein Wert zugewiesen wird. Constraints definieren erlaubte
Wertekombinationen iiber diese Variablen (z.B. (Un)gleichungen, diskrete Wertekombina-
tionen).

Die Losung eines CSPs weist den Variablen konsistente Werte zu; d. h. Werte, die
keine der Constraints verletzen. CSPs werden mit speziellen Such- sowie mit Hilfe von
Konsistenz-Algorithmen geldst. Konsistenz-Algorithmen entfernen inkonsistente Wertekom-
binationen aus dem Suchraum und vereinfachen dadurch eine anschliessende Suche nach
Losungen. Dynamische CSPs erweitern das Modell, indem sie das Hinzufiigen von Vari-
ablen und Constraints wihrend der Suche ermdéglichen. Die bisherigen Lésungsansitze
unterschieden streng zwischen numerischen und diskreten CSPs. Ausserdem existierten
Ansétze zur Losung dynamischer CSPs nur im diskreten Bereich. Komplexe Konfigura-
tionsprobleme erfordern jedoch die Kombination diskreter und numerischer Variablen sowie
eine dynamische Formulierung.

In der vorliegenden Dissertation beschreibe ich ein Verfahren, das die Losung solch
kombinierter dynamischer CSPs ermoglicht. Das Verfahren isoliert die verschiedenen Lo-
sungsraume innerhalb des Suchraumes und approximiert diese mit Hilfe von lokalen Konsistenz-
Algorithmen. Dies erforderte eine Erweiterung der bestehenden lokalen Konsistenz-Methoden
insbesondere fiir numerische Constraints und auch die Integration von numerischen und
diskreten Methoden. Vorteile unserers Verfahrens sind:

1. Verschiedene lokal konsistente Losungsrdume konnen verglichen werden bevor eine
Design-Entscheidung getroffen wird.

2. Konsistenz-Methoden erlauben zudem eine Optimierung der Suchalgorithmen, indem
der Suchraum zusétzlich beschrankt wird.

Dieses Verfahren wurde an mehreren Beispielen wie Briicken-Design, Konfiguration von
Ziigen and Mixern, sowie bei der Konfiguration von Gebédudestrukturen angewendet.

vi

Acknowledgments

I wish to address my sincerest thanks to Professor Boi Faltings who gave me the oppor-
tunity to work at the LIA. He introduced me to the fascinating world of constraints and
drew my attention to continuous constraints.

I am grateful to Professor Eugene Freuder, Professor Ian Smith, and Dr. Olivier
Lhomme, the thesis committee, for their careful reading of my thesis and the many valu-
able comments I received.

Many of the practical aspects which motivated my thesis are the result of discussions
with Professor Ian Smith, Stress Analysis Laboratory, EPFL. I am indebted to Sylvie
Boulanger, Steel Structures Institute, EPFL, for fruitful discussions on design principles
and for sharing her profound knowledge about bridge design and other aspects of life with
me. I would like to thank my colleagues of the LIA for all the stimulating discussions we
had in the past. My special thanks go to Eric Sauthier for encouraging me to tackle a
Ph.D. and for reading parts of this thesis, to Djamila Sam-Haroud, my latest room-mate,
for interesting discussions on continuous constraints the results of which found their way
into this thesis, to Monika Lundell for everything I have learnt in course organization and
to Rainer Weigel for stimulating discussions on constraint satisfaction problems in general.
I am grateful to Claudio Lottaz for reading one of the hardest parts of my thesis treating
volumes moving in n-space, to Ruth Stalker, Christian Frei, and Romaric Besancon who
provided useful suggestions to enhance my thesis.

Other people involved in thesis reviewing are Timo Soininen of Helsinki Technology
University, Mihaela Sabin of New Hampshire University, and Berthe Choueiry of Stanford
University. I owe them a precious insight into parts of my thesis work which open the way
to future research.

My deepest gratitude goes to my parents for their generous support throughout all my
life and to my friend, Ulrich Jousten, for his constant patience and encouragement during
the hardest periods of thesis writing. He is one of the courageous persons to have read my
thesis in its entirety.

This work was supported by the Swiss National Science Foundation under contract no.
21-39379.93 and 20-45416.95

vil

viil

Contents

1 Introduction 1
1.1 The characteristics of design L. 2
1.2 Constraint satisfaction problemso oL 5
1.3 Topics of thisresearch oo 6

1.3.1 Continuous consistency techniques 6
1.3.2 Consistency techniques for mixed constraints 7
1.3.3 Dynamic constraint satisfaction 8
1.4 Contributions L 9
1.5 Guide tothethesis 10

2 Definitions and Concepts 13
2.1 Introduction 13
2.2 Notational Conventions 13
2.3 Example: Configuration of industrial mixers 13
2.4 Constraint satisfaction problems 16
2.5 Consistency techniques L 19
2.6 Search strategies for solving discrete CSPs 21

2.6.1 General search scheme 22
2.6.2 Lookahead strategieso oo, 23
2.6.3 Information-gathering strategies. 24
2.6.4 Variable and value orderings oL 25
2.6.5 Comparing search algorithms 25
2.7 Search strategies for solving continuous CSPs 26
2.7.1 Valueinference 27
2.7.2 Propagating degrees of freedom oL 27
2.7.3 Optimization techniques L. 27
2.7.4 Relaxation and perturbation methods 28
2.7.5 Stochastic methods L. 29
2.7.6 Algebraic methods L 30
2.7.7 Constraint logic programming (CLP) 30
2.7.8 Interval analysis 31
2.7.9 Counsistency techniques o oo 32

X

CONTENTS

3 Local consistency techniques

3.1 Fix-point algorithms for local consistency

3.2 Local consistency for binary numeric constraints

3.3

34

3.2.1
3.2.2
3.2.3

3.24

Computing in continuous domains
Existing refine operators Lo
A refine operator for binary numeric constraints
3.2.3.1 An improved propagation rule for a single interval
3.2.3.2 The algorithm Simple-Propagate
3.2.3.3 Completeness and soundness
3234 Example
Implementationo oo
3.2.4.1 Methods for identifying extremal points of regions
3.2.4.2 Classes of local extrema
3.2.4.3 Local extrema on individual constraint curves
3.2.4.4 Intersections between constraints
3.2.4.5 Intersections between constraints and interval bounds . . .
3.2.4.6 Algorithm for identify-candidates
3.2.4.7 Filtering relevant extrema

Local consistency for discrete constraints

3.3.1

A refine operator for k-ary discrete constraints

Local consistency for mixed constraints

34.1
3.4.2
3.4.3

Discrete constraints with interval values
Continuous constraints using discretization operators
Completeness and soundness

3.5 SUmMMAry oL e e e e e

4 Local consistency for ternary numeric constraints

4.1 A refine operator for ternary numeric constraints

4.2

4.3

4.1.1
4.1.2

Local consistency over k-ary constraints (k>3)
Extension of definitions to ternary numeric CSPs
4.1.2.1 Classification of stationary points
4.1.2.2 Classification of three-dimensional regions

Refine operator for a single third variable

4.2.1 Propagating a single interval through simple regions
422 Example.
4.2.3 Correctness of the propagationrule
4.2.4 Propagating a single interval through regions containing holes
4.2.5 Extension of the refine operator
4.2.6 Ternary constraints with different third variables
Implementation
4.3.1 Identifying stationary points

4.3.1.1 Local extrema and saddle points of an individual constraint
surface L L

35
35
38
39
40
43

48
49
49
51
52
53
56
58
59
59
59
62
63
66
67
69
70
71

CONTENTS xi

4.3.1.2 Intersections between constraint surfaces 95

4.3.1.3 Local extrema at interval bounds 96

4.3.1.4 Algorithms for filtering and identifying candidates 96

4.3.2 Special cases of stationary pointso 96

4.4 Summary ... L e e e e e 99
5 Systematic generation of problem spaces 101
5.1 Introduction e 101
5.2 Background 103
5.3 Dynamic constraint satisfaction 104
5.4 Solving discrete DCSPs 108
5.4.1 Original DCSP algorithm 108
5.4.2 Why not use a static CSP formulation 7 109

5.5 Formalizing a design task L Lo 113
5.5.1 A design description oo 113
552 Componentsot e e e 113
5.5.3 Relations between components or between components and properties114
5.5.4 Identical componentso 117

5.6 Generating problem spaces of a DCSP 118
5.6.1 Activity constraints 118
5.6.2 Combining activity constraints 120
5.6.3 General DCSP algorithm (GDCSP) 127
5.6.4 Example L 127
5.6.5 Adapting GDCSP to generic constraints 130
5.6.6 Refining the GDCSP-algorithm 130
5.6.7 Completeness and soundness 134

5.7 Finite versus infinite number of problem spaces 134
5.8 Searching within locally consistent solution spaces 136
5.8.1 A generic search algorithm oL 0oL 136
5.8.2 Discrete-continuous constraints 0oL 138

5.9 Summary 139
6 Results 141
6.1 Introduction e 141
6.2 A binary constraint set 142
6.3 Comparison between Davis’ and Falting’s propagation rules 143
6.4 Configuration of trains Lo L 144
6.5 Configuration of industrial mixers 146
6.6 Preliminary design of bridges 0oL 149
7 Conclusions 151
7.1 Scopeofthisresearch 151

7.2 Summary of majorresults oL Lo o 152

xii

7.3 Applicability and limitations
7.4 Open research issues

74.1
7.4.2
7.4.3
744
7.4.5
7.4.6

7.5 Final conclusion

Representation of continuous constraints

Treatment of equalities
Search in continuous and mixed CSPs
Extension of the DCSP model
Reverse engineering of DCSPs
Representation of results

A Examples from configuration and design

A.1 Configuration of an industrial mixer
Variables 0.
Constraints L.

Al1l
A12
A13

A.2 Preliminary design of bridges
Variables
Constraints,

A21
A22

B Topology

C Analysis

Locally consistent solution spaces

D Graph theory

CONTENTS

List of Figures

1.1

1.2

21

2.2

2.3

24
2.5

3.1
3.2

3.3

Many alternatives exist in conceptual bridge design. Five important decision
points for a bridge design are shown: the type of bridge, profile, number of
spans, section and the construction method. Commitments to certain key
parameters, for example the bridge type, constrain the design considerably.
Given a valley of 150 meters with a mazimal height of 30 meters and a river,
two alternative solutions are traced through the entire decision process: one
choosing a constant-depth beam bridge and the second an arch bridge (indi-
cated by solid lines). Courtesy, Sylvie Boulanger, Steel Structures Institute,
EPFL e e

Direct dependencies between chapters in this thesis.

The physical decomposition hierarchy of an industrial mizer is shown to-
gether with functional dependencies indicated by arrows.
a) An example of a CSP that is 3-consistent but not 2-consistent, b) a CSP
that is arc-consistent but not 3-consistent. In both erxamples, backtracking
might be necessary in order to find a solution.
Search tree solving a small CSP by backtracking. The black nodes have been
pruned from the search space. Example taken from [Kondrak, 1994]
Search tree of the CSP in Figure 2.3 solved by a) FC and b) MAC.
The relationship between various lookahead and intelligent backtracking al-
gorithms. a) <c.: hierarchy with respect to the number of visited nodes and
b) <nw: hierarchy with respect to the number of consistency checks.

General algorithm for ensuring consistency over pairs of variables.
a) The projection onto the Y azis of the constraint region can be computed
from the intersection of Lx with the constraint. b) If the projections are
computed individually for each constraint, intersections between constraints
are neglected and the resulting label for' Y is locally unsound. c) like b) with
the effect that inconsistency is not detected by an individual propagation of
the constraints. Taken from [Faltings, 1994]
A refine operator based on the intersection of interval bounds of Lx with
the constraint boundary may not be able to determine if a locally consistent
label exists for Y as shown in a), or find an incomplete label b) or result in
a complete and sound label as shown in c).

xiii

20

22

xiv LIST OF FIGURES

3.4 An interval extension based on the first-order Taylor form taken around the

center of Ix for the equation Y = 1—5X+X3/3 over the interval Ix = [2,3].

The projection of the shaded region onto the Y -azis defines the interval value

for the extension, which is [—4.291, —8.292]. The consistent values for Y are

also shown. Higher order Taylor forms result in still tighter approximations.

Courtesy C. Bliek, AI-Lab, EPF. 44
3.5 The operator refine for numeric CSPs. It applies a propagation rule simple-

propagate to each interval of a label and merges the resulting intervals. . . 45
3.6 Two examples of total constraints. The constraint on the left consists of the

two feasible regions Q1 and Q2. When propagating from X toY, the interval

Iz generates the restricted regions R1 and R2, which project into intervals

Iyl and Iy2. The example on the right shows that multiple restricted regions

R1 and R2 can result from a single feasible region Q1. 46
3.7 An arbitrary region bounded by the curve B(R). M denote local mazima

in'Y and m are local minima in Y. In this example, ay (R,y1) = 1 and

ay(R,y0) =0. . . . 48
3.8 Binary propagation rule simple-propagate for a single interval. How un-

bounded regions are detected is discussed in the section on filtering relevant

ETITEMNG. . .« « o i i e e e e e 50
3.9 The table on the left side shows local extrema on constraint curves and in-

tersections between constraints for the example represented in the figure.

The graphic shows the restricted regions R1 and Ry defined by an ellipsis,

a parabola and a line constraint. Dots are local extrema and intersections

considered by simple-propagate. While circles indicate intersections of

Ix = [0.5,2] with the constraints resulting in extrema in Y lying on the

boundary of the restricted region, crosses show points that are no extrema in

Y e 52
3.10 A quadtree representation of the inequality Y > arctan(1/(X —2). Courtesy

Claudio Lottaz, AI-Lab, EPFL. 53

3.11 There exist three important classes of local extrema: a) local extremum on
constraint curve, b) intersection between two constraints and c) intersection

between an interval bound and a constraint. 0000 54
3.12 Different types of discontinuities on functions. 55
3.13 a) A constraint region without continuous boundary b) with a continuous

boundary. e 55
3.14 Different types of singularities on constraint curves. 56

3.15 Gradients on the region formed by an ellipsis. In a), the combination of

gradient measure and condition indicate a conver mazrimum and minimum;

in b) they indicate a concave mazimum and minimum. a7
3.16 There are three cases of intersections in two dimensions that are candidates

for a local extremum in azis Y: a) no extremum, b) a minimum in X and

a mazimum in'Y and ¢) a mazimum in axis Y. 59
3.17 Algorithm for identify-candidates(Ix,Cly). 60

LIST OF FIGURES XV

3.18 a) Only one minimum has to be considered because both minima come from a
constraint that is a line and gives rise to a single minimum. b) Both minima
are counted individually because they define different minima. 60
3.19 a) Redundant extrema. b) Non-redundant extrema generated by an equalities
Cky : E' =0 and an inequality C%y : E? < 0 describing the inner region
of a circle. The restricted region is the line segment stretching from ey to
e1. c¢) Non-redundant extrema on the common boundary of two elliptical
constraints, C1 defining the inner part of a circle and Co the outer part of
an ellipsis. The first extremum determined by C1 is of type conver mazimum
and the second determined by Cs is a concave marimum. 61
3.20 Propagating Ix through the parabola constraint Y + X2 > 0 may result in
intersections that are no extrema in Y (the intersections are denoted by
crosses in Figure b). In this case, it is sufficient to exhibit one point (z,y)
such that z € Ix, y € Iy and (z,y) € C%y to prove that the restricted
region extends from —oc to oo. In case a), such a point can be found at
the intersection of the constraint with one interval bound of Iy (Ty) and in

cases b) and c) it is sufficient to test the corners of the box Ix X Iy. 62
3.21 The refine operators of AC-3 like algorithms for binary constraints (left side)
and NC for k-ary constraints(right side). 63

3.22 The projection of C' and C? onto X,Y represented as 0-1 matrices. 1 stands
for a compatible value pair, 0 for an incompatibility. The intersection of both

matrices forms a “triangle” of compatible pairs. 64
3.23 Algorithm for refine(X;, X, C}QX],) adapted to k-ary discrete constraints. . 66
3.24 Three types of mized constraints. oo 68
3.25 Definition of landmarks for the vessel volume. 69

3.26 The constraint nbPiers = [length/typicalSpan| with length = 150m is
shown on the left and its approximation by two inequalities on the right side.
Within the propagated interval of [35,60] for typical span, several solutions
erist: nbPiers = 3,4,5. e e e 70

4.1 a) In 2 dimensions, ay (R, yo) represents the number of connected intervals
in R. In 8 dimensions, we would like to determine the number of connected
regions in the X Z-plane for a given yo in a similar manner. The circles
mark points at which this number changes. 76
4.2 Cutting through a region along X = x, and Z = z, with e being a stationary
point results in two sets Sxy and Szy. Sxy has a horizontal tangent Tx in
(Ze,Ye) and Szy has a horizontal tangent Tz in (ze,ye). The local extremum

in Sxy s a minimum in'Y and the second in Szy a mazimum inY 77
4.3 Classification of stationary points. 78
4.4 A propagation rule for a single third variable. 81

4.5 The slice containing all four intersections at X9 = 1/4 is shown on the left
side. The table on the right side indicates all stationary points in X3 on the
boundary of the restricted region with their index o. 83

Xvi

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

LIST OF FIGURES

A three dimensional plot of the total constraint formed by X% + 1/2 * Xo +
24 (X3—6)>0and X2+ X2+ X5 —25<0. . ..o oo v ..
The slice containing the two intersections at Xo = 1/4 is shown on the
left side. The second slice shows the intersection at X1 = 0. The table on
the right side indicates all stationary points in X3 on the boundary of the
restricted region with their index <. L.
A three dimensional plot of the total constraint formed by X? +1/2 % Xo +
24 (X3—3)20and X2+ X2+ X2 —25<0. . . oo v v
a) Two regions with a smooth boundary touching at point P. b) More than
two regions can touch at a single point if they have corners in the boundary.
The three figures show how the intersection between the sweep plane L and
R and changes when L passes through a stationary point of type T'1 or type

Saddle points ey and es on a region with a hole, a torus (upper image) and
saddle points e1,es on a simple region, a cudgel (lower image). The left
sides show what happens in the intersection of L with the region.
A torus is treated correctly by the propagation rule because no new region
can start or disappear at a saddle point.
False gaps may appear if the existence of a hole at saddle points is not de-
tected. The refine operator based solely on the identification of stationary
points fails if the existence of a hole at a saddle point is hidden by local mazx-
ima and minima (mushroom with wormhole). An extended refine operator
with the additional information about holes can of course treat the region
correctly.o L
Revised version of compute-intervals computing a locally consistent label
for Y given the stationary points E of which all saddle points are labeled
with additional information about the existence of holes.
The intersection of the projections of two regions onto their common azes re-
sults in a region sharing the boundaries of By and Bo as well as intersections
between the boundaries.
Concave regions produce stationary points that can be hidden in the projec-
tion of the region. Py, a below min of the ternary region, is hidden in the
projection of the figure. In addition a new local extremum Py appears in the
projection, which does not even exist as single point in the ternary region.
Propagating intervals through a set of ternary constraints with the same third
variable representing a hyperboloid. The point (Ze,Ye, ze) is a saddle point in
Y of the ternary constraint. On the right side, the volume has been projected
onto X, Y. The three slices at zg, z1, z. generate the set S that approzrimates
Pxy. In this case S covers Pxy exactly. If we added a kind of “beak” that
possesses no stationary point in Y somewhere inbetween the slides, S would
not cover Pxy shown by dashed lines exactly. The corresponding volume
would resemble a crouched chick.,

93

LIST OF FIGURES xvil

4.18

4.19

4.20

4.21

5.1
5.2
5.3
5.4

5.5

5.6

5.7
5.8

5.9

5.10
5.11
5.12

5.13

5.14

Detailed algorithms of how to find candidates and of the filtering step for a

total constraint. o 97
Tori in different positions. The planes taken at points between two stationary
points show the change in the intersection of L with the torus. 98

The region defined by the inner part of a “mezxican hat”. Since this figure
can be created by rotation, it is symmetric. 98

Three branches meeting at a single stationary point. At least one of them

must have a corner at the stationary point. 99
DCSP algorithm for generating minimal solutions. 110
Algorithm transforming a DCSP into a CSP. 111
Transforming a DCSP into a CSP defining only minimal solutions. 111

The first expression reasoning about the existence on the condenser variable
can be transformed into a discrete constraint. We suppose here that a con-
denser can be of type C1 or C2. The second expression links a continuous
constraint to the existence of a variable and its translation would require a
mized constraint formulation with NULL values. 112

The problem spaces created by combining two activity constraints of a DCSP.
It is assumed here, that the variables of C1 and Co are active. First, the

constraint Cy AgT X1 is added to the set of initial variables Vi, then Cy AgT

Dependencies in a DCSP represented as directed acyclic graph. The right
hand sides show how problem spaces are combined. At each node only the
additional variables and constraints are shown. The resulting problem spaces
are the leaf nodes of the trees. 124

General DCSP algorithm for generating minimal problem spaces. 128

Generation of the minimal subspaces Py and P adding a single activity
constraint C; AGr X; to the problem space P = (Vact,Crel). 128

Four problem spaces are created by two activity constraints introducing a
cooler and a condenser for the mizer configuration. 129
GDCSP algorithm for generating all minimal problem spaces in design tasks. 131
Pruning of problem spaces due to consistency checks. 132
Function with-condition generating ensuring local consistency on the so-
lution spaces. e e e e e e 133

Four problem spaces are created by two activity constraints introducing a
cooler and a condenser into the mizer configuration. One of the problem
spaces, Py, has an inconsistent solution space due to constraints on the vessel
volume. This inconsistency is detected when enforcing local consistency. . . 133

A condition on the number of elements like f(NbEIlts) < Maz might gen-

erate several feasible intervals. 0oL 135

xviii LIST OF FIGURES

5.15 Left: The generation of new elements is restricted by the constraint piers.nbPiers <
3. Three problem spaces are created of which only P, P3 are consistent.
Right: The generation of new elements is delayed in order to get a chance to
reduce the domain of piers.nbPiers first. The distance M between the two
activity constraints can be chosen arbitrarily large. 136

5.16 A generic search algorithm. 137

5.17 The problem spaces created from P;,i = 2, 3,4 adding the activity constraints
ACs5 and ACg . Subsequent search finds three different search spaces accord-
ing to the values of the vessel type. The search spaces are S;1,S;2 and S;3. . 139

6.1 The binary constraint example. o 143

6.2 The constraints of the train configuration example form cycles in the corre-
sponding hypergraph. L e 145

6.3 The constraints of the mizer configuration example form cycles in the cor-
responding hypergraph.o L 147

B.1 Point py lies on the boundary of region R whereas py is an interior point of R.165

List of Tables

2.1
2.2

3.1

5.1

6.1
6.2
6.3

Types and subtypes in the mizer example. 15
Mizer configuration formulated as a CSP. 17

A list of operators that define discontinuous functions. The operand T is a
real, 1,p and q are INLEGETS. o e e e e e e e e e e 70

First table: solutions of problem Py. Second table: solutions for the minimal
model of Py corresponding to the minimal solutions obtained by Mittal and

Falkenhainer. Variables marked by a hyphen are not active. 107
Solutions for constraint set 1 using various consistency techniques. 144
Variables and their domains used in the train configuration example. 145

Three solutions of the first locally consistent solution space of Figure 7.4. . . 148

xXix

XX

LIST OF TABLES

Chapter 1

Introduction

Everyone designs who devises courses of action aimed at changing
ezisting situations into preferred ones.

[Simon, 1981]

This research has been motivated by a project entitled “Knowledge-based support for

71 in which I have been involved since the beginning of my

conceptual structural design
thesis work. Under this general title, a system for conceptual bridge design was developed
in collaboration with civil engineers. Constraint satisfaction techniques were integrated
into a commercial CAD system, ICAD? in order to enhance the capability of the system
to find several, qualitatively different solutions to a given design task. Design is concerned
with creating an artifact that realizes goals in a given environment. Conceptual design is
one of the early design stages, in which important decisions are taken, i.e. necessary parts
of the structure are identified and a rough dimensioning is done.

Design problems are challenging because of the inherent complexity, which character-
izes the design process. A lacking formalization of the design process itself considerably
hampers the use of computers during the elaboration of a solution. Traditional computer-
aided-design (CAD) packages are merely concerned with the final stage of design: detail
drawing and specification of geometry. Newer packages like ICAD and Concept Modeller?
also provide tools for a modular knowledge-based representation and thus allow the user to
create catalogs of generic components. However, the decision process itself, during which
components have to be selected and values chosen, is not sufficiently supported by these
tools and is either hard-coded within the knowledge representation or performed by a
simplistic demand-driven dependency backtracking scheme. Hence, most designs are still
performed with paper and pencil for the computer has not yet been accepted as a support
during the decision process. A consequence is that errors that are committed early in the
design process are difficult to rectify later and can result in huge additional cost and time

requirements.

!Swiss National Science Foundation, contract no. 21-39379.93 and 20-45416.95
*ICAD , Concentra ©
3Concept Modeller, Wisdom Systems ©

2 Chapter 1. Introduction

Design can be understood in a larger context as a problem solving activity. According to
Simon, the way in which design problems are solved is also characteristic of other activities
such as diagnosing a patient, organizing a timetable, scheduling flights, and devising a
sales plan for a company. Enhancing methods for solving design problems might therefore
also prove useful for solving a wider range of real-world tasks.

In the following, the characteristics of a design task are discussed and subtasks that
can be automized in the design process are identified. Al-techniques that are suitable for
solving these tasks are then proposed.

1.1 The characteristics of design

Commonly, a design activity is defined as the “complete specification of design descriptions
so as to meet a set of requirements” also called goals [Brown and Chandrasekaran, 1988,
Dasgupta, 1991, Coyne et al., 1990, Gero, 1990, Simon, 1981|. The product of a design
is called an artifact. Typical high-level goals, which an artifact has to satisfy, concern
functionality, reliability and performance. When designing a bridge for example, the spec-
ification should include beams and supports (called piers) because these are the most basic
parts of each bridge. The primary functionality of a bridge is to establish a passage over
a an obstacle such as a river, a valley or a road. The bridge structure should satisfy load
requirements imposed by daily traffic, laws ensuring its stability and cost criteria imposed
by politicians. Design is thus the activity that decides on a set of components and their
interconnection in the aim of producing a physically feasible structure that satisfies all the
requirements. A design process encompasses at least the following stages:

1. Specification: From the initial requirements more detailed requirements are elabo-
rated like cost, stability, forces, kinematics, transport, safety, geometry, production
etc. Furthermore, functions and sub-functions are identified, which allow for a first
attempt at conceptual solutions.

2. Conceptual design: preliminary design forms and layouts are developed and deci-
sions about component shapes and material are made. The result of this stage is a
first geometric form and spatial layout.

3. Detailed design: detailed drawings are finalized and production documents estab-
lished.

In contrast to design, configuration tasks are recognized to be well-specified in the
sense that a finite set of components (a catalog) is known initially from which the ar-
tifact is assembled. The components themselves are not modified nor are there new
ones created. In addition, the components can only be connected together in predefined
ways [Mittal and Falkenhainer, 1990], which can be described by constraints on discrete
variables.

In this thesis, we concentrate on the stage of conceptual design assuming that a speci-
fication has already been decided upon and is given as input. This implies that a mapping

1.1. The characteristics of design 3

()
S [«
-g % beam frame arch cable-stayed suspension
o / \
\ / N\ id I I
\ SN \ \
\ |
2 <Z) E E |
= 1
e il o > g e
constant oo o foundatlon above deck
depth foundation :jhmll(igh stayed-1 suspension
/ N ec stayed-2
\ \ \
—
o / \ \ \\
— / \ N 1 2
() /
g2 2 2 % 8 <>
®©
22 I} U
|\~ s “IN\
- / | NS // / \
£9 A NN . I\
(6 -
g I VvIOX IvIOKX
(%]
I-shape open closed tryss /1\
box box \
c | \\ / \
i) | / \
5} | \ by
2 '8 b . crane Janding cantilever
E < crane landing cantilever
oo
OE

Figure 1.1: Many alternatives exist in conceptual bridge design. Five important decision
points for a bridge design are shown: the type of bridge, profile, number of spans, section
and the construction method. Commitments to certain key parameters, for example the
bridge type, constrain the design considerably. Given a valley of 150 meters with a mazimal
height of 30 meters and a Tiver, two alternative solutions are traced through the entire
decision process: one choosing a constant-depth beam bridge and the second an arch bridge
(indicated by solid lines). Courtesy, Sylvie Boulanger, Steel Structures Institute, EPFL

between functions and different parts of the structure has already been specified and is
available. Design at the conceptual stage can be viewed as a process of constraint specifi-
cation and satisfaction: The initial set of constraints is defined by the specification outlined
at the beginning of the design process. These constraints are defined over variables, which
are parameters defining the environment, and parts of the structure. Each variable has as
domain a set of possible values. The rest of the process can be seen as the search for a
solution that satisfies these constraints. Each decision in the form of a value assignment
to a variable in order to satisfy some constraint may impose further constraints on the
design. Thus the possible solutions resulting from the overall design description cannot be
determined statically but are derived dynamically.

A typical example of this dynamic process is bridge design. Given the description of the
topology of the environment in which a bridge has to be built, designers have the choice of at
least four bridge types: frame, cable-stayed, arch and beam bridge (Figure 1.1). Each type
has a different structure constraining further the design: for a beam bridge, for instance,
there exists many possibilities of varying the number of piers and their distribution over the
length of the bridge. Although we might not be able to generate all different possibilities,
our goal is to support the exploration of several alternatives, given certain commitments

4 Chapter 1. Introduction

of the designer, for example to a bridge type. Another example of dynamic derivation of
new variables and constraints is the configuration of industrial mixers. A product that
is chemically characterized as dispersion necessitates a condenser whereas, in general, a
condenser is optional and not part of the mixer vessel. If a condenser is selected, constraints
defined on the condenser become relevant to the current context.

It can be seen in both examples that design usually involves variables of different types:
numerical variables (also called continuous variables) like the vessel volume or the pier po-
sitions and discrete variables like the number of piers, the bridge type, and the type of
mixing task. Hence, constraints defined on these variables are either continuous or discrete
or involve both types of variables. Although well-known techniques exist for finding op-
timal or nearly optimal solutions to a given problem, especially techniques for linear and
nonlinear equations 2.7, designers refuse to use them. Optimal solutions with respect to
some design criteria like cost, reliability or performance, are often difficult to obtain. First,
because not just a single optimum is to be optimized but a set of sometimes conflicting
criteria. Second, the utility function, a function measuring such criteria, is in general dif-
ficult if not impossible to formalize. How could political reasoning be included in such a
utility function 7 Consequently, the goal of design is not to find an optimal answer but a
“satisficing” one [Simon, 1981], i.e. one which satisfies all constraints. In bridge construc-
tion, there might be a conflict between an esthetic distribution of piers and the cost of the
bridge structure because placing a pier on a sandy ground would require large foundations.
An individual weighting of design criteria explains why different designers will find qual-
itatively different solutions to exactly the same design problem [Boulanger et al., 1995],
[Haroud et al., 1995], [Gelle and Smith, 1996].

The solutions to a design problem have to be synthesized from local information (the
constraints). Since such constraints might be interdependent, a partial solution does not
always extend to a complete solution. This type of problem is called a synthesis task,
because solutions have to be synthesized. The reasoning used to solve such tasks is ab-
ductive in nature: Knowing the functionality of each part of the structure, find an artifact
that behaves according to the requirements. Given a set of structural parts S and a set
of functions F', the initial knowledge would ideally be described by a set of implications
{81 = {Fi1,---, Fim, },---,Sn = {Fn1,---, Fum, }} with S; € S, Fj;, € F and the require-
ments by a subset of functions F® C F. The task is to find the set of structural parts that
satisfy F®*. A straightforward way to solve this problem is to generate all subsets of S
and to test if they generate the function set F¥. Even if a strict enumeration of solutions
by assembling local information is theoretically possible, in general, it exceeds available
computer capacities and time resources, and is an unrealistic approach. Furthermore, if
real-valued parameters are involved, there are an unlimited number of possible valuations.
The abductive nature of design problems is well-captured in the model of constraint sat-
isfaction. Resolution algorithms proposed in constraint satisfaction synthesize solutions
from local information given in the form of constraints [Freuder, 1978], [Cooper, 1989].

“Often, the relationship between a structure and the functions it fulfills is less direct and is expressed
by linking the expected behavior derived from the required functionality to the actual behavior of the
structure [Gero, 1990].

1.2. Constraint satisfaction problems 5

From the point of view of designers, it is interesting to identify several alternative
solutions to a problem or to approximate at least the regions in which solutions can be
found. First, a commitment to single values is made in the light of available information
and the more complete this information is, the better a choice can be made. Second, even
if the comparison of solutions can be difficult, rating alternatives with respect to a set
of criteria might indicate what is a good or preferable solution. Solution regions appear
when the problem is under-constrained; in this case the constraints define entire regions
of contiguous feasible values. Especially constraints on continuous variables form feasible
regions, which can be represented as shapes in two and as volumes in three dimensions.
If the solutions can also be represented as regions, a designer has the additional choice of
navigating within them to fix appropriate values. Sometimes designers may be required to
change and adapt an existing solution to a similar one. If only a single solution has been
computed, the whole search process has to be started from scratch. If, on the contrary, a
set of solutions in form of regions is already produced, similar solutions can be found more
easily by moving to neighboring points in the same solution region.

1.2 Constraint satisfaction problems

In the previous section, we have seen that proposing sets of solutions might support the
designer during the design process. Furthermore, it would be highly desirable to automize
the computationally intensive subtask of synthesizing solutions from the given constraints.
Once the constraints on the artifact are explicit, any algorithm performing search within
the space defined by the constraints can be used to identify solutions. Hence, the next topic
is devoted to different types of search methods and to the question of their applicability
to solving design tasks.

Typical search methods include linear and nonlinear optimization, genetic programming
and tabu search. All of them have in common that they solve a very specific instance of
problem, for example, continuous nonlinear equations, linear or integer equations. Most
of them are based on optimization techniques and thus find a single solution according to
the given utility function. It follows that these methods do not satisfy the requirements
for design problems as previously discussed.

A recent method, which has made its appearance in Artificial Intelligence, is Constraint
Satisfaction. A constraint satisfaction problem (CSP) is defined by a set of variables, each
variable having a domain of possible values, and a set of constraints over these variables,
which specify allowed values that the variables may take on in a solution. A solution is a
consistent assignment, i.e. a set of values from the variable domains of each variable such
that all constraints are satisfied. The goal is in general to find one, some or all consistent
assignments to a CSP. Since graph-coloring is an instance of a CSP, finding a solution to
the constraint satisfaction problem is NP-complete [Mackworth and Freuder, 1985|. Enu-
merating all possible value combinations and testing them against the constraints is thus
computationally intractable for larger instances of CSPs.

In Artificial Intelligence, one approach to solving CSPs consists of preprocessing tech-

6 Chapter 1. Introduction

niques called consistency techniques. The idea is to remove inconsistent value combinations
from the set of possible solutions (the cross-product of all variable domains), and to propa-
gate the effects of such a removal through the constraint network. This preprocessing avoids
that inconsistent value combinations are revisited during search. In general, k-consistency
removes inconsistencies that involve all subsets of size k of n variables. Global consistency
allows the implicit representation of all possible solutions and guarantees backtrack-free
search. Without making any assumptions about the form of the constraints, ensuring global
consistency is exponential in the number of variables. The other extreme, 2-consistency
(also called local consistency), removes values that are part of an inconsistent value pair.
This method has the advantage that the inconsistent values found can be removed from
variable domains directly and that polynomial-time algorithms exist for discrete CSPs.

Furthermore, local consistency techniques are of use during search: in forward checking,
the currently instantiated variable is propagated to the neighboring variables connected by
a constraint. The more effectively the label of the neighboring variables can be refined by
local consistency the faster backtrack search can decide if a solution exists or not. Search
in continuous domains can be very costly because the number of potential points to be
visited depends on the allowed precision as well as the size of the domain.

It has to be emphasized that local propagation methods like local consistency are more
efficient for constraints that are formulated locally; i.e. with a small arity. In fact, 2 out of
k variable pairs, where k is the maximal arity of the constraints, have to be considered for
propagation. In addition, results may lose accuracy when computed by an algorithm that
relies on a specific input form of the constraints, like for example, restrictions to ternary
or basic constraints. CSPs containing global constraints may profit from more specialized
methods (|[Régin, 1996]).

Consistency algorithms are complete by definition, i.e. they never remove solutions.
Completeness is motivated by our applications in conceptual design, where in a first stage
it is important to localize spaces containing all solutions. Equally important, local con-
sistency techniques can only be applied during search because they are complete. Local
consistency algorithms should also be locally sound such that no inconsistencies are added
and that all remaining inconsistencies are of higher degree.

1.3 Topics of this research

1.3.1 Continuous consistency techniques

For many years, research in Constraint Satisfaction has concentrated on developing con-
sistency techniques for binary discrete constraint systems minimizing the effort in the
subsequent search for solutions as well as on different search strategies. Early attempts at
applying consistency techniques to continuous constraints have been discouraging mainly
due to an oversimplified refinement step but also because of numerical error propagation
and the inherent complexity of numerical systems.® Only in recent years, approaches based

5There exist problems with three constraints and three variables that are classified as very hard by
Numerical Analysts. On the other hand, problems with thousands of variables involved in linear equalities

1.3. Topics of this research 7

on interval propagation have raised new interest in consistency techniques for continuous
domains. However, most current resolution techniques for continuous variables still rely
heavily on domain splitting because the consistency methods they employ often have little
effect. Apart from the method proposed by [Faltings, 1994], we know of no local consistency
method achieving 2-consistency for continuous domains. Since this method is restricted to
binary constraints, our first thesis topic is to extend this algorithm to constraints of higher
arity.

Topic 1: Enhancing local consistency techniques for continuous constraints.

Typical properties of such algorithms are:

Solution regions. We assume that the constraints define feasible spaces as sets of
contiguous solutions® rather than point-solutions. This implies that our local consistency
algorithm for continuous constraints is designed for the treatment of regions in continuous
space. For fully constrained numeric systems, which consist of n variables and n
constraints, there are dedicated algorithms such as Numerica [Van Hentenryck, 1997].

Exactness of solutions. The implementation of any method dealing with real variables
poses numerical problems due to rounding errors. This is not characteristic of our
algorithm in particular. We do not treat this problem in our thesis, but we assume the
existence of safe approximation methods like interval analysis or rounding procedures for
computing real values.

Generality and reliability. Two approaches exist in the context of algorithms in the
continuous domain: methods that rely on properties of the solution region defined by the
constraints and those relying on syntactic properties such as the type of constraint (linear,
nonlinear, equation, inequation). In addition, some of them require a preconditioning step
to be carried out. Our algorithm belongs to the first category relying on local properties
of the feasible constraint regions. Under the condition that these properties can be de-
termined, our algorithm is able to compute locally consistent labellings. Hence, we have
to distinguish between the conceptual framework, for which proofs are presented, and the
implementational issues of how to find point sets verifying these local properties.

1.3.2 Consistency techniques for mixed constraints

Most techniques in constraint satisfaction, as in other fields, are restricted to a uniform
variable and constraint type. Resolution algorithms exist for variables with continuous do-
mains and others for discrete domains but no algorithm integrates the consistency approach

are solved quite easily by dedicated methods.

5This assumption is influenced by our application domain, which is design. In design, relations between
parameters often are of empirical nature and cannot be determined exactly. Such relations are typically
specified by equations of the form X =Y + P% with P € N, which can be rewritten as a set of inequalities.

8 Chapter 1. Introduction

for both types of variables.

Topic 2:
Enhancing local consistency techniques for mixed constraints defined on contin-
uous and discrete variables and integrating all local consistency techniques into

the same framework.

Typical properties of such techniques are:

Constraint representation. The representation of constraints plays an important role
in the design of consistency and search algorithms. There exists a fundamental difference
between discrete and continuous constraints:

1. Discrete constraints are based on a representation of discrete value combinations and
either enumerate allowed tuples explicitly or express them in a logic formula.

2. Continuous constraints use an implicit representation of allowed points in continuous
space in the form of an analytical representation.

This inherent difference leads to the design of different consistency techniques dedicated
to each constraint type. Another possibility is to discretize the feasible region defined by
continuous constraints [Sam-Haroud, 1995|. In this thesis, we discuss the advantages and
drawbacks of both representations.

Integration of different local consistency methods. Consistency algorithms for con-
straints on discrete and continuous variables should be integrated in a manner transparent
to the user and without creating an overhead due to switching between different constraint
solvers.

1.3.3 Dynamic constraint satisfaction

In order to account for dynamic aspects like variable addition, a dynamic constraint sat-
isfaction (DCSP) approach has been developed by [Mittal and Falkenhainer, 1990]. This
framework integrates variable creation and the standard CSP paradigm. The original
algorithm, however, has been developed only for discrete constraints.

Topic 3:
Generate solutions of a dynamic constraint satisfaction problem with continu-
ous and discrete constraints.

Some properties to be respected are:

Generic constraints. It should be possible to formulate constraints over variable types
without referring to specific variable instances. From such generic constraints instances
are then generated for each combination of variable instances corresponding to the types
over which the generic constraint is specified. This is a natural requirement for dynamic

1.4. Contributions 9

problems.

Restricted variable generation. The generation of solution spaces in a DCSP is driven
by the conditional generation of new variables. The number of variables must be bounded
a priori otherwise the generation process cannot be guaranteed to stop for any possible
input problem.

1.4 Contributions

The main contributions of this thesis are:

1. Local consistency techniques for continuous constraints. Local consistency
for binary constraints from [Faltings, 1994]| is extended in this thesis to ternary con-
straints. Since every numeric CSP can be transformed into a system of ternary
constraints, local consistency can be enforced on general numeric CSPs. The tech-
nique again makes use of total constraints, formed of all constraints defined in the
same space. All constraints in a total constraint are considered simultaneously in
one propagation step and this enables us to take into account intersections between
constraints.

A general correctness proof is given for this method. This proof is based on topo-
logical properties of the solution space and is generic in the sense that it does not
restrict itself to a specific type of continuous constraint. It also identifies a limitation:
feasible regions containing holes require additional local information in order to be
treated correctly by this method.

2. Integrating discrete and continuous propagation into the same framework.
A general framework for computing local consistency in mixed, i.e. discrete and
continuous, CSPs is proposed. It is based on specific refine operators for each type
of constraint embedded into the general propagation algorithm. A refine operator
computes the consistent values for a given variable pair. A clear advantage of this
approach is the neat integration of mixed constraints, which are defined on discrete
and continuous variables simultaneously.

3. Generation of locally consistent solution spaces. A generation method for
finding all locally consistent solution spaces in a dynamically formulated CSP is pro-
posed. It is based on a new constraint-driven algorithm that first generates problem
spaces (static constraint problems) in a mixed DCSP. Local consistency techniques
are used to prune inconsistent problem spaces as early as possible. An analysis of
the generation mechanism leads to an identification of those constraints that are
responsible for the combinatorial size of the number of problem spaces.

Our approach is demonstrated on examples in design and configuration.

10 Chapter 1. Introduction

1.5 Guide to the thesis

In this chapter, we have given the motivation behind the research that has led to this
thesis. The results consist of two parts: the generation of problem spaces in DCSPs, and
local consistency techniques especially for continuous constraints. At a first glance, they
seem to be disconnected. The link is made when “marrying” both concepts to achieve the
first aim: the generation of solution spaces in a DCSP. This thesis can therefore be read
following the dependency links between the chapters as shown in Figure 1.2. The parts on
local consistency and generation of problem spaces can be read independently from each
other. The contents of this thesis are:

Chapter 2: Definitions and concepts

Gives a short overview of the basic definitions of constraint satisfaction, consistency tech-
niques and search strategies. A small example on configuration, which is reused throughout
the thesis, is introduced in this chapter and the definitions are illustrated using the exam-
ple.

Chapter 3: Local consistency techniques

Describes the integration of discrete and continuous consistency techniques into a fix-point
algorithm of type AC-3. Approximations for mixed constraints are also described. The
section on consistency techniques in numeric binary CSPs is a reminder of the concepts
of local consistency for numeric constraints presented in [Faltings, 1994] and serves as
an introduction for chapter 4. This chapter also discusses an implementation of local
consistency for binary continuous constraints.

Chapter 4: Local consistency for ternary numeric constraints

Extends results on consistency techniques in numeric binary CSPs to ternary numeric sys-
tems thus providing a basis for computing locally consistent labellings for general numeric
CSPs. The correctness of this extension is proven and limitations are discussed.

Chapter 5: Systematic generation of problem spaces

Generalizes dynamic constraint satisfaction to problems involving continuous variables. A
new method for problem space generation in such a framework is presented, which finds
all sets of CSPs in a DCSP. Locally consistent solution spaces result from the systematic
generation algorithm. These spaces can be searched for single solutions employing the local
consistency methods described in chapter 3.

Chapter 6: Results

Several examples from the field of design and configuration are described, solved in the
proposed framework and their results analyzed.

1.5. Guide to the thesis 11

Chapter 7: Conclusions

Reviews contributions of this thesis on local consistency for mixed constraint systems and
the generation scheme proposed for dynamic CSPs. Open problems are discussed and

future research directions proposed.

12 Chapter 1. Introduction

Chapter 1:
Introduction

Chapter 2:
Definitions and concepts

Chapter 3:
Local consistency
techniques

Chapter 5:
.............. Systematic generation of
problem spaces

Chapter 4:
Local consistency for
ternary numeric constraints

Chapter 6:
Results

Chapter 7:
Conclusions

Figure 1.2: Direct dependencies between chapters in this thesis.

Chapter 2
Definitions and Concepts

“No, no; I never guess. It is a shocking habit - destructive to the logical faculty.”

Sherlock Holmes in The Sign of Four, The Strand Magazine (1890)

2.1 Introduction

In this chapter, we will give a short introduction in the area of constraint satisfaction
evoking important concepts and definitions in this domain. This is not intended to be a
general review but a guide of definitions relevant to our research. First, an example from
the domain of configuration is presented, which will be referred to during the entire thesis.
We then introduce the notion of a constraint satisfaction problem (CSP) and show how
this particular example is modeled as a CSP. Finally, some of the consistency techniques
and search strategies that are important for our work are reviewed.

2.2 Notational Conventions

Throughout this work, we use upper case letters for variables, sets and vectors and lower
case letters for single values. For example, X, Y, Z or X; are variables and z;, is a
particular value for variable X;. We will use the notation [a,b] with a < b,a,b € R for a
closed, (a,b) for an open interval and [a, b) for an interval open to the right.

2.3 Example: Configuration of industrial mixers

This example consists of configuring mixers used in industry. It has been adapted from
the F5 example described in |[van Velzen, 1993]. We choose two main components for
representing the overall task: the mixer, which describes the artifact itself and the mixing
task, which specifies requirements induced by the product to be mixed. Industrial mixers
can be classified into three types:

e reactors, which are used in chemical experiments where mixing is used to produce

reactions

13

14 Chapter 2. Definitions and Concepts

e storage tanks, which keep a product mixed during storage (important for products
consisting of several phases)

e conventional mixers, which range from kitchen mixers to a concrete mixing machine
on a construction site

The second important component type is the mixing task. It defines the characteristics
of the product to be mixed. A chemical product has one or more phases and each phase
is either solid, liquid or gas. Depending on the combination of phases, a mixing task is
categorized as

e suspension: a mixture in which small particles are distributed throughout a less dense
liquid (or gas),

e blending : blend = mix (sorts or grades of spirits, tea, tobacco, etc.) so as to obtain
a certain quality,

e dispersion: a mixture of one substance dispersed throughout another, continuous
one; an emulsion, aerosol, etc.,

e entrainment: semi-liquid mixture of a pulverized solid or fine particles with a liquid;
cement, etc.

The component types involved in the configuration of a mixer are shown in the “part-of”
hierarchy in Figure 2.1. Links between components represent the relation part-of. Bottom,
for example, is a part of Vessel. Dotted links represent optional components in the sense
that a mixer does not necessarily include a condenser. Each component type is described
by its properties, which are either basic or composed: a mixer vessel, for example, consists
of the subcomponents Condenser and Cooler and the basic properties volume, height and
diameter. All component types with their properties are listed in the appendix A.1. We use
the dot notation to refer to properties: V.condenser denotes the subcomponent Condenser
of type Vessel and MT.slurry pressure the property slurry-pressure of the component
type Mixing Task. For simplicity component types are abbreviated by their initials. Some
component types are divided into subtypes, which are shaded in Figure 2.1. The component
type Mixer, for example, has the subtypes Storage Tank, Mixer and Reactor, and Mixing
Task is divided into Dispersion, Suspension, Blending, Entrainment (Table 2.1). This
relation between component types is termed of-subtype and will be written V' £ elliptical.
The description of component type Vessel for example depends on its subtypes: if Vessel
is of subtype Elliptical, the small radius and the bottom area of the elliptical surface have
to be specified as properties of Vessel because they are required in the computation of
the vessel volume. Eventually, the conditions under which optional components like the
condenser or the cooler are part of the mixer vessel have to be specified. Such constraints
are formulated as logical implications (shown by arrows in Figure 2.1):

e The existence of the condenser depends on the vessel volume:
V.volume > 150 -3 C

e The existence of a cooler depends on the mixer type:
M £ reactor — 3 Co

2.3. Example: Configuration of industrial mixers 15

Mixer

Mixing Task

T~

Agitator

Vessel

YA

Cooler Condensor Engine Impeller Shaft

Figure 2.1: The physical decomposition hierarchy of an industrial mizer is shown together
with functional dependencies indicated by arrows.

Component type | Abbrev. | Subtypes

Mixer M Storage Tank, Mixer, Reactor
Mixing task MT Suspension, Entrainment, Blending, Dispersion
Impeller I Axial-turbine, Helical-ribbon, Propeller,

Silverson-highshare, Dented-disk, Radial-turbine,
Scaba, Anchor-stirrer

Vessel Elliptical, Hemispherical, Cylindrical
Elliptical

Cooler

Condenser

Agitator

Engine

Impeller
Shaft

Zlialicl il fellIEs

Table 2.1: Types and subtypes in the mizer example.
Some typical relations between components and properties of a mixer are:

e a relation R; between the pressure of slurry particles of the product and the shape
of the vessel

(MT.slurry pressure = high N (V £ hemispherical V'V g elliptical)) Vv
(MT.slurry pressure =low AN V e cylindrical)

e 3 relation Ry between the power, position, diameter, slurry density of the product
and the revolutions per second of the impeller

Ipower = MT.slurry density * I.position I.rps® = I .diameter®

16 Chapter 2. Definitions and Concepts

e 3 relation R3 between the vessel type and the volume of the vessel

(Vv Z hemispherical A V.wolume = & x m x V.diameters +
L xm* V.diameter® x (V.height — 1 x V.diameter)) V

% = cylindrical A Vwolume = 1 * 7 x V.diameter® * V.height) V

% & elliptical A Vwolume = m x El.sradius * 1 x V.diameter)

In the following section, we show how this example can be modeled as a constraint
satisfaction problem, in which variables are components or properties of components and
the relations are constraints on the variables.

2.4 Constraint satisfaction problems

A constraint satisfaction problem (CSP) involves a set of variables with their associated
domains and a set of constraints defined on these variables. One of the first definitions
of binary constraint networks goes back to [Montanari, 1974]. Since we also consider
constraints of higher arity in our work, we extend this definition:

Definition 2.1 (Constraint satisfaction problem) A constraint satisfaction problem
P is a tuple (V,C,D) that consists of

1. a finite set of variables V = {X1,...,Xp} with their domains D = {D1,...,Dy}
such that each variable X; € V has an associated domain of possible values D; € D

2. a finite set of relations C, called constraints, each constraint CXil;---;Xij € C defined on
a subset of variables Vars(C) = {X;, ... X;;} with Vars(C) C V. Each constraint
CXil,---,Xij specifies a subset of the Cartesian product of the variable domains as
allowed value combinations: Cx X, CDj X...x D,-j.

ISR

A k-ary CSP is a CSP with C restricted to j-ary constraints, 7 < k.

The goal of any search algorithm is to find at least one valid assignment, a solution, or to
show that there is no solution. For a configuration and design task modeled as a CSP, it is
in general more interesting to know a set of solutions in order to be able to compare their
quality. An instance of a CSP is P; = (V,C, D) defined on the mixer example with:

1. A set of variables V = {X,..., X711} with their domains (Table 2.2). Each variable
stands for a component instance of a given type or for a property thereof. Variable
X5, for example, represents a component instance for the vessel. The domain of
such a variable is either a set of subtypes if the variable represents a component or
a basic domain like a set of discrete values or intervals.

2. A set of constraints C = {Cx, x,,Cx,,... xs: Cxy,..,.x1, } defined in the introductory
example with

Cxi,x, == R
Cx,,..x11 == Ro
Cx,,..xs == R3

2.4. Constraint satisfaction problems 17

Variable Domain

X1 = slurry pressure | D1 = {low, high}
Xy = instance of V Dy = {elliptical, cylindrical, hemispherical }
X3 = volume D3 = [0,1000]
Xy = diameter Dy = [0,1000]
X5 = height Ds = [0, 1000]
X¢ = sradius D¢ = [0,1000]
X7 = position D7 =10,5]

Xg = diameter Dg = [0,1000]
X9 =1ps Dy = [0,1000]
X190 = power D1y = [0,1000]
X11 = slurrydensity | D11 = [1,2000]

Table 2.2: Mizer configuration formulated as a CSP.

A constraint can be represented either intensionally by specifying all allowed value combi-
nations or extensionally by a logical predicate. In order to define what a solution is, we first
need the notion of an assignment consistent with a given constraint defined as predicate.

Definition 2.2 A constraint Cx, . x, € C is satisfied by an assignment {X; =
Ti;,., Xk = 2k b if and only if Cx, . x, (T1;,- .., Tk;) i true.

When the constraint is defined as set of allowed tuples, this is equivalent to (z1,,...,zk;) €
Cx,,..x,- A solution of a CSP is a consistent assignment to all variables such that all the
constraints are satisfied.

Definition 2.3 (Solution of a CSP) An instantiation of the variables in V is a set

{X1 = L1,y Xp = wnj} such that each variable X; is assigned a value z;; € Dj,
j = 1,...,|D;]. A solution of a CSP (V,C,D) is a consistent instantiation {X1 =
Tij,..., Xp = :an} for the variables X1,..., X, € V such that all constraints in C are
satisfied.

One solution of P; is the assignment {slurry pressure = low, V = cylindrical, volume =
488.47, height = 10.67, diameter = 7.63, power = 1250, I.rps = 1.13, diameter = 2.51,
position = 5, sradius = 0}. Note that sradius may take any value in its domain because
it is not constrained by Cyx, ... x;-

We can distinguish between different classes of constraint problems depending on what
kind of constraints the problem is restricted to. A discrete constraint satisfaction problem
restricts the variable domains to a set of discrete values {z;,,...,z;, } € D;. For design
applications, discrete domains are in general finite!.

'One could imagine that a variable domain might be very large or even infinite. When configuring a
computer network, for example, variables are network nodes and their domains all possible routes from
a node to all other nodes in the network. A discrete constraint defined on such a variable should then
be given by a predicate. Instead of being explicitly enumerated, the values of a domain would then be
accessible by a nezt function, which returns the next value of an ordered domain

18 Chapter 2. Definitions and Concepts

Definition 2.4 (Discrete constraint) A discrete constraint Cx,,.. x, € C defines a
set of allowed wvalue tuples (a:lj,...,mkj) either explicitly or by a predicate such that
(xlj,...,xkj) € D1 xX...x Dy.

The values of a tuple in a discrete constraint Cx, . x, are given in the order of the vari-
ables Xi,..., X} of the constraint. For a given tuple ¢, the value of variable X; in ¢ is
designated by ¢[X;]. The projection of a tuple onto the variables Xi,...,X; will be writ-
ten ¢[X1,...,X;]. An example of a discrete constraint is Cx, x,. It can also be written as
a set of tuples:
Cx,,x, = {(high hemispherical)
(high elliptical)
(low cylindrical)}

In a numeric constraint satisfaction problem, the variable domains are defined over the
reals. A continuous constraint is any relation over the real domain.

Definition 2.5 (Continuous constraint) A k-ary continuous constraint, also called a
numeric constraint, Cx,, .. x, € C is a relation ® over R with © € {=,>,<}. A contin-
wous constraint has the syntax E © 0 where E is a term built from constants, variables
and operations {+,—, /,*,exp,log,...} over the reals.

An example of a continuous constraint is Cx,,... x;;:

I.power = MT.slurry density * I.position « I.rps® x I.diameter®

In practical applications, also mized constraints defining relations over discrete and con-
tinuous variables appear. We therefore extend definitions to include mixed, continuous -
discrete, constraints.

Definition 2.6 (Mixed constraint, Gelle) A mixed constraint Cx, . x,, € C is a re-
lation defined by a set {CP%i A CC°™Y} where the first constraint is a discrete constraint

Dis; . . ,
CXIS’ X; defined on the discrete variables X1,...,X; and the second a continuous con-
yores

straint C)C(:?f_,Xm defined on a set of continuous variables Xg, ..., X,.

In the mixer example, there is such a relation between the vessel type and the volume of
the vessel. Each tuple simply represents the conjunction of discrete with continuous values:

Cx,,..xs : = {(hemispherical wvolume =1/12 % m % diameter+
1/4 * 7 diameter? x (height — 1/2 * diameter)
(eylindrical volume = 1/4 * w x diameter? x height)
(elliptical volume = 7 x sradius * 1/2 *x diameter)}

A fundamental difference between discrete and continuous constraints appears in the con-
tinuous part of this constraint. While, in the discrete domain, several constraints defined
on the same variables can be redefined as a unique constraint by simply intersecting their
tuple sets, this is not possible for continuous constraints. The reason is that there is a

2.5. Consistency techniques 19

unique way of combining discrete variables by specifying tuples allowed or not allowed. A
continuous constraint over k variables, however, consists of a combination of operators like
{+,—,/,exp,...}. It follows that there are many possibilities of defining constraints over
the same set of variables.

2.5 Consistency techniques

[Waltz, 1975] was one of the first to use a filtering for obtaining partial consistency of data
in image processing. The algorithm defined by Waltz loops through the constraints and
for each individual constraint the value set of each variable is refined. [Mackworth, 1977a]
and [Montanari, 1974] generalized this concept to any kind of discrete data related by
binary constraints. They define arc-consistency as consistency between each pair of vari-
ables and path-consistency as consistency between triples of variables satisfying all binary
constraints. These consistency techniques do not solve the constraint satisfaction problem
completely but they eliminate local inconsistencies, which cannot be part of any solution.
Since solving a general CSP is NP-complete, such techniques are useful to remove incon-
sistencies before the actual backtrack search starts. Arc and path-consistency have been
shown to be polynomial time algorithms [Mackworth and Freuder, 1985]. Analogously,
[Freuder, 1978] defined k-consistency as consistency between k variables satisfying the con-
straints. He also provided sufficient conditions for backtrack-free and backtrack-bounded
search [Freuder, 1982b]|, [Freuder, 1982a|. Since then, much research has concentrated on
refining these discrete algorithms, especially arc- and path-consistency, and finding lower
bounds of time and space complexity [Mackworth and Freuder, 1985], [Bessiére, 1994],
[Van Hentenryck et al., 1992], [Mohr and Henderson, 1986].

Consistency techniques require a compact representation of the effective combinations
of consistent values. Such combinations of values are called labels.

Definition 2.7 (k-th order labelling) A k-th order labelling of a constraint satisfaction
problem is a set of labels Lx, . x, for every combination of k variables X1, ..., Xy, where
each label designates a subset of value combinations from Dy X ... X Dy.

In discrete CSPs k-th order labellings can simply be represented by value tuples of length
k. In continuous CSPs, the k-th order labellings represent arbitrary topological regions in
RF.

Definition 2.8 (k-consistency; [Freuder, 1978]) Given a set of consistent values for
k — 1 wariables so that all constraints are satisfied, a CSP is k-consistent if and only if,
for any k* wvariable, there exists a value such that all constraints are satisfied for the k
variables.

Strong k-consistency requires j-consistency to hold for all j < k.

If a CSP is k-consistent, this does not imply automatically that it is also j-consistent with
j < k. In Figure 2.2 a), a coloring problem is represented taken from [Freuder, 1982b].
Let X,Y, Z be three nodes where Y can be colored red and blue but X and Z can only

20 Chapter 2. Definitions and Concepts

red

red blue
blue green
red red
red red blue
blue
a)Y=red, X=7 b)Y =red, Z=blue, X="?

Figure 2.2: a) An example of a CSP that is 3-consistent but not 2-consistent, b) a CSP that
is arc-consistent but not 3-consistent. In both examples, backtracking might be necessary
in order to find a solution.

take on red. The constraints X # Y and Y # Z are the links in the constraint graph. The
resulting CSP is 3-consistent but not 2-consistent. In fact, taken any consistent assignment
of two nodes, there exists a value for the third node. However, if we assign color red to
node Y there exist no consistent assignment for node X. On the other hand, if each node
is allowed colors red and blue, the resulting problem is 2-consistent but not 3-consistent.
If node X is colored blue and node Z red, there exist no color for node Y.

In order to represent the combinations of consistent values, k-consistency makes use of
a (k-1)-th order labelling. In fact, if there exists no k-th value such that the combination
of this value with a given tuple of k-1 values is consistent, the tuple of k-1 values has
to be removed. A labelling is globally consistent if and only if every value in every label
occurs in at least one complete solution. In some cases, a globally consistent labelling or an
approximation thereof can be computed efficiently [van Beek, 1992], [Sam-Haroud, 1995].
In general, global consistency is intractable both in computation time and in complexity of
representing the final solution. An alternative that is more efficient than global consistency
is local consistency, which we use here as a generic term for 2-consistency and different
approximations of 2-consistency. 2-consistency applies to first-order labellings. Sets of
values for individual variables can be represented efficiently by collections of intervals in
the continuous as well as in the discrete domain. Arc-consistency is strong 2-consistency:

Definition 2.9 (arc-consistency; [Mackworth, 1977a]) A binary CSP is arc-
consistent if for any pair of variables X;,X; and for any value x;, € L; of X; there exists
a value zj, € L; for X; so that all constraints are satisfied and Ly, C Dy, :

VXianaiL'ik €L; Ell'jk € Lj OXian (xik’wjk)

A refine operator? implements one step of making the label L; of variable X; arc-consistent
with the label L; of variable X;. Local consistency is especially interesting in constraint
problems whose associated graph has no cycles (see appendix D for definitions related to
graph theory). An arc-consistent labelling of a constraint problem forming a tree is guaran-
teed to possess a backtrack-free search order. This means that an arc-consistent labelling
guarantees that all variables can be assigned without backtracking when the constraint tree

2In the Constraint Logic Programming literature, this operator is often called narrowing operator.

2.6. Search strategies for solving discrete CSPs 21

is traversed in preorder [Freuder, 1982b|. Another result proven in [Faltings, 1994] is that,
in a tree-structured constraint graph, the refine operator only has to be applied a number
of times linear in the size of the node set in order to make the labelling arc-consistent. If
the graph has cycles, a cycle-cutset decomposition method as described in [Dechter, 1990]
can be applied to cut the cycles. A cycle-cutset is a set of nodes that render the constraint
graph cycle-free when removed. By instantiating variables of the cycle-cutset and comput-
ing local consistency on the remaining constraint tree, the upper-bound complexity of the
problem is essentially dominated by the complexity of finding a consistent assignment of
the cycle-cutset. Consider again the coloring problem on a complete graph of three nodes
in Figure 2.2 b). Each node can be colored in red or blue and node Y additionally in green.
The problem is already arc-consistent but if Y is assigned blue or red first, search has to
backtrack in order to find a solution. In the cycle-cutset method, a cutset X, for example,
is chosen and instantiated to red. The resulting constraint problem is made arc-consistent,
which directly yields a solution: {X = red,Y = green,Z = blue}. The same process can
be repeated for X = blue. Finding a minimal cycle-cutset is again NP-complete. Dechter
proposes instead to embed a fast arc-consistency algorithm on trees into the backtracking
scheme. This hybrid algorithm simply keeps track of the changing connectivity of the
variables during instantiation until the remaining uninstantiated variables form a tree. It
then calls the arc-consistency algorithm.

Locally consistent solutions will be represented by first order labellings. They define
spaces in which the solutions must be located:

Definition 2.10 (Problem space, Solution space) We call a CSP consisting of a set
of constraints and a set of variables a problem space. Its exact solution space is repre-
sented by a set globally consistent labellings. A locally consistent labelling approzimates the
solution space of the CSP. 3

Once locally consistent solution spaces of a problem have been identified, a single solution,
i.e. a consistent assignment of all variables, has to be found within the labelling. This
topic is addressed in the next section.

2.6 Search strategies for solving discrete CSPs

Two prominent branches exist in search: Lookahead strategies, which establish differ-
ent levels of local consistency during search in order to reduce the search space and
information-gathering strategies, which analyze failures made during search and learn from
them [Kumar, 1992], [Tsang, 1993]. After explaining the general search scheme, we will
discuss different search strategies such as forward checking or maintaining arc-consistency
in detail.

3Whenever we use solution space and do not specify its degree of consistency it is to be understood as
locally consistent.

22 Chapter 2. Definitions and Concepts

aaba aabc abca abcc

Figure 2.3: Search tree solving a small CSP by backtracking. The black nodes have been
pruned from the search space. Ezample taken from [Kondrak, 1994/

2.6.1 General search scheme

A search space can be represented as a tree, in which each node represents a particular
state of the search. Edges linking the nodes are transitions between two states. In general,
CSPs are solved by instantiating variables and testing partial instantiations against the
constraints. These tests are called consistency checks. A node in the search tree of a CSP
corresponds therefore to a partial instantiation of the variables and an edge between two
nodes represents the choice of a value for the next variable. The root node corresponds to
the empty tuple. At a given node, a next variable is selected for instantiation from a given
order of the variables (order X7, Xs, X3, X, in Figure 2.3) and a new node is created as
successor for each value in the domain of this variable. The variable that is instantiated
at some level is called the current variable, any variable that is not yet instantiated is a
future variable and variables already instantiated are called past variables. Starting from
the root node at level 0, each new level corresponds to the instantiation of a particular
variable and the tuples grow from size 0 to size n. If n is the number of variables in the
CSP, the nodes at level n are called leaf nodes. They represent full instantiations of the
variables in the CSP. If a node is reached where the tuple of values becomes inconsistent,
it is clear that no future choices will lead to a solution and the node can be pruned. When
such a pruning is applied, the leaf nodes represent consistent instantiations, i.e. solutions.
In Figure 2.3, node (aaa) can be pruned and its sub-branch neglected because it does not
satisfy the constraint between variables X; and X3.

The simplest search paradigm is generate-and-test (GT). In this method, the complete
set of leaf nodes in the search tree is systematically generated, corresponding to one of the
possible value combinations of all variables, and then tested to see if the values satisfies all
constraints. The size of the leaf node set is bounded by the size of the Cartesian product
of the variable domains, which is D", if D is the maximum of all domain sizes.

Efficiency of search can be enhanced with chronological backtracking (BT). Variables
are instantiated sequentially until sufficiently many variables are assigned a value in order
to verify a constraint. If a partial instantiation violates any of the constraints, the algo-
rithm backtracks to the most recently instantiated variable that has still values to choose
from. Backtracking filters in the sense that the instantiation of a new variable has to be

2.6. Search strategies for solving discrete CSPs 23

consistent with all previously assigned variables. The subspace of the Cartesian product
of the domains containing the tuple on which a constraint failed is therefore eliminated by
backtrack search. Therefore, node (aaaa) in the example cannot be part of a solution either.
The worst-case complexity remains exponential in the number of variables because exam-
ples having no solution can be constructed where inconsistency is only detected at one of
the leaf nodes. Furthermore, backtracking still suffers from thrashing [Mackworth, 1977a).
Thrashing occurs when inconsistencies are rediscovered throughout search. Single values,
for example, that cannot be part of a solution will be regenerated each time. Similarly,
inconsistencies of value pairs will be rediscovered. In the example, the inconsistency be-
tween X; = a and X3 = a is rediscovered during search. This is why local consistency
techniques are useful in order to remove inconsistencies before search.

2.6.2 Lookahead strategies

An intermediate scheme is to embed partial consistency techniques with respect to the
yet uninstantiated variables into a backtracking algorithm, i.e. to use lookahead strate-
gies [Haralick and Elliott, 1980], [McGregor, 1979]. At each node various degrees of consis-
tency can be performed before instantiating variables. The type of algorithm is determined
by the amount of consistency checking performed at a node. The more consistency check-
ing is done at each node of the search tree, the fewer nodes will remain in the tree but the
higher the cost of the overall processing. On the one extreme is GT and on the other is
maintaining arc-consistency (MAC) [Sabin and Freuder, 1994], [Bessiére and Régin, 1996,
which integrates arc-consistency into the backtracking scheme. The other algorithms, BT,
forward checking (FC) [Haralick and Elliott, 1980], directional arc-consistency lookahead
(DAC-L) and bi-directional arc-consistency lookahead (BDAC-L) [Tsang, 1998] are imple-
mentations of partial consistency techniques.

In FC, each time a new variable is instantiated, the domains of all variables not yet
instantiated and connected through a constraint to the current variable are made consistent
with the current value. If the label of one of the variables becomes empty, the algorithm
backtracks. DAC-L is similar to FC but maintains directional arc-consistency among the
not yet instantiated variables in reverse order. Directional arc-consistency is defined under
a total ordering < of the variables. It simply examines each constraint Cj; once such
that X; < X and removes any value from D; that does not have a compatible value in
D; in the reverse order of < [Tsang, 1993]. BDAC-L is similar to DAC-L but maintains
directional arc-consistency in both directions between the unlabeled variables. MAC starts
with arc-consistent domains and achieves full arc-consistency after each reduction.

A priori, arc-consistency is a generic concept that can be applied to any CSP under
the assumption that there exists a refine operator establishing arc-consistency between
pairs of variables. If such an operator exist for continuous domains, the various lookahead
algorithms can also be applied to numeric CSPs.

24 Chapter 2. Definitions and Concepts

root root

Figure 2.4: Search tree of the CSP in Figure 2.3 solved by a) FC and b) MAC.

2.6.3 Information-gathering strategies

Another key observation is that chronological backtracking repeatedly makes the same
failures without learning from them. In information-gathering strategies, the search algo-
rithm identifies the culprit for a failure in order to backtrack only to relevant decisions.
A culprit is a variable with a committed label with which the current variable conflicts.
These algorithms are part of the class of dependency directed backtracking algorithms.

Backjumping (BJ) [Gaschnig, 1979] only differs from BT when a variable can no longer
be consistently instantiated (dead end). At this point, BJ gathers information about the
failure by retaining the earliest culprit encountered for each value. From all culprits, one
for each value, BJ backtracks to the most recently assigned variable that constrains the
current one.

Graph-based backjumping (GBJ) [Dechter, 1990| does not analyze the failure for each
value of the current variable like BJ, but it uses the graph-based structure of the CSP. It
simply backtracks to the most recent variable constraining the current variable.

In conflict-directed backjumping (CBJ) [Prosser, 1993a] a conflict set is maintained for
each variable containing the past variables that failed consistency checks. When there
are no more values to be tried for a current variable, CBJ backtracks to the most recent
variable in the conflict set of the current variable. The conflict set of the current variable
is absorbed by the new variable’s conflict set. CBJ has the ability to perform multiple
backjumps across conflicts.

Backmarking (BM) improves backchecking (BC) [Gaschnig, 1977|, which reduces the
consistency checks by only pruning a variable domain constrained by earlier variables at the
moment it should be instantiated. FC, on the contrary, prunes the variable domains of not
yet instantiated variables as soon as possible. Backmarking avoids repeating compatibility
checks that have succeeded. It remembers for each variable the highest level it backtracked
to. When the current variable is instantiated anew, consistency checks have to be performed
only from the highest level to which it backtracked to the previously assigned variable.
These are the only variables whose label could have changed.

Hybrid algorithms [Prosser, 1993b| are algorithms that combine partial consistency
techniques with intelligent dependency directed backtracking methods, e.g. FC-BJ, FC-
CBJ etc.

2.6. Search strategies for solving discrete CSPs 25

Algorithms like GBJ and CBJ use the constraint graph to gain information about which
node to backtrack to. These techniques are independent of the variable type and can also
be applied to numeric CSPs. BJ, BM and their hybrids, however, work with culprits, e.g.
assigned variables that cause conflicts. Storing information about conflicting values is in
general costly in continuous domains because this requires an explicit representation of
each value or value set.

2.6.4 Variable and value orderings

Instead of considering the variables in random order when searching, heuristics may im-
prove backtrack search [Tsang, 1993]. Static variable ordering is established before search
begins and does not change during search. Dynamic variable ordering relies on character-
istics that change during search, it has therefore to be applied repeatedly during search.
Static variable orderings take advantage of the structure of the constraint graph. The
minimum width ordering minimizes the width of the constraint graph [Freuder, 1982b].
The mazimum degree heuristic orders the variables by decreasing number of neighbors.
Dynamic variable orderings try to maximize the possibility of detecting failures early, a
principle called first fail principle [Haralick and Elliott, 1980]. The idea is to label the vari-
able next that is the most constrained. Some simple measures for constrainedness are the
size of its domain or the number of variables connected to it. When the first fail principle
based on domain size is used together with lookahead algorithms, the ordering becomes dy-
namic, as domains change during the execution of these algorithms. A more sophisticated
measure is a combination of domain size and maximum degree heuristic, which has been
tested in different combinations in [Bessiére and Régin, 1996]. Again, variable orderings
do not depend on the type of variable domain and can as well be applied in numeric CSPs.

Value orderings can be used to determine which branches are explored first. The idea
here is to prefer values that succeed. Value ordering applies well to discrete variable
domains but not to continuous domains.

2.6.5 Comparing search algorithms

Before we discuss the different search algorithms and their advantages, we would like to
emphasize that, in general, it can be quite difficult to compare these algorithms. Theoret-
ically, the worst-case complexity remains exponential in the number of variables for all of
them. Analyzes are therefore often carried out on a more experimental basis in order to
predict the run-time behavior of these algorithms. Unfortunately, there is no unique mea-
sure of run-time behavior. Also, some authors generate all solutions whereas others only
measure the efficiency of obtaining one solution to the CSP. Furthermore, some of these
algorithms make extensive use of lookup tables whereas others do not use them. Some
measures are however recognized to have an impact on the efficiency of the algorithms,
such as the number of nodes visited in the search tree or the number of consistency checks
performed. In the subsequent discussion, we will only refer to comparisons among these
algorithms with respect to the number of nodes visited and the number of consistency
checks performed. If not mentioned otherwise, variables are ordered statically.

26 Chapter 2. Definitions and Concepts

N BT FC
/ GBJ / N
BJ - / GBJ
N\ 83 FC-CBJ
FC cBJ \
FC-CBJ cBJ
a) b)

Figure 2.5: The relationship between various lookahead and intelligent backtracking algo-
rithms. a) <c.: hierarchy with respect to the number of visited nodes and b) <y, : hierarchy
with respect to the number of consistency checks.

[Haralick and Elliott, 1980] compare various lookahead strategies and conclude on an
experimental basis that BM and BC basically generate the same search tree as BT, be-
cause they only concentrate on saving consistency checks. On top of that, they often
fail at the deepest level in the search tree. Lookahead algorithms will perform more
consistency checks but also detect incompatibilities earlier and therefore generate less
nodes. In general, an efficient implementation of FC outperforms the other algorithms.
On the other hand, [Prosser, 1993b| showed that there exist problems where BT per-
forms less consistency checks than FC. He concluded in his experimental study that the
hybrid FC-CBJ seems to perform best in most cases. Hybrids with BM can perform
worse than BM itself, because the advantages of backmarking may be lost when jumping
back. Orthogonally, [Sabin and Freuder, 1994] as well as [Bessiére and Régin, 1996] show
how MAC combined with a refined variable ordering heuristic outperforms FC-CBJ or
FC on hard and large instances of random CSPs. Removing values from labels during
tree search, however, can degrade intelligent backtracking in some cases [Prosser, 1993a],
[Sabin and Freuder, 1994]|. A more theoretical framework comparing different algorithm
has been established by [Kondrak and van Beek, 1995]. With the aid of two relations <.,
(uses no more consistency checks than) and <, (visits no more nodes than), different
algorithms are related as shown in Figure 2.5. The hierarchy in Figure b) reveals that FC
and BT cannot be compared for the number of consistency checks, as predicted by Prosser.

These experimental studies reveal that there is not a “best” strategy but that there is
a trade-off between applying consistency methods and different forms of intelligent back-
tracking. Most of these techniques have only been used to solve discrete binary CSPs. The
challenge of extending them to non-binary and numeric CSPs still remains.

2.7 Search strategies for solving continuous CSPs

While there has been a lot of research involved in solving discrete CSPs, numeric constraints
still pose a lot of difficulties. This is mainly due to the fact that, even if a variable domain
is bounded by a lower and an upper limit, there are infinitely many possible values the
variable can take on in its domain. An enumeration of the values for one variable not

2.7. Search strategies for solving continuous CSPs 27

to speak of the combination of values is computationally prohibitive. In this section, we
review known methods used for solving numeric systems with continuous constraints in
which the variables are given bounded domains; e.g. variable X; has domain D; = [a, b]
where a,b € R and a < b. This section is meant to set a comparative framework in
which we discuss issues relevant to our research. However, we do not attempt to give an
introduction into solving numeric systems.

The problem of solving nonlinear system has been attacked in several fields, namely,
optimization in linear and nonlinear programming, stochastic optimization, algebraic as
well as numerical analysis, interval arithmetic and constraint satisfaction. We review each
of these and discuss their relevance for identifying solution spaces as mentioned in the
introduction.

2.7.1 Value inference

Value inference is used when some variables in the constraint network are already assigned.
Values for the uninstantiated variables are then inferred by applying the constraints.

An example of inference method is given in [Serrano and Gossard, 1992]. The variables
are split into a set of known and unknown variables. Graph-based methods allow a directed
graph to be determined from the initial constraint graph. From the directed graph an
order can be derived, in which the variables have to be processed in order to infer values
for unassigned variables. This method also detects cycles in the graph and collapses the
associated variables and constraints into super-nodes that have to be solved by a specialized
method. The advantage of this method is that dependency information between variables
can be used to find cycles, to identify variables that will never be assigned or to detect
over-constrained systems. The disadvantage is that a solution in a cyclic graph can only
be found once all collapsed nodes have been solved.

2.7.2 Propagating degrees of freedom

This method identifies parts of the constraint graph that have enough degrees of freedom
so that values can be found that satisfy all their constraints. Regions like this and all the
constraints that apply to them are removed from the graph. Deletion of the constraints
may give another part enough degrees of freedom to be removed and so on. The part of the
graph that is left is satisfied by some method and value inference is applied to propagate the
values into the parts with a large degree of freedom, successively instantiating variables.
Sketchpad [Sutherland, 1963] used propagation of degrees of freedom and if this failed
resorted to relaxation methods (see Section 2.7.4 below).

2.7.3 Optimization techniques

Techniques for solving numeric systems developed in numerical analysis rely on global
optimization of a given objective function subject to constraints on the variables involved.
In general, optimization algorithms are iterative, starting from an initial solution and
enhancing it stepwise to find a local optimum. Under the assumption that the constraints

28 Chapter 2. Definitions and Concepts

and the objective function are convex, a local extremum found by such a method can
be proved to be the optimal one. This is the case in linear programming (LP), where
the function as well as the constraints are linear. The simplex algorithm [Danzig, 1965]
used together with Gaussian elimination is an example of a feasible point method. Given
an initial solution, it moves from one extreme point of the polyhedron defined by the
constraints to another along a sequence of feasible descend directions (the edges of the
polyhedron). For nonlinear systems, the direction of the optimum is derived from the
gradient on the objective function. As long as no further convexity condition is imposed on
the objective functions or the constraints, there is no guarantee for the result to be a global
optimum [Reiner Horst and Thoai, 1995], [Nash and Sofer, 1996]. Optimization problems
that are subject to constraints can be cast back into unconstrained ones by constructing an
objective function from the constraints (the Lagrangian). Penalty methods, for example,
add a penalty function (error function) to the objective function in order to minimize the
error and to move in direction of the local optimum. This penalty function either measures
the violation of a constraint or penalizes for reaching the boundary of a constraint (interior
point method) [Nash and Sofer, 1996]. Approximation methods also exist, as for example
the cutting plane method [Avriel, 1976|. The problem of these algorithms is that they are
not guaranteed to converge for any type of constraint system and that convergence may
be very slow. Furthermore, if the method converges, only one solution is found, which
depends on how the initial values have been chosen. This means that one cannot predict
which solution is found in an under-constrained problem. Most of these methods handle
equality systems well but are not adapted to inequalities.

Many packages available in constraint programming use the simplex algorithm to
solve the linear equations and delay the nonlinear part of the problem in the hope that
it will simplify later. Example of such systems are ProloglIl [Colmerauer, 1993] and
CLP(R) [Heintze et al., 1987]. Some methods restricted to quadratic equations propose
a piecewise linear approximation of the initially nonlinear functions and solve then the
linear system, as for example in QUAD-CLP(R) [Pesant and Boyer, 1994].

2.7.4 Relaxation and perturbation methods

Both methods are similar in that all variables are assigned a specific value at the beginning.
Some values are perturbed and the constraint solver has to adjust variable values such that
the constraints are satisfied.

Relaxation algorithms relate to more traditional techniques employed in numerical
analysis in order to solve nonlinear systems. In relaxation methods, the variables are
instantiated to initially guessed values that do not necessarily satisfy the constraints. The
error is measured by some heuristic and the guesses are adjusted accordingly. This is
repeated until a solution is found. Typical penalty methods use gradient directions of the
error function in order to find new values that minimize the error. The difference between
penalty methods and relaxation methods lies in the way the error function is formulated.
Relaxation methods use separate penalty terms for each constraint thus measuring the
error for each constraint separately. This error evaluation can be executed in isolation

2.7. Search strategies for solving continuous CSPs 29

for each constraint and lends itself for a parallelized implementation. It is also easier to
implement the treatment of numeric inequalities in such an algorithm. In applications like
Sketchpad [Sutherland, 1963] and Juno [Nelson, 1985] relaxation methods were applied to
solve coupled sets of constraints.

Perturbation methods have been developed especially in the context of interactive
applications. At the beginning, variables have associated specific that satisfy the con-
straints. The value of one or several variables is perturbed by some outside influence,
for example a user request, and the constraint solver has to adjust the values such that
the constraints are again satisfied. One way to resatisfy the constraints is to propagate
changes throughout the network using the constraints in order to recompute a value from
given input values. Such a perturbation model is the basis of algorithms like DeltaBlue
and SkyBlue [Sannella et al., 1993|, [Sannella, 1993]. They necessite a planning cycle
to determine which value is recomputed from which input values in a given constraint
thus establishing a directed constraint graph. Value conflicts on a single variable are
solved by leaving some constraints unsatisfied. This method is incremental. However,
as [Trombettoni and Neveu, 1997] have shown, SkyBlue is exponential in contrast to
DeltaBlue, which is polynomial. A further disadvantage is that cycles in the constraint
graph are not treated and thus multiple constraints over the same variables are either not
allowed or not solved.

2.7.5 Stochastic methods

Stochastic methods apply to global optimization problems and have been introduced in
order to overcome the difficulty of getting stuck in a local optimum. These methods have
a random aspect that reduces the chance of converging to a local optimum. Search is no
longer limited to the search space around the starting point but allows for large search
spaces to be traversed. Examples of stochastic methods are genetic algorithms (GA), tabu
search (TS) and simulated annealing (SA).

GAs are based on the model of natural reproduction. In nature, inherited character-
istics are encoded in the genes of every living being and those entities with the “best”
genes survive to reproduce. The variable values are encoded in strings representing the
chromosomes and a fitness function (the objective function) is evaluated for each string
only selecting part of the population of chromosomes. The next population is created by
applying crossover and mutation to the chromosomes and again the fitness function selects
only a part of the mutated population. This process of selection and mutation is repeated
until a good solution is found [Goldberg, 1989].

TS |Glover, 1989a|, [Glover, 1989b] is a heuristic search method that tries to overcome
problems in conventional hill-climbing procedures by 1) adding a list of tabu-moves and
2) providing an aspiration function. Tabu moves specify moves that will not enhance
the current solution. They provide a kind of short-term memory in order to prevent the
procedure of falling back into a local optimum already visited. The aspiration function,
on the contrary, provides some strategic forgetting in that tabu moves may become legal
again but still retaining the ability to prevent from falling back into local optima.

30 Chapter 2. Definitions and Concepts

SA [Metropolis et al., 1953] is an adaptive search technique based on the process of
metal annealing. A temperature parameter, which decreases during search, is added to the
objective function. When it is sufficiently low, the algorithm gets stuck in a local optimum
which is then supposed to be the global one.

According to [Thornton, 1993], who compared genetic algorithms with simulated an-
nealing for solving problems in embodiment design, the critical aspect of heuristic search
methods is tuning these heuristic parameters (energy for SA, fitness function and repro-
duction parameters for GA) correctly. Furthermore, this tuning may change for different
numerical systems. The convergence might be as slow as for the traditional optimization
methods. For SA it has been proven, that the temperature should decrease in very small
steps to guarantee optimality, which implies a slow convergence of the algorithm. Accord-
ing to [Thornton, 1993] the SA algorithm performed better than the GA on embodiment
design problems because the SA algorithm works directly on the original constraint system
and does not need an encoding mechanism.

2.7.6 Algebraic methods

Algebraic systems are able to solve algebraic constraints at a symbolic level.

An algebraic method for solving polynomial systems over complex numbers has been
developed by [Buchberger, 1965]|, [Buchberger, 1985|. This method reduces a given poly-
nomial system algebraically to a standard form called Groebner bases, which are more
easily solvable. One disadvantage of this method is that it is more appropriate for proving
that a polynomial system has no solution than for solving it.

For proving quantified existential theorems of first-order theory over reals,
Tarski [Hollman and Langemyr, 1993] has developed the so-called cylindrical algebraic
decomposition CAD. In this method, polynomials are projected recursively in order to
construct sign-invariant regions, called cells. This cylindrical decomposition makes it
possible to compute the truth-value for a cell and then to determine the truth-value
for the overall formula. The problem is that the algorithm’s complexity is doubly ex-
ponential in the number of variables [Collins, 1975]. RISC-CLP(Real) [Hong, 1993] is a
CLP-prototype using a combination of Groebner bases and CAD to solve non-linear equa-
tions. CAL [Sakai and Aiba, 1989] is another system that uses Groebner bases to solve
polynomial systems.

2.7.7 Constraint logic programming (CLP)

The CLP framework can be seen as a generalization of the logic programming scheme.
Most of the results from logic programming are easily adaptable to CLP by replacing
the Herbrand universe with a constraint domain and unification by constraint satisfaction
[Jaffar and Maher, 1994]. In CLP languages, the body of clauses may contain one or several
constraints that have to be satisfied simultaneously. The underlying Prolog engine sequen-
tially chooses clauses to satisfy and the constraints in their body are added to a so-called
constraint store. Finding a solution to the new problem with the body of the current clause
parsed, consists of incrementally satisfying the new constraint store [Cohen, 1990]. Most

2.7. Search strategies for solving continuous CSPs 31

of the CLP languages are dedicated to solving boolean and discrete constraints CLP(FD).
Others solve linear numeric constraints [Heintze et al., 1987] CLP(R) and CLP(intervals)
uses interval arithmetic to solve general numeric systems (see 2.7.8). The advantage of
CLP systems is that they are based on an incremental constraint satisfaction algorithm
and that the Prolog machine allows them to compute all solutions, their disadvantage is
that they are restricted to a specific variable domain.

2.7.8 Interval analysis

Interval methods have originally been developed in order to render the resolution pro-
cess more stable by evaluating the numerical errors committed during computation with
floating-point numbers. When applying interval methods in a branch and bound approach
to optimization problems, a method for searching a continuous space is created. The idea
is to subdivide (branch) the constraint region into a finite number of subregions that have
then to be tested for the optimum (bound). In general, search for individual solutions in
numeric domains relies on the bisection of the variable labels in a round-robin fashion and
is exponential in the number of variables. An interval of a variable label is split into two
parts that are recursively searched. This splitting is applied to all variable labels. A search
node consists thus simply of a set of intervals, one for each variable. At each search node,
a refine operator can be applied to prune the intervals additionally. In this context, the
pruning power due to an effective refine operator reduces the number of interval splittings
necessary during search for a solution. The optimization function and the constraints are
mapped into interval functions and interval arithmetics is applied to evaluate the functions
on the interval sets.

CLP(BNR) is a system using pure interval analysis. It may happen that a given initial
interval is not narrowed down at all [Older and Vellino, 1993|.

Therefore, [Van Hentenryck et al., 1995] has developed a more powerful prototype
called Newton and its successor, Numerica, using interval analysis coupled with consistency
techniques. The system solves sets of non-linear polynomial equations or optimizes an
objective function subject to nonlinear constraints. The system consists of a branch and
bound algorithm applying a refine operator called box-consistency. Box-consistency is
an approximation of arc-consistency capable of narrowing down the interval values of a
variable. This operator uses the projection of a constraint onto one axis, transforms this
projection into an interval function and determines the outermost solutions to this function
with an interval Newton method.

CIAL [Chiu and Lee, 1994b|, [Chiu and Lee, 1994a] enhances interval narrowing tech-
niques for non-linear systems with capabilities of linear interval equality solvers. The
linear solver is based on generalized interval analysis and has to be preconditioned by a
Gauss-Seidel method.

[Hyvonen, 1992] uses an interval analysis approach called tolerance propagation. For
each constraint, solution functions are defined to compute each variable value from the rest
of the variables. These functions are extended to interval functions so that the variable
values can be directly computed as intervals. The idea of his algorithm is to refine the

32 Chapter 2. Definitions and Concepts

solution sets in a top-down manner thus creating a lattice of solution sets. His global
search strategy includes an analysis of the search space by breaking down the space into
monotone, well-defined continuous parts and then locally applying interval propagation.
Cycles in a constraint system are isolated and solved by a conventional solver. The rest of
the network can then be made globally consistent by applying local consistency techniques
according to [Dechter, 1990].

The advantage of using interval analysis is that there are nice completeness (all solutions
are found) and convergence properties derived from interval analysis and that there is also
the possibility of guaranteeing the existence of solutions in the returned interval results.
Hentenryck and Hyvoenen have implemented a search algorithm that finds one or all
solutions of a constraint system. Most of the examples treated in [Benhamou et al., 1994],
[Van Hentenryck et al., 1995], [Van Hentenryck, 1997] as well as in [Hyvonen, 1992] are
fully-constrained systems with n constraints and n variables. It is however not obvious
how this method performs on under-constrained problems. Since box-consistency has less
pruning power than arc-consistency, it is not clear how much of the intervals is pruned
away by the narrowing operator and how much time of the overall resolution time is spent
by splitting intervals.

2.7.9 Consistency techniques

Only in recent years, interest has turned to consistency techniques for constraints defined
on continuous domains.

[Davis E., 1987] was the first to report a series of negative results when applying the
Waltz algorithm to continuous constraint problems, including the fact that the algorithm
does not guarantee a locally consistent labelling and often fails to terminate. Davis rep-
resents variable labels as single closed intervals and applies the refine operator for a given
constraint and variable by replacing the interval boundaries of all other variables into the
constraint thus computing new interval bounds for the given variable. Replacing the in-
terval boundaries into the constraint corresponds to approximating by a box the volume
defined in space by the constraint and the propagated interval. The variable value corre-
sponds to the projection of this box onto the respective axis. [Faltings, 1994| has shown
that many of his negative results are due only to an overly straightforward formulation
of the refine operator. He improves the propagation rule for binary constraints by prop-
agating intervals through sets of constraints defined on the same pair of variables, called
total constraints, and by considering not only intersections of interval bounds with the
constraint but also local extrema of the region restricted through the total constraint. The
refine operator proposed assures arc-consistency over binary constraints. If the constraint
system has to form of a tree, it can thus be made globally consistent by applying Faltings’
operator.

[Lhomme, 1993] proposes applying arc-consistency and, more generally, k-consistency
only to the bounds of intervals (arc-B-consistency and k-B-consistency respectively). If a
constrained region splits an interval into several subintervals, the result is a single convex
interval encompassing the subintervals. Thus some values in the resulting interval may be

2.7. Search strategies for solving continuous CSPs 33

inconsistent. In his algorithm, given constraints are first transformed into a set of basic
constraints for which it is possible to compute a minimum and a maximum of the pro-
jection of the constraint onto each axis. Then local consistency on bounds is enforced.
To guarantee termination and to evaluate the complexity of the algorithms, Lhomme in-
troduces the width w a parameter specifying the authorized imprecision at the bounds
that may occur during computations in the real domain. The worst time complexity of
his arc-B-consistency algorithm is O(D % m) with m the number of constraints and D the
domain size taking into account w.

[Sam-Haroud, 1995], [Sam-Haroud and Faltings, 1996] defines convexity conditions for
tractable global consistency in continuous domains. She gives an algorithm for global
consistency that relies on a discretized representation of the constraint regions as 2-k-
trees. The original constraint system first has to be transformed in a system in which
all constraints are ternary. Each constraint is then discretized and represented as an
octree. This representation allows her to combine regions of simultaneous constraints,
e.g. defined on the same variables, using logical instead of numeric operators. If the
constraint problem satisfies the convexity conditions, (3,2)-relational consistency, which
can be assured in polynomial time, is sufficient for establishing global consistency. (3.2)-
relational consistency guarantees that each triplet of constraints having two variables in
common has a non-null intersection. In the general case, a constraint problem can be
decomposed into subproblems verifying the convexity conditions. The problem here is that
the discretized representation of the constraints is space-consuming and the polynomial
complexity of the algorithm in O(N®) where N is the number of variables is large.

34

Chapter 2. Definitions and Concepts

Chapter 3

Local consistency techniques

“How often have I said to you that when you have eliminated the impossible, whatever

remains, however improbable, must be the truth ?”

Sherlock Holmes in The Sign of Four, The Strand Magazine (1890)

In this chapter, we discuss local consistency techniques that either approximate or compute
exactly 2-consistency for discrete and continuous constraints. A new definition of local
consistency is given for both types of constraints, which results in tighter labellings than
other known local consistency techniques. The rationale behind this new definition is that
search can be greatly enhanced by local consistency techniques with a good pruning power.
The author would like to contribute to the present and past efforts in this domain by giving
some insight into the difficulties of achieving local consistency especially in the continuous
domain. The following topics are discussed:

e Fix-point algorithms for local consistency and their integration into a framework for
mixed CSPs.

e Local consistency for binary continuous constraints as an introduction to the sub-
sequent chapter on ternary continuous constraints. A prototype implementation of
local consistency for binary continuous constraints is also discussed.

e Local consistency for discrete constraints.

e Local consistency for mixed constraints.

3.1 Fix-point algorithms for local consistency

Local propagation algorithms compute a concise representation of potential solutions for
a given constraint system by locally propagating the effects of constraints. Algorithms for
local consistency remove values from the domain of a variable for which no compatible
value can be found for another variable. Such reduced domains are represented by labels.
For discrete variables with a finite domain, the labels can be represented explicitly by the

35

36 Chapter 3. Local consistency techniques

procedure propagate function refine(X,Y,Cxy)
begin begin
Q +— {(Xi, X;,Cx;x;)|i # 3} L + all values v of Ly such that
while Q #0 do there exists a value w in Lx and
remove element (X;, X;, Cx,x;) from Q Cxvy is satisfied by v, w
Lypew < Lx; N refine(X;, X;,Cx; x;) return L
if Lyew =0 then end
return inconsistent !
fi
if Lx; # Lpew then
LXJ- ~— Lnew
Q «— QU {(Xjan;CXij)lk 76 i,k # .7}
fi
od
end

Figure 3.1: General algorithm for ensuring consistency over pairs of variables.

set of discrete values whereas the label of a continuous variable consists of a set of intervals.
Polynomial-time algorithms exist for computing locally consistent labels for discrete CSPs,
for example AC-3 described in [Mackworth and Freuder, 1985]. The AC-3 algorithm, a
binary version of the original algorithm of [Waltz, 1975|, is shown in Figure 3.1 and will be
called propagate. It applies iteratively a refine operator to revise the label of a variable Y’
such that it only contains values compatible with the label of variable X and the constraint
Cxy - If the label for a variable X; changes, all variable pairs (X;, X;) that depend on the
changed variable are added to the queue for further propagation. The refinement step is
thus iterated over every ordered variable pair until it results in no further change for the
labels.

The integration of continuous and discrete constraints into the same framework achiev-
ing local consistency has been studied especially in the field of constraint logic program-
ming (CLP). CLP(X) languages are defined over a given constraint domain X with its
logic theory and its specific language, e.g. CLP(R) stands for a CLP language over the
domain of reals. The restriction of CLP to specific variable domains has been found a
serious limitation when to solve real-world problems. Hence, the idea has emerged in this
field to combine different constraint solvers within one constraint solving framework, which
should enable the resolution of so-called mized constraint problems. This “mixing” happens
between:

e different types of variable domains such as floating-point intervals and integers rep-
resenting symbolic domains

e different constraint types such as continuous and discrete constraints.

Generic approaches have been identified to solve mixed constraint problems:

3.1. Fix-point algorithms for local consistency 37

1. A generic constraint management module: different constraint solvers cooperate in
a larger constraint management module [Tinelli and Harandi, 1996].

2. operator integration: refine operators defined for each constraint type are directly
integrated into a general fixed point algorithm [Benhamou, 1996].

If a CSP counsists of different types of constraints that share no variables, each constraint
set consisting of constraints of the same type can be solved independently. In that case,
the different parts represent two disconnected subgraphs in the according constraint graph.
A problem arises when the same variable appears in constraints of different type. Such
constraints are often present in design problems:

Vwolume = V.bottomArea * V.height
C(M,V.wolume) := {(reactor [0,100])(mizer [0,1000])(storagetank [0,1000])}

The vessel volume in the mixer example 2.3 is involved in an equality, which specifies its
value by the vessel height and the bottom area and also in a discrete constraint defining
how the type of mixer influences the vessel volume and vice versa. In the equality, the
label of the vessel volume is a floating-point interval whereas it can only take on interval
values from a fixed set of integer intervals in the discrete constraint.

For an approach based on a constraint management module, the constraints are rewrit-
ten in a separate form and equalities ensure the communication between two solvers, one
for the continuous and the other for the discrete constraints. For example,

Solverl : V.wolume' = V.bottomArea x V.height
Solver2 : C (M, V.wolume)
Communication : V.volume = V.volume'

This approach is problematic as soon as constraints share variables over several solvers,
because it results in finding a fixed point for each solver independently plus a fixed point
over the set of solvers. Furthermore, if the mixed CSP contains other continuous constraints
not involving X and Y, these may be rechecked by a propagate algorithm at each call.!
Also, the initial data structures like the queue etc. have to be rebuilt each time.

A neat framework has been proposed by [Benhamou, 1996]: He defines a solver as
system that associates specific refine operators to each constraint type. Additionally, the
refine operators compute values over an approximate domain.

Definition 3.1 (Approximate domain, [Benhamou, 1996]) An approzimate do-
main A over a domain D is a subset of P(D), with P the power set, closed under
(eventually infinite) intersection and such that D € A

!This disadvantage has been removed in optimal consistency algorithms like AC-6 [Bessiére, 1994] over
discrete constraints. The author knows of no similar algorithm based on support propagation for continuous
propagation algorithms.

38 Chapter 3. Local consistency techniques

The idea is that the result of a refine operator is additionally approximated if necessary
in order to comply with different variable domain types. The definition of approximate
domain is important if different operators use different domain representations. To quote
Benhamou: “If a variable is fixed by the Simplex to a value which is not representable
in the floating point representation used, the processing will consist in approximating the
infinite precision rational with a floating point interval, apply the propagation algorithm
and then intersect back the floating point interval representing the set of possible values
for this variable with the initial rational number... “.

If we apply a direct integration of refine operators, a single queue containing different
constraint types with their refine-operators associated is created in the fix-point-algorithm
propagate. The refinement step in line 4 of Figure 3.1 applies the operator according to
the constraint type. A change in the label of a shared variable has the effect of adding
new elements to the queue. In the first approach, such a change caused within one solver
has the effect of adding all constraints over this variable within the second solver. In the
second approach, the queue consists of different constraint types and some constraints,
which should be added, are already in the queue. Before and after a call to the dedicated
refine operator, a transformation step may be necessary, which interfaces the results of the
operator taking into account the approximation of domains.

In the light of these remarks, we consider the approach of integrating refine operators
for discrete and continuous constraints into the propagate-algorithm and discuss in the
following sections refine operators for discrete and mixed constraints as well as the necessary
transformation functions between variable domains.

3.2 Local consistency for binary numeric constraints

In the following sections, the general definition of a CSP given in section 2.4 is restricted
to variables with continuous domains and numeric constraints. We consider numeric CSPs
defined on continuous variables, as follows:

Definition 3.2 (Numeric CSP) A numeric CSP is given by

e a set of variables {X;}, i = 1,...,n with labels L; associated each having its domain
Di m R

e g set of continuous constraints Cx on a set of variables X. FEach constraint C is buslt
out of an expression EC and relation () = {>,<,=}. We normalize the syntaz by
allowing only inequalities of the form E€(X) > 0 with X a set of variables from {X;}.
An equality E©(X) = 0 can be modeled as a conjunction of inequalities E¢(X) > 0
AND E®(X) < 0. Unary and binary constraints are defined in the same manner

with one respectively two variables.

A solution to the numeric CSP is a set of values {X; = zij} such that z;; € L; that satisfies
all constraints.

In the following, X is restricted to two variables. A solution satisfies the conjunction of the
constraints in the numeric CSP. Geometrically, a constraint Cxy : E(X,Y) > 0 defined on

3.2. Local consistency for binary numeric constraints 39

two variables X and Y with initial labels L x and Ly can be represented in Euclidean space
R? defined by the axes X and Y. The feasible region defined by the inequality represents
an arbitrary shape in this space. The conjunction of numeric constraints defines a feasible
region in R™ (where n is the number of variables) in which the solution must be located.

3.2.1 Computing in continuous domains

Nowadays, computers can only store and manipulate a finite amount of information. Solv-
ing nonlinear problems, which appear in many fields such as chemistry and structural
engineering, however, may produce real-valued solutions. The computer is only able to
represent a finite amount of numbers on the real axis called floating point numbers. Since
any real solution is approximated by the computer, algorithms over the real domain im-
plemented on the computer are bound to make errors and also to propagate these errors
due to finite precision arithmetic.

An interesting example simulating the effects of rounding errors is the Wilkinson prob-
lem reported in [Van Hentenryck, 1997] that consists of finding all solutions for X to the

equation
20

[[x+d+px?=0

=1
in the interval [—20.6, —9.6] with a factor p quantifying a rounding error. When p = 0, the
equation has 11 solutions X = —20,—19,...,—10. When p = 2723 the solutions within
the feasible interval are removed. The value of p could typically be a numerical error that
drastically changes the solution set of the function.

Computational methods dealing with real numbers should therefore know the proximity
of the computed solution to the real solution. This topic has been attacked by interval
arithmetic. The key idea in interval arithmetic is the approximation of real numbers
by intervals in order to quantify the errors introduced by the finite precision arithmetic
(JAlefeld and Herzberger, 1983|, [Moore, 1966]). Let IF be the set of floating-point numbers.
A real value 7 € R should be enclosed into the interval bounded by r and r~ where

*,r~ € T are the two floating point values nearest to r, e.g. r € [r~,r"]. The results of

r
arithmetic operations executed on the computer are “outward-rounded” in order to preserve
the correctness of the computations.

In our thesis, we have not focused on these concerns of how to approximate real-numbers
on a computer and the results that we present are floating point values as computed with
the prototype implementation. For any attempt at implementing our algorithms, it is
however inevitable to use interval arithmetic software in order to guarantee the precision
of the results. This does not affect the general correctness of our algorithms as proved in
this thesis but points out the difficulties encountered when implementing any algorithm
computing with real numbers on a machine.

The algorithms we developed for local consistency in continuous domains make use
of some local properties of the constraint curves and surfaces like local extrema. Based
on the assumption that these local properties can be determined, a theory of how local
consistency can be computed is presented and its correctness is proved. Nevertheless, a

40 Chapter 3. Local consistency techniques

short description of how the required local properties might be determined is given at
the end of the chapter without claiming to be complete. It would be nice to indicate a
very general class of constraints for which these local properties can always be determined
correctly. Establishing such a characterization would require a more profound investigation
in the topics of functional and topological analysis, which is beyond the scope of this thesis.

3.2.2 Existing refine operators

Few algorithms computing local consistency in the continuous domain exist. All of them
result in some crude approximation of the projection of a constraint region onto the axes.
It is symptomatic in this field to find very different approximations and it is often difficult
to compare them. An explanation for this variety may be that the underlying problems
and difficulties have not yet been fully understood. The reason why some researchers are
interested in local consistency for continuous constraints is that any search in continuous
domains consists of expensive interval splitting and that a search procedure interleaved with
efficient local consistency techniques reduces the number of splittings. In the following, we
point out the characteristics of existing methods:

e Waltz algorithm [Davis E., 1987]
e 2-B-consistency [Lhomme, 1993]
e box-consistency [Benhamou et al., 1994], [Van Hentenryck et al., 1995]

simple-propagate |Faltings, 1994]

tolerance propagation [Hyvonen, 1992]

with respect to soundness, completeness, as well as termination criteria. Soundness is un-
derstood in the context of 2-consistency; e.g. soundness examines if the resulting labels
still contain values for which no value for a second variable can be found. Completeness
of local consistency is very important when a search algorithm is proposed that finds all
solutions to a given numeric CSP. It would not be acceptable to use a local consistency
propagation step that loses solutions during search. It would also be interesting to com-
pare the tradeoff between efficiency and the pruning obtained by the different operators.
However, this aspect is hard to measure because the algorithms proposed do not apply
to the same type of examples nor are their implementations comparable. In this section,
we would merely like to understand how these algorithms determine feasible constraint
regions.

To make the presentation easy, binary numeric constraints are used in the examples and
we concentrate on one propagation step executed by refine. The underlying idea of refine
is to approximate the projection of the feasible region defined by the constraints onto a
given axis in order to determine the range of feasible values for this axis. In Figure 3.2
a) for example, the feasible region that lies within the label of X, denoted by Ly, results
in a convex interval for the label of Y when projected onto the Y axis. To compute this
projection, projection function are in general derived, which resolve a constraint expression
for each variable. From Cxy : E(X,Y) < 0 result the two projection functions X = F;(Y)

3.2.

Local consistency for binary numeric constraints 41

Figure 3.2: a) The projection onto the Y azis of the constraint region can be computed from

the intersection of Lx with the constraint. b) If the projections are computed individually

for each constraint, intersections between constraints are neglected and the resulting label

for'Y is locally unsound. c) like b) with the effect that inconsistency is not detected by an

individual propagation of the constraints. Taken from [Faltings, 1994/

and Y = F5(X). Some algorithms approximate this projection, i.e. they try to find an

enclosure of the projection.

1. Davis’ propagation rule: The labels resulting from his algorithm are always

convex intervals. Propagating the label Lx = {[1,4]} through a constraint like
Y = X2 results into Lx = {[—2,2]} in a convex representation instead of Lx =
{[—2,-1],[1,2]}. Unsound values between sound ones are thus preserved. The algo-
rithm uses the projection functions to compute the range of feasible values for each
variable and each constraint independently. Depending on the topology of the con-
straint region and the interval labels to propagate, this approach applied naively does
not always preserve completeness. In example a) in Figure 3.3, such an algorithm is
not able to conclude if there exists a region within the propagated interval or not, b)
shows an incomplete label Ly and c) a complete one. Davis also points out cases of
non-termination: Let C; be Y = 2% X and C2: Y = X and Lx = Ly = {[0,100]}.
From Ci, Ly = {[0,50]} is deduced and from Cy, Lx = {[0,50]} is deduced. Then,
again from Ci, Ly = {[0,25]} etc. The correct result X =Y = 0 is only attained
asymptotically.

Tolerance propagation: The algorithm computes labels that are sets of intervals.
Each constraint is propagated individually and the results for each variable of the
constraint are computed by the natural interval extension of the projection functions
(Appendix C). To preserve completeness, Hyvonen proposes to decompose the initial
interval labels such that the projection functions are monotonic and continuous over
the decomposed intervals. Such a monotonicity analysis is conducted on the first
partial derivatives of each function (Appendix C). The disadvantage of his method
is that the number of subintervals to be considered may grow in a combinatorial
manner.

42

Chapter 3. Local consistency techniques

3. 2-B-consistency: Another way to guarantee a complete propagation step is to

implement a subset of all possible functions, called basic functions, for which the
minimum and maximum value of the projection can be computed directly. A given,
arbitrary constraint set is decomposed into these basic functions. Lhomme proposes
an algorithm called B-consistency for bound-consistency, which uses basic functions
to achieve 2-consistency only for the bounds of intervals. Thus, the resulting labels
are always convex intervals. The advantage of his approach is that the computations
are fast because they can be hard-coded. A problem is that a the locally consistent
solution space computed from basic functions may loose in accuracy with respect to
an implementation that considers general constraints directly. To guarantee termi-
nation, Lhomme parameterizes 2-B-consistency by an adjustable precision factor on
the results.

. Box-consistency: The idea of box-consistency is to approximate 2-consistency guar-

anteeing completeness and robustness of the results. Box-consistency is achieved by
replacing all variables but one by its interval domain and by applying one of the
narrowing operators well-known in interval analysis? in order to determine a tight
approximation of the projection of an individual constraint onto the given axis. The
advantage of this approach is that the constraints are considered directly without de-
composition into basic constraints and that results from interval analysis also apply.
It is for example possible to guarantee the existence of a solution in the result-
ing intervals or to do some optimization. Furthermore, interval analysis takes into
consideration propagation errors. However, it is a well-known result from interval
analysis, that the operators used in interval analysis overestimate the projection if
a constraint contains the same variable several times as is the case of X in a poly-
nomial like Y = 1 — 5X + X3/3 (Figure 3.4). This can be explained by the fact
that the dependency between both occurrences of X is lost as soon as it is replaced
by an interval. A precision factor can be used in this algorithm to guarantee fast
termination.

. Simple-propagate: Faltings operator is complete and locally sound because it uses

topological arguments to ensure the consistency condition defined over pairs of vari-
ables; i.e. it implements exactly the refine step. Faltings has proved, that in order
to achieve 2-consistency also intersections between constraints defined in the same
two-dimensional space (defined over the same pair of variables) have to be consid-
ered. Considering only one constraints at each propagation step leads, in general,
to looser labellings, which include unsound values or even misses inconsistencies as
shown in Figure 3.2. The bounds of locally consistent intervals for a label thus origi-
nate either from local extrema of constraint curves, intersections between constraints
or intersections between constraint curves and interval bounds. The determination

2For more complex functions, interval analysis proposes narrowing operators that enclose the projection;

i.e. their result is complete but very often not sound, like natural interval extension or Taylor interval

extension. The goal of these different extensions is to approximate the projection of the feasible constraint

region onto an axis as accurately as possible.

3.2. Local consistency for binary numeric constraints 43

N)
-

| |

[|

-

|1 | |

[||

@

Lx Lx Lx

a) b) c)

Figure 3.3: A refine operator based on the intersection of interval bounds of Lx with the
constraint boundary may not be able to determine if a locally consistent label exists for Y
as shown in a), or find an incomplete label b) or result in a complete and sound label as

shown in c).

of local extrema on constraint curves corresponds to the monotonicity analysis of
other approaches because these extrema account for a change in the monotonicity
of a function defining the projection of a constraints onto an axis. Furthermore,
Faltings eliminates one cause of cycling that occurs inbetween constraints defined on
the same pair of variables by considering them jointly in a single propagation step.
However, cycling involving several constraints defined over different two-dimensional
spaces cannot be prevented and is in fact a well-known phenomenon occurring in
algorithms operating locally like refine.

In many cases, the refine operators presented in literature result in too loose labellings,
i.e. they include unsound values. A first step in the direction of a locally sound operator has
been made by Faltings’ operator, which takes into account the monotonicity of constraints
and considers constraints that are defined over the same pair of variables simultaneously.
This refine operator is presented in detail in the subsequent sections.

3.2.3 A refine operator for binary numeric constraints

In this section, we recapitulate results of [Faltings, 1994] who proposes a new refine oper-
ator for binary numeric constraints. In the following, references to this paper are omitted.
His operator computes tighter labellings than the others presented in the previous section
because it takes into account all constraints defined over the same pair of variables. In this
section, we present this method, describe an implementation showing the feasibility of this
approach and to lie the ground for an extension to ternary constraints.

In general, a locally consistent labelling has to be represented as first order labelling,
i.e. a set of intervals. Differently from Davis, Faltings therefore defines:

Definition 3.3 (Label) The label L; of a wvariable X; is a set of disjoint intervals
{I1,Io,...,Ix}. An interval Iy is an ordered set of real values rmin,Tmez € R written

as ['rmin, 'rmaa:]

44 Chapter 3. Local consistency techniques

-8.292 |

Figure 3.4: An interval extension based on the first-order Taylor form taken around the
center of Ix for the equation Y = 1 — 5X + X3/3 over the interval Ix = [2,3]. The
projection of the shaded region onto the Y -axis defines the interval value for the extension,
which is [—4.291,—8.292]. The consistent values for Y are also shown. Higher order Taylor
forms result in still tighter approrimations. Courtesy C. Bliek, AI-Lab, EPF.

We consider algorithms for computing locally consistent labellings according to the follow-
ing definition:

Definition 3.4 (Local consistency for binary constraints) A label Lx of a variable
X is locally consistent with the label Ly of variable Y if and only if:

(V:L‘o (S Ix,IX S Lx) (Hyo S Iy,Iy S Ly) [VC;(Y : Ei(xo,yo) > 0]

Labels are assumed to be finite but can contain arbitrarily large intervals. A labelling is
called locally consistent if the labels of all ordered pairs of variables are locally consistent.
A labelling is complete if it contains all solutions to the constraint satisfaction problem. A
propagate-algorithm is complete if it computes a complete labelling and locally sound if it
computes a locally consistent labelling.

Note that this definition is an adaptation of arc-consistency given in section 2.5 to contin-
uous domains, in the sense that all constraints defined on a pair of variables X,Y have to
be satisfied by a value for Y given a value for X. Furthermore, we only consider general
algorithms for local consistency without any attempt to achieve global consistency as pro-
posed for example in [Hyvonen, 1992] or [Lhomme, 1993]. The necessity of considering all
constraints defined on the same pair of variables simultaneously leads to the definition of
a total constraint.

Definition 3.5 (Total constraint) A total constraint is a set of bounded feasible regions
Cty(z,y) = {Q1,...,Qk} containing exactly those combinations of values (z,y) for X and
Y that are consistent with all constraints Cxy (z,y).

A single region is a point set which is always connected in the sense that it is formed from
a set of points such that every point can be connected by a path lying within the set to

3.2. Local consistency for binary numeric constraints 45

function refine(X,Y,Cxy)
begin
Iy « {}
for all Ix € Lx do
Iy « Iy U simple-propagate(Ix,Cxy)
od
IU + union of all intervals in Iy where overlapping intervals
are merged into single convex ones
return IU
end

Figure 3.5: The operator refine for numeric CSPs. It applies a propagation rule simple-
propagate to each interval of a label and merges the resulting intervals.

each other point and which has a boundary B(R) (Appendix B). When constraints define
a region, the boundary of this region is the set of points that verifies all constraints and
at least one constraint as equality. The regions @); in Figure 3.6 form the feasible regions
defined by the conjunction of the constraints.

3.2.3.1 An improved propagation rule for a single interval

This section concentrates on a rule simple-propagate propagating a single interval
through a total constraint. This rule is repeatedly applied to all intervals of the label
as shown in algorithm 3.5 in order to compute the new arc-consistent label. It computes
an arc-consistent label for Y (with respect to the definition) by propagating a single inter-
val Iy through the total constraint C%,.. Remember that a total constraint C% is the set
of feasible regions) defined by the conjunction of all constraints defined on the pair X,Y.
Simple-propagate(Ix,Q) computes the intervals of Y-values occuring in the subregions
of a feasible region Q) with z € Lx.

Definition 3.6 (Restricted regions) For a feasible region Q; € Cl%y, the set of re-
stricted regions R(Qi,Ix) = {Ru,..., Ry} are those mazimally connected subregions of Q
that have X -coordinates entirely contained within an interval Ix.

The total constraint and Iy might define several restricted regions with complex shapes
as for example in Figure 3.6. The interval boundaries for a new label are given by extreme
points at the boundary of the regions. Each restricted region R; € R(Q;, Ix) defines
a single continuous interval of arc-consistent values for Y, which is bounded by a local
minimum and local maximum in Y:

Iy = [min{y|3(z,y) € R;},maz{y|3(z,y) € R;}]

A local extremum in Y of a point set B is defined as follows:

46 Chapter 3. Local consistency techniques

Figure 3.6: Two examples of total constraints. The constraint on the left consists of the two
feasible regions Q1 and Q2. When propagating from X to Y, the interval Ix generates the
restricted regions R1 and R2, which project into intervals Iyl and Iy2. The example on
the right shows that multiple restricted regions R1 and R2 can result from a single feasible
region Q1.

Definition 3.7 (Local extremum) Let I C R be a connected set in B, a closed subset of
R?, and two elements (z1,vo), (z2,0) € B. I is alocal maximum (minimum) in Y if there
exists a real number € > 0 such that Ne = [x1 — €,z2 + €] and I = {(z,y0)|71 < z < z2}
imply that for any (z',y") € B such that ©' € N¢ and y' > yo (v’ < yo), (¢, y') is part of
I. A local extremum is either a local minimum or a local mazimum.

An extremum is specified by its coordinates, its type (minimum or maximum) and the azis
in which it occurs. In the definition, an extremum is a point when z1 = z2 or it can be a
line when 1 < z9. Note furthermore, that each of these extrema is a convex set of points,
i.e. two extrema that are at the same Y-coordinate will considered as different if they are
not connected. Different types of local extrema are allowed by the definition: a maximum
might be a maximum of the entire region or only of its boundary; i.e. the feasible region
may lie on either side of the boundary. We adopt the following notation:

e exty(B(R),y0) < B(R) has a local extremum (minimum or maximum) in Y at
coordinate yg

e exty(B(R),yo) and R is convex (concave) in the neighborhood of ¢y < the extremum
is additionally qualified as convex (concave) local extremum

The additional distinction with respect to the convexity of the region is important in order
to recognize unbounded regions. A bounded region will always start with a convex local
maximum and end at a convex local minimum (section 3.2.4). It is also important to note
that only extrema which satisfy all constraints lie on the boundary of the restricted regions
are valid. A criterion for excluding values of Y not arc-consistent with Ix is based on the
index of a region ay (R, y):

Definition 3.8 The index ay (R,y) is the difference in the number of mazima and the
number of minima on the boundary of the region R € R? at Y -coordinates greater than y:

ay(R,y) = {mazy (B(R),y0) | yo > y}| — Hminy(B(R),vo0) |yo >y}

3.2. Local consistency for binary numeric constraints 47

Using this definition, Faltings proves that ay (R, y) = 0 for a region with a closed boundary
and for any line segment not intersecting the region R and that ay (R, y) is strictly positive
if the line segment intersects R.

Lemma 3.1
Let R be a two dimensional region and B(R) its closed boundary.

o If there is no point (z*,y*) € R, then ay (R, y*) = 0.
o If there is a point (z*,y*) € R, then ay(R,y*) > 0.

Proof sketch: The proof is based on the observation that on a two-dimensional closed
curve B, local minima and maxima in Y occur in alternating order (Figure 3.7). This is
a consequence of the mean-value theorem and the continuity of B. The alternating order
implies an equal number of minima and maxima (for a full proof see |[Faltings, 1994|) A

The index ay (R, y*) of a region R at Y = y* equals the number of connected intervals of
Y =y*in R.

Lemma 3.2

Given a line L 1 Y = y* intersecting a closed curve B and the part I of B between two
successive intersections with L. Either all points in I have a Y -coordinate > y* and I has
ezactly one more local maximum that minimum in'Y or all points in I have a 'Y -coordinate
< y* and I has exactly one more local minimum than mazimum in Y.

Proof: see [Faltings, 1994] A

Lemma 3.3
Let S = {(z,y) | (z,y) € RAy = y*} be the intersection between R and the line Y = y*
and |S| the number of mazimally connected regions of S. Then

ay(R,y") = |S|

Proof: Suppose, L intersects R n times and we have n parts of B(R) called I; such that
all Y-coordinates are greater or equal than y*: |S| = n. The sum of differences between the
number of maxima and the number of minima of each interval is exactly 1 (using the Lemma

3.2): 30 [{mazy (I;,y) |y 2 y*} | — | {miny(I;,y) [y > y*} [=n=ay(R,y*) A

Lemma 3.1 yields a criterion for deciding if there exists an arc-consistent y-value for Y
given Ix: the propagation rule should eliminate a value y* from the label Ly if and only
if it is in no region, i.e. ay(R;,y*) = 0 for all R; € R. Since ay(R;,y*) > 0 for any R;,

48 Chapter 3. Local consistency techniques

Y1

Yo -

Figure 3.7: An arbitrary region bounded by the curve B(R). M denote local mazima in'Y
and m are local minima in'Y . In this ezample, ay (R,y1) = 1 and ay (R, yy) = 0.

this can be expressed as) ; ay (R;,y*) > 0 because a sum of positive numbers is always
positive. By rewriting this as:

Zay(Ri,y*) = Z [{mazy (B(R:),y0) | Yo > y*}|

_Z [{miny (B(R:), o) | yo > y"}|

we only require the total number of extrema in all restricted regions taken together, without
any consideration of the regions they belong to. Ounly if the sum of the indices ay (R;, y*)
of all regions R; is zero, y* does not belong to the locally consistent label of Y. The set
of illegal y*, and conversely the set of legal y, can thus be characterized without knowing
which extrema belong to which region.

3.2.3.2 The algorithm Simple-Propagate

Under certain reasonable assumptions (specified in section 3.2.4), a candidate set of all
extrema verifying Definition 3.7 can be generated by computing all extrema belonging to
one of following classes:

1. local extrema on constraint curves
2. intersections between constraints

3. intersections with the boundaries of Ix and constraint curves

Again, the set of extrema can be determined by purely local considerations without know-
ing which of the restricted regions they belong to. Extrema of class 2 and 3 have to be
considered because they define discontinuities and thus extreme points on the boundary
of the restricted regions. Even if finding local extrema of classes 1 and 2 can be computa-
tionally expensive, it is sufficient to precompute these extrema once and for all for a given
constraint system, because they do not change throughout propagation. Extrema of class
3, however, will change as interval boundaries are tightened during propagation. Except
from this preprocessing, our algorithm only evaluates the constraints at interval bounds.
The amount of constraint manipulation required in each propagation step is the same

3.2. Local consistency for binary numeric constraints 49

as that of other more straightforward propagation rules solely based on the intersections
between interval bounds and constraints.

The propagation rule for a single interval simple-propagate is shown in Figure 3.8.
It can roughly be divided into three steps:

a) identify-candidates: finds local extrema in the form of extrema on individual con-
straint curves, intersections between constraints and intersection between constraints
and interval bounds and classifies them as minimum or maximum (convex or con-
cave),

b) filter-candidates: filters away those extrema that do not satisfy all constraints in
C%y or whose X-coordinate is not in Iy, thus pruning extrema that do not lie on the
boundary of the restricted regions, and orders the remaining extrema in decreasing
value of Y such that for the same value of Y a maximum is always considered before
a minimum

c) compute-intervals: computes the locally consistent intervals for Y using
Lemma 3.1 as shown in the algorithm 3.8 assuming an ordered set of extrema as
input

The discussion of how the candidate set of extrema may be computed (function identify-
candidates) is deferred to section 3.2.4.

3.2.3.3 Completeness and soundness

Faltings has further shown, that a propagation algorithm as presented in 3.8 using the
propagation rule simple-propagate is locally sound. This is true because after reaching
quiescence, the labelling is locally consistent and because the propagation rule never re-
moves locally consistent values. It is complete because an arc-consistent labelling contains
all solutions to the CSP.

3.2.3.4 Example

As an example, consider the feasible regions described by an ellipsis, a parabola and a line
constraint (Figure 3.9).

C; = (025%xX4+Y —62)?402% (X —025Y +1.7)2=5>0
Cy == —07+X+03406+Y —1/3%(0.6%xX —42+07+Y)2>0
O3 = Y—9/8xX—-9<0

In a preprocessing step, we compute all local extrema on constraint curves and inter-
sections between pairs of constraints and store them in as shown in the table of Fig-
ure 3.9. Local extrema on constraint curves stem from a single constraint (column C; of
the table), whereas intersections are points belonging to two constraints. For a propaga-
tion step from X to Y with initial labels Lx = {[0.5,2.2]} and Ly = {[0,5]}, simple-
propagate([0, 5], {C1, Co, C3}) executes the following steps according to algorithm 3.8:

50 Chapter 3. Local consistency techniques

function simple-propagate(Ix,Cky)

begin
E + identify-candidates(Ix,C%)
E + filter-candidates(E,Ix,C%)
Ly < compute-intervals(E)
return Ly

end

function compute-intervals(E)
begin
Iy +{}
a+0
if unbounded restricted region then
add extremum to E at oo or —oo
fi
for eachee E do
if e is a maximum (convex or concave) then
a+—a+l
elif e is a minimum (convex or concave) then
a+—a-1
fi
if « has changed from 0 to 1 then
Ymaz = y-coordinate(e)
elif « has changed from 1 to 0 then
Ymin = y-coordinate(e)
Iy < Iy U {[ymin> Ymaz]}
fi
od
return Iy
end

Figure 3.8: Binary propagation rule simple-propagate for a single interval. How un-
bounded regions are detected is discussed in the section on filtering relevant extrema.

a) local extrema in Y are retrieved from the table :

concave Max at (—1.98,8.65)
concave Min at (1.7, 3.82)
convex Min at (1.14,2.53)
convex Max at (—3.35,5.23)
convex Max at (1.46,10.64)
convex Min at (3.11,7.21)
convex Max at (3.62,4.14)

3.2. Local consistency for binary numeric constraints 51

b) only those satisfying C,Cs,C3 and such that z, € Ix = [0.5,2] are considered
further:

convex Max at (1.46,10.64)
concave Min at (1.7,3.82)
convex Min at (1.14,2.53)

a) intersections with interval boundaries of Ix = [0.5,2] are computed of which only
the points

convex Min at (2,7.79)
convex Max at (0.5, 3.91)
convex Max at (2,3.83)

are local extrema in Y. The crosses in Figure 3.9 show points that have
been eliminated from consideration because they are not extrema in Y.

c) the resulting extrema are sorted in decreasing order of y-values and the index « is
computed for each extremum according to compute-intervals:

Extremum (z¢, ye) & | Ymaz | Ymin | Iy

- 0] - - {

convex Max (1.46,10.64) | 1 | 10.64 | - {}

convex Min (2,7.79) 0 - 7.79 | {[7.79,10.64]}

convex Max (0.5,3.91) 11391 |- {[7.79,10.64]}

convex Max (2, 3.83) 21383 |- {[7.79,10.64]}

concave Min (1.7, 3.82) 1]- - {[7.79,10.64]}

convex Min (1.14,2.53) | 0 | - 2.53 | {[2.53,3.91],[7.79,10.64]}

3.2.4 Implementation

The goal of this section is manyfold: first, to justify our commitment to an anlytical
representation of constraints, second, to describe qualitatively what kind of point sets
verify the definition of a local extremum 3.7 when regions are defined by constraints and
third, to present the current prototype implementation of identify-candidates as one of
several possible approaches. The reader should not forget that under the assumption that
local extrema of restricted regions are found, our algorithm is correct, sound and locally
complete. It is not the goal of this thesis to propose new methods for identifying extrema
of arbitrary constraint regions. These remarks also remain valid for the extension of the
propagation rule to ternary numeric constraints.

52 Chapter 3. Local consistency techniques

Type Axis | Extremum (z.,y.) | C;

concave Max | X (4.59,5.3) Cy

concave Min | X (—4.88,7.17) Cy

concave Max | Y (—1.98,8.65) Cy 10.64
concave Min | Y (1.7,3.82) Cy Iyl
convex Max | X (3.67,4.7) Cs

convex Min Y (1.14, 2.53) Cs 7.79
convex Min | X (—0.43,8.51) C1,C3

convex Max | Y (—3.35,5.23) Cy,Cs

convex Min | X (—4.52,3.91) Cs,C3 39
convex Max | Y (1.46,10.64) Cs,Cs 2
convex Max | X (3.11,7.21) Ch, Co y
convex Min | Y (3.11,7.21) Ci,Co 253
convex Max | X (3.62,4.14) C1,Cs

convex Max |Y (3.62,4.14) C1,Cy

Figure 3.9: The table on the left side shows local extrema on constraint curves and inter-
sections between constraints for the example represented in the figure. The graphic shows
the restricted regions R1 and Ry defined by an ellipsis, a parabola and a line constraint.
Dots are local extrema and intersections considered by simple-propagate. While circles
indicate intersections of Ix = [0.5,2] with the constraints resulting in extrema in'Y lying
on the boundary of the restricted region, crosses show points that are no extrema in Y.

3.2.4.1 Methods for identifying extremal points of regions

Different methods can be imagined to identify extreme point sets of constraint regions
satisfying Definition 3.7. Obviously, they depend on how the feasible constraint region
itself is represented. Possible methods are:

e Analytical methods, which determine local extrema directly from the given inequal-
ities.

e Parsing methods, which rely on a discretized representation of the constraint region.
First, a constraint region is approximated by 2¥-tree, which is obtained by a carrying
out a hierarchical binary decomposition of the solution space ([Sam-Haroud, 1995]).
A node of a 2F-tree is a k-dimensional cubic subregion of the original domain. A
simple parsing method can then determine which of the boundary nodes are extremal.

Analytical methods are well-described but can require quite complex computations based
on derivatives of the function defining the constraint curve or the constraint surface. Meth-
ods based on a discretized constraint representation have the advantage that they are simple
and robust. The robustness comes from the fact that only evaluations of the constraint ex-
pression are used to determine the discretized representation and that intersections between
constraints can be performed logically. The computed extremal nodes, however, depend on
the granularity of the discretization and are an approximation of the real points. This is not
necessarily a disadvantage because such an approximation also absorbs numerical errors as
exposed in the heading section 3.2.1. A more serious problem is the space complexity of

3.2. Local consistency for binary numeric constraints 53

¥
&
z
|
1z dl :ﬁéﬁ;#
H g |
= CHEELEH T
n4dl _)
- _;
%jwﬂh# I H
b =7 H
REH H
-1 “#ﬂ% i
%
W g : } ¥ i
o 08 18 24 a2 4

Figure 3.10: A quadtree representation of the inequality Y > arctan(1/(X — 2). Courtesy
Claudio Lottaz, AI-Lab, EPFL.

a discretized constraint representation, which is significantly large in comparison with the
analytical approach. In our prototype implementation, we chose the analytical method,
first, because many commercial tools exists for analytical computations and second, also
in order to investigate the limitations of the analytical representation.

3.2.4.2 Classes of local extrema

Since local extrema appear on the boundary of regions defined by constraints, analytical
properties of the constraint curve like continuity and derivability determine the class of
extrema. The potential coordinates for an extremum at the boundary of a constraint region
Cxy : E(X,Y) > 0 are given by the equation E(X,Y) = 0. If possible, Y = F(X) is
defined to be the explicit function of E(X,Y) = 0 such that E(X,F (X)) = 0. For an
algebraic curve, which is no function, the first derivative of F' is determined for regular
points by F/(X) = —%/% (Implicit Function Theorem, Appendix C). The
first derivative at the points (0,42) of a circle constraint X2 +Y? —4 = 0 is —2X/2Y for
example. Another property of the constraint region is the gradient at a point (z,y) denoted
by V E(z,y). It points towards the feasible region defined by E(X,Y) > 0 (Appendix C).

Analytical conditions ([Douchet and Zwahlen, 1983]) specify where local extrema of a
continuous function Y = F(X), F defined over the interval [a,b], occur. The candidate
points are:

e at the bounds of the interval [a, b]
e at the stationary points of F; e.g. at points where F'(X) =0

e at points within [a, b] where F' is not defined

54 Chapter 3. Local consistency techniques

a) b) c)

Figure 3.11: There exist three important classes of local extrema: a) local extremum on
constraint curve, b) intersection between two constraints and c) intersection between an
interval bound and a constraint.

Furthermore, if the function itself is not continuous over the interval [a, b], local extrema
of constraint regions can occur at a discontinuity. Since a set of constraints may define a
constraint region, intersections also belong to the candidates for local extrema because the
first derivative at such a point does not exist. Using these analytical properties classes of
local extrema can be derived:

local extrema on individual constraint curves
intersections between constraints
intersections between interval bounds and constraints.

discontinuities on individual constraint curves

SANE IO A

singularities on individual constraint curves

Only the first three classes will be considered relevant for our implementation. Although
discontinuities and singularities on individual constraint curves can also specify local ex-
trema of constraint regions, they are not considered in the prototype implementation be-
cause the analytical computations become exceedingly complex. It is to be emphasized
that a discretized representation of continuous constraints would be able to recognize such
special local extrema without problem.

Discontinuities on individual constraint curves Discontinuities on individual con-
straint curves occur at points where either the function value or the limit fails to exist
or both exist and are not equal to one another (Appendix C). Examples of functions
containing discontinuities are rational functions (the pole in Figure 3.12 b), trigonometric
functions (Figure a) or piecewise defined functions (Figure c¢). The value of the function
at a discontinuity has to be determined by computing its right-hand and left-hand limit.
Lemma 3.1 is formulated for restricted regions with a closed boundary. Constraints
with a discontinuity in the function defining the constraint boundary specify regions part
of which has no border. The constraint ¥ — arctan(1/(X —c)) > 0 (Figure 3.13 a), for
example has no border along the line X = c¢. Even if this additional constraint defining
the missing border would be given, the intersection between Y — arctan(1/(X —c)) =0

3.2. Local consistency for binary numeric constraints 55

F(X) F(X) F(X)
F2(X)
pir2 | : F100 ' I
~— !
|
e X X T X
|
—_
-pif2 \:
a) F(X) = arctan(1/(X-c)) b) F(X) = 1/X c) F(X)={ E%&g 2:§Z§

Figure 3.12: Different types of discontinuities on functions.

F(X) FO0

pl/2 41 (

— |
“ B /C/ -
S

e \6 V\\undeﬁned 7><

a) b)

Figure 3.13: a) A constraint region without continuous boundary b) with a continuous
boundary.

and X = c is still not defined and the function Y — arctan(1/(X —c¢)) = 0 as well as its
first derivative have to be evaluated by the left-hand and right-hand limits at X = c.

In order to simplify the identification of local extrema, our algorithm is limited to
restricted regions that have a continuous boundary. As the example of Figure 3.13 b)
shows, this restriction does not exclude that a function may be discontinuous over the
interval of propagation. Instead it does not compute such discontinuities assuming that
they are not part of the restricted regions’ border.

It has to be mentioned that a discontinuity can be removed if the right-hand and left-
hand limit of the function at the discontinuity have the same value. Such a function can
be transformed in a piecewise defined function specifying the function and its value at the
discontinuity. An example for such a redefinition is the function f(X) = sin(X)/X, which
could be defined by

PUX) = { sin(X)/X X #0

1 X=0

Such continuous piecewise defined functions are not considered in the current implemen-
tation of the propagation rule simple-propagate, they are treated as mixed constraints
instead (Section 5.8).

56 Chapter 3. Local consistency techniques

<
<
<
<

=V,
4 X

\j‘\ ,\ x>€ X R X

a) double point b) cusp c) tacnode d) isolated point

o

Figure 3.14: Different types of singularities on constraint curves.

Singularities on individual constraint curves Another characteristic of constraint
curves are singular points. They only appear when the constraint boundary E(X,Y) =0
cannot be expressed explicitly as a function at that point but remains an algebraic curve
(Implicit Function Theorem, Appendix C). A singular point of a curve is a point at which
either several tangents exist (they may be the same) because the curve touches itself or
even crosses itself or no tangents exists because the singular point defines an isolated point
(for an analytic definition see Appendix C). Examples of singular points are listed in
Figure 3.14. Example a) is a Folium of Descartes specified by X2 + Y3 — 3¢ XY < 0 with
a > 0 and b) could be the constraint Cxy : X2 — Y2 > 0. Only a cusp or an isolated
point define local extrema, the other singular points can be neglected anyway. The kind of
singular point can be determined by analytical methods however the analysis of the type
of local extrema they form requires the analysis of higher degree Taylor developments.

Our algorithm is therefore restricted to restricted regions in which singular points
do not form a local extremum. Again this restriction does not preclude the existence of
singular points over the interval of propagation. Singular points are simply not computed
in our implementation. This will lead to errors when a singular point of type cusp or
isolated point is part of the boundary of the restricted regions and forms a local extremum
there.

As a conclusion, only the first three classes listed at the beginning are accepted as
local extrema of constraint regions. Under the assumption that the boundary of the re-
stricted regions do not contain discontinuities nor singular points of type isolated point or
cusp, all local extrema can be identified by an analytical method. In an approach based
on a discretized constraint representation, extremal points occuring at discontinuities or
singularities are not be distinguished from other local extrema. With some care when
evaluating constraint expressions at such points, local extrema produced by discontinuities
or singularities can be determined more easily by the discretization method.

3.2.4.3 Local extrema on individual constraint curves

The potential candidates for local extrema on an indvidual constraint curve ¥ = F(X)
are determined by the necessary condition:

3.2. Local consistency for binary numeric constraints 57

Figure 3.15: Gradients on the region formed by an ellipsis. In a), the combination of
gradient measure and condition indicate a conver mazimum and minimum; in b) they
indicate a concave mazrimum and minimum.

Condition 3.1 (Necessary condition, [Douchet and Zwahlen, 1983]) If a func-
tion Y = F(X), differentiable at x., has a local extremum at (x¢,ye) inY, F'(ze) = 0.

Although this condition is not sufficient for the existence of an extremum, it still allows us
to derive potential candidates for local extrema. F has an extremum (z,ye) in Y if the
following condition is verified:

Condition 3.2 (Sufficient condition, [Douchet and Zwahlen, 1983]) A sufficient
condition for the existence of an ertremum at (Te,ye) i Y of the function Y = F(X)
is that for I, K C R, F : I — K is at least n times differentiable over I (n > 2),
FO(z,) =0,i=1,...,n—1, FO is continuous in z, and F"™ (x,) # 0 for an even n.
Then, F™(z,) > 0 = (Te,Ye) is a local minimum in'Y and F™ (z,) < 0 = (2¢,ye) is a
local mazimum in'Y .

In order to be able to find local extrema of individual constraint boundaries by analyt-
ical methods, we require that the function defining the constraint boundary to be at least
twice differentiable over the interval of propagation and the derivatives to be continuous
at the local extrema. A more limiting issue would be to tolerate only smooth functions;
e.g. functions that are continuously differentiable with continuous derivatives over the
interval of propagation. This would automatically exlude any discontinuity appearing in
derivatives of functions and as a result only discontinuities in first derivatives produced by
intersections would be tolerated. This is however more restrictive than necessary because
even if discontinuities exist in the derivatives they do not cause problems if they are not
on the boundary of a restricted region.

Note that Condition 3.2 only enables us to classify local extrema on constraint curves.
Since the gradient points towards the feasible region, the direction of the gradient at a
local extremum indicates on which side of the curve the feasible region lies. The condition
and gradient direction combined are thus a measure for the convexity of the region in the
neighbourhood of the local extremum. Eventually, their combination allows us to classify
local extrema as follows:

58 Chapter 3. Local consistency techniques

Condition Gradient direction | Extremum type

mazy (B(R),yo) | decreasing Y-values | convex maximum
mazy (B(R),yo) | increasing Y-values concave maximum
decreasing Y-values | concave minimum

(B(R), o)
miny (B(R),yo) | increasing Y-values | convex minimum

In Figure 3.15 a, both extrema are convex whereas in Figure b, they are concave.

3.2.4.4 Intersections between constraints

Intersections between pairs of binary constraints Ciy : EY(X,Y) > 0 and Cg(y
EJ(X,Y) > 0 create discontinuities in the first derivative of the boundary. Inter-
sections can therefore specify extreme points of a feasible region. Candidate points
for the intersection between C! and C7 are computed by solving the equation system
{E*(X,Y) = 0,E9(X,Y) = 0}. The resulting points are each characterized by two dis-
tinct tangents and thus also two gradients. The linear combination of the gradients on
both constraints at the intersection has to result in a gradient parallel to one of the co-
ordinate axes for a candidate point to be a local extremum. Not all linear combinations
are permitted; only those combinations are considered that do not alter the direction of
the component gradients (the coefficients of the linear combinations have to be positive or
zero). Recall the notation V E(z,ye) as gradient of the constraint expression E. Ny is
the Y-component of a vector N.

Condition 3.3 An intersection (Ze,ye) s an extremum in'Y if one of the following two
cases 1is satisfied:

1. There exists 8> 0 and a normal vector N parallel to the Y -axis such that

V E(ze,ye) + B+ V E (ze,ye) = N
Ez(xe,ye) 0

EJ (xeaye) = 0

A special case occurs with 3 = 0: V E*(z¢,ye) is already a normal vector.
(e, Ye) 18 a convex mazimum in'Y if Ny < 0 and a convex minimum if Ny > 0.

2. 1If % = 0 in the gradient equation above, 3 does not exist and V E'(z.,vy.) is
already a normal vector.

(Te, Ye) 18 a conver mazimum in'Y if % < 0 and a convex minimum otherwise.

Proof: Consider an intersection e : (x,y) generated by the intersection of two constraints
Ciy and C%,. In the neighborhood of (z,y) the feasible region is convex (it can be
approximated by the tangents at both constraints in (z,y)). The boundary of the convex
region is continuous and its first derivative is continuous in the neighborhood of e but not
in e itself. The gradient to the left of e is VE'(e) and the one to the right is VE/(e). If

3.2. Local consistency for binary numeric constraints 59

*T—D X a) b) c)

Figure 3.16: There are three cases of intersections in two dimensions that are candidates
for a local extremum in azis Y : a) no extremum, b) a minimum in X and a mazimum in

Y and ¢) a mazimum in azis Y.

the gradients VE*(e) and VE’(e) enclose a normal, by Lemma C.1 in Appendix C e must
be a local extremum. A

In the same manner, intersections that are extrema in X are identified. Some examples
of constraint intersections are presented in Figure 3.16.

3.2.4.5 Intersections between constraints and interval bounds

Local extrema of a function may also occur on the boundaries of the domain over which the
function is defined. This domain corresponds in our case to the interval to be propagated
through the constraint. Intersections between a constraint Cx,x; and an interval bound
I, € L; for variable X; therefore generate a candidate set for such extrema. They are
computed by replacing all possible combinations of interval bounds in the constraint. The
type of the resulting extrema is again determined by Condition 3.3.

3.2.4.6 Algorithm for identify-candidates

The propagation of an interval through a total constraint can safely be implemented for
a total constraint if the boundary of the restricted regions is continuous, does not contain
isolated singular points or cusps and is at least twice differentiable. Under this assumption,
the function identify-candidates is implemented as shown in Figure 3.17.

3.2.4.7 Filtering relevant extrema

Once the set of local extrema F in an axis (for example Y) has been computed and classified
only extrema that satisfy all constraints in C%, and whose X-coordinate lies within the
interval of propagation Ix, are considered further (function filter-candidates). During
this filtering process, several special cases have to be treated:

e an extremum composed of a set of points
e redundant extrema

e feasible regions that extend to +o0o or —oo

60 Chapter 3. Local consistency techniques

function identify-candidates(Ix,C%)
begin
E + find local extrema on individual constraint curves using the necessary Condition 3.1
and classify them using Condition 3.2
E + E U compute constraint intersections and classify them according to Condition 3.3
E + E U compute intersections between constraints and interval bounds and
classify them according to Condition 3.3
return E
end

Figure 3.17: Algorithm for identify-candidates(Ix,Cky).

Figure 3.18: a) Only one minimum has to be considered because both minima come from a
constraint that is a line and gives rise to a single minimum. b) Both minima are counted
individually because they define different minima.

o F is empty

Extremum as set of points: An extremum that is a line perpendicular to the axis for
which the new label is computed is counted only once (Figure 3.18) because it represents
a single extremum according to Definition 3.7.

Redundant extrema: F may contain redundant extrema caused by different constraints.
By definition, all extrema in a set of redundant extrema share the same coordinates, axis
and type but are computed from different constraint sets. Only one extremum of the
redundant set must be considered because they all represent the same extremum with
respect to the feasible region. The three constraints in Figure 3.19 a) meet at the same
point, which is a maximum in Y of the feasible region shaded in grey. If two extrema share
the same constraints but differ in their axis or their type, they must both be considered. An
equality constraint E(X,Y) = 0, for example, is handled as conjunction of two inequalities
E(X,Y)>0,E(X,Y) <0. Some extremal points of a total constraint involving equalities
may at the same time be a local maximum and minimum of the feasible region. In Figure
b), E' <0 and E? < 0 produce a maximum at e; and E! > 0 and E? < 0 a minimum in
Y at es. In Figure c), the outer circle has a convex maximum at e; and the inner ellipsis a

3.2. Local consistency for binary numeric constraints 61

c2 elye2

el=e2
C1

a) b) c)

Figure 3.19: a) Redundant extrema. b) Non-redundant extrema generated by an equalities
C}(Y : E' = 0 and an inequality C%Y : E? < 0 describing the inner region of a circle. The
restricted region is the line segment stretching from ea to e1. ¢) Non-redundant extrema on
the common boundary of two elliptical constraints, C1 defining the inner part of a circle
and Cy the outer part of an ellipsis. The first extremum determined by C4 s of type conver
mazimum and the second determined by Cy is a concave mazimum.

concave maximum, e, at the same point. Both maxima have to be treated separately as
they are not of the same type.

Note that the detection of redundant extrema may pose numerical problems due
to rounding errors during the computation of the extrema. For a safe implementation,
methods from interval analysis or other approximation methods are required to represent
the coordinates of local extrema (section 3.2.1).

Unbounded restricted region: In the presence of a restricted region extending to oo,
the set E has to be completed by an extremum at +o0o or —oo of the according axis. Such
a region can be detected by examining the extremum with the largest resp. smallest coor-
dinate. If it is a minimum (resp. a maximum), an extremum at +o0o (—o0) has to be added
to E. A similar situation arises when the extremum with the largest coordinate (the min-
imum with the smallest coordinate) are concave. In Figure 3.15 b) for example, the local
extrema are concave indicating an open region, which extends to infinity in both directions.

No extrema exist: Finally, it may happen that no extreme points can be exhibited at
all for a given axis, i.e. E = (). This situation occurs when the function forming the
boundary of the restricted region has no tangent parallel to the interval to propagate. In
Figure 3.20 a), the feasible region is parallel to axis Y and never intersects with Ix. The
interval bounds may also intersect the constraint region without producing an extremum,
as shown in Figure b). Two cases are possible: either the restricted region extends from
—oo to oo or there is no such region at all. This can be tested by intersecting the total
constraint with a test-line 7y : Y = y such that y € Iy for a propagation step from X
to Y. If there is a feasible point (z,y) satisfying y € Iy, (z,y) € Cky and z € Ix, the
restricted region extends from —oo to 0o, otherwise, no restricted region exists.

62 Chapter 3. Local consistency techniques

a) b) c)

Figure 3.20: Propagating Ix through the parabola constraint Y 4+ X2 > 0 may result in
intersections that are no extrema in'Y (the intersections are denoted by crosses in Figure
b). In this case, it is sufficient to exhibit one point (z,y) such that x € Ix, y € Iy and
(z,y) € Cky to prove that the restricted region extends from —oo to co. In case a), such a
point can be found at the intersection of the constraint with one interval bound of Iy (Ty)
and in cases b) and c) it is sufficient to test the corners of the box Ix x Iy.

3.3 Local consistency for discrete constraints

A refine-operator performing arc-consistency on discrete binary constraints can be found
in [Mackworth, 1977a] (refine-2 in Figure 3.21). Its generalization to k-ary constraints,
called NC, was published in the same year [Mackworth, 1977b| (Figure 3.21). This gen-
eralization works by applying refine to each constraint individually, defining the projec-
tion of the tuples onto one axis. Given the number of constraints m and the maximal
domain size d, an AC-3 like propagate-algorithm using refine-2 has a worst time com-
plexity of O(m % d®). Subsequent algorithms for arc-consistency in binary CSPs, like
AC-4 |[Mohr and Henderson, 1986] and AC-6 |Bessiére, 1994]|, are optimal algorithms in
O(m * d?). [Mohr and Masini, 1988, Bessiére and Régin, 1997|, generalized AC-4 with a
time complexity of O(Y_,;|T(C")|) where T(C?) is the size of all tuples of a constraint C,
respectively AC-6 (same time complexity as AC-4 for explicitly given constraints), to k-ary
constraints by generating support lists for each variable-value pair and for each constraint
individually.

Optimal time complexity has been achieved for discrete constraints by basing arc-
consistency on the notion of support. Each variable-value pair has a support list contain-
ing at least one variable-value pair that the first pair supports in a constraint. If a value
has been deleted from a variable domain, it is queued in order to propagate the effects of
deletion. The inconvenience with these optimal time algorithms is that they use additional
data-structures (the support-lists) and that the main algorithm loops over a queue contain-
ing variable-value pairs whose deletion has to be propagated. Our propagation scheme for
continuous variables is rather based on propagating intervals through constraints and not
on the propagation of individual values. The support of a discrete value is explicited in the
constraint. A support for an interval value in a continuous constraint has to be computed
and is not available directly. Furthermore, there exist an infinite number of such supports

3.3. Local consistency for discrete constraints 63

function refine-2(X,Y,Cxy)

begin function refine-NC(Y,Cyz,. z,v)

begi
for each y € Ly do egin

if Az € Lx s.t. Cxy(z,y) then
remove y from Ly
fi
od
return Ly

for each y € Ly do
if AteCstV,;tZ)]e Ly then
remove y from Ly
fi
od
return Ly

end end

Figure 3.21: The refine operators of AC-38 like algorithms for binary constraints (left side)
and NC for k-ary constraints(right side).

in the worst case, because splitting may occur in the support of a value due to a refinement
step. In order to keep a uniform queue whose elements consist of variable pairs and the
corresponding constraints, we take the AC-3 like propagate-algorithm (in Figure 3.1) as a
starting point for discrete propagation and profit from the ideas in continuous propagation
when generalizing it to k-ary constraints. We show in the next paragraph, that the exist-
ing refine operators do not compute 2-consistency because they miss intersections between
constraints sharing at least two variables.

3.3.1 A refine operator for k-ary discrete constraints

A constraint satisfaction problem is formulated as search for a value assignment to all
variables that satisfies all constraints simultaneously, in other words, the solution must
verify the conjunction (the logical AND) of all constraints. We have seen in the previous
section, that intersections between binary continuous constraints can form the interval
bounds of a refined label. In a discrete binary constraint problem, a binary constraint is
usually unique, in the sense that all allowed value pairs are part of the same constraint. If
two binary constraints defined over the same pair of variables existed, they could be merged
into one by intersecting their tuple sets. Intersections between discrete constraints are of
interest as soon as the constraints are of higher arity, because several k-ary constraints
with k£ > 2 may involve the same pair of variables but differ in the resting variables.

Let P; be a CSP over the variables V = {X,Y, Z, W} each with an initial domain of
{0,1,2} and with the constraints Cky-, : ((000) (010) (020) (100) (110) (200)), C%yy :
((000) (010) (020) (110) (120) (220)). The projection of these constraints onto X,Y is
visualized in Figure 3.22 by binary matrices. It is clear that, given the values {0,1,2} of
Y, 2 cannot be an arc-consistent value for X. No value y can be found for Y such that the
value pair (2,y) satisfies both C! and C2. This can only be concluded if all the constraints
defined on the same pair of variables are examined simultaneously, i.e. if total constraints

64 Chapter 3. Local consistency techniques

R o 1 2 o 12
o ol 1] 1] 1 ol 1] 1] 1
N I M 10| 1|1 = 1o 1o
2| rjoo 2] 0] o] 1 2| 0] o] o

Figure 3.22: The projection of C' and C? onto X,Y represented as 0-1 matrices. 1 stands
for a compatible value pair, 0 for an incompatibility. The intersection of both matrices
forms a “triangle” of compatible pairs.

are considered. Any algorithm generalizing arc-consistency to k-ary constraints by applying
arc-consistency to individual constraints will miss intersections between the projections of
constraints and therefore result in looser labellings. This remains true for algorithms
that first transform a discrete CSP into its binary dual problem where constraints are
nodes and links between nodes are variables that must have the same value. The dual
problem of P; will be Py over two variables « : {(000) (010) (020) (100) (110) (200)} and
B : {(000) (010) (020) (110) (120) (220} and with the constraints C?® : X(a) = X(8) and
C*:Y(a) = Y(B). In this example, there are two different constraints between the same
pair of variables that cannot be merged into a unique constraint. Arc-consistency applied
on the dual will not detect that value 2 for Y is inconsistent if both constraints C*® and
C* are tested individually. This has lead to the definition of interrelational consistency
and hyper-k-consistency [Jégou, 1993] in which consistency is defined between constraints
and not between variables. We take another approach and introduce total constraints in
discrete CSPs and to define local consistency for discrete k-ary CSPs as follows:

Definition 3.9 (Local consistency for k-ary discrete constraints) A labelling is lo-
cally consistent if for every X;, X; and every value xz; € L;, there erists a value xj, € L;
such that for every constraint CXinXml,---,X

mn

involving X; and X; and possibly other
variables Xy, there exists a value Ty,;, € Ly, i =1,...,k—2 such that CXi,Xj,Xml,---,an

is satisfied for X; = x4, Xj = xj,, Xpn, = Ty,

The motivation behind this definition is that, like in the continuous case, the additional
pruning can be obtained easily: Local consistency for a k-ary discrete CSP is achieved by
the following steps:

1. collect all constraints involving X; and X (can be precomputed in the total constraint
Chx,)

2. for each constraint project all tuples for which the value of X, in the tuple is within
its label L;,; onto X; and Xj

3. remove those values of X; for which there exists no value of X; satisfying the projected
constraint simultaneously

An algorithm for one propagation step from X; to X; is derived in Figure 3.23. The
intersection between projections is computed incrementally by verifying that a given value

3.3. Local consistency for discrete constraints 65

pair of X; and X; is allowed by all constraints of the total constraint (variable counter
in line 4 to 12). If counter equals the number of constraints in the total constraint, there
exists a support for the current value of X; (line 13). Otherwise, the current value of X;
can be removed from its label (line 15). The algorithm finds an arc-consistent label for X
in Py given the label of Y, Ly = {0, 1,2} by executing the following steps:

X =0:

Y = 0, counter = 2, support = true
X=1:

Y =0, counter = 1, support = false

Y =1, counter = 2, support = true
X =2

Y =0, counter = 1, support = false
Y =1, counter = 0, support = false
Y = 2, counter = 1, support = false
remove X = 2 from Lx

finally: Lx = {0,1}

Complexity: The complexity of AC-3 for discrete k-ary constraints is in the order of
O(d**'m?k?) with m the number of constraints, k the arity of the constraints, n the
number of variables and d the maximal size of the variable domains.

Proof: The proof is a generalization of the one found in [Mackworth and Freuder, 1985].
We assume that all constraints are k-ary. In the worst case, each variable is connected
with each other variable through a constraint, i.e. the hypergraph of the CSP is fully

connected. The initial length of the queue is 2 x m * 5 because each variable pair is

considered. The queue changes its size during propagation as elements are removed and
added. We assume further that each element added during propagation is not yet in the
queue and that each value removed from a domain is removed in a separate call to revise
in algorithm 3.1. Entries on the queue are made, if revise succeeds. If each variable is
connected to A; = n — 1 other variables, a call to revise results in adding at most A; — 1
new elements. The number of new elements added to the queue during propagation is

Yoy d*(Aj—1) =dxnx*(n—2). As the number of constraints m is bounded by Z
and assuming that k¥ < n we infer that n x (n — 1) = % < m x k2. The

number of elements added to the queue is thus bounded by d * m * k?. Furthermore, each
call to revise takes at most d* * |C?| iterations where |C?| is the number of constraints in
the total constraint, which can reach m. The worst time complexity is thus bounded by
d¥smx(mskx(k—1)+dxmxEk%) A

66 Chapter 3. Local consistency techniques

function refine(X;, X, CEQ,X],)

begin

~

for each z;, € Lx; do

2 support < false

3 for each z; € Lx; while not(support) do
4 counter < 0

5 for each C'€ Ck y, do
6 found < false

7 for each o, € Lx,, while not(found) do
8

9

if C(zi,,2j,,Zmy,---,Tm,,) is true then
counter < counter + 1
10 found < true
11 fi
12 od od
13 if counter = |C?| then support < true fi
14 od
15 if not(support) then remove zj from Lx, fi
16 od

17 return LXJ.
end

Figure 3.23: Algorithm for refine(X;, X;, Cfxi X;) adapted to k-ary discrete constraints.

The number k2 * d* x m is the optimal time complexity [Cooper, 1989]. Our algorithm
has a worst time bound that is dxm larger. In reality, this worst bound of interconnectivity
with m as maximal size of the total constraint is seldom reached.

This algorithm can be enhanced if the intersection between constraints is achieved
before the actual consistency step. The step achieving local consistency then consists of
processing the constraints individually and the optimal time algorithm in [Cooper, 1989]
can be used. The preprocessing step is similar to the precomputation of local extrema
and intersections for continuous constraints: tuples in a pair of constraints that share two
variables can be removed once and for all if their values do not agree. In this case, the
complexity of the preprocessing will be in O(|T| * |C*|k?) with |T| = k + D* under the
assumption that the tuples are ordered.

3.4 Local consistency for mixed constraints
In addition to a joint propagation of discrete and continuous constraints, also mixed con-

straint appear in real-world problems. In section 2.4, a mixed constraint is defined as a
relation associating discrete values with real values and vice-versa. Some typical examples

3.4. Local consistency for mixed constraints 67

are presented in Figure 3.24. The first two constraints associate intervals or points on
the real axis (Impeller.position,V.volume) with symbolic values (Impeller,Mizer). The
third constraint associates constraint surfaces on the vessel volume with symbolic values
and the last one derives the value for an integer variable (nbPiers) from two real variables
(typical Span and length). In the first two constraints, the real values undergo a discretiza-
tion in form of intervals that are associated with symbolic values. This indicates that this
type of mixed constraint can be transformed into a discrete constraint. The constraint on
nbPiers, on the other hand, resembles a continuous constraint and can be treated by the
continuous refine operator. The constraint on relating the vessel type with its volume is
more difficult to handle especially when a continuous variable should be propagated to a
discrete one. Several ideas can be exploited:

e Add the continuous constraints during search to the constraint system when the
discrete part of the constraint complies with the values of the variables already in-
stantiated

e Apply a kind of consistency by searching within the constraint. Such a refine operator
checks for each tuple if the discrete and the continuous part of the constraint added
to the constraint system do not result in an inconsistency. If a conflict is detected
the entire tuple can be removed from the constraint.

We decided to take into account this type of mixed constraint within the DCSP framework,
which is discussed in chapter 5. We thus distinguish three types of mixed constraints:

1. discrete constraints with interval values
2. continuous constraints with discretization operators

3. discrete-continuous relations

3.4.1 Discrete constraints with interval values

Some variables in these constraints have a continuous value domain. In order to be rep-
resented as discrete constraint, the domains of such variables have to be discretized. A
discretization can be defined by dividing the real axis into regions and landmarks. A land-
mark is a particular real value. It serves as a precise boundary of a qualitative region (open
interval between adjacent landmarks). The landmarks for the vessel volume are indicated
in Figure 3.25.

Definition 3.10 (approximate domain for continuous variables) We define:
1. Ipgse as the set of base intervals based on the regions and landmarks.

2. Lipans as a subset of the power set of Ipgse such that two adjacent intervals are merged
to form a convex interval. Liqns forms a lattice. This corresponds to the implemen-
tation of an approzrimate domain as defined by [Benhamou, 1996].

68 Chapter 3. Local consistency techniques

C(I,1.position) : =
{(radialturbine 5)
(azialturbine 1.5)

(propeller 0.35)

(denteddisk [0.15,0.2])
(hellicalribbon [0.15,0.2])
(silversonhighshare [0.15,0.2])
(scaba [0.15,0.2])
(anchorstirrer [0.15,0.2])}

C(M, V.volume) : =
{(reactor [0,100])

(storagetank [0,1000])
(mizer [0,1000])}

C(V,V.volume, V.diameter) : =
{(hemispherical V.volume = 1/12x 7 * V.diameter3+

1/4 % m * V.diameter® x (V.height — 1/2 x V.diameter)
(cylindrical V.wolume = 1/4 x 7 x V.diameter? x V.height)}

C(Bridge.nbPiers, Bridge.length, Bridge.typicalSpan) : =
Bridge.nbPiers = [Bridge.length/Bridge.typical Span]

Figure 3.24: Three types of mized constraints.

3. A transformation function Tp of a variable domain D and an inverse T, Ly

Tp:1 = Dirans
TBI “lgpans = 1

The transformation function Ty associates a single interval I' from Ipqns to each
convex interval I in T such that I' is the intersection of all elements in Ijqns that
encompass 1.

In Figure 3.25, I is the set of all possible intervals in [0, 1000] and Ijpens is for example the
set

{[0, 0], (0,1),[1, 1], (1,100), [100, 100], (100, 150), [150, 150],
(150,1000), [1000, 1000], [0, 1), [1,100], ...}

Other versions of Iiqns are possible depending on the kind of base inter-
vals taken from the landmark representation like for example Ip, ., -

{[0, 1], [1, 100], [100, 150], [150, 1000], [0, 100], . .. }. Using 1Dy ,oumes the con-
straint C(M,V.volume) will then be represented internally by the tuples
((reactor [0,1])(reactor [1,100])(storagetank [0,1])(storagetank [1,100])...). The

3.4. Local consistency for mixed constraints 69

small medium large very-large
| = = ; P Vessel.volume
0 1 100 150 1000

Figure 3.25: Definition of landmarks for the vessel volume.

advantage of this transformation is that this type of mixed constraint is representable as
discrete constraint and that algorithm 3.23 can be applied directly.

An interval of the label for the vessel volume in the mixed constraint in Figure 3.24, for
example, can be transformed according to the function Tp, . - Dy.yoiume = IDy yorume -
We also define the function 7~! = Identity. Such a transformation function and its inverse
are associated to each mixed constraint for each continuous variable. Before propagating
a continuous interval through such a constraint, the interval has to be transformed ac-
cording to T and after the propagation it has to be transformed back into its continuous
representation according to 7! because its value might be propagated through continuous
constraints. The additional cost of O(k xd), where k is the number of continuous variables
in the constraint and d the maximal number of landmarks minus one, due to the transfor-
mation steps before and after a call to the refine operator are negligible with respect to
the complexity of refine.

The way this transformation function is chosen depends on the definition of the con-
straints. Either there is a transformation function for each constraint separately or there
exists a set of landmarks that are valid for all mixed constraints. In the mixer example,
there exists global transformation function: Tp,,, ., which can be used for the transfor-
mation of the label of V.volume in all constraints.

3.4.2 Continuous constraints using discretization operators

Typical constraints of this type use real-to-integer operators like
{round, mod, div, ceiling, floor} to convert the intermediate real result into an in-
teger. Continuous consistency algorithms are based on continuous functions with a
continuous boundary. These operators, however, define discontinuities as shown in
Figure 3.26.

One way to treat such equations is to approximate the equation by continuous con-
straints according to the definitions given in Table 3.1. The result of one propagation step
for the integer variable will then be rounded inwardly to the next integer by the transfor-
mation function T'([a,b]) = [[a], |b]] with a < b and a,b € R and T~ *([a,b]) = [a, b].

Propagating typicalSpan = [35,60] through the constraint on nbPiers in Figure 3.24
results in the interval [2.5,5.2857] for nbPiers, which is rounded to [3,5]. Search meth-

ods then compute the solutions {nbPiers = 3,typicalSpan = (50,75]},{nbPiers =
4, typical Span = (37.5,50]} and {nbPiers = 5, typical Span = (30, 37.5]}.

70 Chapter 3. Local consistency techniques

Operator Name | Approximation
i=[r| ceiling | r<i<r+1
i=|r] floor r—1<i<r

i=round(r) |round |r—1/2<i<r+1/2
i=trunc(r) |trunc |r—1<i<rifr>0
r<i<r+4+1lifr<0
i =mod(p,q) | mod r/q=div(r,q) +1i
i=div(p,q) | div i = trunc(r/q)

Table 3.1: A list of operators that define discontinuous functions. The operand r is a real,
i,p and q are integers.

NbPiers NbPiers

l
-
6 | :-I
|
44 : | :_l
[R —
L
SN
1
2;3' I 50 7'5 typicalSpan 35 60 typicalSpan

Figure 3.26: The constraint nbPiers = [length/typicalSpan] with length = 150m is
shown on the left and its approzimation by two inequalities on the right side. Within the
propagated interval of [35,60] for typical span, several solutions exist: nbPiers = 3,4, 5.

3.4.3 Completeness and soundness

The completeness of the labellings computed in mixed CSPs with the discrete (Section 3.3.1
and the continuous refine operator (Section 3.2.3) is guaranteed, because each of the op-
erators produces complete results and the communication of results between operators is
an approximation of the original results. Thus no solutions can be lost.

It is, however, obvious that the approximation of results communicated between the
discrete and continuous refine operator affect the local soundness property of the overall
algorithm: approximations of results happen as soon as an open interval computed by the
discrete propagation rule has to be propagated within the continuous operator. The open
interval is mapped into a closed one by the transformation function because the continuous
operator presented can only handle inequalities of type <,> and thereby equalities. It is
not able to handle strict inequalities, which topologically represent the inner part of a region
without its boundary. As a consequence, a conflicting, locally unsound value that appears
exactly at a landmark remain undetected. Consider again the constraint C(M, V.volume)
defined this time by {(reactor [0,100)} and a continuous constraint V.volume > 100 the
continuous refine operator will not detect that V.wolume = 100 is not a locally consistent
value because the result for V.volume computed by the discrete operator is approximated

3.5. Summary 71

by Tv.voiume With V.volume = [0, 100].

3.5 Summary

Consistency is an important concept in constraint satisfaction. This is especially true
in continuous domains where it is impossible to search for solutions using enumerative
algorithms. In this chapter, we consider propagate-algorithms [Davis E., 1987] computing
local consistency (2-consistency).

The integration of local consistency methods for discrete and continuous constraints
into a fix-point algorithm is achieved by specifying refine operators for each constraint
type. Additionally, a transformation is applied to labels if a continuous variable takes
part in a discrete constraint or a discrete variable in a continuous constraint. The goal
of such a transformation is to communicate values between constraints of different type
sharing variables. In some cases such a transformation leads to an approximation of the
original variable domain, because not all values of the original domain can be represented
in a second domain. Since the refine operators are using approximate variable domains,
some locally unsound values may remain in the labellings after the application of the refine
operator.

Faltings shows in [Faltings, 1994|, that some of the very negative results of applying
propagation algorithms to continuous domains are due to the way in which the refine op-
erator for the algorithm is formulated. He presents a new operator ensuring 2-consistency
for binary constraints over continuous variables. This new operator rule takes into account
intersections between constraints defined on the same pair of variables thus providing a
tighter pruning than algorithms propagating individual constraints. In the current imple-
mentation, we use an analytical representation of constraints and do not compute discon-
tinuities or singularities. In the discussion of the actual implementation, it becomes clear
that both, an analytical representation and a discretized representation of constraints have
their advantages.

Finally, a discrete refine operator is presented for k-ary constraints, which profits from
the ideas of local consistency in continuous domains. More precisely, the discrete operator
takes into account intersections in the projection of discrete tuples onto a pair of variables
thus achieving 2-consistency for this class of constraints.

The extension to ternary numeric constraints, which we present in the next chapter,
is based on the same ideas and also uses topological arguments in order to achieve local
consistency in three-dimensional spaces.

72

Chapter 3. Local consistency techniques

Chapter 4

Local consistency for ternary
numeric constraints

In this chapter, we extend the binary refine operator to ternary constraints. The chapter
is organized as follows:

e We first show why a propagation rule for ternary numeric constraints is more useful
in practical applications than its binary counterpart.

e The definitions are then extended to ternary numeric CSPs.

e A refine operator for ternary constraints defined in the same three-dimensional space
with an example and a correctness proof.

e Implementation.

4.1 A refine operator for ternary numeric constraints

The propagation rule for ternary numeric constraints, which will be described in the follow-
ing, profits in many ways from the ideas exhibited in the chapter on local consistency over
binary numeric constraints. Definitions like total constraint, local consistency and local
extrema are generalized in a straightforward manner to ternary CSPs. Instead of investi-
gating two-dimensional shapes, we move into R?, in which a constraint Cxyz represents
a volume. The axes of the Euclidean space thus defined are X,Y and Z.

4.1.1 Local consistency over k-ary constraints (k > 3)

Two approaches are possible when devising an algorithm for local consistency over k-ary
numeric constraints:

1. The algorithm enforces local consistency directly on k-ary constraints for any k.

2. The algorithm enforces local consistency on a transformed system consisting of con-
straints whose arity is at most three.

73

74 Chapter 4. Local consistency for ternary numeric constraints

Examples for the first approach are Newton and its successor Numerica
([Benhamou et al., 1994], [Van Hentenryck et al., 1995]) in which a weaker form of
local consistency called box-consistency is used directly on the given complex constraints.
A constraint is transformed into an interval function and its projection onto a given
variable allows for narrowing down the interval of the variable by finding the left-most and
right-most zeros of the function. Since the binary propagation rule discussed in chapter 3
has a remarkable pruning effect due to the idea of using total constraints, our first idea
was to generalize the rule to at least ternary constraints and to evaluate additional
complications of this stepwise generalization. In fact, the ternary propagation rule has its
limitations, which are likely to become even more hampering in a further generalization to
higher dimensions. Also, identifying local extrema will become increasingly complicated.
For this reason, we chose a second approach that relies on a transformation of the initial
system into a set of maximal ternary constraints and then achieves local consistency on
the transformed set.

Any k-ary constraint Cx, .. x, can be transformed into a set of ternary constraints as
follows ([Sam-Haroud, 1995]):

i iteratively replace each subexpression X; (9 X; with some binary operator () =
{+,—, %,...} in Cx, .. x, by a new variable X,
ii add a new ternary equality constraint X, 1 = X; (O Xj.

The process stops when C'itself becomes ternary. Its complexity is bounded by O(m) where
m is the number of operators in Cx, .. x,. Since the transformation is based on symbolic
manipulation, no information is lost in the description of the solution space. It is however
possible that a locally consistent labelling produced for a transformed system suffers from
larger rounding errors due to the newly introduced equality constraints. It has also been
argued in [Benhamou et al., 1994] that the decomposition into basic constraints used in
some interval-based algorithms slows down the convergence of the algorithm and result in
weaker pruning. The goal of such a transformation is to guarantee certain properties on
the constraints using a restricted set of basic operators. This is different from our approach
that requires ternary constraints as input without specifying what kind of operator should
be used. It is still an open research issue how such a transformation influences the locally
consistent labelling.

4.1.2 Extension of definitions to ternary numeric CSPs

It has often been argued in the discrete CSP community that determining a locally con-
sistent labelling for k-ary discrete constraints can be reduced to the problem of finding a
labelling of the binary CSP induced by the dual constraint graph. This is in general more
difficult for numeric CSPs because in such a transformation the nodes of the dual graph
are the constraints and the new constraints establish a relationship between the values
of two identical variables located in different nodes. Finding these relationships between
values does not seem a trivial task. The approach we take consists of computing locally
consistent labellings directly on the region defined by ternary constraints. In addition,

4.1. A refine operator for ternary numeric constraints 75

the phenomenon of implicit cycles also appears in ternary constraint systems: if several
ternary constraints are defined on the same pair of variables (they might differ in their third
variable) and they are considered individually by a propagation algorithm, the effects of
propagating a single constraint over one of the two variables induces the reconsideration
of all other constraints in the total constraint and so on. Again, such set of constraints
should be treated simultaneously and thus belongs to the same total constraint.

Definition 4.1 (Total constraint) A total constraint is a set of bounded feasible regions
Cly ={Q1,...,Qx} containing exactly those combinations of values (z,y) for X and Y
that are consistent with all constraints Cxyz; for any .

A total constraint C consists of all ternary constraints defined over the variables X,Y
resulting in a constraint set (J;,{Cxvz}. Note, that the restricted regions of a feasible
region (@ are now described by R(Q,{Ix,Iz}) and are those connected subregions of @) the
X-coordinates of which are entirely contained within an interval Ix and the Z-coordinates
within an interval of the label L.

Intuitively, we aim at finding a propagation rule that has the effect of producing locally
consistent labels on the binary projection of ternary constraints that are part of the total
constraint. According to this idea, the local consistency definition 3.4 is extended to
systems of ternary constraints as follows:

Definition 4.2 (Local consistency for ternary constraint systems) A labelling is
locally consistent if for every X;, X; and every value x; € L;, there exists a value
zj € Lj such that for every constraint Cx,x;x, involving X; and X; and possibly an-
other wvariable Xy, there exists a value xp € Ly such that Cx, x; x, 1s satisfied for
Xz' = LEi,Xj = .’Ej,Xk =Tk’

(VZ,]) (VCC, S Li)(EkL'j S Lj)

(VCx;x;x,)37k € Li)Cx, x; x, (T4, T5, Tk)

Note that this definition is different from others (e.g., [Davis E., 1987]) in that it requires
that for each single value z; there exists at least one value for X; such that this value pair
satisfies all constraints over the variables X;, X;. This ensures that the locally consistent
labelling of the ternary system is at least as tight as the locally consistent labelling of its
binary projection.

Similar to the binary propagation rule, we would like to find a means of deciding
when an entire three-dimensional region has been considered only by counting its “extreme
points”. In order to motivate the definition of extreme points in a three-dimensional space,
we outline the underlying mechanism on which the proof for a ternary propagation rule is
based. In the binary case, we are able to determine the number of connected intervals in
the intersection of a given value X; = z; and the feasible regions defined by the binary
constraints. Letting a line L : X; = z; sweep over the given intervals for X, we detect if

76 Chapter 4. Local consistency for ternary numeric constraints

Y&

a) b)

Figure 4.1: a) In 2 dimensions, ay(R,yo) represents the number of connected intervals
in R. In 8 dimensions, we would like to determine the number of connected regions in
the X Z-plane for a given yg in a similar manner. The circles mark points at which this
number changes.

there is at least one value (or one interval) for X; thus verifying the consistency condition
for binary numeric constraints. This method can be directly adapted to regions defined
by ternary constraints. L now represents a sweep plane and the intersection between L
and the feasible regions are now at least binary connected regions and no longer intervals.
In Figure 4.1 a), there are two connected intervals and in Figure b) R € R? is a three-
dimensional region in space X,Y,Z and L : Y = y represents a sweep plane parallel
to X, Z moving from larger Y-coordinates to smaller ones. It can be observed that the
number of connected regions appearing in the sweep plane will only change at points on
the surface of the three-dimensional region that have a tangent plane parallel to the sweep
plane. The tangent plane of a point (Ze,¥e,2.) on the surface B(R) is defined by the
tangents situated at the intersection of B(R) with the planes defined by two coordinates
of the point, for example X = z, and Z = z. (Figure 4.2). At a point that has a tangent
plane parallel to the sweep plane, the value of the function defining the surface does not
change in the neighborhood of that point. It is at such a point that a new region appears
or disappears in the sweep plane and existing regions are merged or disconnected. Points
whose tangent plane is parallel to the sweep plane, i.e. which have a normal parallel to
one of the coordinate axes, are called stationary points.

Definition 4.3 (Stationary point) Let I be a connected subset of a closed set R C R3.
I is stationary in'Y of R if and only if for any point e; € I, both sets S%y = {(z,y) |
(z,y,2;) € R} and S}y, = {(2,9) | (z¢;,¥y,2) € R} have a local extremum inY = ye,.

Stationary points not only include local minima and maxima but also saddle points like the
one shown in Figure 4.2. Each z.; and Te; of a stationary point e; deﬁnes a “cut” through
the space defined by R, called a slice: S5+ involving X and Y and S%,, involving Z and Y.
The definition of stationary points also includes sets of points that are all identical with
respect to the extremum type in both slices. Typically, a curve or even a surface may form
a stationary point set. A stationary point e; of a region is classified according to the types

4.1. A refine operator for ternary numeric constraints 7

=>Tx

Figure 4.2: Cutting through a region along X = z. and Z = z, with e being a stationary
point results in two sets Sxy and Szy. Sxy has a horizontal tangent Tx in (¢, ye) and
Szy has a horizontal tangent Tz in (2e,Ye). The local extremum in Sxy is a minimum in
Y and the second in Szy a mazimum inY .

of local extrema in both slices Sg(y and S]éy. To compute the number of connected regions
in the intersection with the sweep plane, all stationary points must be found and classified’.
These points again do not only appear on individual constraint surfaces and intersections
between surfaces but they may also form in the intersection plane of an interval boundary.

4.1.2.1 Classification of stationary points

Let R be a three-dimensional closed region and e; a stationary point to which the slices
ngy and Séy are associated. When propagating an interval in X to the Y-axis, the ngy
is called main slice because it is parallel to both axes involved in the propagation. In order
to classify a stationary point e;, only local information obtained from the slices Sg(Y and
S%Y is used. By definition the stationary point has a local extremum at the boundary
of both slices denoted by exty (B (Sg(y), Ye,) TESPectively e:vty(B(S;Y),yej). The type of
extremum in both slices determines the type of the stationary point. Altogether, there
exist 2 x 2% 2 = 8 combinations (maximum or minimum in both directions combined with
either side of the boundary being the feasible region) as reported in Figure 4.3. In this
Figure, the main slice Spr = ngy is indicated by a solid and S = Séy by a dotted line. Two
of these eight combinations are simple rotations of another combination and are therefore
discarded. There remain six different types of stationary points to be distinguished in
order to interpret ternary regions correctly. This classification is justified by the fact that
all the six types will have a different effect on the intersection between the feasible regions
and the sweep plane (see Section 4.2.3 on the correctness of the propagation rule). The
names to distinguish these types have been chosen according to the following convention:
A maz is a maximum in both slices, a min is a minimum in both slices and a saddle has

!Similar theories exist in topology, in which an integral or a topological index over a whole surface is
computed [Milnor, 1963], solely based on information at critical points of the surface [Fulton, 1995]

78 Chapter 4. Local consistency for ternary numeric constraints

\

\
\
\
1 above saddle

above max below min

Figure 4.3: Classification of stationary points.

different extrema in both slices. If the feasible region (shaded in Figure 4.3) extends above
the stationary point it is termed above otherwise below.

Case 1: below max e; is a maximum in both slices: mazy(B(Swm),ye;) and
mazy (B(S),ye,;) and the feasible region lies below e;.

Case 2: above min e; is a minimum in both slices: miny(B(Sum),v,;) and
miny (B(S),ye;) and the feasible region lies above e;.

Case 3: below saddle e; is a maximum in the main slice XY and a minimum in the
secondary slice ZY or a minimum in the main slice and a maximum in the secondary slice:
exty (B(Sm),Ye;) # exty (B(S),ye;) and the feasible region lies below e;.

Case 4: above saddle e; is a maximum in the main slice XY and a minimum in the
secondary slice ZY or a minimum in the main slice and a maximum in the secondary slice:
exty (B(Sm),ye;) # exty (B(S),ye;) and the feasible region lies above e;.

Case 5: above max e; is a maximum in the main slice XY as well as a maximum in
the other slice ZY: mazry (B(Sum),ye;) and mazy (B(S),e;) and the feasible region lies
above e;.

Case 6: below min e; is a minimum in the main slice XY, as well as a minimum in
the other slice ZY: miny (B(Swm),ye;) and miny (B(S),ye;) and the feasible region lies
below e;.

4.1.2.2 Classification of three-dimensional regions

Since the form of feasible regions that appear in three dimensions becomes more com-
plex, we have to distinguish between different types of regions with respect to topological

4.2. Refine operator for a single third variable 79

considerations (Appendix B).

Remember that a region in our case is the set of all points connected to a given point;
i.e. it is always path-connected. If a feasible space consists of several regions, those are
disconnected by definition. Path-connectedness does not exclude the existence of holes
in a region. A hole defines the complement of a closed bounded region as feasible region
(the outside of that region). Different types of holes exist: Cauvities are holes that are
completely surrounded by a feasible region, whereas channels pierce a feasible region. We
need to distinguish between two types of regions:

1. simple regions are regions containing no holes

2. (path-connected) regions are regions that can contain one or more holes

The path-connected regions may contain holes in form of cavities or channels. An example
for such a region is a “swiss cheese” or a “sieve”. If we do not precise that a region is simple,
it may contain holes.

Furthermore, as for the binary propagation rule, we consider connected regions with a
boundary that has kinks and corners only at intersections of different constraints forming
the region but has no other irregularity (discontinuity or singularity) on its boundary.

4.2 Refine operator for a single third variable

We first consider the case of propagating the label of X to Y through a set of constraints
Cty = U; C4y, a total constraint involving a single third variable Z. The consistency
condition of Definition 4.2 for the label Ly is now:

(Vy € Ly)(3z € Lx)(3z € Lz)Cxvz(z,y,2)

Similar to the binary case, we would like to find locally consistent labellings for a three-
dimensional region only by taking into account its stationary points. In the follow-
ing, a refine operator is devised that propagates a single interval Ix through the total
constraintCE(Y in order to find a locally consistent label for Y. For the moment, we as-
sume that the total constraint forms a set of simple regions.

4.2.1 Propagating a single interval through simple regions

In order to know when a feasible region has been completely considered, only the stationary
points of the restricted regions need to be determined, classified and counted similar to
the binary propagation rule. The procedure simple-propagate(Ix,C%y,{Iz}) computes
the intervals for Y that are in the restricted regions where z € I, and z € Iz. Each
of the restricted regions R; € R(Cly-,{Ix,Iz}) projected on the Y-axis defines a single
continuous interval of locally consistent values for Y given as

I, = [abovemin{y|3(z,y) € R;}...belowmaz{y|3(z,y) € R;}]

80 Chapter 4. Local consistency for ternary numeric constraints

From all types of stationary points these are the only ones at which a region completely
vanishes (above min) or is being created (below max). This observation does however not
imply that only stationary points of type above min and below max have to be considered.
The other types rather represent intermediate points allowing for a correct interpretation of
the restricted regions. The region represented in Figure 4.1 b, for example, has two below
max but only one above min. It is the saddle point that compensates for the missing
second minimum. In the example of Figure 4.5, the set R(Cky, {Ix,Iz}) has two regions
R; and Ry that define two intervals Iy; = Iy, with values for Y that are locally consistent
with £ € Iy and for which there exists a value z € Iz. Provided that the boundary of
restricted regions does not contain discontinuities nor singularities (similar assumptions as
for binary constraints), the stationary points in the boundaries of the restricted regions
R; € R(CE(Y, {Ix,Iz}) fall at:

1. Local extrema and saddle points of an individual constraint surface lying within Ix
and I 7.

2. Intersections between two respectively three constraint surfaces lying within Iy and
Iy.

3. Local extrema and intersections in the boundaries of Ix and I.

The saddle point in Figure 4.2 is an example of the first category. In the same graph, there
are two local maxima of the constraint surface in the interval bounds of X. Intersections
between constraint surfaces that form stationary points are shown in Figure 4.5.

The propagation rule simple-propagate for ternary constraints is applied to each
combination of intervals in Lx and Lz (Algorithm 4.4, lines 2-4). It executes exactly the
same steps as the one for binary constraints presented in Algorithm 3.8:

a) finding the candidates in form of stationary points and classifying them (function
identify-candidates),

b) filtering relevant points that satisfy all constraints of C%,-, whose X-coordinate lies
within Iy and the Z-coordinate within I; (function filter-candidates) and ordering
the remaining points with decreasing Y-values,

c) computing the locally consistent intervals for Ly (function compute-intervals) on
the ordered set.

The only difference lies in the fact that there are more distinct types of stationary points
to be expected (not only minima and maxima as in the binary propagation rule) and
«a is incremented at stationary point of type below max, below min, above saddle and
decremented at those of type above max, above min, below saddle (lines 16,18 of the
algorithm). As we will prove later, simple-propagate is correct for a set of simple regions;
i.e. regions not containing holes.

4.2. Refine operator for a single third variable

function refine(X,Y,Cxy)
begin

1 Iy« {}

2 for all combinations (Ix,Iz) with Ix € Lx and Iz € Lz do
3 Iy < Iy U simple-propagate(Ix,Cxy,{Iz})
4 od

5 IU « union of all intervals in Iy where overlapping intervals

are merged into single convex intervals

6 return IU

end

function simple-propagate(Ix,Cy,{Iz})

begin
7 E + identify-candidates(Ix,C%y, {Iz})
8 FE « filter-candidates(E,Ix,C%y,{Iz})
9 Ly + compute-intervals(E)

10 return Ly

end

function compute-intervals(E)

begin

11 Iy « {}

12 a+0

18 for eache € E do

14 if e is of type below max, below min, above saddle then
15 a+—a+l

16 elif e is of type above max above min, below saddle then
17 a+—a—1

18 fi

19 if « has changed from 0 to 1 then
20 Ymaz = Y -coordinate(e)

21 elif a has changed from 1 to 0 then
22 Ymin = Y -coordinate(e)

23 IY « IY U {[ymin; ymaac]}

24 fi

25 od

26 return Iy
end

Figure 4.4: A propagation rule for a single third variable.

4.2.2 Example

81

In order to illustrate the algorithm, a simple example of the intersection between a parabolic

surface rising in X3 and a sphere is given (Figure 4.6):

Ci = X2+1/2+xXy+2%(X3—6)>0

82 Chapter 4. Local consistency for ternary numeric constraints

Cy, = X?4+X34+X2-25<0

In the following all coordinate values are rounded to 2 decimals. The sphere has a lo-
cal maximum in X3 at (0,0,5) and a local minimum at (0,0,—5). There are four in-
tersections that are also local extrema in X3: below max (1.54,1/4,19/4), below max
(—1.54,1/4,19/4), above min (4.17,1/4,—11/4), above min (—4.17,1/4,—11/4). Only
the four intersections are part of the feasible region. To propagate X; to X3 with
Lx, = {[-10..10]},7 = 1,2,3, we have to consider the restriction of the feasible region
Q = R(C%y,{Ix, = [-10,10],Ix, = [-10,10]}). This restriction does not produce any
new stationary points. The four intersections are sorted in decreasing order and the prop-
agation rule is applied. The list of stationary points is given in Figure 4.5 with the index
a(Q, z3¢) for each point e together with an illustration of the slice at Xo = 1/4. From this
list the resulting interval for X3 is computed: Ix, = {[—2.75,4.75]}. A comparison be-
tween our propagation rule and a refine operator similar to Davis’ propagating individual
constraints? results in:

label local consistency Davis

Lx, {[-5,—1.65][1.65,5]} {[—5,5]}
Lx, {[-3.5,4]} {[-5,5]}
Lx, {[-2.75,4.75]} {[-5,5]}

Using Davis’ operator, which propagates the constraints individually and which does not
take into account intersections between constraints, the intervals cannot be reduced beyond
the projection of an individual constraint onto each axis. Furthermore, the necessary
splitting of initial labels into monotonic and continuous subparts results into 2% applications
of the propagation rule instead of a single one.

Imagine now that the constraint of the parabolic surface is slightly changed into

Cri=X?+4+1/2%Xo4+2%(X3-3)>0

shown in Figure 4.6 such that the local maximum in X3 of the sphere at (0,0,5)
becomes part of the feasible region and only three intersections remain: above min
(—3.58,1/4,—3.48), above min (3.58,1/4,—3.48) and a saddle point above saddle
(0,4.65,1.84) shown in Figure 4.7. Again the intersections with the bounds of the la-
bel of X7 do not result in further stationary points. After sorting the points in decreasing
Y -values, the locally consistent interval for the propagation step of Iy, = [—10,10] to X3
is Ix, = [—3.48,5]. A comparison with a Davis-like operator gives:

label local consistency Davis

Lx, {[_57 5]} {[_575]}
Lx, {[—4.23,4.73]} {[-5,5]}
LX3 {[_3'4815]} {[_5,5]}

2We assume here that the intervals to be propagated have been splitted in monotonic and continuous
parts as discussed in Section 3.1. In this example, Lx,;,i = 1..3 would have to be splitted into two
parts: [—10,0) and (0, 10] and each combination of monotonic subparts of the labels would be propagated
separately.

4.2. Refine operator for a single third variable 83

X3
Type (T1e, Z3e) Q
- - (=, +00) 0
lyq below max | (—1.54,4.75) 1
below max | (1.54,4.75) 2
above min | (4.17,—2.75) 1
above min | (—4.17,—2.75) | 0

X2=1/4

Figure 4.5: The slice containing all four intersections at Xo = 1/4 is shown on the left
side. The table on the right side indicates all stationary points in X3 on the boundary of
the restricted region with their index «.

Figure 4.6: A three dimensional plot of the total constraint formed by X? +1/2 % X5 + 2 *
(X3 —6) > 0and X? + X7+ X3 —25<0.

84 Chapter 4. Local consistency for ternary numeric constraints

X3
X3

Type (fvle, T3e) a
__.184) () 0
= X2 below max (0,) 1
- above saddle | (0,1.84) 2
above min (3.58, —3.48) 1
above min (—3.58,-3.48) | 0

X2=1/4 X1=0

Figure 4.7: The slice containing the two intersections at Xo = 1/4 is shown on the left side.
The second slice shows the intersection at X1 = 0. The table on the right side indicates all
stationary points in X3 on the boundary of the restricted region with their index .

Figure 4.8: A three dimensional plot of the total constraint formed by X2 +1/2+ Xo + 2 %
(X3—3)>0and X? + X5+ X3 —25<0.

4.2. Refine operator for a single third variable 85

4.2.3 Correctness of the propagation rule

The purpose of this section is to prove the correctness of the propagation rule we described
in Algorithm 4.4 in the preceding section. Given two main categories of stationary points:

T1 = {below max, below min, above saddle}
T2 = {above max, above min, below saddle}

we define the index ay (R,y) of a region R € R? as follows:

Definition 4.4 The index of a region R € R is the difference between the number of
stationary points of type T'1 and the number of stationary points of type T2 on its boundary
B(R) above Y =y:

ay(R,y) = {T1ly(B(R),v) | yo > y}| —
{T2y (B(R),y0) | yo > y}|

with T1y (B(R),y) being true if there exists a stationary point in B(R) at coordinate y of
type T1 and T2y (B(R),y) true if there exists a stationary point in B(R) at coordinate y
of type T2.

First, we prove that the number of stationary points of type T'1 equals the number of
stationary points of type T2 for any closed region.

Lemma 4.1 For a given closed region R € R® and its surface B(R)
KT1y (B(R),yo)}| = {T2y (B(R),y0)}|

Proof: We prove the lemma by induction. The simplest type of region has the form
of a sphere with one maximum in Y and one minimum in Y such that the lemma is
verified. We prove now that a topological transformation® does not change this relation.
Two topological transformations are possible:

1. a new local maximum is added (stationary point of type T'1): this also implies the
creation of a saddle point of type below saddle (type T2) and vice versa

2. a new local minimum is added (type 7'2): this implies the creation of a saddle of
type above saddle (type T'1) and vice versa

In both cases, the relation is verified. Any simple region can so be obtained by a series
of topological transformations always keeping the number of stationary points of type T'1
equal to those of type T°2.

The same is true for path-connected regions. In fact, holes are defined by the outside of
simple regions. This implies that a local maximum of the simple region defining the interior
of the hole becomes a point of type above maz, a minimum a point of type below min, a
below saddle an above saddle and vice versa. In other words, the number of points of type
T1 again equals the number of points of type T2 for a hole. Eventually, two possibilities
of combining holes and regions exist:

3A topological transformation consists of deforming the surface in a smooth manner as if one would
treat a piece of clay.

86 Chapter 4. Local consistency for ternary numeric constraints

1. the hole is a cavity

2. the hole is a channel that pierces the region and one or both ends

Let S be the outer surface of R and H be the inner surface of the region enclosing the
holes. For the first case, we have

H{T1y (S, y0)}H = {T2v (S, y0)}|
HT1y (H,yo)} = [{T2y (H,yo)}|

and thus the lemma is verified. In the second case, the above maz and/or below min of the
hole is replaced by a saddle point of type below saddle respectively above saddle and the
lemma remains true A

Prior to explaining how the index « behaves in the presence of stationary points, we
need to show that the process of merging or separating regions with a smooth boundary
in R? never involves more than two regions.

Lemma 4.2 Let A; CR?,i=1,...,n a set of non-empty regions with a smooth boundary.
Let P be a point of R? such that each Ay, touches each other A;, k # j only at point P.
Then n, the number of regions, is 2.

Proof: The condition N}_; A; = {P} implies that the A; all share the same tangent at P.
Assume n > 2. Consider a sphere S;(Cj, r;), with radius r; > 0 for each A; such that each
sphere is the sphere with the largest possible radius completely within the region of A;
going through P;i.e. the spheres only intersect in P and therefore share the tangent in P.
This sphere is unique for each region. The centers C; must all lie on a line perpendicular
to the tangent going through P. It follows that only two spheres can be placed on either
side of the tangent with their center on the line without intersecting elsewhere than in P.
Thusn=2 A

Note that Lemma 4.2 is no longer true if we assume kinks and corners in the boundaries
of the regions A;; e.g. discontinuities at the first derivatives of the function defining their
boundary (Figure 4.9). Here, the sphere placed in the interior of a region degenerates into
the point P (see Section 4.3.2 for further discussion on degenerate stationary points).

The two main lemmas relate the index ay (R,) of a region with the number of con-
nected regions that appear in the intersection between R and L :Y = yg:

Lemma 4.3 For a given closed region R € R® with a continuous boundary and for any
Y -coordinate yo for which there is no point (x,yo,z) € R, ay(R,yo) = 0.

Proof: Given a yy with no point (z,yo,2) in R, R is either completely above L : Y = y,
or completely below L. If R is completely below L, there is no stationary point and
a(R,yo) = 0. If R is completely above L, all stationary points of R have been considered
and the number of stationary points of type T'1 equals the number of points of type T2 by
Lemma 4.1. Again, a(R,y) =0 A

4.2. Refine operator for a single third variable 87

Figure 4.9: a) Two regions with a smooth boundary touching at point P. b) More than two
regions can touch at a single point if they have corners in the boundary.

Lemma 4.4 Let R be a single connected region in R® with a continuous boundary. Con-
sider the plane L :' Y = yg intersecting R. The following relation holds:

CEY(R, yO) =c—h

where ¢ is the number of connected regions in L N R and h is the number of holes in these
TegIONS.

Proof: We present a proof by construction, letting the plane L sweep from Y = 400 to
Y = —oo updating « each time L touches a stationary point e, i.e. L:Y = y, with gy, the
Y -coordinate of e. Changes in the topology of the intersection between the sweep plane
and the region are observed at each of the stationary points. According to its definition,
« is incremented for points of type T'1 and decremented for those of type T'2:

o If the sweep plane L : Y = y, touches a stationary point e qualified as below max,
a new two-dimensional connected region appears in the plane L. At a stationary
point that is a below maz, the index « increases by 1. If L reaches an above min, a
connected region disappears in plane L and « decreases by 1 (Figure 4.10.1).

e A stationary point of type below saddle merges two disjoint regions and a decreases
by 1, whereas a point of type above saddle separates a region into two disjoint ones
and « increases by 1 (Figure 4.10.2).

e A stationary point of type above maz creates a hole in a former connected region of
the plane L; o decreases by 1. This is a special case of two connected regions being
merged, as a single connected region is connected to itself. A point of type below min
makes such a hole disappear, and « increases by 1 (Figure 4.10.3).

According to lemma 4.2, if the three-dimensional region has a smooth boundary there can
never be more than two connected regions touching simultaneously at a stationary point.
Therefore, « is only decremented by 1 each time two regions merge and incremented by 1 if
two regions separate. Finally, each time a new connected region appears « is incremented
by 1 and when two connected regions are merged into one « is decremented by 1. This
implies that « counts the number of connected regions in L minus the number of holes
appearing in these regions A

88 Chapter 4. Local consistency for ternary numeric constraints
above min above max
below max O below min @
X X
above saddle

below saddle

Figure 4.10: The three figures show how the intersection between the sweep plane L and R
and changes when L passes through a stationary point of type T'1 or type T2.

If the plane L :' Y = yp does not intersect the region R, ay (R, yo) = 0. In other words, if
L lies completely above or below the region, the number of regions as well as the number
of holes in L must be 0. However, contrary to the binary case, a(R, yo) might also be zero
or even negative although L intersects the region R. This phenomenon is due to holes that
appear in the plane and are subtracted from the connected regions.

We will first consider the case where R € R? is simple and deduce some useful propo-

sitions:

Lemma 4.5 For any Y -coordinate yo for which there is a point (z,y0,2) € R, ay (R,yo) >
0.

Proof: Consider the plane L : Y = yy and a simple region R. Since (z,yo, z) is in R, there
must be at least one connected region in RN L. By lemma 4.4, the number of connected
regions in L must be positive; i.e. ¢ > 0. Furthermore, R contains no holes, which implies
h = 0. It follows that ay(R,y9) >0 A

Lemma 4.6 For any simple region R and any value yy, ay (R,y) > 0.

Proof: Either there exists a point (z, o, 2) € R and ay (R, yo) > 0 by lemma 4.5 or there
exists no such point and ay (R,yo) = 0 by lemma 4.3 A

A set of simple regions with a smooth boundary in R® can be treated accordingly to the
binary case:

Theorem 4.1 For a Y -coordinate yy and a feasible region @, there exists a region R €
R(Q,{Ix,Iz}) containing a point (zg,yo,2) with xy € Ix and z € Iz if and only if
ERiER(Q,{Ix,Iz}) ay (Ri,yo) > 0. Furthermore, there exists a point (z9,v0,2) € Cky 5
with zo € Ix and z € Iz if and only if ZQEC&yz 2 Ri€R(Q,{Ix,12}) @ (Ris yo) > 0.

4.2. Refine operator for a single third variable 89

lel
) = :/
el 1e2
—— —:::_—l—:: ::::
e2 LTS
e3)
T
e " |
i e4
<>
el >
el
__Y=>
2 =
e s e2
D
)

Figure 4.11: Saddle points e2 and es on a region with a hole, a torus (upper image) and
saddle points e1,es on a simple region, a cudgel (lower image). The left sides show what
happens in the intersection of L with the region.

Proof: Suppose there was no restricted region R containing a point (zg,¥yo,2). This
implies that for all regions R;, by lemma 4.3 ay(R;,y0) = 0 and the sum of all indices is
equally zero. Conversely, if there is a region R containing the point (zo, yo,), by lemma 4.5
ay (R, yo) > 0 for at least one region R. Thus, the sum of all indices must be positive by
lemma 4.6. The same argument extends to all restricted regions @ for a total constraint A

4.2.4 Propagating a single interval through regions containing holes

In this section, we discuss the extension of the propagation rule 4.4 to regions containing
holes.

The only types of stationary points at which a hole starts to appear in a region are
below saddle and above maz. The reader can verify this easily by looking at Figure 4.10.
The difference is that a point of type above max always introduces a hole whereas a point
of type below saddle connects two different parts of the same three-dimensional region.
If these parts are already connected, the stationary point below saddle adds a second
connection such that the region forms a hole. The ambiguity that lies in the interpretation
of a stationary point of type above saddle is shown in Figure 4.11.

Remember that « is decreased at the start of a hole due to a stationary point either
either of type above maz or below saddle. When a region contains one or several holes, the
index a may drop below 1 without the region being completed because the existence of
a hole implies the existence of a region around the hole. In Figure 4.12, the index « is
shown for a feasible region formed by a torus. Although « falls below 1 at the saddle point
ea, we know that the region as not yet been completely considered because a new region
can only start at a stationary point of type below maz and end at one of type above min

90 Chapter 4. Local consistency for ternary numeric constraints

alpha

Figure 4.12: A torus is treated correctly by the propagation rule because no new region can
start or disappear at a saddle point.

and this is not the case for the torus. Our rule can treat a torus correctly. Let us try to
imagine what happens if additional local minima and maxima are added to a region hiding
the hole. Imagine a mushroom with a wormhole like the one shown in Figure 4.13. The
appearance of a hole in ez is masked by a branch of the region appearing to the right of
the stem, which ends in the local minimum e4. Additionally the vanishing of the hole in eg
is hidden by the appearance of yet another branch at the left of the stem starting at e5. It
thus seems natural that a new region starts at es, which seems to be without connection
to the region ending at e4. In other words, if the operator does not know about the hole
that has been created in es, the counting of stationary points leads to a false gap. Instead
of the interval from eg to e; the result would be eg..e; and ey..e;.

The existence of such figures like the mushroom with a wormhole may be hypothetical.
In most cases, the additional rule that if o drops to 0 at a stationary point different from
above min or if « goes to 1 at a point different from below maz, no gap is created, is
sufficient to consider single regions with holes correctly. For the general case however, a
more profound analysis of the saddle points below saddle and above saddle is necessary in
order to determine if such points are situated at holes. Those two types of stationary points
would have an additional label indicating the existence of a hole. With this additional
information, the refine operator can correctly treat any set of regions containing holes.

4.2.5 Extension of the refine operator

The original operator 4.4 for simple regions has to be modified in order to take into account
holes in regions. We assume here that additional information is available at saddle points
indicating if they are situated at the boundary of a hole. The refine operator treating
simple regions is extended by an additional counter H counting the number of holes at
each stationary point. According to lemma 4.4, it is clear that a region has been completely
considered if and only if H and « are zero (Algorithm 4.14).

4.2.6 Ternary constraints with different third variables

Until now, the propagation rule computes locally consistent labellings for a restricted class
of regions represented by constraints defined in the same ternary space. Consider the

4.2. Refine operator for a single third variable 91

alpha alpha H

Figure 4.13: False gaps may appear if the existence of a hole at saddle points is not de-
tected. The refine operator based solely on the identification of stationary points fails if the
ezistence of a hole at a saddle point is hidden by local mazima and minima (mushroom
with wormhole). An extended refine operator with the additional information about holes
can of course treat the region correctly.

example of the parabolic surface and the sphere modified such that the sphere is now
defined in space X1, X3, X4:

Cr = X{+1/2xXo+2%(X3-6)>0
Cy = X2+ X2+4+X:-25<0

If each constraint is treated individually by the propagation rule, intersections that are
stationary points in X3 get lost just as if in the binary case intersections between binary
constraints would not be considered. It follows that when there are several third vari-
ables Zi, Zo, ..., Zy, over which the constraints Cxyz, are defined, the total constraint is
Cly = {Cxvz | i = 1...k}. Two questions arise: first, which of the stationary points
of {Cxyz,} are part of the regions formed by the total constraint (filtering) and second,
how are the stationary points of the total constraint classified. In order to understand
how a total constraint over several third variables should be treated, let us first consider
constraints defined on the same third variable Z, Cky = {Cky4,...C%,}. The total
constraint defines a conjunction of constraints; i.e. intervals must be propagated through
their intersection. The intersection is computed implicitly by pruning stationary points
that do not satisfy all constraints of the total constraint. The remaining stationary points
are part of the boundary of the intersection and the new labels are computed based on
them. When the third variables are different, an interval must also be propagated through
their intersection. Each of the constraint sets {Cxyz,} defines a set of feasible regions
R = {Q¢,... ,Qﬁni} in the space XY Z;. The aim is to compute the index of the inter-
section of these regions, denoted R = ﬂleRi, without explicitly constructing this inter-
section. From the preceding sections we know how to compute and filter the stationary
points for each R’.

92 Chapter 4. Local consistency for ternary numeric constraints

function compute-intervals(E)
begin

1 Iy« {}

2 a+0

s H«0

4 for eache€e E do

5 if e is of type below max, below min, above saddle then
6 a+—a+l
7 elif e is of type above max above min, below saddle then
8 a+—a-—1
9 fi
10 if e is of type above max or below saddle at a hole then
11 H+H+1
12 elif e is of type below min or above saddle at a hole then
13 H+«H-1
14 fi
15 if o+ H has changed from 0 to 1 then
16 Ymaz = Y -coordinate(e)
17 elif « + H has changed from 1 to 0 then
18 Ymin = Y -coordinate(e)
19 Iy + Iy U {[ymin;ymaz]}
20 fi
21 od

22 return Iy
end

Figure 4.14: Revised version of compute-intervals computing a locally consistent label
for'Y given the stationary points E of which all saddle points are labeled with additional
information about the existence of holes.

—— -3 ~
e ™ B2 B2
I/ /// /// \\ /d}//
[; % \ \
\ (Bl / | — 7\ Bl |
\ \ N 7/ ;= 7\ /
\ \ I / I51\ 4
\ / \B1
\ \ \ s \ \
\ \ AN e N
\ J ~—— ~ B2 |
\ / N /
N <7

Figure 4.15: The intersection of the projections of two regions onto their common azes
results in a region sharing the boundaries of B1 and By as well as intersections between
the boundaries.

Since the region R represents a n-ary region with n > 3 and operations in this space
are difficult to visualize, our original idea was to work on the projection of the ternary
constraints onto the common variables and to derive a locally consistent labelling from
this projection. Two difficulties arise:

4.3. Implementation 93

P2

of1

Figure 4.16: Concave regions produce stationary points that can be hidden in the projection
of the region. Pp, a below min of the ternary region, is hidden in the projection of the
figure. In addition a new local extremum P» appears in the projection, which does not even
exrist as single point in the ternary region.

1. The filtering step in order to compute the intersections between different projections
is likely to become inefficient because a stationary point e = (Ze, Ye, 2e) of constraint
C)l(yzi : EX(X,Y, Z;) > 0 must satisfy any other constraint Cg(yzj cEX(X,Y,Z;) >0
with j # 4. In other words, there must exist a value z for Z; such that E?(z.,ye,z) >
0.

2. There is not always a one-to-one relationship between the stationary points of a
ternary region and the local extrema of its projection (Figure 4.16).

We can approximate the projection of ternary regions onto a pair of variables by taking
all slices at the third coordinates of stationary points. This construction guarantees that
all stationary points of the ternary region are within the projection. However, not all of
them are on the boundary of the projection as shown in Figure 4.17.

In the light of these difficulties, we decided to restrict the refine operator to constraints
that are defined in the same ternary space as presented in Figures 4.4 and Figure 4.14.

4.3 Implementation

As for the binary refine operator, we will show how stationary points of ternary constraints
can be identified. As already elaborated in the case of binary constraints, we assume that
no discontinuities and no singularities appear on the boundary of the restricted regions.

4.3.1 Identifying stationary points

We will first show how to identify stationary points of total constraints with a single third
variable. Consider a propagation step from X to Y, propagating the interval Ix through
the total constraint {Cky ,,C%,}. Under the assumption that the boundary of the
restricted regions contains no discontinuities nor singularities, stationary points are found
among the following sets:

94 Chapter 4. Local consistency for ternary numeric constraints

| (xe,ye,ze)

slice(z1

slice(ze)

slice(z0) |

4

of

/ / : Lo

T f ;(IX

Figure 4.17: Propagating intervals through a set of ternary constraints with the same third
variable representing a hyperboloid. The point (ZTe,Ye,2e) is a saddle point in'Y of the
ternary constraint. On the right side, the volume has been projected onto X,Y . The three
slices at zg, z1,2e generate the set S that approzimates Pxy. In this case S covers Pxy
exactly. If we added a kind of “beak” that possesses no stationary point in Y somewhere
inbetween the slides, S would not cover Pxy shown by dashed lines exactly. The corre-
sponding volume would resemble a crouched chick.

1. Local extrema or saddle points of an individual constraint surface lying within Ix
and I.
2. Intersections between two or three constraint surfaces lying within Ix and Iz.

3. Local extrema and intersections at the interval bounds of Ix and I5.

Again, when the surface of an individual constraint Cxyyz, : E(X,Y, Z;) > 0 is regular at
a point, the function of the surface E(X,Y,Z;) = 0 can be expressed as Y = F (X, Z;)
such that E(X, F(X, Z;), Z;) = 0 (Implicit Function Theorem, Appendix C). The partial

derivatives of the function F' are defined by g—f(= —g—f- /g—}b: and g—g = —g—]g g—}b;.

4.3.1.1 Local extrema and saddle points of an individual constraint surface

The first set of stationary points occuring on individual constraint surfaces are local extrema
and saddle points. Consider a single ternary constraint Cxyz : E(X,Y,Z) > 0 and the
function defining the surface ¥ = F(X, Z). The potential candidates for local extrema
and saddle points are determined by the necessary condition:

Condition 4.1 If e = (Z¢,Ye, 2e) 15 a local extremum or a saddle point in Y of Y =
F (X, Z) and its partial derivatives exist at that point, e is a stationary point if the following
conditions are verified: % =0 and % =0

This necessary condition allows us to derive candidates, but, not all of the points satisfying
the condition are local extrema or saddle points. F' has a local extremum or a saddle point

4.3. Implementation 95

if the following sufficient condition is verified:
Condition 4.2 Assume that F : I — R, T C R? is two times continuously differentiable
in e = (ZTe,Ye, 2e), € 15 a stationary point and that

B 0?F (ze, 2z¢) f 0?F (e, z¢) B 0% F (e, 2¢)
"TTex2 T azz °T axoz

o Ifs2—rt <0 andr >0, F has a local minimum in e.
e Ifs>—rt <0 andr <0, F has a local mazimum in e.
o fs2—rt>0andr*xt<0,F has a saddle point in e.

No direct conclusion whether F has a local extremum in e can be drawn if s> — rt = 0
[Douchet and Zwahlen, 1986]. In this case, the slices have to be analyzed in detail in order
to find if they both possess a local extremum. According to the gradient direction in e,
e is then classified either as a below or an above minimum, maximum or saddle exactly
in the same manner as described for constraints in R? (Section 3.2.4.3). It is sufficient to
determine the type of local extremum in one of the slices (main or secondary) in order to
classify e. Finally, only those extrema and saddle points are considered that lie within the
intervals of Ix and .

4.3.1.2 Intersections between constraint surfaces

Intersections that are extrema in Y appear between pairs or triplets of constraints defined
in the same space. We need to find points where the intersection curve between constraints
reaches an extremum. Remember the notation V E(z.,v.) as gradient of the constraint
E. Ny is the Y-component of a vector N. The condition similar to the one for binary
constraints is:

Condition 4.3 Let Cky ,,C%y, and C%y-, be ternary constraints. e = (T, Ye, ze) 05 an
extremum in axis Y in the intersection of the three constraints if there exrists a vector N
parallel to aris Y and By, P2 > 0 such that the following condition is satisfied:

VEl(a:eayeaze)'i':Bl *VE2<xeayeaze)+ﬂ2*vE3($eayeaze) =]\7
El(xe,ye,ze) = 0
E2($eayeaze) = 0
E3(xeayeaze) = 0

The stationary point e is of type below max if Ny < 0 and above min if Ny > 0. A special
case of this condition is: If either 81 = 0 or B2 = 0, the gradient vectors on two constraints
lie in a plane parallel to the Y-axis. In this case the intersection forms a curve (and not
only a point) and e can be of types Ty or Ty determined by the two slices.

Proof: The projection of pairs of gradients onto X,Y or onto Z,Y satisfies Condition 3.3
because e is an intersection and remains an intersection in the projection. The combination
of the projected gradients from both slides results in the gradient equation of the condition
A

96 Chapter 4. Local consistency for ternary numeric constraints

Only intersections that lie within the intervals of I'x and Iz are considered.

4.3.1.3 Local extrema at interval bounds

Additional candidates can also appear at the intersection between interval bounds of Ix
and/or Iz and ternary constraints in the form of individual extrema on constraint curves

and intersections between binary constraints. Finding these candidates involves two steps:

1. Replace one interval bound of I'x or Iz, with the ternary constraint. An example is
the substitution of X = maz(Ix) by Cky .

2. compute the local extrema of the resulting binary constraints according to sec-
tion 3.2.4 and classify the resulting local extrema as points in R?® by looking at
the secondary slice.

4.3.1.4 Algorithms for filtering and identifying candidates

The algorithms for identifying and filtering candidates are shown in Figure 4.18. In
identify-candidates, those stationary points are identified that occur at intersections of
constraints or at individual constraint surfaces. They are exactly those stationary points
that can be precomputed. Furthermore, local extrema at interval bounds are identified.
The algorithm filter-candidates tests for each stationary point obtained if it satisfies all
other constraints of the total constraint and if it lies within the intervals Ix and I.

4.3.2 Special cases of stationary points

In some cases, stationary points consist of point sets; they may describe curves or even
surfaces. The tori in Figure 4.19, illustrate the creation of such curves. A torus lying
diagonally in space is tilted until it is in a horizontal position. The horizontal planes to
the right of the tori show the intersection of a plane L with the tori at a given point on
the vertical axis. In the first and second picture the stationary points are single. For the
second torus a hole is created in L due to the saddle point es. The third torus is marked
by two stationary points that are ellipses: e; and ez. Both have been created because two
stationary points are collapsed into one: e; is the sum of the local maximum and the first
saddle point and es contains the second saddle point and the local minimum of the second
torus. A stationary point that is a closed curve thus either symbolizes the creation of a
region and a hole at the same time or the vanishing of a region and a hole and the index
a stays 0. We call these stationary points degenerate. In Figure 4.20, the region presented
has the form of a Mexican hat. At the first stationary point e; a region appears (a = 1),
at the second, eo this region is surrounded by a circle (o = 1+ 0), and eventually the circle
and the region collapse into a second filled circle (¢ = 1+ 1 — 1) vanishing in e4. These
examples show that stationary points that are curves are no longer local since they may
integrate more than one type of stationary point. As soon as the symmetry is destroyed,
for example by a rotation around an axis not parallel to the axes of the coordinate system,
all stationary points are again computable in isolation.

4.3. Implementation 97

function identify-candidates(Ix,C%y ,{Iz})
begin
1 FE ¢+ stationary points in Y belonging to the following:
local extrema, saddle points (Condition 4.2) and intersections (Condition 4.3)
between pairs and triplets of constraints
L < coordinates 2, of bounds of Iz and z. of bounds of Ix
S « U, Siy (Cky)
for each s €S do
i X or Z depending on s
E' + identify-candidates(I;, s)
E' « only keep those candidates of E’' that are also local extrema in
the secondary slice and label them either 7'1 or 72
8 E+ EUFE
9 od
10 return E

FCRIES NI N T

end

function filter-candidates(E,Ix,C%y,{Iz})

begin

11 E + those points in E that satisfy all other constraints defined
in the SAME space X,Y, Z and that also lie within I'x and Iz

12 return FE

end

Figure 4.18: Detailed algorithms of how to find candidates and of the filtering step for a
total constraint.

Degenerate stationary points also appear at local extrema or saddle points of a single
constraint surface. Such a degenerate point has a singular Hessian form (see [Milnor, 1963])
at that point. In such a case, it is sufficient to use a rotation in order to identify the point
correctly.

Regions with degenerate stationary points are treated correctly by our propagation rule
as long as the the stationary points can be identified. With a discretized representation
of the feasible space (Section 3.2.4.1), it might be easier to classify degenerate stationary
points than by analytical methods.

The same is true for a single constraint with ends meeting at a stationary point (Fig-
ure 4.21). In this case, the boundary of at least one of the branches must end in a corner at
the stationary point according to Lemma 4.2. Recognizing that several branches part from
a stationary point and thus several regions are created or disappear in the intersection with
L simply requires more powerful methods for identification. Discontinuities in the partial
first-order derivatives are responsible for this type of kinks and corners. The local analysis
of the stationary point we propose is in this case not sufficient and a deeper analysis of the
branches is necessary.

98 Chapter 4. Local consistency for ternary numeric constraints

| el
el "o
ip')
7o oo
e3 € _
P ——
le3
e4 ::’5:_‘: /
l ed
| el
V mm——
==2->
el 182
[e
€2 S e ———"
e3 o3
& <Te. L
l e4
-
et T T
\ 61
C— W
I [SV4
/ < _t— - :::>

Figure 4.19: Tori in different positions. The planes taken at points between two stationary
points show the change in the intersection of L with the torus.

el

Lel

(S

— —

—

s -

Figure 4.20: The region defined by the inner part of a “mexican hat”. Since this figure can
be created by rotation, it is symmetric.

4.4. Summary 99

Figure 4.21: Three branches meeting at a single stationary point. At least one of them
must have a corner at the stationary point.

4.4 Summary

In practice, binary constraint systems are very rare. And, in contrast to discrete CSPs,
there exists no generic method that transforms k-ary numeric CSPs into binary CSPs. This
implies that a refine operator rule achieving local consistency for numeric general CSPs has
to work directly on k-ary constraints or on their projection onto pairs of variables. We show
that any CSP containing k-ary continuous constraints with £ > 3 can be transformed into a
set of ternary constraints. One of the contributions of this thesis is the generalization of the
binary refine operator described in [Faltings, 1994] to ternary constraints over continuous
variables. The generalization of the refine operator to ternary constraints again makes use
of the property that only the complete set of local extrema has to be determined for the
feasible regions without knowing to which region the extrema belong to. Also, the extrema
can be determined locally by inspecting maximally triplets of constraints. Intersections
between ternary constraints are considered only for constraints defined in the same space,
i.e. which have the same third variable. An extension to constraints defined over the same
pair of variables but differing in their third variables would have required to consider k-ary
feasible regions (k > 3), in which the determination of local extrema becomes extremely
difficult.

A fundamental limitation of the ternary refine operator is discovered that is due to
the increasingly complex regions that ternary constraints can form. In the case of feasible
regions containing holes, our refine operator requires further information in order to achieve
local consistency. In this case, those local extrema lying on the boundary of a hole have to
be identified additionally. In practical examples, this information might be given explicitly
because the constraint region is known. The examples in the chapter on results suggest
that the majority of the constraints define simple volumes without holes, which our refine
operator can treat without problem.

With respect to other algorithms achieving some form of local consistency, our prop-
agation rule also takes into account intersections between constraints defined in the same
three-dimensional space over the same pair of variables and thus results into tighter la-
bellings. However, our operator is sensible to holes within three-dimensional regions, which
is not the case of operators computing an approximation of the feasible region.

The restriction of our refine operator to ternary constraints defined in the same three-

100 Chapter 4. Local consistency for ternary numeric constraints

dimensional spaces as well as the difficulty of detecting holes indicate a certain increase in
topological complexity with respect to the binary refine operator. Nevertheless, the fact
that we do not restrict ourselves to specific types of constraints, like for example polyno-
mials in Numerica ([Van Hentenryck et al., 1995]), the topological concepts on which the
correctness proof is based allows us to discuss local consistency for continuous constraints
in more generality than has been done in literature until now.

Chapter 5

Systematic generation of problem
spaces

In science and engineering the study of “systems” is an increasingly popular activity. Its
popularity is more a response to a pressing need for synthesizing and analyzing complexity
than it is to any large development of a body of knowledge and technique for dealing with
complezity.

[Simon, 1981]

5.1 Introduction

As discussed in the introduction, the inputs of a design task are: a model that describes
the components that can be included in the design and a set of constraints that define how
components can be combined to form a working product, and customer requirements that
specify properties of an individual product. The output is a description of a product to be
manufactured, which comprises not only the set of components but also their arrangement
in the product structure, i.e. a model of how components relate to each other. The
resulting design has to satisfy all the constraints given in the model and the customer
requirements. Fundamental forms of knowledge used to describe a design task include
that a choice must be made, optional components may be added to the design, some
components are incompatible and that some component may require another component to
function correctly (functional dependency) [Soininen and Niemeld, 1998|. In principle, the
CSP paradigm offers an adequate framework for such tasks because it provides a simple,
declarative model for representing a design task and also powerful methods for solving it
(see introductory sections on search in CSPs 2.6, 2.7). A conventional (or static) CSP
encodes choices between different values for a variable and also incompatibilities as those
tuples that are not allowed in a constraint. However, when using the static CSP model to
solve design tasks, some important shortcomings can be identified:

e [t requires all variables and constraints to be known explicitly before problem reso-
lution. This implies that it cannot handle an unknown number of components.

101

102 Chapter 5. Systematic generation of problem spaces

e It does not capture the internal structure of components; i.e. a given hierarchical
product structure is flattened into a set of variables of equal importance.

e Functional dependencies between components and thus optional components are dif-
ficult to encode in a static CSP. The addition of NULL values to constraints in
order to indicate in which context components do not appear in a solution becomes
especially difficult in the presence of continuous constraints.

e According to [Mittal and Falkenhainer, 1990], efficiency problems arise whenever
the existence of variables depends on specific value assignments. In that case the
algorithm has to switch frequently between variable creation and value assignment
procedures.

[Mittal and Falkenhainer, 1990] argue that, in synthesis tasks like configuration or design,
the set of variables that must be assigned a value may change dynamically in response to
choices made in the course of problem solving. The solutions to such a task then differ
in the number of variables assigned. When configuring a mixer, for example, a condenser
is only necessary if the vessel volume is large and chemical reactions might occur during
the mixing process. In other words, the existence of the condenser depends on the type
of product to be mixed. Once the product type is decided, the condenser variable is
either added to the solution or not. The condenser is a typical example of an optional
component, which does not have to be present in every solution. Even more important,
new constraints defined on such an optional part might become relevant to the problem.
This means that the CSP is no longer static, but dynamically evolving during problem
solving, characterized by a changing set of variables and constraints. Each change in a
constraint network influences the solution sets. With respect to the modus of interaction
between the problem solver and its environment, two main lines can be distinguished:

1. The problem is not completely specified at the time of problem definition. Users or
more generally the environment are allowed to add additional variables or constraints
during problem resolution.

2. Variables and constraints are known intensionally at the time of problem definition,
i.e. the types of variables and constraints corresponding to the problem are given,
however not their specific instances. In a bridge design, for example, a configuration
may have between two to fifty piers. It is the task of the search algorithm to find the
variable instances and the constraints defined on them for each solution.

An example of the first approach is non-monotonic logical reasoning. In general, only a
partial description of the world is given so that it is important to maintain the consistency
of our world when new facts become known. Another example are graphical user interfaces
like ThingLab [Freeman-Benson et al., 1990] where constraints are imposed by the users
on graphical objects and the system has to adapt its layout in real time.

In this thesis, we concentrate on the second approach assuming that an input definition
for a design task is given intensionally. This approach fits well in the overall design process
consisting of refining a given goal first into a a set of functions and subsequently into a
more structural representation (Section 1.1).

5.2. Background 103

5.2 Background

In order to overcome the limitations of static CSPs, one can model a varying number of
variable instances in a synthesis problem like design or configuration by defining a status
:IN or :OUT for each variable. Problem solving then includes reasoning on the status
of a variable. In other words, the CSP is embedded into a larger task-specific problem
solving architecture, in which separate mechanisms are used for creating variables and
processing the constraints. This becomes cumbersome and inefficient when the existence
of variables depends on specific value assignments and the constraint processing interacts
closely with variable creation, because program control oscillates between both search
and variable creation [Frayman and Mittal, 1987]. A further integration into the CSP
framework has been achieved by adding a NULL value to the domain of optional variables
and by reformulating the constraints on these variables to include the NULL value. A
variable is assigned a NULL value in the solution if it is not part of the solution. The
disadvantage is that in a large constraint problem, all variables and all constraints are
taken into account simultaneously even if some are not relevant to the problem at hand.
Handling sets of identical elements of varying size like piers in a bridge design would require
constraints combining all possibilities of variable existence or non-existence hard-coded in
the constraint. Furthermore, we will show later in this chapter that adding constraints in
form of dependencies between variables to a given problem cannot always be reformulated
locally in the static CSP model.

Other dynamic models exist like incremental constraint satisfaction that can handle a
changing set of constraints and variables. Incremental constraint satisfaction is integrated
into most constraint logic languages in order to solve constraints in an incremental way
transparent to the user. However, no explicit syntax is provided to the user to reason
about the existence of a variable in a solution. In ThingLab [Freeman-Benson et al., 1990]
constraints are introduced by user requests and the constraint solver tries to resatisfy the
changed constraint set incrementally by applying a perturbation method (Section 2.7.4).
In a similar way, Constraint Logic Programming (CLP) satisfies constraints incrementally
in order to guarantee efficiency. Incremental satisfaction in CLP proceeds by modifying
an existing solution in order to account for new constraints resulting from the top-down,
left-to-right parsing. Most CLP algorithms transform the constraints into a solved form,
a format in which the satisfiability of the constraints is evident or at least easier to in-
fer [Jaffar and Maher, 1994|. Although there are some applications using CLP for synthesis
tasks, the majority of work in the CLP field has been devoted to solving combinatorial
search problems or analyzing artifacts like circuits or truss structures. The applications
written in CLP for designing an artifact first generate a specific structure and then analyze
it [Heintze et al., 1987], [Lakmazaheri and Rasdorf, 1989]. The reason for this is that CLP
is based on Prolog, a logic programming language restricted to definite clauses. In this
formalism queries of the form “Is variable X; or X5 or ... X, active ?” cannot be handled
directly. All combinations of possibly active components first have to be generated and
then tested against the constraints.

The model of dynamic constraint satisfaction (DCSP) [Mittal and Falkenhainer, 1990]

104 Chapter 5. Systematic generation of problem spaces

has been introduced to adapt the CSP paradigm to a changing environment based on
the experience with the Cossack expert system [Frayman and Mittal, 1987]. The standard
CSP model is extended to include activity constraints. These constraints state conditions
on the existence of variables in a solution. The advantage of the DCSP model is that:

1. A mechanism is introduced that allows for explicit reasoning on the existence of
variables.

2. This mechanism is part of the CSP model, which thus defines a general framework
for constraint processing and variable creation.

The resolution algorithm for DCSPs, however, is based on value enumeration and thus
restricted to discrete DCSPs.

[Sabin and Freuder, 1996] introduce the model of composite CSP, which can be seen as
the result of three concepts: dynamic constraint satisfaction, hierarchical domain constraint
satisfaction [Mackworth et al., 1985] and meta problems in constraint satisfaction. The
difference to a standard CSP consists in the fact that values of a variable are no longer
restricted to atomic values. A value can be composite in the sense that it defines an entire
subproblem. The advantages of composite CSPs is that consistency and search algorithms
can easily be adapted. Decisions on a single value for a variable dynamically introduce new
variables and constraints. Such decision making can be formalized by activity constraints.

[Bowen and Bahler, 1991] handle the conditional existence of variables in a mathemat-
ically well-founded fashion by formulating a CSP as a set of sentences in first-order free
logic. Their approach subsumes dynamic CSPs introduced by Mittal and Falkenhainer as
they handle infinite variable domains and quantified constraints.

5.3 Dynamic constraint satisfaction

The dynamic constraint satisfaction =~ problem (DCSP) defined by
[Mittal and Falkenhainer, 1990] relaxes the hypothesis of a standard CSP that a
variable defined by the problem has to be part of all solutions. New variables are
introduced only if they are relevant to the given search space. A variable is active
whenever it has to be part of a solution and inactive otherwise. If V is the set of all
potential variables of the problem, the existence of a variable in a solution is defined by
the predicate active.

Definition 5.1 (Active variable; [Mittal and Falkenhainer, 1990]) For any X; €
V : active(X;) <> X; =z and x € D;.

Typical constraints restricting value combinations of variables are called compatibility con-
straints in this model. Such a constraint formulated as set of allowed tuples or as a logical
predicate just as in the standard CSP. In contrast to a standard CSP however, a com-
patibility constraint in a DCSP is only relevant to a problem if all the variables of this
constraint are active. Let C® be the set of compatibility constraints of a DCSP.

5.3. Dynamic constraint satisfaction 105

Definition 5.2 (Relevant constraint) For any Cx,,..x; € ce active(X1) A ... A
active(X;) > relevant(Cx,, ... x;)

It follows that a compatibility constraint is either trivially satisfied if at least one of its
variables is not active or if the constraint is satisfied by an assignment according to def-
inition 2.2. This can be made explicit in the algorithm by considering a compatibility
constraint only in those problem spaces in which all variables of the constraint are active.
We extend the original definition of DCSP by allowing continuous and mixed compatibility
constraints as well.

Additionally, a DCSP can post constraints on a variable’s activity in a given context
of value assignments. Such a constraint is called activity constraint. Let C4 be the set of
all activity constraints of a DCSP.

Definition 5.3 (Activity constraint; [Mittal and Falkenhainer, 1990]) An activ-
ity constraint Cx, .. x; AGT X, €CA k#1,...,7 is defined by the logical implication

Cxy,..x; = active(Xy)

where Cx, ..., x; 1S a single constraint, which expresses an activation condition under which
the variable X}, becomes active.

In its original form the activation condition was defined to be a set of value assignments.
Again, we extend this definition to a more general form of activation condition. In our
model, an activation condition can be either a single discrete constraint or a continuous
constraint stated as inequality.

Definition 5.4 An activity constraint Cx, . x; AGT X, € CA with k # 1,...,5 is

satisfied by a set of values {X1 = z1,...,X; = =z;} with z; € D; for i = 1,...,5 if
=Cx,,...X; (z1,...,2;5) V active(Xy) is true.

The activity constraint is trivially satisfied, if one of the variables in the condition is not
active. Otherwise, if all of its variables are active, i.e. relevant(C) is true, either the
condition must not be satisfied by the given assignment or Xj is to be active. If the
activation condition is satisfied by the assignment, we add the variable to the search space,
otherwise, we cannot make any assumption on the activity of the new variable.

Thus, a DCSP incrementally defines problem spaces in which different variables are
active and it only assigns values to the active variables. An initial nonempty set of variables
Vr specifies the variables that are always active, i.e. those which are part of every solution.
The formal definition of a DCSP is:

Definition 5.5 (DCSP; [Mittal and Falkenhainer, 1990]) A dynamic constraint
satisfaction problem P = (V,C, D, Vr) is defined by:

e A set of variables V representing all variables that may potentially become active
and be part of a solution. FEach variable X; € V has associated a domain D; € D

representing the set of possible values for the variable.

106 Chapter 5. Systematic generation of problem spaces

e A non-empty set of initial variables V; C V. These variables have to be part of every
solution.

o A set of compatibility constraints C¢ C C on subsets of V representing allowed value
combinations for these variables.

e A set of activity constraints C4 C C on subsets of V specifying constraints between
the activity of a variable and possible values of problem variables.

Find all solutions, where a solution is

1. an assignment A of values to a set of variables such that A satisfies all constraints
in C€UCA.

2. minimal; i.e. there is no solution A' satisfying all constraints such that A' C A.

3. such that all variables of V1 are assigned in A

Minimal solutions of a configuration or design problem only consider those assignments for
which there exist no other assignment that has less identical variable-value pairs satisfying
all constraints. Non-minimal solutions might occur when independent options have to
be taken into account. These are options that do not depend on the product structure
but only on the customer’s choices and preferences. In this case, there exist two similar
solutions, one with the option and one without. An algorithm generating only minimal
configurations would never generate the same tuple with an additional variable assigned
if it was not required. Consider again the mixer example with the constraint that each
version of a mixer can be optionally equipped with a display showing the conditions inside
the vessel. A constraint like false "= Display indicating such an option is always satisfied
and would not lead to a problem space containing the variable Display. In order to include
options in a more deterministic way into the DCSP framework, an auxiliary variable Vopt
with values opt and noopt and an activity constraint Vopt = opt AGT Display could be
added. If the variable Vopt has no value assigned, two minimal solutions would satisfy
the constraint, one with Vopt set to opt and the display variable active and one with the
constraint Vopt = noopt!.

A simple example presented in [Mittal and Falkenhainer, 1990] is given here as illus-
tration.

'Mihaela Sabin, University of New Hampshire, mentioned the idea of introducing auxiliary variables to
formalize independent options in a personal communication.

5.3. Dynamic constraint satisfaction 107

X1 | Xo | X3 | Xy X1 | Xo | X5 | Xy
a d - - a d - -

a d f -

a d - g

a d - h

a d e g

a d e h

a d f g

a d f h

b c e h b h
b c f - b f -

b c f h

b c f g

Table 5.1: First table: solutions of problem Py. Second table: solutions for the minimal
model of P1 corresponding to the minimal solutions obtained by Mittal and Falkenhainer.
Variables marked by a hyphen are not active.

Problem P; = (V,C,D, V1)

Variables V = {X1, X, X3, X4} with
D, = {a7 b}a Dy = {Cad}a D3 = {eaf}aD4 = {g,h}
Vi = {X1, X2}

Constraints C = {C*, C2,C3, C*} with
Cx, = ((ad)(bo)

CXoxayxs = ((ceh)(c f h)(c fg)(deh)(deg)(dfh)dfg)

o3 x, =24 x,

C* X3=e Aqr Xy

This problem has a solution set S7 containing three minimal solutions and a complete
solution set So containing all 12 solutions including the three minimal ones. Both sets are
presented in Table 5.1. The minimal solutions do not include tuples like (a d f),(a d f g)
etc. because there exists a minimal tuple (a d) in S;.

Specializations of activity constraints have been defined by Mittal and Falkenhainer
such as require not (RN) or always require (AR) constraints. A RN constraint C Y x
defined as C' — —active(X) is in our DCSP framework simply expressed by a compatibility
constraint combining all tuples of C with all values for variable X [Haselbdck, 1993]. To
put it another way, a variable X is never activated when C is true. This can be illustrated
by the following example: the constraint C': X; = a By X4 added to the definitions of P
produce the same solutions as if the constraint C'(X1, X4) : ((b g)(b h)) was added to P;.

108 Chapter 5. Systematic generation of problem spaces

An AR constraint is an activity constraint whose condition simply consists of specifying
the activity of a set of variables using the predicate active. It results in the addition of a
variable to the problem space based on the existence of other variables. Such a constraint
would for example be X4 AgT X5, adding X5 to P;.

5.4 Solving discrete DCSPs

The solution techniques for discrete DCSPs resemble standard CSP techniques in that
they are also based on the enumeration of values. We show here two possibilities of solving
a given DCSP over discrete variables. One is based on the original formalism proposed
by Mittal and Falkenhainer, the other transforms a DCSP into a standard CSP and uses
well-known search algorithms to solve it.

5.4.1 Original DCSP algorithm

An algorithm similar to the one proposed in [Mittal and Falkenhainer, 1990] is presented
in Figure 5.1. It is limited to generating minimal solutions. The main procedure activate-
choose is called recursively after each valid value instantiation. Its main cycle loops until
no more constraints can be activated for a given value combination. Only then can the
next value be instantiated. A minimal solution is found if all active variables are assigned a
value and if there is no other activity constraint whose condition becomes relevant (halting
condition for minimal solutions). Forward checking can be added to constraint checking
in step 12 in order to remove inconsistent values from the search space. Applying the
backtrack algorithm to problem Pi, the following solution trace is obtained:

1. Start with X7, X, activated and C; relevant

2. Value assignment X; = a

3. Value assignment X, = ¢ violates the constraint C, backtrack ...
4. Value assignment Xo = d

5. Solution found {X; = a, X; = d}, backtrack ...

6. Value assignment X; = b

7. C3 activates X3

8. Value assignment X» = ¢

9. Value assignment X3 = e
10. C, activates X
11. C5 becomes relevant
12. Value assignment X4 = g violates constraint Cs, backtrack ...
13. Value assignment X4 = h
14. Solution found {X; = b, Xs = ¢, X3 = e, X4 = h},
15. Value assignment X3 = f
16. Solution found {X; = b, X» = ¢, X3 = f}, backtrack ...
17. Value assignment X = d violates constraint C;, backtrack ...

Mittal and Falkenhainer use an ATMS-based implementation. This has the advantage that
each constraint only needs to be run once due to caching. Since their backtrack-algorithm
is based on value enumeration, activity constraints might have to be reapplied several

5.4. Solving discrete DCSPs 109

times. ATMS-caching “remembers” the conditions under which an activity constraint has
to be applied. The ATMS also prevents cycling because new variables introduced are
justified by the values of the variables in the activation condition and such justification
labels are kept minimal by the ATMS. Another advantage of the ATMS is that incom-
patible assignments detected during value enumeration are stored as nogoods and will
not be revisited by the backtrack algorithm. The generalization of activation conditions
to compatibility constraints makes the use of an ATMS unrealistic because each tuple in
the constraint would be a different justification for the introduction of a new variable. A
serious drawback is also that value enumeration is no longer practicable when continu-
ous variables are involved. An activity constraint may introduce a splitting in the search
space due to its condition. Assume that an activity constraint adds a condenser to the
configuration of an industrial mixer only if the vessel volume is larger than 150 liters; i.e.
Vessel.volume > 150 AT Condenser. Suppose further that the vessel volume varies
between 0 and 1000 liters. It can be chosen such that the condition is satisfied or not.
Both possibilities should be considered, which leads to a splitting in the search space. In
the first space the condition is satisfied and a condenser is added and in the second no
condenser must be added. In order to be able to address this case, we need a different
search algorithm, that is not based on enumeration of variable values.

5.4.2 Why not use a static CSP formulation ?

In the introduction to this chapter, we mentioned some drawbacks of a transformation
from the DCSP formalism into a static CSP. Among others, we stated that the addition
of activity constraints does not always result in local changes in the corresponding CSP
model. In this section, we will provide evidence for this statement.

The transformation of a DCSP into a static CSP was informally known to be feasi-
ble using an additional NULL value for any variable that may be part of a solution or
not [Haselbock, 1993], [Mittal and Falkenhainer, 1990]. A variable with a NULL value
assigned is interpreted in the static model as a variable that is not active. Haselbock
also stated that this transformation is not at all straightforward. In order to examine the
feasibility of this approach, we give here an algorithm for this transformation.

Consider, for example, constraint C3 of P;. This constraint requires that any solution
containing X; = b must have a value for X3 different from NULL. Nothing is said about
the activity of X3 if the activation condition is not satisfied. Thus, this activity constraint
can be transformed using the following equivalence:

Cx,,..x; — active(X,) & —(Cx, .. x; N\ ~active(Xy))

which translates into C§: (be)(b f)(a N)(a e)(a f) with N being the NULL-value.

The transformation of a DCSP into a static CSP is achieved by algorithm A;
(Figure 5.2). If each constraint is translated according to algorithm A;, the solution set
comprises all solutions, also the non-minimal ones. Since the value N is just treated like

110 Chapter 5. Systematic generation of problem spaces

procedure DCSP
begin
1 V&V
2 C < compatibility constraints relevant to V'
8 solution < 0
4 activate-choose(V, C, solution)
end

procedure activate-choose(V, C, solution)
begin

1 backtrack < false

2 while not(backtrack) do

3 if 3 relevant activity constraint in C* with condition satisfied then
4 add newly activated variable to V'
5 elif 3 relevant compatibility constraint ¢ in C¢ then
6 add cto C
7 elif all variables € V are assigned then
8 print (solution)
9 backtrack < true
10 elif (v < select next variable from V) # 0 then
11 value(v) < choose next assignment for v
12 if not(value(v) = 0 or value(v) violates C) then
13 solution < solution U {v = value(v)}
14 activate-choose(V, C, solution)
15 fi
16 backtrack < true
17 fi
18 od
19 end

Figure 5.1: DCSP algorithm for generating minimal solutions.

any value in a variable domain, the minimal solution set has to be generated explicitly

by comparing each new solution found against the already generated solutions. The
transformed CSP of P; is for example represented by four variables X1, X9, X3, X4 with
domains D} = {a,b}, D} = {c,d}, D} = {e, f, N} and D} = {g,h, N} and the constraints:

C{(Xl,XQ):
Cé(XZ’X3’X4):

Cé(Xl, X3):
CAIL(X:;, X4)1

)(h)(c fg)(deh)(deg)(dfh)dfg)dNN)

h)(ng)(di)(deN)(ceN)(cNN)(cNh)

) (c fN))
b f)(a N)(ae)(a f))

)(6 h(f 9)(f h)(f N) (N g)(N h)(N N))

Its solutions are the same as those of set Sy given in Table 5.1. In order to generate only

5.4. Solving discrete DCSPs 111

Algorithm A,

1. Add a NULL-value N to the domain of each variable X; that is not in the set
of initial variables such that D] = D; U{N}.

2. For each compatibility constraint C Xiy .. X, do:
Let T be the set of allowed tuples defined by the constraint. Additional allowed
tuples T,q are defined by Dj, x...x D; \T such that at least one NULL value
is in the tuple. The tuples of the transformed constraint are T,q U T.

3. For each activity constraint: Cx, .. X;, = active(Xy) do:
Build a (i; + 1)- ary constraint. The not allowed tuples T,, are the cross-
product of D;; x ... x D;; x {N} such that CXil---XiJ- is true. Take the tuples
T, = Dj, x...x D;j x Di\T,, as the set of allowed tuples to define the
transformed constraint.

Figure 5.2: Algorithm transforming a DCSP into a CSP.

Algorithm A,
1. For each activity constraint Cx,, . X, = active(Xy) generate addi-

tionally a require not constraint ~Cx,, .. X, = —active(Xy,)

2. proceed by algorithm A,

Figure 5.3: Transforming a DCSP into a CSP defining only minimal solutions.

minimal solutions, we have to add the following two require not constraints to P; defining
a new problem Ps:

CY: X1 = a — —active(X3)
CY: X3 = f — —active(Xy)

An exclusive interpretation of the form Cx,,. x,; ¢ active(X}) is used for each activ-
ity constraint. Intuitively, a variable should be activated if and only if the condition
is true. This can be transformed into a static CSP according to algorithm A;. For example:

C5'(X1, Xg): (b e)(b)(b N)(a N)) Note that the constraints
Ci' (X3, X4): ((f N)(N N)(N g)(N h)(e N)(e g)(e h))

CY" and C} as well as C) and C}’ can be merged into one constraint by taking the intersec-

tion of their tuples respectively. Solving the problem results in the three minimal solutions

of solution set S3. The transformation of the original DCSP into a static CSP generating

minimal solutions is presented in algorithm Ay (Figure 5.4.2).

Algorithm A, is correct as long as each variable is activated by maximally ONE activity
constraint. Otherwise, constraints activating the same variable have first to be collapsed
into one activity constraint before they can be transformed into a compatibility constraint.
Consider example P3 = P; U Cs with Vi = {X1, X2, X5} and D5 = {i,5} and C5: X5 =
i — active(X3). Constraints C3 and Cj both activate X3 and according to the definition

112 Chapter 5. Systematic generation of problem spaces

Expression 1: IF mixing-task = dispersion THEN add condenser
Cur,c:={ (dispersion C1)
(dispersion C2)
(blending NULL)
(suspension NULL)
(entrainment NULL)}

Expression 2: IF vessel.volume > 150 THEN add condenser

‘?

Figure 5.4: The first expression reasoning about the existence on the condenser variable
can be transformed into a discrete constraint. We suppose here that a condenser can be
of type C1 or C2. The second expression links a continuous constraint to the existence
of a variable and its translation would require a mized constraint formulation with NULL
values.

of an activity constraint, the condition for not activating X3 is =(X; = bA X5 = 7). In
other words, not only {X; = a, X5 = j, X2 = d} is a minimal solution but also {X; =
b,X5 = j,X3 = f,X2 = C}, {Xl = b,X5 = ’i,Xg = f,X2 = C} and {Xl = a,X5 = ‘i,X3 =
f, X2 = d} are minimal. This means that an activity constraint can activate a variable
independently of other constraints. If we added the require not constraints directly and
transformed each of the constraints individually, we would loose the minimal solutions
{Xl = b,X5 =j,X3 = f,X2 = C} and {X1 = (J,,X5 = ’i,Xg = f,XQ = d}

A local change in the DCSP in form of the addition of an activity constraint may imply
a non-local change in the corresponding CSP formulation because activity constraints gen-
erating the same variable have to be combined. In terms of maintainability and modularity,
this approach is therefore less attractive. The transformation presented in this section is
of course only possible under the assumption that all activity constraints are given at the
beginning. It does not allow for an interactive introduction of such constraints during
problem solving, because the transformation step would have to be repeated at each in-
troduction of a new variable. The assumption that all activity constraints are known from
the beginning complies with the intentional definition of a design task as discussed in the
introduction of this chapter.

In addition to these drawbacks, the introduction of an optional part may also depend
on continuous values in which case a kind mixed constraint would result combining a
continuous constraint with a discrete value (Figure 5.4).

Before we show how to identify solutions to general DCSPs, we would like to give a
formalism in which a design task can be specified easily and a way to convert the input
description into a DCSP.

5.5. Formalizing a design task 113

5.5 Formalizing a design task

As already discussed in the introductory chapters, a convenient formalism to describe a
design task is the Object Oriented framework. In this framework, information common
to several objects is collected in a generic description. This makes reuse and maintenance
easier than in other formalisms. The OO-framework is based on important concepts like
classes, instances and their properties and type- respectively part-of hierarchies. In terms
of constraint satisfaction, component instances and properties are variables and type or
part-of hierarchies are constraints between components. Also, constraints between com-
ponent properties and between properties and components can be formulated either as
compatibility constraints or as activity constraints defining functional dependencies. Such
constraints have to be specified in addition to the Object Oriented description of the struc-
ture of the artifact.

In this section, we show how the Object Oriented input description of a task can be
transformed into a DCSP, thus providing an interface between the input description of the
task and its resolution algorithm.

5.5.1 A design description

The description of a design task consists of a set of component classes, often called catalog,
in which each class is described by a set of properties plus constraints over classes and
properties. An example is the catalog of mixer components in the appendix A.1 in which
the mixer and the mixing task are specified as well as all subcomponents occuring in the
configuration. Relations between component classes and between component properties
constrain the design. Each vessel has for example the property volume and only an elliptical
vessel has additionally a small radius called sradius. Another example is the constraint
that only a vessel used for chemical reactions needs a cooler. Such relationships express
either structural constraints like the two first examples or a functional dependency like the
last example. In the next sections, the different parts of the design description are detailed.

5.5.2 Components

The unit to describe a part in design is typically a component. A component may corre-
spond to a structural or an abstract concept as, for example, Vessel and MizingTask. In
general, a component is an object consisting of basic and composed properties. The basic
properties of a component can be seen as the components of smallest granularity. They
can be of type discrete, real, integer or array. composed properties are themselves compo-
nents. Components of similar behavior are described once by a template called type (in
OO-technology a class). Such a type specifies all properties of a component. An example
is the definition of vessel type for a mixer:

Type Vessel:
domain : discrete : {hemispherical,elliptical,cylindrical}
volume : real : [0,1000]
diameter : real : [0,1000]

114 Chapter 5. Systematic generation of problem spaces

height : real : [0,1000]
optl : Cooler [optionall
opt2 : Condenser [optionall

In this example, Vessel is a component type that has the basic properties volume,
diameter and height. cooler Element, condenser Element are composed properties be-
cause they are themselves components. An instantiation of a component type creates a
specific component instance or component for short, i.e. an object with its own identity
possessing exactly the properties specified by its type. In the DCSP framework, each com-
ponent instance as well as each property of an instance is simply a variable. A variable in
the DCSP that stands for a component instance represents a collection of variables that are
the properties of the component. An activity constraint on this variable without condition
can thus be used to generate the collection.

5.5.3 Relations between components or between components and prop-
erties

Instead of declaring relations on each of the instances of component types, one would rather
declare generic relations on component types and properties of component types whenever
possible. This can be realized by generic constraints introduced in [Haselbock, 1993]. A
generic constraint is a constraint that is specified not directly on variable instances but on
types of variables. It has to be applied to each set of variables whose types comply with
the types over which the generic constraint is defined.

Definition 5.6 (Generic constraints) Let Cx,. x, be a generic (discrete or continu-
ous) constraint defined on meta-variables X1,..., Xy representing component types, and
VC the set of all current component instances of V. A generic constraint Cx,,..x; 15
satisfied by the assignments Vj; = vj;, Vi € VC if and only if

Vi Viey oo - Vi - CVM,---VM ('Ulia - ,’Uki) A Xj = type(Vji) (51)

Such a constraint defines a relation referring to types of variables (the component types)
instead of the variables themselves. When two variable sets of the types required by the
generic constraint exist, a constraint is to be created for each of the variable sets separately.
If the constraint involves a property p of a component of type T, one of the meta-variables,
on which the constraint is declared, is T.p and the constraint is applied to all variables
representing the property p of type T'. An example of a constraint defined on meta-variables
is the relation CMT.slurrypressu're,V:

CMT.slurrypressure,V = {(h’bgh hemiSpheTical)
(high elliptical)
(low cylindrical)}

between the vessel type and the slurry pressure of a mixing task.

5.5. Formalizing a design task 115

A part-of relationship between objects expresses that one instance is a collection of
other instances. Part-of hierarchies show the physical decomposition of the designed prod-
uct. Such a hierarchy shows all instances created for one configuration and how sub-
components are linked to components. See Figure 2.1 for a physical decomposition of a
mixer. The description of a component type inherently shows one level of this hierarchy
by enumerating all composed properties the specific component consists of. The part-of
hierarchy is successively generated from the instantiation of type templates using activ-
ity constraints. Since the existence of an instance of type vessel implies the existence of
its properties, activity constraints can be used to generate the properties of a component
automatically. Moreover, this generation mechanism can be generalized to any object of
a given type [Haselbock, 1993]. For each property p of the type T we define an activity
constraint as follows:

T AE>T p (5.2)
where the condition simply requires an instance of type T' to be active and p describes the
type of property to be created and its name in the form name : type : domain (the name
is abbreviated by its initials in case of component types). For example,

v 4L diameter : real : [0,1000]
v 24T volume : real : [0,1000]

For two instances of a vessel, named V7 and Vs, two independent properties V;.volume and
Vo.volume are created. The generation properties of components automatically stops at
the leaf components of the part-of hierarchy because the domain of a variable representing
a leaf component is simply the component type itself.

The properties cooler Element and condenserElement are optional. This means that
not every vessel has a cooler or a condenser and that corresponding components should
not be created by a simple activity constraint without condition like the other properties.
The creation of these elements is subject to functional dependencies as we show next.

Some relations between components in a configuration are not structural but of a
rather functional nature. The goal of a design task is to find an artifact that fulfills a set
of functions. Hence, these functions are to be implemented by different component sets.
[Mittal and Falkenhainer, 1990] found that each function could be represented by one key
component plus varying sets of secondary components dependent on this key component.
They realized that activity constraints are a means for expressing such functional depen-
dencies because the additional components can be generated under given conditions. The
function of mixer as a catalyst for chemical experiments, which requires the additional
component cooler, is for example implemented by the activity constraint

) ACT
Mixer = reactor A Vessel = Cooler

More generally, the condition under which an additional component of T5 type is required
must be specified in an activity constraint with an activation condition in the form of

condition ATy “S" T, (5.3)

116 Chapter 5. Systematic generation of problem spaces

Activity constraints are defined on component types and no longer individual components
such that they can be applied to any set of instances of the required types similar to
generic compatibility constraints. Type T'1 indicates also the structural dependency;
e.g. to which component the new part has to be attached to. In the example, it is the
vessel that has to be generated first such that the condenser can be attached to it. This
variable is only needed to correctly determine when the constraint can be applied (cf.
Combining activity constraints, Section 5.6.2). The reason why one may specify explicitly
activity constraints additionally to the OO-description of the design task is that not all
components can be generated from the part-of or type hierarchy directly. There may
exists functional dependencies in the system across several levels of these hierarchies.
A good example is the mixer vessel requiring a cooler if the mixer is a reactor or the
requirement of a condenser if the vessel volume is large. In the OO-formalism this is
solved by creating a new type of mixer-with-condenser inheriting all properties from the
mixer and a component type condenser. A constraint on the mixer then restricts the
mixer type to mixer-with-cooler whenever the mixer is a reactor. In the same way, the new
types mixer-with-cooler and mixer-with-cooler-and-condenser should be created because
a priori all combinations of optional components are possible. This prealable combination
of all possible components is one of the drawbacks in OO-technology. Specifying the two
activity constraints that create a cooler and a condenser independently is more declarative
than the Object Oriented approach, which has to foresee all possible solution types. With
activity constraints functional dependencies can be created easily between components,
which are much more difficult to formalize in the OO-formalism.

Type-of hierarchies define relations between classes. They group similar classes into a
hierarchy such that redundant information can be removed. A type-subtype relationship
indicates that the subtype is more specific than the type. A subtype of a component type
inherits all its properties and relations on it, but it may add some more characteristics. A
relation type-of can be translated into a constraint formalism by regarding the subtypes
as values for the type. A type hierarchy thus corresponds to a hierarchical domain in the
CSP formalism [Mackworth et al., 1985],[Sabin and Freuder, 1996]. Hierarchical domains
can be exploited in consistency algorithms in two ways:

1. if a value high in the hierarchy is found inconsistent, so are its descendents

2. if a value low in the hierarchy is found consistent, all its ancestors are consistent

In the mixer example, there exist three subtypes on the vessel indicated in the domain
property of the vessel: Hemispherical, Elliptical and Cylindrical.

Type Elliptical of Vessel
sradius : real : [0,1000]
bottomarea : real : [0,1000]

In this example, the subtype Elliptical must be specified explicitly because this type
needs the additional properties sradius and bottomarea such that the vessel volume can
be correctly derived from the form of its vessel. The description of the other subtypes

5.5. Formalizing a design task 117

Hemispherical and Cylindrical on the other hand is identical with the description of
Vessel. Additional properties of a subtype can be easily created by activity constraints.
Suppose that a given type T has subtypes T1,7T5. 71 has an additional property p. The
activity constraint

T=T1"=>»p (5.4)
generates the property. For the example above
V = elliptical AGT sradius - real - [0,1000]

Hence, subtypes can be understood as values of a variable representing the instance of a
type.

5.5.4 Identical components

Identical components are components of the same type appearing in the same configuration.
Examples of identical components are engines in train compositions, frames and modules
in telephone switching system [Haselbock, 1993] or piers in bridge design. It is useful
to group identical components into an array. An individual component is then referred
to by an index. In bridge design for example, piers would be declared as array and
piers[1],...,piers[n] represent the individual components of the array.

It is part of the design process to derive variants in form of different cardinalities of
an identical component set such that the constraints on the design are satisfied. Activity
constraints are one way of generating new components. In the following, we investigate
their use for the generation of entire component sets. Suppose that a variable piers has
been declared as array and Pier is the component type of its elements. One way of
formulating the creation of identical elements is to control the generation directly from the
array, because the existence of an array variable implies the existence of array elements.

. ACT S :
piers = Vi piers[i] : Pier

More generally, we call generator an the activity constraint of the form

array variable Aqr Viielement[i] : ElementType (5.5)

which allows for the generation of n array elements. It has to be noted that n must be
bound to a variable of the problem with a label indicating a maximal value for n in order
to guarantee termination. We discuss this issue of restricted variable generation further in
the last section of this chapter.

As a recapitulation, activity constraints without condition generate the properties of a
component (Rule 5.2), activity constraints with a condition specialize in a type hierarchy
(Rule 5.4) or generate optional components according to a functional dependency (Rule

118 Chapter 5. Systematic generation of problem spaces

5.3). Compatibility constraints, which can be specified at any level in the hierarchies be-
tween any set of components or properties, restrict the possibilities of further specialization
in the part and type-of hierarchies and provide values for the properties. Rules 5.1 to 5.5
serve to translate an Object Oriented description together with additional functional de-
pendencies and compatibility constraints of the design task into a DCSP transparently to
users. They do not have to understand the DCSP formalism in order to specify their task.

5.6 Generating problem spaces of a DCSP

Our algorithm for solving DCSPs intends to enhance previous algorithms. First, it accepts
activation conditions that are constraints and DCSPs containing continuous constraints
as input. Second, the resolution algorithm is no longer based on enumeration but it is
constraint-driven. The idea is to construct explicitly the different problem spaces given in
the DCSP formulation in a first step and to use then conventional techniques for standard
CSPs in order to identify solutions within these problem spaces. The advantage is that
the solutions can be presented in a more structured way because the problem spaces have
been identified before the exhibition of an individual solution and each solution refers to
its problem space. Furthermore, additional decisions on value assignments can be taken
as soon as problem spaces have been identified. The different spaces can be compared
and provide more knowledge about the structure of the given problem. In the following
sections, we discuss the first step of problem space generation. It is based on a constructive
interpretation of activity constraints.

5.6.1 Activity constraints

According to the definition of an activity constraint, either the activation condition is rel-
evant and the new variable added to the current problem space or not. The addition of
one activity constraint to a problem space leads to a disjunction, which can be translated
into at least two different problem spaces. This observation helps us to specify an incre-
mental algorithm that generates successively the different subspaces consisting of varying
sets of variables and constraints that represent the different CSPs. In order to study the
addition of a single activity constraint to a single problem space, we first need to define
the complement of a constraint C':

Definition 5.7 (Complement of a constraint) The complement C of a constraint C
is defined by the subset of the Cartesian product of the variable domains that are the not
allowed value combinations.

The complement exists under the assumption of a closed world; i.e. those tuples that are
not given in the constraint are disallowed. It can be represented for a discrete constraint
as the set of disallowed tuples and for a continuous constraint as the complement of the

constraint regions.

5.6. Generating problem spaces of a DCSP 119

Let P be the current problem space, which consists of a set of variables Vp, a set of
relevant constraints Cp, and C AST X an activity constraint that is added to P.2 Under
the assumption that all variables in C' are active; i.e C' is relevant, the activity constraint
o4 x splits P into three parts:

e 3 problem space P, with C and variable X such that

Vp, = Vp U{X}
Cpl =CpU {C}

e a problem space P, with C, and X such that
sz =VpU {X}
sz =CpU {6}

e a problem space P3 only with C such that
Vp, = Vp
Cp3 =CpU {6}

Only two of the three subspaces created by an activity constraint contain minimal solutions.

Lemma 5.1 Given a problem space P and an activity constraint ac : C AST X such that
Vars(C) C Vp. Only the subspaces Py, P3 of the DCSP: P Aac contain minimal solutions.

Proof: Let C “%" X be an activity constraint.

Since all variables of C' are active in P, three subspaces exist in P A C AqT x.

P1 : Vpl = Vp U {X}, Cpl = CPU{O}

Py Vp2 =VpU {X},Cp2 =CpU {6}

P;:Vp, =Vp,Cp, =Cp U {U}

The solutions of P3 are subsets of solutions in P» because Vp, C Vp, and Cp, = Cp,. No
solution s of P3 can be a subset of a solution in P; and vice versa because Vs s[Vars(C)] €
C « s[Vars(C)] ¢ C where s[Vars(C)] denotes those values of the tuple s that are values
for the variables in Vars(C) A

Corollary 5.1 Let C AT X be an AR activity constraint with a condition C: active(Y),
Y # X such that'Y is active in the current problem space P. Then, only one subspace is
created: Pp = PU{X}

Proof: Follows directly from 5.1 and the fact that C is satisfied in P A
Search for minimal solutions is in general restricted to the subspaces P; and P3 gener-

ated by an activity constraint, P; is additionally constrained by the activation condition
C and Pj by its complement C. A discrete activation condition can be any combination of

2 According to definition 5.3, an activity constraint does not introduce more than one new variable.

This allows for a simple interpretation of activity constraints and does not restrict the semantics, because
a condition C activating n variables X, ..., X, can always be written as C agqr Xi,...,C agqr Xn.

120 Chapter 5. Systematic generation of problem spaces

allowed values. If C is a continuous constraint, we require it to be an inequality defining
a region of allowed values. This allows us to represent the complement of a continuous
constraint as inequality. A continuous condition cannot be an equality because we are
not able to treat constraints of the form E # 0 with E a constraint expression, which
would be the complement of the equality. The activation condition is also restricted to a
single constraint. We do not allow an activation condition to be a conjunction of several
constraints C : =Cj A ... A C™ otherwise the complement results in a further splitting of
the problem space P; because C is in that case the disjunction C1V ...V C™.

In the following section, we show how to combine activity constraints thereby identi-
fying problem spaces in which the minimal solutions of a DSCP are found.

5.6.2 Combining activity constraints

A DCSP is a conjunction of activity and compatibility constraints. A compatibility con-
straint is trivially satisfied if one of its variables is not active. It has only to be taken into
account in problem spaces in which all of its variables are active. Similarly, an activity
constraint is only to be considered in problem spaces in which its condition is relevant. If
one of the condition’s variables is not active, the activity condition is trivially satisfied. We
have seen in the preceding section that an activity constraint whose condition is relevant
splits a problem space into several subspaces. In order to compute a conjunction of activity
constraints, two problems have to be solved:

1. how to combine subspaces produced by a set of activity constraints

2. how to find an ordering of the activity constraints such that each constraint has to
be considered only once

The second point is important because there exists an implicit dependency between activity
constraints. It makes only sense to apply an activity constraint as soon as its condition
becomes relevant. A situation occuring frequently is that a variable introduced by an
activity constraint is necessary for the next activity constraint to become relevant. Even
worse, cyclic dependencies like Cx ATy and Cy Aql x may occur as we will see later
in this chapter.

First, let us consider the combination of a set of activity constraints with activation
conditions. We assume for the moment that all activation conditions are relevant and that
there is no cyclic dependency between constraints.

Theorem 5.1 The minimal solutions of the conjunction of a set of activity constraints
ac; : C; A£>T X; in a DCSP are found in the cross-product formed of all subspaces P;1, P;3.

Proof: Let P be a problem space defined by the initial variables V7 and ac; : Cy A£>T X
the first activity constraint of the given set {ac;}. By lemma 5.1, only P;; and P;3 contain
minimal solutions under the assumption that the condition is relevant in P. Suppose
that the theorem is true for the conjunction of 4 activity constraints and let {P;} be the
resulting minimal problem spaces. We will show that it is also true for the (i+1)th activity

5.6. Generating problem spaces of a DCSP 121

Vi
ACT
C1—>X1
c={Cq} Cc={Cq}
V={X1} U V| V=V
C, ACT X / \ / \
C={C1,Co} c={C1.Co} C={C1,Co} C={C1.C3}
V={X1,X2} UV, V={X1} UV, V={Xat UV V=V

Figure 5.5: The problem spaces created by combining two activity constraints of a DCSP. It
is assumed here, that the variables of C1 and Cy are active. First, the constraint Cy AgT X1
is added to the set of initial variables Vi, then Co AgT Xo.

constraint. Since we assume that all variables of the condition C' are active in a problem
space P;, the subspaces generated by Cj41 AGr X;41 are:

P('H—l)l : VP(i-‘,—l)l = VP:’ U {Xi+1}’CP(i+1)1 = CPi U {Ci+1}

P('H'l)2 : VP(i+1)2 =Vp U {Xi+1}’CP(i+1)2 =Cp U {T-H}

Plitys - VP(i+1)3 = VPi’CP(H-l)S =Cp, U{Ciy1}

Clearly, solutions of P; 1), are supersets of solutions in F;)3, because VPiinys € VPui1

and Cp,)3 = CP,y),- Furthermore, no solution s of P(;11)3 can be a subset of a solution
in P;y1)1 and vice versa because Vs s[Vars(Cii1)] € Ciq1 <> s[Vars(Cit1)] € Cit1-
By induction, the theorem is true for any set of activity constraints A

The tree in Figure 5.5, which we will call combination tree, illustrates the subspaces pro-
duced by the combination of two activity constraints. By theorem 5.1 minimal solutions
are generated by considering only activity constraints whose condition is relevant to the
given problem space. Actually, the problem space generated by an activity constraint when
the condition is not relevant is the same as the parent problem space because the activity
constraint is satisfied trivially. One inconvenience of combining subspaces is that some
subspaces do not add information:

Corollary 5.2 Given a problem space P with X active and an activity constraint ac :
C T X such that C is relevant in P. The union of the minimal subspaces P; and Pj is
identical to the original space P.

Proof: Since all variables of C are active in P, the subspaces produced by ac are:

P :Vp =VpU {X}, Cpl = CPU{C}

Ps: VP3 = VP,CP3 =CpU {6}

Vp, = Vp = Vp, because X is already active in P. Furthermore, Cp, UCp, = Cp because
{C} U {C} is the set of all value combinations over the domains of Vars(C). Thus,
P=P UP; A

122 Chapter 5. Systematic generation of problem spaces

It is easy to detect and prevent this unnecessary splitting. If the variable that is to be
activated by the current constraint is already active, no splitting in subspaces takes place.

The application of an activity constraint should be delayed until all the variables of its
condition are active. Otherwise, after each variable activation, all activity constraints have
to be checked if their condition has become relevant. This suggests that there may exist a
certain order in which these constraints should be combined. To determine such an order,
we introduce the dependency relation DR between two activity constraints.

Definition 5.8 (dependency relation between activity constraints) An activity

. ACT ACT
constraint Cp, < X, is dependent on a second activity constraint Ci < Xy, de-

noted by C, AT X, DR C4 AGT Xy if there exists a chain of activity constraints

C; AgTXi,z' =2,...,n—1 such that X; € Vars(Cj;+1),i=1,...,n—1.

If X1 € Vars(Cy), the constraint Cy, AGT X, is directly dependent on Ci AGT X, If,

additionally, C} AGT X1 is dependent on C, AT X, there is a cycle in the chain of
dependencies and we speak of cyclic dependency. If all activity constraints are reconsidered
at each step, a cycle in the dependencies would lead to an infinite regeneration of variables
that are already active. Consider the two activity constraints C AG"Y and C% Ar'x
where the condition C' is defined over X and C? over Y and the initial problem space P. If
Vp contains none of the variables X or Y, none of the activity constraints is considered and
cycling is avoided. On the other hand, if Vp contains X, C% Ay generates the minimal
subspaces of which P; contains {X,Y}. The second activity condition CZ is relevant in
P; and again leads to the generation of two minimal subspaces that both already contain
X and so on. Corollary 5.2 avoids such a regeneration and serves as a halting criterion in

case of cyclic dependencies.

Lemma 5.2 Given a set of activity constraints in which no cyclic dependency occurs.
Then, the dependency relation establishes a strict partial order® on the set activity con-
straints.

Proof: Let ac; : C; AGT X;,1=1,2,3 be three activity constraints. It is sufficient to show
that DR is irreflexive and transitive.

1. =(ac; DR ac;) because X; ¢ Vars(C;) by definition. DR is irreflexive.
2. ac3 DR acy Nacy DR ac; — ac3 DR acy because X3 € Vars(Cq), Xo € Vars(Cy) is
a chain. DR is transitive.

Asymmetry? follows from irreflexivity and transitivity. A

3The designation “ordering” for this type of relation is somewhat misleading because it is an irreflexive
relation [Schmidt and Strohlein, 1988]. There seems to be no universal designation for this type of rela-
tion. In [Schmidt and Strohlein, 1988], an irreflexive, asymmetric and transitive relation is called a strict
ordering; in [Golumbic, 1980], it is called a strict partial order.

* Asymmetry holds between two activity constraints if aci DR acs — —=(ac2DR ac1).

5.6. Generating problem spaces of a DCSP 123

The dependency relation establishes a partial order between the activity constraints, which
guides the application of activity constraints. This relation can be represented in a directed
graph G = (X,U) where:

e X is the set of activity constraints plus a root node which represents Vr

e U is defined by the relation DR. There exists a directed edge from one node to
another if the second node is directly dependent on the first. The arrow always
points to the dependent node. Transitive edges are not represented in the graph.

In Figure 5.6, three dependency graphs are shown with their corresponding combination
tree. At each node of the tree, we only show the variables and constraints that are added by
the current activity constraint. The leaf nodes represent the final problem spaces. In order
to reconstruct the set of variables and constraints of such a leaf problem space, one has
just to follow the path from the root to this leaf and to gather all variables and constraints
at the intermediate nodes. Graph a) represents the dependency relation between the two
activity constraints of example P; given in Section 5.3. Figure b) shows the graph for a
similar problem P, with the additional constraints Xo = ¢ “% X5, X5 = i % X and
X5 with domain {4,5}. A third problem Pj is derived from P; by adding the constraint
Xy =9 AGT X3. On the graph of Ps3, an ordering of the activity constraints is not
possible because there exists a cyclic dependency between the last two constraints. A way
to resolve cyclic dependencies is to remove them by transforming the graph. Cyclic parts
in the dependency graph can be collapsed into a super-node. The problem of ordering
activity constraints can be translated into the following steps:

1. Remove transitive edges from the original graph (see [Schmidt and Stréhlein, 1988|,
page 37)

2. Eliminate cycles in the original graph by collapsing all nodes in such cycles into a
super-node.

3. Find a partial order on the resulting acyclic graph.

4. Convert the partial order into a full order on the nodes, traverse the graph in this
order and apply the activity constraints.

The advantage of the graph-based model is that the detection of cycles in the dependency
relation is possible. Since there may be exponentially many cycles, it is indicated to
identify sets of nodes that contain at least one cycle. Such a set of nodes is called
strongly connected (Appendix D). A simple depth-first traversal of the nodes in a
directed graph allows us to identify all strongly connected components in a graph in
O(maz(|X],|U])) [Gondran and Minoux, 1986]. From these strongly connected compo-
nents, a reduced graph G is built as follows:

124 Chapter 5. Systematic generation of problem spaces

X1.X2 [0] X1.X2

| 2

X1=b,X3 X17b

X1=b->X3 [1] / \

X3=#€,X3 X3 7e
X3=e->Xg [2]

a)

X1,X2

X1.X2 [0] TN

\ X1 =b,X3 X17b —
XoZcC
Xo=c->Xg [/ \\ \ 2

X1= b -> X3 [1] x X2 Cc X5 XZ'Z ¢ X2 = C,X5
- ~

X5=1>X3 3) X5 2 |

/ X3=¢, X4)(3/'= e Xg=iXs3

Xz=eX, XzZe /0N
Xz=e->X4 [3] X3=eXq X3Z2e
b)

X1.X2 [0]

J X1.X2
X1=b->X3 [1] / \
ST \‘-] X1=b,X3 Xy #b

\m

)
N
/

c)

Figure 5.6: Dependencies in a DCSP represented as directed acyclic graph. The right hand
sides show how problem spaces are combined. At each node only the additional variables
and constraints are shown. The resulting problem spaces are the leaf nodes of the trees.

e Each strongly connected component in G is a node in Gg.

e An arc exists between two nodes in Gp if there is at least one arc between a node of
the first strongly connected component to a node of the second strongly connected
component in the original graph G.

The resulting graph is acyclic by construction. In this acyclic graph Gg a partial order on
the nodes exists according to Lemma 5.2 and the reachability of all nodes from the root
node can be studied more easily. A node M is reachable from a node N if there exists
at least one directed path from N to M. In general, more than one path may exist. To
compare them, each directed edge is labeled with a unit length. When several edges enter
a node, the corresponding activity constraint can safely be applied as soon as the last of

5.6. Generating problem spaces of a DCSP 125

the node’s predecessors has been considered. The distance of the current node to the root
node is thus influenced by the distance of the last predecessor activated. In other words,
the longest path from the root node to the current node gives a minimal bound for when
the current node can safely be applied. Before activating the new variable of that activity
constraint, it is still to be tested that all the variables of the activation condition are active.
Nevertheless, as all predecessor nodes have been reached and their corresponding variables
activated, all conditions for the current node to be fired have been satisfied.

The time complexity of finding the longest path from the root node to each other
node in a directed acyclic graph is O(|X| x [U]). The shortest path algorithm of Bell-
man [Gondran and Minoux, 1986] is adapted to compute the longest path from the root
node to each node by labelling the distance between two nodes -1 instead of 1. The distance
computed for every node in the graph produces an ordering of the nodes in the increasing
distance from the root node. Nodes with the same distance can be treated in arbitrary or-
der. The explicit generation of problem spaces is then conducted by traversing the acyclic
graph in the given order applying the activity constraint at each node. When a node in Gg
corresponds to a single activity constraint, it is applied to each already existing problem
space, which doubles the number of spaces in the worst case. Within a super-node, no
ordering between the activity constraints can be established. Thus, all constraints of the
super-node have to be searched for the next relevant activity constraint. When the last
constraint in a cycle is reached, it is not applied to problem spaces that already contain
the variable to be activated according to Corollary 5.2 thus breaking the cycle.

In the three examples in Figure 5.6, the longest distance from the root node to each
node is indicated in brackets. a) shows the problem spaces of P;. For graph b), the

activity constraints will be ordered X; = b AgT X3, Xo = ¢ A£>T X5, X5 =1 AE>T X3,

X3 =e¢ AgT X4. The essential characteristic of this ordering is that the variable Xy,
which is dependent on X3, is not introduced until all possibilities of generating X3 are
exhausted. The elements X; = b AgT Xzand X9 =c¢ AgT X5 have the same distance from
the root node, they are incomparable in the partial order. It does not matter whether node
Xi1=b AGT X3 is treated first or node X9 = ¢ AGr X5. Furthermore, node X5 =4 AGT X3
does not have to be applied to the subspaces containing X3 already. In example c¢) the
activity constraints X3 = e AT Xy and Xqy =g AGT X3 become a super-node of the
reduced graph, which is at a distance of 2. If the super-node is reached during traversal,
X3 =c¢ AGT X4 is the first constraint that can be applied. Hence, Xy = g AGT X3 is not
applied because the only subspace in which X, is active already contains Xsj.

The partial order established between activity constraints indicates the earliest
moment at which each constraint may be applied. Additional heuristics may delay the
application of an activity constraint as well as that of its descendents in the hierarchy
further. A good reason to do so is the generation of identical components as we will see
at the end of this chapter.

Computational complexity: Ordering the set of activity constraints C* is polynomial in
the number of activity constraints because the identification of strongly connected compo-

126 Chapter 5. Systematic generation of problem spaces

nents can be done in time maz(|C4|, [U|) where U are the direct dependency links and the
ordering itself in [C4| x ||. The combination of problem spaces, however, is exponential
because each time an activity constraint is applied the number of subspaces doubles in the
worst case. The algorithm for generating all subspaces is thus in (9(2‘CA|).

It has to be noted that this worst case is only reached for incomparable activity con-
straints as in example X; = b AGT X3 and Xo =c¢ AT X5 in graph b). Here, all subspaces
from both constraints have to be combined because these constraints are independent from
each other with respect to DR. As soon as constraints are in series (graph a) or generate
the same variable like the constraints X1 = b AgT X3 and X5 =1 AgT X3 only a subset of
the maximal number of combinations is generated. Thus, the number of resulting problem
spaces in example b) is 8 and not 2* as expected.

Theorem 5.2 Let |P| be the number of current problem spaces. A set of n incomparable

non-trivial (no AR constraints) activity constraints {C; Aqr X} with X; # X fori# j
and C;,1 = 1,...,n relevant in each space of P generates P x 2™ problem spaces.

Proof: By theorem 5.1, the minimal solutions are found in the combinations of their
subspaces. Furthermore, all subspaces have to be combined because they do not generate
the same variables according to Corollary 5.2 A

This observation can be used to impose additional constraints on the problem forcing a
choice for the variables in the activation condition of incomparable activity constraints. We
will call these variables critical variables. If the additional constraint X; = b is imposed,
only four leaf problem spaces are left in example b). The graph-based algorithm presented
here allows us to discover incomparable activity constraints as a source of combinatorial
generation of problem spaces under the assumption that the activity constraints are given
as input. In an interactive manner, the number of problem spaces can be reduced by forcing
a user to decide on specific values for critical variables. Another way to avoid an explicit
generation of all problem spaces would be a preprocessing, which checked all combinations
of activation conditions of incomparable constraints for consistency and establishes nogoods
similar to an ATMS. Since, in our approach, we consider one activity constraint after the
other, the problem space tree is binary. The same concept could be extended to sets of
activity constraints considered simultaneously.®

Each of the problem spaces is smaller than an overall CSP constructed from the DCSP
in the sense that its number of variables is a subset of all variables and that additional
constraints have been imposed. Finally, no evaluation of the problem spaces has yet taken
place and the inconsistency of some problem spaces may be easy to detect. If we add for
example the compatibility constraint C; of Pi, the subtrees in b) rooted at X9 # ¢ and
Xy = ¢, X5 will not be generated due to the inconsistencies Xo # ¢, X1 = b respectively
X2 = C, X1 ;é b.

5Berthe Choueiry, Standford University, personal communication.

5.6. Generating problem spaces of a DCSP 127

The generation of subspaces from a given DCSP can be compared to decomposition
models for well-known search algorithms in CSPs [Freuder and Hubbe, 1995]|. Here, dis-
junction is used to formulate a control schema for constraint satisfaction. In a similar
manner, the activity constraints in a DCSP formulation can be understood as those con-
straint that induce a disjunction. Hence, in contrast to CSPs, the disjunctive nature of
DCSPs is already present in its problem formulation.

5.6.3 General DCSP algorithm (GDCSP)

Given a dynamic constraint satisfaction problem P = (V,C,D,V;) with continuous and
discrete variables, we aim at generating systematically its problem spaces. As we have
seen in the preceding sections, the entire search space of the DCSP can be represented
as a tree of problem spaces generated successively. Each space defines a distinct set of
active variables together with the relevant compatibility constraints. Each space is thus
a standard CSP. The root node of this tree is the set of initially active variables V;. The
algorithm for generating all problem spaces containing minimal solutions, for short the
minimal problem spaces, is called general DCSP algorithm (GDCSP) (Figure 5.7). It
consists of a simple tree traversal. The algorithm first finds an applicable constraint in
the set of activity constraints; i.e an activation condition for which all variables are active.
For non-trivial activity constraints It then constructs successively the two subspaces by
calling with-condition and with-neg-condition (Figure 5.8). The result of these calls
is each time a new set of active variables and a set of relevant constraints, in short a new
CSP. After both calls, GDCSP is applied recursively. An AR-constraint is treated by the
procedure with-condition and simply results in a variable addition if the variable in the
condition is active. The algorithm stops if the set of activity constraints is finite and all
activity constraints have been considered. The function relevant-constraints returns all
compatibility constraints that are relevant for a given set of active variables. The function
get-relevant returns an applicable activity constraint for which the condition is relevant
in the given space; i.e such that all variables in the condition are active. If C4 is ordered
according to the DR relation, get-relevant returns the next activity constraint in the list
of ordered activity constraints.

The set of problem spaces or CSPs implicitly defined in a DCSP corresponds to the set
of leaf nodes in the search tree generated by the algorithm. The solution spaces are the
solution spaces of each of the standard CSPs. The inconvenience of the proposed algorithm
GDCSP-minimal-problems is that all problem spaces will be generated and have to be
searched for solutions.

5.6.4 Example

We apply in this section the algorithm GDCSP-minimal for minimal problem space gener-
ation to the mixer example from section 2.3. Additional constraints on the vessel volume
are introduced in order to extend the example. Initially, two variables are given, variable
M representing an instance of a mixer and M7T that of a mixing task, in other words

128 Chapter 5. Systematic generation of problem spaces

procedure GDCSP-minimal-problems({V,C¢ U C* D, V;))
begin

1 Vact <+ Vi

2 Crel + relevant-constraints(Vact,C%)

3 GDCSP(Vact,Crel,C*)
end

procedure GDCSP(Vact, Crel,C*)
begin
4 ac « get-relevant(Vact,C*)
5 if ac#(then
6 remove ac from C*
7 P, + with-condition(ac, Vact, Crel)
8 GDCSP(Vp,,Cp,,C*)
9 P; < with-negative-condition(ac, Vact, Crel)
10 GDCSP(Vp,, Cpy,C*)
11 else
12 new problem space: (Vact, Crel)
13 fi
end

Figure 5.7: General DCSP algorithm for generating minimal problem spaces.

function with-condition (C; Agqr Xi,Vact,Crel)
1 begin
2 Vnew + VactU{X;}
3 Cnew + CrelU{C;}
4 Cnew <+ Cnew U relevant-constraints(V new,C%)
5 return (Vnew,Cnew)
end
function with-negative-condition (C; Agqr X;,Vact, Crel)
6 begin
7 Cnew + Crel U {C;}
8 return (Vact,Cnew)
end

Figure 5.8: Generation of the minimal subspaces Pi and Ps adding a single activity con-
straint C; AGT X; to the problem space P = (Vact,Crel).

Vi = {M,MT}. From the input description the following activity constraints have been
derived among others:

ACy M = reactor NV A£>T Co

ACy V.wolume > 150 AGT o

ACs M Sy

ACy V AT Vwolume : real - [0,1000]

5.6. Generating problem spaces of a DCSP 129

M = {reactor,tank,mixer}
MT = {disp,entr,blend, susp}

AC3 and ACy
M = {reactor,tank,mixer}
MT = {disp,entr,blend, susp}
\Y
V.volume
ACq

M = {tank,mixer}
MT = {disp,entr,blend, susp}
\%

V.volume

M = reactor
MT = {disp,entr,blend, susp}
\Y

V.volume

Co

ACo

M = reactor
MT

M = {tank,mixer}

M = reactor M = {tank,mixer}

Co MT = dispersion MT
C C v
\Y \Y

V.volume =[0,150)

V.volume = [150,1000] C(M,V.volume)

C(M,V.volume)
C(MT,C)

V.volume = [150,1000]
C(M,V.volume)
C(MT,C)

V.volume = [0,150)
C(M,V.volume)

Figure 5.9: Four problem spaces are created by two activity constraints introducing a cooler
and a condenser for the mizer configuration.

AC1 and AC5 describe the optional variables cooler C'o and condenser C of the product
depending on values of M and V.volume. The first constraint states that if the mixer chosen
is a reactor, the mixer vessel requires an integrated cooler. The second constraint requires
a condenser if the vessel volume is large. And finally, AC3 generates a vessel for the mixer
and ACjy a property volume for the vessel. One possible ordering of the activity constraints
is AC3, ACy, ACy, ACy. After having generated the vessel and its volume, constraints AC
and ACY are applied. They generate four problem spaces with the variables:

Py: Vp, = {M = reactor, MT,V,V.wolume, Co,C}

Py: Vp, = {M = reactor, MT,V, Co}

Ps: Vp, = {M = {storage tank, mizer},V, V.wolume, C}
Py: Vp, = {M = {storage tank, mizer}, MT,V, V.volume}

Some of the compatibility constraints restrict their solution spaces:

C (M, V.volume): the volume of a mixer of type reactor must be smaller than 100

C(MT,C): a condenser is only necessary for mixing tasks of type dispersion.

The variable V.volume with domain [0,1000] makes relevant the compatibility constraint
C (M, V.wolume) in all problem spaces and C(MT,C) becomes relevant in the spaces P;
and Ps.

The activity constraints of the mixer example are generic in the sense that they have
to be applied for each set of instances complying with the types required in the activity

130 Chapter 5. Systematic generation of problem spaces

constraints. The algorithm GDCSP-minimal-problems has to take into account this
matching between instances and types. This is the subject of the following section.

5.6.5 Adapting GDCSP to generic constraints

The generalization to generic constraints in GDCSP-minimal-problems requires a
matching between the active variables and the types on which generic constraints are
defined. The algorithm is adapted to generic constraints in the following way:

e Activity constraints are defined on types of components. Each activity constraint
has first to be matched against the set of active variables in order to find a set of
variables matching the type description of the constraint (procedure find-matches in
Figure 5.10 line 4). For each combination of active variables matching the constraint
types, GDCSP is to be called recursively.

e A compatibility constraint is relevant with respect to a set of active variables if
their types matches the types on which the constraint is defined according to Def-
inition 5.6. Relevant-constraints thus returns instantiated constraints for each
generic constraint that matches the active variables.

e The use of generic constraints makes it also easy to generate identical components.
From the existence of a container variable, an array in this case, new instances of
a given type can be generated by a single activity constraint. Activity constraints
generating identical components are called generators. The function generator? in
line 17 returns such an activity constraint for which there is still a set of identical
components to be generated; i.e. for which the set with a maximal number of identical
components has not yet been generated. The algorithm GDCSP is recursively called
on this constraint and results in the addition of a problem space with a set of identical
elements.

5.6.6 Refining the GDCSP-algorithm

The GDCSP-algorithm presented systematically generates all problem spaces from the
problem formulation. Fach leaf node corresponds to a static CSP that can be searched
for solutions by conventional search methods. This approach resembles a “generate-and-
test” technique. First, all problem spaces are generated and then they are tested for
consistency. The general search strategies presented in Section 2.6.1 for discrete CSPs
a priori also apply to the more abstract search space of a GDCSP. Here, a node of the
search tree corresponds to a problem space (a partial CSP) and an edge between two nodes
represents the choice of how to satisfy the next activity constraint. A consistency check at
a node implies solving an entire CSP. Since deciding for each intermediate problem space
if there is a solution or not is too costly, one possibility is to apply a partial consistency
check. Natural candidates for such partial checks are local consistency techniques. They
will only detect local inconsistencies in a problem space with the advantage that they are of

5.6. Generating problem spaces of a DCSP 131

procedure GDCSP-minimal-problems({V,C¢ U C4,D,Vr))
begin

1 Vact < Vr

2 Crel «+ relevant-constraints(Vact,C®)

3 GDCSP(Vact,Crel,C4)
end

procedure GDCSP(Vact,Crel,C*)
begin
ac + get-relevant(Vact,C4)
remove ac from C4
if ac is not instantiated then
new < find-matches(ac, Vact)
ac < pop(new)
CA + newuC4
fi
if ac#0 then
P, + with-condition(ac, Vact, Crel)
1 if P #0 then
11 GDCSP(Vp,,Cp,,C4)
12 fi
138 P + with-negative-condition(ac, Vact, Crel)
14 if P,#0 then
15 GDCSP(Vp,,Cp,,C?)
16 fi
17 genac < generator?(ac)
18 if generator #(then

© % N S L A L

S

19 GDCSP (Vact,Crel, {genac} U C*4)
20 fi

21 else

22 new solution: (Vact, Crel)

23 fi

end

Figure 5.10: GDCSP algorithm for generating all minimal problem spaces in design tasks.

polynomial complexity at least in the discrete case. Similar to a backtrack algorithm, local
consistency checks are applied to the intermediate problem spaces with the goal of filtering
inconsistent spaces as early as possible. The earlier a problem space is removed because it
contains no solution, the larger the subtree, which does not have to be explored. A simple
demonstration of this idea is given when solving P, already mentioned in Section 5.6.2:

132 Chapter 5. Systematic generation of problem spaces

X1.X2

/

X1 =b X3 X1 7b

/ \ inconsistent ! inconsistent '//
Xz =¢.X5 Y TN S ReEeXs @
GG mamene et e e

Figure 5.11: Pruning of problem spaces due to consistency checks.

Problem Py, = (V,C,D, V})

Variables V = {Xl,XQ,Xg,X4,X5} with
D1 = {a, b}, D2 = {C, d}, D3 = {6,f},D4 = {g, h,}, D5 = {Z,j}
Vi = {X1, X2}

Constraints C = {C*,C?,C3,C*,C%, C®%} with

Cxyx, = ((ad)(be))

Caxax, = ((ceh)((c fh)(c fg)(deh)(deg)(dfh)dfg)

o3 x, =09 x3

ct X3 =e 9 X,

C% Xy =c AGT Xs

C8: X5 =i S x,
From the dependency graph shown in Figure 5.6 b), one possible ordering of activity
constraints is derived: X1 = b A X3, X9 =c AGr X5, X5 =1 AGr X3, Xg=e€ AGr Xy.
The resulting minimal problem spaces are shown in Figure 5.11. Only the subspaces
S1, 59, S3 are consistent. In this case, inconsistency is already detected at the nodes X3 # ¢
and X2 = ¢, X5 and the following subspaces do not have to be generated. Local consistency
methods like arc-consistency are already sufficient to discover the inconsistencies in this
example.

The new algorithm GDCSP-minimal-spaces, which runs local consistency at each
subproblem is shown in Figure 5.12. The function locally-consistent? is applied in with-
condition, with-negative-condition in order to remove inconsistencies (only with-
condition is explained in the figure, the other algorithms are adapted in the same manner).
It executes an algorithm ensuring local consistency with the side effect that some of the
variables’ labels will be refined. Those spaces that have been proven inconsistent are re-
moved from the search tree. The result of GDCSP-minimal-spaces is therefore a set of

5.6. Generating problem spaces of a DCSP 133

function with-condition (C; Agqr Xi,Vact,Crel)
begin
Cnew <+ Crel U {C;}
Vnew + Vact U {X;}
Cnew <+ Cnew U relevant-constraints(V new, CY)
if locally-consistent?((V new, Cnew)) then
return (Vnew, Cnew)
else
return ()
fi
end

Figure 5.12: Function with-condition generating ensuring local consistency on the solu-

tion spaces.

M = {tank,mixer}
MT = dispersion
C

\

V.volume = (150,1000]
C(MT,C)
C(M,V.volume)

M = {tank,mixer}

\%
V.volume = [0,1000]
C(M,V.volume)

V.volume =[0,100]
C(M,V.volume)

Figure 5.13: Four problem spaces are created by two activity constraints introducing a
cooler and a condenser into the mizer configuration. One of the problem spaces, Py, has
an inconsistent solution space due to constraints on the vessel volume. This inconsistency
is detected when enforcing local consistency.

locally consistent problem spaces appearing as leaf nodes in the search tree.

When applied to the mixer example, our algorithm for generating minimal solution
spaces results in some pruning. Consider the problem spaces created by the algorithm
GDCSP-minimal-spaces when adding the vessel volume to the existing problem spaces
(Figure 5.13). Remember also the compatibility constraints on the vessel volume:

C(M,V.volume): the volume of a mixer of type reactor must be smaller than 100.

C(MT,C): a condenser is only necessary for mixing tasks of type dispersion.

When local consistency is run on each of the problem spaces, P; becomes inconsistent
due to a conflict occuring between C'(M, V.volume) and the activation condition of AC,
restricting V.volume to be greater than 150. This implies that there exists no solution for
configuration P;.

It is worth mentioning that a DCSP that only contains activity constraints derived
from a strict hierarchical representation of objects correspond to a hierarchical domain

134 Chapter 5. Systematic generation of problem spaces

CSP. The advantages of hierarchical domain CSP are thus taken into account in our ap-
proach. Our algorithm ensures that, if a value corresponding to a component type in the
hierarchy is found to be inconsistent, all its descendents will be inconsistent. If, for exam-
ple, our condenser had two different subtypes C7 and Cy with additional properties, the
inconsistency of problem space P; detected will prevent from generating further subspaces
containing C; or Cj.

5.6.7 Completeness and soundness

We consider here the algorithm GDCSP-minimal-spaces given in Figures 5.10 and
5.12. We assume that the number of activity constraints treated is finite.

Theorem 5.3 GDCSP-minimal-spaces is complete.

Proof: All minimal solutions are contained in the generated solution spaces because:

1. GDCSP-minimal-space generates all minimal problem spaces according to theo-
rem 5.1.

2. Due to the completeness of local consistency algorithms no solution is removed by
the function locally-consistent?

It is obvious that the algorithm also generates unsound solutions because a new variable
is introduced on the basis of a locally sound solution space. Some of these solution spaces
may prove inconsistent when using a global consistency algorithm.

5.7 Finite versus infinite number of problem spaces

In this section, we would like to examine if the number of problem spaces defined in a
DCSP may be infinite. A reasonable working hypothesis is that the number of initially
active variables Vi as well as the number of generic activity constraints of the DCSP is
finite. The question is then if it is possible to generate an infinite number of problem spaces
given a finite description of a DCSP in the form (V,C, D, V).

If, at each step there is a finite set of active variables, and a finite set of activity
constraints that may become relevant and since cycles between activity constraints are cut,
the resulting number of problem spaces is also finite. A typical example is the configuration
of a car. It is easy to write down explicitly a finite set of constraints for configuring
such a car: there is an engine, a frame, at least four wheels and perhaps a spare wheel
(optional). This situation changes radically if a problem specification demands a large
variety in the number of identical elements. In this case, so-called generators introduce
new variables. Since in a formulation with generators the exact number of elements is not
given like in the car example, all problem spaces have to be generated from the minimal
containing one element to the maximal with n elements. An activity constraint defined on

5.7. Finite versus infinite number of problem spaces 135

f(NbEIts)

wl \ oo/

NbElts

Figure 5.14: A condition on the number of elements like f(NbEIts) < Max might generate
several feasible intervals.

an array a priori generates all problem spaces containing up to n = oo elements. Thus, our
initial hypothesis of the finiteness of the set of activity constraints is no longer true. For
the generation process to be finite, a halting condition is required similar to the halting
condition in a simple loop construct in programming languages. Such a loop is proved to
terminate if there is an invariant that does not change during the iterations. The invariant
in a loop generating new elements is typically a function of the number of elements or of
the condition in the loop.

Consider again the example of conceptual bridge design in which the bridge length is 150
meters and a large number of piers might be generated, which are situated at equal distance.
Suppose that the variable piers.nbPiers : integer : [2,10] is a property of piers,
piers[i].position denotes the z-position of pier 7 and consider the following constraints:

. ACT | piers.nbPi . . .
Cy: piers "= VE° nbPiers iersli] : Pier

Cs: piers.nbPiers < 3
Cs: Vfiefs'nbpms*l(piers[i + 1].position — piers[i].position > 50)

If we take into account only C; and C5, two problem spaces are generated (Figure 5.15).
If the constraints C4y and Cg are considered, all eight problem spaces with two to ten
piers have to be generated and tested against Cs. Only two of the eight problem spaces
are consistent. For a constant bridge length and an equal distribution of the piers, the
maximal number of piers in this example can be deduced easily because the invariant is
piers.nbPiers * (piers[i + 1].position — piers[i].position) = bridge.length for a given i.
Deducing the upper limit is however not always possible without knowledge about other
constraints on the design. For the algorithm to remain complete, all elements have to be
generated in the second case because the number of elements might be restricted to several
feasible intervals (Figure 5.14).

Since additional constraints should restrict the number of elements generated, they
must either be formulated directly on the number of elements like in Cs or on a property
of the elements that implicitly restricts the maximal number of elements like in Cg. Such
constraints on the maximal number of elements are only effective if the number of elements
is bound to a problem variable and can be refined before generating the elements. This
is not possible for constraint Cg since the pier positions are properties of the piers, which
means that they are generated once the piers exist. In case of constraint Cs however, the
generation of identical elements can be delayed by specifying a very large distance on the

136 Chapter 5. Systematic generation of problem spaces

ACT

piers\ bridge = piers [L]

Cy piers.nbPiers / \
M
1
[L+1] piers 2SnbPiers piers 25 pier[i] [L+M]
: 1 . 1 piers[3]
piers[]piers[2] piers(] piers[2] 1
P1 P> pier 29 x [L+M+1]

Figure 5.15: Left: The generation of new elements is restricted by the constraint
piers.nbPiers < 3. Three problem spaces are created of which only Ps, P3 are consis-
tent. Right: The generation of new elements is delayed in order to get a chance to reduce
the domain of piers.nbPiers first. The distance M between the two activity constraints
can be chosen arbitrarily large.

link in the dependency graph between the activity constraint generating the array and the
one generating the individual elements from the array (Figure 5.15). Assuming that some
kind of consistency test is used, the number of elements will be refined before any element
is generated.

In our actual implementation, we require designers to specify the number of identical
elements as a problem variable. A generator constraint like C4 generates the problem
spaces with cardinalities determined by the label of the problem variable piers.nbPiers.
Another possibility would be to leave the task of specifying a correct generation (one which
terminates) to designers.

5.8 Searching within locally consistent solution spaces

This section is intended to give an idea of how solution spaces generated by our algorithm
can be searched. In the beginning, the subject of this thesis was entirely limited to gener-
ating the locally consistent problem spaces of a DCSP. It has turned out that working with
mixed problem spaces in which continuous and discrete variables coexist, is not so differ-
ent from uniform CSPs. In discrete CSPs, solutions are generated using a backtracking
algorithm interleaved with different degrees of consistency checks; e.g. forward checking,
MAC. In continuous CSPs, most researchers use domain splitting together with local con-
sistency in order to isolate solutions. Since we have defined propagation rules for discrete
and continuous constraints, search methods described for discrete CSPs are also applicable
to continuous and mixed CSPs under the condition that a kind of value enumeration is
also defined for continuous variables.

5.8.1 A generic search algorithm

A generic algorithm is described in Figure 5.16. It first chooses the next variable to assign
and then splits its label into two subintervals. The variable is instantiated to the mid-value
of each interval. Splitting continues until a given distance w between the subsequent values
enumerated is reached (w is 1 for discrete labels). left(I) and right(I) represent the left

5.8. Searching within locally consistent solution spaces

function recursive-search(V,C,width)
begin
if all variables in V are assigned then
show solution V
else
V + reorder-variables(V)
X < next variable from V
Ix + next interval from Lx
split(X, Ix,V,C,width)
end

function split(X,Ix,V,C,w)
begin
if right(I) —left(I) > w then

m ¢ some point of I'x (for example the middle)

Lx +m

C + C U add-mixed-constraints(C)

inconsistent? <+ check(V,C)

if not(inconsistent?) then
recursive-search(V, C, w)

fi

reset-values(V)

reset-mixed-constraints(C')

I + [left(lx), m]

I + [m + w,right(Ix)]

split(X, I;,V,C,w)

split(X, I, V, C,w)

end

Figure 5.16: A generic search algorithm.

137

respectively the right bound of an interval I. The function check can be any pruning

algorithm from checking of fully instantiated constraints or forward checking to full local

consistency. After a value has been instantiated, relevant mixed constraints are added to

the current search space by add-mixed-constraints (see Section 5.8.2). This algorithm

profits from the following ideas:

e Value enumeration for discrete variables may also refine continuous variable labels

due to mixed constraints.

e Discrete value combinations occuring in a discrete-continuous constraint impose fur-

ther continuous constraints on the problem spaces.

e Domain splitting can be applied to all variables. Instead of enumerating values

of discrete variables, their domains can be split like continuous domains under the

assumption that the discrete values are ordered and discrete domains represented

138 Chapter 5. Systematic generation of problem spaces

as intervals. This simply corresponds to imposing a new constraint on the problem
space and to extend the problem space tree.

e Value enumeration can also be defined for continuous variables for example using the
transformation functions defined for mixed constraints instead of splitting a contin-

uous interval into two equal subintervals.

The first two points help to formulate a strategy for variable ordering. Variables occuring
in discrete-continuous constraints should be enumerated first because they add continu-
ous constraints to the problem spaces. Other discrete variables are enumerated subse-
quently constraining continuous variables through mixed constraints. A variable ordering
is achieved according to the max degree criterion (see Section 2.6.4) first and the secondary
criterion of domain size. For discrete variables, the ordering max degree + min domain
(first fail principle) and for the continuous variables, the ordering max degree + max do-
main perform well on the examples presented in Chapter 6. This heuristic is chosen for all
those variables that have not yet been reduced to a single value. In the examples presented
in Chapter 6, we limit value enumeration to discrete variables and use the variable ordering
mentioned. Forward checking is employed during enumeration and domain splitting into
equal subintervals for continuous variables. At the first generated solution, our search algo-
rithm backtracks to the next combination of discrete variables. The reason for this choice
is that enumeration of values in the continuous labels results in very similar solutions at a
distance w of the previous solutions in under-constrained systems.

When applying forward-checking to continuous variables and constraints, the corre-
sponding ternary constraints become binary, and the intersections between two ternary
constraints differing in their third variable can be computed due to the binary refine oper-
ator given in Figure 3.8. Consider two ternary constraints Cxyz and Cxyz; with i # j
and the assignment {Z; = z;,,Z; = z;,}. The binary system of those constraints forms
a total constraint Cy = {Cxy(X,Y,z;,),Cxy(X,Y,z;,)} that is considered in a single
propagation step by the binary refine operator. Therefore, instantiating continuous vari-
ables leads to a tightened binary constraint network and the binary refine operator takes
into account additional constraint intersections.

5.8.2 Discrete-continuous constraints

Constraints in which discrete tuples are mixed with continuous constraints as for example
the constraint on the vessel form in Figure 3.24 are propagated during search. The strategy
is to enumerate the values of discrete variables in such constraints first in order to define
exactly those subspaces in which the continuous part of the constraint is valid.

Consider the three remaining subspaces P;,t = 2, 3,4 of the mixer example illustrated
in Figure 5.13. The following activity constraints define a new subspace for the elliptical
vessel type:

AC5: V = Elliptical AGY sradius - real : [0,1000]
ACs: V = Elliptical S bottomarea : real : [0,1000]

5.9. Summary 139

V.volume =[0,1000]
V = {elliptical,disk,hemispherical}

V.volume = [0,1000]
V = elliptical
El.sradius = [0,1000]

V.volume = [0,1000]
V = {hemispherical,disk}

V.volume = [0,1000]
V = elliptical
El.sradius = [0,1000]
El.bottomarea = [0,1000]

V.volume = [0,1000]
V = disk
Cdisk

V.volume =[0,1000]
V = hemispherical

Chemispherical

V.volume = [0,1000]
V = elliptical
El.sradius = [0,1000]
El.bottomarea = [0,1000]

Celliptical

Figure 5.17: The problem spaces created from P;,i = 2,3,4 adding the activity constraints
AC5 and ACs . Subsequent search finds three different search spaces according to the values
of the vessel type. The search spaces are Si1,S;0 and S;3.

The subspaces in which the continuous constraints of the mixed constraint
C(V, V.wolume, V.diameter) of Figure 3.24 are applied are shown in Figure 5.17. Ceyiptical,
Chemispherical and Ceytindrical are the continuous constraints determining the vessel volume

in function of the vessel type.
Another example of continuous-discrete constraints are piecewise defined functions.
In general, a piecewise defined function consists of a set of functions each of which is
defined over a given domain of definition. Such a function is usually written as conditional
statement of the form:
Fi(X) if X € [mini, maz]
F(X)=¢ ...
F.(X) if X € [min,, mazy]

with min;, maz; € R. Mixed constraints can be used to encode this kind of knowledge as
follows

C(X,Y) := {([mini,maz1]Y — F1(X)=0)

([ming, maz,] Y — Fp(X) = 0)}

5.9 Summary

This chapter generalizes dynamic constraint satisfaction to problems involving continuous
variables. Design and configuration problems typically require decisions about value as-

140 Chapter 5. Systematic generation of problem spaces

signments to be taken in a given context of already assigned variables, which might be
of discrete and continuous type. A dynamic constraint satisfaction framework allows for
introducing new variables based on partial assignments or, more generally, restrictions of
value combinations. A new method is presented, which generates all problem spaces of a
dynamic CSP. Each problem spaces defines its own variable and constraint set. A basic
assumption is that the complement of activation conditions can be formulated and that
the activation condition is formulated by a single constraint. Our generation method has
several advantages:

e Continuous and discrete constraints can be treated in a dynamic constraint satis-
faction framework, in which also continuous activation conditions are allowed. In
general, an activation condition can be a constraint and is not restricted to a partial
assignment like the original algorithm by [Mittal and Falkenhainer, 1990].

e The dependency graph defined by the activity constraints of a DCSP is analyzed in
order to determine the order in which they have to be applied. This analysis also
identifies

1. cycles between activity constraints so that they can be cut, which implies that
looping is avoided like in the ATMS-algorithm of Mittal and Falkenhainer,

2. incomparable activity constraints that are responsible for a combinatorial num-
ber of problem spaces.

e The search tree generated can be seen as a higher level CSP, in which each node
defines a partial problem space or CSP. Hence, search methods defined for static
constraint satisfaction problems can be applied to each node. Furthermore, solutions
within one problem space are similar in that they are defined on the same variables
and restricted by the same constraints.

e Due to a generic formulation of constraints, the number of variables must not be ex-
plicitly known at the time of problem formulation. However, for variables created by
generators a maximal limit must be given to prevent a unlimited variable generation.
This last point is not a severe restriction, because in practical design problems the
number of components is always limited.

e The detection of incomparable activity constraints can be signaled to the user who
then can minimize the maximal number of problem spaces generated by fixing some
or all variables in the conditions of these constraints.

e Local consistency is not only of use in order to prune inconsistent problem spaces as
early as possible but also to exhibit a single consistent solution of a problem space.
Techniques like forward checking or MAC employ local consistency extensively to
enhance search especially in the continuous domain.

Finally, an interface for representing design tasks in the dynamic CSP framework is pro-
posed.

Chapter 6

Results

“... it is not really difficult to construct a series of inferences, each dependent upon its

predecessor and each simple in itself. If, after doing so, one simply knocks out all the central
inferences and presents one’s audience with the starting point and the conclusion, one may

produce a startling, though possibly a meretricious, effect.”

Sherlock Holmes in The Adventure of the Dancing Men, The Strand Magazine (1903-1904)

6.1 Introduction

In this chapter, three examples are presented from the domain of configuration and design
and the results of applying systematic enumeration of solution spaces are discussed. The
application examples are:

1. Two simple examples of binary respectively ternary constraint systems.
2. Configuration of trains.
3. Configuration of industrial mixers.

4. Preliminary design of bridges.

The first examples compare the pruning power of different consistency algorithms on nu-
meric CSPs. The train example is a mixed CSP and shows how local consistency applied
during search finds solutions. The example on mixer configuration summarizes the re-
sults of GDCSP and search in locally consistent spaces and is used throughout the thesis.
Preliminary design of bridges emphasizes the generation of identical elements (the bridge
piers).

The current version of GDCSP as well as the propagate algorithm are implemented
in Allegro Common Lisp. The propagation rule simple-propagate for continuous con-
straints is implemented in Maple. The communication of results between Maple and Lisp
is based on interprocess communication. It is clear that a more efficient version should in-
clude the algorithm simple-propagate directly into the application code. The programs
are run on a two-processor Sun Sparc Ultra Enterprise II.

141

142 Chapter 6. Results

6.2 A binary constraint set

In order to show how the local solution spaces compare to solution spaces from which a
solution can be instantiated backtrack-free, we implemented a small example consisting of
pure binary constraints given in Haroud’s thesis [Sam-Haroud, 1995]. The example consists
of six total constraints on pairs of variables in X,Y, Z,T":

X+Y<8)

y-Xxso0 1{ ! g . 3)3)535525
1 - — 4. = U.

Y - xZap 20

Z—eX4 <15 Y +0.2T >1

Z—etX) <2 Y 4+0.25T <5.5

Z—05X > =2 Y —15T<1

Z+1.25X >1.25 Y —0.6T > —3

Z —0.0075X >0 Y —0.334T < 2

T+ (Z—-2)%? <3.75 T—eX=1 <15
T—(Z-232>025 T—etX <2

The total constraints are represented in Figure 6.1. In this example, path-consistency al-
lows for the computation of globally consistent solutions because certain partial convexity
properties are satisfied (refer to [Sam-Haroud, 1995|, page 144-146). The labels com-
puted by path-consistency are approximations of two-dimensional shapes represented by
quadtrees . These approximations have been computed with a certain degree of precision,
which has to be taken into consideration when comparing the results. Furthermore, we
show here the projections of these quadtrees onto each axis. The result of local consistency
given the initial labels [0, 10] is
X [0.4893628958,3.407938147] [4.592061853,7.510637104]

Y : [0.4893628958,2.852763964]
Z
T

[0.8356560572,2.553185521]
[0.25,2.553185521]

compared to the path-consistent solution spaces (projected onto the axes):

X : [0.75,3.4375] [4.5625,7.4375] Y : [0.53125,2.875]
Z : [0.820312,2.57812]
T : [0.234375,2.57812]

Only the lower bounds for X and Y have been refined more tightly, all other deviations
results from the discretized representation of the constraints in form of 2-trees. In this
example, seven levels of binary decomposition have been used resulting approximatively
in a precision of 0.08. It must also be noted that, in the algorithm achieving path- and
higher degrees of consistency, the level of precision depends on the largest initial interval
that must be taken into consideration. In our algorithm achieving local consistency, the
choice of initial labels is less critical. If some of the initial labels are not known, one can
simply choose a sufficiently large domain; even [—o0, +00] would be acceptable.

6.3. Comparison between Davis’ and Falting’s propagation rules 143

0 1 2 3 4 5 6 0 1 2 3 4 5 6
6 T T T T T T T 6 T T T T T T T T
X+8 — 0.5%X-2 =——
X — 5 -1.25%x+1.25 =——
5} 1/(X-4)*32 e] 0.0075%X ==
4 exp(x-4)+1.5 =—— |

0 1 2 3 4 5 6 7 8 9 10

exp(x-4)+1.5
exp(4-x)+2 =—

0 1 2 3 4 5 6 7 8 9 10 o] 1 2 3 4 5 6 7 8 9 10

Figure 6.1: The binary constraint example.

6.3 Comparison between Davis’ and Falting’s propagation
rules

We applied the Davis propagation rule to the following example:

Constraint set 1

Ci —4%xX5—1xXg+6xX9g+6>0
Co 4xX;—9xX5—-5xXg—5>0
Cs3 —-9%xXo4+T7xX35+4xX5+4>0
Cy —-1xXg+10xX9g—4%xX90—4>0
Cs 8xX;+3xX;+4xXg+4>0
Cse —6%xX3—2xX5+6xXg+6>0
Cr 6xXo—1xX34+7xX54+7>0
Cs 8xX{—-5xXy—8xX3—-8>0

144 Chapter 6. Results

‘ X; H Local C. ‘ Davis ‘ Simplex ‘
X1 || [-10,10] [—10,10] [—10, 10]
Xo || [-10,7.8339] [—10,10] [—10,7.8339]
X3 || [-10,10] [—10,10] [—10, 10]
X, || [—6.8826,10] [—9.25,10] | [-5.8122,10]
X5 || [-6.5396,9.4445] | [—10,9.4445] | [—4.8745,9.4445]
Xs | [-10,10] [—10, 10] [—9.7322,10]
X7 | [-10,10] [—10, 10] [—10, 10]
Xg || [~10,10] [—10, 10] [—10,10]
X9 || [4.6,10] [—4.6,10] [—3.29,10]
X0 || [-10,10] [—10,10] [—10, 10]

Table 6.1: Solutions for constraint set 1 using various consistency techniques.

A comparison of the results of Davis’ rule and the local consistency rule (Table 6.1) reveals
that more pruning of labels is obtained by taking into account intersections between con-
straints defined on pairs of variables. This can be clearly seen in the variable X5, which
is involved in the constraints C,C5,C3,Cs and C7 forming many variable pairs with other
variables. As reference, we also calculated the globally optimal solution for constraint set
1 using the simplex method. As the labels of X5, X4 and X5 show, local consistency
is always better than an individual propagation of constraints (e.g. Davis) but does not
achieve global consistency.

6.4 Configuration of trains

This is a small example of a train configuration, in which, given the maximum acceleration,
maximum speed, and the vehicle payload, the required power as well as the number,
and type of engines have to be deduced. This example consists of mixed constraints,
inequalities, nonlinear equalities, and involves discrete variables as well. In a first step,
local consistency is computed from the initial domains. Second, a search is conducted
within the locally consistent solution spaces using forward checking. The variables of this
example are given in Table 6.2. For the variables VM and RP, initial domains were not
given. Therefore, they were chosen large enough so as to cover the entire feasible region
of the individual constraints. The constraints are:

6.4. Configuration of trains 145

Variable Description Domain
MazAcc Maximum Acceleration | 1.1m/s?
MazSpeed | Maximum Speed 30m/s

vpP Vehicle Payload 16000kg

V' Axles Vehicle Axles [2..8]

E Engine Type {E1,E2,E3}
EP Engine Power [100,400]
EPMass | Engine Mass [3000, 5000]
VM Vehicle Mass [80000, 500000]
RP Required Power [0,100000]
NoFEngine | Number of engines [2..16]

Table 6.2: Variables and their domains used in the train configuration example.

e —
N/
@ Noengin

i

Figure 6.2: The constraints of the train configuration example form cycles in the corre-
sponding hypergraph.

VM = 80000kg + NoEngine x EPMass + V Axles x 1000kg

RP = (VM %1,06 + VP) x MazAcc x0,000434 * MazSpeed + (VM + VP) % 0,0014715
NoEngine = [RP/EP]

2 x VAzles > NoEngine

NoEngine >V Axles

VAxles #5

VAxles £ 7

C(E, EP,EPMass) :== ((E1 100 5000)(E2 400 3000)(E3 300 3300))

The constraints form a hypergraph with cycles as shown in Figure 6.2. Local consistency
is thus not expected to compute globally consistent solution spaces. The constraint
NoEngine = [RP/EP] is replaced by the two constraints NoEngine > RP/EP and
NoEngine < RP/EP + 1. The constraints are ternarized and local consistency on the
ternarized system establishes the following solution spaces:

146 Chapter 6. Results

ENGINE : {E2,E3}
NOENGINE : {5,6,7,8}

VP : 16000
VAXLES : {4,6}
MAXACC : 1.1

EP : {300,400}

RP : [1901.32518,2124.472968]
MAXSPEED : 30

EPMASS : {3000,3300}

VM : [99000,112400]

The result is a list of variables with their locally consistent labels. A label is either a
list indicated by brackets for discrete and integer variables or a set of intervals for a
real variable. When comparing the results with the initial labels given in Table 6.2, the
attentive reader can see,that the initial labels of RP, VM, NoEngine, and Vaxles have
been reduced considerably. Furthermore, one of the engine types, E1, does not supply
enough power in order to be a candidate for a solution.

In a second step, the resulting locally consistent solution spaces are searched for single
solutions. The search strategy chosen in this example is to enumerate first the discrete
(symbolic and integer) variables according to the first-fail principle and to propagate
value assignments through the continuous parts of the constraint network using local
consistency. This heuristic proves interesting here because after the instantiation of the
discrete variables FE, NoEngine, and V Azles the constraint network is tree-structured
and local consistency filters globally consistent solutions. The four solutions found are:

E = E2,NOENGINE = 5,VAXLES = 4,RP = 1901.32518,VM = 99000
E = E3,NOENGINE = 7,VAXLES = 4,RP = 2036.21302,VM = 107100
E = E3,NOENGINE = 7,VAXLES = 6,RP = 2069.51866,VM = 109100
E = E3,NOENGINE = 8,VAXLES = 6,RP = 2124.47297,VM = 112400

Some of the combinations of were rejected because the constraint Vazles < NoEngine <
2 x Vazles was violated. On the other hand, the constraint RP/EP < NoEngine <
RP/EP +1 associated small values of NoEngine to the engine type E2 and larger values
of NoEngine to E3.

6.5 Configuration of industrial mixers

This example has been adapted from F5 described in [van Velzen, 1993]. The example is
shortly described in section 2.3 together with a figure of the part-of hierarchy. A list of
variables occuring in this problem is presented in the Appendix A.1. A complete description
of the constraints is also found in the appendix. The activity constraints describe conditions
under which a cooler and a condenser must be added to the mixer configuration. The
various compatibility constraints listed in the appendix are relevant in those problem spaces
in which the constraint’s variables are active. In Figure 6.3, the hypergraph of the problem

6.5. Configuration of industrial mixers 147

E.power

Figure 6.3: The constraints of the mizer configuration example form cycles in the corre-
sponding hypergraph.

restricted to a non-elliptical vessel form is shown, with those constraints dotted that are
not relevant to all problem spaces.

Throughout this thesis the examples has been reused in order to illustrate the genera-
tion of problem spaces. The spaces containing a cooler and a condenser simultaneously are
detected to be inconsistent. The six resulting locally consistent spaces can be can be found
in the Appendix in Table A.1.3. There are all combinations containing either a cooler or
a condenser or no option at all. Furthermore, each of the mixer configurations has an
elliptical, cylindrical or spherical vessel.

We choose one of the spaces with M = {mizer, storage tank} and V.wolume =
[150,1000] in order to find single solutions using forward checking with dynamic vari-
able ordering. The search heuristic used was the one described in Section 5.8. Fur-
thermore, we enumerated exhaustively the integer and discrete domains but looked for
only one solution for the continuous subnetwork. In this search space there are ex-
actly 12 solutions according to our instantiation heuristics because four discrete vari-
ables with a domain size of two have to be searched and because the value combination
{V = hemispherical, MT .slurry pressure = low} is not allowed. We concentrate on
those solutions with M = storage tank and MT.slurry viscosity = low. The resulting
individual solutions are listed in Table 6.3.

It can be seen that the first two solutions are identical except from the choice for
MT.slurry pressure. These two solutions are interchangeable in the context of the lo-
cally consistent solution space given. The last solution has different values for the vessel
parameters because the vessel volume is computed by a different constraint.

148

Chapter 6. Results

Variable Solution 1 Solution 2 Solution 3
M storage tank | storage tank storage tank
M.agitator agitator agitator agitator
M.vessel cylindrical cylindrical hemispherical
MT dispersion dispersion dispersion
MT .heat-transfer false false false

MT slurry-pressure | high low high

MT slurry-viscosity | low low low

MT slurry-density 1.5 1.5 1.5

A.impellers

radial-turbine

radial-turbine

radial-turbine

A shaft shaft shaft shaft
E.power 4375.025 4375.025 4375.025
I.diameter 1.9615 1.9615 1.9615
Lentry top top top

I.pos 5 5 5
I.power 1875.025 1875.025 1875.025
Lratio 0.329102 0.329102 0.329102
Lrps 2.0496 2.0496 2.0496
V.diameter 5.9602 5.9602 5.9602
V.height 11.9204 11.9204 11.9204
V.opt2 condenser condenser condenser
V.volume 332.586 332.586 304.8705

Table 6.3: Three solutions of the first locally consistent solution space of Figure 7.4.

The time requirements for this search with forward checking and with simple back-
tracking are:

Forward checking:

cpu time (non-gc) 1,840 msec user,650 msec system
cpu time (gc) 50 msec user,0 msec system

cpu time (total) 1,890 msec user,650 msec system
real time 15,249 msec

Backtracking:

cpu time (non-gc) 383,280 msec (00:06:23.280) user,19,180 msec
system

cpu time (gc) 17,850 msec user,50 msec system

cpu time (total) 401,130 msec (00:06:41.130) user,19,230 msec
system

real time 552,029 msec (00:09:12.029)

6.6. Preliminary design of bridges

149

6.6 Preliminary design of bridges

In this example, the configurations shown in Figure 1.1 are generated. Again, the de-
scription of the problem can be found in the appendix A. The example was initialized with:

BRIDGE.ABUTMENT1 : 8
BRIDGE.ABUTMENT2 : 7
BRIDGE.ABUTMENTS : 15
GAP.SOIL : GOOD
GAP.CENTERLINE : 77.5
GAP.DEPTH : 30

GAP.GEOMETRY : MOSTLY-SYMMETRICAL

GAP.RATIO : 0.2
GAP.WIDTH : 150
OBSTACLE : ROAD
ROAD.WIDTH : 11.5

ROAD.ALIGNMENT : SLIGHTLY-CURVED

O0BSTACLE.RSIZE : 0.1
OBSTACLE.SIZE : 15
OBSTACLE.X1 : 70
OBSTACLE.X2 : 85

BRIDGE.PROFILE : (ABOVE-DECK CONSTANT-DEPTH)

The bridge profiles were restricted to above-deck and constant-depth in order to show the
two alternatives as mentioned in the introduction to this thesis. The first two alternatives
consist of a beam bridge with 3 respectively 5 spans, which corresponds to 2 respectively

4 piers.

BRIDGE : BEAM BRIDGE.PROFILE
BRIDGE.NBSPANS : 3
BRIDGE.BLENGTH : 135
SPANS[1].LLENGTH : [42.75,47.
SPANS[2] .LLENGTH : [42.75,47.
SPANS[3] .LLENGTH : [42.75,47.
SPANTYPE.LLENGTH : [1,50]

BRIDGE : BEAM BRIDGE.PROFILE :

BRIDGE.NBSPANS : 5
BRIDGE.BLENGTH : 135
SPANS[1].LLENGTH : [25.65,28.
SPANS[2] .LLENGTH : [25.65,28.
SPANS[3] .LLENGTH : [25.65,28.
SPANS[4] .LLENGTH : [25.65,28.
SPANS[5] .LLENGTH : [25.65,28.
SPANTYPE.LLENGTH : [1,30]

: CONST-DEPTH

25]
25]
25]

CONST-DEPTH

35]
35]
35]
35]
35]

150 Chapter 6. Results

The third alternative is an arch bridge which only has one span.

BRIDGE : BEAM BRIDGE.PROFILE : ABOVE-DECK
BRIDGE.NBSPANS : 1

BRIDGE.BLENGTH : 135

SPANS[1] .LLENGTH : 135

SPANTYPE.LLENGTH : [1,30]

Although this example is quite simple, it shows well the generation of spans and also

how the according generic compatibility constraints are adapted to the varying number of
spans.

Chapter 7

Conclusions

“Every problem becomes very childish when once it is explained to you.”

Sherlock Holmes in The Adventure of the Dancing Men, The Strand Magazine (1903-1904)

7.1 Scope of this research

As we have laid out in the introduction, the stage of conceptual design was deliberately
chosen as starting point for an identification of solutions, since, at that point, parts of
the structure of the artifact are already decided on and constraints have been specified.
A DCSP has been identified as computational model for such a task because it provides
a declarative formulation of combinatorial as well as dynamic problems, in which new
variable and constraint instances are derived during resolution.

This dissertation defends the idea that approximating the solution sets of a DCSP by
local consistency techniques is of use in a support system for designers because

1. Knowledge of several solution spaces makes potential choices explicit and gives a
more informed basis for decisions. Thus, key decisions have not to be taken early
but can be delayed.

2. Once, a solution space has been committed to, the corresponding CSP can be derived
and serves as input to search algorithms. During search, local consistency techniques
are again useful to reduce the search space further.

Under these assumptions, algorithms for local consistency providing tight labellings, espe-
cially in continuous domains, have to be devised and integrated with existing discrete local
consistency algorithms in order to be able to treat mixed (continuous-discrete) constraints.
Furthermore, the DCSP formalism has to be extended in order to take into account that
new variables might be introduced on the basis of a partial value assignment to continuous
variables. All these requirements imply the need for a method that approximates solution
sets in mixed DCSPs.

151

152 Chapter 7. Conclusions

7.2 Summary of major results

The main contributions can be summarized as follows:

e We generalize the original local consistency algorithm for continuous binary con-
straints given by [Faltings, 1994] to ternary constraints. The new algorithm uses
the same local properties of solution spaces as the binary one: stationary points of
ternary constraints and intersections between triplets and pairs of constraints. A
constructive proof of correctness is given based on topological considerations, which
also allows us to identify a restriction: solution regions containing holes require ad-
ditional information to be treated correctly. Moreover, only intersections between
ternary constraints in the same three-dimensional space are considered. Otherwise,
the proof would have to be extended to constraint regions k-ary space with in k > 3
and this extension of the proof is not trivial.

e The integration of local consistency methods for discrete and continuous constraints
into a fix-point algorithm is achieved by specifying refine operators for both con-
straint types. Additionally, variables shared by constraints of different type may
have their labels approximated by a transformation function because not all refine
operators compute in the same variable domain. Since refine operators are using
approximate variable domains, some locally unsound values may remain in the la-
bellings after the application of an operator. In the conversion of discrete domains to
continuous domains, for example, discrete values representing open intervals are ap-
proximated by closed intervals, because our continuous refine operator cannot handle
strict inequalities.

e We extend the original DCSP framework of [Mittal and Falkenhainer, 1990] to in-
troduce new variables based on value combinations formulated as constraints. In
this formalism, an activation condition can be a discrete or a continuous constraint
under the assumption that the complement of such a condition exists. Additionally,
constraints are generic, i.e. formulated on variable types instead of instances, and
can thus be applied several times.

A solution method is presented that generates all problem spaces of a dynamic CSP.
Each problem space defines its own variable and constraint set. Since we cannot
enumerate solutions (continuous variables !) and proving that a solution exists for
each intermediate problem space is too costly, local consistency algorithms are used
to prune inconsistent problem spaces.

An analysis of the dependency graph generated from the activity constraints allows
us to identify cycles in the graph and eliminate them, to find an order in which the
activity constraints have to be applied and finally, to identify incomparable activity
constraints that are responsible for an exponential number of problem spaces. If all
variables in the conditions of such incomparable constraints are fixed, the number of
problem spaces generated can be reduced.

7.3. Applicability and limitations 153

7.3 Applicability and limitations

Initial problem representation. Our method for problem space generation relies on
an input in form of constraints and variables, each with its initial domain. Such domains
are given naturally in most physical systems in form of some lower and upper bounds of
feasibility. Otherwise, a sufficiently large range of potential values can be taken as starting
point, since the efficiency of our local consistency method does not depend on the size
of the initial domains but rather on the identification of stationary points of constraint
regions.

Soundness of local consistency techniques and their effect in the generation
algorithm. Since shared variable labels are approximated when enforcing local consis-
tency over mixed constraints, locally unsound values might be included in the labels.
If a solution is situated on the boundary defined by the feasible region of continuous
activation condition, it is included in both subspaces. This is due to the restriction of our
continuous consistency algorithm, which only treats closed regions. The complement of a
closed region being an open region we cannot represent this open region exactly. For the
same reason, some conflicts situated exactly on the boundary of a continuous activation
condition may remain undetected.

Termination of problem space generation. In order to guarantee termination of
problem space generation, we require the definition of the maximal number of identical el-
ements to be generated by a generic activity constraint. This seems reasonable in the light
of an initial problem representation in which each variable has to be given an initial domain.

Generality and reliability of local consistency algorithms. In this thesis, a generic
algorithm achieving local consistency is proposed, which does not depend on specific con-
straint types and which treats continuous and discrete constraints by means of specialized
refine operators. The refine operator for continuous constraints relies on a precomputation
step, which determines local properties like intersections and stationary points of ternary
constraint regions. Under the assumption that these properties can be determined, the
locally consistent labellings can be computed.

7.4 Open research issues

Most difficulties in finding solutions to mixed dynamic constraint systems are encountered
when enforcing local consistency on the continuous subsystem. Some of the future issues
therefore relate to the subject of consistency techniques for continuous constraint systems.

7.4.1 Representation of continuous constraints

Neither a discretized nor the analytical representation of constraints is satisfying. The
fundamental problem is that continuous constraints can define arbitrarily complex shapes

154 Chapter 7. Conclusions

in continuous space. A simple shift from from binary to ternary constraints results in an
impressive increase of topological complexity: different types of connectivity are possible
from simply to multiply connected regions. It is not realistic to think of a further inves-
tigation into higher arity constraints resulting in higher dimensional spaces before having
solved the representational problem. It is rather a question if this spatial complexity can
be tamed by introducing an approximation of constraint regions. The appearance of holes
in three dimensions has complicated in an unforeseen manner our algorithm. Since a hole
is by definition embedded in a feasible region and we are only interested in the projection
of this region onto one axis, holes should be neglected by a refine operator. To this pur-
pose, stationary points lying on the boundary of holes should be recognized as such. An
approximation of feasible regions should thus remove holes from consideration.

A further research direction could aim at investigating the links between different theo-
ries in topology and the consistency condition. Our work, for example, has strong similar-
ities with the Morse theory in topology. Another branch in topology concerning simplical
surfaces could be another means of approximating the surface of constraint regions.

7.4.2 Treatment of equalities

Our algorithm for local consistency has been designed for inequalities. Equalities are
represented as a pair of inequalities in the prototype implementation. An improved imple-
mentation could integrate the treatment of equalities directly into the algorithm. It can
be observed that many engineering systems are described by constraints that contain few
but relatively large cycles and many equalities without cycles representing derivations of
intermediate variables. An algorithm taking also advantage of value propagation during
propagation seems reasonable in such cases.

7.4.3 Search in continuous and mixed CSPs

The search algorithm proposed in Section 5.8 uses domain splitting for all variable types in
a very straightforward manner. Integer and discrete variable domains are entirely scanned
whereas the continuous domain is scanned at regular intervals of given width. After each
instantiation forward checking is used to propagate the new value. Further search tech-
niques for discrete CSPs could be adapted easily to mixed CSPs. Little effort has been
invested in search in continuous domains until now. It is for example not clear, if the
widely acknowledged first-fail principle for discrete domains is also useful in continuous
domains. Little research has been conducted with respect to variable ordering and similar
heuristics.

7.4.4 Extension of the DCSP model

In this thesis, the DCSP model is restricted to activity constraints the condition of which
is a single discrete or continuous constraint and a single new variable is activated, in other
words activity constraints are restricted to clauses. This could be extended to include
activity constraints with disjunctions in the head and conjunctions in the body (conditional

7.5. Final conclusion 155

part). Recently, non-monotonic propositional logic has been applied to solve configuration
tasks [Soininen and Niemeld, 1998]. The links that exist between non-monotonic logic and
dynamic constraint satisfaction could help to extend the existing DCSP model.

7.4.5 Reverse engineering of DCSPs

As we have seen in Chapter 5, a set of constraint problems is generated from a given CSP.
An interesting viewpoint is now to ask if one can learn from the collection of CSPs in order
to reformulate the DCSPs. One goal could be the design of better configurable products’.
Another investigation line might try to discover a DCSP structure in a given CSP thus
dividing up the problem in subproblems that could be treated in parallel.

7.4.6 Representation of results

Our prototype implementation presents the locally consistent solution spaces issued from
the enumeration of problem spaces in the form of a list of variable - interval pairs. In the
same manner, individual solutions are presented. From the viewpoint of human-computer
interaction, a potential user would be drowned with numerical information. Single solutions
can be used directly to represent a finished design product within a CAD-environment.
Such a single solution could be a representative for the entire set of locally consistent
solutions from which it was computed. Moreover, additional information for important
variables like the range of locally consistent values could be highlighted within the CAD
drawing. Examples of important variables in a conceptual bridge design are the span
distribution, construction method, the type of section and the bridge type (Section 1.1).

7.5 Final conclusion

During this thesis work, some surprising facts have emerged.

One aspect of this thesis has been the investigation into dynamic CSPs. It turned
out that a careful designed algorithm is able to guide designers in their decision making
before even starting to generate solution spaces. The fact that independent conditions
activating different variables are a source of combinatorial explosion is obvious, once it
has been recognized. This combinatorial effect can be avoided by forcing decisions on the
variables in the identified activation conditions.

The second discovery (a bit less surprising perhaps) has been the increase in topo-
logical complexity when moving from binary to ternary continuous constraint systems.
Although we have not completely achieved the aim of enforcing local consistency in con-
tinuous ternary systems and some questions remain open, I think that an investigation
into the topological properties of the feasible space defined by continuous constraints has
enabled some insight into the problem and might generate fruitful ideas in the future.

!Mihaela Sabin, personal communication

156 Chapter 7. Conclusions

Appendix A

Examples from configuration and
design

We list here the full specifications of three examples treated in this thesis: the configura-
tion of an industrial mixer, preliminary design of bridges, and configuration of trains. All
the examples share similar characteristics: they involve constraints on continuous as well
as discrete variables. Furthermore, tasks in configuration and design are preferably repre-
sented in a modular way using Object Oriented features, like type and part-of hierarchies.
In order to formulate these configuration and design examples, we use the following design
knowledge

1. part-of structure
2. types and subtypes of components

3. compatibility constraints defined on types of components (applicable to all compo-
nents of the given type)

4. activation constraints defined on types of components

Notational convention: variables representing component types are abbreviated by their
initial. Properties of a component type are abbreviated by <component-type-initial .
name>.

A.1 Configuration of an industrial mixer

This example has been adapted from F5 described in [van Velzen, 1993]. The example is
shortly described in section 2.3 together with a chart of the part-of hierarchy. We present
here the OO-description of the mixer.

157

158 Chapter A. Examples from configuration and design

A.1.1 Variables

Type MTask:
domain : discrete : {suspension dispersion entrainment blending}
slurry-viscosity : discrete : {low high}
slurry-pressure : discrete : {low high}
slurry-density : real : [1,2000]
heat-transfer : discrete : {true false}

Type Mixer:
domain : discrete : {reactor mixer storage-tank}
vessel : Vessel
agitator : Agitator

Type Vessel:
domain : discrete : {cylindrical elliptical hemispherical}
volume : real : [0.01,1000]
diameter : real : [0.01,1000]
height : real : [0,1000]
optl : Cooler [optionall
opt2 : Condenser [optionall

Type Agitator:
engine : Engine
impellers : Impeller
shaft : Shaft

Type Impeller
domain : discrete : {axial-turbine helical-ribbon propeller silverson-highshare
dented-disk radial-turbine scaba anchor-stirrer}
entry : discrete : {top side off-center}
pos : real : [0,5]
diameter : real : [0.1,1000]
ratio : real : [0,1]
rps : real : [1,100]
power :real : [0,5000]

Type Shaft

Type Engine:
power : real : [0,5000]

Type Cooler
Type Condenser

Type Elliptical of Vessel
sradius : real [0.01,1000]

A.1. Configuration of an industrial mixer 159
bottomArea : real [0.01,1000]

A.1.2 Constraints

A mixer may optionally have a condenser or a cooler depending on the mixing task for
which it is used. The activity constraints are therefore:

AC(M,V.cooler) : = M = reactor ANV — Co
AC(V.volume) : = V.wolume > 150 — C

The three categories discrete, mixed and continuous constraints are present in this
example:

C(V,MT.slurry pressure) : =
{(hemispherical high)(elliptical high)(cylindrical low)(cylindrical high)}

C(MT, MT.slurry viscosity, V.volume, Lentry) : =
{(blending low small of fcenter)(blending low large side)
all other combinations with top}

C(MT.heattransfer, M) : =
{(true reactor)(false storagetank)(false mizer)}

C(M, V.volume) : =
{(reactor [0,100])(storagetank [0,1000])
(mizer [0,1000])}

C(MT,C): =
{(dispersion condensor}

C(MT, MT .slurryviscosity, V.volume,I) : =
{(blending high [0,1000] anchorstirrer)
(blending high [0,1000] hellicalribbon)
(blending low [0, 1000] propeller)
(blending low [1,100] azialturbine)
(entrainment low [0,1000] radialturbine)
(entrainment high [0,1000] radialturbine)
(suspension low [0,1000] azialturbine)
(suspension high [0,1000] azialturbine)
(dispersion low [0,1000] radialturbine)
(dispersion high [0,1000] radialturbine)

160 Chapter A. Examples from configuration and design

C(MT, MT.slurryviscosity, V.volume, Lentry) : =
{(blending low [0,1] of fcenter)

(blending low [100, 1000] side)

(blending high [0, 1000] top)

(entrainment low [0, 1000] top)

(entrainment high [0, 1000] top)

(dispersion low [0,1000] top)

(dispersion high [0,1000] top)

(suspension low [0,1000] top)

(suspension high [0,1000] top)

C(I,Lratio) : =

{(azialturbine 0.399414)(denteddisk 0.5)(anchorstirrer 0.949219)
(hellicalribbon 0.949219) for all others 0.329102}
C(I,Lposition) : =

{(radialturbine 5)(azialturbine 1.5)(propeller 0.35)

for all others [0.15,0.2]}

C(V,V.volume, V.diameter) : =

{(hemispherical V.volume = 1/12 x 7 * V.diameter3+

1/4 * 7 * V.diameter? x (V.height — 1/2 * V.diameter)
(cylindrical V.volume = 1/4 * w x V.diameter? V.height)}
El.sradius < 1/2 x V.diameter

El.bottomArea = El.bottomArea * V.height

V.wolume = El.sradius * V.diameter

1/2 x V.diameter < V.height < 2 x V.diameter

I.diameter = I.ratio * V.diameter

I.rps < V.diameter/I.diameter

I.power = MT.slurrydensity * I.rps3 I.pos * I.diameter®

E.power > 2 x I.power

A.2. Preliminary design of bridges 161

A.1.3 Locally consistent solution spaces

All locally consistent solution spaces resulting from the eight problem spaces are listed in
Table A.1.3.

A.2 Preliminary design of bridges

This bridge example has been elaborated by Sylvie Boulanger, Steel Structures Institute,
EPFL.

A.2.1 Variables

Type gap:
width : real : [20,1000]
depth : real : [5,200]
ratio : real : [0,1]
soil : discrete : {very-poor, poor, average, good, excellent}
geometry : discrete : {symmetrical, mostly-symmetrical, not-symmetrical}

Type obstacle:
domain : {valley, road, river, railway}
size : real : [0,1000]
rsize : real : [0.001,1]
x1 : real : [0,1000]
x2 : real : [0,1000]

Type road of obstacle
width : real : [10,15]
alignment : real : {linear, slightly-curved, curved}

Type bridge:

domain : discrete : {beam, arch, cable, frame}

blength : real : [1,1000]

abutmentl : real: [0,1000]

abutment2 : real: [0,1000]

abutments : real: [0,1000]

profile : discrete : {const-depth, haunched, at-foundation, above-foundation,
below-deck, through-deck, above-deck, stayed-1,
stayed-2, suspension}

construction : discrete : {by-crane, launching, cantilever}

girder : discrete : {i-shape, open-box, closed-box, truss}

nbspans : integer : [1,10]

spanref : Spanref

spans : array : Span

Type Beam of bridge :
spantype : Spantyp

162
Type Span:
llength : real : [1,1000]
aux : real : [1,1000]
Type Spanref
llength : real : [1,1000]
Type Spantyp
llength : real : [1,1000]

A.2.2 Constraints

Some constraints are indicated as logical implications in the form IF .. THEN ..

Chapter A. Examples from configuration and design

in order

to avoid the enumeration of a large number of tuples.

C(O.rsize G.depth Spanref.llength) : =
{([0.15,1] [5,200] [15, 25])

([0,0.15] [5, 75] [45, 60])

([0,0.15] [75,200] [15,20])}

C(B Spanref.llength) : =
IF B = beam THEN Spanref.llength = [10,250]

C(B B.profile) : =
{(beam constDepth)
(beamn haunched)

(frame atFoundation)
(frame aboveF oundation)
(arch belowDeck)
(arch throughDeck)
(arch aboveDeck)
(cable stayedl)
(cable suspension)
(cable stayed2)}

A.2. Preliminary design of bridges 163

C(B G.width G.ratio B.profile) : —
IF B = arch AN G.width < 200 A G.ratio < 0.25 THEN
—(B.profile = throughDeck)

C(B B.spanref B.profile) : =

IF B =arch A B.spanref <50 THEN
—(B.profile = haunched)

ELIF B = frame A B.spanref < 80 THEN
—(B.profile = aboveF oundation)

C(B G.width B.profile) : =

IF B = cable N G.width < 150 THEN
—(B.profile = stayed2)

ELIF B = cable A G.width < 600 THEN
—(B.profile = suspension)

C(B.profile G.width B.nbspans) : =

IF B.profile = aboveDeck N G.width < 200 THEN
B.nbspans =1

ELIF B.profile = constantDepth THEN
B.nbspans = 3V B.nbspans =5

C(B.profile G.depth G.soil Spantyp.llength) : =
IF B.profile = constDepth A G.depth < 50 A
(G.soil = average V G.soil = good) THEN
Spantype.llength = [30,60]

O.size = 0.22 — O.x1

O.rsize = O.size/G.width

G.ratio = G.depth/G.width

B.abutments = B.abutmentl + B.abutment2
G.width = B.blength + B.abutment

B.nbspans < B.blength/(0.9 x spantyp.llength)
B.spansli].llength > 0.95 % (B.blength/B.nbspans)
B.spansli].llength < 1.05 x (B.blength/B.nbspans)
spansli).auz = spans[i].llength + spans[i — 1].auz
spans[l].auz = spans[1].llength

spans[n].llength = B.blength

Generator: B.spans with counter B.nbspans
B.nbspans

The last three equations verify that) .7 spansli] = B.blength.

164 Chapter A. Examples from configuration and design
M {mixer,storage-tank} reactor reactor
M.agitator agitator agitator agitator
M.vessel {cylindrical,hemispherical} | elliptical {cylindrical,hemispherical }
MT dispersion {susp,entr,blend,disp} | {susp,entr,blend,disp}
MT heat-transfer false true true
MT slurry-pressure | {low,high} high {low,high}
MT slurry-viscosity | {low,high} {low,high} {low,high}
MT .slurry-density [1,2000] [1,2000] [1,2000]
A engine engine engine engine
Aimpellers radial-turbine Dipmpeliers Dipmpeliers
A shaft shaft shaft shaft
E.power [0.2,5000] [0.2,5000] [0.2,5000]
I.diameter [0.4573,3.4658] [0.4573,6.9883| [0.4573,6.9883|
Lentry top Deniry Deniry
I.pOSitiOI’l 5 Dpos Dpos
I.power [0.1,2500] [0.1,2500] [0.1,2500]
L.ratio 0.329102 Dratio D:atio
Lrps [1,23.0281] [1,29.2402] [1,29.2402]
V.diameter [1.389,10.5309] [0.4817,21.2344] [0.4817,21.2344]
V height [0.6948,21.0618] [0.2408,42.4688) [0.2408,42.4688)
V.volume [150,1000] [0.01,100] [0.01,100]
V.optl - cooler cooler
V.opt2 condenser - -
V.elliptical - elliptical -
EL.sradius - [0.01,10.6172] -

El.bottomArea

0.01,354.1355]

M

M.agitator
M.vessel

MT
MT.heat-transfer
MT slurry-pressure
MT slurry-viscosity
MT slurry-density
A engine
Aimpellers

A shaft

E.power
I.diameter

Lentry

I.position

I.power

Lratio

Lrps

V.diameter
V.height
V.volume

V.optl

V.opt2

V.elliptical
EL.sradius
EL.bottomArea

{mixer,storage-tank}
agitator
elliptical
dispersion

false

high

{low,high}
[1,523.0584]
engine
radial-turbine
shaft
[9.5591,5000]
[0.991,3.4658]
top

5

[4.7795,2500]
0.329102
[1,8.0572]
[3.0112,10.5309]
[1.7221,21.0618]
[150,1000]
condenser
elliptical
[0.4305,5.2655]
[7.1219,87.09994]

{mixer,storage-tank}
agitator
elliptical
{susp,entr,blend,disp}
false

high

{low,high}
[1,2000]

engine
DImpelle'rs

shaft

[0.2,5000]
[0.4573,6.9883]
Dentry

Dpos

[0.1,2500]
Dratio
[1,29.2402]
[0.4817,21.2344]
[0.2408,42.4688]
[0.01,150]

elliptical
[0.01,10.6172]
[0.01,354.1355]

{mixer,storage-tank}
agitator
{cylindrical,hemispherical }
{susp,entr,blend,disp}
false

{low,high}
{low,high}

[1,2000]

engine

DImpelle'rs

shaft

[0.2,5000]
[0.4573,6.9883)
Dentry

Dpos

[0.1,2500]

Dratio

[1,29.2402]
[0.4817,21.2344]
[0.2408,42.4688|
[0.01,150]

Appendix B

Topology

In this appendix, we will give definitions of some important topological concepts used in this
thesis. These concepts are among others the boundary of a region as well as properties like
connectedness or compactness. They are taken from [Gellert et al., 1975], [Bloch, 1997].

Nc(p) is the set of all points whose distance from point p is less than €, where € is an
arbitrary positive number.

N(p) ={z||z —p| < zeRY e>o0.

A set E is open if for every x € E, there exists € > 0 such that NV (z) C E. A set
E is closed if its complement E° is open; we denote a closed space by E. The boundary
B(E) of a set E is the set of points whose e-neighborhood is not entirely contained in E
(Figure B.1). We use the word region to designate an arbitrary set of points R in R? or
R3.

A subset E of RY is bounded if there exists a real number M such that for each z € E,
|z|| < M. A set E is compact if for each collection of open sets covering E, a finite subset
of sets can be extracted from the collection which covers E. In RN a compact set is
closed and bounded and vice versa.

In our thesis, regions in Euclidean space are considered. A region consists of a point set
FE which is characterized with respect to its connectedness. A set E is path-connected if any

two points p and g of E are connected by a path in E. In other words, a connected region
cannot be represented as the union of two non-empty disjoint open sets. Furthermore, we

B(R)

Figure B.1: Point p; lies on the boundary of region R whereas po is an interior point of R.

165

166 Chapter B. Topology

consider the maximal set of points which is connected as one region; e.g each region is
connected and there exists no region such that the former is a proper subset of it. A path-
connected region in R? or R? can still have holes. Certain types of these can be excluded
by requiring a set E to be simply-connected. A set E is simply-connected if any closed
curve in E can be contracted inside E to a point. Simply-connected figures in the plane
thus cannot have holes. In three-dimensional regions, this condition excludes channels but
not cavities. Here, holes can be of two types: cavities like in a Swiss cheese or channels

like in a sieve.

Appendix C
Analysis

The following definitions are from [Gellert et al., 1975], [Douchet and Zwahlen, 1983],
[Douchet and Zwahlen, 1986].

A function F(X) is continuous at a point zg if limx_z, F(X) = F(z0). limx_g, is
equivalent to lim _mgF(X) =lim —>:c0+F(X). It is continuous over an open interval I if
it is continuous in every point of I.

Given n > 2, a subset S of R” and £ : § — R a function continuous at a point a =
(a1,...,an) with partial derivatives also continuous at a and such that E(aj,...,a,) =0
and 0FE(a1,...,a,)/0X, # 0. The Implicit Function Theorem states that there exists a
function F in the neighborhood of a such that a, = F(a1,...,a,—1). This allows us to
find the partial derivatives of F' in the neighborhood of a:
0E/0X;
O0E/0X,

A point meeting theses conditions is regular, i.e. a single tangent at the surface exists

at that point. Otherwise, it is a singular point. A singular point is to be expected if
all partial derivatives are zero: OF/0X; = 0, i = 1,...,n (necessary but not sufficient
condition). A sufficient condition is that all partial derivatives of the function given in
a parametric representation are zero. A Taylor expansion at the singular point z can
be used to determine the type of the singularity at z: singular points with two distinct
tangents (a double point), with two coincident tangents (a double point) and with no
tangents (an isolated point).

In vector analysis, a function ¢(X,Y) is called a scalar field. A scalar ¢(7) is assigned

X
to each point with position vector 7= v] . Such a scalar field can be visualized by the

level surfaces at ¢(X,Y) = const. The level surfaces of the scalar field X2 +Y?2 + Z% = ¢?
are circles with center at the origin. Given the unit vectors Z, j, k of the Euclidean space,
the gradient of a scalar field is the magnitude of increase of ¢ in all directions of the unit
vectors: V¢ = 8¢/0X i+ 0p/0Y] + 0/ dZk. A small change of the field along a vector 7

167

168 Chapter C. Analysis

is thus measured by d¢ = V¢ = dF. If 7 is chosen along a level surface (¢ = const) then
d¢ = 0 and the gradient is perpendicular to the level surface. Furthermore, ¢ increases
most rapidly in direction of the steepest gradient. In other words, the gradient points
in direction of increasing values of ¢, or towards the feasible region defined by ¢(X,Y") > 0.

An important concept is that of converity. A function f : I — F,I C R is convex if for
two points a,b € I and for A € [0,1] we have f(Axa+(1—X)*b) < Axf(a)+ (1—A)* f(b).
It is concave if f(Axa+ (1 —A)*b) > A* f(a)+ (1 —) * f(b). The convexity of a function
should not be confused with the convexity of a region: A set C' € R" is convex if for two
points Z, 4 € C and for A1, A2 > 0 such that \y + Ay =1, Ay *Z+ Ao x4 € C. In other
words, if two points # and ¥ are part of C' then the line segment joining the two points is
also part of C.

The following lemma shows a way for characterizing local extrema by gradients:

Lemma C.1 Let R be a region in R? such that the boundary Y = F(X) determined by
E(X,Y) =0 is a continuous, twice continuously differentiable function over an interval I
and it is convex (concave) over I. Let (x1,vy1),(z2,y2), T1 < x2 be two points of F(X) with
x1,x9 € I. Assume further that there exists 8 > 0 such that VE(z1,y1) + 8% VE(z2,y2) =
N with N parallel to the Y -azis. Then, there ezists a local minimum (mazimum) (Ze,ye)
mY with r1 < 2, < x9.

Proof: If F(X) is convex (concave), its first derivative F'(X) is increasing (decreasing) and
F"(X) is positive (negative) over I ([Douchet and Zwahlen, 1983]). From VE(z1,y1)+ 3%
VE(z2,y2) = N and 8 > 0 follows 8E(z1,y1)/0X + B % 0E(x2,12)/0X = 0 which implies
that OF(z1,y1)/0X and OFE(z2,y2)/0X are of different signs. Since F'(X) is strictly
increasing (decreasing) there must exist a point (z,y) for which F'(X) is zero and F"(X)
is positive (negative). By definition, (z,y) is a local minimum (local maximum) of F(X)
A

Interval Analysis

The natural extension of a real function f(z) : R — R to an interval function F/(I) : T — I,
with I an interval and I the set of all intervals, is computable by the bounds of I if f
is continuous and monotonic over I. Otherwise, I has to be decomposed into a series
of monotonic and continuous subintervals and F(I) is applied to each subinterval. The
real function Y = exp(X), for example, can be extended directly to an interval function
F([a,b]) = [exp(a), exp(b)] whereas a sine function has to be decomposed into subintervals
of the form [k * 7/2,(k + 1) * w/2] for k € N.

Appendix D

Graph theory

Since a constraint problem can be represented as a graph, graph-related concepts are
important in CSP research. We define here some terminology used in our work.

Definition D.1 (Hypergraph; [Gondran and Minoux, 1986]) A hypergraph #H is
a tuple (S,E) with

1. S a set of nodes {s1,...,8,}
2. £ a set of edges, each being a set of nodes {En,...,Eq,}

Ez#ﬁ i:l,...,m

such that
{ UiBi=$S

Each hyperedge consists of a set of nodes. This generalizes the usual notion of an edge
connecting two nodes. A k-ary constraint problem P = (V,C, D) can be represented by a
hypergraph H = (S,) such that each variable in V represents a node in S and each edge
in £ a constraint in C. A directed graph is a graph the edges of which are oriented.

Definition D.2 (Directed graph; [Gondran and Minoux, 1986]) A directed
graph G is a tuple (X,U) with

1. X a set of nodes
2. U a set of ordered tuples {...,(u,v),...}, u,v € X called arcs

A successor node siy1 € X of a node s; is a node such that (s;,s;41) € U. s; is called
predecessor of s;11. An undirected graph, called graph for short, has edges {u,v} € U
instead of arcs.

The concept of cycles in a graph is important to define subclasses of CSPs which are
solvable without backtracking. A cycle is a chain of length ¢ if {s1, E1,s2...,5¢, Eq, Sq+1}
so that s1 = sqq1 and Vi_;sk € ExAsg1 € Eg. A (hyper)tree is a connected (hyper)graph
with no cycles. The root of a tree is a node with no predecessors and leaf nodes in a tree
are nodes which have no successors.

A graph (X,U) is strongly connected if for each pair of nodes i,j € X there is a path
from ¢ to 7 and a path from j to ¢ or ¢ = 5. This is an equivalence relation. If only a set of
nodes XX of the graph is strongly connected, X is called a strongly connected component.

169

170 Chapter D. Graph theory

Bibliography

[Alefeld and Herzberger, 1983] Alefeld, G. and Herzberger, J. (1983). Introduction to In-
terval Computation. Academic Press, NY.

[Avriel, 1976] Avriel, M. (1976). Nonlinear Programming: Analysis and Methods. Series in
Automatic Computation. Prentice Hall, Englewood Cliffs, New Yersey.

[Benhamou, 1996] Benhamou, F. (1996). Heterogeneous constraint solving. In Hanus,
M. and Rodriguez-Artalejo, M., editors, Algebraic and Logic Programming, 5th Inter-
national Conference, ALP’96, volume 1139 of Incs, pages 62-76, Aachen, Germany.
Springer.

[Benhamou et al., 1994] Benhamou, F., McAllester, D., and Hentenryck, P. V. (1994).
CLP (intervals) revisited. In Bruynooghe, M., editor, Logic Programming - Proceedings
of the 1994 International Symposium, pages 124-138, Massachusetts Institute of Tech-
nology. The MIT Press.

[Bessiere, 1994] Bessiére, C. (1994). Arc-consistency and arc-consistency again. Artificial
Intelligence, 65(1):179-190.

[Bessiére and Régin, 1996] Bessiére, C. and Régin, J.-C. (1996). Mac and combined heuris-
tics: two reasons to forsake fc (and cbj). In Freuder, E. and Jampel, M., editors, Princi-
ples and Practice of Constraint Programming, volume 1118 of Lecture Notes in Computer

Science. Springer.

[Bessiére and Régin, 1997] Bessiére, C. and Régin, J.-C. (1997). Arc consistency for gen-
eral constraint networds: preliminary results. In IJCAI-93, pages 398-404.

[Bloch, 1997] Bloch, E. D. (1997). A first course in Geometric Topology and Differential
Geometry. Birkhduser-Verlag, Boston.

[Boulanger et al., 1995] Boulanger, S., Gelle, E., and Smith, I. (1995). Taking advantage
of design process models. In TABSE Colloquium.

[Bowen and Bahler, 1991] Bowen, J. and Bahler, D. (1991). Conditional existence of vari-
ables in generalized constraint networks. In Proceedings of the Ninth National Conference
on Artificial Intelligence, pages 215-220.

171

172 BIBLIOGRAPHY

[Brown and Chandrasekaran, 1988] Brown, D. C. and Chandrasekaran, B. (1988). De-
sign Problem Solving, Knowledge Structures and Control Strategies. Research series in
Artificial Intelligence. Morgan Kaufman.

[Buchberger, 1965] Buchberger, B. (1965). An algorithm for finding a basis for the residue
class ring of a zero-dimensional polynomial ideal. PhD thesis, Institut fur Mathematik,
Universitat Innsbruck.

[Buchberger, 1985] Buchberger, B. (1985). Groebner Bases: An Algorithmic Method in
Polynomial Ideal Theory, pages 184-232. N.K. Bose Ed., D. Reidel Publishing Co.

[Chiu and Lee, 1994a] Chiu, C. K. and Lee, J. H. M. (1994a). Interval linear constraint
solving using the preconditioned interval gauss-seidel method. In Yap, R. H. C., edi-
tor, Proceedings ILPS’94 Workshop on Constraint Languages/Systems and Their Use in
Problem Modelling, volume 2, Ithaca. Technical Report 94/19, Department of Computer
Science, University of Melbourne.

[Chiu and Lee, 1994b] Chiu, C. K. and Lee, J. H. M. (1994b). Towards practical interval
constraint solving in logic programming. In Bruynooghe, M., editor, Logic Program-
ming - Proceedings of the 1994 International Symposium, pages 109-123, Massachusetts
Institute of Technology. The MIT Press.

[Cohen, 1990] Cohen, J. (1990). Constraint logic programming. Communications of the
ACM, 33(7).

[Collins, 1975] Collins, G. E. (1975). Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decomposition, LNCS 32. Springer Verlag.

[Colmerauer, 1993] Colmerauer, A. (1993). Naive solving of non-linear constraints. In
Benhamou, F. and Colmerauer, A., editors, Constraint Logic Programming, Selected
Research, pages 88-112. The MIT Press.

[Cooper, 1989] Cooper, M. C. (1989). An optimal k-consistency algorithm. Artificial
Intelligence, 41(1):89-95.

[Coyne et al., 1990] Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M.,
and Gero, J. S. (1990). Knowledge-based design systems. Addison Wesley, 1990, 567

pages.

[Danzig, 1965] Danzig, G. G. (1965). Linear programming and extensions. Princeton Uni-
versity Press.

[Dasgupta, 1991] Dasgupta, S. (1991). Design Theory and Computer Science. Cambridge
Tracts in Theoretical Computer Science 15. Cambridge University Press.

[Davis E., 1987] Davis E. (1987). Constraint propagation with interval labels. In Artificial
Intelligence 32.

BIBLIOGRAPHY 173

[Dechter, 1990] Dechter, R. (1990). Enhancement schemes for constraint processing: Back-
jumping, learning, and cutset decomposition. Artificial Intelligence, 41(3):273-312.

[Douchet and Zwahlen, 1983] Douchet, J. and Zwahlen, B. (1983). Calcul différentiel et
intégral: Fonctions réelles d’une variable réelle, volume 1. Presses polytechniques ro-
mandes, Lausanne.

[Douchet and Zwahlen, 1986] Douchet, J. and Zwahlen, B. (1986). Calcul différentiel et in-
tégral: Fonctions réelles de plusieures variables réelles, volume 2. Presses polytechniques
romandes, Lausanne.

[Faltings, 1994] Faltings, B. (1994). Arc consistency for continuous variables. In Artificial
Intelligence 65(2).

[Frayman and Mittal, 1987] Frayman, F. and Mittal, S. (1987). Cossack: A constraints-
based expert system for configuration tasks. In Sriram, D. and Adey, R., editors, Knowl-
edge Based Expert Systems in Engineering: Planning and Design, pages 143-166. Com-
putational Mechanics Publications.

[Freeman-Benson et al., 1990] Freeman-Benson, B. N., Maloney, J., and Borning, A.
(1990). An incremental constraint solver. Communications of the ACM, 33(1):54-63.

[Freuder and Hubbe, 1995] Freuder, E. and Hubbe, P. (1995). A disjunctive decomposition
control schema for constraint satisfaction. In Saraswat, V. and Hentenryck, P. V.,
editors, Principle and Practice of Constraint Programming, The Newport Papers. The
MIT Press.

[Freuder, 1978] Freuder, E. C. (1978). Synthesizing constraint expressions. Communica-
tions of the ACM, 21(11):958-966. Also published as MIT Al MEMO 370, Cambridge,
MA, USA, 1976.

[Freuder, 1982a] Freuder, E. C. (1982a). A sufficient condition for backtrack-bounded
search. A.C. M., 32(4):755-761.

[Freuder, 1982b] Freuder, E. C. (1982b). A sufficient condition for backtrack-free search.
A.C.M., 29(1):24-32.

[Fulton, 1995| Fulton, W. (1995). Algebraic Topology, a first Course. Springer-Verlag, New
York.

[Gaschnig, 1977] Gaschnig, J. (1977). A general backtrack algorithm that eliminates most
redundant tests. In Reddy, R., editor, Proceedings of the 5th International Joint Con-
ference on Artificial Intelligence, pages 457457, Cambridge, MA. William Kaufmann.

[Gaschnig, 1979] Gaschnig, J. (1979). Performance measurement and analysis of certain
search algorithms. Technical Report CMU-CS-79-124, Computer Science Department,
Carnegie-Mellon University.

174 BIBLIOGRAPHY

[Gelle and Smith, 1996] Gelle, E. and Smith, I. (1996). Dynamic constraint satisfaction
with conflict management in design. In Jampel, M., Freuder, E., and Maher, M., edi-
tors, OCS’95 Workshop on Ouver-Constrained Systems at CP’95, pages 237-251. LNCS
Springer Verlag.

[Gellert et al., 1975] Gellert, W., Gottwald, S., Hellwich, M., Késtner, H., and Kiister, H.
(1975). Concise Encyclopedia of Mathematics. Van Nostrand Reinhold, NY.

[Gero, 1990] Gero, J. S. (1990). Design prototypes: a knowledge representation schema
for design. AI Magazine, Winter 1990, 11(4):26-48.

[Glover, 1989a| Glover, F. (1989a). Tabu search-Part I. ORSA Journal on Computing,
1(3):190-206.

[Glover, 1989b| Glover, F. (1989b). Tabu search, part II. ORSA Journal on Computing,
2:4-32.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley, Reading, MA.

[Golumbic, 1980] Golumbic, M. (1980). Algorithmic Graph Theory and Perfect Graphs.
Acadmic Press, New York, NY.

[Gondran and Minoux, 1986] Gondran, M. and Minoux, M. (1986). Graphs and Algo-
rithms. John Wiley & Sons, Chichester, 1 edition.

[Haralick and Elliott, 1980] Haralick, R. M. and Elliott, G. L. (1980). Increasing Tree
Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence, 14:263—
313.

[Haroud et al., 1995] Haroud, D., Boulanger, S., Gelle, E., and Smith, I. (1995). Manage-
ment of conflict for preliminary engineering design tasks. In Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, volume 9, pages 313-323. Cambridge
University Press.

[Haselbock, 1993] Haselbock, A. (1993). Knowledge-based Configuration and Advanced
Constraint Technologies. PhD thesis, Technical University of Vienna.

[Heintze et al., 1987] Heintze, N. C., Michaylov, S., and Stuckey, P. J. (1987). CLP(R)
and some electrical engineering problems. In Lassez, J.-L., editor, Proceedings of the
Fourth International Conference on Logic Programming, MIT Press Series in Logic Pro-
gramming, pages 675-703, Melbourne. The MIT Press.

[Hollman and Langemyr, 1993] Hollman, J. and Langemyr, L. (1993). Algorithms for non-
linear algebraic constraints. In Benhamou, F. and Colmerauer, A., editors, Constraint
Logic Programming, Selected Research, pages 113-131. The MIT Press.

BIBLIOGRAPHY 175

[Hong, 1993] Hong, H. (1993). Risc-clp(real): Logic programming with non-linear con-
straints. In Benhamou, F. and Colmerauer, A., editors, Constraint Logic Programming,
Selected Research, pages 133-159. The MIT Press.

[Hyvonen, 1992] Hyvonen, E. (1992). Constraint reasoning based on interval arithmetic.
the tolerance propagation approach. In Artificial Intelligence.

[Jaffar and Maher, 1994] Jaffar, J. and Maher, M. J. (1994). Constraint logic program-
ming: A survey. The Journal of Logic Programming, 19 & 20:503-582.

[Jégou, 1993] Jégou, P. (1993). On the consistency of general constraint-satisfaction prob-
lems. In Proceedings of the 11th National Conference on Artificial Intelligence, pages
114-119, Menlo Park, CA, USA. AAAI Press.

[Kondrak, 1994] Kondrak, G. (1994). A theoretical evaluation of selected backtracking
algorithms. Technical Report TR-94-10, University of Alberta.

[Kondrak and van Beek, 1995] Kondrak, G. and van Beek, P. (1995). A theoretical eval-
uation of selected backtracking algorithms. In Mellish, C. S., editor, Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, pages 541-547, San
Mateo. Morgan Kaufmann.

[Kumar, 1992] Kumar, V. (1992). Algorithms for constraint-satisfaction problems: A sur-
vey. AI Magazine, 13(1):32-44.

[Lakmazaheri and Rasdorf, 1989] Lakmazaheri, S. and Rasdorf, W. J. (1989). Constraint
logic programming for the analysis and partial synthesis of truss structures. Artificial
Intelligence for Engineering Design, Analysis, and Manufacturing, 3(3):157-173.

[Lhomme, 1993] Lhomme, O. (1993). Consistency techniques for numeric CSPs. In IJCAI-
93, pages 232-238.

[Mackworth, 1977a] Mackworth, A. (1977a). Consistency in networks of relations. Artifi-
cial Intelligence, 8.

[Mackworth, 1977b] Mackworth, A. (1977b). On reading sketch maps. IJCAI-77, pages
598-606.

[Mackworth et al., 1985] Mackworth, A., Mulder, J., and Havens, W. (1985). Hierarchi-
cal arc consistency: exploiting structured domains in constraint satisfaction problems.
Computational Intelligence, 1:118-126.

[Mackworth and Freuder, 1985] Mackworth, A. K. and Freuder, E. C. (1985). The com-
plexity of some polynomial network consistency algorithms for constraint satisfaction
problems. Artificial Intelligence, 25:65-74.

[McGregor, 1979] McGregor, J. J. (1979). Relational consistency algorithms and their
application in finding subgraph and graph isomorphisms. Information Sciences, 19:229—
250.

176 BIBLIOGRAPHY

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A.; Rosenbluth, M., Teller, A., and
Teller, E. (1953). Equations of state calculations by fast computing machines. Journal
of Chemical Physics, 21:1087-1091.

[Milnor, 1963] Milnor, J. (1963). Morse Theory, volume 51 of Annals of Mathematics
Studies. Princeton University Press, Princetom.

[Mittal and Falkenhainer, 1990] Mittal, S. and Falkenhainer, B. (1990). Dynamic con-
straint satisfaction problems. In Dietterich, Tom; Swartout, W., editor, Proceedings of
the 8th National Conference on Artificial Intelligence, pages 25-32. MIT Press.

[Mohr and Henderson, 1986] Mohr, R. and Henderson, T. C. (1986). Arc and path con-
sistency revisited. Artificial Intelligence, 28:225—233.

[Mohr and Masini, 1988] Mohr, R. and Masini, G. (1988). Good old discrete relaxation.
In Kodratoff, Y., editor, Proceedings of the 8th European Conference on Artificial Intel-
ligence, pages 651656, Munich, FRG. Pitman Publishers.

[Montanari, 1974] Montanari, U. (1974). Networks of constraints: Fundamental properties
and applications to picture processing. Inform. Sci., 7:95-132.

[Moore, 1966] Moore, R. E. (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs,NJ.

[Nash and Sofer, 1996] Nash, S. G. and Sofer, A. (1996). Linear and Nonlinear Program-
ming. The McGraw-Hill Companies, Inc.

[Nelson, 1985] Nelson, G. (1985). Juno, a constraint-based graphics system. Computer
Graphics, 19(3):235-243.

[Older and Vellino, 1993] Older, W. and Vellino, A. (1993). Constraint arithmetics on real
intervals. In Benhamou, F. and Colmerauer, A., editors, Constraint Logic Programming,
Selected Research, pages 175-195. The MIT Press.

[Pesant and Boyer, 1994] Pesant, G. and Boyer, M. (1994). QUAD-CLP(R): Adding the
power of quadratic constraints. In Borning, A., editor, Principles and Practice of
Constraint Programming, volume 874 of Lecture Notes in Computer Science. Springer.
(PPCP’94: Second International Workshop, Orcas Island, Seattle, USA).

[Prosser, 1993a| Prosser, P. (1993a). Domain filtering can degrade intelligent backjumping
search. In IJCAI-93.

[Prosser, 1993b| Prosser, P. (1993b). Hybrid algorithms for the constraint satisfaction
problem. Computational Intelligence, 9(3):268-299. (Also available as Technical Report
AISL-46-91, Stratchclyde, 1991).

[Régin, 1996] Régin, J.-C. (1996). Generalized arc consistency for global cardinality con-
straint. In Proceedings of the Thirteenth National Conference on Artificial Intelligence
and the Eighth Innovative Applications of Artificial Intelligence Conference, pages 209—
215, Menlo Park. AAAT Press / MIT Press.

BIBLIOGRAPHY 177

[Reiner Horst and Thoai, 1995] Reiner Horst, P. M. P. and Thoai, N. V. (1995). Introduc-
tion to Global Optimization, volume 3 of Nonconvexr Optimization and its Applications.
Kluwer Academic Publisher.

[Sabin and Freuder, 1994] Sabin, D. and Freuder, E. (1994). Contradicting conventional
wisdom in constraint satisfaction. In Borning, A., editor, Principles and Practice of

Constraint Programming, volume 874 of Lecture Notes in Computer Science. Springer.
(PPCP’94: Second International Workshop, Orcas Island, Seattle, USA).

[Sabin and Freuder, 1996] Sabin, D. and Freuder, E. C. (1996). Configuration as composite
constraint satisfaction. In Configuration — Papers from the 1996 Fall Symposium. AAAI
Tech nical Report FS-96-03.

[Sakai and Aiba, 1989| Sakai, K. and Aiba, A. (1989). CAL: A theoretical background of
CLP and its applications. Journal of Symbolic Computation, 8(6):589-603.

[Sam-Haroud, 1995 Sam-Haroud, D. (1995). Constraint Consistency Techniques for Con-
tinuous Domains. PhD thesis, Swiss Federal Institute of Technology, EPFL.

[Sam-Haroud and Faltings, 1996] Sam-Haroud, D. and Faltings, B. (1996). Consistency
techniques for continuous constraints. In Constraints, volume 1, pages 85-118.

[Sannella, 1993] Sannella, M. (1993). The SkyBlue constraint solver and its applications.
In Kanellakis, P., Lassez, J.-L., and Saraswat, V., editors, PPCP’93: First Workshop on
Principles and Practice of Constraint Programming, Providence RI.

[Sannella et al., 1993] Sannella, M., Maloney, J., Freeman-Benson, B. N., and Borning, A.
(1993). Multi-way versus one-way constraints in user interfaces: Experience with the
DeltaBlue algorithm. Software Practice and Ezperience, 23(5):529-566.

[Schmidt and Strohlein, 1988] Schmidt, G. and Strohlein, T. (1988). Relationen und
Grafen. Springer-Verlag.

[Serrano and Gossard, 1992] Serrano, D. and Gossard, D. (1992). Tools and techniques
for conceptual design. In Tong, C. and Sriram, D., editors, Artificial Intelligence in
Engineering Design, volume Volume 1: Design representation and models of routine
design, pages 71-116. Academic Press, Inc.

[Simon, 1981] Simon, H. A. (1981). The Sciences of the Artificial. MIT Press, Cambridge,
Massachusetts, second edition.

[Soininen and Niemeld, 1998] Soininen, T. and Niemeld, I. (1998). Formalizing configura-
tion knowledge using rules with choices. Technical Report TKO-B142, Laboratory of
Information Processing, Helsinki University of Technology (HUT), Helsinki, Finland.

[Sutherland, 1963] Sutherland, I. E. (1963). Sketchpad: A man-machine graphical commu-
nication system. In Proceedings AFIPS Spring Joint Computer Conference, volume 23,
pages 329-346, Detroit, Michigan.

178 BIBLIOGRAPHY

[Thornton, 1993| Thornton, A. (1993). Constraint specification and satisfaction in embod-
iment design. PhD thesis, Department of Engineering, University of Cambridge, UK.

[Tinelli and Harandi, 1996] Tinelli, C. and Harandi, M. (1996). Constraint logic program-
ming over unions of constraint theories. Lecture Notes in Computer Science, 1118:436—
450.

[Trombettoni and Neveu, 1997] Trombettoni, G. and Neveu, B. (1997). Computational
complexity of multi-way, dataflow constraint problems. In Proceedings of the 15th Inter-
national Joint Conference on Artificial Intelligence (IJCAI °97), pages 358-363, Nagoya.

[Tsang, 1993] Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press,
London.

|Tsang, 1998] Tsang, E. (1998). No more partial and full looking ahead. Artificial Intelli-
gence, 98(1-2):351-361.

[van Beek, 1992] van Beek, P. (1992). On the minimality and decomposability of constraint
networks. In Swartout, W., editor, Proceedings of the 10th National Conference on
Artificial Intelligence, pages 447-452, San Jose, CA. MIT Press.

[Van Hentenryck, 1997] Van Hentenryck, P. (1997). Numerica: a modeling language for
global optimization. In Proceedings of the 15th International Joint Conference on Arti-
ficial Intelligence (IJCAI ’97), pages 1642-1647, Nagoya.

[Van Hentenryck et al., 1992] Van Hentenryck, P., Deville, Y., and Teng, C.-M. (1992). A
generic arc-consistency algorithm and its specializations. Artificial Intelligence, 57(2-
3):291-321.

[Van Hentenryck et al., 1995] Van Hentenryck, P., McAllester, D., and Kapur, D. (1995).
Solving polynomial systems using a branch and prune approach. SIAM Journal of
Numerical Analysis. (Accepted). (Also available as Brown University technical report
CS-95-01.).

[van Velzen, 1993 van Velzen, M. (1993). A Piece of CAKE, Computer Aided Knowledge
Engineering on KADSified Configuration Tasks. Master’s thesis, Univeristy of Amster-
dam, Social Science Informatics.

[Waltz, 1975] Waltz, D. L. (1975). Understanding line drawings of scenes with shadows. In
Winston, P. H., editor, The Psychology of Computer Vision, pages 19-91. McGraw-Hill.

Curriculum Vitae

Personal Data

Name: Esther Gelle

Date and Place of Birth: November 27, 1966 in Onex/Geneva, Switzerland
Nationality: Swiss

Languages: German, Swiss German, French, English, Spanish

Education

1983 - 1987 Kantonsschule Alpenquai, Luzern,
Degree: Kantonale Maturitat, Typus B (latin and modern languages),
Award: Dr. Robert Huber

1987 - 1988 Special Mathematics Course (CMS),
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1988 - 1993 Computer Science Department, EPFL
Degree: Dipléme d’ingénieur informaticien EPF
Diploma Thesis: Diagnostic System for a heating-cooling unit
in collaboration with Landis & Stéfa, Zug, Switzerland

1993 - 1998 Research assistant for Prof. B.V. Faltings,
Artificial Intelligence Laboratory (LIA), EPFL
Degree: Docteur és sciences, june 1998
Ph.D. Thesis: On the generation of locally consistent solution
spaces in mixed dynamic constraint problems

179

180 BIBLIOGRAPHY

Publications

1. E. Gelle and B. Faltings,
Diagnosis of Heating, Ventilation and Air Conditioning Systems,
Proc. of SPICIS-94 , B309-314,Singapore, 1994

2. S. Boulanger, E. Gelle and I.Smith,
Taking advantage of design process models,
TABSE Colloquium,Bergamo, March 1995

3. D. Haroud , S. Boulanger, E. Gelle and I. Smith,
Management of Conflict for Preliminary Engineering Design Tasks,
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 9, 313-323, Cambridge University Press, 1995

4. D. Haroud , S. Boulanger, E. Gelle and I. Smith,
Strategies for Conflict Management in Preliminary Engineering Design,
ATD-94 Workshop on Conflict Management in Design, Lausanne, August 1994

5. E. Gelle and I. Smith,
Dynamic Constraint Satisfaction with Conflict Management in Design,
editors: Michael Jampel and Eugene Freuder and Michael Maher,
publisher: LNCS Springer Verlag, 237-251, 1996

6. E. Gelle and R. Weigel,
Interactive Configuration based on Incremental Constraint Satisfaction,
IFIP TC5/WG 5.2 Workshop Series on Knowledge Intensive CAD , 117-126,
Helsinki, September 1995

7. E. Gelle and R. Weigel,
Interactive Configuration using Constraint Satisfaction Techniques,
Second International Conference on Practical Application of Constraint
Technology, PACT-96, 57-72, London, April 1996

8. E. Gelle and R. Weigel,
Interactive Configuration using Constraint Satisfaction Techniques,
AAAI-Symposium on Configuration, 37-44, Boston, November 1996

9. B. Faltings and E. Gelle,
Local Consistency for ternary numeric Constraints,

IJCAI-97, 392-397, Nagoya, Japan, August 1997

