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Abstract

Group sequential methods find a particular field of application in clinical trials because
patient recruitment is by nature sequential. It is important to minimize the number
of patients exposed to an inferior treatment. Moreover, the experimenter is required
to monitor the data on a few occasions during the trial to check for toxicity or other
unsuspected harmful side-effects. These intermediate analyses may reveal a significant
superiority of one treatment, resulting in an early termination of the trial, but only a
sequential design allows for such early termination.

The availability of fast and eflicient algorithms for estimating parameters of multivariate
distributions (e.g. Expectation Maximization or Newton-Raphson algorithms) and for
computing multivariate normal probabilities opens new frontiers by allowing complex
but very flexible experimental designs for the comparison of several treatments. Using
these powerful tools, together with the concept of spending function, flexible procedures
for multiple comparison of treatments have been designed.

In 1991, Lee and DeMets (Journal of the American Statistical Association 86, 757-62)
proposed a group sequential procedure for comparing the rates of change of two treat-
ments. Our work generalizes their model, a linear mixed effects model with repeated
measurements, to several treatments. We derive group sequential procedures for

e comparing the rates of change of several treatments to a control while controlling
the overall significance level, or more generally, comparing general contrasts of
changes of several treatments while controlling the overall significance level, and

¢ studying and comparing data-dependent allocation rules and strategies for assign-
ing patients to treatments.

These procedures and algorithms are applied to real and simulated data.

The importance of this work lies in the fact that quite often in clinical trials, we compare
the effects of more than one treatment or the effects of different doses of the same
treatment. Here we provide flexible procedures for multiple comparisons to the medical
experimenter. With these procedures, the number and times of interim analyses need
not be specified in advance, missing observations can be handled, and the experimenter
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can freely choose which treatment effects to test at any time he wishes. The overall
significance level of the tests is controlled. Moreover algorithms for the execution of
these procedures are provided.

This study tries to open avenues of further theoretical and numerical studies in mul-
tiple comparisons, a ficld which has a long history in theoretical and applied statistics
and which recently has seen vigorous new developments to which the above-described
research contributes.
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Résumé

Le champ d’application des méthodes séquentielles sur données groupées dans le do-
maine des études cliniques est tres vaste, car le recrutement des patients s’effectue en
général de maniere séquentielle. Il est alors important de pouvoir minimiser le nombre
de patients qui se verront administrer un traitement d’efficacité moindre.

Au cours d’une étude clinique, une variable réponse principale est mesurée lors de
chaque visite de contréle prévue par le protocole d’expérience, et visée par 'attaché de
recherche clinique. Le praticien doit étre en mesure de controler régulierement 1’absence
de toxicité ou de tout autre effet secondaire dangereux. Ces analyses intermédiaires
peuvent aussi apporter I'évidence de la supériorité d’un traitement, et ainsi mettre un
terme a I’étude en cours. Seul un plan d’expérience de nature séquentielle autorise un
tel arrét anticipé, qui soit rigoureusement justifiable d’un point de vue statistique.

Aujourd’hui, des algorithmes rapides et efficaces, par exemple de type Expectation
Maximization ou Newton-Raphson, permettent d’estimer les parametres de distribu-
tions multivariées. De méme, il est aisé d’évaluer 'intégrale de la densité de variables
aléatoires normales sur un compact étoilé de IR?. En utilisant de pair le concept de
fonction de dépense de ’erreur, on peut alors développer des procédures flexibles pour
comparer plusieurs traitements entre eux de maniere séquentielle.

En 1991, Lee and DeMets (Journal of the American Statistical Association 86, 757-62)
proposérent une procédure séquentielle sur données groupées pour comparer les courbes
de croissance respectives de deux traitements. Le présent document généralise leur
procédure, pour comparer plusieurs traitements, dans le cadre des modeles linéaires a
effets mixtes. Des procédures séquentielles sur données groupées sont, proposées pour

e Comparer les taux de croissance de plusieurs traitements face & un contréle, ou
de maniere générale, de plusieurs traitements entre eux, tout en garantissant un
seuil global de signification désiré.

e Etudier et comparer des regles d’allocations pour optimiser ’affectation de pa-
tients nouvellement incorporés dans I'expérience.

Le comportement de ces procédures est étudié par simulation, ou par application sur
des jeux de données existants.
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En pratique, il arrive fréquemment que le clinicien compare plusieurs traitements, ou
plusieurs doses du méme traitement. Pour ce faire, des procédures tres souples et les
algorithmes correspondants lui sont ici fournis. Il n’est nullement impératif de spécifier a
I’avance ni le nombre, ni les dates des analyses intermédiaires. Les données manquantes,
en tout cas de maniere aléatoire, sont traitées sans difficulté. Enfin, le praticien peut
librement choisir lors de chaque étape intermédiaire quels contrastes doivent étre testés.
Bien entendu, le seuil global de signification souhaité reste sous controle.

Cette étude essaye d’offrir de nouvelles perspectives au domaine des comparaisons mul-
tiples, qui a déja un long passé statistique, aussi bien théorique que pratique. Il connait
aujourd’hui une forte croissance, a laquelle le présent document voudrait pouvoir con-
tribuer.
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Chapter 1

Introduction

This introductory chapter begins with a presentation of some of the elements making up
a clinical experiment. Since our work finds a particular field of applications in clinical
experiments, a brief discussion of them is found in Section 1.1.

A study performed on patients may last for years, at great human and financial cost.
How can we try to stop it at the right time? For example, the experiment may be
stopped either because the superiority of a new therapy becomes evident, or because
there is no longer any hope of a positive conclusion. Stopping at the right time is the
fundamental objective of sequential methods which are introduced in Section 1.2.

Our work is concerned with the situation where we measure the evolution of one or
several variables in certain individuals over a period of time. Section 1.3 is dedicated
to modelling this type of study.

The manner of combining this type of model with sequential methods is briefly presented
in Section 1.4. Finally, some relevant references are given in Section 1.5, and a chapter
outline is found in the last section.

The reader who is familiar with the fields mentioned above may easily switch to the
next chapter. He or she might need only the model presented in Section 1.3.2.

1.1 Clinical experiments

Experimental studies are not new, although they used to be carried out more or less
voluntarily. The terrifying example below (Contente Domingues and Guerreiro, 1988),
reported from a voyage from Brazil to the Portuguese Indies, is an example of observa-
tional study.

Appelée scorbut par les Hollandais, & par les Portugais le mal de gencives.
Nos Francais ’appellent le mal de terre, & on ne sait pourquoi, car elle prend
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a la mer, & se guérit en terre. C’est une maladie fort commune le long du
voyage, & est contagieuse, méme a I’approcher, & sentir I’haleine d’un autre.
Elle vient ordinairement a cause des grandes longueurs du voyage, & longue
demeure sur mer sans prendre terre, & aussi faute de se laver, nettoyer &
changer de linge & d’habits, avec I’air marin, I'cau de mer, la corruption
des eaux douces, & des vivres, & se laver en eau de mer, sans apres se laver
d’eau douce, puis le froid, & dormir la nuit au serein, tout cela cause ce mal.

Ceux qui en sont surpris en deviennent enflés comme hydropiques, &
I’enflure est dure comme du bois, principalement aux cuisses & jambes,
les joues & la gorge, & tout cela est couvert de sang meurtri de couleur
livide & plombée, comme de tumeurs & contusions qui rendent les muscles
& les nerfs raides & perclus. Outre ce, les gencives sont ulcérées & noires,
la chair toute enlevée, & les dents disloquées, & branlantes, comme si elles
ne tenaient qu’a bien peu de chose, & méme la plus grande partie en tombe.
Avec cela une haleine si puante & infecte qu’on ne peut s’en approcher; car
on sent cela d’'un bout du navire a 'autre. On ne perd pas ’appétit, mais
I'incommodité des dents est telle, qu’on ne saurait manger, sinon choses
liquides dont alors il se trouve peu eés navire, & cependant on devient si
avide, qu’il semble qu’on aurait pas assez de tous les vivres du monde pour
s’'assouvir.

En somme, que I'incommodité en est bien plus grande que la douleur, que
I'on sent seulement en bouche et gencives. de sorte que bien souvent on
meurt en parlant buvant & mangeant, sans avoir eu connaissance de sa mort.
Outre cela, cette maladie rend si opiniatre & bizarre, que tout déplait. Il y
en a qui en meurent en peu de jours, d’autres durent plus longtemps sans
mourir. Ils ont la couleur bléme & jaunatre: & quand ce mal veut prendre,
les cuisses & les jambes sont couvertes de petites pustules & taches comme
morsures de puces, qui est le sang meurtri qui sort par les pores du cuir: &
les gencives commencent a s’altérer, & devenir chancreuses. Ils sont sujets
aussi a syncopes, évanouissements & défaillements de nerfs.

Comme nous étions en l'ile de S. Laurent, il en mourut trois ou quatre des
notres, de cette maladie, & comme on leur ouvrit la téte, on leur trouva
tout le cerveau noir, gaité & putréfié. les poumons deviennent secs, & re-
tirés comme du parchemin approché du feu. le foie & la rate grossissent
démesurément, & sont noirs & couverts d’apostumes pleines de matieére la
plus puante au monde. Lors que ’on a cette maladie une plaie ne se guérit
& desseche jamais, aussi devient comme une gangrene & putréfiée. Quand
on est sur mer, & que cette maladie prend, on a beau user de remedes, car
tout y est inutile, & n’y en a point d’autre que de prendre terre quelque part
si on peut, afin d’avoir des rafraichissements d’eaux douces & fraiches, & de
fruits, sans quoi, ’on ne peur jamais guérir, quoi qu’on y fasse. C’est une
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chose terrible de voir les gros morceaux de chair pourrie qu’il faut couper
des gencives.

Actually, some authors attribute the first recorded controlled trial to Lind (1753). He
investigated in 1747 the effect of oranges and limes on scurvy, on HMS Salisbury.

The term clinical experiment means any medical experiment in which human subjects
are involved. Very strong ethical constraints apply when experimentation concerns
people. For instance, it would be desirable for the experiment to be such that no new
patient is submitted to a treatment that has already been recognised as inferior.

1.1.1 Description of a study
Generally, we distinguish two types of studies:

e Observational studies: in such studies, the environment determines who is
exposed to the factor, who is the object of the study, and who is not. Though
such studies may suggest links, they may not necessarily imply a causal relation.
Observational studies may be divided into three categories:

— cross-sectional: the different measures taken on patients are made at the
same instant. This kind of study does not allow the establishment of a causal
relation: for example, let us suppose that we measure each patient’s blood
pressure, and at the same instant, the presence or absence of heart disease.
We can certainly demonstrate a link, but in no way can we determine if
hyper-tension is a consequence of the heart disease, or if it is the cause.

— case-control: here, we consider a sample having a given characteristic (for
example a group of patients suffering from lung cancer), and we measure the
presence or absence of certain characteristics (is the patient a smoker?). The
term “retrospective study” is well suited, to the extent that the data are
collected after the factors of interest have manifested themselves. Collecting
information afterwards gives nevertheless an additional source of imprecision.

— prospective: in this kind of trial, we begin the study by taking a sample
having a given characteristic (the patient is a smoker), and another without
this characteristic (the patient does not smoke). The trial is achieved by
measuring the frequency of appearance of the primary factor (lung cancer).
Prospective studies are sometimes called “cohort studies”.

If the prospective study is the most convincing one for highlighting a causal rela-
tion, it is nevertheless often difficult to set up, costly, and sometimes impossible
to undertake: it may take decades before the disease is diagnosed, or the disease
may be so rare that a huge sample is required.



4 Chapter 1 Introduction

e Experimental studies: here, the investigator determines who is exposed and
who is not. Such studies allow direct inference about causal relations. In the
medical field, an experimental study is called a clinical trial (Friedman, Furberg,
and DeMets, 1985). The researcher usually splits the patients randomly into
several groups. To the extent possible, he or she tries to maintain all the relevant
factors constant or controlled.

Generally, a clinical study compares the effects of medicines with that of a placebo,
or a new therapy with a standard therapy. It may however compare a medical
treatment to surgery, or in other fields, different learning methods.

1.1.2 Therapeutic trials in the harmonisation era

Clinical trials pose many ethical dilemmas. For example, one should ensure that pa-
tients do not receive a treatment that seems to be less effective. But one must also
maintain a certain scientific objectivity: a study which rules out a treatment when
there is doubt about its effectiveness would result in a decision without any scientific
value. However, there may still be scientific value if there was information on side-
effects.

Unfortunately, the issues at stake are often contradictory:

e ethics and statistical validity;
e premature stopping and loss of credibility within medical circles; and

e individual and collective interests.

Because of these conflicts, the need has progressively been felt for international com-
mon standards, able to deal with the establishment of protocols, ethical rules, and the
operating mode of steering committees.

The principle of the International Conferences of Harmonization was born in 1989,
arising from the findings of a marked disparity of legal requirements among countries.
The International Conferences of Harmonization have a triple goal:

e to create a dialogue between the regulators — the Food and Drug Administration
in the USA, the Committee for Proprietary Medicinal Products in Europe, and
the Ministry of Health and Welfare in Japan — and the pharmaceutical industry;

e to save resources; and

e to give a set of common, practical recommendations for a more uniform interpre-
tation and application of technical guidelines.
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The progress which has been accomplished is already significant and for instance, has
led to the adoption of directives E3 (Structure and Content of Clinical Study Reports),
E6 (Good Clinical Practice), and E9 (Statistical Considerations in the Design of Clinical
Trials). Nonetheless, disparities remain: 80 statisticians work at the FDA, none at the
beginning of 1997 at the French Ministry of Health!

After these introductory paragraphs, we consider some statistical aspects of the prob-
lem.

1.1.3 The different phases of clinical development

Clinical development is usually divided into four phases. During Phase I, the new
medicine is administered to healthy volunteers, in order to check for unforeseen serious
side effects, which would immediately end the trial. Different doses are tested, for
studying the tolerance level of the new product. In the case where the treatment may
be toxic, as in oncology, or in the treatment of cardiovascular diseases, the healthy
volunteers are replaced by patients who usually do not hold much hope for remission.

During Phase II, the medicine is distributed to persons suffering from the target sick-
ness, so as to give an idea of its effectiveness. At the end of the first two phases, the
investigators are in a position to propose a complete rule for prescribing. This rule
includes the mode of administration, the interval between doses, dosage, the associated
treatments, and the policy to follow in the case of non-effectiveness.

During Phase III, the new medicine is compared with alternatives (placebo, previous
treatment). This phase is crucial for obtaining authorisation for sale of the drug. The
article by Thall, Simon, and Ellenberg (1988) is a good reference in phase II/I1I studies.

Phase IV is designed to ensure continuous monitoring, often after commercialisation,
and provides additional security that may be used for marketing purposes. Many phar-
maceutical companies call Phase III Phase IV, from the time that a production licence
is granted.

1.1.4 Control of error rates

The rules established by the official monitoring bodies require a level of significance low
enough that new products, often more expensive than the old ones, are not placed on
the market unless they are demonstrably better. However, the relative importance of
the first and second type of errors depends on the trial: a Type II error is important
in oncology — screening trials a larger Type I error rate may be acceptable in order to
increase power — while a Type I error is more relevant for a costly flu medicine.

In certain practical studies, the most important aspect can be the sign of the parameters
being studied. One can then speak of directional decisions and introduce the notion of
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a Type III error (see Hochberg and Tamhane 1987, p. 39). This error is the probability
of any misclassification of signs of non-zero parameter values.

1.2 Scope of sequential methods

Sequential analysis concerns the studies in which the number of observations needs not
be determined in advance. It is characterised by three elements:

a stopping rule,
an allocation rule, and

a decision rule.

The purpose of sequential analysis is the simultaneous optimisation of the sample size
necessary and the quality of the decision rule. The use of standard theory, i.e. work
on a fixed-size sample, used to be protected for a long time by an array of passionate
defenders. In addition, when a problem is tractable by both fixed-sample and sequential
procedures, the former are conceptually and mathematically easier to carry out. This
has long contributed to the under-use of sequential methods.

We recall some situations and justifications for sequential analysis:

intrinsically sequential analyses such as monitoring processes or the so-called “sec-
retary problem”;

situations where only sequential analysis can provide a solution;
economical use of human, animal, and material resources;
taking ethical factors into account; and

reinforcement of a fixed sample size procedure.

Sequential methods have a role to play in each phase of clinical development:

in the course of Phase I, the first patients receive a small fraction of the dose
determined through animal testing. Then increasing doses are administered. The
approach is entirely sequential: when should it end? If it should continue, with
how many additional patients? However, formal sequential design for Phase I is
rare in practice: it is in fact difficult to formulate the precise objective of such
a study, and what reduces statistical power is the very small number of persons
involved. However, there are now formal Bayesian sequential designs for Phase I
(see O’Quigley, Pepe, and Fisher, 1990).
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e As far as Phase II is concerned, we can compare a treatment with a standard.
We can also compare several new treatments, in order to single out the most
promising for Phase III.

e The greatest contribution of statistics in clinical trials comes in Phase III: large
scale comparison of treatments. Unfortunately this assertion should be tempered,
because Phase III trials are sometimes in practice not well thought out.

Large samples and the assurance of high power are essential in order to convince
health authorities and the medical establishment of the efficacy of the new therapy.
Generally, a new treatment is compared with a placebo or with other treatments.
The null hypothesis is the lack of difference between their effects. Measurements
are taken over time, and the objective of the sequential approach is to stop the
trial as soon as a difference between the effects is ascertained. The investigator
must balance a premature stopping, which lacks credibility, and a too-conservative
method, which would result in the continuation of the trial, even though it would
be preferable to stop it.

We mention here the particular case of the bioequivalence trial, in which a new
better treatment (which has fewer side effects, is more easily administered, or
costs less) is compared with previous treatments. Its purpose is to show that
there is no difference between the effects of the two treatments. In such a sit-
uation, we seek a premature stopping in favour of the hypothesis Hy, of equal
effects of all treatments. Power rather than the level of significance is the thing
of central interest. We refer to Jennison and Turnbull (1993), who propose a
double triangle type sequential test for the equivalence between two treatments,
or Betensky (1997), who evaluates, at each step, the probability of rejecting Hg
at the anticipated end of the experiment, given the current data.

e Statistical models are seldom used in the Phase IV. We however refer as an ex-
ample to the “yellow card” that is used in the UK. British general practitioners
report to the Department of Public Health all problems encountered following the
prescription of a given medicine, after agreement of volunteer patients.

1.3 Longitudinal data, linear mixed effects model

1.3.1 Longitudinal data

In univariate statistics, we usually take a single measure on each individual. In a
multivariate model, we have a vector of variables for each individual. On the other
hand, when we speak of longitudinal data, we possess a vector of measures for each
individual, but these now represent the same physical quantity measured at a sequence
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of observation times. There may be also several vectors of measures that concern several
variables.

Longitudinal data combine elements of multivariate statistics and time series. How-
ever, they differ from standard multivariate models in the sense that the time aspect
leads to stronger dependence between the measurements than with more conventional
multidimensional data. They also differ from conventional time series models because
they consist of several short time series, one for each individual.

One of the most common examples of longitudinal data is growth curves. The example
introduced below is used in the next chapters.

Example 1.3.1 These data are taken from Crowder and Hand (1990, pp. 74-78). The
purpose s to study the effect of a protein diet on. the growth of chickens, for a period of
three weeks. There are four groups of chickens of sizes 16, 10, 10, and 9, corresponding
to an inspection, and three groups with dietary patterns with protein replacement rates
of 10%, 20%, and 0% (see Figure 1.1). The animals which had to be withdrawn from
the experiment were not included in the data used, because the objective is inference
on healthy individuals. Twelve observations are available for each individual, with no
mussing values.

Control 10 %

weight
100 200 300

weight
100 200 300

0 5 10 15 20 0 5 10 15 20
days days
o (=]
o o
m (3]
= £
= 20 % 53 40 %
H 2
[=] o
= 2
0 5 10 15 20 0 5 10 15 20
days days

Figure 1.1: Growth of chickens with different protein diets. The
data are taken from Crowder and Hand (1990).
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1.3.2 The linear mixed effects model

When we study rates of change, we have to focus on individual histories, looked on as
sample paths or realizations of stochastic process. A clinical trial is often composed of
measures, over time, on patients who enter the trial in a staggered manner. In addition,
measurements are often not taken on all of the patients on the same date, or may be
missing. The many reasons include sickness, vacations, and relocation.

It is therefore opportune to allow the experimental design to be different for each
patient. Let Y; be a n; X 1 vector containing the measurements for subject ¢; then a
straightforward model! is

Yi=X;8+e, (1.3.1)

where X; is a known n; X p matrix, 8 is a p x 1 vector of unknown regression parameters,
and the e; are independently distributed as N, (0,%;). We give below a few possible
structures for ¥;, listed by Jennrich and Schluchter (1986). The number of parameters
in £; is n(f):

e ¥, = o%I: the observations are independent and identically distributed. This is
the standard regression model, for which n(6) = 1;

o ¥, = 02F + 0%I, where the matrix E is made of 1s; this structure is a mixed-
model ANOVA (Analysis of Variance) structure, sometimes called a compound
symmetry model, and n(6) = 2;

o X, = Z;DZ! + o°I: here, Z is a n; X ¢ known matrix, and D is a ¢ x ¢ unknown
matrix. This model is called a mixed effects model, and n(8) =1+ ¢q(1 + q)/2;

o Y, = 07, where [ = |j — k| + 1; this structure is called a banded, or general-
autoregressive structure, and n(6) = n;.

o Sy = 02p7Fl: this corresponds to the standard autoregressive structure of
order one. There are two unknown parameters, o2 and p.

e Finally, if ¥; is unstructured, we have n(f) = n;(n; + 1)/2.

The parameter 3 in (1.3.1) stands for a mean treatment effect. But clinical or pre-
clinical trials usually involve human beings or animals; for each individual, there is
likely to be a consistent departure from the mean treatment effect. This lasting char-
acteristic of the individual is ascribed to many unknown or uncontrolled factors, which
are naturally modelled by a normal random variable, usually called random effect. The
mixed effect model — the third case in the list above — includes both fixed and random
effects. Since it is often used, mentioned in literature, and also very flexible, we have
worked in the framework of the linear mixed effects model, which is discussed with
further details in the following.
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Statistical model

Let h be the treatment number (h = 1,...,T). Then, for the ith patient assigned to
the hth treatment, we have

Y= XMA" 4+ ZM0h + e, (1.3.2)

where Y}* is a n!* x 1 vector of observations taken on subject i, assigned to treatment
h. The matrices X! and Z! are n! x p and n x ¢ matrices of known covariates. The
p x 1 vector B is the fixed effect. Vectors b? and e? are independent errors distributed
as N,(0,0°D), and as N,;1(0,0°]).

We define
VP = var(Y}) = o*(I + Z2'DZY),

1

1.3.3)
and W/ = (V). (1.3.4)

We generally take p = 2, corresponding to a linear model containing a slope and an
intercept. In the absence of additional information, we take ¢ = 2 and Z! = X}

Let us suppose that we are at the instant of performing the kth interim test (k =
1,...,K). Then

Y(k) = X['(k)B" + Z!(k)b! + € (k), (1.3.5)
1 XM
1 Xih h h
XMHk) =] . v B = ( ﬂ% > and b = ( z?f > ,
: : Bi 1,
-h

1 Ai,nf‘(k)

where nf(k), h = 1,...,T, i = 1,...,m"(k), is the number of measures taken on

patient 4, assigned to treatment h, up to the kth analysis, and m”(k) is the number of
patients assigned to treatment A, up to the kth analysis.

The linear mixed effects model (1.3.5) is convenient, because it clearly distinguishes

e the treatment effect 3",
e the reaction of each patient b7, and

e the variation within the measures taken on a single patient ef.

In addition, there are no constraints on the number of subjects assigned to each treat-
ment, or on times of measurements.
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Follow-up remarks

One of the assumptions of (1.3.2) is the independence of the effects b, violation of
which may lead to inconsistent estimators of the fixed effects.

Using random effects models is far from innocuous. Their unjustified use leads to poor
quality estimators and over-large confidence intervals. On the other hand, not taking
the random effects into account when they are present leads to underestimation of the
heterogeneity of the data. Specification tests have been developed to check the need
for random effects (Hausman, 1978).

This remark about the need for random effects is important in sequential analysis: use of
stopping rules can bias estimators of fixed effects, and lead to an artificial heterogeneity

which wrongly suggests using a random effects model (Hughes, Freedman, and Pocock,
1992).

1.4 Group sequential procedures

1.4.1 Reluctance to use fully sequential procedures

In many clinical trials, patients arrive sequentially. A fully sequential plan is an exper-
imental design where an interim test is performed after every measurement.

Siegmund (1977, 1985) showed that sequential procedures, such as the Sequential Prob-
ability Ratio Test (SPRT), used with adequate allocation rules, were generally worthy
of consideration. In spite of his work, the implementation of such procedures remains
sporadic.

Practitioners are generally reticent about sequential procedures, and prefer to use a
single final test. O’Brien and Fleming (1979) give some of their practical objections:

e a feeling of uncertainty and scepticism with regard to the nearly optimal proce-
dures;

e the number of sequential methods already proposed is a deterrent;
e sequential methods bring about complex designs; and

e unforeseen reasons may lead to serious modifications of the design; but changes
in the connected sequential plan are then intricate.

Pocock (1993) mentions other drawbacks:

o lack of credibility due to the small scale of the experiment;
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e lack of realism about the difference of effects between trecatments;

e larger confidence intervals;

e bias due to stopping rules;

e partial appraisal of costs and benefits, due to the procedure’s rapidity;

e the communication of the intermediate results may be a source of pressures and
“recommendations” for the investigators; and

e the higher risk of misleading conclusion.

As regards the error rate, Armitage, McPherson, and Rowe (1969) addressed the prob-
lem of the drastic increase of Type I error when a test of level « is repeated over time.
Consider for instance normal random values N (2 = 0,0? = 1). If we tested fifty times
the null hypothesis Hy : u = 0, at level « = 0.01, the overall Type I error would be
0.53! Nevertheless, Armitage (1975) stressed that the repeated-test approach should be
followed up.

1.4.2 A suitable compromise

We are able to argue against the objections mentioned in the previous section. In
reality, every investigator monitors “first hand” the evolution of the data as soon as
new observations are collected. Is not this method sequential?

Grouping observations is a very good alternative to a fully sequential method. The
investigator periodically examines his or her data. Thus, he or she is able to stop
the trial in the case of strong evidence against the null hypothesis. In addition, a
clinical trial often takes place in several centres. In such a situation, we do not hold
out much hope that every new measure will be transmitted to the central monitoring
centre without delay, and difficulty in scheduling meetings can also cause delays; but it
is easier to wait until a given number of new measurements is transmitted, and perform
an interim test.

Data are also collected in almost the same manner as for a non-sequential experiment.
Finally, the gain achieved by a periodic inspection of the data is obtained virtually
without loss of power (O’Brien and Fleming, 1979), or increase in Type I error.

The advantages of group sequential methods are well illustrated by Pocock (1982). He
gives an example of a group sequential procedure that allows a 40% reduction (under
the alternative hypothesis) of the Average Sample Number (ASN) compared to a non-
sequential procedure, and an increase of only 19% under the null hypothesis.

A fully sequential design also leads to a reduction of 40% of the ASN under the alter-
native hypothesis, but to an increase of more than 35% under the null hypothesis.
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Experience has shown (Pocock, 1982) that the number of interim tests is often rather
low (less than or equal to five), unless there is strong a priori evidence against the null
hypothesis.

1.4.3 Some group sequential procedures

We present here well-known group sequential procedures. They deal with two-sided
tests: even when we compare the effect of a treatment to a placebo, we must be able
to avoid unforeseen harmful effects.

We consider normal observations with known variance. Since one will work with
grouped data, this does not cause any problems even for moderate sample sizes. The
general framework is defined by the assumptions below.

Assumptions 1.4.1 We consider two treatments, A and B. Then,

e at each step, two groups of ny and ny patients are assigned respectively to treat-
ments A and B;

e observations are normal N(u,0?), with u = pa, or p = pp, and we set § =
K4 — KBy

o the mazimum number of interim tests is N;

2

e the variance o° is known; and

e wetest Hy:0 =0 wvs Hy:d #0.

Pocock’s procedure

Under Assumptions 1.4.1, Pocock (1977) proposes group sequential tests, when n =
n4 = npg. After the ith measurement, we consider the statistic

- Tai—Tp; 202
d; = —f—J—lﬁ NN(MA_MB, Z_;) (1.4.1)

where T, ; is the average of the measures collected from treatment A between the
(7 — 1)th interim test and the jth test. We reject Hy if

pr; = 2 [1 .y (ﬁﬁ \/‘;7)] <d, (1.4.2)
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where @ is the cumulative distribution function of a standardised normal random vari-
able. The level o/, which depends on NV, is chosen to guarantee a fixed significance level
a. We write

o« =pr,(2,N,a), (1.4.3)

because the interim significance level o/, depends on N, on «, and on the number of
present treatments, that is, two. If we call b,(2, N, ) the corresponding boundary, we
reject the null hypothesis if

m - i
7 = ﬁdﬁ >b2(2,N,a). (1.4.4)
For o = 0.05 or @ = 0.01, Pocock (1977) provides a table indicating the value to choose
for o/. The power, 1 — 3, is expressed as a function of the ratio

AL -
o (1.4.5)

With fixed N, a in {0.01,0.05}, and 1 — 8 in {0.5,0.75,0.9,0.95,0.99}, tables give the
value for (1.4.5), in other words n.

Even a restricted value of N allows a substantial reduction of the ASN under the
alternative hypothesis. This reduction is very close to, and sometimes better than the
reduction obtained by a fully sequential procedure.

If 02 is unknown, @ is replaced in (1.4.2) by the distribution function of a Student’s
distribution with 2(in — 1) degrees of freedom. Pocock (1982) observes that the desired
level « is still controlled, and that the loss of power is slight.

By normal approximation, we are able to use the tables of Pocock (1982) for exponential
data, binary data, and for the application of the Wilcoxon test.

If we try to optimise the intermediate significant levels, when power and the Type I error
rate are fixed, it turns out that these levels are almost constant. Thus, unless power
is inferior to 90% or the sample size proves inadequate, results show that a constant
significant level o' given by (1.4.3) is highly workable.

O’Brien and Fleming’s procedure

O’Brien and Fleming’s procedure (1979) is a little more supple — there are no more
restrictions n, = np — and aims to improve the power. An interim test is performed
after n4 new observations for treatment A. and ng for treatment B. We consider the
statistic

.zii (Zaj — To;) _ : 25
Z; ﬂ;\/v ) ;\ﬂ

ar(jA,j — ii‘B’]'
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Under Hy, Z; and z; are standard normal. O’Brien and Fleming (1979) stop the exper-
iment in favour of the alternative at the first test 7, 1 <7 < N, such that

%Zf > b2,,(2,N, ), (1.4.6)

where bos-(2, N, ) is obtained by simulation. For N < 5, b2,,.(2, N,a) may be re-
placed by the quantile 1 — a, of a x?2.

In addition, we are allowed, at step ¢, to take a proportion k; of n4 and ng, in which
case the stopping rule (1.4.6) is replaced by

Z;:] ki 2

2
mzi > bgyr

If sample sizes are large, the procedure of O’Brien and Fleming is also usable with
continuous observations, or binary observations.

(2, N, ).

Whereas the stopping boundaries of Pocock (1977) are constant, those of O’Brien and
Fleming (1979) become progressively smaller, with the aim of increasing power. More-
over, this may answer more easily two questions that must be solved before any decision
for early termination can or should be reached (DeMets, 1984): Could the current trends
likely be reversed if the trial continued to the end? What would the impact of early
termination have on acceptability of the results to medical and scientific colleagues?

Lan and DeMets’ procedure
The method of Lan and DeMets (1983) offers great flexibility. In fact, N, the number

of intermediate steps, does not have to be specified in advance. Thus, we are able to
deal with many practical situations:

e depending on the trial, we are able to change the frequency of the tests; and

e the recruitment of patients may be slower than expected, so the experiment runs
longer than the estimated duration, and therefore, N increases.

The context of use is very general, that is,

e two treatments A and B; and

e the boundaries are usually computed by normal approximations.
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We assume without loss of generality that the experiment is performed on a time in-
terval of duration one. If a test is performed at time ¢, 0 < ¢ < 1, we compute the
interim significant level by using an Error Spending Function (ESF) a*(-). If the ran-
dom variable 7 represents the moment when we stop the experiment, we have at least
asymptotically

pr(|B(t))| > b1) = pr(r €[0,t1]) = a*(t1),
pr(|B(t;)| <b;,j=1,...,i—1, and |B(t;)| > b;) pr(7 € (ti—1,ti])
’ = o'(t) - ( 1),
where B(-) is a standard Brownian motion and b; a boundary. In its most general form,
Lan and DeMets’ method does not rely on normal approximations, because we are able

to replace B(:) by a continuous stochastic process; but the boundaries b; may be more
difficult to compute.

I

To avoid bias due to the experimenter, the choice of the ESF o*(:) must be made before
the trial begins. How is this choice made?” Some examples are given below, where « is
the Type I error rate. The first one is

(Iza/z

(1) = 2 — 20 ( ¥ ) . (1.4.7)

This ESF leads to intermediate significance levels which are fairly close to those of
the method of O’Brien and Fleming (1979), for uniform analysis patterns, when the
increase of information is proportional to time. A procedure that uses this ESF is very
conservative at the beginning of the experiment. It is particularly suitable for studies
on long term effects. Another ESF is

ar(t) = a log(l + (e — 1)t). (1.4.8)

This function is similar to the procedure of Pocock (1977), when the number of observa-
tions between the tests remains constant. Roughly speaking, a}(-) makes for frequent
early stopping, but also loss of power. Finally, Lan and DeMets (1983) propose

Yo (t) = at’, with s > 0. (1.4.9)

aLDM

For example, if s = 1, the procedure is more conservative than (1.4.8), but less conser-
vative than (1.4.7).

Parameter ¢ should represent the information accumulated throughout the experiment
rather than calendar time, represented by ¢.,,. These two notions are addressed by Lan
and DeMets (1989). Let us consider an experiment which will last T,,, = 5 years, and
involves a thousand patients. At the end of the second year, measures have been taken
on five hundred patients. We have t.,, = 0.4, whereas t = 0.5.
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Generally, there exists a monotone transformation g, such that ¢ = g(t.,,), which allows
us to go from t.,, to t. If g is known,

o’ (t) = o [g(tear)] -

If the entry of patients into the experiment is proportional to time, then we have simply
9(tet) = tew/T.or- I the maximum duration is fixed, we may replace the unknown
function g by an estimator §, which is often { = §(t.,,) = t..,/T..,. Finally, if the
maximum number of patients is fixed, then ¢ is simply the ratio of the number of
patients involved in the experiment at time ¢., to the maximum number of patients
expected.

When ¢ is estimated, and we are at step k, we consider
B(t
2= B0,
Vit
and we solve
pr (|Z(t;)| > c(f;) for at least one j € {1,... ,k}) = a"({;).
We simply note that
pr (|Z(t;)] > c(t;) for at least one j € {1,...,k})
= pr (|Z(t;/te)| > c(i;) for at least one j € {1,... ,k});
thus the ratio ¢;/#; is known even if ¢; and #; are unknown, because it is enough to
establish the ratio of the number of patients involved in the experiment for steps j
and k. Hence we arc able to evaluate o*(t;), and therefore c(t;), 7 = 1,... ,k. The

simulations made by Lan and DeMets (1989) show that underestimating ¢ leads to a
slight increase of power, but does not prolong the experiment.

Falissard and Lellouch’s procedure

There is sometimes a contradiction as regards the final decision between a sequential
procedure and a “classical” procedure. The objective of Falissard and Lellouch (1992)
is to remedy this contradiction.

Their idea relies on the rejection of the null hypothesis if, and only if, » consecutive
tests have rejected Hy.

Let S; = Z;:I d;, where d; is defined by (1.4.1). The null hypothesis Hj is rejected if,
and only if :

die {1,...,N—T‘+1} : |Si+[|>qza,/2Vi+l, l=0,...,7r—1. (1.4.10)

The probability pry ., that we obtain r consecutive rejections under Hy, must be as
close as possible to the target level a.. The value ¢’ used in (1.4.10) is computed using
an iterative method of linear interpolation.
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Whitehead’s restricted procedure

Whitehead (1997) uses the statistics Z; and V;*, namely the efficient score for § (under
Assumptions 1.4.1 with n4 = np), and the Fisher information about § contained in Z;.
The procedure stops whether lower or upper lines are reached, that is if

o Z!=a+dV, V<L or
o /! =—-a-—-dVr, V<L,

where L is chosen so that L > V7, i.e. the information required for a non-sequential
test. If d = 0, the procedure is O’Brien and Fleming’s procedure. However, overshoots
due to discrete monitoring should be considered. The famous Christmas tree adjustment

(Whitehead, 1997) leads to the following boundaries:

Py Z; =a+ d‘/z* - 0583\/W' ‘/;* S L’ and

o 7! =—a—dV +0583,/VF =V, V*<L

Conclusion

Of course, none of the procedures described above is the best, if we consider simulta-
neously power, ASN, duration, control of the error rate «, or strength in the face of
deviations. Indeed, none of them is able to eliminate every contradiction: the same data
may lead to different decisions. Even the procedure of Falissard and Lellouch (1992)
could lead to different results, if we use different values of N and r.

The methods we have described are well known. There exist many others; for example,
Peto, Pike, Armitage, Breslow, Cox, Howard, Mantel, McPherson, Peto, and Smith
(1976) propose the use of very low significance levels for every intermediate step, i.e. to
concentrate the Type I error rate on the final test.

Table 1.1 illustrates several methods that have been described, with uniform analysis
pattern. In the framework of Assumptions 1.4.1, we consider a procedure made of
five equally-spaced inspection times, t = 0.2,0.4,0.6,0.8, and 1, that is, N = 5. The
boundaries are displayed for standardised statistics. There is a decreasing level of
difficulty for early trial termination when we go from O’Brien and Fleming to Pocock’s
procedure. We can also check that o, ., and a7}, lead to good approximation of O’Brien
and Fleming, and Pocock’s procedure. Optimum boundaries (Geller and Pocock, 1987)
are computed when the power « equals 0.5, 0.75, or 0.8; these boundaries are optimum
in the sense that they minimize the ASN for a given value of y. Another interesting
issue that can be observed in Table 1.1 is how o} ,,, with s = 1.5 leads to almost optimal

boundaries for large value of .
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t 0.2 04 06 08 1.0
oy 244 243 241 240 2.39
Pocock 241 241 241 241 241

oy, Withs=1 258 249 241 234 228
alp, Withs=15 285 259 243 229 218

ol Withs=2 309 272 247 228 211
Peto 329 329 329 329 1.97
a5 or 438 3.36 268 229 203

(O’Brien and Fleming 4.56 3.23 263 228 2.04
Restricted procedure 4.43 3.13 2.55 2.21 1.98
Optimal for y =0.5 3.66 288 2.57 237 2.04
Optimal for v =0.75 299 2.54 241 235 216
Optimal for y =08 2.86 248 239 236 2.20

Table 1.1: Boundary values for Z(t), that is the standardized statis-
tic for the difference of means (see Assumptions 1.4.1). The global
error rate is a = 0.05, and there are five equally-spaced inspection
times.

We often use in our work the ESFs o ., o}, and «} ,,, defined by (1.4.7), (1.4.8), and
(1.4.9), because of their flexibility. In addition, they cover most practical applications
of the error spending function method to group sequential designs. The restricted
procedure has not been taken into account, since Stallard and Facey (1996) advise
against it, in a situation we have often dealt with; that is, monitoring with O’Brien and

Fleming boundaries and a bounded number of intermediate analyses.

1.5 General bibliography

The body of literature relevant to the medical field is extremely vast, with about two
million new articles published every year. Among the works designed for practitioners
and oriented towards statistics, the book by Wassertheil-Smoller (1995) is an excel-
lent introduction to biostatistics and to epidemiology. Senn wrote two general books
respectively about cross-over trials (1993), and statistical issues in drug development
(1997). Friedman et al. (1985) and Meinert and Tonascia (1986) wrote some textbooks
specifically on design of large clinical trials. Pocock (1993) describes the statistical and
ethical aspect in the monitoring of clinical studies. He is also the author of a reflection
on the life of a statistician in the medical academic community (1995) which is very
instructive.

The main theoretical developments in sequential analysis may be found in the books by
Wald (1947), Ghosh (1970), Siegmund (1985), and Wetherill and Glazebrook (1986).
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Finally, the volume edited by Ghosh and Sen (1991), to which numerous authors con-
tributed, is a good reference, with a complete bibliography.

The application of sequential methods to clinical trials is presented by DeMets and Lan
(1984), and by Whitehead (1997), who includes important mathematical developments.
The procedures presented are directly usable, thanks to the PEST3 program (Brunier
and Whitehead, 1994). The textbook edited by Peace (1992) gives many examples
of applications of sequential statistics on real data. Instructions and guidelines to be
adopted for monitoring intermediate analyses are given by Geller and Pocock (1987).

Beyond all doubt, one of the best references about longitudinal data is the book by
Diggle, Liang, and Zeger (1994). The program OSWALD (Smith, Robertson, and
Diggle, 1996) makes for easy analysis of longitudinal data.

Evaluating sample sizes is not the main purpose of our work. A good review of the
problem in the field of clinical trial is found in Lachin (1981). We shall also mention
Kim and DeMets (1992) as a good reference for the influence of a plan for sequential
analysis on sample size.

Finally, Bayesian methods for clinical trials are presented by Berry (1985, 1987), and
practical aspects are discussed by Hughes (1993a).

1.6 Chapter outline

In 1991, Ghosh and Basu (Ghosh and Sen, 1991) pointed out that no group sequential
works had been done hitherto in comparing more than two treatments. Since then,
theory in this field has improved, and many new procedures have been developed. In
Chapter 2, we propose new procedures for multiple comparisons, in the fields of the
linear mixed effects models. Their properties are discussed, and so are the parameter
estimates, and the connection with existing methods.

In Chapter 3, we present the main results of various simulation studies. The choice of
ESF and the small-sample case are dealt with. We also briefly discuss the confidence
interval approach.

An introductory section about sequential allocation rules is found at the beginning of
Chapter 4. Then, we characterize an asyvmptotically optimal allocation rule for the
two-treatment case. The main features of this procedure are illustrated by simulation
studies. Finally a generalization is proposed as a conjecture.
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Chapter 2

Sequential Multiple Comparison

Whereas Chapter 1 discusses sequential methods for comparing two treatments, this
chapter presents sequential procedures for comparison of multiple treatments. In Sec-
tion 2.1, we see that the step from a two-treatment comparison towards three or more
treatments is actually more difficult to make than it may seem at first sight.

In Section 2.2, we make a brief presentation of some existing group sequential procedures
used for multiple comparison.

New general sequential procedures for comparing several treatments to a control are
presented in Section 2.3. Their main advantages are strong control of Type I error,
flexibility and wide range of use. Their properties are examined in Section 2.4, where
we propose a method of computing relevant p-values.

Parameter cstimation for model (1.3.2) is finally discussed in Section 2.5. We devote
particular attention to the situation in which scale parameters are unknown.

2.1 Multiple hypothesis testing

Studying the results of a clinical experiment involving three or more treatments is not
as straightforward as might be thought. There is a large number of possible outcomes,
regarding subsets of hypotheses to be simultaneously tested.

Several questions must be raised in order to lay down a methodology that answers the
experimenter’s objectives. The planning of a clinical trial is a complex issue, which can
be successfully concluded only if one has a very precise objective in mind (Senn, 1997).
This remark could be considered obvious, but is not so easy to implement in practice.
Trying to answer several questions by performing a single experiment may bring about
a design which answers none effectively.
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Let us consider an experiment with a placebo and three treatments, whose effects are
1y, 2, 43 and 4. Here are some examples of null hypotheses, and the exact questions
they are expected to answer:

e suppose we want to compare increasing doses of a treatment with a placebo.
Three hypotheses may be of primary concern: the difference between placebo and
treatment groups, i.e.

o+ pi3 + 1
Hy : =20 T K1,
3
and the dose effects,
Hgp @ po > ps,
Hos @ ps > pg;

e in a dose finding setup, we may ask whether a dose increase goes along with an
increase in efficacy. In that case the null hypotheses would be

Hoy @ = po,
H02 LMo = U3, (211)
Hos @ p3 = pa;

e no treatment differs from the control, i.e.

HO] LM = M2,
Hog M) M3, ' (212)
Hoy @ p4; and

H

e equivalence of all treatments:
_ po st g

Hoy @y 3 )
Ho : o = &f—%i‘fi (2.1.3)
Hosz : p3 = m—-*_l?*_—m,
Hog : py = M—_H;ﬁ—m

In the last situation, the fourth hypothesis, Hy4, should be omitted, since it is
simply a linear combination of Hy,, Hos and Hpz. The set (2.1.3) is equivalent
to (2.1.2). However, it may be more informative if one wants to focus on every
simple hypothesis Hy;, because each Hy; deals with the entire set of treatments.
Moreover, the corresponding statistic has a lower variance than one of a pairwise
comparison, at least in the standard situation of independent observations, with
equal variance in each group.
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More details about multiple testing are given by Bauer (1991), who makes a rather
complete overview in sequential and non-sequential situations. He also proposes (Bauer
and Kohne, 1994) a methodology which allows the experimenter to make appropriate
adjustments, or to change the study protocol.

2.1.1 Hypothesis statement

Let T be the number of treatments. Parameters of interest are called p;, ¢ € {1,...,T}.
We always consider location parameters.

Definition 2.1.1 If pairunse comparisons are made, we use the notation:

e Hy,; is the hypothesis of equivalence of treatments i and j, i € {1,...,T}, i # 7,
that 1s

Hoij © i = pg3

o 7 is the subset of all hypotheses Hy;; tested during the trial; for example,

— comparison of T — 1 treatments to a control:
\71 = {H0127 H0137 Y aHOIT}:

— all pairwise comparisons:

J). = {H()z'ja 7'.] € {1a ,T},Z #7}

If all treatments are compared to all others, we may use the hypotheses given by the
following definition.

Definition 2.1.2 If hypothesis Hy;, i € {1,... , T} corresponds to

L L Ul o S sl 2 &
T-1 ’

i =

then equivalence of all treatments is tested with

T
() Ho:
=1
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2.1.2 Control of error rates

When we test several hypotheses simultaneously, the event of making a Type I error is
more complex than in a simple case. In fact, it depends on whether the whole set, or
each single hypothesis, is considered first. Let H, be a set of hypotheses to be tested,
and H* C H, the subset of the true null hypotheses in H.

Definition 2.1.3 A procedure controls the overall level of significance «, i.e. the
Family-wise Error Rate (FWE), in a weak sense, if the probability of rejection of at
least one hypothesis in H* is lower than o, when all the hypotheses in H are true; that
8

pry—w- (3H € H* : H is rejected ) < a.

Definition 2.1.4 A procedure controls strongly the overall level of significance a if
the probability of rejection of at least one hypothesis in H* is lower than «, under all
circumstances; that is

sup pr(3H € H*: H is rejected ) < a.
H-CH

Consideration given to Type I error should not overshadow power, which may often
be the main concern of the experimenters. Many large trials have surprisingly little
concern for power because they are in fact often overpowered.

Generally speaking, multiple comparisons lead to high-order cumbersome integrations,
especially when these comparisons are repeated over time. A simpler approach consists
in dividing the overall level of significance by the number of hypotheses to be tested.
Then, every single hypothesis can be tested separately. However, this method, usu-
ally called Bonferroni’s method, is rather conservative. Actually, it could be used if
correlations between statistics do not exceed 0.5 (Pocock, Geller, and Tsiatis, 1987),
and the power of such a procedure is satisfactory only if one simple hypothesis is false.
Unfortunately, this is rarely the case in practice.

Bauer (1991) introduces a more subtle Bonferroni-type approximation, which consists
in ignoring the first steps of the sequential procedure. There are other interesting
refinements of the Bonferroni method (Benjamini and Hochberg, 1995).

Another alternative consists of using a univariate test that concentrates all the statistics
connected with the simple hypotheses in one statistic. This method may be more
powerful, but is not always appropriate. It is sometimes a bone of contention between
experimenters, since it could bring together very disparate elements.

To conclude, there are many approaches regarding multiple testing. Most of the meth-
ods presented in this chapter deal with the comparison of several treatments to a single
control, that is, the hypotheses defined in (2.1.2). However, they could be easily used
for other sets of hypotheses like (2.1.1) or (2.1.3).
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2.2 Group sequential testing in clinical trial

Three group sequential testing procedures for comparing several treatments are pre-
sented in this section, viz. comparison with a control, equivalence of T treatments, and
all pairwise comparisons. The results presented in this section can be essentially as-
cribed to Follmann, Proschan, and Geller (1994). We shall also mention Hughes (1993b)
who deals with more practical details. But his objectives are slightly different since the
controlled error is different too. This section concludes with several remarks about the
features of such procedures, and about the use of Bonferroni’s method.

2.2.1 Comparison to a control

Let m be the number of patients in each group at time t, and M, the maximum value
of m. This section deals with the test of Hy : Hgio N --- N Hyr. The hypotheses

Hoy, ..., Hoi, are sequentially tested, and every hypothesis Hyy; @ 1y = py, j =
2,...,T, has a corresponding statistic Z,;, where
= _
le = ]—#7 J :2a 7T:
2 2
g5 +oy
m
and o? is the variance of any observation taken on treatment i, i = 1,...,7T.

Experiment process

For t < t', covariances are given by

Tt [e i %k,

‘/a"‘Z 02\/a2+0'2 v
COV(le{t},Zlk{t/}) = \/#:’J 17% ] _y

Scale parameters, when unknown, are replaced by their usual estimators.
Procedure 2.2.1 At time t, which corresponds to step number k, (usuallyt = k/K =
m/M ), the hypothesis Hyj, 7 =2,...,T is rejected if

1Z1;(t)] > bp(T,K,a) for Pocock’s procedure,

|Z,;(t)] > t™Y2bogr (T, K, @) for O’Brien and Fleming’s procedure,

where bp (T, K, ) and boyp(T, N, ) are tabulated (Follmann et al., 1994) ifo? = --- =
02. Otherwise, simulation is suggested. Let ¢ = bp(T,K,a), or ¢ = bogs(T, N, )
depending on the chosen method,
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e if 37 :Z;(t) > ¢, the experiment is stopped;

o if 35 : Z1;(t) < —c, the treatment j is rejected and the trial is carried on, with-
out treatment j. In this situation, the value of T is changed in by(-, K, a), or
bosr(:, K, @), and is replaced by the number of the remaining treatments.

To sum up. the trial is stopped, if the final interim analysis is reached, if at least one
treatment has been shown to be superior to the control, or if all treatments have been
rejected as inferior to the control.

Follmann et al. (1994) prove that Procedure 2.2.1 strongly controls the overall level of
significance a.

2.2.2 Pairwise comparisons

All the hypotheses Hy;; are tested, where ¢ = 1,...,T, 5 =1,...,T and ¢ # j. For
any hypothesis Hy;;, we use the statistic

Z,; =M (2.2.1)

Comments made in the previous section about scale parameters also hold here. The
values b, (T, K, a) and b (T, K, @) are tabulated for 02 = --- = ¢2. (Follmann et al.,
1994). Rejection of Hy;; usually brings about withdrawal of the identified inferior
treatment. Then any other simple hypothesis connected with the rejected treatment is
cancelled. Finally, the experiment is carried on; we just change T in pr,(-, K, @), or
pry,-(-, K, @), and replace it by the number of the remaining treatments. The overall
level of significance «, is always controlled in a weak sense, and strongly controlled
when T = 3.

2.2.3 Equivalence of T treatments

Let us consider the following situation: the overall null hypothesis Hypo M Hoz N+ - - N Hor
(Definition 2.1.2) is sequentially tested, until rejection, without exceeding step K, where
K is the maximal number of interim analyses. We use the statistics Zg, (t),. .. , Zg. (1),
where

gy = L (Pt it f et iy
éi(t)_\/v i = T_1 )

,  olttol 4o 4+ tad
g; T_-1 .

and
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We define
Sr(t),

which is the estimate of the variance matrix of [Z,(t),... , Z¢-(t)]. The equivalence of
all treatments is tested using the statistic

XQ(t) = [Ziz(t)v R Zﬁr(t)] i:'l'(t)_l [Z£2(t)’ ) ZfT(t)]l . (2-2-2)

The distribution of x2(t) is easily simulated, since x?(t) is asymptotically distributed
as x%_,. This result is obviously exact in the normal case. Some tables supplied by
Jennison and Turnbull (1991) give values for bygr(T, K, ) and bp(T, K,«). In the

situation where o2 = - .- = 02 = g2, (2.2.2) is written
m —
Y
F(t) = 75 (/‘l’l - :“’) )
G2 «
=1
fin + -+ pir

where /l = "_—T_——,
and F'(t)/(T — 1) is distributed like a Fy_y 74,-1) random variable. The withdrawal of
treatment during the trial is not allowed. Whereas non-rejection of the null hypothesis
indicates the equivalence of all treatments , it is legitimate to ask which of the treatments
are different, in case of rejection.

Senn (1997) argues that it is analogous to an opinion-poll interviewer stopping an
individual in the street, giving a list of several government policies and asking him
or her, “do you disagree with any of these?” The answer “yes” would not be very
informative. So, we may stress that both of the procedures previously introduced
(comparison with a control and pairwise comparison) lead to more precise inference
than when we use (2.2.2).

2.2.4 Further comments

The disadvantages of the procedures that we have presented may be summarized as
follows:

e first, if variances are not identical for each treatment, the existing tables are no
longer appropriate, unless one is willing to proceed as if they were. Follmann
et al. (1994) suggest simulations. This might be considered non trivial, given the
sequential nature of the context. We should point out that this situation is likely
to be faced in the case of longitudinal data; and
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e secondly, if for any unexpected reason, the subset of hypotheses to be tested, or
more generally the contrasts’ matrix should be modified, pre-established tables
cannot be used.

Bonferroni’s method is a simpler, but less powerful alternative to the procedures pre-
sented in Sections 2.2.1 and 2.2.2. Let card(#) be the number of hypotheses Hy;; to be
tested. The overall significance level « is simply divided by card(#H), and critical values
are such that

o ()
Pr (Rz](tl)URz](t2)UURz](tr)) = M’
where t),... , ¢, are the times of interim analyses, and R;;(t) stands for the rejection of

Hy,j at time t. The function a*(-) is an ESF (Error Spending Function).

The greater the number of treatments, the more conservative is Bonferroni’s method
when compared to tabulated values from Follmann et al. (1994). However, we should
add that different variances between treatments can be dealt with more easily when
Bonferroni critical values are used.

Nevertheless, this rather simple and conservative approach should not be used rashly,
especially under circumstances when scale parameters are not equal among treatments.
Let us consider a single step trial, in which several treatments are compared to a control
at level 5% (Follmann et al., 1994). If the control variance was high, the correlations
between all statistics used would be close to one; so the critical value for any comparison
would be close to 1.96, whereas Bonferroni method would lead to far higher values, e.g.
2.50 in the four-treatment case!

2.3 A sequential procedure for multiple comparison
with a control

Taking into account the remarks of Section 2.2.4, we now propose some general group
sequential procedures for comparing several treatments with a control. This work is a
generalization of Lee and DeMets’ method (1991) for comparing two treatments. Apart
from its flexibility, it allows the experimenter to withdraw any apparently different
treatment during the trial, while continuing to monitor the remaining treatments.

We have chosen the case of multiple comparison with a control, but the algorithm that
we have written is also able to deal with any type of contrast matrix, provided the
associated variance matrix is positive definite.

The framework used in the previous sections remains valid, but slight adaptations are
necessary, due to the longitudinal nature of data. We consider the linear mixed effects
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model (1.3.5), and suppose that the main objective is to infer about fixed effects (%,

h =1,...,T, that is, trends in treatment effects. The covariance structure between
the standardized statistics (2.2.1), which is demonstrated by Follmann et al. (1994),
0, {i,5} n{k, 1},

2
-9 ./t 4= ;
cov(Zi{t}, Zu{t'}) = ¢ eT4at foT+a? \/j i=k g7l
Vt/tl7 l:kal

fort <t andi,j,k,l € {1,...,T}, still holds when we deal with longitudinal data
(Reboussin, 1995).

2.3.1 Setup

The control is labelled 1. At every interim analysis k, we compute ﬂ{t(k) h=1,...,T.
We test the overall null hypothesis
Ho:{f1 =8} -0 {8 =6}, (2.3.1)
Versus
Hy :3he{2,...,T}: B"# 3. (2.3.2)

The statistics used are

~

SM(k) = B (k) — BMK), h=2,...,T, (2.3.3)

where (k) is the ML (Maximum Likelihood) estimator of trend for treatment &, at the
kth interim analysis. Let H = {Hos : 8f = B}, h = 2,...,T}, the set of hypotheses
to be tested. During the trial, it may occur that results from other experiments make
one of the treatments seem less attractive, due to an apparent inferiority, high toxicity,
other undesirable effects, or unexpected financial cost, etc. Under such conditions, the
experimenter may want to test this treatment more often, in order to drop it from the
trial earlier. Also the poor number of new measures on one of the treatments may
lead the researcher to ignore temporarily one of the component hypotheses of H. To
handle such situations, our procedure allows the experimenter to choose the subset of
hypotheses H(k) C H to be tested at any kth interim analysis.

Since we are not willing to fix the number of interim analyses, we use an ESF, which
indicates the proportion of the experiment-wise error « to be spent at any step k. This
proportion is usually called exit probability w(k). For example, approximations to the
method of Pocock (1.4.8), or O’Brien and Fleming (1.4.7) are used.

Because sequential multiple comparison procedures could have many different issues,
we introduce specific notation, in order to make the procedures description easier.
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Definition 2.3.1 We define the following subsets and value:

1. 8o(k) : {h : Hpp : B} = B} is not rejected at step |, | =1,... k— 1}, which is
the subset of hypotheses Hyyp, not rejected by the kth step.

2. H(k) : {h € So(k) : Ho : B} = B} is tested at step k}, is the set of hypotheses
Hyyp, tested at step k.

3 6 (k):{he€{2...,T} : Hyp : B = B" is rejected at step k}, is the set of
hypotheses rejected at the kth step.

4= I{card(él(k))¢0} is the total number of significant interim analyses.

At step k, we test differences between trends by using
S(k) = [SO(k), SO (k),... , Sleracin) ()], (2.3.4)

where {i1,... ,dcaramr})} € {2,...,T} is the subset of treatment numbers which are
tested at step k, apart from the control.

2.3.2 An alternative to Fisher’s Least Significant Difference

When the objective is solely to test Hy, we stop and reject Hy at the first significant
interim analysis. In the same time, we want to be able to identify the treatments
h significantly different from the control, such that Hyp is rejected. In the standard
situation of independent normal observations, we fulfil this purpose by using a procedure
referred to in the literature as the Least Significant Difference test. This test consists of
performing multiple ¢ tests each at level « only if the preliminary F test is significant
at level . In our framework, the preliminary F' test is replaced by a group sequential
F test.

Fisher’s Least Significant Difference does not control the FWE strongly. We want to
propose an alternative which does. We use the statistics S*(*)(k), the standardized
values of S®(k), k=1,... ,K, h=2,...,T, that is,
21 k) — 2h
S M (k) = ?l( ) 1(k)A : (2.3.5)
Vvar(BHKD) + var(Bt{k))

The null hypothesis is rejected at step k, if h exists such that |S*®) (k)| > c(k), where
c(k) is an appropriate critical value. The event A(k) stands for non-rejection of Hy for
the k£ — 1 first interim tests, and rejection of Hj at step k, that is

k-1
A) =) [ (S ®OI < eI HIh e HK) 1S M (k)| > c(k)}.  (2.3.6)

I=1 heH(l)



2.3 A sequential procedure for multiple comparison with a control 31

Let 7(k) be the intermediate significance level at step k, i.e.
m(k) = pry, [A(K)]; (2.3.7)

since the sets A(k) are disjoint, we have at time t, corresponding to step k,

k k
a(ty) = pry, [U A(Z)J = prg, [A(D] =D (D).
=1

k=l =1

Of course, (1) depends on the chosen ESF. Then, we find c¢(k) by solving

(k) = / / fri) [(1'1, o Zr()), 0, Es] dzy ... dT.),
R(1) R(k=1) JR(k)

where Lg is the variance matrix of all the statistics S*™ (1), I = 1,... .k, h € H(]),
used for testing,

R(I) = [—c(l),e)]®4D =1, k-1,

R(E) = {(¥1, - s Yearamey) € R s 3y, & [—c(k), e(k)),

i€1,...,card(H{k})]},

frie) (0, Xs) is the density of the multivariate normal distribution A )(0,Xs), and
k

r(k) =Y, card(H{l}).

Thus, we have to compute the integral of a multivariate normal density over a hyper-
rectangle of IR?, where p is equal to the total number of simple comparisons made during
the first £ steps. The value of p may be rather high, but this is no deterrent. This
assertion could be considered a rather unrealistic argument pro domo sua, if efficient
algorithms were not available. We use the procedure MULNOR (Schervish, 1984), and

the algorithm of Lohr (1992), which is usually far faster than MULNOR if p is high,
but slower if p is low.

The procedure proposed below follows general principles of group sequential testing,
and allows a full control of the experiment-wise error a. If k£ corresponds to t = 1,
the equality Zf:l 7(l) = « holds. If the experiment is not stopped at step [ — 1 on
behalf of H), new measurements are taken until time ¢,. Then statistics S(I) — see
(2.3.4) — and the critical value ¢(I) are computed. If |[S*™ ()] > ¢(l), h € H(]),
Hy, defined by (2.3.1), is rejected. Finally, Hy is not rejected if and only if we obtain
1S*M (k)| < c(k), VYh € H(k).

We should point out that as soon as H(k) # H(k'), k # k', the choice of t for the
ESF may be not straightforward. We suggest the following processes, which would
nevertheless need further investigation. At step &, we can use
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e the amount of information which corresponds to the remaining treatments, that

iS, £ = 3 heso(h) [var (Bf{k})] /(targeted value of information);

e we can also take the same parameter ¢t as above, but replace c(k) by c*(k); for
example, we choose a lower boundary for a statistic whose variance has greatly
decreased since step k — 1, and a higher boundary in an opposed situation; and

e finally Bonferroni’s method might be used, with separate ESFs. This allows
different parameters t, one for every comparison.

Procedure 2.3.1 Alternative to Fisher’s Least Significant Difference.

0 Set

1 the experiment-wise error rate «,

2 a time limat,

3 the error spending function af(-).

k<« 1.

2 1 Collect measures without overshooting the time limit, and
2 choose the subset H(k).

3 Compute

1 6%(k) and D(k), estimates of 02 and D,

2 statistics S™ (k) where h € H(k), and

3 m(k) = a(ty) — a(tk-1).

Then, compute c(k) by solving pry (A{k}) = m(k).

1 For any h € H(k) reject Hyy, if |S*P(k)| > c(k);

2 if time limit is reached or 8o(k) = @ or 6,(k) # 0, go to 6,
else set k «— k+ 1 and go to 2.

6 1 If 3h : Hoyy, is rejected then decide H,, else decide Hy;
2 stop.

~

[N N

Basically, the procedure stops as soon as the overall null hypothesis Hj is rejected.

2.3.3 Multiple comparison using conditional distributions

When the overall null hypothesis Hy is rejected, we can also continue the experiment
and compare each treatment to the control. Then, the trial is stopped until either
every Hy), is rejected, or the planned end of the experiment has been reached. For
example, when Hy : {8} = ?} N --- N {B! = BT}, has been rejected, information
about treatments which have not been declared different from the control may be well
appreciated. For instance, a cheaper treatment or a treatment with fewer side effects
could be at stake.
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Definition 2.3.2 Let

1. 7 be the instant (information) corresponding to the lth significant test, if it exists,
otherwise 1, = 400, and

2. F(t) the sigma-algebra generated by the set of statistics S™(-), used until time t.

We see that 7; is a stopping time for the increasing family of sigma-algebras F(t), t €
{t1,t2,...}, where t; is the time of step k.

To simplify the procedure when a significant step 7, is reached, we propose using con-
ditional distributions of statistics S®, h € o(7), on F(r). We can distinguish two
advantages of conditioning:

e As soon as a simple null hypothesis is rejected, we can reduce the order of the
integral used to obtain critical values. Nevertheless, this argument is less relevant
if the independent increment simplification can be used (Reboussin, 1995); and

e Proschan, Follmann, and Geller (1994) point out that unfortunately, the effect
of dropping treatments is that recruitment to the remaining treatments per unit
time will increase because roughly the same number of patients will be allocated to
fewer treatments. They add that it is not clear what the effect of this assumption
violation is on the joint distribution of the test statistics over study time. By
conditioning, we start a new experiment, so to speak. Thus, the question above
becomes irrelevant.

Let Y (k) be the set of observations available until step k. We proceed as if scale pa-
rameters were known. It seems easier to compute the distribution of the statistics,
conditionally on the observations taken until the last stopping time. However, Propo-
sition 2.3.1 shows that, except under special circumstances — for example identical
designs and equal numbers of patients assigned to each treatment — conditional expec-
tation of 3] — 8 depends on ' and B*. Therefore, we choose to use the distributions
of S (k) conditional on F(7;), rather thanon Y (1), k=1+1,... ,K.

Proposition 2.3.1 Let k' > k some positive integers. The expectancy of Bh(k’), esti-
mation of B" at step k', conditionally on Y (k), equals

-1 mh(k)

B+ | Y XMEYWHE)XIE)Y | D XMEYWrE) [V (k) — XP(k)B"] .

1=1
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] Proof:
Application of Theorem 2.1 of Seber (1984, pp. 18-19), which deals with conditional
distributions of multi-normal random variables.

Because we condition after every significant step, we need to introduce new error rates.

Definition 2.3.3 Let Q, Q... ,ar_; denote the following probabilities, which are
constant by design:
Prye(n < 1) =q,

Prio(re < 1| F{n}) = an,
Pryo(tr—y < 1| F{rr_2}) = ar_1.

Remembering that 7 is the total number of significant interim analyses, we can deduce
the following properties.

Proposition 2.3.2 Using the notation of Definitions 2.5.1 and 2.3.8, we have
Prye(n > 1) = o,
praon=1) = a([Tie; &) (1 — 1), for I<ST ~2,

prygn=T-1) = « H;T:—; Q.
O Proof: First, the FWE is given by pryo(n > 1) =1 — prye(n = 0) = 1 - pry(n >
1) =1-(1-a) =« Moreover, we have pryo(n = 1) = prye(nn < 1,7 > 1) =
Pro(nn < 1) — pryg(n < 1,7 < 1) = a — Ey, (E [I{Tzsl} | '7:("'1)} I{nSU) =
a — o Pryeln < 1) = a(l — a3). By induction, for Il =1,... T — 2, we have
Pryo(n=1) = prgo(n < <7 <1, 41 >1)
= pryo(n <--- <7 <1)-Eg, (I{r,“guf(n)}I{r1§~~-5n<1})
Pryo(m <---<7m <1) (1 —awyyr)
aaz-rog (1 — o).

Finally, for T — 1, prgo(n=T = 1) =pryn <2 < - <mr_1 <1l =aay...ar_;.
[ |

Let A(k) be the event

k-1
Ay = N [1SP0) < c@IVBH € 1K) 1S (k)] > e(k)} | Fs{k})]

I=k' he H(l)
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that is, a simple hypothesis is rejected at step k, given all the statistics S*()(-)
until the latest significant step, and k' = k(k) + 1, where k(k) = 0V
max(l=1,...,k : §;(I) # 0)]. We are now able to propose the following procedure:

Procedure 2.3.2 Multiple comparison using conditional distributions

0 Set
1 the experiment-wise error rate «,
2 o; 1=2,...,T-1, and
3 the error spending function «f-).
I k<1landi+ 1.
2 1 Collect measures without exceeding the time limit;
2 choose the time for testing, and the subset H(k).
3 Compute:
1 6%(k) and D(k), estimates of 62 and D,
2 the statistics S® (k) for h € H(k),
3 ﬂ(k) = Oz(tk) - (,Y(tk_l).
4 Compute c(k) by solving pry, (A{k}) = n(k),
or pry (A{k}) = w(k) if i > 1.
5 1 For any h € H(k) reject Hoyp if |S*® (k)| > c(k);
2 if time limit is reached or 6y(k) = 0 go to 6,
else if 6;(k) # 0 then
stop measurement on treatment h, for h € 6,(k),
set a + «a;,1, and then, a(ty) < 0;
seti 1+ 1;
3 setk « k+1 and go to 2.
6 1 If 3h : Hyyy is rejected then decide Hy else Hy;
2 stop.

To sum up, we drop any rejected treatment at a given step 7. Then, we continuc the
experiment with the remaining treatments, using conditional distribution on F(7) and
a new FWE that is conditional on F(7). We may add that this conditional approach
can be also applied to non-longitudinal data.

2.3.4 Generalization of Follmann, Proschan, and Geller’s pro-
cedure

If one is not willing to use the conditional distributions on previous observed statistics,
we propose a simple alternative to Procedure 2.3.2. This alternative could nevertheless
be slower from a computational point of view. As soon as any treatment is rejected
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at step k, the value 7(1) + --- + 7(k) is updated, by removing from (2.3.6) every
hypothesis connected to every treatment that has just been rejected. This is in fact a
straightforward method derived from Follmann et al. (1994).

Properties of Procedures 2.3.1, 2.3.2, and 2.3.3 are discussed in the following section.

Procedure 2.3.3 Generalization of Follmann, Proschan, and Geller’s procedure

0 Set
1 the experiment-wise error rate «,
2 the error spending function o(-), and
3 k1.
1 1 Collect measures without overshooting the time limit;
2 choose the time for testing, and the subset H(k).
2 Compute:
1 6%(k) and D(k), estimates of 0* and D,
2 the statistics SM (k) with h € H(k), and
3 W(k) = a(tk) — a(tk_l).
8 Compute c(k) by solving pry (A{k}) = n(k).
4 1 For any h € H(k) reject Hoy if |S*®(k)| > c(k);
2 if time limit is reached or 6o(k) = 0 go to 6;
else if 6,(k) # 0 then
stop measurements on treatment h for h € §,(k);
update A(l) and w(l), forl=1,... [ k;
setak+1)=a—n(l)—---—7(k).
5 Setk «— k+1 and go to 1.
6 1 If dh : Hgyy, s rejected then decide Hy else decide Hy;
2 Stop.

Basically, we drop the rejected treatments at step k; then we update Zleﬂ(l) by
removing every hypothesis connected to the dropped treatments, and we continue the
experiment using the remaining FWE, that is the updated value of o — Zle 7 (l).

2.4 Properties

2.4.1 Control of error rates

Many trials must be able to demonstrate strict control of Type I error rate in order
to convince regulatory agencies. It seems advisable that any error about a simple
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hypotheses Hgy), should be controlled under all configurations, that is, the FWE should
be strongly controlled. In this section, we show that Procedures 2.3.1, 2.3.3, and under
particular circumstances Procedure 2.3.2, control strongly the FWE.

Proposition 2.4.1 The FWE of Procedures 2.3.1 and 2.3.3 s o, and it is strongly
controlled.

O Proof:
Procedure 2.3.1 can be considered as a particular case of Procedure 2.3.3 when we stop
the experiment at the first significant step. In addition, its proof is similar to that of

Proposition 2.4.2 and as a consequence, omitted.
]

Proposition 2.4.2 The FWE of Procedure 2.3.2 is a. If every step a + a4 1S
replaced by a < a — a(T;) in Procedure 2.3.2, then the FWE is strongly controlled.

O Proof: we shall first show that the procedure is well defined, that is, the relation
n(k+1) < a(tyy1) must hold for any step k, where 7(k + 1) is the interim significance
level at step k+ 1, and a(-) an error spending function. If §,() = @ Vi=1,... .k, ie.
there has been no rejection up to step k,

a(ty+1) = Pry, (T1 < 1ﬂTl < tk)
= pI‘HO (T1 S 107’1 = tk+1) + pI'HO (Tl S 1ﬂ7‘1 < tk+1>
Pry, (11 = tes1) + pry, (Tl < 107'1 < tk+1)

= 7r(k+1)+er0 (7'1S1ﬂ7'1<tk+])
> 7w(k+1).

I

Now we suppose that there was a rejection at time 7,_1, with 7, < #i,

aftk+1) = pry, (n < 1ﬂTz <t | ]:(Tl))

m(k +1) + pry, (T[ < lﬂﬂ < teer | f(ﬂ))
> w(k +1).

Finally we have

Pry, [U A(k)} = ZPTHO [A(k)] = Z'”(k) < a,
k k

k



38 Chapter 2 Sequential Multiple Comparison

where A(k) is defined by (2.3.6).

To show that the FWE is strongly controlled, we first suppose that the trial is stopped
as soon as a simple hypothesis like Hy;, is rejected. Let J be the set of all simple
hypotheses which are tested during the experiment. We note that J = J°U J*, where
J* is the subset of true hypotheses. In the same way, H(k) = H (k) U H*(k) is the set
of corresponding indices. For instance, if J = {Hpi2}, then H = {2}. By definition,
strong control of FWE is

pr (Ug Unen-(k) 1S W (k)| > c{k}) = a,

where c¢*(k) is a relevant boundary. Let k1 be the first step when a hypothesis that
belongs to J is rejected. For k < ky, |S*®)| is compared to ¢'(k) > c*(k), since
H*(k) C H(k). Hence,
Pr (Ugk, Unere iy IS (R) > ¢'{k}) < pr (Upei, Uner o 1S™™ ()] > ¢ {k})
< pr [Uk Unen(k) |S*(h)| > C*(k)] = .

Then, we should consider two situations:

e thereis h € ’H*(l.ﬁ) such that h € &; (151); in this case, the context is identical to
the particular case we dealt with above, so

Pr (Upci, Uners(o) 1S (K)| > c{k}) < o

e there were ¢ rejections, at steps ky,... k;; in addition, H*(k) C &lk), k =
1 ,iﬁ}i_l and H*(I’;z) N (Sl(l:?z) # 0) For k = ]:?1'_1 + 1,. .. ,I’%i, R(k) stands for
all the hypotheses tested, and not rejected, since step kioi+ 1, up to step k£ — 1,
with at least one hypothesis rejected at the kth step. Let R*(k) C R(k), the

subset which is connected with the hypotheses in J*; then
pr(R'{k}) = E (I{R'(k)}> =E [E (I{R'(k)} | 7:{71—1})]
= E [Em,mem (I{mk)} |f{n_1}>] ;

using the same arguments about critical values as those previously mentioned, we
eventually prove that

EH]',”J'G]‘ [I{R‘(k)}|f(7-i—l)] S W(k), k= ]::i—l + 1, . 7ki'

Then, it follows that
pr (U Unen (k) 1S M (k)| > c{k}) < @
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2.4.2 Marginal Type I error rate

Suppose that Procedure 2.3.1 or 2.3.3 is used, and that A% (k) stands for rejection of
Hgyp, when the kth intermediate test is performed. We have

AP (k ﬂ 1S* O] < eM] (ISP *)] > (k)] (2.4.1)

EH(l

HDI

where S*®)(() is defined by (2.3.5). The marginal Type I error connected with Hoyp, is
given by

K K
M= Priy,, U ‘4(h)(k) = Z P, [A(h)(k)] ;
k=1, k:heH(k) k=1, k:he H(k)

where A (k) is defined by (2.4.1).

If Procedure 2.3.2 is used, and if there are i steps for which at least one simple hypothesis
is rejected, corresponding to the stopping times 7,...,7;, we have

o < Zprym (AW (k)]

Ti+1 k-1
- Z > e, |1 ) 1S < cfi} | US™®k)] > e{k}) | F(ry)
J=1 k=7j+1 I=7;+1
k-1
+ ) DPrag, K N |S*<”>(l>|3c{z})ﬂ(ls*<h>(k>|>c{k}) | F(r)]
k>Ti+1 l=1;+1

where k£ and [ are such that h € H(k), and h € H(]).

2.4.3 Coherence and consonance

Two notions are inherent in the field of multiple comparisons:

e coherence, that is, if H4 implies Hg, then non-rejection of H, must imply non-
rejection of Hg; and

e consonance, i.e. if a multiple hypothesis H, is rejected, then at least one of the
simple hypotheses in H4 must be rejected.
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We refer to Hochberg and Tamhane (1987) for any further detail.

However, coherence and consonance can hardly be discussed when we deal with Proce-
dures 2.3.1-2.3.3, since they offer a number of different endpoints. Most of the difficulty
may be caused by the experimenter’s freedom to choose the subset of hypotheses to be
tested at each step, and by the sequential nature of these procedures.

As an example, we consider Procedure 2.3.1, and we suppose that the whole set of
simple null hypotheses is tested at every step. In that case, we are dealing with a
union-intersection procedure. The hypothesis Hj is rejected if and only if at least one
hypothesis Hy;p, is rejected. Such a procedure is coherent and consonant: if Hy is not
rejected, then every Hyyp, h = 2,...,T, is not rejected; moreover, Hy is rejected only
if at least one hypothesis Hgp, h = 2,...,T, is rejected.

2.4.4 p-values

In some cases a simple accept-reject dichotomy may not seem sufficiently informative.
Siegmund (1985) considers attained significance levels as means of making more infor-
mative inferential statements. He gives the following definition of p-value in sequential
procedures.

Definition 2.4.1 The p-value is the weakest attained significance level for which the
null hypothesis Hy is rejected at a certain time t.

Suppose that the overall null hypothesis Hy is rejected at time 7 = ¢. Then, the attained
significance level is pry (7 < t), which is to be compared to . At each step k, we are
able to compute the significance level which is compared to 7 (k), defined by (2.3.7),

k-1
pre)=pr ()| () ISPWI<e®| U (SPK)| > Sars{k})
I=1 |heH(l) JEH(K)

where is Sy (k) is the maximum amongst the observed values [S*U)(k)|, j € H(k).
Then, the p-value at kth step would be

k-1
p-value(k) =Y (1) + pv(k). (2.4.2)

=1

We can also estimate the level of significance for any single hypothesis Hy,, by com-
puting

pva(k) = pr N RIY| (S ™| > d™{1}) |,  (24.3)
[

le{l*<l-1:heH(l1*)}
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where | € {I* < k: h € H(")}, R() = {|S*™()| < ()}, dP(r) = |SW)(r)| for
r=max{l: h € H()}, and d?(I) = ¢(I) otherwise.

2.5 Parameter estimation

In this section, we discuss how the parameters of (1.3.5) are estimated when we use
Procedures 2.3.1-2.3.3.
2.5.1 Fixed and random effect estimation
Fixed effect estimation
We consider the linear mixed effects model (1.3.5), where
© = (D,o?), (2.5.1)

is supposed to be known, and k is the interim analysis’ number. We rewrite formula
(1.3.3), which leads to

var [V (k)] = o*(I + ZM(k)DZM(k)') = V(k) = [Wr(k)]

The ML and least squares (LS) estimator of 8" (Lee and DeMets, 1991) are given by

mh (k)

3 (k) Z XP (kYW (k)X (k) Z Xr(kYWh(k)Y k),

where m”(k) is the number of patients who have been assigned to treatment A until
step k. If we assume that

(k) -
Z XMk k)X! (k))

exists, then (" is the best unbiased estimator of 3.
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Random effect estimation

The estimator of random effect (Laird and Ware, 1982) is

bi(k) = DZMk)YWhk) [Yh(k) — X} (’“)Bh] o’.

In fact, the random variable b; is not a ML estimator. However, b; is optimal in the
sense of having the smallest mean squared error, within the class of all the linear
unbiased estimators of b;. This result is ascribed to Harville (1976), who generalized
the Gauss-Markov Theorem to include linear mixed effects models.

2.5.2 Scale parameter estimation

In a simple regression model with independent normal errors, ©,1 is biased downwards.
However, one may avoid this drawback by using a Restricted Maximum Likelihood
(REML) estimator. The REML estimator maximizes the likelihood of © — in our
situation, scale parameter © is (2.5.1) --- on the space spanned by 'Y, with E(v'Y") = 0,
and I — X (X'X)"' X’ = uu', where X is the design matrix. In other words, we maximize
the likelihood of 4'Y. This concept was introduced by Patterson and Thompson (1971),
and by Harville (1974) for linear mixed effects models.

A Bayesian justification for REML estimators relies upon the fact that the estimation
of © does not require estimating the prior distribution of ©, given 3. Hence there is no
inaccuracy induced by estimation at this step. Moreover, a bad estimate of the prior
distribution of 8 would have no consequences for ©.

In fact, the distinction between ML and REML estimators is important only when we
use a model which tends to saturation, i.e. if the number of parameters to be estimated
is close to the number of observations. As Diggle et al. (1994) point out, theoretical
results are harder to find, because the two methods are asymptotically equivalent when
either or both the number of observations and the number of individuals tend to infinity,
for a fixed number of parameters.

If the number of parameters is high, the REML estimator is clearly preferred. In Pro-
cedures 2.3.1-2.3.3, we usec REML estimators, because the number of patients assigned
to a treatment in a trial may be rather modest.

We use an EM (Expectation Maximization) algorithm to estimate ©. If we roughly sum
up the situation, it seems that the EM algorithm is slower than the Newton-Raphson
procedure, but convergence is more secure (Lindstrom and Bates, 1988).

Proposition 2.5.1 We define N =3, _, Z;’;hl nk, and M = S°I_ m*. For the model
(1.3.2), REML estimators of 02 and D are obtained using the following iterative process:
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T h
1. Dyyy =Dy + 57 > po1 ey AY, and

2. (02)w+1 = (02)0.1 + % Zle Z?j} Bzha with

I ct ’ -
o Ah =g 2ptbt — D, Z¥PhZ"D, o*
2 w [ w T “1 w Yo

o Bh=[fh— Zh it [ph — Zh B — of tr(PH),

o Pl = (VM) — (V) XHXNVRXM) X (V)

° 7”.1(1 — Yih _ X{lﬁh,
where w 1s the iteration number.

The choice of Dy and ¢ is not of primary importance. For example, we can set Dy = I,
and choose the ordinary least squares estimate for o3.

O Proof:

For discussion of the EM algorithm, one should refer to Tanner (1996). The proof of
the above result is given by Lindstrom and Bates (1988). If one wants ML estimators
instead of REML estimators, Ph = (V)=1 — (VA)=1XA(XH VR XR)=1 XN (V1)1 is to
be replaced by P! = (V}#)~1.

|

We shall add that 3"(Ogrgn.) is a consistent estimator of 8*. Kackar and Harville
(1984) proved that under mild conditions, B"(@REML) is unbiased. Moreover, © g1
is consistent (and so is @ML), and Bh is a continuous function of Orgpy. Thus,
B4(Orent) = B* by Slutsky-Fréchet Theorem. Since gh = B, is consistent, we
eventually have 3"(©ggar) — ", Nevertheless, this remark does not constitute a

proof of convergence, because the convergence of the EM algorithm to ©rgay is not
certain.

2.5.3 Statistics for trend differences

In this section we discuss the estimation of the trend differences in (2.3.3), which are
needed for testing the hypotheses (2.3.1).
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Proposition 2.5.2 Under the linear mized effects model (1.8.5), when © is known,
the trend estimators {82(1),...,8Mk), h=1,...,T}, are jointly distributed as

M'X'!
M?X2p32
TK : 1 ’Eﬁ ’
MTXTgT
where
M'WVIMY 0 o 0
> 0 MM . 0 2
5= , . : : I R ’
M,I,V/PAITI “ e PR o ZﬁT
M"(1)
and M" = : )
M"(k)

MM (k) = (01) [X* (k) Wh(k) X (k)] ™" X" (k) WH(k) I (k),
Jh(k) = [diag (Q';(k),Qg(k),... ,an,,(k)(k)) : O[Q(k)]], O[Q(k)] is the null
matriz with dimension Q(k) equal to <Z;’;h](k) ni{k}, Z?;';ff,f()k)H nﬁ‘{k}) :

and Q}(k) = (I[n}(k), (k)] : Olni(k), n(x) — nf(k)]).

)

(] Proof:

Appendix B of Lee and DeMets (1991). We just have to take h = 1,...,T, instead of
h=1,2.

[ |

Situations when © is unknown lead to similar results asymptotically using the same
arguments as in the previous section. The estimation of ¥4 in Proposition 2.5.2 seems
to be rather intricate. But fortunately, this is a misleading impression. The proposition
below shows that, given ©, derivation of ¥4 is simple.
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Proposition 2.5.3 Let Y40, ,1(k), denote the (i, 7)th element of the matriz L4 at step
k < k. If we suppose that © is known,
(] b4 -1
Epn oy (K) = Zgn thory (K) = (X’ (k)W h(K)Xh(K)’)IQ'Q] 3
Vek=1,...,k, VYh=1,...,T.

O Proof:
The results are obtained by straightforward developments of (MhV "M’“)[ ] and
KK

(MthMh')[ / which are defined in Proposition 2.5.2.
kK
[ |

By using ESF's, we have the opportunity of keeping the value of k¥ undefined, since the
overall significance level is not affected by k. Hence, Propositions 2.5.2 and 2.5.3 can
be used at any step and for any k,

2[5';(1{) = ( - Eﬁh(K_l)_./ Z[ﬂi [K-K](K) K-1 ) 7
Eﬂ" [K.K](K) 1K—l E,B" [K,K}(K)
~ ~ N !
where ¥4 (k-1) is the variance estimator of ([5{‘{1}, e ]"{K—1}) :

Proposition 2.5.4 Under Hy, the statistics S(k), defined by (2.8.4), satisfy
(S, S(k)) ~ Nogiy (0, P{x}C{k}Tp{r}C{x} P{x}'),

K
where r(k) = anrd(’i{{k}),
k=1

P and C are contrast matrices of dimensions -x).~xy and -x).7x) Tespectively.

O Proof:

Straightforward computation. The result will be illustrated by the example below.
|

Example 2.5.1 Let us consider a particular case, e.g. whenT = 3 and k = 2. Suppose
that at any step, treatments 1 and 2, as well as 1 and 3, are to be compared. Hence
C (e and P .4 equal

10 -1 0 0 0 1000
10 0 0 -1 0 0010
C=l0o1 0 -1 0 o | ™ P=|g190
01 0 0 0 -1 000 1
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Practical difficulties may arisc while 3"(k) is being computed. We actually estimate
this matrix by using successive values of ©. It could happen that the matrix is no longer
positive definite, which is a major drawback. This difficulty may be solved, either by
the use of © estimated at step 1, until the end of trial, or by the estimation of X*(k-1)
a posteriori, given 6 computed at step k.

2.6 Discussion

In this chapter, we proposed three flexible procedures for comparing several treatments
to a control. Procedures 2.3.1 and 2.3.3, and Procedure 2.3.2 with further condition
about the error rates of Definition 2.3.3, control strongly the FWE. In fact, the corre-
sponding programs are drawn up such that any contrast can be tested at any interim
analysis, provided that the variance matrix of the corresponding statistics is still positive
definite. Procedure 2.3.1 controls the FWE strongly in every situation. For Procedures
2.3.2 and 2.3.3, strong control depends on the chosen contrasts.

Allowing the experimenter to choose the subset of hypotheses to be tested may be con-
sidered as an open door for ambiguity. It all comes down whether every choice is firmly
argued. In large Phase III trials, this decision would have to be made by committee,
and the more options there are, the harder and more ambiguous the outcome. There
may be good reason not to test a particular arm at a particular analysis. But if that
results is rejecting an arm which otherwise would have been kept, or keeping one that
would have been rejected, the validity of the trial’s outcome will rest on those reasons.
If that leads to disagreement in the target audience, then the price of this freedom is
very high.

Of course, one can always contemplate using these procedures like a useful online and
unofficial data control. Further properties of Procedures 2.3.1-2.3.3 were studied by
simulation. Results are found in the next chapter.
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Chapter 3

Application and Simulation Studies

In this chapter, we study the performance of Procedures 2.3.1 to 2.3.3. In Section 3.1,
we first deal with the computation of intermediate significance levels (2.3.7). The use
of error spending functions has been mentioned several times, and we discuss here the
choice of suitable functions and time indicators.

Results of simulation studies are presented in Section 3.2. A few suggestions for con-
trolling the overall significance level in the small sample case are made in Section 3.3.

To conclude, an alternative approach to Procedures 2.3.1 — 2.3.3 is presented in Section
3.4. This approach based on simultaneous confidence intervals use the results of Liu
(1995, 1996), who works on independent normal populations with a common known
variance.

3.1 Error spending function and time

3.1.1 Choice of the error spending function

O’'Brien and Fleming’s procedure (1979) is conservative (see Section 1.4.3) with decreas-
ing boundaries. On the contrary, Pocock’s procedure (1977) is less conservative, and
has constant boundaries. Their approximate ESFs, o, (1.4.7) and o}, (1.4.8), have
of course the same features. Figure 3.1 displays the variation of some ESFs through
time; one may also refer to Table 1.1.

Because there is no need to define the number of intermediate analyses in advance, it
is simpler to use some ESFs like o}, af,,, or o}, (1.4.9), than to use O’Brien and
Fleming or Pocock’s procedures. There are also some situations in which an ESF is the
only possibility to be considered: Geller and Pocock (1987) mentioned a practical case,
for which the experimental design was drawn up after the first intermediary test had

been performed.
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0.02 0.03 0.04 0.05

0.01

0.0

0.0 0.2 04 0.6 0.8 1.0
Time

Figure 3.1: Error spending functions oy, o4 gy, and o p,, with s =
0.5,1,2, and 2.5.

We introduce another ESF that we write o}, defined by
aL(ty) = a— 7(l), (3.1.1)

with

te — thy

m(k) = of(te) [ ] , 0 <ty <tg, and 7(0) =0,

tk — th
where t; is the time corresponding to the kth test, and « is the overall significant level.
The function ¢, is very adaptable, because it allows the user to change tx, that is to
revalue the duration of the experiment. The functions o and aj,,, = at® are very
similar, but @}, is more sensitive to the choice of s. Unfortunately, the shape of of,
depends on the timing of the analyses, which may not be advisable. However, taking
for example s = 2, we point out an interesting feature: when the number of interim
analyses increases, o} becomes very conservative. This leads to a method similar to
Peto et al. (1976), whereas a} ,,, is far less conservative.

The ESFs o, and «},,, are convex for s > 1, as advised by Kim and DeMets (1987).

LDM
Indeed, it is highly recommended to be rather conservative when a new experiment is

started. There are two main justifications of this:
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o first, errors of measures’ transcription often occur at the beginning of a new trial
(Geller and Pocock, 1987); such errors can be detected only if the trial has not
been already stopped! In addition,

e it should be borne in mind that the early stopping of a trial may make it lose some
scientific credibility. Here again, we come up against the underlying antagonism
between individual and collective ethics (Pocock, 1993). And finally,

e carly benefit may be outweighed by later harm.

We shall add that the value s = 2 has often turned out to be rather satisfactory when

* *
we have used o, or aj ,,.

3.1.2 Time indicator

Every ESF is a function of a parameter, usually written ¢ (information), the meaning of
which has been briefly discussed in Section 1.4.3. However, there are other indicators
that can be contemplated; the simplest is of course the calendar time.

Lan, Reboussin, and DeMets (1994) use Fisher information corresponding to the esti-
mators under interest, which turns out to be an element of outstanding importance in
the sequential analysis of trials. However, the overall information at the planned end of
the experiment is unlikely to be known in advance. Thus, it should be estimated: since
it is directly related to sample size — and so to the cost of the study — the available
estimates are sometimes very good. Kim and DeMets (1992) discuss the relation of
sample size and information.

The algorithm LANDEM (Reboussin, DeMets, Kim, and Lan, 1992) allows the ex-
perimenter to start the trial by considering calendar time, and then to go on with a
parameter ¢ proportional to the increase in information. This increase is easy to com-
pute, because it only relies on the covariance between successive estimators. However,
it could happen that the Family-wise Error Rate (FWE) « is used completely before the
planned end of the experiment. Of course, LANDEM also allows simple use of calendar
time, which avoids difficulty with estimated information.

Finally, we can consider as a time indicator either the number of patients or the number
of observations. Both of them are more suitable than calendar time, but the time
based on the number of observations is very flexible, even if it is not a panacea. The
experimenter has only to set an upper limit for the number of measurements, which
represents the end of the experiment. Whereas Lan and DeMets (1989) note that it is
hardly thinkable to end an experiment with a number of patients fixed in advance —
consider for instance a rare pathology — it is much easier to reach exactly a number of
measures fixed in advance.
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Example 3.1.1 We consider the linear mized effects model (1.3.5), and choose the
same design for every patient, that is,

1 1 1

X,_11111111
L0 1 23456 9 12 15 18 025 0.5

' -
> , witho?=1and D = ( 0.5 0.25>

Figure 3.2 shows different time indicator functions, namely, calendar, observations,
and Fisher information. A great difference is observed among the behaviours of those
functions.

2
Information
]
o
o ~~ observations
< ] !
o N
4
calendar
N |
o
=
o
0 5 10 15
calendar time

Figure 3.2: Example 3.1.1; comparison of several time indicators.

Seeing Figure 3.2, we may ask whether taking an ESF based on observations is really
too conservative. Nothing is certain. It is indicated in Section 3.1.1, that one must act
prudently when a new trial is started.

In fact, any interim level of significance 7(k) is a combination of both a time indicator
and an ESF. Thus there are plenty of possibilities. Suppose for example that we choose
Fisher information with a given ESF. We can also choose the number of observations
as time indicator, take a less conservative ESF, and eventually have almost the same
(k).
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Example 3.1.2 (Ezample 1.5.1 continued) We choose the model (1.8.5), and we sup-
pose that the experimenter wants to test sequentially the equality of growth trend between
the control and the 10% and 20% group. Procedure 2.8.1 is used with intermediate tests
at the 10th, 16th and 21st days. We use the ESFs o}, o} .., 0 ., and «. defined by
(1.4.8), (1.4.7), (1.4.9) and (3.1.1). Three time indicators are considered, viz. calendar,
observations, and information. Table 3.1 gives stopping dates (rejection of the overall
null hypothesis of equality of growth trends), and the intermediate levels of significance
T, 5=1,2,3.

Every procedure used leads to the rejection of the null hypothesis, more or less belatedly.
Such a result is satisfactory, but cannot be guaranteed in general. Table 3.1 shows that
calendar ttme and observations lead to more conservative procedures. We can also point
out the strong disparity among the values of m(1): between 0.26% and 4.91%.

Time Calendar Observations Fisher Information
day 7(j) x100 day w(7) x100 day  w(j) x100

a; 10 299 10 3.10 10 4.91
alor 16 045 2.02 10 0.56 0.18 10 4.68
aipns=1 10 238 10 2.50 10 4.86
Qipa, =2 16 113 1.77 16 1.25 1.56 10 4.72
0o 5=4 16 0.26 1.43 21 031 127 342 10 4.46
ac,s=1 10 2.38 10 2.50 10 4.86
ac, s =2 16 113 1.15 16 1.25 094 10 4.72
ac, s =3 21 094 072 3.74 21 0.62 0.55 3.83 10 4.59

Table 3.1: Example 3.1.2; stopping dates — rejection of the overall
null hypothesis of equality -— and intermediate levels of significance
7(j) until the experiment is stopped.

We often use a time indicator based on observations for the simulation studies, because
it has turned out to be very easy and flexible to handle, and does not require estimation
of Fisher information when scale parameters are unknown.

Anyway, it seems unthinkable to lay down general rules here, since they will be inextri-
cably linked to the particular trial. However, when Fisher information is available, or
can be estimated accurately, it should be used as time indicator, whatever the chosen
ESF is.
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3.2 Simulation studies

3.2.1 Comparison with non-sequential methods

It is useful to compare the performance of Procedures 2.3.1, 2.3.2, and 2.3.3 with
some non-sequential methods that include a unique test at the end of the experiment.
A multiple hypothesis test with normal statistics can be used. This is nothing but
Procedure 2.3.1 when a unique final test is performed.

Otherwise, we can use a x? test (Crowder and Hand, 1990, pp. 73-74), which combines
all the simple hypotheses in a unique one. This test is based on the result below.

Proposition 3.2.1 Let C be a contrast matriz (as in Ezample 2.5.1). The statistic
- ! yl _1 ~
(ch - cs) (czac) ™ (Chi - cBr),

has a non-central x? distribution, with degrees of freedom equal to rank(C), and with a
non-centrality parameter

§ = (CB) (CTC) ' (CBY), where B, = (BL,...,8T).

O Proof:

This proposition follows from Muirhead’s Theorem 1.4.5 (1982, p. 31) which deals
with quadratic forms obtained from a multi-normal random variable. We have only to
see that (CE3C")™" is symmetric and non-singular (in our situation, C is a full rank
matrix), and that (CEC")~' (CE3C") = I is of course idempotent.

|

In practice, X3 is be replaced by ﬁ]g and we use asymptotic results, that is, there is a
convergence in distribution.

Suppose we want to test simultaneously several hypotheses Hy,, ..., Hy, and that each
of them has a corresponding normal statistic Z;, ¢ = 1,... ,{. We call multi-normal test
a test whose zone of non-rejection is

{ze R : |z < ¢, Vi) (3.2.1)

Zones of rejection for the multi-normal test, and for the x? test are identical in the two-
treatment case, but different in other situations (respectively a hyper-rectangle and a
hyper-ellipsoid). Power performances are also very different, as we see in the following
illustration: '
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Example 3.2.1 We consider a three-treatment situation, h = 1,2,3, with 50 patients
per group. The design for every patient is

1 0
) 11 : : 0.5 0.2 0
X'= o , h=1,2,3, 1=1,...,50, with D = 02 05 ) and o° = 1.
1 20

We test Hy : {81 = B2} N {8} = B3}, versus H, : 3h € {2,3} : g% # B, at level
5%, when D and o? are known. Thus this test is exact. Figure 3.8 shows the power
difference between the multi-normal test and the x? test. We single out two areas. When
one treatment is superior to the control but the other is inferior, the x?-test is clearly
more powerful. On the other hand, if both treatments are superior, or inferior to the
control, the multi-normal test is slightly more powerful (see Figure 3.3).

S NS
8 | N a7
34 W2z NN\WNWo 17
27 Wz N
%g:\ S W\Ve

Figure 3.3: Example 3.2.1; theoretical difference of power (a = 5%)
between multi-normal test and the x*-test.
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Figure 3.4: Example 3.2.1; theoretical difference of power (a = 5%)
between multi-normal and the x2-test.

It is misleading to conclude that the y2-test is advantageous. Consider the prevalent
situation in which new products are in advanced stages of development, and all expected
to be, for instance, superior to the control. The first and third quadrants of Figure
3.4 are consequently of primary interest; and the area where the multi-normal test is
superior covers more than 70% of the surface of these two quadrants.

3.2.2 The results of Lee and DeMets

In the linear mixed effects model, the useful results of Lee and DeMets (1995) for the
two-treatment case should be borne in mind.

They first study the difference between their procedure and another one, that they call
ad-hoc method. Instead of (1.3.5), it uses the model Y;*(k) = X!(k)B" + et(k), with
e; ~ N(0,02I). Actually, it appears that their results are similar, except for staggered
entries: the simplest method is then less powerful. Moreover, it is more sensitive to the
choice of the ESF, especially if we have staggered entries. This sensitivity even makes
for under or over-estimation of the FWE, but it is reduced when conservative ESFs are
used.

Lee and DeMets (1995) also investigate the effects brought about by different situations:
small numbers of patients, small numbers of observations, irregularity in the design, and
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errors with random variance. Apart from the situation of small numbers of patients —
which we discuss in Section 3.3 — they obtain satisfactory results, which let them infer
a certain “robustness” of their procedure to violations of the typical assumptions, as
small samples or non-constant o2 for the error.

Lastly, they discuss the use of information as a time indicator. It is very interesting to
note that as soon as the sccond step is reached, critical values obtained using observa-
tions as the time indicator are close to the values computed using information. This
fact is undoubtedly another point in favour of using observations as time indicator, in
addition to its flexibility. Even though observations could be an imperfect estimator of
Fisher information, results are eventually not significantly affected. A potential slight
loss of power is compensated by a small saving in observations, and vice versa.

3.2.3 Simulations with non staggered entries

We carry out simulation studies, mostly with three treatments. By taking different
numbers of patients per group, and observations per patient, we are able to cover
a large spectrum of power values. We also check that the experiment-wise error is
controlled.

Example 3.2.2 We set for the model (1.3.5)

0.5 0.2
rh
X = 0.2 0.5

1

1
1
1

N = O

,Vi,Vh withD:< ), and o® = 1.

We take groups of sizes 10, 20, 30, or 50, and make one, two, three, or four interim
tests of Hy : Hoio N Hoyz = {08 = B2} N {B} = 33}. We use the ESF o} (3.1.1), with
s = 2. The above information is summarized in Table 3.2.

Measurements per patient Number of interim steps K
n 1 2 3 4
5 4 2,4 2,3,4 1,2,3,4
10 9 4,9 3,6,9 2,4,7,9
20 19 9,19 6,12,19 4,9,14,19

Table 3.2: Example 3.2.2; times (calendar) of interim tests, depend-
ing on the chosen numbers of steps and measurements on every pa-
tient.
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The values displayed in Tables 3.4 — 3.7 were obtained by simulation (2,500 trials),
using Procedure 2.3.1. We mention v, the theoretical power of the corresponding non
sequential multi-normal test. The value between brackets corresponds to the y?-test
mentioned in Proposition 3.2.1. The empirical power is denoted 4. The values ¥, and
%43 stand for the proportions of Hyyj, j = 2,3, rejected. The symbol * displayed next
to an empirical power value indicates that it falls outside of an interval centred on the
corresponding theoretical value -y, more or less a two-standard deviation band based on
a Bernoulli approximation.

From Table 3.4, it can be verified that the FWE is controlled, except for the ten-
patient per group case, where it is systematically overshot. It may also be checked that
in Table 3.5, the proportion Hy,3 rejected is always below 5%. Finally, it turns out that
the proportion of times the hypotheses Hyy;, 7 = 2, 3, are rejected is far more sensitive
to the number of interim analyses than the power is.

Example 3.2.3 We consider Example 3.2.2 again, but with

1 05 |

there are 50 patients per group, and ten observations per patient; we take several ESFs
and time indicators. Two schemes were chosen for the interim analyses. The first
scheme is almost regular in terms of observations (calendar: 2,4,6, and 9), and the
other one in term of Fisher information (calendar: 1,2,4, and 9). Values of the different
time indicators are found in Table 3.3.

Time indicator Step for testing

1 2 4 6 9
calendar 0.11 0.22 044 0.67 1
1
1

observations 0.20 0.30 0.50 0.70
information 030 0.58 0.83 0.93

Table 3.3: Example 3.2.3; value of the time indicator if we use cal-
endar, the number of observations, or Fisher information.

The conservatism of any procedure using the ESF o} . is clearly exemplified in Table
3.8. We are also able to note that o, is more sensitive to s than «j,,,.

As we expect, the use of o}, leads to a rather good power performance. Moreover,
a5 has the best ratio power/observations used, if we use Fisher information. In Table
3.8, we see that any ESF based on the number of observations is more conservative.
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patients obs. steps % obs. v A Ao Ay
m n K used x100 x100 x100 x100
50 20 1 100.0 3.0 4.8 2.6 2.6
2 994 (5.0) 438 24 2.6

3 99.2 4.8 2.4 2.6

10 1 100.0 5.0 2.6 2.9

2 99.2 5.0 2.5 2.8

3 99.0 5.1 2.5 2.8

) 1 100.0 5.4 3.1 2.7

2 99.3 5.2 2.7 2.6

3 99.1 5.0 2.6 24

30 20 1 100.0 5.6 3.4 2.8
2 99.2 5.6 3.3 2.7

3 99.1 5.6 3.3 2.7

10 1 100.0 5.2 3.0 2.6

2 99.4 5.2 2.9 2.5

3 99.2 5.3 3.0 2.5

5 1 100.0 5.4 3.2 2.5

2 99.1 5.6 3.2 2.8

3 98.8 5.6 3.1 2.7

20 20 1 100.0 5.2 2.8 3.0
2 99.4 5.2 2.7 3.0

3 98.7 5.2 2.6 2.9

b 1 100.0 5.4 3.1 2.7

2 99.3 5.2 2.7 2.6

3 99.1 5.0 2.6 2.4

10 20 1 100.0 6.1* 3.4 3.0
2 99.0 6.1* 3.3 3.0

3 98.8 6.0* 3.4 29

G} 1 100.0 6.0* 3.3 3.4

2 98.9 6.7* 3.4 3.8

3 98.7 6.6* 3.4 3.7

Table 3.4: Example 3.2.2 with 8} = 3% = 8} = 1; percentagc of the
maximum number of observations used, theoretical FWE, v, empir-
ical FWE, %, and proportions of Hy1o and Hy13 rejected, 49 and 4s.
We used Procedure 2.3.1.



Chapter 3 Application and Simulation Studies

patients obs. steps % obs. ¥ ¥ 0 Y3
m n K used x100 x100 x100 x100
50 20 1 100.0 43.0 429 414 2.6
2 69.4 (53.1) 429 413 2.0

3 62.0 429 413 1.1

4 994 42.9 41.3 1.7

10 1 100.0 42.6 42.6 41.2 2.6

2 89.8 (52.6) 424 410 2.0

3 87.2 42.5 41.2 1.7

4 87.8 42.5 41.1 1.7

30 20 1 100.0 27.0 27.2 25.6 2.7
2 937 (34.0) 272 255 22

3 92.3 27.3 25.5 2.1

4 92.4 27.2 25.4 2.0

10 1 100.0 26.8 27.0  25.5 2.7

2 940 (33.7) 270 255 2.2

3 92.2 27.0 25.5 1.8

4 92.6 27.0  25.5 1.4

5 1 100.0 24.8 25.0 23.3 2.7

2 95.6 (31.3) 25.0 23.1 2.4

3 94.6 25.0 23.1 24

4 95.1 24.5 22.6 2.3

20 20 1 100.0 19.0 19.0 16.8 3.0
2 96.2 (23.8) 19.0 16.8 2.7

3 95.1 19.0 16.8 2.6

4 95.2 19.0 16.8 24

3 1 100.0 17.6 18.5 16.6 3.0

2 97.3 (22.0) 179 15.8 2.7

3 96.5 17.7 15.6 2.6

4 96.7 17.9 15.6 2.8

10 20 1 100.0 11.5 124 9.9 3.7
2 97.7 (13.8) 124 98 34

3 97.1 12.4 9.8 3.1

4 97.0 12.4 9.7 3.0

3 1 100.0 10.86 11.9 9.1 3.4

2 984 (13.0) 117 &8 34

3 97.7 114 8.8 3.4

4 97.5 114 9.2 3.6

Table 3.5: Example 3.2.2 with 3] = ,Bf =1and Bf = 1.4; percentage
of the maximum number of observations used, theoretical power, -y,
empirical power, 4, and proportions Hy12 and Ho3 rejected, 4, and
%3. We used Procedure 2.3.1.
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% obs.

patients obs. steps ~y 4 Yo Y3
m n K used x100 x100 x100 x100
50 20 1 100.0  49.0 49.1 41.0 238
2 85.9 (44.5) 49.1 389 195

3 83.0 49.2 38.2 179

10 1 100.0 48.6 48.1 408 242

2 87.0 (44.1) 481 382 198

3 84.8 48.1 37.2 18.2

5 1 100.0 454 43.7 36.5 208

2 91.9 (41.0) 43.3* 343 169

3 90.0 43.2¥ 332 156

30 20 1 100.0 320 322 256 148
2 924 (28.3) 32.2 240 124

3 90.8 32.2 23.8 11.7

10 1 100.0 31.7 303 23.7 146

2 934 (28.0) 303 225  13.0

3 92.0 30.3 21.6 121

3 1 100.0  29.5 30.0 23.3 147

2 946 (26.0) 30.3 224 13.1

3 93.5 30.3 220 123

20 20 1 100.0 228 222 16.7 10.4
2 94.7 (20.0) 222 15.9 9.1

3 93.4 22.2 15.7 8.6

5 1 1000 211 214 15.4 9.8

2 96.9 (18.5) 21.0 14.9 8.8

3 96.0 21.2 14.6 8.3

10 20 1 100.0 136 14.7 9.7 7.3
2 96.9 (12.1) 14.7 9.5 6.5

3 96.1 14.7 9.3 6.3

5 1 100.0 12.8 14.8* 104 7.2

2 97.7 (11.4) 14.8* 938 6.9

3 97.0 14.7% 9.3 6.7

Table 3.6: Example 3.2.2 with 8} = 1, 7 = 14, and 8} = 1.3;
percentage of the maximum number of observations used, theoretical
power, v, empirical power, 4, and proportions Hy 2 and Hy,3 rejected,
49 and 43. We used Procedure 2.3.1.
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patients obs. steps % obs. ~ 4 o 3
m n K used x100 x100 x100 x100
50 20 1 1000 856 85.7 60.8 79.7

2 66.0 (82.8) 85.7 48.6 74.8

3 57.6 85.7 43.3 71.7

4 544 85.7 38.7 69.2

10 1 100.0 85.2 86.0 61.7 79.5
2 67.2 (82.4) 859 47.3 74.2

3 62.0 86.0 43.0 71.4

4 61.4 85.8 37.8 68.8

b5 1 100.0 82.1 828 56.8 75.0
2 78.8 (78.9) 822 44.3 68.4

3 76.0 82.2 41.7 67.1

4 75.3 82.0 36.3 64.1

30 20 1 100.0 644 65.0 38.5 55.0
2 78.7 (59.8) 65.1 31.6 51.6

3 73.9 65.1 27.5 50.1

4 72.7 65.0 26.2 48.8

10 1 100.0 639 634 37.7 53.8
2 80.6 (59.3) 63.4 30.2 49.5

3 77.4 63.4 27.3 48.4

4 77.7 63.6 26.8 464

S 1 100.0 60.2 59.9 35.5 50.4
2 87.1 (55.6) 59.8  20.5  46.2

3 84.5 59.8 28.0 44.6

4 84.4 59.7 26.2 43.3

20 20 1 100.0 474 474 25.5 38.2
2 86.3 (42.7) 474 213 34.9

3 83.2 474 19.2 34.6

4 83.0 474 18.3 33.8

5 1 100.0 43.9 44.8 24.2 35.9
2 91.3 (390.3) 44.2 198 33.6

3 89.7 44.2 18.7 32.8

4 90.0 44.3 18.2 32.5

10 20 1 100.0 26.5 304* 17.1 21.8
2 92.6 (23.2) 304* 150 204

3 90.8 30.0* 141 19.8

4 90.6 30.4* 13.6 19.5

5 1 100.0 246 259* 14.1 18.2
2 96.0 (21.4) 26.1* 13.24 17.2

3 94.7 26.2* 12.80 16.5

4 94.8 26.1* 12.60 16.1

Table 3.7: Example 3.2.2 with 8i = 1, 82 = 1.5, and 3} = 1.6;
percentage of the maximum number of observations used, theoretical
power, 7y, empirical power, 4, and proportions Hyyy and Hy,3 rejected,
42 and 3. We use Procedure 2.3.1.
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ESF % obs. ¥ Yo 43 % error % rejection Hy at step R
used x100 x100 x100 1 2 3 4 x100
time indicator : observation; tests at time 1, 2, 4 and 9 (calendar)

oy 79.1 456 * 341 172 0.1 188 19.5 344 273 57.7
O pr 90.7 481 38.6 19.7 0.1 06 36 327 631 53.1
ar 0.5 76.7 423* 316 160 0.2 26.2 258 32.0 16.0 55.1

i 0.5 791 43.7* 326 169 0.2 25.3 177 304 265 553
;o 1 80.8  47.0 35.2 182 0.1 134 184 346 336 58.1
Qe 2 86.0 47.8 37.7 189 0.1 4.0 124 349 487 55.5
al 2 90.1 478 379 194 0.1 4.0 6.7 255 63.7 53.0
time indicator : information; tests at time 1, 2, 4 and 9 (calendar)

ol 753 420* 314 158 0.2 25.7 326 309 109 558
0% pr 783 478 36.5 185 0.1 1.2 294 474 219 61.1
ar 0.5 753 388* 286 148 0.2 328 356 253 6.3 516

arpy 05 761 400* 296 152 0.2 31.8 285 286 112 526
o 1 754 44.0* 328 168 0.1 19.6 32.7 34.7 13.1 58.3
Qs 2 772 466* 352 180 0.1 81 31.2 41.0 19.7 60.3
ol 2 80.0 476 36.1 178 0.1 80 227 395 298 594
time indicator : observation; tests at time 2, 4, 6 and 9 (calendar)

aj 759 466 * 348 178 0.1 479 286 12.7 10.7 613
o g e 86.0  48.1 371 177 0.1 4.3 328 322 307 559
ar 0.5 73.9 454* 346 184 0.1 57.1 294 94 40 614

asp,, 05 75.0 459%* 346 184 0.1 56.5 234 105 9.5 61.1
a1 77.7 476 35.6 18.1 0.1 38.3 306 157 154 613
a2 82.2 480 36.5 174 0.1 18.8 339 23.2 241 584
al 2 85.6  48.0 36.7 178 0.1 188 21.7 200 39.5 56.1
time indicator : information; tests at time 2, 4, 6 and 9 (calendar)
ar 73.3  43.9* 33.7 186 0.1 65.8 259 56 26 599
alp e 76.4 477 36.2 184 0.1 30.8 477 138 7.7 624
ay 0.5 72.7 428 * 569 19.2 0.1 71.6 24.3 3.5 0.6 58.8
ar,., 05 734 431%* 328 1835 0.1 711 210 52 27 58.7
;o 1 73.7  451* 344 184 0.1 59.0 28.8 82 40 61.2
oo 2 754 470 352 182 0.1 41.0 400 121 7.0 624

ag 2 76.9 474 354 177 0.1 40.7 33.7 11.3 143 61.6

Table 3.8: Example 3.2.3; percentage of the maximum number of
observations used, empirical power, proportion of Hy1o and Hy 3 re-
Jjected, percentage of wrong decision about trends’ order when Hy is
rejected. Distribution of the stopping times (Hg rejected); R is the
ratio empirical power / percentage of observation used. The trends
are 3 = 1, 2 = 1.4 and 3} = 1.3. The symbol * next to an empirical
power value indicates that it falls outside an interval centred on the
corresponding theoretical value vy, more or less a two-standard devi-
ation band based on a Bernoulli approximation. We used Procedure

2.3.1.
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This naturally leads to an increase in the number of observations used. However, we
note that the gain is hardly significant in terms of power, especially for the ESFs that
are conservative, like o, or o] ,,, with s > 1.

When possible, we also compare Procedures 2.3.1, 2.3.2, and 2.3.3, with the method of
Proschan et al. (1994) described in Procedure 2.2.1.

Method % Ay A3 ¥ 45 % obs.
x100 x100 x100 x100 x100 used
50, 50 and 50 patients
1 step 5.0 2.6 2.9 100.0
Proschan osr 5.8 3.4 3.4 3.0 3.2 99.9
Proschan osr Bonf. 5.4 3.3 3.2 2.8 2.9 99.0
Procedure 2.3.2 o}, 5.2 24 3.1 2.4 3.0 99.0
50, 10 and 30 patients
1 step 5.7 3.2 2.8 100.0
Proschan osr 6.7* 3.8 3.3 3.7 3.1 92.2
Proschan osr Bonf.  6.2* 3.7 3.2 3.5 2.8 99.3
Procedure 2.3.2 o, 5.8 3.0 3.2 3.0 3.0 99.2

Table 3.9: Example 3.2.4 with 8} = 8? = 3} = 1; empirical power,
4, proportion of Hq12 and Hy3 rejected, 4;, proportion of Hgy and
Hy)3 rejected, ’y}‘, if the trial was stopped after the first rejection
(Procedure 2.3.1), and proportion of the maximum number of obser-
vations used.

Example 3.2.4 Tables 3.9 and 3.10 are obtained by simulations, in the same frame-
work as Example 3.2.3, with four interim analyses at dates 1, 2, 4 and 9. We use
information time. In Table 3.9, we have B} = 3} = B3 = 1, whereas in Table 3.10
Bl =1, B2 = 1.4, and 53 = 1.3. Two cases were considered: 50 patients per group in
the first one, and 50 patients for the first group, ten for the second and 30 for the third
group n the second case.

In the second situation, one can establish that the hypotheses of equality of variance of
the statistics SW(k), defined by (2.8.3), at a certain step k are clearly not respected.
Nevertheless, we still employ the Proschan et al. (1994) tables of critical values. Four
Procedures are used, namely a multi-normal test — see (3.2.1) — with a single step at
the end of trial, the procedure of Proschan et al. (1994) with O’Brien and Fleming’s
method, using either exact boundaries, or Bonferroni values, and Procedure 2.3.2 with
a = ap = 0.05.

Finally, we consider a four-treatment ezample, with 8} = 1, 2 = 1.7, 3 = 1 and
Bt = 1.4, in the same framework as Erxample 3.2.4. We perform three intermediate
tests, using information time. Results are displayed in Table 3.11.
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Method % Yo ¥3 3 ¥ % % obs.
x100 x100 x100 x100 x100 error used

50, 50 and 50 patients
1 step 48.1 24.2 40.8 0.1 100.0
Proschan osr 495 26.8 43.0 195 376 0.1 87.7
Proschan osr Bonf. 48.5 26.2 422 190 371 0.1 87.5
Procedure 2.3.2 o,,. 469 206 360 186 36.0 0.2 88.5

50, 10 and 30 patients
1 step 284 139 187 0.1 100.0
Proschan orr 208 16.1 19.7 13.7 178 0.2 95.4
Proschan osr Bonf. 28,5 154 19.0 131 171 0.1 95.6

Procedure 2.3.2 a},,. 268 122 168 122 163 0.1 96.0

Table 3.10: Example 3.2.4 with 8} = 1, ? = 1.3 and 3} = 1.4;
empirical power, %, proportion of Hyy9 and Hg3 rejected, ¥;, propor-
tion of Hy12 and Hy3 rejected, 45, if the trial was stopped after the
first rejection (Procedure 2.3.1), percentage of wrong decision about
trends’ order when Hj is rejected, and proportion of the maximum
number of observations used.

Method ¥ o 3 Y4 ’AYE ’A)‘:; Y4 % obs.
x100 x100 x100 %100 %100 X100 x100 used

1 step 47.8 434 1.7 15.8 100.0
Proschan osr 49.7 453 3.0 181 43.6 1.7 11.3 92.4

Procedure 2.3.3 o}, 46.5 42.5 2.5 17.0 408 1.4 101 92.3
Procedure 2.3.2 a,,,. 46.5 4038 14 10.9 40.8 14 101 96.0
Procedure 2.3.3 a7 ,,, 43.5 39.2 29 155 377 2.0 9.9 91.9
Procedure 2.3.3 o}, 415 375 3.0 14.8  36.0 22 9.6 91.9
Procedure 2.3.2 a} 41.5 36.0 2.2 106  36.0 2.2 9.6 92.5

Table 3.11: Example 3.2.4 with 8} =1, 2 = 1.7, 8} = 1, and 8} =
1.4; empirical power, v, proportion of Hy1y, Hy13, and Hy)4 rejected,
4;, proportion of Ho12, Hy3, and Ho4 rejected, '?]’f, if the trial was
stopped after the first rejection (Procedure 2.3.1), and proportion of
the maximum number of observations used.

It could be argued that the overshooting the FWE in Table 3.9 is due to the fact that
there are only ten individuals in the second group. We perform the same simulations,
using the true scale parameters; these simulation actually show that all FWEs are
controlled, except for Follmann et al.’s (1994) method, where the FWE is still outside
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a two-standard deviation band from the targeted value. Finally, we can check that
the experiment-wise error rate in Table 3.11 is strongly controlled (see ¥3), and that
Procedure 2.3.2 is more conservative than 2.3.3, especially if we consider treatment 4,
which is closer to the control than treatment 2 is.

3.2.4 Staggered entries

Actually, non-staggered entry is a quite unusual situation in large clinical trials, and
the utility of sequential testing after subject recruitment has ended is greatly reduced.

Example 3.2.5 We carry out simulations (2,500 trials) with 50 patients per group,
using both observations and information as time indicator, and several ESFs. The
context is similar to Fxample 3.2.4, but we perform three interim analyses at dates 2, 4
and 13. We use information time or the time based on observations. In Table 3.12, we
have B} = 3?2 = 3% = 1, whereas in Table 3.13, we have B} =1, f? = 1.4, and 3 = 1.3.
When the experiment starts, 16 individuals (per group) enter the trial at calendar date
0 (ten measures from 0 to 9), 17 at date 2 (ten measures from 2 to 11), and finally 17
at date 4 (10 measures from 4 to 13).

ESF 4 Yo A3 % rejection step number  obs.
x100 x100 x100 1 2 3 patients used

Time indicator: observations
a; 5.3 2.8 2.8 23 20 57 148.2 98.1
Uopr 5.0 2.6 2.9 0 O 100 150.0 100.0
o, s=05 55 30 29 39 27 34 1470 970
ol ,s=1 49 26 26 15 13 72 1489 988
ol . s=2 50 24 29 1 8 91 1498 99.7

Time indicator: information
ay 5.4 3.0 2.8 41 27 32 147.0 96.9
o 4.9 2.5 2.8 0 12 88 149.7 99.6
i, s=05 47 27 23 58 25 17 1457  95.8
at,,s=1 54 27 30 33 27 40 1475 973
ar ., §=2 5.1 2.7 28 12 10 78 149.1  99.1

LDM

Table 3.12: Example 3.2.4 with 3} = 2 = 8} = 1; empirical FWE,
4, proportion, ¥;, of Hp2 and Hpi3 rejected, stopping time’s dis-
tribution, number of patients involved, proportion of the maximum
number of observations used. We used Procedure 2.3.1.
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ESF ‘y Ay A3 errors % rejection step number  obs. ¢
x100 x100 x100 X100 1 2 3 patients used
Time indicator: observations

al 460 192 360 01 9 26 65  139.9 87.7 329
abpr 482 240 408 01 1 0 99 1495 995 32.2
al,, s=05 426 169 328 02 15 32 53 1367 843 311
al 6 20 74 1425 907 328
1

om8=1 468 205 374 01
o, s=2 480 225 401 0.1 8 91 1475 96.7 32.6

LDM
Time indicator: information
al 418 164 321 02 16 34 50 136.1 83.7 30.7
Qopr 477 217 388 0.1 1 19 80 145.0 93.0 329
at,,$=05 370 140 278 03 22 38 40 134.7 849 275
at,,,s=1 439 178 342 02 12 32 56 1375 849 31.9

*aS=2 473 209 382 01 4 18 78 1437 920 329

Table 3.13: Example 3.2.4 with 8} = 1, 2 = 1.3 and 8} = 1.4;
Empirical power, 4, proportion 4; of Hy12 and Hy,3 rejected, pro-
portion of wrong decision about trends’ order when Hy is rejected,
stopping times’ distribution, number of patients involved, propor-
tion of the maximum number of observations used, and ratio { =
(power x 100/ number of patients involved) x 100.

3.2.5 Discussion

In the staggered-entry situation, which is prevalent in practice, we see in Table 3.12
that the FWE is well-controlled. Moreover, Table 3.13 allows us to say that staggered
entries have a slight effect on power, that is, there is a small increase in power because
the procedures tend to be more conservative, whatever the time indicator or ESF used.

We can conclude from Tables 3.5 — 3.7, and 3.8 that conservative ESFs as af,,, or
o), and of with s > 2, do not reduce power in a significant way when we make
a moderate number of interim tests. According to Tables 3.9 - 3.11, it seems that
the boundaries of Follmann et al. (1994) are not as resistant as our procedures for
controlling the FWE when scale parameters are unknown. In this particular example,
the only possible explanation should result in the way of computing the boundaries
(simulation or numerical integration), since there is no theoretical difference between the
methods. The conservative behaviour of Procedure 2.3.2 may need further investigation
£00.

The only relevant drawback is the difficulty in controlling the FWE when few patients
are recruited in each group. This problem is dealt with in the next section.
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3.3 Small samples

Small sample sizes have great importance when ethical and cost considerations must
be taken into account. As we note in Table 3.4, and Lee and DeMets (1995) point out
for the two-treatment case, the FWE is not well controlled when the total number of
patients involved in the experiment is small.

Empirical FWE

Total number of pauerts

Figure 3.5: Empirical FWEs computed by simulation from trials
with theoretical overall significance levels of 1%, 5% and 10%. Lines
were obtained using the smoothing spline technique. Dotted lines
show the upper 95% confidence bounds around the theoretical FWEs.

Because scale parameters are in fact estimated, the statistics S"(k) at (2.3.3) are nor-
mally distributed, but only asymptotically. In group sequential procedures, this ad-
ditional problem has been addressed by Jennison and Turnbull (1995). Establishing
theoretical results seems difficult to contemplate in a situation where variance ma-
trices are functions of parameters computed by the EM (Expectation Maximization)
algorithm. However, we are still able to make the analogy with the simple case of
independent normal random variables, which would lead us to conclude that S*(k) is
no longer normally distributed, but distributed like a Student random variable whose
degrees of freedom are linked to the number of individuals in the experiment.
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If we take the same designs and scale parameters as in Example 3.2.1, Figure 3.5 shows
FWE values obtained by simulations from the two-treatment or the three-treatment
case. Theoretical FWEs were supposed to be 1%, 5% or 10%. Whatever the theoretical
FWE, a threshold between 30 and 35 individuals seems to be necessary in order to state
that the FWE is actually controlled.

Such simulations may be used as a correction table, once the scale parameters have
been estimated. For instance, if we consider an experiment with three groups of five
individuals, and if we want to make a 5% level test, we should set the FWE to 1% when
the program is used.

3.3.1 Adjustment of variance

From a theoretical point of view, the estimation of var(Bh) has several drawbacks. In
spite of the use of REML (Restricted Maximum Likelihood) estimators for D and o2
in (1.3.5), two points have still to be dealt with:

e the effects of the variability of D and 62 on var Vf’l(D,aA?)] are not allowed for;

and

e it cannot be asserted that var [Bh(D, &2)] is unbiased. This could lead to exag-
gerated to too conservative zones of rejection.

Let us set " = var(3"). Kenward and Roger (1997) suggest that U" is replaced by
Uh* = ¥k 4+ 94k where A" is a correction matrix obtained by Taylor series expansion
around the scale parameters. Note that when the design is balanced, A" = 0. If C is
a contrast matrix with { rows, it can be proved under some regularity conditions that
the random variable

_Ll (Bh _ ﬂh),cl (C‘i””C') C (Bh _ ﬁh) (3.3.1)
m+1l-11

is exactly F,, distributed, where m is an estimated number of degrees of freedom. We
carried out simulations in the situation of a non-sequential test, with two treatments
and very unbalanced designs. We studied how to choose the number of individuals in
each group, so as to control the FWE (supposed to be 5%). It turned out that the use
of U™ instead of U* allowed a reduction from 18 to 15 individuals. So, the scope of this
method seems indeed rather reduced in our situation. In addition, highly unbalanced
design is not common in practice.
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3.3.2 Use of Student statistics

Considering ordinary instead of generalized least squares, is a simple way to lower the
influence of the scale parameter on the estimation of *. But such methods always lead
to greater variances and less powerful tests (Giesbrecht and Burns, 1985). On the con-
trary, approximate t-tests turn out to be a useful tool for testing linear contrasts among
fixed effects. In our situation, we want to make sequential multiple comparisons; but
the problem is more intricate, because there are potentially many correlated contrasts
at a given step k and also over time.

Let us consider the simulations of Section 3.3.1. We are able to keep the empirical
FWE in a two-standard deviation band around 5%, just by roughly using boundaries
for S@(1) based on a t distribution, with m degrees — the same as in (3.3.1) — of
freedom.

That is the reason why we suggest, as an empirical rule, that boundaries should be
computed using a multivariate ¢ distribution — see for example Sutradhar (1986) for a
complete characterization — in lieu of multi-normal distributions. This may be done
for Procedures 2.3.1 and 2.3.3, when small samples are studied.

Example 3.3.1 We consider the model (1.3.2), with two groups of siz individuals,
!

L0 ), and the design ( Ll 1 We use Procedure 2.3.1,

2 _ _
o=LD=1 07 1 01 --- 9
and compute the boundaries using a multivariate t distribution. Table 3.14 shows the
empirical powers obtained, and the proportion of observations used. We use different
values of B, and different ESFs.

In Table 3.14 we sce that the use of a multivariate Student distribution makes for
slightly over-conservative procedures; it actually turns out that tail thickness of the
statistics distribution is over-estimated. Nevertheless, it is better to guarantee that the
F'WE is controlled by the targeted value, than to overshoot it, sometimes considerably.
In addition, loss of power seems to be rather small, and we shall add that use of
Student boundaries lead to more robust procedures, even if the word robust may be
not intrinsically correct.

If robustness were investigated, a better process would be to consider multivariate ¢
models for both error and random effects (Little, 1988). Even if the ¢ distribution
is not, of course, a panacea for all robustness problems, Lange, Little, and Taylor
(1989) note that this approach combines conceptual simplicity — since it is based on
a parametric model — with generality, because it can be applied in a wide range of
settings.
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case ESF ¥ % obs. R, Rops
x100  used x100 %100

ay, 2.9 98.9 52 101

Bl=g =8 =1 apr 31 997 56 101

Qo $=05 30 98.7 54 100

oy s=1 2.8 99.2 31 101

Qppy S=2 3.1 99.6 56 101

oy 12.8 95.0 72 103

B=1,8=8=11 O pr 13.4 98.4 72 102
Qo $=05 122 94.7 70 103

Oy oy s=1 12.8 95.7 70 103

ooy s=2 131 97.5 70 103

oy 41.4 88.9 80 119

Bl=1,08=p=14 alpr 429 92.1 81 107
o py §=05 400 80.8 78 109

Ofpy S=1 422 84.8 80 111

Qipn S=2 426 88.9 81 109

o}, 61.7 71.1 85 112

Bl=1,8=p8 =16 QG pr 64.0 87.8 87 115
Qo $=05 614 69.5 85 111

*

al,,s=1 627 738 86 113

ol ., s=2 637 806 8 114

o 918 496 96 109

Bl=1p=p=2 al,, 926 673 97 123

ol s=05 926 520 97 116
ol ., s=1 921 512 97 110
ot s=2 926 577 97 116

Table 3.14: Example 3.3.1; empirical power and proportion of ob-
servations used. The value R, is the ratio between empirical power
and empirical power if scale parameters are known; R, is the ratio
between observations used and observations used if scale parameters
are known.

To conclude, we consider the two-trcatment case. In a simpler situation than that of
model (1.3.5), which corresponds to D known, Jennison and Turnbull (1997a) recently
proved that the sequence

2 mh(k)

(0{k}, {k}) = | B}(k) — Bl(k),0* > Y UMKYWE(K)UF (k)

h=1 =1

is Markov, and obtained conditional distributions of (6{k},s{k}) given (8{k—1}),c{k—
1}). In the above formula, W} is defined by (1.3.4), and Ur(k) = Y*(k) — X} (k)B" (k).
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When the scale parameter ¢? is unknown, their work settles the basis for group se-
quential ¢-tests (besides x? and F-tests). Thus, such a development will allow for more
accurate models for group sequential tests on small samples.

3.4 Procedure based on confidence intervals

3.4.1 Advantages of the confidence interval approach

Whitehead (1997) distinguishes different ways of using Repeated Confidence Intervals
(RCIs). They could be used as a sequential design, that is, the experiment is stopped
as soon as a Confidence Interval (CI) does not contain zero. In that case, interim
coverage percentages must be planned in advance. Otherwise the procedure is much
more flexible, but may be considered too subjective. On the other hand, we can compute
RCIs without a stopping rule, like an indicator. It is then a control “on-line”, which
may be used at any time when data are being collected.

Jennison and Turnbull (1989) give a complete introduction to the RCI approach, with
its application to different data. In the case of multiple comparison, the RCI approach
is well illustrated by Liu, for the all-pairwise comparison case (1995), or when several
treatments are compared to a control (1996). The context is however more restrictive
than in Procedures 2.3.1 — 2.3.3. In fact, variances of the statistics used have to be
equal at each interim step.

We now consider model (1.3.5). At a given interim step k, the program we have de-
veloped allows the user to compute simultaneous Cls for differences 8} — 3%, at level
1 — w(k), where w(k) is given by (2.3.7). It is also possible to have them displayed,
without considering the stopping rules of Procedures 2.3.1 to 2.3.3.

3.4.2 Illustration

Taking Example 1.3.1 on growth of chickens, we test the hypothesis Hy : {31 = 2} n
{6l = B3} vs Hy : {B} # Bi}U{B] # B7}. We use the ESF «! with s = 2, and we
use observations as the time indicator. Three interim tests are planned at dates 10, 16,
and 21 (days). According to Table 3.1, the experiment is stopped at k = 2 (10th day),
and Hy; is rejected.

The values of statistics S*(k), k = 1,2,3, h = 1,2, are given in Table 3.15, as well as the
corresponding Cls, and interim significance levels m(k). We also give the marginal sig-
nificance levels and p-values, computed with (2.4.3) and (2.4.2). The REML estimators
of scale parameters are

52 =78.60, and D = ( 0.71—0.26 ) .

-0.26 0.10
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day S®)(k) CI pvy(k)  SGI(k) CI pva(k) w(k)  p-value(k)

10 -130 [-3.55;+4095] 0.116 —-2.15 [-4.41;+0.10] 0.009 0.0125 0.0179
16 -124 [-427;+132] 0290 -3.10 [-6.13;-0.07] 0.010 0.0094 0.0070
21 -166 [-4.64; +1.32) —447 [-7.45; —1.50] 0.0281

Table 3.15: Example 1.3.1 of growth of chickens; statistics of dif-
ference of trends, RCls and marginal significance levels pv,(k), and
p-value.

We shall add that this example is used for a purely illustrative purpose. The fourth
treatment was not tested, because its average trend is far larger than the others. In
fact, the mixed effects linear models (1.3.5) may be inadequate, since a convex move-
ment is observed when residuals are plotted, and the corresponding variogram shows
correlations of order 2 and 4. Crowder and Hand (1990) suggest another model, with-
out mixed effects, but with a three-dimensional fixed effect (intercept, time, and time
squared). It eventually does not turn out to be very satisfying either. Keeping model
(1.3.5), and taking square roots of observations seems to give better results. The final
conclusion is the same, viz. rejection of Hy : Hgp N Hyz at t = 16, but the inopportune
phenomena described above are almost completely removed.

3.5 Conclusion

Generally speaking, Procedures 2.3.1 - 2.3.3 give satisfactory results and performance.
Because the correlations over time amongst statistics are accurately allowed for in every
situation, we obtained stable results, whatever the chosen ESF or time indicator. We
wrote the corresponding program to deal with as many situations as possible, while
allowing the user maximum flexibility regarding interim dates, hypotheses to test, time
indicators, and choice of ESF.

A summary file is made for every analysis. from which an S routine immediately displays
some features, including

e a plot of measurements by treatment,

e a plot of all measurements with mean by time, and the possibility to single out a
given treatment;

e residual analysis: plot, boxplot, histogram, boxplot over time, and variogram;
and

e a mixed effects boxplot.
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This chapter cannot be concluded without mentioning that the theory of longitudinal
data analysis was expanded to generalized linear models by Liang and Zeger (1986).
For an example with mixed effects, see Zeger and Karim (1991).

Important simplifications can be made in the ficld of group sequential testing where
statistics with independent increments can be used. Such a structure was obtained in
the two-treatment case by Reboussin, Lan, and DeMets (1992), and then more generally
by Reboussin (1995). In the field of generalized linear models, this is done by Gange
and DeMets (1996), who suggest a Wald statistic, and Lee, Kim, and Tsiatis (1996),
who use a score test or a Wald test. Both of these works result in the use of sequential
x2-tests, and show that the ESF approach can be easily considered. An overview of the
subject which covers general parametric regression and censored survival data can be
found in Jennison and Turnbull (1997b).

To sum up, all the above methods use a statistic U with a structure like
cov(U{k},U{k'}) = var(U{k'}) for k' < k,

where k and k' are the numbers of the intermediate analyses. For the corresponding
standardized statistics U*(k), that lead to

cov(U*{k},U*{k'}) = \/var(U{k}) /var(U{k'}) for k' < k.

In our framework we have
cov(S{k}, S{k'}) = var(S{k}) for k' < k,

where S(k) is defined by (2.3.4), if the same contrasts are tested at every step. Of
course, we are always able to bring together the hypotheses so as to use a sequential
x2-test; but in such a case, we fall back on a two step procedure, like Fisher Least
Significant Difference; but we can hardly control the FWE strongly.

That is the reason why we have privileged the multiple-testing approach: the computa-
tion of boundaries is no longer a deterrent, due to a possible simplification, and today’s
computational availabilities and algorithms. It is actually surprising that relying on the
algorithm of Schervish (1984) is still considered an obstacle, while far faster procedures
exist.



73

Chapter 4

Allocation Rule

The ability to set adequate and ethical allocation rules is a great asset of sequential
methods. The crucial importance of allocation rules is well illustrated by the lively
discussions (Ware, 1989) about the ECMO (treatment of persistent pulmonary hyper-
tension of newborns) experiment. In this chapter, we aim to introduce an allocation
rule adapted to linear mixed effects models. Some standard sequential allocation rules
are presented in Section 4.1, which also includes a group sequential procedure.

In a standard situation, a single measurement is made on every patient. But when
we study longitudinal data, new patients join the experiment while some measures are
still being taken on other patients who have already joined the trial. Section 4.2 intro-
duces further hypotheses about the linear mixed effects model (1.3.2). These flexible
hypotheses simplify the drawing up of the new allocation rule, which is introduced in
Section 4.3.

We present results of simulation studies in Section 4.4. Finally, we propose some con-
jectures for generalization in Section 4.5.

4.1 Sequential allocation rules

We usually use an allocation rule when we have to assign a newcomer in the trial. But
there are often two simultaneous targets:

e to single out the best treatment as soon as possible, and

e to reduce the ITN, i.e. the number of patients assigned to the inferior treatment.

A simple rule was proposed by Anscombe (1963):
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Rule 4.1.1 Assume that the experiment deals with N patients and two treatments.

1. As a first step, n patients are assigned to each treatment and we identify the best
treatment, or so-called best treatment,

2. then, N — 2n patients are assigned to the treatment which is looked on as best.

4.1.1 Robbins and Siegmund’s procedure

Robbins and Siegmund (1974) propose a fully sequential rule, which relies upon the
SPRT (Sequential Probability Ratio Test).

Assumptions 4.1.1 We assume the following context:

e there are two treatments;
e measures are normally distributed N (11,1), and N (pg, 1);

e a random variable X is observed for a patient assigned to treatment 1, respectively
Y for treatment 2;

e we define § = py — py, and 6 = (uo + 11)/2; and
o we want to test Hy: § = —6* vs H, : 6 = §*.

When we have observed zi,...,Tn,, and yy,...,ys, the procedure stops for (M, N),
the first pair (m,n) for which L,,, ¢ (B, A), with 0 < B <1 < 4, and

mn

Ly = €2 =2 (41.1)

3 b

where Z,, = L 3" z;, and §, = = 31, ¥i. For § # 0 we have
Slo -1
prs( make a wrong decision ) < (1 +e” 16‘B> . (4.1.2)

The inequality in (4.1.2) may be replaced by an equality, if we are willing to neglect
the boundaries’ overshoot beyvond A or B. Thus, the probability of making a wrong
decision does not depend either on the allocation rule, or on 6.

In addition, if b = — log B/(24*),

MN b (e —1
E ~o (2 if
6<M+N> 5(e?b5+1)’ ifo #0,
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MN
M+ N

and E0< ):bQ, if 6§ = 0.

Furthermore, we have

MN
Es (M + N) > 4E
01+ M) 2 46 (70 )

in other words, the average number of patients is minimized if we use pairwise allocation.
Moreover, under no circumstances can the ITN be reduced by more than fifty percent,
in comparison with pairwise allocation.

Robbins and Siegmund propose a rather intuitive allocation rule, because it does not
minimize any cost function.

Rule 4.1.2 from Robbins and Siegmund:

1. choose ¢ > b;

2. having observed x,,... ,Tm, and y,, ... ,yn, assign a new patient to treatment 1
(otherwise 2) if

1 mn v _ )<n—m
Gn — T .
emtnn T Im) S Ty

Some cost functions are introduced later by Siegmund (1985):

e a cost ¢g(4) for an allocation to treatment 1, and

e a cost h(d) for an allocation to treatment 2, where

d .

g(‘s):h(_‘s):{1 if § < 0.

(4.1.3)

The expected cost is then
g(8)Es[M] + h(8)Es[N]. (4.1.4)

It may seem logical to add a cost due to a wrong decision. However, it is shown
from (4.1.2) that power and Type I error are essentially invariant to the choice of the
allocation rule. Therefore, the minimization of cost reduces to minimization of (4.1.4).
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Rule 4.1.3 of Siegmund (1985):

1. choose g and h, that is, d in (4.1.5),

2. having observed xi,... , T, and yy, ... ,yn, assign a new patient to treatment 1
(otherwise to treatment 2), if

For large samples, we have

%Mﬂ:ﬂ+ﬁ%m%¢fx» mi&Wﬁde@@&(J?%)

Thus, the expected cost (4.1.4) reaches its lower bound, which equals
2 MN
<¢E+V@)E*<AL+N)‘

Using a few simulations, Siegmund (1985) showed the merits of this simple rule, but he
went on to point out that results are very sensitive to the choice of d in (4.1.3).

4.1.2 Procedure of Louis

Louis (1975) introduces also cost functions g(é) and h(§), as Siegmund’s procedure
does. He defines them by

if 6 > 0,
ﬂ&=h*ﬁﬁ={fwaza

where v > 1. The procedure stops for (M, N), the first pair (m,n) such that L,,, ¢
(£, A), with 1 < 4 and L,,,, defined by (4.1.1). Hence, the expected cost is

Bs(N + M)+ (v = DBs (N Lgeoy + M Lisngy) . (4.1.5)

Rule 4.1.4 Method of Louis. Every new individual is assigned to

treatment 1 if 7= < ¢y(Lmn)s

treatment 1 with probability ¢y(Lmyn) if 7735 = ¢y(Lmn) (2 otherwise), and

treatment 2 if m’_':n > ¢y(Lmn),
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. . v Lm,n+l
where Ly, , s given by (4.1.1), v > 1, and ¢,(Ly, ) = N 11+\/L =

Rule 4.1.4 is asymptotically optimal, for continuous time, and for the criterion (4.1.5),
that is, results obtained are better than those derived from Rule 4.1.2. This behaviour
is of course predictable, since the rule introduced by Louis is specially designed to
minimize the expected cost defined above.

4.1.3 Further comments

Chevre (1992) compares Rules 4.1.2, 4.1.4, and another rule, proposed by Zoubeidi
(1989), which uses a Bayesian approach. If we keep the same Type I error rate, we are
not surprised to note that none of these allocation rules is uniformly best.

However, it is more surprising to find that the rule proposed by Robbins and Siegmund
(1974), which is in fact the most intuitive, often gives the best results: if Type I and
Type II errors are kept constant, Rule 4.1.2 often minimizes the ASN (Average Sample
Number) and the ITN. Indeed, unlike the rule proposed by Zoubeidi (1989) or Rule
4.14, Rule 4.1.2 does not satisfy any precise optimality criterion.

This eventually allows one to conclude that the chosen cost function is not of primary
importance when trying to set up an allocation rule.

4.1.4 Grouped data

We consider the situation of Assumptions 1.4.1, with 0 =1,6 = py — po, and the
standardized statistic (in/2)~'/2d;, where d; is defined by (1.4.1). If we use an allocation

rule, this statistic becomes
2, (1 — pi) =,
di =/ —Z*Z(% = ¥j),
J=1
hence d; ~ N(é\/%, 1),

where p;, 0 < p; < 1, is a random variable which belongs to the sigma-algebra generated
by the whole set of observations available until step ¢ — 1. This value stands for the
proportion of patients who joined the trial at step i, and were assigned to the first
treatment.

Zoubeidi (1996) shows that under Hy : & = 0, vectors [(n/2)~/2d,, ... , (in/2)~V/2d;]’

. '
and (dl,... ,di> are identically and normally distributed. Thus, the procedures of

4
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Pocock (1977), O’Brien and Fleming (1979), or Falissard and Lellouch (1992) may be
used.

Without loss of generality, we assume that a “good” treatment corresponds to a high
value of the location parameter, and vice versa for a “bad” treatment. We define a
non-increasing function ¢, for which

c(d)=¢, Yo : | <e

Definition 4.1.1 When we use an allocation rule A, the random variable T(.A) repre-
sents the step number at which the experiment is stopped.

The value of ¢ stands for the width of the indifference zone, and ¢ is the cost of one
measurement of treatment 1. Then, the expected sampling cost is

R(A) = E 2n20(5)pi(«4)+6(—5)(1 —pi(A)) +g(@)c(=8]) |, (4.1.6)

where g(z) > « — 1, and p;(\A) is the percentage of patients assigned to the first treat-
ment. Such a cost is drawn up to favour the early stopping of the procedure, since the
function g(-) penalizes a continuation of the experiment beyond step i. The cost brought
about by every allocation which stops at step i is in fact always larger than any other al-
location which would stop at step i—1. In addition, the term c(d)p;(A)+c(—38)[1—p;(.A)]
forces the allocation rule to assign fewer patients to the inferior treatment. We say that
an allocation rule A* is asymptotically efficient if we have,

R(A*)

A mina RA)

Rule 4.1.5 When n — oo, an asymptotically efficient procedure (Zoubeidi, 1996) for
the expected cost (4.1.6) is given by the following steps:

1. choose ¢, € and the Type I error o;

2. stop the experiment, and decide H, at step i, if |d1| > b(i, @), where b(i,a) is a
suitable boundary (e.g. Pocock, or O’Brien and Fleming’s method);

3. otherwise, assign 2np; new patients to treatment 1, and 2n(1 — p;) to treatment
2, with

\/1 min(1, 4a) z'f&_l <0,

M

p;

2\/1 min(1,4a) otherwise .

N |—
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The values é;_, and a are defined by

-1

1 - _

i—1 1 Z [p;%; — (1 = p;)7;], and
i=1

=
fl

1 Vib(i, a) — |Z;;ll 2np;(1 - p;)(Z;
2n 5

i—1

Simulations show that Rule 4.1.5 attains its objectives (especially reduction of the ITN).
Of course, the price to pay, with respect to a pairwise allocation, is a slight increase
in the total number of patients. If several error spending functions are used, we may
consider the criterion RD, where

difference of numbers of patients between the two groups
RD = - . (4.1.7)
total number of patients

It turns out that the procedure of Pocock (1977) gives better results than the proce-
dure of O’Brien and Fleming (1979), and that the total number of patients is smaller.
However, power is also slightly reduced, by 1.5% for § = 0.5 up to 2.5% for § = 0.1 .

4.1.5 Conclusion

A fairly complete list of references about sequential allocation rules is found in the
chapter written by A. Basu, A. Bose, and J.K. Ghosh, in the handbook by Ghosh and
Sen (1991).

Sequential allocation rules may have several objectives :
e to reduce experimenter bias (see for example Wei, 1978),
e to obtain confidence intervals of fixed width (Eisele, 1994 ), or

e to aim at a good randomization between different strata (Zoubeidi, 1994).

In this chapter, we will concentrate on the ability of singling out the best treatment
as soon as possible, while reducing the number of patients assigned to the inferior
treatment.
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4.2 Longitudinal data

The allocation that we will present comes within the framework defined here. In (1.3.2),
we assume that

Xh Z" h=1,...,T, andi=1,... ,m"

For simplifying notation, we write

!

Xhk) = (XP(R),. -,th(k (k))',
YiE) = (VK)o Y (R))'s
Vhk) = diag(V{(k ) : nh(k)(ls)), and
VR(E) = WhK).

We suppose, without loss of generality, that measurements are taken at times t =
0,1,2..., and that every measure is taken with probability A > 0. The event “the
measure is taken” is assumed to be completely independent from any other variable
connected with the experiment. Thus, the matrix X (k) consists of the non-null rows
of

1 0
h : h h 1 1
Ti (k) = d1ag (ni,07 . ’ni,nmax(i,h,k)) . . y (421)
1 Nmax(2, b, k)
where the independent random variables 7, ... ,nﬁnmax(i’h’k) are Bernoulli B(}), and

Tmax (%, B, k) + 1 is the maximum number of observations that could be taken on patient
7 assigned to treatment h up to step k. The right hand side matrix of (4.2.1) equals
the design matrix when A = 1. It is also assumed that every patient for whom a single
measurement, is available is withdrawn from the analysis.

To sum up, two constraints have been added to (1.3.2). First, the matrix that con-
nects observations and the random effect of every patient equals the design matrix. In
practice, Lindstrom and Bates (1988) note that the matrix Z! is often a subset of the
columns of X!. This allows us to conclude that this restriction Z! = X! is not too
constraining. Secondly, the structure of X! is also a little more restrictive. We should
also bear in mind that in practice, A may be affected by the treatment group, that is
/\ = /\h-

Since we deal with missing at random variables, and observed at random variables,
Theorem 6.1 of Rubin (1976) allows us to ignore the process which has caused the
absence of a certain number of measures. In such a case, the distribution of any statistic
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based on the observed measurements has indeed the same distribution as its conditional
distribution, given the 7};.

The above assumptions lead to the following propositions.

Proposition 4.2.1 Forallh=1,...,T, and for allk =1,... , K, we have

(XM (kYW (k) X" (k)] = o*[(X"{k} X {k})™ + D],

where the scale parameters 0® and D are defined in Section 1.3.2.

O Proof: We omit the index k. Since X" = Z*, we have

. -1 -1 -1
(2xwihxt) " = (I—D [D+DX’L’X’1D] DX’Z'X’l> (X xhy-!
= (XMx"~'-D.
n

Proposition 4.2.2 Forallh=1,... T, k=1,... ,K,i=1,... ,m"k), and for all
A >0, if npax(i, h, k) — o0, then

XPRY W (k) XA (k) & 4245 s-2p1,

O Proof of Proposition 4.2.2: indices i, h and k are omitted.

Ttmax Nmax
Ty =7 = ((Z St Al )
(k) T3 (k) St S 2
Then,

Nmax Nmax

I T'T lh=Y_(G+5%)m > Zm,
§=0

where || Ag ) = max{} 7 [As;l; 1 < j < n}. By the strong law of large numbers,
we have

X'X ||,
nmax

lim || (X'X)7' ||,

> MXa.s. and in £P, hence

0 a.s. and in L?.
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It follows that

XWX X'X[I-D(I+X'XD)'X'X]

D'=DHX'X)T'D' + o (DTHX'X)™' D),

where o(-) is such that when a given matrix A, equals o(B,),

then lim || A, ||y /|| Bn |l1= 0 a.s. and in £P. So we have o2 X'W X o aﬂa.s. D1
n—-0
[
How fast can information about a single individual be gained? Let us take
p=df 1 ? (4.2.2)
b 1) 2.

where d represent the importance of individual effects if they are compared with the
standard errors. We give here the percentage of information about an individual z,
when it is compared with its limit, which is given by Proposition 4.2.2. This percentage
was computed with p = 0.1,0.2,0.5,0.8, and 0.9, d = 0.2,0.5,1,2,5,10, and 50 and a
design matrix with 2, 3,4, 5, 10, 20, 30, 40, 50, and 100 rows. An extract is displayed in
Table 4.1.

Tmax d
0.2 0.5 1 2 b} 10 50
2 275 393 50.0 622 779 86.9 96.9
3 422 53.7 63.8 743 86.2 922 98.3
4 522 62.7 719 809 90.2 94.6 98.8

5 589 687 77.0 849 926 960 99.1
10 73.8 819 88.0 928 96.7 983 99.6
20 828 89.6 938 965 985 99.2 998
30 86.7 926 958 97.7 99.0 995 99.9
40 89.0 942 96.8 983 993 996 99.9
50 906 953 974 986 994 99.7 999

100 945 975 987 993 99.7 99.9 100.0

Table 4.1: Percentage of information (when p = 0.5) supplied by an
individual, when compared with its limit given by Proposition 4.2.2.

Unlike for p, large values for d and n., increase the speed of convergence. In a stan-
dard case, for which p = 0.5 and d = 1, we note in Table 4.1 that eleven observations
are enough to supply 88% of information about an individual. Thus, we will consider
that between two intermediate steps, almost complete information is available about
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the individuals previously involved in the experiment. However, this implies that mea-
surements are frequent compared to interim analyses, especially when the experiment
begins. One must be awarc that there are situations where this is not true.

The effect of A on the results mentioned above is also studied. Taking the same values
for p, d, and ny, as we did above, we made 10,000 simulations with A = 0.3,0.5,0.8,
and 0.9. An excerpt is displayved in Table 4.2, when A = p = 0.5. Even if measures are
taken with probability 0.5, only 20% of information is lost in the worst situation. This
allows wide use of Proposition 4.2.2, whenever there are missing values in the data.

d 02 % O.
Nmax
2 022 8 0.32 82 041 82 0.51 82 0.66 8 0.77 89
3 0.3 80 0.44 81 0.52 81 061 82 074 8 0.82 89
B} 0.50 84 0.58 84 065 8 0.73 85 0.82 8 0.88 92
10 068 91 074 90 0.80 91 0.86 92 092 95 095 99
20 0.77 94 084 93 089 95 093 96 097 98 0.98 99
30 081 94 088 95 0.92 96 095 98 098 99 0.99 99
50 0.86 95 0.92 96 095 98 097 99 0.99 99 0.99 100

% 1 % 2 % 5 % 10 %

ct

Table 4.2: Ratio of information available to the asymptotic value
(nmax — oc) when A = 0.5 and p = 0.5; columns of percentages
display information available when information available is compared
to the case A = 1.

4.3 Allocation rule for two treatments

4.3.1 Scope

In this section, we present an asymptotically efficient allocation rule for the two-
treatment case, in linear mixed effects models. This allocation rule has the following
features:

e it essentially depends on the parameters of interest, that is, the difference of
trends, rather than the trends themselves;

e the Type I error is controlled; and

e performance should be optimal or essentially optimal for a given cost function.



84 Chapter 4 Allocation Rule

In a longitudinal data analysis, new information collected at step k results from two
sources:

e patients who joined the trial at step & — 1 (like the standard case), and

e patients who had already joined the trial before step & — 1.

Using Proposition 4.2.2, we can nevertheless argue that once a given number of measures
is taken on a patient, additional measurements become almost non-informative. If the
design is regular enough, i.e. A is close to one, we will therefore assume that complete
information is available for every patient, whenever he or she joined the trial.

This assumption is well founded, especially if there is a small number of interim analyses.
It just emphasizes that the important quantity to deal with in longitudinal data analysis
is the number of patients, rather than the number of observations.

In the two-treatment case, hypotheses (2.3.1) and (2.3.2) reduce to

Ho: 82 =B} vs Hy : B2+ Bl

4.3.2 Statistics used
In Chapters 2 and 3, we use the statistic
S(k) = B (k) — B (k). (4.3.1)

However, when an allocation rule is used, the number of patients in both groups, m”(k),
h = 1,2, is a random variable. Hereafter, we shall write

S(k) = B (k) = B} (k),

so as to make a clear distinction. When the trial begins, m!(0) are assigned to treatment
1, and m?(0) to treatment 2. Values of m!(0) and m?(0) are fixed, or are possibly
random variables, but independent from the observations. We usually take m!(0) =
m?(0). When the first step is reached,

h

* (1) patients join the trial, and are assigned to treatment h,

m

so that m"(1) = m"(0) + m" (1), h = 1,2. We also write

var (S{k}) = (0 1) [(X'(YWHRIX ED T + (I WRRIX3(RY) ] (0 1),

= LMk)+ L*(k),
G(k).
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Definition 4.3.1 We denote by F; the sigma-algebra generated by
(S():l=1,... .k}
Lemma 4.3.1 Distribution of S.
e The random variable S'(k), gwen Fi_y, is normally distributed.
o Under Hy: 3} = B2, we have

E( (k) | ]-',H) - G—(i(f—)l)é(k— 1), and

S
var (S(k) ' fk—l) = l:l - G’(T—_ﬁ:l G(k)
O Proof:
We use Theorem 2.1 of Seber (1984, pp. 18-19), which deals with the conditional
distribution of multi-normal random variables.

Proposition 4.3.1 We define

S*(1) = [var(é{u)]'

(STl

[5’(1) - E[S’(l)]] and ,

5 (k) = [var(S(B)|Fin)] *[S(k) - E (SIF-n)].
Then, under Hy: B} = 6%, (S*{1},...,S*{k})’ is normally distributed, Ny(0,I).

U Proof:
Since m"(0), h = 1,2, are fixed, S*(1) is a zero-mean standardized normal random
variable. Then, assume that the result is right for k—1, and let us take (¢,,... ,t) € R¥.

The characteristic function of (S*(1),...,S*(k)) is
E [ei s zzs‘(l)] - E [ei S S O (65 0| )]

= E [eiEf;‘ "S‘(’)] e~ 2t by Lemma 4.3.1 ,
= e iZinf by induction.
[ |

Since the distribution of S*(1),...,S*(k) is independent of the allocation rule, we are
able to use Pocock or O’Brien and Fleming’s method, or any spending rate function.
Indeed, the corresponding critical values will not be affected by the introduction of the
allocation rule.
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4.3.3 Sampling costs

A good allocation rule should essentially depend on the difference of trends, rather than
the trends themselves.

Hence, we define
_ Al 2
o= P — B,

and assume that the larger the trend (3, the better the treatment. Then, it seems
natural to define the following sampling cost:

Definition 4.3.2 We use a cost_function d(-). This function is continuous, non-
decreasing, and such that d(8) = d, for all 0 : |8| < €. Thus, assigning a new patient
to treatment 2 has a cost d(0).

Let 7 denote the last interim analysis. For any allocation rule A, we define the expected
sampling costs

7(A)
RA) =E | r(k-1,4)], (4.3.2)

k=1
where r(k, A) = d(&)[m?*(k) — m%(k — 1)] + d(=6)[m! (k) — m'(k — 1)], and r(0) =
d(8)m?(0) + d(— )ml(O)
4.3.4 The allocation problem

Having defined the expected sampling cost, we want to derive an asymptotically efficient
allocation which belongs to the general class defined below.

Definition 4.3.3 The class C, is the class of allocation rules satisfying the following
properties:

e at any step k, the proportion of patients assigned to every treatment is at least ,
a fired value 0 < ( < %, set before the trial begins,;

e the mazimum number of interim analyses is K.

Assumptions 4.3.1 We assume that the trial is such that

e mo = m!(0) = m2(0) patients are initially assigned to each treatment;
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e at step k, m (k) + m%(k) = 2m new patients join the trial, of whom m! (k) =
2mp(k) are assigned to treatment 1, m?% (k) = 2m[l — p(k)] are assigned to treat-
ment 2; and

e nl(k), the number of measures on patient i, who was assigned to treatment h, is

written
nt(k) = g}(k)n,

where the number of measurements n, is the mazimum number of measures that
we are able to take on a patient, and 0 < gh(1) <--- < gMK) < 1.

The first question that should be answered is when the trial should stop if there is a
significant difference between the two treatments. Lemma 4.3.2 shows that asymptot-
ically, the stopping time 7(.A) should be smaller than or equal two, regardless of the
timing of analysis.

Lemma 4.3.2 For all A € C,, for all 6 such that |6] > €, we have

lim I{T(A)SQ} =1 in probability.

m—o0,n—

U Proof: to simplify notation, we write

v o= o7 (Dpa) ™,
p(2) = p, and

we suppose that n..(i, h, 1) is large. At step 2, we use the statistic

1 5(2) S(1))
5°(2) = ( B |
2 G(1
oo + 5y \C() (1)
By Propositions 4.2.2 and 4.2.1, we know that S*(2) converges almost surely to
vmo 1/ &2 VM 9
[C 2 ] [CS (2) 2 S (1):|3 (4‘3‘3)
where C = 'U('fn,o + 2771’1)) (mO + 2m(1 — p)) ‘
2my + 2m

The expansion of 5*(2)? in m leads to

S*(2)2 = 2ump(l —p)S(2)? + v (—Qmop(l —p)+gm0> (S (4.3.4)

—uvmS(2)S(1) + 0 (1/m),

= 2up(1 — p)[S(2)]* + O(1/m) almost surely.
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Because v is in fact unknown, it is replaced by a consistent estimator. In addition,
S(2) converges to d in probability, because S(2) is a consistent estimator of § (Lee and
DeMets, 1991). Since every continuous function g satisfies g(Xn, Yy) == ¢(X,Y), if
X, > XandV, LY (Chow and Teicher, 1988, p. 73), we have

* 2
lim 5°(2)

m—0oC,n—00 m

> 20((1 - ¢)4 > 0 in probability.

Statistic |S*(2)| is compared with @9, where Q5 is the 1 — m5/2 quantile of a random
variable N (0,1), and 7, is the interim significance level at step 2. Moreover, s is
independent of ¢ and 4. So, we have

Vre3m' @ ¥Ym >m' §7(2)? > Q3 in probability .

When there is a significant difference between the two treatments, experiments should
stop at the same step, asymptotically. This is the purpose of the following lemma:

Lemma 4.3.3 For all A€ C,, for all § : 6| > ¢,

lim I{T(.A):'T(.Ap)} =1 in probability,

m-—00,n—00

where A, is the pairwise allocation rule.

O Proof: by Lemma 4.3.2, for all A € (,, for all § such that |§] >

€, lim I{T(A)<2} =1 in probability; hence,
m—00,n—00 =

ol Jewen = I e
Since the equality I{T(Ap)zl} = I{T(A):I} holds — all the allocation rules in A are
pairwise when the experiment starts — we deduce that the limits exist, and

lim I{r(A):i} = lim o I{r(A,,):z‘}, 1=1,2, thus

m—00,n—00 m—oo,n—

lim I{T(.A):T(Ap)} =1 in probability.
oo

m—o0,n—

|

On the contrary, when there is no significant difference between treatments no allocation
rule in A should stop before the planned end of the experiment. As the previous one,
this property is asymptotic.
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Lemma 4.3.4 For e small enough, for all A € C,, and for all § : |§| < €, we have for
k=2,... K-1,

o m_)olgr’rrll_)oo I{T(A):k} = m_ﬂ}(i)rﬁll_)oo I{,(Ap):k} = 0 in probability, and
° m—»olciur,rvlzaoc I{T(A)BK} = m—)c!(izr,rrlzaoc I{T(Ap)ZK} in probability.

(] Proof: we choose ¢ < N/W(ziz(('__l)qn-a/z’ where g, __, is the 1 — a/2 quantile of
a random variable A'(0,1). Under Hy, by Proposition 4.3.1, the statistics S*(k), k =
1,..., K, are independent and normally distributed, with mean zero and variance one;
thus, the boundaries Q. for |S*(k)| are such that Gz,_y < Qr, k=1,...,K. The value

of @« depends on the chosen error spending function. Since we take an allocation rule
in C,, we have obviously

1{T(¢‘1)=1} = I{T(Ap)=1}'
At step 2, we use (4.3.3), and we obtain

lim S§°(2)? = lim  (2ump{1 — p}) S(2) in probability,

Mm—00,n—00 m—o00,n—

(A

1
lim (§Um> €’ in probability,

m—o00,n—0c

< qfl_ 5 in probability.

At step k = 3,... K, if n and m tend to infinity, S?(k + 1) and S?(k) converge in
probability to d; hence,

1 1 ~ .
: N 2_ _ 2()2 = -
oim SR+ 1) = lim (Gug D G(k)) Sk = lim
(mo + 2mkpy)(mo + 2mkqx) (Mo + 2m(k — D)pg-1)(mo + 2m(k — 1)gx—1) 5
2mg + 2mk 2mg + 2m(k — 1)

in probability, where p;, = 1 — g, is such that mg + 2mkp, = m!(k + 1), and py_1 =
1 — gx_1, is such that mg + 2m(k — 1)pr—, = m!(k). If we rewrite py and g as py =
[((k = 1)pe—1 + p*]/k, and g = [(k — 1)gk-1 + ¢*]/k, we have in probability

. . 2um . * -
lim S*(k + 1)2 = —F [—(k — Dpe_1ge—1 + (k — D)(p"gr—1 + pr-19 )+ p'q ]527

m—00,n—=00 k

2K -1
< vm[ e ]525(131_%5@%“-
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We conclude that

lim I{r(.A):k} = lim o~ I{r(A,,):k} = (), Vk = 2, PN ,K — 1,

and I{T(A):l} = I{T(Ap):l}; ﬁnally

im  Tpexy = lim o Tie)zn).

m—oc, n—00 m—o0,n—

Finally, if the treatments are almost equivalent, that is § < ¢, the longer the experiment,
the costlier it is.

Lemma 4.3.5 Suppose that ¢ is such that |§| < €. Then, for all A, € C,, for all
As €C,, if T(A;) > 7(Ay) stochastically, then R(A;) > R(A,).

O Proof: since |4| < ¢, the cost r(k,.A) = r(k) does not depend on the chosen allocation
rule. Hence, we have

R(A) - R(A)=E| >  rk-1)[>0.

To sum up, if |§] < €, we should stop the procedure (see Lemma 4.3.5) as soon as
possible, in order to minimize the expected cost. On the other hand, if |§| > ¢ and m
is large, the procedure should stop at step 2 (see Lemma 4.3.2).

Thus, we want to establish an allocation rule that minimizes the expected sampling cost
asymptotically, at each step, as if it were the last step before the end of the experiment.
Suppose we are at step k, and that [0] > €. We have to find the optimal value p(k) = p,
such that

p(l-p) < 1/4,
STk = 1) < Q-1 (4.3.5)
1S* (k)| > Q.

Hence,

|S*(B) = 1S™(k = 1) > Qx ~ Q-
1S*(R) > 15*(k — )| + Qk — Qk—1,

that is, {S*(k)| > a, (4.3.6)



4.3 Allocation rule for two treatments 91

with
a=max (0, [S"(k—1)| + Qr — Qr_1). (4.3.7)
and
I 1 17282k SAk-1)
S'(k) = G(k) G(k—l)} [G(k) - G(k—l)]'

We test sequentially Hy : 8] = 82 vs Hy : 3! # 2. At step 1, the issue is the same, no
matters which allocation rule is chosen in C,. Then, situations are different.

Stop at step 2: we have to find the best p, that is the proportion of patients assigned
to treatment 1 just after the first interim analysis, such that the experiment stops at
step 2. By expression (4.3.4), we know that lim 5*(2)? equals in probability

m—00,n—00

lim  2ump(l — p)S(2)* +v (—Qmop(l - p)+ §m0> S5(2)? — vmyS(2)S(1).

M—00,n—00 2
Formula (4.3.6) leads to

2ump(1l — p)S(2)? + v (—2m0p(1 -p)+ gm0> 5(2)2 — vmgS(2)S(1) > d,

that is,

a? + vmpS(2)S(1) — ImguS(2)? B
p(l1-p) > P — = A (4.3.8)

Since p(1 — p) < §, we finally have

1+ /1 - min(44,1)
p= .
2

In (4.3.8), we can distinguish two tendencies: the larger m, the more unbalanced is
the allocation rule. On the contrary, the smaller is S(2)%, the more balanced is the
allocation rule.
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__ 1=4/1-min{44,1)

Solution if & < 0 p= 5

Solution if § >0 | p = m

Table 4.3: Asymptotic optimal value for p — proportion of new
patients assigned to treatment 1 at step 1 — such that the experiment
stops at step 2. Value of A is given by (4.3.8), and § = S(1).

We note from (4.3.8) that S(2) is in fact unknown at step 1. It should be replaced

by S(1). However, we are able to choose my — 00, such that lim mo/m = 0.
m—o00,my—o0

Then, S(1) converges to 5(2), and the developments we have made are still valid.

Stop at step k>2: we first remember that

lim S%(k) = lim  S%(k - 1) in probability,
m—00,n—00 m—0C ,n—00
hence,
1 1 1/2 -
li S*(k) = li — S*(k—1).
m—)oolr,rrlz—mo ( ) m—-)oclJr,r'rlzaoo (G(k) G(k — ]_)) ( )

Let m(k) be the total number of patients who have joined the trial before step k. If
S?*(k —1) #0, (4.3.6) reduces to

om! (k)m?(k)  vm!(k = 1)m?*(k - 1) S a?
m(k) m(k — 1) T S2(k—1)2

m(k) [vm!(k — 1)m?(k — 1) N a?

mEmE 27, m—1) 51

which will be written

p(l—p)+bp+e>f, (4.3.9)
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where
_ omPk=1)—m'(k—1)
b = o : (4.3.10)
Yk —1)m2(k—1) + 2mmi(k -1
o — M= 1m( 4m)2 mm (k—1) (4.3.11)
_ m(k) [om!(k - 1)m?(k - 1) a?
Io= 4m?y m(k — 1) N [S2(k — 1))z (43.12)

We note that ¢ > 0 and f > 0, whereas b € R. By combining (4.3.9) and the constraint
p(1 —p) < §, we have

p(l—p)+bp+e > fVhyu(b), and
p(1—p)+bp+e < hpe(b),
where
e if b € (—oc, -1},
hmar(b) = e+ (1;—0)2 ifbe (—*1, +1],
e+b if b € (+1, +oc),
and

hmin(b)

e+b ifbe (—o0,0],
e if b € (0, +00).

Thus, the constraints are summarized by
p(1—p)+bp+e > min{hnax(b), max(f, hmin(b)]} = [

If min{hpax(b), max [f, hmin(b)]} does not equal f, the unique solution is p =0, p = 1,
or p= (b+ 1)/2 whenever —1 < b < 1. In the other situations, we obtain p = p; and
p = po such that

b+1-—/(b+1)2+4(c~ f)

m = 2 , and
b+1+/(b+1)2+4(e - f)
P2 = 5 .

Proposition 4.3.2 Asymptotic solution to the problem of minimizing the expected cost.
At step k, when n — oo and m — oc, the optimal value of p, such that 2mp patients
are assigned to treatment 1, 1s given by

o Table /.3if k=1, and
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e Table 4.4 otherunse.

The only value unknown at step k£ — 1 is Q, but the trial should stop if |6 > €. Hence,
we replace in practice QJx by @, which is the boundary computed when we choose an
intermediate significance level of a — a(k — 1). If |§| < ¢, all allocation rules (Lemma
4.3.4) are equivalent. Thus, the rule defined above is also used.

The choice of class C, (see Definition 4.3.3) requires that { < p <1 — (. Therefore, we
shall replace p, given by Proposition 4.3.2, by
¢(VipA(1=Q)].

Then, Proposition 4.3.2 leads to the allocation rule proposed below. Its asymptotic
efficiency is proved at the end of the section.

Rule 4.3.1 An asymptotically efficient procedure for the expected sampling cost (4.3.2),
when n — 00 and m — o0, s defined by the following steps:

1. choose €, the ESF (Error Spending Function) «(-), the Type I error a, my, and
m;

2. stop the trial and decide

e H; at step k, if |5’(k)*| > Qg, or
o Hy if a(k) = o and |S(k)*| < Qx;

3. otherwise, assign 2mp(k + 1) new patients to treatment 1, and 2m(1 — p(k + 1))
to treatment 2, where p(k + 1) is given by Proposition 4.3.2.

It may be not easy to give a straightforward illustration of Table 4.4. However, we
point out that if b and S are close to zero, the allocation is almost balanced, which is
the least we wish! The fundamental property of Rule 4.3.1 is its asymptotic efficiency,
which is stated in Proposition 4.3.3. The end of this section concentrates on its proof.

Proposition 4.3.3 Let A, € C, be the procedure defined by Rule 4.3.1. Then, for all
b eR,

R(A.)

————————— converges to 1, as m — 00, and n — o0.
minaec, R(A)
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b>1 e>f f>e+b e+b>f>e
Solutionif 6 >0 | p=1 p=1 p=1
Solution if § <0 | p=0 p=1 =b+1-/O+1)2+4(e- f))/2
1>b62>0 e>f | f>e+ (L) e+ ()’ > f>e
Solution if § > 0 p=1 p="21 =b+1+/(b+1)2+4(e— f)]/2if f>e+b
p=1life+b>f
Solutionif § <0 | p=0 p=41 =[b+1-(b+1)2+4(e-f)]/2
0>b>-1 e+b>f | fee+ (&)’ e+ (B2) > f>e+b
Solution if § > 0 p=1 p=4! =[b+1+/(b+1)2+4(e- f)]/2
Solution if § < 0 p=0 p="51 =b+1-/(b+1)2+4(e— f)]/2if f>e
p=0if f<e
-1>b e+b>f f>e e>f>e+b
Solutionif 6 >0 | p=1 p=0 =b+1+/(b+1)2+4(e- f)]/2
Solution if 4 < 0 p=0 p=0 p=20

Table 4.4: Asymptotic optimal value for p — proportion of new
patients assigned to treatment 1 at step k > 1 — such that the
experiment stops at step k + 1. Values for b, e, and f are given by
(4.3.10), (4.3.11), and (4.3.12).
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In order to demonstrate Proposition 4.3.3, we first need the following lemma.

Lemma 4.3.6 For all § € R, and any procedure A € C,,

7(Ap)
. R(A . ;
im B > E| lim E limin () L7,y <2) L1501

m—oc,n—=0c M Mm—00 ,N—00 4

+ [ lim Zl p)I{’r(Ap)ZK}I{MISC}:l

m—00,n—00

+ E[ lim l(l,Ap)I{r<Ap>=1}I{ws(}}=

M—00 , N—00

where A, € C,, is the pairwise allocation, (i, A) = r(i_Tl’A), and lnin(1) =
minaec, (¢, A) = 2(1 - ()d(—[d]) + 2¢d(|5]).

O Proof:
7(A)
% = E (Zl( )I{6|>c}:| +E |:Zl(5 I{6|<f}l

Il
e3]

[ K
Zl(i’A)I{IJIX}I{T(A)zi}J +E [Zl(i,A)Iuﬂsf}I{r(A)zﬂ} :
[ i=1

i=1

R(A) [

m

v
=

+
o
Mx M= EMx

in () Tggsisy Tireanyoiy Lireany<oy iy Ap)}} (4.3.13)

i, Ao Tz Loy I{r(A)#r(Am} (4.3.14)

-

+ E 14, )I{|6|>e}I{T(A)Zi}I{T(A)>2}] (4.3.15)
L1=1

+ E l(l)Ap)I{m«}I{r (Ap)= 1}]
[K—-1 1

+ E Il(y I{|5|<€}I{T :l (4.3.16)
1=2 j=1

K
+ B Zl(ivAp)1{|6|§6}I{T(A)2K}:I- (4.3.17)

=1
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Indicator functions are measurable and positive, and so are the functions {(-,-), which
are continuous in 4 and p, when ¢ is fixed, hence measurable and positive. Moreover,
we have

r(k, A) = d(8)[m®(k) — m*(k - 1)] + d(~6)[m

[m' (k) = m' (k — 1)},
= 2md(d)p(k, A) + 2md(-9) 1 — p(k, A)],

thus,

16, A) = 2d(6)p(i, A)+2d(=8)[1 - p(3, 4)] i<K,
K
UG, A) < 2Kd(sh) e L

i=1

If we apply the Lebesgue dominate convergence theorem for random variables that
converge in probability, when n — oo and m — oo, we obtain

m—oc,n—0oc

e (4.3.13) — E [ lim Zi’illmin(z’)l{|51>e}][{m,,)sz}I{r(AP)zi}
by Lemma 4.3.3,

e (4.3.14) — 0 by Lemma 4.3.3,

e (4.3.15) — 0 by Lemma 4.3.2,

e (4.3.16) — 0 by Lemma 4.3.4,

® (4.3.17) — E lim Zszl l(ivAp)1{|6|§e}I{T(Ap)ZK}:| by Lemma 4.3.4.

m—0C ,n—00

It follows that

»)
. R i -
lim R(A) E lim Z lmin() L6150 Dr ey

m—0oCc,n—o0 m m—oc,n—0o0 £

v

+ E lim Zl 1{|6|<e}1{r(Ap)>K}}

m—o0 ,n—o00

+ E[ lim l(l,Ap)lumsql{vmp):l}]-

m—0c ,N—00
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O Proof of Proposition 4.3.3:

T{Ae)
R(A.)
= (i
m = B2 LA
= E [l 1, A, I{T A,,)<2}I{r (Ap)= r(.Ae)}I{|6|<c ] (4.3.18)
+ B UL A Tiransoy Trea ariany Tpsise (4.3.19)
+ E [1 (1, A, )I{T Ae)<2}1{ldl>e}] (4.3.20)
+ E (2./4 )I{., A, _2}1{|5|<6}] (4.3.21)
+ E (2 A )I{T(Ac) 2}1{|5|>6}] (4.3.22)
+ E ZZ 7, A I{T(.Ae) Z}I{wi>f} (4.3.23)
L =3 j=1 J
[K—1 1 T
+ E Zzl (j, A I{r Ae) Z}I{|¢s|<e} (4.3.24)
Li=3 j=1 J
[ K
+ E Zl(j?AP)I{T(Ae)ZK}IﬂJ[Sc}:l7 (4.3.25)
Lj=1

then, (4.3.22) is equal to

E [Z(Q’Ae)I{T(Ae)ﬂ}I{|5|>6}} = E [1(27Ae)I{r(Ae)ﬂ}I{T<Ae>¢T(Ap>}I{|6|>e}}
+ E [l(lAe)l{rue):z}I{r(Ae>=r<Ap>}I{ra|>e}] :

Let C; C C, be the class of allocations that use the same fixed p, p € [(,1 - (], at every
step. Then, for all A* € C;, the allocation rule 4, is such that

lim sup (llm [(2, A, )I{T(Ap 2}) < (2, A*) lim sup (hm I{T o) 2})

m—00 n- Mm—00

< Amem 1(2, A”) limsup (hm | PHYRE 2})

m—oC

< Imin(2) lim sup (hm I{T 2}>. (4.3.26)

m-—00 n—

By the same arguments as those of the proof of Lemma 4.3.6, it turns out that
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L (4318) — B [ lim l(laAP)I{T(AP)=1}1{|6|55}] by Lemma 434,

m—o00,n—oc

e (4.3.19) — 0 by Lemma 4.3.4,

m—00,n—00

e (4.320) — E [ lim l(l,Ap)I{|5|>(}] by Lemma 4.3.2,

e (4.3.21) — 0 by Lemma 4.3.4,
e (4.3.23) — 0 by Lemma 4.3.2,
e (4.3.24) — 0 by Lemma 4.3.4,

m-»00,n—00

L] (4325) — E |: lim Z]l(zl l(j"AP)I{T(Ap)ZK}][{|5|S€}:| by Lemma 4.3.4.

Thus, we have

lim sup <lim R(Ae)> = E lim l(l,.A,,)I{T(A,,)zl}lﬂﬂge}]

m—00 n—oc m m—o00,n—00

+ E lim (1, Ap)1{|51>6}]

m—o00,n—0c

m—oo,n—0o £

K
+ E| lim Y I(, Ap)I{r(Ap)zK}I{lélsd}
7=1

+ limsup (lim E [Z(Q,Ae)l{rmp):z}I{T<Ae>=«r<Ap>}I{|6|>e}])

m-ooo X

+ lim sup (lim E [l(2vAe)I{T(Ae)=2}I{T(.Ac);é-r(.Ap)}I{|6|>c}]) .

m—o00 n—oc

By Lebesgue’s dominated convergence theorem and Lemma 4.3.3, the last term is zero.
Then, by Fatou’s Lemma, we have

lim sup (lim R('Ae)> <E [ lim l(l,A,,)I{T(Ap)zl}l{|5|ge}]

m—o0 n—300 m m—20 ,N—00

+ E [ lim 1(1,«4;»)1{|6|>c}]

m—00,n—

+ E [ lim %, 10, AP)I{T(A;:)ZK}I{IJISE}]

m—oc, n—0o0

+ E [lim SUPm—oo (M y00 1{2, A }) limsup,, (limn_,Oc I{T(Ap):2}> I{|5|>€}] :
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Since limsup,,_, o (limn_+C>o I{T(Ap)=2}) = lim I{T(AP)ZQ}, we use (4.3.26) and
m—00,n—00
Lemma 4.3.3; then,

lim sup <lim M)

m—00 n—oo M

AN

lim 1(17Ap)I{T(An:J}I{ws«}J

E [
m—00,n—00

+ E lim l(l,Ap)I{|6|>c}]

m—0G , n—00

m—00,n—00 &

K
+ E lim Z 1(4, Ap)I{T(Ap)ZK}I{IJISs}}
7=1

+ E lim lmin(2)I{T(Ap)=2} I{I5I>6}} :

m—oc,n—oc

Finally,

R(A, [
limsup(lim (A)> < E lim 1(17AP)I{T(Ap)=I}I{"”S(}J

M—00 n—oo m |m—o0, n—00

m—o0,n—00 £ !
L J=

- X |
+ B lim >, Ap)I{T(Ap)ZK}I{MISG}]

7(Ap)
+ E lim Z lmin(i)I{T(Ap)SZ} I{f5f>f}
i=1

m—oc,n—o0 4

lim sup (lim lim M VA € C, (by Lemma 4.3.6).

m—00 n—00 m ) mooc,n—o0 M

IN

4.4 Simulation studies

We use simulation studies to compare the asymptotically efficient Rule 4.3.1 with other
allocation rules, especially the pairwise allocation. We investigate control of Type I
error, power, average sample size, and the number of patients assigned to the inferior
treatment.

Example 4.4.1 We consider a trial involving two groups of patients. In (1.3.2), we
choose 02 =1, B} = 32 = B} =1,

1 07 o (11 1Y
D_(O.7 ) ),andacommondeszgn).-(o 1 ... 19>-
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When the trial begins, 20 patients are assigned to each treatment. Then, we use an
allocation rule, and we assign 100 new patients at calendar times t,, = 2, and 100 at
time t, = 5. Results obtained by simulations (2,500 trials) are displayed in Tables 4.5
and 4.6. Tables 4.7 and 4.8 are similar, but we take t.; = 6, and t,p, = 12. We consider
three situations:

e no staggered entries (labelled ns), that is, 120 patients are assigned to each treat-
ment at the beginning;

o parrwise allocation (labelled A,); and

o allocation defined by Rule 4.5.1 (labelled A, ), with { = 0.1.

Five different ESF's are used, namely, o (1.4.8), of . (1.4.7), and o, (3.1.1), with
s =0.5,1, and 2. We set the Type I error at 0.05, and consider a time indicator based
either on observation or information.

Whereas the ASN and the I'TN are very similar if we use information time or observation
time, the loss of power could be much larger with observations than with information.
We observe that Rule 4.3.1 gives a large reduction in allocation to the inferior treatment,
with a slight increase in the ASN. In general, this reduction is attained at the expense
of a loss of power.

As we note in Chapter 3, when we use Procedure 2.3.2, conditioning leads to conserva-
tive procedures: the ASN is often large. Thus, use of o} seems advisable, even if the
criterion RD defined by (4.1.7) is slightly better when we take o, ;.. We add that Rule
4.3.1 is stable, whatever the ESF used, and even if the assumption of almost complete
information for every patient is not true. This can be seen on Tables 4.5 and 4.6.

Finally, we compare different allocation rules in C,:

pairwise allocation, A,;

allocation A,, defined by Rule 4.3.1;

Rule 4.1.1 from Anscombe; and

another rule, labelled .4,, which assigns, at every step, all new patients to the
currently best identified treatment.

We choose for all four situations ¢ = 0.2 and 5? = 0.42 or 8? = 0.6. Results obtained
by simulation (2,500 trials) are displayed in Tables 4.9 and 4.10.

In Tables 4.9 and 4.10, we note that rules A, and A, leads to rather satisfying results.
Indeed, the allocation rule A, is much simpler than A., defined by Rule 4.3.1.
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Allocation  Steps ESF information time  time based on obs.
A ASN  obs. ¥ ASN  obs.

ns 2,5,19 ar 52 240.0 96.1 5.1 240.0 984
Ap 2, 5,24 ar, 5.7 236.1 974 54 2382 987
A 2,3,24 ay 54 236.2 975 4.8 2387 99.1
ns 2,5,19 al,s=05 54 2400 958 54 2400 973
Ap 2,5,24 ob,s=05 35 2342 964 57 2360 974
Ae 2,5,24 of,s=05 56 2344 965 52 2361 975
ns 2,519 ol,s=1 54 2400 964 5.0 2400 975
Ap 2,524 al,s= 58 2371 980 54 2390 97.7
A 2,524 ar,s=1 51 2377 985 49 239.2 981
ns 2,519 oaf,s=2 52 2400 978 49 2400 998
Ap 2,5,24 oaf,s=2 53 2395 996 353 2398 999
Ae 2,5,24 oX,s=2 51 2394 996 350 2399 999
ns 2,5,19 W pr 53 2400 976 5.1 240.0 100.0
Ap 2,5, 24 g 52 2399 999 52 2399 999
Ae 2,9, 24 O 50 2399 999 5.1 2400 99.7

Table 4.5: Example 4.4.1, with 32 = 1; empirical Type I error rate,
4, ASN, ITN, and percentage of observations used.

Allocation  Steps ESF information time time based on obs.

4 ASN ITN obs. ¥ ASN ITN obs.
ns 2.5,19 ay 75.5 2400 1200 374 65.0 240.0 120.0 483
Ay 2,5,24 fa%a 69.1 196.3 98.1 66.5 68.5 207.7 103.8 74.1
Ae 2,5,24 ar 48.4 2103 318 786 46.1 2194 514 843
ns 253,19 al,s=05 761 240.0 1200 36.6 71.4 240.0 120.0 418
Ay 2524 ol,s=05 676 1885 943 620 693 1952 976 65.7
Ae 2524 al,s=05 508 2024 534 741 49.0 209.3 51.8 780
ns 2,519 al,s=1 741 240.0 1200 389 61.1 240.0 120.0 526
Ap 2,524 aX,s=1 69.2 2016 100.8 70.0 68.0 2127 1063 779
A 2524 ar,s=1 474 2146 513 813 445 2234 51.5 872
ns 2519 al,s=2 69.0 240.0 120.0 44.4 40.8 240.0 120.0 724
Ap 2524 «aX,s=2 666 2199 1100 83.5 622 2204 1102 86.1
Ae 2,524 ar,s=2 421 2291 519 915 362 2306 479 93.7
ns 2,5,19 oY pr 64.8 240.0 120.0 487 24.8 240.0 120.0 87.7
Ap 2,5,24 (a5 63.8 2324 1162 93.8 62.9 236.0 118.0 97.0
Ae 2,5,24 e 39.2 2360 525 97.0 380 2381 527 98.8

Table 4.6: Example 4.4.1, with 3? = 1.42; empirical power, 4, ASN,
ITN, and percentage of observations used.
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Allocation  Steps ESF information time time based on obs.
4 ASN obs. 4 ASN  obs.

ns 6,12,19 ot 59 2400 964 6.1 2400 97.6
A, 6,12,31 al 53 2349 970 5.5 2368 98.1
A, 6,12,31 al, 53 2349 970 46 237.1 983
s 6,12,09 a.,s=05 59 2400 963 63 2400 07.7
A, 6,12,31 o, s=05 54 2334 962 50 2352 972
Ae 6,12,31 of,s=05 55 2334 962 51 2352 97.3
ns 6,12,09 a-,s=1 6.1 2400 965 54 2400 982
A, 6,1231 a%,s=1 51 2359 975 5.1 237.9 97.5
Ae 6,1231 ai,s=1 49 2359 975 45 2380 978
ns 6,219 a.,s=2 65 2400 96.7 55 2400 99.1
A, 6,1231 a%, s=2 50 2383 989 52 2395 99.7
Ae 6,231 a&, s=2 48 2384 990 43 2396 99.7
ns 6,12,19  a,,. 64 2400 968 54 2400 993
A, 6,231  aL,. 50 2392 995 51 2399 99.9
Ao 6,12,31 a5, 43 2394 995 4.0 239.9 100.0

Table 4.7: Example 4.4.1, with ﬁf = 1; empirical family-wise error
rate, 4, ASN, I'TN, and percentage of observations used.

Allocation  Steps ESF information time time based on obs.

4 ASN ITN obs. ¥ ASN ITN obs.
ns 6,12,19 ol 87.1 240.0 120.0 434 824 240.0 1200 47.0
Ap 6,12.31 ol 68.6 180.0 90.0 619 68.0 1925 96.2 ©68.7
A 6,12,31 aj 51.8 194.8 51.5 729 456 208.0 47.7 80.3
ns 6,12,19 o, s=05 874 240.0 1200 43.2 84.1 2400 1200 456
Ay 6,1231 of,s=0.5 667 1744 872 59.7 686 180.8 904 628
A, 6,231 oX,s=0.5 530 1887 554 704 493 196.0 49.5 742
ns 6,12,19 of,s=1 868 240.0 1200 43.7 794 240.0 1200 49.1
A, 6,1231 «of,s=1 691 1857 928 646 67.0 1988 994 723
Ae 6,231 «oX,s=1 492 201.2 495 762 426 2144 474 839
ns 6,12,19 «al,s=2 858 240.0 1200 44.5 67.8 240.0 120.0 57.3
A, 6,1231 «al,s=2 664 2034 101.7 745 62.2 2204 1102 86.1
Ae 6,1231 «al,s=2 416 2189 477 86.0 36.2 230.6 479 93.7
ns 6,12,19 by, 85.2 240.0 120.0 44.8 50.9 240.0 120.0 69.0
Ap 6,12,31 ) p e 65.3 211.1 105.5 79.0 574 233.4 116.7 95.7

A, 612,31  ol,,. 390 2261 481 902 326 2366 484 98.0

Table 4.8: Example 4.4.1, with ,8,2 = 1.42; empirical power, 4, ASN,
ITN, and percentage of observations used.
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Sample sizes used by A, and A, are almost equal, but A, is more powerful. On the
contrary, when we use A,, 6;7ny — the standard deviation for the number of patient
assigned to the inferior treatment — and often the I'TN are smaller. This assertion
must be counterbalanced, since in the situation 8] = 87 = 1, 67y when we use A, is
between 50% and 100% much larger than when A, is used.

Allocation  Steps ESF ¥ ASN ITN RD é&irn

Ap 2,5,24 or 69.4 1879 94.0 30.7
Ae 2,5,24 a 62.2 1976 66.5 32.7 30.1
Ap 2,5,24 oy 58.8 1973 603 389 27.3
Anscombe  2,5,24 o} 564 197.7 65.7 33.5 408
Ap 25,24 aj,, 680 2146 107.3 22.4
A 2624 a),,. 582 2206 654 40.7 250
Ap 2,624 )., 581 2206 653 408 250
Anscombe 2,524 «f,. 551 2206 713 353 40.7
Ap 6,12,31 a3 68.6 177.5 88.7 35.0
Ae 6,12,31 a} 60.8 1864 64.5 30.8 323
A 6,12,31 a; 56.0 1872 553 409 25.1
Anscombe 6,12,31 o} 54.9 186.4 58.2 37.5 34.7
A, 6,12,31 a},. 66.7 205.1 102.5 24.9
Ae 6,12,31 «o},. 54.8 2142 615 426 219
Ap 6,12,31 o),, 544 2141 608 432 217

Anscombe 6,12,31 af,. 52.7 2142 643 40.0 33.2

Table 4.9: Example 4.4.1, with 7 = 1.42 and ¢ = 0.2; times (ca-
lendar) for intermediate tests, ESF used, empirical power, 4, Average
number of patients (ASN), average number of patients assigned to the
inferior treatment (ITN), criterion RD defined in (4.1.7) x100, and
standard deviation 67y for the number of patients assigned to the
inferior treatment.

We also point out the influence of ¢ is on Rule 4.3.1, by comparing Table 4.9 ({ = 0.2)
with Tables 4.6 and 4.8 (¢ = 0.1). It turns out that ( = 0.2 seems more suitable than
¢ = 0.1. In fact, the simulations that we have made with different values for ( show
that ¢ = 0.2 seems to be a satisfying value. Finally, when power is high, as in Table
4.10, o} is undoubtly better than o}, .
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Allocation  Steps ESF o ASN ITN RD &N
A, 2,5,24 a; 958 146.5 733 29.9
Ae 2,5,24 aj, 91.1 158.6 50.0 37.0 24.1
Ap 2,5,24 o 89.5 1586 473 403 206
Anscombe  2,5,24 ar, 88.4 158.6 48.8 385 26.9
A, 2,524 o, 948 1803 90.1 26.1
Ae 25,24 «a,. 867 1946 555 439 18.2
Ap 2,524 a},. 86.7 1946 545 439 182
Anscombe 25,24 af,, 859 1946 566 41.8 270
A, 6,1231 «a; 950 130.2 65.1 33.2
A 6,1231 «ar 902 1408 453 357 246
Ap 6,1231 aor 879 140.8 416 409 18.2
Anscombe 6,12,31 «oF 876 140.8 426 403 20.7
A, 6,1231 .. 948 1696 84.8 26.1
A 6,1231 o}, 856 1845 506 452 150
Ap 6,12,31 o, 8.2 1845 504 454 14.8
Anscombe 6,12,31 a 85.0 184.5 51.0 44.7 18.8

OBF

inferior treatment.

4.5 Generalization

Table 4.10: Example 4.4.1, with 3%

lendar) for intermediate tests, ESF used, empirical power, 4, Average
number of patients (ASN), average number of patients assigned to the
inferior treatment (ITN), criterion RD defined in (4.1.7) x100, and
standard deviation 6;ry for the number of patients assigned to the

= 1.6 and ¢ = 0.2; times (ca-

In this section, we consider the three-treatment case. We suppose that two treatments
are compared with a control, which is labelled 1.

4.5.1 Dealing with three treatments

We replace the expression (4.3.1) by

S(ky =[5 (h), §<3>(k)]' _

181 k) — B2(k), Bi (k) = B

Then, we can immediately generalize Lemma 4.3.1.

Lemma 4.5.1 Distribution of S(k).

~

3
L

(k)]

o The random variable S(k), given Fip_1, is normally distributed;

(4.5.1)
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o under Hy: {8} = B2} N {8 = B3}, we have
E (S‘(k) |}‘k_1) = GGk —1)"'8(k — 1), and
var (S‘(k) | Fe 1) = G(k) - G(k)G(k — 1)"'G(k),

where G(k) = var ], and Fy is the sigma-algebra generated by {S(l) : |

kY.

We choose allocation rules in C,, and our framework is defined by the following assump-
tions.

Assumptions 4.5.1 We assume that the trial is such that

e my = m!(0) = m?(0) = m3(0) patients are assigned to each treatment when the
trial starts;

o at step k, mL (k) + m% (k) + m3 (k) = 3m new patients join the trial, m’ (k) =
3mp;(k) are assigned to treatment i, 1 = 1,2,3, with p, + ps + p3 = 1; and

o nl(k), the number of measures on patient i assigned to treatment h is written
n (k) = g (k)n, (4.5.2)

where the number of measurements n, is the mazimum number of measures that
we can take on a patient, and 0 < g*(1) < --- < 1.

Let S*()(k) be the standardized value of S¥(k), i = 1,2. When m and n are large, we
have

‘ G5 (9)2p, s
sz = W@ gy (4.5.3)
D+ D
S*W(k)* = 3vAm+o(1), for k > 2, where (4.5.4)
, 2
[(k - 1) (p1gi — Piq1) (qu‘”{k} +¢;S {k}) +pi ({k—1}q1 + p: S“)(k)]
(k= 1) [(@p: — @p = 1)* + (k = 1) (016? + pig?) + 2p1p; (91 + )] + pups (01 + i)

i # j, i,j€{1,2},

Pi = p‘t(k)a
k—1

q; = Qi(k_ 1) = Zpi(l)/(k—Q)) and
=2

v = 07 (Dpa)
If we set 8, = B — (32, 83 = 81 — 33, and || = |82 V |63/, then Lemmas 4.3.2, 4.3.3, and
4.3.4 still hold.
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4.5.2 Allocation

Because we face a problem of multiplicity when we deal with three treatments, we
consider two simple practical situations. Firstly, we can use twice Rule 4.3.1:

e with treatment 1 and treatment 2, assigning 3m/2 new patients per step; and
e with treatment 1 and treatment 3, assigning 3m/2 new patients per step.

Another credible situation may be considered: consider a trial for which the proportion
of patients assigned to the control is fixed in advance. Suppose we are at step k, and
that |§] > e. Conditions (4.3.5) are replaced by:

p2t+ps = 1—p,
Sk - D[VISOUh-1)] < Qur. (45.5)
1S* @ (k)| VIS*®(k) > Q.

If we choose |S*® (k)| > Q, respectively |S*® (k)| > Q, instead of |S*)(k)| v
1S*®) (k)| > Q, we obtain the optimal values (p},p}), respectively (p3*,p3*). Then
we choose the pair which minimizes a cost function previously defined. This procedure
does not lead to any theoretical difficulty. We would need one more term in the Taylor
series (4.5.3) and (4.5.4), so as to improve the precision of expansions.

4.5.3 Prospects

Future simulations will show if the two conjectures defined above are worth considering,
and asymptotic properties should be investigated.

In conclusion, we would like to stress that further steps should be considered in practice,
when one uses any of the procedures proposed in Chapter 2 and 4. We can for instance
counterbalance any decision by using a non-parametric model. Lee and DeMets (1991,
1992) chose twice the same example, which deals with the study of calcium supplement
effects on bone density (Smith, Sempos, Smith, and Gilligan, 1989). They rejected
the null hypothesis of no treatment difference between the placebo and the calcium
supplement when they used a group sequential test based on (1.3.2). But they did not
reject the null hypothesis when they used a group sequential rank test. The discrepancy
was imputed to some outliers which had too much effect on the test based on the
parametric model.

Finally, the possibility of bias should be always considered. Clinical trials which are
stopped early due to evidence of benefit or toxicity among treatments are prone to
exaggerate the magnitude of treatment difference (Hughes et al., 1992). We can estimate
the bias either by numerical approximation, or by using parametric bootstrap (Pinheiro
and DeMets, 1997).
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List of symbols and abbreviations

NP(/"'? Z)

pr
Q2
var(-)
Xn

ASN
CI
ECMO
EM
ESF
FDA

convergence almost surely

convergence in mean of order p

convergence in probability

maximum of

minimum of

almost surely

matrix A has 7 rows and j columns

element of the matrix A located in line ¢ and column j
Brownian motion

covariance

matrix which contains only 1s

expectation

Fisher distribution with n and m degrees of freedom
cumulative distribution function of a zero-mean standardised
normal random variable

identity matrix

normal distribution of dimension p (omitted if p = 1)
with expectation p and variance X.

probability

c-quantile of a zero-mean standardised normal random variable
variance

x? distribution with n degrees of freedom

Average Sample Number

Confidence Interval

Evaluation of Extracorporeal Membrane Oxygenation
Expectation Maximization (algorithm)

Error Spending Function

Food and Drug Administration
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FWE Family-wise Error Rate
ITN Inferior Treatment Number
LANDEM algorithm that generates sequential boundaries using
the procedure of Lan and DeMets
LS Least Squares
ML Maximum Likelihood
MULNOR Multivariate Normal algorithm
OSWALD Object-oriented Software for the Analysis of Longitudinal Data in S
PEST Planning and Evaluation of Sequential Trials
RCI Repeated Confidence Interval
REML Restricted Maximum Likelihood
SPRT Sequential Probability Ratio Test
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