OBJECT-ORIENTED FINITE ELEMENT PROGRAMMING:
SYMBOLIC DERIVATIONS AND AUTOMATIC PROGRAMMING

THESE N° 1752 (1997)

PRESENTEE AU DEPARTEMENT DE GENIE CIVIL
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES TECHNIQUES

PAR

Dominique EYHERAMENDY

Ancien éléve de 'E.N.S. Cachan, France, et agrégé de mécanique
de nationalité francaise

acceptée sur proposition du jury:

Dr Th. Zimmermann, directeur de thése
Prof. E. Anderheggen, corapporteur
Prof. A. Combrescure, corapporteur

Prof. F. Frey, corapporteur
Mr C. Hauviller, corapporteur
Prof. J.-P. Pelle, corapporteur
Dr M. Picasso, corapporteur
Prof. J. Rappaz, corapporteur

Lausanne, EPFL
1997

To my friends ...
To my parents ...

Acknowledgements

Acknowledgements

I would like to gratefully thank all the people who have permitted me to achieve this work:

0 Dr. Thomas Zimmmermann, for his guidance over the years I spent in Lausanne, and for his

enriching criticism through my hard days of work and for giving me the opportunity to
internationally widen my horizons

Prof. Francois Frey, Director of the LSC, for making this research possible
the members of the jury for accepting to examine this work
Prof. Jean-Pierre Pelle and Prof. Pierre Ladevéze, for their confidence

Prof. Robert Arrieux and Prof. Max Giordano and all the members of the LMécA, Ahmed
Haddad, Eric Pairel, Bernard Riveill-Reydet, Serge Samper, Vincent Simeneau, Laurent Tabourot
and Pierre Vacher, at the Ecole Supérieure d’Ingénieurs d’ Annecy, for their advice and help during
my activity at the ESIA

Yves-Dominique Dubois-Pelerin and Patricia Bomme for introducing me to the object-oriented
paradigm and for many interesting discussions

the members of the LSC, past and present, among them Mohamed Amieur, Wajd Atamaz Sibai,

Ahmadou Barry, David Alvarez-Debrot, Fran¢oise Delaray, José Diaz, Stéphane Commend, César
Falla-Luque, Wadah Farra, Richard Frenette, Evelyne Guidetti, Adnan Ibrahimbegovic, Prof.
Jaroslav Jirousek, Milan Jirasek, Yijun Li, Krzysztof Podles, Blaise Rébora, Pierrette Rosset,
Bernard Rutscho, Jean-Luc Sarf, Birgitt Seem, Malgorzata Stojek, Marc-André Studer, Andrzej
Truty, Laurent Vernier, Adam Wroblewski,... for their friendship and for so many fruitful
discussions

Prof. Tayfun Tezduyar and his team, Shahrouz Aliabadi, Marek Behr, Ismail Giiler, Andrew
Johnson, Vinay Kalro, Steve Ray and Chris Water, at the University of Minnesota, for their
welcome in Minneapolis during a cold winter and for numerous fruitful discussions on
Computational Fluid Dynamics

the Department of Mechanics of the Ecole Normale Supéricure de Cachan, led first by Prof. Didier
Marquis and then by Prof. Frangoise Léné, for the 4™ year I was allowed to complete at the LSC,

and more especially Danielle Babic for the efficiency of her frequent help

the Swiss National Science Foundation, for grants N° 21-40290.94 and N° 20-45697.95

Résumé

Résumé

Les nouvelles technologies dans le domaine de I’'informatique appliquée au calcul numérique
autorisent aujourd’hui des approches alternatives dans la résolution de problémes de mécanique par la
méthodes des éléments finis (E.F.) . Dans les approches classiques, les développements théoriques
conduisent souvent a de lourds calculs pour un probléme donné suivi du développement d’un modéle
informatique pour la résolution de problémes pratiques. La premiére étape du développement est
I’analyse du probléme physique que I’on souhaite simuler. Ce probléme est généralement décrit par un
ensemble d’équations, incluant des équations aux dérivées partielles. Ce premier modele est ensuite
remplacé par une suite de modgles équivalents et/ou approchés. Le résultat se réduit généralement a
quelques pages décrivant les algorithmes et les matrices élémentaires pour le probleme, le tout
exprimé dans un langage mathématique “simple” malgré tout. La démarche traditionnelle consiste
alors 3 élaborer un outil informatisé, en général complexe et relativement éloigné des descriptions
mathématiques. Le probléme de [architecture du logiciel et du langage utilisé dans les
développements se pose alors de maniére cruciale. Rompant partiellement avec cette approche, on
propose une nouvelle maniére de programmer et de développer les formulations E.F. S’appuyant sur
une approche hybride symbolique/numérique pour la résolution de probléme en mécanique et sur un
outil informatique de haut niveau, la programmation orientée objet (0.0.) (ici les langages Smalltalk
et C++), I’objectif de ce travail a ét€ de développer un environnement capable d’effectuer d’une part,
des manipulations algébriques nécessaires & 1’application d’une formulation E.F. 4 un probléme posé
sous forme différentielle, et d’autre part, des calculs numériques efficaces. Ainsi, ’environnement créé
est capable de gérer tous les concepts nécessaires & la solution de problémes physiques : manipulations
d’équations aux dérivées partielles, formes variationnelles, intégration par parties, formes faibles,
approximations E.F... Les concepts manipulés sont trés proches des concepts mathématiques. Le
résultat de ces opérations algébriques est un ensemble de données élémentaires (matrices de rigidité,
de masse, tangentes, ...) & introduire dans un code numérique classique. L’apport du paradigme objet
est essentiel & ce travail. Dans le contexte des codes EF., ce type d’approches a déja prouvé sa
capacité a représenter des structures et phénomeénes complexes. Dans I’environnement symbolique
pour la dérivation de formulations E.F. , dans lequel des objets tels que I'expression, I’intégrale et la
forme variationnelle apparaissent, ceci est confirmé. Le besoin de lien entre le monde numérique (code
E.F.) et le monde symbolique a permis d’établir un concept O.O. pour la programmation automatique
de formes matricielles symboliques dérivées de la méthode E.F. Le résultat est un environnement
global dans lequel le mécanicien est capable d’évoluer naturellement, en utilisant un langage proche
de son langage naturel. Le potentiel de 1I’approche est mis en évidence, d’une part par la variété des
problémes abordés, aussi bien dans le domaine de la mécanique linéaire (élasticité en dynamique 1D et
2D, thermique 2D,...), que non-linéaire (problémes & convection dominante 1D, écoulement de
Navier-Stokes), et d’autre part par le type de formulations manipulées (formulations de Galerkin,
formulations de Galerkin espaceftemps continues en espace et discontinues en temps, formulations
stabilisées de type Galerkin moindres-carrés).

Summary

Summary

New technologies in computer science applied to numerical computations open the door to
alternative approaches to mechanical problems using the finite element method. In classical
approaches, theoretical developments often become cumbersome and the computer model
which follows shows resemblance with the initial problem statement. The first step in the
development consists usually in the analysis of the physics of the problem to simulate. The
problem is generally described by a set of equations including partial differential equations.
This first model is then replaced by successive equivalent or approximated models. The final
result consists in a mathematical description of elemental matrices and algorithms describing
the matrix form of the problem. The traditional approach consists then in constructing a
computer model, generally complex and often quite different from the original mathematical
description, thus making further corrections difficult. Therefore, the crucial problem of both
the software architecture and the choice of the appropriate programming language is raised.

Partially breaking with this approach, we propose a new approach to develop and program
finite element formulations. The approach is based on a hybrid symbolic/numerical approach
on the one hand, and on a high level software tool, object-oriented programming (supported
here by the languages Smalltalk and C++) on the other hand. The aim of this work is to
develop an appropriate environment for the algebraic manipulations needed for a finite
element formulation applied to an initial boundary value problem, and also to perform
efficient numerical computations. The new environment should make it possible to manage
all the concepts necessary to solve a physical problem: manipulation of partial differential
equations, variational formulations, integration by parts, weak forms, finite element
approximations,... The concepts manipulated therefore remain closely related to the original
mathematical framework. The result of these symbolic manipulations is a set of elemental
data (mass matrix, stiffness matrix, tangent stiffness matrix,...) to be introduced in a classical
numerical code. The object-oriented paradigm is essential to the success of the
implementation. In the context of the finite element codes, the object-oriented approach has
already proved its capacity to represent and handle complex structures and phenomena. This
is confirmed here with the symbolic environment for derivation of finite element formulations
in which objects such as expression, integral and variational formulation appear. The link
between both the numerical world and the symbolic world is based on an object-oriented
concept for automatic programmation of matrix forms derived from the finite element
method. As a result, a global environment in which the numerician is capable of evolving,
using a language close to the natural mathematical one, is achieved. The potential of the
approach is further demonstrated, on the one hand, by the wide range of problems solved in
linear mechanics (elastodynamics in 1 and 2D, heat diffusion,...) as well as in nonlinear
mechanics (advection dominated 1D problem, Navier Stokes problem), and, on the other hand
by the diversity of the formulations manipulated (Galerkin formulations, space-time Galerkin
formulations continuous in space and discontinuous in time, generalized Galerkin least-
squares formulations).

Coantents

Contents

ACKNOWLEDGEMENTS 5
RESUME 7
SUMMARY. 9
CONTENTS 11
CHAPTER 1 INTRODUCTION 15
1.1 HIGH LEVEL SOFTWARE TOOLS FOR FINITE ELEMENT ANALYSIS 15
1.2 OVERVIEW OF THE USE OF ALGEBRAIC COMPUTATION TOOLS FOR FINITE ELEMENTScoovreeemrmrirererenanes 16
1.2.1 Semi-analytical/numerical approaches .16
1.2.2 Enhancing finite element code performance 17
1.2.3 Speeding up finite el code develop 17
1.3 OBJECT-ORIENTED FINITE ELEMENT PROGRAMMING 19
1.4 AN OBJECT-ORIENTED HYBRID SYMBOLIC-NUMERICAL APPROACH FOR FINITE ELEMENT ANALYSIS 20
1.5 THE THESIS 21
1.5.1 Overview 21
1.5.2 How to read the thesis 21

CHAPTER 2 AN OBJECT-ORIENTED ENVIRONMENT FOR SYMBOLIC DERIVATIONS OF
FINITE ELEMENT FORMULATIONS 23
2.1 GENERAL APPROACH . 23
2.2 SYMBOLIC DERIVATION OF MATRIX FORMS FOR A LINEAR INITIAL BOUNDARY VALUE PROBLEMcvvuiuinie 23
2.2.1 Derivation of the weak and matrix forms for elastod; ics 23
2.2.2 The main objects of the symbolic environment for elastodynamics 27
2.2.2.1 Derivation of the weak form 27
2.2.2.2 Derivation of the discretized weak form 30
2.3 THE CLASS HIERARCHY AND THE CLASSES FOR AN INITIAL BOUNDARY VALUE PROBLEMccocinievennnnniens 32
2.3.1 The class hierarchy 32
2.3.2 Review of the classes 33
2.3.2.1 The collections 33
2.3.2.1.a The dictionaries of FEMTheory 33
2.3.2.1.b Subclasses of FEMTheoryOrderedCollection 35
2.3.2.2 Subclasses of FEMTheory 35
2.3.2.2.a Subclasses of FEMTheoryMathematicalStructure: 35
2.3.2.2.b Accessory classes. 35
2.3.3 Data transfer in a hierarchical tree of objects dedicated to finite el ts 36
2.4 THE GRAPHICAL ENVIRONMENT FOR THE DERIVATION OF VARIATIONAL STATEMENTSoovuiiinnreriinininns 38
2.4.1 Simple object-oriented concepts for the graphical interface 38
2.4.2 The interface 39
2.4.3 Description of the available tools to derive finite el . VTSNS 41
2.4.3.1 Tools applicable to variational forms 41
2.4.3.2 Tools applicable to discrete forms 42
2.4.4 About the interface w43
2.5 A FIRST EXAMPLE OF DERIVATION: A ONE-DIMENSIONAL ELASTIC BARocciomuinreetesnsiinsinnerenssissesssssssninns 43
2.5.1 The problem... 43
2.5.2 Derivation of the MAIFIX fOrM...........ccvvviemmusieerieeissssssseiesssssiis e st st sss s bsbabnns 44

CHAPTER 3 CONCEPTS FOR AUTOMATIC PROGRAMMING OF FINITE ELEMENTS ..coocisine0. 49

3.1 AUTOMATIC GENERATION OF A FINITE ELEMENT CODE IN A SYMBOLIC OBJECT-ORIENTED ENVIRONMENT . 49
3.1.1 Principle of automatic generation of a code in a symbolic object-oriented h ical envir !

3.1.2 Programming in Smalltalk
3.1.3 Finite el t automatic progr ing in the FEM_Theory envir t
. P

3.1.4 An example of aut. ic imp jon : a bar in elastodynamics.
3.14.1 A new element generated in FEM_Object.

11

Contents

3.1.4.2 Test of the new el 61
3.2 CLASSICAL FORMULATIONS IN STRUCTURAL AND FLUID MECHANICS 62
3.2.1 Linear elasticity 62
3.2.2 A mixed formulation for Stokes flow problem 62
3.2.2.1 Mathematical formuiation 62
3.2.2.2 Derivation in FEM_Theory : 63
3.2.2.3 Numerical results. 67
CHAPTER 4 COMPUTER AIDED SOFTWARE ENGINEERING FOR FINITE ELEMENTS
DEVELOPMENTS 69
4.1 DIMENSIONAL ANALYSIS IN AN OBJECT-ORIENTED ENVIRONMENT FOR FINITE ELEMENTS ...cconiiiinnniininenns 69
4.1.1 The concepts for dimensional analysis 69
4.1.2 The objects for dimensional analysis .. 70
4.1.3 The classes 71
4.1.4 Strategy for dimensional analysis in FEMTheory 74
4.1.5 The graphical environment for dimensional analysis. 76
4.1.6 A simple illustration of dimensional analysis in FEM_Theory 77
4.1.7 Dimension control in finite el ts . 79
4.2 CHECKING INDEX WRITING CONSISTENCY. 80
4.2.1 Goal 80
4.2.2 Implementation of writing analysis.............ccoveeeens 80
4.2.3 Example of analysis. 82
CHAPTER 5 BEYOND A CLASSICAL GALERKIN FORMULATION 85
5.1 TOWARDS FINITE ELEMENT COMPUTATIONS OF INCOMPRESSIBLE FLOWS .85
5.2 GALERKIN LEAST-SQUARES TYPE STABILIZED METHODS 85
5.2.1 Brief review and objective. 85
5.2.2 Integration of stabilized formulations in FEMTheory 87
5.2.3 A stabilized formulation for the Stokes flow problem..... 88
5.2.3.1 Derivation of the stabilized formulation in FEMTheory 90
5.2.3.2 Numerical tests of the stabilized element for Stokes flow 91
5.3 SPACE-TIME FORMULATIONS 92
5.3.1 Discontinuous space-time formulations 92
5.3.2 Integration of discontinuous space-time formulations concepts in FEMTheoryc.ccvniiinns 93
5.3.2.1 The objects needed for discontinuous space-time formulation 93
5.3.2.1.a The discontinuous space-time formutation for a linear one-dimensional advective equation................ 93
5.3.2.1.b The objects for the discontinuous space-time formulation 94
5.3.2.2 Class JUMP_TERM 96
5.3.2.3 The graphical environment 97
5.3.3 The linear one-dimensional advection equation in FEM_Theory 98
5.3.3.1 Derivation of the linear 1-D advection equation 98
5.3.3.2 Code generated automatically into FEM_Object 100
5.3.3.3 Numerical tests 101
CHAPTER 6 A NONLINEAR APPROACH IN FEM_THEORY: APPLICATION TO ADVECTION
DOMINATED EQUATION MODELS 103
6.1 OBJECTIVE 103
6.2 A THEORETICAL APPROACH FOR LINEARIZATION 103
6.2.1 Definition of linearization 103
6.2.2 Directional derivative 104
6.3 OBJECT-ORIENTED CONCEPTS FOR SYMBOLIC DERIVATIONS OF NONLINEAR PROBLEMS....cocoitveraiviarnrerenss 104
6.3.1 The objects for a consistent linearization scheme in FEM_Theory 104
6.3.2 Implementation in FEM_Theory ... 105
6.3.2.1 The linearization procedure 105
6.3.2.2 Class Increment 108
6.3.3 The graphical envir t.. 109
6.4 ENHANCING THE AUTOMATIC PROGRAMMING PROCEDURE..... 109
6.5 APPLICATION TO A NONLINEAR ONE-DIMENSIONAL ADVECTION EQUATION MODEL.....cevnetsnmminesseisnanans 110
6.5.1 Strong and weak form of the problem 110
6.5.2 Derivation of the stabilized space-time formulation for 1-D nonlinear advection in FEM_Theory. 111
6.5.3 Numerical code generated for nonlinear formulati 112
6.5.4 Numerical resultsoooeeivereennvcnnnns 114

12

Contents

6.6 TOWARDS A GENERAL PURPOSE ENVIRONMENT FOR NONLINEAR PROBLEMS 115
CHAPTER 7 APPLICATION TO THE SOLUTION OF THE NAVIER-STOKES PROBLEM............. 117
7.1 ENHANCEMENT TO SOLVE NAVIER-STOKES EQUATION. 117
7.2 A STABILIZED FORMULATION FOR THE STEADY STATE NAVIER-STOKES PROBLEMcootrisimecrscmsmesesieen 118
7.3 A STABILIZED SPACE-TIME FORMULATION DISCONTINUOUS IN TIME FOR NAVIER-STOKES PROBLEM :
APPLICATION TO THE DAM BREAK PROBLEM 123
7.3.1 A space-time formulation for the Navier-Stokes problem with moving boundaries 123
7.3.2 Application to the dam break problem .. 125
7.3.3 Closer to the mechanics . 128
CHAPTER 8 CONCLUSION 129
8.1 A BRIEF OVERVIEW 129
8.2 ANALYSIS OF THE GENERICITY 129
8.3 TOWARDS A GENERAL PURPOSE ENVIRONMENT FOR FINITE ELEMENTS DEVELOPMENTScoevunnierireniiens 131
REFERENCES 133
APPENDIX A 141
APPENDIX B - ANALYSIS OF A ONE-DIMENSIONAL DIFFUSION EQUATION ...cocvecunisiserasnrasaces 157
GALERKIN FORMULATION ...vitetiuniireresiiestsesesesssennssbesienssesessas st ssasesassnensbiss sassosssssssbestasasesssessssisissnssssesssssns 157
GALERKIN LEAST-SQUARES FORMULATION .. 160
GALERKIN / GRADIENT LEAST SQUARES FORMULATION .. 161
NUMERICAL RESULTS FOR THE ONE-DIMENSIONAL DIFFUSION EQUATION .. 163

APPENDIX C - LINEAR ELASTODYNAMICS

DERIVATION OF THE FORMULATION AND AUTOMATIC PROGRAMMING
TEST OF THE ELEMENT.c..vcuiiiiiiniererestiiienesersess it sensenos
Description of the problem
Numerical results

CURRICULUM VITAE

13

Chapter 1 Introduction

Chapter 1 Introduction

1.1 High level software tools for finite element analysis

New technologies in computer science applied to mechanical computations open today the
door to alternative approaches to the solution of mechanical problems. The usual
developments consist in performing a theoretical study of the given problem which normally
leads to a tedious procedures done by hand and followed by a computer model
implementation. This approach is illustrated in Figure 1 showing the example of the
development of a Finite Element code to solve mechanical problems. The first phase of the
development is the analysis of the physical problem to solve. The problem is generally
described by a set of equations including partial differential equations. This first model is then
replaced by successive equivalent and/or approximated models. The last step is the
development of the last model which is here the numerical code.

Nowadays, these successive derivations can be made in an easier way, faster and more
efficiently through the use of high level software tools, as shown in [FRI 92]. These tools can
be grouped into three main classes of ideas. The first one corresponds to the last generation of
high level programming tools which can be decomposed into two main classes : the classical
procedural languages (FORTRAN 77 and 90, PASCAL, ...) and the object-oriented languages
(C++, SMALLTALK, Java, ...). The second one includes algebraic software systems such as
Maple, Mathematica, Matlab As shown in [FRI 92], it is worth having a third hybrid
approach for general mechanical analysis, which means an approach based on mixed
symbolic-numerical tools. The objective of this work is to develop such an environment based
on high level programming languages, capable of both manipulating algebraic equations and
performing efficient numerical computations. It must be widely open to all types of future
extensions such as the application to alternative new finite element formulations or new
numerical schemes.

- Initial Boundary Value Problem

g

o

5 Strong statement

3

8 ‘

5 . Symbolic

E manipulations

% A J

g Finite Element Code

E Structure | . Structure
z IData ﬁlel > -~ computafion - - -} | Result ﬁlel
3

H

5

z

Figure 1 Overall scheme for generating Finite Element Code

i5

Chapter 1 _ N Introduction

1.2 Overview of the use of algebraic computation tools for finite elements

The use of algebraic manipulations software has always been a point of interest for finite
elements development. The first related works date from the beginning of the development of
the finite element method in the seventies. Among the first related works one finds [LUF 71],
in which is described a methodology to automatically generate finite element matrices based
on the characteristics of the new element; the approach is restricted so far to a finite number
of problems: plane strain, bending, and shallow shells. Since then, a lot of people have used
algebraic computation capabilities to assist finite element solution procedures. A few similar
works organized in three main categories are related here. Firstly, some people use symbolic
computer systems directly applied to finite element analysis, mixing both analytical and
numerical approaches. The second class of approaches groups all the works in which the main
objective is to improve the efficiency of numerical computations in classical finite element
codes. Finally, many authors aimed at accelerating finite element code development using
either existing tools or generating them.

1.2.1 Semi-analytical/numerical approaches

In this type of approach, a classical finite element approach is programmed in a symbolic
software package. Some variables are kept as symbolic parameters and thus their influence on
the computations can be evaluated. Two typical examples are given hereunder.

In [CHO 92] an application to 2D elasticity is developed within the symbolic algebra
software Mathematica. The displacement fields for a 2-D body subject to linear temperature
distribution is obtained in a semi-analytical form. Two tests are performed : a homogeneous
elastic body with rectangular shape and a body containing a circular inhomogeneity. This
method renders possible the automation of otherwise tedious code writing and can be useful
for sensitivity analysis because all relevant parameters remain in symbolic form. In [IOA 93],
the software tool Mathematica is used for the solution of two simple elasticity problems by
the finite element method. The principle of the approach consists in keeping a parameter in
the symbolic form of the finite element matrices and using Taylor series expansion for
approximations. Thus, the objective is to try to optimize the parameter of the computation. It
is applied in [IOA 93] to a square plane isotropic elastic medium under symmetric loads,
divided in eight triangular elements. The problem is solved using a Gauss-Seidel method
which makes it possible to study the influence of Poisson’s ratio. The second example
consists in the bending analysis of a rectangular isotropic elastic plate with simply supported
edges and loaded with a uniformly distributed perpendicular load. Here the influence of the
ratio of the dimensions is studied.

This semi-analytical/numerical environment should obviously provide a convenient
framework for optimization of parameters, using finite element techniques for the
computation. But at the current state of developments in software and hardware, this can only
be applied to small problems. Moreover, extension to alternative linear and a fortiori
nonlinear problems seems to be difficult.

Chapter 1 Introduction

1.2.2 Enhancing finite element code performance

Another current use of mathematical software tools consists in effectuating some preliminary
computations in order to enhance the efficiency of the finite clement code.

In [YAN 94], expressions for linear isotropic materials in statics in 2-D and 3-D, are
evaluated algebraically, and integration of the stiffness matrix and external forces is
performed. Thus the integration scheme is optimized before the code is written.

In [SIL 94], the analytical integration scheme is also optimized, using Maple, and the
FORTRAN finite element code is directly generated using a Maple functionality. The code is
then applied to solve finite element problems in magnetics. An approach with similar
purposes is developed in [YAG 90]. Here REDUCE and Macsyma are employed to optimize
a 2D 4-node isoparametric element for elastic analysis and to generate the corresponding
code. In [BAR 89], an application of symbolic computing to the hierarchical FEM is shown;
in this method the degree p of the approximating polynomial functions tends to infinity which
addresses the problem of the accurate computation of the integrals for large values of p. The
approach chosen in this paper is to evaluate them in a symbolic way using the package
REDUCE. This is illustrated on 2D elasticity and the FORTRAN code is produced
automatically, by means of a REDUCE function.

Two important features of using existing mathematical packages are the following. On the
one hand, it is possible to use the power and the flexibility of these environments to optimize
the expressions needed to evaluate finite element matrices. On the other hand the numerical
code can be generated directly within the environment; the advantage is that the code which is
generated automatically does not need any debugging,

1.2.3 Speeding up finite element code de velopment

The derivation of finite element matrices generally involves tedious mathematical
computations. The idea is to reduce the time spent on these manipulations through the use of a
symbolic mathematical environment to determine the matrices of the finite element method
and eventually introduce the final elemental forms automatically into an existing numerical
code (written in FORTRAN for all the examples of this section). This leads to a systematic
development of a finite element code for a given formulation. Some of the works presented
below propose programs which generate directly the correct matrices. They are fed with
various input parameters such as e.g. number of nodes, number of degree of freedom. Some
other works use classical mathematical software to perform the derivations.

An illustration of the first approach is given in [GUN 71]. This paper presents the main
features needed to develop finite element stiffness matrices with a computer. An illustration is
made for the development of a third order triangular plate bending element. This makes it
possible to test, at low cost, new elements for solving a given practical problem. [HOA 80]
and [CEC 77] are based on the same approach. Applications in [HOA 80] are shown on a
cylindrical shell and on the analysis of a curved beam element, whereas in [CEC 77] simple
examples are shown but the method is applied to space-time elements. In [LUF 71], the use of
algebraic software is suggested to manipulate polynomials and perform numerical integration
for finite element development. This methodology includes the choice of parameters such as
number of nodes, number of degrees of freedom per node for each variable, expansion of the
polynomial for displacements, geometric and material properties. The user then keeps the
main features coming from a finite model under his control in order to obtain correct matrix
forms. Many authors have followed the same approach. In [BAR 92], the mathematical
package REDUCE is used to automatically produce elemental mass and stiffness matrices

17

Chapter 1 Introduction

using Hermite polynomials, and then generate the corresponding FORTRAN code for a
conventional finite element code. In the same way in [KOR 79}, symbolic generation of a
finite element stiffness matrix is achieved. Here, the authors have taken advantage of the user-
friendly capabilities of MACSYMA: a library option gives access to a set of pre-defined
matrices shapes for material properties in linear elasticity. In [NOO 81], the potential of using
the symbolic manipulation in the development of nonlinear finite elements is shown. This is
the only work that was found relating to the study of nonlinear problems. The development of
nonlinear finite elements goes through three steps: generation of the algebraic expressions for
the stiffness coefficients of nonlinear analysis, generation of the corresponding FORTRAN
code for numerical evaluation of stiffness coefficients, checking the consistency of the
FORTRAN code generated by comparing it to the FORTRAN statements for the arrays of
coefficients given in the MACSYMA format. Two examples illustrate the approach. A
displacement formulation for a 2D shear-flexible, doubly-curved deep shell element, and a
mixed formulation for the same model with discontinuous stress-resultant fields at inter-
element boundaries. In [CAM 97] the algebraic software Maple is used for multivariate
polynomials computation for finite elements models. Polynomials and their derivatives are
computed using Horner’s method and efficient C and FORTRAN codes are produced. In
[LEF 91}, a system for the generation of global stiffness matrix is described. An input file for
a specific problem is created for a system called SFEAS (Symbolic Finite Element Analysis
System) which generates a file in the symbolic mathematical language REDUCE. The result
is run and a FORTRAN code is produced and then integrated in the equation solving system.
The code produced here is much more efficient than the NASTRAN one, but the
preprocessing phase which includes running the REDUCE system is slow. In [WAN 86], a
LISP-based system to derive formulas for the finite element method and to generate directly
FORTRAN code is described. Efficient techniques for code generation are employed such as
automatic labeling of expressions and exploitation of symmetries in expressions. It is the only
reference in which the problem of automatic programming is clearly addressed. The package
is written in LISP and runs with MACSYMA. The input can be given by the user interactively
or introduced via a script file. The cifferent entities needed for finite element formulations can
be generated, for example B-matrix (see [HUG 87, p. 871), jacobian matrix, stiffness matrix,
etc... The accent is put on the optimization of code generation, aiming to get an efficient
numerical code. The two last examples we give here are probably among the best developed
systems. Many other similar applications can be found in [NOO 90] and [NOO 79] and the
references therein.

The examples given in this section show the usefulness of high level tools in the development
of finite elements. This analysis draws the main lines of the concepts needed for a general
purpose environment dedicated to the finite element method. These approaches show the
potential of symbolic software tools for enhancing FE techniques in a computerized
environment; on the one hand, the domain of application is wide and, on the other hand,
various solution schemes have been used. They show that in order to get a general purpose
system for fast prototyping of finite elements, several ingredients are necessary: a natural and
user-friendly description of the problem, an efficient symbolic computation tool, and finally
an efficient link between the symbolic tool and the numerical finite element code. All these
systems need a preliminary analysis usually performed manually before the development can
be passed over to the computer algebra software and suffer from a lack of generalization
capabilities. In fact, all these systems have their drawbacks. The first one is that all the
systems still need a preliminary analysis performed manually, which can be rather tedious.
The second one is the necessity to use multiple systems which a fortiori requires the
developer’s knowledge of each of them. For example in [SIL 94, YAG 90, BAR 89]
derivations of finite element matrices are obtained using an algebraic system (Maple,

18

Chapter 1 Introduction

REDUCE, Macsyma); the elemental forms are then introduced for a classical finite element
code using a classical programming language (in all cases here FORTRAN). Consequently,
the user has to do the symbolic computations in one environment and the numerical
computations in another one, with the necessity for him to be able to evolve in two different
programming environments and to learn both an algebraic software language and a classical
programming language. The third one has to do with the computerized symbolic
manipulations part. Each one of these systems has been developed to optimize specific
features of the finite element approach; for example in [YAG 90], numerical integration is
optimized, whereas in [CAM 97] it is the accuracy of the computation of polynomials that is
optimized. It means that all these systems are specialized for some given tasks. As matter of
fact, the extension of these tools or approaches to new finite element problems can become a
tremendous task and can lead to impossibilities in complex nonlinear approaches.

The use of object-oriented techniques should make it possible to overcome these difficulties,
while keeping the main advantages of symbolic approaches.

1.3 Object-oriented finite element programming

Many difficulties arise in the development of FE software. This represents the last step in the
process of developing simulation tools. At the very beginning of the step lies a given physical
problem. This problem is generally modelled by a set of partial differential equations. At this
stage assumptions are made on the geometry, the kinematics, the loading, etc... A finite
element strategy is then applied to the mathematical model. The result is in general a few
pages describing the algorithms and the matrix form of the problem, expressed in a “simple”
mathematical language. The traditional approaches lead to the elaboration of the
corresponding computational tool, which usually is far from the original form of
mathematical algorithms. The problem of both the architecture of the software and the
language used in this development is a crucial point evoked e.g. in [BRE 92b, CHA 88]. It is
necessary in some sense to get closer to the natural mathematical or mechanical language.
Thus, the coupling between conventional procedural approaches (the most popular is
FORTRAN) and the developing of high level data abstraction concepts with simple and
natural programming rules lead to a new generation of FE codes (see e.g. [VER 88, BRE
92b]). A new approach for the FE code organization advocated in [COL 88, REH 89}
corresponds to object-oriented programming. This approach naturally encompasses concepts
for high level architecture and evolution towards more natural mathematical languages. For
the first time in [REH 89 and MIL 88], object-oriented programming was proposed as a
general methodology for Finite Element implementation. Both implementation examples use
a LISP based system. One of the key points of the method to get better structured programs is
the very high level data abstraction capabilities of the approach. In [REH 89], objects of
matrix type appear and in [MIL 88] structural objects such as node, degree of freedom, and
element are described. The latter is completed in [MIL 91} where object-oriented languages
are discussed. In [FEN 90}, the modularity and the reusability of object-oriented finite
element codes are put in prominent position and the efficiency in the design and the
implementation of FE is emphasized. The same conclusions are drawn in {[FOR 90]. Here an
interesting comparison is performed between a classical FE code (a C program) and an
equivalent object-oriented version (a mixed C - Object Pascal program). The size of the OO
code is smaller, probably due to the use of the inheritance. Similar remarks can be found in
many papers: [FIL 91, ARO 91, LUC 92, DUB 91, BAU 92, DEV 92a,b , ROS 92ab,c ,
MAC 92, SCH 92, NIE 94, ZEG 94, DRO 96, MAC 97]. In [ZIM 92, DUB 92, DUB 93], a
complete OO environment for linear FE analysis is thoroughly discussed. A new concept is

19

Chapter 1 Introduction

introduced here as a programming rule, “the non-anticipation rule”. By never anticipating the
state of the object when sending a message to it, the code becomes much more robust. The
extension of the ideas to nonlinear analysis can be found in [DUB 95, DUB 97], with
additional interesting concepts such as “unassembled matrix” which allows a more flexible
implementation of solution schemes using alternative storage. A complementary approach to
the one proposed in [DUB 93] is proposed in [MEN 93] for nonlinear constitutive laws, here
J, plasticity. Accordingly, in [BES 97, FOE 96], an advanced description of the object
“material” is given. The integration of complex constitutive laws in a C++ object-oriented FE
code is made easier and more flexible by using C++ programming rules permitting dynamic
binding and linking of code. Since then, the Object-Oriented paradigm has been used in many
fields of computational mechanics: in parallel implementation of the FE code [ANG 92, BUF
97, HSI 97], in rapid dynamics [POT 97], in multi-domain analysis for metal cutting, mould
filling, in composite material forming [WAL 96, GEL 95], in fracture mechanics [KAW 95].
This list is of course non exhaustive but shows that these ideas are now widely spread in the
computational mechanics community.

In most of these works it has been shown that the implementation resembles more closely the
mathematical developments. Roughly speaking, the algorithms are easier to describe and the
definition of basic mathematical entities is natural. The object-oriented paradigm has been
shown to be most appropriate to easily describe complex phenomena. But this description is
usually limited to the elemental forms and their management whithin complex solution
algorithms.

1.4 An object-oriented hybrid symbolic-numerical approach for finite
element analysis

Taking into account the features developed in the works on symbolic derivations reported in
section 1.2, the idea is now to develop a system dedicated to fast prototyping of finite element
formulations, including nonlinear ones.

The need to deal with a large range of problems leads to the creation of an environment
capable of managing all the concepts needed to solve physical problems, such as differential
equations, variational formulations, integration by parts, weak forms, finite element
approximations,... where traditional.y manual derivations are replaced by a computer tool. A
second important feature is the necessity to keep a traditional numerical code. This is justified
for the following reason: complex geometric domains are necessary to test finite element
formulations; somehow, tests have to be done on real life problems. The natural integration of
both a numerical finite element environment and features for symbolic manipulations (see
Figure 1) is achieved through the object-oriented paradigm. In the category of high level
languages, object-oriented programming is today getting more and more attention in
computational mechanics as shown in section 1.3. In the particular context of finite element
software development, this type of approach leads to better structured codes for which
maintenance and extendibility are facilitated. These are the capabilities of the approach to
represent complex systems which lead us to select it. In a sense, this work can be seen as an
extension of previous ideas developed for object-oriented concepts applied to finite elements
(see [ZIM 92, DUB 92, DUB 93a]), to the symbolic derivation of the finite elements
formulations; it is a new way of programming finite elements. The link between the numerical
world and the symbolic world leads to the development of object-oriented concepts for the
automatic programming of symbolic elemental matrix forms derived from finite element
formulations. The result is a global environment in which the numerician is able to move

20

Chapter 1 Introduction

naturally, always using a language close to his natural one. As a final test of the work
presented in this thesis, the proposed environment will have to prove its capabilities in the
evaluation of various formulations of the Navier-Stokes equations in the context of a project
about debris flows described in [FRE 97].

1.5 The thesis

1.5.1 Overview

In chapter 2, the general approach which leads to the creation of FEM_Theory is presented in
the example of elastodynamics. The main objects are then deduced and the hierarchical model
is thoroughly discussed. In chapter 3, the object-oriented concepts for automatic programming
of finite elements are presented. In chapter 4, an attempt to development assistance tools is
made: a simple scheme for dimensional analysis and writing consistency checking is
developed. In chapter 5, the approach is extended to stabilized and space-time formulations. A
brief review of these methods mainly applied to computational fluid dynamics is given;
illustration is made on a 1D advection equation. A nonlinear approach is developed in chapter
6 and is illustrated on a 1D nonlinear pure advection equation; a multi-dimensional example is
treated in chapter 7 on an incompressible fluid driven by the Navier-Stokes equations.
Conclusions and perspectives for this type of work are drawn in chapter 8.

1.5.2 How to read the thesis

This thesis can be read in two different ways. The reader who wants to have a global
overview of the environment can read only chapters 1, 2 and 8, and sections 3.1 and 3.3. He
can then have a look at the various examples of formulations given in chapters 5, 6 and 7, and
in appendices A, B and C. The reader interested in implementing related ideas will find all the
details in chapters 2, 3 and appendix A.

21

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Chapter 2 An object-oriented environment for
symbolic derivations of finite element formulations

2.1 General approach

The overall approach for a classical finite element approach is illustrated in Figure 2 by the
equations of elastodynamics. Starting from the strong form of the problem statement an
equivalent weak form is derived as shown in step 1 ; the matrix form results, from the weak
form, by discretization in step 2. Finally, at step 3, the generation of the code depends
essentially on the language selected for the code to be generated ; this aspect will be discussed
in the next chapter.

As discussed in the introduction, all three steps can be done in a single symbolic object-
oriented environment called FEM_Theory. The generated code is implemented in an existing
object-oriented finite element code (see [DUB 92] and [DUB 93]). The general features of the
environment are described in this chapter. In section 2.2, the main objects needed for the
derivations are presented. The hierarchy of classes built in this study, on the one hand, and,
the interaction between objects, on the other hand, are presented in section 2.3 with a brief
description of the classes. The implementation is done in the Smalltalk environment but could
be done in any other object-oriented language. In section 2.4, the concepts of the object-
oriented graphical environment of FEM_Theory are described. Finally, an example of
derivation is conducted step by step in section 2.5, on the example of a 1D bar in
elastodynamics.

2.2 Symbolic derivation of matrix forms for a linear initial boundary value
problem

2.2.1 Derivation of the weak and matrix forms for elastodynamics

The proposed approach is best demonstrated with an example; the case of linear
elastodynamics is considered here. The problem statement is given on Table 1, as a set of
differential equations. The derivation of matrix forms for the implementation into a finite
element program requires first a weak form , equivalent to the strong form ; a complete
derivation is given on Table 2 for easy reference. This step requires various manipulations
such as integration by parts, substitution of expressions using other relations. The selection of
an appropriate approximation space leads to a discretized weak form and finally to the
derivation of matrix forms written from elemental contributions; it is given on Table 3 and
Table 4. A complete treatment can be found in {HUG 87} e.g..

23

An object-oriented environment for symbolic derivations of finite element formulations

Chapter 2
FEM_Theory Strong form
O-ij,j+fi:pcu“' onQxT
O.n.=F, ond,QxT
jj i 2
u=u on &'IQ xT
O-ij =Cijkl£kl(u) onQxT
1
%j(”)_f(ui,j-'-uj,i) onQxT
1.) + Initialconditions
Operator s choices : f Symbolic
- weighting functions E‘_‘:’> . .
- variational formulation manipulations
Weak form

pcu,, W)o tau,w)=(f,w)g +(F, W)azn

2' Operator ’s choice®\, Automatic
- shape functions |—_—_I-'> . e
- number of nodes dlSCItetIZatIOIl
Matrix form
Md,+Kd=f

Automatic generation

3.

FEM_Object

Finite element code

Figure 2 General variational approach for finite elements

24

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Table 1 Strong statement of linear elastodynamics Initial-Boundary-Value-Problem

(Find u with appropriate continuity requirements, such that :
Qin R"™
n,,: number of the space dimension

The equation of motion :

o,,+fi = pu, on QxT Y
The boundary conditions :

o,n,=F, on 3,0xT)
u=u ond, QxT 3)

with 30=3,Qu3,0
The constitutive equation :

0, =Cyibu on OxT ®
The initial conditions :

u,(r=0,x)= (uv,)0 on (5)
w(t=0,x) =1, on Q (6)
With the kinematic law :

=L) @

Table 2 Derivation of the weak statement of linear elastodynamics

[et 147 be the set of the zero kinematically admissible displacement fields for which W is in 144, W is regular and satisfies
w=0 on the boundary 9 Q.

Let § be a solution to the problem defined on Table 1, then for every W in 4/ one can write the variational principle
j(dij_j+f|.)w‘.dv=J‘pu,.‘"widv n

Q Q

Expanding the left-hand-side :

J"y,jwid" +jf,.w‘.dv =jpumwidv e
Q Q Q
Integrating the first integral by parts :
ja,.},njw,.dv —jaijwi'jdvﬁ"f,.w,.dv =Ipu,.‘,,w,.dv (€)
EY Q Q Q
Introducing into (2) and using the boundary condition (see Table 1), equation (3) becomes :
_[F,.w,.dS—J-O',,jw,.'jdv +If,.w,.dv=jpu,.‘,,w,.dv @
X Q Y Q
Assuming O i symmetric, O Wi = OUEij 5 introducing the constitutive law (4) becomes :
J'Fiw,.dS - _[C,.ju £, (W)€, (w)dv + J.f,w,.dv = jpum w,dv (&)
EX Q Q Q
And, after rearrangement the final weak formulation results :
[puywidv+ [Cpey e, widv = [Fiw,ds + [fwdv ©®
Q Q 2,0 Q

Finally, after an obvious change in notations :

(pu‘,,,w)ﬂ+a(u,w)= (fowk + (7, w),zn N

25

Chapter 2

An object-oriented environment for symbolic derivations of finite element formulations

Table 3 Derivation of the matrix form

Introducing the approximations into the weak formulation :

Sloutsowi) + S abet w)= X (o) + 3),
=1 =1 J=1 J=1

After expansion of the equation and assuming that the operators are linear, one obtains :

" 3
with: b — 2 ZNAdAiei and b = 2 ZNAd;jej where 7] is the set of all nodes and 5/ 1, : all nodes excluding

i=l acnin,

Jj=1 Aenin;

the kinematically constrained nodes and €; : the: vector basis.

2 2 nz“dAi,ud;j(l)NAei’Nﬂei)n+ 2 Z id""d"’ia(N‘e"’N"ei)

Acnfmg Benfng i=1
jel

Aenfn; Benjny ifll
o

= froa T 2 zd;?i(NBei'fj)n

Benfng i=l

+ 3 Ydu e F) - ;gr;zu:,.d,,ja(mei,lv,,ej)

Benfng i=1
j=i

Notice that isolated loads are introduced here as nodal loads f, , into equation (2).

i=1
=

Invoking arbitrariness of d” , and symmetry of M and K equation (3) results :

Md"+Kd=f
where :
kK=AM(k)
M=Ax(m)
f=fua + A(5°)

k® = D‘;g] m’ = [m;g]
kip = [BLDB,dv
4

miy = [PN4Nydv
Pl

rbi)

(@) and k;p =ejkze;

(6) and mp, =emige,

1= Fia [Nofidvt [N EdS=Y ki
a xr g=1

with:1<P,@<n, =n,n,,

and: P=n(A-1)+i
O=n,B-1)+j

n,, is pumber of element degree of freedom per node

6)
@)

®

where : A is the assembly operator
"

is number of element equations

n,, is number of clement nodes

0y

2

3

26

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Table 4 Elemental contributions

k‘=_[B’Dde B=|5,-B |
q with : -

m°=ij‘Ndv N=[N1“-Nnm]

Q

D results from the compaction of C.-,-u' and N, and B, are the nodal contributions of the shape functions and global

derivatives of shape functions.

2.2.2 The main objects of the symbolic environment for elastodynamics

The goal consists in building an environment capable of symbolic manipulations and
computations for a semi-discrete approach to the linear elastodynamics problem. The classes
which are needed will be identified following the steps of the derivation of the weak and
matrix forms. The index notation is used throughout these derivations.

2.2.2.1 Derivation of the weak form

From the strong form it appears that a first class of objects is needed to represent terms like
Oy F,, u;, call it class Term. The index notation is used here for the reason that the analysis

of a string to represent a given term can be simplified using the following convention: an
uppercase represents the name of the field, a lowercase represents the indices. Typical
members of class Term are illustrated in Figure 3 with the specification of their attributes:
field name, indices, derivation indices and time derivation indices. All the attributes are
strings. Instances of Term should be capable of performing tasks like derivation, substitution
and adding themselves to other instances of Term.

Oj.j Wi 1t
Description attributes : Description attributes :
- name : O - name : u
- indices : U - indices : l
- derivation indices :] - derivation indices : none
- time derivation indices : none - time derivation indices : £/

Figure 3 Description of typical members of the class Term

An instance of Term is capable of analyzing itself, i.e. to define the nature (scalar or vector,
unknown or known, virtual or solution) of its own field ; capable also of identifying which
operator is applied to it. The tasks assigned to an instance of Term are some manipulations :
substitution, addition and derivation. An instance of Term is built in fact from elementary
strings, and all operations performed on it are therefore nothing more than alphanumeric list

27

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

manipulations. The capacities of an instance of Term of analyzing itself indicate however an
elementary mathematical structure which could be extended. At this stage, a special type of
term is needed to represent special operators, such as operator €, the symmetric part of the

gradient of vector field. The corresponding class is called Operator. The structure and the
behavior of this class are the same as the one of class Term. But one attribute is added: the
function on which the operator is applied.

With instances of Term, instances of Expression can be built, which are algebraic sums of
products of instances of Term or Expression ; an instance of class Expression is illustrated
in Figure 4.

The expression : (O-ij, i + f;)Wi

Its storage :

+
Legend: —— Product
—— Sum
—— Tem

Figure 4 Structure of an instance of Expression

Again some basic operations can be performed by the instances of Expression which are
essentially : expansion, substitution. These methods are discussed next.

Instances of Expression can be viewed as lists of lists, representing sums of products. All
tasks consist in manipulating these lists. Expansion consists in reorganizing the expression in
order to obtain simpler expressions, i.e. products containing only instances of class Term (no
instances of class Expression as Figure 4 shows). The underlying mathematical operation is
the application of the distributivity, e.g. ((@+b)c+d = (ac +bc+ad +bd). The
corresponding methods are : addDist: and multDist:

Substitution consists in removing some instances of Term in products and adding an instance
of Expression to replace it.

The Expression class has shown the necessity to manipulate algebraic sums and products as
shown in Figure 4. Two classes, SumList for sums and, ProdList for products model this
behavior.

At this point the integrand of the variational form can be stated and manipulated; a class
Integral is now needed. This class can be described as shown in Figure 5.

28

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Class Integral

Example : I G, Wi dv
ie)

main attributes:

- the integrand : O; ;W;
- the domain :

main tasks:

- integration by parts, i.c. : I Wi dv— j o, Wg"jdV — J oW, dv
Q E Q

Figure 5 Typical instance of class Integral

Integration by parts generates a sum of integrals and the new integrands are generated by the
first one, which is an instance of class expression. This shows that the expression must be
capable of identifying which term carries the space derivative, and of activating the proper
substitution.

The notion of functional is introduced next. Class Functional incorporates algebraic sums of
instances of Integral. Here classes SumList and ProdList are also used, as shown in Figure
6.

Class Functional
Example : j(o’ij'j + fi — pu;ywdv
Q

main attributes :
- composing integrals (sum of products of integral) sumList
main tasks :
- expansion : I(f + g)dv =dev + jgdv
Q Q Q

- integration by parts of selected terms :

I(a"i-i + fi - pu,.‘,,)widv——)ja,.jw,.njdv - Ja’ijwi'jdv + J. fiw;dv — Ipu,.‘,,w,.dv
o) Q 0 Q

Figure 6 Typical instance of class Functional

The variational principle is an instance of class IntEquation, expressing the equality of two
functionals, one on the left-hand-side, one on the right-hand-side. It is described in Figure 6.

29

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Class IntEquation

Example : _[(0'.-,-,,- + fyw,dv = J'pu,.‘,,w,.dv
Q 4]

main attributes :

- left-hand side lhs

- right-hand side rhs

main tasks :

- manipulations on Ihs and rhs

Figure 7 Typical instance of class IntEquation

An accessory class not directly associated with our reference problem can be added here, the
class System. This object is the representation of a set of equations (see Figure 8).

Class System

_[(a,.j,j + fwdv = Ipu,..,,w‘.dv
Example: [Q o
Iu,.',.qdv =0

Q

main attributes :

- aset of equations equationsCollection
main tasks :

- ipulations performed on its equation

P

Figure 8 Typical instance of class System

Notice that this class has a general construction. The collection of equations can contain all
types of objects, not only IntEquation objects type.

At this stage all the key classes needed to generate weak forms are available and one can
proceed with the discretization.

2.2.2.2 Derivation of the discretized weak form
The operations associated with discretization are described on Table 3 and Table 4. The first
one consists in the selection of proper local approximation functions for 4 and w , e.g. :

L2

u' =2N,,da
a=1

Replacing u and w, in the weak form, by u* and w" and associated derivatives consists in
instantiating DiscretizedExpression. Each instance of Term instantiates an expression which
corresponds to its discretization. The smallest entity of the result is the representation of
elemental contributions, an instance of DiscretizationMatrix. Then the result is arranged in
order to yield an instance of DiscretizedEquation. As the class DiscretizationMatrix is the
equivalent of the class Term for the discrete form, classes DiscretizedExpression and
DiscretizedEquation are the equivalent of Expression and IntEquation. Indeed, discretizing
an equation requires discretization of the left and right-hand sides, which are functionals
composed of integrals, Consider the discretization of the following integral :

30

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

A(u,w)= j Cout yWan dv

where u is a kinematically admissible field and w a zero kinematically admissible field and
1

U, =€;(w)= E(u,._ jtu ,-..-) is the symmetric part of the operator gradient applied to a vector

field.

The discretization of this integral is sketched in Figure 9; this requires new classes for the
discretized expressions which are DiscretizedExpression and DiscretizedEquation. The
same algebraic sums and products, i.e. classes SumList and ProdList, are used here. The
discretization procedure is decomposed into 3 steps and shows the need for new structures.

The integral (as example here ‘[Cijk,u(k‘,)w(i‘ »dv) asks its integrand to give its discrete form.
Q

The terms are included into intermediate structures, instances of subclasses of
FEMTheoryDiscretizationStructure (one subclass for unknowns and one for given data).
This object asks its terms to determine the differential operator applied to its own field, which
operator answers the corresponding discrete form; the different discrete forms are then
combined to give the final answer d'Kd’. The discretization of a term contained in an
intermediate structure is described in Figure 10. The procedure is here completed by the
introduction of a new intermediate structure in which the elementary discrete form
corresponding to the differential operator applied to the field is embedded, subclasses of
FEMTheorySpatialDifferentialOperators (new differential operators are introduced here).
The main objects needed for the derivation of a finite elements model for classical
elastodynamics have been introduced here. It is worth noting the generality of the proposed
approach. First, new types of operators can be introduced easily into the objects. Second, the
different steps needed for the approximation of the weak form and discretization of the
domain have been clearly separated in the study of section 2.2.1.

Remark: the class System defined in the previous section can also be used to represent
collections of discrete equations.

Integral object x>
(mf,r;} ? _[Coit ey Wy AV

Structure for discretization
(FEMTheoryDiscretizationStructure)

For unknown
and for given data

Discrete form = (d' K d*)
(DiscretizedExpression)

Figure 9 Discretization of an integral

31

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Structure for discretization

T u
(FEMTheoryDiscretizationStructure) (%.f)

Structure for spatial

Symmetric part of gradient
differential operator SymGrad[u]

operator applied to a vector ficld

Discrete form
(product of symbolic elementary matrices) ==z m

Figure 10 Discretization of a term included in an intermediate structure

2.3 The class hierarchy and the classes for an initial boundary value
problem

At this stage, the main objects needed for the derivation of a finite element problem by a
variational approach have been detected. The intuitive approach chosen here to identify the
objects needed for the proposed problem leads to a given number of structures for which the
main behaviors are determined. The following step is the analysis the corresponding classes in
order to isolate common attributes and methods. Then, they can be included into the hierarchy
of the Smalltalk environment. The aim of this section is not to give the details of the
implementation of the classes, but only an overview of the environment. All details about the
classes and their methods can be found in Appendix A.

2.3.1 The class hierarchy

The complete hierarchy corresponding to the symbolic environment is grouped under classes
FEMTheory and FEMTheoryOrderedCollection, and illustrated in Figure 2. Observe that
the set of classes for FEMTheory lies next to the classes of FEMObject (in bold italic
characters in the hierarchy shown in Figure 2) -the object-oriented finite element code (see
Chapter 3) without any barrier between symbolic and numerical environments. In the next
section, the classes of the hierarchy are briefly discussed following the hierarchical order.

32

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

2.3.2 Review of the classes
This subsection may viewed as a quick reference to the hierarchy of classes.

2.3.2.1 The collections

All the classes implemented in this part of the hierarchy are a specialization of existing
classes of the Smalltalk environment. In the following section, classes Dictionary and
OrderedCollection are discussed (see [VIS 95a] and [VIS 95b)).

2.3.2.1.a The dictionaries of FEMTheory

Class Dictionary implements the behavior of the object dictionary. A dictionary represents a
collection of objects, in which elements are accessed by keywords. Two types of behavior
specialization have been implemented.

In the symbolic environment dedicated to the finite element method, for some specific
features, it is necessary to have a large number of possibilities that can be included into lists.
For example, in order to offer the user a friendly environment, several solved problems, i.e. a
set of partial differential equations, are available and the list can of course be enriched easily.
An elegant way to implement it is to use the existing Smalltalk class Dictionary. This object
is used to store solved problems. It is also sometimes necessary for a typical collection of
objects to specialize the access to the objects or to classify them; this is the case for class
FEMTheoryShapeFunctionsDictionary which represents a dictionary of shape functions.
Class FEMTheoryGeneralDictionaryOfUnits regroups all combined units constructed from
fundamental units; this dictionary is used for dimensional analysis, its special role is to
recognize the units through their definition.

Remark 1: a tool of the Smalltalk environment stores the objects (instances of classes) on
disk, and recovers them (see class ObjectFiler [VIS 95b]); this makes it possible to manage
the persistency of dictionaries in a natural way, as well as the elements contained therein.

Another way to specialize class Dictionary is to use this class for special purpose objects.
Class Dimension for example, implements composed units, which result from combinations
of fundamental units. The problem of dimensional analysis is addressed in chapter 4.

Remark 2: Classes equivalent to class Dictionary exist in other object-oriented languages
(e.g. C++) or can easily be built (see e.g. [DUB 93)).

33

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Object

Collection
IndexedCollection
OrderedCollection
HashedCollection
Dictionary
FEMThearyDictionaries
Dimension
FEMTheoryGeneralDictionaryOfUnits
FEMTheoryShapeFunctionsDictionary

FEMTheoryOrderedCollection
EguationsCollection
ExpressionLists
Prodlist
SumList
FEMTheoryCollectionStructure
FEMTheoryDiscretizationStructure
GivenDatasDiscretizationStructure
UnknownDiscretizationStructure
FEMTheoryProductStructure
FEMTheorySumStructure

FEMObject

FEMTheory
FEMTheoryMathematicalStructures
StructureWithDimension
Expression
DiscretizedExpression
Functional
Integral
IntEquation
DiscretizedEquation
VariationalPrinciple
Discretized VariationalPrinciple

DiscretizationMatrix
Increment
Operator
SpecialTerms
JUMP_TERM
System
FEMTheorySpatialDifferentialOperators
SCALAR
DFGradientF
FgradientDF
Ciradient
Scalar
SecondDerivativelD
TENSOR
VECTOR
Div
DivSymmGrad
DUGradU
Grad
SymmGrad
UgradDU
Vector
GeometryReference
NpbDiml
Q2
NpbDim2
Q4

N.B. : underlined classes names correspond to the native environment

Figure 11 A symbolic environment for the Finite Element Method

34

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

2.3.2.1.b Subclasses of FEMTheoryOrderedCollection

In the Smalltalk environment, ordered collections (class OrderedCollection) are collections
of objects in which the elements are stored in a prescribed order, the one in which objects are
included into the collection. This object is the basic structure for various objects of
FEMTheory regrouped under generic class FEMTheoryOrderedCollection. Class
EquationsCollection implements the behavior needed for collections of equations for
systems (see at the end of section 2.2.2.1). Under class ExpressionLists, are classes ProdList
and SumList. These classes represent the products and sums needed to model and
manipulate expressions (for the continuum problem or the discrete one). Special collections
are grouped under class FEMTheoryCollectionStructure: a) classes used for discretization
processes, for unknowns and given data (class FEMTheoryDiscretizationStructure), b)
special sums and products needed for automatic generation of the code (classes
FEMTheoryProductStructure and FEMTheorySumStructure)

2.3.2.2 Subclasses of FEMTheory

2.3.2.2.a Subclasses of FEMTheoryMathematicalStructures

In class FEMTheoryMathematicalStructures, all the classes needed to represent the
different steps of the derivation are grouped. All its subclasses inherit its attribute
hierarchicParent which makes it possible to take advantage of the hierarchical structure of
the manipulated objects, such as expressions, equations, ... This feature is discussed in
section 2.3.3. Class StructureWithDimension inherits behavior corresponding to
dimensional analysis by its subclasses (see chapter 5). Classes Expression, Functional,
Integral, IntEquation, VariationalPrinciple, Term, Operator and SpecialTerms and
subclasses permit to represent continuum problems in strong and variational forms. Classes
DiscretizedEquation, DiscretizedVariationalPrinciple and DiscretizationMatrix make it
possible to deal with discrete forms of the problem. Class System makes it possible to
manage sets of equations.

2.3.2.2.b Accessory classes

Class FEMTheorySpaceOperator and subclasses implement the basic matrix structures
corresponding to the spatial and time differential operators

Class GeometryReference and subclasses implement behavior for a reference element, i.e.
data describing the kinematics of the element in a natural coordinate system. Elements are
classified by dimensions. More complex kinematics for beam or shell elements can be added
here.

Class Unit is a structure representing a unit, e.g. the Newron N. The characteristic of the unit
is its dimension (object dimension is a dictionary, see Chapter 5 and section 2.3.2.1.a) , e.g.

N =kg sm.s 2 the unit has access to the dictionary of units.

35

Chapter 2 An object-ortented environment for symbolic derivations of finite element formulations

2.3.3 Data transfer in a hierarchical tree of objects dedicated to finite elements

Structure

The problem addressed in this section is the storage and the transfer of data in complex
objects. To give an illustration consider the object instance of IntEquation used to represent
a variational form in Figure 13. The instance of IntEquation has a left hand side and a right
hand side. Consider the left hand side. It is a functional which has a sum containing products.
In these products, one can find an integral. The integrand is an instance of Expression, which
is a sum of products of terrns or other expressions. The problem is that the same data can be
required at different levels of the tree in order to perform different tasks. It is necessary first to
store a piece of data once, and second to be sure to have access to it when necessary. The
natural structure makes it possible to pass messages down the roots of the tree. A link to the
father, represented with dashed-dotted arrows in Figure 13, makes it possible to pass
messages upwards. This is done in the hierarchy (Figure 11) by giving every mathematical
structure an attribute called hierarchicParent. In fact, this attribute is given to class
FEMTheoryMathematicalStructures for main mathematical objects, and to
ExpressionLists for sum and product lists. Subclasses inherit the attribute and corresponding
behavior from their respective superclasses. The illustration of the contents of the attribute
hierarchicParent for the classes is given in Figure 12.

Integral

SimList <4—ProdList
Equation 4«—— Punctional <———j T

Term

T
.

Logend :

X—»Y

n [stance ef class X can have us artribie
hierarchicParcat an instance of class ¥

Figure 12 Tree built with the attribute hierarchicParent

36

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

___________ ,!(aﬁ.v}m)w,. dv=0lq

IntEquation Pt SRR b -
{ |]
L
Fuctional i@t fowan O
o Q !
LY I
SumList ,\y+ i (0, fiyw dv +0 '1\\
vl vl
Ly
ProdList ::v+ i (0y;+ fidw dv +0§

Oy |

A
N\, 0 -~
Integral \y.[(0, fyw, dv
AR
{
AN
Expression /»((0'.;, st fw)
i
L
SumList ')+(aij.j + fiw,
{
AY
ProdList Nt (G OV
!
+ i
7
Expression w05 %" Term
'.\.
SumList - ®* %t f.-q.\
4 Y
! !
+fd R tation of th
. -+ ("‘..v . epresen on O {3
ProdList /" " l hierarchicParent link:
! S
N\
Term "~ fi

Figure 13 Tree representation of an instance of IntEquation

Message passing procedure

Within the tree structure, messages can go down the roots in a natural way, the equation sends
a message to its functional located in the left hand side, a message to be forwarded to sum and
product, and so on to the target object which can perform the task or return an answer. With
the proposed frame, messages can also propagate the opposite way. Consider the following
simple example of the space dimension in the context of Figure 13. The object representing

the variational form j (o, + fi)w; dv =0, which is an instance of IntEquation, knows the
Q

dimension of the space, attribute spaceDimension of class IntEquation. Suppose the term

37

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

0, ; needs this information (frequently needed) which is stored at the level of the object

j(a,.jv ;+fdw,dv=0 . The procedure by which the term gets the space dimension is
Q

programmed by means of two methods shown in Figure 14 and Figure 15. The method
implemented in class IntEquation is natural and respects the non-anticipation rule adopted as
a programming principle (see [DUB 92]). The object ‘equation’ supplies the number if it
exists, otherwise it will try to get it by an alternative way (here by asking the user). The other
objects of the structure (terms, sums, products, integrals, functionals) inherits the method
Figure 15 from FEMTheoryMathematicalStructures or ExpressionLists. Each one of
them successively requests the space dimension from its hierarchic parent until the equation
which can answer the question.

giveSpaceDimension

spaceDimension isNil
ifTrue:[spaceDi ion := self getSpaceDi jon].
AspaceDimension

Figure 14 Method giveSpaceDimension of class IntEquation

giveSpaceDimension

hierarchicParent notNil
ifTrue:[* hierarchicParent giveSpaceDimension].
Anil

Figure 15 Method giveSpacelimension of class FEMTheoryMathmaticalStructure

2.4 The graphical environment for the derivation of variational statements

At this stage, the mathematical environment has been described. Now, the derivation of a new
problem consists in writing first a script file to describe the formulation and second to act on
it. In order to simplify the management of the formulations, a simple user-friendly graphical
interface has been created. The concepts described in section 2.4.1 have been established with
easy and fast extendibility in mind which is an essential aspect of the global prototyping
approach. A brief description on the use of the interface is given in sections 2.4.2 and 2.4.3.

2.4.1 Simple object-oriented concepts for the graphical interface

The main graphical window gives a view of the problem and is used to send a message to the
object on which an operation needs to be performed.

View of the object

Every object is represented by a character string; strings can be obtained for every object by
sending to it the message printString. Examples of views of different objects are given on
Table 5. Remember that here the convention adopted is the following: upper cases represent
names of fields and constants, and lower cases represent indices (the index notation is adopted
throughout FEMTheory). Note that every object can be identified from its string, and can also
be extracted from a global structure. For example, consider the string representing a

38

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

variational formulation: «INT{(N,xW) // D}+INT{(RW) // D} = INT{DAU,ttW)». The object
Integral represented by the string «INT{(N,xW) // D}» can be extracted from the equation
and sent a specific message. In order to obtain the representation of this object, the message
printString goes down the tree illustrated in Figure 13, and the resulting string is constructed
by concatenating the contributions of each object.

Table S View of objects in FEMTheory

Class Usual mathematical notation (example) Corresponding representation in FEMTheory
Term J 2Ui Uitt
ar’
IE: it N.x-R;
Xpression N.x —-R (N.x-R)
Integral _[N wdv INT{(N.xW) // D}
D
Functional J N wdv + I Rwdv INT{(N,xW) // D}+INT{(RW) // D}
D D
[Equation JN awdv + wa dv= IDAM awdv INT{(NxW) // D}+INT{(RW) / D} =
b b b INT{DAU,itW) I

Derivation of a problem

During the derivation of a finite element formulation, the nature of the problem changes.
First, an object IntEquation represents the successive variational forms; then an object
DiscretizedEquation makes it possible to model the discrete forms, and finally an object
System regroups the set of discrete equations. With the principles of representation given in
the previous section, all derivations can be made by simple manipulations on these main
objects, performed within a Windows graphical environment.

2.4.2 The interface

The manipulations of the current problem are made within a graphical window (Figure 2).
This window is built by using a tool called WindowBuilder, which is completely integrated
within the Smalltalk environment (for details about the environment see [WIN96]). As a
matter of fact, the window object is an instance of a class called FEMTheoryMainView. The
object representing the problem (either an instance of IntEquation, or DiscretizedEquation,
or System) is an attribute of this window. A push-button system permits to send it messages.
The different steps of the derivation appear in the text pane of the main window and are
referred by line number; each step corresponds to the view (string) of the object manipulated.
A set of push-buttons permits to select a tool and to apply it using the button ‘Apply selected

39

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

tool on the current object’. The set of tools available in the graphical environment, for the
current object, is obtained by sending it the message giveArrayOfTools. The set of tools is
then filled with the tools. Each tool corresponds to the selector of a method of the window
which is automatically built and dynamically made available. The current object is then sent a
message corresponding to the invoked action. Take the example in Figure 16 line 1. The
object is an equation (instance of IntEquation). Consider the selected tool called ‘Expand’.
Pushing the button ‘Apply selected tool on the current object’ sends the message
applySelectedTool of the window object. The corresponding method is presented in Figure 17.
The string ‘applyExpand’ is built, and the code ‘self applyExpand’ is dynamically executed
(the keyword ‘self’ corresponds here to the window instance of FEMTheoryMainView). The
method applyExpand is presented in Figure 18. Here message expand is sent to the current
object; in this case, the method expand is implemented in class IntEquation. So, adding a
new tool is made in two steps, in a matter of minutes :

(a) implementing a method in class FEMTheoryMainView for which the name is the string
‘apply’ completed by the name of the push-button

(b) adding this new tool narne in the list of the object being manipulated.

Opening of a problem stored in a file on disk

nt problem on disk
Creation of a new problem

. . Lire 10 INT § (S HRIWaY ¢ DTENT (U BLPROD B EiU)
View of the object at the ' '

current step of the derivation |)
—pfLire 2 INT { (S Wi # D WINT { (RiWa) s D HINT £(C0Q) @ D JINT ((11PQ) # D} =0

‘Tools applicable on
" the current object

Application of the selected
tools on the current object

Inspect the current object

Automatic generation
in the code FEM_Object 5 ccess to the numerical
code FEM_Object

Access to pre- and post-

Type of the processing of data Accesstoa diFﬁonary
current object of shape functions

Figure 16 Screen of FEM_Theory

40

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

applySelectedTool Selector of the method
"Callback for the #clicked event in a Button (is 'Apply). Ci
(G d by Wind ilder)
| methodName arguments | Temporary variables
hodN: := (self paneNamed: #Tools) selected] Ask the push-buttons to answer the name of the selected tool
methodName notNil If a tool is selected...
ifTrue:{
self changeToBusy. Activity flag of the window is changed to busy state
methodName := ‘apply’, (methodName without:$). The selector of method is built for current tool (string)
self perform: (methodName asSymbol). The code g d at previous line is d) ically
self changeToNormal. Activity flag of the window is changed to free state
1

Figure 17 Method applySelectedTool of class FEMTheoryMainView

applyExpand Selector of method

((self giveObject isIntEquation) or: [self giveObject isDiscretisedEquation]) Check the nature of the object
ifTrue: [self object: (self giveObject expand)] Send the message ‘expand’ to the current object;
the result becomes the new current object
ifFalse: [Prompter prompt: (self giveObject printString)
default: 'Not IntEquation or Di i quation’]. Prompt an error message if not allowed
self printObjectOnBlackboard. Print the new current object on the pane of the window

Figure 18 Method applyExpand of class FEMTheoryMainView

2.4.3 Description of the available tools to derive finite elements

In the previous section the functioning principle for the interface was addressed. In this
section, the main available tools are described.

2.4.3.1 Tools applicable to variational forms
The tools given on Table 6 are applicable to equations, i.e. instances of IntEquation, or to
selected objects composing them.

41

Chapter 2

An object-oriented environment for symbolic derivations of finite element formulations

Table 6 List of tools available for variational formulations of a continuum

! “Expand”

I

The current equatf(mr%ked to expand both
sides. The properties of distributivity and the
linearity of the integral are applied.

“Integrate By Parts Selected|Integration by parts applies to an integral

Integral” selected in the line representing the current
object, and this integral is integrated by parts.
The divergence theorem is applied after
integration.

“Substitute Terms In Selected|Substitution applies to an integral selected in

Integral” the last line ; an edition window permits
substitution of one term or more in the
integrand by another expression.

“Discretize” The weak form is sent the message to get its

approximation and the discretization of the
different fields on the element. The user is then
requested to specify the discretization, the space
dimension, etc..; all this information is
requested by the object which needs it.

“Check Indicial Notation”

Check the coherence of the notation introduced
by the user

“Check Dimension”

Perform a dimensional analysis of the current
object; check the coherence of the units (see
chapter 4)

“Find Dimension For Selected

Term”

Find the dimension of the selected term by
analyzing the current object (can only handle
simple situations, see chapter 4)

“Define Dimension For Selected
Term”

Associate a dimension with the selected term

“Remove Selected Product”

Remove selected product of the current object

“Give Directional Derivative”

Compute the directional derivative of the
current object using theory presented in [HUG
78]

“Compute Consistent Linearization”

Compute a consistent linearization of the
current object (see [HUG 78] and chapter 6 for
more details)

2.4.3.2 Tools applicable to discrete forms
The tools of Table 7 are applicable to instances of DiscretizedEquation.

42

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Table 7 List of tools available for discrete variational formulations

“Invoke Linear Independence” This button invokes the arbitrariness of the
weighting functions chosen for the current
problem (linear independence of the equation of
the linear system)

“Transpose” Each component of the current object, a
discretized equation, is a matrix. This tool
permits the user to transpose each side of the
equation, and the corresponding matrices.
“Shape Functions Replacing” This button permits the replacement of shape
functions by their expressions. It gives access to
a dictionary of predefined shape functions,
which can of course be enriched easily.

“Rename” Permits renaming the selected term in the
current object

“Remove Selected Product” Remove selected product of the current object

“Add A Perturbation Term” Add a term to the current discrete object (see
discussion on stabilized methods in chapter 5)

“Add Methods” Automatic generation of C++ code

corresponding to the selected elemental form

The tools applicable to systems of discrete equations are similar to the one presented on
Table 7.

The last tools applicable to discrete forms are the ones needed for automatic finite element
coding for the code FEMObject (see Chapter 2 and [ZIM 92]{DUB 92}[DUB 93]. Push-
buttons to generate either Smalltalk or C++ code are part of the main window of FEMTheory
(see Figure 16).

2.4.4 About the interface

The simple and truly object-oriented features applied above to the interface can be generalized
and applied to different situations. Here objects are represented only by strings. The same
scheme could be applied to views which could be closer to natural mathematical notations,
using e.g. a bitmap system.

2.5 A first example of derivation: a one-dimensional elastic bar
The easiest way to get a feeling of the proposed approach is to follow a demonstration.

2.5.1 The problem

The case of an elastic uniaxial truss in dynamics is illustrated hereafter. The problem
statement is given on Table 8; this corresponds to a particular case of the problem stated on
Table 1

43

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Table 8 One-dimensional elastic bar problem in dynamics

Find U displacement with appropriate continuity such that :
N, +R=pAu,onQxT QcR

R are the body loads
A is the area of the section

Boundary conditions :
N=F ond,QxT

u=u ondQxT
Constitutive equation :
N = EA¢

Initial conditions :
u, (t=0,x)=(u,),

onQ

u(t=0,x)=u, onl

Kinematics law :
E=u,

2.5.2 Derivation of the matrix form

The activation of a new problem gives access to two successive editors (see Figure 19) where
the differential equations, trial solution and weighting functions can be defined using the
notations defined above. The first window give access to a dictionary of a predefined set of
equations corresponding to various problems. This dictionary can of course be enriched.

The resulting variational statement is posted on the screen of Figure 20, on Line 1.

Cantintie with selected éq‘ulﬁons

where :

N _ is the first derivative of the traction stress

X

R represents the body loads
U is the axial displacement (solution)
W is the weighting function for the axial displacement

D isthe density
A is the area

u.ll

is the second derivative of the axial displacement (acceleration)

Figure 19 Definition of the initial statement in FEMTheory

44

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

AR

Line 1: INT { (Nx+R)}W)) // D }-INT { (DAULW) // D} = (0)

Line 2: INT { (NxW) // D }+INT { RW) // D }-INT { (DAUUW) // D } = (0)
Line 3: INT { RW) / D }-INT { (DAUMW) /# D }-INT { (WxN) // D } = (0)

Line 4: INT { (RW) // D }-INT { (DAULW) // D }-INT { (Wx(EAUX) # D }=(0)

L1
;- Compute Consistent Linearization
Stmality - oo

Bemove Selocted Broduct..
Give Direclipial Derivativi

eovy"pgsg'pm

Figure 20 Derivation of continuum problem in the screen of FEMTheory

The expansion of selected expressions results from manipulations on lists activated by
pushing the proper button. Notice that both terms of the instance of IntEquation are
expanded. The result is shown on line 2, Figure 20.

Integration by parts requires the identification of the integral to work on. The integral is
selected on Line 2, and the button “Integrate by parts” is pushed. The result appears on line 3
Figure 20. Notice that no boundary conditions and no nodal loads are taken into account ;
these will be considered in the numerical part of the solution. They do not appear explicitly
here, but should be kept in mind.

Additional information, such as the problem dimension is simultaneously requested from the
user, using prompters like the one shown in Error! Reference source not found.. The
constitutive law can now be introduced to replace N by EAU,x (see Error! Reference source
not found.). This concerns the third integral on Line 3. The result of the substitution appears
on line 4. of Figure 20.

E Give the dimension of the problem

T

Figure 21 An example of prompter

45

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Inintegra : INT{(W,xN) // D}

replace B

l

by expression : [Eaux

]

Figure 22 Prompter for substitution

Notice that substitution replaces instances of class Term by an instance of Expression
without performing any mathematical operation. The introduction of the Neumann boundary
condition also corresponds to a substitution which is purely formal, the associated boundary

domain being unknown at this stage.

Discretization and interpolation requires the introduction of locally based approximations for

2 2
u and w such thate.g. u=» N, and w=Y Nd; . The windows used to introduce them

i=l i=

are shown in Figure 23.

A matrix form of the constitutive equation is introduced next. The result is shown on Line 5,

in Figure 24.

1

Interpolation of the field: W

Shape function Unknonwn name

Numbered
From:

Interpolation of the field: U
il in

[Shape functlon"l "Unknonwn name

(O EO

|

{Numbeveu

]

Figure 23 Interpolation choice

46

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

_ XN) v
Line 4' INT { (RW) // D }INT { DAUNW) // D }.INT { (WEAU) /# D }=(0)
Line 5: ({{ INT[t(r) NON)*]1}} {{d*}} o
ACH{dM}}) {({INT[(NN}) d 2 NON)™]}} {{d"}} :
e ACHd) {UINTL (AN) ¢ a2 AMN™ 13} {({d*}})=(0)

e o:

COINTL (e) NONY*]33 -0 {{de} }) {{INT[(NQN)) d a2 NON™* 1}
e RO) (UINTL (AN) e 2 AQNY* 1}})=(0)
me /.

(CCOINTL () NONY 133)4 {{ INT[(NN) d & NQO™* 13)) {{dtt}}
ACLUINT t((A@M)) e 2 AQD™ J3}) ({d}}) =(0)

dd A Pertuibation Tf:rm
L Sin

“"nape hunctions-dictionary © »

Figure 24 Derivation of semi-discrete form on the screen of FEMTheory

Arbitrariness of the virtual field d" is then invoked; the result appears on Line 6 Figure 24
(the star indicates a virtual field). The equation is finally transposed, the resulting matrix
formulation of the problem is shown on Line 7 Figure 24; it corresponds to the usual matrix
form of the problem, i.e. Md"+Kd = f .

The actual choice of the shape functions occurs at this stage along with the integration
scheme. The corresponding editor proposes a selection of shape functions, as illustrated in
Figure 25. This editor gives access to a dictionary of shape function, object instance of
FEMTheoryShapeFunctionsDictionary (see section 2.3.2.1.a and Annex A). Now, the
integrands have taken a form which is ready for coding, e.g. the element (1,1) of the elemental
matrix {{INT[t(A) t(E) t(B(N)) B(N) 1}} corresponding to the stiffness matrix is given by
(using the proposed notation) : INT { (((((1/((X1(-0.5)+(X2(0.5))))(-0.5))((EXANN(
1((X1(-0.5))+X2(0.5))))(-0.5)))) // D }. This string of characters can now be interpreted to
generate the code in an appropriate language, e.g. Smalltalk or C++. These aspects are
discussed at length in the next chapter.

47

Chapter 2 An object-oriented environment for symbolic derivations of finite element formulations

Biquadratic
Bilinear - Space Time orn

Remove function. .|

Figure 25 Shape functions selection

48

Chapter 3 Concepts for automatic programming of finite elements

Chapter 3 Concepts for automatic programming of
finite elements

The use of symbolic software such as Mathematica or Macsyma can be really helpful either
for directly solving finite element problems or for simplifying expressions in numerical
computations of finite element problems. This is illustrated for example in [YAG 90, LEF 91,
I0A 92, CHO 92]. Automatic generation of finite element elemental contributions and their
implementation into a finite element code can be found in [CEC 77, KOR 79, WAN 86). All
these papers show the power of symbolic computation tools, and show their usefulness to
generate numerical code. In chapter 2 and in [ZIM 96, EYH 96a), the basis of an object-
oriented environment for finite element code generation is presented. The aim of this chapter
is to give the principles of automatic generation of finite element code in this object-oriented
environment. The description is given in the context of a finite element code developed in
Smalltalk language (see [ZIM 92b]; extension into a C++ finite element code (see [DUB
92b]) is also possible, in order to achieve efficiency. A first application is made in the
example of elastic bar seen in the previous chapter. These principles are illustrated on a
classical formulation of linear elasticity in dynamics and on a penalty formulation for Stokes
flow problem.

3.1 Automatic generation of a finite element code in a symbolic object-
oriented environment

In this section, the principles of automatic programming are described, and code is generated
into the object-oriented Finite Element code FEM_Object, Smalltalk version (see [ZIM 92b]).
The reader should refer to chapter 2 for a complete description of the structure of the
symbolic environment. In first subsection, the principles of automatic implementing an
object-oriented code are given; in the second subsection the way of adding dynamically
classes and methods in the Smalltalk class hierarchy is described, and is used in the third
subsection for finite element code generation.

3.1.1 Principle of automatic generation of a code in a symbolic object-oriented
mathematical environment

The object oriented data organization adopted here, leads to an easy and natural code
generation. Most of the information needed to develop part of the code corresponding to the
new theory are contained in the object characterizing the problem, i.e. an instance of class
System. The reader should refer to the previous chapter for details about the different
structures representing the problem. Roughly speaking, only the code corresponding to

49

Chapter 3 Concepts for automatic programming of finite elements

elemental matrix contributions needs to be generated and added to an existing finite element
code, using the proper language. In the following, the automatic generation of a new element
in the object-oriented code FEM_QObject, written in Smalltalk, is discussed. Code generation
in C++ for FEM_Object in C++ version, for example was also done and follows the same
principles.

The key point in this part is, on the one hand, to reuse the code corresponding to data
management (nodes, degree of freedom, ...), for the solution of the global linear system
resulting from the discretization and, on the other hand to particularize the behavior
corresponding to the computation of the elemental vectors and matrices. The data
organization of FEM_Object (see [ZIM 92a] and {DUB 92a]) leads to the creation of a new
subclass of the class Element. This class will be given the behavior needed to compute the
elemental contributions corresponding to the formulation. The particularity of the Smalltalk
environment is that the creation of the code is made dynamically, i.e. when Smalltalk and
FEMTheory are running.

As already mentioned, the result of the symbolic derivation is an instance of class System.
This instance is sent the message to create the code. The message goes over all the objects
composing the instance, each of them realizing a particular task using its encapsulated
information. Our aim in this chapter is to describe all the tasks performed by the instances
forming the system.

The problem consists now in creating a new subclass of the class Element into which the
elemental matrices are built. All the information needed to achieve this is encapsulated in the
objects participating in the instance of class System, representing the last step of the symbolic
derivation. Each of them has to bring its contribution to the generated code and so as naturally
as possible. As usual in object-oriented approaches, it is better for the reusability of the code
to decentralize the operations in order to be as general as possible. First it is necessary to see
how it is possible to add a subclass to a class , and how to add instance and class methods in
a given class. Then, each object embedded in the system will have a particular task in the
generation of the element for the finite element code. It is interesting to note that this scheme
is quite general for the creation of a code in any language, only the operation to be performed
would be different, since obviously there is no creation of class in Pascal or FORTRAN.

3.1.2 Programming in Smalltalk

In this part the key points of the implementation in Smalltalk language are given. Details of
the language can be found in [VIS 95b].

The power of the Smalltalk environment is that, as already mentioned, the addition of a code
can be done dynamically. This feature is worth detailing. Programming in Smalltalk means
enriching the native hierarchy, this operation can be made during the execution itself. The
advantage is that it is possible to add a code and to use it as soon as created.

There are three main types of additions to an existing hierarchy : the first is adding a class, the
second adding an instance method and the third a class method. Details about these
techniques can be found in [EYH 96a].

50

Chapter 3 Concepts for automatic programming of finite elements

3.1.3 Finite element automatic programming in the FEM_Theory environment

After this description of implementation in Smalltalk in a general way, let us look at the
different subclasses of FEM_Theory to describe the generation of the element.

The result of the symbolic derivations is a system of discretized equations; in elastodynamics
it is for example Md , + Kd = f It is important to know the structure of this symbolic object

to understand the process of the code generation. lustration is given in chapter 2, in Figure 3.
The principle of message passing is the same as for other operations like transposition,
discretization, etc.... It is explained in section 2.3.3 and in [EYH 94]. The message goes over
from one object of the system to the next, following the hierarchicParent tree. Figure 26
illustrates it in the example of the discrete system for the elastic bar in dynamics derived in
the previous chapter. The system (instance of class System) has one equation, which has a
left-hand side and a right-hand side. The left-hand side is a sum of a product of matrices
(instance of DiscretizationMatrix). The structure of this object is illustrated on the stiffness
matrix K. This object is characterized by an elemental matrix, here a two-by-two matrix. Each
coefficient of the matrix is an integral, for which the integrand is an expression. Messages for
code creation follow this tree.

System hd Md’" +Kd =0
DiscretizedEguation Md ," +Kd =0
Sumlist + Md " + Kd +0
Prodlise + Md it + Kd +f)
DiscetizationMatrix . M d K d 0
it
<o dh - dh
fo
Macrix ‘J;‘“d" i”'d"
v
Iutegral ij“ +X)ES(1-X) dv
Expression %(l +X)ES(1-X)

L LES RES

Figure 26 Hicrarchical tree for a system of discrete equations

Chapter 3 Concepts for automatic programming of finite elements

Class System

This object is the one manipulated by the user in the graphical interface. The command to
create a new element in FEM_Object is sent to the environment by the user through a push
button (see section 3.4.2). The message sent is aSystem createNewElement. Through this
message a few tasks are activated (see Figure 27). As the class Element encapsulates the
behavior associated with a specific theory in FEM_Object (e.g. elastodynamics), likewise the
system possesses all the knowledge to build this element, which knowledge is encapsulated in
several objets. Each of them brings its own contribution to the new element.

createNewE ement
" Create a new clement in class Element of FEMObject. *
InewElernent aBag result stringl equation |

"1 - CREATION OF A NEW SUBCLASS OF CLASS Element IN FEMObject”
newElement := self askTheUserTheNewElementName.
Element subclass: (newElement asSymbol }
instanceVariableNames: "
classVariableNames: ”
poolDictionaries: .
self createMethodsIn: (newElement asSymbol).
self iationMethodIn: El t asSymbot).

*2 - CREATION OF THE METHODS MANAGING THE ATTRIBUTE
JjacobianMatrix
IN THE NEW ELEMENT IF IT DOES EXIST "
(newElement asSymbol asClass) hasAnAttri] 2 i ix
ifFalse: {
Element subclass: (newElement asSymbol)
instance VariableNames: ' jacobianMatrix '
classVariableNames: "
poolDictionaries: " .
(self givelacobianMatrix) createMethodWithArgument:
#giveJacobianMatrixAt:

inElement: (newElement
asSymbol).
1

"3 - CREATION OF THE METHODS MANAGING THE ATTRIBUTE
jacobianMatrix
IN THE NEW ELEMENT IF IT DOES EXIST

i MethodsInElement: (newElement asSymbol) .

Figure 27 Method of class System to create a new element

Firstly, the most important task that the system has to perform is to create the subclass of class
Element. The user is asked the name of the new element with a prompter message. Then the
new element is given four class methods. The first one is the instanciation method new. The
method to be implemented is shown in Figure 28. The problem consists in constructing the
string corresponding to this method and to compile it in the element environment. The method
for doing this is createlnstanciationMethodin: newElement. This method uses the code
creation described in section 3.1.2. At this point, the system is asked the number of nodes of
the element needed to create the method new.

52

Chapter 3 Concepts for automatic programming of finite elements

Asuper new setNumberOfNodesTo: 2
Figure 28 Example of method new to instanciate new elements

The other three class methods added to the new class, are the ones which return the number of
nodes, return the number of geometric nodes, and the space dimension, all this information
coming from the system’s arguments ; the method for doing this is createMethodsin:
newElement.

Secondly, the system creates the code corresponding to the management of the numerical
jacobian matrix (see class Integral for example) ; this comes from the fact that the class
system possesses all the characteristics for the change of variable from local to global
coordinate axes embedded in attribute geometryReference.

Thirdly, the element must be equipped with methods in order to be capable of performing
tasks to compute elemental contributions .The last part of the method createNewElement, is to
send the message createMethodsinElement: newElement to the instances of class
DiscretizedEquation, which embodies the initial boundary value problem. As the system has
already created all the things it could, it now requests its equations to perform their tasks.

Class DiscretizedEquation

The only method (see Figure 29) which has to do with the creation of a new element is
createMethodsInElement: newElement. In this method, all the terms are put on the left hand
side of the equation which is sent the message createMethodsIinElement: newElement ; the
left-hand-side is an instance of DiscretizedExpression.

createMethodInElement: newElement

self putAllLhs,
self giveLhs InElement: newElement

Figure 29 Method of class DiscretizedEquation to create new methods

Class DiscretizedExpression
In the method createMethodsinElement: newElement , the argument sumList is asked to
create its own methods (see Figure 30).

createMethodsInElement: newElement

self giveSumList MethodsInElement: (newElement asSymbol).

Figure 30 Method of class DiscretizedExpression to create new methods

53

Chapter 3 __Concepts for automatic programming of finite elements

Class Sum List
In the method createMethodsinElement: newElement , all the components of the instance,

here instances of ProdList, are asked to create their own methods (see Figure 31)

createMethodsInElement: newElement

self do:[:pListl pList MethodsInElement: newElement J.

Figure 31 Method of class SumList to create new methods

Class ProdList

The tasks assigned to this class in code generation (see Figure 32) are more complex than
those seen above. It is important to recall that the code is introduced in an existing code
capable of dealing with first and second order time derivative semi-discrete problems. At this
stage, the instance of ProdList only contains instances of class DiscretizationMatrix. These
are sent the message to create a code with the chosen selector of method.

Consider the products Kd and Md,,. For the first one the matrix K corresponds to a stiffness
matrix and M to a mass matrix. The parameter which distinguishes them is one nodal
unknown vector, d or d, This check is made here. Then the instance of
DiscretizationMatrix is asked to create a method named computeStiffnessMatrix or
computeMassMatrix. Notice that if the product has only one factor, the matrix is asked to
create methods to compute load vectors.

createMethodsInElement: newElement

(self size =1)
ifTrue:[(self at: 1) createLoadMethodsInElement: (newElement asSymbol) 1.

(self size = 2)
ifTrue:{
((self at: 2) isTimeConstant)
ifTrue:[(self at: 1) Method: # i
inElement: (newElement asSymbol)).
{(self at: 2) isTimeSecondDerived)
ifTrue:{(self at: 1) hod: #comp Matrix
inElement: (newElement asSymbol)].

Matrix

Figure 32 Method of class ProdList to create new methods

Class DiscretizationMatrix

Ensuing from the preceding paragraph (see Figure 32) , this class has two behaviors for code
generation.

The first one (see Figure 23) is the creation of a method with a given selector ; the attribute
elementaryMatrix is sent the message createMethod: aSelector inElement: newElement.

54

Chapter 3 Concepts for automatic programming of finite elements

createMethod: aSelector inElement: newElement

self giveElementaryMatrix createMethod: aSelector
inElement: newElement.

Figure 33 Mecthod of class DiscretizationMatrix to create new methods

The second method (see Figure 34) concerns the loads methods. The matrix checks if it is
defined on the domain or on its boundary, and according to the nature, applies the above
method with the selector computeSurfaceLoadVector or computeBodyLoadVector.

creatcLoadMethodsInElement: newElement

(self isBodyLoadMatrix)
ifTrue:(self createMethod: #computeBodyLoad Vector
inElement: newElement}.
(self isSurfaceLoadMatrix)
ifTrue:[self Method: #computeSurfaceLoad Vector
inElement: newElement].

Figure 34 Method of class DiscretizationMatrix to create methods to compute loads

Class Matrix
The attribute elementaryMatrix is an instance of class Matrix. The class Matrix has two
different methods of code creation. The first one creates a method to get the numerical matrix,
the second one creates the same method with the capability of passing an argument. For
example, an element may be sent the message self computeMassMatrix . For the creation of
this method the symbolic matrix aMatrix is sent aMatrix createMethod: #computeMassMatrix
inElement: newElement. In the same way, an element may be sent the message self
computeJacobianMatrixAt: gaussPoint2. Here, the symbolic matrix is sent aMatrix
createMethodWithArgument: #computeJacobianMatrixAt: inElement: newElement.
Both methods are built on the same principle (see Figure 35 for the first one); a first part
creates the method which can return the numerical form of the matrix (method
computeMassMatrix for example); a second part creates the methods which compute each
component of the matrix.
This second part of the method consists in sending to each component of the symbolic matrix
the message to create a method to compute itself with the correct selector. Thanks to
polymorphism, whatever the class of the component may be, the right methods will be
created. There is no anticipation of the nature of the components of the matrix (given in a
symbolic way). Each of them may be an instance of Integral, Matrix and Expression. So all
of these classes have both methods :

createMethod: newMethod inElement: newElement

createMethodWithArgument: newMethod inElement: newElement

55

Chapter 3 Concepts for automatic programming of finite elements

Suppose the mass matrix is a 2-2 matrix; method computeMassMatrix is illustrated in Figure
36.

[createMethod: newMethod inElement: newlilement

I'string] dim result newselect
dim := self dimensions.

"1 - CREATION OF THE METHOD OF CLASS newElement WHICH
REPLIES THE NUMERICAL MATRIX"
stringl := (newMethod asString) , * | dim aselector k |
dim := ' ,(dim asString), . k := Matrix new: dim.".
1 to: {dim x) do:[:il
1 to: (dim y) do:{:jl
stringl :=stringl , ‘k at:(*, (i asString) , ‘@’ , (j asString) ,") put: (self ‘, (newMethod asString) , (i asString) , (j asString) ,

]
1
string] := stringl, * ~k ',

result := ((Smalltalk at: newElement asSymbol) compile: stringl).
(Smalltalk at: newElement asSymbol) addSelector: (newMethod asSymbol)
withMethod: (result value).
Smalltalk logSource: string1
forSelector: (result key)
inClass: (Smalltalk at: (newElement asSymbol)).

"2 - CREATION OF THE METHODS OF CLASS newElement WHICH REPLIES
THE (i@j) COMPONENT OF THE NUMERICAL MATRIX"

1 to: (dim x) do:[:i |
1 to: (dim y) do:{:j |
newselect :=(newMethod asSymbol) , (i asString) ,(j asString).
(self at: (1@])) createMethod: (newselect asSymbol)
inElement: newElement .

1

Figure 35 Method of class Matrix to generate methods

computeMassMatrix

I dim aselector k |
dim :=2@2.
k := Matrix new: dim.

k at: (1@1) put: (self computeMassMatrix11).
k at: (1@2) put: (self computeMassMatrix12).
kat: 2@1) put: (self computeMassMatrix21).
k at: (2@2) put: (self computeMassMatrix22).

ix =k

Figure 36 Example of method generated to compute a matrix

Remark 1 : in Smalltalk, a string representing a source code can be dynamically executed. The
code shown in Figure 36 can be replaced by the one shown in Figure 37. The principle is here
to create the message dynamically to compute component i-j. This is an easy way to generate
a short code automatically. This short cut cannot be implemented into a non-interpreted
language (C++ for example) and so, the code will be similar, in the structure, to the one of
Figure 36.

56

Chapter 3 Concepts for automatic programming of finite elements

computeMassMatrix

| dim aselector k |
dim :=2@2.
k ;= Matrix new: dim.
1 to: (dim x) do:(:il

1 to: (dim y) do:[:jl

1 =" MassMatrix’,(i asString),(j asString).
aselector := aselector asSymbol.
k at: (i@j) put: (self perform: aselector).
1.

1
3

Figure 37 Example of simplified method to compute a matrix

Remark 2 : this principle of the automatic generation of a method passing no or one argument
could easily be extended to the passing of multiple arguments.

Remark 3 : the same applies to the method createMethodWithArgument: newMethod
inElement: newElement. In the following paragraphs, as both methods are based on the same
principles, only one is discussed.

Class Integral

The method createMethod: newMethod inElement: newElement (see Figure 38) depends on
the numerical integration scheme chosen by the user. At this stage of the development only
the gauss integration is available, and used here as an illustration. Notice that any kind of
integration scheme could easily be added here.

createMethod: newMethod inElement: newClass
lintegrationScheme |

= self gi cheme

{((integrationScheme = ‘gaussipt’)
or:[integrationScheme = "gauss2pts’})
or:[integrationScheme = ‘gauss3pts’])
ifTrue:fself Method sonr jon: n

d inElement: newClass]

Figure 38 Method to switch to user defined numerical integration

The type of numerical integration scheme is known by the system, instance of class System,
if the same numerical scheme has been chosen by the user for all the integrals.

The following tasks are performed by the method createMethodGaussianlntegration:
#newMethod inElement: newElement (see Figure 39).

Another aspect is the change of variable because the integrands are expressed in local

coordinate axes (from a mathematical point of view J f(X)dX = J F(X(x))J(x)dx where
[o)d o

J(x) is the Jacobian determinant and x the variable in the local coordinate axes).
The process of creation of methods may be split into three actions :

57

Chapter 3 Concepts for automatic programming of finite elements

- a method which returns the gauss points for the numerical scheme is created

- a method which manages and computes the integral is created

- the last part consisting in sending to the integrand the message createMethod:
#newMethodFunctionAt: inElement: newElement in order to generate the code to compute it.

Remark : the selector of the method used for computing the integrand at a given point is
constructed by adding funcrionAt: to the one permitting to compute the integral.

MethodGaussianl ion: newMethod inElement: newElement
Istringl result aBag!

“1 - CHECK IF THE ATTRIBUTE CORRESPONDING TO GAUSS COORDINATES EXISTS IN THE
NEW ELEMENT, IF NOT CREATE IT"
(anElementClass asSymbol asClass hasAnAttributeNamed:((self gi icalintegrati h JArray’))
ifFalse: [self createGaussPointsMethodsin: newElement] .

“2 - CREATION OF THE METHOD OF THE CLASS WHICH REPLIES THE NUMERICAL
COMPUTATION OF THE INTEGRAL"
stringl := (newMethod asString) , *

| f jacobian weight reply |
reply := 0.
self give’, (self gi 2 Sct), 'Array do:[: gp |
= self '(Method), functionAt: (gp giveCoordi Array) .
jacobian := (self giveJacobianMatrixAt: (gp giveCoordinateArray)) determinate.

weight = gp giveWeight .
reply := f* jacobian * weight + reply.
)
A reply”.

result := ((Smalltalk at: newElement asSymbol) compile: string ().
(Smalltalk at: newElernent asSymbol) addSelector: (newMethod asSymbol)
withMethod: (result value).
Smalltalk logSource: stringl
forSelector: (result key)
inClass: (Smalitalk at: (newElement asSymbol)).

"3 - SENDING OF THE MESSAGE TO THE INTEGRANT TO CREATE THE METHODS TO
COMPUTE NUMERICALLY THE INTEGRAND" *
self givelntegrand createMethodWithArgument: ((newMethod), functionAt:’")
inElement: newElement.

Figure 39 Method of class Integral to generate a numerical Gaussian quadrature

Class Expression

The process to create a method to evaluate numerically a symbolic expression is based on the
following principle.

Take an expression (4.x+5.y).e.s.(x1+5.y). The method to be created to compute this
expression is shown in Figure 40. The first part of this method, the assignation of variables,
depends on the language of implementation and on the preexisting Finite Element code. The
last line is the result of the expression method printString. The source code corresponding to
the declaration of the variable is the same for every expression (in a given context); the last
line is added by each expression. The string which has been built may then be compiled into
the new element.

58

Chapter 3 Concepts for automatic programming of finite elements

computeF
Ix y e s x1 y2 materiall

material := self giveMaterial.

e := material give: 'youngModulus”

s := material give: 'surface’.

x := self giveGaussPoint giveCoordinate: 1.
y := self giveGaussPoint giveCoordinate: 2.
x1 := (self giveNode:1) giveCoordinate: 1.
y! = (self giveNode:1) giveCoordinate: 2.
(self giveNode:2) giveCoordinate: 1.
y2 := (self giveNode:2) giveCoordinate; 2,

MA*x45*y) *e*s¥(x1+5%y))

Figure 40 Example of method generated to compute an expression

Remark 1 : this section describes code generation in a F.E. code in Smalltalk. This can be
extended to any finite element code written in any language. At this stage of development,
code generation exists for the object-oriented finite element code FEM_Object written in
Smalltalk and in C++ (see [DUB 92] and [DUB 93}). The principles of automatic generation
in the symbolic environment are the same. An additional difficulty in C++ is that the language
is strongly typed. So during the generation of code for matrices, in particular, it is necessary
to take into account the type of the object contained in the structure, generally double type or
FloatArray type (see [DUB 93]). In a sense, the non-anticipation principle is violated to
generate the source file.

Remark 2 : all the processes described here can easily be extended to mixed problems. Take
the example of the following system :
{Md_,, +Kd+Gp=f

G,d=0
An assemblage procedure leads easily to the following form : Au, + Bu = F (b)

M 0 K G d f
where : A= , B= , U= and F = .
0 0 G, 0 p 0

The form (b) of the system can be treated as described in this section to generate
automatically finite element codes. The supplementary structures added at this stage are a
special type of sums and products called FEMTheorySumStructure and
FEMTheoryProductStructure (see Appendix A for details of implementation). This scheme
is illustrated on examples of Stokes flow in the next section.

(a)

Remark 3: the principles of code generation have been shown for matrices which do not need
passing of arguments. For problems in which elemental matrices computation depends on
time for example, it is necessary to pass arguments, such as the object TimeStep in
FEM_Object (see [DUB 92] and [DUB 93}). This scheme is easily enhanced for it, without
any changes in the general structure. The automatic generation of code for the muitiple
passing of arguments can easily be obtained from the scheme presented here.

59

Chapter 3 Concepts for automatic programming of finite elements

3.1.4 An example of automatic implementation : a bar in elastodynamics.

3.1.4.1 A new element generated in FEM_Object.
The symbolic derivation of an elastic bar in dynamics is detailed in section 2.1.3. The
derivation leads to a system of the form Md, + Kd = f , where M is the mass matrix, K the

stiffness matrix and f the load vector (M and K are 2*2 matrices, f is 2*1 matrix). The
elemental forms of this system can be introduced in the finite element code FEM_Object. The
new element called NewElement appears in the view of partial FEMObject class hierarchy in
Figure 41 (see [ZIM 92a] for more details about the FEM_Object class hierarchy). As
described before, the new class is a subclass of class Element. The methods given to the
element NewElement are shown in Figure 42. They allow the computation of the stiffness
matrix, the mass matrix, the body loads and the Jacobian matrix, the latter being used in some
methods of computation of the integrals. Moreover, the new element is given the capabilities
to create itself and to manage the Gauss points.

FEMObject
FEMComponent
Element
PlaneStrain
Truss2D
NewElement
Load
BoundaryCondition
BodyLoad
DeadWeight
NodalLoad
SurfaceLoad
LoadTimeFunction
ConstantLTFunction
PeakLTFunction
Material
Node
TimeStep
Dof
Domezin
LinearSystem
Tool
GaussPoint
Polynomial

Figure 41 Partial class hierarchy of FEMObject

computeBodyLoad VectorAt: computeMassMatrix22

computeBodyLoadVector
computeBodyloadVectorl1

computeBodyLoadVector11functionAt:

computeBodyLoadVector21 p f Aatrix}1 At
computeBodyLoad Vector2 HfunctionAt: computeStiffnessMatrix21
computegauss2pts nputeStiff Aatrix2 1 At
givegauss2ptsArray computeStiffnessMatrix12
computeMassMatrix p i ix1 At:
computeMassMatrix11 computeStiffnessMatrix22

p dassMatrix11functionAt: p i Aatrix22 At:
computeMassMatrix2 1 giveJacobianMatrixAtl 1:

p ix21 ionAt: giveJacobianMatrixAt:
computeMassMatrix12 new

1p ixi ionAt:

faccMatrix2?

At

computeStifinessMatrix
computeStiffnessMatrix11

Figure 42 List of the methods created in the new element class

60

Chapter 3 Concepts for automatic progr ing of finite el ts

Remark 1: Figure 41 and Figure 42 show the class and the list of methods created in the
environment of the finite element code FEM_Object in Smalitalk version. The class and the
methods created in FEM_Object version C++ are exactly the same; their construction is done
on the same principles.

Remark 2: The creation of the new element is done in a matter of minutes without any
debugging steps for testing the element.

3.1.4.2 Test of the new element

A numerical problem is proposed to test the new element. The impact of a bar on a rigid
surface is analyzed. The problem is described in Figure 43, where Figure 43a represents the
situation, Figure 43b the mesh and the boundary conditions.

(a) Description of the problem

-~/
~
L 4

1 5 1 15 21

(b) Description of the mesh and of the boundary conditions

Figure 43 Description of the numerical test

The data used for the numerical example is :
Density : D = 001 kg.m™

Young modulus : E = 1000 N.m™

Length: L=1m

An explicit Newmark algorithm is used for time integration. The parameters are (see [HUG
871): = 0.5 and P = 0. The time step chosen is At = 1,58 10 s. The initial velocity of the bar
. -1
isvo=1lms".

The exact solution is characterized by a wave emanating from the impact. The wave speed is

1
EY} . . .
c= B\ . The time step At corresponds here to the time required for the wave front to cross

one element. The result is shown in Figure 44: Figure 44a shows the propagation of the wave
along the bar at a different time step, and Figure 44b shows the characteristic time evolution
of the strain at a given point on the bar. They are in agreement with the theory.

61

Chapter 3 Concepts for automatic programming of finite elements

Front wave propapagation : Axial siraln along the bar Evolution of axial strain at different nodes

1 s " 1® DOOE00 750B.04 158803 2I7E.03 3.16E03

————mee L e e

Node 10,
+——— Nodc 15

-0.0035 Time ins.

(a) Propagation of the wave front at a different time step (t = k Af) (b) Strain time-history at node 10 and 15

Figure 44 Numerical results for elastic bar

3.2 Classical formulations in structural and fluid mechanics
In this section, two classical formulations are presented to demonstrate the fast development

capabilities of the FEM_Theory environment. One is taken from structural mechanics, and the
other one from fluid mechanics.

3.2.1 Linear elasticity

Two different derivations have been conducted within the FEM_Theory environment. No
fundamental novelty appears in the first derivation; the reference problem is the one of
chapter 2. This can be found, completed with numerical tests in [EYH 96b] and in Appendix
C. Notice that in the derivation, a boundary term appears due to integration by parts.

For the second derivation, the point of departure is the expression of the potential energy; the
originality of this formulation is the introduction of the concept of functional. A new object
VariationalPrinciple is then created; its behavior is linked to the minimization of the
functional. This is described in {EYH 97b].

3.2.2 A mixed formulation for Stokes flow problem

3.2.2.1 Mathematical formulation

The present formulation is a mixed formulation of compressible media capable of
representing the incompressible limit. Theoretical problems attached to this formulation and
notation definitions can be found in [HUG 87].

The equations chosen for the Stokes flow problem are :

Given f, g and F , find (u , p), the velocity and the pressure, with appropriate conditions of
continuity on domain Q (Q c R™, where n_, is the space dimension) such that :

62

Chapter 3 Concepts for automatic programming of finite elements

0,;+f,=0 inQ

p .
L+==0 inQ
u'xl A,

with the following boundary conditions :

on,=F onl,

u, =g, onl,

and a constitutive law :

o, =—p0d ;+24uE, (u)

In the nearly incompressible case, A is taken large with respect to u (107 £ % <10° which is
a good approximation with a computer precision of 107).

Let us define Y4/ and S, respectively as the spaces of weighting and trial solution for
velocity, and #9 as a space of pressure (functions in 34/ are H, and zero on the boundary of
the domain, functions in \§ are H,, functions in y2 are L,).

A variational formulation equivalent to the preceding strong form is :
Given f, find (4, p)e 8§ X2 such that for all (w,q)eW X713 :

[+ fowav+ [, +Bygdv=0
Q ' Q ' A’

where o, =—pd ;+ 24, (1)

The derivation of the finite element formulation is classical; the operations are described step
by step in the FEM_Theory environment.

Remark: the same formulation is used in structural mechanics to model a linear elastic
incompressible media.

3.2.2.2 Derivation in FEM_Theory :

The variational formulation defined above is introduced through window (a) shown in Figure
45: «8ij,j» is the divergence operator applied to the stress tensor, «Ri» represents the body
loads, «Ui,i» is the divergence operator applied to velocity vector «Ui», «L» (lambda) is a
constitutive parameter, «P» is the pressure field, «Wi» is the virtual velocity, «Q» is the
virtual pressure. Window (a) gives access to a dictionary of predefined sets of equations. On
window (b) the solution and corresponding weighting fields are defined. The variational
principle is then posted on line 1 of the FEM_Theory window shown in Figure 46.

63

Chapter 3 Concepts for automatic programming of finite elements

(é) Déﬁnmon of the \;ariational formulation - (b) Definition of the ﬁnkndwns

Figure 45 Windows permitting to introduce the Stokes problem in FEMTheory

On line 2, the variational formulation of line 1 is expanded. On line 3, the integral
«INT{(WiSij,j) // D }» is integrated by parts. On line 4, the boundary term «SijNj» has been
replaced by «Fi» (Neumann boundary condition). On line 5, the constitutive law is used to
replace the stress tensor «Sij» with «-PDij+CijklEKI(U)» ; «Dij» represents the Kroneker
symbol &, «Cijkl» is the constitutive law, «EKI(U)» is the symetric part of the gradient

tensor of vector «U». On line 6, the preceding line is expanded. As «CijkKIEKI(U)» is
symmetric, «Wi,j» is replaced in line 7 with the symmetric part of gradient tensor applied to
«W», «Eij(W)». On line 8, the indices of the product «DijWi,j» are contracted in «Wi,i». This
is the weak form of the problem. This form is approximated through the use of a finite
elements technique. Information to obtain the discretized form of the weak from is asked of
the user. They are grouped in Figure 47. A bilinear interpolation for velocity and a constant
interpolation for pressure are chosen on a quad element (Q1/Q0 element), «M» is the
dynamic viscosity coefficient. Notice that the space dimension is 2. As the equation on line 9
is true for every «d*» and for every «p*», the two equations of line 10 can be deduced, the
result is a system of discretized equations. The equations of this system are then transposed,
the result is shown on line 1. On line 12, the system is arranged to get a system of one
equation; the change of notation is obvious (see remark 2 in section 3.1.3, in class
Expression) and is shown in Figure 48. At this point, some information about the numerical
integration scheme has to be given for each elemental matrix of the formulation : a two by
two points Gauss integration quadrature is chosen for all matrices. The theoretical
justification can be found for example in [MAL 78]. Note that information about the
numerical integration is used only during the generation of the code. The shape functions are
then defined, in the window shown in Figure 49: functions «N» numbered from 1 to 4 are
replaced with classical bilinear shape functions, function «H» (only one item) is replaced with
a constant shape function. The code corresponding to this formulation is then introduced in
the C++ version of numerical code FEM_Object; this is necessary to get enough numerical
efficiency for subsequent tests. During the code generation some additional information is
requested from the user, such as the constants used in the problem (here «L» a constitutive
parameter and «M» the dynamic viscosity, the names "lambda” and "mu" allow instantiation
of the constants in the data file). The numerical test is briefly discussed bellow.

Chapter 3 Concepts for automatic programming of finite elements

Line 1: INT { ((Sij,j+Ri)}(Wi)) #/ D J+INT { ((Ui,i+1/LP)(Q)) // D }=(0)
Line 2: INT { (WiSij,j) # D J+INT { (WiRi) #/ D }+INT { (QUi,i) // D J+INT { (Q1/LP) # D} =(0)
Line 3: INT { (WiRi) #/ D }+INT { (QUi,i) # D }+INT { (QU/LP) /f D }NT { (WijSij) # D}
+INT { (NjWiSij) // dD } = (0)
Line 4: INT { (WiRi) // D }+INT { (QUi,i) #/ D }+INT { (Q/LP) /f D }-INT { (Wi,jSij) # D}
HNT { (Wi(Fi)) #/ dD } = (0)
Line 5: INT { (WiRi) # D }+INT {(QUi,i) # D }+NT { (Q1/LP) / D}
ANT { (Wi,j(-PDij+Cijk! EKI(U))) // D }+INT { (Wi(Fi)) #/ dD }=(0)
Line 6: INT { (WiRi) #/ D }+INT { (QUi,i) # D }+INT {(Q1/LP) /i D }+INT { (PDijWi,j) / D}
ANT {(Cijkl EKIQU) Wi,j) #/ D }+INT { (Fiwi) /#/ dD }=(0)
Line 7: INT { (WiRi) / D }+INT { (QUi,i) #/ D }+INT {(Q1/LP) # D }+INT { (PDijWij) // D}
ANT { (CijkI EKI(U) (Eij(W) }) #f D }+INT { (Fiwi) #/ dD} = (0)
Line 8: INT { (WiRi) // D }+INT { (QUi,i) # D J+INT {(Q1/LP) /i D J+INT { (P(Wi,i)) # D}
HNT { (Cijkl EKI(U) (Eij{W))) # D }+INT { (Fiwi) #/ dD } = (0)
Line &: ({{INT[t(r)N* 1}} {{d*}} +t({{d}}) {{INT[{{ mB(N)) N* 1}} {{p*}}
+({{p}}) {{INTL t(HL)Y(N) N* 11} {{p*}} +t({{p}}) {{ INT[t(N) mB(N)* 1}} ({d*}}
g -t({1{:)})({|NT[t(B(N))C1 B(N)* 11 {{d*}} + {{INT[t(f) N* 1}} {{d*}})=(0)
ine H
({{INTLt(r) N* 1)} +t({{p}}) {{INT[t(N) mB(N)" 1}}
t({{d}}) {{INT[t(B(N)) C1 B(N)*]}}+ {{INT[t(f)N*]}})=(0)

(t {d}}) L{INTLt(mB(N)) N* T3} +t({{p}}) ({INT[t{1/L)t(N) N* 1}})=(0)

Line 11
(t({{ lNT[t(r)N" 1)+ ({{INT[t(N) mB(N)*]}}) {{p}}
({{INT[t(B(N)) C1 B(N)* 1}}) {d}} +t({{INT[t(T) N* 1}}))=(0)

({{{INTLt(mB(N) } N* 13}) {{d}} +t({{INT[(UL (N} N* 1 }}) {{p}}) =(0)

Line 12:
(K ({ {{d}}; {{p}} }} + {{b}} + {{s}}) = (0)

Figure 46 Derivation of the Stokes flow problem

65

Chapter 3 Concepts for automatic progr ing of finite el ts

Piecewise bilinear interpolation for velocity Piecewise constant interpolation for pressure

Definition of the constitutive law
(«Mb» is the dynamic viscosity coefficient)

Figure 47 Approximation of velocit} andﬁessure for Stokes flow

Figure 48 Change of notation in the assemblage procedure for Stokes flow

66

Chapter 3 Concepts for automatic programming of finite elements

(0.25XY-0.25%0.25Y40.

(-0.25XY+0.25X-0.25Y40.25)
3; (0.25XY+40.25X40.25Y+0.25)
4:(-0.25XY-0.25X+0.25Y+40.25)

Figure 49 Selection of the shape functions for Stokes flow

3.2.2.3 Numerical results

The new element is tested on the cavity flow problem. The description of the problem is given
in Figure 50.

u=1
v=0
u=0| u=0
v=0 v=0 —
u=0
v=0
1
>

Figure 50 Description of the cavity flow problem

The constitutive parameters taken are : =1 and 1=10".

This Q1/QO element is tested on a 12*12 mesh. The velocity field and pressure contours are
shown in Figure 51. The pressure is post-processed to draw the contour without using
smoothing techniques. As known, this element gives good results for velocity, but has poor
performances for pressure evaluation, as the pressure solution shows a checkerboard
phenomenon.

This formulation is to be compared with another one proposed by Franca in [FRA 87] and
derived in Chapter 5. This type of comparison illustrate the fast prototyping capability of the
environment and its usefulness.

67

Chapter 3 Concepts for automatic programming of finite elements

Velocity field Pressure contour

~ e TS

L

Q1/Q0 element

Figure 51 Numerical results for a penalty formulation of Stokes flow for the cavity problem

68

Chapter 4 Computer Aided Software Engineering for finite elements developments

Chapter 4 Computer Aided Software Engineering
for finite elements developments

4.1 Dimensional analysis in an ob ject-oriented environment for finite
elements

4.1.1 The concepts for dimensional analysis

The point of departure of this study is the international system of units (ISO). Take the
example of [NF X 02-051] (French norms AFNOR) or [SNV 0121100] (Swiss normalization
SNV). From the normalization (see Table 10) it can be deduced that each magnitude has a
unit that can be expressed by means of 7 basis units shown in Table 9. The definition of the
unit can be completed bg' the use of a factor and a prefix, e.g. 1 ft=0.3048 m where the factor
is 0.3048, and 1 kN=10"N (prefix k). All the units can be expressed in this way. The aim of
this part is to build structures to represent the units, capable of conversion and analysis.

Table 9 Basis units of International System

Magnitude Unit basis W
name | symbol name . | symbol
Length ! meter m
Mass m kilogram kg
Time t second s
Intensity of current 1 ampere A
Thermodynamic temperature T kelvin K
Quantity of material n mole mol
Luminosity intensity I, cadela cd

Table 10 Example of dimension of units (from NF X 02-051)

h Unit symbol Factor of conversion Magnitud
farad F TAZ capacity

fluid ounce (U.K.) floz (UK.) 2.84130 10% m? volume

fluid ounce (U.S.) floz (US.) 295735 10° m* volume

foot ft 3.048 10" m length
henry H 1VsA'l inductance
joule J 1N.m energy
meter m 1 m (basis unit) length
newton N 1 kgm.s> force

69

Chapter 4 Computer Aided Software Engineering for finite elements developments

4.1.2 The objects for dimensional analysis

In FEM _Theory, the unit, the basic object to be associated to a magnitude, and the behavior
for dimensional analysis are inherited from class StructureWithDimension (see chapter 2),
e.g. for terms, expressions, integrals,... This object is illustrated in Figure 52 on the example
of Newton. The object has a name, a dimension, and its definition can be completed by a
prefix and a factor of conversion. For the sake of simplicity the factor and prefix are not taken
into account. The unit can have access to a data base where it could find all the data needed
for conversion (similar to Table 10). At least, the unit can be associated to an object. So, the
class Unit is defined.

Unit : Newton
1 N=1kg.m.s?

name: N
dimension: kg.m.s?

object : none
unitDicti { Unit symbal Factor of conversion_| Magnitude
nitDictionary o F [y ol p—r

fluid ounce (UK.) flez UK) 284130107 m* volume
fluid ounce (U.8.) Aoz (US) 295735 10" m* volume
foot & 204810 m tength
henry H EVaAt inductence
joule 1 INm energy
meter m 1 en Chasis wnit) lengeh
newton N tigms® force

Main tasks:

- definition of the dimension
- managing of the analysis using the dictionary of units

Figure 52 Definition of the object unit on the example of Newton

The main component of the object unit is its dimension (instance of class Dimension). The
goal is to build a structure capable of giving a representation of the dimension based on Table
9. This is illustrated in Figure 53. The idea is to use an existing structure of Smalltalk, the
dictionary (see [SMA 93] and chapter 3). The key to get access to the data stored in the
dictionary is a symbol corresponding to the name of the magnitude. The data stored at the
corresponding key is a signed integer which gives the power of the basis unit. In Figure 53,
the power corresponding to the length (/) is 1, to the mass (m) is 1, to the time (¢) is -2; the
others are 0. The result for Newton is kg.m.s . The main tasks of this object is to define itself,
by asking information to the user for example, and to effectuate combinations of dimensions
in products. The best is to illustrate it in an example. Consider the product P=m-g where
m is the mass expressed in kg (kilogram), g the acceleration of gravity expressed in m.s and
P the weight. The result P is then expressed in kg.m.s . This is found as follows. Represent
the dimension of a magnitude by the notation []. So, the dimension of P, [P]is obtained by
multiplying the dimension of m by the one of g: [P]: [m]* [g] The “product” which makes
it possible to obtain this dimension is sketched in Figure 54. The final dimension of P is
obtained by simply adding the indices corresponding to the basis units. Thus, this object has

70

Chapter 4 Computer Aided Softwa

re Engineering for finite elements developments

the possibility to be multiplied or divided by another object dimension. A basic algebra is

defined at the level of the object dimension.

The last object needed for dimensional analysis is a dictionary to store the units that can be
seen e.g. in Table 10. A simple dictionary object in Smalltalk could be used here, but a
specialization scheme is needed to look up units in the dictionary. This object is an instance of

FEMTheoryGeneralDictionaryOfUnits.

to the newton (N)

4— Name of the magnitude

4—— Power of the basis unit

Tasks:
- definition

P P

Dlor

N

Figure 53 Example of dimension

Dimension of P : [P} = [m]*[g]

Where: [mi=kg
[gl=m.s?

Sketch with object dimension :

*

%

w- |EHEHEREE
w= [HEEEEEHE

‘ Result : [P} =kg.m.s?

Figure 54 Sketch for the dimension of P=m- g

4.1.3 The classes

Class Dimension

The class Dimension presented on Table 11 is a dictionary of size 7, which corresponds to the
number of basic units, i.e. length (symbol 1), mass (symbol m), time (symbol t), intensity of
ymbol T), material quantity (symbol n) and

current (symbol 1), thermodynamic temperature (s

71

Chapter 4 Computer Aided Software Engineering for finite elements developments

luminosity intensity (symbol Iv) —see [AFNOR X02-051] or [SNV 012100] for more details~.
Each of these symbols gives access in the dictionary to an integer which represents the power
of the corresponding basis unit. The behavior of the classes consists first in defining the
dimension, and second in effectuating basic algebra manipulations on it.

Table 11 Class Dimension

Class Dimension
Inherits from : Dictionary, FEMTheoryDictionaries,..., Object

Inherited tasks Inherited attributes Inherited methods
- - - all the methods for dictionaries
Tasks Attributes Method
1) Definition - answerYourselfFor: anObj
asArray

atAllPut: anInteger
define

defineFor: obj
getBasicUnits
giveBasicUnitsArray
isDefined
isNotDefined

2) Algebra * aDimension
/ aDimension
inverse
power: anint
= aDict

Class Unit

The class Unit (see Table 12) has five attributes. The first four make it possible to define the
unit: the attribute dimension which is an instance of Dimension is completed by the attribute
name, instance of Symbol. The unit can be the unit of a data, a term, a product,... ; it is the
attribute object. At least, the unit may need information to complete its definition from data
stored in the dictionary of units, attribute unitsDictionary.

The first part of the behavior is linked to the complete definition of the unit, i.e. its symbol,
attribute name, its dimension, and perhaps an object (term, expression,...) to which the unit is
associated. The second part of the behavior is the management of the data contained in the
dictionary of units.

Remark 1: The definition of the dimension by the user is decentralized to the attribute
dimension itself (access to the prompter Figure 58).

Remark 2: To give a complete definition of all types of units two attributes could be added
here. The first one is needed to represent the prefix of the unit (see [NF 02-051]), e.g. prefix

72

Chapter 4 Computer Aided Software Engineering for finite elements developments

‘k’ for ‘kilo’ corresponding to 10°. This new attribute prefix could be an instance of a new
class Prefix similar to the class Unit, but managing the prefixes. A second attribute, call it
factor, a float instance of Float, is needed to complete the conversion between the units of the
international system and the others (e.g. the darcy, the gallon, the foot ...)

Table 12 Class Unit

Class Unit
Inherits from : FEMTheory, Object

Inherited tasks Inherited attributes Inherited methods

Tasks Attributes Methods
1) Definition - dimension define
- name defineDimension
- object dimension: aDim
isDefined
isUnit
name: aSymbol
object: anObj
prefix: aSymbol

2) Manipulations - unitDictionary getBasicUnits
getDimension
giveDimension
giveName
giveObject
givePrefix
initUnitDictionary

Class FEMTheoryGeneralDictionaryOfUnits

This class presented on Table 13 is used only to store the different units that can be used in
FEMTheory and behaves as a classical Smalltalk dictionary (see [VIS 95b]). Only one
instance appears during execution; this instance is stored on disk, and recovered whenever
needed, using the tool class ObjectFiler (see [VIS 95b)).

The key used to store the objects of type Unit is a symbol that is the name of the unit. For
example the unit ‘Joule’ corresponding to work or energy, has as symbol J and dimension
kg.m’.s2. All the behavior of the class is inherited from Dictionary. Only one special method
is added to get a unit from the definition of its dimension. This method make it possible to
make a loop on the values of the dictionary to get the key, i.e. from the definition of the
dimension kg.m? s, to get the unit J.

Table 13 Class FEMTheoryGeneralDictionaryOfUnits

Class FEMTheoryGeneralDictionaryOfUnits

Inherits from ;: FEMTheoryDicti ies, Dictionary, ..., Object

Inherited tasks Inherited attributes Inherited methods
Tasks Attributes Methods

Manipulations findUnitOfDimension: aDim

73

Chapter 4 L Computer Aided Software Engineering for finite elements developments

Class Structure WithDimension and subclasses

The class StructureWithDimension (see Table 14) regroups the behavior common to
subclasses needed for representing the variational formulation (see the general hierarchy of
classes of FEM_Theory, chapter 2). The only attribute of the class is called unit and becomes
an instance of class Unit. The only class level behavior is linked to the management of the
unit, i.e. its definition and the procedure to check the consistency of units in a variational
formulation. This scheme is described in the next section.

Table 14 Class StructureWithDimension

Class StructureWithDimension
Inherits from : FEMTheory, FEMTheoryMathematicalStructures, Object

Inherited tasks Inherited attributes Inherited methods
- - hierarchicParent -4 2 of the attribute hierarchicParent”
Tasks Attributes Methods
Managing of the unit unit addDimensionCharacteristicsTo: col forObject: anObj
deduceDimension
findDimensionBackwards
giveUnit

updateDimensionForTerm: aTerm

4.1.4 Strategy for dimensional analysis in FEMTheory

The scheme for dimensional analysis is based on the data structure presented in chapter 2. The
simple algorithm described here implicates the class StructureWithDimension and
subclasses (Term, Expression, IntEquation, ...). The problem is to deduce the dimension of
an object within a complex expression, just by giving the dimension of some terms. The
purpose is not to give a general algorithm for the problem, but rather to give an overview of
the possibilities of such a tool. The principle of the algorithm is sketched in Figure 55 on the

equation j(o,.j_ ; +f)w, dv=0 taken from the linear elasticity (see Appendix B). This
o

scheme is described to find the dimension of the object integral J.(O',.j‘ ;+.f)w; dv, but could
Q

be applied to any objects :
- on the screen, the cbject integral is selected
- the tool ‘Find Dimension For Term’ is selected and applied; consequently, the
message deduceDimensionSelection: integralString is sent to the object IntEquation
- the message goes down the roots of the tree following the doted arrows in Figure 55,
until the selected integral is recognized (highlighted in gray in the figure)
- when the integral is found, the message deduceDimension is sent to the integral itself
- in the method deduceDimension, a first search is done while descending the roots,
sending successive messages findDimensionForward, shown by plain line arrows in
the figure; the goal is to try to deduce the dimension of the object, just by deducing the
dimension of the object composing it; this scheme is successful when one branch of a
root at a sum level is defined
- in the method deduceDimension, if dimension is not found with a process descending
the roots, an ascending process is started by the message findDimensionBackward
(dashed line arrow in the figure), which has the task of sending the message

74

Chapter 4 Computer Aided Software Engineering for finite elements developments

deduceDimensionForObject: integral, in this method either message

findDimensionForward or findDimensionBackward or both are sent to try to deduce

the dimension at the current node (recursive message passing)

- 50, the messages goes down and up at each node, i.e. each object composing the tree

of the equation; the process stops either when the dimension asked by the user is

found, or when all the nodes of the tree have been tested
The methods enumerated here will be implemented differently for each object, but the scheme
presented here for object ‘integral’ is the same for all objects. Notice that this scheme cannot
solve all the situations. It is based on the assumption that each node can be solved locally.
This is true for the most common situations, but the scheme fails when reasoning concepts at
a global level are necessary. An example where local reasoning (at the object level) is enough
is the index writing consistency check presented in section 4.2.

............... (G, + f)w, dv=0
IntEquation e J (2]
Functional M@+ av) ©
Som + l
T N A i
a
ProdList Aﬁ _(("u,/ +fw, 'i"‘ +0
a
1 \ deduceDimensionForObject: [(©@,,+ fw dv l
0
Integral
 findDimensionForward
Expression (0, + fIw)
SumList @+ W
ProdList (O, + fw,
Expression (0, +1) " Term
SumlList +0,,+
ProdList * 1"" +f
Term s }
Legend :
------------- P deduceDimensionSelection; ,!(a"‘ A e
= = = =P Resuits of invoice of findDimensionBackwards
s Result of invoice of findDimensionForward

Figure 55 Sketch for illustrating dimensional analysis strategy

75

Chaprter 4 Computer Aided Software Engineering for finite elements developments

4.1.5 The graphical environment for dimensional analysis

The object presented in the above sections can be visualized within the graphical environment
presented in chapter 2. In the graphical environment of FEM_Theory a push-button is added
(see in Figure 56) which launches an editor that can be seen in Figure 57. In this editor, the
units contained in the dictionary, instance of FEMTheoryGeneralDictionaryOfUnits and
stored on disk in file named ‘fem.dct’, can be viewed and new units can be added. The units
are described in this editor by their name, and their dimension is given; e.g. the Newton
(symbol N) is highlighted and its dimension is kg.m.s‘z. During a derivation, the dimension of
a term can be defined by the user; this is done using the editor of Figure 58. The dimension of
every object can also be visualized through the use of the prompter of Figure 59. The list of
tools for the instances of class IntEquation is enriched with new tools: ‘Define Dimension
For Selected Term’, ‘Find Dimension For Selected Term’, ‘Check Dimension’.

Remark: the dimension can be defined in terms of any units, including derived units.

#rye

Shape tuncans tict

Access to the dictionary of units

Figure 56 Main window of FEM_Theory with the management of the dictionary of units

<AdE olte 4

SPemeve Uity

i

Di ion of theunit {S1)- 5~ - -

R i |
m:r— LSS Y
CRELETT AT et |

Save dictionany |

i

Figure 57 Units dictionary editor

76

Chapter 4 Computer Aided Software Engineering for finite elements developments

Figure 58 Prompter to define a dimension

Figure 59 Prompter to visualize a dimension

4.1.6 A simple illustration of dimensional analysis in FEM_Theory

The goal of this section is to give a trivial example of the usefulness of a dimensional analysis
scheme in the symbolic environment. Take the example of the penalty formulation for Stokes
flow used in chapter 3. The formulation is posted onto the screen of FEMTheory in Figure 60,
line 1. The problem and the notations are defined in chapter 3. Let us define in the
formulation on line 1 the dimensions of the terms that are obvious. This is done by selecting
the term on the screen line 1, and applying to it the new tool ‘Define Dimension For Selected
Term’. This tool gives access to the prompter shown in Figure 61. Here are the definitions of
the following terms:

the weighting velocity w;: [w,.]z m.s™

the pressure P: [P]z N.m™

the weighting pressure Q: [Q]= N.m™

the body loads (dimension given using its expression, i.e. the product between the density and
the acceleration of gravity) R: [R]=[p]-[g]= (kg.m'3)~ (m.s‘z)

The dimension of all the entities composing this equation are now defined, and their
dimension can be retrieved through the tool ‘Find Dimension For Selected Term’. The result

. 1.
is posted in prompters such as the ones of Figure 62, e.g. the dimension of the term — is:

[——} =m.kg™".s. The dimension of the various object of the equation are shown in Figure 62.

A

7

Chapter 4 Computer Aided Software Engineering for finite elements developments

Line 1 INT { (Siij+RiNWin # D J+INT { (Uii+L/LPNQY # D) = (0)

Bubstitiite Terms o Seldrted Imentnt
o Diseretize

eleed T ’[:z.mi atats By Pants Stlecied intenral]
mgﬂeﬂt#md :
e Difeet

Lombute ConsistentLing;

Figure 60 Dimensional analysis of the penalty formulation for 2D Stokes problem

Figure 61 Definition of the dimensions for selected terms

78

Chapter 4 Computer Aided Software Engineering for finite elements developments

Figure 62 Dimensional analysis of various objects

4.1.7 Dimension control in finite elements

The dimensional analysis process has been applied here in the context of the symbolic
development of finite elements for trivial purposes. This ensues from the wish to develop
concepts for finite elements with a high level of abstraction in the finite element derivation.
The next step would be to use all the theoretical concepts developed and used during the
symbolic derivation in the numerical computation. The control of the data introduced for a
computation by the user is a crucial problem in numerical computation. The proposed
approach could be extended to solving this problem. First, the three structures proposed in the
previous sections can be used in any context, i.e. not only in a symbolic environment. Any
type of structure can be given a characteristic ‘unit’. From here, the control of dimensions
could easily be done even during a numerical computation, by using a similar approach as the
one presented in the previous section. A second extension would be to pass information about
dimensional analysis from the symbolic environment to the numerical one, in which it could
be used to check dimensions.

79

Chapter 4) __ __ Computer Aided Software Engineering for finite elements developments

4.2 Checking index writing consistency

4.2.1 Goal

In FEM_Theory, the writing of the formulation is based on index notation. This notation is
used for its general aspect. But mistakes in the notation are easy to make and can have
disastrous consequences on the discretization process. The idea is to introduce a checking
process for the consistency of the writing. This new tool does not need any new object, but
only an enhancement of the classes involved in the representation of the variational
formulation of the continuum problem. The process is described next.

4.2.2 Implementation of writing analysis

Contrary to the dimensional analysis process described in the previous section, the checking
of the writing can be made at the local level, i.e. at the level of each object (see all the objects
involved in the process in Figure 65). Thus, each object is able to recover the contracted
indices characterizing itself. The implementation ensues naturally. Each object has a method
called checkIndicialNotation. This method returns a string representing the indices of the
receiver contracted, e.g. the object o, ;returns the string ‘i’ which is the contraction of the
indices ‘ijj’ (rules for classical index notation). For all the objects, the structure of the method
is the same :

(a) ask the objects composing it to check their index notation (message
checkindicialNotation); they return a string representing the indices contracted

(b) check the coherence of the indices at its level if necessary

(c) return the string representing the indices (contracted)

Two examples of implementation of this method are given in Figure 64 and in Figure 63, for
objects integral (class Integral) and sum (class SumList); they respect the three points given
previously. The message for checking the notation goes down the tree as illustrated in Figure
65. The process ends when each node of the tree has made this check.

checkIndicialNotation
“"Check if the indicial notation of the receiver is correct"
I reply str | Definition of the local variables
reply := (self at:1) checkIndicialNotation. Initialization of the string with the reference of the first product
self do:[:p! Loop over the products composing the sum.
str:= p checkIndicialNotation. (a) Ask its products to check their notation (result stored in str)
(reply isAnAnagramOf: str) (b} Check if the notation of the current product is the same as the
one of the reference
ifFalse:{
FEMTheoryMessage openOnMessage: ... if not answer an error message
{Error in the index notation of ;* (self printString)).
Anil
1
)3
Areply (c) Returns the string representing the indices of the sum, which is

the same as eack product composing it.

Figure 63 Method checkIndicialNotation in class SumList

80

Chapter 4

Computer Aided Software Engineering for finite elements developments

checkIndicialNotation
“Check if the notation of the receiver is coherent”

* self givelntegrand checkIndicialNotation

{(a) Ask its integrand to check its notation and (c) retumn the
indices contracted.
Note that no part (b) for coherence control is needed here

Figure 64 Method checkindicialNotation in class Integral

Term

checkindicialNotation Ao, + fyw dv=0

imEguation e pion sl 1 [

Functional “"‘A(I(aﬁv’. +£)w; dv) ©
-"" [*3

SumlList ".,*+J’(6y,i +fw, dv +0
S 8

ProdList "t [0+ fow, v .y

Integral "‘_'#I (0, + f)w, dv 0

L P

Expression e JCARTAD)

SumList 1’5* (0% fw,

ProdList R AT

Term

5

............. P Invoice of 1 ¢

Figure 65 Sketch

for the checking of the index notation

81

Chapter 4 Computer Aided Software Engineering for finite elements developments

4.2.3 Example of analysis

An illustration of the use of this scheme in FEM_Theory is shown in Figure 66; on line 1, the
penalty formulation for Stokes of chapter 3 is posted. In the integral selected on line 1
(highlighted object on the screen), the prompter of Figure 67 makes it possible to replace the
term o ; by the expression Cy, €, (1), and instead of Cy,&, ;(u)as it should be done. But an

error is introduced in the prompter (the index ‘j° is left out). Then, the prompter of Figure 68
appears indicating that the expressions introduced are not correct.

INT { (Ui,i+1/LP)(Q)) // D } =(0)

P

Lid
Check Indicial Notation Lompute Coasisteat Linearization
. Check Bipe . . H liZ E . o SInplify:
Fing Dimension For A integrate By Dants Saletted Intearat 1 o &mgllNY
Belise Dime: L Rembwe Selected Praduct: 1 S
Diszetionat Derpvative

Peeprocessitg

Figure 66 Illustration of the writing consistency on a penalty formulation of the Stokes problem

Figure 67 Prompter for replacing an expression with a notation error

82

Chapter 4

Computer Aided Software Engineering for finite elements developments

Figure 68 Notification of the error in the notation

83

Chapter 5 Beyond the classical Galerkin formulation

Chapter 5 Beyond a classical Galerkin formulation

5.1 Towards finite element comp utations of incompressible flows

In the previous chapters, an environment to handle basic linear variational formulations was
presented. In this chapter, our aim consists in showing the extendibility capabilities of the
environment to “real life” problems, i.e. formulations subject to active research. We will
focus our attention on modern approaches to solve numerically the incompressible Navier-
Stokes equations, which still remain today a challenging problem. Interesting issues about
different formulations of incompressible flows are discussed in [GRE 91, FLE 91a and b). We
will focus here on velocity-pressure formulations. Two major issues for the solution of this
type of problem will be investigated.

First, as it is well known, velocity-pressure Galerkin . formulations for Navier-Stokes
equations exhibit two types of instability. One comes from the presence of the advective term
and becomes dominant at high Reynolds. The other source of instability is due to the mixed
character of the velocity-pressure formulation, i.e. more precisely to inappropriate
combinations of interpolation functions for the representation of velocity and pressure fields.
To remedy these spurious oscillations, we will investigate the Galerkin Least-squares type
stabilized formulations, such as the well known SUPG presented in [BRO 82] and the various
stabilization schemes studied in [FRA 89, FRA 92b, TEZ 92d].

Second, another challenging problem occurring in computational fluid dynamics is the
computation of interfaces and moving boundaries. In [TEZ 92b, TEZ 92c, HAN 92a and
HAN 92b], an original application of space-time formulations is done in the computation of
moving boundaries.

Keeping in mind our first aim which is the solution of incompressible flows, the enhancement
of the environment FEM_Theory to handle Galerkin Least-squares type stabilized
formulations is discussed in section 5.2. In section 5.3, the enhancement of FEM_Theory to
space-time formulations is discussed. In both cases, the development is restricted to linear
formulations. The extension to nonlinear formulations will be done in Chapter 6.

5.2 Galerkin Least-Squares type stabilized methods

5.2.1 Brief review and objective

The mixed formulation for Stokes problem presented in Chapter 3 exhibits spurious
oscillations in the pressure field (Q1/QO0 element). In the particular numerical computation of
the cavity flow problem, these oscillations are not transmitted to the velocity field, which is
not always the case. These oscillations are the consequence of an inappropriate combination
of interpolation functions for velocity and pressure fields, Galerkin Least-Squares type
methods are widely used in the Computational Fluid Dynamics community to cure this
problem. These methods have also the advantage of curing oscillations emanating from the

85

Chapter 5 Beyond the classical Galerkin formulation

advection terms present in the Navier-Stokes formulation. In this context, the SUPG
(Streamline-upwind/Petrov-Galerkin) method, initially formalized in [BRO 82], was the first
to be intensively used in both incompressible and later compressible flows. This method
consists in adding artificial numerical diffusion in the direction of the streamlines. The SUPG
formulation is obtained by adding to the classical Galerkin formulation, least-squares type
terms defined over each element. The terms added here correspond to the product of the
residual of the momentum equation by the advective operator acting on the weighting
function. A generalization of this method, called GLS (Galerkin Least-squares) was
introduced first for the Stokes problem in [HUG 86, FRA 87, FRA 88] and in [HUG 89] for
advective diffusive systems. In this method the terms added to the original Galerkin
formulation are built by integrating over each element the product of the residual of the
momentum equation by the corresponding differential operator acting on the weighting
functions. Since then, many authors have presented slightly different forms of this
formulation. A few methods are reviewed in [FRA 92a, FRA 92b and FRA 93b]. Among
them, note a method attributed to Douglas and Wang in [FRA 92b] in which the Galerkin
least-squares terms added to the Galerkin formulation are slightly modified by changing signs
in the differential operator. A simplified version of the GLS method is presented in [TEZ 92a
and TEZ 92d] for Navier-Stokes flows. This is a combination of the SUPG method, which
takes into account the advective operator in the least-squares terms, and of the PSPG
(Pressure stabilization Petrov-Galerkin) method in which the pressure part of the differential
operator is taken into account. An interesting discussion about convenient choices of
interpolation functions can be found in [TEZ 92d], and a comparative study between GLS and
SUPG formulations for incompressible Navier-Stokes solutions is given in [HAN 95].

The design of the stabilization parameter, which is a crucial ingredient of these formulations,
consists in adjusting the numerical diffusion rate added at the elemental level. Roughly
speaking most of the stabilization parameter designs are based on element size and on flow
regime (depending of the Reynolds number). In most cases the computation of this numerical
parameter is a tough work including the choice of constants and element size parameter (see
e.g. [HAR 92] for various examples). Some authors have proposed simpler versions for the
stabilization parameter either for Stokes or Navier-Stokes flow. For example in [TEZ 92d],
the stabilization parameter which is a scalar, is a multidimensional extension of a one-
dimensional design presented in {[SHA 88] for a scalar advection-diffusion equation. This
design has the advantage of being simple and respects the advective and diffusive limits
condition; as a matter of fact, numerical computations are expected to be efficient. In [FRA
93a], the authors present a design of stabilization parameter which makes it possible to
overcome the drawbacks of the computation of inverse estimates and the element size
dependence.

It is worth noticing that in the same time several authors have shown an equivalence between
GLS and SUPG type methods, and Galerkin methods employing interpolations enriched with
bubble functions for advection-diffusion models and Navier-Stokes equations (see e.g. [BRE
92a, BAI 93, FRA 94a and b, FRA 95, RUS 96] and references therein).

These formulations are widely used today for the solution of compressible or incompressible
Navier-Stokes flows. They have found natural extensions in various domains of
computational mechanics, such as e.g. for beam problems [FRA 87, LOU 87a], for plate
problems [HUG 88b), for arch problems [LOU 87b}, plasticity problems [PAS 97, TRU 97],
and they have been extended to velocity-pressure-stress formulations for the incompressible
Navier-Stokes equations [BEH 93]. A last interesting feature is a generalization of these
stabilized methods when classical GLS methods fail. An example is given in [FRA 891 for a
singular diffusion problem.

86

Chapter 5 Beyond the classical Galerkin formulation

The objective is to be capable to handle these formulations in the symbolic environment
FEM_Theory. This is shown in the following sections where simple examples of derivations
are given. They have to be completed by the ones of Appendices B and D.

5.2.2 Integration of stabilized formulations in FEMTheory

The environment described in Chapter 3 makes it possible to deal with this type of
formulation directly, i.e. without any new implementation, This is due to the fact that the
algorithm used for the determination of elemental contributions for discretization and
approximation procedures is based on the construction of the contribution of each term
individually. The only feature added at this stage is a new window, shown in Figure 69 (see
Chapter 4 for notations used here for a formulation of Stokes flow), accessed by push button
“Add perturbation term”. In this window, two equations are taken into account, i.e.
«2MEij,j(Ui)-P,i-Ri» (from the momentum equation for Stokes flow problem) and «Ui,i»
(from the incompressibility condition for Stokes flow problem) respectively weighted by
«2MDI1E;jj,j(Wi)-D1Q,i» and «D2Wkk». This is the representation of the following
stabilizing Galerkin-Least squares terms :

3y { j ue, (")~ pl.— £,)D,(2pe, (")~ gl)dv - jufjuzw:jdv
et | or o

This will be used at length in the following section.

Figure 69 Adding stabilization terms to the Galerkin formulation

87

Chapter 5 Beyond the classical Galerkin formulation

5.2.3 A stabilized formulation for the Stokes flow problem

Mathematical formulation :

The stabilized formulation evaluated here is the one studied in [FRA 87] for the two-
dimensional Stokes flow. This formulation has to be compared with the one of the chapter 3.
The Stokes flow can be stated as follows :

Given f, find (x , p) with appropriate conditions of continuity on the domain Q< R such
that (n, =2):

2ue; (W)—p,;=f,inQ

u,=0 inQ

For the sake of simplicity, the homogeneous Dirichlet problem is adopted for derivation.

The variational formulation chosen leads to the following weak form :
Given f, find (u, p)e SX#3 such that for all (w,q)e W X3 (#2, W and $ are defined in
Chapter 4):
- _[2/18,.]. (e, (wdv+ jpwudv + J'ui’iqdv - j fiwdv=0
Q Q Q Q

Let u", p*, w" and g* be respectively the approximations of , p, w and q. Let us define the

approximation spaces §", Y4/ and 3" intersection between, respectively \$, Y4/ and 79,
and a space of continuous piecewise polynomial finite element interpolations chosen for the
fields.

The problem can be approximated by :
Givenf, find (4", p") € (&" x#9") such that for all (w",¢") < (W"x ") :

R(@", p"y;(w*,q") = = [2p8, "y, (Whav + [pywhdv + [uligdv— [fwldv =0
Q Q Q Q

The problem arising in this formulation comes from its mixed character. The stabilized
formulation proposed by Franca in [FRA 87] can be written as follows :
Givenf, find (u", p") c ("x#9") such that for all (w",¢") < (" x72") :

R, p" s q")+ Y, {J(zue,-,_,(u’v—p,’:—ﬁ)D,<2uey,j(w”)—qﬁ>dv— JuliDywtidv | =0

Q'eQt] n* Q°

where D, and D, are stabilization parameters.

This method consists in adding mesh dependent terms, in fact a least square form of the
Euler-Lagrange equations, to the usual Galerkin formulation. The form of the stabilization
terms is discussed at length in [FRA 87}, particularly the choice of the form of stabilization

2
parameters D, = Ok
2u

and D, =2ué,, where h is a mesh parameter (see discussion about

mesh parameter in [HAR 92]), and 6, and J, are stabilization parameters. Notice that this
stabilization parameter design does not respect the advective-diffusive limit conditions (see
{HUG 89]). More recent designs of this method, referred as Galerkin Least Squares method,
can be found in [FRA 92]. The choice of the stabilization parameter is a crucial point of the
method.

88

Chapter 5 Beyond the classical Galerkin formulation

+H({p}) {{INT[t(H) mB(N)* 1}} ({d"}}
t({{d}}) {{INT[t(B(N})C1 B(N)" 1}} {{d"}})=(0)

Line 1: ({{INT[t(r)N* 1}} {{d*}} +t({{d}}) {INT[t(mB(N)) H* 1 }} {{p"}}
+H{{{p}}) {{INT[t(H)mB(N)* 1)} {{d"}} t({{d}}) {{INT[t(B(N))C1 B(N)* 1}} {d"}}
+{ {{d}}) {INT[t{ D){{ mB(N)) mB(N)*]}} {{d*}}
+H({{d}) ({{INT[t(M){(2)t(D)t(M)t(2)t(C(N)) C(N)"]}} ({d*}}
({{p}}) {{INT[t(D}(M)t(2)t(A(H)) C(N) 1}} {d"}}
={{INT[t(r)H(D)t(M)t(2) CN)" 1}} {{d"}}
A({{d}){{INT[t(M)}t(2)t(D)t(C(N)) A(H)* 1}} {{p"}
BH({{P}}) {{INTL (D Jt(A(H)) A(HY 13} {p*]} + {{INT] t(r)t(D) AHY 11 {{p*}})=(0)
Line 2:
(((INTLt(r) N* 1)} +t({{p}}) {{INT[t(H) mB(N)*]}}
A(({d}}) {{INT[t(B(N)) C1 B(N)" 1}} +t({{d}}) {{ INT[t(D)t(mB(N)) mB(N)"]}}
+({{d}}) {{INT[t(M)(2)t(D)t(M)t(2)t(C(N)) C(N) 1}}
t({{p}}) ((INT[t(D)t(M)t(2)t(AH)) CIN)* 1}
S{UINTL t(r)y(D)t(M)t(2) C(N)" 1}})=(0)

t({(d}}) ((INTL (mB(N)) H* 131 -t({{d}}) {{INT[t(M)t(2) (D) t(C(N)) AHY" 13}
SO {UNTL (DAY) AGY 1)+ {INTL (D) A 1) = (0
ne J:
(6 (INTLAC) N* 133)#({(INTLt(H) mB(NY 13}) {{p})
A({{INT[{(B(N))C1 B(NY* 1}}) {{d)} #t({INTL t(D Jt(mB(N)) mB(N)* 1}}) {{d}}
H(LINTE {(M)H(2)1(D)1(M) 1(2) 1 CN)) CINY 1)}) {{}}
S({{INT[(D) M)t(2)t(AH)) CINY' 1)}) {(p}}
A({{INTE t(r)t(D)t(M)1(2) CN)" 1}})=(0)

({{INT[H{mB(N) } H* 1}}) {{d}} A {{INT[t(M)H(2)1(D)t(C(N)) A(H) 1}}){{d}}
H{{INT[t(D)(A(H)) AH)" 1}}) {{p}} +t({ INT[t(r)t(D) A(H)* 1}}))=(0)

Line 4:
(HK) (LU} ; (PR 0} + ({B) = (0)

Figure 70 Derivation of the stabilized formulation for Stokes flow

89

Chapter5 Beyond the classical Galerkin formulation

5.2.3.1 Derivation of the stabilized formulation in FEMTheory

The step leading to the weak form of [FRA 87] is quite identical with the one of the chapter 4
section, the notations are the same (only the term corresponding to the Neumann boundary
condition and the term in "lambda" are missing). The discretized weak form is posted on line
0 in Figure 70. The only difference in the derivation lies in the fact that a piecewise bilinear
finite element interpolation has been chosen for both velocity and pressure (Q1/Q1 element)
on a quadrilateral element; the choice of the interpolation is made on the screen in Figure 71.

Figure 71 Choice of the interpolation for velocity and pressure

The stabilization terms are added by pushing the button “Add Perturbation Terms” and the
window in Figure 69 appears. It is just necessary to introduce the form of the Lagrange
equation and the form of the corresponding weight. The terms introduced are then integrated
onto the element and their discretized form is introduced in the weak form. Although the new
terms are only introduced at the elemental level (discrete summation of the terms over all the
elements), the notation in the new formulation needs not be different here, because all the
matrices are evaluated at the elemental level and then globally assembled; this corresponds to
a discrete summation over all the discretized domain. The new formulation appears on line 1
in Figure 70. The shape functions are then chosen, bilinear shape functions for «N» (see
Figure 72). On line 2, the arbitrariness of the weighting functions is invoked ; the result is a
system of two discretized equations. On line 3, the system is assembled to get a system of one
equation; the change of notation is the same as the one of the stokes flow formulation in
chapter 3. The code is then introduced in the C++ version of numerical code FEM_Object.
The numerical tests are shown in the next section.

Remark 1 : a classical two by two quadrature is used here for all the integrals; this is different
from the penalty formulation of [ZIM 95a] where a two by two quadrature is used for velocity
and a one point quadrature is used for pressure.

Remark 2 : as a piecewise bilinear interpolation is used, the terms «Eij,j(W)» and «Eij,j(U)»
are zero and can be dropped here to accelerate symbolic and numeric computation. They are
only shown for the symbolic derivation.

90

Chapter 5 Beyond the classical Galerkin formulation

1:(0.25XY-0.25%-0.25Y+0.25)
0.

.25XY+8.25X-0.25Y+0.25)
(0.25XY+0.25X+0.25Y+0.25)
: (-0.25XY-0.25X0.25Y+0.25)

[#3 Quadratic

Figure 72 Choice of shape functions for interpolated fields

5.2.3.2 Numerical tests of the stabilized element for Stokes flow

This element is also tested on the cavity flow problem, The description of the problem is
given in chapter 3. This Q1/Q!1 stabilized element is tested on a 17*17 mesh.

The constitutive parameter taken is : g=1. The method for computing stabilization

2
parameters «D1» and «D2» is added by hand in the numerical program (D, = leh and
)

D,=2ué,). The stabilization parameters used for the results shown in Figure 73 are :
6, =05 and é, =0. These results are in accordance with the one shown in [FRA 87].

A comparison with the formulation presented in the Chapter 4 can now be done. Both
formulations lead to acceptable numerical results for velocity field on this example. On the
contrary, as it is well known, the Q1/P0O element has poor performances for the pressure
evaluation (note that here no smoothing is performed for post-processing the results). The
formulation on this numerical case lets a checkerboard phenomenon appear. The Q1/Q1
stabilized element presented in this section has quite good results for the pressure evaluation,
but exhibits too much diffusion. The latter comes certainly from the rather coarse mesh used
on this precise numerical example. This study has shown the possibility to evaluate rapidly
two different formulations, and to compare them. The performance of the generated code
allows full-scale testing.

91

Chapter 5 o Beyond the classical Galerkin formulation

‘ Velocity field Pressure contour

Figure 73 Numerical results for the cavity flow problem (Stokes flow with Q1/Q1 stabilized element)

Remark : the additional application of stabilized methods described in Appendix B shows the
generality of the developments described in this section.

5.3 Space-time formulations

5.3.1 Discontinuous space-time formulations

In finite element computational fluid dynamics, facing with the computation of deforming
domains leads to a crucial strategic choice. This problem can be solved by adding a new
unknown and a new equation to handle the interface (see e.g. [COD 94, SUS 94 and TEZ 97]
and references therein); but without using additional unknowns, the formulation to be used
needs somehow to embed Lagrangian ingredients. The first possibility would be to use a fully
Lagrangian formulation; large and sometimes unnecessary mesh distortions are one of the
drawbacks of the method. An alternative approach is to use formulations mixing Lagrangian
and Eulerian concepts. One of the most widely used is the Arbitrary Lagrangian Eulerian
approach, widely spread in the finite element community [HUG 81] [HUE 88]. Discontinuous
in time space-time formulations, initially used on a fixed mesh for accuracy purposes (see e.g.
[HUG 88a] for elastodynamics), were used with moving meshes first in [HAN 92 a and b,
TEZ 92 b and c]. The great interest of the formulation is its simplicity and its flexibility, i.e.
its capability to allow mesh moving (imposed or not). This method has also been used for
large-scale flow simulations (see e.g. [BEH 94 and MAS 97] and references therein).

The purpose of this section is to introduce into the environment FEM_Theory, the concepts
needed to handle this type of formulation.

92

Chapter 5 Beyond the classical Galerkin formulation

5.3.2 Integration of discontinuous space-time formulations concepts in FEMTheory

5.3.2.1 The objects needed for discontinuous space-time formulations

As in chapter 2, the best way to illustrate the new approach we want to introduce in the
environment, is to isolate the new concept by means of a simple formulation. The new objects
and behavior can then be deduced from it, and a new class can be described.

5.3.2.1.a The discontinuous space-time formulation for a linear one-dimensional advective
equation

In this section, the formulation is presented on the resolution of a simple linear one-
dimensional advective equation. This is studied at length in [SHA 88]. The purpose of this
section is to introduce symbolic object-oriented concepts to manage this kind of space-time
formulations (see [TEZ 92b], [TEZ 92c} and {HAN 92b]) in FEM_Theory. The formulation
is recalled here.

The strong form of the problem is given as follows:

Find u(x,r) with appropriate continuity conditions on Q = [0,1] for 0<r <z, such that:
u,+Au,=0onQ

with boundary conditions : u(0,7) = u, u(1,1)=0

and initial conditions : u(x,0) = u,

where A is the advection constant.

The variational formulation is written on the space-time domain Q,, on a space-time slab
bounded by ¢, and z,,, as illustrated in Figure 74 (see [BEH 94] for more details about

notations). Define the approximation spaces for u solution and w weighting functions :
) =trelrel v =z mE)
’I/h)’l ={w" € [H‘(Q")'Il Iw"=0 on (Pn)ﬂ}

The approximation of the variational is :
For each time slab [r, ¢,], find u" € (.s"’)I1 such that vw" € (7"),l :

J(u +utulyw' dq+2 j(u +ulu YT(wW! +u"wh)dg + J[[u W) dv =
e=1 0,
The design of the stabilization parameter proposed in [SHA 88] is :

1
2 2\72
2lu
T= _2_ + .M 1
At h
/
where At=t,,, —¢, and h is the mesh parameter (spatial length of the element in the current

case), and where [[u*1]=(u")! — ("), is called ‘jump term’, corresponding to the
following definition: (u*)? = lim u"(t, £ £) .
-0

The first integral of the formulation is the classical Galerkin formulation written on the
domain @, ; the second one is the Galerkin Least-Squares term added for stabilization

93

Chapter 5 Beyond the classical Galerkin formulation

purposes ; the last one makes it possible to enforce the continuity of the solution u, in a weak
sense, over the global domain. Theoretical details about the formulation can be found in [SHA
88].

Figure 74 Description of the space-time domain

5.3.2.1.b The objects for the discontinuous space-time formulation

The first two terms of the formulation on the space-time domain can be directly introduced in
the FEM_Theory environment. In the sense of the finite element method, the time can be
considered as an additional coordinate. So, the numerical treatment is obvious in the symbolic
environment. But a new concept is needed to represent the third term, i.e. the ‘jump term’
J[[u"]](w"),’: dv . Part of it is known, i.e. (u*), is computed at the previous time slab; and part
Q,
of it is the current unknown, (#")’. From the point of view of the finite element method, the
formulation leads to the solution of a linear system at each time slab of the form Kd = f
where d is the vector of the nodal unknowns. The elemental contributions coming from the
first two terms are obvious if classical finite elements are used. It is worth describing the
elemental contributions due to the ‘jump term’. They can be expressed by means of notations
of [HUG 87] as follows, on an element illustrated in Figure 75 :

Ko = [N'N dQ and £y = K umrerm 4
o

n

Jumpterm Jjump term Jump term

where N is the classical matrix of shape functions of [HUG 87] and d~ is the vector of nodal
unknowns computed on the previous time slab. The integration is done on the space domain
in the initial configuration (at 7,), i.e. on the surface Q, as seen in Figure 75.This shows that

the FEM_Theory environment is capable of building elemental matrices such as K, ; the

new concepts to add here are the ones to manage and interpret the ‘jump term’, i.e. mainly
concepts linked to the nurnerical integration scheme, and to the automatic implementation
into the numerical code.

94

Chapter 5 Beyond the classical Galerkin formulation

A
17y @ | time coordinate axis
o

il

Space gcoordinate axis

5

P 2

A typical space-time element Corresponding reference element

Figure 75 An example of space-time element for a one-dimensional space

The idea is then to introduce a new object to represent the ‘jump term’ in the variational
formulation, and to enrich the existing objects to handle this new object, particularly for
automatic integration in the numerical code. In order to make the implementation easier, one
can note the following :

Ju ety dv =1 fu' ooty; av)
Q, Q,

This makes it possible to have a treatment of the ‘jump’ at a higher level than inside the
integral. The new object, instance of class called JUMP_TERM, is represented by the double
bracket notation. It is natural to manipulate it as a special term in the formulation. The
structure of the object appears in Figure 76. The object has as only a piece of data, its variable
which is in this example an integral. Most of the tasks are decentralized to the attribute
variable ; the algebraic manipulation methods are inherited from the class Term. This object
is a specialization of the object term. Additional tasks have to be added to other objects such
as products for generating the code with the selector of methods needed for ‘jump term’ in the
numerical code. Note that the space domain of the integral Q: has to be recognized; the name

of the domain used is «Sp» for spatial domain. A generalization of the generation of the code
is needed here. Finally, the variational formulation (successively classes IntEquation,
DiscretizedEquation, System) is now given an attribute to characterize the type of the
formulation, i.e. either “Semi-discrete approach” or “Space-time approach”. In the latter, time
is considered as a simple coordinate such as a space coordinate.

95

Chapter 5 Beyond the classical Galerkin formulation

Class JUMP_TERM
Example : [Iu b (W'l): dvll
2,

main attributes :
variable : Iu Ew')i dv (here an integral)
Q,

main tasks :
manipulations in the variational form such as addition, product, ... (can be inherited from class Term)

generation of code

Figure 76 Typical instance of JUMP_TERM

5.3.2.2 Class JUMP_TERM
The structure of the class is summarized on Table 15.

Table 15 Class JUMP_TERM

Class JUMP_TERM
Inherits from : Term,StructureWithDi ion, FEMTheoryMathmaticalStructures, FEMTheory, Object

Inherited tasks Inherited attributes Inherited methods

1) access to data of the hierarchicParent getDiscretizationInfosForTerm: term

hierarchic parent getListOfTerms
giveHierarchicParent
giveSpaceDimension

knowsAsUnknow: term
(from FEMTheoryMathmaticalStructures)

2) algebraic + ¥,

manipulations (from Term)

Tasks Attributes Methods

1) manipulation - variable asFunctional
comesFromSurfaceLoad
deriveWithRespectToVariable: i
findAllUnknowns
findMatrixCorrespondingToUnknown: discretVar
getOKAFUnknownMatrix
getDirectionalDerivative
getJumpTermCorrespondingToUnknown: discretVar
printString
replaceYourselfUsingDictionary: dict
transpose
variable: aTerm

2) analysis isBodyMatrix
isSurfaceMatrix
isZero

3) discretization getDiscretizedForm

4) creation of code createCPlusLoadMethodsIn: path forTimeDependentElement:

elementName

96

Chapter S Beyond the classical Galerkin formulation

Attributes

Class JUMP_TERM has one attribute called variable. This class is used either for the
continuous problem or for the discrete problem ; the simplicity of this structure does not
necessitate the sharing of the tasks among two classes. For the continuous problem, variable
can a priori be of any class (Term, Integral, Expression, ...). Only class Integral is used
here. For the discrete problem, variable is an instance of DiscretizedExpression. The
consequence of this, is that both tasks, for continuous and discrete problems lie in the same
structure.

Tasks description

Tasks linked to the integration into the hierarchical parent tree organization (see chapter 2)
and to algebraic manipulations are inherited from the superclasses. The tasks may be
decomposed into four groups. Most of the methods are in fact a specialization of existing
methods of class Term.

Most of the tasks are decentralized to the attribute variable. The only method which is
specific to the class is findMatrixCorrespondingToUnknown: discretVar ; it returns, in the
case of the discrete form, the elemental contribution corresponding to the nodal unknown
vector of the ‘jump term’.

The analysis tasks are as before specialization of class Term. This behavior can be linked to
manipulations

The discretization procedure is decentralized to the attribute variable, and the scheme
described in Chapter 2 to build elemental contributions don’t need any special
implementation.

Code generation implies here the creation of the elemental contributions in the left- and right
hand side of the discrete linear system (see section 5.3.2.1). Both operations are initiated at
this stage, but practical tasks are decentralized to the discrete form stored in attribute
variable.

Remark : An example of code generated for this space-time formulation is given in section
53.3.2.

5.3.2.3 The graphical environment

The FEM_Theory environment is enriched with new graphical features. The first one is the
notation used for the ‘jump term’. The double bracket notation introduced here can be directly

integrated into FEM_Theory. As an example the term [[,[“ (w);dvl] is represented
Q,

«[{INT{UW // Sp}]]» (see next section). Note, that here the term is shown for the continuous
problem.

A new prompter window is added in order to ask the user which type of formulation he
whishes to derive (see Figure 77) ; this only influences the choice of the time coordinate to be
taken into account as a simple coordinate axis. An example of space-time formulation
derivation follows.

97

Chapter 5 B ~ Beyond the classical Galerkin formulation

Continue with selected system

Figure 77 Prompter to define the type of the finite element formulation

5.3.3 The linear one-dimensional advection equation in FEM_Theory

5.3.3.1 Derivation of the linear 1-D advection equation

The space-time formulation for the linear one-dimensional advection equation is derived in
FEM_Theory, in the window of Figure 78 (the notations are close to the ones of the previous
section). As similar derivations have already been shown in previous sections, only a brief
line by line description is made here. On line 1 the original Galerkin formulation on the whole
space-time domain is posted. On line 2, the ‘jump term’ is added ; the formulation is written
on a time slab, it is a Galerkin continuous in space and discontinuous in time form. On line 4,
the formulation is approximated. The reference element chosen here is a four-node element
for «U» and «W». Stabilization Galerkin least-squares terms are added on line 5 (to the
approximated formulation). The arbitrariness of the weighting function is invoked, the
resulting system of discrete equations appears on line 6. The equation is then transposed, in
line 7, and an obvious change of notation is made. Bilinear interpolation for «U» and «W» is
chosen, and the code is generated. A two by two Gauss integration rule is chosen for all
elemental contributions. The code is then generated.

58

Chapter 5 Beyond the classical Galerkin formulation

Line 1: INT { (U+AUXXW) // D} =(0)

Line 2: INT { ((Ut+AUX)IW)) // D Y+[[INT { (WU) // sp }]1=(0)
Line 3: INT { (UW) // D }+INT { (AUXW) // D YH[[INT { (WU) // sp }1D) = (D)

Line 4:
(0 {{d}}) ({INT[W NAONY) NONY™ 13} {{d*}) +t({{d}}) {{INT[tAN))a N(N»*]}} {{d*}}
JFLECH £4d)}) (OINTLLONQNY) NONF® T3} {({d%)3)1D =)

Line 5:

(tC {{d)}) {{ INT[t(Nt(N) YNA™ 1)} ({d*}) +t({{d}}) {{ INT[t AM)Ya NN*]}} {{d*}}
HIIAC{{d})) ({INTOCNND) NON™ 133 ({3311t (L)) 0 ({INTLHONHND) NRONY™ 1) {{d*))
i {{d}h)) {{INT[(NMN)) k a AQD*™ T3} {{d*}) +tC{{d}}) {{INT[t((A(N))a NtN)*]}}
(@ A) ((INT[(AN) a k a A 1)) ({d*)))=

Line 6:

(W {{d}})
e {{d}
i {{d}))
H({{d}))

({INT[HONAN)) NONY™ 1)+ {{d})) {{INT[LAN) Ja NONJ* 1})

1Y {LUINTLGONON) NONG™] 3301+ {{d}} 2 {{ INTLHONOND) NON)™] 3}
({INT[(NLN)) k a AN*]}) +1{{d)}) {{INT[AN})a NN)* 1)}
{{INT[t(AN)) a k a AN 1}})=(0)

Line 7:

(1 {{ INTLW NN) NONP™ 133) {{d}) 1 {{INT[W(CAN))2 NN F))) ({d))

LLCC (CINTL tONON)) NONY® 13 {{d}))T {{INT[(O NIUND) NN 1 3)) {({d))
HOUINT (NN) k a AND™]33) ({d)) #tC {{INT[tCAQN) Y2 NAQNy™ 1})) {{d}}
HOH{INT[WAN)) ak a AQN™]3})) {{d}}) =)

Line 8:
K (e B Al =0

Figure 78 Derivation of the space-time formulation for 1-D advection equation

99

Chapter 5 Beyond the classical Galerkin formulation

5.3.3.2 Code generated automatically into FEM_Object

As described in chapter 4, a new class is generated. As the FEM_Object code has been
enhanced to support deforming domains with space-time formulations (see [EYH 96c]), the
new element NewElement is added now as a subclass of a class called STF_ELEMENT
which contains special features for domains moving, as shown in the hierarchy of
FEM_Object in Figure 79. Note that on the list of methods given in Figure 80, a new method
to compute the ‘jump term’ in the load vector of the right-hand side in FEM_Object appears
(see chapter 3). The contribution to left hand side of the ‘jump term’ is automatically
integrated into the stiffness matrix.

FEMObject
Dictionary
Dof
Domain
FEMComponent
Element
PlainStrain
STF_ELEMENT
NewElement
Load
Material
Node
TimeltegrationScheme
TimeStep
LinearSystem
Skyline

Figure 79 Partial view of the hierarchy of FEM_Object for space-time formulation

computeGaussPts
giveGaussPtsArray

computeStiffnessMatrixAt:
computeJumpTermAt:

giveJacobianMatrixAt:

constructor and destructor

Figure 80 Partial view of the methods added for space-time formulation in FEM_Object

100

Chapter 5 Beyond the classical Galerkin formulation

5.3.3.3 Numerical tests

The test done uses as initial condition a discontinuity over one element as shown in Figure 81.
Space is decomposed into 20 elements, the height of the time slab is Ar=0.05s. The
boundary conditions are #(0) =1 and u(1)=0. The first test is done with a fixed mesh. The
results are shown in Figure 82 with the label STF (space-time formulation) for various values
of the stabilization parameter at t=0.5. This shows that for various values of stabilization
parameters the oscillations before and after the discontinuity are attenuated and that the
discontinuity is caught correctly. A second derivation has been done with a semi-discrete
approach, with an equivalent stabilization scheme. The results are also reported in Figure 82.
The numerical integration scheme in time used for solving the problem in FEM_Object is a
generalized trapezoidal rule presented in [HUG 87 Chap. 8]. The results are posted for various
values of the stabilization parameter. The first remark that can be made is that the formulation
can not catch the sharp discontinuity as the space-time formulation. Adding stabilization,
rapidly adds too much diffusion. But the position of the discontinuity can also be caught. In
conclusion, the space-time formulation seems to give better results in capturing of sharp
discontinuities.

Finally, the mesh moving procedure is introduced in the numerical computation. The mesh is
moved with the advection velocity (A=1). The results are shown in Figure 83. It shows that
the local advective effects disappear ; as a matter of fact, the exact solution is obtained. This
feature can be interesting whenever sharp discontinuities have to be caught.

Initial solution :
Data :
u A=1
) 20 elements in space
At =0.05
U : ;
0905 x
1

Figure 81 Initial solution for « for the numerical test of the linear advection equation

101

Chapter5 ___ Beyond the classical Galerkin formulation

. . sememfemm= Exact solution :
1-D Advection equation i

"- - @ - -Generalized trapezoidal
method (alpha=0.5) !
|
- ~ < - -Generalized trapezoidal |
method, stabilized (0.025)

= @ — Generalized trapezoidal

method, stabilized
s (0.0125)
3 | —4—STF
' — - — - Stabilized STF (0.025)

— -A& — Subilized STF (0.00625)

Figure 82 Numerical test of the linear advection equation at =10 At

1-D Advection equation

== Exact solution i

Vaiue

—8— Numerical solution
(stabilized DSD/ST) ;

Figure 83 Numerical solution for moving domain at r=10 At

Remark : as an application of the concepts developed in this chapter, a formulation for the
incompressible Navier-Stokes equations is given in Chapter 7.

102

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

Chapter 6 A nonlinear approach in FEM_Theory:
Application to advection dominated equation models

6.1 Objective

The aim of this part is to develop a convenient framework for nonlinear problems. In the
previous sections an environment capable of representing various types of linear variational
formulations was described. A basic framework to work on linear mixed or/and convection
dominated variational and discontinuous in time space-time formulations was elaborated. This
was done with the aim of solving Navier-Stokes flow. The natural following step to achieve
this is to handle nonlinear problems.

Representing nonlinear problems in FEM_Theory brings no additional difficulties. This can
be done either by adding new objects Term, corresponding to nonlinear operators (in the
sense of “material” or “geometry”), or by multiplying linear expressions.

The approach chosen here is to provide the environment with linearization techniques. The
linearized problem may then be solved numerically using a Newton type algorithm.

6.2 A theoretical approach for linearization

In this section, some theoretical features of linearization that are to be used and implemented
into the symbolic environment are recalled. More details can be found e.g. in [MAR 83, Chap.
4] and [HUG 78].

6.2.1 Definition of linearization

Consider a function f, u+> f(u), defined with appropriate conditions of continuity. The

linear part of fat ¥ may be obtained by using Taylor’s formula expansion at first order:
Lf(éw=f@) +Df(uyéu

where ¢ u is an increment.

The problem is then to define a convenient derivative to compute the gradient part Df (u) du

of the linear part of f. In various situations, the standard directional derivative can be used in
the consistent linearization procedure.

103

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

6.2.2 Directional derivative

Definitions
Given a function f: u+ f(u), defined with appropriate conditions of continuity, the

directional derivative of fat u in the direction du is by definition:

;—Sf(u+£5u)

e=0

where ¢ is a scalar parameter.

Remark: if(u +£ Ou) ' =lim
de =0 &0

[f(u +& 5u)——f(u))

The directional derivative measures the rate of change of the function fin the direction du at
point u and can be used to compute the gradient part of the linear part of f.

Df(u)-&u:—d—f(u-H:‘ ou)
de

=0

The latter allows carrying out consistent linearization for various problems. More
fundamental issues about the directional derivative may be found in [HUG 78] and some
examples of its application to the linearization of formulations in the domain of solid
mechanics are given in [KOZ 94], [IBR 93].

Property
The directional derivative is linear. Therefore, for f and g two given functions with

appropriate conditions of continuity, one has:
D(f.g)(u)-8u=Df (u).6u g(u)+ f(u) Dg(u) bu
D(f +g) - 6u=Df(uyéu+Dg(u)-éu

Thus, this property can be used in the symbolic environment.

Remark: The linearization of variational formulations leads generally to employ Newton type
algorithms. A quadratic convergence could be expected if consistent linearization is
performed.

6.3 Object-oriented concepts for symbolic derivations of nonlinear
problems

6.3.1 The objects for a consistent linearization scheme in FEM_Theory

Two major concepts were introduced in the previous section. The first one is the definition of
the linear part of a functional. The second one is a way to compute the gradient part of the
linearization, the directional derivative. These theoretical definitions and properties are
naturally implemented into the symbolic environment.

104

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

One object appears in this description: the directional increment. Thinking of it as an
increment makes it possible to consider it as a special kind of term. Therefore, this object is
implemented as a subclass of Term. A typical example of object increment is shown in
Figure 84. It is worth noting that this object can be used for the continuum problem and the
discrete one.

Class Increment
Example: du
main afttributes :
function : u
main tasks :

manipulations in the variational form such as addition, product, ... (can be inherited from class Term), analysis,
discretization

Figure 84 Typical instance of class Increment

6.3.2 Implementation in FEM_Theory

6.3.2.1 The linearization procedure

The linearization is applied to an object equation, instance of class IntEquation, i.e. the
problem to find # such that f(u)=0 is replaced by the problem

L f(éu)=f(u)+Df(u)éu=0. The code corresponding to this operation is shown in

Figure 85. A new instance of class IntEquation is created, for which the left-hand side
(attribute lhs) is given the value of consistentLinearization, result of the consistent
linearization of the left-hand side of the current equation. As shown in Figure 87 in an
example of equation, the message computeConsistentLinearization is sent to the left-hand side
of the system, which is a functional (instance of class Functional). The corresponding
method is posted in Figure 86. This method implements exactly the definition of the
consistent linearization given in section 6.2.1. The message computeDirectionalDerivative
goes down the roots of the hierarchical tree as illustrated in Figure 87. Note that the linearity
properties of the directional derivative are implemented at the level of objects SumList and
ProdList.

Implementation of the linearization remains very close to the theoretical framework and
remains open to future developments.

105

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

computeConsistentLinearization
| directionalDerivative istentLinearization reply |

self putAllLhs expand.

consistentLinearization := (self giveLks) computeCouosistentLinearization.

reply := IntEquation new
Ihs: consistentLinearization ;
rhs: (0’ formYourExpression);
listOfTerms: listOf Terms;
listOfUnknowns: listOfUnknowns;
spaceDimension: spaceDimension;
problemDimension: problemDimension;
problemType: problemType.

A reply
Figure 85 Method computeConsi. Li ization of class IntEquation
computeConsi Linearization

A (self +(self getDirectionalDerivative))

Figure 86 Method computeConsistentLinearization of class Functional

106

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

]
ImEquation j(u,t Wi tu u,x wi) dv = O .
LHS (|2 RHS
e |
§— . 3
: Su,w,+6 :
Functionai (J (w,w, +uu w)dv) &= @ +3uum) (0)
Q +u Su w)dv l
« Linear form
SwmList 4+ j(u W, +uu w,)dv +0
, i
ProdList + J(u W, +uu xwi) dv +0
E |
Integral J‘(u,t W, +u u,x Wi) dv 0
o \
v
Expression (M Wi +u u W) -
v
SumlList +u Wi +uu W —
|
v
Prodlist +U W, tuun, w,
1 \ copputeConsistentlinerization
Fetd rccn onalerivative
Term u,t Wi —

Figure 87 Sketch of the linearization scheme in a typical equation

107

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

6.3.2.2 Class Increment
The class is described on Table 16.

Attributes

Class Increment has one attribute called function. This class is used either for the continuous
problem or the discrete problem; consequently, methods for the continuum problem and for
the discrete one are grouped in the same structure. The attribute function is a priori of class
either Term or DiscretizationMatrix.

Tasks description

The tasks linked to the integration into the hierarchical parent tree organization (see chapter 2)
and to algebraic manipulations are inherited from the superclasses. The tasks may be
decomposed into three groups. Most of the methods are in fact a specialization of existing
ones in class Term.

Manipulation methods: Most of the tasks are decentralized to the attribute.

Analysis methods: The analysis tasks are as before specializations of class Term. This
behavior can be linked to the manipulations one.

Discretization: The discretization procedure is decentralized to the attribute variable, and the
scheme described in chapter 3 to build elemental contributions does not need any special
implementation. The result is a product (instance of ProdList) of the matrix form of function
and the increment of the nodal unknowns vector.

Table 16 Class Increment

Class Increment

Inherits from : Term,StructureWithDi ion, FEMTheory, Object

Inherited tasks Inherited attributes Inherited methods

1) access to data of the hierarchicParent getDiscretizationInfosForTerm: term
hierarchic parent getListOfTerms

giveHierarchicParent
giveSpaceDimension
knowsAstUnknow: term

2) part of the behavior of
class Term Some attributes of class Term

Tasks Attributes Methods

1) manipulation - function findAllUnknowns
function: aTerm
getOKAFUnknownMatrix
getYourOperator
giveElementaryMatrix
giveFunction
giveMatrixType
printString
transpose

2) analysis isOKAF
isDKAFUnknown
isAnUnknown
isIncrement
iSKAF
isKAFUnknown
isUnknown
isVector

3) discretization getDi izedForm

108

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

6.3.3 The graphical environment

The new tool “Compute Consistent Linearization” appears in the main window of
FEM_Theory (see section 3.4.2). An additional notation is mandatory for the representation
of the linear part of a functional in the main window of FEM_Theory. Thus, an instance of
class Increment is written by adding the symbol «3» in front of the name of the quantity. For
example, the increment in u, du , is written «8U» (see example in section 6.5).

6.4 Enhancing the automatic programming procedure

In a sense, the linearization procedure consists in replacing a problem under the classical form
N(d)=f by the problem L,N(dd)=K,_(d)6d+N(d)— f=0. Using a Newton like
algorithm described on Table 17 then solves the latter. A major additional concept is needed
for the nonlinear approach. A new option is needed in the creation of code for computing the
elemental contribution to the tangent modulus. These feature is added at the level of the
product, i.e. class ProdList.

A new concept is also added here. In the iterative procedure, the elemental contributions are
evaluated at the integration point and then summed. Thus, at each point are computed some
values from the nodal values at the previous iteration. In order to enhance the efficiency of the
code automatically generated, the idea is to automatically generate a new object for which, the
only task is both to store and to compute intermediate values when necessary. This special
feature is illustrated in section 6.5.3, in the context of the nonlinear 1-D advection equation.
This procedure shows that even complex programming paradigms can easily be introduced in
the context of automatic finite element coding.

Table 17 Description of a Newton like iterative procedure

Find d by using the iterative process:

Given an initial guess d°.
Atiteration i, solve : K, (d"™")dd' + N(d™)—-f =0

Update: d' =d'™ + 6d’

N(d')—
Given a convergence criteria £ , check "_(_o)_f" <g
Iva*-1]
If convergence is achieved, then d = diielse i=i+1.

109

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

6.5 Application to a nonlinear one-dimensional advection equation model

6.5.1 Strong and weak form of the problem

In the previous chapter a linear one-dimensional equation was studied. We study here the
nonlinear equivalent equation model. The strong form is recalled on Table 18 and the
formulation on Table 19 (see Chapter 6 for details about the stabilized space-time
formulation).

Table 18 Strong form of 1-D nonlinear advection equation

Find u(x,f)inQ = [O,l]such that:
u, +uu, =0 inQ
Boundary conditions: u{0,2) =u, u(1,£)=0

Initial conditions: u(x,0) =u,

Table 19 Stabilized space-time formulation for 1-D advection equation

For each time slab [t,l syt], findu" € (Sh)nsuch that VW' € (Wh),l :

Joud +ututywt g+ [l +utu? YT +utwh g+ [T Nwdv=0
[Q,

(S")ﬁ Z{lhe [HI(QA)T l;h =u on (P”)E}
("), ={4"e H'@)w =0 o (p")%}

1

R

2 ¥ 2|u| 2

where T=[{ — | +| — (h length of the element)
At h

110

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

6.5.2 Derivation of the stabilized space-time formulation for 1-D nonlinear advection in
FEM_Theory

The derivation described on Table 19 in FEM_Theory (see Figure 88) is similar to the linear
one in the previous chapter. The main difference lies in the linearization procedure of the
Galerkin formulation, which appears on line 4. On line 5, the approximated formulation
appears ; the reference element chosen here is a quad, and u is interpolated at each node. Note
that the elemental contributions of the tangent modulus are a factor of «dd». On line 5, the
linear part of the stabilization terms is introduced. As discussed in the previous section, the
environment makes it possible to carry out consistent linearization. In order to improve the
numerical efficiency, sometimes, consistent linearization is not requested. So, in the
formulation some terms are “frozen” in the linearization procedure. Consequently, quadratic
convergence of the Newton algorithm is no longer expected, but the number of terms
participating to the tangent modulus can drastically decrease. The idea is then to “freeze”
some terms in the formulation on Table 19. This is done in case of the stabilization terms
added to the Galerkin formulation, where the stabilization term 7 and part of the nonlinear
advection term of the equation are frozen. Instead of introducing the stabilization term

requested by the theory 2 _[(uf,' +utuly T(U) (W' +u"w")dg, ie. «Ut+UU,x» weighted by
e=lg,

«TW,t+TUW,x» (FEM_Theory notations), z J) +u"ul) T (wh + Aw')dg is introduced,
eslg,

ie. «Ut+AUx» weighted by «TW,+TUW,x» and integrated into the element. So the
expected “freeze” procedure is achieved in the derivation, because linearization is obtained
through manipulations taking into account the unknowns of the problem, i.e. u. An additional
procedure is then mandatory to fix the equality A=u". The expression resulting from the
addition of stabilization terms to the original Galerkin formulation is posted on line 6. A
similar procedure to the one of the previous chapter for the linear equation leads to the final
form posted on line 11. Bilinear shape functions are chosen for ¥ on the space-time domain.
The system is thus under the form, using classical notations that let appear the index for
iterations: K, (d')6d™ = N(d')- f . The new automatic programming procedure makes it
possible to introduce the elemental contributions to the tangent modulus and the residual in
the code FEM_Object. The form of the code obtained illustrates the changes made to obtain
the nonlinear code.

111

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

Line 11 INT { (Ut+UUX)XW) # D } = (0)

Line 2: INT { (Ut+UUXNWY) / D }+[{INT { WU /7 sp)1 =(0)
Line 3: INT { (UtW) # D }+INT { (UUXW) // D }+([[INT { (WU) // sp }1])= (0}

Line 4:
INT { (UtW) // D }+INT { (UUXW) // D }+[[INT { (WU} / sp }JI+INT { (WOUY) // D}

+INT { (UxWBU) // D J+INT { (UWBUX) // D }+[[INT { (WBU) // sp }J]1 =(0) 3
Line 5:
t{{d)) ({INT{ . NUN) INQO* 1)} {({d*}} +t({{d} }) {{ INT{ t(DFGradientFN)) NQON)* 1 }) {{d*}}
F(lc ()) ((INT[NG) NQNY*™ 13} {{d))ID+C {{od)}) ({ INTL(ON(N)) NON* 1)) {{d*))
rt({{6d?) {{ INT] ¢ DFGradientF(N) IN(NY*J}) {{d*}} +({{0d} }) {{INT] t{ FGradientDF{N} } N(Ny* §}} Jt
{{d*)) +({lC {{0d})) {{ INT[tt NON)) NQONY™ 13} {{d*}})]In = (0) ;

Line 6: (t({{d}}) {{INT[t{NHN)) NN]}} ({d*}} +t({{d}}) {{ INT[t¢ DFGradientF(N)) N(N*]
1} Hd*}‘ HI(t {(d))) LOINTT 6ONOD) NNy]33 {{d*)) 01D+t {{ad}}) {{ INT{ t{ NON)) NNy]
L)-‘) {(d*)} +t(({8d})) ({ INT[t{ DFGradientF(N)) NONY* 13} ({d*}} +t({{8d}}) {{ INT[t(FGradientD

(N)ININY]} {{d™})+l {{8d})) {{INTL W NN) NON™ 1)) {{d*}})]+ {{d})) {{ INT[t
NNy k. NuNy*]1}} ((d*}}+t({(d}}) ({INT[{NgN)Y Kk AQND™ 13} ({d*)} #({d})) {{INT
[t DFGradientF(N) Yk NANy* 1)) ({d*}) +t({{d}}) ({ INT[t(DFGradientF(N) k A(NY* 1}} {{d
[+ {(ad})) ((INT[KNN)) k NtC\T)““ 1) {{d*}) H{(0d))) {{INT[K NON) Yk AQN™* 1)) {
{3+ H{a})) ({INT[(NN Yk AQNY™* 31 {{d*})+ {{0d}}) {{ INT[t(DFGradientF(N})k
NN 1)) {{d"‘}) +(({0d)}) {{ INT[& FGradientDF(N) Yk NtINY* 1)) {{d*}) +t({{dd}}) {({ INT
| t{ DEGradientFN))k ANY*® | }} {{d™}} +t({{dd}}) {{ INT| t(FGradientDF(N) 'k A(N)* | }} {{d =
1)+ {{0d})) ({ INT[& DFGradientF(N) Jk AMN)* 1}) {{d*}) }=(®

Line 11:
CHK)) YA)+ ({Ktand) {{3 {{8d}) }} +++ {{ () }} I =(D)

Figure 88 Derivation of a formulation for a pure 1-D advection equation

6.5.3 Numerical code generated for nonlinear formulation

As seen before, the code is introduced into the object-oriented finite element code
FEM_Object (see [DUB 93]). Details about the enhancing of the code to nonlinear Newton
like algorithms is discussed in [EYH 96c]. The hierarchy showing the new classes added to
FEM_Object is shown in Figure 89. The methods shown in Figure 90 is added to class
NewElement. Note that this new element is an element using the DSD/ST procedure (a
subclass of STF_ELEMENT that has a method to compute the “jump term”). The new
component added here is the method computeTangentStiffnessMatrixAt: stepN, needed to
compute the elemental contribution to the tangent modulus.

112

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

The class NewElementGaussPoint is automatically added as a subclass of GaussPoint. In
this case, the integration point, at which all the computations are made, has the capability to
manage and store the computation of the scalar u and its gradient. This enhances the
efficiency of nonlinear iterations.

FEMObjeet
Dictionary
Dof
Domain
FEMComponent
Element
PlainStrain
NewkEiemeni
Load
Node
TimeltegrationScheme
TimeStep
LinearSystem
Tools
GaussPoint
NewliementGaussPoint

Figure 89 Partial view of classes added for a nonlinear problem

computeGaussPts

giveGaussPtsArray
puteTangentStiffnessMatrixAt()
puteT: iffnessMatrixAt11 ()

T: StiffnessMatrixAt111 ()

pute Tang iffnessMatrixAt111FunctionAt
computeTangentStiffnessMatrixAt112 ()

puteT: iffnessMatrixAt1 12FunctionAt
computeTangentStiffnessMatrixAt12 ()

computeStiffnessMatrixAt ()
computeStiffnessMatrixAtl1 ()
computeStiffnessMatrixAt111 ()
computeStiffnessMatrixAt111FunctionAt ()
computeStiffnessMatrixAt112 ()
computeStiffnessMatrixAt1 12FunctionAt (}
computeStiffnessMatrixAt12 ()

ComputeJumpTermAt()

giveJacobianMatrixAt ()
giveJacobianMatrixAtl1 ()

constructor and destructor

Figure 90 Partial view of the methods added to class NewElement

113

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

NewllementGaussPoint
subclass of GaussPoint
Attributes :
- GradientU
- ScalarU

Methods :
- giveGradientU()
- giveScalarU()

Figure 91 Partial description of the class NewElementGaussPoint

6.5.4 Numerical results

The tests are performed using as initial condition a smooth discontinuity on the first quarter of
the domain {0,1] as shown in Figure 92. Space is decomposed into 20 elements, the height of
the time slab isA =0.05. The boundary conditions are #(0) =1 and u(1) = 0. The test is done
on a fixed mesh, i.e. the DSD/ST procedure is not applied here. The results are shown in
Figure 93; they are in concordance with the theoretical ones, i.e. one can observe the
development of the shock wave, and its displacement (see e.g. [ZIE 91]). It is interesting to
note that this formulation is able to catch and to follow the shock wave without any artifact.

Initial solution :
Data : —’

u 20 elements in space
At =0.05

N

0 ¥ =T T T

0.25 1 J

L

Figure 92 Description of the numerical test for 1-D nonlinear advection equation

114

Chapter 6 A nonlinear approach in FEM_Theory:Application to advection dominated equation models

Nonlinear advection 1-D

Initial condition

Value u

Space x

Figure 93 Numerical results for the nonlinear 1-D advection equation

6.6 Towards a general purpose environment for nonlinear problems

At this point we have achieved a basic environment capable of deriving various kinds of
nonlinear problems. The approach adopted in an object-oriented way relies on three main
features:

- a description of nonlinear terms in the formulations

- a procedure of linearization

- a procedure for automatic coding
Each of them can easily be modified and extended to the solution of new problems. The
application of the Object-Oriented paradigm to nonlinear problems can be considered to be
successful. Navier-Stokes equations could be tackled following similar procedures as used in
Chapters 5 and 6; the only programming requirements are the matrix forms corresponding to
the new spatial differential operators.

115

Chapter 7 Application to the solution of the Navier-Stokes problem

Chapter 7 Application to the solution of the Navier-
Stokes problem

7.1 Enhancement to solve Navier -Stokes equation

In Chapter 5, various strategies for the solution of advection dominated equation models were
presented. Stabilization schemes and space-time formulations discontinuous in time were
introduced into the FEM_Theory environment. In chapter 6, a linearization scheme was added
as a new tool in FEM_Theory. In this chapter, the environment is now enhanced to support
the derivation of Navier-Stokes problems. As partially shown in the previous chapter, the
equations can be represented and manipulated in FEM_Theory; this is true also for the
Navier-Stokes equations. The environment simply needs a generalization of the discretization
scheme for the advection part of the equations, i.e. u-Vu where u is the velocity. First, it is
necessary to enhance its capacities to recognize the new differential operators introduced with
the equations. Second, the corresponding discrete operators have to be introduced as
subclasses of class FEMTheorySpatialDifferentialOperators. This represents a slight
change in the hierarchy as shown in Figure 94. So, the methods of the object ‘product’ (class
ProdList) to determine the differential operators applied to the trial solution and to the
weighting function are generalized to be able to recognize the advective operator; the
elemental forms corresponding to these operators are added here for a vector field such as it
was done in the previous chapter for the scalar field. The new class UGradDU corresponds to
the matrix form of the differential operator ¢! (a)=u-Va, where u is a given vector and a
the vector on which the operator is applied; the class DUGradU corresponds to the matrix
form of the differential operator (%(a)=a-Vu . The discrete operators are described on Table
20.

Notice that the same differential operators can be used for a space-time formulation. Two
examples of formulations follow.

Table 20 Discrete forms of advection operator in 2D illustrated on a four-node bilinear element

Given a vector u :

“
u:

uz
Elemental contribution to the operator ! (@) =u-Va: [('L @|"=H'd
where H' =[H!,H},H;,H,] and d is the vector of nodal contribution for field a,
Wlth H] - ul,lNi ul.Z Ni
' u, N, u,,N,
Elemental contribution to the operator 2 (a) = a-Vu: [(’i(a)]:' = H?d
where H* =[H? H},H?, H?] and d is the vector of nodal contribution for ficld a,
with: 2 = wN,+u,N,, 0
' 0 N, +u, N,

NB: N, N, N, and N, are the classical bilinear functions

117

Chapter 7 _ Application to the solution of the Navier-Stokes problem

Object
" Collection
FEMTheoryOrderedCollection
EquationsCollection
ExpressionLists
SumdList
FEMTheory

FEMTheoryMathematicalStructures
StructureWithDimension
Expression
Functionat
Integral
Term
FEMTheorySpatialDifferentialOperators
SCALAR
DFEGradientF
FgradientDF
Gradient

Scalar
TENSCR
VECTOR

Div

GeometryRefcrence
NpbDim2
Q4
NpbDim3
Unit

NB: Changes are highlighted in gray; new classes are in bold italic

—

Figure 94 Niustration of the changes into the hierarchy of FEM_Theory for Navier-Stokes

7.2 A stabilized formulation for the steady state Navier-Stokes problem

This formulation is derived in order to check the changes described in the previous section.
The strong form of the problem is posted on Table 21, the proposed stabilized approximated
formulation on Table 22 (see Chapter 3 for all the notations used) . The stabilization scheme
adopted here is SUPG/PSPG suggested in [TEZ 92a, TEZ 92¢] (see Chapter 5 for more
details).

The derivation is lead in 14 steps; it is quite identical with the ones performed in previous
chapters (see screen of FEM_Theory in Figure 95). Notice that here, as in the derivation
depicted in chapter 6, a consistent linearization is performed; but some terms are dropped out
afterwards in the gradient part for the sake of the simplicity of the numerical computation. A
classical Q4 element is chosen. The velocity and pressure fields are interpolated at the four
corner nodes. A 2 by 2 Gauss quadrature is adopted. The design of stabilization parameters is
the one proposed in [TEZ 92c] in which the time dependent term is omitted. For the sake of
simplicity, the stabilization part coming from the continuity equation is also omitted. This can
be done for low Reynolds numbers (see the derivation of Stokes flow in Chapter 3). It is

118

Chapter 7 Application to the solution of the Navier-Stokes problem

important to notice that this derivation scheme allows us to adopt various strategies in the
numerical computation. These results were obtained using a ‘ramping’ iterative scheme, i.e.
by increasing slowly the Reynolds number from a steady stokes flow. At each increment, the
Reynolds number is increased and convergence is achieved. The first iterations are Picard
type iterations (the tangent stiffness matrix is replaced by the stiffness matrix). This makes it
possible first to check the convergence and second to ensure the convergence at each value of
the Reynolds number. The following iterations are modified Newton type ones (the tangent
stiffness matrix is the non-consistent one obtained through the derivation). This shows the
flexibility of the code generated automatically. Numerical results obtained on the example of
the cavity flow problem for a 32 by 32 mesh are shown in Figure 96 and Figure 97. Results
are comparable 1o existing ones (for example [GHI 82] and [SCH 83], or [TEZ 92c] and [STO
97] for similar computations).

Table 21 Strong form for the steady state Navier-Stokes problem

Find « velocity and p pressure with appropriate continuity requirements, such that :
QinR"™

n,=2

The momentum equation :

o, +fi=puu,; on Q

The continuity equation :

4, =0 on Q

The boundary conditions :

oyn, =F, on 2,2
u; =1, on 4.Q

with 5 Q=0 QU0s,Q
The constitutive equation :
0, =—pb;+2u Eu) on Q

With the kinematics law :

£ =5 iy 1) on Q

Table 22 Approximated stabilized formulation for the steady state Navier-Stokes problem

Givenf, find (u*, p*) © (8" X 73*) such that for all (w*,¢") c (" x0")
Jp ul! widv - jZ#Eij(u")eij(w")dv +Iphw,-'f,-dv + '[u‘.'f,.q"dv —If,.w,."dv
Q Q Q Q a

+ ¥ {j(p Wi, ~2ue, (") + ph = £) T, (P wiw); =208, (W) + q:)dv}:()
oeqs | g
with:

T = M + 4_/‘] (for details about stabilization see e.g. [BEH 94])
mom h 72
Vi

119

Chapter 7 Application to the solution of the Navier-Stokes problem

T FEM Theury

ij.+RI)(Wi)) / D } INT { (DUJUI,_] 1) /D J+INT { (Ul iQ) / D}
me2 INT { (Su}Wn /' D }HINT { (RiWi) // D }-INT { (DUjUi,jWi) // D }+INT { (Ul Q) /1 D) =(0)
Line 3: INT { (RiWi) /# D }-INT { (DUJULjWi) /#/ D }+INT { (Ui,iQ) // D }-INT { (WijSij) # D}
HINT [(NjWiSE)) #/ dD } = (0)

Line 4: INT { (RiWi) // D }-INT { (DUjUijWi) // D }4INT {(UiiQ) // D}

FINT { (Wi,j(-PDij+Cijk! EKI{UD)) # D }HNT { (NjWiSij) /# dD } = (0)

meS INT { (RiWi} #/ D }-INT { (DUUijWi) // D }+INT { (Ui, 1Q) /' D }+INT { (WijPDij) / D}
INT { (Wi.jCijkI EkI(Ui)) // D }+INT { (NjWiSij) // dD } = (0)

Line 6: INT { (RiWi) // D }-INT { (DUULjWi) // D }+INT { (UiiQ) #/ D }+INT { (Wi jPDij) #/ D}
HINT § (Wi, jCijkl EKICUD) #/ D} = (©0)

Line 7: INT { (RiWi) // D }-INT { (DUjUi,jWi) / D }+INT { (Ui,iQ) / D }+INT { (WijPDij) #/ D}
FINT { (Cijkl EKICUIN Eii(Wiyn # D} ={0)

Line 8: INT { (RiWi) / D }.INT ((DUjUijWi) // D }+INT { (Ui,iQ) // D J+INT { P(Wii)) // D} 4
HINT { (Cijkl EKI(Ui) Eij(Wi)y) # D } =(0)
Line 9: INT { (RiWi) // D }-INT { (DUjUijWi) // D }+INT { (Ui,iQ) / D }+INT { (PWii) / D}
LINT { (Cijkl EKI(UD Eij(Wi)) / D }-INT { (DUijWidUj) # D }-INT { (DUjWidUij) // D}
FHINT { (QOULD) /#/ D J+INT { (Wi,ioPy // D }-INT { (Cijkl EijWi) EkIUD) // D } =(0)

Line 10: ({{INT[t(r)NNY* 1}} {{d*}} -t {{d}}) {{ INT[{ UGradDUMN))d NN)*]}} {{d*}}
i ({d}H)) {LUINTL AN) NOD* 133 {{p*}) +u {{p})) {{INT[1 NONY) AND* 13} ({d*}}

-t({{d}) } {({INT[W BAYIC1 BANY* 1)) {{d*}} 4 {{od})) {{INT[{DUGradUN) }d N(Ny*]})
{fd*y) 0 {{od}}) {{ INT[t{ UGradDUMN))d N(N)* 13} {{d*)} +{{od}})

{‘INT[l(AN NN 1)) ((p*) +t {{op) }) {{INT[(NN y AN* T 1) {{d*™}} t({{ad}})
{{INT[W(BN)) C1 BON™* T3} {{d*}})=(0)

Line 14:
{K (LU Hpry 1+ (Keand) ({0 {{d}); Up}) 1} + {{b}}

Figure 95 Derivation for the steady state Navier Stokes problem in FEM_Theory

120

Chapter 7 Application to the solution of the Navier-Stokes problem

Velocity field Pressure field

5

RN

e

B T

D

Navier Stokes flow, Re

e s

7

R

EEPERNRCE N Xk

Navier Stokes flow, Re=40

oo
Figure 96 Numerical results for the cavity flow problem at various Reynolds numbers (continued next figure)

121

Application to the solution of the Navier-Stokes problem

Chapter 7

Pressure field

Velociry field

=100

Re

Stokes flow,

Navier

=200

Stokes flow, Re

Navier

Re=400

Stokes flow,

vier

Nai

Figure 97 Numerical results for the cavity flow problem at various Reynolds numbers

122

Chapter 7 Application to the solution of the Navier-Stokes problem

7.3 A stabilized space-time formulation discontinuous in time for Navier-
Stokes problem : Application to the dam break problem

7.3.1 A space-time formulation for the Navier-Stokes problem with moving boundaries

The strong statement of the unsteady Navier-Stokes problem is shown on Table 23, and the
formulation chosen here on Table 24. The formulation was first proposed in [TEZ 92 b]; this
is the multi-dimensional form of the formulation described in Chapter 6. In the variational
formulation of Table 24 (see Chapter 4 and [BEH 94] for a detailed description of the
notations), the stabilization terms, third and forth integrals, are the ones described in [TEZ
92¢). The first one is a SUPG/PSPG stabilization term, the second corresponds to the
continuity equation. Ensuing previous derivations, no new fundamental concepts are
introduced at this stage of the mathematical formulation. As matter of fact, the derivation can
be led in the symbolic environment.

A classical 8-nodes brick element is chosen. The velocity and pressure fields are interpolated
at each node. Linear shape functions are used for the interpolation and for the kinematics of
the element. A 2*¥2*2 Gaussian integration is adopted. Only the characteristics specific to this
3-D element needed at this stage have to be introduced. First, the way to perform a numerical
surface integration on the sides is added to the automatic programming scheme. Second the
dictionary of shape functions is enriched with linear shape functions. The element is shown in
Figure 98.

Table 23 Strong statement for the time dependent Navier-Stokes problem

Given fand F, find u velocity and p pressure with appropriate conditions of continuity such that:
Qin R™

n,=2

The momentum equation :

o, +fi=pu, +pun,; on QxT

The continuity equation :

u,; =0 on QxT
The boundary conditions :

o,n; =F, on 2,QxT
u, =u, on J,QxT

with 9Q=9.QuU3,Q
The constitutive equation :

0, =—pdy+2 E(u) on QxT
The initial conditions :

u(t=0,x)=u, on Q

u, (1=0,1)=0 on Q

With the kinematics law :

1
£)=ty +10) on QOxT

o 123

Chapter 7 ____ Application to the solution of the Navier-Stokes problem

Table 24 A space-time formulation for Navier-Stokes problem

tl\

X

Given f . for each time slab [,]. find (u*,p*)c((S"),x(#"),) such tha for all
g™y S (WM, x (19",)

L] h

I(p uly+ puu; ywldv - J2,u£,._,.(u")£,.j(w")dv+ Jphw:idt'+ Ju,.’f,.q"dv - Jﬂwfdv
2 A oA O Qn

+) [j(p uly, + pubul; —2pE, (") + ph =)T, (0 W, +pu:w,.'fj—2;t£,j‘j(w")+q5')duj‘

et [gr

+ Y {Ju?,-fmw?,-dv}r [p e 1w),av =0

o'enr o,

where :
(). ={welr@l = o)}
@) ={ut el @)l 1w =0 m(e)}
@) ={r e}

with :

2} (auy) -
T = (_J +(h_/:) and T, defined as in [BEH 94).

J

124

Chapter 7 Application to the solution of the Navier-Stokes problem

N=i€--10-1) N, =cE-D-1e+)
N2=%(§+1Xn—lxe—l) st—%(§+1Xr]—1X0+l)
N,=—%(§+1X17HXO—1) N,:%(§+1X7]+1X9+1)
No=g@-Dn+o-1) Ny=—g -+ 0+)

Figure 98 Description of the 8-nodes 3-D linear reference element

7.3.2 Application to the dam break problem

The moving boundaries scheme is put in prominent position on the dam break problem. The
description of the problem is given in Figure 99; here we take ¢ =0.001, p =1 and the time
step is 0.1. The results are shown at various time values (Figure 100 and Figure 101). The
deformed mesh, isolines of pressure and velocities are given. Notice that the mesh is updated
at each iteration by using the total velocity. A comparison with existing similar results [HAN
92b] and experimental results [MAR 52] is made on the advancing of the front (see Figure
102). These results confirm the potential of this numerical scheme.

125

Chapter 7 Application to the solution of the Navier-Stokes problem

,,,,,,,,,,,

B

o
|||||||||

N\ =0

|| =

35

..........

Figure 99 Description of the dam break problem and 2D view of the mesh

H
i
L
W

T \.M
\\\\\x\\\ A
W \\x\\\\\\\\\\\\\\

i
I
|
H
1
1

o—*a-——q——‘.——e—é—'

' \ M\ .\ \\\\\\\}\} \\Q\
e b sy \\\ \\\ %\X&Q}%\\&

: . :

Figure 100 Vector and pressure fields for the dam break problem at +=0.5 s

126

Chapter 7 Application to the solution of the Navier-Stokes problem

Figure 101 Vector and pressure fields for the dam break problem at r=3 s

Advancing front
4 P
L7 = = = Numerical results
3 R
lil 2 - " A Experimental results from
n'ﬂ o [MAR 52}
1 |ente ”] © O Numerical results from [HAN
926]
0
o] 1 2 3 4
t*sqrt 2g/L)

Figure 102 Comparison of the advancing front

127

Chapter7 Application to the solution of the Navier-Stokes problem

7.3.3 Closer to the mecharnics

This example of derivation shows the fast and natural extendibility capabilities of the
symbolic environment. The only extensions needed for this formulation are the generalization
of the scheme to handle correctly the spatial differential operators, the introduction of the new
matrix forms for the spatial differential operators and the enrichment of the shape functions
data base. These changes are taken into account at a high level of abstraction, very close to the
mathematical formulation. The initial aim of handling new formulations at a level closer to
the original mathematical level can be considered as successfully achieved.

128

Chapter 8 Conclusion

Chapter 8 Conclusion

8.1 A brief overview

In this work, a computerized framework for the derivations of finite element formulations was
presented. This work is based on a hybrid symbolic/numerical approach. An environment
based on the object oriented paradigm, capable of performing symbolic manipulations was
built. Based on a thorough analysis of a Galerkin formulation applied to elastodynamics, a
symbolic environment was developed in which natural concepts for continuum problems such
as term, sum, product, expression, integral, variational formulation, directional derivative and
system can be manipulated. Equivalent concepts for the discrete problem and its
manipulations were also created, like elemental forms, discretized expressions, etc... At this
stage already all the parameters of classical finite elements are taken into account for the
treatment of linear initial boundary value problems. In such a context, any usual finite element
model can be constructed, and the cumbersome computations and manipulations inherent to
this type of approach are left to the computer. A simple interactive graphical object oriented
interface closely related to the description of the objects facilitates their manipulations or,
more precisely, the communication with them. Numerical computations are performed in a
classical object oriented finite element code. The link between both symbolic and numerical
worlds, is achieved using an object oriented concept for the automatic programming of
clemental forms. The implementation of the symbolic environment is integrated into a
Smalltalk environment; and generation of a finite element code is possible either in Smalltalk
or in C++, the latter permitting to achieve a relatively high numerical efficiency and thus
allowing interesting numerical tests to be performed.

The approach was tested on various mechanical problems including nonlinear ones: heat
diffusion, linear elasticity in statics and dynamics, Stokes flow in the incompressible limit,
Navier-Stokes flow in the incompressible limit. Various finite element formulations were
used on these problems: like classical Galerkin formulations, Galerkin least-squares
formulations, Galerkin space-time formulations, continuous in space-discontinuous in time.

8.2 Analysis of the genericity

The main objective of the thesis was to develop a generic environment in order to be able to
treat a large number of different problems. To achieve this, an environment was developed to
represent the various formulations; this led, roughly speaking, to using concepts of sums of
products, where the term is the basic entity. The index notation was adopted because it leads
to a simple visual representation of the different manipulations; as a result, the integration of a
new type of problems is straightforward. Take the example of a classical electromagnetic
problem; the problem is governed by the following equations (see e.g. [CHA 80]):

129

Chapter 8 Conclusion

o8

cur1E=-—§ D=%R_(E)
aD‘ . e . . . B = 9‘m (H)
cud H = J + 22 with additional constitutive relations: ,
ot Ohm’s law :
divD=p J =R (E)

divB=0
where E and H are respectively the electric and magnetic fields, D and B are the electric and
magnetic flux vectors, J is the electric current density and p is the electric charge density.

Note that vectors D and B are related to the electric and magnetic fields E and H. The
treatment of these equations requires a new operator, curl. Moreover, the direct solution of
these equations is rarely attempted; they are usually combined. To adapt the symbolic
environment to this type of problem a few additions are necessary, in order to represent the
equations correctly. The operator curl is expressed using index notation: curl A:e,A,,

wheree;, =0if two indices are the same, ¢, =1 if i, j and k are permutations of 1,2, 3,

e; =—1if i, j and k are permutations of 1,3,2. Adding a new object to represent e, in the

environment permits to represent the new operator. This new object will also permit the
representation of the cross-product: AXB:e;A;B,. In the same manner, an object to

represent the Dirac function () could be added. It can be deduced from this example that

the representation of new types of problems can be made easily in the symbolic environment,
although minor extensions to the environment may be needed. Moreover, new manipulation
tools similar to integration by parts could be added to facilitate the manipulations of this new
type of equations. Further, the finite element approximation will necessitate enhancements in
order to recognize the new differential operators and the library will be enriched with
corresponding discrete operators. Extension to alternative weighted residual methods (e.g.
collocation) could be done as well, by giving a meaning to the weighting function (a Dirac
function in the case of collocation).

The choice of the index notation as mode of representation of partial differential equations is
thus shown to be pertinent, and the use of the object-oriented, the second challenging choice
in this work, is very convenient for the overall approach. Although it is obviously impossible
to build an environment capable of dealing with all types of problems, we have given a proof
that the proposed environment is easily adaptable.

The choice to integrate the new elements into an existing code was necessary to give a proof
of feasibility. The automatic programming schemes remain intimately related to the target
finite element code; but, the concepts of automatic finite element programming are general.
To achieve a complete generalization of the programming scheme, it would be necessary to
integrate part of the components of the numerical code into the symbolic environment.

At this stage of the development, the prototype can still be improved. In order to get a more
user-friendly environment, e.g. for educational purposes, it would be necessary to consolidate
both the domain of application of the different available tools, and the graphical interface. The
efficiency of the generated code could be improved too, e.g. by adding temporary variables in
automatically programmed expressions and by improving symbolic computations.

130

Chapter 8 Conclusion

8.3 Towards a general purpose environment for finite elements
developments

This work represents an important step towards a general environment for easy development
of computerized solution schemes for mechanical problems. This prototype could be enriched
with concepts of logic programming techniques to help the user in decision making. The
environment is still limited, at this stage, to the introduction of finite element matrices.
Extension to the algorithmic description of finite element formulations should allow the
introduction of new solution schemes, e.g. new time integration schemes, strategies for
updating variables, strategies for updating meshes or remeshing, etc... This is a particularly
crucial point for nonlinear finite element analysis of coupled systems. As a consequence,
enhancement to strategies such as parallelism, an important ingredient for high performance
computations, would be natural. This could be done either in the symbolic part or in the
numerical part of the environment. In order to achieve an optimal fast prototyping tool of
finite element model solutions, it would necessary to couple the symbolic and the numerical
environment with flexible pre- and post-processors, in order to facilitate data structure
generation and to post-process the results. Finally, the application of the ideas developed in
this study could be extended to alternative numerical solution schemes for partial differential
equations based on weighted residual methods such as e.g. collocation or the boundary
integral method.

131

References

References

[ANG 92] 1.G. Angus, Parallelism, Object-Oriented Programming methods, Portable software and C++,
Proceedings of 8" conf. held in conjunction with AEC Systems 92, Dallas, June 7-9 1992, Ed. Barry, Goodno
and Wright, ASCE (1992) pp. 506-513.

[BAI 93] C. Baiocchi, F. Brezzi, and L. P. Franca, Virtual bubbles and Galerkin-least-squares type methods
(Ga.L.S), Comput. Methods Appl. Mech. Engrg., vol. 105 (1993) pp. 125-141.

[BAR 89] N.S. Bardel, The application of symbolic computing to the hierarchical finite element method,
Internat. J. Numer. Methods Engrg., vol. 28 (1989) pp. 1181-1204.

[BAR 92] C. Barbier, Automatic generation of bending element matrices for finite element method using
REDUCE, Engineering Computations, vol. 9 (1992) pp. 477-494.

[BAT 82] K. J. Bathe, Finite Element procedures in engineering analysis, Prentice-Hall, (1982).

[BAU 92] J.W. Baugh and D.R. Rehak, Data abstraction in engineering software development, Comp. Civ.
Engr., vol. 6 (1992) pp. 282-299.

[BEH 92] M. Behr, Stabilized finite element methods for incompressible flows with emphasis on moving
boundaries and interfaces, Ph.D thesis report, University of Minnesota (1992).

[BEH 93] M. Behr, L.P. Franca and T.E. Tezduyar, Stabilized finite methods for the velocity-pressure-siress
formulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 104 (1993) pp. 31-48.

{BEH 94] M. Behr and T.E. Tezduyar, Finite element solution strategies for large-scale flow simulation,
Comput. Methods Appl. Mech. Engrg., 112 (1994) pp. 3-24.

[BES 97] J. Besson and R. Foerch, Large scale object-oriented finite element code design, Comput. Methods
Appl. Mech. Engrg., 142 (1997) 165-187.

[BRE 92a] F. Brezzi, M.O. Bristeau, L. P. Franca, M. Mallet and G. Rogé , A relationship between stabilized
finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg.,
vol. 96 (1992) pp. 117-129.

[BRE 92b] P. Breitkopf and G. Touzot, Architecture des logiciels et langages de modélisation, La Revue
Européenne des €léments finis, vol. 1 (3) (1992) pp. 333-368.

[BRO 82] A. Brooks and Th. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the Navier-Stokes equations, Comput. Methods Appl. Mech.
Engrg., vol. 32 (1982) pp. 199-259.

[BUF 97] M. Buffat, 1. Yudiana and C. Leribault, Parallel simulation of turbulent compressible flows with
unstructured domain partitioning. Performance on T3D and SP2 using OOP, in Parallel computational fluid
dynamics: Algorithm and results Advanced Computers, Eds. Schiano, A. Ecer, J. Periaux and N. Satofuka,
Elsevier (1992) pp. 76-83.

[CAM 97] F. Cameron, Automatic generation of efficient routines for evaluating multivariate polynomials
arising in finite element computations, Adv. in Engr. Soft., vol. 28 (1997) pp. 239-245.

[CAR 94] A. Cardona, 1. Klapka and M. Géradin, Design of a new finite element programming environment,
Engineering Computations, vol. 11 (1994) pp. 365-381.

[CEC 77] M.M. Cecchi and C. Lami, Automatic generation of stiffness matrices for finite element analysis,
Internat. J. Numer. Methods Engrg., vol. 11 (1977) pp 396-400.

[CHA 80] M.V K Chari and P.P. Silvester (Eds.), Finite elements in Electric and Magnetic Field problems, John
Wiley & Son (1980).

[CHA 88) R. Chambon and J.B. Thomas, Langages pour le calcul des structures, Ed. Fouet, Ladevéze and
Ohayon, Pluralis, vol. 2 (1988) pp. 261-271.

[CHO 92] D.K. Choi and S. Nomura, Application of symbolic computation to two-dimensional elasticity,
Computers & Structures, vol. 43 (1992) pp 645-649.

[CHO 93] A.J. Chorin and J.E. Marsden, A mathematical introduction to fluid mechanics, Springer-Verlag
(1993).

[CLI 89] T. Cline, H. Abelson and W. Harris, Symbolic computing in engineering design, Al EDAM, vol. 3
(1989) pp 195-206.

[COD 94] R, Codina, U. Schifer and E. Ofiate, Mould filling simulation using finite elements, Int. J. Num. Heat
Fluid Flow, vol. 4 (1994) 291-310.

[COL 88] E. Collain, J.M. Fouet and G. Regnier, Pour un calcul de structures orienté objets, Ed. Fouet,
Ladeveze and Ohayon, Pluralis, vol. 2 (1988) pp. 371-390.

133

References

{COM 96] S. Commend and T. Zimmermann, Finite Element Prepocessing with Java, http://dgcwww.epfl.ch/
WWWLSC/feppwj.html, (1996).
[CUR 93] 1.G. Currie, Fundamental mechanics of fluids, McGraw-Hill (1993).

[DEV 92a] P.R.B. Devloo, C.A. Magalhaes and A.T. Noel, On the implementation of the p-adaptive finite
element method using the object oriented programming philosofy, in Numerical methods in engineering and
applied sciences, part 1 , CIMNE, Barcelona (1992).

{DEV 92b} P.R.B. Devioo, An object oriented approach to finite element programming (Phase I): a system
independent windowing environment for developing interactive scientific programs, Advances in Engineering
Software, vol. 14 (1992) pp. 41-46.

[DEV 94] P.R.B. Devloo, Efficient issues in an object oriented programming environment, Proceedings of CST
94 , Athens Greece, vol. Artificial intelligence and object oriented approaches for structural engineering, Civil
Comp Press, (1994) pp. 147-151.

[DRO 96] J. Drolet, Towards a cross-platform finite element application framework: A toll to simplify finite
element simulations, Proceedings of 1" Structural Specialty Conference , May 29" to June 1% 1996,
Edmonton,Canada, (1996).

[DUB 91] Y. Dubois-Pelerin, P. Bomme and Th. Zimmermann, Object-oriented finite element programming
concepts, Proceedings of European conference on new advances in computational structural mechanics, ed. P.
Ladeveze and O.C. Zienkiewicz, Elsevier Science Publishers (1991), pp. 95-101.

[DUB 92a} Y. Dubois-Pelerin, Th. Zimmermann and P. Bomme, Object-oriented finite element programming :
II. A prototype program in Smallialk, Comput. Methods Appl. Mech. Engrg., vol. 98 (1992) pp. 361-397.

[DUB 92b] Y. Dubois-Pelerin and Th. Zimmermann, Object-Oriented finite element programming : Theory and
C++ Implementation for FEM__ObjectcHTM 001 , Elmepress international (1992).

[DUB 93] Y. Dubois-Pelerin and Th. Zimmermann, Object-oricnted finite element programming : III. An
efficient implementation in C++, Comput. Methods Appl. Mech. Engrg., vol. 108 (1993) pp. 165-183.

[DUB 95) Y. Dubois-Pélerin and P. Pegon, Object-Oriented programming in nonlinear finite element analysis,
Submitted to Computers & Structures (1995).

{DUB 97] Y.D. Dubois-Pélerin and P. Pegon, Improving modularity in object-oriented finite element
programming, Commun. numer. methods engin., 13 (1997) pp. 193-198.

[ENG 81] M.S. Engelman, G. Strang and K.J. Bathe, The application of quasi-Newton methods in fluid
mechanics, Int. J. Num. Meth. Engr. , vol. 17 (1981) pp. 707-718.

[EYH 94a] D. Eyheramendy and Th. Zimmermann, Object-oriented finite element programming : Beyond fast
prototyping, Proceedings of CST 94 , Athens Greece, vol. Artificial intelligence and object oriented approaches
for structural engineering, Civil Comp Press, (1994) pp. 121-127.

[EYH 95a] D. Eyheramendy and Th. Zimmermann, Programmation orientée objet appliquée 4 la méthode des
éléments finis : dérivations symboliques, programmation automatique, La Revue Européenne des €léments finis,
vol. 4 (1995) pp. 327-360.

[EYH 95b] D. Eyheramendy and Th. Zimmermann, Génération automatique de Code Eléments Finis dans un
environnement Orienté Objet, Actes du 2™ Colloque national en calcul des structures de Giens (1995) pp. 717-
722.

[EYH 96a] D. Eyheramendy and Th. Zimmermann, Object-oriented finite elements : II. A symbolic environment
for automatic programming, Comput. Methods Appl. Mech. Engrg., 132 (1996) pp. 259-276.

[EYH 96b] D. Eyheramendy and Th. Zimmermann, Object-oriented Finite Element Programming : An
interactive environment for symbolic derivations, Application to an Initial Boundary Value Problem, Advances
in Engineering Software 27 (1996) 3-10.

[EYH 96¢] D. Eyheramendy, Activity report (Sept. 95- Mar. 96) — AHPCRC/University of Minnesota,
Minneapolis, (1996).

[EYH 96d] D, Eyheramendy and Th. Zimmermann, Communication aux journees nationales en prog. Orienté
obj. Pour E.F., Besangon (1996).

[EYH 97a] D. Eyheramendy and Th. Zimmermann, Dérivations symboliques pour code éléments finis -
Application 3 un probi2me d'élasticité, Actes du 3°™ Collogue national en calcul des structures de Giens,
Hermes (1997) pp. 837-842.

[EYH 97b] D. Eyheramendy and Th. Zimmermann, Fonctionnalité d’un environnement orienté objet pour le
développement de code élémenis finis, Actes du 3*™ Collogue national en calcul des structures de Giens,
Hermes (1997) pp. 553-558.

[EYH 97c] D. Eyheramendy and Th. Zimmermann, Symbolic derivations and automatic generation of finite
elements in an object-oriented environment, Proceedings of the 4® US National Congress on Computational
Mechanics, San Francisco, Aug. 5-8 1997,

134

References

{EYH 97 d] D. Eyheramendy and Th. Zimmermann, Object-oriented finite elements ; I11. Theory and application
of automatic programming, Comput. Methods Appl. Mech. Engrg., (1997) in press.

[FEN 90] G.L. Fenves, Object-Oriented programming for engineering software development, Engr. with Comp.,
vol. 6 (1990) pp. 1-15.

[FIL 91] J.S.R.A. Filho and P.R.B. Devloo, Object-Oriented programming in scientific computations : The
beginning of a new area, Engineering Computations, vol. 8 (1991) 81-87.

[FLE 91a] C.A.J. Fletcher, Computational techniques for Fluid dynamics, vol. I, Fundamental and general
techniques, Springer Series in computational Physics, Springer-Verlag (1991).

[FLE 91b] C.A.L. Fletcher, Computational techniques for Fluid dynamics, vol. I, Specific techniques for
different flow categories, Springer Series in computational Physics, Springer-Verlag (1991).

[FOE 96] R. Foerch, Un environnement orienté objet pour la modélisation numérique des matériaux en calcul
des structures, Ph.D. thesis report, Ecole Nationale Supérieure des Mines de Paris, (1996).

[FOE 95] R. Foerch, J. Besson, P. Pilvin and G. Cailletaud, Formulation des relations de comportement dans les
calculs par éléments finis : approche C++, Actes du 2™ Colloque national en calcul des structures, Giens,
Hermes (1995) pp. 547-552.

[FOR 90] B.W.R Forde, R.O. Foschi and S.F Stiemer, Object-Oriented Finite Element Analysis, Computers &
Structures, vol. 34 (1990) pp. 355-374.

[FRA 87] L. P. Franca, New mixed finite element methods, Ph.D. thesis report, Stanford University, 1987.

[FRA 88] L. P. Franca and T.J.R. Hughes, Two classes of mixed finite element methods, Comput. Methods
Appl. Mech. Engrg., vol. 69 (1988) pp. 89-129.

[FRA 89] L. P. Franca and E. G. Dutra Do Carmo, The Galerkin Gradient Least-Squares Method, Comput.
Methods Appl. Mech. Engrg., vol. 74 (1989) pp. 41-54.

{FRA 92a] L. P. Franca, S. L. Frey and Th. J. R. Hughes, Stabilized finite element methods : I. Application to
the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., vol. 95 (1992) pp. 253-276.

[FRA 92b] L. P. Franca and S. L. Frey, Stabilized finite element methods : II. The incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg., vol. 99 (1992) pp. 209-233.

[FRA 93a] L. P. Franca and A L. Madureira, Element diameter free stability parameters for stabilized methods
applied to fluids, Comput. Methods Appl. Mech. Engrg., vol. 105 (1993) pp. 395-403.

[FRA 93b] L. P. Franca and T.J.R. Hughes, Convergence analyses of Galerkin least-squares methods for
symmetric advective-diffusive forms of the Stokes and Navier-Stokes equations, Comput. Methods Appl. Mech.
Engrg., vol. 105 (1993) pp. 285-298.

[FRA 94a] L. P. Franca and C. Farhat, Anti-stabilizing effects of bubble functions, Proceedings of the Third
Congress on Computational Mechanics (IACM), Chiba Japan, vol. I (1994) pp 1452-1453.

[FRA 94b] L. P. Franca and C. Farhat, On the limitations of bubble functions, Comput. Methods Appl. Mech.
Engrg., vol. 117 (1994) pp. 225-230.

[FRA 95] L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods,
Comput. Methods Appl. Mech. Engrg., vol. 123 (1995) pp. 299-308.

[FRE 97] R. Frenette, D. Eyheramendy and Th. Zimmermann, Numerical modeling of dam-break type problems
for Navier-Stokes and granular flows, Proceedings of 1* international Conference on Debris-flow hazards
mitigation : mechanics, prediction, and assessment, San Francisco, Aug. 7-9 1997, Ed. C.L. Chen, (1997) pp.
586-595.

[FRI 92] P. Fritzson and D. Fritzson, The need for high-level programming support in scientific computing
applied to mechanical analysis, Computers & Structures, vol. 45 (1992) pp. 387-395.

[GHI 82] U. Ghia, K.N. Ghia and C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes
equations and a multigrid method, J. Comp. Phy., vol. 48 (1982) pp. 387-411.

[GOL 94] N.A. Golias, T.D. Tsiboukis and E.E. Kriezis, Automatic finite element analysis : Application to the
shielding by a spherical shell, Archiv fiir Elektrotechnik, vol. 77 (1994) 85-93.

[GEL 95] J. C. Gelin and L. Walterthum, Conception d’un logiciel orienté-objets pour la simulation de processus
de formage, Actes du 2™ Colloque national en calcul des structures, Giens, Hermes (1995) pp. 552-558.

[GRE 91] P.M. Gresho, Some current CFD issues relevant to the incompressible Navier-Stokes equations,
Comput. Methods Appl. Mech. Engrg., vol. 87 (1991) pp. 201-252.

[GUN 71] R.H. Gunderson and A. Cetiner, Element stiffness matrix generator, J. Struct. Div., Poceedings of
ASCE, January 1971, (1971) pp. 363-375.

[HAN 90] P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element method for the
incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., vol. 84 (1990) pp. 175-192,
[HAN 92a] P. Hansbo, The characteristic streamline diffusion method for convection-diffusion problems,
Comput. Methods Appl. Mech. Engrg., vol. 96 (1992) pp. 239-253.

135

References

[HAN 92b] P. Hansbo, The characteristic streamline diffusion method for the time-dependent incompressible
Navier-Stokes equations , Comput. Methods Appl. Mech. Engrg., vol. 96 (1992) pp. 239-253.

[HAN 95) S.K. Hannani, M. Stalinas and P. Dupont, Incompressible Navier-Stokes computations with SUPG
and GLS formulations — A comparison study, Comput. Methods Appl. Mech. Engrg., vol. 124 (1995) pp. 153-
170.

[HAR 92] L. Harari and T.J.R, Hughes, What are C and 4? : Inequalities for the analysis and design of finite
element method, Comput. Methods Appl. Mech. Engrg., vol. 97 (1992) pp. 157-192.

[HOA 80] S. V. Hoa and S. Sankar, A computer program for automatic generation of stiffness and mass matrices
in finite-element analyis, Computers & Structures, vol. 11 (1980) pp. 147-161.

[HSI 97] S.H. Hsich and E.D. Sotelino, A message-passing class library C++ for portable parallel programming,
Eng. with computers, 13 (1997) 20-34.

[HUE 88] A. Huerta and W K. Liu, Viscous flow with large free surface motion, Comput. Methods Appl. Mech.
Engrg., vol. 69 (1988) pp. 277-324.

{HUG 76] Hughes, T. J. R,; Taylor, R.L. ; Sackman, J.L.; Curnier, A. and Kanoknukulchai, A finite element
method for a class of contact-impact problems, Comput. Methods Appl. Mech. Engrg., 8 (1976) pp. 249-276.
[HUG 78] T.J.R. Hughes and K. S. Pister, Consistent linearization in mechanics of solids and structures,
Computers & Structures, vol. 8 (1978) pp. 391-397.

[HUG 79] T.J.R. Hughes, W.K. Liu and A. Brooks, Finite element analysis of incompressible viscous flows by
the penalty function formulation, J. Computational Physics, vol. 30 (1979) pp. 1-60.

{HUG 81} T.J.R. Hughes, W.K. Liu and Th. Zimmermann, Lagragian-Eulerian finite element formulation for
incompressible viscous flows, Comput. Methods Appl. Mech, Engrg., vol. 29 (1981) pp. 329-349.

{HUG 87] T. J. R. Hughes, The Finite Element Method, Prentice-Hall, (1987).

[HUG 86] T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid
dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the stokes
problem accomodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., vol. 59 (1986) pp. 85-
99.

[HUG 88a] T.J.R. Hughes and G.M. Hulbert, Space-time finite element methods for elastodynamics :
formulations and error estimates, Comput. Methods Appl. Mech. Engrg., 66 (1988) pp. 339-363.

[HUG 88b] T.J.R. Hughes and L. Franca, A mixed finite element formulation for Reissner-Mindlin plate theory:
Uniform convergence of all higher-order spaces, Comput. Methods Appl. Mech. Engrg., vol. 67 (1988) pp. 223-
240.

[HUG 89] T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid
dynamics: VIII. The Galerkin/Least-squares method for advective-diffusive equations, Comput. Methods Appl.
Mech. Engrg., vol. 73 (1989) pp. 173-189.

{IBR 92] A. Ibrahimbegovic, Stress resultant geometrically nonlinear shell theory with drilling rotations. Part I
A consistent formulation, LSC Internal report 92/24, Swiss Federal Institute of Technology, (1992).

[IBR 93] A. Ibrahimbegovic and F. Frey, Geometrically non-linear method of incompatible modes in application
to finite elasticity with independent rotations, Int. J. Num. Methods in Eng., 36 (1993) 4185-4200.

[TOA 92] N.1. loakimidis, Elementary applications of MATHEMETICA to the solution of elasticity problems by
the finite element method, Comput. Methods Appl. Mech. Engrg., vol. 102 (1993) pp. 29-40.

[JER 97] B. Jeremic and S. Sture, Tensor objects in Finite Element Programming, To be published in Int. J.
Num., Meth. Engr.,(1997).

[JOH 94] C. Johnson, Numerical solution of partial differential equations by the finite element method,
Cambridge University press (1994).

[KAW 95] H. Kawata, S. Yoshimura, G. Yagawa and H. Kawai, Object-oriented system for evaluation of
fracture mechanics-Parameters of linear and nonlinear 3D cracks, Proceedings of IECS 95, S.N. Atluri, G.
Yagawa, T.A. Cruse (Eds.), vol. 1 (1995) pp. 39-44.

[KOR 79] A.R. Korncoff and S.J. Fenves, Symbolic generation of finite element stiffness matrices, Computers
& Structures, vol. 10 (1979) pp. 119-124.

[KOZ 94} I. Kozar and A. Ibrahimbegovic, Finite Element formulation of finite rotation solid element, LSC
internal report, Swiss Federal Institute of Technology, (1994).

{LEE 91] H.H. Lee and J.S. Arora, Object-Oriented programming for engineering Applications, Engr. with
Comp., vol. 7 (1991) pp. 225-235.

[LEF 91] L. Leff and Y.Y. Yun, The symbolic finite element analysis system, Computers & Structures, vol. 41
(1991) pp. 227-231.

136

References

[LOU 87a] AFF.D. Loula, T.J.R. Hughes, L. Franca and I. Miranda, Mixed Petrov-Galerkin methods for the
Timoshenko beam problem, Comput. Methods Appl. Mech. Engrg., vol. 63 (1987) pp. 133-154.

[LOU 87b} A.F.D. Loula, T.J.R. Hughes, L. Franca and I. Miranda, Stability, convergence and accuracy of a
new mixed finite element method for the circular arch problem, Comput. Methods Appl. Mech. Engrg., vol. 63
(1987) pp. 281-303.

[LUC 92] D. Lucas, B. Dressler and D. Aubry, Object-oriented finite element programming using the ADA
language, Numerical Methods in Engineering 92, C. Hirsh and al. (Eds.), (1992) pp. 591-598.

[LUF 71} R.W. Luft, .M. Roesset and J.J. Connor, Automatic generation of finite element matrices, J. Struct.
Div., Poceedings of ASCE, January 1971, (1971) pp. 349-361.

{MAC 921 R.I Mackie, Object-oriented programming of the finite element method, Int. J. Num. Meth. Engr. ,
vol. 35 (1992) 425-436.

[MAC 97] R.1. Mackie, Using Objects to handle complexity in Finite Element Software, Eng. with computers,
13 (1997) pp. 99-111.

[MAL 78] D.S. Malkus and T.J.R. Hughes, Mixed finite element methods - Reduced and selective integration
techniques : a unification of concepts, Comput. Methods Appl. Mech. Engrg., 15 (1978) pp. 63-81.

[MAR 83] L.E. Marsden and T.J.R. Hughes, Mathematical foundations of elasticity, Prentice-Hall, (1983).

[MAR 52] J.C. Martin and W.J. Moyce, An experimental study of the collapse of liquid columns on a rigid
horizontal plane, Philos. Trans. Roy. Soc. London Ser. A244, (1952) pp. 312-324.

[MAS90] G. Masini, A, Napoli, D. Léonard, K. Trombe, Les langages & objets, InterEditions,(1990).

[MAS 97] A. Masud and T.J.R. Hughes, A space-time Galerkin/Least-squares finite element of the Navier-
Stokes equations for moving domain problems, Comput. Methods Appl. Mech. Engrg., vol. 146 (1997) pp. 91-
126.

[MEN 93} Ph. Menétrey and Th. Zimmermann, Object-Oriented Non-Linear Finite Element Analysis :
Application to J2 plasticity, Computers & Structures, vol. 49 n° 5 (1993) pp. 767-777.

[MIL 88] G.R Miller., A LISP-Based Object-Oriented approach to structural anatysis, Engr, with Comp., vol. 4
(1988) pp. 197-203.

{MIL 917 G.R Miller., An Object-Oriented Approach to Structural Analysis and Design, Computers &
Structures, vol. 40 n° 1 (1991) pp. 75-82.

[NIE 94] L.O. Nielsen, A C++ class library for FEM special purpose software, Internal report, Department of
Structural Engineering, Technical University of Denmark, Serie R vol. 308 (1994).

[NOO 79] AK. Noor and C.M. Andersen, Computerized symbolic manipulation in structural mechanics-
progress and potential, Computers & Structures, vol. 10 (1979) pp. 95-118.

[NQO 81] A.K. Noor and C.M. Andersen, Computerized symbolic manipulation in nonlinear finite element
analysis, Computers & Structures, vol. 13 (1981) pp. 379-403.

[NOO 90] Symbolic computations and their impact on mechanics, Winter Annual Meeting of the American
Society of Mechanical Engineers, Dallas, Texas, November 25-30, 1990, ed. by A.K. Noor, 1. Elishakoff and G.
Hulbert, PVP ; vol. 205 (1990).

[PAS 97} M. Pastor, M. Quecedo and O.C. Zienkiewicz, A mixed displacement-pressure formulation for
numerical analysis of plastic failure, Comp. & Struct., vol. 62 (1997) pp. 13-23.

[PES 88] R.L. Peskin and M.F. Russo, An Object-Oriented System Environment For Partial Differential
Equation Solution, Proceedings, ASME Computations in Engineering, (1988) pp 409-415.

[POT 97a] Potapov S and Jacquart G., Un algorithme ALE de dynamique rapide basé sur une approche mixte
&léments finis-volumes finis, Actes du 3™ Collogue national en calcul des structures de Giens, Hermes (1397)
pp. 509-514.

[POT 97b] Potapov S, Un algorithme ALE de dynamique rapide basé sur une approche mixte Eléments finis-
Volumes finis. Implémentation en langage orienté objet C++ , Phd thesis report, Ecole Centrale Paris, (1997).

[RAP 93] B. Raphael and C.S. Krishnamoorthy, Automating finite element development using Object-Oriented
techniques, Engineering Computations, vol. 10 (1993)267-278.

[RUS 96} A. Russo, Bubble stabilization of finite element methods for the linearized incompressible Navier-
Stokes equations, Comput. Methods Appl. Mech. Engrg., 132 (1996) pp. 335-343.

[REH 89] Rechak D.R. and Baugh Jr. J.W., Alternative Programming Techniques for Finite Element
Programming Development, Proceedings IABSE Colloquium on Expert Systems in Civil Engincerings,
Bergamo, Italy. IABSE, (1989).

[ROS 92a} 1.T. Ross, J.P. Morrow, L.R. Wagner and G.F. Luger, Two paradigms for OOP models for scientific
applications, Proceedings of 8% conf. held in conjunction with AEC Systems 92, Dallas, June 7-9 1992, Ed.
Barry, Goodno and Wright, ASCE (1992) pp. 535-542.

137

References

[ROS 92b] J.T. Ross, L.R. Wagner and G.F. Luger, Object-oriented programming for scientific codes. I:
Thoughts and concepts, Comp. Civ. Engr., vol. 6 (1992) pp. 480-496.

{ROS 92c] J.T. Ross, L.R. Wagner and G.F. Luger, Object-oriented programming for scientific codes. II:
Examples in C++, Comp. Civ. Engr., vol. 6 (1992) pp. 480-496.

[SCH 83] R. Schreiber and H.B. Keller, Driven cavity flows by efficient numerical techniques, J. Computational
Physics , vol. 49 (1983) 310-333.

[SCH 92] S.P. Scholz, Elements of an object-oriented FEM ++ program in C++, Comp. and Struct., 43 (1992)
pp. 517-529.

[SCH 93] R. Schreiber and H.B. Keller, Driven cavity flows by efficient numerical techniques, J. Com. Phy.,
vol. 49 (1983) pp. 310-333.

[SHA 88] F. Shakib, Finite Element analysis of the compressible Euler and Navier-Stokes equations, Ph.D.
thesis report, Stanford University, 1988.

[SIL 94] P. P. Silvester and S. V. Chamlian, Symbolic Generation of Finite Elements for Skin-Effect Integral
Equations, JEEE Transactions on magnetics, vol 30 n° 5 (1994) pp. 3594-3597.

{SIM 93] J.C. Simo and F. Armero, Improved versions of assumed enhanced strain tri-linear elements for 3D
finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110 (1993) pp. 359-386.

[SIM 94] 1L.M. SIM, An object-oriented development system for finite element analysis, Phd thesis report,
Arizona State University, (1994).

[SMA 93a] Smalltalk for Win32, Reference guide, Digitalk Inc. (1993).

[SMA 93b} Smalltalk for Win32, Encyclopedia of classes, Digitalk Inc. (1993).

{STO 97] M. Storti, N. Nigro and S. Indelsohn, Equal order interpolations: a unified approach to stabilize the
incompressible and advective effects, Comput. Methods Appl. Mech. Engrg., 143 (1997) pp. 317-331.

[SUB 96] Subpanes/V for VisuaiSmalltalk, Programming Guide, ObjectShare Systems Inc., (1996).

{SUS 94] M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible
two-phase flow, J. Comp. Phy., vol. 114 (1994} 146-159.

[TEZ 92a] T.E. Tezduyar, S. Mittal, S.E. Ray and R. Shih, Incompressible flow computations with stabilized
bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. Methods Appl. Mech. Engrg.,
95 (1992) pp. 221-242.

[TEZ 92b} T.E. Tezduyar, M. Behr and J. Liou, A new strategy for finite element computations involving
moving boundaries and interfaces - The deforming-spatial-domain/space-time procedure : I. The concept and the
preliminary numerical tests, Comput. Methods Appl. Mech. Engrg., 94 (1992) pp. 339-351.

[TEZ 92¢] T.E. Tezduyar, M. Behr, S. Mittal and J. Liou, A new strategy for finite element computations
involving moving boundaries and interfaces - The deforming-spatial-domain/space-time procedure : IL
Computation of free-surface flows, two liquid flows, and flows with drifting cylinders, Comput. Methods Appl.
Mech. Engrg., 94 (1992) pp. 353-371.

[TEZ 92d] T.E. Tezduyar, Stabilized finite element formulations for incompressible flow computations,
Advances in applied Mechanics, vol. 28 (1992) pp. 1-44.

[TEZ 971 T.E. Tezduyar, S. Aliabadi and M. Behr, Enhanced-discretization interface-capturing technique,
AHPCRC-University of Minnesota, Preprint 97-019, (1997).

[TRU 97] A. Truty and Th. Zimmermann, A robust formulation for FE-analysis of elasto-plastic media,
Numerical methods in Geomechanics, NUMOG V1, Pietruszczak & Pande (eds) Balkena (1997) pp. 381-386.
[TWO 931 W.W. Tworzydlo and J.T. Oden, Towards an automated environment in computational mechanics,
Comput. Methods Appl. Mech. Engrg., vol. 104 (1993) pp. 87-143,

[VER 88] P. Verpaux, T. Charras and A. Millard, CASTEM 2000: une approche moderne du calcul de structure,
Ed. Fouet, Ladevéze and Ohayon, Pluralis, vol. 2 (1988) pp. 261-271.

[VIS 95a] VisualSmalltalk Enterprise - 32 Bit Pure Object-Oriented Programming System, User's guide,
ParkPlace Digitalk, (1995).

[VIS 95b] VisualSmalitalk Enterprise - 32 Bit Pure Object-Oriented Programming System, Language Reference,
ParkPlace Digitatk, (1995).

[VIS 95¢] VisualSmalltalk Enterprise - 32 Bit Pure Object-Oriented Programming System, Encyclopedia of
classes for Win32, ParkPlace Digitalk, (1995).

[WAL 96] L. Walterthum, Programmation orientée objet et calcul par éléments finis. Application 2 la conception
d’un logiciel de simulation en mise en forme des matériaux, Ph.D. thesis report, Université de Franche-Comté,
(1996).

[WAN 86] P.S. Wang, FINGER : A symbolic System For Automatic Generation of Numerical Programs in
Finite Element Analysis, J. Symbolic Computation, vol. 2 (1986) pp 305-316.

138

References

[WIN 96] WindowBuilder Pro/V 3.1, Tutorial and Reference Guide, ObjectShare Systems Inc., (1996).

[YAG 90] G. Yagawa, G.-W. Ye and S. Yoshimura, A numerical integration scheme for finite element method
based on symbolic manipulation, Internat. J. Numer. Methods Engrg., vol. 29 (1990) pp. 1539-1549.

[YAN 94] C.Y. Yang, An algebraic-expressed finite element model for symbolic computation Computers &
Structures, vol. 52 n° 5 (1994) pp. 1069-1077.

{YU 94] G.G. Yu, Object-oriented models for numerical and finite element analysis, PhD thesis report, The Ohio
State University, (1994).

{ZEG 94] G.W. Zeglinski and R.P.S. Han, Object oriented matrix classes for use in a finite element code using
C++, , Int. J. Num. Meth. Engr. , vol. 37 (1994) 3921-3937.

[ZIE 91] O. C. Zienkiewicz and R. L. Taylor, The finite element method, 4® ed. Vol. 2, Solid and fluid
mechanics, Dynamics and Non-Linearity, McGraw-Hill (1991).

[ZIM 92a] Th. Zimmermann, Y. Dubois-Pelerin and P. Bomme, Object-oriented finite element programming : I.
Governing principles, Comput. Methods Appl. Mech. Engrg., vol. 98 (1992) pp. 291-303.

[ZIM 92b] Th. Zimmermann, Y. Dubois-P2lerin and P. Bomme, Object-oriented finite element programming :
Theory and Smalltalk V Implementation for FEM_Object,,,,TMOOI, Elmepress international (1992).

[ZIM 92¢} Th. Zimmermann and Y.D. Dubois-Pélerin, The object-oriented approach to finite elements:
Concepts and implementations, Proc. of 1" European Conf. on Num. Meth. in Engr., Brussels, Ed. C. Hirsch, 7-
11 September 1992.

[ZIM 94] Th. Zimmermann and D. Eyheramendy, Object-oriented finite elements programming : Automatic
programming, Proceedings of the Third Congress on Computational Mechanics (IACM), Chiba Japan, vol. II
(1994) pp 1527-1528.

[ZIM 95 a] Th. Zimmermann and D. Eyheramendy, Symbolic object-oriented Finite Element Programming -
Application to incompressible viscous flow, Proceedings of IECS 95, S.N. Atluri, G. Yagawa, T.A. Cruse
(Eds.), vol. 1 (1995) pp. 21-26.

[ZIM 95 b} Th. Zimmermann, P. Bomme, D. Eyheramendy, L. Vernier and S. Commend, Object-Oricnted
Finite Element Techniques : Towards a general purpose environment, Proceedings of the 4" Int. Conf. on the
application of Al in Civil and Structural Eng., Cambridge, (1995).

[ZIM 96] Th. Zimmermann and D. Eyheramendy, Object-oriented finite elements : L. Principles of symbolic
derivations and automatic programming, Comput. Methods Appl. Mech. Engrg., 132 (1996) pp. 277-304.

[ZIM 97] Th. Zimmermann, D. Eyheramendy, P. Bomme, S. Commend and R.S. Arruda, Object-oriented finite
element programming : Languages, Symbolic derivations, Reasoning capabilities, proceedings of NAFEM 97-
Stuttgart, vol. 1 (1997) pp. 652-663.

139

Appendix A

Appendix A

This article was published in
Computer Methods in Applied Mechanics and Engineering
vol. 132 (1996) pp. 277-304.

141

Appendix A

"
Panssa1 B NIV ¥ § 93U 131881T 9661 () O $15 196 /TN ST

sogane Futpuedsanay |

a1 pue uondunsap & dnoifar yaiym sadAy eiep pensqe 4q pantoddns sy JunuwesBoid pawsuo-132iq0

wiiipnand paiualio-133qo A Jo maniag pz
BunwwiesBoud pRUANIC-INIGO T

*2|0yMm e SE 10 Ajjensed pasnal aq UED WILLOIIAUR SIY) 30 siuauodwod
ayz "15p10 BWIPUAISAP UF PaGUISIP SI AYDIRION Y] CPISNISIP Uyl JUE SySEl Y| SPOIAW
1212435 dnord ued ydym sysed ‘wiopad 01 pasoddns i WAY) JO YOI IRY) SYSEI A Pue sHngUuE
Y1 FWAB W0y 3|YEl Ul PIQUISIP I WILUOIIAUD M3U) JO sSEP YIeg "uaaiB st Aydresaiy 31ajdwion
243 jO uonduIsIP Y} ‘pISN UG SBY JUAWUOHAUT PAUIUQ 13(q NpeifEwS € Ays Buimoys Iy
‘[s] s1onue 1s3y € ur parySiydiy 21w wawUONAU NJoQIUAS Ay Jo $193[qo L1ew Y ‘{g ‘Z] w paquosap
s192qo 122000 2y1 Sunejos: 10} A3copoyidw duswsd oy jo a3muespe FupEl PIPIdU st way
WOJ) PIALIDP SULIO) Xew Y3 Jo Fuipod pue suor Jo uot 1 Fuwasd uy

pue u__oAE.A» duisn
“ap03 3wy AMUL] e pue wqosd usal B 3 unoj Ruons Ay UMK 1utof ay Furyew wy smsuL
PuR 0212)51p APYSHS S1 I0M SIYY SO WIE YL XLIEW SSEW 341 IO XUIBW SSAUHUS Y1 B YINS SoILIRW
[RwswsR Andwor o sjeor wonendwos oqwiks Juisn Ajednzwoine ssuunol MNeiuad 0y spew
uaaq ey ([z1-9}) sidwane PO "wIyqoid snjea-Arepuncg-[eniut ue jo wioj Juons ¥ woL swioy
XUJEW JAL3P 0) JUSWUONAUS dljoquids © 10} ydeosdde paiuatio-oolqo ue pasodoid savy siogine oy
*[s) u} ~ysex snoipuse; pue Jur awn e st WY U] M3U B JO juawdofdaadp ay).

naganpenug Y

PIQUIRID §) JANBOIAUS BMEWS ¢ 1 paresdarur
S4 4om aUU0ITAUR P350d01d U3 JO LONULIIP PAIEIP a1 e 51 U] PSS Ua3q ney wiaqsd TR Airpunoy.eni
UE JO UOKNICS) 10} [IPOW WY] [EIIFWNY MIU € JO sy1 soy b 3atdessiu
ue o samieoy Aax aur "I<) soded BOWRAWOD B by o) SWAWIR wuy Twpod o ABooponaws ¢ padojIAIp ANENEIIISKS
sey dooil yo1easar sioyine) ‘IXAMWOD St} U] ANIQESNa1 SAN3G PuE $3pod mau Jo Fuidiroioad 13use 01 spe3y yosoidde
Pa1an0-1231q0 QL AVURWILIOD TWAWSIT ANUI4 3G W HONUNIE 240w PUE 20w Funtad s yeosde PaI0-RIGo AL

pesy

[p—
P—
auupsE 5101 (744D §80j0uy2) JO nmsuy [2ipag SIS (IS7T) SAUDYINR UMMuIIOD) PUD PIIINAS [0 (10101040
LUUBIIBWUNZ (Y] ‘ApUaWRIaAg (g
BunuwesSord dsrewWOME J0f JUIWUOIAUD IOGUAS v “[[
SIUAWI2 ANluy PajuaL0-123{q0

PR -LLT (9enl) TO0 F13um WA KV POyl ndun)
BupsseujBus

SPOINOW 1reI0]

SPURIIZYIIN 341 U) paIULY

(1324 Jo0 2UAIIZS Thed B 662 OSIN/ISNV 0 SIS 31 133w Ue

s uew
30D u

23U, a3as|4 ISYsHYNd Y1 Ju UORSIwIad Jotid Y3 INOYIM
*suedw Aue 4Q o WG) AUP UC PAIUSURS 0 WSISAS [BAMNDE € U1 D3LOLS "PINPOIGIL 3G Aew 4o

aprw s 3y
1e3gnd st U1 ISALUL SPIFRUR EAYID OF WIOJUCD 01 PA13AYS 51 [EUITW Buisilidape
1 UL PAUITIE0D SEIPL K0 SUOTISRIISU! “$33npid SPOIAW ALZ JO U
INPOL o 130ew © st ALAGOIE 10 SUonad 01 SBeWweD S0 pur 1AM dur s0) sagsigng b kg pawnsie s

) 51$1967STBL-SpN

1nposd 43NS §o A0[ea 1o Knpenb oy

i13da 10 250 KuR Wwolj K

1234 ¥ soun 9| paysiang

and s ur pasn sxded) o

WAWRIGPU3 10 3EIENT € SISO 10U

uBnoytyy usiay eIk
“eimianio 1o aoustilae

PanIna1 gL IV Y S 3303138 13353 966l @

oMo KNVINITNIWIZ 4L
0dyo1 ‘VAVIWVA A

0 2pmog “WYTIM TN
23prgrn) 'NVIWILIHM ¥ [

14 °22usp104d ‘SANOWAS §d
2pog "ONMNOHDS ‘8

1208umiS “NATHIIHOS M

wis3 ANVAZON N 1D

¥ mpmny 17 NIAA0Y d M
WA snbunbngry “FHIVOH (d
DA]

woypIY WASIAY W
somduty "OVE A ¥

unyng sy 1 1)U NVIO
o] (1SVHALOd 44
WIINOd S ¥ ¥
wowsy> AIVHINY I [
2N IYATd A

vd ydppopvd INvd 8
ujisg \HYd [d

404 NOAVHO ¥

oosuoas “ZIMADINIIZ D O
W *10q4y wiy "DNVA HM
#0350py ANSNISTUNSOA d O
Wiy 2¥prquny ONVYLS O
V.3 'Aaaye0g "ML S A
¥¥no.oquins AJTHOW 051

OO T 4imE S0y

vA VoIdWoH "HOON "X vV
AqRu(T 'NISTIIN 4'W

13 *ouspnosd ‘NYWITQFAN ¥
PIRYDI3 STHUONW |V
puppsusnQ) BN IS WIAW 1T
ouBW BTV D

B X “uniys O

ueunS ZLIMANIT X
DAUDMS SIATT MY

V. P4pqing DINDS "GN ¥ d
¥ ojpasuuns 'NOSGNINY DM
¥ " FIpuannpd-rpvsE) OT AN M S
S5 "SNALSTN
OAYOL“Tvw L

paS-990 "NY UV ZH
#0qu00) "NOSNHOM 3
unapuoLl ‘ANYIOH 1

24217 "I000H W

W sowspy 50T MOTIVH 'H 4
¥.) 4221801 "ONIWWYH M Y
VO IPePI VAN AN
ouUDH "YI/NED o

BN NIGVEID W

wny.q,hmzzomn<2u
v et oo xving b
$upg "SNOIN 1

V3 sappduy S07 SGIIWN O H
XL "HOIOH "INSNIMOID B
AN "wopsod WIHOVTIVD WY

3
H
r

¥IA e s v >
GNOINVLS i
St wury pafums

LM S NOUNOT

sapwapoy payddy ¢ on wooy POOY 150%u0) 2uiif

pun oucnemdiacy Surppng pusing «Botouys] puv

20f Imusuy sovoy wyy nimgapy payddy NS J0 38103 poriaduy
DI fo AMSIIAtur) MY fo uorsiang v jo

NIQOAIPEL [STHONH ¥ [sewoy),

1086) Barwarep)
20Up3 Typusoy
¥IDVHd ‘M

NOGNO') PST LUVDLINLS 'STALONY H'Y
DINIYIINIONT ANV SOINVHIIW G314V NI SAOHLAW WI1NdWO

5

SNOSHVYd 530N uiansag feuoipg

V.3 04pupa ¥OS ATIVITAD ¥ ¥
Vi uonsog "QANYs |

Suhag "ONT3 ‘N

0 #Pimog "vadi13d ¥
¥.) 32128y 307 “1SINOONT €
AN Yok moN NVINTSIA U d
vidt; VIANOA

1uQ) "oopAoM ' NHOD 'Z'W

AN wo xoN NIHOD 'H
suod 1314V Dd

IV ptasun "ONNHD 1L
220044 "NISNVILSIEHD ‘B
uogpA* LONHD 1T
wopuo) 'NYHI 18 ¥

V.2 4500g $uo7°15383) L
Vi HSpuguo) IV 10
ouneL “OLONVD D

sung ‘SANNVEVI H

uolinis Y1408 H

¥ 2Epuqued "AHLYE Y
AN 28odyisg 'NIWYY H
AN 030w 1IBY 4 f

$¥O0LIG3 AUOSIAQY

-31-Sp20 " TOONIAA W
1S A0 ONIME 3%
X ¥ ZHIMOANIG T
T worsupAZ "OWHISLATAE L
NI rcouy HINYE [V
W “Yivd 439103 WASNAVA 1
¥ ouioqiuoH “Yddv N

$¥OLIAI ZLYIDOSSY

ffey puonp3)
oD
LHVOLINLS 695040
£z Bwupowuafjolg

X1 “NLLSAY ‘N300 LT

¥ 'GNOSNYIS ‘STHONH

sainduo’y inf mitssuy

STHADUY H uyor

SISTABLAQAY TVINOLIGE

142

Appendix A

:a1e SPOYIdW 283y]
UONEWIOJUT PIPIFU 3Y) 43N Y} YSB OF JO SANGUNE SI JO 3O YSB 0) SSEID Y1 SMO|[8 POYIAW 158] S1 |
*321N0s 19Y10UE WOIJ 1t 13T YIIym [AnqLnY 0¥ -
SISIX3 ADE3{R 11 JI [IINGLINS SUINIAL YOIYm [IMQLIY 318 —
{INqLINE SIIRDURISI YOIYUM [ANGLID ~
:papiroad aie spoyraw aargl Jumoyjoy sy
TEIINQLIIE INQLINE UR Yim SSEP B IPISUQD) "amquiy1al pue amquiy aad
'13mQroip SANQUITE UMO SIE J[PUBY O3 SpoIaW aMy) swawssdwl sse yoed ‘Fugeads A[|Eiduan

£209Y1 "IWHJ Jo SasSER 3y Jo uonduasag p

“INZIPP Ul PAQUDSIP 3G MOU ABW SISSBLD JUIINP YL (Preoghay
) to 1asn 1 Ag uaA1B uotssardxa) Buins 3(Fuls B WoIj nowsaadxF pue WP, SISSE|Y JO SRS 133 0)
3[qissod 11 yeu spoyaw 353y LG ssBI> M punoy e sasseps Funsixs o1 pappe spoyIAW Wew]
ISFIPOAJ SSEPY puR)SITRING SSEP ‘sonpord pue SWNS A ‘SUOLDINI0D pAIdPI0 paziedads
a1y sdnoJd Yorym BHORINODPIIPIGAICN L WHY SSEIXqNS 1Y) PUY IM UONII[[ODPILIPIO SB[31 Uy
‘uuoy yeam 41 ping 0) Aqissod 11 New jeadaug pue euondunyg ssel) (i9(]
998) N Jo g SPOLBW SE yans I} WOl SIOUIEL et 1 01 $1 2§03 SI] "XMJEWIN pue
XUBBIIY $955e13qNs £q patuawaiduws $1 SIUNBWINT Y Sse]7) “UOIs31dX3 UE JO s1uduodulod yLIp ayy
v gorym xe 2! ! S)) PUE ULIB, SSBID “SUOHEND? JO 135 € S1 yd1ym
waskg sser ‘vor N21351(] PUE UO: 1 *Ap3m102dsa1 aze yam vonezte1ads stay
Ppue uonenbyu] pue uotssaidxg sI5SBIO 'SANNUD JEURYIIUS PUR [EINCWIYIEW Y3 wos} paldsur Apdaitp
21 sasserd a1 ‘(] ur passnosip sy As0aqIWAd ssep opun padnoid dle sassep mau wew A

YIRS Jo 380 3 ur pausur Koy WA JO fyeray | Fig

oy

AHO¥VHAIH

[L1%4 HIE=£L A9661) TLE 8i8ug 42N 100V spoyiaw Timdwio) | wuvuiaWNZ] CApusuoinsd o

1 "814 Ul umoys se payIPOW I AYSIRISNY Janey AL
'SSED € 01 pappe aq AUl SPOYIAW mou Afjeuy —
SPOIAW M3u 510w pUe SOINGUNE Mou uAAIB 1 pue Sasse[d 1ANS S WOIF SPOYIAW
Pue SIRQUIIE SHIGYUI SSBI M3U A 0F “sasseld pawwesdosd Apedssfe asnaz o) Aem uedspe ue s §)
“uonezyeads pue yonezyeIauad pajjes st i ‘sasse(d Junsixs o1 sassepqns FUIPPE SI 3UO PUOIIS 1 —
Ayaaesary aatieu oq1 Sunuawajdun jo dem urew g SHasaidas 1] '$3SSEP> mau JUIppE st 3uo 1s1y Y ~
:suonesado Jo sadfy aau) sandu 1dun ayy P 110-123(0 Ue Wy ‘[ensn sy

£1034] WS Jo Ayaaesdny ayy Jo uondusseq ¢

“suoly
-eindwiod a31e| uey) sayies suoneindirw Sijoquiks SIAJOAUL YIIYM ‘121JRIIDY PAGLIISIP IUIWUOIALS
241 10§ 3IEISQO UE 10U SI A5u3NY33 fruolEINdWOD JO YdB| Y3 ‘U0WIdY LN "SeIPr MU FUNSA 10§ Sjo0)
Inj1amod 150Ul 343 Jo U0 HBIEWS SHEW ST "UITIM U2 SeY If ST UOOS SB PISII 3q UED PO
yseq -28enfuey pardsdisiur ve st 1eys st jooy BuidA10101d pooB e si yjEEwS Aym uosEal JAYIOUY
“1owuresdosd
A1 10§ diay Aqeaaptsuos Jo osje st sig g} ur paquasap sasse pauyapaid jo 10} € sey Weyews
‘1340210 “[p1] Uy paqUOSIP SI JUdWLONAUS Y YSE) Ased ue sawodeq uay fuBdngag ‘sjoo1 0y
Furpuodsa1100 smopum Jo 13qunt € jo d s 1 (d est *adendue;
€ URUl 210W 1Byl 107} W Bt sistsuod sdwwesBosd oy s0) 2Fendury s jo Jamod e ayong
“([rt] 935) 301391105 aFequed pafres wseydsw € Bursn
apeuw st sowauw 3y Jo uot B3P puE Uol; v "1 st Arowaw oy jo wawadeuew oy
"(SpoIaw o 10192138) Ngnd st spoy1aw Jo ISy Y1 A[uo tareaud s1e syse) pue ereq adwos
sl SYse) pue eiep jo uoueinsdedud dyy -aFenFue] pasLo-1lge duRIaYUE-odults & 51 b (LALATI
-aoEjIt |eoydeld A|pustIast e yim usWUoNAUS
JHoquids Syl dpacid ©) SMOPUIM JO uoneard Yy S0j 11[00) T 1se) B Aq di
st 11 2a8enduel Y1 Jo UOISIA Dd B “ZEUIM 10] Y|RI[RWS ST 234 PIs UOISISA AL [r] ur punoj aq ues
afendue) oy Jo uonduosap v -yrEy[EWS St uoneaidde siy 1o ussoyd sgendury paruauo-13iqo L

yionjows 98ondup) Junupiiosd parusio-131q0 uy 7

*A1essasou
udgm 250l pawiopiad are sysel Sienusnbos jo swioy (e Jo pu 108 Jwwwesdord jo fem siyy

Xiepueigosel votsudwicgadeds
“[anepueigoseaindwos gras)asre 4p {uorsuaunasedg1ad jios:aste g1
SISIX3 Xt1lepyueIqooel

Sisix2 uoIsuaun(yadeds
XURWURIGOIRaAtd uosuawtgasedgaad

:spoyiaw Suimaioy ay) £q patensnfyn s siy g sIx3 ApeaLe eep 'y Jo
PIINIIXI UG Apearie sey Fsel IG1ads Aue eyl JWwNSSE 10U O 193(q0 UL 01 s159Nbas “WAskS Y jo s
p3qriosa1d Lue uo 4131 10u s20p auo ‘FunuweiFord spym jeys sueaw Aduns s] {[€ *z] 29s) paadsas
s1 (uone|nsdesus ajers) aidund votredionue-uou oY) uaym p yus st wdy d pawatto-133fqo ayy.
‘[€1] vt puno} aq ues wipered
al jo i v d woty s1Nsa) 1oiaeyaq 1adoxd e 4Ry uayl pue aFessaw
QWITS AN O Jamsue UEd $193[40 JUALARP 18y 10) oY) “saBessaw 43NOIY) ENUNWIWOD SRAQO “sysey
PUE Z12D JO 20UILIYUL NN 30 WIS SMO[E YIIYM "AYIILINY B 5T PISIIRTIO 1T 535581 “SYSE} umo
§1} PUB BIED UMO $)I 52038 01 PImo||e JUO Ajuo 3t $1 1301qo Y1 ey} sansua uonejnsdesuy spogiow
241 "WIIY) 0) PABINSSE SOIAEYDQ 21 PUR 'SAINQUNE Y} IS BIEP Umo SIF $3ssassod ssep yoeg
'SSEIR 941 U1 paQUISIP s1 uotteziemidadund s1j -133{qo Iy st Aus Jiseq ay g “wiojiad o) 21q¢ st sysey

P =228 900E) ST R s 1y spoyiayy mdu y - wumsaitery yp spunnogsy g v

143

Appendix A

‘S3IMANIIS X2[dWI0D PIYU) 10j PASH 2q UED SIYL) UIMIZI 1AW U W1 pue
*HONEWIOJN! Jo 2091d B INGLIIE SIl ASE 01 AMpigrded 3y uaAIF 1 10310 A1243 *ued Sy} SZURWIWNS of,

"SPOYIBW auies Y sey SIS suoy sSBp Iy S

UL ISIX2 10U $30p ouTILAYUL I|dNINUI IOUWIS pue ‘001 JOIABY3Q SR PISU ISITUITS puE 1STIP0LA4 Sy
‘vonyenbgyug

SSER 241 JO 707013 CxpnEpgueIqedel ‘SWIapjgisll JIRNQUUE IY) 10§ PIsn S} AWIYDS Iwes sy
pue " ay jo ap apeds: 10U op

SPOLIGW 25341 6YY FORON “VoFSUAMKadRds 2ingune sy swmal wonenbs sy ‘wsdsowjod o) Sfuey)

votsuaw) (g23eds

nos =: 1qaveds Jronary
JNS! uorsuauigaseds
uotsudwgasedsaag

popaws sys uaard s1 uohenba ay),

uorsuswigaoedsand

st poyiaw 9y “Ayaesdty ssep 3w Y op o) Suigiou sey pue

OB S S aoy —

Iuasedogasesan -

UOKUIWIWINOIFoAIE —
SwapSLoReBIEN U2 -
SIPONIOIPGUNNIALS —
SIPONIUIOPD}OINNAS
st ueIqose oA -
waregamIEI oS -
{BUEN32100S PSS ~
voneiuEIsusIRISHOOREIY aLE —
SweIsu0)0ke11Y M —
porenueIsupgO] 3lgQS -

WIS 1O -

I3 L104platad - wased awseany
wiy Q18 - 42 Jo 02ep o3 srae
Spoqian sunquuy syse)

SPOYIaw pausqu] samquie paiuaquy swses parusgny

afe0 “wosj ssayuy

Suunp pauysp st JAINGIYIIBIAY 31 1By FnoN uonenbs Y1 01 dn uo us PUE ‘JUAIEIMYOIsIaYy
ANQUIIE S 01 11 SYse)1 ‘U JABY JOU S0P yf sy -IIdWEXS 10§ UONEZNAISIP 10} ‘UOMEMLIONL Jo
2991 s1y3 spasu WM ay ‘vdeds 3y Jo gorsuawp 2y) jo sidwexs oy axe], “1algo ue Aq paieinsdeaus
UONEULIONI Jo 3231d 31einolid 01 51 WIE YL “ANUNE SH Uim Ui Jo1ARYDq 31 MOU I3PIsUO))
uondissap ysog

“SUOnIA|I02 Y1 Jo) A10YL WA JO 1seAb2 31 51 Yarym
UONRIOIPIIIPIOAIOIY] JYTF SSTIY WO 3 JUIGUL PUE SINGLINE ST PIJ BITUImG PUE JSTIPOLg SISSED
syl -uopEnbzul pue peuondung ‘fesBaul ‘wisy due AnquNE sip duisn KIVIYLWAL JO SISSEPGNS
BUL W UO uOKedIINUE OU St 2I13Y) 'SSER AU Jo IIUEISUY UE 3¢ ABW JuRIEgaIyIITINY Jngune),
‘uotienba ayy 01 dn Uo 1 PUE *('m'y) uossadxd Yy SMOUY (oTYym
CM'f NS, 1SN 343 SMOuY Yaiym M’y + Janpoad, 151 241 SMouY 'm Wiy sy spduwexa siyy uf ‘101elaq
Bupuodsa110d oY) yum AL SSEP 3Y) WOy PIAUAYUL SI dnquue SIYL IUAsEINGIIRIDIY
AMQUNE sey 103/Go A1540 OF "PIASE 05 JI YorQ N JIED O) POYIGW B Sumo pue “pareandun 1 u youym
U1 2IMINNS 3 sMOUY 133{qo A1942 *219y pardope pomaw aty] (" *sued Aq vonesajus ‘uotinnsgns)
suonendivewr Juunp 1 wiurew o) pue ‘uofjenbgiul JInquNE UR 1algo yawa T o) yEApIp vk
ST “[343] UIRIIDD © 1€ dpew) uolesado K194 se pur xa1dwod AI3A 51 2N A1 SV UohEIOjuY
P3Pa3L 3y sey uouenbs yrym ‘uonenba Isoqe 3y Jo SIS PUBY-Y3| ay) §I [euoHIUNy Sy wns,
ISU € U1 PAUIRINOD S1 Y3rym 1anpo3d, Ii| B U)) ‘2't '|RUONOUNY YL Jo juauoduios a1 st |eBanur ayy
§P Mg c»d Tei3aiu1 Jo pueidaiul g1 st Uoissaidxa siyy C s, Isip e 1 pauleluod st ydms oapoid,,
I81) ' Ul 21 'y uoissaadxa aq) w papnjour S5 U9l siy] “1e8a1ut 150y Sy Jo 'm UL Y IOPIsUOT)
RUREY)
01 ULI31 3Q) 10§ moU S! W3jgosd Y| “uonew:ojur 3o 2391d 1y LA uvaq sey uonenbs 3y] Iuo ueys
S40W 35N Y} Jo PIYSE By 10U PINOYS UONLWIOJUY SIY] *IIUBISUT 10) SULIO} JEIUILID 343 JO UOLIANSHOI
2y 10 *3deds 3y Jo uCISUIWIP 2Y) SPISU (‘M 10 /' Tn sannus '8'9) wag jo asueisuy Yaes 12y asoddng

o

. o U S) L
ap 'm0y T 4 ap 'm'nd ‘.uav..xu\ .‘.+.ﬂv 'y

:uotienba Jutmoljo] Y jo sdwexa I axe] “AsndANS
eizp xa(dwod & W pappaqun s way Jo dduRIsUl YoBD "ulIo] Neam & Funuasaudar uonenba ue uj

[£4 P~ LT 196000 it $iBug W [y oy mdwio)) | wwowanary g spusiiy

Asooyinag ssey
1 3Kke]

‘3jdwexs Bumoriop ay 13pISUOT) ‘SASSED |£13A35 01 IOIABYSG dwes
241 2ptaoid 01 pasn sy swL sassepxRs H AQ P3L3GUT ase SSES SIY) JO SPOYIaw pue samqune |y
samquny

(1 91qeL) parenuesur
12430 51 SSE[D SIE[WIWUOIALS N[RI{|RWS) oluY PIppE $355R[3 MIU uiew ayy sdnosd ssepd sy,

QoINS VD Ty
$35SOPQNS S pud L0y IWT 4 SV Iy

'SASSELI JO sdnoid 1o sassepr ayy o
syads ssow ase sporaw 13410 ||y ‘wsmydsowdjod jo ageueape Suryer Aem 1W3211p € W paruswaidun
sl spolaw 3s34) jo ysed Buwns e se 2ouRisw oY1 Jo wonduISIP AYI SWINTal UM HUHTUOIIALS
AlRIeWS aneu ayy i se “Fuagnnud pagred poaw & swuauapdu ssejd Yors uonippe uj “PNre sy jo
UONdIS IS1y 31 Ut panonusw Apesife douud uonedidyue-uou iy 1adss1 SPOYIW) 1Y dMON

‘uondudsap Fumolioj ay1 i teadde Jou Op spoylaw 53y,

[anqune_

‘{12nqunyIad jias =: [ainquiefana]
HNST 12Iqune
L1398
1,US20P 11 }] "$ISIXI 1§t AINGUNE 24 tamsuy,,
1 angunvamd

13qQue = (aiqune
.Joalqo ue
Unm 310quNe 2y SABDULISUN poyiaw sy,
123[qQue :1ainqune

PO L2 (96610 2F1 S 4o 1Y POy ndwoy 1 wusiouniny 41 spuswningg g 8T

144

Appendix A

ed §q wonesdons jo sondusaq ¢ 13

1 19A1202) 241 "W € 811 J] Y Iudwndie 3q1 Jo ameu gy uo puadap spoiaw 353y ‘saxe reqod
pue (830] 03 1dads31 Yilm UOIIEAL £l dsas 1 0. wuv1qoin!
CYIMSITY IDQOJDULIALIIP PUR 1 (01 102dSINYNMIALIIP) SpoyIaM UONRALDP YL A[[Eousmny
uosssaidxa mp andwio2 01 SPOYIAW JO UCHEID Yl PUE UOHEBAUID Yl St uotssaidxs Jo
3d£1 sty1 01 payoeste soraeydq AE (1 — A)(1 + %)} SE YONS SUGKIOUNY SUIDUOD 3UD Puod3s Y],
“(z 814 93s) sured Aq paresdaur feidoru s
1Pio 241 spiing worssadxgparvid; 3 pue wonss2:dxFpaivauaqiad poyraw ayy
“A""y uoissaidys Jo 7 pue "y 3t
10U S1 YDIYM SUO YI PUE PIALIIP ST YOIYM i) B "Ajaanoadsal ‘wimas sandumpuiis | axgaad
pue w2 fargaard spoyiaw gy mEu_noE weaq v:a uonANPUOI 1B3Y ‘AILNSEI Yitm [23p 01
wapyjns ase sadf1 asay 1By AON 'Y 0 n"'v 10 n'’v sadhi Bumorio} amn
10 2u0 01 s3u0faq UoIssa1dx3 Y1 J1 $1531 POYIIW SIYY, “Jou 1o sired Aq pate1daiu aq Aew 1aa12331
YL J1 SYIBYI S4v K parpsSarupag Ao U0 153y YL, “IIIY AIESSIIU dSE SPOYIW Al “uorssaadx g
SSED JO 9IUEISUI UE ST (UM EL) 29p 218 150w YaIym 10§
*sied £q uoneidaiut ay) Qum op o) sey 101rYaq ayaads sy (f + "0) s yons ‘uonelou eropUl
2y Suisn suoissazdxa Ay SUIDUED U0 Is1y Y] sued ur pasodwoddp 3 Kewr syser 210
“spoyiaw 2593 0 Anse sy pue Anonduns sy swedxs siy) IsTIWns £q duop e suonesado
vouginditew 3y1 inq wotssardxa Yy 03 s st dFessaw L -uvorssadxd ue £Qq wia a13urs
© so0ejdas AUO wOISSAYFUD (yNM WD 1AMUSGNS POPAL PUOAS YL ‘(inawnBie puodas
ay1) uotssasdxa ue £q (312 151 2y1 01 Jugpuod: wnposd aduns 2 saseidas dygus :iq
19MPOI4D :230)da4 UC 1S1Y UL “ISIXD UOUNINSQNS JO SPOYIAL 0M) “OS[Y “ISFTWNS 01 PaZI[eIu3I3p
uays st 1o1akyaq Y pupdxa flas adessaw ayy Fuipuas 4q 1nposd ay) ul uounquIsip 2y A1d)dwod
01 ‘10U S0P U JI puR ‘Swi3} A[UO SUTRIUOD SuoIssaidxa jo 1npord ay1 i1 ¥>3y3 01 st uonesado
sup jo sduud dyp -s3A191 Iy jo uoisuedxd ajdwod e saop pupdxgpp poyiaw ayj
“pars|dWos MO $) 138 JISEQ AL "UONEOYAWIS PUE BONEZIOIE}
ML 1 u33q 2ary suonerado diseq awos *[¢] apnue 1say 3 vg
‘ISYTWNS 3Y) 01 PIZIBIUIIIP SI 19413951
ayi jo ausoddo ay saxes Yaym parwdou uonessdo ay] IUAWNGIE 3Y) PUE 1AL I WO} HING
uotssa1dx> MU B SUINYIL , SEIIIM "UONNQLISIP Jetued ' SAENINIYD S “Aprejung (o 4 £
+ g + 1) 93 (2 +) usIGPPP (q + xv) SBAUYM *((2 4 £) + (¢ + X)) uoissardxa Jo adueisul mau
£ 5918 (2 + 4) + (g + xv) :9jdwrexa U Y3N0IYI UMOYS 153 St ISIFPPD PUB + UIIMIAG IDUIIJIP
Y] sssanur pue pmpdau * ISIQHNW ¢ 1SAPPP SPOYIAW Yilw pasajduod sse suonelado diseq YL
7+, ‘= "+ suotiesddo [EINEWIYIRW Jiseq 343 03 Spuodsa1I0d SSePd SiYf) O3 uaA13 to1aeyaq sy oy f (1)
uondnosap ysoyf

‘aidiund [ruonEUEA B 30 13qUAW 3q uEd YI1m ('w’ "0) se [jam se “uonounj adeys
30 odwexa ue 2q ued yargm ((1 — A)(1 + X)) 31 suorssasdxa 1ussardar ued sseld sup ey MON
‘A WIS) pUE X WId) SUIRIUGD UONDINIOD MY 4 + X¥ uotssadid 104 "UOHINOIPIIIPIOAMNLINES
JO ODURISUL SIQELIEAJOISH SINGUNE Ul DP3ISH SAqELRA SN Smouy uomssaidxd oy
- 5_:._8..»»5 pue { + xb St ISITWAs (4 + X+)/1 Joj ‘apdwexs 104 -as10AU1
s 3uiaid ‘uorssaidxa ue jo wy da1 pue 1- 10 [S 3] ‘xopufassasur s1 ‘suorssaidxd
aqissod jo adA1 ayr saze1Pwad YoM ‘JINGUNE PUEdIS YL CIITWRG SSE JO JduUBISUT “ISETEINS
S1 2INGUITE ISIY SY) KM SIIBY] "SANIUD JO LINS € SE UIIS 0G Aews uOISS2IdX3 UL *IAOQER PIQUISIP SV
samquuy

e or-2ec (9a1) 261 BSug waw (Ady spoywpy indwio) 1 uwvwaMMRZ YL “ApuIwBIYAT (1

"]
FuiSuoNREIS[SHRUIPIO0ISIPONTRI I
S31RUIPIOO Y IPONSNLIIAE

3ULIQUOUEUTIS|PROTPUY IUIOJIUILINSIA YIS
SunigsareuipsoosolgHamd
Funngsweisuodsnigdand
BuinsuotenuEISU[SIzRISUO SIS

w0 4BunISsIUTISU0 M3
Danid

DswEIsuo)d
swensIOEISIO)p0keLy AT
SSTISSEL I 19U IUAWNEI Y U POYIZN 1AL

SSEP SSEDW 13t POYIIW AL

SR S5EUN 19U UDENEIV UMM POYIFNSNADIE2I>
SSED SSPLOUE 19W POYIINSAIZIIEII
aweNuoIssaIdxa A0 PR
SWeNUOISSIIANUONINI0 D0 LPPE

wiogpaznasmqd

¥ 31GULIRAC L1355 W MIRUIPIO0D EGOIUTALIP
1 12IQEUTAC | DX GHMAAUTP
pazeabs

TWI i (U3 wia g
A

2% A [dxa saoeidas

1slgoue :aaouwas
snidDuoNeN[eAT 10 JFULISIONG
wonenjeazsoSumigiaud
fumgiwud
sueghgparedariaghew
uoissasdxyreiuawdygs
SumouxuQISFTME
NI MqanE
wispagand
uorssaudxgparedoutiod
swenvouetuTIsUNIE
voissaidxgpatessannad
uorssardxzgpaaisaquiad

purdxs

1SFIWNg0 1 13sInOA pPR

purdrgqe

3s1aaut “patedan /Isicnm ¢, - HSIPPE ‘4

suseNuoueEISUl SPOYIIT JO YONEILD (g}

wonezuaznp (7)

SIqEUEAIOISY

em——
wiuns onemdiew (1)

SPOYII

{ Loy NT A Jo spoiaw ap e}

sanquiy sasey

wazed sreson

WwasegongRIE Iy 241 Jo e1wp 01 53338 (7)

voneap (1)

spoiaw panssyu}

210qtn1y pauayu S¥E1 pauIIYUY

1300 ‘410U WY SisyuY

uopssasdy sse(s
2 alaer,

(7 21¥.L) uoneAIp 10) porey

-ndivew I d 241 e jo uoy UL SI sy SIYL woissaudrF s) 17y g
$2S5DIIQNS 1 pup uoISSAAXY ST i p
Bi 00T (Wo61) TYT BSNT yaow Jdy spowia mddwo)y | uupwinay YE CApusuDIYsT (] e

145

Appendix A

SSe1> 1UAWIIUISPOYII SN
SSE1) IUBLIFUITPOYIIWILEID spoliaw Jo wourars ()
xnepumouy3
e UmOUNEN IV H0ID
umoNY e JuipuodsaLOIXIENPUYS
pecriarepingo] durpaodsa 103X nENPYY
SpECIApogol FuipuodsILioDxueWpYY
SUmOUYUNIVPuY sisdeve (7)
#odsuen
2ouapusdapupsesurianoaul

Fums ‘wrRwogLOSITNOdWOINCKNRIBN voueindrurw (1)

SPOUII sanquiy saseL

THII (i WIS CW19] ANISGRS

sraAut paredau / isicpnW ¢, - ¢ ISCIPPE s rung vonsindwew ()

vosuawigaaedgant
EER e

sussed mpessy

wwasegonpreag 31 jo #iep 0) sxae (7)

uonean (1)

POYIIW pALIYUL sanquue paruagy) X5 pasuayu]

PIfgQ KI0MIWTG Wy sisayy)

sopmadrgpaIIAIng ST
£ aqeL

xau Juiwos opdwexa ay g s
st wns e Jo di yaea jo

|51 SWL “2ouapusdapujsvaur]oyoaus

Jeaun) Bu{oAul I SISISUOD YOI XSl Sy}
‘uo1s593dx3 UE S1 wioj

AR YL JO UONESAISIP 34 JO JNSI) S ISTTWRS AnqUIE Y AQ duop st uonendiuew sy

.\+ VT‘ as0dsuen ,\+ v\‘\

posu

01 spasu i} P2y (1)

wondiidsip ysog

‘UOISSIIdXY SSEID WOIJ SANGUILE SIL SILAYUT SSEPD Sy} *JEUORUNY SSEIY M 10f Sy

(v 3i4e]) swaqosd
ssep> SiyL “wor : sso13 ()

01551p JuzdPow 1of papadu

WITWNS Inguie ay) oF pA1eSa|ap 218 spoyIdW e tey) MON
uon
PSP ISITWAS 3Y) o)RS Y1 BEInd S ISITINS AINQULE Y1 Yaiym JOJ uossaidxpIznaL
SHI T SARDURISUL ui0,4paTu2idsiia8 POYISW SYJ UORPSNAIISID SYyi S1 I0IARYdY UIRW ayy (T)
JDABAUPIIINISD (UONIANIS ANISGNS PORPIW 34
103 JRIIWIS S1I0IaRYaq 2y csiied Ag 21Ra3aiun 01 juswindle ayi yse 01 PIYSE S Isrpwns AAnquue
341 POYIIW SIqL u[fup 12§ S1E A1 Saruy 51 poyow dh pappe a4y (1)

s8T AR L8 (VN) Syl BaBuT i Jddy poyisw induio)y ; wupussuny Y[“Apusupia

r———— frowrepey

1e185101p315015% cuomsIRSIMISGRS
Fumgiuud
feuONIUN fozIU L
(AP SuondyegsIedAgaresdonn
o gpaTmaies
e vonepndiuew {|)

spowioW sanquiny syse].

TWIS e (I3 wIRLANSQNS
7dxs :hq [dxa :aowidas
fuungud
puedxs
puedxgie NS voneinduew ()
mounenSYROUY
wosuaunggeodsand
s gIIEIAH A
swis oIS wased swesamy
TR 24140 viEp 01 $535¢ (7)

uus) sy

uoniea1s (1)

SpoYIaw ALy} samque paInagul X521 pataguy

WAGO *L30301 W34 “vossraldxg. wotp swsayw]

reuopaung sse
£ 94RL
‘uoissaudxy ssep> woyy sysel uonemndivew swos puE A0 LINES SSe[d wouy uazed RARNETTE
241 Jo E1ep 3yt o1 ANMIQISdar 3 -3'f ‘sassepaadns sy wory PaNIIYNE SI somABYaq sujo ued v
utnduIsap ysoy

“ssepiadns s1 wos) parsoywr a1E syInGUIE 1y
samquny

‘ap 'sf Uf pue ap " 'm’ Ty Ul giGany
om sey ap'sf Uf 4 ap "' s Uf euonsuny -8-g -seaSors Buru1ues uoIss1dXd Ue 5t 1 jwsiqosd
341 wasa1das 0) papasu euonsuny Ay das (¢ oiqe) ! SSE Y Boun 4 sso1) {v)

‘uossaudxgy ssop> fo sassopang 7z I

(181] 995 worsIoa 443) 2192040 WHA pue (] s3s
“UoISIaA yeIfjRWS) z»;.uo.EOszm :S3P02 SIUSIYIP o) 10§ JuIsaud 1 SISIXD awayds Y1
“uoIssaadx3 S} U1 pasn sI|qELIRA AP) ArpURISUL
01 "POYIdW P21eIId I Ul *A1es8303u 150f $1 1) OF ¢ 41 Yiim uo: £l
Junuasazdas Jums sy1 suIma)y uononpag1048uragnasd poyiaw 2. 'ssed uaArd e vl it apdwos
©1 pur 3po3 321n0s 01 JuIpuodssi00 ‘Butns € piing o) s poyiaw sy Jo dydiound ayy s
dnmolioy e uy passnasp st sy, -auop st uolewAwaldi SY) Yotym oW 3pod Wawajs AUy sy o)
apaads s1 pogrow sy . 1 SSOII0 FU1 012125 Siv M Ppoa iDL Stsigs
10} pOyIaUI 34, *3p03 1WA 2uulJ FulISIXd UR U1 3p0D 210313 0F IGE St UOISSAIXS Iy *Ajeury (g)
PRI S1 UOISSIdXIPITNAISI JO IduesUr ue w104 pAZHSIQI2E POYIdW Iy Ul (7)
“xinew uriqodel) pue Aeise sup UImMIQ 1anposd Iy 30 wauodwos iy 2y surmyas
PUE "SIXE 1€30] 0} 193d$31 UM sfenu319))1p |ented oY1 Fuiuleiuoa AR ue SPHNG 7 10 103dsa)ym
XUIDWUDIQOID] UM SITY [DGOjryUIIALIP POYIBW SY) ‘UONBALIP JO S(QRLEA 1531103 dYt Y
(s1npod pue swns 2AUIP o1 51 eIl jEIMEL Nd pue 1seq 31) ITIWNS Aq pawioyad
S1 JW3YIS UONRALIP Y SPOYIdW ISIY) UI 19B) U] "SGRLEAJONT 1uawndie Y1 Jo d\qetiea Y
241 01 102d53) Y PIALIP S 13A13331 BY3 (° T'T1) dqung B S) 1)t o1 19adsar gnm paAuap

SO =0T (1) 3L BaBug yao pddy spoysa imdan) 1 w7 p sy q

146

Appendix A

241 pue suoissasdxa Iyl JO SINUI JiSeq Ay A[2A1139dsaI 1B XUTRW UONESIIIIISIP 3Y) pUe WI3) 3Y) 5V

LoISSOI0XTIMIE I
woissadrUIMEE R

samquny GoIssaudrguIMIToU
LOISSHIXTUUM ITIU
{8 1qe L) [raFau | ay) jo ot dar ays st ssepd sy VOIS TYIM [| Mo uouras
a8 SO PP SpoyIap SaInquIY el
uoiss21dx3 “uorsaIdx TR UOIKUIIP M3u voueas>
3 W33
o e p 3q or are xuiew jo sadfy (v ssuud adnjnw gum sieue SPoYIow pALUY sainqunr pA1qu] Y pansagu)

weidoxd 01 uasoys Kem Y1 s1 sy, ~aendue) parasdianul ve s gWYM Y[RIFEWS O3 13doud st A[pedsrureuip
IX3U 1 AND3X3 0) pUB 3pOd Y1 NSUOY O1 Ande} Sigy 1S3 dxqun uosadXTYIM [T
xutop1g S3essaw ayy S0P ‘AP0 YL UT AUIYMON “IPOD) JO UCTINIIXI 3Y) Buunp Ajeanwenip iing
1 aTessow UL ALy UD (ym UOISSIUAXT YA [ZMou wiofiad fjas 1a8RSSIUT AL YIM JI35I8 OF 3t SpHIS
pue (D7) tutoge 31e oy wol) dXIYim [Zmau, (poyaw Jo 10139135 3y st 1) Suns o
SPIInG SSE[? 3Y) ‘POYIA ST UL “SINIEWNEL UI04] pALIBYU §1 woIssdxFun ruoissadxgynm muogo
‘ymamau poydw 3ys Aq SUop st SIYL I ABOURISU 0) 3FeSSIW 1391100) 350YD 0) $1 MOU waiqoad sy

XUIRNIG
‘1zu and 1@ e xepwiq
‘110 nd (B e uEWIq

LT MU XUIBI = XINERIQ

J

Tio1geIeAO L
“1:21QELIBAC199d53ipaALap uotssaidxue
Prsteig 1ze f1uf

ANDALIZD

..59XE
$31RUIPL003 (BI0} 1 UL Passaidxa XLIBW g YD JamMSUY..

uoissasdxgue (uotssardxFunm [gmau

:poyaw urpuodsaiiod 1 pue

(-

1 somsue gy 1 = "Pu pay uasd ayy 10} apou sad wopaal) jo sanBap
10 13qWnU pue 7 = Mu 398dS 0 UOISUIWIP (SINNUI Y1 10] JITINIIS A Sunuasaidar xunew o duesul

OGS TUIAEENIL
GoBSRAYFYUMIZAN
worssadeqyig 170U

uoissadFYM T [%3u woness>

SpowaN samauny Sxsel

uotssaadxa GorssaIdxIqI UDISUAIP WU uoneass
Spowrat pari sy SomgEnE pamagul | sase) pauayul

13QQ “SINYLWES “RIUIRKNWEA W0 Sogu)

XUEWIN 51D
£ mEL

e U 200 Gaeed) TFT RaSug wan jddy spoviaw indwny . uimwaowesniz) CSpuomossT

133(q0 *A103q WA RUCWINTL WOl suedyul

XTI $581D
9 awe)

vorssa1dxa uotssaxix AN UOTSUIIP nau wonvan
spouan ainquny Swel

spoyiaw paiayuy saingqume paLIAgUL swser parniaqul

19140 A0 WAL WO snisyu)
SAWWWIA 21
§ ANEL

ue swimar woissadxgun uoIssIdXTYIAM [ZMIu XINENIE JO POIAW Sse> oY) *djdwexa 04 “S3manNs
AIRMUSWAja AY) PlINg 01 J|QE AU XINEWIN PUT XINRWIH SISSE]D qiim POIELIOSSE SpoYlaw 3yJ

‘saduBW

g 2aneauap uonsuny adeys (eqojd pue n suonouny adeys 3y Juysp sdesse oMl Y Jo uoneIwdwy

ay) se parepisuod aq ues 1y “{91] uondunj adeys waAId B Yite ‘g pue ‘N 0] SUNNIS 1931103

241 pinq ©1 St 3101 119y “Teadde 133U SISSEPD ISIY JO SIIURISUL 12Y SUBSW JEY] SINLIPW e1URISU
01 s Jomeyaq A[U0 JIYL ‘SIINQUINE OU 3A8Y XMEIN PUE XLDEINIG “SROLISNINEA SOSsE oY)

(L — ¢ SIGEL) TIUDIN PUD XLIDTY “SIIUTOWINT A SISSOL) €1

“1stjues
2INQUIIE S)f O1 10MARYIG SIY) SIZI[RIIUSIIP IDUBISUL Y1 “UOISIAA + +D) Y J0f JWON I Fun
IUAWFUISPOYIIWSTIG DD POYIW Byl Ul DUR N[RM|EWS 10f SSOIIUAIFUD ludw
I USPOYIAWNFIDI POYIAW aY) Ul 3P03 B NTILD 01 QR St UorssAIdXTPIZNRINK] U1 ISEL 1Y (£)

“ISYTUINS OF PIZHENVIIIP Si IOINBYIG
LHDWUMOWNULTA YV X028 POYIUL 31 O) SUEYY SIIQELIEAJOI ANqUIE
d: 3 Sad1eW 3yl puy ued uoissaidx? Y (t)
uoIte|AWIQ)
AL 30 SPIY [BOLLA Jo 13qunt Y} Yo spuadap suoyenba JO Laquinu Ay §, “suouenba o jo wasks
€ 212 SI 4Ns31 ayg “,d puB ,p "1 'SIGRUIRA S Jo yorI 01 1adsar gum uorssdxa aygr saanap
pue {.d°.p} soqenteA30wn SPUNQ 0= .p,0,d + ,dD, P+ .p,{+ . PN,p uoissdldx> paznansip
ays 'aa0qe palean sjdwexs sy U] ‘walsAg Jo adueisul ue ‘suonenbs jo 105 B stnsar aug
. 0=9p
0=+ /+ ziw
suonenby
30 waishs Y1 SPAA 1] "019Z 0} fenbd oq AW .4 pue ,p O 1UADYID0d Yowd 0F .4 pue p
£13A2 10 9041 3q 150w O = ,p,0,d + . ID,p 4 .p,f+ P¥,P uoNEnd3 Fumollo} M1 15pIsu0)

Y jo 1593 L
01 Wayl ppe PUB PRy QISSIUPE 0J3Z Iyl O} ul

FOE-L27 (est) T PRNF 4 1Ay oy midwn) § wwowisuy W[Speasoinsy of e

147

Appendix A

sopseang

eigesd g “maggord i Jo uotsaunn
3y1 pue ‘uoisusungadeds amque *0eds Iyl o UOUIWIP) SmOUY Uonenba ays ‘1380310

‘vonduny 3unyiam pateosse

a3 01 spuodsanind U0 PUEIS Y “UONNOS (8L I 0) SPUdSIIIoD Wi ISy Y], wiay Jo Savueisu

SUIRIU0D AB1JY JO QOURISUI SIYL "ABAIY JO SIIUBISUL UO PUCDIS IY) HIIL JO SIIURISUI SUILIUOD Bu0

IS Q). “DONIAOIPAIPIO SSEID JO SRURISUL AT yiOF “SISY 359G) s3eurw 0) 219y 318 SPOPIW S1p Jo

1SOHN - VO 10} Y3 JO yun oy 3 auo pue *p U239 UdAS sey
YONYM *SUaI3JOIS SWIIN JO 151| 343 BUIMIEILOS B0 *SISI) OUEISUT *SANGINE OM1 SEY vopeabgu gL

“uonenba ays St 331 I JO 1001 BY1 1V ") woly

uonewuojuy a1 138 01 133dx> ued A (uIEgAYIsIAY Anqune YSnosyl) sBuoRq N ANIDANS Yorym

01 smouy 193(qo A1943 Sy WY 53I01S uonenbs ayr “Umanns eiep xsdwos o1 u_.__u pue Uu_no

K133 AQ payseas 2 UED pue 33U0 A[UO Palols aq SNl IET VR

9Y) 10} [N asom UOUEUIOJUI JO 530310 [E3IA3S JRUI UOLSIS DAOGE OY) UI UMONS UD2Q sey :

‘SY3 pue sy Jo $ADUEISYY AP JO 3o Aq pIzUENsTIRd

st vopenba aqr jo lomeysy YL jEUOnIURY sse(d o saueswt K Aew Aay] -uonenbda s 30
sopIs-puey 1481 Y1 PUB pury-1j31 33 W3sa1das Aoy YA Pue sy| 33€ SSEP SIYI JO SIMQLINE UTEIR Ay |

samnquny

‘(Surs0f Yeam pUE) SulIo] [BUOHELEA
SSE> SW | “wompnbgiuf SsO1) [¢[p

swsaadar 1] ‘{6 2iqel.) sjerdaun

n sajepndivew usy pue uoyenbs jo asueisut ue sppng 1asn sy “Yum uidaq of ‘1IN o Aq
Apanp parendiuew 2ie yaigm 51531qo Y3 jo ued a1z £34) asneaaq Jueuodwy Alaa 3¢ SISSE[D]
$255DJIqNS St pup uouEnbIu] SSVID S [P

“Ajised soyins poppe 9q wes woneidaue jo pupy mau Aue tag
'+ 4D pue YEajjews 193190 TWHd "SIpOd §10q 1o} $1six3 penb ueissned Kjuo p
A4 Jo nEs s Y 340J2g pause|dxa se "opod WIJ uaatd e Joj Suop st uonead sup _Euo:._
SMoquis uaaid v Ajjestidwnu andwios o1 spoyIaw Jo UCHESID dYI SI 10IAEY3qQ Y1 JO Lied 158 Ny (g)
(UoIss2udxF102251p 101 J}25in04 AINGLISIP POz siustodwod sy aesdau
03 "voissardxgpaznaISKY Jo POURISUN UE “JNSAU 3t JO SUodwd 3y sareFanur udys pue wioy
PIZUIISIP 511 153 0) PURIBAIUL $31 SYSE |RIBAIUT AY3 "s0FPITN2ISJ128 POYIAL PIZIRIDSIP Y1 U (.
“|r1821ut 2y jo puesdaul 3y spuedxs Ao pupdxs poyiaw YL
‘UONBALIIP Yy
0} papasu 51 Azepunoy Jo uolvu 24 uiswop Juins syl Yits | p, Sums oyt srrudresuos (eiFauy
A MIPWOQ LppunogIng poyIdw 341 Yim Ulewlop AJepunog sul pling o) 3jqe s [eiSaim oy
-sjeadoiur oyy Suiieison
ISP JO SRIURISUL OML PAPPE S PUT PAIRAID ST ISYIWNG JO 3DURISIN MOU € 'UDY] "SUII0) PAALIAD
sit pue vu_Euu.E s payse s puRadoun oYi puT PNBURSUY JIB S[BIBAU] oMy ‘poydw suy
2 2y csured &g voneifan aut 5) poulow uonendivew utew Sy
ﬁ:w..uu._._ amgune ay 0) oFessaw awes Y puas Ko uorssasdxgup
40f Uil [Waa f ANPISYNS PUR TUOISSAXS (AG | dxa :300pd22 uoHnyL jo spoyidw oy

.A%ml:j sontd A%m_..CA:st
sea1aym Aasm .q +apf _g.v saa8 Aa_.;,: v + Aav\ .: v

*apdwexs
104 "pappe spuridaue 3y yum R1dau ue 10 sjes3dul Jo Wns B SWINI 1amsue 3y o) Suipioade

)

~

~RD MRS (0l St BT woo pddy spuya mdwo) | wuowsswsny yi Cspuwmiagnd Q

puE uoneIdNU1 jO Ulewop JWes Y 3aey JWBwWNFIe 3y pur I9AIIA Y J1 SIYUIA 1048nupup
FOLPIPPY 2gAo POYow Y] T~ PUE + SPOYIIUI ‘PIIILNANS JO PIPPE 3G UTI SIIULISUT OM) *1sarg
“ISUIS [EanEUIdYIRW AY) Ut s[esBaju) stuawardw resdavg SSe oy (1)
uondossp ysof

‘utewop £repunog e uodn sjeidaiun ayy

Juipuy 105 Jueirodwy st uohiou 58] sy “(ssed 1addn ue Juipaoasd p sardereYyd) Asepunoq S pue (asea

1addn ue) @ urewop sy Funussaidar (p, 10 ,q. sidutexs 10) ‘urEwOp Y1 Jo sweu JuIs € 51 YoM
UrRwop put uoissaIdxy SSE[JO IDUBISUL UE S| YaIym PueaBagu] IR SSED SIY) Jo SINQUINE Ajuo ayy

“sferdajut asn sanewl Arejuswsd

1O 5uI0} AOQIAS Y} 1240210 “EUORIUNY DY) JO AUO 3158Q) S| [e132U 2 ‘uoIssaIdXD paznasasp

Wk
1oquiks :uor i
wewap 1oquifs waumryyy
fresreey U joquiks zass
WAAD TUAWILF0! oquids PORIINALRI
WIWI|3 UISPOYIFWSIVIOGSSNED) D ea s>
WIS DY IPORIIN U SIGIOGINETNeaL
WIWIAD UISPOYGISWSNNGUN YSIIOGSTIED 121>
sureNuawI
HUWIFI05 SWENYIT (Ut j0GUIKS UGN EIBAURISSIELyPOYIIWSALAIANERI>
QuENIWID WAL 10} AweNyled U1 joquiks PSS
t Swepyied dSNEDNZINEIS
aweNIIw
yd osnigDNean SPOGILE 30 uoieas (¢)

WioIpITNAIIIT woneznassIp (1)

Aeasvigtomssnenand
feuyisogssnenaat
xuepueigoce1af
suonsun gsamuIpInaaS
suonsungOkeLyIaE
WngE ISruingo JINOA ppe
e [01pIppYag Kew
Krepunoguiewogaad wiewop
TWA e w31 CBU) ANTIsGRS
7dxa :Aq 1dx@ saswdor
Surnigrd
suegigmeiam
puedsa
TP 0 preBRYIAINqUISD
pawdau 4 puesdonn ostejndium (1)

sPopI sa0quINY sxee)

W mouRuNiSysmouy
vonuawigoedgand
WwaregNYIRIAHOAS
s oINS i02sEd Sgriesony
Wiz uay; a 201 40 #1%p o0 553200 (2)

wonean ()

SPOUIAW PAIT] Saquie patIaYal sxser pawayug

A0 “CIMIIWAL W0y s

wabopy ssepy
% ATy

Pt =228 (nal) DL 33U woay jddy spoyiaw mdwa)y | wummsewn R Spusweyn] o e

148

Appendix A

SRIDE UIWAIFUISPOGIIWIEI
SMIPU WHONT10] IWENYIED UISPORIINTUIINE

asodsuen
Upuonaiqaurspyiasinossoedas
wonenbulst

uonenbgamansias
2uspuadapulesuriayosus
SmoMIOIXUENNIAE
sapONIOIIQINN IS
SIPANIBIILIOIDIIFGUINATE
e nnIGosR[oAd
S3pONJOIXUINNIZE
SIPONIIANOIDJOLXINNIS
nurepurigooe1ad
suornun§sorRuIpIo01od
suonsunyOAeLy1al

umouxjo g 3upuodsazIoIXUIENPUY
speoaoeng01 8uipuodsILIOIXIEWDUY

spot1aw Jo vontears (z)

nepvEIgoel

speoT4pogo FurpuodsaLio)xLIEWPUY SIPONIUIIWOINIOINY
SUMOUNE|IYPUY SIPONIOIqWIND uonejndirew ({)
SPoYIaW sanquny sysel
W Yite [AU3) WIRLINSIS
syypvind
sqMVInd
Aumgiuud
syyaatd
syaatd s uonemdivew
puzdxs sul sainquuie (7)
voneas (1)
SpOUIaW paayu saInquue pasayuy sxse pawaquy

199090 *CI0q W34 "wonERbIY wos) swayup

donenbIpamRNg sEL>
Dl deL

siyp X a je YL S EN]

S3NNUD diseq Y] 'SINQUNE MU PaAu

10U S0P 5581 mAE._.Aéo_.n:_ﬁ.—E_ SSRJ2 3Y) JO I0IABYDQ o_.__.uc =o:a.u£uunm e Ajuo sIuasasdas ssepd suy]

samquuy

(01 219eL)

woapqord 3121351p ays 10] suonenbs JO uoheluasatdat) S| SSep S| “HOUDRBIPAINALISKT SSVLD TSP

ST poyIaWw 3y) “pupdxa poylow oYy Jo djdwexs Yy ye] ‘S pue sY| SAINQULE YI10q
01 PIZILIUIIIP 1B SYSEI YL (SMO[|0} SB PIZUBIWINS 3G UED J0IALYIQ IY) Jo junowe adie] v
’ “syypynd
POYIaW S0y AN 51 Jwwes YL (SY3-sup) I syl pue ‘g e sya sind sygyymd pogaw YL
‘uoisuswp 2ouds 343 Jo pue
pury-ydu pue ya] 2y jo Fuidevewws sy st Joiaryaq 2y Jo Wed puodas Ay (7)
‘sanjea [epou Y} JO SWEY I PUR
suonduny adeys Ay JO IWEL YL WSWS[D Y1 U0 play 3y Junejodiaiut Joj pasn sIpoOU JO IQUINY
oyi Sutuieiuond Aeite UR SISMSUR W42 [D JUiiS | 104 50fuuonpsnaas1128 powiaw 341 05~ ~'Sapou
10 13qWnu 341 “suondunj adeys Y Jo dweu 3N HdWexs 10} SB YINS Wil v [0 UONBSHAINSIP Y1
INOQE UONEBWICHT 301 FIIYD UEI UONENDI 3Yi 0F "I1SI| Y} 01 PIPPE ST PIZNIIISI UG SBY YIIYM
w21 3y, "SuoNRIAAO UONEZIAIISIP IY) 10} §1 SWAALFOT jo uonediuew 2y) JO ISN WP Y3
“wiia o
(2 | fOp1a14pat1dossy 2418 pOISE ‘(BSIA 321A DUE) UONNJOS [BL) B O) PIIBIOSSE UOIDUNY
SunyBiam oy) JO JWBY IY) PUY UBD PUE ‘Wwisd) ‘UMOUYU(}SY UMONY POYIILL "UMOUYUR UR S| WA
a1 §1 puy ues wonenbs ay), ‘vonduny unydm PARIOSSE Y1 JO JWEU Y pUE UOLIN(OS [EUL
241 Jo weu 3y) FUIVIRIUC SABLIE JO UONII[OD © S1 SUMOUNUIYIOIST] “IA0GE UIS UIIQ SBY SV
‘sumounuyOIsi| Suidevew pue swsayjoisy Jwideuew :sued
omi 0w dn upds 2g ue2 1t og ‘SIS yioq aeurw 01 Aluo 213y) Jo1ARYAq SYi Jo 1aed 1siy syl (1)
uonduasap o)

wonenbs a4y Jo pr

[T e —— Soreznansp (£)

Apyduns

TUA qum WIS WIRL2MuISQRs
sugiryind

syirvind

Sumnguud

paapsiuuge uowsspgsIEgAgateISaN
votsuawIasedgaad
sosuIunQuAquIgIsT

syganid worsuzunguizgosd

syt s deds

purdy> wr sawnguue
[euousun gppe < 241 Jo woneadivews (7)

wial wsa smouy
wiat R LOPRsMOuY

WIak umoURUNSYSMOUY

W31 WA LIOPIN PFIEI0SS VS MOUY
i wiz)jouenenIgaad
wiat wia L 10 3praIpaIEOs Y AR

“213Y Pa1eaLd §1 Uo)enbIPITHAIISIG JO IIUEISUL UY SIgI PUB SYF O) paiedAap st Yoym
(a0 paz 1124251108 poyiaw) uonenbs Y1 Jo UONEZNAIISIP 3y s1 J01AeYy3q I Jo ued sty 4L ()

‘TuoI1ss2adxs :Aq uoissasdxqup 20)das ‘uols

SoudYUD [10fuita [0 (11D [ANNISGNS W04 PITN215T128 1SPOYIaW S0 pasn s1 Funy dues gL

‘puedxa syyamd Jjas
-puedxa syTaad jjas
JLINERET)
24 Jo sapis yioq puedxd,.,
puedx>

162 NI -L2T (96810 TEE 33Uz yoow (ddy spoyiopy mdwo) ;| wuowaunZ yf CSpusmoiyag

SWROUABYOITTIAE
wis osToad
W waga0gpi1a3
wial w3 g0 gsojutuoneznRQIod s pue
@Wist WI21INOqYsouLTYIal sy oIy Sumouun 30 sist I
w1321 WA PARIOSS VINO Y5O YIS unouROIOI wosy iep dudevew ()
SPOUIIW sanquuy sysey
waneas>
SPOYIAW pAKIagLY sanquLe passgu] “asel panssyuy
13QQ ' SIMLWAA WOl sISYu
sonenbaiu] ssery
6 qeL
P27 oent) TEE Kilug yapy pddy Spoyu indany « vtz gy apuaemysg o 06T

149

Appendix A

w

suRISUL HE St Dl

1 AMATINE 3111 Ceppat)

1 or37e 10 et e ¢ adly
AOUYUN UE 111 J1 MOUY KRS WD) YT "PIIG 241 St WD) DY) JO INSHIIDEIRYD IaI0UY
“910p3201d 343 JO sda0s PuOdIS Y1 PuUE ISIY Y UF PIPIIU SULA YA [[B IqUdSIP
01 3iqissod 1 onew £3Y) ‘Umoys sV “BUING SSEPD JO $IIUBISUI a1e WAL JO Iy 'SaMpujuoneALagawn 53t
PUE S3PUIUONBALIIP 511 *SIAPUE S| IWEY 51} AQ PAQLISIP SI WIIA) YL "SINGUNE XIS SEY WA, Sse)y
samguny

JLpue ‘10U 10

€

(71 219eL) 1omeyag
SIY1 wawafdiwy ((im SPOISW W0 ‘suorssasdxa jo uoueindiueis gy Ul PIAJoAL! ST 23] YT SE ‘Affeusy
W) 3y) JO UOHESHASIP Y 8! SUSWIIdu YD SIY $Yser ay1 Jo wed puodss SYI “JasH dzAjeue
01 Spoy)aW a1 WAL Ssep> 3ys Buiad soydwt iYL SIS Y3 |[B SIGUISIP YdIyM SSBTI U0 A|UD daey OF
“1uatdofaasp 2Y3 JO LIS SIS IE “33113Q SWSs 11 *A[[E30] pue die| s1eadde sio1neyaq ay13ds Jo pao sy
SV "101aBY2q MO SI Bunuowajdun way Jo yaea ‘uR Jo adA) yses 10) sassed dyads AL 0 us3q
aaey pinom ‘yoeoidde aiqissod 1agrouy F ‘83 Jueisuod e o *g 83 ‘1aqunu & ' 'n 33 ‘piay 10194
2 Jo juarpesd £ 'SWIAN jo 5105 IF 10} SR> (232033 SN IarY 01 5| I IpEW NOYD Y] UoISIIdXD
ue Jo Amu2 isajfews sy siwawaidun ssep sup ‘ued Jsiy 3Gy W PIQUISIP SV WL SSBID YT

SISSDIIGNS S PUD WAL SSO1) Ly

-asa uiyiou pue (sainquuie s 3uipiode)
01 sey 1) Jeys S30p 103[q0 A1aA3 JEY) smoys 1] suonenbs 2y 01 PAZNENUIIP 1 I0IAEYIG

‘oghenyidomsnenaad
043RI IIOgSSIEDME
SUEN3(1423IM0 ALY o813
sumeuIANYPUY

wawsIgmaNIEan

WAL ImaneDL

BISPOYIFN ALY
UlpOyIIWLORISURISI P31

W10 ‘ULNFAINOSIMGIIESD
AW 10 PAIIPEI s IIERLS
WIS 10] :4{PUFINFIIPTIHIMA 3138
SnROSNI LN

WA I0JTIURIUOIOREII Y I

et—_
PeOIaR)INGR 1 BuIpUSILIIXIENPING swsa Lo
speoThpogoy Bupuadsazioxurewping SumOUAIYOI
suonenb3naxaquatse wonsate)ssonEnbs
Shokene

P — sweisuoj0ke1E woneas 2po> (2)

xueueiGosel
worsuaunquiaigoid

asodsuen vorsuawnqeds
PUNJJOITE - AIRUCH RIS |30 4 3521d21 SIPONIQIWNG sanquae SwBeuew (1)
SPow sanamy sty
uoneasy
<poy1aws parsayuy sainquue panssyu swser paniayu]
1B2[q0 "AISILINGS WO sHIYY]
ansds ssei)
11 21978

Tl PN -22T 19061) 1 BaSu pay jddy spoway amduio)) | uuousung Yy spusmeidys3 G

2y 10 WaT AT WO 43
941 10} JWRU JUIND[D MU 1 Y sst> e Juneasd jdwexs 10}
gy aredazd o1 sey 12afqo sy ‘Sunjeads Ajjessusg 'pareasy spod jo 3dAy yoea o1 sepndnsed
uaY) 2UE $YSPY AL 1SN 31 AQ WSS Y1 JO SoURISUI UR O) Juds G TUBWR] G MIN SN D2IDI2) 30
WA T MIN DL AFeSSIUW ST TIPOD 1WIWI]S VY B 31831d 01 195N Ayl Hudd SPoYIW 158 YL (Z)
nenba ay o1 pazy P 1 WOk [das ayL “somjes
Bupuodsarios ay: Aq A1euonap 341 W usad wsy Jo suersut yoea saseidar swonsung folipuon
-21qo :Kipuonnqusn fasinoq 2o0ida: poyraw sy -uoy enby o 0ueISUL YOBD 01 PIZIBNILNIDAP
Sle syser yp wasds agi jo uouenbs yoea asodsuen o suwsad asodsuoss poysI gy (1)
uondussap ysof

"PANSHP Ji ABm IUINNP € UL paindisod aq ued [e1FAUT Yous tey NON “Iwarpguones
~Baupied1awny opod Jesudwiny 3 ut sresdai ay Jur 10] dWAYds Y J]0
2d41 ay: pue ‘xHEWURIGoIE! * (uDISSIIdXY SSE(D 305) XLIEW ueiqodel 3yl UonEIUBISUISIUTISUO Y OARIIR
pue sjuesuojoiRe “(uonendwos eatsuny gt Buiinp iy etep i ui punoy 3q (fim yarge erep)
wyqoxd Yy w1 pasn so1 42 o1 Buwy ske1ie om1 “uoy pue uor 1
‘wepgosd Ay jo pue oeds Iy O uoy 1 DJORGUNY pue SIPoN)OIqUINY
'53pou JSW033 puB $IPOU JO QNG |10} I SMOUY wdIsAS A “13A02I0N TONNYOHPIIPIO
Jo saueisut ue S sy uopAIIODsuonENbd s walskg ssepy jo ANqune uEw I ARuanbasuon)

:u;:,, ubu
S=4d0 4+ py
moy
$3%015 Jo suonenba ay; jo UONBALIP Y1 WOL) SHNSDI *IJUBISUL 20} WAIsAS Fuimoljo) SY) suorienba
J0 woisds & S| uonenbs ayi Jo WIA yoe2 jo uouEdYLUIP! Y1 Jo ynsar sy ‘Juiyeads Ayesouany
samQuny

(1 2qe)
watqod snonutiued gy 3o M31SIP 343 10) *suonenbs jo waisis Y1 Jo voneIsIKD) Yy sy ssepa sy

washs ssopy Q[

‘syd
pue sy) 341 01 patedapap are syseL AL 9PO> W 24BN 0} Jissod 1 sayew poyisur 130 ayy, (7)

“asodsuen syyaaid g as
asodsuean syaaig jlas

. J9413031 9y} vsodsury] .,
asodsueny

*350dsupy) PoyIdW 1 10j JwEs Iy} S Jdound ayy
‘tonenba 3y jo sapis puey-ydu pue 1a) Y1 udMIg 1ids s1 J01eyaq
YL) 01 SITESSOW spuds A[UO Y ‘suoumnba salediew Jasn) Sy ‘ueissasdx g pazyjasy
“SIQ J0 20ouspusdapupipsur;ayos Posw sy 0) spuodsasion 1w Ag wioy 1mpoid sy
Apuapt ues vonenba sy somquie pausyu Sunendiuew JO spoIaw om) Atuo sey ssep siyy (1)
wondissp ysng

(uewop rqoi3 ayy uo 2uop st vonrsdalur 3Y1) sIrRULPIOEI
I1e30] Jursn dxa s1 p t Oyl uaym andwos o1 12p30 vt sjesdaiu 83y jsanbay
ued 13Go 1247 UONPINWIL) JUAWRIA Anuy I jo ANSHIDEIEYI T ST PAISPISUOI 3G Ued JUSWD[D
24y 10) SNNTUIPIVOI 1EqOF 03 [230] WOy AqensTa Jo IBueyd dy jo uonTINsa:dar i S Yargm xuew
URIQOOR 2y ssep suy 0) uaaS AR x) 1 PUE SIPONDL IN0IQUINY SIPONZ()IIquINY
SANQUIR UOSRA Sy sog wALGOId PAZNAINSIP 341 Joy wonenbul ssep o1 spuodsanios sse)2

P 2L (Sent) Tyl AU oy pddy spoyn mdioy iy gy spuswsiagg

60

150

Appendix A

somesado asuatiamg ¢ By

T Do maoy » o
r oo = | sompopeomvauap e g jo s2n
P mado i g S 2p g0 e

Y ‘10U 10 W3QoId Y1 Jo UMOUNUR UE SI PISY YN I SYIWD WOUDZNILISIG0IIIAIS POYIaW
) ‘pIay 101024 B so4 2(dwiexs 10) pjoYy 1WAWE|DSIP Y} 1) sB ONS ‘UMOUNUR UE 10 “speoj
Apoq ay1 se yons wajqoid 3y} JO eIEp € 3q ABW PI3Y © 1EYL 0N "SWIIS JO $3dA1 [E 10§ duwres ay
st 2dioutid 3y g SuMouNUR [2POU 313 01 FUIPUOASILIOD XLIBW JY) SPYNG WP (HOISUIUAP pADIID
ISIUSLIDDIDY I YII A IR UMOUN U} PING POYIAW 31 PUE ({g1] 23s) g xmew sy spunq aurod
LOISUNUIP pADLID [SISUDDIDYIYIMXLIDWIPIING POYISW Y| p PUE g SIURISHL a1 Sping
POYISW Syl Ul W] YL “Xb nery jo I om1 3ur 15Y7POAg JO 3durISUY
ue st gIys pg 1o0pold A SUINII POYIAW SIY] HOUDZNALISTPDINIAS SI UONESNAISIP Ay
SPIING Yaitjm poyiow 3y ‘1uaipesd e st ' wid oy apdurexs jog -swioj Njoquks Juipuodsarion
24) SUIZIUOD YIIYM (XEJEWUONBZHAIISYT JO SIIURISUI) SIOLNRW Jo 1onpoid e S1)nsas Jy] widy
0 3d4) ay1 o) Fuipuodsoisod sFessaw ay1 J2si Puds 1amsue 3y 03 Juiprose pue 2umipNmoL 128
poyiaw Susn uid oy Juizd{rue Ul SISISUOD 1L0JpaZNI51G128 poytdow Y3 Jo Lnd 1say DY)
“SPa3U J1 UONEULIOJUL Y1 PUY OF MOY
PUE OP 01 MOY SMOUY 1 "J|3S)1 SZ1III3SIP 01 S *OP O) SBY U] 3 sysel Juelodun 150t Y1 O U
“10U 10 W3{YoId 3y} JO UMOUYUN UE 10 ‘1ou IO (PJ3Y [ENIIA) PJ2Y [QISSIUpE
0137 ¥ S1 P2y SY1)1 puy UEd 1] PRI JO SaueisUl pjay Sit AJuopt o) Qe St uusl Y *Afeury
a 10
‘n 01 10u g **'"n 01 JuajeAinbs 1 1 W g1 *3idWEX 104 “s3dUEISUI YI0q 10} FuLLS FwEs Bl
SUINIS) 24BN MO A 155 POYISW Y1 J1 PUE FUIBY SWBS DY3 PATY AOY) Jt AJda 01 Asessadsu asnl sy
11 SO0} 3A0GE YD YliA "IOU 10 JUIEAINDD 31¥ SWIS} OMI JI JUIINGP 01 St swaiqoad Y1 Jo UQ
‘saapupuoneasgan duus ay) jo YBuy sy samdwods Awo 3 xopur swiy
Y1 *3, 3[qEUEA O 153dSDI Yala PIANIP SI 1 SO AURIL MOY JUMULINIP OS[E UEI WII) YL WG
o patdde si01r13do ayy pue spjay 1910 Ay 321080321 03 3yqussod 1 saNeW didduLd Btwes)
‘g 914 Ul uMOYS SB [EINUIPE 318 SINQLINE I3y PUR U0 O [Enb3 SI SAdNpU
pue sadpujuoneatap sFuLils Yiog Jo 3z1s a1 3snedaq paziudoral st ppay 101934 © o) pandde
3ouadiaap 101e13do oY) “adwexs 104 - 20u3313A1p, 10 * PIALICIIRIEDS, * IRJRDS, (SABS YOIGM
Sumns e swma poyaw sigp W o1 paydde 1o1e1ado Y1 puE (105U ‘101334 “1ejeas) adk1 S.p1dYy
241 $A13 31 0 "IOSUIL JIPIO-YLINOJ JO -PUOIIS ¥ *P[3y 101334 € 0} pandde Joweaado wuatpesd ay so
330351041p A3 101334 B “IR[RIS ¥ SI WL} 3YL 1 S[12) 2IMONIN0L 138 pOISW Y| 'SIOIPUL IUSIIIP
Yy Jo 3urpeas g1 Uo paseq SI WA AY) Jo SiSAeUR Sy "SI, HyeAL ¥ t 1
*sadpur ‘awign sAnquUE uondieasp sit uo sytom 133[qo 3y ‘uonriado uonendiuew sy uf
‘wns ay1 01 nposd g
PPE PUE 11 01 J|351t PPE 0) ISY]POL B UOTIRDID 3U) $2510D31 poyiow 1se] siy], “Isrpung jo ssuesu
uR Ol POPPE 3 UL pue (ISFIPOLJ JO IOURISUL UL 2334) IST] B UF SI 11 JI SUILLINAP URD WL 24]
‘(uossazdxy SSE[D 235) ")t 03 UL 3Y) sppE pue “UOsSIIANG UE SPTWIRG
©ISEIPOL4 © SMBOURISUL 1] “101sso4dXSD 513 SI0P Ydiym poyiow 2y uoissaidxa ue se 133/qo
ay1 Ag 1t 3ukdnjma Jo *3uippe o1 pue it i uoissardxa aduils & Suipjing o) sunowe *uoissaidxa
10w 13fgo 1our A Wi e Fwkdunw 10 FUPPY JARIE WM A 31 WL YY) JO wio)
popurdxd 21 SEIMAL Yaym puodys PoyIdW Y1 pur SISy Uo uonesddo Jo SpoYIIW Om) *, puR
+ 8 " ap aze dxa ve 10} papaau suonesado A
"UOIIBALIIP Uil 2y) 10] Jwes oY1 st 553204d Iy
*LEN SPIRIA T 01 13231 Yum Py W) SWIALIAE] CX2PUI ISEI I9M0) 3Y) PIPPE St SIIPUIUOLIEALIIP

$67 RO L4 (9601} T8 SiSug o (ddy spounapw indwio) | wapwasung yp spunepinsy q

-

}

dUIns Ayl C1aqWnu P10 AR 13m0y B A1y XU UR 01 123dS31 gum PasLAp ST W Py
1 SPI2A x dpeties 01 1adsa Y
PUE SPINS {4 Ageura 01 23d521 gum)y Fuiauap *ojdwiexs 104 st p siamsue o aeudosddr

TOU ST UONTALIAP JO SGTUES 2Y) §1) SIOMSUR WIS B 01 193dSal Ylim Wwid) R JO UOIRALIRD 3y
“(3583 1awm0) B) xOpul uR a0 131U UL CwiAl ®

AP UGHRAIAD JO JYELRA Y | “JISH 9AL13P 01 Qe ST WILIL 3Y) “sUolRIADO UOHRALIIP 2y} up
uoHAISYDS TUOISURAXD TUONRALIDD 1350y iradde Joiaryaq o sadAr 221] suonendivew duunp

NAsI U0 a1e4ad0 01 $poiAn vaAE S 1 uoIssIIdXD UR SuLIO) Yy SIBD J1SRq Y S WAL ogL sy (1)
uondiarop ysoj

“(3uusquinu a1 Jo Pus Y PUR LIRIS IY) “LMOURLN [FPOU YL JO

Awew oY1 “suonaung sdeys 3l jo aweu sy I t+
-sudpRIRy oY1 Jutaid Keste ayl pue anquie

p Jo ArLie ur)

1P 343 Jo s
DSIP $31 SOUN WA oY) Ajjruig

vaneznansiqIonaANE
GOURTIAIM AP TIIG15T
e —

w0 gpaznasstqisd

wtod usp 1%y 4 Wpimg
2o P 1rIrY>
wiod P ey R

1iod p T "

uwouyunUYSt
SAnRAMAQISHIAI 51
1ueisuo ouny st

Avas

AvXos I

wisgaqs astput

waale opuEsAbst 22MpUjuOnEALIp

<aNpuRENEABAC W

smiennoR198 aues S ()

1 30QenTA0 L3S ISP
Buusigiund
eI
uosuswIAe TR aIndwos
WA e (121 waa L Ainsqns
puedxa
15r1posd uppsss
winge oIS |Ngo LIsInoA ppE
= S, ISgppe 4 -

wnismndirw (1)

SPoYIal gy oL

i1 “mouyUnsYsaUy
uorsuawigaedgand
walegaILIAaaS
swia o8

Wl waLiog ar

ward ey

Yk o eIRp 0 SSa%w (7)

vonran (1)

SPOYIAW pAIIGU saRyusie pamayay

SYELpANgIgUY

13040 “LH0ILINTS WO sit1ayuy

Wil wey
T

POCLLT Gl) T YRR qoagy pdd spasiopy mdry wnmuniaty 4 spusanss g o

ol

151

Appendix A

“(¢1 21qe]) Sutyiou sa0p 11 ISIMIANNO H(sSeR 13dns Yy Jo (ppo POYIDW) yri 10U S| 123IQOUD J1 J3At3d0
Y1 01 1AIGOUD Sppe 13aigOun:ppy PONIAW 3 sjdwexd Jof ‘pazuenoed 2q Aew ssepiadns oy jo
1o1aeYaq S Ing "pa1adx3 1SS SIY) JO 2DURISUI ON (1WIWI{D U JO IIUILINIIO U0 SHOY|E AJUO yorym
13§ SSE]> JO SSBI2GNS B 3Q JOU PJUO3) IIUC UB 0w PII0IS 3G ABw 123(q0 SWES Y 1eY) pue A:.Ee P
+py,p ximew jo uoissaidxd ayy 3idwex3 10) se ‘pnpord ay Jo Awanzimuuod o 13dsal 10u ss0p
:o_mwu._nxu Y J0 “WIY} PIDMPOLIL SEY 3Y JIPIO JWES Y1 LI SULIA 241 Joj Bunrem s1 1asn ays 3snesaq
1ayua) 13pIo usAld e Ul Pasols 3q Isnw SI03(qo Teys 21¥ 010YD SIY) 10] SUOSEII IYL "BONIIIOTPAIIPIQ
JO SISSEIINS SB UISOYD IR SISH ISIYL PIACIOUTISUL 1AL S| PUE JUSWUCHAUD MU Yk UI P3SN gi5y
fle sdno1d 1) “L103 LN SSEID>) Se 101 IWes Y skejd LORINMODPURPIOLINLIWT S SSBI3 Y]
HOUIIIOIPA1IPIOLIOINT S SO [Ty

S3SSDIIQNS pUD UOWIIIOIPAIIPIO SSOI) 7'p

WOISIFA + 47)
Y1 10] SISIX9 WIYIS JE[IUIS B ‘[ENSn Sy "POd) JO Sired UMO SI1 181D 01 XKW AIRITIWNS
341 J0 1USUOdWOD YIS SYSB Jugd JUIWITUISPOYIIWADIL POYISW S] “SpOIAW 1dads 2jes1y
g g ulpoY pue suga : 1F4IPOY 74pogawass spoyiow
Y} puE *1013335 Y1 JO uu_o.—u o s9a18 juna s u Ekuu?wu IPOIIA 10243 POYISW [B12U
Y1 05 "IANBAUSP AWM PUOIIS B SUTEINCD YIIYM ‘. ppy 1onpoid am1 ySnoay paynuspr st xmew
ssew 2yt *Adwexs 104 XUIBW Y yim apews 3q jouuea {, f 1,y ,.‘5 uones1d apod u paeardun
318 YIIm SIOUIBW JRIUSWIIR JUBIRNP JO g 1J o JdueIsW
ue U1 3Tyl 15T} A1 WL} SHNSHI S L ‘dninw 2se yiERWS Ul uvoo ® aea1 01 spoyIaw EN
(" ‘wogssasdxq ‘pesdayup) st ssed 1Yl 124a5eya ‘pandde ase Aoy
oIyM U0 UIewop 3yl Ydkq 318 01 sHu3uCdWod SI sYSE poyIAW S 101334 PeO| APOq € JO 103994
PeO] 302105 B S 101994 PRO} B J JUILLIINSP O) (nJasn si uole1ddo siy] "Afepunoq 11 U0 1o urewop

)

a

Ay uo a1 xuew £ sit jo gy P UED XUEW SGY
"X3pUl 341 JO anjea Y1 uo JUIPUIASp ISTE) 10 AN SIIMSUE XLIFBWIABINSUODS) puR
Umouyu()N spoyIdw Y| - me| . pue | . uEdty dsa1 yamm . N, Juins

213 10 7, Suins 3ys 3q ue2 1) "ad4{ I xinew pajjes Jnquue ue sey mms_u xpEpuopeASq Y, (z)
"10193135 pa33pIsu0d 2 10} wsiydiowXod 3y vo shepd poyaw SIY], XileW AIRWUAWI[S 341 JO
Syuauodwod Y1 {[e Wl wiay o SIMNSRS LOISSdXFUD (AQ W2 [U W3 L mnsqns POYIAW YL
‘pasodsuen uasg sey
Yorysm XUIEW SY3 JO UOHEIYIPOL Y} A1e3LPUI 03 [nJasn Lo 1 Xapujuonsodsuen Jinguaie dyy

. ﬁz‘ zm;__
iy p
SwIMBaIL X1y dipnuawaygand,p odessow oy pue p surmial ssodsupsr p 33essow 1
T.w .,m‘ R
<2 "pl

xinew ay; 13pisuod ‘Ijdwexa jo4 “xnew £

MIANFue JuIHT

toquids

T T
JoquIAS “JAWNEIY i pOYISTERL
red ywausapguy
(0quiks ‘wonrIBaujueIssAEDPOYISWATESI
ied uawNZU! foquiks .ponapwaieass
wied ‘UISPOYIWSILIOgsSNEO31EIN
Y1ed U SPOYIINUOEUEISUTSIUIO TS NED 1D
Yred [B{SPORIIWIANGUI Y SINO sTNEDIEas0
MIFUE uawaT3I0) wied
[oGUIAs uDREIRILIUBISAEDPOYIINSNIAIINEID
w3 ue wouaF0)
yred :ut foqurAs poYIIWsNAIIEsI>
a3 quswoigaop
QIEd U[SPOYIIN IO NEDSAI eI
WwBgUe uIwaFo)
Yred {UISPOLI S UCHRIIUEISUI SO SSRE) ST)IIEIL>

swapgnoneaedwny 3p3 Jo woneas (g)

XNEWIALMINLODS

umonyuns dd) xurew
XUIRWIIRLNGSE
xuepApogst urewop siskpeue (7)

7w un (st s amnsqes
uieusop ‘uRwOQUOSILATOAWO N0t ITL
PRt

asodsuen anepinuswa
Sungiuud suieu
xopujuoussodsuzn wonzindiwew ([}
SPORIPN oy e

aaneataIsgaw st
IuTisuoew LSt saorpurpasuagawn siskpene (y)
TWIA gim [WI3) .wis Amusqns
purdes
sripoid upsie
Wnge "0 ISITWNG 0 j138M04 PPY - uonendiew ()
vorsudwgaedgand

wared aigasesany
(e

wssegoEiag 341 Jo eiep o1 53302 {2)

uonean (1)

SPOUIRW P3ILIAUY s2InqUIIE paniayus

1940 K10 "usiay swon SIayY)

ay) sasodsuri pue 3, S g1 o 1e 1 sind pue jiu st g1), 1 x2pus 3y Sind asodsupa poyiaw 3y (1)
‘uoissa1dxa ue

Jo X200 241 ur vonendivels oy FuIdUEd JolArYdq Y1 ([E SSEIIANS SI1 WOSS ST SSED STy L
uondiosap ysog

(xuiet Apoq
10 3TJINS) PIUYIR S XINEUL P GIAYM 1O BIRILOP Y} SATIAPUL YIAYm “uewop pue “Idwexd oy (1.
X2pUi) XINEW JAUAVISUOD St 1 Ji SAIRIPUI YOMm *adK g xphrmu (1, Suins 51 aanguane s st e
pasodsuess ST XUTRW JYF J1 SHEMPUL (I “XIPUTuotysodsues) XLIEH JO 22ueisur U *XLIEWN BN
e SANQLIE I30ds $1] “SIHPUTUONEALIAIIUY PUE ausku HIB 31U PISN SIINGIIIE PIILIYUY

sanquny

62 FR =247 (el) ST 3UT oo ddy spoyiepy mdwo) | wupsuswty Y1 spuswoIpd G

xunsponEIRaRg ST
€1 39ns

“(£1 91qeL) voissaidxa paznasosip 2y Jo Aus Jiseq Yl I XUIEW

AIRIURWAIR 3y “uoissaidxd Y JO A1ua diseq Ay ST WIDL I SY XUIDWUONDINIISIG SSDI) 7L 1t

XMIEUONEZNAISI SSEI3 Y1 ‘W3] jo
SSEI2QNS 'SIT}O MOU € SONPONIUL JOIARYSQ SIYL “AIOILWRS SSeI> Y3 WOK) PRIUIYuL §t I0IABY3q
ST CUWIIYL 24BY 10U $IOP UMIL I [JUILESIHYILBING JIAGUNE I JO PIYSE ate syusuoduod
24} UIRIGO O) I3PI0 U) PIPIIU UOL g v umouy 351G 401237328 fj25 10 umouy
“UUONDINILISI(T 201337138 fias SFessow uﬁ:ao.&m Y SPUSS pue ‘SUMOUYLN S1 Smouy uonenbs

FOE=L25 (96610 TE1 BTy ddy SOy mdwiay « wupwsnaarz) \puswoiysy 962

152

Appendix A

“s1npoid Jo 101aBYSq u_: Juswajdun 01 patead udsq sey Isy jo adki uo Ao (- ‘s13lqo
1O yd1easas d sy pods 1snf ‘azifeas 01 syset xaidwod Asenansed
Ou darY SISH IS3YL SY Ana.ﬂr_num Joj ua] jo 1 10 i 10} Jeada jo 1)
1X21U0D 10 JU3NU0D 41 JO uonedinue Aue jou s 253Y] SIXAIUOD I[OYY 30} SIOMBYIQ gt
1z uaad 51y it p up pardun 2q UEd UOKIIFD SIYL (&)
SYIDWL [D13UaE)

(L1 31qz1) suorssaidxa
pitng 01 papasu s1onpold Y Jo BUNIPOW Y1 YU PIVIDUO) S§ SSER SIYL HITPO SPLD £Y Y

‘1 UINI31 0) JUATBIHYIIBIAY UMO S11 SYSE 10Q AIIDIIP 1MSUER J0UUED Yoiym
Ssep 43 JO Joeyaq [e1ausd JU S SIL] CIAIRGANGIIBIANY ANQUIE 4 AQ YoBQ U 3q 01 PAdxs

SUYSIym BIEP O SSIDIE YD SUIIIU su Aq s yorym “1o1aeyaq 1adosd Ajuo ay
vondudssp ysoy
RUTL S e Y amqune Ay S WOy PIILAYUI 253y §
sanquny
1121 MOUYUISYEMOUY
votsuapaoedsard
swiajomIa8
wis WiaL 0 Jsojupuone NI wared oyaesay
uotsuammETHNENAIN WO a1 Jo erep 01 s390e
SPONIaW sanquiy syse)

3lqoue p3fqQerour

(91 IQEL) ISTIPOd PUE ISITWIRG 3B ‘SISSequg "PHIAAXI St SSE1d SIYY JO dduBISUI ON
“suoissaxdxs Jo UONEIUSSIda1 SY) Ut PISR SISI| Y10 SAN0B sse[d SIg), “SISTTsUCISSadxY SSO1D [ET

Sa5SDIIGNS S) pUD SISTSUoISSaXY SO £TH

r ap jo 2 yaes jo
IEaull Y1 Jo UONEIOAUL BYi pur uonsodsuen jo syser a1 Fuzieaudddp st solaeysq Ajuo oy
“JUSLESIIYGIIRINY
JInqune o) o1 paNu Joiaeyaq 3y senonsed vl ‘ssep> sadns 2yl WOl PANIAYUL AT SSEL SO
uonduysap ysof

samnqune Jenonied
ou sey ssep Syl ‘(G1 jqes) WASLS SSe]y 10f PapIdu suouendd Jo sty A Swasddax ssep swyl
uoyamo)suoyonby SS0)) TTH

“UOTIIBYOD Y1 Yim

pajepUEISUL I PIPPE 133(q0 Sy JO JUATEJINIIRISIY ANQLIIE 3y) 1Ryl 1e) A Aq pazienatied

are uOND3(0d & 01 $5193[qo Juippe Jo s¥sel SYL "UOUDB|I0d Y Ul 193{qO UE JO SADUILNIID
Y1 UNO3 0) puB UCHIA(OI Y woK 1o ue 0wl oy Aiqedes Y uaaid ose sty ()

1aqQUD itiaiOd X Ty PO HONEL pue yuamg

-a1y5404311{2418 POYISW ‘NngunE SIY JO 1wawaFeueir a3 01 Jurpuodsauied JolaeY3q Yl 1} woly
1U3YUY SISSEQNS ALL TUITEJOIYIIBIINY ADQUIE Y2 OF PIYITIIE L01ARYIQ) UIAIT sI ssep sy, (1)

uonduosap ysoJ

‘suoyssaidxa jo Suipping ays w paydwir sassepd Apenonsed pue sasseagas
[1e AQ PAILSYUI 3G 1A 1] “IUSIEJINIIRIANY NNqUIE Y UL st sse sig) KI0YLINAA SSePd 3y sy

132lQOUE FOSINILN0 samquiy
131q0uE NUITEINYIRLIY
serany samquue Fuidevew (7)
faoue JOsRALI0
potagun sume e meamaeony
ove M
1 (O W Jsumouyun A
wefague :ppe swse Jummemansed (1) savipujuoneaaqaun aad
SpoqIau PO sanqune paAgu] Syse1 paruaguy uorsuaunyasedgond
oIsusu(ILAIGosIAIE
12900 VOR3P “HORINVIPITIPU] ‘HOASHICIPIIIPA) “VONIHPIPIIIPIOE0MLNE (W0 SIKayu] awayasuonedsuiessawnyad
sapongQLquinNasd
etsiosad s S3pONPLISWIOIOICHAINN AT
91 aiqeL N o
A [——1
waregaore s anT
L SWEN3I221005PAUISAYIIMT
3
sonvaby HONRLURIU[SIKRISUO DOV 81T
asodsuen ssepa Jo saouEISUL Suessu0jOAELIY A1
s3u3pusdapuLIEIUCTAOAUL o1 syses SumEAP SuMoURUCI{TYPUY wategmpaseran SuBeuew samqunie ()
SO sunquiy smL Iqo 123(qQar0ws1
. IqQue 1se1ppe
e gy saimquue Swideuew (2) alaoue o Tbbe
e walgoue I VIPPE
e 1afgoue ppe syser Buizuejns
1alqOue TIAVIPPE qoue pp Y urinsased (1)
3lqout ppe syser Surzepnansed (1) spotIaW sanquny sy
‘spowiou pawsayul samguite paniayuy ase panraguy pouraw paiagI] Samquite paisagu| SAse) paraquy

199(Q0 "UOMIANI0]) UOHIINOIPIIPUY ‘UOTINICIPIIIAL) BONIIIOIPMIPIOLIOMLINTS (I0l) 1T

13(Q0 "UonXI) “HonMI0] PXIPU] “HOHIAI0]) PIPIOD (WOL; s1IYUY

uogInoySuonEnby ssel)
S1 9qeL

[POE-00T (9661) 261 2843 yiaw 1ddy spouIN indwo) | wwwwuswuny yp Apunwniys3 d

VOHIHIOIPIIIPIOAINYIINT J 5581
viaeL

bOr—L07 (681D g1 Sedug yaw ddy spoyiopy mdwey | uwpwasway Y] Spuawviysy g e

153

Appendix A

(81 3IGLL) suotssaidxs
piNG 0} papasu swins o) Jo SWIPOW YL Ym POUIIU0D St SSEP S ISITHMS SSO)D £z

“IUPFUD (IUINIFUISPOYIZW ST D022 PUR SudjFun
I FUISPOYIZWIIDILT SPOYISW YL “3'1 *9POD © JO UOHESID 3Y) Yiis PAUil St ASE) 15| 3y) (p)

“Jiasmnog sduerre d
*[{wiogpaznearsiiad fqo) :poigppe d [(qo
*(uBrg3ar3 jjos) :udigmau tsrppord =:d
e
uopaznaIsIqes

is1 popaw ay)
PN"PNI ‘mnd

w13y gors o
uoneTIIING

n
P P J3sinog3tuene
1$m0]j0} se pare|nwis 3q Aew ajdwund ay)
-3aa3o1 woyy saduelse fasinofa8upiip POYIAW YL “WI3) YOEI Jo
W30J PoZNRIISIP S SPPR PUE ISYTPOLJ JO DUTISUI MIU B SPIING W0 paznaon(g128 poydaw ayg (g)
“Joot urew sit STSIGL PV Y 00d
poyiow Buisn PRy Jenwa © ‘xumppysanmusue)P8 poysw Buisn xulews Fuhminsuod
v a[durexa 50j '133(qo0 refRatted 2usos jlasy ulua puy O} sanipqedes (|2 Sey ISTTPOA] SSEP Uy (7)

.».n&.
!
‘lpod :ppe Aydas
“12p i [qo 1] amnsyns (poid
U] R 13]qRIIEAD] 133dSaY Yl IALRP (4o =: J9p
AdoDdaap jas =: [posd |{qo:}iop yias
“MIU ISWING = A|da5
|+9p [poid A1daaf
L A3A13031 23 AU,
wIRLR 1QRURAC 113353 Y I MAALID

st poylaw 3y "s192(0 241 {[B JOJ UO OS pue “wns e 01 WNpoid MU SIYI Ppe o1
pu® p3auap it AQ 193[qo auo 3oeidar 01 pue 19413331 343 Jo Adod e Ixe) 01 sy AdouLd), “wns
®stnsai ayy -, 8f + 8,f = (8f) :Ajjesmizu 2unb pajuawsidws s1 13npoad e o uouRALOp Y

ISt 341 ut puadas oyl AQ puawmdie i1y Ay $08(dI1 YoM L)
‘4G WA LD (wia [AMsqNs POYIdW Y} PUE 'SIUO $,IIAIIBL AY) JO UAWIIR 345 ppe 0 djqissod
1 SINeW YIIYM POLdD poidppp K|UO ION ‘STOJIWNU DI spoylawi IS Jo uone|ndew oy (1)

disssan vy
uosep yem

‘udis sinquue 2yt 3euew o) PIWINSSE 5t 152(qo sty “wed 151y A U PAQUISIP SV
sanqrny

‘| asodsuen walqoue 1wafqQue:iop y1as
WUl pauIelueD
13lqo 2y {je asodsuet]
sodsuen

poiaw Sumo|jo} SYi Se YIns “XeIuAs Jepwis
[ARY SPOYIDW ISIYL { waa] ‘XMIRly ‘uossaidxy ‘(e18ayu] Jo saourisur) s13{qo jo adAx fue
013 19811 3Y) U1 PAURIUD $)32(Q0 W) 01 Jo1Aryaq ay) Funedagap vl Is1Su0> spoyiaw 3y Jo 150 (a4}

M 220 tned) Gt Badug o pddy spoyiay Indwey ; wimusnusny g C\puaoisy (1

WUIFUE UIWATUISPOUI IR
wpgue wamagi0) yred UISPOUIINSMIZDI LD 3p3 Jo vonean (y)

wrogpamansqiod vonezRRP (0)

sueghgpaednuisgiow

BN AIGIAE
wiagmGard
xurENumouruNIONISE
nneparnsd
umouyunY NI
xueNIy el
umouTUNIVHR
AHEWAY (D
“umouyuno) FuipuodsanieHNureppuy
speorjaoepsngo | TurpuodsanosUTNpuY
sprojipogo] SurpuodsasiodIUTpay
SUmOUNUIVPUY

wOSE U[ISTES sisdjewe (2}

ssodsurn
m U151 s 2GRS
WIaEe WIEaaoal
poige :poidasowias
Sumngind
UIEWOP MuiEwagjuOSTSTOdWONOA SieITa
surgfgaresiaun
puedxs
1 *31QELIBAQLI03USIH UM MAALIP
snoxaduenie
wngE 1SrJWngoy JIsINOAPPE
posde poidppe
paredau
uSigand

ulgaBueys s vongndurew (1)

Zuirs

SPAIIN sanquiy sysey,

Wi3) MouRUNIsYSmouY

tornsuswiqaovdgaar
WL oINS
susapioisTTeR wased yasesay
wiz) wiay a1 jo erep o1 ssaxr (y)

fqour 1xalagasowar
palqoue JgsauaLIN0
10lqour 1aIRg MG

sanqupe Susdeurw (g}

iseppe
13fgQue UIGV)IpPE

13(q00E ppE syses Auzuenonsed (7)

uoneasd (1)

e — P — oxsee patuaguy

13a0) "HORNI) “HonNIIPIAIPU] “WOTPAIIPAIIPIO "D IPAIPIOLIN LINT “srsrTsensdxd wo siagu

wTIPoagSTeL>
IR

R =£20 (9eni) TEE VaRuy yoopy (ddy POy mdwo)) - uuDuLs

Y1 \pusumisg q L3

154

Appendix A

‘Sem [enieu dunb B ut pajepndiew are yoym Jeadde siolqe 13y PAQUSIP UNPANS A uf -suossaidxgnop puedxa jjos
£3udyg5 pasoidun ue aaagoe o1 swasd apod + +) JO uone1auad ayy + 4 so {-puedxa poud | posd :}:
u1 Appuasssd *apoo pay fGo ue w1 W32 mau & 01 3UIPUOdSILIOD SSBI3 MU € 3213uaT ,uns e puedxg
o1 A|jeuy puB ‘pPOYIIW 1UGWALY ANUL] S 10) uonewixesdde ups3ED B Fun suonenuioy xuew puedxa
2a119p O *SWIO) [EHUAIDIHP wos) Funters *ajqissod 11 SINEW AI3Y PIQUISIP IMULONAUD m3u dyy
SyEwal Smpapuoy g :pupdra powpaw 3y Jo sdwexas 3y aye] -3sp uiyiou pue op 01 sey It Jeym ssop Ajduns sy ay)

“ISIIPO44 SO SIOURISUL 0) 371 MISI| 3P U1 PIUIRILOD S129fq0 Ay o3 syser o Jo yred Funeddpdp ur issuod
SPOYISW Y1 JO ISOW "JOWAEY3Q SH Y3NOIYI JJOSH SAYISD{ IDUANSIXD S1] "$IINQUNE OU SBY SSE[I S

- - ‘suotienba YD i1ou3Dy

sjeuonoun *s[es3aiul sainonas xajdwod 31219Ua8 01 PISN LAY PUB AYISRI PIWIO] 3Q Ued suolssaidxa
wawdopaasp oY1 jo ofers sy 1y ISy e 01 1 Buippe pue wuaz/mofia8 poydw sy Jusn waay
JreueIsyl 01 pue swid) Funuassidas saoad w Fuws 41 103 0 st opdpuud YL NG pue ISTipolg

UL JUBWAFUISPOYIINIII

JO s30uBISL) “3'1 ‘dogssaadxq Jo duersul Furpuodsaiiod IY) SPING uoISSAdTFAn0L uriof POYIA Ay udY Y, TUIZUE :UAIAI0] tied MIPOYIINSILI DN 2p03 4O uONEID (¥)
4 + s vorssaudxa A swasaadar 14 + (NS, m_._:_m ayy ajdwexa 104 “xapur U 35¢3 13mO] € ‘p[ay ® [oR——— [RO——
JO aweu Y ases 1addn ue : ay a9
Supis & auim 01 AUO Sey 13sn 4L “Ji3sN Aq suorssaidxd PINg o1 SPOISW uang 1 g ssEpd 2y, sueghgpaesioaghew
1oqdnjowuIL MEE
Supag ssop> :s59p2 SunSIx3 U 03 pappy SPOYRW €4 wiae “=;Ex=:ohm=_v=&c:e=wwww-_m”“

speooesnso) Suipuodsastonaeppuy
sproTApogo) Buipuodsaiso)XLIRNpUY

‘wns 3Y) ul paureIuod syst 1anpoid Y1 Ol PISIRIUAIP St Uone1auad pod (¢) SumOUTUNVPUY siskieue (7)
*s1anpo1d 21 01 153nbaz Jwes) SPIEMI0) WOfpITNLISIPI38 poyrow], (€)

-punoy 2dusdraap soteddo 151y Y1 SWIMDI sanydumpyuaia [atpand ssodsien
PUB W43 [ANG2018 SPOYISW PUR 191POId Ul UONEIYLIA 1IN 35[B) 10 INY) SIIMSUR SUDJAGPaIDs TULISL I JWSA TWLD L AImusqns
-Sarujag DI PO HOIYD YL "SINPOId Y1 OF PAZHENUIIP ST I0MEYIQ M [wed s uf (7) zds 4q 3”...;8.““
-uonsodsuen se yans 1nposd 341 o) pazifenuaap st sued 4q wonerdaiur Jo spoyiaw Ay, u_um__unu..
WPWOP UrRWOQUOSILAUOdWODINOX ST
Aida suegigaesfam
1" suoissaidyg o purdea
“['19p :ppe Ajdau }:asiednt puedxa
{'12p :ppe Aidax :ast ..um.:zm. 190 1 .31QEHEAD L 1SR PAUID

IMNSt wnge STIUNGO 1 J7SMOA pPE woueindwew (1)

W1 R AQRLBADL193ds g M Aa1ap ssid =: 13p |isitd:]zop Ji3s

“a3u J5TWng =: £daz SPOWIN snqUIY ssep
|19p A1das| WA MOUNL(SYSMOuY
UIDLE PQELIBAC [132dSI YN M AP worsuswigaredsaad
TR NIEINH AL

tpoygIdw Ayl e wou i fidas oy 03 suLa | yorsrsd wased sigoseray

PIpPE SI pUE ‘SIANBALIP S)} PAYSE ST 1INpoId SY1 poyraw Sy} UY S3ALIEALITP 24 JO ins uE 51 was w3 uwdy 1o y: 341 Jo e1ep o1 553%e ()
© JO DATEALSIP Y1 :WUNS B SB "3°t “Sem [winjeu aynb e w ds1usgo 103(qQuEe 123/gQaouas
poyiaur ay1 1eyt diou 01 Bunsaslun st yf spPnposd Jo swins g WIYSy s1RRIq Y ﬁu;? 15olq0UE JOsMOLNI0

1500UE . 1ud1RgIIIEIN

(P + 24 @+ ¥0) e ((P + 49) 4 (G + XD)) sanquie Sutdeuew (y)

ot oida ano g puedaa

ismo[joj SE parensn|| aq ued pue ssasord voisuedxa seppe

Sy 191U poaw siYL wns e U1 ‘Aue gy uleiuod A3y wms dy) ppe O} paxse e sinpoid qucE_uw_ﬂ.Hua.H:““” S——
2y ‘sworssardxgmo pusdys poglaw up yuawndie Aqr 0} 1AL 2 JO SWIWIR L (e o
SPPR wangp SITMNSOLf125moAppy POYIAW YL st A dejndrueul ga1ym spoqiaw awod Jsng (1) woneas (1)
1s1polg ssepp A se dem awes ag uy wids sy soraeyaq Y3 spoyiaty patuayuy SANQUIE PINIIYU] SysEL pAmagu|

uondirsap ysvg
133fq0 BB VORI IPIXIPA] *BORINPIPAIAID UORNOIPIBPIGLION LTS TISTISIOISIIIXT W0y Stuagug

-3q uea Funwwerdosd pa1wdLo 193(qo Juesesrd Moy Jo UOHENSRIL UR St SIYL "UMO S)f UO uoneisdo wrIung ey
ue sunoj1ad wns 3y pur (150po1d Y41 0) PIZIERIUIIFP 101ABY3G) J381F PuEdKd OF PIXSE 51 wnpoid sy L 1 oe).
POV-LL (61D 8 BBy youw jddy spoyp nduny ; usamng yY Apuominiy G e

Y B-22T (G0nt) D61 iUy pddy spoyiapy mndun) ¢ wmpusnutiZ Yy Cspesumiysy d

155

Appendix A

wim feoads syiom 2

FuiAdu3 43 Jog UG Hs WO PIIED U INIL UHSSILLIA] u.
10 “souxdand onowed put FNSIIAEE 3)rs3)
fu 134 3ut Jo se3preda: “rUInOl At s pASINd

VS0 C2610 VI LIFUEQ “PAMIQ prioma<ay 237 © W) ‘1D Savesea papitmio) 3
PInoys 334 arudosdde syl AP 1WIAAOT) S A 1O H1 IO i swondds kg pawwiad teyy puadiag Fukdan say e kITF 10 3T 1514, W us 3pos
Ados-sd 5 333033 3t IROIY) <ard 11003 34 ey GEIUO3 1) LAt S| IO SIT] S1USN> MO J0 K F0EIAd 241 10y
0 ruonsxd 101 $IHE Jo Burhdud 0} uand 8 (Uasuny W] IR IVEIESL) WAIAAOD A Mitm PRI IR Y 1PUInGH sngy

VSN 4t a1 apeas 20) suopemds e

wonrewssopn jo

GRS IS 1sapim oy
jEwnof a4y

tsw 0t o 30erdaroe wodpy

sagsues L 3G 341 08 Jpoibie 3 Jo WTaAde s3jsue 01 PINSE 3 1A (5)soyine

aisua

spurAN My
Iv 0001 HZ 30§ Od HOWIAIQ LAUIROL “A @ IS 1333 iafeuTy JUSNIAPY 41 01 WA 3Q UED uINbu PUE 113010 Tuinusapy
SHISILHIAGY A0 NOLLYINNOIN]

'S UESRET 001-HD 996 108 Od 'V § 30305 131353 01 sauinbl pur UIPI6 Pely somm
sanwst Surrszas sop sunr) #anbar uode Nyeese 3se 133ieq3 yeusere
“2i0deduIg U Y d WEISITEY ‘UFIEIZ MmN “OSIII “IIATIEI
y dd rutiou gugz +) YGRS 1IE “epu “Pu0Y BUOH EPYUED ITEIE “HIENINY “SLuusliy possus S (PIY) AW UG - 1 v S) Kiaanap
194 $201Un00 Fuimatiol 241 01 199X 1w 34T &G WA 2k 1ams] FIRG TEOK IPUIND & 50 PSS 318 Pue Aie SHEQ Prudasd ¢ 0 parace
woudisssang Jonsignd 31 WO Kanbas sodn s30ud woNdUANS ONENQR 10] PIARPIG 2ie 61ACT SHUMUA 966F 104 leak
* (5305 py) sowinfon G2 W PAMIAR 1 (STHL'SH NSSI) ONINAINIONT ANV SOINVHIIW QHITddY NI SUOHLIW 3ALAJWOD
SHITNISANS WOd NOLLYWMOINI

pumuon
10 317D UONMGRd 34b I3Vt LS 5 Uit

303 SHAGSIHUDN] 1 IU-D DOOHE-SHRIFr e Key

NHOL IXO PIjI0 "PTOY AINQUTE o5 ISROH PIYAEI ‘5920135 TEUOHI JAAYS(“14o04 BEA QOH 01 pAIEW 3 PEROUS SIY Juig
10413 UONTIMISUES] JO LOIALIP 34 HGEU3 VIS4 SN W1 LIASHANg s woty
SITPEAY) 34gs1 [1DSV U7 PN prbogs ogiay 1aded g1 Guapt 0f ST 1 JO _pIY 1GNS. 1 U1 PACHEIY 3q PINGYS {euanol
42 10 S 241 “IEW-2 44 W § AY S J1 IOV 40 IAY 5.OYIMD A1 AT OF YN ST OF rydis Iy SInsobas SIS NI 1OVFF W o
10a0sdde ionpdrs s imoye QUM 328 wOrisan PIGI>30 gt widef ISUOY> ON A[ADIS3s "SRR, Qlaiucs. GTXAIE]-SOIOE /SAngse
. - i 3IE s3UGLAP NYLD 4 *0p3 isys dy
AP ek dy “opowepdly T S3ueu-1S0Y 4P (NV.LD) VOMIIN NGSLY X3L 3ua3:dwo) i woy J1d snowivour Juie s
(1 1940513 w1 DG D IPRD SO M S92 S8 YBAOIT PHNEIGD 3G ONE UE> JFEXID STLL ISR W) WO} AGHIEAL S1 31y £
217d2ad 01 mOY U WWOIRISN Wi 13453301 F0ped Y21 P AIYT L HHME. KIS IWAURG0P UI) X3LPL-SHWY 10 "XILET Piepoers
TXZLE INAATT W PIONT Xy PINONS ST M1 1531 2ys Tundandt 10adie pIwmpord 3q [sjecud “ageyns 1Ay I 1 LSOQSW
ST 10y 1) SHSIP € UG 0 (1P-3 A LUSIKIRG U1 01 1um 3 ARW UONENANd 30 pardacoe 43 aTy tey) aded O 3y XOLEY).
idLsneva (21 W] 204 SUSRORNTR]

SPUEQION L WERIBIY 26 0001 ‘1661 T0B Od "A @ PV NI 1NN
Pt UOHPT 31 W0I) PARIIRO 3 OSTR UED SHGOD PUB “FURIOA € J0 N IHT 1343 11 AR T SEOMLITY OL SNOLLIGHLSN LT 1IN0

1131 341 1 seadde A1 QNN U I3PI0 2yt U1 12348 TR € 46 Pt
20 PIROYS Sa5ua13j0y KaquInY ¥2d 4Q 10U 1Ny "I3qWINY (UoNEAba J0) LOIIIYS AQ IPELI 2 PrONS Jaded 21 O SLird JII0 O) DU VN A U)
sy

aum 1say
0330 K343 25 *GEIEL 241 U1 P3YITUIP 3G PINOYS SOQUIAS PUEY 4G BN A1ea13 Jo Padks pur pa1aquiny 34 PiRYs arnic) Dakeidnig
ey

uannposdas moma wosy Tussise 1503 Tixs 1 Aed

PRIEAPUN 3q PIBOUS SARI JO URLIGus 3 10
£ PUP 13quinu # 3ARY PINOUS A4t) yaEg 23S LI W PLAL 3q PINOYS ST, ‘ucdIPUl 2} LI PAIENDN 3q PINOYS
edas 7 U0 PO 3q POy SUOHISED U1 ‘UoNE B PUP 3G € ey pjnoys dandy y3e areudoadde
) 0 J0LY) DOINP3I € oy paudisap oy piRoys s2andy 241 (13T N “ssaruud

1380 3ys fo Suurd eI (T oI RO 1N 10 3q PO SHLL YSTUY un Aseununs 8 by 13p333Kd X0 PIROGS 12d8d € Ja a1 L

-y

voresLojul
RSUE LY s2gsand b 01 HHLE 2k Jo IYFAIOD IFIVEI O PIATE 3 |[n (S)KOGIME “ILIR
Tutareiuod 34 OSIE) Pasaquiny 2 pmous $ated jry. PIKeds-AGHOP 3q ORF PROYE
Stgnop UaINAGAL 3q Pl
i 1435 3q pnogs SN

BORGILLEIp Al 1P I 2insuD
ue jo auenlane uod) (sumides indy pue saqer 30313
V323422 40 S PUT STONON RIS WIIEW Dim £ Yim
St NsIIug 0 m Aqeasyaid pInows sehinuel P33i3j3) |

omuR Ty UOUPT 344 Jor o o

SROLNEIHNLINOD ¥0O4 NOLLYWHOANI

(2661 “teuoneusaug ssaxdaung) 100 ., 199690 W4 50
A:.u:.u_u iy 90 JWaIZ "4y pue BUd-sogna A (81}
661 “leuonsuiiu) ssaidswi3) 100,,, 193190]
A Alexiews pue Kioayy Farwuweifosd JuaWdIa sy paruano-123iq0 .uesem_w,v_n s seanty K -oceis s
{261 “£N 511D poomaiBg “WeH-93nua1g) oo wawayg snury qg “saydny dfLlo
(5661 *2u1 Yieudq) s25sp> Jo eipadopakong “zgum 10) 3
(€661 * up yimuBi) 3pind Ssuarapy ‘Teuim 103 e
{0661 "SUOMPLHIRIN) 19140 ¢ ssdelue) 5] “aquioa] ‘Y PUR pIEUey] () “YodeN -y e O [g1]
- 91E-S0€ (9861} ¢ uoneindwo) arjoquiA
£ isAier juow2ja 2y ut swesdosd [N Jo wonesausd suewone 1o) WNKs NoquiAs v YIONIS .u-._.n. _..mW lart
1anats nduiod ssdjewe Jwausata sy 1ea0NUOH by Lo Stjoqusks pazUSINGWO) "ssiapiy .z.mw- .Huﬂ.“wo._w_.d i
X . Al-~g6 (6261) 01 "LAIS “indua;
tenuaiod pue ss31% 0t reanIs u] Moquiks) UsIPUY WD pur Mez ,v_.w forl
195 -£51 (0861) 11 “BrUIS “1ndwio -
WIS 31y U1 SIMEW Ssew Puk SIS JO UONEIISE MEWOINE 10) wesdosd Jandwmod v ..:__mm s v_..wu -M_—._»ﬂ_..-]
PTI=6HT (6£61) D1 “19MIIS “inciuio) "SI0 SSIuLNS WAWSI3 21y)0 woryeiouad OGS “tanudg g pue poouoy w-v [g]
o 00968 1, 258
. POZE-1811 (6861) 92 “Hiu
SPONIIW I3UIAN { 1U] "POGIAW W3S 2wl exasesag 3 of Fumndumos 3oquks o uoNEAIAE AL uvm"s .m,w o)
L2657 (9661) 261 Buiduy oo [ddy spoy b
OIS PUE SIOUEAD Si0quts 0 3K | koo Y P sGD sty G o v o
£B1-591 (£661) 801 “B13uT 43N 'Iddy spoyIapy Indwo) 4 + >
Waurapa ayuy 90 Z 4l Pue uudad-sogng A (5]
L6£-19€ (7661} B6 ‘B:8u ‘yoa 1ddy spoyiaw indwo) *xpe
EE-162 (2661} 96 3130 "yoapy 1ddy PO tadunsy
190 "awisog g pUe B|2d-s10anq A “UsTuramrg q). (7]
. 101 56 (foal "Weplaswy “siagsygn,
ueadoan 201 “sidasos Wawap3 nuy p 90 2 4L PUR dwiog 4 uu3ed-skaqng ‘A [1]

VONEIWAAW] + + 3 pup Sroay

ut wanga oy

“sa1diound Tuanog | 3 [rm——

3021393

. ro)
ON UEID) JJPUN UONEPUNOY 3DUING [RUONEN SSIMG ayy 4q pouoddns sem yiom :u.mxwwem.chr_N

wuldpapmovpy

. 12 "UONRIO[jOI
WdWaAd Alepunoy se yans it) 2AL 01 pap! 3q Apses ues __u.ao:__n__a umhmmﬁwﬂ
PUE POYIS[Y 1UIWILT UL Y] JO SWILOJ 19YIO 3AJ0S O P3pUIINI 3G JIAIMOY UED JUAWUONAUD Iy,
JMjoquAs J0j JUSLUUOAUD JUIYY3 Be Pling 0 JOU Sem Nk 3y *swaqold awios 10) mmu_v:m”_wﬂmwﬁ_n”“
PMOS NpElRwWS Jo A3u315Y53 Jo Yae| Ay pue adie} A1aa ELTREN } aze 5_...; d:
3YL “fej 0s 1583| IR suonauny adeys jo uvoneindwod doquids I jo 85::8.&._0 suuw Yt st
W34S Y1 Jo Jun Nedm 2y aded uomed: ew 1p 3q [jIm pue dde sy jo |enuajod u_:
.vu_nm MLE oney sapdurexa 3sag] Moy SIROIG-IotaeN ‘steq ferxemn snueudp .mEu_n,oa Stuseuipoysejs
Qe ey u P Jo soidh ajduns wo pasar usaq sey yoeosdde vummx_o:_ oYy
“3uid10t01d 158y 2suByUs ve> Arifews ur sanysqedes
Aoquuids 1eY) 19A0310W smoys 1] -Sunpuiy) O U0oIsUAIX? [RIMIR € S NIRNIPWG 1Ry eapl u__.~ Funuoddns

P22 A6 SEE AN o iy spoyagy indw) VUDWLPURULZ Y} ApuswnIsg (] o

156

Appendix B Analysis of a one-dimensional diffusion equation

Appendix B - Analysis of a one-dimensional diffusion
equation

In this part, the aim is to show a fast evaluation of different formulations on a simple scalar
model equation. This part is based on the study of a stabilized formulation presented in [FRA
89]. The goal is to test different formulations on the simple linear diffusion problem

2
o’u—€u,, = f , for small ratios of € gy First, a standard Galerkin method will be built ;

then, a Galerkin Least Squares formulation; finally, a Galerkin/gradient Least Squares
formulation. Linear and quadratic interpolations will be tested here.

Consider the following problem :

Given f, find u(x) with appropriate continuity conditions satisfying :

o’u-etu,=f onlo]]

with boundary conditions : #(0) =0 and w(l)=2

where 0 and & are real constant parameters and u,, is the second derivative of u with
respect to x.

Galerkin formulation

The matrix form derivation is shown in Figure 103. On line 1, the variational formulation is
posted: «S» and «E» are two constants (sigma and epsilon), «F» represents the body loads,
«W» is the test function, «U» is the solution and «U,xx» is the second derivative of the scalar
function «U» with respect to the variable «x». The formulation is expanded on line 2, and the
integral «INT{(WEEU,xx) / D» is integrated by parts, which gives the weak form of line 3.
Note that the result is «-INT{(W,xU,xEE) / D», the integrated part is zero and so doesn’t
appear. On line 4 the discretized form of the weak form of line 3 is shown. Two different
derivations are made, a first one for a piecewise linear interpolation for «U» and «W» (see
Figure 104), a second one for a piecewise quadratic one (see Figure 106). Line 5 is obtained
after invoking the arbitrariness of the virtual field «W», and line 6 is obtained after
transposition. The choices of the shape functions corresponding to Figure 104 and Figure 106
are shown respectively in Figure 105 and Figure 107. Two elements are then introduced in the
numerical code FEMTheory, Smalitalk version ; numerical efficiency is not an issue in the
present case.

157

AppendixB 7 Analysis of a one-dimensional diffusion equation

Line 1: INT { ((SSU-EEU,xx)(W)) // D JINT {(FW) // D} =(0)
Line 2: INT { (WSSU) // D }4NT { (WEEU,xx) # D }-INT { (FW) /# D}=(0)
Line 3: INT { (WSSU) #/ D }NT { (FW) # D }+INT { (W,xU,xEE) /f D} = (0)
Line 4: (t(({d}}) {{INT[t(S)t(S)t(N) N* 1}} {{d'}} - {{INT[t(F)N"]1}} {{d*}}
L_+t(5{{d}})({ INT[t{E){(E)t{A(N)) ANy 13} {{d*}})=(0)
mne 9:
(t({{d}}){{INT[t(S}H(S)t(N) N" T}}-{{INT[t((F)N* 1]}
L_ﬂ(é(d}}){{ INT[t(E)X(E)t(A(N)) AN 1H)=(0)
ine o:
(H({{INT[t(S)H(S)t(N) N*]1)}){{d}}-t({{INT[t(F)N*]1}})
+t{({{INT[t(E)(E)t(AN)) A(N)"]1}}){{d}})=(0)

Figure 103 Derivation of the Galerkin formulation for the scalar diffusive equation

Figure 104 Piecewise linear interpolation

158

Appendix B Analysis of a one-dimensional diffusion equation

+{0.5%40.5)
+(05X+05)

A Conatant
Biquadratic

Hermite

Figure 105 Linear shape functions

{xxen)
{D5KXH0.5%)

159

Appendix B Analysis of a one-dimensional diffusion equation

Galerkin Least-Squares formulation

The starting point of the formulation is the Galerkin weak form obtained in the preceding
section (see line 4, Figure 103) The formulation is posted in Figure 108, line 0. The
stabilization terms introduced are shown in Figure 109. The Lagrange equation «SSU-
EEU,xx» is weighted by «TSSW-TEEW,xx» (the discretized form of this product is added to
the classical Galerkin form). «T» is a stabilization parameter. The new formulation is shown
on line 1. The arbitrariness of the weighting function «{{d*}}» is then invoked (line 2), and
the system containing one equation is then transposed (line 3). Two studies are performed,
one for linear interpolation and one for quadratic interpolation.

-t{ {{d}}) {{INT[t(E)(E)t(AN}} ANNY* 13} {{d*}}) =(0)

Line 1: (t({{d}}) {{INT[t(S)t(S)t(N) N* 1}} ({d*}} -{(INTLt(F) N* 1)} {{d"}}
A({{d}) {{INTE t(E)t(E) t({ AN)) ANNY" 1)) {{dD)

st({(d}}) ((INT[1(S)H(S)L(S)H(S)H(TH(N) N* 1)} {{d"}}
A) ((INTL t(EN(E) (S)t(S)t(T)t(B"(N)) N* 1)} {{d*})
S{INTL ((F(S)H(S)t(T) N* 1)} {{d")}

ACHA) ((INTL (S (S E(E)((E)((T)Y(N) BYN)* 1)) {(d*})
(A {UINTL (EN(E)4(E)1(E) ((T)(B*(N)) B'(NJ* 13} {{d*})
|+ ONTC (P RCE)(EYT) BNY 10} (D) = ()

ne Z:

(¢({{d1}) {{INTL t(S)(S)t(N) N* 13} - ((INT[t(F)N* 1]}
A({{d))) ((INTL t(Et(E) 1 A(N)) A(NN) 1))

S({A)) (INT] t(SH(S)L(S)H(S)HTHt(N) N* 1))
(A}) ((INTL t(EJ(E)t(S)1(S)t(T)I(BN)) N* 1)}
SINTL ((FI(S)H(S)YT) N* 1))

A({d)) {{INTL (S H(S)t(E)H(E)t(T)IY(N) B'(N) 1)}
*t({d))) ({INT[t(EH(E)t(E)t(E)t(T)t(B'(N)) B"(N)"] }}
| HONTE (R REDCE)U(T) BN 1)) = (0

ne 3.

((CL(INTL (S (S)t(N) N* 13}) {{d}} 4({{INT[t(F) N* 1}})
S({UINTL tCECE) t(AN)) ANY 13}) {{d})

SO{NTL ((SH(S)H (SIS TIL(N) N* 13}) {(d)}
ACEINTL t(E)E)((S)t(S)t(T)t(B"(N)) N* 1}}) {{d)}
A({INTL t(F)H(S)H(S)H(T) N* 1}})

ACHINTL (S)H(S)WE)YE)(T)t(N) B Ny 1)) {{d)
S({{INT[t(EN(E)t(E)t(E)t(T)t(B"(N)) BN)* 1)) {{d}}
BC{INT[((F)(E)t(E)t(T) BNy 11}))=(0)

Figure 108 Galerkin Least Squares formulation for the 1-D diffusion equation

160

Appendix B Analysis of a one-dimensional diffusion equation

Figure 109 Stabilization terms added for the Galerkin Least Squares formulation

Galerkin / gradient Least Squares formulation

This formulation is presented in [FRA 89]. The starting point is also the classical Galerkin
formulation (line O of Figure 110). In the theory, the gradient of the Lagrange equation is
taken in place of the Lagrange equation (see Galerkin Least Squares method). The term added
to the classical Galerkin approximation is then :

Y, | Jort -l -) 2o —sZWZ,).,dv]

Qe | o

where 7 is the stabilization parameter.

In FEM_Theory, «SSU,x-EEU,xxx-F,x» is weighted by «TSSW,x-TEEW,xxx». «T» is the
stabilization parameter. As we want only to test piecewise linear and quadratic interpolations,
the third derivatives with respect to the variable «x» are zero are not introduced in the
formulation (see Figure 111). The body loads are not shown here and are just introduced by
hand into the numerical code.

161

Appendix B __Analysis of a one-dimensional diffusion equation

(11 4N - (ONTLUF) N 1)) Gy)
) CUINTE (BB SLACND) A 1) (= (0
Line 1: {d)}) (INT ((SHNCS)E(N) N* 13} (D)

S((INT[A(F) N* T3} ((d*)} -4 {(d}}) ((INTL t E Je(E) t(AN)) AN)* 13} {{d*D}
AU UNTE S HOS)(TIUS)H(S)HAN)) AN 1)} (1) =(0)
ine £:

t({{d))) {{INTL t(S)(S)t(N) N* J}}-{(INT[t(F)N* }}}

A({d}}) ({INTL t(E(E) 1(AN)) ANNY 1})

SN AONTE (S UTIUS) S HAN)) ANY 1) = (0)

Ine 3.
tO(INTL (S (S)N N* T3}) ({)} A(C{INTLt(F) N*]}})

A(LINTL tCE)CE) t(AN)) AN 1)))}

S{{INT[((SH(S)H(T)H(S)t(S)t(AN)) AN 11)){{d}}) = (0)

D&

Figure 110 Gradient/Galerkin-Least Squares formulation for the 1-D diffusion problem

Figure 111 Stabilization terms added for the Gradient/Galerkin-Least Squares formulation

162

Appendix B Analysis of a one-dimensional diffusion equation

Numerical results for the one-dimensional diffusion equation

The numerical test is the same as the one presented in [FRA 89]. The domain is [0,1]. The
boundary conditions are #(0) =0 and u(1) =2. The body loads are linear on the domain, i.e.

f =X . The parameters of the equation are : £=10"* and o =1. One can notice that the ratio
2 . . . i .
£ A » is severe. For the piecewise quadratic approximation, various values of 7, the

stabilization parameter, are tested. The numerical results are shown in Figure 112.

The important point for stabilized formulations is the choice of the stabilization parameter.
Various methods of defining stabilization parameters exist for the Galerkin Least Squares
method. But here the choice of the parameter has no stabilizing effect on the formulation (see
piecewise linear interpolation in Figure 112). For the Galerkin / gradient Least Squares
method and quadratic approximation, fluctuations around the value advocated in [FRA 89]
were studied to see the influence of the parameter of stabilization. The optimal value was

suggested in [FRA89]; a uniform mesh is used here, and7 = %02 =34¢-3 (see [FRA

89]). We see that for small values (7 <1e—4) the stabilizing effect is not important enough.
But in this example, the value 7 =5¢—4, which is in the “vicinity” of the optimal value
1 =3.4e -3, gives acceptable results. The value 7 =1e—3 is already too big, and the solution
shows too much diffusion.

In this example, various formulations were evaluated on a simple scalar equation model.

| Placawiss Onear intarpolation Plncewlse quadratic appraximation
| o Galerin
! Gttty Least Squams

1 ol Lot Sques
R ey

T2 3 4 5 6 7 8 8 W w12 10 % 13w T 18 B D> B 12 3 4 3 @ 7 8 8 f6 n o2 D W@ W7 W 2 2
! Nodas numbar . Nodas number

Figure 112 Numerical results for the 1-D diffusion equation

163

Appendix C Linear elastodynamics

Appendix C - Linear elastodynamics

The mathematical formulation of this problem and the classical formulation of this problem
are presented at length in chapter 2.

Derivation of the formulation and automatic programming

In this section the different steps of the derivation are presented. The successive steps can be
seen on the screen shown in Figure 113. Each line is briefly discussed.

Line 1 ; The variational formulation, instance of IntEquation, is created from instances of
String. «Sij» represents the strain tensor, «Ri» the body load components, «Wi» the virtual
displacement field components, «D» the density and «Ui» the solution field. This
instanciation is made through a window which permits the introduction of a user defined set
of differential equations, with access to a predefined dictionary of problems.

Line 2 : The button ‘Expand’ was pushed. The integrands of each integral are developed
(instance of Expression) and the instances of Integral apply the linearity property. The result
is shown on this line.

: INT { ((Si},j+Ri)Wi) / D }-INT { (DULIYWI) 7/ D} = (0)
Line 2: INT { (WiSH,) # D }+INT { (WiRl) / D }-INT { (VMIDULY) // D} = (0)
Line 3: INT { (WiRi) / D }-INT { (WiDUi,it) /#/ D }-INT { (WLJSIj) #/ D }+INT { (NJWiSip) // dD } = (
Line 4: INT { (WiR) // D :-INT { (WIDULtY) 7/ D L-INT { (WLjSHj) // D }+INT { (WI(Fi)) /# dD} = (0
Line 5: INT { (WIRl) /#/ D }-INT { (WiDULt) #/ D3}-INT { (Eij(W) Sij) # D}

+INT { (FiWi) // dD} = (0)

Line 6: INT { (WIRI) 7 D }-INT { (WIDULW) // D }-INT { (E(W) (CM EKIQD) ¢ D3
+INT { (FiW1) // dD } = (0)

Line 7: (INT{ t(r) N*] d* -t(d,tt) INT{ (D W(N) N~ | d* t(d) INT[¢(B(N))Ct B{N* | d*
+ INT{t(f) N*] d*)=(0)

Line 8: (INT[t(r) N*] -t(d,tt) INT[t(D}(N) N*]-t(¢)INT[t(B(N)) C1 B(N)* }
+ INT[() N*])=(®)

SECINT[t(r) N* D INT[t((D)H(N) N*])d,tt -t INT[t(B(N)) C1 B(W)*])d
" 0

Figure 113 Derivation of the elastodynamics problem in FEMTheory

165

Appendix C N i Linear elastodynamics

Line 3 : On Line 2, the integral «INT{(WiSij,j) // D}» has been selected and the button
‘Integrate by parts’ pushed. The selected integral is replaced by two instances of Integral with
appropriate integrands built from the initial one.
Line 4 : On Line 3, the integral «INT{(NjWiSij) #/ D}» has been selected and the button
‘Substitute’ pushed. A prompter permits to replace instances of terms of the integrand, here
«NjSij», by an expression, here «(Fi)» (the natural boundary condition).
Line 5 : The same operation is carried out on the integral «INT{(W1,jSij) // D}». As the tensor
«Sij» is symmetric, the following equality is verified : «SijWi,j=SijEij(W)» where «Eij»
represents the strain tensor. So, the term represented by «Wi,j» is replaced by «Eij(W)».
Line 6 : In the integral «INT{(Eij(W)Sij) // D}», the term «Sij» is replaced, using the
constitutive law, by «CijklEkI(U)». It is the same operation as described above.
Line 7 : The object shown on Line 6 represents a weak form of the problem. This form can be
the basis for the Galerkin approximation. So the button ‘Discretize’ has been pushed ; this
implies replacement of the tensor notation by the vector notation, Galerkin approximation,
discretization of the domain, approximation of the different fields on an element. This scheme
is actually the only one implemented, but alternative schemes could easily be implemented.
Note that the notation employed to name an instance of DiscretizationMatrix shows how it
has been built ; for example the string «INT[t(B(N))ClB(N)']» represents the stiffness matrix,
the well known jB’Dde (see [HUG 87] for details). It is shown that the operator B (coming
Q

from the discretization of «Eij») is applied to shape function matrix N.

Line 8 : The equation of Line 7 is verified for every d’, so the coefficient of this term must be
zero. This operation is done with the button ‘/nvoke linear independence’. Note that the result
of this operation is an instance of System and that, for a mixed formulation, more than one
equation would be obtained (see the example of stokes flow in Chapter 5).

Line 9 : To obtain the final form, the equation is transposed (button ‘Transpose’). Then the
shape functions are replaced by their expression, and the code corresponding to the new
formulation is created in FEMObject, in Smalitalk.

Test of the element
For completeness, a test is performed to check the newly created element.

Description of the problem

The numerical problem which is proposed is the analysis of an impact of a rectangular block
on a rigid surface. The problem is described in, the mesh and the boundary conditions are
shown in Figure 115.

The data are :
density D =0.01kgm™
Young modulus E =1000N.m?
Poisson’s coefficient v =0.03

The parameters for the explicit predictor-corrector algorithm are :
=05 p=025

The time step of the integration scheme is : Af = 2.107*s.
The initial velocity of the body is : v, =1 m.s™!

166

Appendix C Linear elastodynamics

’

Figure 114 Description of the impact problem

v

=

Figure 115 Finite element mesh for impact problem

Numerical results

The exact solution, shown in Figure 116 at £ =7 A¢, is characterized by a dilatational wave
front emanating from the impact. The circular wave front results from the reflection of the
boundary condition. The center of the circle is the right bottom corner, the wave velocity is
given by :

1
c= [—EM)—T =366.9 ms™.
a+vXd-2v)p J

This value makes it possible to determine the time step. The deformed mesh is presented at
t =7 At in Figure 117 and agreement with theoretical solution is obtained. In Figure 118 the
stress time-history of elements A and B are compared (see the finite element mesh in Figure
115) with the ones obtained by Hughes and al. in [HUG 76]. This simulation has permitted to
obtain in a few minutes the same results as the ones obtained in {HUG 76] and an evaluation
of this formulation on alternative numerical problems could now be performed.

167

Appendix C Linear elastodynamics

Wave |

Wave 2,

_ N

Figure 116 Exact solution for impact problem

—O—Element A
——&—=—Element B

—-—-Element A
(from [51])
------ Element B
(from [51)

Z Stress
»

Tim e (In 3)

Figure 118 Stress time-history for impact problem

168

Curriculum Vitae

Curriculum vitae

EDUCATION

Sep. 89 - Jun. 92

Sep. 86 - Jun. 89

Jun. 86

EXPERIENCE

Sep. 92 — Dec. 97

Sep. 95 — Sep. 97

Sep. 95 — Mar. 96

PUBLICATIONS

Dominique EYHERAMENDY
French citizen
Male
Born in 1968
Single

Scholarship at the Ecole Normale Supérieure de Cachan :
Department of Mechanics and Technology

Ecole Normale Supérieure de Cachan, France
Sep. 89 - Jun. 90 : License &s Sciences (Univ. Paris VI)
Sep. 90 - Jun. 91 : Master of Science (Univ, Paris VI)
Sep. 91 - Jun. 92 ; «Agrégation» of Mechanics

Scholarship at the Lycée Gustave Eiffel :
Classes de Mathématiques Supérieures et Spéciales de Technologie
Bordeaux, France

Certificate of Secondary education
Scientific (Mathematics and physics)
Lycée Jules Supervielle, Oloron, France

Research Assistant

Swiss Federal Institute of Technology - Laboratory of Structural and Continuum

Mechanics

Research work:

-1- Extension of concepts developed at the LSC in the Object-Oriented formulation
applied to the Finite Element Method. Developments towards 0.0 automatic coding.

-2- Research and developments for Debris flows simulation.

Teaching work: Lectures on "Structural Mechanics™ and "Solid Mechanics”.

Teaching Assistant
Ecole supérieure d’Ingénieurs d’Annecy, Annecy, France
Teaching work: Lectures on "Structural Mechanics” and "Technology".

Visit at the University of Minnesota and at the Mi ta Super p Institute,
Minneapolis, USA

Research work: Study and development of an object-oriented computer code for the
simulation of free-surface flows (in relation with Prof. T.E. Tezduyar).

International journals :

D. Eyheramendy and Th. Zimmermann Fonctionnalité d’un environnement orienté objet pour le développement
de code éléments finis, Submitted to Revue Européenne des éléments finis (special issue), (1997).

D. Eyheramendy and Th. Zimmermann, Intégration d’une approche variationnelle pour la méthode des éléments
Jfinis dans un environnement orienté objet : Application a un probléme de convection non-linéaire, Submitted to
Revue Européenne des éléments finis (special issue), (1997).

D. Eyheramendy and Th. Zimmermann, Object-oriented finite elements : IIl. Theory and application of
automatic programming, To appear in Comput. Methods Appl. Mech. Engrg., (1997).

169

Curriculum Vitae

D. Eyheramendy and Th. Zimmermann, Objectr-oriented finite elements : II. A symbolic environment for
automatic programming, Comput. Methods Appl. Mech. Engrg., 132 (1996) pp. 277-304.

Th. Zimmermann and D. Eyheramendy, Object-oriented finite elements : 1. Principles of symbolic derivation and
automatic programming, Comput. Methods Appl. Mech. Engrg., 132 (1996) pp. 277-304.

D. Eyheramendy and Th. Zimmermann, Object-oriented Finite Element Programming : An interactive
environment for symbolic derivations, Application to an Initial Boundary Value Problem, Advances in
Engineering Software 27 (1996) 3-10.

D. Eyheramendy and Th. Zimmermann, Programmanon orientée objet appliquée a la méthode des élé) finis
: dérivations symboligues, progr tigue, Revue Européenne des €léments finis, vol. 4 (1995) pp.

327-360.

Internal reports :

D. Eyheramendy and Th. Zimmermann, Object-Oriented finite el t progr i Devel t of an

environment for symbolic derivations and automatic programming, Rapport interne LSC-| EPFL 94/5 Apnl 1994.
D. Eyheramendy and Th. Zimmermann, Développement d’un concept orienté objet pour un préprocesseur
d’éléments finis, Rapport de Maitrise ENS de Cachan et Rapport interne LSC-EPFL 91/17, Aoiit 1991.

Conferences :

** D. Eyheramendy and Th. Zimmermann, Symbolic derivations and automatic generation of finite elements in
an object-oriented environment, Proceedings of the 4® US National Congress on Computational Mechanics, San
Francisco, (1997).

R. Frenette, D. Eyheramendy and Th. Zimmermann, Numerical modeling of dam-break type problems for
Navier-Stokes and granular flows, 1* international Conference on Debris-flow hazards mitigation : mechanics,
prediction, and assessment, San Francisco, Aug. 7-9 1997, Ed. C.L. Chen, (1997) pp. 586-595.

** D. Eyheramendy and Th. Zimmermann Dérivations symboliques pour code élémenis finis - Application a un
probleme d'élasticité, Actes du 3*™ Colloque national en calcul des structures de Giens, vol. 2 (1997) pp. 553-
558.

** D. Eyheramendy and Th. Zimmermann Fonctionnalité d'un environnement orienté objet pour le
développ de code élé finis, Actes du 3*™ Collogue national en calcul des structures de Giens, vol. 2
(1997) pp. 837-842.

** Th. Zimmermann, D. Eyheramendy, P. Bomme, S. Commend and R.S. Arruda, Object-oriented finite elernent
programming : Languages, Symbolic derivations, Reasoning capabilities, Proceedings of NAFEM 97- Stuttgart,
vol. 1 (1997) pp. 652-663.

Th. Zimmermann, P. Bomme, D. Eyheramendy, L. Vernier and S. Commend, Object-Oriented Finite Element
Techniques : Towards a general purpose environment, Proceedings of CST 95 Cambridge (1995).

Th. Zimmermann and D. Eyheramendy, Symbolic object-oriented Finite Element Programming - Application
to incompressible viscous flow, Proceedings of IECS 95 Hawaii, vol. 1 (1995) pp. 21-26.

** D. Eyheramendy and Th. Zimmermann, Génération automatique de Code Eléments Finis dans un
environnement Orienté Objet, Ac'es du 2nd Colloque national en caicul des structures de Giens (1995) pp. 717-
722.

Th. Zimmermann and D. Eyheramendy, Object-oriented finite element programming : Automatic
programming, Proceedings of the Third Congress on Computational Mechanics (IACM), Chiba Japan, vol. IT
(1994) pp. 1527-1528.

** D. Eyheramendy and Th. Zimmermann, Object-oriented finite element programming : Beyond fast
prototyping, Proceedings of CST 94 , Athens Greece, vol. Artificial intelligence and object oriented approaches
for structural engineering, Civil Comp Press, (1994) pp. 121-127.

N.B. . the presentations are highlighted using the symbol**

170

