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Abstract

A new technique is presented, dynamic phase-shifting, which is based on a
dedicated phase-shifting algorithm and a wavelet-transform analysis. This
technique allows to perform measurements on non-static objects, using
whole-field optical methods. These methods include classical, holographic and
speckle interferometry as well as fringe projection and moiré. They cover a large
domain of resolutions and dynamic ranges for the measurement of shape and
deformation of rough and smooth objects. However, the lack of efficient
solutions to process the fringe patterns obtained in dynamic conditions has
hindered the development of high-potential methods such as speckle
interferometry outside of the laboratory. The main goal of this thesis work is to
find new answers to this problem.

The solutions we propose are based on the exploitation of the fringe
movement produced by the deformation or displacement of the object. We
obscrve that the corresponding phase variations of the interferogram can be used
as a natural phase-shift to perform a quantitative phase evaluation. Moreover, it
is shown that by adding a known phase step during image acquisition the sign of
the displacement can be known without ambiguity. We demonstrate two
particular techniques to process the image series recorded during dynamic
phenomena. The first one is a 5-image phase-shifting algorithm, adapted to the
problem of phase dctermination with unknown phase increments. The second
solution is based on a wavelet-transform processing of the temporal signal
recorded at each pixel of the camera. The goal is to estimatc the phase of this
sinusoidal signal as a function of time. We demonstrate that it can be obtained
directly from the phase of the wavelet transform. The resulting method is highly
immune to large signal noise. Moreover, we show that phase errors can be
eliminated by combining the estimated phase evolution of neighboring pixels or
by combining the corresponding real signals to create complex signals. This last
approach is also used to extend the dynamic range of the technique.

Application examples in the case of holographic and speckle interferometry
are presented and both processing methods compared. Their complementarity
and robustness brings forth the possibility to apply optical interferometric
techniques in situ, our goal being the development of such methods for civil
engineering applications.

Keywords: dynamic measurement, interferometry, holography, speckle,
phase-shifting, time-frequency analysis, wavelet transform.
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Version abrégée

Nous présentons ici une technique originale, le décalage de phase dynamique,
basée sur un algorithme du méme nom et sur un traitement par transformée en
ondelettes. Cette technique permet d’appliquer la plupart des méthodes optiques
a champ complet aux objets non-stationnaires. Ces méthodes comprennent
Pinterférométrie classique, holographique et speckle ainsi que les moirés et la
projection de franges. Dans le cadre de la mesure de forme ou de déformation
d’objets polis ou rugueux, elles couvrent de larges domaines de sensibilité et de
dynamique de mesure. Cependant, I'absence de méthodes d’analyse efficaces
pour le traitement des figures de frange en mouvement a retardé 1’application,
hors du laboratoire, de méthodes a fort potentiel telles que I’interférométrie
speckle. Le but principal de cette thése est de répondre a ce besoin.

Notre travail s’articule autour de P’exploitation du mouvement des franges
provoqué par la déformation ou le déplacement de 1’objet. L’idée fondamentale
consiste a4 observer que les variations de la phase de I’interférogramme
fournissent un décalage de phase “naturel” permettant un dépouillement
quantitatif. Nous montrons de plus que le signe du déplacement peut étre
déterminé de fagon absolue lorsqu’un saut de phase connu est introduit pour
chaque image enregistrée. Nous proposons deux techniques pour le traitement
des séquences d’images enregistrées pendant un phénoméne dynamique. La
premiére est un algorithme a 5 images, adapté au probléme de la détermination
de la phase lorsque les incréments de phase sont inconnus. La deuxiéme solution
est basée sur I'analyse par transformée en ondelettes du signal temporel
enregistré par chaque pixel de la caméra. Le probleme consiste alors a
déterminer la phase de ce signal sinusoidal au cours du temps. Nous montrons
qu’elle peut étre déduite dircctement de la phase de la transformée. Cette
méthode présente d’excellentes caractéristiques de filtrage dc bruit. Nous
montrons également que certaines erreurs de phase peuvent étre éliminées en
combinant les lois d’évolution de phase de pixels voisins ou en créant des
signaux complexes qui étendent par ailleurs la dynamique de mesure.

Des cxemples d’application en interférométrie holographique et speckle
permettent de comparer les deux approches. Leur complémentarité et leur
robustesse rend possible I’application in situ des méthodes optiques
interférométriques, notre but étant principalement le développement de tels
outils pour la caractérisation d’éléments d’ouvrages d’art en génie civil.
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X
Conventions and notations

Throughout this document, equations and mathematical expressions are labeled
in the form *(x-y)” where x is the chapter number and y the index of the equation
in the chapter. Figures and tables are labeled similarly in the form “Figure x-y.”
and “Table x-y.” respectively.

To prevent confusion with equations, which are referrcd to in the text
without the keyword “Equation” or “Eq.”, references to figures, tables or
paragraphs are made explicitly with the corresponding name.

Bibliographic references are grouped at the end of each chapter. There are
no cross-references between chapters.

Since wc are dealing with phase propertics in several chapters, angular
values will be repeatedly used. These angles are expressed in degrees or radians,
depending on the context or on their magnitude. There are however many
situations where the chosen unit is not actually specified. The symbol ° will
however be used for discriminating angles expressed in degrees instead of
radians, the latter being usually written as a multiple or a fraction of .

Symbols:

A wavelength of light (visible source)

® phase of a signal; phase of an interferogram

Iy background intensity of an interferogram

Iy modulation of an interferogram

Ao phase increment or phase variation that occurs between the
acquisition of two successive samples of the interferogram

S usually depicts a phase error or uncertainty

o, instantaneous frequency (or pulsation) of a sinusoidal signal

X mother frequency of the Morlet wavelet

a scale factor used in wavelet analysis; the actual central analysis

frequency is given by ax/a
b time at which the wavclet analysis is performed






1. Foreword

1.1 Background and technical goals

The work presented in this document took place in a very rich environment. The
field of optical metrology is arguably more than one century old. However,
major advances resulted from the invention of the laser about forty years ago.
This new light source opened a realm of new techniques to both the physicist
and the engineer. In particular, whole-ficld methods such as holography, speckle
photography or speckle interferometry, coherent fringe projection,... cover an
extended sensitivity domain and permit to measure shape, deformation,
vibration modes.... or to detect defaults on almost every type of structure or
material. Moreover, the capability to work with diffusing materials, that is,
having a surface roughness larger than the wavelength of (visible) light, is a
fundamental property of these recent tools.

The diffusion of such methods outside of the university laboratory into
industry is a slow but accclerating process. As usual, high-technology domains
such as space and aeronautics were the first to employ them, since there is a
genuine need to understand the behavior of new materials and structures before
sending them in the air or in outer space. Closer to us, the automotive industry
has long used holography, for example to detect defects in tires or to study the
vibration modes of car components, in order to detect potential failure points
and reduce acoustic noise sources. Some manufacturers start using shape
measurement methods to better control the complex shapes of car body parts
that are assembled automatically by robots. This corresponds to a general nced
in the industry for better-characterized materials or parts. The development of
the various ISO norms attests to it. Optical methods could and should play an
important role in this context.
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There still remains a good deal of research and development work to be done to
augment the diffusion of whole-field optical techniques. We must remark that
part of the technology is already mature; see for example the recent certification
of shearography (or speckle shearing interferometry) by the Federal Aviation
Administration. Industrial interest is also illustrated by the numerous European
projects that deal currently with the development of new instruments or
measurement systems based on speckle interferometry. The Stress Analysis
Laboratory (IMAC) is involved in one of these projects, VISILAS, which aims
at developing a high-acquisition-rate system for the characterization of large
objects (> 10 m’), one of the goal being the application to civil engineering
structures. These projects naturally ensure part of the necessary technology
transfer from the research laboratories to the industry.

The remaining work for these same laboratories includes the improvement
of the robustness of the existing techniques and the search for new approaches
that extend their applicability. Robustness is essential when one consider using
highly sensitive interferometric techniques outside of the controlled environment
of the laboratory. Part of the solution resides in the “desensitization” of optical
set-ups (readily possible for shearing and in-plane speckle interferometry),
active stabilization of interferometers and the development of new processing
methods to extract the useful information in adverse conditions. Furthermore,
the lack of solutions to the problem of quantitative measurements in dynamic
conditions has to be addressed. This dissertation proposes one such solution (see
paragraph 1.2).

Among many possible application ficlds, IMAC is dedicated to the
development of metrological tools adapted to civil engineering. This is quite
challenging since usually large surfaces have to be considered. Moreover, large
rigid-body displacements may often mask smaller displacement gradients related
to stress concentrations in a loaded structure. Hence, both large dynamic-range
and high-resolution systems are required. It seems that whole-field optical
techniques are possible solutions that could usefully complement the mostly
punctual measurement devices used in civil engineering. Possible applications
include the study of new materials such as high-strength concretes or mixed
wood-concrete or metal-concrete assemblies, the study of complex structures in
order to refine finite-elements models and the study of the behavior of existing
and aging structures. This last need is felt acutely in many industrialized
countries such as Switzerland where recent studies indicate that more money is
spent nowadays to maintain, retrofit or rebuild existing constructions than to
construct new ones. In this context, it is important to provide the civil engineer
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with additional cvaluation tools. Eventually, this toolkit should enable a tighter
control of the evolution of structures such as bridges, tunnels, dams,... along
their life span. The outcome should be a more rational use of existing resources
and an improvement of the effective security for the taxpayer-user.

1.2 Original contribution of this dissertation work

This work addresses the particular problem of measurements in dynamic
conditions using whole-field optical techniques. Our original contribution is
built on three main axes. The first one consists in recognizing the particular
conditions that make possible the exploitation of the natural evolution of
interferograms during dynamic events. This leads to the definition of the
so-called dynamic phase-shifting technique, which permits to perform
quantitative phase measurements with non-static interferograms. The second
axis of development deals with the extension of existing fringe analysis
algorithms to actually perform such phase extractions, which were until now
impossible with the usual phase-shifting methods. The last and more important
contribution is the development of a new processing approach based on
time-frequency analysis and wavelet transforms. The outcome is a robust
technique that permits to process interferogram movies and to reconstruct their
temporal phase evolution. This makes possible absolute and continuous
deformation measurements with a large number of whole-field optical methods,
from holography and speckle interferometry to moirés.

1.3 Layout of the document; suggestions to the reader

We will briefly comment here on the organization of this document. The reader
familiar with optical metrology can safely skip through Chapter 2 and the most
part of Chapter 3 since the purpose of these chapters is to expose the rich
background in which our developments take place. The central contributions of
our work appear in Chapter4, 5, 6 and 9, which deal with dynamic
phase-shifting and wavelet-based processing. The main examples of application
arc grouped in Chapter 8.

A certain emphasis on speckle interferometry will appear throughout the
text. This is a consequence of the current line of work of our laboratory. Indeed,
the high potential of the method but also the corresponding difficulties offer an
interesting research domain. This prompted us to group different topics related
to speckle patterns in Appendix A.
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Chapter 2 presents an overview of the whole-ficld optical techniques that can be
used in the dynamic phase-shifting context. This includes classical, holographic
and speckle interferometry, speckle photography, fringe projection and moiré.
The examples of application show the types of interferograms that are usually
obtained.

Chapter 3 describes the state-of-the-art in the field of fringe analysis. These
image-processing tools are used to process the interferograms obtained with the
methods presented in Chapter 2. We focus particularly on the techniques
permitting a quantitative analysis of fringe patterns, by contrast with the
methods used for defect detection and classification. The last paragraph in this
chapter tries to identify the approaches that can bc employed in the case of
non-static interferograms.

Our original contribution begins in Chapter 4, which introduces the
principles of dynamic phase-shifting. The requirements of the method are
analyzed before discussing two possible approaches for the actual processing of
the data recorded during dynamic phenomena. One solution, a 5-image
algorithm, is derived from classical tools used in fringe analysis. The other one,
based on a time-frequency analysis of the signals recorded along the time at
each point of the interferogram, is completely new in the field of fringe analysis.

Chapter 5 is dedicated to the detailed characterization of the 5-image
algorithm we adapted to the needs of dynamic phase-shifting. Most of this work
is based on simulations. The last part of the chapter presents examples of phase
measurement in holographic and speckle interferometry.

Chapter 6 is at the core of our more interesting results. Wavelet-based
time-frequency analysis is first presented before detailing the particular phase
properties of the Morlet wavelet. An algorithm used in the field of acoustic
signal processing is then described. We show that it provides us with a very
efficient means of estimating the phase of interferograms recorded temporally.
Different properties of this new technique are characterized through simulations
and actual examples.

Chapter 7 deals with practical details of software implementation of the
two methods presented in Chapter 5 and 6. It includes a brief description of the
spatial and temporal unwrapping algorithms we use. The last paragraph explains
the process of maximum-likelihood phase estimation, which appears to be an
essential tool for the processing of speckle interferograms.

Chapter 8 covers briefly the practical aspects of a measurement in dynamic
phase-shifting conditions. In particular, we describe the digital CCD camera and
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phase shifter used in our laboratory. Application examples follow including
holographic and speckle interferometry experiments.

Chapter 9 presents recent results that extend the capabilities of the
wavelet-based method, including a combination of wavelet processing with a
S-image algorithm, chirped wavelets and complex signals. This last possibility
based on the particular phase properties of speckle patterns, leads to surprising
results with respect to the Shannon’s sampling theorem. This could actually
permit to extend the measurement dynamic “beyond” the Nyquist cut-off
frequency.

Chapter 10 summarizes the main points of our work and proposes a list of
potential developments of the dynamic phase-shifting technique, in the field of
deformation measurement as well as in other domains.

Appendix A presents speckle pattern properties useful to understand some
of our developments, including maximum-likelihood arguments.

Appendix B is a short mathematical section that details the calculations
used in Chapter 6 to obtain an approximated analytical expression for the
wavelet transform.

1.4 Significance of this project

This thesis work brings forward new solutions to the problem of fringe analysis
in the context of dynamic phenomena. As such, they provide new means to
extend the domain of application of interferometric techniques outside of the
laboratory. This important extension of their scope can particularly benefit the
domain of civil engineering where the capability to operate in real and effective
working conditions, added to high sensitivities and high measurement range can
have an important impact on the understanding and assessment of the behavior
of structures by the engincer.






2. Shape and deformation measurement using

whole-field optical techniques

The field of optical metrology encompasses a large number of techniques
allowing direct or indirect measurement of diverse physical quantities. The
developments presented in this dissertation were conducted in the framework of
“fringe-based” methods where the information ends-up coded as an intensity
modulation of light. Such techniques can be punctual or spatial and usually rely
on the use of an interference phenomenon or a specific structuring of light.

A particular focus is given here on so-called “whole-field”" techniques,
which provide direct measurement on a large number of points in a limited
number of steps. Examples of application include measurcment of shape,
deformation, strain, refractive index, etc. Typically, one obtains an image of the
object under study with superimposed alternately dark and bright fringes which
are directly related to the measured quantity. When the image is formed on a
2-dimensional spatial detector such as an electronic camera, it becomes possible
to sample the intensity distribution of light and code it in a digital form. A
computer can then process this digital image to extract the useful information.

It is not our goal to present here a comprehensive, textbook-like study but
rather to introduce the basic concepts related to this work. References to
well-known optical textbooks will be proposed as a source of more detailed
information. A particular emphasis will be placed on speckle interferometry
techniques, which, by their ease of use, moderate cost and range of sensitivities,
are good candidates for the development of integrated instruments usable
outside of the controlled environment of the laboratory.

* The “dynamic phase-shifting” technique presented in the next chapters could as well be used
in the case of punctual measurements.
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2.1 Introduction, definitions

The optical techniques presented in the next sections are suitable tools for shape
or deformation measurements on rough or smooth objects that can moreover be
opaque or transparent. From the point of view of metrology they offer
sensitivities ranging from the decimeter to the nanometer. Some of them are, by
construction, more adapted to evaluate shape while others are better suited to
evaluate displacement or deformation. In the domain of shape evaluation,
classical interferometry is used for high precision measurements such as flatness
testing while moiré and fringe projection techniques are less sensitive and thus
adapted to 3-dimensional description of deep surfaces and their position in
space. Large deformations can be evaluated by comparison of successive shapes
while small deformations or displacements can be assessed with sensitive
techniques such as holographic, speckle or grating interferometry. The latter are
inherently differential methods but some particular set-ups have also been
devised to perform “contouring”, i.e. shape measurement. For their part,
shearing techniques used conjointly with speckle interferometry provide a
means to evaluate directly out-of-plane displacement derivatives.

All techniques presented in the next paragraphs require at lcast a light
source that illuminates the object under study and a detector capable of
recording the light that is reflected, diffused or diffracted by the object. Methods
such as classical, holographic, speckle and grating interferometry moreover
demand that the source be sufficiently coherent. Lasers and occasionally filtered
vapor lamps fulfill this requirement. The remaining methods, namely, moiré and
fringe projection, do not need such source properties.

A typical image obtained with a whole-field technique consists of a fringe
pattern overlaying an image of the object under study. The position and density
of these fringes are governed by the measured physical quantity such that each
fringe marks a region on the object where it has a constant valuc. We call
“sensitivity” of a particular optical method the amount of this physical quantity
that corresponds to a difference of one fringe.

2.2 Classical interferometry

The principles discussed here are common to all interferometric techniques'.
Interference patterns are created by the coherent interaction of two
electromagnetic fields, usually described as complex quantities A of the form
a.exp(ip) where a is the amplitude and ¢ is the phase. In optics, one usually
speaks of optical wavefronts describing the propagation of such a field. The
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working principle of any interferometer can be decomposed as follows. First, a
wavefront produced by the light source is split in two. Next, the two new waves
propagate along diffcrent “arms” of the interfcrometer. This propagation results
in a change of the phase and amplitude of the two electromagnetic fields. The
phase change A is actually proportional to the traveled optical path length:

2
Ap= Tn Jn(s)ds (2-1)
N

where A is the wavelength of light and n is the refractive index profile of the
medium along the trajectory S followed by the wavefront. At least one of the
waves interacts with the object and this interaction is also reflected in its phase.
Finally, the two components are brought together on the detector. At this point
the fields add resulting in the complex amplitude A and the detector detects the
corresponding intensity /:

I1=4aA=(a, + A,)@4 + 4,) (2-2)

where the bar denotes complex conjugation. If we now develop this expression
using the definitions of A, and A,, we obtain

A =a,el¢' , A, =aze"p2 (2-3)
I=al +a; +2a,a, cos( 9, - 9,) (2-4)

This equation can be writtcn as
I=1,(1+V cos @) (2-5)

where I; is the background intensity, V is the contrast and ¢ is the phase of the
resulting interferogram. An alternative expression that we will usc at length is

I=1,+1, cos¢ (2-6)

where Iy, is simply called the modulation.

The above equations arc valid as long as the difference of optical path
length traveled by the two waves is smaller than the coherence length of the
source. The contrast of the interferogram is maximum when the two waves
reach the detector at exactly the same instant. It decreases when one wave is
delayed because it travels a longer optical path. The two waves are no longer
present simultaneously on the detector when this additional path is larger than
the coherence length of the source, hence the disappearance of the interference
phenomenon (the contrast drops to zero). We can note that some commercial
optical profilometers actually make use of the appearance and disappearance of
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fringes when a source of limited coherence length is used to probe the
measurement volume. To the temporal coherence property corresponds a spatial
coherence property which is related to the spatial extent of the source. It actually
limits the volume in which a fringe pattern can be observed, because of the
superposition in space of the concurrent interferograms created by elementary
regions of the source. This is usually not an issue when lasers are used. It
remains however that care must be taken to balance the two arms of any
interferometer to get the highest possible contrast or modulation. A detailed
presentation of coherence properties can be found in Ref.2 and 3.

We define “classical interferometry” as the set of methods based on
“smooth™” wavefronts, as opposed to the “speckled” wavefronts found in
holographic or speckle interferometry. Smooth wavefronts are produced when
all the optical elements composing the interferometer, as well as the object
under test, have a surface roughness negligibly small compared to the
wavelength of light. The Michelson, Mach-Zehnder or Fizeau interferometers
are typical set-ups'. Most of them are based on the interferometric comparison
of an object wave to a reference wave, usually produced by a flatness reference
surface such as a highly polished mirror. These techniques are thus well suited
for non-contact shape or deformation” measurement of reflective objects, as well
as for optical testing where different refractive surfaces act onto the shape of the
object wavefront.

We can also mention a particular method, grating interferometry, which
provides a means to measure the components of displacement of a given object
in its tangential plane. However, contrary to the other techniques presented in
this chapter, it requires that gratings be deposed on the surface of the object,
which excludes it from the group of non-contact optical methods. In-plane
speckle interferometry is a non-contact alternative. Typically, the object is
illuminated by two symmetrical beams A and B, which are diffracted by the
grating. The +1 order of diffraction of beam A is combined with the -1 order of
diffraction of beam B. The resulting fringe pattern is sensitive to the
displacements of the object in the direction orthogonal to the grating’s grooves.

More specific interferometric methods are not mentioned here since we
limit the scope of this chapter to the main techniques used for shapc and
deformation measurement.

A classical 2-beam interference pattern is presented in Figure 2-1. The
horizontal cut at the right shows the corresponding grey levels (coded from O to
255). We can observe that the profile is not exactly sinusoidal as expected. This

* These types of interferometers are sensitive to the deformation along the surface normal.
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is due to different types of noise and to the non-linear response of the electronics
of the camera. In this particular image, the main source of noise is spurious
fringe patterns due to diffraction of the laser light on dust particles covering the

various optical components,

Intensity (gray leveis)

b ' : Pixel Position
(a) (b)
Figure 2-1. Michelson interferometer: (a) fringe pattern recorded by a

CCD camera and digitized; (b) “Photometric” cut along the horizontal
line drawn in (a).

2.3 Holographic interferometry

Holographic interferometry became a practical tool with the advent of lasers,
thanks to their coherence properties. Applications cover shape and deformation
measurement with the last topic being the domain of choice as holographic
interferometry is inherently a differential method. It can be applied to both
smooth and rough objects but we will focus on the last type.

Holography" is based on the diffraction properties of light which provide a
means to “record and replay” an optical wavefront. As a wavefront is
characterized by a spatial distribution of amplitude and phase, both quantities
need to be recorded. In photography, only the amplitude (or rather the
corresponding intensity) is preserved and the “depth” information is lost.
Unfortunately, physical detectors are only sensitive to intensity so this phase
information needs to be converted into an intensity variation. This is achieved in
holography by recording the interference pattern produced by the object
wavefront and a reference wavefront, see Figure 2-2. Practical “detectors” in
this case are holographic emulsions (in essence high-resolution photographic
emulsions) or certain photothermoplastic materials. The interference pattern
results in an absorption modulation (amplitude holograms) or a phase
modulation (phase holograms).
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Figure 2-2. Recording of a hologram: The interference pattern of the
object and reference waves is recorded in the holographic plate.

Diffraction now steps in with an interesting property: If a hologram is
illuminated with one of the two waves that created the recorded pattern, part of

the light is diffracted and recreates the second wavefront (Figure 2-3).
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Figure 2-3. Restitution of the object wave by the illuminated
hologram

A widespread application of these principles is the well known “display
holography” but the engineer has found other uses for the technique:
double-exposure and real-time holographic interferometry. The last technique
consists of, first, rccording a hologram of the object under study, second,
developing and repositioning it with a high accuracy and third, reconstructing
the object wave by illuminating the hologram with the reference beam while at
the same time illuminating the object. If a detector (eye or camera) looks at the
object through the hologram, it receives a wavefront produced by the
illuminated object plus a similar wavefront diffracted by the hologram, see
Figure 2-4. These two wavcfronts interfere and their live interference pattern is a
function of the displacement or deformation of the object with respect to its
reference state recorded by the hologram.

With a similar principle, double-exposure holographic interferometry
consists of recording two holograms at two different instants on the same plate.
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Once reconstructed, the two object waves interfere and show the object

deformation that occurred between the two exposures. This technique is well
suited to the study of vibrating objects.

REFERENCE | ol

/ ILLUMINATION

Figure 2-4. Superposition of the wavefront reconstructed from the
hologram and the wavefront directly produced by the object.

When the surface of the object is rough compared to the wavelength of
light, diffraction and diffusion of any impinging coherent beam produce a
wavefront of granular nature called a speckle. This speckle is a fingerprint of the
micro-roughness of the object. (The particular nature of speckle patterns and
their statistical properties will be treated in the next paragraph and in Appendix
A.) However, the interference pattern we described above is meaningful only
when both waves (or speckles) are correlated. Here, correlation implies that the
two speckles are identical and superposed in space. If this condition is not
respected, no useful fringes will be obtained. This decorrelation can be produced
by an inaccurate repositioning of the hologram after development, a large
movement of the object with respect to its position at recording time or a change
in its micro-roughness. One consequence is that one cannot compare directly
two objects of the same shape with holography because of their different
surfaces.

In the case of deformation measurements (which will be our major source
of examples), one usually defines an observation direction as the line joining a
current point M on the object to the center of the pupil of the observation
objective (eye or camera). Similarly, an illumination direction is defined as the
direction of the beam of light impinging the object at the current point. If we
associate unit vectors to these directions, K, for observation and K. for
illumination, a so-called “sensitivity vector” S can be defined as S = K, - K..

This leads to a very general formula that can be used to understand most
types of interferometric patterns. If we consider a particular point M on the
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object that moves by an amount dM, the corresponding phase change in the
interferogram is given by

2n
dp=—S8§-dM (2-7)
A

If a xyz coordinate system is defined on the object, with the x- and y-axis in the
tangential plane to the object, the projection of § along z defines the sensitivity
to the “out-of-plane” displacement w of the point M. Similarly, the projection of
S on the plane xy defines two additional sensitivities corresponding to the
quantities u and v, called horizontal and vertical “in-plane” displacements.

Depending on the shape of the object, a combination of out-of-plane and
in-plane displacement components can be obtained in the interferogram. For
example, in Figure 2-5, the fringes observed in the center of the image
correspond to displacement of the cylinder along its local normal (pure radial
deformation) whereas on the sides they correspond to a combination of radial
and tangential deformation. Care must thus be taken when interpreting the
fringes in term of object deformation.

Sensitivity variations are another source of concern. They result from
variations of S along the surface of the object. Typically, K, varies as the field
of view of the observation objective while K, is constant for a plane wave
illumination but changes in the case of spherical wave illumination. The
consequence is a variable sensitivity across the field of view of the

interferometer.

Figure 2-5. Holographic interferometry fringes showing out-of-plane
deformation due to thermal loading of a cylinder made of Invar.

The simplest holographic interferometry set-ups are mostly sensitive to
out-of-plane deformation. Multiple illumination beams are required if in-plane
displacements need to be evaluated, increasing the arrangement complexity.
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In-plane speckle interferometry must then be considered as a more practical
solution. Shape measurement or contouring is achieved in holography by using
two different wavelengths or by immersing the object in a liquid whose
refractive index can be varied uniformly.

This introduction to holographic interferometry is again far from
exhaustive and additional information can be found for example in books
written by Vest’, Schumann®, Kreis’ or Jones and Wykess.

2.4 Speckle interferometry

Speckle patterns are formed when a rough object is illuminated by any light
source (see paragraph 2.3). We will restrict ourselves to the use of
monochromatic light, usually produced by lasers. An introduction to the speckle
phenomenon and its applications can be found in Ref.9. A summary of the
properties related to speckle metrology is also presented in Appendix A.

Speckle techniques are usually separated in two large families, speckle
interferometry and speckle photographylo‘l"9'8‘7. In both cases, a speckle pattern
corresponding to a reference state of the object is recorded (on a photographic
plate or by a camera). This reference is next compared to the current state of the
objcct undergoing deformation. In the case of speckle photography the speckle
grains actually act as markers whose movements are monitored and a single
beam of light is needed to illuminate the object. Speckle photography is thus not
by nature an interference method even though its post-processing usually imply
the use of interfercnce patternsg. The two speckle fields that are compared nced
to be identical but not neccssarily superposed in space since speckle grains
usually move by an amount larger than their own size with this technique.
Speckle interferometry, on the other hand, requires a complete correlation
between the two speckle patterns that are compared, as in holographic
interferometry. Moreover, each sct-up requircs a 2-beam illumination of the
detector, producing interference. Speckle interferometry is thus very close to its
holographic counterpart. The main difference arises from the fact that in the case
of holography the very fine fringe structure produced inside the speckle grains
has to be recorded, hence the high resolution photographic plate. In the case of
speckle interferometry only the intensity of the speckle grains usually needs to
be recorded’ (there are a few exceptions like the Duffy technique for in-plane
measurements). The recorded speckle is produced by the interference of a

* As seen in Appendix A it is not even necessary to resolve the speckle grains themselves,
especially when one uses a CCD camera as a dctector.
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speckle wave coming from the object and a smooth reference (out-of-plane
set-up) or from two object speckle waves (in-plane or shearing set-ups).

As the method we wish to present is based on a “live” interference
phenomenon, we will not consider speckle photography in the rest of this
document. We note however that digital versions of the technique exist, based
on numerical correlation of successive speckle images. The use of photographic
plates in speckle interferometry is now obsolete with the availability of cheap
CCD cameras and video acquisition boards for computers. The main advantage
is the ease of use of these video sct-ups where reference states can be obtained
instantaneously, without any lengthy and messy chemical processing of
photographic emulsions. This ease of use also permitted the conception of
commercial instruments such as shearing speckle interferometers and integrated
in-plane and out-of-plane instruments.

We will now briefly explain the principle of fringe visualization in speckle
interferometry using electronic cameras and then describe the three basic
configurations of speckle interferometers. The quantitative analysis of these
fringe patterns will be treated in the next chapter.

2.4.1 Fringe formation in speckle interferometry

As mentioned above, the interferogram is either created by the interference of
two speckle waves or one speckle wave plus a smooth reference. The result is
another speckle pattern where no fringes appear directly, contrary to classical or
holographic interferometry. One can simplify the approach to speckle
interferometry by considering that each speckle grain in the image plane of the
detector is itself a small interferogram that can be described as in (2-6) where
the background intensity I, the modulation I, and the phase ¢ are constant
quantities. This is a first-order approach as, first, it is difficult to define cxactly
the extent of a speckle grain, and second, these three quantities are susceptible to
vary inside the grain itself. All the parameters characterizing this interferogram
are random variables whose statistics are known (see Appendix A). In particular,
the quantity of interest, i.e. the phase, is initially random and uniformly
distributed over [0, 2x]. The statistics of the other two parameters depend among
other things on the number of speckle grains that cover a single picture element,
or pixel, of the detector. Until recently it was considered a good practice in
speckle interferometry to actually resolve the speckle grains. This implied
aperture numbers of the imaging lens on the order of F/40 (this depends of
course on the actual size of one pixel). However, as mentioned in Chapter 4.3 of
Ref.8, practical apertures on the order of F/8 still provide useful fringe patterns
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with the added benefit of a better use of the available light, since a source 25
times less powerful gives the same illumination of the detector. These properties
have been studied theoretically and experimentally'>'®, confirming the fact that
speckles do not need to be resolved to obtain fringe patterns and showing that
apertures as high as F/2 can actually be used. We will not distinguish between
the resolved or unresolved case in the following paragraphs as the mathematical
formalism is the same.

The detection stage of a typical speckle interferometer set-up nowadays
consists of a camera and a frame grabber for numerical images acquisition. In
most cases, the frame grabber digitizes the video signal produced by the camera.
Non-standard “digital” cameras are also available that provide directly images in
numerical format. In this case the individual electrical charges of each pixel are
independently measured, contrary to the classical scheme where an analog video
signal consists of continuous TV lines, thus losing the initial segmentation of the
image plane.

In any case, one obtains numerical images that represent more or less
accurately the intensity of the speckle pattern in the image plane. The computer
can then perform any mathematical operation between these images. For
visualization purposes, simple subtractions or additions are sufficient, leading to
real-time” observation of interference fringes.

The first step of any experiment consists of recording the intensity of the
speckle pattern. This is the reference state. The initial intensity recorded for each
speckle grain is

I, =14+ 1, cosg, (2-8)

After deformation of the object, a second image is recorded. The new
intensity of a given speckle grain changes to

I,=1y+1,cos(9;, +9,) (2-9)

where ¢, is the phase change produced by the deformation. It can be related to
the actual displacement of the corresponding region on the object using (2-7).
Because ¢ is a random variable, both images do not display any fringe pattern.
However if we compute the square of the difference between the first and the
second image we obtain

(Id_li)2=21.zl Sin2(¢i+%‘l’d)(l‘cosfpd) (2-10)

* Real-time is of course a figure of speech. Standard cameras provide images at a rate of 25 or
30 Hertz, which is sufficient for the eye.
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the envelope of which is a cosine function of @,. If the phase change is equal to
an even number of n then the second parenthesis in (2-10) is null, creating a
dark spot in the resulting image, independently of the values of Iy and @. On the
other hand, if the phase change is an odd number of m then the second
parenthesis evaluates to 2. The result of the difference now depends on the
respective values of /Iy, ¢ and ¢, The mathematical mean of the resulting
random quantity is non-zero. This will appear as a “bright” fringe. However,
there will always be dark points in these bright fringes. The corresponding
interferograms appear as “grainy”, which leads some authors to speak of
“speckle noise” as in signal to noise ratio. We rather consider that the speckles
actually are the signal, admittedly sometimes-a poor one. Anyway, as in other
interferometry techniques, one obtains fringe patterns, which are related to the
actual displacements of the object under study. The main difference is that these
fringes are “grainy” and no longer correspond to a 2-wave interference pattern

of sinusoidal intensity profile. Consequently, the fringe analysis techniques used
will be different.

(b)

Figure 2-6. (a) Speckle image of a fractured concrete wall;
(b) Subtraction of image (a) from a second image obtained after
deformation. Equal out-of-plane displacement fringes are visible.

Figure 2-6 (a) shows a speckle pattern recorded in a set-up sensitive to
out-of-plane displacement. The object is a concrete wall that was previously
fractured. A second image was later recorded after a change of the load. The
subtraction of the two images creates the fringe pattern seen in (b). The
discontinuities of the fringes demonstrate the relative movements of the different
regions of the wall separated by the cracks.

The contrast of the fringes was enhanced using an histogram equalization of the image.




2. Shape and deformation measurement using whole-field optical techniques 19

A second method consists of adding two intensity patterns such as (2-8) and (2-
9). The problem is that the background intensity term no longer disappears:

1,+1,=21,+21, cos(@, + 19, )cos(19,) @2-11)

This reduces the visual contrast of the fringes. However, it becomes possible to
perform double-exposure experiments with very short delay between
exposures'. Both exposures are added in the same camera frame. This allows
one to perform deformation measurements on objects vibrating at high
frequencies or submitted to transients, using a standard 25 Hz camera and a
double-pulsed laser.

2.4.2 Out-of-plane speckle interferometer

Figure 2-6 above presents out-of-plane fringes obtained with a set-up similar to
the onc presented in Figure 2-7. A small portion of a laser beam is taken by a
beamsplitter plate that directs the light through a high-aperture lens L. This
produces a reference diverging beam on the CCD. The image of the focal point
of L is ideally located at the center of the exit pupil EXP of the imaging lens IL.
The main part of the initial laser beam goes through a microscope objcctive that
illuminates the object, which is imaged by IL onto the CCD.
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Figure 2-7. Example of out-of-plane speckle interferometer.
In the plane xz of the figure, the sensitivity or amount of deformation along
the z-axis that produces one fringe is deduced from (2-7). This gives:
A

s=
1+ cos@

(2-12)

where 0 is the angle between the illuminating light beam and the observation
direction from the entrance pupil of IL, at the point considered on the object.
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In the same plane xz, the sensitivity to displacement along the x-axis is

s b (2-13)
As this in-plane component is usually not wanted for an out-of-plane set-up, 6
should be kept as small as possible. By construction, the sensitivity along the
y-axis is null in the plane xz. However, there will be a small sensitivity to this
component above and below this plane.

To prevent sensitivity variations, 8 should not vary much over the region of
interest. A simple solution is to place the illuminating objective far from the
object. The best solution would be to illuminate the object with a plane wave. To
further limit unwanted sensitivities and their variations, the imaging lens should
also be as far as possible from the object. It must be noted that the sensitivity to
out-of-plane displacement is on the order of A/2 and that there is no simple way
to “lower” this sensitivity with the set-up as is. This high sensitivity means that
most small perturbations in the experimental environment will translate in a
perturbation of the fringe pattern.

In the case of large and distant objects, for example civil engineering
structures, the set-up as depicted in Figure 2-7 can produce low-quality fringe
patterns, as there is a large difference of optical path length between the two
interfering beams. This is linked to the coherence length of the source. The
problem can be overcome by first sending the reference beam on a mirror or
corner-cube located near the object before imaging it on the CCD.

2.4.3 In-plane speckle interferometer

A typical in-plane speckle interferometer is presented in Figure 2-8. Two laser
beams are focused using microscope objectives MOl and MO2. The two
diverging beams are then steered towards the object by mirrors M1 and M2. In a
well-adjusted set-up, the beams should impinge on the object under symmetrical
orientations with respect to the object normal N, i.e. 8, = -6,.

This set-up can be understood as the superposition of two out-of-plane
set-ups with opposite angles of illumination. The phase of the two speckle fields
that interfere changes as in (2-7) when an object point M moves by an amount
dM. As the phase of the interferogram is given by their difference, one obtains
an overall phase change

Aq::%(s2 -§,)-dM (2-14)
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Figure 2-8. Example of in-plane speckle interferometer.

Consequently, thc observation direction K, disappears from the equation.
In other words, the first-order sensitivity is not influenced by the position of the
imaging camera. For each object point where the two illumination beams are
symmetrical with respect to the local normal, 6, = -8, = 6, the in-plane
sensitivity along the x-axis is
A
sx = .
2sin0

(2-15)

whereas the out-of-plane sensitivity s, is null. For points where the two angles
are no longer symmetrical, the x-axis in-plane sensitivity becomes

A
*x = sin 6, —sin8, (2-16)

while the out-of-plane sensitivity along the z-axis becomes

A

f§ =—
cos 6, —cos@,

. 2-17)
As in the case of an out-of-plane set-up, there is a small sensitivity to y-axis
in-plane displacement. Again, all unwanted sensitivities and their variations will
be reduced when the source points are far from the object.
An interesting property of the in-plane set-up is the possibility to change its
scnsitivity by varying the illumination direction. Practical values range from a
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few tens of A down to A/1.8. This provides a little immunity to external
perturbations when a low sensitivity is used. It also makes possible
measurements on large structures susceptible of large displacements.

Interpretation of in-plane fringes i1s not as easy as in the case of
out-of-plane. For example, parallel horizontal fringes would indicate a rotation
of the object in the plane xy. In Figure 2-9, the density of these fringes varies
along the image. This denotes a combination of a rotation plus a bending of the
object. Discontinuities in the fringe pattern indicate the presence of cracks. The
sensitivity in this example was about 2 pm per fringe.
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(a) (b)

Figure 2-9. (a) 4-point bending experimental set-up. A 30 x 40-cm
region of the concrete beam is observed with the camera. (b) In-plane
displacement fringes obtained near one of the load insertion points.

2.4.4 Speckle shearing interferometer
The third essential set-up is the speckle shearing interferometer presented in
Figure 2-10. A single beam of light illuminates the object, which is viewed by
the camera through a Michelson interferometer. The purpose of this
interferometer is to create two laterally shifted images on the detector. This is
achieved by a tilt of one of the mirrors.

The two speckle fields that interfere at one given point of the detector
correspond to two points on the object, say A and B, distant by an amount Ax.
This lateral shift is adjustable through the rotation of the mirror M2. The

sensitivity vector is the same as in out-of-plane speckle interferometry.
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Figure 2-10. Example of speckle shearing interferometer.

The phase change of the interferogram is now proportional to the difference
of displacement of the two points:

A(pz2—;'r-[(]+cos(9)(wB —w, )—sinO(ug —u, )l (2-18)

where w4 and wy are the displacements of the points along the z-axis and #, and
up are the displacements along the x-axis. Again, it is useful to have the angle 6
as small as possible to limit the unwanted in-plane sensitivity. While neglecting
this in-planc component, (2-18) is often rewritten with the lateral shift Ax to
obtain a differential expression:

)Mz@(ncose)i’f (2-19)

Ax A ox

Hence, speckle shearing interferometry is presented as a technique
sensitive to the derivative of displacement in the direction of shear. A more
rigorous interpretation based on (2-18) was recently proposed, along with a
specific analysis method’. This technique permits to reconstruct the
out-of-plane  displaccment map, transforming the speckle shearing
interferometer in a variable-sensitivity out-of-plane interferometer.

An advantage of this technique is its relative simplicity and insensitivity to
some perturbations as the two interfering waves are created very close to the
detector. The set-up can be further simplified by replacing the Michelson
interferometer by a bi-prism or, ideally, placing a bi-prism inside the objective,
at the aperture stop position. Of course, the main advantage of the external
interferometer is the possibility to change the shear angle and thus the sensitivity
as well as the shear direction, making it a versatile instrument.

A(p=T(l +cos6
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Similarly to in-plane speckle interferometry, fringe patterns obtained in shearing
are not always easy to understand, as attests Figure 2-11. The object is the same
as in Figure 2-6, but the field of view is smaller in this image. This region of the
wall was covered by a network of parallel cracks oriented at plus and minus 30°

with respect to the horizontal.

Figure 2-11. Fringes obtained for a vertical shear of the speckle
pattern on the object of Figure 2-6.

2.4.5 Contouring speckle interferometer

The goal of this particular set-up is to perform shape measurements on rough
objects. This is achieved with an interferometer similar to the one used for
in-plane measurement. However, as there is no loading of the object, the fringes

are produced by a rotation d® of the two illumination beams in the same

direction.
& Let’s call A, the total geometrical phase difference
I - between the two symmetrical beams that illuminate
f‘/‘ ] the point O. The corresponding phase difference for
= K | ® 2 gdifferent point M(x,z) is:
orSY———7" >
—.. ] n
7 A9, =A9, + — (K, -K,)-OM (2-20)

0 . A

To simplify, we assume that the beams rotate by an angle d0 around the point O.
If the rotation axis is somewhere else, which is usually the case in a real set-up,
an additional phase constant is introduced at every point of the interferogram.
With our hypothesis, Agy does not change after rotation. For the point M, the
new phase difference is given by (2-20) with the new vectors K, and K. If d0 is
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small, we obtain the total phase change between the two expositions for the
point M as:
-
A\ — 2zsinfsindo (2-21)
A

'he sensitivity to the z coordinate (or surface height) 1s
’;‘ 7.7
) =~ (£-£24)
2d@sin 6
he highest sensitivities are in the range of a few tens of A. It is possible to
obtain higher resolutions by cumulating successive d@ increments ", which also
cancels decorrelation effects ', In Figure 2-12, the actual sensitivity is quite low,

on the order of 1 mm. The object is a miniature propeller used for boat models.

Figure 2-12. Contouring fringes obtained on a miniature propeller.

I'he speckle contouring technique competes with fringe projection, as both
methods provide the same kind of sensitivities. Its main advantage is that it can

be easily integrated with an in-plane speckle interferometer

2.5 Fringe projection and moiré

Although not interferometric techniques in essence, fringe projection and moiré
provide fringe patterns very similar to 2-wave interferograms. Hence, the same
fringe analysis methods can be used to obtain quantitative information. The
main domain of application is shape measurement

Fringe projection consists in creating a family of plane parallel “sheets” of
light in the volume surrounding the object under investigation. Observation
under an oblique angle gives an image where the fringe departure from

g
straightness is related to the shape of the object. Figure 2-13 shows an
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application to the measurement of the shape of the human face. The goal was to
evaluate this technique as a tool for surgeons.

The “structuring” of light in sheets can be obtained with a simple slide
projector using an incoherent source or, using a coherent source, a Michelson
interferometer or a8 Wollaston cube used with a half-wave plate and a polarizer.
Interferometric techniques have the double advantage of creating directly a
sinusoidal fringe pattern with infinite depth of field. However, for a large and
deep field of view, one can no longer consider the light sheets as being parallel
and plane. Corrections and calibrations must be made to take into account their
real nature, as they constitute a family of hyperboloids.

mlm;!;*

kol

.=' i i.
(a) (b)

Figure 2-13. (a) Fringe projection using a Wollaston cube and
polarized light; (b) Resulting image when applied to a human face.

The sensitivity of the technique is a function of the fringe spacing and the
angle of observation. However, the main limitation is primarily the resolution of
the imaging lens and camera used. Using state-of-the-art cameras and fringe
analysis software, the depth resolution is on the order of one thousandth of the
field of view.

Projection moiré is a way to increase the resolution of standard fminge
projection. In particular, one can project on the object a very fine fringe pattern
the image of which cannot be resolved directly by the detector . However, if this
fringe pattern is resolved by the imaging lens of the camera, one can place a
reference grating at the image plane. This grating creates a moiré pattern with
the fine line structure present on the object’s image. The beat frequency is lower

* Commercial CCD cameras seldom resolve more than 50 Ip/mm.
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than the grating spatial frequency and can then be resolved by the detector. This
is illustrated in Figure 2-14. The pattern at left is the reference pattern that
would be placed in the image plane. The center pattern is the image of the
deformed line structure created on the object. The right pattern shows the
resulting moiré fringes. These fringes do not present a sinusoidal profile but the
spatial frequency filtering performed by an actual lens would make them close
substitutes. Consequently, the fringe processing techniques elaborated in the
course of this dissertation work can also be applied.

|
H‘“""
0l |
H i
it
|

Figure 2-14. Reference grating (left), object grating (center) and
resulting moiré fringe pattern (right).

Before the generalized availability of fringe analysis software, moiré
techniques were very interesting for obtaining visually helpful fringe patterns.
Nowadays, low sensitivity applications can be as easily performed using the
much simpler fringe projection technique. However, moiré methods remain a
way to “boost” the resolution of fringe projection when high resolution is
required.

2.6 Summary of the methods; Domain of application

2.6.1 Shape measurement

Fringe projection and moiré are the “standard” whole-field methods for shape
measurement of large and “deep” objects. Sensitivities can range from the
decimeter to a fraction of millimeter. Such low sensitivities make these
techniques insensitive to most environmental perturbations. Hence, their
application is not limited to the laboratory. The Stress Analysis Laboratory used
moiré in two civil engineering applications'®. One was the measurement of the
profile of road pavements with a moiré system mounted in a truck moving at
60 km/h. The other one was a large field-of-view moiré system (25 m’) used to
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measure the shape of riverbed models. A current project deals with fringe
projection on large (6 x 20 m) metallic box girders used in bridge construction.

Contouring with holography or speckle interferometry are used for smaller
objects and higher resolutions. However, dual-wavelength or immersion
holography is a complicated laboratory tool. Without the need for
high-resolution media or vibration-isolated optical benches, speckle contouring
could more easily gain some acceptance, for example in mechanical workshops
where high-precision parts are manufactured.

2.6.2 Deformation measurement

Very low-sensitivity deformation measurements can be performed using fringe
projection. One simply needs to compare shapes measured at different times.
This tool has a large potential in the field of Civil Engineering where
deformation amplitude of structures is usually large. However, it is limited to
out-of-plane deformation measurements. There are many cases where a structure
deforms in a predominant direction. It is sometimes interesting to study the
resulting second-order deformations occurring in the other dircctions. One
example is the study of stress distributions near joints of wood'”. For this kind of
displacements, holographic or speckle interferometry are ideal tools, thanks to
their high-sensitivities to both in-plane and out-of-plane components. For
example, the in-plane fringes of Figure 2-9 are sufficient to evaluate the
variation of the local curvature of a concrete beam and detect invisible cracks by
their disruption of both fringe pattern and curvature distribution. We recently
used holography to study the behavior of a composite carbon-carbon structure of
very-low thermal-expansion coefficient, under localized thermal loading. This
structure is the body of a telescope developed by Aérospatiale for the European
Space Agency.

The Laboratory of Stress Analysis has also been involved for the last
couple of years in a Eureka program dedicated to the development of speckle
interferometers for dynamic mcasurements on “large” surfaces, that is surfaces
larger than 10 m”. Part of the work covered in this dissertation was developed
with this particular application in mind.

Besides structural testing, the fields of material testing and material science
benefit also from these whole-field techniques. Poisson’s ratio, Young’s
modulus, expansion coefficient, anisotropic properties of composite, concrete
shrinkage™ or concrete fracture mechanics®?* are all examples of physical
parameters that can be precisely measured or studied.
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Whole-field techniques can also play a role in defect detection where defects
appear as features of displacement fields. Shearing speckle interferometry is
often used to detect delamination in composite panels. Another application is for
example the study of concrete damage caused by frost™. A lot of work has also
been done to combine these optical techniques with knowledge based software
systems to automatically detect and classify defects in various types of
materials®,

If fringe projection can provide a resolution on the order of the millimeter
or sometimes better, holographic and speckle interferometry provide resolutions
down to tens of nanometer for out-of-plane displacement. In-plane deformations
can be measured with resolutions ranging from hundreds of nanometers to tens
of microns, depending on the sensitivity chosen. A rulc of thumb for all these
methods is to consider that the fringe analysis techniques used for processing the
interferograms can bring a resolution that ranges from a tenth to a hundredth of
the sensitivity. These analysis techniques are presented in the next chapter.
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3. Fringe analysis techniques

We presented in Chapter 2 a set of whole-field optical techniques, which are
used as metrological tools. They share the property of providing images where
the information is coded as a sinusoidal modulation of intensity. Different types
of qualitative diagnostics are possible with a visual analysis of these fringe
patterns. However, more and more applications require that a complete
quantitative analysis be performed. Phase measurements can be performed in
many ways but we will restrict ourselves to methods based on digitized images
of the interfcrograms. The corresponding fringe processing techniques largely
benefited from the computational power of affordable computers, creating an
expanding research field for the last fifteen years or so. The potential gain is
important as these techniques can bring precisions on the order of one hundredth
of the sensitivity of a given interferometer. Two main families of methods can
be considered according to the number of images they require. Single image
techniques are historically the oldest but new refinements still appear every year.
Multiple-image approaches, dating back to the first phase-shifting algorithm
proposed by Carré in 1966, offer additional possibilities that have not yet been
fully exploited.

In this chapter, we briefly present fringe enhancing techniques that are of
interest mainly for single-image based analysis such as skelctonization and
fringe wacking. Next, thc multiple-image phase-shifting algorithms are
described before considering carrier-based single-image methods using Fourier
transformation or “spatial phase-shifting”. As most of these methods provide a
modulo 2r phase map of the interferogram, the difficult task of phase
unwrapping (or demodulation) is next presented, along with pre-processing
algorithms. Finally the problem of phase measurcments in non-static conditions
is considered. The fringe processing methods described before are discussed in
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this context, possible solutions are identified and the so-called “dynamic
phase-shifting” is introduced.

Numerous books have been written on these subjects in the past years. We
will however propose two recent works, one edited by Robinson and Reid', the
other written by Osten and Jiiptncrz, as the main sources of information for
additional references and discussion of these topics.

3.1 Fringe enhancing techniques

We assume in the following paragraphs that the fringe pattern of interest has a
sinusoidal profile of the form:

I(x,y)=1o(x, y) + 1 (x, y)cos @(x, y) 3-1D

where (x,y) are the spatial coordinates in a reference frame of the image.

From Chapter 2, we know that in the case of speckle correlation fringes the
background intensity /, and equivalent modulation Iy are random variables. For
all other types of interferometers, Iy and Iy arc usually smooth functions of x and
y over the image. However, their variations can be large, owing to variations of
reflectivity of the object and non-uniformity of the illumination. This last point
is frequent with the Gaussian beams produced by lasers. Hence, once an image
has been digitized, different techniques, known as shading corrections, can be
used to correct for these variations. Advanced methods perform a least-square fit
of the functions I, and Iy over the image, with the help of the fringe skeletons’.

The second family of enhancement techniques addresses the problem of
noise suppression. Electronic noise sources are present in the acquisition chain.
“Optical” noise can result from unwanted diffusion of light. Finally, speckle is
present in the image as soon as rough objects are illuminated with coherent
light. In the case of holography this results in a small additive noise. In the case
of speckle interferometry, it is closer to a multiplicative noise term. Numerous
filters have been elaborated to eliminate these various levels of “degradation” of
the fringes. Most perform under the assumption of a high spatial frequency noise
content versus low frequency fringes. Examples include non-specific filters®
such as the median or Wiener filters while some, such as the Crimmins filter’
(which is similar to a convex-hull morphological filter®) arc specifically
designed for noisy fringe patterns. An interesting approach is the use of
directional filters, which perform a low-pass filtering along the local fringe
direction, thus reducing fringe blurring. Recently, another successful adaptive
filter has been proposed for speckle correlation images’. It is based on a local
analysis of the intensity variance.
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All these pre-processing tools are important for the quantitative analysis of
single fringe patterns, particularly in view of the application of methods such as
fringe skeletonization or fringe tracking. However, obtaining a visually
“pleasant” image should not be a goal in itself since it becomes difficult to
estimate the precision of a measurement based on a heavily filtered image,
particularly when non-linear filters are used.

3.2 Fringe skeletonization and fringe tracking

Advanced fringe skeletonization techniques use morphological operators® that
find the center of mass of pixel clusters obtained by thresholding the gray level
fringe image. Skeletons represent the sct of points where the phase is an odd or
even multiple of &, assuming that Iy and Iy are locally constant. Once these
skeletons have been obtained, a phase map can be reconstructed by
interpolation. However, there is not enough information in a single fringe
pattern to determine the sign of the phase change between successive fringes.
“Automatic” or semi-automatic fringe numbering algorithms help reconstruct
the actual shape of this phase map but a complete analysis usually requires an a
priori knowledge®.

Fringe tracking is another way of obtaining skeletons. Special algorithms
are constructed to “follow” paths along maximum and minimum intensity
regions defining bright and dark fringes. They perform poorly in images where
these extremes are loosely defined, as in speckle correlation fringes.

One could characterize these methods as “last-chance” resources that must
be used when none of the methods presented below can be used with a particular
experiment. Particularly, their precision is seldom better than a tenth of the
sensitivity, as strong hypotheses are made regarding I, and Iy in order to extract
the phase from a single intensity measurement.

3.3 Phase-shifting

Phase-shifting techniques constitute one of the two main families of fringe
analysis tools®. They are based on the possibility of obtaining multiple versions
of a given interferogram. These images are acquired after modification of the
phase of one of thc two interfering waves. The result is a movement of the
fringes in the image, without however changing the shape of the phase map. A
simple analogy can be made with topographic maps. If fringes represent height
contour plots, changing the phase diffcrence of the waves by a constant quantity
is equivalent to changing the origin of the contour lines. The contour lines are
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located differently but they still accurately describe the surface. These different
versions of the interferogram lead to a mathematically correct extraction of the
phase @ and permit the determination of its sign.

An ubiquitous device is the piezoelectric transducer (PZT), which can
move optical components, typically mirrors, by very small amounts with a
resolution close to a few tens of nanometers. This element has proven to be
essential for the practical realization of phase-shifting. Some carly experiments
were based on a constant speed translation of such a PZT while images where
grabbed at equal time intervals. In this case, the fringes are moving during the
exposure time of the camera, hence the names phase-shifting or
“integrating-buckets” methods. A practical consequence is a lowering of the
actual modulation of the fringes in the resulting image (see Chapter 4). The
phase-stepping method, on the other hand, consists in moving the PZT
step-wise. There is no corresponding fringe movement during the acquisition of
one image. Both methods are nowadays decsigned under the name
“phase-shifting” and we will use this term indiscriminately throughout the text.

With the capability to introduce controlled phase changes Ag in an
interferogram, (3-1) becomes:

I(x,y)=Iy(x, y) + Iy (x, y) cos( @(x, y) + Ag(x, )) (3-2)

The phase change or phase increment A@ can vary across the interferogram,
hence the possible dependence in (x,y). We will however drop the (x,y) term in
most formulas, for clarity’s sake.

If Ag is known, at least three equations are required to solve (3-2) for the
value of @. A simple 3-image solution consists in recording images as follows:

I, =1, +1, cos(¢ - Ap)
I, =14 + 1y cos(9) (3-3)
I,=1,+1 cos( ¢ +Ag)

(p=Arctan[l_COSA(p I, -1 ]

sinA¢ 21, ~1, -1,

JU—cos AQ)* (1, - I, + (sin A@)* (21, - 1, - 1)’
2sin A@(l - cos Ap)
L +1;-2cosA@l,
7 2(1-cosAg)

=21y = 3-4)
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When A@ is equal to 2r/3, (3-4) is simplified as in (3-5):

g I, -1
LP:.‘\I‘CIAHI(\'R\-- Nl
{ 2, -1, -1,
R e ——— =
’i\l;;\:-‘{.h_h)'1{:”3_!;‘!1)- (3-5)
1
"n:3U1 *-'!:*f«)

The phase is numerically obtained as an arctangent function. Taking into
account the sign of both numerator and denominator, this yields a value in the
[0, 27t] range. The resulting modulo-2r image is often called a “wrapped phase
map”. The removal of this modulation is discussed in paragraph 3.6.

If we apply the simple algorithm (3-5) to the three images shown at left in
Figure 3-1 we obtain the wrapped phase map shown at right. The cut underneath
this image illustrates the modulo-2x effect, which creates a “‘saw-tooth™ graph.

Figure 3-1. (@), (b) and (c): phase shifted fringe patterns obtained for
a transparent object observed with holographic interferometry;
(d) wrapped phase map of image (b), calculated with equation (3-5).

The simple 3-image algorithm presented above can be generalized to N
images. The chapter by Creath in Ref.1 reviews the different types of available
tools. The possibilities are endless. In particular, an extended work has been
performed to characterize the behavior of these algorithms when phase-shifting
errors and detector non-linearities are present. For example, a sound analysis of
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the properties of the arctangent function leads to a family of “N+1” algorithms’
that are very tolerant to these types of error.

If we restrict ourselves to the set of methods where the phase increment A¢@
is unknown, we still find several solutions, sometimes called “self-calibrating”
algorithms. The phase increment is a function of both space (the coordinate of
the point in the interferogram) and time (the position of the image in the
sequence of phase-shifted images). We can distinguish the case where A is the
same for each point of the interferogram, for a given image, but is not constant
between images (AQ(x,y,t) = A@o(t1), A@o(t1) # A@o(rz) ), from the case where
A is not constant across the interferogram but is constant between images
(AQ(x1,y1,t) # AQ(x2,y2,11), AP(x1,y1,t) = AQ(x,y1.t) ).

As the first case corresponds to the practical situation of a phase
measurement with imperfect phase-shifting, several solutions have been
developed, some based for example on iterative least-square fitting'®, A
particular approach was also proposed where a large number of images with
random phase increments'' are accumulated. It can actually work with Ag values
varying both spatially and temporally. The object must however be static.

The second case of variation of A¢ is of more interest to us. A “classical”
solution is the Carré'? method, based on four images. It is however a
mathematically complex procedure, requiring the computation of a few square
roots additionally to the usual arctangent, for each image point. Moreover, the
computed phase does not correspond to any of the four initial images. In our
applications, we rather use an extended version of a 5-image algorithm first
presented in Ref.13 and later characterized in Ref.14. In these papers, it is
assumed that the phase increment is /2 while the “N+1” nature of the algorithm
corrects for the different types of errors that can occur during the actual
phase-shifting. We use a modified version where A¢@ is actually computed at
each pixel before the evaluation of the phase itself. The resulting method can
accommodate A ranging from n/4 to 3n/4.

The phase-shifting algorithms presented above can be applied directly to
fringe images obtained with 2-waves interferometers. The case of speckle
interferometry is slightly different. As seen in Chapter 2, the correlation fringes
obtained by subtraction of a reference image from an image recorded after
deformation, do not present a truly sinusoidal profile:

(Id “Ire/)2 =21:1 sinz((pi +304 +%A¢)(]_°05( Q4 +A9)) (3-6)

If the phase-shift Ag is changed, both sine and cosine expressions in (3-6)
change, which does not correspond to the phase-shifting formulas presented
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before. It is however tempting for some authors, because of the envelope term
"1 -cos@y” and the visual aspect of the fringes, to try to apply directly
phase-shifting algorithms to correlation fringes. Figure 3-2 presents in (a) a
fringe pattern obtained by speckle contouring of a quail's egg. The image in
Figure 3-2(b) is the corresponding wrapped phase map calculated with a
3-image algorithm without any filtering of the correlation fringes. The result is
very noisy and confirms the fact that a very strong filtering of the initial images
is first required to approach more closely a sinusoidal profile. The filter

presented in Ref.7 seems to be a promising solution.

(a)
Figure 3-2. (a) Contour fringes of a quail's egg produced by a speckle

contouring interferometer; (b) Wrapped phase map computed from 3
correlation images obtained in the same manner as (a).

0 : e fes t)
Figure 3-3. (a) Random phase map of a reference interferogram;

(b) Difference between a second random phase map (obtained after
rotation of the illumination beams) and the reference map (a).
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We prefer the rigorous solution based on the observation that the recorded
speckle field is indeed a 2-wave interferogram where the phase @,(x,y),
background intensity /o and modulation /y are random variables different for
each pixel. Phase-shifting algorithms can thus be applied directly and a first
random phase map is computed as in Figure 3-3(a) while the object is in its
reference state. The object cannot be distinguished from its surroundings in this
image since phase values are random everywhere.

Once the object has undergone its deformation or the illumination beams
have been displaced (the particular case of contouring), a second random phase
map is computed. As long as there is no decorrelation during the experiment
(see Appendix A), the random initial phase ¢,(x,y) of a given pixel does not
change. Hence, the total phase of a pixel becomes @,(x,y) + @(x,y) where @, is
the quantity we wish to compute. A modulo-2n subtraction of the first phase
map from the second then yields this phase, shown in Figure 3-3(b). The result
is much better than in Figure 3-2(b). It is however not as smooth as what would
be obtained in classical or holographic interferometry. This is due to the speckle
statistics that give a good probability of having a very low modulation 7y at any
point of the interferogram. Considering that the dynamic range of the digitized
images is usually limited to 256 gray levels, small values of Iy will produce
intensity variations during phase-shifting that are too small to be accurately
detected over the acquisition system noise. In this case, the measured phase is
truly random from one measurement to the other. The filtering of these noisy
data points will be presented in paragraph 3.5.

3.4 Single-image carrier-based methods

The second large family of quantitative analysis techniques is based on the use
of *‘carrier fringes”, which consist basically in a set of parallel fringes of
constant spacing. These initially straight fringes are deformed by the phase
change induced by a deformation, or by the shape of the object in the case of
fringe projection. The production of these fringes depends on the type of
interferometer. In effect, a phase wedge must be introduced in the interferogram.
This can become quite complicated in some cases, for example with shearing
speckle interferometry. However, the main advantage is the use of a single
image to perform the phase evaluation. The knowledge of the phase slope
corresponding to the carrier fringes solves the problem of the absolute sign of
the phase.
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Let us assume that the carrier fringes are vertical in the image and that their
spatial frequency is fp. The intensity profile is then given by:

I(x, y) =14 (x, y) + Iy (x, y)cos(2nfox + @(x, )) 37

Two methods are available to process the digitized version of this
interferogram. One, known as “spatial phase-shifting”'®, consists in considering
that the phase @(x,y) is constant over sets of adjacent pixels, in the horizontal
direction (constant y value). One is then brought back to a set of equations
similar to (3-3) where I, I, and I3 are the intensity values I(x,y), /(x+1,y) and
I(x+2,y) of the adjacent pixels and where the phase-shift Ag is introduced by the
carrier term 2mfox. The frequency fy does not need to be precisely known when
one uses self-calibrating algorithms that evaluate the average A at each set of
pixels. However, this tcchnique supposes that /y and I\ are locally constant,
which is never the case with speckle interferometry. The field of application is
thus limited to classical interferometry, fringe projection and good-quality
holographic interferometry.

The second method, the Fourier technique, was proposed in Ref.16 and has
been widely used, particularly in the field of optical components testing where
no abrupt fringe discontinuities exist. It can be understood if we write equation
(3-7) in a complex form as:

I(x, y)=a(x, y) + b(x, y)exp(2infox) + b(x, y) exp(- 2infox) (3-8)
with:
a(x,y)=1Io(x,y) and b(x,y)=31y(x y)expip(x,y) (3-9)
If we compute the 2-dimensional Fourier transform of this image we obtain:
T'(u,v) = AQu,v) + Bu— fo,v) + Bu+ fy,v) (3-10)

where u and v are the horizontal and vertical spatial frequencies and B(u,v) is
the 2-D Fourier transform of the quantity b(x,y). In essence, one obtains three
peaks located at the spatial frequencies u = —f, 0 and +f;. The processing then
consists in deleting all the data points except in a window isolating the peak
located at +f; (Hamming, Kaiser, cos®,... filters can be used for this purpose)
and shifting it to the O frequency. The result is a complex-valued image
containing B(u,v). The inverse Fourier transform then yields the complex
function b(x,y), the phase of which is @(x,y). The technique can also be applied
without carrier fringes'’ but additional processing is required to compose the
final wrapped phase image and eliminate the sign ambiguity.
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As an illustration, Figure 3-4(a) shows a fringe pattern obtained while measuring
the out-of-plane deformation of a vibrating plate. A pulsed laser is used to
“freeze” the speckle field during each camera exposure. The reference wave is
tilted between the two exposures; this produces the carrier fringes. The filter
used to isolate one of the peaks in the Fourier domain is a box filter of elliptical
shape convolved with a 7 x 7 Gaussian filter. Its surface covers only 0.5% of the
total spectral domain! The resulting wrapped phase in shown in Figure 3-4(b).

(a) (b)
Figure 3-4. (a) Deformed carrier fringes obtained in out-of-plane

speckle interferometry applied to a vibrating plate’; (b) Wrapped
phase map computed with the Fourier transform method.

From a practical point of view, the number of fringes created by the
deformation should not be larger than the number of carrier fringes. The width
of the peaks in the Fourier domain is a function of the pitch variations in the
initial image. If the gradient of the fringes due to the deformation becomes too
high, the peaks spread out and overlap, making the selection of a single peak
impossible.

The formulas presented above are valid for carrier fringes of infinite
support. This is obviously not the case with an image of limited dimensions.
Consequently, the computed phase near the edge of the image is distorted'’. The
same problem arises when the fringe pattern does not fill completely the
im:lgcﬁ. Moreover, the choice of a filter to isolate the peaks is guided by a
compromise between the amount of details that can be lost and the efficiency of
speckle “noise” suppression. Consequently, fine features of the fringe pattern

® o . .
Fringe image courtesy of Holo3.
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can be lost’. This is a problem, for example in the domain of material testing
where discontinuities in the fringe patterns mark cracks in the specimen.

3.5 Wrapped phase enhancing

In the same manner that fringe-enhancing techniques were developed for
intensity images, tools have been developed to enhance wrapped phase mups”‘
There are two benefits. One is “cosmetic”, that is, fringes usually appear more
clearly in phase images than in intensity images. The second is the actual
preprocessing of the wrapped phase map with respect to the phase unwrapping
procedure, presented in paragraph 3.6.

The major difficulty with these images is that they present sharp
discontinuities caused by their modulo-2n nature, which must be preserved at all
cost for their successful unwrapping. Hence, no simple low-pass filter can be
directly used. One of the most efficient solutions consists in computing two
additional images that represent the sine and cosine of the original wrapped
phase map. Thanks to their 2r-periodicity, these functions provide images where
the only discontinuities left correspond to physical ones, for example caused by
cracks. It is then possible to filter them with classical low-pass filters before
computing a new wrapped phase map as the arctangent of the sine and cosine
filtered images.

Figure 3-5. (a) Wrapped phase map; (b) Phase map reconstructed
from low-pass filtered sine and cosine images made from (a).

Figure 3-5 illustrates this procedure with a phase map obtained in a
in-plane speckle interferometer used to measure crack propagation in concrete
samples. The image (a) is the initial phase map. The image (b) was obtained
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after filtering three times the sine and cosine of this phase map with 3 x 3 box
filters. The use of linear filters such as box or Gaussian filters is an obvious
approach. A median filter can also be used with slightly finer results as large
phase errors in some pixels have a smaller influence on the resulting value of
their neighbors.

We can go one step further if we consider that more information is usually
available. In effect, as discussed in paragraph 3.3, we know that the phase
estimation becomes imprecise or even provides random results for
low-modulation pixels. This is particularly important with speckle
interferometry where very low modulations can be obtained. Hence, one idea is
to eliminate the pixels whose modulation is lower than a given threshold. These
pixcls are then simply ignored when the sine and cosine images are low-pass
filtered. From a statistical point of view, this amounts however to discarding the
little information that is still present in these low-modulation pixels. A weighted
average would be more efficicnt. Huntley shows in Ref.19 that the two main
error sources on the estimation of the intensity of a given pixel, electronic noise
and speckle decorrelation, produce phase errors of similar distributions. Since
these distributions are, to a good approximation, Gaussian, a maximum-
likelihood argument leads to compute weighted average phase values of group
of pixels. The weight assigned to each pixel is the product of its modulations
Iv(t)) and Iu(t) corresponding to the reference and deformed states of the
object. By considering the statistical effect of decorrelations in speckle
interferometry, Lehmann comes to the same conclusion®®. Hence, the optimum
phase enhancement filter consists in first computing the modulation and the
phase at each point of the interferogram. These values are then used to calculate
a weighted average of the phase or, equivalently, of its sine and cosine. This
point is developed in Appendix A as we will use this argument in our
developments.

3.6 Phase unwrapping

The process of phase unwrapping is the last difficult step of the quantitative
measurement. It is a field of research in itself and a recent review is given in
Ref.18. The goal of this procedure is to remove the 2n-phase discontinuities
produced by the arctangent function. This process seems fairly obvious in the
case of Figure 3-1(d) where the phase jumps are clearly defined. However, apart
from the field of optical testing, this idyllic situation is seldom encountered.
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The unwrapping process consists, in one way or another, in comparing pixels or
groups of pixels to detect and remove the 21 phase jumps. Numerous solutions
exist to process single wrapped phase images, based on path dependent or path
independent algorithms, branch cut methods, tile processing using a minimum
spanning tree, discrete cosine transform, simulated annealing, cellular automata,
neural networks and so on (the useful references are found in Ref.18). They all
present advantages and disadvantages, emphasizing the fact that no single tool
can solve all problems in this field.

There are basically three difficulties in performing a correct phase
unwrapping. The first one is related to the extent of the fringes in the image. As
seen in Figure 3-3(b), meaningful fringes do not necessarily cover the image.
Unwrapping errors can easily propagate from the random phase region to the
actual fringes. One common solution is to create a mask of the region of interest
and restrict the unwrapping to the masked area. An image of the object under
white-light illumination over a dark background can be a starting point for this
mask. The modulation image can also be used. This masking process is however
time consuming for complex shapes of varying modulation. Ideally, the
unwrapping algorithm should not require a mask...

The second difficulty simply comes from erroneous phase values, frequent
in the case of speckle interferometry. The correct filtering of the wrapped phase
map can greatly improve the image, as long as the proportion of bad phase
values within the image stays reasonable, say less than 30%. Above this ratio,
the effectiveness of the filtering process is limited. Unwrapping algorithms
based on the processing of groups instead of individual pixels usually perform
better in the presence of noise.

The third difficulty arises from physical discontinuities in the wrapped
phase map. They correspond to brutal steps on the object in the case of shape
measurement, or discontinuities of the surface of the object in the case of
deformation measurement, cracks for example. Figure 3-5 illustrates this
problem. In particular, the phase change between the two sides of a physical
discontinuity is not necessarily high, which makes its detection even more
difficult. Sometimes, a phasc “valley” or saddle point (most tempting for path
following algorithms) joins these two sides. Branch cuts methods try to prevent
this “trespassing” by detecting specific “non sclf-consistent” points marking the
extremitics of the pass.

We can also mention the problem that appears when the fringes are located
in unconnected zones in the image. The different zones can be unwrapped but
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they do not share a common phase origin. It is left to the user to link them in a
consistent manner.

The example presented in Figure 3-6(a) is the unwrapped version of Figure
3-5(b). Figure 3-6(b) shows a different representation. It must be kept in mind
that the measured value is an in-plane displacement. A homemade unwrapping
algorithm was used in this particular case. It will be presented in Chapter 7.

[ =

(a) (b)

Figure 3-6. (a) Unwrapped version of the phase map of Figure 3-5(b);
(b) Same image presented as a wireframe.

The algorithms briefly discussed above are “spatial” algorithms in the
sense that the phase map is unwrapped by comparing adjacent pixels or pixel
regions within a single image. A completely different approach was proposed in
Ref.21 where several wrapped phase images are used. Each corresponds to a
step in the deformation process of an object and the unwrapping is conducted
along the time axis for each pixel taken individually. No spatial relationship is
used. The advantages are manifold. First, erroneous phase values do not
propagate in the image. Second, physical discontinuities are automatically
respected. Third, isolated regions in the interferogram are correctly unwrapped,
without any incertitude concerning their relative phase order. The limitation is
that the experiment must be conducted step by step, which can be a problem
when a load has to be controlled precisely or if relaxation of the object is
possible during a load plateau. Thermal loading is also a particular case where
constant steps can be difficult to obtain. The phase should not change by more
than = for each load increment. Hence, large number of steps can be necessary.
We will discuss this method in more details in the next chapters as it is very well
adapted to the continuous measurements we propose to perform with dynamic
phase-shifting.
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Once the unwrapping process is completed, the phase map has to be transformed
into the corresponding physical quantity, for example displacement or shape.
This is done using the sensitivity vector. The process is not always easy or
accurate as unwanted sensitivities as well as sensitivity variations need to be
taken into account. Sometimes, the user has to make hypotheses on the actual
behavior of the object, for example if a set-up is sensitive to both in-plane and
out-of-plane displacements. Ref.22 presents an example where the shape of a
complex object is measured, which later allows onc to reconstruct its
3-dimensional deformation field.

3.7 Quantitative measurements in non-static conditions

All the fringe analysis techniques described up to now perform well in the case
of static or quasi-static experiments, that is, when phase variations in the
interfcrograms arc negligible during the acquisition of one or more images.
Some of them can also be used when vibrating objects are studied?. In this case,
time-averaged images are used as well as pulsed lasers. Synchronized
stroboscopic systems even permit the application of phase-shifting in the case of
stationary vibrations. One goal of this dissertation work was to propose a
method that can be used between these two extreme types of applications, when
the observed phenomenon is time-dependent but of temporal characteristics
comparable to thc acquisition rate of our cameras. Applications include the
study of creep, shrinkage and crack propagation, material testing with
mechanical or thermal loading and stress-strain experiments.

We will now briefly identify possible fringe analysis solutions that can be
used in this context. Carrier-fringes based methods such as the Fourier transform
or the so-called “spatial phase-shifting” require only one image for each
mecasurement point. However, the production of the necessary carrier fringes is
sometimes difficult (for example in a shearing speckle interferometer) and limits
the observable decformation dynamic as well as introduces unwantcd
decorrelations. Moreover, “spatial phase-shifting” is of limited usc with speckle
interferometry while the Fourier transform does not preserve well the image
details.

For their part, phase-shifting techniques usually require that the phase of
the observed interferogram be static during the acquisition. A number of
multiple-image interferometers have been proposed where three or four
phasc-shifted images are produced and recorded simultaneously'®. They can be
obtained thanks to polarization splitting and phase-shifting with quarterwave
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plates® or with moving interference gratings. The images are either recorded
side by side with one camera or separately with several cameras. These set-ups
are complicated, hence difficult to adjust and calibrate. In particular, the three or
four intensity values required to compute the phase of one point of the
interferogram are measured by different pixels of one detector, or worse, by
different pixels of different cameras. Apart from synchronization problems, the
response curves of these pixels must be calibrated to obtain intensity values
consistent with the requirement of the phase-shifting algorithms, that is, equal
background intensity and modulation values.

Another approach®, very similar to the “scanning phase-shift technique”
presented in Ref.11, consists in first measuring the background intensity Iy and
modulation Iy by changing continuously the phase of the interfcrometer. It is
then possible to record successive images while the object undergoes its
deformation. The phase of each image is estimated by interpolation of the cosine
function (3-1). The accuracy of the phase estimation is however limited and a
phase-shift is required one image every two to determine the phase sign. The
principle of the technique holds only for temporally constant Iy and Iy values.
Hence, another limitation arises from the large modulation variations produced
by decorrelations in the case of speckle interferometry.

We tried to present in the preceding paragraphs the possible solutions to
the problem of measurement with time-dependent phenomena. We admittedly
emphasized their limitations to show that some room is left for improvement or
the introduction of new techniques; they must not however be deemed useless!
We will propose such a new technique in the following chapters. It is based on
the utilization of the deformation-induced phase change of the interferogram. By
analogy with other methods, we call it “dynamic phase-shifting”.
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4. Dynamic phase-shifting

Chapters 2 and 3 give an introduction to whole-field optical methods and the
associated fringe analysis techniques. The problems encountered in the case of
dynamic phenomena, as well as possible solutions, arc described at the end of
Chapter 3. In the current chapter, we present our original contribution to this
topic, which makes the bulk of this dissertation work. Starting from an initial
observation, we present the framework in which phase measurements become
possible thanks to the so-called “dynamic phase-shifting” approach'. We then
propose two different processing methods. The first onc’ is based on analytic
solutions as in “classical” phase-shifting and is adapted to temporally localized
phase evaluations or experiments limited in time. The second one’, based on a
time-frequency analysis, is particularly adapted to continuous deformation
measurements. These techniques are fully characterized in Chapters 5 and 6.

4.1 Dynamic phase-shifting principle

The main principle of this new technique can be easily understood when one
looks at a sequence of images such as those presented in Figure 4-1. They show
the out-of-plane deformation of a metallic membrane that acts as one of the
walls of a depression chamber. These successive images were obtained using
holographic interferometry during a pressure variation inside the chamber. If we
compare the first five images we can observe that one fringe appears in the
center of the circular pattern (there are five fringes in the first image and six in
the last). To the observed intensity variations corresponds a phase variation of
the interferogram. The speed of this phase variation varies in the image. For
example, the intensity of the point located at the center of the circular pattern is
roughly the same in the first and fifth images. Hence, its overall phase variation
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is close to 2m, which corresponds to a ®/2 phase change per acquisition interval.
Our idea consists of observing that this “natural™ phase variation is equivalent to
the phase-shifting that we would otherwise introduce “artificially” to perform a
phase evaluation, in the case of a static interferogram. Finding means to take
advantage of this naturally occurring phase-shift is our goal. The immediate
benefit is the ability to perform phase measurements in non-static conditions,
The second benefit is the possibility to extend the method to continuous
deformation measurements. Both points are developed in the next paragraphs,
However, we must first clarify the conditions that are required in practice to
reach this goal, as it is clear that not just any fringe movement will permit a

]')h{lSC measurement.

Figure 4-1. Six successive images obtained at 25 Hz while observing
a metallic membrane in holographic interferometry.

4.1.1 Sampling rate considerations
The sampling rate requirements can be first intuitively presented with the help of
Figure 4-2 where concentric circles represent five fringes of interference order
one to five, From (a) to (b) and from (b) to (c) the phase of the whole
interferogram increases by m/2. The overall visual impression is that of an
expansion of the fringes. In the second case, from (d) to (e) and (e) to (f) the
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phase increment is 3w/2. In this case the visual impression is that of a
contraction of the fringes. Hence, one could interpret these sketches as showing
two fringe patterns evolving at the same “spced”, one expanding and the other
one contracting, while in reality they both expand, the second one three times
faster. This ambiguity results from the fact that the second phenomenon is not
sampled rapidly enough.

Figure 4-2. (a), (b), (c) Fringe pattern where the phase increases
uniformly by n/2; (d), (e), (f) Same with uniform increment of 3w/2.

The same reasoning holds for the temporal signal observed at a given pixel,
as illustrated in Figurc 4-3.

i) i

\

(a) (b)
Figure 4-3. (a) Intensity measured at one pixel for a phase change of
/2 between samples; (b) Same for a phase change of 3w2.
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In Figure 4-3(a) the phase increment between the acquisition of two successive
samples is /2. The crosses represent the resulting intensity samples that would
permit to reconstruct the signal accurately. In Figure 4-3(b), the phase increment
is again 37/2. In this case the signal is undersampled, that is, the samples would
lead to the reconstruction of the cosine function plotted in the dashed line.

The two observations made above can be rigorously explained by
Shannon’s theorem. It states that in order to obtain a correct sampling of an
unknown signal, the sample acquisition frequency should be at least twice the
highest frequency present in the spectrum of the signal. Hence, to a fixed
sampling rate f; corresponds a cut-off frequency f; = fi/2, sometimes called the
Nyquist limit, that defines the maximum tolerable extent of the signal spectrum,
see Figure 4-4(a). If this condition is verified, the signal can be exactly
reconstructed from its samples. If not, one obtains the aliasing phenomenon
illustrated in Figure 4-4(b). Part of the spectrum is “folded back” on itself,
which results in a modification of its amplitude. One recalls that the signal’s
spectrum gives the “list” and relative weights of all the frequencies that must be
used in a sum of cosine functions to reconstruct this signal. The spectrum
contains both an amplitude and a phase part; only the amplitude is shown here.

, [
[ S

-f,

(a) (b)

Figure 4-4. (a) Amplitude spectrum of a correctly sampled signal;
(b) Spectrum aliasing in the case of an undersampled signal.

The demonstration of Shannon’s theorem is quite interesting. In particular, it
shows that the n-th derivatives of a normalized signal s are bounded by
constants given by its spectral width Q (all frequency component of s fall within
(-, Q]):

5™ (r)] <(2nQ)" (a-1)

s'(1)|<2nQ  and more generally

As stated in Chapter 5 of Ref.4, this bounding of the signal derivatives actually
guarantees that no “surprises” can occur between the samples, as long as Q is
smaller than f.. As a consequence, the signal can be reconstructed from its
samples.
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The temporal signal produced in a 2-waves interferogram is of the form:
I(t)y=1o()+ 1, ()cos () 4-2)

Frequently, Io(t) and JI(t) present “slow” variations in the time dimension,
compared with the phase evolution. In the case of holographic or classical
interferometry, these quantitics indeed vary very slowly, if at all. However,
decorrelations in speckle interferometry can introduce faster variations. The
ideal case for us happens when the phase evolution can be locally (in the time
dimension) approximated by a linear function of time:

P(t) =9, + (4-3)

The signal is then locally monochromatic, that is, there are two symmetrical
narrow peaks in its spectrum, corresponding to the positive and negative
frequencies obtained by decomposition of the cosine function in its complex
form:

cos r = 3 exp(iax) + 3 exp(—iawr) (4-4)

When the phase evolution is that simple it is clear that we can tolerate that ®
become close to @, =2nf.. However, accepting higher frequencies, that is,
spectrum aliasing, would require additional information that is not present in the
sampled signal. This could result from an a priori knowledge on the behavior of
the deforming object. As soon as the phase evolution can no longer be
approximated by a linear function of time, the signal’s spectrum starts to spread
out in larger peaks and the peak central frequency can no longer come close to
.. We must note that the limitation to half the sampling frequency is a
limitation concerning real signals. We will see in Chapter 9 that we can create a
complex signal of the form Aexp(iax) + Bexp(-iax) with B<<A, from several real
signals of the form cos(w). In well-conditioned cases, the disappearance of the
negative frequency component when B—0 allows to identify and follow the
positive frequency component beyond the Nyquist limit.

If we come back to the situation of Figure 4-3 and suppose that we acquire
signal samples at a frequency of 1 Hz, the corresponding cut-off frequency is
0.5 Hz or wrad/s. Hence, a /2 phase change per samplc is lower than the
Nyquist limit and the signal is correctly sampled. In the second case, the phase
change is 312, which is higher than the admissible limit. The aliasing effect
folds back the two peaks +37/2 and -37/2 rad/s to the -7/2 and +1/2 frequencies.
This explains why the apparent signal of Figure 4-3(b) has a frequency of n/2.
The phase spectrum is folded in a similar fashion, which results in the opposite
sign for the phase of the two peaks. Hence, if onc were to use these samples to
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compute the phase value of the signal at a given instant, the opposite of the
actual value would be obtained.

We will adopt the following conventions in the rest of this document. First,
we will use the name frequency when talking about a frequency f measured in
Hz or about the corresponding pulsation ® = 2nf measured in rad/s. Second, in
all the developments dealing with frequencies and phase-changes per sample we
will consider that the image acquisition rate is 1 Hz. Hence, a phase change of
7/2 between two successive images will correspond to a frequency (or pulsation)
of /2 rad/s.

To conclude this paragraph, we observe that obtaining a correct phase
measurement is possible only if the acquisition rate is sufficiently high that the
absolute phase variation of each point of the interferogram stays lower than .
This is a necessary but not sufficient condition. Depending on the method we
intend to use to calculate the phase, other conditions will be required. In
particular, if we wish to apply a *“classical” phase-shifting algorithm, the
hypothesis of a locally linear time evolution of the phase will have to be made.
Moreover, a practical measurement can be ruined if external perturbations such
as vibrations provoke phase variations that exceed the sampling requirements. A
small high-frequency phase “noise” due to such perturbations is not too much of
a problem as long as it does not create important intensity variations. As soon as
this noise becomes important, the phase change induced by the object motion is
“drowned” in apparently random phase variations. High-frequency phase
perturbations amount to the creation of a larger signal spectrum, which becomes
undersampled. This is a major problem in the case of in situ applications, such
as those envisaged in the field of civil engineering. Particularly, desensitized
interferometric set-ups have to be uscd.

For practical measurements, the tolerable speed of deformation of an object
will depend mainly on the speed of the camera. Standard CCD cameras offer
rates of 25 or 30 Hz in the “full-frame” mode of opcration. Fast hard drives and
state-of-the-art image acquisition boards make possible the acquisition of
sequences thousands of images long. Other non-standard cameras offer higher
rates. In our laboratory we use a digital camera operating at 160 Hz in the
512 x 512 pixels resolution. Newer, faster cameras start reaching the market
nowadays. Some offer rates as high as 1 kHz.
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4.1.2 Sign ambiguity in the phase estimation

When one applies the “classical” phase-shifting technique to static
interferograms, the necessary phase increments are introduced with a controlled
device, for example with a PZT. In this case, the direction or sign of these
increments is known or can be calibrated once and for all.

Let us assume now that we dispose of an algorithm capable of computing a
phase map from the images shown in Figure 4-1, where the unknown phase
increments are provided by the deformation. This algorithm is necessarily built
with the assumption that the phase shifts between images are all positive or
negative. However, the images themselves do not provide a means to determine
the sign of the actual phase shifts that occurred during acquisition. This is
illustrated in Figure 4-5 where the simulated temporal signal of a pixel is drawn
along with the two possible phasc evolutions that could cause it.

i o(t) o)
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Figure 4-5. Simulated intensity signal of a pixel and corresponding
possible graphs of the phase as a function of time.

This sign ambiguity problem is due to the parity of the cosine function. Indeed,
the same successive intensity values are measured when the phase ¢ changes by
an amount A@ between images or when the opposite phase —¢ changes by an
amount —-A@, regardless of the actual sign of ¢ and Ag:

1(t — nAt)

Iy + Iy cos(@ —nA@) = Iy+ 1y cos(—¢+nAg)

1(t) Iy + 1y cos(—¢) (4-5)

1y + 1y cos( @)

It+nAt) = Iy+1ycos(@+nA@) = I+ 1y cos(—¢—nAp)

Hence, a standard phase-shifting algorithm applied to these intensity
measurements can not determine the correct sign of the phase.

In the example of Figure 4-1, the fringes represent contour lines of the
shape of a metallic membrane. The fact that onc fringe appears in the center of a
radially expanding circular fringe pattern can result from the membrane
becoming more convex or more concave. Hence, we do not know the sign of the
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deformation if we do not have additional information, such as the sign of the
pressure variation in this particular case.

There are admittedly some experiments where a sufficient knowledge of
the actual behavior of the object permits to determine the sign of the
deformation and correct the calculated phase values if necessary. However,
many interesting experiments deal with unknown behaviors and/or very
complex fringe patterns where the phase variation can be positive in some
regions of the interferogram and negative in others.

The solution we propose consists in introducing an additional phase-step o
during acquisition. The idea is to offset the total phase increment at each pixel
so that its sign is always positive (or always negative). The resulting method is a
combination of a classical phase-stepping technique (addition of a constant
phase o at each point of the interferogram) and of an integrating bucket method
(continuous phase-shift caused by the object motion).

The choice of o is guided by theoretical as well as practical reasons. From
a practical point of view it is better to chose o as an integer fraction of 2x, say
2r/n. In this case the phase shifter can be used in a cyclic fashion. Instead of
adding 2m/n steps continuously, which would require a very large range for the
phase modulator in the case of long experiments, the use of the n-periodicity
ensures that it always works within the same limited range, which can be
accurately calibrated. Moreover, a precise calibration is required only for the
n - 1 phase increments that will be used.

From a theoretical point of view we need to consider the acceptable range
for the total phase shift. As seen in paragraph 4.1.1, its value should not become
higher than n. Moreover, it should not become lower than zero (this is the goal
of the introduction of a controlled step). If there is no a priori reason for the
deformation-induced phase change to be predominantly positive or negative, the
logical choice for o is m/2. The tolerable phase change produced by the
deformation is thus within [-%/2, /2] in this case. The device used to introduce
the additional phase steps only needs to be calibrated to realize {0, w2, n, 31/2}
cycles. Practical phase modulation schemes are presented in the chapter
dedicated to dynamic phase-shifting applications.

4.1.3 Non-modulating pixels

Another limitation inherent to dynamic phase-shifting is that the phase-shift
produced at a given point is proportional to the product of the corresponding
deformation by the sensitivity of the interferometer. Hence, there are usually
regions of an interferogram where no significant phase variations can be
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observed. For example, these points can be located near the regions of contact
between the object and its holder or, simply, far away from the region where
loading is applied. In any case, a phase evaluation with quasi-null phase
increments is usually impossible as it amounts to trying to reconstruct a cosine
function with a few ill-distributed samples. Even if this is mathematically
feasible in an ideal case, the inherent noise of any acquisition set-up makes this
calculation highly imprecise. This is illustrated in Figure 4-6(a) where the phase
of the third image of the sequence presented in Figure 4-1 is computed from the
first five frames with the 5-image algorithm presented in paragraph 4.2. The
wrapped phase map was low-pass filtered once in the sine and cosine domain. A
profile along a diameter is shown in Figure 4-6(b). One can observe that the
phase estimation becomes meaningless in the outer region of the circular pattern.

M l/“\\ \\ \

Meaningful part of the interferogram

(b)

Figure 4-6. (a) Wrapped phase map of the third image of the
sequence shown in Figure 4-1, after filtering; (b) Cut along a diameter

Again, the introduction of an additional phase-step during acquisition
solves this problem. It simply amounts to a classical phase-shifting measurement
for the static regions of the interferogram. Besides, it permits to distinguish
between pixels where there are no temporal intensity variations because there is
no significant deformation, and the pixels where the interferogram modulation is
simply too low to produce a useful signal.

4.1.4 Modulation loss

It is worth mentioning that there is a fringe modulation loss during the
acquisition of interferograms in the dynamic phase-shifting regime. It depends
on the exposure time 7, of the camera. If this interval is very short, for example
if a pulsed laser is used, one measures an intensity given by equation (4-2). If
this interval is no longer small compared to the phase variation, the
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corresponding intensity variations are integrated, which amounts to a blurring of
the fringes. This can be written as:

8¢
1(:.~>=Lf Iy + Iy cos( (r) + at) dor (4-6)
280 J 5

where 28¢ is the total phase change during T, and ¢ is the corresponding
average phase value. Assuming that /o and /v do not change during that small
interval and that ¢ can be approximated by a linear function of time, this

expression leads to:
I(t,)=1, + I, sincdpcos 9(¢;) 47

where sinc(x) is equal to sin(x)/x. Incidentally, this demonstrates that the
integrating-bucket and corresponding phase-shifting methods rely on the same
analytic solutions for ¢. The consequence of the sinc function is a loss of
modulation by a factor function of &, the half phase variation during T, at this
point of the interferogram. In a worst-case scenario, the exposure time is equal
to the acquisition period. In the case of a sufficient sampling rate, the maximum
useful phase change is nt. The resulting measured modulation is then 64% of the
modulation obtained for a similar static interferogram. If T, is now half of the
sampling period, the maximum modulation loss is limited to 10%. If there are
points of the interferogram where the phase change is larger than the Nyquist
limit, their modulation will drop more sharply. This is a natural way to filter out
these ill-conditioned regions, if the phase-extracting algorithms use the
modulation of a pixel as a measure of the confidence that can be accorded to its
calculated phase.

One needs to find a compromise that gives the highest amount of
modulation for a given illumination of the object. This problem is of no concern
if a pulsed laser is used. However, it must be taken into account when the object
is illuminated with a continuous laser. Very short exposure times are not the
solution when the laser power is limited, as only a small fraction of the light is
collected by the detector. In the case of a static interferogram observed with a
linear-response detector, the potential modulation at each pixel is directly
proportional to the exposure time. In the case of phase variations during T, this
linear increase is counterbalanced by the sinc function described above, with the
argument 8¢ = al,. Actually, as long as saturation is of no concern, the
exposure time should be as long as possible since:

Iy =T, sincdp= 1 sin(aT, ) (4-8)
o
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Hence, for a given phase increment rate a such that 28¢ < &, the optimum
modulation is obtained with large 7.

The other parameter that can play a positive role is the lens aperture. The
higher it is, the lower is the exposure time that gives the maximum achievable
modulation (short of saturation). Moreover, large apertures are always beneficial
in the case of speckle interferometry (sec Appendix A).

4.2 Phase extraction using phase-shifting algorithms

Our first idea when we decided to look for solutions to the problem of phase
measurements in the case of object motion, was to try using phase-shifting
algorithms adapted to this natural phase shift. This requires a strong hypothesis
to be made on the phase temporal variation, namely, that it behaves locally as a
linear function of time. Here “locally” means the time interval covered by the
acquisition of the n images used by the algorithm. This is sketched in Figure 4-7
where two simulated phase evolutions are plotted along with the corresponding
intensity fluctuations measured at the detector. The five dashed lines indicate the
instant of acquisition of five successive samples.

Our hypothesis on the object behavior is indeed very strong but it does
correspond to many physical phenomena where a deformation is more or less
proportional to the applied load. Hence, smooth, sometimes even monotonic
evolutions can be observed, simply due to the mechanical properties of most
materials. The question remains whether the phase behaves approximately
linearly at the required time scale. In the case of material or structural testing,
elastic and inelastic deformations are well suited to fulfil the above requirements
as the applied loads usually have a simple and more or less adjustable time
evolution. There is no particular problem if cracks appear and propagate slowly
(like well-monitored Compact-Tension experiments) as this is equivalent to a
physical discontinuity of the object. The information will be lost in pixels
directly covering the cracks without however affecting their neighbors. On the
other hand, if cracks appear rapidly like in a brittle rupture, the phase of many
pixels increases much faster than what is tolerable between two successive
images. In this case there is a large undersampling of the signal and the
continuity of the measurcment is lost.
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(c

time

Figure 4-7. (a) Simulated temporal phase evolution of two pixels;
(b) Corresponding detected intensity modulation.

Let us assume that the phase follows the hypothesis stated earlier. We call
Ag the average phase increment between two successive images and ¢ the phase
value we wish to calculate from n images. There are two other unknowns, the
background intensity /o and the modulation /y. Hence, a minimum of four
equations is required. We present different solutions in the following
paragraphs.

Two types of application can be envisioned for these methods. In one case,
the goal is to perform a single phase measurement, in non-static conditions. The
dynamic phase-shifting phenomenon is then used conjointly with a controlled
phase-step to compute the phase, but the phasc variations are rather seen as a
nuisance the effect of which is taken into account by the algorithm. An example
could be the measurement of the shape or deformation of a large object in
presence of air turbulence. The main requirement in this case is simply that one
can find time intervals where the temporal phase evolution is approximately
linear. There is however no long-term requirement on the behavior of the
perturbations. Algorithms requiring only a few images are particularly
interesting for this application.

The other class of applications concerns continuous decformation
measurements and some specific shape measurement techniques where for
example the pitch of the fringes is continuously changed. In this case, the
stability requirements are more stringent since the phase evolution is actually the
quantity of interest. Sometimes, a controlled phase-step is not even needed to
obtain images suitable to phase extraction. Images have to be recorded
continuously during the experiment and their processing, if successful, yields a
“movie” of the phenomenon, bringing insight into the object’s temporal
behavior.
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4.2.1 3+1 phase-shifting algorithm

The simplest possible algorithm is based on three successive images acquired at
a sampling frequency of 1/At:

I¢~A) = I, = I,+ 1 cos(¢p~Agp)
Ity = 1, = I;+1y cosg 4-9)
I¢+A1) = I, = Iy+1ycos(gp+Agp)

This algorithm is a sibling of a “2 + 1” algorithm proposed in the domain of
optical shop testing of large telescope elements where one usually obtains
high-modulation interferograms with no significant variations of background
intensity or modulation. As the interferogram is static in that particular case,
only two phase-shifted images arc required. For our application we need threc,
One unknown, [;, has to be first evaluated before the beginning of the
experiment. This can bc done by averaging a large number of frames while the
phase of the interferogram is perturbed, or by averaging two images obtained
with and without a w phase shift. The phase increment and the phase are then
calculated with:

cosAp = I +1,-21, - Iy cos@cosAg
2(1, - 1,) I cos@
ang = L-1, 1 - Iy singsinAg 1 (4-10)
2(1, - 1,)sinAgp Iycosp  sinAg

The first equation gives an estimation of Ag as a function of Iy, Iy, I; and /5. The
numerator and denominator are developed on the right hand side, before
simplification of their common factors. This helps to understand the influence of
intensity measurement errors on the calculated A value. In this case, we see
that whenever @ is close to an odd multiple of ®/2, both numerator and
denominator tend to zero. As a consequence, the estimation of A¢ becomes
highly imprecisc. The sinAg term in the numerator of the tangent expression is
also a source of imprecision. The direct dependence on Iy emphasizes the
observations made in Appendix A, that is, the higher the modulation, the higher
the precision. Actually, all phase-shifting algorithms share this obvious
property...

In our case, we used the above equations to first estimate ¢ and A¢ before
recalculating I,. Hence, an iterative algorithm is obtained that supposedly should
adjust itself in the case of variations of I and Iy. A visiting student implemented
this technique, only to find out its catastrophic behavior in the presence of noise
or low-modulation interferograms. Part of the problem is due to the iterative
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algorithm that has a certain tendency to diverge. Moreover, as explained earlier,
all phase-shifting algorithms fail when the phase increment A@ becomes close to
zero. This particular algorithm was shown to fail earlier, that is, for higher A
values than other more sophisticated methods. Hence, this algorithm was not
retained for our developments.

4.2.2 Carré algorithn’®

This technique is often presented as the first phase-shifting algorithm, dating
back to 1966. It is based on the acquisition of four samples, phase-shifted by
equal but unknown amounts AQ:

I¢-280) = I, = Iy+Iycos(p—2A9)
It-At) = I, = Ig+Iycos(@—LAg)
4-11
I6) = I, = Ig+1ycos(p+1ap) 1D
@+ = 1, = lg+Iycos(p+2Ap)
The phase ¢ and phase increment A¢ are obtained with:
tanﬂ - 3(12_13)_(11_14)
2 L-L+1,-1,
(4-12)

\/(3(12 1) -, - 1)), - 1)+, -1,))
U, +1,)—-U,+1,)

tan @

Because of the square root in the expression of tang, one can not use directly the
numerator and denominator to determine the actual sign of ¢. Instead, one can
observe that the quantity I, -J; is proportional to sing, while 5, +1; is
proportional to cos®. This actually works only if the sign of Ag is known, which
is the case if we add a phase step during acquisition. One small drawback of the
technique is that the computed phase does not relate to any of the recorded
images, but rather corresponds to the average of the phase in the four images.
Another limitation appears if we develop both numerator and denominator:

12 sin@sin*A@sin® A
ang - Vs esin’Agsin’idg @13)
1,, cos @sin A@sinjA@

We observe that the combination of measured intensity values in the numerator
is proportional to the square of sing. Hence, for a given level of intensity
perturbations, the phase determination is more imprecise when @ is close to an
integer multiple of ®, compared to other phase-shifting algorithms where the
intensity combination is directly proportional to sing. Besides, the product of the
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two other squared sine functions of argument A and A¢/2 yields very imprecise
estimations of ¢ for small values of Ag. This confirms the observations made in
Ref.6, where this algorithm is found to perform well for phase increments
ranging from 60° to 160°, the optimum value being 110°.

We will use this technique for comparison purposes with the 5-image
method described next, in the case of continuous phase measurements.

4.2.3 5-image algorithm

We now briefly introduce a well-known algorithm based on five intensity
measurements. It was the starting point of our investigations and remains our
principal solution to the problem of phase measurements with small sequence of
images. As such it is more fully studied in Chapter 5.

From five successive intensity samples:

10281 = I, = Iq+ 1y cos(@-2A¢)
I¢-A) = I, = Iy+1ycos(¢-Ap)
1)) = I, = Il +1ycos@ 4-14)
I6+A) = I, = Iy +1I,cos(@+Ag)
It+2A0) = Iy = Iy+1y cos(@+2A9)

one can calculate the phase at each point with:

2(1, -1
tang = —(—21—“)sinA(p

I sin @ sin A
Uy -1 -1 I cos @sin’Ag

sin Ag (4-15)

This algorithm is frequently used in classical phase-shifting experiments
with a phase increment close to /2. It has been largely characterized in this
situation, where A is not calculated but assumed to be w?2. For example,
Creath’ shows that it is quite tolerant to non-lincarities of the phase-shift as well
as to detector non-linear response. This is explained by Oreb® who investigated
the interesting properties of so-called “N+1” algorithms. The “+1” actually
represcnts the last image of the acquisition, which is supposed to be identical to
the first one. This principle helps detect and correct phase-shifting errors. One
can intuitively explain the “good-natured” behavior of this algorithm ncar /2 by
observing that the numerator and denominator in (4-15) are function of the sinc
and squared sine of A@. First, these quantities are close to one for the chosen
phase increment and second, their variations are with the square, respectively
fourth power of the difference between the actual phase increment and n/2. This
is actually equivalent to observing that both functions have a horizontal tangent
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near 7/2. Hence, quite large variations of A@ with respect to its target value do
not cause large errors in the determination of the phase ¢.

The above mentioned properties are interesting in our case, particularly for
slowly deforming regions of the object, when a /2 phase step is added during
acquisition. However, the perfect algorithm for dynamic phase-shifting should
perform well in the largest possible domain of phase increments within [0, x]. It
can be assumed that for A values no longer close to n/2, the ideal properties
described above might be lost. Robust means of determining A@ are required.
Several solutions exist and we characterize some of them in Chapter 5 where the
behavior of the full algorithm is studied in more details, particularly with respect
to noise influence.

4.2.4 Advanced phase-shifting algorithms

The “classical” algorithms presented in the preceding paragraphs have more or
less well-known properties and they can be adapted to the particular problem of
dynamic phase-shifting. It is clear however, that dedicated algorithms could be
constructed to provide better noise immunity and most importantly, permit to
relax the hypothesis of a linear temporal phase evolution at each point of the
interferogram. However, robustness will usually imply the use of more intensity
samples to lower the influence of individual clements. Such is the case with
iterative least-square fitting of a sine function to the measured signal of each
pixel. This, in turn, makes the hypothesis of a linear phase evolution more
difficult to obtain practically. One can then think of approximating this phase
evolution by a second-degree function, but this introduces a new unknown.
Moreover, it might become necessary to take into account the possible variations
of 15 and Iy Hence, more samples are required to get a better fit. The conclusion
is that there is a trade-off between obtaining robust algorithms that perform
better in the presence of noise, the required number of samples and the accuracy
of the estimation. The problem remains to find mathematical arguments that
help design efficient N-image algorithms without exploring randomly the
endless possibilitics.

Another point can also be raised with respect to phase-shifting algorithms
based on a fixed number of images. Let us imagine that in a sequence of images
we find two pixels where the temporal phase evolution is linear. One has a phase
increment of say, w6, while the other one has an increment of 51/6. Both are
then correctly sampled as the corresponding A are within [0, nt]. However,
during the time it takes for the slower one to see a phase change of 2n, the faster
one accumulates five complete 2m periods. It is quite clear that these two



4. Dynamic phase-shifting 65

situations are not similar from the point of view of signal processing. A 4- or
S-image algorithm might be well suited to process the faster signal, but it would
perform poorly for the slower one where less than a fourth of a period is
sampled over this interval. The reverse would be true for a 10-image algorithm.
Indeed it seems there is a heuristic rule that suggests that a well-designed
phase-shifting algorithm should work with samples distributed over one period
of the signal. It might then be tempting to try using different algorithms at the
same time, the optimum one being chosen according to the signal apparent
frequency. The difficult problem of actually estimating this frequency
nonetheless remains.

In regard of these considerations, we decided not to limit our search to the
field of phase-shifting algorithms but also to look in the larger domain of digital
signal processing. The promising features of time-frequency analysis prompted
us to forego the “quest” of the ideal phase-shifting algorithm and to explore less
orthodox techniques (at least for someone used to fringe analysis methods),
based in part on wavclet transforms.

4.3 Phase extraction using time-frequency analysis

Let us first observe the signal of a single pixel, Figure 4-8, obtained during an
in-plane measurement using a speckle interferometer. Here, 512 samples were
recorded during a rigid body translation of the object. They are plotted on a
scale ranging from 0 to 255.
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Figure 4-8. 512 samples of a pixel signal obtained in in-plane speckle
interferometry for an object moving at a constant speed.

This example shows what could be qualified as a “good” signal, at least in the
case of speckle intcrferometry. Indeed, the observed modulation 2@y varies
between 50 and 15 gray levels. This second value is obtained for a short period
of time. The variations of Iy and Iy are due to speckle decorrelations, as the
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speckle field on the detector undergoes a translation of four pixel-widths during
the experiment. These decorrelations certainly introduce phase perturbations as
well. It is worth noting here that the signat depicted in Figure 4-8 is very similar
to the signals obtained in speckle interferometry velocimetry.

If we look at this signal as a whole, the analogy with a modulated “single”
frequency sinusoidal signal is evident. It would actually correspond to the case
of an amplitude modulation (AM) and frequency modulation (FM) of the
apparent carrier frequency (if we neglect the slow variations of Iy). In this
example, the constant speed displacement creates a more or less constant
frequency signal, the carrier. In more complicated deformation situations, the
introduction of a /2 phase-step bctween images, as described in paragraph
4.1.2, creates this essential carrier frequency. The amplitude modulation can
result from variations of the illumination of the object or decorrelations in the
case of speckle-based methods. In the example of Figure 4-8, the laser power
was stabilized by a feedback loop. The frequency modulation results from the
deformation itself. If we consider a pixel where the instantancous phase change
is —7/4 rad/s (assuming a 1 Hz sampling rate), the measured signal in the case of
a 1?2 rad/s carrier has a frequency of +m/4 rad/s. Similarly, a pixel where the
phase increases by +m/4 rad/s produces a 31/4 rad/s signal. The major interest of
the carrier frequency is to allow the determination of the sign of the
displacement by looking at the positive or negative frequency shift. And, as
mentioned earlier, it permits to measure a phase for pixels where no significant
phase change occurs. Without the carrier frequency, they would produce a DC
signal, difficult to interpret. Of course, as observed at the beginning of this
chapter, the shifted frequency should remain within the band {0, ] rad/s in order
to have a correctly sampled signal.

The observation that the instantaneous phase increment translates in a
frequency shift of the signal makes us wonder if this shift can be measured
accurately. Indeed, if we can calculate the instantaneous frequency, or phase
increment per sample A, we can solve some of the problems mentioned at the
end of paragraph 4.2.4. Particularly, the knowledge of A allows to chose a
well-adapted phase-shifting algorithm. Another possibility, assuming we can
obtain a graph of the frequency as a function of time, could be to “integrate” this
frequency signal, yielding the phase we are actually interested in. In other
words, we would simply sum the A¢ measured as a function of time. The
question remains whether it is possible to measure this frequency with a
sufficient accuracy and time resolution. This leads to the particular field of
time-frequency analysis methods.
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In the course of our search for the necessary tools and thanks to the help of Dr
Drygajlo, we happened upon methods used in the field of acoustic signal
processing. People working in this field are usually not interested in the phase
content of their complicated signals but they observed interesting phase
properties of the Gabor transform and of a particular wavelet transform. These
properties provide a very efficient means to extract the different harmonics of
their signals. It was thus very interesting for us to study these processing tools
and determine if they could give us directly the phase information we are
looking for, with the required precision and resolution.

In the next paragraphs we introduce the framework of time-frequency
analysis, starting with windowed-Fourier transform. The Gabor transform is
then briefly described to preparc the introduction of wavelet analysis.

4.3.1 Fourier transform and windowed Fourier transform

The Fourier transform (FT) is the standard tool for obtaining the frequency
spectrum of a given signal s(¢) over its total duration. We usc the following
definition of this transformation:

(o) = r s(t) e 1O gy (4-16)

The spectrum §(w) is usually complex. Its amplitude represents the weight of the
different frequencies that constitute the signal. The inverse Fourier transform
permits to reconstruct s from §:

s(t) = 1 rs(m) ' do (4-17)
2nJ

The properties of Fourier transformation are well known. We will only recall
here the Parseval-Plancherel theorem that will help us move back and forth
between the time and frequency domains. It establishes the following relation
for two functions f{¢) and g(1):

FOFMdr = —;;r F@)F@)do (4-18)

where g is the complex conjugate of g.

Obtaining the complete spectrum of a whole signal is fine for some
applications but in our case we are rather interested by its “instantaneous”
spectrum. In the case of a locally monochromatic signal with long-term
frequency variations this instantaneous spectrum reduces to a narrow peak while
the complete spectrum is large, all frequencies being represented regardless of
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their time localization. Hence, we want to analyze the signal as locally in time as
possible. This is achieved by using a windowed-Fourier transform (WFT). In
this case, a sliding window W(z-1), localized at time T, is used to isolate a small
portion of the signal s(z). The product W (¢t — T)s(¢) is then Fourier transformed
to yield an estimation of the instantaneous spectrum S(®,1):

s@n=]| sOW(@-1e g =2ir§(a)W(a—m)emda (4-19)
The second expression is a consequence of (4-18). It shows that to the time
localization corresponds a frequency localization. In particular, a spectrum
component S(w,1) is “influenced” by the weighted value of s(f) in a region
surrounding T and, conversely, is influenced by the set of frequencies o such
that W (o - @)#0. There is thus a trade-off between time and frequency
localization as the narrower W(s) is, the larger is W(m) and vice versa. For
example, in the case of a FT applied to the complete signal, W(¢) is as large as
the signal support. Hence, the corresponding frequency band can be very
narrow. In other words, the frequency resolution is high. If, on the other hand, a
very narrow time window is used, a high time resolution is obtained conjointly
with a very low spectral resolution. This trade-off is the consequence of the
uncertainty principle that states that the product of the temporal width Ar of a
window function by its spectral width Aw is necessarily larger than a constant
factor. Depending on the definition of these widths®, one obtains the simple
relation: ArtAw 2= 1/2. Equality is obtained if and only if the function is Gaussian.
Hence, no function can be better localized in the temporal and spectral domains
than a Gaussian window. The use of this window in WFT is called the Gabor
transform, after Denis Gabor who proposed the use of such functions as
“information grains” in the context of communication theory'.

4.3.2 Gabor transform

The Gabor transform G(m,t), is one way to obtain an instantaneous spectrum of
the signal. Actually, it permits to “explore” the 2-dimensional time-frequency
domain. In other words, it is possible to know, in a signal s, the importance of a
band of frequencies centered at w in a time region centered at T.

G(w,1)= _r s(t)exp[ ¢ _t) ) e XD gy (4-20)

The only parameter is the variance o’ of the gaussian window, which permits to
reach the best time-frequency localization compromise for a given situation. We
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can observe that the real window function is also multiplicd by a phase term
exp(iwt), which guarantees that the oscillating term exp(-iw¥) is always “in
phase” with the center of the window.

Similarly to the problem identified in 4.2.4 for n-image phase-shifting
algorithms, the number of time samples for the analysis is fixed once ¢ has been
chosen. This can be troublesome when the actual frequency of a signal can range
from very low frequencies up to the Nyquist frequency, which is the case with
dynamic phase-shifting. Similar observations led Morlet, working in the field of
seismic signals'', to devise a different type of analysis where the width of the
analyzing window is automatically adapted to the particular frequency band of
interest. Intuitively, it makes sense to use a large window when exploring the
low-frequency components of a signal, and a narrow onc when looking for
high-frequency components or transients. His work was one of the main roots of
what is loosely known today as “wavelet” analysis.

4.3.3 Wavelet analysis

Wavelet analysis has becn a rapidly expanding field in the last decade as
mathematicians started to establish the wide-ranging and non-trivial
mathematical propertics of what were at first convenient engineer tools®*'>. An
intercsting historical account by Daubechies'” shows that different domains of
physics and engineering have for years developed methods that can all be
brought in a larger perspective based on wavelets. For example, the *“quadrature
mirror filters” used in electrical engineering are actually a sibling of the “multi
resolution analysis” (MRA), which is a subband analysis based on orthogonal
wavelets. Applications are numerous. The most evident include time-frequency
analysis where one is interested in the features of the spectrum of a signal and
“signal representation” where the goal is to decompose a continuous signal in a
limited series of components. This leads in this case to signal compression (huge
compression rates of video signals have been obtained using wavelets'!), or
signal filtering by selecting and modifying the frequency subbands used to later
reconstruct the signal.

A wavclet decomposition of a given signal s(7) is performed through the
use of a dilated and translated basic window function g(f), sometimes called the
“mother wavelet”. The wavelet transform is calculated for different values of the
scale or dilation parameter a, and the time translation b:

S(a,b) = %rs(:)g[%}h (4-21)
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The transform can also be written as:

S@b=5- [ s@iaw Pda (4-22)

as a consequence of (4-18). This expression will be useful to understand the
phase properties of thc Morlet wavelet and the influence of the FT of the time
window. As in the case of FT or WFT, a reconstruction formula can be used to
rebuild the signal from its wavelet coefficients S(a,b):

2 (™ - b
so=2[["va S(a,b>g(ﬁj"“‘f (4-23)
CJlJ-w a a
Where C is given by:
ay o2
= (g(w
c=2nf |g(—)|—dm < oo (4-24)
e ®

In practice, this reconstruction is not very useful for the particular application
we have in mind, but the fact that C must exist leads to some admissibility
conditions on the function g. We do not wish to review them in details, a
rigorous discussion being made in Ref.9. However, we mention here the
conditions that have practical consequences. First, g must be a square-integrable
complex-valued function (noted g € LZ(R) ), that is:

r lg@)f de <o (4-25)
As g is supposed to be a window function, it should also verify:
r |lg(t)] dt <o (4-26)

Consequently, ¢ is a continuous function. It follows from (4-24) that g (0) must
be (0. We will see in the next chapter the problems that arise when this condition
is not respected. We must emphasize here that any function g of LA(R) satisfying
the above-mentioned requirements is susceptible of being used as a mother
wavelet.

As explained earlicr, the wavelet analysis is performed differently for high
and low frequencies. This is sketched in Figure 4-9 where the elementary
analysis “cells” in the time-frequency domain are compared for wavelet and
fixed-width windowed FT.
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Figure 4-9. Time-frequency analysis cell in the case of: (a) a WFT
such as the Gabor transform, (b) a wavelet transform.

Accordingly, wavelet transforms present a better frequency resolution in the low
frequencics domain, at the expense of time localization, and a higher temporal
resolution at high frequencies, at the expense of spectral resolution. In both
cases however, the “surface” of an individual cell remains constant, only its
aspect-ratio changes.

The wavelet decomposition as presented with the integral wavelet
transform can be continuous but a standard approach is to “explore” a signal at a
specific number of locations obtained by “binary dilation” and “dyadic
translation™. In other words, wavelet coefficients are calculated for the set of
points a = 27, where j is integer'’. In the case of orthogonal wavelets this yields
an efficient and non-redundant decomposition of the signal. Many algorithms'®
have becn developed in this context, leading among other tools to MRA.
However, our goal is not to filter or compress our signal but rather to extract its
instantancous frequency and possibly its phasc as accurately as possible. Hence,
redundant information is not an issue in itself. We will see in the next chapter
that a simple approach gives us this phase information with a limited number of
estimations of S(a,b) for a given time b.

Becausc of the particular phase properties of the Morlet wavelet described
by researchers working in the field of acoustic signals'®, we decided to
investigate the possibility of applying it to our temporal signals. This
investigation is still running but the results so far show that a wavelet analysis of
our interferometric signals is indeed a powerful method. Hence, this solution to
the problem of continuous deformation measurement will be characterized in
detail in the next chapters, along with the 5-image algorithm presented earlier,
both tools addressing overlapping domains of application of the dynamic
phase-shifting principle.
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4.4 Phase unwrapping in the case of DPS

The preceding paragraphs emphasized the difficulty of performing a phase
measurement in dynamic conditions. Whichever particular solution is adopted,
the computed phase ends up as a modulo-2n valuc. Hence, phase unwrapping is
required. As described in Chapter 3, this unwrapping can be conducted spatially
or tcmporally.

Two possible applications of dynamic phase-shifting were described in the
introduction of paragraph 4.2. In one case, small sequences of images are
recorded from time to time during a dynamic event. Each sequence yields one
wrapped phase map, using for example an n-image phase-shifting algorithm. In
this case, the only possibility consists in performing a spatial unwrapping of this
image (in the particular situation of speckle interferometry, it would be the
difference modulo-2n between this image and a reference that would need to be
unwrapped). Spatial unwrapping can be difficult because of noise, phase jumps
caused by physical discontinuities and disconnected fringe regions in the image.
We do not go in more details here since a description of these problems and a
review of possible solutions is given in Chapter 3. The particular spatial
unwrapping algorithm we use in practice is described in Chapter 7.

The other application of dynamic phase-shifting consists of recording a
continuous sequence of images during, for example, object deformation. In this
case, the phase can be obtained by use of a phase-shifting algorithm or a
time-frequency based analysis. In any case, we obtain a 3-dimensional phase
“map”. One could again use spatial unwrapping algorithms. However, it is much
more interesting to perform the work along the time dimension. The phase of
each pixel is then unwrapped independently of its neighbors. The consequence is
that there can no longer be spatial error propagation in the image. Besides,
physical discontinuities or separated regions are not a problem any more, since
no spatial relationship has to be assumed in the image. Most importantly, the
resulting “movie” of unwrapped images gives a continuous and absolute
measure of the deformation of the object, contrary to the other acquisition
scheme where small sequences of images are recorded separately.

One-dimensional unwrapping is much simpler than 2-dimensional as we
know that the discontinuities of the phase result only from the modulo-2x jumps
produced by the arctangent function. The continuity of the phase and of its
derivatives are propertics that can be used to perform a fit of its general
evolution and thus correct erroncous values. Moreover, in the case of dynamic
phase-shifting, the instantaneous phase increment A@(#) (smaller than ) has to
be determined. Hence, if the phase @(¢) at time ¢ is unwrapped we can estimate
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the probable phase ¢(r+1) by calculating @(#)+A@(¢). This estimation helps to
choose the number of 2r-multiples that need to be added to the wrapped value at
t+1. Furthermore, if a known phase step is introduced during acquisition (see
paragraph 4.1.2), and this will usually be the case for our applications, we have
the additional knowledge that the phase variation is monotonic. All these
arguments make the temporal unwrapping a very straightforward process. Its
implementation, combined with optimum phase filtering is presented in
Chapter 6.

One last property of continuous deformation measurements using dynamic
phase-shifting must be emphasized here. Two-dimensional phase unwrapping is
possible only if the fringes are sufficiently well sampled by the pixels of the
camera. This is actually another application of Shannon’s theorem, this time in
the spatial domain. The practical consequence is that there must be at least two
pixels per fringe in the image. In the case of dynamic phase-shifting this
requirement disappears completely since what is required is a modulation of the
pixel signal in the time dimension only. One can easily imagine an experiment
where two adjacent pixels look at parts of an object that move at different
speeds, for example an object tilting at a constant speed, observed in
out-of-plane speckle interferometry. The phase increment difference between
these two points can be quite small. However, after the accumulation of
hundreds of images the difference of their unwrapped phase can be very large,
which would be equivalent to a very high fringe gradient in an interferometric
image. The corresponding interferogram would actually be completely
undersampled. This does not however prevent us from obtaining the unwrapped
phase images, thanks to temporal unwrapping.
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5. Characterization of the 5-image algorithm

In Chapter 4, we presented the general principles of dynamic phase-shifting and
its fundamental limitations due to finite sampling rate. Two different solutions to
the problem of phase measurement in non-static conditions were then proposed.
One is based on modified phase-shifting algorithms used habitually in static
conditions'”. It was seen that they suffer from their very nature, namely, the
need for a fixed number of images, which prevents somehow their application to
very fast and very slow phase variations. On the other hand, since they require a
limited number of images, they can be used as a tool for single phase
measurements in difficult conditions. For example, short packets of images can
be acquired from time to time in a perturbed environment. Their processing
with, for example, the 5-image algorithm we chose, yields phase maps that
relate to the instantaneous deformation state of the object under investigation.
Because of the perturbations, some of these phase maps might be simply
meaningless. We will refer to this method as the “spatial solution™ since no
long-term temporal information is required nor expected.

The goal of this chapter is to characterize the robustness of the 5-image
algorithm as well as its useful domain of application (with respect to the rate of
phase variation in the interferogram). This study is mainly based on simulations.
The Carré algorithm® is also used for comparison purposes, since it appears to be
well suited to our particular problem.
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5.1 Overview of the 5-image algorithm

The main advantage of this algorithm is the relatively limited number of images
it requires, which makes more probable the hypothesis of a linear temporal
phase variation. We will usc the following notation for the five temporal
samples recorded for each pixel:

I¢-2A1 = I, = I,+1ycos(@—-2A¢)
It—-At) = 1, = I, +1ycos( @-Ag)
I0) = I, = I;+1y,cos¢ (5-1)
I¢+AD) = I, = I,+1, cos(@+A9)
I+2A0) = Iy = I,+1ycos(@+2A¢)

where At is the sampling period. The phase corresponding to the central sample
is computed with:
2U, -1 .
tang = A=) sinAg = —
20, -1, = I Iy cos@sin“A¢@

Iy sin@sin A sin AQ (5-2)

A first observation of (5-2) indicates that the phase estimation should become
imprecise when A¢@ tends towards 0 or m, since the ratio becomes very
“sensitive” to noise when both numerator and denominator tend towards 0. This
will limit in practicc the maximum and minimum acceptable rates of phasc
variation in the interferogram. We will come back to this point later.

Many solutions exist to first evaluate A¢@ from the five intensity
measurements, We will restrict ourselves to four simple possibilities of
calculating cosA@. We label them A, B, C and D. In the following equations we
give also the development of the numerator and denominator, before
simplification of the common factors. This helps to understand when a particular
method is going to become unreliable.

(A) 2cosAe = Is=1 _ singsin24¢
Ia-1, sin @sin A
B) 2cospe = 137 _ sinfo+ Ag/2)sin380/2)
I, -1, sm((p+ A(P/2)Sln(A(p/2)
_ 1L, -1 _ sin(p—Ap/2)sin(3A¢/2) (5-3)
(C) 2cosAp = 1 = 3 . |
I,-1, Sln((p~A(p/2)sm(A(p/2)
(D) 2cosA¢ = 2, -1 - 1 9= cos @sin’ A@

213—14—12_ c05(psin2(A(p/2)_
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For example, we observe that the methods A and D will become unreliable when
the phase ¢ is close to 0 or 7 for A and 72 for D, which makes them
complementary with respect to ¢. B and C are not as simple as the dependence
on @ can not be isolated from Ag.

If we look only at the factors depending on A, we see that the four
solutions will behave differently. Experience shows that in the presence of noise
the above formulas perform better when the numerator tends towards 0 while the
denominator is maximized. For A, this corresponds to the situation where Ag is
close to w/2, for B and C A¢ should be close to 27/3 and for D the optimum is
A close to 7. As the ideal algorithm should work as well for Ag ranging from 0
to © we need to find out which of these methods provides us with the largest
acceptable range. If none is sufficiently robust, we can try to build a
combination of these solutions. Hence, in the following paragraphs, we first look
at the accuracy of the A@ estimation in presence of noise. Next, we look at the
resulting error on the phase estimation. An additional method, “Known”, will be
added to most graphs. It represents the particular case where A is supposed to
be known. This corresponds to the preliminary determination of the phase
increment, for example with the help of a wavelet analysis.

5.2 Phase increment estimation

In the following simulations, the accuracy of the methods A, B and D are
compared for five values of Ag (30°, 60°, 90°, 120° and 150°) and three noise
situations (no noise, Gaussian noise with standard deviation ¢ of two and five
grey levels respectively). Method C is not included since it corresponds to the
same cquation as B, using samples /, to I instead of I, to Is. The shape of graphs
plotted as a function of the phase ¢ are identical for B and C, one being shifted
by an amount A¢@ with respect to the other.

The model we use is that of an interferogram where the background
intensity Iy is equal to 128 grey levels and the modulation Iy is equal to 32 grey
levels. The resuiting intensity values are coded as 8 bits integers. For each
possible combination {method, A, 6}, we estimate A from five simulated
intensity values /, to Is, the phase ranging from 0° to 360° with a step of 1°. The
computation is actually repeated one hundred times for each phase value (except
when ¢ =0), using 100 noisy samples {I,, I, I5, I, Is}. The corresponding
distributions are presented in the next figures.
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Figure 5-1. Computed A¢ distribution using method A for five
nominal values (30°, 60°, 90°, 120° and 150°) and three noise levels.

Figure 5-1 illustrates the results obtained for method A. The vertical scale is
cropped in order to display the shape of the distributions when noise is present.
Without noise, the highest distribution corresponding to Ag = 90° is four times
as high as the maximum height in this graph. The non-zero width of the
distributions in the “no noise” situation result from the 8 bits digitization, which
is equivalent to introducing a noise of standard deviation 1/(2¥3) grey levels.
We observe that, as supposed earlier, method A gives a good estimation of Ag
around 90°, even for a high noise level. The distributions tend to spread out for
60° and 120° and become very wide for 30° and 150°. By construction, the
accuracy of this method is “symmetrical” with respect to 90°. This is interesting
in our case since we usually introduce a known phase step of w2 during
acquisition.

Another parameter of interest is the “success rate” of the method. Quite
simply, it corresponds to the number of times where the cosA¢ value estimated
from the ratio presented in (5-3) is within [-1, 1]. When this is not the case,
because of noise or grey level quantization of intensity, A@ can not be
calculated. The percentages corresponding to Figure 5-1 are presented in Table
5-1. Again, we find a symmetrical behavior relative to 90°. We note that there is
a sharp decrease in the transition from 60° to 30° and from 120° to 150°. 35% of
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the samples {/,, I, I5, I, Is} do not permit an actual estimation of A¢ for both
these extreme values with the higher noise level.

Ap 30° ©60°  90° 120° 150°
No noise 97 100 100 100 97
6=2 79 98 99 96 79
6=5 65 94 97 94 65

Table 5-1. Percentage of possible Ap estimations for method A.

We repeat the same simulations for method B. The corresponding
distributions and success rates are presented in Figure 5-2 and Table 5-2.

Figure 5-2. Computed A¢ distribution using method B for five
nominal values (30°, 60°, 90°, 120° and 150°) and three noise levels.

A 30° 60° 80° 120°  150°
No noise 93 100 100 100 99
6=2 63 93 98 98 94
6=5 57 81 94 96 83

Table 5-2. Percentage of possible Ag estimations for method B.
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We observe in this case that there is a shift of the Ap domain where method B
performs better. It corresponds to the 27/3 (120°) value that we hinted at by
looking at the corresponding ratio in (5-3). We note also that the behavior near
30° is catastrophic, even when the only limiting factor is the grey level
quantization.

The results for method D are shown in Figure 5-3 and Table 5-3.

Figure 5-3. Computed A¢ distribution using method D for five
nominal values {30°, 60°, 90°, 120° and 150°) and three noise levels.

Ap 30° . 60° 80° 120° 150°
No noise 71 99 100 100 100
c=2 56 86 97 98 97
c=5 57 70 92 97 91

Table 5-3. Percentage of possible Ap estimations for method D.

Not surprisingly, method D performs better than A and B for high A¢ values but
seems very unrcliable at 60° and below.

These simulations confirm the observations that could be made from the
formula presented in (5-3). Method A appears as the most “‘balanced” because of
its symmetrical behavior with respect to 90°. It is moreover the most reliable for
A values below 90°. However, none of these approaches seems to perform
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correctly for small phase increments near and below 30°. This is understandable
as the samples {I,, I, I, 14, I5} cover only one third of the period of the cosine
function, which is thus poorly sampled. We must not forget however that the
estimation of A¢ is one step of the calculation. It is more important to evaluate
the behavior of the whole algorithm in terms of error distributions on the
calculated phase ¢.

5.3 Some properties of the arctangent function

Before looking at the phase error distributions we need to look at onc important
property of the arctangent function. The question is: what kind of errors do we
introduce on the calculation of ¢ when A@ is not correctly estimated? As we
ultimately use the value sinA¢@ in (5-2), we can see the influence of this term in
the computation. Let us suppose that the correct phasc increment at two pixels is
7/2 and /6. Let us moreover assume that the estimation of A¢ is grossly wrong,
that is, (5-3) yields a A@ value equal to 7/6 in the first case and /2 in the
second. We chose this example since it corresponds to a sinA@ that is half of the
correct value in one case and twice the correct value in the other. We can now
plot the phase error obtained for a phase ranging from 0° to 90°, when these
erroneous sinA@ values are used in (5-2). The results are presented in Figure 5-4
where we see that the maximum error is close to +20° in one case and -20° in
the other. The even worse situation where A is estimated as 7/2 when its true
value is 7/9 is also plotted. In this case the crror amounts to £30°,
40°

e S

20° -

— sin(PV2) instead of sin(PV9) | - 7T
sin(PV2) instead of sin(PV/6) :
------- sin(PV6) instead of sin(PV2)
sin(PV9) instead of sin(PV'2)

10°
0°
10° 4
.20°
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40° . } . .
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Figure 5-4. Error on the calculated phase ¢ when A¢ equals /2 (resp.
1/6) but is incorrectly evaluated as W6 (resp. W2).

This bchavior of the arctangent function is good news in thc sense that it
attenuates largely the effect of a wrong A@ estimation. However, this docs not
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exempt us from trying to estimate A@ as precisely as possible, as this systematic
error source will add in practice to other errors.

5.4 Phase error distributions as a function of the phase

As observed from the equations presented in (5-2) and (5-3) there is an influence
of the actual ¢ value on the magnitude of the different terms used to estimate Ag
and @ itself. Hence, we want to know the distribution of the error 8¢ as a
function of the phase, the noise level and the method used to estimate A@. One
solution consists in drawing systematically images of these &¢ distributions as in
Figure 5-5 where the probability density of the calculated phase is plotted as a
function of the nominal phase ¢. In this figure, the results obtained with the
method A and D as well as with the Carré algorithm (described in Chapter 4) are
presented for a phase increment value of 30°, a noise standard deviation of 5
grey levels and a modulation Iy of 32 grey lcvels. 50000 phase estimations are
made for each nominal phase value ranging from 0 to 360° with a step of 5°.
The estimations are accumulated in steps of 5° (for example, 183° and 187° are
counted in the same “bucket” as 185°). Successive contour lines correspond to a
change of probability density of 500. A diagonal line is superimposed to help
evaluate the deviation from the exact phase value.

Estim_ated phase Estimated phase

7

Figure 5-5. (a) Probability density of the calculated phase using
equations (5-3)A and the 5-image algorithm (5-2) for a noise standard
deviation of 5 grey levels and a phase increment A of 30°; (b) Same
using (5-3)D and (5-2); {c) Same using the Carré algorithm.

This figure shows that the error is somehow reasonable using the S5-image
algorithm with method A or, surprisingly, D for the computation of A@. The two
complementary phase domains of these algorithms appear in the image. We see
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that phase estimations based on A are quite good near ©/2 and 37/2 which are
troublesome for method D, while D provides good results near O and  where A
is imprecise. However, as seen in Table 5-1 and Table 5-3, only 65% (A) and
57% (D) of the estimations actually lead to a phase value that can be taken into
account in these graphs. In particular, holes are created in the distributions near
the problematic phase values. The “weakness” of the Carré algorithm also
appears for such a small phase increment value. It is interesting to note that all
these algorithms produce systematic phase errors that do not disappear in the
averaging process. They are shown to be symmetrical in the four phase
quadrants.

Eslimated phase o Estimated phase . Eslimated phase

I f

0 ¢ 360° 0 9 360° 0 [ 360°
(a) (b) (c)

Figure 5-6. (a) Probability density of the calculated phase using
equations (5-3)A and the 5-image algorithm (5-2) for a noise standard
deviation of 5 grey levels and a phase increment Ap of 90°; (b) Same
using (5-3)D and (5-2); (c) Same using the Carré algorithm.

The second example presented in Figure 5-6 is obtained for A¢ equal to 90°
where a minimum of errors should be committed. Successive contour lines
correspond in these images to a change of probability density of 2000. As this is
the ideal Ag valuc, it is not surprising to obtain an excellent behavior of the
S-image algorithm based on method A and D. The Carré algorithm performs
well also.

The situation where AQ is equal to 150° is presented in Figure 5-7. In this
situation, we expect the S-image algorithm based on method D and the Carré
algorithm to provide interesting results. Successive contour lines correspond in
thesc images to a change of density of 1000.
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Estimated phase

Estimated phase

4

Estimated phase _

0 T i 0 ) 360°
(a) (b) (c)

Figure 5-7. (a) Probability density of the calculated phase using
equations (5-3)A and the 5-image algorithm (5-2) for a noise standard
deviation of 5 grey levels and a phase increment Ag of 150°; (b) Same
using (5-3)D and (5-2); (c) Same using the Carré algorithm.

Method A gives the same results that were obtained in Figure 5-5 for Ag = 30°
while method D and the Carré algorithm give “acceptable” errors. We note
however that the method D is always unreliable when ¢ is close to w2 or 3/2.
Consequently, a lot of samples can not be calculated in these regions, which
explains the corresponding “holes” in the distribution.

In order to compare more easily methods A, B and D, the case where A@ is
already known, and the Carré algorithm, we will now work with graphs of the
standard deviation of the error 8¢.

5.5 Phase error standard deviation as a function of the
phase

In the next six figures we show the standard deviation of the error 8¢ for five
different A@ values, in the situation of a noise standard distribution of five grey
levels and a modulation Iy of 32 grey levels. In each graph, the deviation is
computed from 50000 samples for each phase value ranging from 0° to 360°
with a step of 1°. The error standard deviation is given in degree on a scale
ranging from 0° to 30° in the last five graphs while the scale goes up to 50° in
the first one to accommodate the large errors encountered with the Carré
algorithm (the first and second graph are thus identical). Again, situations where
| cosA@ | > 1 are not included in the calculation of the standard deviation.

For the 5-image algorithm, A@ is estimated with methods A, B and D, or is
supposed “known”, for example as the result of a wavelet analysis.
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Figure 5-10. Standard deviation (expressed in degrees) of the phase
error committed with the 5-image and Carré algorithms for Ap = 60°.
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Figure 5-11. Standard deviation (expressed in degrees) of the phase
error committed with the 5-image and Carré algorithms for Ap = 90°.
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Figure 5-12. Standard deviation (expressed in degrees) of the phase
error committed with the 5-image and Carré algorithms for Ag = 120°.
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Figure 5-13. Standard deviation (expressed in degrees) of the phase
error committed with the 5-image and Carré algorithms for Ap = 150°.
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We can use different criteria to compare these graphs. One could be the
“fairness” of the error distribution, that is, the way one algorithm behaves for
diffcrent phase values. Apart from the case where A¢ is known, which gives
very smooth and constant results, it appears that when method A is used to
detecrmine this phase increment, the error standard deviation does not oscillate
much as a function of the phase itself. This oscillation is smaller than 2° for Ap
ranging from 60° to 120° and on the order of 5° for 30° and 150°. Hence,
method A does not put much “discrimination” on the phase values. This is
certainly not the case for methods B and D. Indeed, D performs very poorly
when @ is close to /2 and 3w/2, with crror standard deviations close to 25°
when A¢ goes from 60° to 120° Its best result is actually obtained for
A@ = 120° in which case the phase domain where large errors are produced is
limited to about 30°. Method B is slightly better but far from the result obtained
with A. We can verify that the “pcaks” where method B yields its less precise
results are shifted according to the value of A (see (5-3) ).

A second way to characterize these different methods is to simply look at
the overall amount of error committed. The situation where A@ is supposed
known is usually the less error prone even though, for Ag larger than 150°, some
other methods perform better. This implies that the actual determination of the
phase increment helps correct the noisy phase estimation for B and D. Method A
is clearly the best for Ap ranging from 60° to 120°. For small phase increments
(30°) it becomes as unreliable as B and D while these last two perform better for
large (>150°) phase increments.

The Carré algorithm shows a quite definite preference for large phase
increments. It is clearly useless when A is on the order of 30° and it still
performs poorly near 60°. However, it gets better above 90° and is the most
precise algorithm for Ag larger than 120°.

5.6 Overall phase error standard deviation as a function of
the phase increment
Bearing in mind that the error standard deviation is not uniform as a function of
¢ for some of the methods studied here, we now “integrate” this error standard
deviation over the complete phase range, in order to plot graphs as a function of
the phase increment. This should help to understand the limits of the different
algorithms, regarding the acceptable speeds of deformation.

The standard deviation is calculated for a given A¢ by estimating 100 times
cach phase value from 0° to 360°. Five different situations are presented. The
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first three correspond to a modulation /y equal to 32 grey levels with no noise, a
Gaussian noise of standard deviation equal to 2 grey levels and a noise of 5 grey
levels. The two remaining situations are obtained for a noise level of 5 and
lower modulations of 16 and 8 grey levels. These last cases are relevant to
speckle interferometry where low modulation values are common.
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Figure 5-14. Phase error standard deviation as a function of the
phase increment A¢ for different modulations and noise levels. The
phase is computed with the S5-image algorithm, A¢ is supposed
known.
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Figure 5-15. Phase error standard deviation as a function of the
phase increment A for different modulations and noise levels. The
phase is computed with the 5-image algorithm based on method A.



90 5. Characterization of the 5-image algorithm

105°

i
i
60° 4. H|

Mod = 32, No noise
- - Mod = 32, Sigma = 2
— -Mod =232, Sigma=5

* Mod=16,Sigma=5 | |- .
—=—Mod = 8, Sigma=5 /

75°

€0°

45°

30° 4 -

.:;:__'/:Ct__t:::::’gﬁ '“f’\L/\7=

0° 15° 30° 45° 60° 75° 90° 105° 120° 135° 160° 165°  180°

15° -

0°

Figure 5-16. Phase error standard deviation as a function of the
phase increment Ap for different modulations and noise levels. The
phase is computed with the 5-image algorithm based on method B.
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Figure 5-17. Phase error standard deviation as a function of the
phase increment Ap for different modulations and noise levels. The
phase is computed with the 5-image algorithm based on method D.

For all the algorithms tested, the phase computation becomes totally
random when A¢ is close to 0° This means that the estimated phase is
uniformly distributed over [0, 2n]. The resulting standard deviation is then
3 radians = 104°, which corresponds well to the limit found in these
simulations.

The last figure is obtained using the Carré algorithm:
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Figure 5-18. Phase error standard deviation as a function of the
phase increment Ag for different modulations and noise levels. The
phase is computed with the Carré algorithm.

The interpretation of these figures is difficult as they do not reflect the
actual number of phase values that can be computed for a given A@ (see
paragraph 5.2). This does actually lower the overall error standard deviation,
particularly for method D.

We can first observe that the “no noise™ situation shows how sensitive the
different algorithms are to the quantization errors. In particular, this adds an
important offsct in the case of method D. The case where A¢ is supposed to be
exactly known gives the smallest phase errors for high signal-to-noise ratios
(Iv = 32, 6 = 2). However, for lower ratios, it appears that the actual estimation
of A¢ (with B or D) allows to correct part of the phase error and provides
slightly better results for large A¢ values. Method A has a very similar behavior,
symmetrical on both sides of A@ = /2 while methods B and D exhibit a better
accuracy towards higher A¢ values. The Carré algorithm appcars to be the best
contender for Ap > 120°, a fact that was already observed in paragraph 5.5, and
which confirms the observations made in Ref.4.

If we look at the situation (/m = 32, 6 = 5) and decide that a tolerable phase
error standard deviation should not be above 15°, we find that all the algorithms
present a domain of application that covers from 95° to 100° of the total possible
180°. This is illustrated in Figure 5-19 where the vertical scale has been
magnified. Apart from the case where A¢ is known, method A gives the best
results from 45° to 125° (not taking into account the Carré algorithm).
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Figure 5-19. Phase error standard deviation as a function of the
phase increment Ag for i = 32 and ¢ = 5 grey levels.

As a conclusion to the graphs shown in paragraphs 5.2 to 5.6, the 5-image
algorithm based on the estimation of Ap with method A seems to offer a good
compromise. First, it is symmetrical relatively to 7/2 which corresponds to the
phase step that we will introduce during acquisition. Hence, /2 acts as the
origin of the domain of the phase increments we wish to measure. This
symmetry allows to use the algorithm with the same accuracy for pixels where
the phase increment is +A@ or —A@. Overall, this solution generates smaller
errors on the domain [45°, 135°], even though the difference with the other
methods is small. Some marginal gain could be obtained by trying to combine
method A with, for example, D for Ag values above 120°. However, all these
methods start to diverge fast above 135° and a standard deviation of 25° rather
than 30° still basically results in large errors on the phase estimations. It is clear
anyway that high accuracy will not be obtained with this algorithm when A¢ is
outside of the domain [60°, 120°]. Another point in favor of method A is its
relative error uniformity as a function of the phase, as shown in 5.5, contrary to
method D and to a lesser extent B.

The noise levels we used in these simulations can seem to be high,
particularly if we consider that state-of-the-art CCD cameras and frame grabbers
can deliver intensity noise levels on the order of one grey level. However, as
soon as we intend to work in non-static conditions, environmental perturbations
such as turbulence and mechanical vibrations can create a phase noise that
sometimes results in large intensity variations. Admittedly, the independent
Gaussian noise model we used is not exactly adapted to describe such noise



5. Characterization of the 5-image algorithm 93

sources but we guess that we obtain a rough estimatc of the actual behavior of
this quite simple phase-shifting algorithm.

5.7 Influence of non-linear phase evolution

As mentioned earlier, the hypothesis of a linear phase evolution during
acquisition of five images might not be always verified. It is thus interesting to
try to evaluate the systematic errors that can be produced, in a first approach, by
a second-degrece phase evolution (we can imagine that third-degree variations
will tend to cancel in this symmetrical algorithm). Creath® made similar
simulations but always in the case where A@ is fixed equal to /2.

We simulate the response of the 5-image algorithm based on method A
using two different amount of non-linearity, (1) and (2), as shown in Figure 5-
20. No noisc is added in these simulations. However, grey level quantification of
intensity remains (the modulation is again Iy = 32). The second non-linear
situation is already quite demanding as the phase of the first intensity sample is
@-A@ instead of @-2A¢ and the phase of the last intensity sample is @+3A@
instead of ¢+2Ae.
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Figure 5-20. Non-linear phase evolution as a function of time.

The figures below show the phase error in degree as a function of the initial
phase, for seven different A@ valucs. Whenever the cstimated cosA¢ is outside
of the domain [-1, 1] the phasc is not estimated and the corresponding symbol is
removed from the scatter plot.
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Figure 5-21. Phase error in the case of the non-linear phase evolution
(1) using method A with the 5-image algorithm.

We observe that the phase error is quite important, ranging from +20° to -30°
for Ag in the domain [30°, 150°]. The vanation of the error as a function of @
gets bigger with higher A@ values. We observe also that method A which is used
to determine A@ fails in the regions where ¢ is close to 0 or m, except when
Ap =90°. Hence, a non-linearity in the phase evolution will further lower the
“success rate” described in paragraph 5.2. Figure 5-23 below shows that the
Carré algorithm does not fare any better for the same non-linear phase evolution.
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Figure 5-22. Phase error in the case of phase evolution (1) using the
Carré algorithm.
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Figure 5-23. Phase error in the case of the non-linear phase evolution
(2) using method A with the 5-image algorithm.

Figure 5-23 obtained for the non-linear phase evolution (2) shows a quite similar
behavior to what is obtained with the non-linear phase evolution (1). The errors
are amplified and it becomes visible that the average systematic error produced
for one given A@ value goes from negative values (about —30° for Ag = 30°) up
to a maximum (about +30° for A¢ = 90°) and back to negative values (about —
10° for Ag =150°). The shape of the error distributions changes at the same
time. It is quite flat for a small A@ and gets steeper and steeper when it
increases. This is quite understandable as in the case of small Ag the absolute
phase error for the different intensity samples is minimized. However, the
systematic variation of the average error with A@ appears more difficult to
explain intuitively. Figure 5-24 shows that the result is similar when A¢ is not
computed with method A but assumed known. Hence, this behavior is
essentially a result of (5-2).

The conclusion is that non-linearities will introduce systematic errors that
will be higher for pixels where the total phase change is large. The second
example of large non-linear phase evolution shows that errors as large as +n/4
can be obtained. This is certainly troublesome in the case of experiments where
a small number of fringes are present in the image, since the relative error is
then more important. However, if there are indeed few fringes in the
interferogram, chances are that the phase variation rate A@ must not vary much
in the image. Hence, similar errors should be produced and the end result is a
smaller relative error plus an unknown phase offset. It is nonetheless clear that
accuracy on the order of hundredth of a fringe will not be obtained in the context
of dynamic phase-shifting, a tenth of a fringe is more realistic.
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Figure 5-24. Phase error in the case of phase evolution (2) when Ag is
supposed known.

5.8 Implementation and examples
The implementation of the 5-image algorithm is straightforward. We developed
different specific versions that were added to the commercial image processing

programs Optocat 5 and Visilog 4

80

75

(b)

Figure 5-25. (a) Wrapped phase map showing the flatness of an
aluminum disc. The average sensitivity is 12 micron per fringe.
(b) Contour lines of the computed phase increment (in degree).

One particular version is adapted to process interferograms produced by a
desensitized flatness-measurement instrument” where large sensitivity variations
make impossible the creation of uniform phase shifts. Figure 5-25(a) shows the
wrapped phase map obtained while measuring a rough aluminum disc used as a
substrate for the manufacture of computer hard disk. The sensitivity in this
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image ranges from 14 to 10 micron/fringe from left to right. The contour lines of
Figure 5-25(b) show that when a phase-step of 90° is introduced in the center of
the field of view, phase-steps of respectively 75° and 105° are introduced at the
left and right edges of the object. Thesc lines are obtained from a best-fit
estimation of the A@ map with a polynomial surface of degree 2. This is possible
because the sensitivity variation in the interferometer is smooth and monotonous
in the field of view.

However, in the case of dynamic phase-shifting we can not assume any
continuity of the phase increment distribution in the image. For example, two
points on opposite lips of a crack might have very different Ag. Hence, we need
to compute the phase increment on a pixel by pixel basis. It is true that for most
pixels the local A@ value should be pretty close to that of its immediate
neighbors. This is a way to improve the robustness of the algorithm. We have
seen that method A becomes unreliable when the phase of the interferogram is
close to 0 or m, which usually leads to | cosA@ | > 1. Itis then interesting to look
in the surrounding pixels to find one that has a different phase and thus permits a
more reasonable evaluation of the local A¢. This solution is not yet implemented
but we can guess that it would work quite well in the case of speckle
interferograms where the phase is random from one pixel to the other. Classical
or holographic interferograms would benefit from this improvement in the
regions where the fringes are not too widely spaced, since the phase does not
change much at the scale of 3 x 3 pixels windows in large fringes. In the
meantime, our current implementation simply assigns a phase value of 0 or &t to
pixels where | cosAQP | > 1. The choice between these two values is governed by
the fact that both 7, and I, are larger or smaller than /.

We can mention here that we tried at the beginning of this dissertation
work to combine methods A, B and C to calculate A¢ more robustly. The idea
was to change by %1 grey level the five measured intensities and look at the
resulting variance of the calculated Ag value. We hoped that this would help to
choose the more adapted method, i.e. the one less sensitive to noise for these
particular intensity samples. However, the gain was only marginal and not worth
the much increased computation time.

5.8.1 Application to holographic interferometry

Let us now look at a first example of application of the 5-image algorithm,
based on method A, in the case of images recorded in non-static conditions.
Other examples will be proposed in Chapter 8 where the 5-image algorithm is
also compared to phase extraction using the wavelet analysis.
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The example presented in Figure 5-26 was obtained with holographic
interferometry applied to a small object that consists of a 2 mm thick rectangle
of sand-blasted aluminum. Two cuts were made on each small side. They extend
inward to about a third of the length of the rectangle, creating 6 strips merging
near the middle of the object. The top center, bottom left and bottom right strips
were clamped with screws on a base plate. A large range PZT (45 microns) was
fitted through a hole in this plate to load the object in its center. A voltage ramp
was applied to this PZT during acquisition of a 128 frames sequence at 40 Hz
while a PZT-mounted mirror was producing 7/2 reference phase steps between
images. The cycle was actually reversed (0, 3n/2, n, /2, 0 instead of 0, w2, x,
3n/2, 0) to have the phase-shift induced by the deformation and the reference
phase step with opposite signs. This will ulumately produce a negative of the
actual deformed shape of the object. The non-standard CCD camera used for
this experiment is described in more details in Chapter 7.

(d)

Figure 5-26. (a) to (e): 5 successive images obtained with holographic
interferometry during deformation of a metal plate loaded in its
center; (f) wrapped phase map corresponding to image (c).

Figure 5-26(a) to (e¢) show the interferograms obtained near the end of the
recording for images #122 to #126. It is clear that the deformation is minimal at
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the fixation points, for example at the top of the upper center strip where part of
a screw can be seen. If we look at the region directly underneath this screw we
see a dark fringe in (a) that changes to a bright fringe in (c) and back to dark in
(e). This confirms that the introduced phase step is /2. Meanwhile, there is a
bright fringe in the center of the object in (a) and a dark one in (e). The total
phase change is on the order of & at that point, which indicates that the actual
phase shift between images is on the order of w/4. We can then conclude that the
deformation introduces a —1w/4 shift while the mirror produces a +m/2 step. The
calculated wrapped phase map is shown without any filtering in (f). If we look
closely at the wrapped fringes it appears that we indeed obtained the reverse of
the deformation. This illustrates the fact that the sign of the deformation is
known without ambiguity when the reference phase step is known.

It appears to the trained eye that the wrapped phase map suffers from the
effect of a non-linear phase shift. This can be seen in the vertical cut presented
in Figure 5-27. This cut corresponds to the center of the object, from top to
bottom. As the phase is coded on 8 bits in this image, the value 127 corresponds
to 1t radians.
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Figure 5-27. Vertical cut of Figure 5-26(f) showing the non-linear
fringes caused by a miscalibration of the reference phase step.

The particular departure from straightness of the fringes is the signature of either
a miscalibration of the PZT that introduces the reference steps or of a sudden
change of the force applied by the loading device. Moreover, as seen in
paragraph 5.4, the phase calculated for small A@ values suffers from a non-linear
response of the algorithm, even for linear phase shifts. This could also contribute
to the distorted profile of the fringes in the central region of the object.
However, the same defect is present near the top of the object (left part of the
graph) where A is close to 90° and where the response of the algorithm is
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supposed to be very linear. Hence, there must be another cause of error. Tests
performed later on the same reference PZT showed that it started to vibrate
when it was driven near 40 Hz. Hence, the actual phase step introduced between
images was not always the supposed w2 value, particularly for the large
transition from 37/2 back to 0. This is in fact a situation where the phase
increment is relatively constant for three acquisition intervals and very different
for the fourth. In this case, we are far from a smooth second-degree phase
evolution, as presented in paragraph 5.7. It could be possible to apply a
correction to the wrapped phase map using a look-up-table to correct to a certain
extent the defaults resulting from the inaccurate phase shift.

It is also interesting to have a look at the phase increment map computed
with method A. A smoothed version is presented as a pseudo-3D surface in
Figure 5-28(a). A cut of the unfiltered image is presented in Figure 5-28(b). It
shows the evolution of this phase increment along a vertical line passing in the
center of the object. The noisy curve shows the raw Ag value computed by the
algorithm. The high peaks correspond to points where the cosine is larger than
one. In this case they get the value 255, to mark the corresponding pixel as bad.
The raw A¢ curve was low-pass filtered with a median filter of width 5. The
smooth curve is the result of a polynomial fit of this filtered cut, showing the
evolution of the phase increment on the object. Not surprisingly, A is close to
90° near the top screw (left part of graph) and goes down to a little less than 45°
in the central region.

ét:dpodﬁm{fmmlophbo«om]

Figure 5-28. (a) Surface plot of the filtered phase increment computed
with method A (scale goes from 0° to 90°); (b) Vertical cut showing
the raw Ap value measured In degree, and a polynomial fit.
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To estimate the influence of the term sinA@ in formula (5-2) and thus the
importance of a correct estimation of Ap, we compute two new phase maps
where A@ is imposed to be equal to 90° and 45°. The phase map of Figure 5-
26(f) is then subtracted modulo-2n from these images. We actually draw the
absolute value of these differences in Figure 5-29. In these images, “black”
represents an exact match with Figure 5-26(f) while “white” represents a

difference of £15°.

N

(b)
Figure 5-29. (a) Absolute phase difference between Figure 5-26(f) and
a phase map computed with an imposed Ap of 90°; (b) Same with
Ap = 45°. Maximum scale (white) represents a difference of £15°.

These two images show the interest of a correct evaluation of A@. The maximum
systematic error is on the order of £15° in (a) and £12° in (b). A calculation
similar to what was done in paragraph 5.3 shows that the error due to the
exchange of /2 with /4 should be on the order of £10°. We find larger errors

in this example because of the imperfect phase-stepping.

5.8.2 Application in speckle interferometry

This second example was obtained using speckle interferometry on a square
piece of rubber of dimension 60x60 mm and 8 mm thick. For this experiment
the interferometer is sensitive to horizontal in-plane displacement.

The object is loaded on its left hand side by a
PZT that pushes a U-shaped metallic clamp.
Again, 128 images are recorded while a linear
tension ramp is applied to the loading PZT,
while a PZT-mounted mirror on one arm of the
interferometer introduces the w2 reference

phase steps. The acquisition rate is 20 Hz in this

e case.
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Figure 5-30 shows the histograms of the phase increment maps calculated for
images #1 to #5 just before the beginning of loading and for images #123 to
#127 at the end of the experiment. The A images (not shown here) show more
or less constant plateaus of phase increment over the object. Only the average
value is shifted from 90° at the beginning of the experiment to about 130° at the
end.

—— IMAGE 13
—IMAGE 125

0 15 30 45 60 75 90 106 120 135 150 165 180
Figure 5-30. Histogram of Ag at for image #3 and image #125.

The difference modulo-2r of the two wrapped phase maps corresponding
to images #3 and #125 is shown in Figure 5-31. Each fringe is a contour line of
equal horizontal in-plane displacement. A difference of one fringe corresponds
to a displacement of 1 micron.

(b)

Figure 5-31. (a) Difference modulo-2n of the random wrapped phase
map of image #3 and image #125, showing horizontal in-plane
displacement contours; (b) Same after filtering.

The algorithm performs quite successfully in this example. We can even note a
set of small parallel fringes on the left of the object. They correspond to the
in-plane rotation of the metallic plate that transmits the load to the rubber piece.
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A horizontal cut in the filtered image Figure 5-31(b) shows that the fringes do
not exhibit a perfectly straight profile, see Figure 5-32. However, we cannot
identify the typical shape observed in Figure 5-27. Again, if A@ is incorrectly
estimated during the calculation of the phase images #3 and #125, the
systematic, phase-dependent error depicted in paragraph 5.3 is obtained.
However, and contrary to Figure 5-27, the phase of adjacent pixels is randomly
different, so that the error due to A is randomly distributed in the image. Hence
the subtraction creates the macroscopic fringes seen in Figure 5-31, where the
systematic errors result now in a noise of average value equal to zero.

There is actually an undcrestimation of A¢ in image #125. We will come
back to this cxperiment in Chapter 8 where the 5-image algorithm is compared
to the wavelet processing. In particular, the wavelet analysis indicates that phase
increments approach 150° to the left of the object, at the end of the sequence.
This explains why the phase map in Figure 5-31(a) appears noisier in the left
region.

256

il

Figure 5-32. Horizontal cut of the phase map shown in Figure 5-31(b).

5.9 Conclusion

We showed in this chapter that we can use a simple phase-shifting algorithm,
bascd on a limited number of images, to process interferograms obtained during
object deformation. The principle of dynamic phase-shifting has thus been
demonstrated. Simulations and two examples show that the useful domain of
application has to be realistically limited to deformation speeds on the order of
+1/4 radian per acquisition period, when an additional +m/2 reference phase step
is introduced. Systematic errors are obtained when the actual temporal phase
evolution is no longer linear. An estimation of the phase error standard deviation
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as a function of the interferogram modulation and acquisition noise gives also an
idea of this algorithm’s limitations. We see for example that for a modulation
equal to 32 grey levels, which is common in holographic interferometry, and a
Gaussian intensity noise of standard deviation 5 grey levels, a phase error with a
standard deviation of 15° is obtained. This corresponds to a standard error on the
order of +1/24™ of a fringe. The precision will be lower when lower modulation
interferograms are used, as in speckle interferometry, and when external
perturbations introduce additional random phase variations. PZT miscalibrations
enter this last type of perturbations. Also, erroneous determination of A
introduces other phase error contributions. Hence, taking into account possible
non-linear phase evolutions, phase noise and low modulations, it is difficult to
give a general estimation of the actual precision of the method. As a rule of
thumb, a reasonable estimation of the overall precision can be on the order of a
tenth of a fringe for “well-behaved” experiments.
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6. Characterization of the wavelet-based

phase extraction

Wavelet analysis, the second solution to the problem of phase measurements in
non-static conditions, was. presented briefly in Chapter 4. It requires a
continuous acquisition of images and is more demanding on the environmental
stability than the 5-image phase-shifting algorithm presented in Chapter 5.
However, this technique opens a new field of applications since a complete
sequence of images can be processed to yield a “movie” of the absolute
deformation of an object.

It is the achievements of people working in the field of acoustic signal
processing’? that gave us a lead in the usc of wavelet analysis to get the phase
information we are looking for. Their field of application is quite different from
ours since they dcal with usually complicated signals where many components
and their harmonics are mixed. Our signals are much closer to simple sinusoidal
signals with some added noise. Their signals are usually sufficiently
oversampled that they do not suffer from any aliasing problem. In our case, we
intend to use as much as possible of the acceptable frequency domain. Hence we
sometimes have to work with signals of frequency close to the Nyquist
frequency. We are thus easily confronted with aliasing problems. Last, they are
not interested in the phase of the different frequencies present in their signals
while this is the quantity of prime importance for us. However, they take
advantage of some phase properties of the Gabor or Morlet wavelet transform to
extract these frequencies. This point proves to be crucial for our developments.

Consequently, the properties of wavelet analysis using the Morlet wavelet
are detailed in this chapter. The possibility to extract directly the phase of the
interferogram is presented as well as a study of some limitations of this
technique.
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6.1 The Morlet wavelet

Quite similarly to the window function used in the Gabor transform (defined in
Chapter 4), the Morlet wavelet M(f) is the product of a real Gaussian window by
a complex oscillating exponential function®:

.
M@)= exp[— '2— ]exp(— iwyt) (6-1)

where oy is the “mother” frequency, the only parameter that has to be chosen.
We also note that there is no parameter acting as a standard deviation in the
Gaussian term. The different wavelets used during time-frequency analysis are
derived from the mother wavelet by a time dilation a and time translation b. a is
often called the “scale” of the transform. Hence, a wavelet derived from the
mother wavelet takes the form:

2
M,,(t)= M( ’—;—’l]= exp(— (’2;’2’ ) }xp(zi"a&(z —b)) (6-2)

We see that in fact the scale parameter determines the width of the analysis
window. At the same time, it defines the analysis frequency = ay/a. Hence,
and contrary to the Gabor transform, the functions used at different frequencies
have the same “shape” and a varying width. This is illustrated in Figure 6-1
below where the real part of Morlet wavelets and Gabor windows are plotted for
three frequencies, along with their Gaussian envelopes.

(b)

Figure 6-1. (a) Real part of the Morlet wavelet plotted for three
frequencies wy/2 (a=2), wo (8=1) and 2w, (& = 1/2). (b) Real part of
the Gabor window for the same frequencies.
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It appears clearly in this figure that the extent of the analysis window depends
on the analysis frequency of the Morlet wavelet. Hence, whether we are
searching for high or low frequency components of a given signal, the window
support isolates a time interval containing a fixed number of periods of a high or
low frequency sinusoidal function. The analysis support is thus automatically
adapted to the region of interest. Wavelets are “constant shape” windows in the
sense that there is always the same number of oscillations in the window,
whatever the scaling factor. This is obviously not the case for the Gabor
window.
From Chapter 4, a wavelet coefficient is calculated as:

bou 2
S(a,b)= %J‘ s(t)exp[— (tz;abz)—}xp(— i%(t - b)}!t (6-3)

Most authors actually use a normalization factor 1/lal Y2 which ensures that all
dilated wavelets have the same cnergy. Wc rather use a factor 1/a, which
amounts to dividing the integral by the area under the Gaussian envelope (its
actual area is a\/21r.). In this way, the modulus of the transform has the same
magnitude for signals of different frequency but equal amplitude. This is useful
in our case as we will estimate the amplitude directly from the transform. This
results however in time and frequency windows of varying energy.

We can remark that a could be negative as well as positive. We restrict
ourselves to the positive frequency domain, since the spectral information of a
real signal is completely and equivalently represented in both the positive and
negative frequency domains. Hence, a will be strictly positive in the following.

Using the Parseval-Plancherel theorem, (6-3) can also be written as:

t oo 2 2
S(a,b) = ﬁj s(w) exp[— az— (m— (—22] ]exp(imb)d(o (6-4)

This last expression shows that the wavelet coefficient is obtained by an integral
on the product of the Fourier transform of the signal by a frequency window of
the form:

2 2
W(w) = exp(— a?((o— &] ]exp(imb) (6-5)
a

which is a Gaussian window of variance 1/a°, centered at ® = (y/a, multiplied
by a phase term. This illustrates the fact that the frequency band used to
calculate a particular wavelet cocfficient varies according to the central analysis
frequency. Actually, if we define A as the width of the frequency window, we
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find that the wavelet analysis is performed at constant Aw/w whereas the Gabor
transform performs an analysis at constant Am. This appears readily in Figure 6-
2 where we show the real part of these windows for three different analysis
frequencies, along with their Gabor equivalent.

(b)
Figure 6-2. (a) Frequency windows obtained with the Morlet wavelet
for three central analysis frequencies wy/2 (a=2), wp (a=1) and 2u
(a = 1/2); (b) Same windows obtained in the Gabor case.

In the wavelet case, Figure 6-1 and Figure 6-2 illustrate the fact that a high
frequency resolution is obtained for low frequency signals, while the
corresponding time localization is poor. The reverse is true for high frequency
signals. The behavior of the Gabor transform is simpler as the same frequency
resolution and time localization are obtained for all frequency components of a
signal. In the wavelet case, the choice of the mother frequency oy determines the
overall “balance” between time and frequency resolution. For example, high ay
values imply the use of large temporal windows (since a is larger for a given
analysis frequency ®w= ax/a) but provide a finer analysis of the frequency
content of a signal.

6.2 Transform representation: spectrogram and scalogram

As the wavelet or Gabor transforms are functions of two variables, frequency
and time in one case, scale and time in the other, they are usually presented in
the form of “spectrograms” or “scalograms™. We wrote a small program to
visualize such graphs. The example shown in Figure 6-3 is the spectrogram of a
linear chirp (the signal frequency increases linearly with time). The signal is
plotted in the first part of the image. It is sampled and coded as 8 bits values,
hence its scale ranges from O to 255 grey levels. Next, the modulus of its
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wavelet transform is shown. The vertical scale indicates the frequency which
increases linearly from n/10 rad/s (bottom) to mrad/s (top). We recall that we
suppose to have a sampling rate of 1 Hz which corresponds to a cut-off
frequency of mrad/s. The last part of the image shows the phase modulo-2m of

the transform, with the same frequency scale.
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Figure 6-3. Morlet wavelet transform of a linear chirp, presented as a
spectrogram. The vertical scale goes from w/10 to n rad/s.

We note that the maximum of the modulus is the same at all frequencies, as is
the case for the signal amplitude. This results from our choice of a 1/a
normalization factor. The consequence is that the energy spectrum of the signal
appears to increase towards higher frequencies.

The second type of representation is the scalogram, Figure 6-4, where the
linear frequency scale is replaced by a linear representation of the “scaling
factor” a. The top of the image corresponds to the lowest dilation (a =2 for
ey =21 in this graph, which corresponds to ®= wya = wrad/s), while the
bottom of the image corresponds to the largest dilation (a = 20). Thus the
frequency domain is identical in Figure 6-3 and Figure 6-4. Scalograms are
interesting as they show the frequency content of a signal in a way very similar
to a musical score. Indeed, each octave occupies the same height in a scalogram.

This is actually a quite “natural” representation of acoustic signals. In our case
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however, the frequency content does not have the same physical meaning since
couples of frequencies located symmetrically with respect to n/2 rad/s, for
example /6 and 57/6 rad/s, simply represent deformations of same magnitude

but opposite signs. We will thus use spectrograms rather than scalograms,

because of their linear I;‘j‘rL‘\L'!]L!i'n"H ol ]!L“.!iit‘!!t'\
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Figure 6-4. Morlet wavelet transform of a linear chirp, presented as a
scalogram. The vertical scale goes from /10 to n rad/s.

The representations shown above correspond to a “continuous” wavelet
analysis. By contrast, wavelet decompositions are often performed in discrete

frequency bands, for example octaves. Again, the continuous analysis and its

representation are more adapted for our practical goal, which is not to identify

the principal spectral components of a complicated signal but rather to follow

precisely the frequency evolution of a quasi-sinusoidal sigr

6.3 Examples of spectrograms

The chirp example presented in Figure 6-3 illustrates the fact that the modulus
of the wavelet transform can provide graphically the “trajectory” of the
frequency of a signal in the time-frequency domain. We will come later to the

properties of the phase of the transform but we can already note that the rate of
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change of the phase seems to be proportional to the actual frequency of the
signal in this figure
Ihe following examples illustrate the effect of the choice of the mother

frequency, as well as noise filtening properties of the wavelet transform.

6.3.1 Transform of a sum of two signals
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Figure 6-5. Wavelet transform of a sum of two signals with wy = 4x.
The vertical scale ranges from n/6 (bottom) to n/2 (top).

Figure 6-5 shows an example of spectrogram obtained for the sum of two
“monochromatic” sinusoidal signals of frequencies o = 2.9, o, = /3.1 and
respective amplitudes 32 and 64 grey levels. The transform i1s computed with
ay = 4w In this case, the two components are too close to each other to be
correctly resolved in the spectrogram. This appears also in the phase graph
where only one type of phase evolution is present in the part of the frequency
domain where the modulus of the transform 1s non zero.

If we change y to 24w we get the spectrogram shown in Figure 6-6 where
the two frequencies now distinctly appear in the modulus image. The two

different frequencies also appear as two bands of slightly different phase in the
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phase image. Of course this amelioration of the frequency resolution is obtai
at the expense of the temporal localization since the scale used to calculate the
‘"

transform at = w, 1s now 72 instecad of 12. The Gaussian window 1s thus 6

times larger
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Figure 6-6. Wavelet transform of a sum of two signals with wg = 24
The vertical scale ranges from /6 (bottom) to /2 (top).

6.3.2 Transform of a signal with added Gaussian noise

Figure 6-7 shows the modulus of the spectrograms obtained for a simulated

sinusoidal signal of frequency ®/3.1 and modulation /y = 32, to which is added a
Gaussian noise of standard deviation 32. This can be envisioned as a case where
thea 1 | nOoIc®E re s N \ 1 "1 1 | The freauenc le rar . [ v
the signal-to-noise rato (SNR) 1s equal to 1. The frequency scale ranges from

Vor

/6 to /2 rad/s. The three spectrograms are obtained for ay = 2m, 4w and 8n

It is clear that not much of the sinusoidal signal 1s visible in the signal plot
of Figure 6-7(a). Accordingly, the analysis with a very well temporally localized
wavelet, uy = 27, does not give us much information about the signal’s actual
frequency evolution. However, doubling the mother wavelet frequency, Figure
6-7(b), provides a better frequency resolution and the peak we are looking for

becomes visible. When the wavelet coefficients are calculated near the signal’s
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frequency, only a small frequency band is used, which limits the amount of
noise that contributes to the transform. In other words, the SNR increases. If ay
is doubled once more, Figure 6-7(c), most of the noise is filtered out, showing

more clearly the frequency evolution of the signal.

(a)

b e e Mg e
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Figure 6-7. Modulus of the wavelet transform of a sinusoidal signal of
frequency /3.1 and amplitude 32 grey levels, to which is added a
Gaussian intensity noise of standard deviation equal to 32.
(a) Analysis with wg = 2m; (b) wg = 4x; (c) 0o = 8.
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6.3.3 Transform of a measured signal
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Figure 6-8. Transform of a measured signal (speckle interferometry).

Figure 6-8 shows the transform of the measured signal presented at the
beginning of Chapter 4. The mother frequency ax is equal to 37 in this case. The
frequency scale ranges from /500 to m rad/s.

This signal was obtained during the translation of a metallic plate in its
plane, observed with an in-plane speckle interferometer. The acquisition rate is
160 images per second. One fringe corresponds to a displacement of about
0.6 microns. No reference phase step is added for this experiment. A small
electric motor 1s used to produce the constant speed translation. Since there is no
feedback on the actual speed of rotation of the motor, small speed variations
occur, causing the frequency fluctuations observed in the modulus of the
transform. The same fluctuations can be observed for other pixels taken

T.ll]{iﬂﬂ]]_\' in the Image secquence.

6.3.4 Transform of a measured signal of varying frequency
The previous examples might lead the reader to conclude that large ay values

are always beneficial. This is true only when the signal frequency does not
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change significantly. The following example shows that time localization should

be preserved in order to keep the analysis tool flexible.
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(b)

Figure 6-9. Sudden change of frequency at the beginning of a signal
obtained in speckle interferometry. Analysis for (a)wo = 2x;
(b) mo = 4 ; (c) wo = 6.

This example was obtained with an in-plane speckle interferometer. The object
is a piece of rubber loaded by a PZT pusher (see the corresponding example in

Chapter 5). The frequency scale ranges from /10 to 7 rad/s in Figure 6-9.




116 6. Characterization of the wavelet-based phase extraction

Since a /2 reference phase step is introduced during this experiment, a ®/2
frequency “peak” is observed in the transform ncar the signal’s beginning. As
the load is applied there is a sudden frequency increase towards 3m/4. This
transition is visible in Figure 6-9(a) where the analysis is performed for oy = 2.
Next, as the loading progresses, the frequency continues to increase and the
modulus of the transform starts to oscillate (this effect is explained in paragraph
6.4). To get rid of these oscillations that mask the actual frequency evolution,
one is tempted to increase oy This is done in (b) where &y = 4n and in (c) where
oy = 6n. The modulus of the transform is indeed improved but the rapid
frequency variation at the beginning of the experiment gradually disappears.
This is a good illustration of the problems encountered with certain real signals.
Striking a good time/frequency resolution balance is difficult in this case,
particularly if the analysis is supposed to be automatic.

6.4 Interference effects with the Moriet wavelet

In order to understand the behavior of the transform near the limits of the
frequency domain [0, 7], as shown for example in Figure 6-9, we suppose here
that we dispose of a real signal s() of constant frequency and amplitude over the
analysis window:

s(t)=A+2Bcos®, (t)= A+2Bcos(,f)= A+ Be'®' + Be'O!  (66)

Actually, the hypothesis made on s(f) corresponds to the linear-phase-evolution
hypothesis used in the case of phase-shifting algorithms. We also assume that
the frequency w; is within [0, ®t] which means that the signal is correctly
sampled. The Fourier transform of this signal is simply:

$(w) = AS(0) + 2nB3( ®, )+ 2nBS(- w, ) 6-7)

where O is the Dirac distribution. The 2n factor that gives a weight to the &
function results from our definition of the Fourier transform’. Calculating the
wavelet coefficients S(a,b) for this ideal signal yields:

2 2 2
S(a,b) = ﬁ A exp[— %0— ]+ «/ﬁB exp(i(o,b)exp[— az— (ms - %] ]
(6-8)

2 2
+/2nBexp(- i(o,b)exp[—— a2_ [u)x + &) ]
a

Let us now observe what happens when we calculate these coefficients for
different analysis and signal frequencies.
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wy/a oo/a wy/a
(a) (b) (c) (d)

Figure 6-10. Signal spectrum and analysis window.

6.4.1 Well-conditioned analysis

In this case, the Gaussian frequency window of the transform is sufficiently
narrow and the frequency w is neither too high nor too low, sec Figure 6-10(a).
When the analysis frequency is close to o (a = wy/®,), the frequency component
+a, is the only contributing term to the transform. Consequently:

2 2
S(a,b)=+2n exp(— %(ms - &] ]B exp(im,b) (6-9)
a

The transform modulus is constant as a function of time b and maximum when
the analysis frequency uxy/a is equal to w, Moreover, in a frequency band
around , the phase of the transform is equal to the signal’s phase wb. We will
come back to this crucial point in paragraph 6.5.

6.4.2 Low frequency interference effects
In a second case, @ is too low or the Gaussian window is too large, see Figure
6-10(b). Consequently, the component of the signal located at = 0 (sometimes
called the DC component), is included in the window when the analysis
frequency is close to ;. In this situation we can write (6-8) as:

S(a,b) = C + Dexp(io,b) (6-10)

where C and D are constant functions of time b. The modulus and phase of the
transform are then given by:

Dsinw, b

S(a,b)|=yC*+D*> +2CDcos@,b  tangg,,, = —————
[Sta.b) \[ : Psan C +Dcosw,b

(6-11)
The modulus is no longer constant as a function of time b and the phase is no
longer equal to the signal’s phase. We remark however that it could be possible
to estimate , from the “oscillations” of the modulus of the transform. A
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preliminary high-pass filtering of the signal to remove its DC component could
reduce this perturbation.

The third case is similar to the second when o, is still closer to frequency O,
Figure 6-10(c). In this situation, the negative frequency component of the signal
is also included in the frequency window when the analysis frequency ay/a is
close to ,. The result is an “interference” effect between the two components.
The wavelet transform coefficients become:

S(a,b) = C + Dexp(io,b)+ E exp(- iw,b) (6-12)

where C, D and E are constant functions of time b. The modulus and phase of
the transform are then given by:

IS(a,b)| =/C? + D* + E* + 2DE cos 20,b + 2C(D + E) cos 0, b
(D-E)sinw,b (6-13)
C+(D+ E)cosw,b

tan Qg 5y =

The more complex behavior of the modulus makes it difficult to estimate
from its oscillations. The phase is again hard to relate to the signal’s phase.
These problems are always present in the case of the Gabor transform,
which uses a fixed-width frequency window. Increasing the temporal size of the
window is the only way to limit the interference effect between the different
signal components. The situation is quite different in the wavelet case since the
width of the frequency window is proportional to the center frequency in that
window (Awo is constant). In particular, the weight associated to the DC
component of the signal is independent of the actual analysis frequency wy/a.
More precisely, the DC component adds a factor proportional to exp(-ox’/2) in
S(a,b), for all possible values of a. This brings us back to the admissibility
conditions required for a function to qualify as a mother wavelet (see Chapter 4).
One of them asked that the Fourier transform of the analyzing window at the
frequency O be null, or even better, that the Fourier transform be null for all
frequencies @< 0. Strictly speaking, this cannot be achieved with Gaussian
windows, since these functions have an infinite support. However, from a
practical and “computational” point of view, the Morlet wavelet becomes
admissible if we chose @y sufficiently high. Indeed, Morlet’, and later
Daubechies®, showed that the required correcting factor is no longer necessary
for oy > 1.7 n. In our applications, the mother frequency is always at least equal
to 2n. In this case, the DC term has a weight lower than 3. 10”° times the weight
obtained for the central analysis frequency. Consequently, the wavelet analysis
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is not affected by interference effects in the low frequency domain, contrary to
the Gabor transform.

6.4.3 High frequency interference effects

Figure 6-10(d) depicts the situation where the signal’s frequency ®; becomes too
close to the Nyquist frequency. In this case, the periodicity of the spectrum
caused by the discrete sampling creates a peak of frequency 2x - o, in a position
symmetrical to that of the peak at +w,. This peak corresponds to the negative
frequency component of the signal. When the analysis frequency is close to w;,
this second component appears in the wavelet coefficients. (6-8) can then be

written as:
S(a,b) = Dexplio,b)+ Eexp(-iw,b) (6-14)

where D and E are constant functions of time b. The modulus and phase of the
transform are then given by:

IS(a,b)| = \/1)2 +E* +2DEcos20b  tan@g,,, :%tan 9,(b) (6-15)

Again, a modulation of the modulus appears while the phase is a distorted
version of the signal’s phase. In particular, oscillations with “contrast” unity are
produced when the analysis frequency is equal to the cut-off frequency, since
D = E in this case:

|S(a,b)| = V2D[T+ cos 200,b = 2D|cos | (6-16)

However, 2w, is above the cut-off frequency and we observe in practice an
undersampled version of (6-16), at an apparent low frequency 2n-2¢,. This is
illustrated in Figure 6-11 where a chirp signal is analyzed with a mother wavelet
of frequency 2 and 4m. The signal is plotted along with the modulus of the
transform obtained for the cut-off frequency =. The frequency scale goes from
1/25 to mrad/s. Again, in cases where the noise level is low, it could be possible
to estimate @, from the observed oscillations calculated at @ = =x.

These perturbations arc inherent to the nature of wavelet analysis, since the
frequency window becomes larger for higher frequencies. Their effects can be
attenuated, but not eliminated, by increasing «y as illustrated in Figure 6-11(b).
These troubles are of course caused by the negative frequency component of the
signal. We will see in Chapter 9 that under some circumstances it is possible to
attenuate it sufficiently for the oscillations to become negligible.

Before closing this paragraph we can also remark that no perturbations
exist in the low frequency part of the transform, as concluded in paragraph 6.4.2.
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R e e i)

(b)

Figure 6-11. (a) Analysis of a chirp with a mother wavelet frequency
wg = 2n; (b) Same for oy =4n. A profile of the transform modulus
calculated at ® = x is plotted in both cases next to the graph of the
signal

6.5 Phase properties of the Morlet wavelet transform

'he examples seen so far show

the 1nstantancous Irequen

appears in the spectrograms in the form of a “peak” in the mod Its vertical
displacement reflects the signal frequency variations. The width of this peak for
a given time b is given by the width Aw of the Gaussian frequency window. This
is why the peak appears larger at higher frequencies since Ao/ 1s constant (see
for example Figure 6-11). In the same fashion the signal influences the phase of
the transform in a domain proportional to Aw. This 1s clear when we compare

the phase in Figure 6-5 and Figure 6-6 where the width of the window decreases
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by a factor 6. We can see in the second figure that the two signal components
create adjacent “bands” in thc phase of the transform. These effects can be
readily understood for monochromatic signals of constant amplitude with the
help of (6-9). In particular, we observe that, in the support of the Gaussian
frequency window, the phase of the transform is exactly equal to the phase of
the signal. However, the signals encountered in practice seldom exhibit such
ideal characteristics. It is thus necessary to obtain a more realistic estimation of
the transform’s behavior.

6.5.1 Developed expression of the transform

The expression of s(¢) in (6-6) is oversimplified as there are usually frequency
and amplitude variations during an experiment (no variations would account for
a very boring experiment). In the following, we will consider that the phase @,
of the signal can be approximated by its second-order Taylor expansion, over
the temporal width of the analysis window centered at time b. In fact, we could
wish to use higher orders in the dcvelopment of ¢ but, to the best of our
knowledge, an analytic expression of S(a,b) could no longer be obtained. The
signal amplitude (or modulation Jy in the case of interferometry) is represented
by its complete Taylor expansion, since this does not complicatc the
calculations. However, to be mecaningful, the development of the wavelet
coefficients will have to be limited to the second order with respect to time.
Hence, s(f) becomes:

s(t) = A(r) + B(t) explig, (1))+ B(t) exp(—ig, (1)) (6-17)
with:

w,(z)=¢,<b)+¢:<b)(e—b)+%¢:(b)(z—b)2

= (6-18)
_N' 1 pm _ B}
B()= z L BY®)(-b)
k=0
The instantancous frequency of the signal at time b is defined as:
d '
0, =3 ()=¢,0) (6-19)

We will now develop the expression of S(a,b) in the case where only the
positive frequency component of the signal is present in the analysis window. In
this case the signal is simply the complex term B(f)exp(i@,(2)). These particular
mathematical derivations are inspired by similar calculations made in Ref.2 for
the Gabor transform. The main difference arises from the fact that the width of
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the analyzing window is a function of the analysis frequency in the wavelet case,
whereas it is fixed in the Gabor case. The complete developments are presented
in Appendix B. The end result is:

1 .
S(a,b)=2n (1 +a'e” (b))' 4 exp(i(p, b) + éarctan(az(p: (b)))

Z( 2O p(—l(“"’—)]( x= ) ®))

(6-20)
Kot 21-ia¢7(b)

We observe first that in the case of a constant-amplitude monochromatic signal
(B(1)=B, ¢, (b)=w, and ¥’ =0for k >1) (6-20) reduces to (6-9). In this
situation, the transform S(a,b) is exactly proportional to the signal contribution
Bexp(iaxt), with a maximum modulus when wya = @,

If the modulation variations are negligible over the analysis window, as is
the case with many interferometric applications, (6-20) becomes:

S(a,b) =~2n (1 +a'e? (b)T‘: cxp(é arctan(ach:(b)))

2 2
1 .
xexp[—?( s(b) —7) m]ﬂ(b)exp(ﬂp,(b))

Again we find that S(a,b) is proportional to the signal B(b)exp(ipi(b)) but with
many correcting factors. We also recognize the term representing the Gaussian
frequency window corrected by a complex factor. This contributes to the phase
errors due to the second derivative of the phase. We observe that its influence is
magnified by the scaling factor. Hence, a larger scnsitivity to this error is
obtained for low frequency signals or when ay is increased.

To reduce somehow the complexity of (6-20) we look at its behavior along
the so-called ridge of the transform. The ridge is defined as the set of couples
(a(b),b) in the time-frequency domain for which the analysis frequency is equal
to the instantaneous frequency of the signal:

(6-21)

0=-—2= ¢ (b) (6-22)
ab)
We will discuss possible solutions to find this ridge in the next paragraph. The
restriction of the transform to the ridge is called the skeleton of the transform.
As seen in Appendix B, the odd derivatives of B(b) disappear in this case.
Hence, we can now obtain a reduced form of S(a(b),b) when the temporal
evolution of B is a linear function of time over the analysis window:
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1
S(a(b).b)=2x (1 + a* b)o72 (b)) * exp(i % arctana”® (b)) (”)] (6-23)

x B(b)explip, (b))

Both modulus and phase of the transform are distorted versions of the signal.
However, the modulus is not a quantity of prime interest for us. Hence, the only
truly detrimental error is a phase error term, depending on the second derivative
of the signal’s phase. Note that the absolute value of this error is always smaller
than /4. We can then conclude that the restriction of the Morlet wavelet
transform to its ridge provides us with a good representation of signals that have
a locally linear amplitude evolution plus a weakly parabolic phase evolution. We
must emphasize that this property is at the core of our developments since it
leads us towards a new tool, the ridge extraction algorithm, used to evaluate the
phase of the signals obtained with the dynamic phase-shifting method.

We note that the linear-phasc-evolution hypothesis made in the context of
phase-shifting algorithms is somehow relaxed in the wavclet case. However, we
must remember that the phase-shifting algorithm we selected works over a
smaller temporal support. A stronger hypothesis in this case is then reasonable.

One might wonder about the interest of obtaining a copy of the original
signal through the wavelet transformation. First, we recall that the signal is now
bandpass filtered by a filter automatically centered over the instantaneous
frequency @,, which results in an improvement of the SNR. Second, the above
property is true only along the ridge of the transform. Finding the ridge is
equivalent to finding w,(b). At this point, one could imagine integrating wy(b) to
go back to @,(b). However, this is not even necessary since the transform
implicitly yields @.(b), that is, the phase of the interferometric signal. The
question remains to efficiently determine the ridge.

6.5.2 Ridge extraction

We could attempt the cxtraction of the ridge of the transform by looking for the
maximum of |S(a,b)| at each time point b. However, this would be quite time
consuming as the whole time-frequency domain would have to be explored.
Moreover, as in all extrema search problems, the presence of noise can create
situations where a spurious peak is mistakenly identified in place of the actual
one. In particular, we will see in the case of speckle interferometry that the
amplitude of the signal can become very low over large time intervals before
rising again. It is then important to be able to follow such low energy peaks.

A more elegant solution, bascd on the aforementioned phase properties of
the transform is presented in Ref.1 and Ref.2. The idca is based on the fact that,
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for constant frequency signals, there is a band of analyzing frequencies centered
on ®; for which the phase of the transform Qg is equal to the phase ¢, of the
signal. In other words, the transform’s phase is equal to wb. The width of this
band is simply given by the width of the Gaussian analyzing window in the
frequency domain. A similar property is obtained for signal of slowly varying
instantaneous frequency (6.5.1). Hence, when the analysis frequency w = ay/a is
close or equal to w,, the rate of variation of the phase of the transform,
d@ssy/db, is actually equal to w. Finding this frequency implicitly yields w,. A
fixed point algorithm is used to this end.

The algorithm starts with a rough estimation of ¢, which gives a first value
ao for the scaling factor. A new frequency oy is then calculated as d@g,o5y/db.
The corresponding scale factor a;=op/ey is then used to estimate
) = dPs(ar/db. The algorithm stops when (ai.) — a;)/a; gets lower than a given
precision. In practice, two or three iterations are usually sufficient. Once w,(b)
has been found, the algorithm continues at time b+1 with ap = ex/oy(d). The
convergence of the algorithm is proven in Ref.1. Intuitively, we can understand
it from the fact that the phase of the transform is equal to the phase of the signal
in a frequency band that frames the ridge. Hence, the derivative of Qs is close
to ,, even at the first iteration.

The same algorithm can be used for more realistic signals. We recall from
(6-21) that @s(, is equal to @ plus a phase shift depending on @’ (b) . Since this
phase shift is quasi-constant for two successive time samples b, the derivative of
Ps@by is again closec to the signal instantaneous frequency, hence the
convergence of the algorithm. Of course, the subsequent estimation of @; from
the transform computed at a = op/o, still includes the phase error term
dependent on @’ (b).

The process of extracting the ridge of the transform is very similar to the
function of a phase-lock-loop in electronics. These circuits simply try to stay in
phase with an input signal. In our case the ridge extraction amounts to “tune” the
analysis frequency into the signal’s instantaneous frequency.

Again, we must emphasize the importance of the method described here
since the ridge extraction algorithm is the fundamental tool that permits to
process the temporal signals recorded in the dynamic phase-shifting context. It
solves completely the problem of measuring the phase of a sinusoidal signal. It
must also be noted that the whole process takes uniquely advantage of the phase
properties of the transform. Indeed, the transform modulus is not considered at
all in the algorithm. However, we will see that the ridge usually follows a
trajectory very close to that of the maximum of the modulus of the transform.
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6.5.3 Examples of ridge extraction

Ridge extraction does not present any particular problem for noiseless,
simulated signals with smooth frequency evolution. Hence, we rather present
here the results obtained for a simulated signal with added noise, some of the
measured signals presented earlier as well as new ones.

The spectrogram displayed in Figure 6-12 corresponds to a constant
frequency signal to which a large intensity Gaussian noisc is added (see also
paragraph 6.3.2). The resulting signal-to-noise ratio is 1. The analysis is
performed for oy = 2.
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Figure 6-12. Ridge extraction on the signal of Figure 6-7. The vertical
scale ranges from /10 to 2#/3. Analysis performed for wg = 2.

The modulus of the transform is quite “bumpy” and we can imagine the
difficulty of identifying the ridge from the maximum of [S(ap)| in this
intensity image. However, a quite correct ridge is obtained here (black line in
the figure) by application of the simple ridge extraction algorithm based on the
phase. We can note that the ridge drops down suddenly for the last samples of
the signal. This is a boundary effect due to the artificial extension of the signal’s
support. This point is explained in more detail in the next chapter.
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The second example shown in Figure 6-13 corresponds to a signal obtained
during the same experiment as the signal of Figure 6-8. This time, large
fluctuations of the modulation and background intensity are clearly visible. They

result from the large image-plane decorrelation produced during this experiment
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Figure 6-13. Ridge extraction for a signal measured with speckle
interferometry. Analysis Is performed at ay = 2n. The vertical scale
ranges from /10 to 2r/3.

The large variations noted above or the weak signal modulation in some regions
clearly do not cause any problem regarding the ndge extraction as very little
noise is present in the me asured signal

We now present a measurement obtained in shearing speckle
interferometry. The object 1s a metal plate that is cychcally loaded in its center
at a frequency of 0.5 Hz by a large-range PZT. The maximum displacement 1s
on the order of 70 microns. The acquisition itself is performed using a pulsed
laser at 25 Hz and a reference phase step of w/2 is introduced between
successive images with a PZT-mounted mirror. The amount of shear in the
interferometer is quite small since we obtain at most one fringe in the classical
butterfly fringe pattern corresponding to the bump on the surface. The signal
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shown in Figure 6-14 corresponds to a pixel located in the region where
maximum phase variations are obtained.
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Figure 6-14. Ridge extraction for a signal measured with a shearing
speckle interferometer during the cyclic loading of a metallic plate.
Analysis is performed at ay = 2n. The scale ranges from /50 to .

We observe about ten periods of oscillation over the 512 recorded samples. The
frequency of the signal oscillates between 27/3 and 2n/5. These frequency
variations are sufficiently slow that the algorithm can follow the instantancous
frequency trajectory. However, if the analysis is performed with a higher mother
wavelet frequency the ridge extraction becomes impossible as illustrated in
Figure 6-15 where ay is equal to 4n. The width of the temporal window is on the
order of the period of the frequency oscillations in this case and the accordingly

poor time localization no longer permits to resolve sharp frequency variations.
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Figure 6-15. Same as Figure 6-14 with ay = 4n. The ridge extraction
fails because frequency details are blurred.

The phase of the transform calculated along the ridge of Figure 6-14 is presented
in Figure 6-16. The plot actually shows the phase (in degree) obtained after
subtraction of the 90° reference phase steps introduced between images during
the acquisition. The phase is arbitrarily chosen to be equal to 0° for the first
sample of the signal in this image since the initial phase of the speckle
interferogram is random. The curve is quite smooth, because of the low-pass
filtering performed by the wavelet transformation. The dashed curve in this
graph 1s the phase measured along the ridge obtained for a similar simulated
signal. The sinusoidal frequency modulation of this signal is chosen to approach
as much as possible the phase evolution of the original signal. It will be used

later to characterize the systematic phase error due to the second derivative of
the phase.
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Figure 6-16. Solid line: phase (in degree) measured along the ridge in
Figure 6-14. Dashed line: phase measured along the ridge obtained
for a simulated signal with similar sinusoidal frequency modulation.

We will come back to this experiment in Chapter 8, where different application
examples of dynamic phase-shifting are presented.
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Next we show the example of a signal measured in holographic interferometry.
This case is interesting as it illustrates a problem in the ridge extraction when the
instantancous frequency of the signal changes very rapidly. This is caused here
by the abrupt beginning of the loading of the object under study. A 7/2 reference

phase step 1s also introduced during this experiment
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Figure 6-17. Thermal loading of an object observed with holographic
interferometry. Analysis performed for oy =3n. The vertical scale
ranges from /10 to 2/3 in this image.

T'he instants where the loading starts and ends are clearly visible in Figure 6-17.
We observe that the algorithm finds correctly the ndge except for the first
transition where it hesitates before jumping from /2 to less than /3. A zoom
on this transition can show that a phase error of one fringe is introduced at this
point, see Figure 6-18. In this figure, the phase of the skeleton is plotted in the
form of a saw-tooth graph along the signal. We observe that the analysis created
two “high-frequency” fringes in the first low-frequency period of the signal.
Hence a 2x error is introduced in this measurement. This example actually
illustrates the limit of the technique with respect to transients. The sudden

frequency jump is too rapid to be correctly sampled in this case.
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Figure 6-18. 16x zoom of Figure 6-17 near the first frequency jump.

The last example presented here illustrates the problems encountered when
the instantaneous frequency of the signal gets too close to the Nyquist limit. It
corresponds to the experiment described in paragraph 6.3.4. In Figure 6-19(a),
the analysis frequency y, is equal to 2m. In this case, the frequency transition at
the beginning of the experiment is preserved, thanks to the sufficient time
localization of the analysis window. However, since the analysis window in the
frequency domain is large, an interference effect is obtained with the negative
frequency component of the signal when its frequency increases (see paragraph
6.4.3). The modulus starts to oscillate and the phase is distorted. The ridge
extraction algorithm fails in this case. The image presented in (b) corresponds to
oy, equal to 4m. The interference effects are now reduced but the algorithm still
creates an oscillating ridge that does not correspond to the physical behavior of
the object. Moreover, the larger analyzing window does not preserve as well the
imtial frequency transition. As a consequence, the algorithm fails to identify it
properly.

[t seems that the phase of this particular signal cannot be processed with the
wavelet analysis described up to now. We will see in Chapter 9 that a solution

actually exists to dampen or even remove completely interference effects near
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the cut-off frequency, in which case the ridge extraction performs very well

while preserving at the same ime the imitial frequency transition

(b)

Figure 6-19. Ridge extraction problems in the case of frequencies
close to the Nyquist limit. (a) Analysis for wg=2n. The initial
frequency transition is correctly identified but the ridge extraction
fails at higher frequencies. (b) Analysis for ag = 4n. The frequency
transition is lost but the ridge is slightly better.

6.6 “Sensitivity” of the wavelet-based phase measurement

Contrary to the phase-shifting algorithm presented in Chapter 5, the wavelet
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with respect to phase “details”. This is briefly characterized in one of the
following paragraphs. A particular phase detail might result from the fine
behavior of the object under study or, more frequently, from a phase fluctuation
due to the environmental perturbations of the experimental setup. The effect of
large and sudden phase jumps is studied in 6.6.2.

6.6.1 Impuise response of the wavelet phase analysis

In a simplified manner, we look here at the response of the method to a single
phase step of amplitude 5°. For this purpose we generate three signals of
frequency 1/4.1, 2.1 and 31/4.1, with the added phase step at the center of the
signal support, and analyze them in the case of a mother frequency uy equal to
27 and 4. The results are presented in Figure 6-20.
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Figure 6-20. Effect of a 5° phase step on the phase ¢s calculated
along the ridge. (a) Analysis for wy = 2r; (b) Analysis for wg = 4x.

The graphs show the impulse response of the wavelet transform. Not
surprisingly, slower responses are obtained for the large temporal windows that
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are used for low-frequency signals (/4) compared to high-frequency signals
(3n/4). Similarly, increasing the mother wavelet frequency amounts to increase
the response time at all frequencies. If we use the rise-time T defined in
electronics as the time interval necessary to go from 10% to 90% of the
transition, we find 1 equal to 2.6 periods of the signal for ey = 2r and o, = n/2.1.
T equals 2.4 periods for w, = 3n/4.1 and 2.7 periods for @, = n/4.1. In the case
ay = 47 we find T equal to 4.4, 4.8 and 5.1 periods for w, equal to 3n/4.1, /2.1
and 7/4.1. The conclusion is that small transient phase details that occur at time
scales smaller than two signal periods are not detected for mother wavelet
frequencies larger than 2n. Only larger scale events, such as the permanent
phase step depicted above, do register in the phase of the transform.

We note that larger jumps produce equivalent graphs, showing that the
rise-time is actually independent of the height of the jump itself.

6.6.2 Effect of large phase jumps

In paragraph 6.6.1 we looked at the “sensitivity” of the method to small phase
variations. In this paragraph we look briefly at the effect of larger phase steps
that can be induced by a sudden variation of the measured physical quantity or
simply by an external perturbation.

Figure 6-21 shows the transform of a signal of constant frequency /2.1 to
which three permanent phase jumps of w2, m and 3w/?2 are added. Adding
suddenly a phase offset amounts to increase locally the instantaneous frequency
of the signal, as long as there is no aliasing effect. This is readily apparent for
the first phase jump of height +7/2. Since the maximum instantaneous frequency
(slightly less than m at the instant of the jump) is still within the Nyquist domain
[-7t. ), no ambiguity exists in the signal. A much smaller frequency changc
actually appears in the transform because of the time localization uncertainty.

In the case of the second jump of height & two different possible paths
appear in the transform modulus. To these paths corresponds a dislocation of the
transform’s phase. In effect, changing the phase by +r or —m produces the same
real signal. However, the instantaneous frequency increases in one case and
decreases in the other. This explains the appearance of the two possible paths.
Taking the upper path instead of the lower path corresponds to adding one fringe
to the phase of the signal. In effect, both phase evolutions are equally probable.
Therefore, the particular choice of the ridge in this case is arbitrary.

In the third case, a jump of +31/2 is equivalent to a jump of —1/2, once
brought back in the interval [-m, m]. This results in a decrease of the
instantaneous frequency.
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Figure 6-21. Effect of three phase jumps on the phase of the
transform of a constant frequency signal.

I'he holes in the modulus and the dislocations in the phase of the transform
are the signature of sudden phase changes that are commonly obtained in real
experimental conditions. One can observe this kind of features in Figure 6-14.
More precisely, a phase dislocation can appear if and only if the modulus drops
to zero locally, which results in the phase being undetermined at that point. A
loop around such a point yields a phase change of 2n. (This is actually very
similar to what is obtained in a fully developed speckle pattern.) Thus, choosing
one path instead of the other around a dislocation amounts to a phase difference
of exactly one fringe. Therefore, important phase errors can be accumulated

when vibrations introduce a large phase noise in the interferogram.

6.7 Phase errors due to non-linear phase evolution

We are interested here in the phase errors that are obtained when the phase
evolution law of the signal can no longer be considered linear in the temporal
analysis window. The example described in paragraph 6.7.1 shows the error
produced by the derivatives of order higher than two, in the case of a sinusoidal

frequency modulation. Next, in 6.7.2, we characterize the error induced by the
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second derivative of the phase, assuming that the higher derivatives are
negligible. In the last paragraph, we study another type of non-linearity of the
phase evolution, which is obtained when the phase-shifting device that produces
reference phase steps during an experiment is incorrectly calibrated. The
resulting cyclic phase jumps ultimately create troublesome signal harmonics.

6.7.1 Phase estimation error in the case of a sinusoidal
frequency modulation

Sinusoidal frequency modulation is an interesting case where the derivatives
never totally disappear. We try to estimate here the amount of error made when
estimating the phase of the signal shown in Figure 6-14. To simplify the
problem, we first create a signal of characteristics as close as possible to what is
actually measured. Hence, we build a signal using a sinusoidal frequency
modulation to which is added a carrier frequency of w2 rad/s. We adjust the
initial phase and frequency modulation law until the phasec measured along the
ridge of the transform of the simulated signal matches with the experimentally
measured phase. The result is shown in Figure 6-22.

Figure 6-22. Phase measured along the ridge in Figure 6-14
(continuous line) and approximation (dashed line) obtained along the
ridge of a simulated signal.

Working with the simulated phase evolution @m(f), we can now estimate
analytically the different derivatives of the phase.

We first plot the phase measured along the ridge for the simulated signal
(labeled “skeleton phase”) and compare it to the actual simulated phase Qn(t)
(see Figure 6-23). The difference, plotted as a thick line, oscillates between plus
or minus 15°, which represents a relative error of £13% for the phase extrema.
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Figure 6-23. Comparison of the phase of the simulated signal,
measured along the ridge, with its actual value. Units are in degrees.

The next step is to evaluate the theoretical error contribution of the second
derivative of the phase and compare it to the error shown in Figure 6-23. This is
done in Figure 6-24 where the term

%arctanaztp:im ®) (6-24)

is estimated and plotted with the label “Second derivative error”. This time, the
difference with the error obtained in Figure 6-23 oscillates between plus and
minus 2°. The remaining error is a function of the higher derivatives of the
phase.
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Figure 6-24. Comparison of the measured phase error with the
theoretical error due to the second derivative of the phase. Units are
in degrees.

This same example is again treated in Chapter 9 where different solutions
are proposed in order to eliminate directly the predominant second derivative
€ITor.
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6.7.2 General effect of the second derivative of the phase

We will assume here that derivatives of order higher than two are negligible
over the temporal analysis window and that the signal modulation changes
linearly in this same window. In order to get an idea of the behavior of the factor
shown in (6-24) we write the second derivative @ as being proportional to the
instantaneous signal frequency @', by a factor 1/o:

” (p.f

mS
0] S a=— (6-25)
o [6)]

5

Note that « has the dimension of time. We can now write the phase error 8¢ as:

5

ou

5

1
do= 5 arctan (6-26)
In the next figure we plot the contour lines of 8¢ when ay equals 2m. The
vertical scale represents the signal instantaneous frequency ., covering the
range (0, 180] °/s, and the horizontal scale gives the value of the coefficient o,
ranging from O to 100 s. The contour lines correspond to 5° steps of the error 8¢.
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Figure 6-25. Contour plot of the phase error as a function of the
signal frequency @, and the ratio o = ©J/w’s, when wg = 21

We observe that the phase error grows very fast with the second derivative
of the phase. The effcct is amplified for low-frequency signals because of the
larger temporal window used to process them (a is larger). Fortunately, the error
cannot become larger than 45° (as far as our model of phase and modulation
evolution of the signal holds). Still, a systematic error of at least 15° is obtained
for any @, value, when «’, is larger than ®/20. Hence, most frequency
transitions of the measured signal result in an error oscillating between plus and
minus 45°. However, it is important to note that as soon as the frequency
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stabilizes, the error disappears altogether. As mentioned earlier, we can make an
analogy between the process of wavelet-based phase measurements with an
electronic phase-lock-loop that tries to lock with the phase of a signal. We can
imagine that the PLL has a certain inertia that prevents it from following
frequency variations without an additional phase delay. Fortunately, this delay
disappears when the frequency becomes stationary, which permits to the PLL to
lock back. The practical consequence it that there is no accumulation of the error
due to the second derivative of the phase. Whenever it is negligible, the phase of
the transform is really equivalent to the signal’s phase.

Equation (6-26) shows that the situation becomes worse when higher
mother wavelet frequencies are used. Hence, correcting the second derivative
error is an important topic in the development of the wavelet based phase
measurement. Solutions to this problem, in particular the use of chirped
wavelets, are presented in Chapter 9.

6.7.3 Harmonic generation due to incorrect phase-shifting
device calibration

This point deals with a very practical aspect of the measurement in dynamic
phase-shifting conditions. We show in Chapter 4 that the introduction of a
known phase step in the interferogram, between each image acquisition, is
essential to determine the absolute sign of the phase change induced, for
example, by the object deformation. To create such reference steps we usually
drive PZT-mounted mirrors in a cyclic fashion. The idea is to have phase steps
that are integer fractions of 2m, say 2m/n, so that the mirror comes back to its
initial position after n such 2n/n steps. Typically, we use cycles of {0, n/2, =,
31/2, 0} which correspond to n = 4.

Let us now look at what happens when the PZT element is not calibrated
correctly. In this case, phase increments ¢ are introduced instead of 2n/n and the
actual cycle is {0, ¢, 20, 39,... (n-1)¢, 0}. All steps are then equal except the last
one, equal to 21 - (n-1)¢. In the absence of a deformation-induced phase change,
the measured signal s(¢) is periodic of period n, as required, but is no longer a
sinusoidal function of time. s(#) can now be written as:

N 2n N ., 2m
s(t)= k:z‘:a,‘ cos(k 7 t ]: R{;ak exp[tk 7 t )] (6-27)

A perfect calibration implies that a, = 0 for k#+1. A consequence of (6-27) is
that there are now harmonics of the fundamental frequency in the signal. This
creates new peaks in its wavelet transform.
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Let us now consider a point of the interferogram where the deformation

produces a phase change 7. The measured signal becomes:

( . 2n 2n
s(1) E a, cos| | ® +k t |=Re| expliw,r) E a, exp| ik—t (6-28)
n n

T'he signal spectrum now contains harmonics at the frequencies w, + k2m/n,
which could interfere with the harmonic of interest at k = 1.

l'o illustrate these effects we simulate the case where n=4 and ¢ = /3
instead of /2. Hence, cycles {0, n/3, 2n/3, &, 0} are obtained. (Fortunately, PZ1
calibrations are usually much more precise). In the first half of the simulation,
the deformation-induced phase change is constant, its frequency being —/10. In
the second part, its frequency increases from —-/10 up to +7/6. The resulting

transform 1s shown 1n Figure 6-26, where oy, = 6m
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Figure 6-26. Harmonic generation in the form of additional frequency
components, caused by a miscalibration of the element producing
the reference phase steps.

The four different peaks present in this image correspond to the first five

positive and negative harmonics of the signal. There is, from bottom to top, the
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frequency 2m/20 (k=0 and k=-2), the frequency of interest 2r/5 (k=1),
correctly identified by the ridge extraction algorithm, the frequency 2n/(10/3)
(k = -1) and the frequency 21/(20/9) (k = 2).

The second part of the figure shows that the different components move
according to ;. In particular, the harmonics -1 and +1 interfere when they cross
one another, which results in a distortion of the ridge and of the skeleton’s
phase.

The conclusion is that attention should be paid to the phase shifter
calibration, since the task of extracting the ridge is usually sufficiently difficult
without the added inconvenience of signal harmonics. However, the ridge
extraction remains possible since the amplitude of the useful harmonic stays
much higher than that of the others, even when the calibration error is large, as
seen in this example.

6.8 Phase errors in the presence of noise

As illustrated in Figure 6-7, the bandpass filtering inherent to wavelet processing
usually eliminates a large part of the noise present in a signal. In order to
estimate the influence of intensity noises of varying standard deviations we
creatc a simulated sequence of 512 256 x 256-pixels images. Each pixel
“records” an interferometric signal of amplitude Iy equal to 32 grey levels. The
initial phase of these pixels varies from 0 to 7 along horizontal lines of the first.
image. The first line corresponds to a noise standard deviation oy of O grey
levels while the last corresponds to oy = 64 grey levels. The frequency of the
signal varies in the same manner for all pixels: it is 7/6 in the first image and
5n/6 in the last. In this way, we can process the signal of different pixels along
the time axis and obtain an idea of the phase error produced for different noise
levels and different signal instantaneous frequencies .

This image sequence is processed with a program presented in Chapter 7.
We actually look at the phase evolution of the five pixel lines where oy =0, 2,
4, 8 and 16 grey levels. We can then compare the calculated phase of the 256
pixels to the theoretical phase value and compute the standard deviation of the
difference 8¢ as a function of time or, equivalently, as a function of the
frequency ;. The results are presented in Figure 6-27.

We choose to make the simulation this way because the chirp permits to
explore rapidly the frequency domain. The alternative would be to create a
bunch of constant frequency signals and analyze them. Since the filtering effect
of the transform is stronger at low frequencics, we can imagine that the error is
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larger at higher frequencies. However, a potential problem with our simulation
is that the success of the analysis at high frequencies depends on the result of the
analysis at low frequency, since the ridge extraction propagates along the time.
Hence, we can fear that errors accumulate and give an artificially higher noise
level towards the end of the sequence. The consequence is that we can imagine
two different processes that contribute to make the phase standard deviation
larger for larger values of w,. To make sure that the second possibility, error
accumulation, is actually ncgligible, we process a second simulated sequence of
images where the frequency varies from 57/6 down to 7/6 and we plot the result
obtained for the same noise levels. We remark that in this second case the
second derivative of the phase has the same absolute value but an opposite sign.

30° 45° 60° 75° S0 105° 120° 135° 150°

Figure 6-27. Standard deviation of the phase error obtained for signal
frequencies ranging from 30°s to 150°/s and for 4 different noise
levels.

We indeed observe an increase of the error standard deviation towards high
o, values. However, the two curves obtained for the transition /6 — 51/6 and
5m/6 — w6 are very similar. This confirms that there is no significant error
accumulation effect in these estimations. In other words, the estimations can be
considered to be fairly indcpendent of the ridge propagation direction. The
hypothesis of a higher accuracy due to better noise rejection for low values of w,
is also confirmed. The maximum standard deviation is on the order of 15° for a
signal-to-noise ratio of 2, over the whole domain [30°, 150°]. This comparcs
very favorably to the results obtained with the 5-image algorithm depicted in
Chapter 5, where this error level is only obtained for a SNR larger than 3, on the
reduced domain [60°, 120°]. The curves are quite noisy since we use only 256
samples per o, value to make these estimations whereas we use about 36000
samples for each equivalent o, value in the case of the 5-image algorithm.
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Each standard deviation value is calculated from 256 phase estimations.
However, similarly to what we did for the 5-image algorithm, we first remove
the points for which the ridge is grossly wrong. No points have to be removed
for the noise standard distributions of 0, 4 and 8 grey levels. 10 points are
removed for 6y = 16. This means that more than 95% of the points are correctly
processed at these noise levels.

After studying the phase error standard deviation, we can look at the
average error value. As seen earlier, we expect a systematic error due to the
second derivative of the phase, which is constant for a linear chirp. Using
equation (6-26) we can estimate the systematic error to be 15° for w, = 30°, 7.3°
for @, = 45° and 1.9° for w, = 90°. These values match very closely with what
we find in Figure 6-28 where we plot the average phase error corresponding to
the four noise situations of Figure 6-27. Note that we plot in this figure the
opposite value of the error obtained for the transition 5/6 — 1/6. We also note
a sharp drop for frequencies smaller than 35°. This is actually a boundary effect
caused by the prolongation of the signal by a constant frequency signal, for
negative time values.

<8p> 14° . RO . R
1
12° . ) .. .__—{>___ - C e
10° | S P e
g ) ... - O .
6° - [
). N~
2 . N
o° S —_—— -- -1 Yyl @,
30° 45° 60° 75° 90° 105° 120° 135° 150°

Figure 6-28. Average phase error as a function of the instantaneous
signal frequency.

6.9 Summary: wavelet-based phase analysis properties

This chapter gives us some insight into the behavior of the wavelet transform
and its phase properties. We observe that it is a well-adapted tool for the
processing of the temporal signals that are obtained when performing continuous
measurements based on the dynamic phase-shifting principles. In particular, the
inherent noise filtering brings robustness to the method. Moreover, the ridge
extraction algorithm proves to be an efficient way to extract directly the phase
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evolution of interest to us. Also, the analysis can be performed almost up to the
limits of the available frequency domain, [0, ], which is impossible with the
S5-image algorithm studied in Chapter 5.

Three limitations of the technique can be noted. There is first a difficulty to
follow very sudden frequency variations. Second, systematic phase errors appear
when the phase evolution is not a lincar function of time over the support of the
temporal analysis window. Third, the ridge cxtraction becomes difficult when
the signal frequency gets too close to the Nyquist limit, because of an
interference effect in the transform.

We present in the next two chapters the details of the practical software
implementation of the method as described up to now and a series of application
examples. Chapter 9 then introduces two fundamental improvements of the
technique that address the limitations mentioned earlier. One is the creation of
complex signals, the other is the use of chirped wavelets.
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7. Phase-shifting algorithm and wavelet-processing

software implementation

The two solutions we propose in this dissertation, an adapted phase-shifting
algorithm and a wavelet-based analysis solve the problem of the phase
extraction from a sequence of images recorded in dynamic phase-shifting
conditions. The behavior of these approaches has been characterized in the two
preceding chapters. In this chapter we briefly present the solutions we chose for
the practical software implementation of the corresponding algorithms.

In particular, the maximum-likelihood phase estimation presented in
paragraph 7.2.6 is shown to be an essential tool for robust processing of images
obtained in the context of speckle interferometry.

7.1 Adapted 5-image algorithm

The phase calculation is a very straightforward process. Hence, we take
advantage of this paragraph to rapidly describe the spatial unwrapping algorithm
that we use in this case.

7.1.1 Phase calculation

The algorithm itself is described in Chapter 5. Five intensity samples I, to Is are
used to determine the phase of the interferogram at each pixel in the image. We
choose one particular solution for the estimation of the average phase increment
A®, called method A in Chapter 5. This preliminary calculation actually yields
cosA¢@. In some cases, because of noise or when the phase of the interfecrogram
is close to an integer multiple of i, the absolute value of the estimated cosine is
sometimes larger than one. In this case, our algorithm assigns to this particular
pixel a phase value that depends on the rclative magnitude of the intensity
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samples: if /5 is larger, respectively smaller, than both I; and /s, the phase is 0,
respectively m.

The estimation of the phase ¢ and phase increment A¢ require the
computation of different ratios where both numerator and denominator arc lincar
combinations of the five intensity samples. Since these samples are integer
values, it is possible that some denominators are equal to 0. Rather than test
systematically for this condition in our programs, we add a small constant, such
as | 0'30, to each calculated denominator.

Once the phase increment is estimated, the phase itself is obtained as the
arctangent of a second ratio multiplied by sinA¢. The usual arctangent function
yields a value within the domain [-n/2, /2]. Since A@ is supposed to be within
[0, ], sinA@ is a positive value. Hence, the numerator and denominator are
proportional to the sine and cosine of the phase. From the sign of these
quantities it is possible to obtain a phase valuc within [0, 2x]. This is necessary
for our programs written in Visual Basic. Fortunately, the two other compilers
we use, a Pascal compiler and a recent C compiler (Visual C++), provide the
so-called atan2() function, which takes two arguments, the numerator multiplied
by sinA¢@ and the denominator, and yields directly a value within [-r, it].

We mention in Chapter 5 that in our current implementation of this
algorithm we have the possibility to perform a least-square fit of the A¢ map
before calculating the phase itself. However, this cannot be used in a systematic
manner in the case of dynamic phase-shifting since the A¢ map might be of a
discontinuous and complex shape, whereas the fit is a third-degree polynomial
surface.

The algorithm was first implemented in Pascal and added to the
commercial package Optocat that runs on PC computers. This program provides
many useful functions to perform phase measurements bascd on the
phase-stepping method. However, because of the difficulty to develop and add
new functions to this package (limited DOS memory) we decided to base our
image processing developments on the Visilog package that runs under
Windows on PC as well as under various Unix flavors. This is a complete
general-purpose image-processing environment, including many high-level
morphological processing tools. However, it does not propose the dedicated
tools used for phase measurement. Hence, we modified the user interface and
added different compiled C functions to be able to compute phase values with 3-
or S5-image algorithms as well as with the Fourier method, import or export such
phase values, low-pass filter them in the sine and cosine domain and unwrap
them in a convenient manner.
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To process the long sequence of images that we obtain with dynamic
phase-shifting, we made a few ‘“scripts”, which are written in C code and
interpreted directly by Visilog, based on the available phase- and
image-processing functions. The computation of the wrapped phase maps
corresponding to a 512-image sequence takes about one hour and a half on a
120 MHz Pentium PC.

The problem of phase unwrapping in the context of speckle interferometry
was actually proposed as a subject to an exchange student who created a very
powerful unwrapping tool, which is described in the next paragraph.

7.1.2 Spatial unwrapping of noisy wrapped phase maps

The problem of the spatial unwrapping of noisy phase maps obtained
particularly with speckle interferometry was proposed to an Erasmus exchange
student, David Venet'. The subject was far reaching since its goal was to unwrap
noisy phase images possibly presenting physical discontinuities, without
preliminary masking. The resulting algorithm actually went beyond our
expectations and is described below.

The unwrapping of an image is performed in the following manner:

1) Calculation of a merit function for all the pixels in the image. This
consists in selecting a 3x3- or 5x5-pixel window around each pixel. Next, this
miniature image is unwrapped with respect to the central pixel. The unwrapping
is performed on a pixel by pixel basis. The variance of the resulting image is
then computed and acts as the merit function for 3x3-pixels windows. In the 5x5
case, a best-fit plane is first subtracted from the unwrapped region, before
calculating the variance. This helps process regions in the interferogram where
the fringes are closely spaced.

2) Based on the maximum, minimum and distribution of the merit
function, 20 “quality” classcs are defined in the image.

3) The algorithm looks for a pixel belonging to the first class. The fringe
order of this point is arbitrarily chosen as zero. This search is performed on a
grid and starts from one corner of the image. Once this pixel is found (it is
defined as the first “current pixel”), the coordinates of its 8 neighbors are sorted
in different buffers, according to their class. There are actually as many buffers
as classes. These pixels are also flagged as “in use” in a bookkeeping image B
while the current pixel is flagged as “processed”.

4) The algorithm now looks in the buffers, starting from the one
corresponding to the highest quality. As soon as it finds one that is non-empty it
unwraps the phase @; of the corresponding pixel with respect to the phase ¢, of
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the current pixel. This consists in adding or subtracting an integer number of 2
to @ so that the difference |@, - ¢.|<n. The newly unwrapped pixel is now
flagged as “processed” in B, and its neighbors that are not yet flagged as
“processed” or “in use” are placed in the buffers.

5) The process continues to 4) until all pixels in the image have been
unwrapped or until the remaining pixels belong to classes lower than a given
threshold. In this last case, the algorithm goes back to 3) to look for a new
starting point. This permits to unwrap correctly images where unconnected
regions exist, while providing at the same time a mask of these regions.

The resulting method is fast since a 512x512 image is unwrapped in about
10 seconds on a 150 MHz Pentium PC. One of its main advantages is that it
usually does not require a mask of the regions of interest, but, on the contrary,
creates such a mask as a byproduct. A mask can still be provided, if the
algorithm fails, in the form of cuts forbidding some unwrapping paths in the
image. We remark that preliminary filtering is seldom necessary with speckle
images. Moreover, physical discontinuities are usually correctly preserved. It
must be emphasized here that the success of this approach is mostly due to the
intelligent definition of the initial merit function. Many possibilities were indeed
studied before selecting a final set of functions, which are adapted to different
unwrapping situations.

(b)

Figure 7-1. (a) Wrapped phase map showing the deformation of a bolt
head and underlying metal plate when the nut is tightened
(holographic interferometry); (b) Directly unwrapped phase map.

Figure 7-1 shows a wrapped phase map obtained with holographic
interferometry applied to the study of the failure of a nut and bolt assembly.
There are many fringe discontinuities in this image, as well as a random phase
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region caused by the bolt head shadow. The image in (b) is the result of the
direct unwrapping of (a), without any filtering or masking. The two adjacent
fringe regions have been correctly separated. The remaining unknown is their
relative positions (fringe order). This would actually be known without
ambiguity if dynamic phase-shifting had been used during this experiment.

The example of Figure 7-2 shows an image obtained with contouring
speckle interferometry used to measure the shape of a cavity milled in a metal
plate with a high-precision milling machine. One fringe represents a height
difference of 22 pum. Figure 7-2(a) shows the wrapped phase map. Figure 7-2(b)
shows the unwrapped phase map, obtained again without masking or filtering.
One can actually observe in this image 10 successive milling steps.

Figure 7-2. (a) Wrapped phase map showing contour fringes obtained
in speckle interferometry; (b) Directly unwrapped phase map.

7.2 Wavelet-based phase analysis tools

We wrote a first program, simply called “Wavelet”, to understand the principles
of wavelet analysis, study the influence of various parameters and develop the
ridge extraction algorithm. In particular, it creates images of a signal’s wavelet
transform. The examples of Chapter 7 were obtained this way. Once we got a
better understanding of the process of phase extraction with the Morlet wavelet
we decided to write a second program, called DPSTools, dedicated to the
complete processing of image sequences. Instead of processing one signal at a
time, it permits to process automatically the more than 260000 signals obtained
with our digital camera (see Chapter 8). This program is described in paragraph
7.2.1. The following paragraphs detail different steps of the wavelet processing
that are common to both programs.
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7.2.1 DPSTools: wavelet-based processing of image series

This program is made of two distinct parts. It runs under Windows95 or
Windows NT on compatible PC. The interface, built in Visual Basic 4, provides
a graphical interface to the user. Since Visual Basic 4 creates partially
interpreted applications, it lacks the raw processing speed that can be obtained
with compiled code. Hence, the processing core is made of multithreaded
Dynamic Link Libraries (DLL) called by the interface. These DLL are
developed in C, using Visual C++ 4.2. A great deal of time was actually lost
because of bugs in the optimizing compiler of this development environment.

The program provides the following possibilities to the user:

1) Visualization of images belonging to a particular sequence. The user can
zoom in on specific regions, and interactively demand a plot of a selected pixel’s
signal. The plot can also include the signal of the 8 surrounding pixels.

2) Selection of the region to be processed. One can select a single pixel, a
line of pixels (not limited to rows or columns) or a rectangular array of pixels
(for example the whole image). The selection can be performed graphically with
the mouse or using a parameter input window that morcover allows to choose
the number of pixels included in the selection by specifying sampling steps.
Additionally, the user can specify the time interval of interest within the
temporal sequence.

3) Selection of one or three reference pixels in the image. This selection is
also performed with the mouse or with a parameter-input window. If only one
point is selected, its phase evolution is used as a reference that is subtracted
from the phase of all other processed pixels (piston correction). The goal here is
to correct for a temporally varying phase offset perturbing the whole
interferogram. Hence, the chosen point must belong to a static region of the
interferogram. If three points are chosen, their phase evolution defines a phase
plane that is used as a reference for the other pixels of the selection. The effect is
to correct for tilts and piston movements.

4) Determination of the wavelet analysis parameters. One window is used
to choose the mother wavelet frequency, the threshold that defines the extent of
the wavelet support, the maximum and minimum analysis frequencics, the
carrier frequency that must be subtracted from the unwrapped phase of each
processed signal and the modulation threshold used to eliminate bad pixcls from
the maximume-likelihood phase estimate (see paragraph 7.2.6).

5) Choice of the type of output. There are many possible formats for the
result of the analysis. One can obtain simple text files, Excel files (created
through an OLE process), binary files with 1 byte per pixel (unsigned byte) or
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binary files using 4 bytes per pixel (IEEE floating point format). If, for example,
the user selects a rectangular group of pixels, the output can consist of as many
files as there are points in the selection, as many files as there are columns or
rows, or of as many files as there are sclected time samples. Hence, the output
can be a sequence of images depicting the state of deformation of the object at
different instants (one image per time sample) or a series of images showing the
evolution of a profile of the object as a function of time (one image per row or
column in the selection).

6) Process checklist. This step occurs just before the actual processing
starts. The user is presented with a list of the current selection and processing
parameters, including the size of the files to be produced (the availability of the
neccessary disk space is checked), the generic name of the output files (default or
chosen by the user) and the type of processing. This can be the simple extraction
of the intensity signal of pixels and/or their complete wavelet analysis that
provides phase and modulation evolution.

In the current version of this program, the processing of a sequence of 512
512x512-pixels 8 bits images takes about ten hours on a 150 MHz Pentium PC
(see paragraph 7.2.4). This corresponds to the processing of 128 MByte of data
and can result in up to five times this quantity in output files if we code the
phase as a 4-byte floating point number and the modulation as a single byte. In
our case, we use recordable CDROM s to store the input and output data.

This brief prescntation of the program DPSTools is complemented in the
next paragraphs by a description of the main computation steps and by
application examples in Chapter 8.

7.2.2 Extension of the signal support

Practically, the computation of the wavelet coefficients consists in calculating
the real and imaginary parts of the wavelet for the time samples where the
Gaussian envelope is higher than a given threshold € (typically 10 in our case).
Since the variance of the Gaussian function is simply the square of the scaling
factor a, the half-support sup of the temporal window is equal to:

sup=av—2Ine -1

We actually take the integer part of this quantity and we calculate 2sup + 1
samples of the wavelct function. We can now multiply these samples by the
corresponding signal samples centered at a time b. The sum of these products
yields an estimation of the wavelet coefficient S(a,b). We have not yet looked
for optimized implementation solutions, maybe similar to what is done with the
Fast Fourier Transform algorithm, which could lower the processing time.
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There is however a problem near the beginning and the end of the signal
support. For example, when the analysis is performed for the first time sample,
there are only sup + 1 available signal samples while 2sup + 1 are required. One
solution could be to begin the wavelet analysis for a sample located at a time
larger than sup. However, we do not know in advance the instantaneous
frequency of the signal in that region. Hence, it would be necessary to use the
value of sup that corresponds to the lowest analysis frequency that we allowed.
This would finally amount to discarding a lot of samples.

We rather perform a prolongation of the signal support, by adding as many
new data points as necessary for the largest possible value of sup. These new
points have all the same value, equal to the first signal sample. In practice, we
do not create a new signal, we simply sum the wavelet coefficients
corresponding to the missing data points and multiply the resulting real and
imaginary sums by the value of the first signal point. The same artifice is used
near the signal’s end.

However, the instantancous frequency becomes brutally discontinuous with
this simple prolongation scheme, from the signal’s frequency at the extremities
of its support down to zero. This usually creates a “bending” of the transform
towards lower frequencies and the phase of the transform no longer represents
the phase of the signal near the discontinuity point. The extent of the
perturbation is of the order of the half-width of the analysis window. For
oy = 27 and a signal frequency of w2, there are about 10 perturbed points. In
experiments where the loading process can be controlled, we usually record ten
or twenty images before actually starting loading. These images act as a buffer.
Moreover, since they correspond to the reference phase step /2, it is casy to
find a starting point for the ridge near the signal’s beginning.

A different solution can be obtained using an iterative algorithm. The
signal is first extended as just described. Next, a sinusoidal signal prolongation
is created based on the frequency, modulation and phase obtained with the ridge
extraction for the first and last signal samples. Since the frequency of the
prolongation is no longer zero, the transition is less sharp and the new transform
is less perturbed. The process can be repeated until the estimated frequency of
the prolongation does not change significantly. This works well for signals of
relatively constant frequency at the transition points, assuming that the ridge is
correctly identified in the first place. For example, Figure 7-3 shows the error
between the actual phase of a linear chirp and the skeleton phase obtained after
0, 1,2, 5 and 10 iterations.
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Figure 7-3. (a) Error (in degree) of the skeleton phase after correction
of the second derivative phase deviation at the beginning of a
/3-21/3 chirp; (b) Same near the end of the signal.

The chirp frequency goes from /3 at the beginning (Figure 7-3(a)) up to 2n/3
(Figure 7-3(b)). The signal covers 256 time samples. The error plotted in these
graphs is actually the error that remains once the systematic error due to the
second derivative of the phase has been subtracted from the skeleton’s phase.
This quantity is also plotted as “2nd der”. Hence, the actual phase error is the
sum of this contribution plus the curves labeled “n Iter”” where n is the number
of iterations. The improvement is obvious at the signal’s start while it is
marginal at the end where the error is already small before starting the iterations.

A second example shows however that convergence can be very slow when
the instantaneous frequency has a faster time evolution. This is illustrated in
Figure 7-4 where the chirp frequency now goes from 7/6 up to 5n/6. We see that
the error disappears slowly near the end of the signal (Figure 7-4(b)). We must
note that the frequency gets sufficiently close to w in this region so that
intcrference cffects make the ridge extraction difficult. The situation is more
complicated at the beginning (Figure 7-4(a)) where the error increases with the
number of iterations. It appears that the frequency used to create thc signal
support converges towards a frequency close to /5.1 instead of /6 (35° instead
of 30°). The problem is that the average frequency <w> of the signal is higher
than /6 over the analysis window (sup = 45 for the first sample). Hence, the
frequency obtained from the ridge extraction overestimates the instantaneous
frequency for the first time sample. Using this estimation to create the signal
prolongation actually strengthens this effect.
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(b)

Figure 7-4. (a) Error (in degree) of the skeleton phase after correction
of the second derivative phase deviation at the beginning of a
n/6-51/6 chirp; {b) Same near the end of the signal.

The major drawbacks of the second prolongation scheme are thus the
increased processing time and an error correction that is not guaranteed. Hence,
this method is available in the program Wavelet for demonstration purposes but
it is not used in the current version of the program DPSTools.

7.2.3 Mother wavelet sampling

Since the analysis frequency is changed repeatedly during ridge extraction, new
wavelet samples have to be computed at each iteration. The real and imaginary
parts of these samples are even, respectively odd, functions of time. Hence, the
wavelet needs only be constructed over one half of the analysis window support
by calculating the coefficients shown in (7-2) for integer values of the time ¢.

2
Re(g(n)=Re(g(-n)= -;— exp[— -2;—2 }cos(g—“— t )

a
(7-2)
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To get an idea of the number of sine, cosine and exponential calculations
that are required we make a rough estimation with the following parameters: a
sequence of 512 images containing 512x512 pixels is analyzed with oy = 2m.
We suppose that the instantaneous frequency , of each pixel is constant over
the 512 time samples. We also consider that o is distributed within [1/6, 57/6]
with a triangular distribution law, maximum for w, = n/2, zero at W6 and 5w/6.
This results in the estimation of about 4.3 millions sines, cosines and
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exponentials per time sample per iteration for a complete image. Assuming that
the ndge extraction converges in 3 steps for each of the 512 time samples, a total
of about 20 billions such functions have to be estimated.

To speed things up we remark that the different wavelets are actually of
same shape. Hence, we simply sample the mother wavelet once, with a number
of samples sufficiently high for the estimation to be reasonable at all possible
analysis frequencies. The wavelet cocfficients for a given frequency are then
simply obtained by downsampling the mother wavclet samples. For example,
sampling the mother wavelet in phase steps of 5 mrad results in a maximum
error of 0.0025 on the wavelet coefficients, when the larger coefficient is equal
to 1. This maximum error is obtained for the real part when wyat is close to
+n/2. We verified on different signals that such errors induce negligible phase
errors in the final transform (on the order of 1°). The option to calculate exactly
the coefficients remains in DPSTools in order to compare at will the two
solutions. In the case oy =2m, about 2x4700 wavelet samples have to be
evaluated at the beginning of the processing.

7.2.4 Ridge extraction

As mentioned in Chapter 6, the ridge extraction algorithm needs a starting point.
Different strategies are possible. One solution consists in choosing an initial
frequency of m/2 for the first time sample. This works usually well for
experiments where the n/2 reference phase step is introduced. Because of the
necessary signal extension discussed in paragraph 7.2.2 it is actually better to
start the ridge extraction from a time sample not too close to the origin.

A more general solution, used in DPSTools, consists in looking for the
maximum of the instantaneous spectrum computed for a given time. The search
is actually limited to a band of frequency centered on /2. This prevents starting
at a time sample where the instantaneous signal frequency is too high or too low.
If the maximum of the transform’s modulus is under a given threshold, the
search is repeated at a later sample. The time domain explored in this way
corresponds to the part of the signal that the user wants to analyze. The
estimation of the instantaneous spectrum is performed by calculating the wavelet
transform for a discrete number of values of the scaling factor a. Since the
frequency analysis window is narrower at low frequencies, it is necessary to use
smaller frequency steps in the low-frequency region of the spectrum. We use the
progression law a;,, =fa; where the factor f depends on oy and a fixed
percentage valuc (95% in our implementation), which defines the height where
the two frequency analysis windows centered at y/a; and @y/a;.; Cross.
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Once a first time sample by and analysis frequency wy/ap have been chosen, the
ridge extraction algorithm starts:

1) The samples of the wavelet corresponding to oy/ay are calculated.

2) The transform is computed for a series of time points S(ag, bo+k), k €
[-n, n]. The phase @s of these estimations is unwrapped and the phase
increments are summed. This gives a measure of the phase variation
during a 2n-long time interval. A new instantaneous frequency @y and
scale factor a, are thus calculated.

3) w, is compared to the limits of the frequency domain chosen by the user
(the default is [/36, 351/36]). The iteration number is also compared to
a fixed threshold. If these tests pass, a; and a¢ are compared. If the
difference is larger than 1% the algorithm goes back to 1) using a; in
place of a.

4) Once a final value q; is obtained the corresponding wavelet coefficient
S(ai,by) is computed. This yields the estimations of the signal’s
modulation and phase at time by. The interferogram modulation Iy is
actually obtained as 2/ V2n |S(a,~,bo) |

5) The algorithm proceeds to time b, = bo+1, using a; as the new starting
point, until the complete signal has becn processed.

When one of the tests performed in 3) fails for the sample b;, the phase is
linearly extrapolated from the precvious successfully analyzed time samples b;,
and b;, and the scale factor g, is used for the iteration of the following time
sample b;,;. If the ridge extraction fails for the time sample by or b, no such
extrapolation can be performed. The phase and modulation are then chosen
equal to zero and a default scale factor (corresponding to @ = 1/2) is used for the
next time samples.

There are different possibilities to choose the time interval n used in 2).
The fastest solution is obtained when n equals 1. We also use a second solution
where n is chosen equal to the half-period of the analysis frequency. In this way,
the phase increment is estimated over one signal period. This provides some
additional robustness to the ridge extraction but increases the computation time.

Using the same parameters that are used in paragraph 7.2.3, we can now
estimate the number of operations that are required to process a 512-image
sequence. We consider that the ridge extraction is performed using a support
equal to the signal’s period. We do not take into account here the initial
sampling of the mother wavelet described in 7.2.3. We also assume that the
starting point of the ridge extraction is found at the first spectrum evaluation.
The total number of required operations is summarized in the following table.
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Operation = - Number in miflions  -Number in biltions
Square root 134, 0.13
Arctangent 1440. 1.44
Multiplication, addition 122440. 122,

The processing of the 512 time samples of a single pixel takes about 0.10 to
0.15 seconds when the signal modulation is sufficiently high. This figure
includes the disk read and write operations. The end result of one ridge
extraction is two double-precision floating-point buffers containing the wrapped
phase and modulation of the signal.

7.2.5 Temporal unwrapping

The phase is unwrapped along the time dimension for each separate pixel signal.
The process is very simple since the phase increment between two successive
time samples is within ]0, xt[. Hence the phase is a strictly monotonic function of
time.

The actual unwrapping starts with the first time sample where the fringe
order n(1) is defined as 0. The second time sample is unwrapped with respect to
the first with the following algorithm:

1) Correction of the fringe order: ¢(b+1) = ¢(b+1) + n(b)2r.

2) If (b+1) > @(b), do nothing more. ¢(b+1) is the unwrapped phase value

and n(b+1) = n(b).
3) If ¢(b+1) < ¢(b), increase the fringe order by one: n(b) = n(b) + 1. The
unwrappced phase value is @(b+1) + 2.

Additionally, the user can specify that a certain time instant acts as the
reference point for the phase estimation of each pixel. The phase calculated for
this time value is then subtracted from the unwrapped phase buffer. This is
useful with speckle interferometry experiments where the initial phase of each
pixel is randomly distributed in [0, 27x].

7.2.6 Phase best-estimate

This last step of the processing is optional. Its goal is to filter the estimated
phase of each pixel by combining it with the phase of its neighbors. This mecans
that we make the hypothesis of a similar phase evolution for groups of 3x3
pixels, which is usually verificd except at the boundaries of the object and for
physical discontinuities such as cracks. Hence, if the hypothesis is not respected
locally, only a limited number of pixels are affected.
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As seen in Appendix A, this procedure can provide us with the local
maximum-likelihood phase value. This is particularly interesting in the case of
speckle interferometry where both phase errors due to speckle decorrelations
and electronic noise can thus be reduced.

The exact implementation of the maximum-likelihood criterion consists in
computing a weighted-average of the phase of the 9 pixels in each 3x3 cell of
the image. The weights are given by the squared modulation of each pixel: Jy”.
However, we use a slightly different solution. First, we do not take into account
pixels where the modulation is below a user-defined threshold T. A typical value
for T is between 2 and 5 grey levels. In particular, this eliminates points where
the ridge extraction failed. Next, except for the first time sample, we do not
calculate the weighted-average of the unwrapped phase values themselves but
rather of the local phase increment per time sample Ae.

This procedure is applied only on the time interval (¢, ,] selected by the
user. The filtered phase of the central pixel in a 3x3 window at time ¢, is either
fixed equal to O in the case of speckle interferometry (since the phase of each
pixel is random) or calculated as the weighted-average of the points that have a
sufficient modulation:

Y 0,

)=~
D WS

The equivalent modulation is given by:

Tu@)= /Zlmz(zl) ie{1<i<9,1,,4)>T} (7-4)

The phase values for the following time samples are obtained using:

D e €)@, 0) - 9.0)
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ie{12i<9,1,(t.)>T}

ie{1<i<9,1y,(t,)>T} (7-3)

The modulation is again obtained using (7-4).

We use the phase increments rather than the phase values themselves for
the simple reason that the ridge extraction can fail locally before coming back
on track, as illustrated in Figure 7-5. In this case, the wrapped phase values are
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correct in the last part of the skeleton but the corresponding unwrapped phase is

not because the fringe order is incorrectly estimated in the region where the
algorithm fails, resulting in a random phase offset.
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Figure 7-5. Ridge extraction failure in the case of a low-modulation
signal obtained in speckle interferometry.

Figure 7-5 shows a signal measured using in-plane speckle interferometry.
There is a large image-plane decorrelation during this experiment, which results
in large variations of the modulation of the different pixels. We can extract the
unwrapped phase of this signal and of its 8 neighbors and then subtract a linear
phase term that removes the overall phase evolution. The remaining phase
fluctuations are plotted in Figure 7-6. The thick black line represents the
best-estimate phase computed with the algorithm just described (using the phase
increments). The thick grey line represents a weighted-average calculated using
the unwrapped phases directly. The phase of the central pixel exhibits a brutal
increase near the end of the plot, which corresponds to the ridge excursion in
Figure 7-5. Once the ridge extraction locks back on the correct ridge, the phase
evolution is again correct (same slope as the other signals) but there is an offset

of about one fringe and a half. If we use directly this value in the calculation of
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the weighted-average (grey line) this offset results in a shift of the estimate,
whereas it does not influence the estimation at all if only the phase increments
(black line) is taken into account like in (7-5). There are indeed large phase
slopes in the region where the ridge extraction fails but the corresponding
modulation is very low. Hence, their effect is negligible once the squared
modulation is used as a weight.
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Figure 7-6. Phase evolution (in radians) of 9 adjacent pixels, after
subtraction of a linear phase term. The thick black line corresponds
to the best-estimate of the phase of the central pixel, calculated with
the phase increments. The thick grey line corresponds to the
weighted-average caiculated with the phase values themselves.

We must emphasize here that the calculation of the weighted-average
actually brings much more than just a noise filtering. As seen in Figure 7-6, the
phase evolution of the central pixel is actually reconstructed in the region where
the information is lost because of the modulation loss. This is very important
since the interferogram modulation is susceptible to rise and drop randomly at
each pixel during a speckle interferometry experiment where large
decorrelations occur. In other words, we cannot expect a single pixel to have a
high modulation for the complete duration of the measurement. However, there
is a high probability to find at each instant at least one good pixel within a group
of 9. Hence, combining 9 pixels largely increases the probability of performing a
correct, continuous phase evaluation, which could not be obtained with single
pixels.
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8. Dynamic Phase-Shifting application examples

The purposc of this chapter is to present some results obtained by direct
application of the dynamic phase-shifting principle. We first discuss the
acquisition hardware (camera and phase-shifting devices) which was used for
these experiments. Next, image sequences corresponding to holographic and
specklc interferometry arc processed in various ways, using the 5-image
phase-shifting algorithm and the wavelet-based analysis. These two methods are
compared when possible. This emphasizes their complementary nature.

The optical arrangements used for these examples are described in Chapter 2.

8.1 Acquisition set-up

Since the various experimental optical arrangements are described in Chapter 2,
we only discuss here the elements that are specific to dynamic phase-shifting
measurements: the camera and the phase-shifting devices. The same digital
CCD camera was used for all the examples of this chapter. However, alternative
solutions exist to perform the digital recording of the image series. For example,
our laboratory just bought an image acquisition board coupled to a dedicated
hard disk array that permits to record 768 x 572-pixel images at a rate of 25
images per second during up to eight minutes. We note also that commercial
cameras are now available, for example the SpeedCam from Weinberger in
Switzerland, which provides 1 kHz acquisition rate in a digital format. Such new
systems can be used to observe much faster phenomena.

8.1.1 Hisis 2001 digital camera

This non-standard camera features a 512 x 512-pixel frame-transfer CCD. Using
this image resolution, sequences of 512 images can be recorded in a 128 MB
memory buffer at a maximum ratc of 160 images per second. The maximum
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acquisition rate becomes 285 images per second when using a lower resolution
of 256 x 256 pixels. 2048 images can be recorded in this case. The camera can
also be externally triggered. This allows to adjust the acquisition rate with
respect to the deformation $peed of the object while providing at the same time a
means to synchronize with the phase-shifting device used to create reference
phase steps. However, the maximum rate is limited to 80 frames per second in
this mode of operation. We can note incidentally that one problem with digital
series of images is the huge storage space needed. The solution we adopted is to
store these sequences on writable CDROM.

The Hisis camera presents distinct advantages compared to standard video
cameras. First, the acquisition rate at full resolution is up to six times higher than
the conventional 25 Hz rate. This rate can moreover be adjusted with respect to
the particular requirements of a given experiment. The second important point is
the digital nature of the recorded signal. The electrical charges accumulated in
each pixel on the CCD are processed individually by fast analog-to-digital
converters. The corresponding 8 bits digital values are then stored in the
memory buffer. This must be compared to a usual image acquisition system
where the charges of individual pixels are combined to create continuous lines
of analog video signal. This video signal is then sampled and digitized by the
acquisition board. Quite frequently, this board creates a number of pixels per
line of video signal that is different from the number of pixels on a line of the
CCD. This means that the charges of the original pixels are smoothed out and
mixed, even in the absence of pixel-jitter (synchronization mismatch between
the camera and the board). Moreover, the transmission of analog signals is
always a source of noise because of antenna effects in the electrical cables. By
contrast, the Hisis camera delivers an accurate sampling of the light intensity
over a square grid.

This camera suffers from two limitations. First, the exposure time is fixed
at 6.25 ms and 3.5 ms for the 512 and 2567 resolutions respectively. Hence, we
need to use a mechanical shutter to decrease the exposure time when needed.
This is also a problem when we use the camera with a lower frame rate, in
which case we would like sometimes to increase the exposure duration. This
wish is actually a consequence of the second limitation, the low sensitivity of the
device. The manufacturer data-sheet reports a sensitivity of “400 ISO”, which is
not a factor that we can easily compare with the energy values that we measure
with optical powermeters. Anyway, if we compare the response of this camera
to other state-of-the-art Sony CCD cameras, we observe that it requires about 4
times as much light. In other words, the lens aperture has to be increased by a



8. Dynamic Phase-Shifting application examples . 163

factor of 2. This will prove to be a problem as soon as we try to perform
measurements on large surfaces with a limited amount of light.

However, despite these limitations, the Hisis camera has been an essential
element in the investigation of the feasibility of dynamic phase-shifting. It
moreover permitted to perform non-trivial demonstration experiments, as
illustrated in the next paragraphs.

8.1.2 Production of a reference phase step

The interest of introducing a known phase step between the acquisition of
successive images has been demonstrated in Chapter4. It is a means to
determine the absolute sign of the deformation while at the same time providing
a carrier frequency for the wavelet analysis. Moreover, it allows to estimate the
modulation of the interferogram in regions where the deformation is very slow.
This helps to make a mask of the valid pixels in an image.

Different solutions to produce the required phase steps can be conceived:
piezoelectric transducers (PZT), LCD cells, electro-optic phase modulators...
However, we decided to use available PZT for our applications since the
maximum frame rate of our camera is not very high (80 frames/s). The length of
these PZT can be adjusted by varying the voltage applied to the piezoelectric
stack. This is used to move precisely one of the mirrors located on one arm of
the interferometric set-up, thus producing the required phase steps.

We actually use open-loop and close-loop PZT. In the open-loop case, the
actual elongation of the PZT is not controlled when the applied voltage is
changed. In this case, hysteresis effects lower the precision of the device.
Additionally, if a rapid voltage transition is applied to the device, the mechanical
inertia of the mirror increases the stabilization time of the PZT, resulting in a
vibration of the mirror. The corresponding rise-time has been measured for PZT
operating under various voltage ranges. To this end, we used a fiber Fizeau
interferometer using a laser diode emitting at 1.5 micron. We adjusted the air
gap between the reference end of the fiber and the mirror in order to observe the
intensity variations of the interferometer where they are linear as a function of
the phase. In other words, the air gap created a m/4 phase difference (at
1.5 micron) between the two interfering waves. We then applied repeated
tension steps to the PZT to measure the time it takes the mirror to stabilize. The
advantage of this set-up is the very short response time of the photodetector
(<1 ns), which permits to observe the phase fluctuations with a high resolution.

The best PZT available in the laboratory gave a stabilization time close to
20-30 ms. We next tested PZT driven in a feedback loop thanks to strain gages
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glued directly on the element. These gages allow to measure the actual
elongation and adjust the applied voltage to reach the target elongation value.
The PZT we use in this case are manufactured by Physik Instrumente. Their
rise-time of 6 ms is independent of the height or frequency of the voltage steps.
Hence, we rather use these PZT when the acquisition rate of a given experiment
is higher than 30 Hz. Standard PZT can be used without the feedback loop
below this value. This permits to use cheaper and simpler electronics.

Alma di Tullio, a visiting scholar from the University of Cagliari in
Sardignia, conducted the above study of PZT elements. She also developed a
program to prepare and control an acquisition with the Hisis camera,
synchronously with the phase stepper device. A custom electronic driver was
built to this end. It receives the same trigger signal as the camera and creates the
stepped analog voltage applied after amplification to the PZT,

8.2 Thermal loading of a carbon-carbon composite

This experiment was performed in the course of the evaluation of a
low-thermal-expansion carbon-carbon composite structure manufactured by
Aérospatiale for the European Space Agency. Such a structure would ultimately
be used as the body of a lightweight telescope for optical communication
between satellites. Our goal was to verify that thermally induced deformations
were within the very small tolerances required for this application.

% IR source Real-time holography was used for this experiment.
We present here the result of one measurement where
the internal wall of the cylindrical structure is heated
locally by an infrared lamp. The Hisis camera observes
the external wall in the heated region. 512 images are
recorded at a rate of 4 Hz. A PZT is used to introduce a
n/2 reference phase step. Figure 8-1(a) and (b) show
the interferograms recorded in the 3 and 203" images
of the sequence. (b) actually corresponds to the instant
of maximum deformation along the observation direction (end of thermal
loading). The phase of these interferograms is computed with the S5-image
algorithm. The two wrapped phase maps are then subtracted modulo-2m, as seen
in (c). The greyed region in (d) is the part of the image that is unwrapped and
presented in (e). Wavelet-based phase extraction is applied to the same pixel
selection. This gives us an image of the absolute object deformation between
images #3 and #203, see (f). The scale is the same in () and (f).

Observation
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(e) (f)
Figure 8-1. (a) and (b) interferograms #3 and #203; (c) wrapped phase
map computed with the 5-image algorithm; (d) same as (c) with
masking areas (see text); (e) and (f) deformation maps computed with
the 5-image algorithm and the wavelet analysis, respectively.
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It is important to recognize that the unwrapped phase map obtained from (c) is
only a relative phase map. There is no information on the absolute deformation
w of the object. In other words, we do not know where the points of zero
deformation are in (e). In contrast, an absolute value is obtained with the
wavelet processing. In particular, the maximum out-of-plane deformation is
1.16 um. This value can now be used to remove the ambiguity in (e) since the
two maps are very similar

The green dots that appear in the top-left selection region in (d) represent
the pixels where the modulus of the wavelet transform along the ridge is lower
than a threshold of 5 grey levels. These points are excluded from the final
image, which creates the holes seen at the top-left of the surface shown in (f).

Fhe two phase maps (e) and (f) differ at the top-center of the deformed
surface. This is a consequence of errors committed during ridge extraction in
this region. The transform of one of these pixels is shown in Figure 8-2. We
observe two perturbed regions that correspond to the beginning and end of
thermal loading (first third of the signal). The ridge extraction mistake creates a
phase error of -2x, that is, an error of -0.25 pm on the final deformation value

L\L“!? ‘J’

Figure 8-2. Ridge perturbations when the thermal load starts and
ends. Pixel located at the top of the vertical line in Figure 8-1(d).
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To conclude with this example we show another possible representation of the
phase calculated with the wavelet transform. In this case, the deformation
measured along a line of pixels is represented as a function of time. The selected
pixels correspond to the vertical black line of Figure 8-1(d). We can observe the
negative exponential relaxation of the object once loading has ended. Also, this
representation shows that the structure’s response to the load is very fast.

Bottom
Image #511

Time

Image #1 Top

Figure 8-3. Deformation along the vertical line of Figure 8-1(d),
plotted as a function of time. The deformation peak-valley is 2 um.

8.3 In-plane horizontal deformation of a rubber element

I'his particular experiment was made up to test a demonstration model of the
Hisis camera. It was actually our first application of the dynamic phase-shifting
technique in the context of speckle interferometry. The object is a square piece
of rubber, 60 mm on a side and 8 mm thick. It is loaded horizontally on one side
by a long-range PZT. An in-plane speckle
interferometer is used to measure the object
displacements in the horizontal direction u. The

sensitivity of the set-up is 0.5 pm per fringe. A
sequence of 128 images is recorded at 20 Hz
while a voltage ramp is applied to the loading
PZT. A reference phase step of w2 is also
introduced by a second PZT located on one
illumination beam of the interferometer.

The random wrapped phase map of image #10 is computed with the
5-image algorithm and subtracted from the random phase map of image #120,

Observation
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obtained in the same way. This image is then low-pass filtered once in the sine
and cosine domain. The final result is shown in Figure 8-4. We see that the
fringes do not have the same quality to the left and right of the object. There are
two reasons for this. First, one camera pixel covers about 0.17 mm on the object.
The total displacement at left is close to 12 um, which represents 7% of image
plane decorrelation during the experiment. The displacement is only 2 pm at
right and results in a negligible decorrelation. The second cause for the lower
quality at left is the instantaneous phase increment value A@, which is higher
than 3m/4 (145°) in this region. As seen in Chapter 5, such values are not
optimum for the algorithm and more phase errors are committed. In contrast, AQ
is on the order of 2m/3.44 (105°) at the extreme right of the selection, which is
much closer to the optimum of /2, It must be emphasized again that these
absolute displacement values are obtained by application of the wavelet
processing. The 5-image algorithm only yields the relative displacement

between points on the object.

(b)

Figure 8-4, (a) Wrapped phase map of the horizontal in-plane
deformation, computed with the 5-image algorithm; (b) Unwrapped
phase map of the region delimited in (a). The deformation peak-valley
is on the order of 10 um.

Once we apply the wavelet processing to the image sequence we obtain a
second evaluation of the deformation that occurred between images #10 and
#120. As mentioned above, this time the results are absolute displacement
values. This new information is then used to give an absolute scale to Figure 8-
4(b) (this point is discussed later in the text), which permits to compare the two
displacement maps. They are presented in Figure 8-5 with a new color scale to
emphasize their differences.




8. Dynamic Phase-Shifting application examples 169

n

-0
micron

(b)

Figure 8-5. (a) Absolute deformation map obtained with the 5-image
algorithm (after offset correction); (b) Corresponding map obtained
with the wavelet processing. Insufficient pixel modulation is
represented as grey dots.

The first observation is that analysis is not possible in some regions of the
interferogram in the wavelet case (see Figure 8-5(b)) for lack of sufficient pixel
modulation. The threshold used in this case is 5 grey levels. The shape of the
region where pixels are eliminated is roughly circular, This corresponds to the
intensity variations of the Gaussian laser beams that illuminated the object.
Some pixels are also discarded at the left edge of the image. The reason is that
the instantaneous frequency of the signal in this region gets close to the Nyquist
cut-off frequency, which prevents a successful ridge extraction. Such signals
where used in Chapter 6 to illustrate this problem. One possible solution,
complex signals, is also proposed in Chapter 9 where the same example is used.

The difference between the two phase maps of Figure 8-5 is presented in
Figure 8-6(a). The scale in this figure covers 0.25 pm or half a fringe. The pixels
that sit outside of the range [-0.125, 0.125 pm] are discarded. The image appears
to be made of two halves with a distinct boundary. This is actually due to a
miscalibration of the amplifiers used in the camera. This effect could also be
observed with incoherent light. It is probably a third cause of the noise observed
in Figure 8-4(a)

We can compute the same difference with the initial unwrapped phase map
of Figure 8-4(b), where the fringe order has been arbitrarily chosen by the
unwrapping algorithm. This simply shows that an offset of about 8.45 pm needs
to be added to this map to obtain absolute deformation values. We note that
98.2% of the values of the difference between the 5-image and wavelet phase
maps fall within the range [8, 8.8 um]. The points discarded during the wavelet
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processing are not taken into account in this estimation. The histogram of the
points located in the range [8.2,8.7 um] is given in Figure 8-6(b). The
distribution of the difference has an average value of 8.44 um and a standard
deviation of 0.05 um. This last value corresponds to one tenth of a fringe or 36°
A Gaussian fit gives a slightly smaller deviation and an average of 8.45 um.

One observation can be made regarding this last result. In principle, the
phase obtained with the two methods should be exactly equal up to the addition
of an integer number of 2 radians. In other words, the offset that we can
estimate with Figure 8-6(b) should be an integer number of 0.5 ptm (one fringe).
In our case we find an offset of 8.45 um. Hence, there is a deviation of about
0.05 um with respect to the closest value of 8.5 um. This corresponds again to
an error of one tenth of a fringe. Its origin lies probably in the frequency
variation created at the beginning of the recording when the loading began. We
know from Chapter 6 that an absolute phase error is obtained in this case with
the wavelet phase extraction (this is due to the second derivative of the phase of

the signal).
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Figure 8-6. (a) Difference between Figure 8-5(a) and Figure 8-5(b);

(b) Histogram of the same difference without addition of the absolute
offset for the phase map obtained with the 5-image algorithm.

This preliminary experiment gave us much more information than we
initially planned. We see that a careful processing shows a good agreement
between the two methods with a discrepancy on the order of one tenth of a
fringe. This remaining error cannot be pinned down directly on one method or
the other. Further interpretation would require to estimate the noise distribution
in both Figure 8-5(a) and Figure 8-5(b). However, a visual comparison of the
wrapped phase map of Figure 8-4(a) with a wrapped phase map created from
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Figure 8-5(b) shows that much less noise is obtained with the wavelet
processing, as illustrated in Figure 8-7.

Figure 8-7. (a) Wrapped phase map obtained with the 5-image
algorithm; (b) Less noisy wrapped phase map obtained with the
wavelet transform.

8.4 In-plane horizontal deformation of a concrete beam

This second in-plane experiment was conducted on a small concrete beam that
had been previously fractured. The concrete was actually poured in a box with
one metallic wall that remained glued to the final beam, about 1 x 0.15 X 0.15 m
large. The experiment described here presents a limited interest for the civil
engineer since the beam had already been ruptured but it was useful to test the
dynamic phase-shifting method in “adverse” conditions.
We performed a measurement of the in-plane
displacement of a region located near one large
fracture. The set-up sensitivity was 0.93 um per
fringe. Because the loading jacks produced a lot
of vibrations when a force was applied, we
; ended up measuring the displacement when the
ue:}m‘ force was diminishing, simply by letting the
pressure drop in the hydraulic circuit. The
acquisition was performed at 40 Hz with a feedback-loop PZT producing the
reference 1/2 step. We later discovered that the small solid-state laser induced
vibrations in the interferometer. This created beam-pointing instability and
periodic intensity fluctuations in the images as illustrated in Figure 8-8. A
second problem with this experiment was the large vertical displacement of the
object during unloading. This ultimately created a large speckle decorrelation.
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Figure 8-8. 4 successive images recorded with the Hisis camera. The
intensity fluctuations are due to vibrations created by the laser. Black
lines are added to emphasize the beam vertical movement.

We can first try to process the image sequence with the 5-image algorithm.
Hence, we compute the wrapped phase maps of image #3 and image #503. Their
difference modulo-2r is shown in Figure 8-9(a).

Figure 8-9. (a) Direct subtraction of the wrapped phase map of
images #3 and #503; (b) Same calculated as a sum of filtered
incremental steps; (c) Same after vertical translation by one pixel of
the random phase map of image #3; (d) Unwrapped version of (c).
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The effect of the image-plane decorrelation is obvious here: the fringes are
barely visible. Since a direct subtraction gives such a poor result, we can try to
compute wrapped phase increments, filter them and finally sum them
modulo-2r. The image shown in Figure 8-9(b) was obtained this way with a step
of 100 images. In other words, the wrapped phase maps of images #3, #103,
#203, #303, #403 and #503 are computed. Next, we filter in the sine and cosine
domain the differences #103-#3, #203-#103... #503-#403. These differences are
then added. The idea here is to filter most of the phase error induced by the
decorrelation before it becomes too large, that is, larger than n. The
improvement due to this procedure is striking when (a) and (b) are compared.

An even better result can be obtained in the particular case of this
measurement since the vertical image-plane translation of the speckle field is on
the order of 1 pixel. This value is actually obtained by trying different
possibilities. This is a simple process where the wrapped phase map #3 is
translated by 1 pixel in every direction before being subtracted from the phase
map #503. Fortunately in this case the overall displacement is close to one
integer pixel (the worst case would be a displacement of 0.5 pixel) and the
resulting fringe pattern is quite nice after filtering (see Figure 8-9(c)). The
fringes actually disappear at the top of the images because of insufficient object
illumination.

If we look more closely at Figure 8-9(c) we can observe a crack that runs
through the whole height of the object. Hence, there is no information on the
relative fringe order of the two regions it separates, since there is no physical
path between them on the specimen surface. Moreover, their absolute
displacement is also unknown. Therefore, the unwrapped phase map in Figure 8-
9(d) relies on an arbitrary choice of fringe orders. Actually, the unwrapping
algorithm uses a phase “valley” to cross the crack and the resulting relative
position of the two areas is meaningless. We can also note a small independent
region in (c), near the middle of the crack. The horizontal equispaced fringes
that cover it indicate a pure in-plane rotation during the experiment. This region
is also incorrectly unwrapped in (d).

We can now try to apply the wavelet processing to the image sequence. We
first extract the phase of the pixels located along the black horizontal line AB
drawn in Figure 8-9(d). The mother wavelet frequency is 4 for this calculation
and pixels of modulation lower than 3 grey levels are discarded. The phase best-
estimate is used to show the evolution of the phase along this line as a function
of time. A few pixels had to be interpolated from their neighbors to obtain the
final curve shown in Figure 8-10.
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Figure 8-10. Absolute displacement measured along line AB of Figure
8-9(d), plotted as a function of time.

This figure illustrates again one main feature of the wavelet processing, namely,
the calculation of absolute phase values. A horizontal displacement is positive
when going from left to right in our images. The figure above shows that the
specimen region located to the left of the crack moves by 20 um to the right. At
the same time, the part located to the right moves by about 16 pm in the same
direction. Hence, we deduce that the crack width decreases by about 4 pm. This
fits very well with the fact that the concrete beam moves up when the load is
decreased, which results in a decrease of the tensile stress in the lower part of
the sample and consequently a closing of the cracks. We can also remark in this
figure the intermediate step that separates the two main regions. This
corresponds to the small independent area mentioned earlier,

It must be emphasized here that we get a wealth of information from the
wavelet processing, even though an almost total image-plane decorrelation is
introduced during the experiment. Moreover, if we actually look at the pixel
temporal signals, we observe that they have on average a very low modulation
and that the intensity fluctuations shown in Figure 8-8 affect significantly the
wavelet transform. This is illustrated in Figure 8-11 where one typical signal
measured on the line AB is shown with the modulus of its transform. Needless
to say, many ridge extractions fail and the use of the phase best-estimate is
necessary to create the often missing information.
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Figure 8-11. Signal and its transform for a pixel located to the right of
the crack, on the line AB.

l'o conclude with this example we process the area delimited with a black
rectangle in Figure 8-9(d) since the interferogram modulation is higher in this
region. The final displacement map is shown in Figure 8-12(a) where the scale
has been adjusted to show the displacement gradient in the two regions of the
image. It is also possible to subtract the unwrapped phase map of Figure 8-9(d)
to compare the gradients obtained with the 5-image algorithm and the wavelet

processing. The difference is presented in Figure 8-12(b) with the same scale

Figure 8-12. (a) Absolute in-plane displacement obtained with wavelet
processing; (b) Same after subtraction of the unwrapped phase map
obtained with the 5-image algorithm (Figure 8-9(d)).
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We get additional information in Figure 8-12(a). In particular, it permits to
understand the pure in-plane rotation of the small independent region located
next to the crack. We observe that its top, respectively bottom extremities move
by the same amount that the left, respectively right part of the specimen. This
creates a clockwise rotation of the region, additionally to an average horizontal
displacement of about 18 pm

The observation of Figure 8-12(b) shows that the two independent phase
measurements using the S-image algorithm and wavelet processing give the
same displacement gradients in the two parts of the specimen. The remaining
displacement offsets of these areas are due to the arbitrary fringe orders chosen
during spatial unwrapping of the phase map shown in Figure 8-9(c). However,
much more information was gained by application of wavelet processing. It is
important to emphasize that an accurate absolute measurement is obtained in
this last case, despite a large decorrelation added to intensity perturbations. This
speaks well for the robustness of the technique in adverse conditions.

8.5 Measurement in the case of total decorrelation
The preceding example showed that an absolute phase measurement is still
possible with the wavelet processing in the case of decorrelations. To further test
the method we devised an experiment where image-plane decorrelations are
much larger. This time, a rough metallic surface is translated at a constant speed
in front of the speckle interferometer sensitive to the horizontal in-plane
displacement. A 100 mm macro-objective is used to image the diffusing object
on the CCD of the Hisis camera. The corresponding magnification is close to
-1.125. A motionless reference diffuser occupies
a part of the field of view. It is used to detect
possible drifts of the set-up. A sequence of 512
images is recorded at 160Hz without
introduction of a reference phase step. The
y‘( /_’//;emmncs translation speed of the object is adjusted to
- = panel produce a carrier frequency close to m/2. The
in-plane sensitivity of the interferometer is
0.65 pm per fringe. The total displacement measured by the translation stage
controller is on the order of 70 pum but this is not a very precise estimation since

the motor is manually triggered during the image acquisition. Actually, the
number of fringes that pass in the interferometer rather indicate a movemeni of
about 65 um (100 fringes)
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Since all points on the moving diffuser undergo the same in-plane translation,
their phase changes at the same rate. Hence, the total phase variation measured
at each pixel should be exactly the same at the end of the experiment. However,
as explained in Appendix A, the large in-plane decorrelation of the speckle field
introduces phase errors that are accumulated during the experiment. In this
example, a camera pixel is about 17.5 pm wide. The image-plane displacement
is thus larger than 4 pixel widths.

We can try to use the 5-image algorithm to estimate the relative phase
fluctuations of the different pixels. Of course, a direct subtraction of the
wrapped phase maps calculated at the beginning and end of the image sequence
is useless. We must first translate one phase map with respect to the other to
recorrelate the images. This is done manually until the best visual fringe pattern
is obtained. In this case, a horizontal translation of 5 pixels gives the best result.
The corresponding phase map is shown in Figure 8-13(a), after low-pass
filtering in the sine and cosine domain. It must be emphasized that this manual
recorrelation is possible only because we are in presence of a large but simple
image-plane decorrelation. A pupil-plane decorrelation would actually change
the microstructure of the speckle field in the image plane and the operation
described here would be totally useless. However, from the point of view of the
phase fluctuations of a pixel's signal, the result would be strictly the same.
Consequently, a wavelet-based processing is equally “affected” by image-plane
or pupil-plane decorrelations. The purpose of this example is to show that this
type of processing actually permits to get rid of most phase errors.
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Figure 8-13. (a) Wrapped phase map obtained after recorrelation;
(b) Unwrapped phase map showing a small displacement gradient.
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The observation of Figure 8-13(a) shows that there is a small phase gradient of
about & radians between the recorrelated phase maps. The random band on the
right is due to the motionless reference plate. The camera is rotated to the right
in these images, hence the horizontal reference plate appears vertical. Since the
moving plate is not deformed during this experiment we can readily interpret the
observed phase gradient as the result of a small in-plane rotation, due to
imperfections of the translation stage. The field of view covers about 6 mm on
the moving plate and the difference of displacement in Figure 8-13(b) is close to
0.4 um, Hence, we can estimate the rotation to be on the order of 67 prad, which
seems to be quite reasonable for a mechanical translation device.

We can now apply the wavelet-based processing to this image sequence.
Since there are phase fluctuations due to the decorrelation, it is interesting to
compare the result of the processing with and without the calculation of the
phase best-estimate. This is done in Figure 8-14 where the temporal phase
evolution along the line AB of Figure 8-13(b) is plotted as a function of time.
We use a banded look-up-table to emphasize the difference between the two

results.

(b)

Figure 8-14. (a) Phase evolution along the line AB as a function of
time. Direct wavelet processing. (b) Same after best-estimate phase
evaluation.

These figures show first that the overall horizontal displacement of the plate is
close to 65 um. Second, the effect of the best-estimate calculation is evident in
(b) where the phase evolution of each pixel is much closer to that of its
neighbors.
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We next process the whole part of the image that corresponds to the moving
surface. We obtain the displacement map shown in Figure 8-15(a). The scale is
adjusted to show the effect of the remaining phase fluctuations once the
best-estimate has been computed. We observe a small displacement gradient as
was the case for the image obtained with the recorrelated 5-image algorithm.
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(a) | (b)
Figure 8-15. (a) Absolute displacement map of the moving plate,
calculated with the wavelet processing; (b) Same after subtraction of
the left part of Figure 8-13(b).

The image presented in Figure 8-15(b) is obtained after subtraction from (a) of
the unwrapped phase map shown in Figure 8-13(b). Again, the uniformity of the
resulting image illustrates the very good agreement between the two methods,
within the remaining noise level. The average value in Figure 8-15(b) is 62.2 um
and the standard deviation is 0.2 um. The distribution is moreover perfectly
Gaussian. The relative error committed on the estimation of the plate
displacement is only 0.3%, which is quite impressive. Such a precision might
not always be obtained if the overall displacement is small with respect to
decorrelations. For example if the plate moves by a small amount in the
horizontal direction and by a large amount in the vertical direction, larger errors
will be induced. Nevertheless, the important fact is that a decorrelation does not
prevent from performing a measurement with the wavelet-based processing, it is
only another source of inaccuracy. The wavelets indeed perform very well in
this experiment where the equivalent decorrelation amount is “S00%". In
contrast, a method that relies on the creation of fringe patterns, like usual
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phase-shifting techniques, will fail completely as soon as say 100%
decorrelation is attained.

We can further investigate the effect of speckle decorrelation. First, it is
interesting to look at the signal of two close pixels located in the center of the
image. As seen in Figure 8-16, one can estimate that about 95 and 93 fringes
pass in these signals. Since we know that this is not due to a different
geometrical displacement, we have here a good example of the phase error
induced by a decorrelation. We observe in particular one or two regions where
the modulation drops sufficiently that an educated guess is required to estimate
the actual phase evolution.

130

S 11—
t — 35 fringes i
‘00 1 L d:fl"l.]_l[:_'[l:.ll'-?llil!u.‘ A IL!NI-‘I.' | .; i
ol ] AR LA LT '
T AL VY ! |
80 T I T
7o Lt
60 93 fringes Hi
i et

PV—Y 1111 TTY
At T

40 4
30
20

T T T PO 1 1

n a5 1 2@ 16 193 226 257 280 321 853 385 417 440 am

Figure 8-16. Signal of two pixels located 5 pixels apart. Different
numbers of fringes pass during the experiment.

We know that large phase errors are possible when the signal modulation
becomes small (see Appendix A). The above figure confirms it. We can go one
step further by computing the phase evolution of 9 pixels, computing the phase
best-estimate for this group and looking at the phase deviation of individual
signals with respect to this reference. We can plot this deviation in a polar
diagram showing at the same time the instantaneous phase deviation (angle) and
modulation (vector length) of the signal. We actually obtain the trajectory of the
tip of the modulation vector Iy; described in Appendix A. The three trajectories
shown in Figure 8-17 represent an estimation of the random phase contribution
of the decorrelation. In (a) a complete revolution is made around the origin
(center of the graph). Hence, an error close to 2 is created at this pixel over the
whole experiment. The excursion is smaller in (b) where the total deviation is
less than a fourth of a fringe. (c) is more complicated and the size of this figure
does not permit to see clearly the end result. Actually, an enlarged figure would
show that the accumulated error amounts to —27/3 at the end of the experiment,
while the largest deviation is —37/2.
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Figure 8-17, (a), (b) and (c): polar diagrams showing the evolution of
the phase deviation and modulation of 3 pixels. Both horizontal and
vertical axes cover the interval [-20, 20], measured in grey levels,

One must however be careful in the interpretation of these diagrams since
the largest phase deviations are obtained when the modulation is close to 0 and
this is precisely the situation where the ridge extraction becomes difficult.
Hence, we cannot rely on the wavelet processing to measure exactly the phase
errors due to decorrelations. Only a qualitative behavior can be deduced from
these graphs.

As a conclusion to this example, we emphasize the fact that very large
decorrelations do not prevent a correct phase extraction with the wavelet
processing. In particular there is no need to try to recorrelate images obtained at
different time instants. Moreover, image-plane or pupil-plane decorrelations are
equivalent error sources from the point of view of the temporal phase extraction.
This is another argument in favor of the wavelet technique for performing
continuous deformation measurements in presence of large displacements,
which usually result in large speckle field movements and decorrelations.

8.6 Cyclic loading measured with pulsed shearing speckle
interferometry
This last example was recorded in the laboratory of Holo3 (Saint-Louis, France).
The initial goal was to test the combination of the Hisis camera with a pulsed
laser in dynamic phase-shifting conditions. The repetition rate of the doubled
Nd:YAG laser is 25 Hz, which defines the acquisition rate for these
measurements.

We present here the result of an experiment where a clamped metallic plate
is loaded cyclically in its center. The load is actually created by a 0.1 mm-range
PZT to which a 0.5 Hz altemmative voltage is applied. The actual amplitude of
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-deformation is close to 19pum. A Michelson
interferometer placed in front of the observation
objective creates the image shear required in
shearography. One of the mirrors is mounted on a
small PZT to introduce the n/2 reference step. We
recall from Chapter 2 that a shearing speckle

interferometer is sensitive to differences of
displacement. In the case of this experiment, the
image shear is horizontal. The phase change in the interferometer is proportional
to the difference of out-of-plane displacement dw =w; - w, of object points
distant by a quantity dx. The field of the camera covers the 30 x 30 cm plate and
the 5-pixel shear corresponds to dx = 2.9 mm on the object.

In order to choose the images where the deformation is maximum we first
process the signal of a pixel located halfway between the center and right edge
of the plate. The corresponding wavelet transform is shown in Figure 8-18.

e

——

V 55' ey

Rorge {30/ /1 hain feme 1012 0T el

Figure 8-18. Wavelet transform of the signal recorded at one pixel.

We observe that the instantaneous frequency varies cyclically. About ten and a
half periods are present in the image sequence, which corresponds to the 0.5 Hz
cyclic loading observed at 25 Hz during 512 images. We can also plot the phase
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of the interferogram measured along the transform’s skeleton after removing the
/2 rad/s carrier frequency. This is presented in Figure 8-19.
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Figure 8-19. Phase variation measured along the ridge of Figure 8-18.

The initial phase of this signal has been arbitrarily fixed as 0. The next step is to
compute the phase of a horizontal line of pixel, passing in the middle of the
object. This yields Figure 8-20 below.

Left

Figure 8-20. Phase evolution measured along a horizontal line of
pixels, plotted as a function of time. Peak-valley is about 6= rad.

We present phase values in these graphs. Actual displacement values would
be obtained by integrating the measured phase along horizontal lines of the
image. The interpretation of Figure 8-20 is interesting. The cyclic loading of the
plate creates a bump of varying height on its surface. Since the interferometer is
sensitive to differences of displacement along horizontal lines, this difference is
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positive, respectively negative, to the left, respectively right, of the image when
a positive bump is created (positive is along the observation direction). This is
sketched in Figure 8-21 :

y z
(a) (b)

Figure 8-21. (a) and (b): Object out-of-plane displacement and
corresponding phase variation.

The starting point of the image recording is not synchronized with the plate
excitation but, fortunately, the sequence presented here started when the plate
was in its flat initial state. Hence, the phase measured to the left of the bump
varies sinusoidally between a maximum positive value and zero while the phase
measured to the right varies between zero and a maximum negative value.

We can see in Figure 8-20 that the phase evolution of some pixels starts to
diverge near the end of the sequence. This corresponds to ridge extraction errors
around phase dislocations. This particular point is detailed in Chapter 9. The
result is usually the addition or subtraction of exactly 2x to the measured phase.
Actually, the processing of this image sequence is quite demanding since the
phase of the interferogram comes back to zero periodically, which underlines
particularly the accumulated phase errors.

Since there is no decorrelation in this experiment, we can compute phase
differences with the 5-image algorithm. This is done in the following figures.
We compute the random phase map of image #3, which acts as the reference of
deformation. Next, we calculate the phase maps of images #21 and #451, which
correspond to two instants of maximum deformation of the plate, as seen in
Figure 8-19. The difference with the phase reference is presented in Figure 8-22.
These images are obtained after subtraction of the number of n/2 phase steps
corresponding to their index in the image sequence.

A limited number of fringes actually appear as the shear of the
interferometer is small, resulting in a low sensitivity of the interferometric
set-up. We note also that the phase is zero at the position to the center of the
bump. The unwrapped versions of these images are presented in Figure 8-23.
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(b)
Figure 8-22. (a) Wrapped phase map measured between images #3

and #20 with the 5-image algorithm; (b) Same between images #3 and
#450. Both images are shown after correction of the reference step.

degree

(b)
Figure 8-23. (a) and (b): unwrapped versions of Figure 8-22(a) and (b).

Applying the wavelet processing to the area delimited in Figure 8-23(a) we
obtain the absolute phase maps shown in Figure 8-24. Images (a), (c) and (e)
correspond to images #21, #261 and #451, where the phase should be close to its
maximum value. Images (b), (d) and (f) correspond to images #41, #281 and
#471, where the phase should be close to zero everywhere. This example is
actually the most disadvantageous application of wavelet processing since it
cannot profit from one of its most important strengths, which is the ability to
accept many passing fringes (hence the small relative errors). Consequently, the
effect of accumulated ridge extraction errors is visible in these images.
However, the general evolution of the interferogram is still clearly visible. One
must also note that the images chosen here do not strictly correspond to the two
extreme positions of the plate since the oscillation period is not exactly 0.5 Hz,




186 8. Dynamic Phase-Shifting application examples

(b)

d)
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Figure 8-24. (a), (c) and (e): phase values obtained near the maximum
deformation in image #21, #261 and #451; (b), (d) and (f): phase
values obtained close to the minimum deformation in image #41,
#281 and #471.
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8.7 Final observations

The first conclusion obtained from these examples is that a wealth of
information is contained in image sequences recorded in dynamic phase-shifting
conditions. We have seen that we can exploit part of it through a “spatial”
method, the 5-image algorithm, or through a temporal method, the wavelet
processing. We showed repeatedly that both methods agree very well with one
another, in terms of wrapped or unwrapped phase maps. This is very important
since in one case only two groups of 5 images are used while thc whole
sequence is used in the other. Hence, the reliability of both techniques has been
amply demonstrated. In particular, no phase errors are accumulated in the
wavelet case, apart from integer numbers of 2.

Wec did not attempt to process the image serics temporally with the 5-image
algorithm because cxperience showed us that phase errors are repeatedly
introduced along the time dimension. Any modulation loss or phase perturbation
of the phase of a pixel is susceptible to cause errors that are difficult to detect
when performing the temporal unwrapping. In contrast, wavelet processing
appears to be quite robust with respect to intensity noise, phase perturbations
and modulation losses. In particular, the combination of the phase of different
pixels permits to interpolate the actual phase evolution of a poorly modulating
pixel. Taking the best from both the 5-image and wavelet approaches is indeed
possible. We will see in Chapter 9 that the 5-image algorithm can be used to
work on temporal signals when combined with a preliminary wavelet
processing. This is actually one solution to eliminate the phase error caused by
the second derivative of the signal’s phase.

As a concluding point we want to emphasize the particular propertics of the
wavelet-based phase extraction in the case of speckle decorrelations. As
mentioned in the introduction of this dissertation, whole-field speckle techniques
have the potential to make very interesting tools outside of the laboratory.
However, external perturbations make it necessary to desensitize the optical
sct-ups. Consequently, decorrelation effects arise when only few fringes have
appeared in the field of view. Hence, visual evaluation of the phenomenon is
difficult and requires a frequent refreshing of the reference state of the
interferometer. In this context, the ability to perform a continuous measurement
with the wavelet processing, regardless of decorrelations, is cssential for the
applicability of these methods. Indeed, decorrelations produce random phase
fluctuations that can be partially eliminated with the combination of ridge
extraction and phase best-estimate calculation. In other words, a measurement is
possible in conditions where no correlation fringes can bc obtained.
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Decorrelations are seen as another source of uncertainty in the calculations, not
as a fundamental effect preventing these calculations. This comes mainly from
the fact that the wavelet processing provides directly unwrapped phase values.
Of course, there will be situations where the phase noise created by
decorrelations is larger than the phase variations we wish to measure.
Fortunately, thc combination of the phase of different pixels is a very efficient
means of increasing the corresponding signal-to-noise ratio. This result must be
retained as one of the most important features of wavelet-based processing in the
context of continuous deformation measurements.



9. Wavelet analysis extension

We presented the very promising properties of wavelet analysis in Chapter 6.
The examples of Chapter 8 confirm that phase measurements in the context of
dynamic phase-shifting arc possible with such processing tools. We also
identified in these chapters the types of phase evolution laws that constitute the
typical domain of application. In particular, the technique is not designed to
handle brutal frequency variations or interference effects near the Nyquist
cut-off frequency. We also studied in details the phase error that appears when
the frequency variations of the signal are no longer negligible in the temporal
analysis window. The goal of this chapter is to present possible enhancements of
the wavelet-based phase extraction, which address these specific limitations and
extend the domain of application. One solution consists in using chirped
wavelets instead of constant frequency wavelets. This helps correct systematic
phase errors and improves the response of the ridge extraction for brutal
frequency variations. The second solution consists in using complex signals.
Such signals actually provide the possibility to go beyond the Nyquist
frequency.

9.1 Chirped wavelets and combined phase-shifting/wavelet
algorithm

As seen in Chapter 6, the second derivative of the signal’s phase produces a
systematic error in the phase measured along the ridge of the transform.
Fortunately, it was shown that this crror is limited to #7/4 and is not
accumulated by the phase extraction process. However, it would be interesting
to be able to remove it directly.

Our first idea was to work with the phase measured along the ndge.
However, it quickly became obvious that the solutions are complicated. For
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example, if we calculate the second derivative of the measured phase, we obtain
a third degree polynomial in the sccond derivative of the signal’s phase, which
might pose the problem of the choice of one solution among three. Other
possibilities were then studied and we finally propose two interesting solutions:
the combination of wavelet analysis with a classical phase-shifting algorithm or
the use of chirped wavelets.

9.1.1 Combination of the 5-image algorithm with wavelet
analysis

As was mentioned during the study of the 5-image algorithm, one difficulty is
the determination of the instantaneous phase increment A¢@. Since this is readily
achieved using the ridge of the wavelet transform, combining the two will
greatly enhance the domain of application of the phase-shifting method. As long
as the signal’s frequency @, does not change too brutally (the second derivative
of the phase is constant), the instantaneous frequency mecasured along the ridge
is very close to @, since the phase error is constant. This gives us a good
estimation of the average phase increment A@. Moreover, it is possible to choose
the signal samples that are used with the 5-image algorithm when Ag is lower
than ®/2. For example, if o is within [/3, W2], successive signal samples are
used. If @ is within [/5, /3], one sample every two is used. If w; is within
[n/7, /5], one sample every three is used, and so on. The result is that the
S-image algorithm works with an equivalent A@ value as close as possible of
/2, which is the optimum value. Of course, no such downsampling can be
performed when A is higher than /2.

The advantage of this combination results from the fact that the S-image
algorithm is much less sensitive to the second derivative of phase since it works
on much smaller temporal windows than the wavelet analysis. Morcover, using
such closely spaced samples helps restorc the time localization of the analysis,
enhancing phase details (but also noise details...). Thus, it very effectively
corrects the systematic phase error obtained along the ridge. Another interesting
point is that the temporal phase unwrapping can be conducted on the basis of the
unwrapped skeleton’s phase, which is precise to /4. Moreover, the phase of a
sample must be close to the phase of the preceding one plus A@. This wealth of
information permits to correct for false phase values calculated with the 5-image
algorithm when noise affects the signal.

The results obtained with this combination of the two methods are
illustrated in the next paragraphs, conjointly with the results obtained for the
chirped wavelets.
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9.1.2 Chirped wavelet analysis
This solution was actually proposed in Ref.1, in the frame of acoustic signal
processing. However, the authors of this paper do not pay attention to the phase
error correction but rather emphasize the fact that more correct ridge trajectories
are obtained with the Gabor transform when the signal amplitude varies rapidly.
One can view the process of ridge extraction as trying to find the
constant-frequency signal that best matches the portion of the original signal
selected in the analysis window. It is clear that only a compromise can be
obtaincd when the signal’s frequency changes within this temporal interval.
Using a chirped wavelet gives us one more parameter to adjust, the frequency
variation rate, which permits to get a better fit. The chirped wavelet takes the
form:

M@= exp[— t?

2 2
. .t
]exp(— 1w0t)cxp[— i 7] 9-1)
All the developments found in Appendix B can be rewritten in this case by
replacing everywhere the term @’ by the term (@,”-c¢). If the signal’s
modulation changes linearly within the analysis window, we obtain a modified
expression for the wavelet coefficients along the ridge:

1
S(a(b),b) =27 (1+ a* )@ (B) — c)*) *

9-2)
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A new ridge extraction algorithm must now be constructed to get at the same
time an cstimation of a and c¢. In the Morlet wavelet case, the ridge extraction
consists in evaluating the instantaneous frequency of the signal by measuring the
transform’s phase variation on a small time interval Ab, for a fixed analysis
frequency ax/a. In the chirped wavelet case, the algorithm tries to measure the
transform’s phase variation along a line Ab-Aa in the time-frequency domain
(the analysis frequency is no longer constant).

Beginning with an initial value @ and ¢o for the two parameters, the
estimations a; and ¢, are obtained with:
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where Qg 1s the phase of the transform calculated at the frequency ® = ay/a.
We compute derivatives of this phase with respect to ® instead of a. This is
more convenient since the frequency variation dw used to compute the phase
differences is simply equal to ¢. Calculating the transform for the analysis
frequency w + dw then corresponds to using a scale factor a’ = auy/(y+adw).

Once convergence is obtained for a; and ¢;, the algorithm proceeds to the
next time sample b+1, using ag = a,on/(tp+ aic;) and ¢p = ¢;. In practice, since
there is an additional parameter to optimize, the algorithm has more freedom
and can follow sharper frequency transitions, which can reflect the actual signal
evolution or a local noise perturbation. Hence, this method is also more sensitive
to phase noise, which creates inconsistent signal samples.

This new analysis method has been added to the program Wavelet.
Practically, each ridge iteration requires the calculation of 13 values of S(a,b), as
shown in this table:

1

ac,

o, —ac’

d

S( au)o ,b]
Wy +ac
o25% _poq|| g 2% p|lg 2%,
2y +ac 20, +ac 2w, + adw
S(a,b-2) S(a,b-1) S(a,b) S{a.b+1) S(a,b+2)
s 2%, i | g2, 2%y
2w, —ac 2w, —ac 2w, —ac

The different derivatives of (9-3) and (9-4) are estimated as the finite
differences of the phase of the 13 elements calculated above. The computation
time is of course longer with this more complicated algorithm. The value of c is
tested after each iteration to make sure that the chirped wavelet frequency does
not become negative or larger than m near the edges of the temporal analysis
window.

The two advantages of the chirped wavelet processing, correction of the
error induced by the second derivative of the signal’s phase and better behavior
in the presence of rapid frequency transitions, are illustrated in the next two
paragraphs.
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9.1.3 Examples of correction of the phase systematic error

In a first example we use a rapid chirp to demonstrate the effectiveness of the
second derivative correction. The frequency of this signal changes from /6 to
51/6 in 256 time samples. We plot the difference between the actual phase of the
signal and the phase measured along the ridge of the transform for a normal and
chirped Morlet wavelet. The mother wavelet frequency ay is 4% in this example.
The phase error obtained by combining the 5-image algorithm with the phase of
the normal wavelet is also presented. The two greyed regions correspond to the
parts of the transform perturbed by the signal’s support extension with a
constant value.

40° |

30° — Moriet wavelet

~ wwMorlet/S images
20°

~ o —=Chirped wavelet

—. =

Figure 9-1. Error due to the second derivative of a linear chirp’s
phase. The signal support is extended in the grey regions.

We observe that the error disappears completely with the two proposed solutions
in the non-perturbed part of the transform. Moreover, the 5-image algorithm
provides an appreciable correction in the perturbed region since it requires only
13 signal samples when w; is close to /6. This explains why an error is
committed only for the first 6 time samples when the 5-image algorithm is used.
By comparison, the Morlet or chirped wavelets require 180 samples for the same
frequency. Hence, they “suffer” more from the signal extension.

A more interesting example is obtained with the sinusoidal frequency
modulation signal already used in Chapter 6. We recall that we measured a
sinusoidal phase evolution in the case of the cyclic loading of a metallic plate.
We then used a model of this phase evolution law to evaluate the error due to the
second derivative of the phase. We now show in Figure 9-2 the theoretical phase
error due to this derivative, the phase error obtained with a normal wavelet
analysis, the phase error obtained with the chirped wavelet and the phase error
obtained with the 5-image algorithm.
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Figure 9-2. Simulated sinusoidal phase evolution: plot of the
theoretical error due to the second derivative of phase and the error
obtained for the Morlet and chirped wavelets and 5-image algorithm.

As seen in Chapter 6, the major part of the error is due to the second
derivative of the phase when the standard Morlet wavelet is used. This error is
greatly reduced if the skeleton’s phase is calculated with a chirped wavelet or
calculated by combining the Morlet wavelet with the 5-image algorithm. The
remaining error is due to the higher derivatives of the phase.

9.1.4 Improved robustness for rapid frequency transitions

To illustrate the better behavior of the ridge extraction algorithm when a chirped
wavelet is used, we go back to the example of the measurement performed on a
piece of rubber with in-plane speckle interferometry. It was used in Chapter 6
(paragraph 6.5) to illustrate the difficulty of following rapid frequency
transitions. The result of the ridge extraction with a normal Morlet wavelet with
oy = 471t is shown in Figure 9-3(a). The starting point of the ridge is chosen at a
time where the instantaneous frequency is already high. We observe that the
backward propagation of the ridge does not permit to identify correctly the
downward frequency transition near the signal’s beginning. The corresponding
ridge obtained with a chirped wavelet is shown in (b). The ridge is correct in this
case, for the same value of oy,
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(a)
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Figure 9-3. Wavelet transform modulus showing the ridge obtained
with a Morlet wavelet in (a) and a chirped wavelet in (b). Signal
obtained using in-plane speckle interferometry.

I'he benefit of the chirped wavelet 1s apj

in the preceding example.
However, once rapid frequency vaniations and phase noise are combined, the
normal and chirped approaches are less stable, as illustrated in Figure 9-4. No
particular method appears to be superior in these types of situations.

These 1mages are actually a good occasion to observe the number of
2n-multiples that are wrongly added or subtracted from the phase that is
measured along the ndge of the transform. We recall that going around a
modulus hole amounts to add or remove one fringe to the estimated phase. Just
counting the holes gives us directly the error in number of fringes. For example,
in (a), the estimated ridge goes twice above a hole (first and third oscillations of

the frequency), adding 4x to the unwrapped phase of the skeleton. However, the

ridge goes under two holes at the fifth oscillation, which results in subtracting
. The end result, in this particular example, is that the unwrapped skeleton’s
phase in the last part of “exact”, from the point of view of the

nfortunately for the
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chirped wavelet in this example, the ridge goes underneath 5 holes in (b),
resulting in a total error of 10w in the unwrapped phase at the end of the

skeleton

(a)
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(b)

Figure 9-4. Wavelet transform modulus showing the ridge obtained
with a Morlet wavelet in (a) and a chirped wavelet in (b). Signal
obtained using shearing speckle interferometry.

9.2 Overcoming interference effects near the Nyquist limit

9.2.1 The need for a complex signal

As seen in Chapter 6, the analysis window used in the frequency domain during
wavelet processing is larger near the Nyquist limit. Hence, when the signal
frequency becomes close to m rad/s, its two frequency components can be
present simultaneously in the analysis window, resulting in an interference
effect that makes ridge extraction impossible. This effect can be limited to a
small band of signal frequencies by increasing @y but the resulting loss of time
localization can actually be a bigger nuisance since rapid frequency transitions
are more difficult to follow.
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The interference effect is actually due to the simultaneous presence of the two
signal peaks in the analysis window. These two peaks have the same weight
since the measured signal is real. It is clear that the perturbation would be much
less of a trouble if we could eliminate one of the peaks, or at least reduce one of
them significantly. This actually requires the creation of an imaginary part for
the real signal s(z):

s(t)=A@) + B(t)ei(p‘ ® +B(te o, (1)
= A(t) + 2B(t)cos @, ()

9-5)

Since we are interested in the behavior of the transform near the Nyquist
frequency, the background intensity A(f) is dropped in the next equations. The
complex signal we wish to create can then be written as:

10)=Ce"® D 4 p(rye™ 9+ )
=(C() + D(®))cos @, (1) +i(C(2) - D(t))sin @, (¢)

Our goal is to have C >> D, the ideal case being D = 0. z(#) actually corresponds
to s(f) when C=D = B. The transition between these different situations is
illustrated in Figure 9-5 where the transform of a simulated chirp is shown when
D =C (in (a)), D= C/4 (in (b)) and D=0 (in (c)). The chirp frequency goes
from /4 to m+ /5 and the transform is plotted for frequencies ranging from
/10 up to 2n/1.25, which is higher than the Nyquist limit of ©t rad/s. This limit
is represented as a horizontal white line. The ridge extraction using the Morlet
wavelet is also shown in these images.

The two frequency components of the signal appear clearly in (a) where the
signal is real. The signal aliasing appears when the “negative” frequency
component (-@; = 2% - ¢,) drops under the Nyquist limit while the positive
compongent passes over it. Interference effects in the transform are visible around
this transition region. This causes the ridge to oscillate and the corresponding
skeleton’s phase does not represent the signal’s phase. Moreover, the increasing
and decreasing phase evolutions create two symmetrical ridges of equal energy.
The choice of one trajectory instead of the other during the ridge extraction is
then arbitrary since both represent a possible frequency evolution law.

The situation becomes interesting in (b) where the negative frequency
component is reduced by the adjunction of a small imaginary part to the real
signal. The interference effect is greatly attenuated which results in an almost
correct ridge extraction. Moreover, and contrary to what is found in (a), the
strengthening of the positive frequency component of the signal removes the
ambiguity on the actual frequency evolution law.

(9-6)
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(b)

(c)

Figure 9-5. Transform of: (a) real chirp; (b) complex chirp with small
imaginary part; (c) complex chirp with equal real and imaginary parts.
The white horizontal line represents the Nyquist limit.
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The use of equal amplitude real and imaginary parts in (c) creates a “perfect”
transform since the second frequency component has completely vanished. The
immediate benefit is that the ridge extraction is not perturbed at all and a phase
measurement can be obtained above the Nyquist limit. In this case the maximum
tolerable signal frequency becomes 2 instead of n.

9.2.2 Creation of a complex signal

Clearly, we cannot create an imaginary part to the real signal s without
additional information. This information can be found in the surrounding pixels,
assuming that they all modulate with the same instantaneous frequency ;. The
ideal situation would be to find a second pixel that is in phase quadrature and
has a similar modulation. Since the probability of this occurrence is relatively
low, we rather construct a complex signal using the 9 pixels of a 3 x 3-pixel cell.

The 9 signals are written as:

5, (1) = B, (1) cos(@,t + ¢, ) 9-7)

where @ 1s the signal initial phase at the time ¢ = 0. We will discuss below how
@ 1s actually obtained. The complex signal is then constructed as:

0= Y s =Y 5,059, —i Y s, Osing,  ©B)

We can see this operation as trying to synchronize and then add the 9 signals.
z(t) is also equal to:

2(0) = Z B (1) ' + Z B, (e~ 20k IO (9-9)

If the ¢, values are randomly distributed, as is the case with speckle
interferometry, the second sum has a smaller modulus than the first:

\Z B.we 2| < [Y B.0|= B0 (9-10)

Writing the second sum in the form of a modulus and a phase 8 we obtain
finally:

) =Ce' ™" + D! with C()>D(r) (9-11)

The success of this construction depends on the initial phase values of the
different signals. Not much will be gained in regions of small phase gradient in
interferograms obtained with classical or holographic interferometry since @ is
more or less constant in a 3 x 3-pixel cell. In contrast, the interferograms
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obtained in speckle interferometry present a naturally random phase distribution,
ideally suited for this technique.

The practical implementation in the program Wavelet is built as follows

1) The usual ridge extraction is performed for each of the 9 signals of a
pixel cell.

2) If the instantaneous frequency of a signal reaches a threshold frequency
wy, the corresponding time b, is recorded.

3) The smallest b, value among the 9 signals acts as the time origin and a
complex signal is constructed as in (9-8) using the phase @, calculated for each
signal at the time b,.

4) A new ridge extraction is performed on the complex signal, providing
the frequency evolution law in the domain close to the Nyquist frequency. The
phase evolution of each pixel can thus be reconstructed in this region. Once the
instantaneous frequency gets lower than @y, the normal ridge extraction can
again be uscd for each signal taken individually, until oy, is reached again.

The frequency oy = ay/ap is defined as the frequency for which the
analysis window has a weight € (typically 10®) for the negative frequency
component of the signal:

aL:Zmo—lns 9-12)

2r

Since the creation of the complex signal amounts to synchronizing the different
real signals, we could imagine computing a reference phase for each one at an
initial time and use this value once and for all. It is important to recognize that
the @, values used in the construction (9-8) do not need to be known very
precisely. Hence, in the case of speckle interferometry, the random phase errors
due to decorrelations that are accumulated along time are not critical. This is
also illustrated in the example shown in 9.2.4 where some ridge extractions fail
altogether for some pixels. It is also possible to use a diffcrent algorithm where
new @, values are calculated each time «y, is reached by one of the signals.

9.2.3 Example of measurement in the Nyquist region

To illustrate the interest of creating a complex signal we use one of the image
sequences recorded while measuring the deformation of a piece of rubber with
in-plane speckle interferometry (also used in Chapter 5, 6 and 8). We did not
intend to get high deformation speeds while making this experiment but it
appeared afterwards that the instantaneous frequency goes just above the
Nyquist limit in the region where the load was applied to the object. We show in
Figure 9-6 the transform and ridge of the signal measured for one pixel located
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in this region. The frequency scale goes from w5 up to 2w/1.4 in this
spectrogram. The strong interference effects near the Nyquist limit at mrad/s

prevent a successful ndge extraction

'
b (e ks 8 e

Figure 9-6. Transform of a signal of instantaneous frequency close to
n rad/s (white line). The ridge extraction fails because of the strong
interference effects in this region. Analysis for g = 2r rad/s.

We then combine this signal with that of the 8 neighboring pixels to create
a complex signal. The frequency limit ay, close to 2r/3 for € = 107, is attained
near the 8" time sample (there arc a total of 128 samples). The resulting

transform i1s shown in Figure 9-7.

Figure 9-7. Transform of the complex signal created with the
3 x 3-pixel cell corresponding to the single pixel of Figure 9-6.
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I'he attenuation of the negative frequency component is small but nevertheless
sufficient to permit a reasonable ridge extraction. In particular, the three regions
where the transform’s modulus drops to zero in Figure 9-6 are largely smoothed
out in Figure 9-7

This experiment is quite interesting since the signal's instantaneous

frequency stays in the region of maximum interference effects for most of the

he central pixel does not modulate much in (a) but the corresponding complex

signal provides a very smooth transform in (b), thanks to the 8 neighbors
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Figure 9-8. (a) Transform of the signal of the central pixel of a 3x 3
cell; (b) Transform of the complex signal created with all 9 pixels.
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9.2.4 Benefit of the complex signal in the absence of
interference effects

We saw in Chapter 7 that the combination of the phase of small groups of pixels
allows to reconstruct the phase evolution of one of them when its modulation
gets too low. The two examples of the preceding paragraph show that creating a
complex signal is a second method to interpolate or recreate the missing
information. Only this time the work is performed on the actual signals instead
of their phase. We can then wonder if the creation of complex signals would not
also bring additional robustness to the wavelet analysis method in regions where
no perturbing interference effects are present.

To test this idea we use again the signal obtained in speckle shearing
interferometry applied to a cyclically loaded metallic plate. We extract the signal
of the 9 pixels of a 3 x 3 cell and compute their individual transforms. The result
1s shown in Figure 9-10. The vertical frequency scale goes from m/5 to 4/5. We
observe that only two pixels (top of columns (a) and (¢)) provide a sufficiently
clear signal to distinguish the sinusoidal frequency evolution law. Accordingly,
most ridge extractions fail with these 9 signals. However, creating a complex

signal from this 3 x 3-pixel cell yields a surprisingly good result, see Figure 9-9

Figure 9-9. Transform of the complex signal built with the 9 signals
shown in Figure 9-10.

We can thus observe that the combination of mostly poor signals permits to
create a complex signal sound enough to perform the nidge extraction without
errors. This result is very important for the robustness of the method in the case
of speckle interferometry.
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Figure 9-10. (a), (b) and (c): Transform of 3 columns of 3 pixels.
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9.2.5 Beyond Nyquist?

The results shown in Figure 9-5 are quite interesting since it appears feasible to
estimate a frequency evolution law going above the Nyquist cutoff frequency.
This would actually appear to contradict the Shannon theorem. However,
looking back at the formulation of this theorem’, we see that a real signal s such
that §(w)=0 when |&>Q, that is, its frequency spectrum is contained within
[-Q, Q], can be reconstructed from samples taken at a rate 2. In the case of a
complex signal that has no negative frequency components, the spectrum is in
fact reduced to [0, Q]. In other words, the spectrum width is half as large. We
can then tolerate a doubling of the maximum frequency contained in the signal
and still remain in correct sampling conditions.

Another way of looking at this paradox is to consider that twice as much
information is available in the complcx case since the real and imaginary parts
of the signal constitute two real signals instcad of one. This actually amounts to
using twice as many samples because the real and imaginary parts are entirely
correlated in the case of the sinusoidal signals we wish to process.

However, the negative frequency component is never completely
eliminated in practice. Hence, there are small interference effects as shown in
Figure 9-5(b). Still, assuming that the possible ridge trajectories found in the
transform correspond to the positive and negative frequency components, the
creation of a complex signal helps distinguish and select the positive component,
since its amplitude is significantly larger. We don’t actually need more
information to perform a correct ridge extraction in most situations.

These properties of complex signals need to be further explored. At stake is
the potential doubling of the measurement range of the dynamic phase-shifting
method, at least when speckle interferometry is used. Of course, many new
problems have to be tackled. For example, the sampled wavelet function
becomes a very simple Gaussian low-pass filter when the analysis frequency
ux/a tends towards 2x. The phase component of the wavelet is then close to 2,
which does not oscillate at all when the sampling points ¢ are integer.
Additionaily, changing the frequency measurement range from |0, ®[ to 10, 2x{
would imply that the reference phase steps could be as large as , which would
place the carrier frequency in the most difficult region for ridge extraction.
Indeed, since an initial phase valuc has to be found for each real signal, the
problem of ridge extraction near mrad/s still exists. It then seems more
reasonable to increase the reference phase steps to a lower value, say 31/4, in
which case the maximum phase increment due to object deformation could be
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raised to 33m /4 instead of +w/2. One major problem remains in any case,
namely, the determination of an initial phase value to create the complex signals.
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10. Conclusion and future prospects

10.1 Summary of completed work

The main goal of this thesis was the development of a new approach permitting
quantitative measurements in non-static conditions, using interferometric or
related whole-field optical methods. As seen in Chapter 3, none of the currently
available fringe analysis techniques provide a fully satisfactory solution to this
need. The new method we propose, called dynamic phase-shifting, opens the
way to a new type of interferogram analysis. Indeed, the phase variations caused
by the deformation or displacement of the object under study are no longer seen
as unwanted perturbations but are rather considered to be the vector of
information. Concretely, the process relies on the “natural” phase-shifting
created in real-time by the deformation, to subsequently apply phase evaluating
techniques to the interferogram. We also show that additional information can
be gained by introducing a known phase step between each recorded image. In
particular, the absolute sign of the deformation can be obtained.

The study of dynamic phase-shifting in Chapter 4 showed that a correct
measurement is possible as long as the deformation rate of the object remains
lower than a certain threshold, directly proportional to the image acquisition rate
of the recording device. This condition is a direct consequence of the Shannon
sampling theorem. The practical consequence is that at least 4 images have to be
recorded while 1 complete fringe passes at any point of the interferogram.
Depending on the particular optical set-up used, this fringe might represent a
change of shape of up to tens of centimeters (moiré) or a displacement of a
fraction of a micron (interferometric techniques). We must also emphasize that it
is possible in some cases to overcome the Nyquist limit by creating a complex
temporal signal (see Chapter 9). Only 2 images are then required for a complete
signal sampling.
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We propose two solutions to process an image sequence recorded in dynamic
phase-shifting conditions. The first one is adapted to short measurements,
localized in time. It is constructed as a particular 5-image algorithm. Its primary
use is the evaluation of the interferogram phase for a given state of the object.
However, contrary to more classical fringe analysis techniques, the object does
not have to be still during recording of 5 images. The necessary phasc
unwrapping step has to be conducted spatially in the obtained phase map. By
extension, this processing tool can be applied repeatedly in time. In this case one
can follow the evolution of the phase of the interferogram at discrete instants.
However, as long as the sequence is not strictly continuous, the information
about the absolute deformation of the object remains unknown. It is also
possible to lose all information if large decorrelations appear between successive
sampling periods, when speckle interferometry is used.

The S-image algorithm can still be applied when continuous image series
are recorded. However, we also presented a more robust method based on a
time-frequency analysis. The idea is to consider the temporal signal recorded at
each pixel. This signal can be processed with a wavelet transform, which yields
its instantaneous frequency spectrum. One advantage of this type of processing
comes from the fact that a variable stretch of the signal is isolated for the
cvaluation, depending on its instantaneous frequency. This provides a finer
analysis of the frequency content and good noise immunity. The next step is to
recognize that the phase of the wavelet transform, measured along the trajectory
of the instantaneous signal frequency in the time-frequency domain, is exactly
equal to the phase we wish to measure. A particular extraction algorithm is
presented to perform this task automatically. The temporal unwrapping of the
obtained phase is much simpler and eliminates most of the problems
encountered with classical spatial unwrapping.

The robustness of the wavelet-based processing can be enhanced in
different manners. First, the phase evolution of neighboring pixels can be
combined in a weighted average using the measured interferogram modulation
as weights. The result is that the phase of any pixel can be interpolated from its
neighbors when its modulation is too low to permit a successful phase
extraction. This is essential in speckle interferometry. A second technique
consists in creating one complex signal from several real signals. The main
result is the possibility to approach or even go beyond the Nyquist cut-off
frequency. Additionally, the technique permits to improve the signal quality and
facilitate the phase extraction. A third enhancement of the wavelet-analysis
addresses the problem of the systematic phase error created when the signal
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frequency changes rapidly. We showed that this error could be altogether
eliminated by use of a chirped wavelet or a combination of the 5-image
algorithm with standard wavelet processing.

10.2 Future prospects

The examples of Chapter 8 demonstrated that the standard algorithms described
in Chapter 6 and 7 are powerful tools suitable for continuous deformation
measurements in various conditions. The enhancements proposed in Chapter 9,
namely, chirped wavelets and complex signals, have been successfully applied
to several individual pixels or pixel groups. One task now is to integrate these
new methods in the software package we developed to process complete
scquence of images.

We essentially investigated the application of our method to deformation
measurcments. However, some shape measurement techniques where the pitch
of the projected fringes decreases progressively to remove shape ambiguities
could also be conducted in a faster, continuous manner in dynamic
phase-shifting conditions. The same principle can also be applied to speckle
interferometry contouring, with the added benefit of decorrelation reduction.

Another subject that has not yet been addressed is the automatic detection
of ridge extraction errors. We showed that the various phase noises that appear
during an experiment outside of the laboratory create dislocations in the
time-frequency phase plot of the wavelet transform. The ridge extraction
algorithm can make two types of mistakes in the presence of these
discontinuities. One is to take a wrong track and lose the correct ridge in the
remainder of the signal support. In this case, the modulation measured along the
erroneous ridge is usually sufficiently low to detect the error and discard this
particular pixel. The other possibility is that the algorithm follows a wrong path
for a while before coming back on the correct ridge. In this case, the error in the
following unwrapped phase values is an exact integer number of 2n. Hence, we
could imagine checking periodically that some pixels within a group do not
suddenly exhibit a deviation on the order of a few fringes. In this case, the
algorithm could try to back-propagate a ridge extraction based on the
instantaneous frequency of the pixel group. The goal would be to isolate the
region where the error was committed and eventually correct it.

The wavelet processing as proposed in this thesis work has demonstrated a
high potential for robust processing of continuous image sequences. Our choice
of the Morlet wavelet was guided by its interesting phase properties. It is now
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appropriate to look at other possible choice of mother wavelets. Some might
provide more efficient algorithms or more robustness to the complete process.
One can also think of the endless possibilities of combining different types of
wavelet analysis, including combined forward and backward ridge propagation.
Moreover, we studied here two distinct approaches. One is of a resolutely spatial
nature (5-image algorithm plus spatial unwrapping) while the other is purposely
limited to a temporal processing (ridge extraction and temporal unwrapping). It
is clear however that both techniques could be combined, for example in using
spatial phase maps to get a larger “picture” of the distribution of instantaneous
frequencies present in the interferogram or to synchronize phase evolutions in
areas larger than 3 x 3-pixel cells. Reciprocally, the wavelet processing of a
limited number of pixels could be sufficient to calculate absolute deformation
values from spatially unwrapped images. Again, numerous possibilities come to
mind.

A lot of work can also be done with respect to the acquisition sct-up. In
particular, it might be possible to process in real-time a limited number of pixels
or photodiodes with the wavelet analysis, in order to adjust the introduced
reference phase steps to the local deformation speed of various interferogram
regions. This would increase the system measurement dynamic. A potentially
esscntial element for such adaptable acquisition set-ups is the spatial light
modulator (SLM), based on LCD panels. It seems that the current products
could offer acquisition rates of a few tens of hertz. A refinement of the method
would consist in a set-up where a feedback loop tries to compensate in real-time
the instantaneous phase increment at each point of the interferogram in order to
produce a quasi-constant apparent frequency at each pixel. In this case, the
feedback signal gives the information on the actual phase variations created by
the deformation.

We remark that the wavelet phase extraction can actually be applied to any
type of sinusoidal signal. For example, the technique could also be used with the
signals obtained in particle velocimetry set-ups where small measurement
volumes are probed.

As seen above, our initial development of a wavelet-based phase
processing in dynamic phase-shifting conditions brings forward a wealth of
possible research directions. Hopefully, the results of such investigations,
through improved robustness and measurement dynamic, should increase the
applicability of whole-field interferometric methods outside of the controlled
laboratory environment. Civil engineering would be among the first disciplines
to take advantage of this extended range of applications.
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The goal of this appendix is to present an overview of the speckle pattern
properties, with an emphasis on their consequences in the case of speckle
interferometry. Of practical importance is the relationship between the number
of speckles that are integrated by one pixel of the detector and the resulting
distribution of modulation in the interfecrogram. One major limitation of speckle
interferometry, decorrelation, is also discussed. Statistical arguments lead to an
optimum filter of the phase errors due to these decorrelations as well as errors
due to electronic noise in the acquisition system.

Numerous papers have been published on the topic of speckles, as they are
relevant to coherent wave phenomena such as acoustical or radar imaging
(including synthetic aperture radars), or optical experiments. A standard
reference for the properties of the speckle pattern itself is the work of
Goodman'. More recent papers oriented towards speckle applications and in
particular speckle interferometry will be proposed along the text.

A.1 Properties of a single speckle pattern

A.1.1 Intensity and phase statistics

Let us consider a material surface of roughness deeper than the wavelength of
light, illuminated with a coherent source S (see Figure A-1). Each elementary
area of this surface absorbs and diffuses the light it receives. Hence, these areas
can be considered as individual coherent light sources S;. A point M in space is
illuminated by these individual sources. Each corresponding wave has a
complex amplitude aexp(ip;) at the point M. These complex vectors are
sometimes called random “phasors”. Their phase and modulus are random,
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because of the roughness and absorption of the material. The sum of these
phasors is the complex amplitude A(M). This amplitude is equivalent to the
result of a random walk in a plane.
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b
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M N

S

(a) (b)
Figure A-1. (a) Objective speckle formation; (b) Random phasors in M

Accordingly, the real and imaginary parts A, and A; of the phasor A are Gaussian
random variables. A is called a “circular complex Gaussian random variable'”, If
we apply a variable transformation between the couple (A,, A;) and the couple
(I, @), we obtain the probability density functions of the intensity / and phase ¢.
The phase is uniformly distributed over [0, 2rt] while the intensity, defined as
I = AA*, obeys a negative exponential distribution:

1 1
p(l)=7=exp| -~ (A-1)
{n [ {n ]
where <I> is the mean intensity value. Its variance is:
of =(1)’ (A-2)

The probability that the intensity is larger than a given value I is quite simply:
1
P)= exp[— m] (A-3)

The probability density function of / is drawn in Figure A-2(a). One can note
that, even though low intensities are more probable, very high intensity values
can be obtained. Figure A-2(b) shows a speckle field measured on a lensless
CCD camera. High intensity regions tend to saturate the detector locally but
dark regions represent a larger portion of the image.
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(a) (b)

Figure A-2. (a) Probability density function of the intensity of a
speckle pattern; (b) Actual pattern recorded by a CCD camera.

The statistics given above correspond to a measurement of the intensity
using an infinitely small detector. If the intensity is measured with a finite
dimension detector, such as a camera pixel, the probability density function of
the resulting intensity I" can be approximated by':

\

pli)= I i I'" " exp| —m .! _ (A-4)

C(m)| (I') (I
where m is the number of “correlation cells™ that fit within the detector surface.
There are actually a few such correlation cells in what appears visually as
speckle grains. For large m values, the probability density function of I' tends
towards a Gaussian distnbution, as illustrated in Figure A-3. We can observe
that as soon as m is larger than I, the most probable intensity value I' is no

longer zero

p(r) m=20
m=10
m=1 /
gl m=4
m=2"J A
L

r

Figure A-3. Influence of speckle integration on the probability density
function of the intensity. m is the number of correlation cells.




214 Appendix A: Speckle pattern properties

One must note that the intensity and phase are uncorrelated random variables.
Hence, there is no reason why the intensity and phase distributions would
present extrema located at the same spatial positions. Consequently, there are
phase variations within intensity-defined speckle grains. The statistics of these
phase gradients have been investigated in Ref.2 and experimentally measured in
Ref.3. The average phase gradient in the whole pattern is on the order of 160°
per speckle width in the case of a surface illuminated by a circular Gaussian
beam. The average phase vanation inside a grain is on the order of 45° to 90°
per half speckle width.

A.1.2 Average speckle dimensions

Figure A-2(b) shows speckle ‘“‘grains”, which can be defined as regions of
roughly constant intensity, or intensity extrema. The average lateral size of these
grains is estimated by taking the first zero of the autocorrelation of the intensity.
This sizc depends on the shape of the illuminated diffusing region. For a circular
area, the lateral and longitudinal average widths s; and s;, are”;

Ad _8Ad?

5 =— and §p=——
¢

where A is the wavelength of light, d is the distance between the illurhinatcd
diffusing area of width ¢ and the plane where the speckle is observed; see Figure
A-4(a) below.

(A-5)

Object

AV

8

(a) (b)
Figure A-4. (a) Objective speckle size; (b) Subjective speckle size.

The free-space pattern obtained in Figure A-4(a) is called an objective
speckle. If the speckle pattern is formed after a lens, as in Figure A-4(b), the exit
pupil acts as the free-space diffuser. Hence, the same formula apply for the
speckle size, with d now corresponding to the distance between the pupil of
diameter ¢ and the plane of observation (not necessarily the image plane). As
noted in Ref.1, the autocorrelation of the intensity is independent of the phase of
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the speckle field. Thus, lens aberrations, which correspond to additional phase
contributions, do not influence the speckle size. In the case of focused speckle
observation, the only quantity of interest is the lens numerical aperture, which is
related to its stop- or F- number and magnification. This is illustrated in the
focused and defocused images (a) and (b) of Figure A-5 showing a small
metallic tip in front of a diffuser. Defocus is an optical aberration of the first
order. It is clear that, though it dramatically blurs sharp features of the image, it
does not influence significantly the speckle size. There is actually a small size
variation as defocusing results in a small variation of the numerical aperture of
the 50-mm macro-objective used.

(a) (b)

Figure A-5. (a) Focused observation of a bright metallic tip in front of
a diffuser; (b) Defocused image showing speckles of same size.

A.1.3 Speckle pattern evolution during object deformation

An important property of speckle patterns is their “stability” for small variations

of the illumination direction or object position in space. This means they
conserve their shape and appear as being rigidly linked to the diffuser that
generates them, for small displacements of this diffuser. Large displacements or
deformations will ultimately change the fine grain structure of the speckles,
creating a new speckle pattern, no longer correlated with the initial one.
However, before reaching this situation, speckle grains appear to retain their
shape while their geometrical location in space, as well as their phase, change.
This makes it possible to use them in metrological applications such as speckle
photography or speckle interferometry. In the first case, the grains are used as
markers and their position in space is compared before and after deformation to
estimate the object displacements. The movement of the speckle grains is
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usually larger than their size. In the second case, speckles do not move by more
than a fraction of their size. It is the interference phenomenon with a second
speckle pattern or a reference wavefront that reflects their phase change, related
to the object displacement. The resulting sensitivity to these displacements is
higher than in the case of speckle photography.

A.2 Speckle interferometry

Speckle interferometry is a very convenient metrological tool, as presented in
Chapters 2 and 3. The speckle interferogram can be created by the interference
of two speckle patterns (in-plane and shearing interferometry) or one speckle
pattern and a smooth reference wavefront (out-of-plane interferometry). We
recall from Chapter 2 that this interferogram can be described as a function /

I=1,(14Vcosp) or I=1I,+1, cos@ (A-6)

where /Iy is the background intensity, /y the modulation, V the visibility and ¢
the phase of the interferogram.

For fringe visualization and analysis purposes, the quantity of interest is the
modulation Iy, which should be as high as possible. In a series of recent
papers>®, Lehmann has studied the corresponding statistics in the case of
resolved and unresolved speckles as well as the phase errors introduced by
“decorrelation”. We will just detail here the practical results of this work.

A.2.1 Statistics of the modulation

If we first consider an infinitely small detector in the case of a 2-speckles
interferogram, it is surprising to observe that the visibility V is higher than 87%
in 50% of the cases’. In the same time, the background intensity obeys a
probability density function very close to the one obtained for a single speckle
field. In the case of a speckle of mean intensity </> interfering with a smooth
reference wave of constant intensity Ig, the probability density function of Iy is
governed by the product Ir</>. Hence, it is possible to compensate for “weak”
speckle fields by increasing the intensity of the reference.

It is next interesting to see how these theoretical distributions change when
a given number of correlation cells, or speckles, are integrated by a finite
dimension detector®. It is easy to demonstrate that the resulting intensity will
still be described as in (A-6). Intuitively, one would guess however that the
resulting modulation /y is going to be lower than that obtained with a resolved
speckle interferogram. The development of the probability density functions of
this new modulation is involved and does not always lead to an analytic
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solution. However, simple approximations of the mean modulation </y> can be
obtained as soon as the number n of speckles integrated by the detector element
is large enough. For the interferogram created by two speckle fields of mean
intensity </>, <ly> is given by:

()= =) with  n210 (A-T)

The consequence is interesting. Let us consider that, in the case of a camera, n
speckles contribute to the intensity measured by a pixel. As seen in paragraph
A.1.2, n is a function of the imaging lens aperture. If, for a given object
illumination, we double the aperture surface, roughly twice as many speckles
will be integrated by each pixel. At the same time, the mean intensity </> in the
image plane is doubled. The net result is an increase of the mean modulation of
the interferogram by a factor V2, which is rather good news. The practical
conscquence is that one should crank open the aperture of the imaging lens. The
limit is however attained when pixels start to saturate. Saturated pixels are
useless for a quantitative analysis and it is no use increasing the average
modulation while at the same time losing potentially useful points in the image.

The case of a speckle field interfering with a constant, smooth reference
wave is slightly different. In this case </u> is given by:

()= =0T (a9

If both the object illumination and the reference intensity are kept constant,
opening the lens stop does not change the mean modulation. Hence, working at
F/4 or F/16 does not change the “amount of modulation” present in the image.
However, working at higher apertures is beneficial as first, it improves the
tolerance of the set-up to decorrelations (see paragraph A.2.2) and second, it
decreases the width of the probability density function of the background
intensity Jy. As a consequence, less pixels are susceptible to saturate. The
optimum modulation distribution is obtained for the highest Jx value, short of
pixel saturation. Since the reference beam represents a very small fraction of the
total laser power, Ir can be easily adjusted to reach the optimum, without
changing <\> significantly.

These theoretical observations are confirmed experimentally in Ref.7. The
conclusion is that resolving the speckle grains in the image is far from
necessary, contrary to what has been widely believed in the early days of
speckle interferometry. Optimum modulation distributions can actually be
obtained if a “large” number of speckles are integrated by the camera pixels.
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A.2.2 Effect of speckle decorrelations

Decorrelations correspond to an alteration of the amplitude and phase of speckle
fields between the two exposures that allow to measure a deformation. Many
causes are possible but we only consider here so-called image-plane and
pupil-plane decorrelations. Of prime interest for us is the corresponding phase
error statistics.

Each pixel of the detector initially records an intensity resulting from the
interference of sums of random phasors plus eventually a constant reference
field (the situation is the same whether the speckles are resolved or not). As
mentioned in paragraph A.1.3, speckle patterns reflect the movements of the
object that produces them. The same holds in the image plane of the detector. If
a region of an object is displaced in a direction orthogonal to the viewing
direction, its image on the detector is also translated by an amount given by the
magnification of the lens. Hence, the speckle field that covers a given pixel is
shifted and some of the phasors that initially contributed to the measured
intensity disappear from the collecting area of the pixel while new random
phasors are brought in. This replacement of some phasors results in a variation
of the quantities I, Iy and @, concurrently with the geometrical phase change A
(due to the deformation itself) that we wish to calculate. This situation is called
an image-plane decorrelation. It is usually caused by rigid-body motions of the
object that affect the whole image. As A¢@ is obtained from the difference
between the phase of the interferogram after and before deformation, the
decorrelation-induced variation of ¢ results in an error on the estimation of Ag.
The amount of error is of course function of the portion of phasors that are
replaced, i.e. the amount of decorrelation.

Pupil-plane decorrelations arise when the speckle pattern present at the
entrance pupil of the objective is shifted, for example because of a tilt or a large
in-plane displacement of the object. Again, some of the initial random phasors
no longer enter the pupil while new contributions appear. The result is an
alteration of the speckle pattern produced in the image plane by diffraction of
the pupil amplitude. In the same way as that described for image-plane
decorrelations, random phase variations are introduced over the whole image.

Lehmann studied both types of decorrelations in Ref.8, for the cases of
resolved and unresolved speckles, and for interference patterns resulting from
two speckle fields or one speckle field plus a smooth reference wave. To
summarize, the derived statistics show that these different situations are actually
equivalent, except for the case of very well resolved speckles, which is seldom
the case in practice. In particular, the standard deviation of the phase error is
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shown to be to a very good approximation inversely proportional to the
modulation of the pixel:
Oy > IL (A-9)
M

Interestingly, these results are independent of the actual number of speckles
integrated by this pixel. These theoretical investigations confirm the results
derived earlicr by Huntley® with the help of simulations. This author shows also
that electronic noise present in the image acquisition chain generates similar
distributions of phase errors. Hence, most sources of errors affecting the phase
measurement process can be described in a consistent way.

The actual dependence of the phase error standard deviation on the
modulation of the pixel can be understood easily with the help of Figure A-6.
One can view the effect of decorrelations as a modification of the complex
vector Iy = Iyexp(i¢) by a random quantity dly. The variance of dly is function
of the amount of decorrelation. Figure A-6 compares two situations where it
appears clearly that a given dly value will usually create higher phase errors 8¢
for pixels of low-modulation. The circles in the figures represent the standard
deviation of the modulus of dIy.

df

(a) (b)

Figure A-6. (a) Phase error 8¢ caused by a decorrelation-induced
modification of modulation and phase; (b) Same situation for a pixel
with low moduiation.

One last point concerning the statistics of phase errors must also be
emphasized. All the theoretical derivations presented in the aforementioned
papers consider the situation where the phase ¢ of the speckle interferogram is
measured before and after object deformation. The phase change A@ related to
this deformation is next obtained by subtraction and the result is a wrapped
phase map, i.e. its values lie within [0, 2r]. If the decorrelation tends towards
high values, the phase error becomes a uniformly distributed random variable
over the same interval. Hence, the noise has the same dynamic as the signal and
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all information is lost. However, in the case of continuous deformation
measurements made possible with the dynamic phase-shifting technique, the
computed phase is unwrapped along the time axis. In this case, phase errors due
to decorrelations can accumulate and become larger than 2n. Unfortunately, it
seemns that no mathematical argument permits to compute easily the statistics of
the unwrapped phase errors, since different phase evolutions (rotations of Iy)
can lead to the same final result. In particular, without additional information,
we do not know how many fringes are actually due to the decorrelation in a
phase variation of n fringes, whereas in the wrapped phase case the phase error
is always smaller than 2m. Simulations are used in Ref.8 to estimate these new
distributions. It must be noted that they are no longer independent of the number
of speckles integrated in a pixel. Some measurements of these unwrapped phase
errors are presented in the application Chapter of this dissertation.

There is no simple means to limit image-plane decorrelations, apart from
actually moving the camera during deformation. High lens magnifications make
a given sct-up particularly sensitive to this problem. In the case of pupil-plane
decorrelations, a given displacement of the speckle pattern results in a
proportionally larger decorrelation for a small pupil than for a large one.
Opening the lens aperture is thus highly beneficial. It diminishes the effect of
pupil-plane decorrelations. It increases the interferogram mean modulation in
the case of 2-speckle fields interferometers. In turn, this lowers the variance of
the phase errors for both pupil-plane and image-plane decorrelations.
Furthermore, it lowers the amount of light required to illuminate a given object
or allows to look at larger objects with the same laser power.

A.2.3 Optimum phase estimation

As mentioned in the preceding paragraph, phase errors produced by
decorrelations and electronic noise present the same statistics. For small
decorrelations, the phase error distribution can be quite well approximated by a
Gaussian distribution of variance inversely proportional to the square of the
pixel modulation®. Similarly, electronic noise can be usually well described by
Gaussian distributions. These observations.lead to the “design” of an optimum
phase filter, as remarked by Huntley and Lehmann.,

The starting point of this development is to consider that we dispose of a
number N of estimations Ag; of a phase value Ag. We suppose moreover that
these estimations are unwrapped with respect to one another. To each of these
measurements corresponds an error that follows a Gaussian distribution of
variance 6. A maximum likelihood argument can then be used to calculate the
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best possible estimation A@ of the phase A@. This argument simply states that
AQ is obtained as the result of a weighted average of the values Ag; using
weights that are inversely proportional to the variance of the error distributions:

-1

N N A®.

A@:[z%] 328 (A-10)
1 0; 1 O;

i

In the case of speckle interferometry, one usually considers that the
computed phasc value A¢ corresponding to the deformation varies slowly across
adjacent pixels. Hence, a group of nine pixels organized in a 3 x 3 window gives
ninc estimations of the phase of the central pixel. The error variance in this case
is inversely proportional to the product of the modulations of each pixel, before
and after deformation. For small decorrelations we can consider that the
modulation does not change significantly. In this case, the phase estimation
becomes:

N - N
A¢=(2134.-) ZliﬁAq’i (A-11)
1 1

In the context of the central point of this dissertation, continuous deformation
measurements, we will use (A-11) (with N=9) as a very efficient tool to
attenuate the effect of decorrelations, while at the same time providing a means
to estimate phase values of low-modulation pixels. This is an important point as
the modulation of any pixel is susceptible to vary quite considerably in the
course of a continuous measurement.

Apart from the particular case of continuous deformation measurements
where obtaining unwrapped phase values is straightforward, this optimum phase
filter can be applied to the wrapped phase maps obtained in the case of classical
phase-shifting. In this case, and using similar arguments’, it is the two quantities
sinA@ and cos A that are obtained by calculating a weighted average of the N
estimations sinA@; and cosA@;. The weights are the same as in (A-11). A simple
arctangent calculation then yields the filtered wrapped phase A@ . This solution
can actually be directly included in the process of the phase determination, in the
case of some particular phase-shifting algorithms’,
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B.1 Morlet wavelet transform approximation
The goal is to calculate the wavelet transform S(a,b) of a signal s(¢) of the form:

s(t) = B(t) explip, (1)) (B-1)

where:

’ ] »
0, ()=0,b)+¢,®)(~b)+ 9 (t-b)

= (B-2)
B(t)= Z—' B ) (t—b)
bt k!
The Morlet wavelet transform is defined as:
o 2
S(a,b)= l‘r s(t) exp[— uz)— xp[— 2 (- b))dt (B-3)
ald - 2a a
Replacing s(7) by its development gives:
11 ; (t-bY
S(a,by=— —B®®)(-b -
@h) aL {Z‘k! ®)-b) el = "

X eXP[itos (b)+ i(wi (b)- &)(; -b)+ %(pi(b) (t-by ]dt
a
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ttps(b)
S(a,b)— f [z BX®)(t - b)k]
, (B-5)
xexp[ (cp (b)——} —b)]exp( (‘ (b)](’ ) ]
a
L q=2-g\) qcR
(B-6)

1 .2 .
B2 =——(1-ia’¢’ ()
2a
Since Re(B2)>0 we can write B2 as:

B% = i\/l +a'e? (b) ¢®  with 6= -arctana’@?(b), Oe ]—g g[ (B-7)

We choose the positive solution for B:
4 #2 l
B= 7 (1 +a’, (b))“ exp(— IE arctana cps 7 (b) ) (B-8)

Using B and ¢ (B-5) becomes:

00
S(a,b) =< J" [z BP®)(r - ] 59

x exp(~ iq(t — b))exp(— B2(z-b) )dt

Replacing ¢ by x + b yields:

H0) &y "k —P2x? —igx
ZTHB‘“(b)f (ix)* e ¢ 9% gy (B-10)

k=0 !

S(a,b) =

a

We find in Ref.1 that:

f (ix)* e B gy 2~/_B“exp[ )D(Bf] (B-11)

when Re(B) > 0 and Re(k) > -1, which is true here. D; is defined as:

2 k 2
D, ()= (-1 CXP[Z ] exp[—z—z—) for k>0 (B-12)
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We can now rewrite (B-10) using (B-11) and (B-12):

A 2
S(a,b)———a z(k") BXb)2 2\/_[3“exp( %]
k=0 (B-13)
. qZ alz 22 v )
X (=1)" exp _SB_Z gk—e S| keE
19, (5)

S(a,b)—

2
Zk'B“‘)(b)ZZ«/_B“[ exp(—%]}sﬁj——z) (B-14)

I(P,(b) 20k k(o 2
S(a,b)=vn’ Z%B“’(b) (2ﬁ2)2(é?exp(—%]}=ﬁf’/—i) (B-15)

k=0

Using relations (B-6) and (B-8) we obtain:

S(a,b) =21 P O+ g g2 1)) 2 exp(ziarctanaz(pz(b))

o0 (k) a2 g ak 22  5)
B - ——exp| - — = %0799, 10)
Xl R S =)

Noting that:

(B-16)

_w-ag®) 3, i-iaele) 9% o @17
N TR “ @

and since one can show by recurrence that:

" f(2) _ [az ) 9" f(z(x)) az_fzo (B-18)

— when
az* oX dz

for

we obtain:

k
0" Z wg-at, 1-ia’l(b) P
(az" CXP[_ 2 ]IZ_Jl—ia;t;;((bb)) ]: (_1)"[__‘12__

k _ X2
(E;)){" exp( %]}xw’,(b))

The substitution of (B-19) in (B-16) finally gives:

(B-19)
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Sia,b) = V2 expi (p,(b)+ L arctana?e’ () 1+a“<p:2(b))
w (B-20)
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B.2 Morlet wavelet transform along the ridge
The ridge of the transform is defined as the set of points (a(b), b) for which

Do _ )
a(b) o, (b) (B-21)

The restriction of the transform to the ridge, called the skeleton, is thus:

1

S(a(b),b) =2 exp{ o, (b) + larctaumz(b)wz (b)}l +a* (b)Y (b)) ¢
(B-22)
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On can show by recurrence that:

aZpH ZZ

(W CXP(— > :=0) =0 (B-23)

Hence, all odd & values in the sum in (B-22) disappear:

1
S(a(b),b)=2n expi(cp, (b) + %arctanaz B (B) |1 +a' b)e?’ (b)ﬁ

N G e 0™ _ (@, —a®)X ) C
xkzz.;(ZkyB ®) X TR Y 2(1—ia2(b)(p:(b)) x_@)

Calculating the sum in (B-24) up to the second order yields:

(B-24)

1
S(a(b),b) =21 exp i[(p,(b) + %arctanaz(b)(p: ®) l+a* (b)cpjz(b)TZ

B-25
a’(b)expliarctana® ()" (5)) B.(b)] B2

x| B(b) +
( 21+ a* (b)07 (b)

1 LS. Gradshteyn, .M. Ryzhik, “Tables of integrals, series and products”, Academic Press.
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