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Abstract

m

he Spyder project counsists of the development of a reconfigurable processor as well

I as its application development environment. The name Spyder is an anagram of

the first letters of “REconfigurable Processor Development SYstem”, where the

term reconfigurable means that the hardware of the processor can be specifically tailored
for each application.

Augmenting the performance of a processor implies either increasing its clock fre-
quency or modifying its architecture. In the latter case, the solution usually adopted
is to endow the processor with multiple execution units working in parallel (superscalar
processors). The main problem with this kind of processors is to locate, in the sequential
list of instructions of a program, batches of instructions susceptible of being executed in
parallel by the different execution units of the processor.

Thanks to the advent of field-programmable gate array (FPGA) circuits, new kind
of superscalar processor architectures can be considered. In particular, the Spyder pro-
cessor features multiple reconfigurable execution units, which can be redesigned to fit
each application, a feature which greatly increases the opportunities to perform parallel
computations, particularly when working with small data elements (e.g., 16 Boolean data
can be packed into a single 16-bit data word and processed in parallel by a specifically
designed operation in the execution unit).

All the resources of the Spyder processor operate in parallel and are controlled by a
very large instruction word (VLIW) 128 bits wide. The VLIW architecture allows the use
of the full parallelism available to superscalar processors without requiring the complex
dispatch unit needed by such processors to handle sequential scalar instructions.

The goal of the Spyder project is to design and implement a superscalar processor
with multiple reconfigurable execution units, as well as the software development tools
(i.e., Ctt compilers and a VLIW assembler) necessary to generate applications for this
processor.

A prototype of the Spyder processor has been implemented on a VME board, which
has been installed in a VME rack along with a SPARC board acting as host computer. A
C++ compiler generating netlist files for the ViewLogic CAD tools has been developed
and has generated a lot of interest in the scientific community. It is now available by
anonymous ftp on the Internet.

Image processing applications and cellular automata simulations have been pro-
grammed on the Spyder processor. The Spyder prototype has demonstrated its ability
to achieve a high level of performance with these applications.

it






Résumé

28

e projet Spyder (SYstéme de Développement A Processeur REconfigurable) vise
La développer un processeur reconfigurable, adaptable A chaque application, ainsi
que son environnement de programmation.

Pour augmenter la puissance de calcul d'un processeur sans changer sa fréquence
d’horloge, il est nécessaire de modifier son architecture. L’approche généralement choisie
est ’exécution de plusieurs opérations en parallele. Cette approche superscalaire présente
certains problemes particuliers telle que la détection, dans un programme donné, des
opérations susceptibles d’étre effectuées en parallele par les différentes unités de traite-
ment du processeur.

L’apparition récente d’un nouveau type de circuit programmable & haute complexité,
le FPGA (Field-Programmable Gate Array), permet d’envisager une nouvelle solution:
la conception d’un processeur superscalaire avec des unités de traitement reconfigurables,
taillées sur mesure pour chaque application. Cette capacité de reconfiguration des unités
de traitement permet également d’augmenter le parallélisme lorsque le processeur tra-
vaille avec des données de petite taille (par exemple des valeurs booléennes) qui sont
compactées sur des mots de données de taille standard (16 valeurs booléennes par mot
de 16 bits, par exemple).

Les différentes urités de traitement sont commandées en paralltle, directement par
les bits de I'instruction: on parle alors d’une architecture de type VLIW (Very Large
Instruction Word). Aussi, on peut assurer une occupation maximale des unités de traite-
ment sans avoir 2 lire plusicurs instructions consécutives et & les réordonner (tache ef-
fectuée par une unité spécialisé complexe dans les processeurs superscalaires standards).

Le but du projet Spyder est d'une part la conception et réalisation d’un processeur
superscalaire avec plusieurs unités de traitement reconfigurables travaillant en paraliele,
et d’autre part le développement de compilateurs spécialisés traduisant un programme
écrit dans un langage de haut niveau, en 'occurrence C++, en code objet et fichiers de
configuration pour les unités de traitement.

Le processeur Spyder a été réalisé sur une carte VME implantée dans une station de
travail qui sert de machine hote. Un compilateur, transformant du code Ct+ en schémas
logiques directement utilisables par les outils de conception assistée par ordinateur de
type ViewLogic, a été développé et, vu I'intérét manifesté, est distribué sur Internet.
Des algorithmes de traitement d’images, ainsi qu’un simulateur du jeu de la vie ont
été implémentés sur le processeur Spyder avec de tres bons résultats quant a la vitesse
d’exécution des algorithmes.
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Chapter 1

Introduction

PR e

he Spyder project started as the dream of designing a machine capable of adapting
I its hardware to any given problem, in order to solve it more efficiently than a
conventional machine.

Until recently, transformable hardware was a notion usually confined to the realms
of science-fiction. Now, however, a new kind of programmable logic circuits, called Field
Programmable Gate Arrays (FPGA), has made this notion into a reality.

This thesis describes the conception of such a transformable machine and its accom-
panying software development environinent. The project name “Spyder” is an anagram
of the first letters of “REconfigurable Processor Development SYstem”.

This report is divided into 12 chapters and 5 appendices, the first chapter being the
present introduction.

Chapters 2 and 3 are provided for the sake of completeness of this report, and do
not represent work done as part of this thesis.

Chapter 2 presents an overview of ficld programmable gate array circuits. These
circuits make up the heart of the Spyder processor and are the means used to achieve
transformable hardware.

Chapter 3 gives some essential characteristics of the different kind of microprocessors
commonly found in computers, and describes how these microprocessors relate to each
other in terms of computing power.

Chapter 4 presents a global view of the Spyder project. It describes the main char-
acteristics of the Spyder processor, how this processor is coupled with a host computer,
and the means used to develop an application using the Spyder processor.

Chapter 5 describes the architecture and implementation of the Spyder processor in
detail. It also describes the low-level communication signals between the host computer
and the Spyder processor, as well as the VME interface.

Chapter 6 provides a step-by-step example showing how a Spyder application can
be programmed and executed. It is probably necessary to read through the description
of the Spyder processor architecture and of its operation in chapter 5 before reading this
chapter.

Chapter 7 describes the hardware synthesizer tool. This tool, named nlc for netlist
compiler, is used to transform software functions written in C++ into hardware opera-
tors. These hardware operators are then implemented by the configurable hardware of
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the Spyder processor.

Chapter 8 describes the VLIW compiler that generates the object code of the Spyder
programs. The object code uses the hardware operators synthesized by the nlc compiler.

Chapter 9 describes the VLIW assembler that generates the object code of the
Spyder programs.

Chapter 10 describes the UNIX interface between the host computer and the Spyder
ProCessor.

Chapter 11 presents four applications that have been implemented on the Spyder
processor: two cellular automata simulations and two image processing programs. The
performance of the Spyder processor on these applications is compared with the perfor-
mance of a conventional computer.

Chapter 12 concludes this thesis report.

The five appendices contain the schematics of the Spyder processor. The source
listings of the tools developed for the Spyder project have not been included with this
report because of their size. They represent around 30000 lines of C++ source code and
would require approximately 300 pages to print.



Chapter 2

An Introduction to FPGA Circuit
n Introduction to Ircuits

ield-programmable gate array (FPGA) circuits [Jen94, Tri94, BFRV92] belong to
Fthe same broad class of programmable logic devices (PLD) as the PAL, PLA,

GAL, and CPLD circuit families {Bur90, Lal90]. The names and acronyms used
to designate the different types of circuits in the literature can be quite confusing and
sometimes inaccurate.

PAL, PLA, and GAL circuits consist of a matrix of and gates, which computes
product terms from the input signals, followed by a matrix of or gates, which sums
selected product terms to generate the output signals of the circuit. There is no signal
routing in these devices.

CPLD circuits consist of a matrix of logic cells, implementing a configurable logic
function, and an interconnection network which allows the routing of signals from the
input pins, through the logic cells, to the output pins. However, the interconnection
network is highly constrained: only a predefined number of connections can be made
and there exists at most one possibility of connection between any two points in the
circuit.

FPGA circuits are very similar to CPLD circuits, also consisting of configurable logic
cells and an interconnection network. The main difference lies in the interconnection
network which, in the case of FPGA circuits, is composed of several kinds of routing
resources and allows great flexibility in the selection of a path between any two points
in the circuit.

2.1 General Aspects of FPGA Architectures

All FPGA circuits consist of three types of configurable components: logic cells, in-
put/output cells, and interconnection resources. The logic cells are used to implement
combinatorial and sequential logic functions, the input/output cells to provide the in-
terfacing between the chip and the outside world, and the interconnection resources to
route signals throughout the circuit.

FPGA circuits can be divided into two broad categories, namely coarse-grained
and fine-grained, according to the complexity of their logic cells. The logic cells of fine-
grained FPGA circuits consist of either a few functionally complete logic gates (e.g., nand
gates), or a low-complexity universal function (e.g., a multiplexer with 2 or 3 command
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variables). The logic cells of coarse-grained FPGA circuits, on the other hand, usually
implement the universal function of several input variables (e.g., the universal function of
4 variables, implemented with a look-up table), as well as one or two flip-flops. Coarse-
grained logic cells tend to waste silicon surface, especiaily when used to implement simple
logic gates, but require fewer signals to be routed through the cells. Fine-grained logic
cells, conversely, avoid the waste of silicon area at the cost of more signals to route.

FPGA circuits can also be divided into two other categories, RAM-based and
antifuse-based, according to the technology used to configure the circuits. Each pro-
grammable resource in she circuit is controlled either by a static RAM cell in the case of
RAM-based FPGA, or by antifuses in the case of antifuse-based FPGA. An antifuse is
an electric device, connecting two points, that irreversibly changes from a high to a low
resistance when a given programming voltage is applied across its terminals. The main
advantage of RAM-based FPGA circuits is that they can be reprogrammed, while the
disadvantages are that a static RAM cell is much larger than an antifuse and must be
configured upon power-up. The advantages of antifuses are a very small size and short
signal propagation delays, the drawbacks being the irreversibility of their programming
and the substructure required to apply the programming voltage.

2.2 Application Design Process

The description of the function to be implemented by an FPGA circuit can be specified
using a hardware description language (usually VHDL), a set of equations (e.g., Abel), or
schematics. This input description is then processed by CAD tools to produce a hardware
netlist representing the function to be implemented by the FPGA circuit. Each family
of FPGA circuits has a specific hardware components library to be used in the netlist
description.

The netlist is then processed by software tools, again specific to each family of
FPGA circuits, to produce the configuration file required to program the FPGA circuit.
The software tools perform three tasks: splitting the hardware components used in the
netlist into parts that fit in one logic cell of the FPGA circuit, placing the parts in the
available logic cells on the circuit, and routing the signals between cells.

2.3 Xilinx XC4000 FPGA Circuits

Xilinx was the first manufacturer of FPGA circuits, starting in 1984, and is currently
the leader of the market, offering several families of FPGA circuits [Xil94]. Only the
XC4000 family will be presented here.

The XC4000 family of FPGA circuits has a coarse-grained RAM-based architecture,
where the logic cells are organized in a rectangular array, surrounded by the input/output
cells. The routing network occupies the space between the cells.

Each logic cell (shown in figure 2.1) can implement two universal functions of 4
variables, one universal function of § variables, or, for some particular types of functions,
one function of up to 9 variables. The functions are implemented by three look-up tables.
Rather than implementing a logic function, two of the look-up tables can also be used
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Figure 2.2: XC4000 input/output cell architecture

as static RAM elements. Each logic cell also contains two flip-flops with clock-enable,
set, and reset signals.
Each pin of the circuit is connected to an input/output cell, shown in figure 2.2,
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Figure 2.3: ACT2 logic cell architecture

containing one output flip-flop, one input flip-flop (also usable as a latch) a tri-state
buffer, a pull-up resistor, and a pull-down resistor.

The routing network offers several type of connections: direct connections from one
logic cell to its neighbors, short lines spanning one or a few logic cells and linked by switch
matrices, and long lines: spanning the entire circuit horizontally or vertically. There are
also a few global nets for the distribution of clock and reset signals for the flip-flops.

There arc two major programming modes for the XC4000 circuits: master or slave.
These modes are further subdivided into parallel and serial submodes. In master mode
the XC4000 circuit controls the loading of its own configuration, while in slave mode the
control is performed by some other device (e.g., a computer). In parallel mode 8 bits of
configuration data are loaded by the circuit in parallel (but the data is serialized before
being used to configure the circuit). The entire FPGA circuit must be configured in a
single loading operation (i.e., it is not possible to configure only a part of the circuit), a
process which takes a few milliseconds.

2.4 Actel ACT2 FPGA Circuits

The ACT2 FPGA circuits are manufactured by Actel [Act94]. The ACT2 family of
FPGA circuits has a fine-grained antifuse-based architecture. The logic cells are orga-
nized in rows separated by routing nets. The input/output cells are located on the edge
of the circuit. The rows of routing nets are joined by vertical lines.

The logic cell of the ACT2 family, shown in figure 2.3, is basically a multiplexer
with 2 command variables. Some, but not all, logic cells contair a flip-flop.

The input/output cells are extremely simple, containing a tri-state buffer but no
storage element.

There are two types of routing resources: horizontal and vertical lines. The hor-
izontal lines are located between the rows of cells and can be connected to the inputs
of the cells (see figure 2.4) and to the vertical lines. The vertical lines are used to join
horizontal lines between rows. The output of the logic cells is connected to a vertical
line. The horizontal and vertical lines can be of various lengths, some vertical lines span
the whole height of the circuit, in which case they are called long vertical tracks. Actel
guarantees that a connection between any two points in the circuit crosses at most four
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antifuses, as shown in figure 2.5.

Programming an ACT2 circuit requires the use of a special device, driven by a
workstation. Once programmed, it is impossible to make any modification to the FPGA

circuit.
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Chapter 3

Processors and Performance

20

he purpose of a computer application can be roughly described as the generation
of a set of cutput data O by applying some function, usually called a program,
¥ to0 a set of input data I, as summarized by equation 3.1.

0 =Y(I) (3.1)

The generation of the output data requires a certain amount of time T. The perfor-
mance of a processor is determined by the time Ty(r) required to execute a program ¥
on a given set of input data I

3.1 General-Purpose Processors

A general-purpose processor must be able to run any program W, however complex.
This is achieved by splitting ¥ in a series of basic instructions (¢, %2, ...10,), where
each instruction 4; belongs to the instruction set of the processor, i.e., the processor is
capable of executing it directly. Thus, the time taken by a general-purpose processor
to run the program can be computed as in equation 3.2, where n is the number of
instructions and ¢y, is the time taken by instruction 3; to execute.

Ty = Zl Ly, (3.2)
=

There are three ways to increase the performance of a processor, of which two are
readily apparent from equation 3.2: decreasing the number of instructions required to
execute a program and decreasing the time required to execute an instruction. The third
way is to execute more than one instruction at the same time, in parallel. Unfortunately
these parameters are not independent. Decreasing the number of instructions in the pro-
gram usually means that the instructions will be more complex and require more time to
execute. Finally, trying to use paralielism, like multiple-issue processors do, presupposes
the ability to find independent instructions susceptible of concurrent execution, which
requires more hardware resources and complicates the control of the processor.

The silicon technology used to manufacture the processors plays a great role in the
raw execution speed of the instructions. Also, the architecture of the processor has a
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huge number of tunable parameters and whole books have been, and are still being,
written on the subject |[HP96, Fly95, Joh91, RF93].

3.2 CISC and RISC Processors

General-purpose processors can be divided into two broad categories: CISC and RISC,
where CISC stands for Complex Instruction Set Computer and RISC stands for Reduced
Instruction Set Computer.

Generally speaking, CISC processors try to optimize n in equation 3.2, while RISC
processors favor very simple instructions which require less time to execute (but tends
to increase the number of instructions needed to execute a program). In the former case,
the time ¢, can vary greatly from one instruction to the next, whereas in the latter case,
all instructions require the same amount of time' and equation 3.2 can be rewritten as
equation 3.3, where ¢, is a constant.

Tq,(]) =nty (3.3)

The choice of RISC designers to have simple, fast instructions has several con-
sequences, the major ones being single instruction format, load-store architecture, and
easier pipelining. The single instruction format means that all the instructions are coded
using the same number of bits. Almost all known commercial RISC processors use 32
bits. Single format is desirable because it allows the processor to know what amount of
memory to read to obtain a given number of instructions and because it simplifies the
decoding of the instructions.

Another major difference between CISC and RISC processors is the way the in-
structions access data in memory. CISC instructions are able to operate directly on
main memory data, which complicates their decoding, rendering the single instruction
format very impractical, and the time required to execute these instructions further de-
pends on how rapidly the main memory is able to supply the operands to the processor.
RISC processors can only access the main memory through load and store operations
(which move data in and out of their internal registers) and their instructions can only
operate on their internal registers. Thus the load and store instructions are the only
ones that can cause delays if the main memory cannot supply the data fast enough.

3.3 Pipelining

One way to obtain some gain from parallel execution without having to find indepen-
dent instructions susceptible of executing concurrently is to use pipelining. The principle
of pipelining is to split each basic instruction #; into several sub-parts and to execute
sub-parts of several consecutive instructions concurrently. Any instruction can be de-
composed, in an intuitive and natural way, into a sequence of phases. These phases

!This is not exactly true of superscalar RISC processors, i.e., RISC processors which have several
execution units (integer, floating-point, etc.) executing in parallel. In that case, each execution unit can
bave its own pipeline, the rumber of stages of each pipeline can be different, and thus different kind of
instructions can require different amount of time to complete.
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Figure 3.2: Pipelined execution

usually consist of an Instruction Fetch (IF) phase where the next instruction is fetched
from memory into the processor, and Instruction Decode (ID) phase where the meaning
of the instruction and the location of the operands are decoded, an Execute (EX) phase
where the actual computing takes place, and a Write Back (WB) phase where the results
of the computation are saved in the destination location.

Thus, if we admit the decomposition given above, to execute instruction ; the
processor can perform the IF phase, then the ID phase, then the EX phase, and finally
the WB phase in sequence, as shown in figure 3.1.

However, each of these different phases can be executed by independent hardware
resources, and the intermediate results saved (memorized) in registers. Thus, as soon as
the IF phase of instruction ; is complete it is possible to start the IF phase of instruction
i1 while the instruction ¥; proceeds in the ID phase, etc. This pipelined mode of
execution is shown in figure 3.2. RISC processors are better suited to use pipelining
since all their instructions take the same time to execute and the accesses to the main
memory are restricted to the load and store operations, whereas the variable execution
time of CISC instructions causes serious problems. Each instruction still requires time T,
to execute, but once the pipeline is full [ instructions execute in parallel and the apparent
execution time of an instruction becomes Ty /!, where [ is the number of pipeline stages
(! = 4 in our example above). If we admit that the time taken to fill the pipeline is
negligible with respect to the total time taken to run a program, equation 3.3 can be
rewritten as equation 3.4.
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n
T‘p(l) = Tt‘/, (3.4)
Generally speaking, the different phases of execution of the pipeline are timed by a
clock signal of period A and [ is chosen such that [A = Ty. We can thus further rewrite
equation 3.4 as equation 3.5.

Ty = nA (3.5)

Pipelines introduce some hazards [HP96, pages 139-178], which must be dealt with
either at compile or execution time, including conditional branches and attempts to read
a value that has not yet been written because the instruction that writes it is still in the
pipeline. Moreover, splitting an instruction into phases adds some time and hardware
overhead to save the intermediate results between the different phases.

3.4 Multiple-Issue Processors

Multiple-issue processors contain additional hardware to execute several instructions in
parallel. They are split into two categories: superscalar and Very Large Instruction Word
(VLIW) processors [Fly95, pages 456-498}.

Superscalar processor use a dynamic scheduling method. They read several instruc-
tions of the program at the same time and determine which ones can be executed in
parallel. This allows them to execute programs compiled for a single-issue processor of
the same family, but requires a considerable amount of instruction scheduling hardware.

VLIW processors require the compiler to statically assemble operations to be ex-
ecuted in parallel in a single, large instruction. They are thus unable to reuse code
compiled for a single-issue processor, but their bardware control is much simpler.

Good compilers for both categories tend to be equally difficult to write, since in
both cases the compiler will want to rearrange operations in a way that will maximize
their parallel executions.

The architecture of multiple-issue processors is basically similar to the architecture
of RISC processors, but they have several execution units. For example, the PowerPC
620 processor has 6 execution units: two simple integer units, one complex integer unit
handling multiply and divide operations, one load-store unit, one floating point unit,
and one branch unit [HP96, pages 335-349].

Multiple-issue processors also use pipelining techniques to augment their perfor-
mance. Thus, equation 3.5 can be rewritten as equation 3.6, where N is the average
number of operations executed in parallel when program ¥ is applied to the set of input
data I, and 1 < N < U, where U is the number of available execution units.

n
T\p([) = N/\ (3.6)
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3.5 Special-Purpose Processors

Special purpose processors try to minimize the time Ty(;) taken to run a program v
by providing special instructions tailored specifically for that particular task. In other
words, they try to minimize n in equation 3.2 by providing custom-tailored instructions
so that program W is split into fewer instructions. The penalty for this approach is more
hardware and greater development costs for the dedicated processors.

The best-known examples of special-purpose processors are floating-point coproces-
sors and graphics coprocessors. With the exception of universities, where they are built
for research purposes, special-purpose processors on the market are rare, mainly because
of their high development costs and their limited market share.
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Chapter 4

Spyder Basics

28

with its accompanying development environment. The word reconfigurable is
used by many people for different purposes. In the case of Spyder, reconfigurable
means that the hardware of the processor is tailored specifically for each application.

The annual IEEE symposium on FPGAs for Custom Computing Machines in Napa,
California, sees each year a growing number of proposals of configurable processors.
Among the best-known are the Splash project [ABD92], and the DEC-Perle project
[BRV89]. The Spyder project has some very distinctive features: the reconfigurable
hardware is structured, in the form a VLIW processor, and a lot of efforts have been
put in the construction of an application development environment in which a software
developer can feel comfortable without being a hardware expert.

The development environment of Spyder should provide the same user interface as a
typical workstation software development eovironment. In other words, given the source
code of a typical application that can be compiled and run on a workstation, the ultimate
goal of the Spyder development tools is to take this same source code and compile it,
producing the configuration of the Spyder hardware and using the configured hardware
to run the application.

The most difficult task is to split the code into parts: the part that becomes the
hardware configuration, the part that directly controls this hardware, and the part that
runs on the host workstation and uses the Spyder coprocessor. This task is actually
left to the programmer. The Spyder development tools do, however, provide a unified
development environment which uses the Ct+ language to describe all the parts.

The basic goal of the Spyder project was to develop a reconfigurable coprocessor

4.1 The Spyder Processor

At this time, the only hardware devices which can provide both reconfigurability and
sufficient computing power are RAM-based FPGA chips, presented in chapter 2.

To keep the Spyder coprocessor and the host workstation fairly independent, the
former was endowed with its own program and data memories, so that there is no bus
contention and both Spyder and the workstation can work in parallel without hindering
each other.

15



16 CHAPTER 4. SPYDER BASICS

4.1.1 Multiple Execution Units

When the Spyder project started, the choice of available FPGA chips was limited, as was
the number of pins per chip. To provide enough computing power, it was decided that
more than one chip was needed to perform the computation, and that they would all run
in parallel: the superscalar architecture was born. Given the number of pins available
per chip, a data width of 16 bits was chosen.

A common problem with processors having multiple execution units is the high
bandwidth required to connect the execution units and the data memory. The solution
adopted was to use a dual-port data memory and two four-port register banks, the latter
being the memory chips with the highest number of independent ports available on the
market; since one of the four ports is needed to connect the register bank with the data
memory, there remain three usable ports and thus three execution units.

4.1.2 Register Windowing

The execution units read their input data and write their computed results exclusively
into the register banks; in some sense the register banks act as a cache memory between
the execution units and the main data memory. The rule of thumb says that the bigger
the cache, the better. However, such a large monolithic block of registers is not very
convenient: better to split it into smaller, independent chunks which can be accessed
through an indexing mechanism. This access method is usually called register windowing.

The windowing mechanism defines a current window pointer, which is used to refer-
ence the current registers window, the previous registers window and the next registers
window; a fourth registers window, called the global window, is also defined and is in-
dependent of the current window pointer, i.e., the global window stays the same at all
times. The Spyder registers are always accessed through these four windows.

The current window pointer can be manipulated by three commands: increment,
decrement and reset. The standard mode of operation is to increment the pointer on
subroutine calls and to decrement it when the subroutines return, like in the SPARC
processor [WG94], but on Spyder the three operations are under complete control of the
programmer.

4.1.3 Programming

All the resources of Spyder processor operate in parallel and are controlled by a very
large instruction word (VLIW) 128 bits wide. This VLIW code very closely resembles
microcode, since it directly commands the Spyder resources without further interpreta-
tion or decoding. However, it is not microcode, as it is not interpreting the operations
of a higher level assembly language: it is the assembly language itself. The control pro-
gram is stored in its own memory, which means that the Spyder processor has a Harvard
type architecture. The execution control is performed by a sequencer. The sequencer
can perform conditional jumps based on status information computed by the execution
units; it contains loop counters and a return address stack for subroutine calls.

The Spyder processor uses a pipelined execution mode to achieve higher processing
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speed. The pipeline is composed of four stages: instruction fetch, address computation,
execution, and write back.

4.1.4 Host Workstation Coupling

From the host workstation point of view, Spyder appears as a loosely coupled coprocessor
connected on the VME bus. There are four communication channels: one is used to
download the execution units cornfigurations, another to download the control program
in the program memory, a third is used to access the data memory, and the fourth is the
control channel.

A typical application run on a workstation with an attached Spyder board consists of
the following steps: first, the workstation configures the Spyder processor by downloading
the configuration of the execution units and the control program; then the workstation
stores the data to be processed into the Spyder data memory and starts its execution;
when Spyder has completed its task, the workstation reads back the results it needs,
stores new data to be processed, restarts Spyder, and the cycle is repeated.

4.2 The Development Environment

The development of an application using the Spyder coprocessor basically consists of
writing three separate pieces of source code: one to run on the host workstation, one
to configure the execution units, and one for the control program. All three pieces can
be written in Ct+, making it possible to compile them together with a standard C++
compiler to obtain a working application, running entirely on the host workstation, that
can be debugged with standard debugging tools. When the application runs as expected,
the pieces of code aimed at Spyder can be processed with the Spyder development tools
and the application can be run using the Spyder coprocessor.

4.2.1 Host Workstation Program

The program running on the host workstation is responsible for loading the data to be
processed by Spyder into the Spyder data memory, starting the coprocessor, waiting for
it to complete its computations, and getting back the results. The program must also
handle the user interface, and the interface to the operating system in general.

A C++ interface class for the Spyder coprocessor is provided by the development
system. This interface class hides all the low-level details of communication with the
coprocessor. It is thus easier to develop this program in Ct++, although it is quite
possible to use another language.

4.2.2 Execution Units Configuration

The execution units configuration must describe all the operations that must be imple-
mented by the execution units hardware. This description can be done either in Ct++
(the preferred solution) or with ViewLogic schematic tools.



18 CHAPTER 4. SPYDER BASICS

The C++ description consists of providing the functional description of the required
operations by writing C++ functions that implement these operations. Each of these
functions will then be transformed by the hardware synthesizer into a hardware compo-
nent that can be configured in the execution unit.

The main advantages of using Ct+ for the description of the hardware operators
are simplicity and being able to simulate (or rather to emulate) the generated hardware
operator as part of a larger Ct+ program.

4.2.3 VLIW Program

The VLIW program is charged with feeding data to the execution units, moving it
from the main memory through the register banks, and storing back the results of the
computation. Two tools are available to help the programmer develop this program: a
C++ compiler and an assembler.

The C++ compiler performs several complex tasks: assigning the hardware opera-
tors to the execution units, parallelizing the code to use the three execution units and
the data transfer operators in parallel, managing the data in the two large register banks,
detecting and avoiding pipeline hazards.

The assembler allows complete control of the Spyder processor resources, at the
expense of more work for the programmer, who is fully respounsible for performing the
assignment of the hardware operators to the execution units, controlling the parallel use
of the available resources and handling the pipeline hazards.



Chapter 5

Spyder Architecture

=

he Spyder coprocessor is composed of three main parts: a bus interface, a control

I part and an execution part. Its architecture is presented in figure 5.1. It is based

on standard microcode [Hab88] and VLIW [RF93] processor architectures, with

some very distinctive characteristics: reconfigurable execution units and multiple shared
register banks.

From its superscalar and VLIW architecture heritage, Spyder draws several execu-
tion units (currently three) working in parallel. These execution units have no predefined
functionality and must be configured for each application. The instructions and the data
reside in two separate memories (Harvard architecture), partly to alleviate constraints
in the execution pipeline, but mostly because the widths of instruction and data word
do not match: a data word is 16-bit wide whereas an instruction word is 128-bit wide.
These word widths are implementation trade-offs, and future implementations of Spyder
could have a 32-bit data word or additional execution units, in which case the instruction
word would probably have to be wider.

Like RISC processors, the execution units of Spyder operate only on data in the
registers. The data memory and the registers exchange data exclusively through load
and store operations [FR94].

There are two register banks. Each bank is shared among all the execution units.
The register banks have four ports that can be accessed simultaneously. Three of the
ports are connected to the threec execution units and the last one is connected to the data
memory. The data memory is a 64K x 16 bits dual-port SRAM, allowing two load/store
operations in parallel, one for each register bank.

5.1 Principle of Operation

The pipelining technique [PH94] has been used to increase the overall throughput of
the Spyder processor. One basic instruction is executed in 4 phases. One instruction is
issued at each clock cycle and requires 4 clock cycles to complete, as shown in figure 5.2.
During the first phase, the sequencer puts the address of the next instruction (PC)
on the address bus of the program memory.
In the second phase, the program memory loads the instruction into its pipeline
register and puts it on the command lines of the processor. The memory controller

19
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Figure 5.1: Spyder architecture

computes the data memory addresses used by the instruction. The register windowing
controller and the execution units compute the address of the registers used by the
instruction.

During the third phase, the data memory addresses computed in the previous phase
are put onto the data memory address busses and the data transfers between the memory
and the register banks are performed. The register addresses computed during the second
phase are put onto the address busses and the execution units read the data coming from
the registers halfway through this cycle (on the high to low transition of the clock). The
execution units then start to execute the requested operation on the data they just read.

Halfway through the fourth phase (one complete clock cycle after the execution units
started executing their operation), the address of the registers in which the result of the
operation will be stored are put on the address busses and the results of the operations
are saved.
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Figure 5.2: Instruction execution timing
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Figure 5.3: Spyder instruction word

Note that while data are moved to and from the data memory in the third phase,

they are moved from the execution units back to the registers one clock cycle later in
the fourth phase.

5.2 Structure of an Instruction

To take advantage of the parallelism provided by the multiple execution units, all the
hardware components need to be controlled individually and simultaneously. This is the
basic principle of a very large instruction word (VLIW) architecture. Each instruction
commands all the resources of the processor in parallel, without any coding, in a way
similar to horizontal microcoding [Hab88]: there is thus no decoding of the instruction

and the parallelism is not constrained in any way. The format of an instruction is shown
in figure 5.3.



22 CHAPTER 5. SPYDER ARCHITECTURE

Table 5.1: Sequencer and window pointer operations

Command Window Counter Action
ILs Ly L1z I pointer
0 0 0 O — - Jump
0 0 0 1 — decrement | Repeat loop if counter # 0
0o 0 1 0 — — Jump if flag =0
0 0 1 1 increment decrement | Repeat loop if counter # 0
0 1 0 o0 increment — Call
0 1 0 1 increment — Jump
0 1 1 0 | cond. increment — Call if flag =0
0 1 1 1 increment — Jump if lag =0
1 0 0 O — pop Jump
1 0 0 1 reset — Jump
1 0 1 O — — Jump if lag # 0
1 0 1 1 decrement decrement | Repeat loop if counter # 0
1 1 0 0 decrement — Return
1 1 0 1 decrement — Jump
1 1 1 0 |cond. decrcment — Return if flag = 0
1 1 1 1 decrement — Jump if lag = 0

The 128 bits of an instruction directly control 6 different operations, as described
in the following sections.

5.2.1 Sequencer

The program sequencer is controlled by the instruction bits f150. There are four cat-
egories of operations, controlled by bits I15.12: jump, subroutine call, return from sub-
routine, and loop. All these operations can be executed unconditionally or conditionally
using the flag provided by the execution units. The detailed description of the 16 avail-
able operations is given in table 5.1. The jump address is given explicitly by the 12 bits
I110- The return address of subroutine calls is saved using a built-in stack, currently
providing 64 levels.

The loop mechanism is implemented using a stack of counters. Upon entry in a
loop, the program pushes the number of iterations onto the stack!. At the end of the
loop body, the program decrements the counter and conditionally jumps back to the
start of the loop. When the counter reaches 2ero, it is automatically popped from the
stack by the decrement operation. The current implementation of the sequencer provides
a counter stack of 32 levels.

!This operation is actually an operation performed by the load/store unit (see section 5.2.2) and
thus does not appear in table 5.1.
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Table 5.2: Spyder memory address computation

address = Apgse + Adisplacement (5.1)
address = Apge + displacement (5.2)

Table 5.3: Summary of the load and store operations

Maddress ¢+ RS (5.3) constant — A, (5.8)
Apse & R2(5.4) Maddress — Sequencer (5.9)
constant — R (5.5) Asse — Sequencer (5.10)
Magdress & A, (5.6) constant — Sequencer (5.11)
Apse & AL(5.7) Madaress ¢ RS, {5.12)

5.2.2 Load and Store

The load and store unit controls the two busses that link the data memory (M), the
register banks, and the sequencer. The data memory has two input/output ports. The
first bus, called the A-bus, links the first port of the data memory, the register bank R®,
the sequencer, and the load/store unit itself. The second bus, called the B-bus, links the
second port of the data memory and the register bank R®.

The load and store unit contains 8 address registers (A). There are two addressing
modes to access the data memory, as shown by equations 5.1 and 5.2 in table 5.2. These
addressing modes are similar to the addressing modes used by the SPARC processor
[WG94).

The computed address can be saved in the register Ay,,.. The base and displacement
parameters come directly from the instruction. The displacement parameter can be either
a 16-bit constant or a register tag, selected using the 3 least significant bits.

The A-bus allows bidirectional data transfers between the data memory, the address
registers, and the register bank R?, transfers of a constant value to the register bank
Re, an address register, or the sequencer (to push a new loop counter), and transfers
from the data memory or an address register to the sequencer. These operations are
summarized by equations 5.3 through 5.11 in table 5.3. They are controlled by the
instruction bits I49.;6 and their encoding is specified in table 5.4, where base corresponds
to the instruction bits Ipp.00, n to Igy.g9, and displacement to Iyg.0s. The computed
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Table 5.4: A-bus transfer operations

M pase HAdirptacemens = SEQUENCET
Ma,... +displacement —* S€quencer
Apse — sequencer
displacement — sequencer

Direction | Select | Control Action

Iy Iy Iy |l Ins

0 0 ¢ ¢ ¢ |ldle

0 1 0 0 ¢ MAm¢+A4umumm -+ Rﬁ
0 1 0 0 1 MA“,,—fduylmmcnl — R‘:l
0 1 0 1 0 | Age 2 RS

0 1 0 1 1 i displacement — R2

0 1 1 0 0 MAM¢+Adupm:mcnl -+ A,
0 1 1 0 1 MA,,_,¢+d;splacement — An
0 1 1 1 1 | displacement — A,

1 0 0 0 0 MA“,¢+A“,,W ~ R‘,’1
1 0 0 0 1 MAuu¢+displac¢menl «— R?;
1 0 0 1 0 | Aggse + R2

1 0 0 1 1 i Illegal

1 0 1 0 0 | Map, +Avmpiocemens < An
1 0 1 0 1 MA“,¢+displaoemem €« An
1 0 1 1 0 | Apase — Ap

1 0 1 1 1 | Illegal

1 1 ¢ 0 0

1 1 ¢ 0 1

1 1 ¢ 1 0

1 1 ¢ 1 1

memory address can be saved in the address register Ag,,e by setting bit Iyg.

The B-bus allows data to be transferred between the data memory and the register
bank RB. This operation is summarized by equation 5.12 in table 5.3. It is controlled by
the instruction bits fg3.4; and its encoding is specified in table 5.5, where base corresponds
to the instruction bits fyg.44, m to Ig74s, and displacement to Is34s. The computed
memory address can be saved in the address register Ay, by setting bit Iy3.

It should be noted that the idle operation on both the A-bus and the B-bus can be
used to do computations in the address registers, i.e., no data transfer occurs but the
computed memory address is saved back in the base register.

5.2.3 Register Window Control

The registers banks R® and R® are accessed through a windowing mechanism, shown in
figure 5.4. The set of available registers is divided into windows of 4, 8 or 16 registers.
Four windows are accessible at any given time: the global window (G), the current
window (C), the previous window (P), and the next window (N). The global window is
always accessible, while the others are accessed through a current window pointer. The
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Table 5.5: B-bus transfer operations

Direction | Immediate Action
Iy Iy Iy
0 0 ¢ Idle
0 1 0 MAMJe+AduplQ¢z1MM - Ren
0 1 1 MAm¢+displaument g Ren
1 0 0 MAtme+Adwoamnc A an
1 0 1 MAuu-f-disylacement — Rf,,
1 1 ¢ Illegal

Table 5.6: Register window selection

fin I; Window select
(G = 78,76,74,72,70, 68, 66,64)
0 0 Current
0 1 Next
1 0 Previous
1 1 Global
Wn Global
Wh-1
=AY Rm
Wit Next . Rom_ 1
Window pointer ./ w; Cusrent o
uent |
Wi.1 Previous Ry
—/ NN Ro
Wi Window select
Wo Register address

Figure 5.4: The register windows

control mechanism of the window pointer is somewhat similar to that of the SPARC
architecture [WG94]: the current window index is incremented at each procedure call
and decremented at each return, but can also be manipulated directly by the program.
By convention, the global window has the highest index.

The instruction bits I7.4 are used to select the register windows used by the oper-
ations dealing with data registers, described in sections 5.2.4 and 5.2.2. The encoding
is specified in table 5.6. The same instruction bits Iys,2 that control the sequencer are
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Table 5.7: Execution units instruction format

R? « OR:, R, Q) (5.13)
R: « Oure, R () (5.14)

used to control modifications to the current window pointer, according to the operations
specified in table 5.1.

5.2.4 Execution Units

The execution units take their operands from two register banks, labeled R® and R®.
Each execution unit can perform either one or both operations shown by equations 5.13
and 5.14 in table 5.7, where Q; and O, are operations configured by the user, and ¢ is
some context, kept in the execution unit, which can depend upon previous operations.
The instruction bits Jygs.100 Specify if the result of the operation is actually written back
in the corresponding register or is discarded.

The operations performed by the three execution units are controlled by 21 com-
mon bits, I1z6.106. Their distribution and function is entirely open and depends on the
configuration of the units.

Each execution unit can work with a configurable number of registers per window:
two sets of 4, 8, or 16. When using the minimum number of registers (two sets of 4) the
instruction provides directly the required address bits in lge.g5. To use more registers
per window, a portion of the 21 common control bits must be used as additional address
lines.

The execution units can produce one condition bit, user-specified and configured,
sent to the sequencer through a common, single line.

5.2.5 Special

Bit 1127 is used to set breakpoints and to stop the processor. When Spyder reaches an
instruction which bas bit Ij; set to 1, it will stop right after the second phase of the
instruction, as described in section 5.1.

5.3 Hardware Implementation

Spyder has been implemented as a coprocessor attached to a SPARCstation. It uses a
standard double-Europe VME board which fits inside the host computer and supports
the standard 32-bit data VME slave interface [Mot85).



5.3. HARDWARE IMPLEMENTATION

VME bus }
sl= 'y ey PEIEEY
-1 A=) YRR
] Ba 23 |—»{RrREG 8;35552505
8| < S 88 23¢&
Al <lacse 2 _’ﬁ % § sgé g Cf[l)li Zzl)D.Program
PAL | ROM =~ ROM_SCLK sak RAM
SOouT St
> AT Interface
31:0 L
b1 controller o P
VECT_EN® RDY ol
s e LCA_SCLK CCLK
Za €5t RST* »|RST
‘:I :I 5l 8| g| REPROG* PROG Seq
=B = 5 5 DONE DONE 8
< < é
QQ %1 J
r i
hefccLk 8
] M-»{RST :
—l* . g4 prog  WiN
A(1622) Do 9
A0 [> - AA(S0) T
C V- A_R/W* > Y
: A_CS* E ksiCCLK &
A62) ATOE* £ e
A0 [> B_A(IS0) UL proOG EU1
B_R/W* g DONE 8
(%]
1+ B_Cs* 2 ;i
\— B_OE* Y
'y y 4 A ‘»{CCLK Q@
-
PotA  PortB — | ST, EU2
Data RAM Register DONE R
AD3S0)  B_D(15:0) Bank A _{
L_tCCLK a
- RST
Register __.|prOG EU3
*|Bank B| “——pone Q

Figure 5.5: Block diagram of the VME interface and Spyder control signals
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The current implementation of Spyder operates at 8 MHz, a limitation imposed not
by the processor architecture, but rather by the choice of components determined by

budget constraints.

5.3.1 The VME Controller

The purpose of the VME controller is to provide an interface between the VME bus
and the Spyder processor, as shown in figure 5.5. The controller provides the following
functions: implementing the VME 32-bit slave protocol, configuring the Xilinx FPGAs,
reading and writing the Spyder program memory using its serial protocol channel, reading
and writing the Spyder data memory, and, finally, generating and controlling the Spyder
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Figure 5.6: Block diagram of the VME controller

control signals.

The VME controller is implemented using an A1225 FPGA circuit from Actel. In
addition, a fast PAL is used for the board address decoding, along with some line drivers
and bidirectional bus drivers. The block structure of the complete controller is shown in
figure 5.6. The controller is clocked by the master clock at 32 MHz and requires a cycle
time of about 30 ns. The rest of the processor runs four times slower. See section 5.3.2
for details about the clock signals.

An Actel was selected because it does not need to be configured upon the power-up
of the host computer and is instantly ready.

The controller uses the standard 24-bit address space with 32-bit data. It decodes
the VME control signals DS0, DST, LWORD, R/W, AS, AMs, and produces the ac-
knowledge signal DTACK. It is also capable of handling interrupt requests, using the
TRQ,TACK , TACKIN and TACKOUT lines. The controller is reset by the VME RESET
line. For a detailed description of the design of this VME controller, the reader is referred
to T. Meyer’s diploma report {Mey94}.

The VME controller provides direct access to four components on the board. Each
component is assigned a base address, as specified in table 5.8. The 128 Kbytes of data
memory are directly accessible from the host workstation, as is the 8-bit control and
status register. The program memory is accessed, in read and write mode, through a
64-bit shift register. The configuration of the FPGAs is performed through the same
64-bit shift register, but only write mode is allowed.

The data memory is accessed using 32-bit data width only. Both 16-bit ports of the
IDT 7MBI1006 circuit are accessed simultaneously, at addresses ¢ and # + 1, to provide
the 32-bit data. The VME controller drives the CS, OF and R/W lines of the memory.




5.3. HARDWARE IMPLEMENTATION 29

Table 5.8: VME address of Spyder components

Component Address | Size in bytes
Data memory 0x000000 0x20000
Program memory 0x020000 4
FPGAs configuration 0x030000 4
Control and status register | 0x040001 1

Table 5.9: Control and status register description

Bit Description Write Read
CSR, | Interrupts handling 0: disable interrupts 0: no interrupt
1: enable interrupts 1: interrupt pending
CSR, | Processor state 0: stop processor 0: processor running
1: start processor 1: processor stopped
CSR; | Serial interface config. 0: write mode
1: read mode
CSR3 | Serial interface state | 0: no action 0: busy
1: start transfer 1: idle
CSR4 | C/D control 0: C/D«0
1: C/D +1
CSRs | Unused ¢: no action always 0
CSRs | FPGA control 0: normal state 0: FPGAs not configured
1: clear FPGAs config. | 1: FPGAs configured
CSR; | FPGA control 0: normal state always 0
1: reset processor

During such accesses, the Spyder processor must be stopped to avoid collisions.

The control and status register can be accessed using 8-bit data transfer only. This
register controls and monitors all the functions provided by the VME controller. The
description of the function of each bit of the register is summarized in table 5.9.

Bit CSRy can be set to enable VME interrupt requests by the Spyder processor.
An interrupt is requested when Spyder reaches a breakpoint in the program. This same
bit can be tested to see if an interrupt is pending. Bit CSR, is used to start and stop
the processor, and it can be read to check if the processor has stopped running, i.e.,
has reached a breakpoint. Note that when the processor halts because it has reached a
breakpoint, it must be stopped by setting bit CSR,; to 0 before it can be restarted, as
explained in section 5.3.2.

Bits CSRy.; control the serial interface. This interface is used both to configure the
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five Xilinx FPGAs and to load the program memory. The FPGAs are daisy-chained
on the board: the sequencer chip is the head of the chain, followed by the windowing
controller, the first and second execution units, and, finally, at the end of the chain, the
third execution unit. The FPGAs are coufigured in slave serial mode, according to the
Xilinx data book [Xil94].
The method used to configure the FPGAs is to download a configuration file to the .

FPGAs through the serial interface, as explained in chapter 6. This is done by repeating
the following three steps:

1. wait for the serial interface to be idle, polling bit CSR;3;

2. write two long words to the FPGAs configuration address shown in table 5.8, thus
filling the 64-bit shift register of the serial interface;

3. start the serial transfer by setting bit CSRj.

These steps are repeated until the whole configuration has been downloaded. Padding
bits after the end of the configuration file should be set to 1.

Before attempting to download a new configuration in the FPGAs, the old config-
uration must be cleared. This is accomplished by first setting and then resetting bit
CSRs.

As can be seen in figure 6.5, the FPGAs and the program memory share the same
serial data line. The selection between the two devices is done by activating the requested
serial clock. The controller decides which clock to activate based on which address was
last used to access the shift register.

Loading the program memory is accomplished in a similar, but slightly more com-
plicated way, described in section 5.3.3. Note that, usually, the user will just use the
provided Unix driver and will not be required to handle all these details.

Setting and then resetting bit CSR; resets the Spyder processor, keeping the cur-
rent FPGAs configuration. Note that this operation does not clear the content of the
instruction pipeline register. The method used to clear this pipeline register is described
in section 5.3.3.

5.3.2 The Sequencer

The sequencer is implemented in a Xilinx XC4005 chip [Xil94]. Its main purpose is to
generate a 12-bit address for the program memory at each rising edge of the system
clock (see section 5.2.1 for a detailed description of its functionality). The sequencer
chip also implements a few other functions concerned with the generation of the clock
signals and the control of the run/stop state of the processor. The complete schematic
of the sequencer chip is given in appendix B, starting on page 145.

The master clock signal CLK is generated by an oscillator at 32 MHz. The VME
controller uses this clock directly, to provide faster response times. However, such a
frequency is too high for the rest of the processor. In particular, the load and store
control unit is one of the most limiting component, requiring a cycle time of about
100 ns. Thus the system clock SCK is obtained by dividing the frequency of the master
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Figure 5.7: Run/stop state machine

clock by four, as shown in figure 5.9. The inverse of this clock, SCKB, is used as the
output enable signal for the three ports of the data registers connected to the execution
units (see section 5.3.6). Another clock, labeled the enable clock ECK, running at twice
the speed of the system clock (half the speed of the master clock), is also used to generate
clean write pulses for the register banks. The enable and system clocks are generated
by a simple 4-state state machine. The Spyder processor is stopped by halting the state
machine that generates the clocks, thus halting the clocks. Both clocks are stopped in
the high state to allow the write operations to complete.

The state diagram of the run/stop state machine is given in figure 5.7. The GO
line is controlled by bit CSR; of the VME controller. The stop transition occurs either
when the bit I)s7 of the current instruction is set or when the GO line goes to 0. The
sequencer generates two signals, RDY and ENA, which are low while Spyder is running
and high otherwise. The RDY signal is used to inform the VME controller that the
Spyder processor is idle (ready for further commands), while the ENA signal is used
internally by the Spyder processor to enable the memory controller (see section 5.3.4).
A timing diagram showing the master clock, the two generated clocks, and how the
processor is started and stopped is given in figure 5.9.

The sequencer itself, presented in figure 5.8, is composed of four main parts: a
multiplexer with some control logic that selects the address of the next instruction to be
executed, a program counter register with an incrementer, a return address stack, and
a counter stack. The multiplexer selects the next address among three possible sources:
the instruction jump address field /)14, the program counter register, or the top of the
return address stack. The selection logic is combinatorial and decodes the instruction
command bits /5.1, the state of the execution units flag, and the state of the Zero flag
from the counter stack to select the appropriate source, as described in table 5.1.

The program counter register loads the current address, incremented by one, at each
rising edge of the system clock.

The return address stack contains 64 levels. It is implemented using the RAM



32 CHAPTER 5. SPYDER ARCHITECTURE

e
—

& Instruction
PC [ Address
Stack g
64x12 m!
[E Pointer l' — I Jump Address
[=¥
(=]
= [Zero
Counter % T Control
Stack <
[70]
32x16 LAl
Pointer
k} Loop Count

Figure 5.8: Block diagram of the sequencer
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Figure 5.9: Timing diagram of the clocks and run/stop operations. At the beginning
of the diagram, the processor is running. It is then stopped by the GO line (PGO in
the figure) going low and restarted by the same line going high. The processor is then
stopped by the breakpoint bit I;p; (MCST in the figure) and restarted by cycling the GO
line.

macros available in the XC4000 circuits, a stack pointer composed of a 6-bit up/down
counter, and a register containing a copy of the return address on the top of the stack.
The register provides a faster access to the return address when a return instruction is
executed. Note that generating the write pulse for the RAM macros can cause some setup
and hold time problems. In our case, these problems have been solved by generating
short write pulses through combinatorial logic using the master, enable, and system
clocks.

The counter stack provides 32 levels of counters. Its implementation is similar to
the return address stack. This stack generates a Zero flag which is true when the current
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Table 5.10: Serial protocol channel command codes

- Code Register
Command Action g
0 Read register 0 Counter
. regh 1 | RAM data
1 Write register L .
. 2 Pipeline register
2 Read reg. and incr. counter .
. . 3 Break mask register
3 Write reg. and incr. counter -
4 Break data register
4-C Reserved .
5 | Control and status register
D Enter stub mode .
E Enter serial mode 6 Data pins /050 (Rd only)
F No operation 7 | RAM address (Rd only)
P 8-F | Reserved

counter will reach zero on the next decrement operation. A new counter value is pushed
from the A-bus onto the stack when the A-bus transfer direction bits 1,76 are both high.

5.3.3 The Program Memory

The program memory is implemented using 8 IDT 71502 chips [IDT92]. These chips
feature 4K x 16-bit of static RAM and have two I/O ports: one 16-bit data, 12-bit
address parallel port, and one serial port. The serial port is used to download the code
from the host computer into the program memory, which avoids the need to multiplex the
32-bit data bus of the host computer with the 128-bit bus of the program memory. The
IDT 71502 has a built-in pipeline register that is used by the Spyder architecture (see
section 5.1). These chips also offer parity checking and data comparison with breakpoiot
capability, but these features are currently unused by the Spyder architecture.

The serial port is labeled Serial Protocol Channel (SPC}) in the data book. It uses
4 wires: serial clock SCLK, data in SI, data out SO, and a control line C/D. These 4
lines are handled by the VME controller. A complete description of the functions of the
SPC can be found in the data book, but, for the sake of completeness, some of these
functions are described below.

The SPC command register SPC7 is 8-bit wide and is composed of two parts:
SPC+.4, the command code, and SPC3,, the register code. A description of these codes
is given in table 5.10.

Downloading an object code file into the program memory through the serial inter-
face is achieved by performing a number of operations. First, the processor is stopped
and reset through the following two steps:

1. stop and reset the processor by writing 0 to bit CSR, and 1 to bit CSRq;
2. return to normal state by writing 1 to bit CSR;.
Then, the pipeline register is cleared. First set 0 in the SPC serial data register:

3. wait for the serial interface to be idle, polling bit CSR3;
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4. write 0 twice to the program memory configuration address shown in table 5.8,
thus filling the 64-bit shift register of the serial interface with zeroes;

5. make sure the C/D line is in data mode by writing 0O to bit CSR, and start the
serial transfer by setting bit CSRj;

6. repeat operations 3 to 5 once.

At this point, the 128 bits of the serial data register of the SPC will contain 0. Now we
have to send the write pipeline register command:

7. wait for the serial interface to be idle, polling bit CSR3;

8. write 8 times the command 12, i.e., two long words containing 12121212, to the
program memory configuration address;

9. make sure the C/D line is in command mode by writing 1 to bit CSR; and start
the serial transfer by setting bit CSR3;

10. wait for the serial interface to be idle, polling bit CSRj, then reset the C/D line
in data mode by writing 0 to bit CSR,.

The high to low transition on the C/D line starts the command execution by the SPC.
However, the command must be completed by at least one transition on the serial clock.
Thus, after the last conmand has been sent to the SPC, we must arrange for at least
one transition to occur on the serial clock, for example by performing steps 3 to 5 once
again.

The next operation to perform is to set the counter register to 0. This is done by
performing steps 3 to 10 once more, replacing the command 12 in step 8 by the command
10.

We can now start downloading the object code file, using the following steps:

11. wait for the serial interface to be idle, polling bit CSfy;

12. write two long words from the object code file to the program memory configuration
address (the least significant word is written first);

13. make sure the C/D line is in data mode by writing 0 to bit CSR4 and start the
serial transfer by setting bit CSR;;

14. repeat operations 11 to 13 a second time to complete the 128-bit instruction word
in the serial data register of the SPC;

15. wait for the serial interface to be idle, polling bit CSR;;

16. write 8 times the command 31, i.e., two long words containing 31313131, to the
program memory configuration address;

17. make sure the C/D line is in command mode by writing 1 to bit CSR, and start
the serial transfer by setting bit CSRj;
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Figure 5.10: The load and store control unit

18. wait for the serial interface to be idle, polling bit CSR3, then reset the C/D line
in data mode by writing 0 to bit CSR,.

Steps 13 to 18 are repeated until the whole configuration has been downloaded. Note
that, as mentioned above, we must still arrange for at least one transition to occur on
the serial clock.

5.3.4 The Load and Store Unit

The load and store control unit is implemented using an A1280 circuit from Actel [Act94].
This circuit is responsible for controlling the data transfers between the data memory
and the data registers and for loading the loop counters in the sequencer. It contains
8 address registers and generates the addresses for both ports of the data memory. It
has access to the A-bus to transfer the content of its address registers and to provide
16-bit constant values. A block diagram of the load and store control unit is given in
figure 5.10. The complete schematic of the chip can be found in appendix C, starting on
page 153.

An Actel chip was chosen to implement this circuit because of the high number of
16-bit wide multiplexers needed. The Actel technology seemed more appropriate for this
kind of application. This circuit does not need to (and cannot) be reconfigured.

The load and store control unit generates two memory addresses per clock cycle:
one for the A-bus transfer operation and one for the B-bus. Each address is the sum
of the content of an address register, called the base register, with either the content of
another address register or a 16-bit constant, called the displacement. Both computed
addresses can be written back in their corresponding base register. Since the actual data
transfer between the data memory and the data registers occurs during the third stage of
the instruction pipeline (as described in section 5.1), both addresses are output through
a register. Note that, as shown in figure 5.10, the write back of the computed address
in the base register occurs during the second stage of the instruction pipeline.
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Figure 5.11: Timing diagram of the data memory write pulse

The circuit can load and store the content of any address register through the A-
bus. It can also output the 16-bit displacement value, bits I.25 of the instruction, on
the A-bus.

The address and control output pins of the circuit are set to the high-impedance
state whenever the processor is not running, i.e., when the ENA signal generated by the
sequencer chip is high.

The load and store control unit generates the chip select, output enable, and R/W
signals for the data memory and for the corresponding I/O ports of the register banks.
However, the actual write pulses are generated through a fast PAL 22V10 [AMD92],
since the Actel circuit is not fast enough to generate correct write pulses directly. The
PAL receives a write enable signal from the load and store control unit and synchronizes
the write pulse with the system clock, as shown in figure 5.11.

5.3.5 The Data Memory

The data memory is implemented using an IDT 7MB1006 dual-port 64K x 16-bit SRAM
module [IDT92]. This module provides 64K words of 16-bit data which can be accessed
by two independent parallel 1/0O ports (the module also provides upper and lower byte
access, semaphores, and interrupt mechanisms, but these features are not used by Spy-
der). Should a new version of Spyder be built, it will have a single-port data memory,
accessed twice per cycle (once per register bank). The global behavior would be the
same, and the data memory would be bigger and cheaper.

5.3.6 The Register Banks

The register banks are implemented using IDT 7052 four-port 2K x 8-bit SRAM chips
[IDT92]. Two chips are used in parallel (one for each register bank) to provide 16-bit data
words. These chips feature 2 Kbytes of static RAM with four independent input/output
ports, allowing each register bank to be connected to the three execution units and to
the data memory.

As explained in section 5.2.3, the registers are accessed through a windowing mech-
anism. Thus, the address of a register is decomposed into two parts: the most significant
bits of the address specify the window and are generated by the window controller, while
the least significant biis specify one particular register in the window and are gener-
ated by the execution units, the load and store control unit, or the window controller
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Figure 5.12: The window controller block diagram

(depending on which device is attached to the corresponding port).
The window size can be 4, 8 or 16 registers, thus each register bank contains 512,
256 or 128 windows respectively.

5.3.7 The Register Window Controller

The register window controller is implemented with a Xilinx XC4005 chip. This circuit
is responsible for generating part of the register addresses, as described in section 5.3.6.
The register window controller must generate eight times 9, 8 or 7 bits of the address
(corresponding to 512, 256 or 128 windows respectively) at each clock cycle. Each address
width determines a corresponding configuration of the window controller chip. The block
diagram of the window controller is given in figure 5.12 and the complete schematic of
the chip can be found in appendix D, starting on page 157.

The current window pointer is modified according to the command bits I)5.,2 and
the state of the execution units flag, as specified in table 5.1. The command is decoded
through simple combinatorial logic. Each of the window components of the eight register
addresses is selected, according to the instruction bits I7g.64, among four possible values:
the current window pointer, the same pointer decremented or incremented by one, or
the global window (i.e., all bits set to 1 to obtain the highest index).

There are two different cases for the output of the selected addresses. The first
case is the simplest and deals with the output of the addresses for the transfers of data
to/from the data memory. The transfers occur during the third stage of the instruction
pipeline (as described in section 5.1) and thus the address bits Wy and Wy, are output
through a simple register.

The second case is the output of the addresses for the transfers of data to/from the
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Figure 5.13: The execution units

execution units. There are actually two transfers: the first one occurs during the first
half of the third pipeline stage, when the execution units read their operands from the
registers. The second transfer occurs during the second half of the fourth pipeline stage,
as the execution units write back their results in the registers. In this case, a register is
used to keep a copy of the output addresses and the register addresses are output through
a second register, clocked at twice the system clock speed. A multiplexer, controlled by
the current state of the system clock, is used to select which address to output.

Since the number of registers per window can be configured, and since the load
and store control unit cannot be reconfigured, the window controller receives bits Igz.g2
and [g7.86, the two most significant bits of the register addresses for the memory data
transfers, and outputs them as part of the register bank addresses when there are more
than 4 registers per window. The two least significant bits of the register addresses for
the memory data transfer are always output by the load and store control unit.

5.3.8 The Execution Units

The three execution upits are implemented using Xilinx XC4008 circuits, which could
be replaced, should the need arise, by pin-compatible XC4010 circuits. As shown in
figure 5.13, they receive one 16-bit word of data from each of the register banks and can
produce two 16-bit words of result, one for each register bank. They generate a 1-bit
condition flag and two 4-bit addresses for the registers. The three execution units are
also connected together in a ring through two 16-bit busses.

The input and output of the hardware operations implemented by the user are done
through a standard register interface shown in figure 5.14. This interface should not be
modified by the user, as it reflects the Spyder architecture as it was implemented on
the printed circuit board. The schematic of this interface can be found in appendix E,
starting on page 163.

The execution unit interface also generates the R/W signals corresponding 1/0
ports of the register banks. However, the actual write pulses are generated through a
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Figure 5.15: Timing diagram of the data register write pulse

fast PAL 22V10 [AMD92], since the Xilinx circuit is not fast enough to generate correct
write pulses directly. The PAL receives a write enable signal from the execution urit
and synchronizes the write pulse with the system clock, as shown in figure 5.15.
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Chapter 6

Application Devel t Overvie
pplication Development Overview____

his chapter provides a step-by-step description of the design of a complete applica-

I tion for the Spyder coprocessor. As an example, the following sections describe

how to implement a fast simulation of a cellular automaton implementing the

game of Life [BCG82]. The reader can refer to section 10.2 for details on the board and
driver installations.

6.1 Application Overview

The game of life, as defined by the English mathematician John Conway [BCG82], is
certainly one of the best-known cellular automata. A cellular automaton [TM87] can
be described as an array of identical cells where each cell is a finite state machine. The
state of the cells evolves as a fuoction of time, the current state of the cell and the
current state of the cell’s neighbors. The time is divided into time steps, and at cach
step all the cells of the array simultaneously compute their future state as a function
of their own current state and the state of some of their neighbors. A given cellular
automaton is characterized by the number of possible states of the cell, the size of the
neighborhood, and the transition rules used by the cells to compute their future state.
There is no theoretical limit to the number of cells in an automaton, but in practice only
finite rectangular arrays are used.

In the game of Life, each cell has only two states, dead or alive, and the future
state depends of the current state of the cell itself as well as that of the 8 immediate
neighbors, according to the following two simple rules: a living cell remains alive if it
has 2 or 3 living neighbors, otherwise it dies; a dead cell becomes alive if it has exactly 3
living neighbors, otherwise it stays dead. As for the boundary conditions on the border
of the array of cells, we will suppose that the cellular array is surrounded by immutable
dead cells.

Despite the simplicity of these rules, the game of Life automaton can display very
complex emergent behaviors which are due to interactions among cells. This complexity
born out of simplicity best explains the high popularity of this automaton.

A program called x1ife, simulating the game of Life automaton, is freely available
by anonymous ftp on the host ftp.x.org. This program runs on the X window system
[CGO092, Fous3, DDRS92, Man90] to graphically display the cellular array. The xlife

41
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1. Read an input file containing a representation of the initial state of
the cells of the cellular automaton and store this initial state in the
internal representation.

2. Display the state of the cellular automaton.

3. Compute the pext state of the cellular automaton, according to user
input, and go back to 2.

Figure 6.1: Main algorithm of the cellular automaton simulator

program will be used as a starting point for the generation of our example. More precisely,
we will use the same user interface and concentrate on rewriting the core of the program,
i.e., the portion that performs the actual computation of the cellular array, to run on
the Spyder coprocessor.

Since the cells have only two states, a single bit can be used to store the state of
a cell, and thus 32 cells can be packed in a 32-bit word. The visualization of the state
of the cellular automaton can be achieved by a simple bitmap, where dead cells are
represented as black pixels and live cells as white pixels. As a consequence, the internal
representation of the state of the cellular automaton and of the bitmap can be the same,
removing any need of conversion between the two formats. The operation of the program
can thus be summarized as in figure 6.1.

6.2 Splitting the Application

As remarked in chapter 4, the simplest way to make an application run with the Spyder
coprocessor would be to let an intelligent compiler split the application into two parts,
with one part running on the host workstation and the other on Spyder. Unfortunately,
this compiler is not currently available and thus the user is forced to split the application
by hand.

In this example, the division is relatively simple: the program running on the host
workstation will handle all the user interface code, i.e., read the input file, wait for
user input, and display the results; the code running on Spyder will perform the actual
computation of the next state of the cells in the cellular automaton. Thus, the code
running on the workstation has to provide the cellular automaton data to Spyder, instruct
Spyder to compute the next state, and read back the new state from Spyder memory.

6.2.1 Accessing Spyder

The interface between the two parts of the program is provided by the C++ class Spyder,
described in figure 6.2. This class provides ways to access the Spyder memory and to
control the operation of the Spyder processor.
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class Spyder {
public:
unsigned long *ramPtr;
unsigned char *ctrlPtr;
virtual int WriteData(unsigned int start,
unsigned int length, void *data) = O;
virtual int ReadData(unsigned int start,
unsigned int length, void *data) = 0;
virtual void Start(void) = 0;
virtual void Stop(void) = 0;
virtual bool RunningP(veid) = 0;
virtual void WaitAndStop(void);

Figure 6.2: The Spyder interface class

The ctrlPtr allows direct access to the Spyder control and status register. However,
the preferred way to control the operation of the Spyder processor is through the Start,
Stop, RunningP and WaitAndStop methods (see section 5.3.1 for a description of the
control and status register). The Spyder processor can be in one of three states: ready,
computing, or stopped. The Start method instructs the Spyder processor to start
running, i.e., it changes the state of the processor from ready to computing. Once the
processor has completed its computation, it will automatically enter the stopped state.
The Stop method stops the processor and puts it back in the ready state, regardless of
its current state. The RunningP method returns true if and only if the Spyder processor
is still in the computing state. The WaitAndStop method waits for Spyder to finish its
computation, i.e., enter the stopped state, and then puts it back in the ready state.

The Spyder memory should only be accessed while the processor is in the ready
state. There are two ways to access the Spyder memory: through the ramPtr pointer
and through the WriteData and ReadData methods. The ramPtr pointer gives direct
access to the Spyder memory, without any overhead, but is a pointer to long and thus
allows access only to 32-bit data words. The WriteData and ReadData methods provide
a slightly higher-level interface to the Spyder memory: the start and l1ength parameters
are, respectively, the starting address and number of bytes to be read or written in the
Spyder memory, while the data pointer points to the corresponding storage space in the
workstation program memory.

6.3 Host Workstation Program

According to the subdivision defined in the previous section, the program running on
the host workstation must do four things:
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1. read the input file and initialize the data structure containing the description of
the state of the cellular automaton; since the Spyder processor will need to operate
on this data structure, it can reside in the Spyder memory;

2. initialize the window system environment which will display the state of the cellular
automaton;

3. accept instructions from the user and instruct the Spyder coprocessor to compute
the requested number of time steps;

4. wait for the Spyder copracessor to finish the computation, read back the new state
of the cellular automaton from the Spyder memory and display it.

The user communicates with the program using the workstation’s three-button
mouse. The program can be running either in single step or in continuous mode. While
in single step mode, a click on the left mouse button telis the program to let Spyder
compute the next state of the cellular automaton, display it, and then wait for further
instructions; a click on the middle mouse button tells the program to enter the con-
tinuous mode with a time step of one; a click on the right mouse button also tells the
program to enter the continuous mode, but with a time step of n, where n defaults to
10 but can be set by a command line switch.

While in continuous mode the program tells Spyder to compute the next state (or n
next states, depending on how the program entered the continuous mode) of the cellular
automaton, reads the new state from the Spyder memory, and then tells Spyder to again
start computing while it displays the new state. A click on any mouse button returns to
the single step state.

Since the purpose of this example is to explain how to use the Spyder processor,
we will not provide further details about designing the X11 user interface and reading
the input file. Only the code specific to the handling of the Spyder coprocessor will be
described.

6.3.1 Sharing Data

As explained above, the computation of the new state of the cellular automaton will be
performed by the Spyder coprocessor. Thus, the actual data representing the state of
the cellular automaton must be stored in the Spyder memory by the host workstation.
The Spyder coprocessor will also require some other information, for example the size of
the array and the number of time steps to compute.

The programmer has to decide how to store all this information in the Spyder
memory, taking into account the fact that the current implementation of Spyder has
16-bit wide data paths, i.e., that each memory word contains a 16-bit datum. For this
example, the chosen layout is shown in table 6.1. The first few words contain the width
and height of the array of cells and the number of iterations to compute per Spyder run;
the width is expressed in number of 16-bit words, i.e., the width will be 1 for a 1 to 16
cells-wide array, 2 for a 17 to 32 cells-wide array, etc. The rest of the memory is used
to store the state of the cells of the automaton. The description of the values stored at
addresses 1 and 2 will be given a little later.
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Table 6.1: Content of the Spyder memory

Spyder memory address Content

0 zero
array width minus one
half of array height
array width
array height
number of iterations
6...N cellular array state

[ R

extern Spyder *spyder;
char *curCells;
int boardHeight, boardBytes;

unsigned long data = (boardBytes >> 1) - 1;
spyder->ramPtr[0] = data;
data = ((boardHeight >> 1) << 16) | (boardBytes >> 1);
spyder->ramPtr([1] = data;

10 data = (boardHeight << 16) | 1;

11 spyder->ramPtr{2] = data;

12 unsigned long size = boardBytes * boardHeight;

13 spyder->WriteData(12, size, curCells);

H
2
3
4
s // Setup Spyder RAM
[
7
s
9

Figure 6.3: Setting up the Spyder memory

Note that the memory module used on the current implementation of Spyder seems
to have a problem when the workstation reads data from the Spyder memory: the content
of address 0 is sometimes changed to OxFFFF. As a consequence, this location will not
be used to share data between the workstation and Spyder.

A code sample setting up the content of the Spyder memory according to the layout
presented above is given in figure 6.3. Line 1 gives access to the Spyder object; line 2
declares a pointer to the cellular automaton state data (this data is allocated and filled
according to the input file read by the simulation program); line 3 declares two integer
variables containing the height of the cellular array and the number of bytes per line of
the cellular array, i.e., the width of the cellular array divided by eight. Lines 6 to 11
use the ramPtr pointer to store data in the Spyder memory, while lines 12 and 13 use
the WriteData method for the same purpose. Since the ramPtr pointer is a pointer
to long words, i.e., 32-bit data elements, some computation has to be performed to set
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1 // Wait for Spyder to terminate the computation
2 spyder->WaitAndStop();

3 // Get the new state

4 spyder->ReadData(12, boardBytes * boardHeight, curCells);
s generations += (spyder->ramPtr(2] & Oxffff);

s if (state == STOPREQ) {

7 state = STOP;

s}

s if (state != STOP) {

10 // Start a new computation

1 spyder->Start();

122}

Figure 6.4: Getting the results of the Spyder computation

the 16-bit data, required by Spyder, in their proper places (the reason for the size of
the data elements pointed to by ramPtr is that our implementation of the VME bus
interface requires 32-bit data to access Spyder memory).

The code that reads back the new state of the cellular automaton is given in fig-
ure 6.4. Line 2 waits for Spyder to finish its computation; line 4 reads the new state of
the cells of the cellular automaton; line 5 adds the number of time steps just computed
by Spyder to generations, a variable holding the total number of steps computed so
far. Lines 6 to 12 decide if a new state has to be computed, in which case line 11 tells
Spyder to start again.

6.4 Programming Spyder

According to the job division presented in section 6.2, the task of the Spyder processor
is to compute the next state of the cellular automaton. The method sclected to perform
this computation is a very simple scanning window algorithm.

6.4.1 Scanning Window Algorithm

Computing the next state of the cellular automaton means computing the next state of
all the cells in the array. The data required to compute the next state of any cell are
the state of that particular cell and the state of its eight surrounding neighbors. Thus,
to compute the new state of the cell we need only look at a very small portion of the
entire array; that portion is called a window. The basis of the algorithm is to move this
window across the whole array, iteratively, starting from the top left corner of the array
and proceeding from left to right and from top to bottom.
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columns
n o n+1l | n+2 { n+3

///////
/////////

Vi
/

computed cells

Figure 6.5: Reuse of six words in the execution unit

6.4.2 Splitting Again

The task running on Spyder has to be split again, by the programmer, in two parts,
where one part will become the configuration of the execution units and the other will
become the VLIW object code.

The execution units are used to perform the actual computation, which means, in
this case, that they will be used to compute the new state of a cell given its present state
and the state of its neighboring cells. The VLIW object code controls the operation of
the execution units and is used to move data around between the Spyder memory, the
register banks and the execution units.

6.5 Execution Units Configuration

To compute the next state of a cell, the execution unit needs to know the current state
of the cell and the current state of its eight neighboring cells. Since the Spyder processor
works with 16-bit data words, 16 cells of the cellular automaton are packed in a single
data word and thus the execution unit will compute the next state of those 16 cells in
parallel, which means that the execution unit must read nine data words to compute the
next state of the cells in the central one.

Taking into account the fact that we use a scanning window algorithm, scanning
the array from left to right, we can reduce to three the number of data words to be read
to compute the next state of 16 cells. The reason is that to compute the next state of
two consecutive words, six of the nine words required are the same for both words, as
shown in figure 6.5. Thus, by preserving these six words in the execution unit, only three
additional words need to be read.

It is now possible to define the interface of the 1ife hardware operator, as shown
in figures 6.6 and 6.7. The operator has three inputs top, mid and bot and one output
f. Note that as the three words of column n are input to the operator, the output
corresponds to column n — 1.

The C++ code shown in figures 6.6 and 6.7 will be transformed into a hardware
netlist by the nlc synthesizer, which is described in detail in chapter 7. Note that,
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1 void

2 sumcol(bitvector 11 = bitvector(l), bitvector 12 = bitvector(l),

3 bitvector 13 = bitvector(l), bitvector &r = bitvector(2))

¢ { .

s r =11+ 12 + 13;

6}

7

s void

9 nextstate(bitvector ¢l = bitvector(2), bitvector ¢2 = bitvector(2),
10 bitvector c¢3 = bitvector(2), bitvector ¢ = bitvector(l),
1 bitvector &n = bitvector(l))

22 {

13 bitvector sum(4, 0);
1y sum = cl + ¢c2 + ¢3;

s if (sum == 3)

16 n=1;

17 else if (sum == 4)
18 n=c;

19 else

20 n=0;

21 }

Figure 6.6: Definition of the hardware operator in C*++, part 1

because of limitations in the ViewLogic system that will be used to process the output
file of the nlc synthesizer, only lowercase letters should be used for function and variable
names in the source code.

The data type used for describing the data handled by the hardware operators is
called a bitvector. A bitvector variable can be viewed both as an integer variable
and as an array of bits. Line 13 of figure 6.6 declares a 4-bit bitvector initialized to
0. Given that declaration, the value sum refers to the integer value represented by the 4
bits of the variable taken as a whole, while the value sum[0] refers to the value of the
least significant bit of this variable. Lines 2 and 3 of figure 6.6 specify that the sumcol
function takes three 1-hit wide input parameters and one 2-bit wide output parameter.
A bitvector of unspecified length, like the parameters of the life function defined on
line 2 of figure 6.7, is assigned a default width of 16.

The task of the 1ife hardware operator is to compute the next state of the 16
cells of the central word according to the state transition rules given in section 6.1. The
method adopted is to compute the number of live cells among the current cell and its
eight neighbors: if this number is three the next state of the cell is alive and if the
number is four the next state is the same as the current state, otherwise the next state
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1 void

2 life(bitvector top, bitvector mid, bitvector bot, bitvector &f)
3 {

4 static bitvector la(i7, 0), 1b(17, 0), 1c(17, 0);
s bitvector c(2)[18];

6 bitvector i;
7
8
9

sumcol(top[15]), mid[15], bot[15], c([0]);
for (i = 0; i < 17; i++) {
10 sumcol (1a[il, 1b[il, 1cli), c[i + 11);
1y}
12 for (i =0; i < 16; i++) {
13 nextstate(c[il, c(i + 1], <{i + 23, 1b(i}, £[il);
y }
s // Store old values in registers
16 la{16] = 1a(0l; 1b[16] = 1b[0]; 1c[16] = 1c[0];
17 for (i = 0; i < 16; i++) {

18 lali] = toplil;
19 1bli} = mid[i);
20 lclil = votl[il;
21}

22 }

Figure 6.7: Definition of the hardware operator in Ct+, part 2

of the cell is dead.

To avoid repeating some additions, the task is divided into two steps: the first step
is to compute the number of live cells per column, the second step is to add the column
sums three by three and examine the result.

Since we need to compute the next state of 16 cells, we have to compute the sums for
18 columns: 16 central columns plus one on the left and one on the right. These 18 sums
are kept in the ¢ array declared on line 5 of figure 6.7, the left column having the highest
index and the right column the lowest. The computation of the sums is performed by
lines 8 to 11. The column on the right is provided by the most significant bit of the
three inputs of the operator, and its sum is computed on line 8. The central columns,
along with the left column, are memorized by the operator in the la, 1b and lc static
variables declared on line 4 of figure 6.7. The sumcol operator, defined on lines 1 to 6
of figure 6.6, simply adds its first three parameters, which are 1-bit values, and returns
their sum, a 2-bit value, in the fourth parameter.

The second step is implemented on lines 12 to 14 of figure 6.7. The nextstate
operator, defined on lines 8 to 21 of figure 6.6, takes the sums of three columns and the
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life(bitvector top, bitvector mid, bitvector bot, bitvector &f)
{
static bitvector la(17, 0), 1b{(17, 0), 1c(17, 0);
#ifdef __NLC__
bitvector c(2)[18];
#else
bitvector c[18];
#endif

. .

Figure 6.8: Modifications for regular C++

current state of the cell as inputs and computes the next state of the cell.

The last part of the life operator code, i.e., lines 16 to 21 of figure 6.7, stores the
values of the six words of the two right-hand columns for use in the next computation.
Since only the least significant bit of the words of the leftmost column are used, the rest
of the word is discarded. The remaining bits are kept in 1a{16], 1b[16] and 1c[16].

6.5.1 Testing the Hardware Operators

Now that the life hardware operator has been designed, it must be tested. To this
purpose, it will be compiled with a regular C++ compiler and linked with a small test
program that should behave as intended.

A library implemeating the bitvector class in C*t+ has been developed. It allows
the use of a standard C++ development environment to simulate and debug the source
code. It also allows the simulation and debugging of the complete application on the
bost computer before it is run on the Spyder coprocessor.

Some small modifications are required for the source code given in figure 6.7 in order
to compile with a standard C*++ compiler. In particular, modifications are needed in
the array declarations, where the size specification of the bitvector variables must be
removed. The size specification is required for the netlist compiler to be able to know the
width of the components of the array. A regular Ct+ compiler has a different approach,
which involves using dynamic objects, and thus does not absolutely require that kind of
information.

In our example, the definitions of the sumcol and nextstate functions must be
modified, along with the declaration of the bitvector array c. To facilitate this task,
the npetlist compiler defines a symbol __NLC__ while compiling a file, making it possible
to check which compiler is using the source code, and define things accordingly. The
modifications are shown in figure 6.8.

A small test program is given in figure 6.9. After compiling this test program,
the definition of the 1ife hardware operator, and the bitvector class implementation
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t #include "bitvector.h"
2 extern void life(bitvector top, bitvector mid,

3 bitvector bot, bitvector &f);

¢ int

s main(int argc, char *argv(])

s {

7 bitvector top(16, 0), mid(16, 0), bot(16, 0), res(16, 0);
s life(top, mid, bot, res);

s bot = "0011100111001110";

10 life(top, mid, bot, res);

11 cout << "res: " << res << " (should be 0)\n";

12 bot = 0;

13 life(top, mid, bot, res);

14 cout << "res: " << res << " (should be 0001000010000100)\n";

Figure 6.9: Test program for the life hardware operator

res: 0000000000000000 (should be 0)
res: 0001000010000100 (should be 0001000010000100)

Figure 6.10: Output of the test program of figure 6.9

(contained in a file named bitvector.cc) with a standard C++ compiler and linking the
resulting object files with the required system libraries, an executable program should
be obtained. Running this program should produce the output shown in figure 6.10.

6.6 Generating the VLIW Object Code using C++

The main task of the executable program is to provide data to the hardware operators
and to transfer the results back to the Spyder memory. The programmer can describe
this task using either C++ or an assembler. Both methods will be described in the
following sections.

The mcc compiler accepts the same subset of Ct+ as the nlc compiler used to
synthesize the hardware operators, with the addition of the short integer data type.

The mcc compiler requires three kinds of information: a description of the interface
of the hardware operators, a description of the content of the Spyder memory, and the
algorithm describing how the data must be fed to the operators and the result moved
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1 extern void life(bitvector top, bitvector mid,
2 bitvector bot, bitvector &f);
3 struct memory {

short zero;

short widthMi;

short heightH;

short width;

short height;

short iter;

10 short board([0];

11 };

12 extern struct MemOry *memory;

13 extern bitvector dummy;

14 short count;

© % N R e

Figure 6.11: Cellular automaton control program in Ct+, declarations

back in the memory.

The control program for our example of the Life cellular automaton is given in
figures 6.11 and 6.12. It uses a single hardware operator, namely life, which is defined
on lines 1 and 2 of figure 6.11; the content of the memory, which we defined according
to table 6.1, is described on lines 3 to 12 of figure 6.11. The dummy variable, defined
on line 13 of that same figure, is used to discard unused results of operator calls (see
for example line 10 of figure 6.12). Line 14 of figure 6.11 declares a global variable
count (note that this variable will not be stored in the Spyder memory and will not be
accessible from the host workstation).

The algorithm itself is given in figure 6.12 and implements the scanning window
method described in section 6.4.1. It starts with some initializing steps, lines 7 to 10,
and then computes the next state of the array of cells iter times (lines 11 to 36).

The buffer array is necessary to store the old state of the cells of line n — 1 while
line n is computed, to avoid it being overwritten by the new state which is stored in
place. The size of 64 was chosen arbitrarily, allowing Spyder to handle arrays up to 1024
(64 - 16) cells wide. The array is initialized to zero, as we suppose that the cellular array
is surrounded by immutable dead cells.

Lines 12 to 24 of figure 6.12 compute the next state of all the lines of the array,
except the last one. The next state of the last line is computed by lines 25 to 35.

6.6.1 Using the Compiler

The source file of the program is transformed into a Spyder VLIW object code file by the
mcc compiler. In addition to generating the loadable binary file of code, the mcc compiler
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1 void

2 MCmain()

ERR

4 short buffer[64];

s short i, j;

6§ bitvector res;

7 for (i = 0; i < memory->width; i++) {

8 buffer(i] = 0;

s }

10 life(0, 0, 0, dummy);

11 for (count = 0; count < memory->iter; count++) {

12 for (i = 0; i < memory->height - 1; i++) {

13 life(buffer (0], memory->board{i * memory->width],
I memory->board [(i+1) * memory->width], dummy):
15 buffer{0] = memory->board[i * memory->width];

16 for (j = 1; j < memory->width; j++) {

17 life(buffer{j], memory->board[i ¢ memory->width + jl,
18 memory->board[(i+1) * memory->width + j], res);
19 memory->board[i * memory->width + j - 1] = res;
20 buffer[j] = memory->board[i * memory->width + jl;
2t }

22 life(0, 0, O, res);

23 memory->board[i * memory->width + j - 1) = res;

2% }

25 life(buffer [0], memory->board[i * memory->widthl,

26 0, dummy);

27 buffer(0] = 0;

28 for (j = 1; j < memory->width; j++) {

29 life(buffer{j], memory->board{i * memory->width + j],
30 0, res);

a1 memory->board[i # memory->width + j - 1] = res;

32 buffer[j] = 0;

33 }

34 life(0, O, 0, res);

35 memory->board[i * memory->width + j - 1) = res;

% }

37}

Figure 6.12: Cellular automaton control program in Ct+, implementation

produces three Ct+ source files, which contain the description of each execution unit
and must be compiled by nlc to generate the configuration files for the execution units.

6.6.2 Simulating the Whole Program

At this stage, it is possible to simulate the entire application without using the Spyder
processor. This simulation requires the following: the C++ source code of the applica-
tion that runs on the host computer, which we will suppose is stored in a file named



54 CHAPTER 6. APPLICATION DEVELOPMENT OVERVIEW

main.cc; the C*++ description of the hardware operator, stored in the file 1ifeQP.cc;
the C++ version of the control program, stored in the file 1ife.cc; the bitvector class
implementation found in files bitvector.h and bitvector.cc; and a software simula-
tion version of the Spyder processor, stored in files SpyderSim.h and SpyderSim.cc.
By compiling all these files with a regular Ct+ compiler and linking the resulting ob-
ject files, we obtain an executable program. Running this program on the workstation
should produce the same results as the version for the Spyder coprocessor, albeit at a
much lower execution speed. Since this program is run entirely on the host workstation,
it is possible to use the usual debugging tools to locate potential problems.

6.7 Writing Real VLIW Assembler

The control program can also be written directly using an assembler, which gives the
programmer full control over the operation of the Spyder processor, and is probably the
only way to generate truly optimal VLIW object code.

When writing the code using the assembler, the programmer must also take over the
other tasks of the mcc compiler, namely assign each hardware operator to a particular
execution unit and define its unique set of operation codes.

6.7.1 Hardware Operator Assignment

Hardware operator assignment encompasses several tasks, of which only the first is ob-
vious: decide which execution unit will implement which operator. As will be explained
later, for our example we will implement the 1ife operator twice: once in the first exe-
cution unit and once in the second. However, the 1ife operator requires three inputs,
while each execution uanit has only two. Thus the three inputs have to be provided in
two steps: the first step handles two inputs, which must be stored in registers, while the
second step takes care of the third input and produces an output result. This, in turn,
implies that the execution unit has to decode several operation codes and decide what
to do accordingly. The programmer is responsible for defining these operation codes and
implementing the appropriate decoding in the execution unit configuration.

The complete description of the first execution unit is given in figure 6.13. Line 1
defines which hardware library of operators to use for the hardware synthesis (in this
case the library for the Xilinx XC4000 chip) and line 2 includes the life, nextstate
and sumcol operators defined in section 6.5. Lines 4 to 8 define the interface of the
execution unit, which is fixed by the Spyder architecture and is composed of two 16-bit
inputs, a 21-bit command word, a 1-bit condition flag, and two 16-bit outputs.

Line 10 declares the two static variables which will hold the two inputs provided
during the first step of the computation; these inputs are stored on lines 14 and 15 when
bit 0 of the command word is set. The life operator itself is called on line 17 when
bit 1 of the command word is set. The output of the execution is assigned on line 20.
When bit 0 of the command word is set, i.e., during the first step of the computation,
the output aout gets the input bin. This mechanism is used to move data from one
register to another. During the last step of the computation, the output aout gets the
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t #include "x4000.h"
2 #include "lifeOP.cc"

2 void

¢ eu_main(bitvector ain, bitvector bin,

5 bitvector cmd = bitvector(21),

5 bitvector &flag = bitvector(1),
7 bitvector &aout = bitvector(16),
) bitvector &bout = bitvector(16))
9 {

10 static bitvector ntop(16, 0), nbot(16, 0);
1 bitvector res;
13 // Store first two values in registers

13 if (emd[0] == 1) {

13 ntop = ain;

15 nbot = bin;

16} else if (emd[1] == 1) {

17 life(ntop, bin, nbot, res);
15}

19 // Set the output

20 aout = (cmd[0] == 1) ? bin : res;
a2 flag = 0;

22}

Figure 6.13: Complete C++ description of execution unit 1

result of the 1ife operator. In our example, the condition flag, used to pass a condition
to the sequencer, is not used and is tied to zero on line 21.

The contents of the second execution unit are almost identical to those of the first.
Its operation is controlled by bits 2 and 3 of the command word. The third execution
unit is unused in this example.

6.7.2 Writing the Assembler Source File

Writing VLIW assembler is very similar to writing standard assembler. The main differ-
ence is that, instead of defining a single operation per line, the programmer must specify
an operation for each execution unit of the processor, to be executed in parallel.

As explained in section 6.4.1, the control program must implement the scanning
window algorithm, feeding data to the execution units in the proper sequence. To com-
pute the next state of one row of cells, the processor must read the current state of three
rows of cells. Moreover, two of these three rows will be needed again to compute the
following row. Since Spyder has plenty of register space, it makes sense to keep the state
of these two rows in the registers and thus avoid reading them from memory again.
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1 // The address registers:
2// 0 - stays to 0 to access global memory data

3 // 1 - the width of the array

¢// 2 - the width of the array minus 1
s // 4 - reading row of first EU

¢ // 5 - reading row of second EU

7 // 6 - writing row of first EU

8 // 7 - writing row of second EU

s //

10 // The global registers:

11 // 1A - zero

12 // 1B - zero

13 Masks EU1 cmd(1,0) regA() regB()
14 Masks EU2 cmd(3,2) regA() regB()
1s Masks EU3 cmd() reghA() regB()

Figure 6.14: Registers assignment

To compute the next state of the cells contained in one data word, nine data words
are required. Of these, six are already stored in the execution unit and two are in
registers, which leaves a single word which must be fetched from memory and another
move from register to memory to store the computed result for each computation of the
life operator. Since two instructions are needed for one call of the 1ife operator, as
explained in section 6.7.1, that leaves two free moves between the Spyder memory and
the registers (since the memory has two ports). Thus, it is possible to compute two 1ife
operators in parallel by using two execution units.

The first step is to define how data will be stored in the registers. In our example,
the scheme is defined through comments at the start of the assembler source file, as
shown in figure 6.14.

6.7.2.1 Defining the Opcode Masks

The operations performed by the three execution units are controlled by 21 common bits.
To aid the programmer in the task of setting these 21 bits properly, they can be split
in nine sections through the use of masks. Each execution unit has three masks: one
for its operation code and two allowing additional register address lines, needed when
the register windows contain more than four registers (see section 6.7.3.1 below for a
description of the register windows). The masks for our example are given in lines 13
to 15 of figure 6.14, where only the masks for the opcodes of execution units one and
two are defined. Execution unit one uses bits one and zero for its opcode and execution
unit two uses bits three and two; the third execution unit is unused.
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1 //1abel: Memory A Memory B

18 a[73¢<-a(4] ., M(alS)+af1]]s
19 // First stages of the main loop
20 stagel: catr<-M[al0]+3) ,

28 // Go for the main loop

31 // Finish stages of the main loop
32 finish2: . c[1)<-nla[0)+0}

43 »

21 c[1)<-M[a[5)+1]*, c(11<-M(al4]+1]e,
22 n[1)<-M(a[51+1]e, n{1)<-M[a[4]+1]e,
23 . N
24 . .
25 stage2: n(1)<-M[a(5)+1]e, n[1]1<-H{a[4])+1}e,
26 . .
27 > s

29 main: n(1)<-M[a[61+1]e, n[1]<-N[a[4])+1]s,
30 pl1)->M(a(6)+1]e, p(1]->Mla(7)+1)s,

Exec unit 1

Exec unit 2

.
17 // Load the column counter, put zeroas in the EUs and adjust some pointers

1gl1) ,g{1] ), 1(gl1]

20gl1]), gl1]
NOP
1(c[0]=+,c[1]
2(c[t] ,c[0]
HOP
1(c[0]»,c(1]
2(cl1)#,c(0]
WOP

1(c(0)s,c(1)
2(c(t)s,cl0}

1(gl1) ,glt)
2(cl1)s,gl1]
NOP
nop

. NOP

33 pl11->K(a(6)+1)e, p[1]->M[a[7]+1]e,
34 finish3:N[a[4)+al2)]+ , K[a[S]+af2)]s
as c[1]1->H[a[6)+1]e, c(1)->M(al?]+1)s,
38 Mla{6)+al1]ls . N(al?]+a[1]]s

37 // Done one iteration

38 . »
39 » . ,
40 . .
it/

43 finishi: . cl13<-u(afo}+0) ,

NoP
HoP
NOP

1(gf1) .gl1})

» 2(c(1)e,g(1)

R

~ o~

~ o~

~

2(gl1)
nop
1(c(1)
2(c[0]
NoP
1¢e(1)
2(c[0)
naop

1(e(1)
2(cl0}

1(gl1]
2(gl1]
HOP
KoP
¥oP

ROP
nop
aop

1(gl1]
2(gl(1])

..011 ),

.81 ),
,c(0)e),
1) ).
.6[0]'):
yel1le),

.

,c{0le),
cl1]e),

,801) ).
c(1)9),

»
.

.gf1) ).
wcl11w),

EU3 [, Sequencer]

NoP
NOP
nop
HOP
HOP
sop

Nop
NOP
KOP

KoP
(V4
NOP,
ROP,

2 start: a[0)<-0 . » NOP , NOP ’
2 a[0]->M[a[0]+0] , . Wop . WOP ,
4 al1]<-M[a[0]+3] , , NOP ., FOP B
H a{2]<-nfaf0)+1] , , ROP , NOP .
[ entr<-M[a(0]+S] , ., HOP , NOP .
7 gl11<-u{a[0]+0]) , g{1]<-M(a(0)+0) , NWOP , Nop B
8 // Set up eddress regs and line counter

9 cont: afl4l<-S . , HOP ., HOP .
10 a[61<-5 , , NOP , NOP .
11 catr<-K{a{0]+2] , . Hop . HOP R
12 // Hore, we fill the registers in the windows before beginning the main loop
13 catr<-K(a[0]+3] , , NOP ., HOP .
14 loopt: ¢[0])<-0 . c[0I<-M[a(4]+1)e, NOP ., BOP .
15 a[5)<-af4] ’ , NOP . NOP .
16 , NOP . NOP .

NOP

NOP
NOP
ROP
NOP,
NOP,
NOP
NoP,
woe,

NOP
NOP,

NoP
KoP
Kop
ROP,
KoP,

NOP,
NOP
NoP,

NOP
NOP,

djnz loopi, W+
jusp, WO

djnz stage2, W+
jump finishi

djnz main, ¥+

jump finish2

djnz main, W+

jump, WO
djnz stagel

djnz cont

jump start

jump tinish3

Figure 6.15: Spyder control program in assembler

6.7.3 Assembler Structure

The assembler source code itself is shown in figure 6.15. Each instruction must be on a
single line and is composed of eight fields: a breakpoint, a label, two memory trapsfers,
three execution unit operations and a sequencer command. The file is passed to the
C++ preprocessor before being assembled. Comments are thus defined as in C++: they
start with a double slash (//) and extend to the end of the line.

The breakpoint is represented by a star (*): when Spyder encounters a breakpoint
it will stop and signal the host workstation that it has completed its task.

The label is any string followed by a colon {(:) and is used by the programmer to
indicate a symbolic target for jump instructions.
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Table 6.2: The available kinds of registers

Designator Register kind Available number
a Address 8
g Global 4,8o0r 16
c Current 4,8o0r16
D Next 4,8 or 16
P Previous 4,8o0r 16
cntr Loop Counter Stack 1

6.7.3.1 Memory Transfers

The mewmory transfer is composed of three parts: a register description, a direction, and
the memory description. The register is defined by a letter followed by a number between
square brackets, where the letter designates the register type according to table 6.2 and
the number selects one particular register of that type (e.g., al4] designates the address
register number 4). The transfer direction is represented by an arrow pointing left (<-)
or right (->). The memory description specifies the memory address of the transfer,
obtained either by adding the content of two address registers (as in M[a[0]J+al1]1]) or
by adding the content of one address register with a constant (as in M[a{0]+1]). The
resulting address can be saved back to the address register noted on the left by following
the memory description with a star (e.g., M[a[0]+1]*).

The code letters for the registers of the global, current, next, and previous window,
as well as for the address registers and the loop counter stack, are defined in table 6.2.
The global window is the same at all times but the other three change according to a
current window pointer, as described in section 5.2.3.

The address registers and the loop counter stack are separate entities from the two
register banks.

The first memory transfer, on the assembler line, deals with the register bank R?, the
address registers, and the loop counter. The second memory transfer deals exclusively
with the register bank RP. The latter only accepts the register types g, ¢, n, and p as
its left side. The first one accepts all register kinds as its left side and also allows its
right side to be an address register or a constant, instead of the content of a memory
address (e.g., cntr<-5 pushes the constant 5 on the top of the loop counter stack and
a{5)<-a[4] copies the content of address register 4 into address register 5).

6.7.3.2 Execution Units Operations

The specification of the execution unit operations is also split into three parts: the code
of the operation to execute, one register from the bank R, and one register from the
bank R®. The code 0 should always be a no-operation for the execution unit (it is also
possible to specify the reserved keyword NOP). The registers can be of the four kinds g,
¢, n, and p. If the value output by the execution unit must be written back, the register
specification is followed by a star (*). For example, 2(c{11*,g[1]) specifies operation
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Table 6.3: Sequencer operations

Opcode Operation Window pointer operation
call | Call subroutine Increment
cbra | Conditional jump As specified
ccal | Conditional subroutine call Conditional increment
cret | Conditional return Conditional decrement
djnz | Decrement counter, jump if not zero | As specified
jump | Jump As specified
nbra | Negative conditional branch —
retn | Return Decrement

code 2 applied to register c{1] from the bank R* and g[1] from the bank R?; the value
output by the execution unit for the bank R* must be written back in register c[1].

As explained in section 5.1, Spyder uses a pipelined mode of execution: the values
written back by the execution units into the register banks are not available during the
next instruction: i.e., if instruction n specifies that the execution unit must write back
a result in register c[11, the value in this register during instruction n + 1 will be the
old value, while the new value will only be available for instruction n + 2.

6.7.3.3 Sequencer Operations

The sequencer command is the last ficld of the assembler line. It is optional and, if omit-
ted, control will simply pass on to the next instruction. The eight possible sequencer
commands are given in table 6.3, together with their effect on the current window pointer.
Three commands, namely cbra, djnz, and jump, allow the programmer to directly in-
crement (W+) or decrement (W-) the current window pointer. For example, the command
djnz main, W+ will decrement the loop counter and jump to the label main if the counter
is not zero and the current window pointer will be incremented regardless of the value of
the counter. The jump command allows two more options: W0, which resets the current
window pointer to zero, and pop, which pops the current loop counter from the loop
counter stack.

If the target of the jump is omitted, it is assumed to be the next instruction. For
example, line 16 of figure 6.15 resets the current window pointer to zero and control
simply flows through to the next instruction.

The conditional branches are taken if the flag produced by the execution units is
true; otherwise, control passes on to the next instruction. The nbra instruction applies
the reverse condition, i.e., the branch is taken if the flag is false.

The sequencer contains a loop counter stack, so as to simplify the implementation
of nested loops. Upon entering a loop, a new loop counter is pushed onto the stack using
a memory transfer operation. For example, to loop five times we push five onto the loop
counter stack with the instruction cntr<-5 as the first memory transfer on the assembler
line. At the end of the loop, the current loop counter, i.e., the loop counter on the top
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[ 1213 [ a5 ] 16 | ooo
Memory|_21* | 22 | 23 | 24 | 25 | 26 | oco
31 | 32 [ 33 ] 34 | 35 | 36 | coo
41 | 42 [ 43 | a4 | 45 | 46 | ooo
L ‘1\1/—\
0 1 2 3 4 5 ooo
21 [ 22 [ 23 [0/24] © 0 [ ocoo
Register i) 1.2+ 34 3,5 coo
Bank A 000
pLlc 1N
0 1 2 3 4 5 ooo
31 | 32 ] 33 [14/34] 1.5 | 16 | oo
Register 21| 22| 24 2,5 coo
Bank B 000
Q00O
Execution L2 0 0 12 113 ] 14
Units |12 | 1.3 22 | 23
22 [ 23 | 24 32 | 33 | 34

Figure 6.16: Main loop of the windowing algorithm, first instruction

of the stack, is decremented by a djnz instruction: if the new value of the counter is not
zero, control jumps to the specified address, while if the new value is zero, the counter is
popped from the stack and control flows through to the next instruction. It is possible
to exit prematurely from the loop by popping the current loop counter from the stack
with the pop option of the jump instruction described above.

6.7.4 Implementation of the Windowing Algorithm

The program given in figure 6.15 is essentially a hand-compiled version of the C++
program of figure 6.12. Lines 9 to 38 represent the loop that is repeated iter times to
compute iter time steps of the cellular automaton.

The loop at lines 14 and 15 moves a line of zerces and the first line of the cellular
array in the register banks. The registers c[0] of each window of bank R?® contain the
line of 2eroes and the registers ¢ {0] of each window of bank R’ contain the first line of
the cellular array. Line 16 resets the current window pointer to zero.

Lines 18 to 27 are preparations to enter the main loop of the program, found at
lines 29 and 30 of figure 6.15 and composed of two instructions. The effect of these
instructions is shown in figures 6.16 and 6.17 and is described below in some detail.
We assume that the program is computing the next state of the first two lines of the
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Figure 6.17: Main loop of the windowing algorithm, second instruction

cellular array. Each word of the memory contains 16 cells and is referenced by its row
and column position in the cellular array (e.g., word 1,2 is the word on the first line
and second column of the array). The current, previous, and next register windows are
represented by C, P and N respectively. Values that have just been moved are shown in
bold face.

6.7.4.1 First Instruction of the Main Loop

The first instruction is found on line 29 of figure 6.15 and its effects are shown iu fig-
ure 6.16. It selects operation 1 of the first and second execution units, which shifts to
the left the columns of cells in the two execution units.

Each of the two execution units reads one word of the row preceding and one word
of the row following the current row from the current window (C). The contents of the
following row are moved over the old state of the preceding row, so that the data are
ready in the registers for the computation of the next two rows.

The next word of the two rows following the current rows are moved from the data
memory into the registers in the next window (N). In this example the current rows are
the first and second, and so words from the second and third rows are moved. The
memory pointers a{4] and a{5], which point at the data to be read, are incremented
by one.
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6.7.4.2 Second Instruction of the Main Loop

The second instruction is found on line 30 of figure 6.15 and its effects are shown in
figure 6.17. It selects operation 2 of the first and second execution units, which causes
them to compute the next state of the central cells. Each of the two execution units
reads one word from its current row in the current window (C), computes the new states
of the 16 central cells, and saves the results back in the registers in the current window.
For example, the first execution unit reads its data from register c{0] in bank R® and
writes its result in register c[1] in bank R®. Because of the pipeline, the value of cell 1,4
is still available in register c[0], and the new value 3,4 will only become visible for the
next instruction.

The new state of the cells computed during the previous iteration, available in the
previous window (P), are written back into the data memory.

The window pointers are advanced, the loop counter decremented, and, if it has not
reached zero, control returns to the beginning of the loop.

Lines 32 to 36 and 42 to 43 cleanly terminate the work of the main loop in all
possible cases. When the requested number of time steps have been computed, the
Spyder processor will stop on line 39. When it is restarted, line 40 ensures that the
program restarts from the beginning.

6.7.5 Using the Assembler

Assuming that the assembler source code for the cellular automaton that has just been
described is stored in a file called 1ife.spy, the task of the assembler is to generate a
binary file that can be loaded directly into the program memory of the Spyder processor.
Invoking the assembler with the command imac life.spy life will produce two output
files life.bin and life.mic: the former is a binary file containing the produced object
code which can be downloaded directly into the Spyder program memory, while the latter
is a textual representation of the object code.

6.8 Synthesizing the Execution Units

At this stage, the complete source code, in C++, of each execution unit should be
available. For this example, only two execution units are being used, and the source
code is found in the files EU1. cc and EU2. cc, which were generated either automatically
by the mcc compiler or manually by the user. Both files use the file 1ifeQP.cc, which
contains the source code of the 1ife hardware operator, developed in section 6.5. A
synthetic view of the global design flow of a Spyder application is given in figure 6.18.

The nlc compiler produces two kind of output files for the ViewLogic CAD tools:
symbol files and netlist files. ViewLogic uses projects to define a complete design en-
tity, where a project is composed of a directory containing a file viewdraw.ini, which
defines basic properties of the project such as the components library to use, and three
subdirectories: sch, sym and wir, which contain the project’s schematic, symbol, and
netlist files respectively.
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life.cc] Imain.cc] ISpyderHard.ch

@ life.bin

seql2.bit| [regwin.bit| |eul.bit] |eu2.bit]

lifeEU.exo

Figure 6.18: Overall design flow of a Spyder application

The sch, sym, and wir subdirectories should already contain the files describing the
hardware interface of the Spyder execution units, described by the files bio.1, eu.1,
ewpins.i, io.1, and outra.1 in each of the subdirectories. The main project directory
should also contain a file named eu.cst, which is the pins placement constraint file for
the Xilinx tools.

The hardware operators are synthesized by the following command:

nlc -0 -N project/wir -S project/sym -I library EUl.cc

where project is the ViewLogic project directory and library is the directory con-
taining the x4000.h file that describes the hardware library components for the Xilinx
XC4000 family. The -0 switch tells nlc to try to optimize the generated netlist. This
command should produce files named eu_main.1, life.1, nextstate.1, and sumcol.1
in the wir and sym subdirectories.

The next step is to produce a file eu.bit, which contains the bitstream needed
to configure a Xilinx chip, using the Xilinx CAD tools wir2xnf, xnfmerge, ppr, and
makebits. A description of these tools can be found in the Xilinx manuals [Xil91].

The file eun.bit is stored in a safe place, the directories are cleaned, and the same
operations are repeated a second time to produce the bitstream for the second execution
unit, which will be saved in the file eu2.bit.
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The Spyder coprocessor contains five Xilinx chips which must be configured together.
It is thus necessary to produce a combined bitstream containing the configuration infor-
mation for all five chips. This is accomplished by using the makeprom Xilinx tool:

makeprom -s 128 -f exo -o lifeEU -v -u O
seql2.bit regwin.bit eu.bit eu2.bit eu2.bit

where -s 128 specifies a size, -f exo specifies the output file format, -o 1ifeEU spec-
ifies the name of the output files, -v means verbose, and -u 0 specifies to load the
following files starting from position 0 and moving upward. The command loads the file
seq12.bit, which contains the bitstream for the sequencer, the file regwin.bit, which
contains the bitstream for the register windowing controller, and the bitstream for the
execution units. Since a bitstrteam must be provided for all the execution units, the
bitstream for the second execution unit is used twice. The makeprom command above
produces a file 1ifeEU. exo which must be converted to binary format with the following
command:

exo2bin lifeEU.exo > lifeEU.bin

the file 1ifeEU.bin can then be used to configure the Spyder execution units.

6.9 Running the Program

We assume that the file 1ife.bin contains the binary object code of the control program,

that the file 1ifeEU.bin contains the binary configuration for the Spyder execution units,

and finally that the user is logged on the host workstation containing the Spyder board.
The configuration of the Spyder execution units is achieved by the command:

cat lifeEU.bin > /dev/spyder.lca

Loading the object code into the Spyder program memory is achieved by the com-
mand:

cat life.bin > /dev/spyder.rom

As a side effect, loading the program memory resets the Spyder processor, a feature
which can be useful if the processor is stuck in an infinite loop.

The Spyder processor is now ready and the user can launch the control program on
the host workstation.
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The Hardware Synthesizer nlc

28

he C*++ to netlist compiler, or nlc, is used to create the configuration of the

I execution units from a high-level description of their functionality defined using

a subset of Ct+ {Str91]. This chapter presents the source language translated by

this compiler and describes the algorithms used by the compiler to synthesize hardware.
For an explanation of the usage of this compiler, see chapter 6.

7.1 Hardware Synthesis: an Example

Hardware synthesis is the translation of a source file, written in some high-level language
such as VHDL or Ct+t, into a form suitable to be implemented into a hardware circuit.
In this chapter we present nlc, a compiler able to translate a source file written in C++
into a netlist, which is then processed by CAD tools from ViewLogic |Vie95} and Xilinx
[Xil94} to become a bitstream, i.e., a file used for the configuration of an FPGA circuit.

This section presents an overview of hardware operators from a CAD tool point of
view, as well as a simple example of hardware synthesis.

7.1.1 Hardware Operators

In ViewLogic, a hardware operator, also called a component, is composed of two parts:
an interface and an implementation. The interface, also called the symbol, is a file that
describes the input and output ports, also called the pins, of the component. It contains
various attributes about the component as a whole, or about individual pins, as well
as graphical information, i.e., how the symbol should be drawn by the CAD tool. The
implementation is stored in another file, called the netlist or the wirelist, which describes
how the hardware operator is implemented. This file contains the list of elements that
are needed to implement the operator and how these elements are wired together and to
the inputs and outputs of the operator.

7.1.1.1 The Symbol of a Hardware Operator

The symbol file contains three kind of informations: the name of the input and output
ports of the component, drawing information for the component, and various attributes

65
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of the component as a whole and of the input and output ports.

The input and output ports are called pins in the symbol file jargon. Each pin
represents one input or output port and can be a single bit or an n-bit bus. Each pin
must have a unique name, which is used to determine the width of the port (i.e., the
name FOO represents a single bit pin and the name FOO[15:0] represents a 16-bit bus,
where the bits of the bus are named F0015, F0014, ..., FOQ0).

Attributes are used for many different purposes. An attribute can either be attached
to a single pin, or to the symbol as a whole. An attribute is composed of a name and a
value. For example, each pin has an attribute that defines if the pin is an input or an
output port. The name of this attribute is PINTYPE and its value is IN for inputs and
OUT for outputs.

7.1.1.2 The Netlist of a Hardware Operator

The netlist file is composed of four parts. The first part is a header that defines the
name of the component and the name of the global signals used, e.g., the ground GND
signal.

The second part of the file is the description of which hardware elements are used
to implement the operator (logic gates, flip-flops, etc.). Each element is defined by its
name and a set of attributes. Most of these attributes are the same as the attributes
defined in the correspouding symbol file, but at least one is specific to the netlist file:
the PINORDER attribute which defines the name and the order of the input and output
ports of the element.

The third part defines how each instance of the library elements is connected. The
specification is implemented by listing all the wire names to which the element is con-
nected, in the order specified by the PINORDER attribute described above.

The fourth and final part defines the wiring of the input and output ports.

7.1.2 Hardware Operators Library

To synthesize a netlist, the nlc compiler requires that a set of library elements (e.g.,
and gates) be defined. The programmer must therefore include the definitions of the
library elements with the source file being compiled. The information needed to write
these definitions must be gathered by the programmer in the symbol files provided by
the FPGA chip manufacturer for each FPGA architecture the programmer intends to
use.

For example, the symbol file for a hardware inverter of the Xilinx 4000 chip family
is given in figure 7.1. From this file, the programmer can construct the description
of the inverter hardware operator needed by nlc, as given in figure 7.2. Please refer to
section 7.2.2 for a precise description of the syntax of the hardware operators description.

7.1.3 Example

This section presents & very simple example of hardware synthesis: the synthesis of a
counter.
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vV 50 P20202020020

K 419705751400 INV L102010090001

YO A 10 20 10 0 7 O PINTYPE=IN
D OO 70 40 12502025
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Figure 7.1: Symbol file of an XC4000 hardware inverter

asm ~ {
"%4000:inv" <"LEVEL=XILINX" "DEVICE=INV" "Q%iDLY0=0"
"@%iDLY1=0" "Q@%oDLY0=1NS" "@%oDLY1=1NS">,
("i"), (lrou <"PM=INV">)
}

Figure 7.2: Description for nlc of the inverter of figure 7.1

The purpose is to generate a 3-bit hardware counter whose value must be incre-
mented by one at each clock cycle and which must count from zero to five inclusive.

One possible solution is given in figure 7.3. Line 1 includes the definitions of the
available hardware operators in the Xilinx XC4000 chip library. The file x4000.h contains
definitions similar to the one shown in figure 7.2. Line 3 defines the name and the
interface of the hardware operator to be synthesized: the name is count6a and it has
one 3-bit wide output port. Line 5 states that the operator needs a 3-bit hardware
register, initialized to zero, to store the current value of the counter. Line 6 increments
the value of the counter by one, and lines 7 and 8 check that the value of the counter
does not go above 5. Line 9 assigns the current value of the counter to the output of the
operator.

For completeness, it is assumed that an external device provides a clock signal to
the hardware register; i.e., the state of the static state variable is updated once every
clock cycle.

The result obtained by synthesizing the source code given in figure 7.3 for the Xilinx
XC4000 chip family is given in figure 7.4. The hardware operators shown in figure 7.4
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QuUT(2:0)

OR3 INV

68
1 #include "x4000.h"
2 void
3 countba(bitvector &out(3))
¢ {
s static bitvector state(3, 0);
'3 statet++,
7 if (state == 6)
] state = 0;
9 out = state;
10}
Figure 7.3: Source code of a 3-bit, zero to five counter
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Figure 7.4: Synthesized 3-bit counter from figure 7.3

are those found in the operators library of the XC4000 chips.

Note that, because of limitations in the ViewLogic system that will be used to
process the output file of the nlc synthesizer, only lowercase letters must be used for
function and variable names in the source code.

7.2 The Language

The language of choice is a small subset of C++, with a few extensions. It is a subset in
the sense that there is no support for classes and inheritance, there are no pointers and
the array type is limited to one-dimensional arrays. The extensions allow the definition
of the target FPGA building blocks (basic library elements) and provide for a little more
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bit a{16], b[8], c[16];
c=a+b;

Figure 7.5: Sample code using arrays

file

e}
operator

Figure 7.6: Syntax of a complete program

flexibility in variable declarations. The philosophy adopted is that everything happens
in parallel. All loops are expanded. It is assumed that there is some external control
device that calls the top level routine once every clock cycle.

Compared to standard Ct++, the extensions are needed for the netlist compiler to
be able to know the width of array elements. A regular C++ compiler can handle things
differently by using dynamic objects, but a hardware component must have a completely
static content.

7.2.1 Data Types

The only basic data type is the bitvector, and the only compound data type is one-
dimensional arrays of bitvector. A bitvector is roughly equivalent to the standard
int data type, but can also be viewed as an array of bits. A default bitvector contains
16 bits, but its size can be changed by a compiler switch and bitvectors of custom
length can also be created by specifying the size explicitly to the constructor.

It would have been somewhat neater, and perhaps more intuitive, to have a bit as
the basic data type and then declare bitvector as an array of bits. This approach would
work for the netlist compiler, but unfortunately not for a regular C++ compiler (which is
used for simulation purposes), mostly because C*+ arrays contain no information about
their length. Thus, if we consider the piece of code shown in figure 7.5, the add operator
has no way of knowing the size of its operands.

The global syntax of a program source file is given in figure 7.6. It consists of
the description of the hardware operators library and of one or more functions to be
translated into a netlist. There are no global variables. The source file is preprocessed
by a C preprocessor [Sta92] before being read by the nlc compiler.
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Figure 7.7: Syntax of an operator description

7.2.2 Hardware Operators Description

The hardware operators used by the compiler to generate the netlist must be described
in the source file (or included by the source file). The syntax of the description is given
in figure 7.7.

The description starts with the keyword asm and the symbol of the operator being
described. The description itself consists of three parts: the name of the operator, as
defined in the CAD software, followed by global attributes of the operator; the list of
input ports of the operator; the list of output ports. The lists of input and output ports
are composed of the names of these ports. Each port name can be followed by a list of
attributes pertaining to that port alone.

The attributes of an operator have no special meaning to the nlc compiler, and
are merely expanded and copied in the generated netlist file. Attributes are used by the
simulators, the placement and routing tools, and the other CAD tools that work with
the generated netlist files.

The nlc compiler knows how to generate netlists for the ViewLogic CAD tools
(.wir files) [Vie95]. The PINORDER and PINTYPE attributes for these ViewLogic netlists
are generated automatically by the compiler. Any other attribute must be specified in
the operator description. It is unfortunately likely that the hardware operators library
description will be dependent on both the FPGA family and the CAD tools used.

Since there are often global attributes that must be repeated for each of the inputs
or outputs of an operator, the nlc compiler provides an automatic expansion facility
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asm & {
"x4000:and5" <"LEVEL=XILINX" “DEVICE=AND" "@%iDLYO=0"
"Q%iDLY1=0" "Q@)oDLYO=1NS" "Q%oDLY1=1NS">,
("1", u2n’ u3u’ u4u, usu)’ (uou)
}

asm | {
"x4000:0r3" <"LEVEL=XILINX" "DEVICE=DR" "@%iDLY0=0"
"@%iDLY1=0" "Q)oDLYO=1NS" "@%oDLY1=1NS">,
("1", u2u, nsu), ("0")
}

asm " {
"x4000:x0r4" <"LEVEL=XILINX" "DEVICE=XOR" "@%iDLYO0=0"
"@%iDLY1=0" "@%oDLYO=1NS" "@%oDLY1=1NS">,
("1", ||2||, usu, n4n)’ ("0')
}

Figure 7.8: Descriptions of a 5-inputs and, a 3-inputs or, and a 4-inputs xor gates

for these attributes. For example, the 3-input | operator of the XC4000 device family,
shown in figure 7.8, has the global attributes @1DLY0=0, @2DLY0=0 and @3DLY0=0 (i.e.,
one for each of its inputs 1, 2 and 3 respectively). The expansion mechanism allows to
write a single global attribute @%iDLY0=0 for the operator and the %i substring will be
expanded once for each of the inputs of the operator. Similarly, a %o substring will be
expanded once for each of the outputs. A single % character in the generated attribute
can be obtained by writing %% in the source code.

Each recognized hardware operator will now be presented in more detail, with a
sample description taken from the description of the XC4000 chips library. The complete
description of the XC4000 operators library can be found in [Xil94], while an in-depth
description of the theory explaining the inner working of these hardware operators can
be found in [Man86] and [Wak90].

7.2.2.1 Basic Logic Gates

The &, | and ~ operators have a 1-bit output which is, respectively, the logical and, the
logical or, and the logical xor of all their inputs. An example of description for these
hardware operators is given in figure 7.8.
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asm ~ {
"x4000:inv" <"LEVEL=XILINX" "DEVICE=INV" "@%iDLY0=0"
"@%iDLY1=0" "@%oDLYO=1NS" "@%oDLY1=1NS">,
("i"), ("0" <"PARAH=INV">)

}
asm = {
"x4000:buf" <"LEVEL=XILINX" "DEVICE=BUF" "Q@%iDLYO=0"
"Q%iDLY1=0" "@%oDLY0=1NS" "Q@%oDLY1=1NS">,
("i"), (")
}

Figure 7.9: Descriptions of a 1-bit not and a 1-bit buffer hardware operators

7.2.2.2 Buffers and Inverters

The ~ and = operators have the same number of input and output bits. The outputs are,
respectively, the logical not, and the buffered copy of the corresponding inputs. A buffer
is used whenever a signal must have more than one name. An example of description
for these hardware operators is given in figure 7.9.

7.2.2.3 Numerical Comparators

The == and < comparison operators take two sets of inputs of the same width. The ==
hardware operator is the equality comparator, which produces one bit of result which is
true if the pumbers represented by the two set of inputs are the same. The < hardware
operator is the less than comparator, which produces one or two outputs (the second
being optional). The first output is true if the number represented by the first set of
inputs is less than the number represented by the second set of inputs. The optional
second output is true if the first number is greater than the second (see section 7.3.4.6
for an explanation of its use). An example of description for these hardware operators
is given in figure 7.10. The notations "a"[15:0] and "b"[15:0] in figure 7.10 indicate
that the 16-bit inputs of the hardware operator are bus ports.

7.2.2.4 Multiplexers

The ? multiplexer operator has three sets of inputs and one set of outputs. The first
input is 1-bit wide and represents the control variable that sclects among the other two
sets of inputs: the second set of inputs is selected if the control variable is false, the third
if the variable is true. The second and third sets of inputs must be the same width as
the set of outputs. An example of description for the ? hardware operators is given in
figure 7.11.
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asm ==
"mx4000: comp16" <"LEVEL=MXILINX">,
(nau [150] s "b" [150] ) s (nequ)

}

asm < {
"mx4000: compm4" <"LEVEL=MXILINX">,
("asll’ |la2|l’ "al", "ao", Ilb3", Ilb2ll, Ilbill’ llboll) ,
("lt" ) "gt")

}

Figure 7.10: Descriptions of a 16-bit equality and a 4-bit less than hardware operators

asm ? {
"mx4000:m2-1" <"LEVEL=MXILINX">,
("Se", "dO", "dl"), (“O")

}

Figure 7.11: Description of a two to one multiplexer

7.2.2.5 Registers

The static register operator takes three or four sets of inputs and has one set of outputs.
The first set of inputs is the data to be stored in the register, the second input is the
clock signal, and the third input is the clock enable signal. The optional fourth input
is the clear signal. The set of outputs is the output of the register. An example of
description for the static hardware operators is given in figure 7.12. In this example,
the star (*) near the fourth input signal "rd" indicates that this signal is not used, a
mechanism needed to be able to use symbols of the hardware components library that
have more signals than needed by the nlc compiler.

7.2.2.6 Constant Values

The 0 and 1 constant operators bave a single output which is the logical value 0 and
1 respectively. An example of description of these hardware operators is given in fig-
ure 7.13.
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asm static {
"mx4000:1rd8" <"LEVEL=MXILINX">,
("d" [7:0]’ 'lcll, "Ce", "rd"*),
("q"[7:0])

}

Figure 7.12: Description of an 8-bit register

asm 0 {
"x4000:gnd" <"LEVEL=XILINX">,
), (Mo™)

}

asm 1 {
"x4000:vcc" <"LEVEL=XILINX">,
), ("™

}

Figure 7.13: Descriptions of the logical values 0 and 1

asm + {
"mx4000:add2" <"LEVEL=MXILINX">,
("al", uaou' "hin "bo" 'lcill)'
("CO", "31", "SO")

}

Figure 7.14: Description of a 2-bit adder

7.2.2.7 Adders

The + bardware operator has three sets of inputs and two sets of outputs. The first and
second sets of inputs are the two operands to be added and the third input is the carry
in bit. The first output is the carry out bit and the second set of outputs is the result of
the addition. The width of the input operands and the width of the result must be the
same. An example of description for an adder is given in figure 7.14.

The &, |, =, =, =, 7, and static operators are mandatory if they are used by the
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procedure

formal

formal bltvector ident |
¥-| paramsize }—/

paramsize
o

O, u ey,
k‘l decl |—-> k—l statement

Figure 7.15: Syntax of a procedure description

parmdecl

void
foo(bitvector inA, bitvector inB = bitvector(6),
bitvector &out = bitvector(8))
{
// procedure body
}

Figure 7.16: Example of procedure declaration

source code being compiled. The others can be generated by the compiler using basic
gates, as needed. If the 0 and 1 operators are not defined, the compiler will use the
global signals GND and VDD of ViewLogic.

7.2.3 Procedure Description

The syntax of a procedure description is given in figure 7.15. The description starts
with the optional keyword void, followed by the interface and the implementation of
the procedure. The interface is composed of the name of the procedure and the set of
input and output parameters, while the implementation is the body of the procedure.
There are two kind of parameters: parameters passed by value and parameters passed
by reference. Parameters passed by value are input parameters, while parameters passed
by reference are output-only parameters, i.e., the output parameters do not have exactly
the same semantics as Ct+ reference parameters, a feature that seldom causes problems.
The body of a procedure is composed of variable declarations followed by statements.
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decl {bitvector var
I ident l
= [gc . O L]

nurnber
array — /j\
2/

mber | —()
numberl

=

Figure 7.17: Syntax of the variable declarations

1 static bitvector la(i7, 0), 1lc(17, 0);
2 bitvector nla(16, la);

3 bitvector nlc(16) = 1lc;

4 bitvector c(2)[18];

s bitvector n;

Figure 7.18: Example of variable declarations

An example of procedure declaration is given in figure 7.16: the inA and inB pa-
rameters are respectively a 16-bit and a 6-bit input parameter, while out is an 8bit
output parameter. Procedures cannot return a value and thus are of type void. Note
that the purpose of this seemingly strange way of specifying the width of the parameters
is to assure that the declaration is accepted as-is by standard Ct+ compilers.

7.2.4 Variable Declarations

The syntax of variable declaration is given in figure 7.17. It is similar to the standard
C++ syntax, but has a few extensions to allow more flexibility for initializers. A variable
declaration starts with the optional keyword static followed by the keyword bitvector
(the only valid data types are bitvector and array of bitvector). The variable dec-
laration itself consists of its name and, optionally, its width and initial value. If the
variable is an array, the name and optional width are followed by the size of the array
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statement N\
<

-

c W o statement ) <

statement “

Figure 7.19: Statement syntax

between square brackets. If the width is not specified, the nlc compiler assigns either
the default width of 16 or a width specified as an option when the compiler was called.

An example of variable declarations is given in figure 7.18. Line 1 declares two static
bitvector variables 17-bit wide initialized to 0. Lines 2 and 3 declare two bitvector
variables 16-bit wide: nla, initialized with the value of variable 1a, and nlc, initialized
with the value of variable 1c. The preferred way to declare a variable is that shown in
lines 1 and 2, compatible with standard C++. Line 4 declares an array of 18 bitvector
variables, each variable being 2-bit wide, and line § declares a bitvector variable of
default width, i.e., 16-bit wide. Note that the declarations of lines 3 and 4 will not be
accepted as-is by a standard C++ compiler (see section 6.5.1 on page 50).

Static variables are implemented using hardware registers. They keep their values
from one call of the containing procedure to the next, as in standard C++. Static
variables can only be initialized to 0, as the hardware registers implementing them will
be set to 0 upon reset.

7.2.5 Statements

The statement syntax is given in figurc 7.19. There are five kind of statements: empty
statements, expressions, loop statements, conditional statements, and blocks.

There are two control flow constructs: for loops and if ... then ...else constructs.
The for loop bounds must be known at compile time, since all loops must be statically
unrolled. There are no while loops, but they can be easily implemented using for loops,
as shown in figure 7.20.
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bitvector i = 0;

for ( ; 1 <3;){ // while (i <3) {
out[i] = in(i];
i+=1;

}

Figure 7.20: Example of statements

7.2.6 Expressions

The expressions syntax is given in figures 7.21 and 7.22. A general expression can be
composed of several expressions separated by commas. A simple expression is either a
primary, a unary expression, a binary expression, or a ternary expression.

The operators obey the same precedence and associativity rules as in C and C++
[HSJ91, pp. 166-167]. All the available operators are given in figure 7.22.

A primary is either a number, an expression in parentheses, an array reference, a
function call, or an identifier, optionally post-incremented or post-decremented.

7.3 The Compiler

The front-end of the nlc compiler is based on standard compilation techniques, as de-
scribed in the Dragon book [ASU86|, while the back-end is very different from a standard
compiler, since it deals with wires instead of registers and generates a netlist instead of
assembler instructions. The compiler is written in C*++ with the help of two publicly
available classes libraries: the GNU C++library [Lea92] and the LEDA library [NU95].
The C++ compiler used was the GNU gec compiler [Sta95].

The global flow of operations of the rlc compiler is shown in figure 7.23. Each
function is, in turn, parsed, analyzed, and transformed into a netlist, i.e., the compiler
constructs the parse tree representing the complete function, processes this tree, and
generates the correspording netlist. The parse tree is then discarded and the process
is repeated with the following functions. The processing is described in detail in the
following sections.

7.3.1 Parsing and Tree Construction

A context-free grammar describing the syntax of nlc was developed, and a LALR parser
{ASU86, pp. 195-266] for that grammar was constructed with the help of the parser
generator Bison [DS95].

The parser performs three tasks: creation of the symbol table, creation of the list
of available hardware components, and construction of a parse tree.
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exprs -
expression

expression | p——
+| primary |

expression H binop }—-Lexpr%siou ]l

expression expression expression

number

primary

Figure 7.21: Expressions syntax

7.3.1.1 The Symbol Table

The symbol table is implemented using a LEDA dictionary, which associates a symbol
name record (class SNRec) with the name of the symbol, and the symbol classes shown
in figure 7.24.

The symbols are split into four categories: bitvector variables, handled by the
VSymRec class; arrays of bitvector, handled by the ASymRec class; functions, handled
by the FSymRec class; function inputs and outputs, handled by the I0SymRec class.
These four classes are descendants of the general SymRec class.

7.3.1.2 Hardware Library Components
The hardware components defined in the source code are stored in objects of one of the
subclasses of the OpDescr class shown in figure 7.25.

7.3.1.3 The Parse Tree

The parse tree is constructed using node objects belonging to the subclasses of the
TreeRec class shown in figure 7.26. Each subclass corresponds to a specific language
construct, and their purpose is described below. Each TreeRec node object has references
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Figure 7.22: Available operations
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Figure 7.23: Compiler flow of operations

to its subtrees, if any, and also to its ancestor in the tree structure, i.e., the node of which
it is a subtree.

7.3.1.4 Data Components

There are four data components: constants, which are represented by ConstTreeRec;
accesses to array components, represented by ArrayTreeRec; accesses to a whole bitvec-
tor, represented by VectorTreeRec; accesses to a single bit of a bitvector, represented
by BitTreeRec.
The ConstTreeRec simply contains the integer value of the constant it represents.
The ArrayTreeRec can represent both the access to a whole bitvector of the cor-
responding array, or the access to a single bit of a bitvector of the array. The array is
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ASymRec
FSymRec
10SymRec
VSymRec
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fla

Figure 7.24: The symbol classes hierarchy
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Figure 7.25: The operators description classes hierarchy

described by an ASymRec object. The index of the array element and the optional bit
number, used if a single bit is referenced, are trees, where the latter tree is null if a whole
bitvector is referenced.
The VectorTreeRec references a whole bitvector, described by a VSymRec object.
The BitTreeRec references a single bit from a bitvector. The bitvector is described
by a VSymRec object and the bit number by a tree.

7.3.1.5 Operators

The operators are divided into three categories: the unary operators, which are descen-
dants of the UnaryTreeRec class, as shown in figure 7.26; the binary associative opera-
tors, which are descendants of the AssocTreeRec class; the last category has no special
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AddTreeRec
AndTreeRec
MulTreeRec
OrTreeRec
TAndTreeRec
TOrTreeRec
XorTreeRec

ArrayTree
AssignTreeRec

]
g
|

AssocTreeRec
BitTreeRec
CmpTree
ConstTreeRec
ErrTreeRec
FunTreeRec
IfTreeRec
IncTreeRec
ListTreeRec
LoopTreeRec

.

MuxTreeRec
NopTreeRec

Shift TreeRec
UnaryTreeRec

NegTree
NotTreeRec
TNotTreeRec
TruthTreeRec

Figure 7.26: The parse tree classes hierarchy

property and its members, CmpTreeRec, IncTreeRec, MuxTreeRec, and ShiftTreeRec
descend directly from the TreeRec class.

The CmpTreeRec represents the comparison, i.e., the equality, inequality, greater
than, etc., of two values. These two values are represented by two trees, one left and one
right. The result of the comparison is a Boolean value.

The IncTreeRec represents a general form of auto-increment of a value. The in-
crement can either be a pre-increment (i.e., the value is incremented before being used)
or a post-increment (i.e., the value is incremented after being used). The value to be
incremented is represented by a VSymRec object, and the increment is a tree.

The MuxTreeRec is used to represent the C conditional operator ?. The condition
and both expressions are represented by trees.

The ShiftTreeRec is used to represent left and right shift operations. Both the left
and right expressions are trees.
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7.3.1.6 Unary Operators

The UnaryTreeRec class has four descendants. They are all unary operations and they
apply to an expression that is represented by a tree.

The NegTreeRec implements the negation of an integer value, while the NotTreeRec
implements the binary logical negation of a value.

The TruthTreeRec represents the truth value of an expression as defined by C, i.e.,
an expression is true if and only if its value is different from zero. Thus the value returned
by a TruthTreeRec object is a Boolean value which is true if the expression referenced
by the TruthTreeRec object is different from zero and false otherwise.

The TNotTreeRec represents the negation of a TruthTreeRec, i.e., it returns true if
the expression referenced by the TNotTreeRec object is equal to zero.

7.3.1.7 Binary Associative Operators

The seven descendants of the AssocTreeRec class all represent binary associative oper-
ations. They operate on two or more expressions, which are represented by trees. These
trees are kept in a list. If one of the expressions is a constant, it is kept as the first
element of the list. If several expressions are constants, they are evaluated and replaced
by the single constant value obtained by applying the operation implemented by the
object to the constant expressions.

The AddTreeRec and MulTreeRec implement the arithmetic addition and multipli-
cation respectively. Subtractions are implemented by adding the negated value of the
second operand to the first, and thus are also implemented through AddTreeRec objects.

The AndTreeRec, DrTreeRec, and XorTreeRec implement the binary logical and,
or, and xor operations respectively.

The TAndTreeRec and TOrTreeRec implement, respectively, the and and or opera-
tions of the truth value, as defined in section 7.3.1.6, of their child expressions.

7.3.1.8 Statements

There are four kind of statements: the assignment, the function call, the conditional
statement, and the loop statement.

The assignment is implemented by the AssignTreeRec class. The right-hand side
value is assigned to the left-hand side and both are trees.

The function call is implemented by the FunTreeRec class. The parameters of the
call are described by a tree list.

Conditional statements are implemented by the IfTreeRec class. They contain
three parts: the condition expression, the statement to be executed if the condition is
true, and the statement to be executed if the condition is false. All three parts are
represented by trees.

Loop statements are implemented by the LoopTreeRec class and contain four parts:
the initializing expression, the looping condition expression, the increment expression,
and the loop body. The three expressions are represented by trees, while the loop body
is implemented by a tree list.
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i=0;

in_left[0] = in[2];
in_right[0) = in[0];
in_left[1] = in[3];
} in_right[1] = in[1];

for (i = 0; i < 2; i++) {
in_left[i) = inli + 2);
in_right[i] = in[i); -

Figure 7.27: Effects of Expand and CleanupExpand methods

7.3.1.9 Other Tree Components

The ListTreeRec object contains an ordered list of trees. It is used by other tree objects
(e.g., the binary associative operators) to keep a list of expressions. It is also used to keep
a list of statements. For example, the body of a function is represented by a ListTreeRec
object.

The NopTreeRec object is used to represent a no-operation statcment. For example,
in a conditional statement with no else clause, the statement to be executed if the
condition is false will be set to a NopTreeRec object.

The ErrTreeRec object is used when the parser detects a syntax error.

7.3.2 Partial Evaluation

During the second phase of the compilation process, the compiler unrolls all the loops
contained in the function and evaluates all the values that can be computed at compile
time. These transformations are performed by modifying the parse tree and are imple-
mented by two methods of the TreeRec class: Expand and CleanupExpand. An example
of these transformations is shown in figure 7.27.

The Expand method operates by interpreting the parse tree, computing all the values
that can be statically cetermined, and expanding all the loops. The computed values
are stored in the sVal component of the TreeRec object.

The CleanupExpand method goes through the parse tree to replace all subtrees
which have a statically known value (i.e., whose sVal field was set to a defined value by
the Expand method) with a ConstTreeRec object. Statements which have no side effects
are deleted.

7.3.3 Preparations for Hardware Synthesis

The third phase of the compilation process consists of generating the netlist from the
modified parse tree. The internal representation of the netlist is made up of hardware
operators objects belonging to the descendents of the OpRec class shown in figure 7.28.

Each hardware operator has one or more output busses and zero or more input
busses. A bus is composed of one or more wires. The output busses are implemented by
objects of class BusQutRec, which define the name of the bus, its width, its use count,
and have a reference to the hardware operator that owns or drives the bus. Each bit
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OpRec

Figure 7.28: The modules classes hierarchy

of the output bus is further implemented by an object of class BitOutRec. The input
busses are implemented by objects of class BusInRec: for each bit of the input bus, an
object of class BusInRec simply references the corresponding BitDutRec of a particular
BusQOutRec (i.e., the one that drives the wire).

There are two subclasses of the OpRec class: the IDOpRec class implements the
inputs and outputs of a function and the ModOpRec class implements all the hardware
operators used for the internals of the function. In other words, the I00pRec objects
contain a single BusQutRec object which is the corresponding input or output port of the
function. The ModOpRec objects contain at least one BusInRec object and one BusOutRec
object.

The purpose of the hardware synthesis phase of the compiler is to translate the
parse tree into a set of ModOpRec objects and to wire them together and to the input
and output ports of the function. This process is divided into several steps which are
described in detail in the following sections.

7.3.3.1 Expression Width Computation

The first step of the synthesis is to compute the width of all the expressions by calling
the ComputeWidth method of the TreeRec class. The width of bitvector references is
derived directly from the bitvector variable declaration, but the width of add or shift
expressions must be computed from the width of the operands (e.g., the addition of two
4-bit wide operands can produce a 5-bit result).

The compiler must know the width of each expression node to choose a correspond-
ing hardware operator.

7.3.3.2 Variables Initialization

The second step of the synthesis is to initialize the state of all the variables used by the
current function. The current state of a variable is defined by its curValue field, which
is an array of pointers to BitOutRec objects. There are four kinds of variables: the input
parameters of the function, the output parameters, the static local variables, and the
other local variables.

The initialization of the input and output parameters is handled by the GeneratelO
method from the VSymRec class. This method is called for all the function parameters.
It generates an I00pRec object for each input parameter and also sets the curValue
of the VSymRec objects to point to the corresponding bits of the 100pRec objects. The
curValue of output parameters is set to null (i.e., it is undefined).

The initialization of local variables is handled by the GenerateLocals method from
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the VSymRec class. This method is called for all the local variables of the function. For
each static local variable, a corresponding hardware register is created and the curValue
of the variable is set to the output of the register. The compiler needs the description of
at least one kind of hardware register with clock enable to be able to synthesize static
variables. The curvValue of the other local variables is set to null.

7.3.4 Hardware Synthesis

The hardware synthesis of the function body is implemented by the Generate method
of the TreeRec class and its subclasses. The basic approach is to walk through the
tree, generating hardware operators corresponding to the traversed nodes, setting the
input of the hardware operators to reference the corresponding operands, and setting the
affected variables to reference the output of the operators. To implement this approach,
each TreeRec node has a val field that references the BitOutRec objects that define its
value, i.e., the val field is set to the output of the hardware operator that computes the
value of the node.

7.3.4.1 Hardware Operator Selection

Since there may be more than one hardware operator of a certain kind (e.g., there can
exist 2, 3 and 4-input and gates), the compiler has to choose which particular hardware
operator to use for each case. The general rule is to use the smallest operator that has
enough inputs. For example, if there was a choice of 1, 2, 4, and 8-bit adders and the
compiler has to synthesize the addition of two 3-bit values, the chosen operator would
be the 4-bit adder since it is the smallest of the available adders that can fit the 3-bit
values. The seemingly wasted material will be automatically removed by the tools that
perform the placement and routing for the FPGA chip. Considering the same example,
if only 1 and 2-bit adders were available, the compiler would use one 2-bit adder and one
1-bit adder to implement the same operation.

The following sections describe in more detail the particular synthesis method used
for each kind of node.

7.3.4.2 Shift Operators Synthesis

The shift operators, described by ShiftTreeRec objects, are the easiest to synthesize,
simply becoming wires.

7.3.4.3 Simple Logic Gates Synthesis

The logical not operator, described by NotTreeRec nodes, is implemented using hardware
inverters described by objects of class NotOpDescr. At least one hardware inverter must
be available to the compiler for not operators to be used.

Objects of classes AndTreeRec, OrTreeRec, and XorTreeRec describe logical and,
or, and xor operators respectively. They are implemented using hardware and gates,
described by objects of class AndOpDescr, or gates, described by class OrOpDescr, and
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xor gates, described by class XorOpDescr. At least one hardware gate of each kind must
be available to the compiler for the corresponding operators to be used.

7.3.4.4 Truth Conditions Synthesis

The truth of an expression is obtained by or-ing all of its bits. Thus, TruthTreeRec
objects are implemented using or gates. TNotTreeRec are implemented by taking the
truth value of the subtree and negating it with an inverter.

TAndTreeRec and TOrTreeRec are implemented by taking the truth value of all their
subtrees and than and-ing, respectively or-ing, these truth values together.

The same conditions of library hardware operators availability explained in the
previous section for the simple logic gates synthesis apply.

7.3.4.5 Arithmetic Expressions Synthesis

Additions and subtractions, described by AddTreeRec nodes, are implemented using
hardware adders, if available, and simple logic gates. The principle of the synthesis is to
divide the subtrees to be added in two groups, the positive and the negative, to generate
the additions for each group and then subtract the negative result from the positive
result. For example, the add expression a + (—b) + ¢ + (—d) is split into the two groups
Gy =a+cand G_ = b+d and the result computed as G, — G_.

The add operator itself is synthesized either using hardware adders described by
objects of the AddOpRec class, if available, or by using and, or, and xor logic gates. The
subtraction of the negative group value from the positive group value is implemented by
inverting all the bits of the value of the negative group and adding them to the value of
the positive group, with the carry-in bit of the adder set to one.

Arithmetic negations, represented by NegTreeRec objects, are implemented by in-
verting all the bits of the value using hardware inverters and then adding one with an
adder.

Multiply and divide operators have not been implemented.

7.3.4.6 Arithmetic Comparisons Synthesis

There are six possible arithmetic comparisons of two expressions a and b, described
by CmpTreeRec nodes. All six are implemented using equality comparators, less than
comparators, and not gates, as shown in table 7.1.

The first two comparisons are equality comparisons and are handled using an equality
hardware operator and a not gate, if needed. The compiler uses hardware equality com-
parators described by objects of the EqOpDescr class, if available. If no such library
components are available, the compiler constructs them using simple xor and or gates.

The last four comparisons are implemented using an hardware less than comparator
and a not gate, if needed. The compiler uses hardware less than comparators described
by objects of the LessOpDescr class, if available. If no such library components are
available, the compiler constructs them using simple gates.

The compiler is able to use two different kind of hardware less than comparators:
the first kind has a single output which is true if the first input value is less than the
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Table 7.1: Implementation of arithmetic comparisons

Source | Implementation
a=1b - a=b
a#b not(a = b)
a<b a<b
a<b not(b < a)
a>b b<a
a>b not(a < b)

second input value; the second kind has two outputs, one which is true when the first
input value is less than the second input value, and the other when the first input value
is greater than the second input value. The compiler uses this second output when it
has to build bigger comparators using smaller ones, in which case it applies the relation
given by equation 7.1. When this second output is not available, the compiler uses a
second comparator to compute a;_; > b; ;.

(a.'_“o < bg_,.o) = ((l,‘mj < b.'mj or (not(a.;“,- > b;mj) and ag-1)..0 < b(j_l)_,,o)) (7.1)

7.3.4.7 Conditional Expression Synthesis

Conditional expressions, described by nodes of class MuxTreeRec, are implemented us-
ing multiplexers, described by objects of the MuxOpDescr class. At least one hardware
multiplexer must be available to the compiler for this operator to be used.

7.3.4.8 Conditional Statement Synthesis

The conditional statements are the most complicated to implement. The basic approach
is to determine which variables are modified by the conditional statement and what is
the final value of those variables, according to the value of the condition.

The method used to implement this approach is to keep a snapshot of the state of
the variables before the conditional statement is entered. Then the compiler generates
the statements that are to be executed when the condition is true, at which point a
second snapshot of the state of the variables is taken representing the resulting state of
the variables when the condition is true. The state of the variables is then restored to
the value it had before entering the conditional statement and the compiler proceeds by
generating the statements that are to be executed when the condition is false, at which
point a third snapshot of the variables state is taken. The state of the variables after the
conditional statement is then obtained using multiplexers, controlled by the condition
value, which choose the correct value among those of the various snapshots. An example
of conditional statement generation is shown in figure 7.29.
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bitvector s(4);

bitvector c(1); ¢

bitvector n(1); 0 1

S3

if (s == 3) S2

n = 1; — ™ g1

. S0

else 1f (s == 4) 53

no=ci s2

else s1

n = 0; S0

Figure 7.29: Implementation of a conditional statement
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Figure 7.30: Synthesis of a function call

7.3.4.9 Function Call Synthesis

Since functions are transformed into hardware operators, a function call is transformed
into the instantiation of the corresponding hardware operator.

Special care has to be taken when the function is called inside a conditional state-
ment, since if the function called contains static variables, the corresponding registers
might be incorrectly modified. Therefore, the compiler passes the condition that origi-
nates to the call to the called function: if the condition is false, the called function must
avoid modifying its static variables. An example of function call synthesis is given in
figure 7.30.

7.3.5 Feedback of Static Variables

The last value that was assigned to a static variable is the one that is fed to the register
that implements it. This process is implemented by the FeedbackStatic method of the
VSymRec class.

Since a function can be called from inside a conditional statement, care has to be
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Figure 7.31: Feedback of the static variables
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Figure 7.32: Multiplexer optimization

taken not to modify the content of these static variables if the condition under which
the function is called is not true, as explained in section 7.3.4.9. This is the reason why
each function that either contains static variables or calls a function that contains static
variables has a clock enable input CE$ which must be tied to the clock enable input of
the hardware registers that implement the static variables, as shown in figure 7.31.

7.3.6 Hardware Optimizations

Two kind of optimizations are performed while the compiler is generating the netlist.
The first is to avoid generating multiplexers which have twice the same input. The
second handles additions of the form z + C, where C = n- 2, i > 0 (i.e., C is a constant
and its least significant bits are zero), in which case the addition can be optimized by
computing y+n, where y represents the appropriate most significant bits of = and simply
passing through the least significant bits of z.

Further optimizations are performed only if the user explicitely requests them. They
are implemented by the Optimize method of the OpDescr class and its subclasses. There
are two implemented optimizations.

The first optimization tries to remove unnecessary chains of inverters: when an
input is driven by two inverters in a row, the input is redirected to the output that
drives the first inverter.

The second optimization tries to remove unnecessary multiplexers, a condition which
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occurs mainly when a register is fed by a multiplexer, in which case the compiler tries to
replace the multiplexer by commanding the clock enable input of the register, as shown
in figure 7.32.

7.3.7 Output Wiring and Netlist Cleanup

The last stage of the netlist generation process is to wire the outputs of the function:
the last value that was assigned to the output parameters of the function is wired to
the output ports. This process is performed by the WireOutput method of the VSymRec
class.

The compiler ther removes unnecessary hardware components from the netlist, so
as to remove all modules whose outputs are unused. This process is repeated as long as
new modules can be deleted. Such unused modules usually result from the optimizations
described in section 7.3.6.

7.3.8 Symbol and Netlist Output

Once the netlist is complete, the compiler writes two files: the first one describes the
symbol of the generated function. This symbol describes the interface of the generated
hardware operator and is used by the CAD tools. It is written by calling the OutputSym
method of the OpDescr class.

The second file is the netlist itself, written by calling the QutputWir method of the
OpDescr, ModOpRec, and I00pRec classes.

7.3.9 Concluding Remarks

There are still some limitations to the current implementation. Some operators like
multiply and divide are unimplemented. The mechanism for the library description
could be generalized to allow more flexibility. The compiler could handle more cases of
undefined operators and more cases of addition and comparison operators. The generated
netlist could be better optimized (e.g., some information about the speed and size of
the different library components could be added to their description, thus enabling the
compiler to choose a fast or small implementation).

7.4 Comparison with VHDL

To compare the nlc compiler with current VHDL hardware synthesizers, the execution
unit computing the “game of life” cellular automaton [BCG82] has been implemented
in both C++ and VHDL: the C++ code can be found in figures 6.6, 6.7, and 6.13 of
chapter 6 and the VHDL code is given in figures 7.33 and 7.34. The results of synthesizing
this execution unit, for a Xilinx XC4000 chip, with nlc, Exemplar, and Synopsis are
presented in table 7.2. It should be noted that the VHDL code is probably not written
in an optimal way for hardware synthesis. However, it is a simple translation of the
C++ code and probably resembles what a C programmer would have written in a first
attempt.
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Table 7.2: Summary of synthesized Life execution unit for a Xilinx XC4000 chip

Compiler Language Optimize CLBs Delay Run time Machine

nlc C++ no 172 63 ns 00:00:01 SPARCstation 5
nlc C++ yes 131 63 ns 00:00:01 SPARCstation 5
Exemplar VHDL Pass 5 145 86 ns 00:02:07 SPARCstation 5
Exemplar VHDL Pass 7 148 70 ns 00:02:26 SPARCstation 5
Synopsis VHDL Medium 71 63 ns 00:55:00 HP 700
Synopsis VHDL Hard 60 58 ns 01:05:00 HP 700

As can be seen in table 7.2, nlc gives slightly better results than Exemplar, but
uses about twice as much configurable logic blocks (CLBs) than Synopsis. However, as
far as compile time is concerned, nlc is the clear winner, part of the speed gain being
explained by the lack of Boolean minimization tools in nlc. It can also be noted that if
area or delay minimization are really important, the output of nlc can be fed to a tool
like Synopsis for stronger optimization.

To obtain a working circuit, the output of nlc (or Exemplar or Synopsis) must be
compiled using the chip vendor’s tools. In this case, using Xilinx XC4000 circuits, this
takes roughly 4 minutes on a SPARCstation 5 running at 85 MHz. This means that the
time needed for the complete compilation process to get a working circuit, i.e., a running
custom processor, is in the same order of magnitude as the time needed to compile a
purely software program.

The reasonable compilation time and the fact that a single language can be used to
describe a complete application are the main reasons which lead us to conclude that a
C++ to hardware compiler is a tool that could have a bright future and help promote
FPGAs as custom computing machines.
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library synth;
use synth.std_logic_1164.all;
use synth.exemplar_1164.all;
entity life is
port (
clk : in std_logic;
ain : in std_logic_vector(15
bin : in std_logic_vector(15
aout : out std_logic_vector(15
bout : out std_logic_vector(15
cmd : in std_logic_vector(20
end life;
architecture behavior of life is
type 1ntarray is array(17 downto
signal la : std_logic_vector(16
signal 1b : std_logic_vector(16
signal lc : std_logic_vector(16
signal nla : std_logic_vector(15
signal nlc : std_logic_vector(15
signal n  : std_logic_vector(15

begin
if (11 = ’1’) then i :=
if (12 = ’1’) then i :=1i + 1;
if (13 = ’1’) then i = i + 1;
return i;

end sumcol;
function nextstate(cl, c¢2, c3 :

variable sum : integer range 0
variable n : std_logic;

begin
sum := ¢l + ¢2 + c3;
if (sum = 3) then n := ’1°;
elsif (sum = 4) then n := c;
else n := ’0’;
end if;
return n;

end;

downto 0);
downto 0);
downto 0);
downto 0);
downto 0) );

0) of integer range 0 to
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);

function sumcol(1l1, 12, 13 : in std_logic) return integer
variable i : integer range 0 to 3;

1; else i := 0; end if;

end if;
end if;

in integer;
c : std_logic) return std_logic is

to 9;

is

Figure 7.33: Life execution unit written in VHDL, partl
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alias phO : std_logic is cmd(0);
alias phl : std_logic is cmd(1);

begin

seq : process
begin
wait on c¢lk, bin, cmd, nla, nlc, la, 1lb, lc;
if (clk’event and clk = ’1’) then
if (ph1 = ’1’) then
1a(16) <= 1a(0);
1b(16) <= 1b(0);
1c(16) <= 1c(0);
1a(15 downto 0) <= nla(15 downto 0);
1b(15 downto 0) <= bin(15 downto 0);
1c(15 downto 0) <= nlc(15 downto 0);
elsif (ph0 = '1') then
nla <= ain;
nlc <= bin;
end if;
end if;
end process;

aout <= bin when (phO = ’1’) else
o;

compute : process
variable ¢ : intarray;
begin
vait on nla, bin, nlc, la, 1lb, 1lc;
¢(0) := sumcol.(nla(i5), bin(15), nlc(15));
for i in 0 to 16 loop
c(i+1) := sumcol(la(i), 1b(i), 1lc(i));
end loop;
for i in 0 to 15 loop
n(i) <= pextstate(c(i), c(i+1), c(i+2), 1b(i));
end loop;
end process;

end behavior;

Figure 7.34: Life execution unit written in VHDL, part2



Chapter 8

The VLIW Compiler mcc .

for feeding data to the execution units of the Spyder processor and storing the

computed results back in its main data memory. Another task of the compiler is
to assign the hardware operators to the available execution units and then produce the
source code defining the entire contents of each of the execution units.

The purpose of the VLIW compiler is to produce the control program responsible

This chapter will present a brief example of control program, followed by a de-
scription of the source language accepted by the mcc compiler and a presentation of the
algorithms used by the compiler to transform this source language into Spyder instruc-
tions.

8.1 Example of Control Program

The goal of this very simple example program is to compute the average of two numbers
stored in the Spyder data memory and store back the result of the computation. For
this example, it will be assumed that a hardware operator computing the average of two
numbers is available.

The source code for the program is given in figure 8.1. Line 1 declares the average
hardware operator, specifying that it takes two inputs, labeled a and b, and produces
one output, labeled f. Lines 2 to 7 define the contents of the Spyder data memory,
starting from address 0 and moving upward: in this example, the first two locations of
the memory contain the two values of which we wish to compute the average and the
result will be stored in the third location. Lines 8 to 14 define the control program,
whose main routine must be named MCmain: in this example MCmain simply calls the
average operator with the two values contained in the memory (line 12) and stores the
result back in the memory (line 13).

The mcc compiler does not make a distinction between the bitvector data type and
the short data type. For a standard C++ compiler, however, these types are entirely
different, which is why the temporary variable res is used to store the result of the
hardware operator, before it is moved into the memory.

95
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1 extern void average(bitvector a, bitvector b, bitvector &f);
2 struct memory {

3 short ni;

4 short n2;

s short avg;

s}

7 extern struct memory *memory;

s void

9 MCmain()

10 {

11 bitvector res;

12 average(memory->nl, memory->n2, res);
13 memory->avg = res;

5}

Figure 8.1: Example of program

H-'
decl
s

Figure 8.2: Syntax of a complete program

file

8.2 The Language

The language chosen is roughly the same subset of Ct++ as the one defined for nlc in
section 7.2. There is no support for classes and inheritance, no pointers, and the array
type is limited to one-dimensional arrays.

There is a single data type available, the 16-bit integer. It can be defined both
as short and bitvector. The two definitions are completely equivalent as far as mcc
is concerned. However, distinctions are made by standard C++ compilers and these
two definitions were required for a standard Ct+ compiler to be able to compile the
programs.

The global syntax of a program source file is given in figure 8.2. It consists of the
description of the available hardware operators, of the description of the contents of the
memory, of the global variables, and of the procedures. The source file is preprocessed
by a C preprocessor [Sta92| before being read by the mec compiler proper.
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extern
Hextern

Figure 8.3: Extern declarations

extern void life(bitvector top, bitvector mid,
bitvector bot, bitvector &f);

Figure 8.4: Example of hardware operator description

m.(sm,ct )._.(memoxy c 0 o
o P

Figure 8.5: Memory content definition

8.2.1 Hardware Operators Definition

The hardware operators used by the program must be defined using the syntax given in
figure 8.3, which consists of the name of the operator, along with its input and output
parameters. The hardware operators appear like a function returning void, i.e., returning
no value. Although it is of no consequence to mcc, the parameters should be of type
bitvector to conform to the Ct+ conventions followed in the rest of the system.

Figure 8.4 gives an example of hardware operator description: the figure defines an
operator named 1life that takes three inputs, named top, mid, and bot, and produces
one output named f.

The other extern declarations shown in figure 8.3 allow the definition of the Spyder
memory as an external element of the Ct+ program and the definition of an external
bitvector variable named dummy. These declarations are necessary only for the sake of
conventional Ct+ compilers. The purpose of the dummy variable will be explained later.

8.2.2 Memory Content Definition

The contents of the Spyder data memory must be described to the mcc compiler. The
syntax of this description, which appears as a conventional C structure definition, is
shown in figure 8.5. The memory can contain values of type short and arrays of short
values. The description defines the content of the memory starting from address zero
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1 struct memory {
2 short width;

s short height;

{ short board{0];
sh

Figure 8.6: Example of memory content definition

decl bitvector ident @
]
20 VN
_/

array

K[X /]\
NV i L/
\‘Elmber

Figure 8.7: Syntax of the variable declarations

1 bitvector res;
2 short i, j;
1 short buf[64];

Figure 8.8: Example of variable declarations

and moving upward. The last element of the description can be an array of unspecified
size.

Figure 8.6 shows an example of memory content definition: line 2 specifies that the
address 0 of the memory contains the data named width; line 3 specifies that address 1
contains height; line 4 specifies that the rest of the memory is occupied by the array
named board, which is of unspecified size.

8.2.3 Variable Declaration

The syntax of a variable declaration is shown in figure 8.7. The mcc compiler aliows
global variables and variables local to a procedure. Variables are stored in the registers
of the Spyder processor and are never automatically assigned to a memory location.
An example of variable declarations is given in figure 8.8. Line 1 declares a variable
labeled res and line 2 declares two variables labeled i and j respectively. The mcc
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| ident (O} )
bitvector ~ ﬁjm.
RN }
N
O 0,
v
decl \—) L--[statemem

Figure 8.9: Syntax of a procedure description

procedure

formals

body

void
foo(short inA, short &out)
{
// procedure body
}

Figure 8.10: Example of procedure declaration

compiler makes no distinction of type between these three variables, but a conventional
C++ compiler does. Line 3 declares an array of 64 values labeled buf.

8.2.4 Procedure Definition

The syntax of a procedure description is given in figure 8.9. The description starts with
the optional keyword void, followed by the name, the formal parameters, and the body
of the procedure. There are two kind of parameters: parameters passed by value and
parameters passed by reference. Parameters passed by value are input parameters, while
parameters passed by reference are output-only parameters, i.e., the output parameters
do not have exactly the same semantics as C++ reference parameters, a difference which
seldom causes problems. The body of a procedure is composed of variable declarations
followed by statements.

An example of procedure declaration is given in figure 8.10: in is an input parameter
and out is an output parameter. Procedures cannot return a value and thus are of type
void. The main routine of the program must be named MCmain.
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Figure 8.11: Statement syntax

for (i = 0; i < memory->size; i++) {
memory->table(i] = 0;

}

Figure 8.12: Example of statements

8.2.5 Statements

The statement syntax is given in figure 8.11. There are five types of statements: empty
statements, expressions, loop statements, conditional statements, and blocks.

The conditional statements allow decisions based on the flag computed by the exe-
cution units of the Spyder processor.

An example of statements is given in figure 8.12 (it is assumed that the accessed
values have been properly defined).

8.2.6 Expressions

The expressions syntax is given in figures 8.13 and 8.14. A general expression can consist
of several expressions separated by commas. A simple expression can be either a primary,
a unary expression, or a binary expression.

The operators obey the same precedence and associativity rules as in C and C++
[HSJ91, pp. 166-167]. All the available operators are given in figure 8.14. The choice of
operators is limited since the actual computation should be performed in the hardware
operators.
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exprs
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Figure 8.13: Expressions syntax

QPP
PRPPIPPPPORE

Figure 8.14: Available operations

D

ident

unop

binop

A primary is either a reference to a memory element, a number, an expression
in parenthesis, an array reference, a function call, or an identifier, optionally post-
incremented or post-decremented.
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Figure 8.15: Flow of operation of the mcc compiler

8.3 The Compiler

The mcc compiler is based on standard compilation techniques, as described in the
Dragon book [ASU86]. The compiler is written in C++ with the help of two publicly
available classes libraries: the GNU C++library [Lea92| and the LEDA library [NU95].
The Ct++ compiler used was the GNU gcc compiler [Sta95].

The global flow of operations of the ncc compiler is shown in figure 8.15. Each
function is, in turn, parsed, analyzed, and transformed into object code, i.e., the compiler
constructs the parse tree representing the complete function, processes this tree, and
generates the corresponding object code, at which stage the parse tree is discarded and
the process is repeated with the next functions. The processing is described in detail in
the following sections.

8.3.1 Parsing and Tree Construction

A context-free grammar describing the syntax of mcc has been developed, and a LALR
parser [ASU86, pp. 195-266] for it has been constructed with the help of the parser
generator Bison [DS95).

The parser performs two tasks: the creation of the symbol table and the construction
of a parse tree.

8.3.1.1 The Symbol Table

The symbol table is implemented using a LEDA dictionary, which associates a symbol
name record (class SNRec) with the name of the symbol, and the symbol classes shown
in figure 8.16.

The symbols are represented by descendants of general SymRec class and are split
into three categories: hardware operators, represented by elements of class OpSymRec,
functions, represented by class FSymRec, and variables, represented by class VSymRec.
This last category is further subdivided into two classes: ASymRec objects represent
array variables and SSymRec represent scalar (i.e., simple) variables.
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SSymRec

Figure 8.16: The symbol classes hierarchy

8.3.1.2 The Parse Tree

The parse tree is constructed using node objects belonging to the subclasses of the
TreeRec class shown in figure 8.17, where each subclass corresponds to a specific language
construct. The purpose of each subclass is described below. Each TreeRec node object
has references to its subtrees, if any, as well as a reference to its ancestor in the tree
structure, i.e., the node of which it is a subtree.

8.3.1.3 Data Components

There are four data components: constants, represented by ConstTreeRec; accesses to
array compounents, represented by ArrayTreeRec; accesses to scalar variables, repre-
sented by VarTreeRec; accesses, through a pointer, to variables stored in the memory,
represented by RefTreeRec.

The ConstTreeRec objects simply contain the integer value of the constant they
represent. The ArrayTreeRec objects represent the access to an element of an array
described by an ASymRec object, where the index of the array element is a tree. The
VarTreeRec objects reference a scalar variable described by a SSymRec object. The
RefTreeRec objects reference a value from the Spyder memory through a pointer, rep-
resented by a tree.

8.3.1.4 Operators

There are three kind of operators available: arithmetic operators, comparisons, and auto-
increments. The arithmetic operators are represented by objects of classes AddTreeRec,
MulTreeRec, and NegTreeRec. The NegTreeRec implements the negation of an integer
value, represented by a tree.

The addition and multiplication operate on two or more expressions, represented by
trees stored in a list. If one of the expression is a constant, it is stored as the first element
of the list, while if several expressions are constants, they are evaluated and replaced by
the single constant value obtained by applying the operation implemented by the object
to the constant expressions. The AddTreeRec and MulTreeRec implement, respectively,
the arithmetic addition and multiplication. Subtractions are implemented by adding the
negated value of the second operand to the first, and thus are also implemented through
AddTreeRec objects.

The CmpTreeRec objects represent the comparison (i.e., equality, inequality, greater
than, etc.) of two values, represented by two trees, one left and one right. The result of
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Figure 8.17: The parse tree classes hierarchy

the comparison is a Boolean value.

The IncTreeRec objects represent a general form of auto-increment of a value. The
increment can either be a pre-increment (i.e., the value is incremented before being used)
or a post-increment (i.e., the value is incremented after having been used). The value to
be incremented is represented by an SSymRec object, and the increment is a tree.

8.3.1.5 Statements

There are five kind of statements: the assignment, the function call, the hardware oper-
ator call, the conditional statement, and the loop statement.

The assignment is implemented by the AssignTreeRec class. The right-hand side
value is assigned to the left-hand side. Both are trees.

The function call is implemented by the FunTreeRec class. The function to call is
represented by a FSymRec object and the parameters of the call are described by a tree
list.

The hardware operator call is implemented by the OpTreeRec class. The operator
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to call is represented by an OpSymRec object and the parameters of the call are described
by a tree list.

Loop statements are implemented by the LoopTreeRec class and contain four parts:
the initializing expression, the looping condition expression, the increment expression,
and the loop body. The three expressions are represented by trees, while the loop body
is implemented by a tree list.

8.3.1.6 Other Tree Components

The ListTreeRec object contains an ordered list of trees and is used by other tree objects
(e.g., the addition operator uses a tree list to store a list of expressions). It is also used
to keep a list of statements (for example, the body of a function is represented by a
ListTreeRec object).

The NopTreeRec object is used to represent a no-operation statement. For example,
if a loop statement has no initialization sequence, that initialization sequence will be set
to a NopTreeRec object.

The ErrTreeRec object is used when the parser detects a syntax error.

8.3.2 Source Level Optimizations

Once the parse tree of a whole function has been constructed, it is subjected to a number
of transformations. The modified parse tree still represents valid C*++ code, and therefore
these transformations are called source level transformations. The mcc compiler is able
to output to a file this modified parse tree as valid Ct+ source code, which can be
compiled by a standard C++ compiler for verification.

The purpose of all the applied transformations is twofold: optimize the generated
code and fit the source code to the Spyder architecture. Most of the work is performed on
loops, where several well-known code transformations are applied: loop-based strength
reduction, induction variable elimination, loop-invariant code motion [BGS94].

A small code sample, given in figure 8.18, will be used throughout this section to
describe the various transformations applied. The example deals with a two-dimensional
array, named board, stored in the memory. The dimension of the array is height lines
of width columns and it is accessed line-by-line by the loops shown in lines 11 to 16 of
figure 8.18.

8.3.2.1 Loop Analysis

The loop analysis, implemented by the FindLoopBounds method, tries to determine
the number of iterations performed by each loop statement. For example, given the
inner loop statement of figure 8.18, the analysis will determine that the loop is repeated
memory->width times, a piece of information used to load the loop counter stack available
in the sequencer of the Spyder processor. Other information extracted from the loops
includes: the name of the loop control variable (also called the induction variable), its
initial and final values, and the amount by which it is incremented at each iteration.
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1 extern void foo(bitvector top, bitvector mid);
2 struct memory {

3 short width;

4 short height;

s short board(0];

¢}

7 MCmain()

s {

9 short i, j, k;

10k = memory->board[0];

1 for (i = 0; i < memory->height - 1; i++) {
12 for (j = 0; j < memory->width; j++) {

12 foo(memory->board{i * memory->width + jJ,

3 memory->board[(i+1) * memory->width + jI);
15 }

15}

7}

Figure 8.18: Sample source code

k = mem[2];
for (j = 0; j < memory->width; j += 1) {
menf2 + jl;

1
2
3 Temp_B_0[(j]
+}

s for (1 = 0; i < -1 + memory->height; i += 1) {
s for (j = 0; j < memory->width; j += 1) {

7 Temp_D_0 = Temp_B_0{j];

] Temp_B_0[j] = mem{2 + (1 + i) * memory->width + j];
9 Temp_D_1 = Temp_B_0(j];

10 foo(Temp _D_0, Temp D_1);

Figure 8.19: Finding common memory references

8.3.2.2 Memory References Analysis

The purpose of the analysis of memory references is to determine if several statements
read the same memory location, in which case the memory is read once and the value
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t for (j = 0; j < memory->width; j += 1) {
2 Temp_B_0[j] = mem{2 + j];

3}

4 Temp_T_0 = 2 + memory->width;

s for (i = 0; i < -1 + memory->height; i += 1) {
s Temp T_1 = i * memory->width + Temp_T_O;
7 for (j = 0; j < memory->width; j += 1) {
8 Temp_D_0 = Temp_B_0(j];

) Temp_B_0[j) = mem[j + Temp_T_1];

10 Temp_D_1 = Temp_B_0[j];

1 foo(Temp_D_0, Temp_D_1);

2}

Figure 8.20: Loop invariant code motion

is stored in a register for the subsequent accesses. The task is implemented by the
ArrayToRef and FindCommonMemRef methods.

The effect of applying memory reference analysis to the source code of figure 8.18
is illustrated in figure 8.19. The effect of the ArrayToRef method is to transform the
accesses to the board array into accesses through pointers: since the board array starts
at position 2 in the memory, the array access on line 10 of figure 8.18 is transformed into
the pointer reference mem[2] shown on line 1 of figure 8.19, where mem is an array that
represents the entire Spyder memory and 2 is the offset.

The FindCommonMemRef method has determined that the values referenced by line 14
of figure 8.18 will be reused in the next iteration of the outer loop. Thus, these values
are stored in the temporary Temp_B_0 array, initialized by lines 2 to 4 of figure 8.19.
Lines 11 to 16 of figure 8.18 are transformed into lines 5 to 12 of figure 8.19.

8.3.2.3 Loop Invariant Code Motion

This step of the compilation process moves outside the loop those pieces of code that do
not depend on the loop control variable (i.e., computations that yield constant results
across all the iterations of the loop). Some arithmetic transformations of product terms
distribution and a small amount of elimination of common expressions are performed
before applying the loop invariant code motion, but most of the common expression
analysis is performed later and explained below.

The code motion is performed by the UprootLoopInvariants method. The result
of applying the method to the sample source code of figure 8.18 (after having applied
the preceding code transformations) is given in figure 8.20. The pointer computation on
line 8 of figure 8.19 has been split into three pieces: one piece has been moved to line 4
of figure 8.20, another to line 6, and the last piece left in place, on line 9. Note that
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1 temp = a * b;
— 2Xx = temp + 2;
3y = c + temp;

1x=a*b+2;
2y=¢+b=xa;

Figure 8.21: Example of common expressions elimination

1 x=as*b+1; 1 x=ax*xb+1;

ay=a*b+2; = 2y=x+1;

Figure 8.22: Example of similar expressions simplification

1
2
2
4
5
6
7
s
8

10
11
12
13

13}

for (j = 0; j < memory->width; j += 1) {
Temp A0 = 2 + j;
Temp B_0([j] = mem[Temp_A_0];

Temp_A_ 1 = Temp_A_0O;
for (i = 0; i < -1 + memory->height; i += 1) {
for (j = 0; j < memory->width; j += 1) {

Tenp_D_0 = Temp_B_0[j];
Temp_A_1 += 1;

Tenp_B_0[j] = mem[Temp_A_1];
Tenp_D_1 = Temp_B_0[j];
foo(Temp_D_0, Temp_D_1);

line 1 of figure 8.19 has disappeared in figure 8.20 since the value of k was never used.

Figure 8.23: Common expressions elimination

8.3.2.4 Common Expressions Elimination

A great deal of effort is spent by the compiler to find common and similar expres-
sions. Two statements are said to contain common expressions when they contain sub-
expressions which are identical: e.g., figure 8.21 shows two statements which contain the
common expression a * b. This common expression is computed once and stored in a
temporary variable, which is subsequently used in place of the expression, as shown in

figure 8.21.
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1 Temp_ A 0 =1
2 for (j = 0;
3 Temp A O +
4 Temp_B_O[j}
s}

¢ Temp_A_1 = Temp_A_O;

7 for (i = 0; i < -1 + memory->height; i += 1) {
¢ for (j = 0; j < memory->width; j += 1) {

9 Temp_D_0 = Temp_B_0[j];

10 Temp_A_1 += 1;

11 Temp_B_0[j] = mem{Temp_A_1];

12 Temp_D_1 = Temp_B_0[3j];

13 foo(Temp_D_0, Temp_D_1);

j < memory->width; j += 1) {
= 1;
= mem[Temp_A_0];

Figure 8.24: Induction variable suppression

Two expressions are said to be similar if their difference is a simple value, i.e, a
constant or the value of a variable. In such cases, the compiler replaces the second
expression by the sum of the value of the first expression with the computed difference,
as shown in figure 8.22. The purpose of this transformation is to simplify the code and
create opportunities to use the adders available in the memory control unit of Spyder.

The PropagateKnownValues method is devoted to finding common expressions,
while the PropagateSimilarValues method to finding similar expressions. The latter
method is able to find similar expressions across loop iterations. It is assumed that each
loop body is executed at least once. The result of applying the common expressions
elimination methods to the example code of figure 8.18, after having applied all the
previous code transformations, is shown in figure 8.23.

In figure 8.23, the pointers to the memory array have been assigned to temporary
variables of the form Temp_A_n, where A stands for address. Thus, line 2 of figure 8.20
has been replaced by lines 2 and 3 in figure 8.23, and line 9 of figure 8.20 by lines 9
and 10 in figure 8.23.

The elimination of common expressions has caused line 4 of figure 8.20 to be replaced
by line 5 in figure 8.23, and the computation of the memory address used in line 9 of
figure 8.20 (lines 6 and 9 of that figure) to be reduced to line 9 in figure 8.23.

8.3.2.5 Induction Variable Suppression

The purpose of induction variable suppression is to avoid using the loop control variable
in evaluated expressions. Since the loop execution is controlled by the loop counters in the
sequencer of the Spyder processor, the value of that variable will not be readily available
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1 Temp A0 = 1;
2 for (j = 0; j < memory->width; j += 1) {
3 Temp A_0 +=1;
Temp_B_0(j] = mem{Temp_A_01;
/* inc wptr by 1 *»/
}
7 /* reset wptr */
s for (i = 0; i < -1 + memory->height; i += 1) {
s for (j = 0; j < memory->width; j += 1) {
10 Temp_D_0 = Temp_B_0[j];
11 Temp_A_0 += 1;
12 Tenp_B_0(j] = mem[Temp_A_0];
13 foo(Temp_D_0, Temp_B_0{j1);
1 /* inc wptr by 1 */

a o e

15}
16 /* reset wptr */
1}

Figure 8.25: Source code ready for object code generation

to the processor, which is the main reason for trying to suppress references to the value
of that control variable. The suppression task is performed by the SuppressIndexRef
method.

The result of this transformation on the sample code of figure 8.18 is shown in
figure 8.24. Line 3 of figure 8.23 is replaced by lines 1 and 3 in figure 8.24. The fact
that the loop control variable j is still used on lines 4, 8, 10, ard 11 of figure 8.24 does
not constitute a problem, since the Temp_B_0 array will be implemented by the register
windowing mechanism (and thus the value of j will not be actually used).

8.3.3 Register Assignment

During the register assignment phase, the compiler decides where to store the global and
local variables, as well as the temporary variables that were created during the preceding
source code transformations. The assignment is performed in two steps. First, the
SetVarLocation method verifies that each variable is positioned in the correct register
set, i.e., that variables used as pointers are stored in address registers and variables used
by the hardware operators are stored in the correct register banks. The second step uses
standard graph coloring techniques [ASU86] to assign each variable to one register. The
graph coloring is used so that more than one variable can be assigned to a given register.

The result of the register assignment phase on the sample code of figure 8.24 is shown
in figure 8.25. Line 6 of figure 8.24 has been suppressed since both variables Temp_A_0
and Temp_A_1 can be assigned to the same hardware register. Line 12 of figure 8.24 was
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t #include "fooOP.cc"

2 void

3 eu_main(bitvector ain, bitvector bin,

4 Dbitvector cmd = bitvector(21), bitvector &flag = bitvector(1),
s bitvector &aout = bitvector(i6), bitvector &bout = bitvector(16))
6 {

7 static bitvector tOreg(16,0);

s flag = 0;

9 aout = bin; bout = ain;

1o if (cmd[0] == 1) {

1 foo(ain, bin);

12}

13 }

Figure 8.26: Source code configuration of execution unit 1

1 void

2 eu_main{bitvector ain, bitvector bin,

2 bitvector cmd = bitvector(21), bitvector &flag = bitvector(1),

¢ Dbitvector &aout = bitvector(16), bitvector &bout = bitvector(16))
s {

¢ static bitvector tOreg(16,0);

7 flag = 0;

¢ aout = bin; bout = ain;

s}

Figure 8.27: Source code configuration of execution unit 2

also suppressed since the temporary variable Temp_D_1 it defined was used only once.
The array Temp_B_0 is implemented in a register bank through the register windowing
mechanism, and thus lines 5, 7, 14, and 16 manipulate the register window pointer to
access the correct element of the array.

8.3.4 Hardware Operator Assignment

At this stage, the compiler scans the generated Spyder instructions to determine which
hardware operators must be implemented by each execution unit. Each hardware opera-
tor is then assigned a unique selector, or opcode, and the resulting selection source code
is written out for each execution umnit. This generated source code is then used by the
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1 void

2 eu_main(bitvector ain, bitvector bin,

3 bitvector cmd = bitvector(21), bitvector &flag = bitvector(1),

4 Dbitvector Zaout = bitvector(16), bitvector &bout = bitvector(16))
s {

¢ static bitvector tOreg(16,0);

7 flag = 0;

¢ aout = bin; bout = ain;

9

}

Figure 8.28: Source code configuration of execution unit 3

SLabelRec
SAddrOpRec
SMemOpRec
[ StastrRec  |— SEUOpRec
SSeqOpRec
SWinOpRec

SStopRec

Figure 8.29: The instruction description classes hierarchy

nlc compiler (see section 7.3) to synthesize the hardware description of each execution
unit.

The hardware operators were either explicitly defined in the source code (e.g., line 1
of figure 8.1), or implicitly generated by the compiler (e.g., moving a value from one
register bank to the other).

The source code of the three execution units corresponding to the example of fig-
ure 8.1 is given in figures 8.26, 8.27, and 8.28. The foo hardware operator, described
on line 1 of figure 8.1, has been assigned to execution unit 1 with the operation code 1.
The default action of each execution unit is to swap the values coming from the banks
R® and R®.

8.3.5 Object Code Generation

The object code generation phase of the compilation process transforms the parse tree
into a linear list of simple Spyder instructions. These instructions are called simple
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1 L_0: a[7]<-0 R ,NOP ,NOP ,NOP

2 al0)<-1 R ,NOP ,NOP ,NOP

3 cntr<-M[af[7]+40], ,NOP ,NOP ,NOP

4 L_1: ,c[0J<-M[a[0]+1]=*,NOP ,NOP ,NOP,djnz L_1,W+
s al7]<-M[a[7]+1], ,NOP ,NOP ,NOP, jump,W0

3 , ,NOP ,NOP ,NOP

7 M[a[7]-1]1* , ,NOP ,NOP ,NOP

¢ cntr<-af7] s ,NOP ,NOP ,NOP

s al7]<-0 . ,NOP ,NOP ,NOP

10 L_2: , ,NOP ,NOP ,NOP

11 cntr<-M[a[7]+0], ,NOP ,NOP ,NOP

12 L_3: M[al[0]+1])=* , ,NOP ,0(c[0]#*,c{0]),NOP

12 ,c[0]<-M[a[0]+0] ,NOP ,NoP ,NOP

13§ R ,1(c[0],c[0]),NOP ,NOP,djnz L_3,W+
15 R ,NOP ,NOP ,NOP,djnz L_2,W0
16 R ,NOP ,NOP ,NOP

17 , ,NOP ,NOP ,NOP

18 R ,NOP ,NOP ,NOP

19 * R ’ ,NOP ,NOP ,NOP

20 R ,NOP ,NOP ,NOP, jump L_O

Figure 8.30: Generated object code

because they concern a single resource of the Spyder processor (e.g., the sequencer or
the first execution unit). These simple instructions are represented by objects belonging
to the subclasses of the SInstrRec class shown in figure 8.29.

At this stage of the compilation process, there exists a simple mapping between the
nodes of the parse tree and the Spyder instructions. This transformation is performed
by the Compile method of the TreeRec class.

8.3.6 Object Code Compaction

The object code compaction phase of the compiler tries to combine several of the simple
instructions produced by the object code generation phase into one VLIW instruction,
making use of the instruction-level parallelism available. An instruction dependency
graph is constructed, taking into account the pipelined execution of the Spyder processor.
Two instructions are said to be dependent when one must be executed before the other,
in which case an edge, going from the former to the latter instruction, is added to the
graph. The instructions are then sorted, using this dependency graph, by a topological
sort algorithm [Sed92].

The topological sort is used to create clusters of simple instructions. The clusters are
ordered (i.e., all the instructions of cluster { must be executed before starting to execute
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the instructions of cluster ¢ + 1), but the instructions inside a cluster are independent
from each other. The object code compaction phase combines the simple instructions of
each cluster into the smallest possible number of Spyder instructions.

The object code corresponding to the example of figure 8.1 is given in figure 8.30.
Lines 2 to 4 of figure 8.30 implement the loop of lines 1 to 6 of figure 8.25, lines 5 to 7 of
figure 8.30 compute the counter value for the loop starting at line 8 of figure 8.25, while
the two nested loops are implemented by lines 10 to 15 of figure 8.30. Lines 16 to 18 of
figure 8.30 empty Spyder’s pipeline before stopping the processor on line 19.



Chapter 9

The VLIW Assembler imac -

description of each very large instruction of a Spyder program into the corre-
sponding binary object code format to be downloaded into the Spyder program
memory.
This chapter describes the format of the instructions in the source file and describes
the algorithms used by the assembler. See chapter 6 for an example of the use of this
assembler.

r I Yhe imac assembler has been developed to transform a source file containing the

9.1 The Assembler Source Syntax

The source file is preprocessed by a C preprocessor [Sta92] before being parsed by the
assembler. It is thus possible to define symbolic names for the operations of the execution
units, as well as any other macro expansion that can simplify the task of writing the
program. The C preprocessor also handles the removal of comments (i.e., the syntax of
comments in the assembler source file is the same as Ct+ comments).

The global syntax of a program source file is given in figure 9.1. It consists of the
specification of the three execution unit command masks, followed by the description
of the instructions that compose the program. Each instruction must be written on a
single line.

9.1.1 The Execution Units Command Masks

The masks are used by the assembler to properly set the 21 common bits that control
the three execution units. The syntax of the mask definition is given in figure 9.2.

Each mask specification defines three bit fields: one for the command of the exe-
cution unit, one for the register specification of bank R?, and one for the register spec-
ification of bank R®. The three execution units are defined by the three identifiers EU1,
EU2, and EU3. Each bit field is specified by using the position of its bits among the 21
command bits. Considering the masks specification example given in figure 9.3, the bit
field containing the command for the first execution unit is composed of the two bits at
position zero and one of the 21 common bits.

115



116 CHAPTER 9. THE VLIW ASSEMBLER IMAC

file L

mask mask mask line

-®

Figure 9.1: Syntax of a complete assembler program

mak (s ){ident -(cad)-{Est o8-t (o)t ()
4/5\;
&/

©
L\j
(e
AN

line

list

Figure 9.2: Syntax of the masks specification

Masks EU1 cmd(1,0) regA(20) regB(19)
Masks EU2 cmd(3,2) regA(18) regB(17)
Masks EU3 cmd(5,4) regA(16) regB(15)

Figure 9.3: Example of mask specification

Table 9.1: Example of mask computation, using the masks defined in figure 9.3

Operation Bit field
1(c[3]1,c[4])) |0 1 0 0 0 0O 000000000 00 00 01
2(cf1],c(5]1) |0 0 0 1 O O 000000000 00 10 00
3(cl71,cf0]1) |0 0 0 0 1 0 000000000 11 00 00

All together [0 1 0 1 1 0 000000000 11 10 01

In the default configuration, each register window contains four registers, and the
register address is encoded in two dedicated register address lines. When more registers
per window are needed, the additional register address lines are borrowed from the
21 common command bits of the execution units. The two register fields are used to
define these additional address lines. The masks example given in figure 9.3 defines one
additional register address line (i.e., there are 8 registers per window).

Examples of execution unit operations are given in table 9.1. The first three lines
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Cnaﬂ =

label - O:

Figure 9.4: Instruction syntax

of the table define, respectively, the three operations of the three execution units, using
the masks specified in figure 9.3. The last line represents the resulting 21 common bits
of the execution units command word.

9.1.2 Instruction Syntax

Each instruction is composed of eight fields: a breakpoint, a label, two memory transfers,
three execution unit operations, and a sequencer operation. The instruction syntax is
given in figure 9.4.

A breakpoint causes the Spyder processor to stop and is mainly used to inform the
host processor that Spyder has completed its task. It is indicated by a star () at the
beginning of an instruction.

A label is any string followed by a colon (:). It is an optional field, used as target
for sequencer operations.

The first data transfer command applies to the data memory port connected with
the sequencer and with the register bank R®, while the second data transfer command
applies to the data memory port connected with the register bank R®. Each of the
three execution unit commands refers to the corresponding execution unit of the Spyder
processor. All these fields are separated by a comma (,).

9.1.3 The Data Transfer Commands

The syntax of the data transfer commands is given in figure 9.5. The command is
composed of three parts: the left part is a register specification, the middle part specifies
the direction of the transfer, and the right part is either an address register, a constant, or
a memory address specification. There are two data transfer commands on one assembler
line: the first one applies to the A-bus of the Spyder processor and the second one applies
to the B-bus.

The registers are defined by a one-letter register selector, followed by a number
between square brackets to define one specific register among the selected type. The
exception is the loop counter stack, which is defined by the name catr. The list of
available selectors is given in table 9.2.

The memory address is computed by adding the content of a first address register,
called base address, with either a constant or the content of a second address regis-
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bus m S [Teg |

=y
mem

constant

mem

Figure 9.5: Syntax of the memory transfers

Table 9.2: The register selector

Selector Kind

a Address register
Global window
Current window
Next window -
Previous window

W e oM

ter, called displacement. When the memory specification is followed by a star (), the
resulting computed address is stored back in the base address register.

The A-bus offers more transfer possibilities than the B-bus. In fact, while for the
A-bus the register on the left part of the transfer specification can be any register and
the right part of the transfer command can specify an address register, a constant, or
the content of a data memory location, for the B-bus the register on the left part of the
transfer specification must be a member of the data registers (i.e., only the g, ¢, », and
p selectors are allowed) and the right part of the transfer command must specify the
content of a data memory location.
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eu

number |~*®—-[ reg

NOP

Figure 9.6: Syntax of an execution unit operation

I ry
\de |

seqop

ED ED @D @D G @ @ @D
| i G G
winop

Phde

Figure 9.7: Syntax of the sequencer operations

9.1.4 The Execution Unit Commands

The syntax of the execution unit commands is given in figure 9.6. An empty command
and the command NOP have the same meaning (no operation).

The execution unit operation is specified by a command number, followed by the
specification of the two registers to which the command is applied. The first register is
selected from register bank R® and the second one from register bank R®. Both registers
must be data registers (i.e., only the g, c, n, and p selectors are aliowed).

If the result produced by the execution unit operation must be written back into
either or both registers, the corresponding register description is followed by a star ().

9.1.5 The Sequencer Commands

The syntax of the sequencer commands is given in figure 9.7. The command consists of
an opcode followed by an optional target label. The opcodes of the sequencer commands
are given in table 9.3. When the target of a sequencer operation is omitted, the default
is the next instruction.

The sequencer operation can be followed, optionally, by a window pointer command
or a counter stack command. The meaning of these additional commands is described in
table 9.4. Note that, strictly speaking, the pop command does not concern the current
window pointer, but was included among the window pointer commands for convenience.
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Table 9.3: Sequencer opcodes definition

Opcode Operation
call | Call subroutine
cbra | Conditional jump
ccal | Conditional subroutine call
cret | Conditional return
djnz | Decrement counter and jump if not zero
jump | Jump
nbra | Negative conditional jump
retn | Return

Table 9.4: Window pointer and counter stack commands

Opcode Operation
W+ Increment the current window pointer
W- Increment the current window pointer
WO Reset the current window pointer
pop Pop the top of the loop counter stack

9.2 The Assembler

The assembler is written in C++ with the help of two publicly available classes libraries:
the GNU C++library [Lea92] and the LEDA library [NU95]. The C*++ compiler used
was the GNU gcc compiler {Sta93].

The assembler uses two passes to produce the object code corresponding to the
instructions contained in an input source file. The first pass parses the input and gener-
ates an internal representation of each instruction. A context-free grammar describing
the syntax accepted by the assembler has been defined, and an LALR parser {[ASU86,
pp. 195-266] for that grammar has been constructed with the help of the Bison parser
generator [DS95].

During the parsing of the input file, all the fields of the defined instructions are
filled, except the jump address field of forward branching instructions. The assembler
constructs a list of all the defined labels with their corresponding address and a list of
the instructions with an undefined jump address field.

The second pass of the assembler fills the jump address field of the forward branching
instructions using the two lists defined during the first pass.
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Figure 9.8: The interactive assembler interface

Related Tools

A program, named imalist, has been developed to perform the disassembly of a Spyder
program. The output of this disassembler can be directly reassembled by the imac
assembler.

An interactive assembler, with a graphical user interface, was also developed to
allow the user to easily make small modifications to existing code (such as inserting a
breakpoint). Figure 9.8 shows a snapshot of the user interface. The user can modify all
the components of a Spyder instruction using menus, buttons, and the keyboard to enter
values. The interactive assembler is named ima and was developed using the Athena
toolkit of the X window system [Pet94].
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Chapter 10
The UNIX Interface

2%

kernel must load a device driver. The driver consists of two files: a configuration

file and the file containing the code of the device driver. This chapter describes the
features provided by the device driver code and explains how to install the Spyder board
and its driver into the host workstation.

In order to let the UNIX operating system access the Spyder coprocessor, the UNIX

10.1 The Spyder Device Driver

A device driver consists of a collection of C functions that are required by the UNIX
operating system to access a given device. The functions must perform tasks concerned
with installing and uninstalling the driver, defining the entry points of the device, opening
and closing access to these entry points, reading and writing data into the device, and
controlling the device operations [Sun93}.

The device drivers on the Solaris operating system, which is the variant of UNIX
used in this project, are organized into a tree structure. For instance, all the device
drivers for VME devices, of which Spyder is a member, are attached to a general VME
device driver which implement basic operations common to all VME device drivers. Thus
the Spyder device driver must implement its routines in terms of the functions provided
by the general driver [FOR94a].

The Spyder device driver defines four entry points into the Spyder coprocessor: one
for the data memory, one for the program memory, one for the configuration of the
FPGA circuits, and one to access the control and status register. The remainder of this
section will describe each of these entry points without describing the implementation
in too much detail. If needed, a detailed description can be found in the source code of
the driver.

10.1.1 The Data Memory

The Spyder data memory can be accessed through the /dev/spyder.ran file. The driver
implements the open, close, read, write, 1seek, and mmap system calls. The user can
map the Spyder data memory in the address space of its program by using the mmap

123
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system call, in which case the Spyder memory must be accessed as an array of 32-bit
words, i.e., the address of the access must be a multiple of four bytes.

When the read and write calls are used, the driver handles the addressing automat-
ically. The main reason for using the mmap call is that the access to the Spyder memory
becomes much faster, since the driver code no longer needs to be called for reading and
writing data.

10.1.2 The Program Memory

The program memory is accessed through the /dev/spyder.rom file. The driver im-
plements the open, close, and write system calls. Opening this access point causes
the Spyder processor to be stopped and reset and fills the pipeline register with zeroes.
The only possible operation is a sequential write into the program memory, starting at
address zero. _

While this entry point is open it is not possible to open the FPGA configuration
entry point.

10.1.3 The FPGA Configuration

The configuration of the FPGA circuits on the Spyder board is performed through the
/dev/spyder.1ca file. The driver implements the open, close, and write system calls.
Opening this access point stops the Spyder processor, clears the current configuration
of the FPGA chips, and fills the pipeline register of the program memory with zeroes.
The only possible operation is a sequential write of the configuration data for the FPGA
chips. -

While this entry point is open it is not possible to open the program memory entry
point.

10.1.4 The Control and Status Register

The Spyder control and status register can be accessed through the /dev/spyder.csr
file. The driver implements the open, close, read, write, and mmap system calls. The
user can map the register in the address space of its program by using the mmap system
call. The size of the register is one byte and, for some unidentified reason, the pointer
returned by the mmap system call must be incremented by one to actually point to the
register.

10.2 Installing the Spyder Board

The Spyder processor is implemented on a standard double Europe VME board [Mot85}
which must be plugged in a VME backplane. The Spyder processor is implemented as
a slave device, i.e., there must be another board acting as bus master on the backplane.
For example, the Spyder board is currently plugged in a VME backplane together with a
SPARC CPU-5CE from Force computers [FOR94c, FOR94d, FOR94a, FOR94b]|, which
is fully compatible with the SPARCstation computers from Sun Microsystems.
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type=ddi_spyder \D.\MO

Figure 10.1: Spyder device links information

Once the board is correctly inserted in place, a driver for this board must be config-
ured in the system. It is assumed that the board is plugged in a Sun SPARC-compatible
workstation and that the operating system is Solaris 2 [Sun94]. Should this not be the
case, the driver installation instructions might be different.

10.2.1 Installing the Driver Files

The driver consists of two files: spyder and spyder.conf. The first contains the code of
the driver itself and the second contains configuration information. These two files must
be copied in the /usr/kernel/drv directory, for the operating system kernel to be able
to locate them.

10.2.2 Configuring the Entry Points

In order for the system to create the appropriate links in the /dev directory, the line
shown in figure 10.1 must be added to the /etc/devlink.tab file.

10.2.3 Configuring the System

Once everything is in place, the command add_drv spyder can be used to inform the
operating system that a new device driver has been added. It might be necessary to check
and set up the access permissions of the device driver entry files created in the /devices
directory. These files are pointed to by the /dev/spyder. = links. If no problems arise,
the Spyder driver will announce itself in the system log file. Otherwise, the system log
file should provide information about the problems encountered.
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processor. Two applications are based on cellular automata simulation: John
Conway’s game of Life and an experiment in dendrite growth modeling. The
other two applications concern low level image processing: thinning and edge detection.

T his chapter presents four applications that have been implemented on the Spyder

11.1 Life Cellular Automaton

The sequential nature of standard processors and their fixed data size render them un-
suitable to efficiently simulate cellular automata. Therefore, many dedicated processors
have been designed and implemented to handle this kind of applications [PD84, TM87).

The implementation of the Life cellular automaton on the Spyder processor, de-
scribed in detail in chapter 6, has been tested against xlife, a program running on the
X window system, available from anonymous ftp on the host ftp.x.org.

Both programs have been used to simulate a block pusher pattern (file blockpusher,
included with x1ife) on a 608 x 608 array of cells for 13160 iterations. The block pusher
pattern was selected because it presents a fairly complicated and stable pattern (where
by stable we mean that the pattern does not tend to grow quickly out of the array).
Figure 11.1 shows the block pusher pattern in its initial state on the left side of the
figure and after 13160 iterations on the right side. The pattern is called a block pusher
because it pushes a small block of cells (visible at the edge that is closest to the bottom
right corner of the initial pattern) to the bottom right corner of the cellular array, as can
be seen on the right side of figure 11.1.

The simulation was run on both Spyder and a SPARCstation 5 computer from Sun
Microsystems. A comparison of the results is given in table 11.1.

The x1ife program is highly optimized and uses fairly complicated algorithms and
data structures to avoid computing the new state of cells in regions of the array where
nothing will change during the current iteration. In the block pusher pattern, there is
an average of 2800 live cells at any given time (out of a total of 369664 cells). The ratio
of live to dead cells is thus less than 1 to 100 and xlife can significantly reduce the
amount of computation by avoiding to recompute cell states in regions where all the cells
are dead.
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Figure 11.1: Block pusher pattern simulation

Table 11.1: Execution time for the Life cellular automaton

Processor Clock frequency | Computation time
microSPARC 2 | 85 MHz 553 s
Spyder 8 MHz 416s

The Spyder implementation, on the other hand, uses a simple algorithm and always
computes the new state of all the cells of the array at each iteration.

To summarize, Spyder can compute the future state of about 115 million cells per
second (369664 cells x 13160 iterations/41.6 s) with a clock speed of 8 MHz, compared
to the approximately 6.5 million cells-per second (27000 cells x 13160 jterations/55.3 s,
where 27000 is the maximum number of computed cells based on the 3000 live cells
and their 8 surrounding neighbors) computed by the SPARCstation’s microSPARC 2
processor with its 85 MHz clock. If Spyder had 32-bit data words (there is room enough
in the execution units), it could compute about 227 million cells per second with the
same clock speed. An additional limiting factor is the bandwidth between the data
memory and the registers: if more ports between the data memory and the registers
were available in the current implementation, all three execution units could work in
parallel and a speed of about 172 million cells per second could be achieved.

11.2 Dendrite Growth Modeling

The purpose of this application is to try to simulate, using cellular automata, the growth
of a dendrite (see [OA74, HT94| for examples of real dendrites). The method was pro-
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Cxx

Figure 11.2: Cellular automaton state after growth, and melting steps

posed by professor Rappaz of the material sciences department of the EPFL, and the
implementation was realized by a student as a semester project in our laboratory.

Each cell of the automaton can be in either of two states: melted or solid. The basis
of the method is the use of two different sets of rules for a cellular automaton consisting
of 2-state cells: the first set of rules causes the crystal to grow, while the second set of
rules causes part of the crystal to melt back. These two antagonistic sets of rules are
applied by turns, as seems to happen in real dendrite growth.

Both set of rules were taken from [TM87]. The growth rule causes a new solid cell
to appear if it sees exactly one solid cell among its eight neighbors. The left image on
ficure 11.2 shows the effects of the growth rule, starting with a single central solid cell,
after 52 time steps. The melting rule, known as Vichniac rule, states that a cell is solid if
there are 4, 6, 7, 8, or 9 solid cells (including itself) in its immediate neighborhood, and
melted in the other cases. The image on the right side of figure 11.2 shows the effects of
5 steps of the melting rule on the left side image.

This is an ongoing research project. There are a lot of possibilities to explore
concerning the propet balance between applications of the two sets of rules and their
sequencing, and it is not clear if the rules should be applied as they are, or modified
to better emulate what happens at the molecular level in a melted alloy. The high
speed of simulation offered by the Spyder processor permits to quickly explore different
approaches. The current implementation uses two execution units working in parallel.
Both execution units are configured to compute the growth and Vichniac rules of 16 cells
in parallel, in the same manner used for the game of Life.
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Figure 11.3: Robot image before and after skeletonization
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Figure 11.4: Cross image before and after skeletonization

11.3 Thinning

Thinning is a computation-intensive process used in many image processing and pattern
recognition algorithms. Its purpose is to reduce the elements composing the image to
lines one pixel wide, usually for further processing. For example, a character recogni-
tion algorithm will start by thinning the image of each character before attempting to
recognize it.

A parallel thinning with two-subiteration algorithm, described in [GH89)], has been
implemented on the Spyder processor. This algorithm uses a scanning window technique



114. EDGE DETECTION 131

Table 11.2: Execution times for the skeletonization algorithms

Processor Clock frequency | Robot Image | Cross Image
microSPARC 2 | 85 MHz 78s MTs
Spyder 8 MHz 0.154 s 1.17s

ratio 50.6 29.7

to erode the elements of the image until a fix point is obtained. The window is 3 x 3
pixels square, and the computation in the window involves applying logic operations
to the pixels, as well as performing some sums. The algorithm implemented on the
Spyder processor uses two execution units working in parallel. Both execution units are
configured to compute the thinning algorithm for 16 pixels in paraliel.

The thioning implemented on the SPARCstation computer uses a different algo-
rithm: Rosenfeld’s parallel thinning algorithm [RK82] taken from [Cyc94], an efficient
binary image thinning using neighborhood maps. This algorithm uses some computa-
tions and a table lookup mechanism to erode the elements of the image until a fix point
is obtained.

Figures 11.3 and 11.4 show two examples of image thinning. The center image in
figure 11.3 was obtained by Spyder, while the image on the right by the SPARCstation.
The execution time for the thinning of each of these images is given in table 11.2. The
difference in the speedup obtained by Spyder is due to the contents of the image, and
probably reflects the difference in the thinning method used by the algorithms (as can
be observed in figure 11.3, the resulting thinned images are not quite identical.

11.4 Edge Detection

Edge detection is an important image processing step when trying to determine the
movement of objects in an image. Image movement detection is used, for example, for
video image compression, where the edge detection step is used to locate objects in two
consecutive images before trying to determine if those objects moved between one image
and the other.

Doctor Domingo Benitez Diaz, during a one-month stage in our lab, implemented an
edge detection algorithm on the Spyder processor [Dia96). The purpose of the algorithm
is to take a gray-level image as input and produce a black and white image as output,
where pixels belonging to an edge are white and the others are black.

The method used to determine if a pixel belongs to an edge consists of computing
the average brightness of its neighbors and determining if there is a sharp difference
between the brightness of the pixel and the average brightness. This method uses a
scanning window mechanism, where the window is 4 pixels high by 4 pixels wide. The
algorithm implemented on the Spyder processor uses all three execution units in parallel.
Each execution unit is configured to compute the edge detection algorithm for 2 pixels
in parallel.



132

CHAPTER 11. EVALUATION

Table 11.3: Run time of different processors running the edge detection algorithm

Processor Clock frequency | Time (ms) | Time/Time Spyder
Spyder 6.25 MHz 25 1
Notebook Pentium | 90 MHz 400 16

HP 750 75 MHz 1400 56
SPARCstation 5 85 MHz 1400 56
SPARCstation 10 | 40 MHz 1800 72
SPARC Classic 50 MHz 2800 112
SPARCstation 2 40 MHz 3500 140

Table 11.3, copied from {Dia96] by permission, compares the execution speed of the
edge detection algorithm running on Spyder and on several other common workstation
processors. The input image used is a 256-level grayscale image containing 256 lines of
256 pixels (each pixel is thus 8-bit deep). The output image is black and white.
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which has been installed in a VME rack along with a SPARC board acting

as host computer. The SPARC board is compatible with the SPARCstation
computers from Sun Microsystems and runs the Solaris operating system. A Solaris
device driver for the Spyder board has been developed and allows the host workstation
to easily communicate with the Spyder board.

The software environment needed to develop applications for the Spyder processor
has been implemented and used by students.

The Spyder project has been presented at several international conferences [IS93b,
1593a, 1S94a, IS94b, DI93] and an extended presentation has appeared in a special issue
of the Journal of Supercomputing on field-programmable gate arrays [IS95b).

The nlc hardware synthesizer has also generated interest on its own right in the
scientific community. It has been presented at two international conferences [IS95a,
1S95¢] and made available by anonymous ftp on the Internet.

At the start of the Spyder project, reconfigurable and VLIW processors were rarely
the subject of serious consideration. To the best of my knowledge, Spyder was the first
reconfigurable processor with a VLIW processor architecture.

But nowadays barely a month passes without new reconfigurable processor architec-
tures being proposed, and some processor manufacturers appear to have plans to release
VLIW general-purpose processors. When asked what lies beyond the next generation of
superscalar processors, Nick Tredennick, Altera’s chief scientist, proposed reconfigurable
accelerators {Gwe94). In his own words: “If lack of parallelism in the instruction stream
seems to be the problem, let’s quit executing instructions.”

The Spyder prototype has demonstrated its ability to achieve a high level of perfor-
mance, even when running with a slow clock. The best performances were achieved in
low-level image processing applications and cellular automata simulations, which require
a large amount of local data computations.

It is interesting to note that Spyder allows to directly apply simple, intuitive algo-
rithms, instead of forcing the user to find complicated means to achieve greater speed
because of the lack of the proper elementary operations in general purpose processors.

FPGA chips follow the same technology curve as microprocessors, and as time
passes, bigger and faster FPGA chips become available. Thus, if a reconfigurable proces-

: prototype of the Spyder processor has been implemented on a VME board,
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sor can outperform a general-purpose microprocessor today, there is no reason to believe
that it will not do so in the future.
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