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Abstract

In this thesis we will show that unsteady, incompressible fluid-flow problems, as de-
scribed by the three-dimensional Navier-Stokes equations, can efficiently be simulated
by a parallel computer code based on a spectral element discretization. This efficiency
relies a great deal on the numerous improvements to spectral methods on the theo-
retical, algorithmic and computational levels which have been proposed over the last
decade. Consequently, the application of spectral methods is no longer limited to regu-
lar problems in simple geometries, but is extended to complex situations. The spectral
element method in particular has received much attention, because it combines the
practical advantages of the well-established finite element method with the ”spectral”
ability to reduce the number of degrees of freedom to obtain a prescribed level of accu-
racy. Furthermore, it embodies the concept of domain decomposition which is closely
related to parallelism. The latter aspect is important for an effective implementation
on the leading (”affordable”) supercomputers of the nineties, which are almost exclu-
sively based on parallel processors with distributed memory.

The continuous Navier-Stokes equations describe the velocity and pressure of a fluid
in a domain and the spectral element method reduces them to a set of discrete equa-
tions. This discretization technique has become rather mature and furnishes the frame-
work for this thesis. The main challenge, however, lies in the development of fast al-
gorithms for the solution of the discrete systems. To this end, we will analyze existing
and new methods of decoupling the velocity components from the pressure. Iterative
methods have shown their merits for the solution of the resulting, decoupled set of
equations, provided that they are properly preconditioned. This condition has led to
the introduction of a large number of preconditioning methods for velocity and pressure
operators. The common factor of these techniques is that they are based on fast, local
solves, combined with a strategy to deal with the element interfaces.

Another important issue is the time discretization of the unsteady equations. It is
common practice to choose an implicit time-integration scheme for the linear terms,
and an explicit one for the nonlinear terms. The way in which these two schemes are
combined is not trivial, especially when two important conditions, high-order accuracy
in time and stability, have to be satisfied simultaneously. In fact, the concepts of preci-
sion and stability are related: the more stable a time scheme, the larger the maximum
time step that can be used. From a computational viewpoint, it is desirable to advance
in time with the maximum allowed time step. An acceptable level of accuracy in time
is then only guaranteed by high-order time schemes.

The construction of a high-performance code requires not only readily parallelizable
numerical solution methods, but also fast algorithms to manage the (little) communi-
cation involved. The use of iterative methods for the solution of the discrete systems
enhances the parallel implementation, especially when the preconditioners are block
diagonal (communication free). The communication algorithms are analyzed and opti-
mized, and the use of very fast, architecture-specific routines has to be balanced against
the portability of the code. All the algorithmic, numerical, computational, and paral-
lel improvements are first tested individually on small problems. The parallel spectral
element code is based on the outcome of these tests and is used for the simulation of
the three-dimensional flow over a backward-facing step.
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Résumé

Cette these se donne comme ambition de montrer que la simulation numérique des
écoulements de fluides instationnaires et incompressibles, décrits par les équations tridi-
mensionnelles de Navier-Stokes, peut étre traitée de maniére efficace par un programme
de calcul basé sur une discrétisation spatiale de type spectral. Cette efficacité repose
largement sur de nombreuses améliorations apportées dans le domaine des méthodes
spectrales ces dix derniéres années tant au niveau de la théorie que des algorithmes et
des colits de calcul. Par conséquent, le champ d’applications des méthodes spectrales
ne se limite plus aux géométries simples, mais s’étend aux situations complexes. En
particulier, la méthode des éléments spectraux est devenue trés populaire parce qu’elle
combine les avantages de la méthode des éléments finis avec la ”capacité spectrale” de
réduire le nombre de degrés de liberté pour atteindre une précision fixée. En outre, elle
incorpore naturellement 1’idée de décomposition en sous-dornaines, notion intimement
liée au parallélisme et donc & la réduction des cotlits de calcul. Ceci est la clé pour
une implémentation efficace sur les ordinateurs les plus puissants de notre époque con-
stitués presque sans exception de processeurs paralléles & mémoire répartie.

Les équations continues de Navier-Stokes décrivent ’évolution de la vitesse et de
la pression d’un écoulement de fluide dans un domaine matériel; la méthode des
éléments spectraux les réduit & un ensemble d’équations discrétes. Cette technique
de discrétisation est fiable et bien établie, et constitue le point de départ de ce tra-
vail. Cependant, le développement d’algorithmes rapides pour la résolution du systéme
discret est un défi majeur. A cette fin, on étudiera le découplage des composantes
de vitesse et de pression en comparant des algorithmes existants et originaux. Les
méthodes itératives se sont avérées trés appropriées afin de mener & bien la résolution
des systemes discrets découplés. Toutefois, des techniques adéquates de précondi-
tionnement ont été developpées afin d’assurer un taux de convergence acceptable des
méthodes itératives. Pour ce faire, un nombre de préconditionneurs des opérateurs de
vitesse et de pression ont été proposés et validés. Ces techniques ont toutes en commun
des solutions rapides et locales & un élément et une stratégie de traitement d’interfaces.

Un autre sujet important abordé dans ce travail est la discrétisation temporelle des
équations instationnaires. La maniére classique est de choisir un schéma implicite pour
les termes linéaires et un schéma explicite pour les termes convectifs. La mise au point
de telles méthodes qui doivent étre a la fois stables et d’une précision d’ordre élevé,
n’est pas évidente. En fait, les concepts de stabilité et de précision sont liés: plus le
schéma temporel est stable, plus le pas de temps admissible est grand. Du point de
vue de la rapidité de calcul, il est souhaitable que ’évolution dans le temps se fasse
avec un pas maximal. Un niveau de précision acceptable est alors obtenu uniquement
par une méthode d’ordre élevé.

Le développement d’un programme de calcul de haute performance demande non
seulement des méthodes numériques parallélisables, mais aussi des algorithmes rapides
qui génerent une communication entre processeurs la plus réduite possible. L’implé-
mentation parallele est facilitée par 1’utilisation de méthodes itératives, notamment en
présence de préconditionneurs diagonaux par bloc. On montrera & travers l’analyse et
I'optimisation des algorithmes de communication, que les plus performants sont sou-
vent exclusifs pour certains types d’architecture de machine. Cette spécificité doit étre
mise en regard avec la perte de portabilité du programme de calcul.
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Toutes les améliorations au niveau des algorithmes, de la parallélisation et de 1’effi-
cacité de calcul sont appliquées dans un premier temps a des problemes académiques
en vue de tests et d’optimisations. Ensuite, le programme de calcul final a été utilisé
avec succeés pour la simulation d’un écoulement tridimensionnel sur une marche de-
scendante.
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Chapter 1

Introduction

1.1 Numerical simulation of incompressible fluid
flows

The complex problem of the numerical simulation of incompressible fluid flows has been
studied by several generations of scientists all over the world. The number of combi-
nations of applications, models, discretization techniques in time and space, solution
methods for the algebraic equations, etc. seems to be infinite. Consequently, there is
progress, but at small pace.

Over the last decades a new challenge was born by the rapidly increasing perfor-
mance of computational resources. Nowadays, advance is not only to be made on the
aforementioned domains, but the methodology should also be tuned to modern com-
puter architectures. This means that, ideally, superlinear progress can be made with
respect to the capacity of computers. In practice, however, it is not even trivial to ad-
vance at the same pace as the supercomputers, the performance of which is estimated
to increase by a factor of ten to fifty each decade. Besides the important improvement
of the single-processor hardware, the latest (and probably also the next) step forward
has been achieved by connecting more and more independently working computing
nodes by fast communication networks. More precisely, over the last ten years a new
generation of parallel distributed memory machines has been developed. The perfor-
mance of these computers has overtaken that of the fastest single-processor machines.
In the next years, parallel technology will further improve by putting together more
chips and by using faster communication hardware. Furthermore, the individual chips
that constitute the parallel computer will be able to perform more operations per time
unit. The increasing interest in parallel computing is not only driven by the need for
ever faster machines. Economical considerations are also very important, considering
that the rate of Mflops (millions of floating-point operations per second) per dollar is
much higher for parallel than for single-processor supercomputers.

Not every discretization technique or solver is equally suited for these new parallel
architectures and it is the task of the scientist to pick out the best candidates and
to modify and optimize them where necessary. A method is optimal in the sense of

1



parallel computing when it is scalable. This means that the solution of a problem of
size S is obtained on P processors at the same speed as a similar problem of size 25 on
2P processors. Another vital, but often neglected aspect in the "battle of the Flops”
is the way the program is implemented on a computer. It happens often that a close
inspection of only a small percentage of the total amount of (Fortran) lines leads to
a speed-up that computer constructors can only dream of. A good understanding of
phenomena like scalar optimization, memory hierarchies and efficient inter-processor
communication techniques has become as important as a good theoretical insight.

The goal of this thesis is to describe the development of an efficient solver for
the incompressible, unsteady Navier-Stokes equations based on (potentially) accurate
discretizations in time and space. Such a solver could be used to simulate complex
three-dimensional flow phenomena which find their origin in hydraulics, aerodynamics,
haemodynamics, etc. Our choice for the spectral element discretization method (first
proposed by Patera [57]) is not only guided by the know-how on spectral methods
which is available at our group and by its applicability to the class of problems that we
want to study: (Spectral element methods are very well suited for problems in which
high regularity is guaranteed or for a class of problems in which high regularity is not
the exception, like incompressible fluid mechanics [47]. ) Our choice is also based on
the fact that the spectral element method (SEM) in combination with iterative solvers
is readily parallelizable, as was shown in a number of articles by Fischer and coworkers
(see e.g. [26] and [28]). As a matter of fact, the SEM has already been described in a
large series of papers (see e.g. [57], [65], [47], [46], [26], [28] and [74]) and is nothing
more than a tool for the present work. The emphasis of this thesis will be rather on
the vast domain in between discretization and actual simulation. This involves the
analysis of high-order time schemes with improvement of the stability properties and
the construction of efficient iterative solvers for the discrete equations. We constantly
have to keep in mind that the developed algorithms should be applicable to parallel,
distributed-memory computers.

1.2 Outline

As stated in the previous paragraph, we focus on high-order discretization methods in
time and space. This allows either to look for very accurate solutions, or, if precision is
less important or unrealistic to obtain, to reduce the number of grid points/time steps
in comparison with more classical discretization methods to obtain the same level of
accuracy. As far as the spatial discretization is concerned, spectral methods feature
exponential convergence with respect to the degree of the polynomial expansions, pro-
vided that the solution is smooth enough. This explains that spectral methods are
especially suited for problems in which high regularity is common. Another argument
to use this type of methods is that numerical dissipation and dispersion errors are al-
most absent. For this reason, classical discretization techniques, like the finite volume
and finite element method, are sometimes combined with a spectral computation of the
non-linear term. As an example of such an application, we mention the simulation of
turbulence, e.g. by Schumann [70]. The fact that the spectral grid points are clustered
at the boundaries can be considered as another advantage when trying to solve flows
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that are dominated by boundary-layer dynamics. The SEM is based on the decom-
position of the domain in a number, say K, of nonoverlapping subdomains (spectral
elements). On each of these elements the solution is expanded in tensor-product based
polynomials of high degree, say N, with typically 4 < N < 15. This decomposition
allows for local refinements at places where the solution is (expected to be) rapidly
changing. The variational formulation provides automatically the continuity of the
solution at the interfaces between adjacent elements, and deformed geometries can be
handled without difficulties. All these factors make the SEM highly flexible as regards
geometry, accuracy, and parallelization.

Once the possibility to obtain a high spatial precision has been established, we do
not want these accurate results to be contaminated with large time errors. Although
most of the simulations in this thesis concern steady flows, it is also important to
study transient phenomena that occur at higher Reynolds numbers. As an example,
we mention the confined flow around a cylinder. For the direct simulation of turbulent
flows, which could be a future goal, high-order (i.e. up to an order of three or four)
accuracy in time is important to perform statistics. Here, however, our main concern
is to maintain a reasonable precision when proceeding with the largest time step that
is allowed without violating certain stability conditions, due to the explicit treatment
of the nonlinear term.

Because of considerations based on the condition number of the operators (see Chap-
ter 2) and on the fact that we want to avoid indefinite, nonsymmetric matrices, all terms
of the Navier-Stokes equations are discretized in time by an implicit scheme, except
for the nonlinear convection term. This implicit/explicit splitting can be performed in
several ways and should not degenerate the order of the time scheme. In Chapter 3,
two splitting methods are compared with respect to stability and accuracy.

The final set of discrete equations is solved by an iterative method, which is preferred
to direct methods for a number of reasons. We should start by remarking that matrix-
vector multiplications (we will call also them "evaluations”) are performed by tensor-
product based multiplications. This reduces the operation count of an evaluation from
O(K N®) to O(KN*), but has as a side-effect that matrices are never built up. There
are several consequences attached to this remark which motivate our choice for an
iterative solver: First, matrix evaluations, which are the basic operations of every
iterative solver, are performed at a very low cost. Moreover, these operations can be
written in BLAS, a basic linear algebra package which is optimized on almost every
supercomputer, and requires very little memory, avoiding time-consuming swapping.
Second, sparsity patterns are difficult to localize which implies that, in the case of
a direct solver, the whole matrix and its inverse would have to be kept in memory.
Furthermore, the efficiency of the direct solvers that are used in computational fluid
dynamics rely on the existence of such sparsity patterns.

A priori, the discrete set of equations is not suited to be solved by an iterative
method. The absence of the pressure in the continuity equation causes a zero block,
yielding a very slow convergence, if there is any convergence at all. Therefore, it is a
good idea to decouple the velocity field from the pressure, leading to four independent
(semi-)positive definite, symmetric systems of equations; one for each of the three
velocity components and one for the pressure. This decoupling can either be performed



on the continuous equations (see e.g. Karniadakis et al. [42] and Timmermans [74])
or on the discrete equations (see e.g. Blair Perot [9]). A disadvantage of the former
approach is that an additional boundary equation for the pressure is introduced, which
is not obvious from the theoretical point of view (see e.g. Orszag et al. [56]). On
the other hand, this additional equation is held responsible for the filtering of the
spurious pressure modes, allowing for a discretization of the velocities and the pressure
on the same (Gauss-Lobatto-Legendre) grid. We choose for a decoupling applied to the
discrete equations, according to [9], in which all the boundary conditions are already
incorporated. The spurious pressure modes are avoided by using a staggered grid for
the pressure. Like for the explicit/implicit splitting, an extra time-error is introduced
by the decoupling procedure, which is analyzed in Chapter 5. Following the theory
of Blair Perot [9], this is readily done by considering the decoupling method as a
generalized block decomposition. A series of already existing methods (like fractional
step, Uzawa) is studied and some new, high-order projection schemes are derived. It
turns out that it is often advantageous to compute a correction to the pressure. Some
recommendations on which method to use in what situation (steady/unsteady problem,
large/small time step, etc.) are given.

A fast inversion method for the Helmholtz equations is important, especially when
the Uzawa decoupling method is used. In Chapter 4, we will discuss a direct method
based on the fast diagonalization method (FDM, see [44]). The FDM evaluates the
inverse of a tensorizable, separable operator at the price of two conjugate gradient
iterations. Unfortunately, this technique applies only to very simple geometries, i.e.
a box, decomposed in nondeformed parallelepipedic spectral elements. Still, it can
be useful for the simulation of cavity or square-duct flows. When we allow more
complicated (but still nondeformed) geometries, a Schur complement method is used
to decouple the interior from the interface variables. The FDM is then applied to the
interior nodes and the interface system can be solved either by a direct method or a
preconditioned conjugate gradient method (PCGM). Finally, in the case of generally
deformed geometries, a preconditioning technique is proposed based on, again, fast
diagonalization techniques at the interior nodes and the incomplete, block-diagonal
Schur operator for the interface variables.

Although the condition number of the pressure operator depends on a number of
factors like the Reynolds number, the time step, and the decoupling method, we can in
general say that the pressure problem is difficult to solve. Therefore, preconditioning
is essential. A good preconditioner should not only be "spectrally close” to the original
operator in order to reduce the number of iterations, but it should also be cheap to
invert. In Chapter 6, this subject is studied extensively. Most of the ideas are based
on a paper by Rgnquist [63], who proposed to compute the pressure in two pressure
subspaces, a coarse, global and a fine, elemental one. The pressure levels on the coarse
grid (the ”skeleton”) are computed by a direct method and the resulting pressure on
the fine grids is solved by a PCGM. Numerical tests have shown that this method
leads to a condition number that is independent of the number of spectral elements.
The main difference between the preconditioning methods developed in Chapter 6 and
those of the paper of Rgnquist [63] is the way in which the elemental preconditioner
is evaluated. Moreover, many pressure operators have to be considered correspond-
ing to the different decoupling methods that have been proposed in Chapter 4, e.g.



high-order projection, pressure correction and Uzawa methods. An original two-stage
preconditioning technique is developed for the latter operator. Its primary goal is to
reduce the number of expensive iterations and, hence, cpu time, rather than to reduce
the number of global iterations.

Following the discussion in Section 1.1, the Navier-Stokes solver based on the method-
ology of the Chapters 2-6 has been implemented on parallel computers. As our target
machine we chose the Cray T3D at the EPF in Lausanne, Switzerland, consisting of 256
DEC Alpha chips, interconnected by a fast communication network. The memory is
distributed over the processors and communication paradigms (or, in Cray terminology,
" programming models”) have to be used to transfer information from one processor
to another. Among the three available models, we have chosen PVM (Parallel Vir-
tual Machine), since it was available from the beginning. Some rules of the thumb for
parallel programming on the T3D are presented and a modified parallel version of the
PCGM (see Meurant [53]) is investigated. It turns out that a good parallel efficiency is
obtained and that the single-processor performance is also relatively good. This opens
the way to large-scale simulations of realistic, three-dimensional flows. We have also
studied the efficiency of the code on the Intel Paragon at the ETH in Zirich, Switzer-
land, using both PVM and NX, the Intel communication library. Finally, a small test
using the work-sharing programming model on the T3D is presented.

In Chapter 8, some larger problems are simulated. As a first test case, we investigate
the overall order of the time-integration scheme. Then, we proceed with the simulation
of a three-dimensional backward-facing-step flow, for which clear experimental data is
available (see Armaly et al. [1]) for a wide range of Reynolds numbers. Furthermore,
the two-dimensional case has been extensively studied by other authors, providing much
material for comparison. This parallel simulation consists of 128 spectral elements with
a degree up to 11 in each spatial direction, which can not be done on any serial machine
on the market.

Finally, some conclusions are drawn and suggestions for future work are indicated.






Chapter 2

Spectral discretization method

In this chapter, we will first introduce some basic concepts to help us produce math-
ematical expressions that reflect the quality (to be defined later) of spectral solutions
for a model problem. Then, a particular discretization technique, the spectral element
method, is discussed in detail. We will comment both on its theoretical and imple-
mentational aspects. The extension to the Stokes problem is presented, where special
care has to be taken to avoid spurious pressure modes. Finally, the discretization of
the nonlinear term is introduced, allowing for full Navier-Stokes computations

For a more detailed discussion on the interest of spectral discretization techniques
in the field of computational fluid dynamics, the reader is referred to Chapter 1. For
the preparation of this chapter the textbooks and articles of the following authors were
very useful: Bernardi and Maday [6], Canuto et al. [14], Maday and Patera [47], Maday
et al. [46], [49], Patera [57] and Rgnquist [65]. In these papers and books, many of the
proofs of the presented theorems and error estimates can be found.

2.1 Basic concepts

This section is devoted to some basic concepts that play an important role in spectral
discretizations. A simple problem will be discretized by a Legendre-Galerkin method
and error estimates will be presented. For sake of simplicity, we introduce a linear
model problem A in an open, one-dimensional domain (—1,1), with solution u € X,
and f the data of the problem; X a certain set of admissible functions in one variable:

Au(z) = f(z) ze(-1,1) (2.1)

u(z)=0 for z = +1. (2.2)

Instead of solving the continuous problem, an approximate solution uy to u will be
sought in a finite-dimensional subspace Xn (IV a positive integer) of X. Typically, the

subspace Xy is defined by all the polynomials in one variable of degree smaller than
or equal to N satisfying the boundary conditions (2.2).

The numerical simulations will supply us with a solution uy € X that is determined
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by its nodal values {@;}X, in a finite set of points {z;}}, on the interval [—1,1]

N
UN(:B) = Zﬁ;hg(.’l)), (23)

=0

with k; the Lagrangian interpolation polynomial of degree N which takes the unit value
at z; and is zero in z; (§ # 7). Of course, it is interesting to study the difference between
the solution u and its approximation uy. Roughly speaking, this error consists of three
components: First, there is an ”approximation” error due to neglecting the terms ;h;
for 7 > N in (2.3). This approximation error is also called ”truncation” or ”projection”
error. There is also an ”aliasing” error due to interpolation and an integration error,
causing that 4; = u(z;) instead of 4; = u(z;). As we will see in this chapter, the
candidate uy supplied by the spectral method is optimal. This can be shown by using
concepts as "best approximations” and "accurate quadratures”. A priori, terms like
“optimal”, "best” and “accurate” are subjective, so we require measures to quantify
the quality of the discrete solution. To this end, we introduce two Hilbert spaces, £2,
and HT, on the interval (—1,1). First, £2(—1,1) is defined as the space of measurable
functions on (—1,1) that are square integrable on the same interval with respect to a
strictly positive, integrable weight function w:

L£2(=1,1) = {v measurable; /_1 ) v¥(z)w(z)dz < oo}, (2.4)

’

with inner product

(01,92) c3.(-11) = /( Ly @) (2.5)

and norm

Il v llez 1= V (v,v)g2,(-13)- (2.6)

For any positive integer m, we define the Sobolev space H?(—1,1) as

&

'3 € Li(-1,1)}. (2.7)

H™(-1,1) = {v € L%(~1,1); Vo integer, ] < a <m

The Sobolev space is equipped with inner product and norm

ooy = [ ¥ {GR@T 20w @8

1) jai<m
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v llHp-11) = \/(U,v)w,::(—l,l)- (2.9)

For future use, we also need the space Pn(—1,1), given by
Pn(-1,1) = {v(z),z € (—1,1); v a polynomial of degree < N}. (2.10)

Let us denote by {¢;}32, the set of orthogonal basis functions for X (from now on,
X = L£2(-1,1)) such that the subset {¢;}}¥, spans the subspace Py(—1,1). Every
function v € £2(—1,1) can be written as

<. . - (9,802 (-1)
v = U;¢;, with ¢; = ——— 2 2.11
g (B3, b))z, (-1.1) (211)

The truncated series Pyv € Py(—1,1) is given by

Pyv = f: Bihi. (2.12)

=0

This truncation can be interpreted as an orthogonal projection operator Py : £2(—1,1) —
Pn(—1,1) that satisfies for every function v € £2,(—1,1)

Vin € Pn(—1,1); (v— Pnv, 1/JN)53”(_1,1) = 0. (2.13)

Note that (2.13) is not necessarily true with respect to the HJ inner product. The set
{9:}32, is often referred to as the spectrum of the function v.

Spectral convergence is obtained for the truncation error with respect to the £2(—1,1)
norm: For every v € HJ}(-1,1)

| v = Pno |z c1yS CNT™ || v {lwm (-1, - (2.14)

In other words, the truncated series is the best approzimation of v in £2(—1,1) norm,
that is, the power of 1/N is equal to the difference of the order of the Sobolev spaces
between the left- and right-hand sides of the equation.

The following estimate expresses the truncation error of the derivative. For every
function v € HJ(-1,1)

1 ar2n-m
| v = Prno flrg(—1,)< CN~2N* | v lng(-1,0)s (2.15)

with 1 < n < m. By taking n = m = 1 in Equation (2.15) it can be seen that this
approximation is no longer optimal, which is explained by the fact that truncation is
not the same as orthogonal projection in H*(—1,1) space.
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Exponential decay of the spectrum is guaranteed if the orthogonal basis functions
{¢:}2, are the eigenfunctions of the singular Sturm-Liouville problem (see e.g. [14]).
Two families of polynomials are of particular interest: Legendre and Chebyshev polyno-
mials. In this text, we will restrict ourselves to the former family, which is orthogonal
with respect to the weight function w(z) = 1. According to this particular choice,
we will omit the index w henceforth from definitions (2.4) and (2.7). The ith—order
Legendre polynomial L; is given by the following recursion formula:

2i+1 2 -

1+1 :z:L,-(a:) - i+ lLi-l(x)’ (216)

Ly, (-'5) =

with Lo(z) =1 and Ly(z) = z.

Sometimes it is also helpful to analyze the spectrum of an approximation un. This
can be done by discrete transforms. Some spectral methods use these transforms,
which should be very fast, to compute derivatives in the spectral space, rather than in
the physical space. For methods based on Legendre polynomials such a fast discrete
transform does not exist, but we will show that this is not a drawback of the Legendre
spectral element method, since all computations can be done efficiently in the physical
space.

Let us go back to the model problem (2.1), (2.2). The first step towards a numer-
ical solution consists in mapping Ayuny — f by an orthogonal projection on a proper
subspace Yy C X (An denotes the discrete operator and uy € Xy, again, the discrete
solution), yielding the variational formulation: Find uy € Xy such that

(Anun — f,oN)N =0 Vun € Y, (2.17)

with (,)~ a bilinear form which is an inner product on Yy. The choices for (,)n
and Yy determine the method, i.e. Tau, Galerkin or collocation. (Note that for
collocation approximations the projection is defined from Z — Yy, with Z C X,
see [14].) Formulation (2.17) expresses that every spectral scheme is actually a method
of weighted residuals. Here, we take (,)v = (,)c2(-1,1) and Yy = X, yielding the
Galerkin formulation: Find up € Xn such that

(ANuN,vN)c2(-1,1) = (F, UN)2(-1,1) Yun € Xn. (2.18)

This formulation, however, has only a theoretical interest, since, the exact evaluation
of the integrals in (2.18) is very expensive (if not impossible). Therefore, we resort to
numerical integration rules to compute these integrals. This procedure will introduce
an additional error, and we require that the order of magnitude of this "integration”
error is the same as the truncation error (also called projection or approximation error).
This suggests Gauss-Lobatto quadrature rules associated with Legendre polynomials.
To this end, we define the set of Gauss-Lobatto-Legendre points {¢;}, with associated
weights {p;},. We have

dLn

X&) =0, i=1,.,N-1, (2.19)

—l=¢<b&t<...<é=1,
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and

2 1
PE NN+ 1) Ta(EY

i=0,.,N. (2.20)

The GLL intergration rule is exact for polynomials of degree smaller than or equal to
2N - 1:

N

) v(z)dz =Y _v(&)p:. (2.21)

=0

Yo € Pon-1(=1,1); /

We introduce the discrete inner product (,)gr corresponding to GLL numerical inte-
gration

N
(vl,vg)GL = Zvl(f,-)vg(&)p; Y, vg € 62('—1, 1). (2.22)

=0

In order to get an estimate for the error committed by replacing the continuous inner
product (2.5) by the discrete one (2.22), it is of help to introduce the interpolation
operator Iy : £2(—1,1) — Pn(—1,1) based on the Gauss-Lobatto-Legendre points.
For every function v € £2(—1, 1), the interpolation operator can be defined with respect
to Legendre or Lagrangian polynomials:

N v e N
Inv(z) = Z% %L;(x) - gv(&)h;(x), (2.23)

yielding Inv(&;) = v(&), ¢ = 0,.., N. The interpolant Ixv is the projection of v on Py
with respect to the discrete inner product (2.22). From

(v1 = Invi,v2)er =0 Voy,v2 € L3(—1,1), (2.24)
and

|(v1,92) = (vs,v2)z] < € (|l o1 = Pvoamn llezoan

+ o= Inv e 1 o2 ererys (2.25)

for Vu; € £3(-1,1), Vv, € Pn(—1,1), the importance of the interpolation operator
for the determination of an error estimate becomes clear The interpolation error is
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bounded by (see e.g. [6])

v =Inv |21y € ONT™ [0 flrm(-1) (2.26)
<

” v— Inv ”7.‘1(_1'1) CN1-™ ” v ”'Hm(_l,l) (2.27)

for v € H™(—1,1). The truncation error expressed in (2.15) plays an important role
in the determination of Equations (2.26) and (2.27), as well as the properties of the
Gauss-Lobatto-Legendre integration rules.

It is not possible to give estimates for the error || « — un ||[#2(-1,1) without being
more specific about the operator A in (2.1). For example, if A is the operator —d?/dz?
(vielding Axy = A) the discretized problem reads as: Find uy € Xn such that

(Avun,on)eL = (fivnv)er  Yon € Xn, (2.28)
or, equivalently
N duyn . . doy N
> =z &) (&)pi = > f(&)on(&)pi Yon € Xn. (2.29)
1=0 =0

In [6], [14], and [47] it is shown that the discrete solution un of (2.29) is optimal, i.e.
for m and n integers, m > 1, n > 2 and u € H™(-1,1), f € H*(-1,1)

| u—un IS C{N'™ | u a0y #N 7| f -1} (2.30)

The proof of this error estimate can be found in the aforementioned literature and is
based on the specific operator A, Equation (2.25) and, indirectly, on Equations (2.26),
(2.27), and (2.14).

2.2 Spectral element method

The results of the previous paragraph were obtained for a Legendre-Galerkin spectral
method. However, for these monodomain discretizations, it is not important to take
the Galerkin form (2.18) as a starting point. In fact, there is an equivalence between
Galerkin methods and collocation methods, which rely on a "strong” formulation, i.e.
the residual Ayuny — f cancels on a set of "collocation” points. This is explained in
e.g. [14] and [6].

When the domain is decomposed into a number (say K) of nonoverlapping subdo-
mains on each of which the solution is approximated by Nth-order polynomials, the
weak approach, however, leads to a totally different treatment of the interelemental
interfaces. More precisely, the variational statement imposes ”automatically” weak C?!
conditions, which means that uy is continuous but with continuous derivatives only

for N — oo. Collocation methods require that the continuity of the solution and its
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normal derivatives is imposed explicitly (but not necessarily in a strong way), giv-
ing rise to intra-element iteration schemes. Recently, Gervasio et al. [32] developed
such an iteration scheme for elliptic problems. The convergence rate of this method is
independent of the polynomial degree N.

In the following, we will focus on the spectral element discretization technique (see
Patera [57]) based on Legendre polynomials. This method is well documented in Maday
and Patera [47] and in Re¢nquist [65]. By introducing a simple model problem, we
will show that the spectral accuracy is maintained when the computational domain is
decomposed in a number of spectral elements. The advantages of a decomposition of
the domain are manifold and have been discussed in Chapter 1. We will immediately
tackle the three-dimensional problem

-Au = f on Q (2.31)
u =0 on 09, (2.32)

where 0f) denotes the boundary of the open domain 2. The Equations (2.31), (2.32)
have an equivalent variational form: Find v € H(Q2) such that

/n Vu - Vodz = /n fudz Vv € HYQ), (2.33)
with

HA(Q) = {v € H(Q);v(z1,72,23) =0 if (21,72, 73) € ON}. (2.34)
We then break up the domain 2 in K parallelepipedic nonoverlapping subdomains
Qk = (ak,a;) X (bk)b’k) X (ck,c;c) k= 1, ..,K (235)
Q=Uk O, LN =0 i,5=1,.., K, i#j. (2.36)

We denote by i%, 1%, and I the dimensions of the subdomain
If = af — ax, l::bf,c—bk, F=c—-a k=1,.,K. (2.37)

The next step is to define the discrete space
Xy = H3(®) N Ph(®), (238)
with
P x(Q) ={ve L vl PH(%)} (2.39)

and P3 (%) the space of all polynomials on Q2 of degree smaller than or equal to N in
three variables. This leads to the following Galerkin formulation: Find uy € Xn such
that

/ﬂ Vuy - Vondz = /9 fonds  Vow € Xn. (2.40)
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For the same reasons as explained in Section 2.1, numerical quadrature based on the

. k=1,..K k=1, K =1,.K
mapped Gauss-Lobatto-Legendre points {¢} ; }io vy {€24 }ico > and {€3,}:507N s

1
éllw.,k = arp+ 5(02 - ak)(éh + 1) h = 0, 1, ooy N; k= 1, ..,K (241)

1 :
?vk = b+ E(b;c - bk)(f‘ + 1) t= 07 L., N; k= 1, ..,K (2.42)

1 :
o= atzld-a)EG+D)  j=01L.N; k=1.K (243

is applied to compute the integrals in Equation (2.40) to obtain: Find uy € Xn such
that

LK JEED . a d 3
;hg::o{ﬂé_a?lu”(&”" ik k)a vN(fhks i k) k) +

Ikl 9 0
21k B, Z—un(Eh s s sk)axzvN(é}t,kafg?,kvfik) +

Bk 9
2l’°6 N(fhk, k> k) UN(fhln ik> J,k) PrpipP; =

K N lklklk
Z Z xy f(fhk, ik ,k)”N(fil;,k,&?,k,f?,k)PhPin Yoy € Xn. (2.44)

k=1 h,t,j=0

Equation (2.44) is the full 3D spectral element discretization of problem (2.31), (2.32)
and is nothing else than the three-dimensional, multidomain analogue of Equation
(2.29). The interfaces have been naturally taken care of by the variational form in
combination with a proper choice for X. An error estimate for the solution uy of
(2.44) is given by

I u—un @< C{N*™ || u llam@) + N2 || £ llnm(ey} (2.45)
for u € HJ* and f € H*, with n,m > 1 [47].
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2.3 Practical considerations

In the previous Section 2.2, we introduced the spectral element method for a typical
3D problem. We will now explain in what (efficient) way a solution uny can be obtained
from (2.44). First, we will have to choose carefully the test functions vx. This choice
will not influence the error estimate (2.45), but has a great impact on the conditioning
of the matrices and on the implementation on computers (e.g. the reduction of the
operation count due to tensor-product factorizations and sparsity patterns). Unlike
the h-p finite element methods (see for example [72] for an overview), where Legendre
polynomials are taken to span the space X, the spectral element method relies on a
tensor-product (nonorthogonal) basis of Lagrangian interpolants {h;}Y, C Pu, such
that

hi(fj) = 6ij ,7=0,..N, (246)
with §;; the Kronecker delta. This implies that a function wy € Xy is uniquely
represented by (see Equation (2.3))

N
wn (21,22, 23)ig, = D (DN )iisha(z)hi(z2)hi(zs),  k=1,., K, (2.47)
R,t,7=0
with
('LbN)I’:.ij =0 if (éllt,ka iz,k’ ik) € aQ (248)
("bN):ij = (@N);qr if (fllz,k,fiz,k, ?k) =(€1,1, 3,za ?1) (2-49)

Equation (2.48) accounts for the homogeneous Dirichlet boundary conditions and Equa-
tion (2.49) for the continuity along the interfaces. We then choose vy nonzero (unit
value) in only one Gauss-Lobatto-Legendre (GLL) point or, in the case of an interface,
in two or more coinciding GLL points (see Equation (2.49)), and zero elsewhere. We
arrive at the discrete equations:

Z’ Z Aaﬁ'ﬂmnulmn = E ’B:ﬂ—y afy a, 377 = Oa ) N. (2-50)

- k=1 lm,;n=0 k=1

Here, 3"/ denotes direct stiffness summation, corresponding to summing the contribu-
tions at the interfaces (see Equation (2.49)) and taking the boundary conditions into
account (see Equation (2.48)) Note that we omitted the subscript N for the discrete
solution (uf,,, instead of (un)%,,). The matrices A¥ and B* are defined on an arbitrary
element §; as

imn

N . . Iklk N
Z Aaﬁ‘ylmnulmn = 21" Zan Z D l6ﬁm61anPmPnu1mn
I,m,n=0 T ¢=0 l,m,n=0
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lklk N
+ oIk ZDqﬁ E qu&al&rnpll’qpnulmn

y ¢=0 {,m,n=0

lklk N
+ ok Z Dy, Z anéal‘sﬁmplpmpqulmn
z ¢=0 {,m,n=0
af,y=0,..,N (2.51)
k k Iil:l: k
B afyd afy = ) papﬁpﬁfaﬁ‘y Q, ﬂa Y= 07 oy Na (252)

with D,y = T’:}(fp) Equation (2.50) is often written in its short form
Auy = Bf. (2.53)
Note that when Auy is evaluated according to (2.51), 6K N® + O(K N°®) multipli-

cations have to be performed. As was recognized by Orszag [55], this number can be
reduced to 6K N* + O(K N3) by rewriting (2.51) as

< k k lklk
Z Acpyimntimn = 21/; ZanPqPﬁP’sz 1'411,(3.7
{,m,n=0 z ¢=0 1=0
lklk
+ 211: ZDqﬂpanP'r Z quuam.,
¥ ¢=0 m=0
Iklk N
+ o Zanapaquanuaﬁn a,B,7=0,.,N. (2.54)
z ¢q=0 n=0

Without this tensor-product factorization, which is due to the choice of the Lagrangian
basis (and not to the absence of deformation), spectral element methods would be
inefficient. Note that in the case of parallelepipedic spectral elements, the two one-
dimensional matrices D can be multiplied in a preprocessing stage, reducing the number
of multiplications to 3K N* + O(KN?), and that A and B are symmetric matrices.
Moreover, B is diagonal. Matrix A is never constructed explicitly and only three
one-dimensional matrices have to be stored in order to compute an evaluation of Au.

The above discussed features (tensor-product factorizations, no explicit construction
of the operator and low storage for evaluation) make iterative methods attractive to
solve Equation (2.53). Since A is (semi-) positive definite and symmetric, the best
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candidate is the conjugate gradient method (CGM). This method can be found in any
textbook on numerical solution methods (see for example Golub and Van Loan [33])
and we refer to Chapter 7, where a parallel variant is discussed, for more details. We
recall here that the CGM computes (assuming infinite arithmetic) an approximation
Ucy t0 un in a finite number of iterations (smaller than or equal to K N3, the number
of unknowns), such that || u; — un || is smaller than a certain, user-defined tolerance.
In each iteration a set of direction vectors is computed at the cost of one matrix-vector
multiplication. The number of iterations is proportional to /x4, with x4 the condition
number of the matrix; K4 = Amax/ ’\min' For the operator A based on spectral element
discretizations, we find (see e.g. [47])

k4~ O(KZN®), (2.55)

where K, denotes the number of spectral elements in a typical space direction. This
condition number is in general larger than for the operators based on classical finite dif-
ference, finite volume, or finite element methods on regular grids. This is explained by
the fact that the GLL grid points are not equidistant, but concentrated near the bound-
aries. In fact, the minimum distance between two GLL points is of order K7 N~2, If
the finite element operator is constructed on the GLL grid, the same condition number
is obtained as for the spectral element operator.

Preconditioning techniques (see Chapter 1 and Chapter 6 for a general discussion;
see [47] for more relevant details) can be used to reduce the number of iterations.
Basically, a preconditioner (say P) should meet two requirements: First, it should
be "spectrally close” to the original operator, meaning that the condition number of
the product of P! and the operator should be close to the unit value. Second, the
preconditioner should be easy to invert, since at each iteration a direction vector is to
be premultiplied by P~!. For this reason, we will always define a preconditioner by its
inverse. In the typical case of the preconditioned conjugate gradient method (PCGM)
for problem (2.53), we will use a diagonal preconditioner P~! = diag(A)~.

In most practical situations, the domain can not be subdivided in a set of par-
allelepipeds. If that is the case, generally deformed spectral elements have to be
used, leading to more complicated formula. The tensor-product structure is, how-
ever, maintairied. The only negative effect is that the constant of the leading term in
N expressing the operation count is larger. For example, an evaluation of the weak
”second-order” derivative costs 6K N* + O(K N?) in the case of deformed geometries,
whereas 3K N* + O(K N?3) operations are needed in the nondeformed case. In the next
section, we will further elaborate on this matter.

2.4 Deformed geometries

Let us consider €2, a three-dimensional, open domain, decomposed into K spectral
elements {0 }£.,. In most practical situations, the geometry (or decomposition of the
geometry) does not allow that Equation (2.35) is satisfied, that is, not every spectral
element is a parallelepiped. In that case, a mapping F* is introduced that links each
spectral element §2; to the reference domain Q= (0,1)3. More precisely, F* is such that
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F¥(§)) = T, and Fk(ry,rq,m3) = (2%, 25, 2%), with r € Q! and z* € 0. Furthermore,
we assume that F'* is in H* for some g > 1 and that the Jacobian Jr is larger than
some constant p; > 0. Then, each wy € Xy, with X as in (2.38) can be expanded
on the subdomain Q) as

N
wi(T1,22,23) = wNje, © F¥(r1,m2,m3) = D (bn)kiihu(ry)hi(ra)hs(rs).  (2.56)

hyi,j=0

Problem (2.40) becomes: Find uy € Xy such that Yoy € Xn
/ﬁ Vuy o F - Voy o F|Jp|dr = /Q fn o F vy o FlJp|dr, (2.57)

with F' taking into account all the local mappings { F¥}¥_,. In order to avoid complex
notations and long formulas, we will not give the complete, detailed expressions corre-
sponding to Equation (2.57). The final formulation of the elliptic problem discretized
on deformed spectral element can be found in, for example, Rgnquist [65] and Tim-
mermans [74] (in two dimensions). In Maday and Regnquist [50], it is suggested that
the numerical integration of Equation (2.57) can be performed with a degree superior
to N. However, the conclusion of the same paper is that the gain in precision of this
so-called overintegration hardly compensates the additional cost. When "normal” Nth-
order Gauss-Lobatto-Legendre numerical integration is applied to Equation (2.57), it
is shown [50] that for u € HT* and f € H", the error is bounded by the following
expression:

” u—Uun "'Hl (ﬁ)s C {N—mln{p—l,m—l} " F ”'Hﬂ(ﬁ)” u ”Hmin{“,m)(ﬁ)
+ (N—1mnem-i} || p |2y |l ||«Hmin{,.,m_1}(ﬁ)

+ NP ol f lmingamy ey ) - (2:58)

In most practical situations, the continuous mapping F' is unknown, and has to be
approximated. One way of doing this is by transfinite interpolation, as proposed by
Gordon and Hall [34]. This method is very well explained in the framework of spec-
tral methods by Schneidesch [69, Chapter 4]. The term ”transfinite” is used because
this interpolation is exact for a non-denumerable number of points, i.e. the points
at the element boundaries. In short, when a parametric description of the element
boundaries {894}k, is available, an approximation Fi to F is constructed such that
F}(0Q) = 0. To the author’s knowledge, error estimates similar to (2.58), where F
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' (x1+x2)2

G422 +y2R

(x1+x2)/2

deformed element “corresponding” element

Figure 2.1: Construction of a corresponding, nondeformed element (2D case). The differences of
the z-coordinates of two opposite corners are defined as =1 and z2. The length of the nondeformed
element in z-direction is then defined as the average of =1 and z2. Idem for y.

is replaced by Fj, are only known if the interpolation is exact for all the grid points
(see e.g. Métivet [52] or Schneidesch [69]). However, the transfinite interpolation error
of boundary data is quadratic for the interior nodes, and the exponential decay of the
error can only be verified numerically. Schneidesch [69] has found for a number of test
cases that, indeed, spectral accuracy is preserved in the case of deformed geometries.

Throughout this thesis we will use isoparametric mappings, that is, the geometry
is represented in Xy. For the (Navier-)Stokes equations, this might imply that the
hydrostatic pressure mode is not preserved, but we have never encountered any prob-
lems in practice. Some preliminary tests, where we represented the geometry on the

Gauss-Legendre grid did, however, show some difficulties, especially for small values of
N.

Another issue is the influence of deformation on the condition number of the oper-
ator. This is important since many of the developed preconditioners (see Chapters 4
and 6) are constructed on nondeformed grids in order to allow fast elliptic solves. For
example, let us consider the case of a geometry consisting of one two-dimensional, de-
formed spectral element 2. We are interested in the condition number of the spectral
element Laplace operator A as a function of the amount of deformation, and in the
condition number of A;}A, with A,q4 the same operator as A, but constructed on a
"corresponding”, nondeformed spectral element. The ”corresponding” element (a con-
cept which will return in other chapters) is defined by taking the average dimensions
of the deformed element, as illustrated in Figure 2.1.

In Table I the condition numbers of A and A} A are given, and in Table II the
number of PCGM iterations to solve Au = B(1,..,1)7 with or without preconditioner

Ang. The two-dimensional, deformed spectral element §) is given by its four sides
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{Ff};‘:l:

I={-1}x[-1,1], T={(1+al®-1),y)I-1<y<1},

3 =[-1,1] x {-1}, Fs={(z,1+ asin(xr(z+1)/2))|-1<z<1}. (2.59)

In other words, ) is the unit square with two deformed sides and the amount of

A And
N]la=00|a=02|a=10]a=00ja=02]{a=1.0
5 10.1 10.2 18.8 1.00 1.29 6.21
7 21.6 21.8 52.8 1.00 1.42 11.2
9 37.5 38.2 122.3 1.00 1.52 15.6
11 58.6 60.4 214.8 1.00 1.59 17.9
13| 85.9 90.7 334.5 1.00 1.66 20.8

Table I: Condition number as a function of N and the amount of deformation c.

A not preconditioned A preconditioned by A4
N|la=00ja=02|a=10{a=00|a=02|a=1.0
5 10 16 18 1 12 17
7 21 33 43 1 13 33
9 35 49 69 1 14 42
11 48 64 97 2 15 51
13 60 80 127 2 15 57

Table II: Number of PCGM iterations as a function of /N and the amount of deformation c.

deformation depends on a. From the Tables I and II, it is clear that the operators A
and A,q are the same in the case of @ = 0, corresponding to no deformation. When
the rate of deformation is about 10% of the size of the element (a = 0.2), the condition
number of the preconditioned operator is only slightly larger than one, and the number
of iterations is almost independent of N. For very large deformations, the condition
number is still considerably smaller for the preconditioned operator, but the reduction
of the number of iterations is no longer spectacular. This is because the number of
iterations is related to the square root of the condition number. Finally, we remark
that further numerical studies have shown that deformation affects the eigenvalues in
the high and in the low range.
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2.5 The steady Stokes problem

An efficient solution algorithm for the steady or unsteady Stokes equations is the basis
of almost every Navier-Stokes solver. Especially in our case, where the nonlinear term
will be treated explicitly (see Section 2.7), it is very important to analyze the theory
on the spectral element discretization of the Stokes problem (see e.g. [47], [6], [46],
[65]) and to develop efficient iterative and/or semi-direct solution methods. A central
point in this discussion is the choice of the pressure space, which has to be done with
great care in order to satisfy the so called inf-sup condition, according to Brezzi [11]
and Babuska [5]. This condition guarantees existence and unicity of a solution to the
Stokes problem, and, hence, the absence of spurious pressure modes and nonphysical
wiggles. As we will see in this section, the inf-sup condition is satisfied if we take the
pressure in a polynomial space that is of an order less by two than the velocity space.

Let us start by presenting the steady Stokes equations in an open domain § with
boundary 0Q:

-vAu+Vp = f on (2.60)
—divy = 0 on 2 (2.61)
u 0 on 01}, (2.62)

with u = (u,(z1, 2, T3), Uy(21, T2, T3), Us(21, T2, 73))T the velocity, p = p(z1, 22, 3)
the pressure and f = (il(a:l,zz,za),__f_z(zl,zg,ms),ia(zl,xg,zg,))T a body force for
(z1,22,73) € Q. The kinematic viscosity is denoted by v. The Stokes problem in its
discrete form reads then: Find (uy,pn) € Xy X My such that

Yoy € Xn v(Vuy, Von)n — (pn, div on)n = (f,2n)n (2.63)
Vgn € My —(div up, gn)v = 0, (2.64)

where X and My are the velocity and pressure spaces respectively and (, )y and (,)n
discrete inner products, to be defined later.

A naive and wrong choice for the spaces Xy and My would be Xy = H3(Q)® N
PR (), My = L3(Q) N P k(). The space L(R) is defined by

L3(Q) = {v € LX) /Q vdz = 0}, (2.65)

and fixes the pressure level. The incorrectness can be seen by introducing the concept

of a spurious pressure mode: A function gy € My is called a spurious mode of the
Stokes problem (2.63), (2.64) if Yoy € XN

(div oy, gn)v = 0. (2.66)

Now let us suppose that there exists a solution (uy,pn) to (2.63), (2.64) and that gn
satisfies (2.66). Then, py + agn is also a solution of (2.63), (2.64), for any real a, and
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the uniqueness of the solution is no longer insured. As an example of a spurious mode
we have gy = Ly(z) € Mn. Associated to this phenomena is the theory by Brezzi
[11] and Babuska [5]. They presented a condition that, when satisfied, guarantees
the uniqueness of the solution to the Stokes problem. This condition is known as the
inf-sup condition: Problem (2.63), (2.64) is well posed if there is a real Sy > 0 such
that

(div un, qn) N (2.67)

Bn = inf{gn € Mn,qn # 0} sup {uy € XN} Il 2n lra@ell av 2y

By definition (2.66), we see immediately that the inf-sup condition (2.67) is not satisfied
if there exists a spurious mode in My. By is called the inf-sup constant and its value
influences precision and convergence of the Uzawa pressure operator, as will be seen in
the next section.

Taking into account the presence of spurious modes for the naive choice of the spaces
Xn and My, another suggestion has to be made. It is possible to determine Zy, the
set containing all the spurious modes

Zn = {qn € My; (divoy,qn)v =0 Yoy € Xn} (2.68)

and to take My = Py () N Z. This is, however, not a practical choice since some
low-order polynomials can not be represented. A well-known solution is the so-called
Pn — Pn-2 formulation, with

Xn = HAQPNPEL(QP,  My=LA)NPI_ k().  (269)

This Py — Pn—2 approach is well documented and can be considered as a classical
method. The absence of spurious modes has been proven and has been described in
many papers (see e.g. [47], [46] and [65]). Its implementation is also simple by taking
N + 1 point Gauss-Lobatto-Legendre quadrature rules to evaluate (, )n, analogously
to (2.22), and N — 1 point Gauss-Legendre quadrature rules to evaluate (,)n. The
Gauss-Legendre grid is shifted with respect to the Gauss-Lobatto-Legendre grid, that
is, the two grids do not have any point in common.

For the mono-element case it has been shown (see e.g. [6]) that the inf-sup constant
scales like N~'/2 in two dimensions, and like N~ in three dimensions. This dependence
on the mesh size is not present in most finite element discretizations and is undesirable
since By' appears in the error estimates for the pressure. Still on one element, it is
shown [49] that for the unique discrete solution (uy,pn) € Xy X My as defined in
(2.69) of the Stokes problem (2.63), (2.64) we have the following error estimates

lu—uy @ < C{N*"™ (| &llrm@yp + I P lmr(y) + N7 || £ ll2encaye }

(2.70)
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Ip—pn ez < C{N*™ (Il & llum@ay + || P llsem-2ee)) + N* ™ || £ llrmcaye } »

(2.71)

with (u,p) the solution of the continuous problem in H™()3 x H™ () and f €
H*1(Q)3, N,n > 2,m > 3. These error estimates are optimal for the velocity, but not
for the pressure. In two dimensions, the error estimate for the pressure is a factor N~1/2
better, due to the inf-sup constant which is hidden in Equation (2.71). Fortunately,
there is numerical evidence (see [46]) that, at least for values of V that are typically
used for spectral element discretizations, the estimate (2.71) is pessimistic and that
BN can be considered as only weakly dependent on N. There is also a direct relation
between By and the condition number of the Uzawa operator. This will be discussed
in the next section.

We conclude this section with some remarks about other possible choices for the
pressure space. Some authors (see e.g. Azaiez and Coppoletta [4]) use the internal
GLL grid points instead of the GL points. This leads to a marginally better inf-sup
constant. It is obvious that a main disadvantage of the Py — Pn_, formulation is that
functions have to be inter- and extrapolated from one grid to another, giving rise to
more expensive operations like derivation. Alternative approaches based on Py — Pn
spaces exist. Phillips and Roberts [59], for example, use a singular-value decomposi-
tion of the pressure operator to filter the spurious modes. Recent work (Canuto [13],
Canuto and Van Kemenade [15]) points out that stabilization by finite element bubble
functions suppresses pressure oscillations. Other authors (see e.g. Demaret and Deville
[23] and Pinelli and Vacca [60]) claim that some finite element resp. finite difference
preconditioners are responsible for filtering the pressure wiggles. Another, more in-
tuitive way to handle this problem is by considering a decoupling method applied to
the continuous equations (see discussion in Chapter 5). This requires an additional
boundary equation for the pressure (see Orszag et al. [56], Karniadakis et al. [42]
and Timmermans [74]), for example % = 0, which presumably eliminates spurious
pressure modes. Although nonphysical oscillations have never been reported, proof is
still lacking.

2.6 The Uzawa method

The absence of the pressure operator in the continuity equation makes the coupled
system (pressure/velocity) difficult to solve by an iterative method. Although this
problem can be dealt with by strategies based on fill-in (see e.g. Dahl and Wille [22]
for a finite element implementation), it is common practice to choose for a decoupling
method, which is discussed in Chapter 5. In this section we will introduce the Uzawa
method [2] and illustrate the relation between Sx and the condition number of the
pressure matrix. The book of Bernardi and Maday [6] and the paper of Maday et al.
[46] are suggested to interested readers.

First, we present the discrete Stokes equations in matrix form, with spaces as defined
in (2.69) and the inner products evaluated by Gauss-Lobatto-Legendre and Gauss-
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Legendre quadrature rules as described in the previous sections. We write

vAuy — DTpy = Bf (2.72)
— Duy = 0. (2.73)

The matrices A and B have been defined in (2.51) and (2.52). Throughout this thesis,
we will not underline matrices to indicate that we deal with 3K N3 x 3K N3 block
matrices. The matrix D denotes the discrete divergence, for a, 5,y =0,..,N — 2,

N T
Du = Z Daﬁ'ylmn ((yl)fmm (22)fmm (-u—'i){cmn)

I,mn=0

K N lk lk ail
= Yz a
= E ! E Wowgwy { 4 axl

k=1 Il,mmn=0

hg(€m)hoy(€n) (¥ )inn

k1k k1k
L 6”"(em)h () (6) () + i—a—’i(éoha(&)hﬁ(sm)(_a)m}

(2.74)

and the symbol T the transpose. The set of Lagra.ngia.n interpolants on the N — 1
point Gauss-Legendre grid is indicated by {h;}¥52, and the Gauss-Legendre weights
by {wi} 5% We remind that I%, I* and ¥ represent the dimensions of the spectral
element k, according to Equation (2 37) and that {£}Y, denotes the set of Gauss-
Lobatto-Legendre grid points, according to the definitions in Section 2.1 and Section
2.2 (Equation (2.37)) respectively. We then multiply Equation (2.72) by DA-! to
obtain the following equations which are equivalent to (2.72) and (2.73)

Spy = —DA"lf_ (2.75)
vAuy — DTpy = Bf, (2.76)

with the Uzawa operator S defined as
S =DAD?, (2.77)

We see that the computation of the pressure is completely decoupled from the compu-
tation of the velocities. Both the pressure equation (2.75) and the velocity equation
(2.76) are solved by PCGM. It should be noted that each evaluation of the Uzawa op-
erator requires the inversion of the operator A. Of course, matrix A is never inverted.
Instead a PCGM is used, yielding two nested iterative methods for the computation of
the pressure, which is, in most cases, rather expensive. These practical considerations
will be further discussed in Chapters 4 and 5. Here, we are more interested in the
theoretical aspects.
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Since (2.75), (2.76) is equivalent to the original set of equations, existence and
uniqueness of the solution are guaranteed by the inf-sup condition. We have for the
continuous operators that V- A~!V & I and expect that the condition number of S
with respect to the diagonal mass matrix on the Gauss-Legendre grid, B, is also of
order unity. This suggests that P, defined by

P!= B! (2.78)

is a good preconditioner for the steady Uzawa pressure operator. As has been recog-
nized in for example [46], the condition number of the matrix P~1S, x5, depends on
the inf-sup constant By in the following way

ks = — (2.79)

with C a constant independent of N. So the number of outer pressure iterations scales
like B5'. We see that the number of outer pressure iterations is only of order unity
if By = O(1). For many discretization techniques this is indeed the case, but for
spectral elements the inf-sup constant is not optimal. In three dimensions By scales
like O(N~1) and in two dimensions we have Sy = O(N~*/?) (see [6], [47), and [46] for
more details). Numerical tests (see [46]) indicate, however, that for values of N smaller
than 16, this estimate is pessimistic and it is shown that the number of iterations for the

preconditioned operator depends very slightly on N. The number of spectral elements
K hardly influences Sn.

For the unsteady Stokes equations the situation is completely different, that is, more
complicated. When we apply an implicit Euler backward scheme to discretize in time
(see Chapter 3 for more details), we find the following spectral element formulation:
Find (un,pn) € Xn X My such that Yoy € Xy, Vgv € My

(_ —uN NN + v(Vuptt, Vay)v — (pi diven)y = (7, u5)n (2.80)
— (div ujt ', qn)v = 0. (2.81)

The upper index n refers to the time level. In matrix form, the equations (2.80) and
(2.81) can be written as

Sppt = —DH'fH! (2.82)

Hu' - D'pi* = Bf™, (2.89)
with the unsteady Uzawa operator S and Helmholtz operator H defined as
S=DH'DT, H = At"'B +vA. (2.84)
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Note that we transferred the explicit term At~! Bu}; to the right-hand-side vector f™**.
We see that for large values of vAt the unsteady Uzawa operator tends to the steady
operator (discarding constants) and can still be preconditioned by the inverse of the
mass matrix on the Gauss-Legendre grid. For small values of vAt the situation is,
however, different since S tends to the pseudo-Laplacian F, defined by

E=DB™D". (2.85)

The preconditioning of this operator will be the subject of Chapter 6.

N Nx N x K [TE@ T TE@) ]
4 x4x4x%x4 1.150-2 1.310-3
6x6x6x4 5.210-5 8.210-6
8x8x8x4 1.710—7 2.510—8
10 x 10 x 10 x 4 3.010-10 4.610—11
12x12x12x4 2.510-12 6.110-14

Table III: I,-error for Stokes problem

We will close this section by illustrating the spectral convergence for a steady Stokes
problem with analytical solution

T
u(zy,Z2,23) = (— cos(g:cl)sin(%mg),sin(gml) COS(%J)g),O) (2.86)
N SN
plzr, x2,23) = —7rsm(§a:1)sm(-2—:z:2) (2.87)

which is computed by means of an unsteady solver. The steady solution is obtained in
about eight (N = 4) to twenty-three (N = 12) time steps (v = 1, At = 1). The results
are given in Table III.

2.7 The discretization of the nonlinear term

The incompressible, transient Navier-Stokes equations in an open three-dimensional
domain {2 are given in their nondimensional form:

%t% —Re 'Au+ (u-V)u+Vp = |, (2.88)

—divu = 0 (2.89)
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and are subjected to no-slip conditions on the boundary 0f2:

u=0

(2.90)

The Reynolds number Re = UL/v is based on a characteristic velocity U, a charac-
teristic length L and the kinematic viscosity v and describes the physical properties of
the flow (i.e. the ratio between the inertia forces, through the convective term (u- V),
and the viscous forces, through the diffusion term Au). The presence of the nonlin-
ear convection term does not only increase the physical complexity of the fluid flow,
but also complicates the numerical simulation. The discrete system becomes nonlinear
and nonsymmetric, and sophisticated numerical techniques have to be applied to deal
with these difficulties. A very common approach is to use explicit time advancement
schemes for the nonlinear term. This both linearizes the equations and reduces the
computational effort for the "inversion” of a Stokes system. In return, a restriction on
the maximum allowed time step emerges (see Chapter 3).

The convection operator can be written in three different ways:

V-uu conservative form (2.91)
(u-V)u convective form (2.92)

1 1 .
-2-(u -Vu + §V ‘uu skew-symmetric form. (2.93)

Although for u satisfying the incompressibility constraint, these expressions are equiv-
alent in the continuous case, differences will appear after discretization, due to the
non-exact representation of u, divu, and Vu. Several numerical tests show that spec-
tral element discretizations based on the convective form yield more accurate results
than discretizations based on the skew-symmetric form, although the differences are
very small.

So precision is hardly an argument to choose for any of the three representations.
The distribution of the eigenvalues, however, could be decisive. Time-integration
schemes for the convective operator are based on the fact that the eigenvalues are
purely imaginary. If one of the three representations induces large numerical errors
(i.e. large real parts for the eigenvalues), this could be a reason not to choose this
form. Since it is not very common to speak about eigenvalues of nonlinear operators,
we investigate the eigenvalues of the operator representing the convection of a passive
scalar § by an incompressible velocity field u in an open domain 2. Corresponding to
Expressions (2.91), (2.92), and (2.93), the respective equations are given by

86 o
5 = -V -ub, —~divu=20 (2.94)
% = —u V6,  —divg=0, (2.95)
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% = —-%(y- VO +V -ub), —div u =0, (2.96)

with homogeneous Dirichlet boundary conditions on §. By defining the GLL derivation
operator C as C = (Cy, C,,C3)7,

[ K pn X \
2’14_‘ ZanPqPﬁP'v(a:ﬁq)

k=1 g=0

K 1k N
> 152> Doppopapy(6iey) | @B,7=0,.,N, (2.97)

k=1 g=0

K ik N .
2/71 ZDq'qu PaPﬁ(Oaﬁq)
k=1 g=0 }

co

with

dh
Dyy = (), (2.98)

we obtain an expression for the convective terms, for instance u- V8 =~ u,C10+u,C20 +
u3C38. We can then investigate the eigenvalues of the discrete convective operator in
the conservative, convective and skew-symmetric form by solving respectively

—(Ciyy + Couy + C3us)z = ABz (2.99)
—(sC1 + u,C2 +u3Cs)z = ABz (2.100)

1
) (21C1 + u2C2 + u3Cs + Chuy + Couy + Csuz)z = ABz. (2.101)

For the sake of simplicity, we took a two-dimensional geometry (2 = (—1,0) x (—1,2),
K =2,11 =1, I2 = 2) and computed the eigenvalues of the convection operator pre-
multiplied by the inverse of the diagonal GLL mass matrix for two different solenoidal
fields u; u = 1 and u = (—sin(z) cos(y), sin(z) cos(y))T. Dirichlet boundary conditions
are applied. The results for the constant velocity field are shown in Table IV and for
the non-constant velocity field in Table V. We remark that the largest imaginary eigen-
value grows like O(NN?) and that their is no difference in the conservative, convective,
and skew-symmetric form for u = 1. However, if the velocity can not be represented
exactly, the skew-symmetric form is preferable, since the real parts of the eigenvalues
are always zero (at machine accuracy). The conservative and convection forms give
rise to appreciable real components with positive and negative signs.

It is interesting to study the influence of these eigenvalues that are not purely imag-
inary. Let us take the case N = 10 and suppose that a fourth-order explicit Runge
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conservative form convective form skew-symmetric form
max real | max imag. | max real | max imag. | max real | max imag.
1.507E-15 20.914 1.507E-15 20.914 1.507E-15 20.914
9.326E-15 33.467 9.326E-15 33.467 9.326E-15 33.467
1.526E-13 48.654 1.526E-13 48.654 1.526E-13 48.654
2.621E-13 66.833 2.621E-13 66.833 2.621E-13 66.833
14 | 1.719E-12 88.177 1.719E-12 88.177 1.719E-12 88.177

G| 2| oof | =

Table 1IV: Maximum value of real and imaginary part (in absolute value) of the convective operator
for a constant velocity u = 1.

conservative form convective form skew-symmetric form
N | max real | max imag. | max real | max imag. | max real | max imag.
6 0.218 9.171 0.218 9.171 3.553E-15 9.208
8 0.248 15.067 0.248 15.067 6.217E-15 15.096
10| 0.217 22.590 0.217 22.590 2.309E-14 22.607
12
14

0.292 31.791 0.292 31.791 2.132E-14 31.804
0.286 42.626 0.286 42.626 3.739E-14 42.635

Table V: Maximum value of real and imaginary part (in absolute value) of the convective operator
for a non-constant velocity u = (— sin(y) cos(z), sin(z) cos(y))7.

Kutta scheme is used to discretize Equation (2.95) in time (in Chapter 3 we will com-
ment on time schemes for the convective terms). From Table V we find that the largest
imaginary eigenvalue of the convection operator is 22.590i. In practice, the time step
will be chosen such that this eigenvalue is just inside the stability region of the Runge
Kutta method, which intersects the imaginary axis at 21/2. In Figure 2.2, the eigen-
values of the convective operator are displayed together with the stability region of the
Runge Kutta method, blown up by a factor Wi‘sw’o\/i In this way, stability is assured
for the eigenvalues along the imaginary axis, and we investigate if the same is true for
eigenvalues with a nonzero real part. To this end, we zoom in on the right-half plane
(see Figure 2.3). It is observed that some eigenvalues are located outside the stability
zone, which may lead to instabilities when integrating over a long time span. This
is a firm argument in favour of a skew-symmetric formulation. However, in practice
we have never encountered any problems with the convective form. A heuristic ex-
planation is that we always solve convection/diffusion problems in which not only the
eigenvalues of the different operators, but also the stability zones of an explicit and an
implicit time scheme interact. This could imply that the eigenvalues with a positive
real part are shifted inside the stability region of the overall time scheme and do not
impose restrictions on the maximum allowed time step. In Section 3.3 this assumption
is confirmed by a stability analysis.

In this section we have only considered homogeneous Dirichlet boundary conditions.
However, the eigenvalue distribution will be completely different when, for example,
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Figure 2.3: Eigenvalues of the convective operator for a non-constant velocity field (N = 10,
K = 2) and the stability region of the fourth-order Runge-Kutta method, blown up by such a factor
that the largest imaginary eigenvalue is just inside this region. Zoom on the right-half complex plane.
The Runge-Kutta method is stable left/above the dotted ine.
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outflow boundary conditions are present somewhere along 09Q. In fact, the discretiza-
tion of the convection operator relies on integration by parts:

/9 vu - Vodz = /ﬂ Ou - Vvdz — /a _vby-nds, (2.102)

where n denotes the outward unit normal on the boundary 9€). The fact that the
surface integral in Equation (2.102) is non-vanishing for outflow boundary conditions
causes the eigenvalues to move to the left complex half plane. In general, this is not a
serious problem since most time-integration schemes have large stability zones in this
half plane. We observed numerically that the real parts of the eigenvalues are negative
or zero for the skew-symmetric formulation. Both the conservative and the convective
form, however, possess eigenvalues with positive real parts of about the same size as
the ones displayed in Table IV. Like for homogeneous Dirichlet conditions, a small
amount of diffusion will prevent the method to become unstable.
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Chapter 3

Time discretization

High-order spatial discretization techniques are useful to obtain either accurate results
or to reduce the number of grid points. The same argument can be used for high tem-
poral accuracy: On the one hand, there exist physical problems, like the computation
of the trajectory of a rocket, or, more related to our field of interest, the simulation
of turbulence, that require very accurate approximations in time to perform statis-
tics. On the other hand, for most problems that are treated in this thesis, it is of
importance to maintain a certain level of precision when advancing in time with the
"largest possible” time step. Since, in general, the computational cost of a first-order
method is hardly any lower than for higher-order methods, the same level of temporal
accuracy can much faster be obtained by a high-order method. Some attempts have
been made (see e.g. Morchoisne [54]) to develop spectral methods in time, but they are
seldomly used because of the large number of coupled systems of equations that have
to be solved. In general, one is satisfied with third- or fourth-order accuracy in time.
In this chapter we will go up to third-order methods and we will give some guidelines
to increase the order.

Often, the ‘time step is not determined by considerations of accuracy, but by a
stability condition. This is for example the case for nonlinear, steady problems, where
time errors should not be present in the time-converged solution. The only reason
not to use an “infinite” time step is that the stability condition, due to the explicit
treatment of the nonlinear terms, is violated.

We will start this chapter by introducing some basic concepts and by discussing
the characteristics of some classical time-integration schemes. The necessity to split
the nonlinear terms from the linear terms will be the subject of Section 3.2. There are
several ways to combine a time-integration scheme for the nonlinear terms, say SN, and
a scheme for the linear terms, say SL. This has to be done carefully since the overall
order is not simply the minimum of the orders of SN and SL. There is also a splitting
error, the order of which will be studied in this chapter. Our goal is to develop splitting
schemes that do not degenerate the overall order of time accuracy. For steady problems
this is unfortunately not always possible, because some splitting methods lead to non-
vanishing time errors in the time-converged solution. Two splitting schemes will also be
compared with respect to stability. The operator-integration-factor splitting method
(see Maday et al. [48]) is especially developed to alleviate the stability constraint on
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the time step. Classical stability analyses only give relevant results for the two extreme
situations: purely convective and purely diffusive flows. In Section 3.3 we will propose
an original way to investigate the stability for any ratio of convection to diffusion.
The predicted value of the maximum allowed time step is verified by some runs of the
spectral element code for different values of the Reynolds number. A similar analysis
will allow us to explain that the non-negligible real parts of the eigenvalues of the
convective form of the nonlinear term do not lead to unstable computations.

3.1 Basic concepts

In this section we will be concerned with the numerical approximation of the following
initial boundary value problem of partial differential equations

o= dwd)  te(®T]
u(t®) = wuo. (3.1)

The right-hand-side function g is in general nonlinear and contains the spatial part of
the partial differential equation. Equation (3.1) reduces to an initial value problem
(IVP) for a system of ordinary differential equations by the method of lines [14):

QN%% = Qngn(un,t), (3.2)

with uy, typically, the spectral element approximation of u and Qx the projection from
the continuous space into the polynomial space Py k. Equation (3.2) is often referred to
as the semi-discretization of Equation (3.1). We set y(t) = @nun(t), corresponding to
the approximated values of u(t) at the interior Gauss-Lobatto-Legendre grid points and
those at the interfaces. We also introduce the function f as f(y(t),t) = @ng(un(t),?).
Equation (3.2) is then rewritten as

Y~ e, (33)

As has been stated in the introduction to this chapter, high-order temporal discretiza-
tion is essential in the context of spectral element solvers for the Navier-Stokes equa-
tions. In our opinion, the time scheme has to be of an order three or more. When we
speak of the order of a method, we refer to the global order, i.e. the order to integrate

in time over an interval [t° T}, with a time step At, At « T —¢°. The local time
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error is the error at ¢ = t"*!, assuming that the previous solutions at t° < ¢ < ¢*
are exact. This local order is equal to the global order plus one. More prec1sely,
the numerical txme—mtegra.tlon scheme produces a series of approximations {y"}n_1 for
{y(t™) = y(t° + nA)}:,, with N,At = T — t°. The local error at t = t**? is defined
by

ly(2") — y™ 1, assuming that y?,y?, .., y" are exact. (3.4)

The global error is defined by
ly(T) = y™|. (3-5)

It is important to know that small changes in the initial values only produce bounded
changes in the numerical approximations. We term this concept stability (see e.g. Gear

[31]). In fact, time discretization is said to be stable if there exist constants §, C, and
M independent of At, such that, for all T > t°

ly"| < CeMT|y0), (3.6)

for t° <t" < T and for all 0 < At < 6. In practice, the stability condition (3.6) is not
restrictive enough, since it allows exponential growth of the numerical solution. There-
fore, we introduce the concept of asymptotical or absolute stability [31]: A method is
absolutely (asymptotically) stable for a given step size At and a given differential equa-
tion if the change due to a perturbation of size é in one of the approximated values y™
is no larger than 6 in all subsequent values. This definition depends on the differential
equation and is therefore useless. We will define absolute stability for the scalar test
equation dy/dt = Ay, with A a complex constant. The region of absolute stability is
the set of all AAt such that |y™¢| is bounded as T — oco. Furthermore, a method is
called A-stable if the region of absolute stability includes the complex left-half plane.
A method is said to be absolutely stable for a linear system of differential equations
dy/dt = Ay if all the eigenvalues A; of A lie within the region of absolute stability of
the scalar test equations dy/dt = A;y. Often, absolute stability is simply referred to as
stability. This is because the "real” concept of stability is rarely used. In the following
we will also use the term stability instead of absolute stability.

Three families of time-integration schemes are relevant within the framework of this
thesis. First, we discuss the explicit Adams-Bashforth methods. The general form of
an s-step Adams-Bashforth method (ABMs) is

s—-1

yn+1 — yn + At Z ,),t_f(yn+i—s+l, tn+i—s+1). (37)

=0

The method requires s start-up values y°,y*,..,y°"!. The global error of ABMs is s.
The coefficients of the ABMs up to order 4 are given in Table I.

As an example, we will investigate the stability of the ABM3:

§ =g+ A () = A+ ST (39)
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By applying this method to the scalar test equation dy/dt = Ay, we arrive at

wir_ e 2BAN L AAD L BAR

y -y 5 Y 3V - v =0 (3.9)

This is a homogeneous difference equation which possesses solutions of the form (? =
y™~2*? (note that the upper index on the left-hand side is an exponential, whereas the
upper index on the right-hand side is an iteration index). Substituting in Equation
(3.9) leads to

230t ,  4ALA . BALA
F) 5~ =0. (3.10)

-1+

The left-hand side of Equation (3.10) defines the characteristic polynomial C' of the
ABM of order three;

23AtA 4AtA 5AtA

C,M\A)=C—(1+ 5 )% + 3 ¢ TR (3.11)

A method is called (strongly) stable for a given AAt if all the roots (; of C' are in
absolute value smaller than one:

C(Ch, A =0 = |G| < 1. (3.12)

This statement is equivalent to the aforementioned definition of an absolutely stable
method. Plots of the stability regions of several ABMs are given in, for example,
[14] and in [31]. They are symmetric with respect to the real axis. Two parameters
are of special interest: Bimqq, the intersection of the stability region with the positive
imaginary axis such that the method is stable for all imaginary values of At\ that are
smaller than Bimag; and Breqr, the intersection with the negative real axis such that the
method is stable for all negative, real values of AAt larger than B.eq;. For ABM3 we
have Bimag = .723 and freat = —0.545 [14]. The values of the Fimqsg and Breq for the
ABM up to an order of four are given in Table I.

The second family of time-integration schemes is that of the implicit backward
differentiation formulas of order s (BDFs). We confine ourselves to 1 < s < 4. Their
general form is given by:

Bay™! + Bomry™ + .. + Boy™ 170 = Atf(y"H, 1), (3.13)

The implicit character is obvious due to the term f(y"*?,¢**1) in the right-hand side.
Note that the number of implicit relations to be solved remains the same for increasing
order of the BDF. Hence, the computational cost does not augment with the order.
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s | coefficients {v;}:Z, Bimag | Breat
2] v= —‘{,71 =3 0 -1
3| 7= 1—52, M"m= —%, Yo = % 723 | -.545
dlro=-3n=51r=-5 =% 430 ] -3

Table I: Coefficients and Simag and Breat for Adams-Bashforth methods of order s < 4.

Like for the family of ABM, a BDF requires start-up values. In order to be consistent,
the local order of the start-up values has to be s, and they should be computed by
a stable, implicit method. In this spirit, the BDF3 can be started with the initial
condition y° and by y! computed by, for example, the method of Crank-Nicolson. The
BDFs have B,eqs = —00. Moreover, the roots of the characteristic polynomial tend to
zero for |AAt| — oo, for all AAt that possess a nonpositive real part. The coefficients
and Bimeg can be found in Table II. The stability regions of the BDF’s of order three
and four do not contain the imaginary axis near the origin (Bimqsg = 0).

s | coeflicients {8i}i. Bimag | Breat
1 Bo=-1,p=1 © | =%
2 ﬂo=%,ﬁ1=—2,ﬁ2=% o0 -0
3 ﬂo=—%,ﬂ1=%,ﬂ2=—3,ﬂ3=% 0 —o0
41 Bo=5:8=-58=3B8=-4B=8] 0 |-

Table II: Coefficients, Fimag, and Br.q; for backward differentiation formulas of order s < 4.

Finally, we introduce the second- and fourth-order explicit Runge-Kutta method
(RK2 and RK4, resp.), which we will use in this chapter. These schemes do not fall
within the class of multistep methods, like BDF and ABM. For the approximation of
y(t**1), we only need y". The RK2 requires two function evaluations and RK4 four.
We call such schemes two- and four-stage methods respectively. The RK2 scheme can
be written as follows:

1 At
v =y Atf (4 SAL )+ 5. (3.14)
The RK4 method is given by
n+1 n At
y =yt 4+ r (ky + 2k; + 2k3 + k4) , (3.15)
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with

kl = f (yn, tn)
. Otky At
. QOtky . At
ks = f(y" + Atks, t™ + At). (3.16)
The stability characteristics for RK2 are given by Breat = —2 and Bimsg = 0. The

stability region for RK4 is bounded by Bresi = —2.79 and Bimay = 2v/2. The RK4
method is especially interesting because of its large stability region along the imaginary
axis. The associated Bimqy is almost four times as large as Bima, for AB3, which is also
an explicit method. In fact, the maximum value for S;,,, that can be obtained by
a four-stage Runge-Kutta method is 3, which is only slightly larger than 2v/2. The
significance of large stability regions along the imaginary axis will become clear in the
next section.

3.2 Splitting of the linear and nonlinear terms

In the previous chapter we discussed the space discretization of the linear and nonlinear
terms in time. In order to point out the typical problems associated with the time
advancement of the Navier-Stokes equations, we will use a simplified equation that
highlights the same difficulties:

Ba_%ﬁ(ti) = —Re 1 Au(t) + Np(u(t),?). (3.17)

We have used the same notations as in Chapter 2. Np, is the nonlinear operator and
does not represent a linear matrix, like B and A. Since the eigenvalues of B~ A grow
like O(K2N*) (see [65] and Section 2.3) ! , an implicit time-integration scheme is
recommanded. It is, however, not a good idea to treat the nonlinear terms also by
an implicit scheme, since a system of nonlinear equations is expensive to solve. But

'In Section 2.3, we have investigated the eigenvalues of A (and not of B~!A) and determined
its condition number. It is this condition number that is related to the rate of convergence. In the
context of time-integration schemes, however, the eigenvalues of B~ A are important [65), since the
term §/8t is premultiplied by the diagonal mass matrix B. The latter matrix is responsible for another
asymptotic behaviour of the condition number, i.e. a multiplication of K; N3 by a factor N. Note that
the eigenvalue analysis of the convection operator in Section 2.7 has already been performed with

respect to B.
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even after linearization, we would end up with a nonsymmetric, indefinite operator.
Therefore, the nonlinear term is usually discretized by an explicit time scheme. In this
way, linearization is not necessary and the eigenvalues will be imaginary or complex
with small real parts, in the case of a skew-symmetric or convective formulation re-
spectively. Let us assume that the eigenvalues are imaginary and grow (with respect to
B~1) as K1 N?, as has been demonstrated in Section 2.7. The fact that the eigenvalues
of the nonlinear operator scale in absolute value like O(K; N?) and not like O(K?N*)
is another argument to use an explicit scheme.

Amongst the available implicit time-integration schemes we choose the family of
BDF, because of their simplicity, also for order 3 and 4, and because of their advanta-
geous stability properties. Since they are stable for all values of AAt along the negative
real axis, there is no condition on the time step arising from the integration of the lin-
ear, diffusive terms. The choice of the time-integration scheme for the nonlinear terms,
and the way in which it is combined with a BDF are less trivial and will be discussed
in the following.

3.2.1 Splitting by combining multistep methods

A scheme that is often used for the nonlinear terms is the third-order Adams-Bashforth
scheme (AB3). The BDF1/AB3 scheme applied to the IVP (3.17) yields

Bu™' = Bi"— AtRe Ay (3.18)
Bi* = By"

b ot (Bt ) - o + S en). s

It is easily verified that the local error (LE) of this scheme is given by

LE = %(At)2B_l (dNL((l;_t(t),t) _ dR6~;t14y(t))t=tn+l + O(At)3 (320)

Hence, the BDF1/AB3 scheme is globally of order one. The extension to higher-order
schemes is not trivial. If we apply BDF2 in combination with AB3, we obtain

3Bu™! = 4Bi" — Bu™! — 2AtRe™! Au™*! (3.21)

B@n — Byn

+ At (%gNL(Hn,t")—gNL(y_ —1,tn-1)+%NL(gn-2’tn-z))’ (3.22)
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and find a local error of order At. We can improve this result by replacing (3.22) by

~n o n 1 23 n 4n é -1 4n-1 __5_ n-2 n-2)
B = Bu + 54t (SN, t") — SN (@, ) + SN ), (3.29)

to find a local error

dNr(u(t),t)

_ Ll anzp-1
LE_3(At)B( =

) + O(At)d. (3.24)

This error is due to time splitting. A more systematic approach has been proposed by
Ascher et al. [3].

Another, very simple method has been used by Karniadakis et al. [42] and is nothing
more than an extrapolation scheme for the non-linear terms. More precisely, we apply
a BDFs (here BDF3) to the linear and nonlinear terms:

By_n-}-l - i_fBgn _ %By_n—-l + %By-n—Z + -16—1At (—Re'lAg"“ + NL(Qn-H, tn-H)) .

(3.25)
However, instead of solving the implicit relation for the nonlinear terms, we use an
extrapolation scheme (EX3) to determine Np(y"t!,¢"*1):

Np(u™*1, 1) = 3N (u™, ") — 3N (w1, 177 1) + Ny (u™2,t772) + O(At)2.  (3.26)
Substitution of (3.26) in (3.25) yields

18 9 2 6At
n+l  __ n_ n-1 n-2 __
Bu = —llBy —-HBy + ——HBy

n+$1
11Re Au

+ %At (3VL (", t") = 3N (@™, £7) + Ny (w2, £272)) . (3.27)

Note that there is no time-splitting error. The local error of this extrapolation scheme
is of order three, implying that the BDF3/EX3 scheme has a global error of order
three as well, since the nonlinear terms are multiplied by A¢. A simple development
in Taylor series reveals the following expression for the local error:

_ 3 apap-1 [ LNL(u(t),t) 1 L Au(t) 5
LE = —(At)*B <————dt3 +3ReT t=tn+1+O(At). (3.28)
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For a converged, stationary solution we have that neither u, nor the operators A and
Ny, vary with ¢, yielding that the local errors (3.20), (3.24), and (3.28) vanish.

3.2.2 Operator-integration-factor splitting

Another way to construct high-order time methods is by applying the operator-integ-
ration-factor splitting as discussed by Maday et al. [48]. Timmermans [74] also applied
this method in the framework of spectral-element methods for incompressible fluid flow.
The advantage of this technique is that it combines any two methods for the linear and
nonlinear terms. There are several interpretations of the operator-integration-factor
splitting method. The one we present in this section is as a subcycling method. It is
convenient to restrict our analysis to the case for which the nonlinear term Ny, can be
written as —C(u(t))u(t), with C(u(t)) a matrix the entries of which depend on wu(t).

We start by writing Equation (3.17) in terms of an integrating factor ng,.’t)

2 (0l Bu(t) =~ Re~ utt) (3.29)
which is defined by
%Q%‘,t)B — Q%"t)C(y_(t)), Q%.'t.) —_ I, (330)

with I the identity matrix and ¢* an arbitrary fixed time. The operator-integration-
factor splitting proceeds by discretizing (3.29) by an appropriate time scheme. Here,
we will apply a BDF's scheme. Equation (3.29) is then rewritten as

(tn+1 gnt1-i) At

BsBu™' + 3 B, Q Bu(t"*'~) = — g Au™. (3.31)

=1

The next step consists of the evaluation of the terms involving the operator-integration
factor, which is never constructed explicitly. Instead, we define

Q%n-f-l,tn-}-l—i)Bg(tn.*_l_,‘) — Bﬁ,‘(tn-*-l), 7 = 1, vy S, (332)
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where #;(t"*1) is obtained by solving the following IVP :
Baga,t(t) — —C(@,(t))ﬂ,(t), @i(tn+1—i) = yn+1—i, tn+1—i <t S t"+1. (333)

Problem (3.33) is solved with a step size As = At/M ; M is the number of subcycles
and has an important impact on the stability of the scheme, as will be shown later.
In this way, the step size for the expensive implicit part is decoupled from the cheap
explicit part. Hence, the stability condition for the convective part is on As and not
on At. In the next section, we will study the effect of subcycling on the stability of the
complete scheme. Note that in the original paper of Maday et al. [48], the operator-
integration-factor splitting method is only applied to linear and linearized operators.
It can, however, also readily be applied to a nonlinear operator as is demonstrated in
this section. As an example, we give the BDF1/RK4 and the BDF3/RK4 scheme. The
BDF1/RK4 scheme reads as follows:

Bu"*! = B, — %Ag"“, (3.34)

where %, is computed by applying the fourth-order Runge-Kutta method to the fol-
lowing IVP

B% = —C (& (t))&(?), t € [t", 1", i, (") = u,. (3.35)

The BDF3/RK4 scheme reads

1 2 At
By = DBty — 2 Big + - Bia —

u = Ayt (3.36)

11Re —

where the fourth-order Runge-Kutta method has been applied to (3.33)

e on the interval [t?, "], &, (") = u,, to compute &,
e on the interval [t~ ¢"*+1], &, (¢""1) = u,_,, to compute i,

e on the interval [t"~2,t"+1]) #3(¢"~%) = u,_,, to compute @s.

Again, the step size for these three problems is As. Unless stated otherwise, we will
use As = At. In these examples, the fourth-order Runge-Kutta scheme is chosen

42



to integrate the nonlinear part because of its large stability region along the imagi-
nary axis. Moreover, when combined with a BDF's, the overall order of the scheme is
found to be min{4,s} (this has been shown for linearized operators [48], and is ver-
ified numerically for the nonlinear convection operator). The local splitting error for
this type of methods does not vanish for stationary problems. In order to understand
this phenomenon, which is not present for the BDFs/EX3 method, we will analyze
the BDF1/RK2 scheme. This scheme combines the second-order Runge-Kutta method
and the first-order BDF as follows:

At
n+l1 _ ~ n41
By = Bu T Au (3.37)

Bii = Bu" - AtC (y" - %C(y")g") (u“ - %t-C(y")y") (3.38)

The local error of this method is given by the expression

1p - & p- {d—%(t—) + Au(y 2200 }= . (5.39)

The first term of (3.39) represents the local time error of the BDF scheme and vanishes
for stationary problems; the second term is the splitting error and does not disap-
pear. Remark that the error is proportional to the inverse of the Reynolds number.
This is not confirmed by numerical tests applied to methods with fourth-order Runge-
Kutta approximations for the nonlinear terms. Probably, the error estimates for these
higher-order schemes contain more complex terms that do not depend on the Reynolds
number. Because of the complex expressions for the local errors of high-order Runge-
Kutta schemes, it is difficult to analyze the BDF1/RK4 or BDF3/RK4 scheme in the
same way. However, by means of a numerical test, we will show that the latter scheme
has a third-order splitting error that does not vanish for stationary problems. This
test will be accomplished in Section 3.3, in which we will also investigate the stability
characteristics of different schemes based on extrapolation and operator-integration-
factor splitting. First, we will show that the latter method can be interpreted either
as subcycling method, or as a method of characteristics.

3.2.3 Analogy between the subcycling method and the method
of characteristics

The subcycling method is identical to the method of characteristics (see e.g. Pironneau

[61] and Ho et al. [38]), as has been indicated by Maday et al. {48] and by Boukir
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[10]. The exact relation between the two methods can be established by writing Equa-
tion (3.17) in its Lagrangian form

0 1

where X (z,t) is the standard Lagrangian spatial variable. For the sake of clarity, we
write the velocity field as u(z,t). The left-hand side of Equation (3.40) represents a
substantial derivative, that is, a space-time derivative following a material point in the
fluid:

B u(X(2,1),1) = Baralz, 1) + Clala, D)ulz, 1) (3.41)

Equation (3.40) is then discretized by a BDF's:

BsBu(X(z,t"™),t"*) +

3" BoiBu(X (g, "1 70), 171 ) = —%Ag(&(g,t"+‘),t"+l). (3.42)

=1

Following Pironneau [61], u(X(z, t*+1=%),#*+1%) is the value of u at time ¢t"*1~* at the
*foot” of the characteristic the "head” of which at time t"*! is z. In fact, X(z, t"+!~¥)
is defined by the backward problem

?ééf’—s) = u(X(z,s),9) s € [t"“",t"“) (3.43)
X(z,t™") = =z (3.44)

By virtue of the "end-point” condition (3.44), Equation (3.42) simplifies to

: : : At
B:Bu™ + 3 B iBu(X (g, ™), ") = — - Au. (3.45)

=1

The foot characteristic values can be determined by solving Equations (3.43) and (3.44)
by an appropriate time scheme, for instance RK4, and time step. The equivalence with
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the subcycling method is established by integrating Equation (3.41) in time

tn+ 1

g )
/t B u(X(z, 1), t)dt =/¢ Bsu(g, t)dt

ntl—¢ n4l=1

tn+1

+ /t C(u(z,t))u(z,t)dt i=1,..,s, (3.46)

ntl—¢
which gives

tn+1

Bu(X(z,t"*'7),t"!7") = Byt~ — / s Clu(z,t))u(z,t)dt i=1,..,s. (3.47)
tntl-s

By virtue of Equation (3.32), we can set

BE(&(Q, tn+1—i), tn+1—i) — Q%ﬂ+1't“+l-‘)By(tn+l_i), (348)
and Equation (3.31) is equivalent to Equation (3.45).

3.3 Accuracy and stability of splitting schemes

In this section we will try to make a comparison between the splitting schemes a la
Maday et al. [48] and those that are based on extrapolation. We will both be concerned
with accuracy and stability. In particular, we will examine four methods, BDF1/RK4
and BDF1/EX3, as examples of low-order methods, and BDF3/RK4, BDF3/EX3, for

the simulation of problems for which high-order temporal accuracy is essential.

3.3.1 Accuracy

We start by comparing the accuracy of three of the aforementioned methods on a steady
problem. Let us focus on the maximum errors in the u, velocity (see Figure 3.1) for a

three-dimensional Navier-Stokes problem in the cube [0,1]* with a hole of dimension
[0.4,0.6] x [0,1] x [0,4,0.6] (N =5, K = 8, Re = 10), see also Section 4.2, Figure 4.6.
The analytical solution of the stationary problem is given by

T
u(zy,22,73) = (— cos(-;[:cl) sin(%xz), sin(%xl) cos(-g:cg), 0) (3.49)

p($1,$2, 2:3) = 0. (350)



0.001

0.0001 - “

1e~-0S |-

le-06
STEPSIZEB

Figure 3.1: Maximum (time-splitting error) in u, velocity as a function of the step size. Stationary
problem. The BDF3/RK4 result at At = 0.2 has been obtained by setting M = 3. The BDF1/EX3
has no time-dependent error for stationary problems, but is unstable for At > 0.06.

We see in Figure 3.1 that the BDF1/RK4 scheme is indeed of order one and that the
BDF3/RK4 scheme is of order three. The BDF1/EX3 method has no time-dependent
error for stationary problems. This confirms the analytical results of the previous sec-
tion. The BDF3/EX3 method will show the same behaviour as its first-order analogue
BDF1/EX3. Apparently, the third-order method is not behaving optimally due to a
very large error constant. This makes the curves for the BDF1/RK4 and BDF3/RK4
schemes intersect for relatively large values of At. A confirmation of the large error
constant for BDF3/RK4 is found when we make a comparison with BDF3/EX3 on the
test problem (3.49), (3.50), where the velocity field is multiplied by sin(xt); N = 5,
Re = 100, At = 0.05. The solution is no longer stationary, so both methods will
show time errors. Comparing the maximum errors in the velocity we found 4.6E-4
for BDF3/EX3 and 5.8E-3 for BDF3/RK4. Another disadvantage of the BDF3/RK4
method is that it requires a considerable number of evaluations of the convection op-
erator (24 M per time step, versus one for BDF3/EX3). And, indeed, we see a consid-
erable difference in cpu time (more than a factor two for this problem) between the
two schemes. This difference is believed to be reduced when the polynomial degree N
increases, but is still an argument in favour of the extrapolation scheme. The number
of subcycles M has been found to have no effect on the precision.

3.3.2 Stability

The operator-integration-factor splitting method is designed to circumvent the stabil-
ity condition by using a smaller time step, As, for the explicit part. We should not
forget, however, that we do not solve two separated problems, allowing an independent
analysis of the convective and the diffusive part, but one global problem. Hence, the
role of this so-called subcycling method can only be investigated, by also taking the
diffusive part into account. In order to analyze the stability for any ratio of convection
to diffusion, the classical linear test equation dy/dt = Ay is too simple. Therefore, we
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Figure 3.2: Maximum allowed time step At as a function of o; \; = —10°a and A, = 103,

corresponding to K; = 10 and N = 10.

introduce a new scalar test equation

d
?1% = My + Aoy, (3.51)

where ), represents the eigenvalue spectrum of the diffusion operator and A, represents
the eigenvalue spectrum of the convection operator. The characteristic polynomials are
derived in the same manner as in Section 3.1 and are listed for various methods in the
Appendix A. The only difference with a classical stability analysis is that the charac-
teristic polynomials depend on four variables ({, A1, A2, At) instead of three. We recall
that for an s-step method, ( is defined as (? = y"*'1=**? By definition, a scheme is
(strongly) stable for a given A;, A, and At if all the roots ¢; of C are in absolute value
smaller than one:

CCy My Aoy AL) = 0 = |¢] < 1. (3.52)

In order to perform a relevant analysis, we have to determine estimates for the pa-
rameters A; and A;. From the previous chapter and from Rgnquist [65], we learn that
the maximum eigenvalue of the convective operator grows like O(K1N?:) and that the
largest eigenvalue of the diffusive operator grows like O(KZN*). Hence, in order to
investigate the stability of a spectral element discretization with N = 10, K; = 10, we
have to take A; = —10°% and ); = 10%:. Then we multiply A, by a factor a to monitor
the amount of diffusion in the flow. Large values of a correspond to a Stokes flow and
small values of & correspond to a flow at a high Reynolds number.

In Figure 3.2, we give the maximum time step as a function of a for some third-
order time-integration schemes. The results have been obtained by evaluating the
characteristic polynomials (see Appendix A) using the symbolic-manipulation program
Mathematica. We see that, for small values of «, the BDF3/RK4 is significantly
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Figure 3.3: Maximum allowed time step At as a function of o; A\; = —3125a and A, = 125z,
correspondingto K; = 5and N = 5.

more stable than the BDF3/EX3, and that the maximum allowed time step for the
BDF3/RK4 method doubles when two subcycles are used. The positive effect thanks
to multiple subcycles vanishes for larger values of a. This is explained by the fact that
for these values of a, the stability is increasingly determined by the BDF. This also
accounts for the unconditionally stable behaviour of the BDF3/EX3 scheme once a
"critical @” is attained. We remark that we could not get reliable results for M > 2,
which is not surprising by taking a closer look at the corresponding characteristic
polynomials (Appendix A, Equations (A.5) and (A.9)). The BDF3/RK4 (M = 3)
polynomial for example (Appendix A, Equation (A.9)), requires the computation of
(A2At)3® and the divisor is of order 10%6. For the same reason, we give the results for
large o with some precautions.

In Figure 3.3, we give the results of the same test, with a different set of parameters:
A = —3125¢ and A, = 125¢, corresponding to N = 5, K; = 5. Apart from a larger
allowed time step, we see the same behaviour as in Figure 3.2. In Figure 3.4, we give the
results for the first-order schemes. We have no explanation for the superior behaviour
of the M = 1 scheme to the M = 2 scheme for a > 1, nor for the fact that for small
values of a, the Atp,, for the BDF3/EX3 scheme is 3.5 times as large as the At
for the BDF1/EX3 scheme (compare Figures 3.3 and 3.4).

It is important to note that the numbers presented in Figures 3.2, 3.3, and 3.4 are
only an approximation of the real situation, where constants in front of the operators
and the presence of the pressure might give some different results. However, the fol-
lowing test for the stability of the schemes which is applied to the full Navier-Stokes
equations will confirm the trend indicated by the figures.

We have investigated the stability for the Navier-Stokes equations in the cube geom-
etry with a hole (K = 8, N = 5 analytical solution given by (3.49), (3.50), multiplied
by sin(wt)) for different values of the Reynolds number. In order to define the max-
imum allowed time step At,,, we integrated the problem over a large time interval

[0,32]. In Table III, we give the results for Re = 100. We see that subcycling im-
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Figure 3.4: Maximum allowed time step At as a function of a; A; = —3125a and A\, = 125¢,
correspondingto K; = 5and N = 5.

BDF1/RK4 BDF3/RK4 BDF1/EX3 | BDF3/EX3
M=1 | M=3 | M=5 | M=l M=3 M=5
3T 327|732 327 [ (22 32 [ (32 327 12 327 [ 13Z 22 3T 32 3T 3T
1401 130 70 ’55] [ﬁﬂ’ 85 2252 200 165?180 1652 150 [QZS’ 850 42517 400

Table III: Interval containing At,,.. for N = 5, K = 8, Re = 100, and T = 32

proves considerably the stability and that the extrapolation schemes are inferior to the
operator-integration-factor splitting schemes. This could be expected from Figure 3.3
and Figure 3.4, considering low values of a. What can not be explained from these
figures is the difference between the BDF1/RK4 and the BDF3/RK4 methods.

In Table IV, we give the results for Re = 5, which show a remarkable resemblance
with the situation at @ =~ 1 in Figures 3.3 and 3.4: An increasing value of M has
an improving effect on the BDF3/RK4 scheme, but does hardly help the BDF1/RK4
scheme to become more stable; The figures also explain that the first-order schemes
are slightly more stable and that the BDF1/EX3 and BDF3/EX3 methods are stable
for any value of At. Finally, we remark that for Re = 100, the BDF3/EX3 scheme
allows a much larger time step than the BDF1/EX3 scheme. This phenomenon is also
observed by comparing Figures 3.3 and 3.4.

BDF1/RKA4 BDF3/RK4 BDF1/EX3 | BDF3/EX3
M=1 M=3 | M=5 M=1 M=3 M=5
E Y E I BT E I E I EE Z ) T )
70° 65 652 60 502 45 2002 175 1252120 120° 110 25°? 259

Table IV: Interval containing At,o-for N =5, K =8, Re=5,and T = 32
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3.3.3 Closing remarks

In the previous tests, the nonlinear term has been discretized in its convective form.
As has been demonstrated in Section 2.7, this might lead to some appreciable real
parts in the eigenvalues for a purely convective problem. We will now make clear
that this does not lead to instabilities if (very small) diffusive effects are present in
the flow. To this end, we return to the stability analysis performed in the previous
section. We fix @ = 10~ and look for the corresponding Atnm,, for BDF1/RK4 and
BDF1/EX3 in Figure 3.4. We then took A\; = —3125 - 1072 and replaced A\, = 125¢
by A, = Bi + 1. In other words, the stability is investigated for the case where the
eigenvalues of the convective operator are not imaginary, but complex with a small real
part. We have found that both schemes are still stable for 0 < 8 < 122, which is very
close to 0 < B < 125 for the unperturbed case. It is important that no instabilities have
been found for small values of 5. Similar tests with different values of the parameters
a, A1, A2, and a different size of the perturbation confirmed the conclusion that the
convection form can be used without any danger, provided that the flow is not purely
convective.

By choosing for the convective form, the evaluation of the nonlinear term is still not
fixed: One can either linearize this term or not. Since the operator is evaluated in an
explicit manner, there is no need to linearize. Nevertheless, it is suggested in [48] to do
so. Let us illustrate this phenomenon by the computation of

Atk Atk
k= —C(u" + 2—1 )(w" + —2—1), (3.53)

as occurs in the RK4 method (3.16). If we would have linearized C(u)u, Equation
(3.53) has a different form:

ko= -0 (u( + 39) " + 2, (3.54)

where u(t"® + At/2) is approximated by an extrapolation formula of a suitable order,
that uses previously computed values of u, for example:

u(t" + 7At) = u*+ O(TAt) or (3.55)
y(t"+7At) = (14 7)u" —71u* 4 O(Atr)? or (3.56)

u(t" + T7At) = %(’r2 +37 + 2)u” — (72 4 27)u"?

+ %(72 +1)u"2 + O(Atr)e. (3.57)
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A priori, there is no obvious reason to choose for one of the two options, although the
non-linearized form (3.53) seems more logical. All the tests in this chapter have been
performed by using (3.53).

Let us investigate if the second option (3.54) is more stable. First, we remark that
when equation (3.57) is used for linearization of the BDFs/EX3 method, we obtain
an equivalent scheme to the non-linearized one. (The extrapolation procedure requires
only values at the step points.) For the BDFs/RK4 schemes, however, we obtain
different formulations. In Table V, we show the results for the linearized method
BDF3/RK4 (N = 5, K = 8, Re = 100). As compared to the results of the non-

M=1 M=3 M=5
IS 73 3 (32 2
25Q° 225 100? 90 100° 90

Table V: Interval containing At,,.- for N = 5, K = 8, Re = 100, and T' = 32. BDF3/RK4
method, where the nonlinear term is first linearnzed, and then evaluated.

linearized formulation (see Table III), we see that the scheme based on the linearized
convection operator is more stable for M > 1.

The numerical tests show that the value of the maximum allowed time step does not
grow any more for M > My, with My typically equal to 5. This seems to correspond
to the analysis of time integration by the method of characteristics, which is another
interpretation of the operator-integration-factor splitting scheme. This study has been
performed by Boukir [10] who showed that a second stability condition emerges which
leads to an additional restriction on Atf,,;.

Summarizing, we can say that the choice between a splitting scheme based on extrap-
olation and subcycling is in fact a choice between accuracy and stability, respectively.
The former method has the advantage that it does not possess a time error for steady
problems. Moreover, when the problem is unsteady it leads to much more accurate
results. The subcycling method has very attractive stability properties. By augment-
ing the number of subcycles, the maximum time step can be increased, reducing the
number of implicit relations to solve in a given time interval. The stability region can
even be augmented by linearizing the nonlinear operator.

In this chapter, we developed time-integration methods up to an order of accuracy of
three. The extension to fourth-order accurate methods is not difficult: A fourth-order
extrapolation scheme can easily be combined with a BDF4. The operator-integration-
factor splitting can be made fourth-order by combining a BDF4 with a RK4. The
stability regions of these methods are difficult to predict, but can be determined by
the technique which is proposed in this section.
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Chapter 4

Fast Helmholtz solvers

In this chapter we focus on the fast solution of the Helmholtz problem
Hu = Bf, (4.1)

with
H=vA+ At 'B. (4.2)

We refer to Chapter 2 for notations. When solving an unsteady, 3D Navier-Stokes
problem, a Helmholtz equation has to be solved for each velocity component. If the
Uzawa decoupling method (see Section 2.6) has been used, three Helmholtz equations
have also to be inverted in each pressure iteration. Hence, the cpu time required for a
(Navier-)Stokes computation depends linearly on the speed of the Helmholtz solver.

When an iterative method is used to solve the Helmholtz problem, preconditioning
is essential. Common preconditioners are the diagonal, incomplete LU and finite-
elements. The latter method is very effective when the finite element system can be
solved by a direct method. Unfortunately, this is often not possible in three dimensions.
The incomplete LU preconditioner does not parallelize well. Rgnquist [64] proposed
recently a preconditioning technique based on deflation. This technique will be further
discussed in the context of the preconditioning of the pressure operator (see Chapter 6
or Rgnquist [63]). Let us investigate the efficiency of the diagonal preconditioner
by introducing z; = v~'At~1. It is clear that for large values of z; (as is the case
for Navier-Stokes equations at moderate or large Reynolds numbers), the Helmholtz
operator (4.2) is dominated by the diagonal part B. Consequently, the preconditioner
P, P7! = diag(H)™, is expected to be efficient. This is verified in Figure 4.1 and
Figure 4.2 for one-dimensional operators. The condition number is displayed as a
function of the polynomial degree N and the number of spectral elements K. Two
values of z; have been chosen, z; = 0 and z; = 1000. It can be observed that the
diagonal preconditioner is much more effective for the latter case. Note also that
for z; = 0 (not preconditioned) the condition number grows more or less like K2N3.
So especially for small values of z; (i.e. when a steady Stokes problem is solved by
an unsteady solver), an alternative technique has to be developed. First, we will
propose a fast, fully direct method which is limited to parallelepipedic geometries (or:
"boxes”). Then, in Section 4.2, a semi-direct Schur complement method is introduced
for geometries that are decomposable in boxes. Finally, a general method is discussed
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Figure 4.1: Log-log plot of the condition number of the Helmholtz operator as a function of the
polynomial degree N. The number of spectral elements is fixedat K = 8 and the value for z; is either
z; = 0 or z; = 1000. Both the condition numbers of the preconditioned and the non-preconditioned
operators are given.
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Figure 4.2: Log-log plot of the condition number of the Helmholtz operator as a function of number
of spectral elements. The number of polynomial degree N is fixed at N = 7 and value for z; is either
z; = 0 or z; = 1000. Both the condition numbers of the preconditioned and the non-preconditioned
operators are given.
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in Section 4.3, based on preconditioning of the Helmholtz operator by the "incomplete
Schur” operator.

4.1 Fast solvers for parallelepipedic geometries

We consider a parallelepipedic, three-dimensional geometry 2 decomposed in paral-
lelepipedic spectral elements {Q;}& . For this case, a fast, direct Helmholtz solver
has been developed by Couzy and Deville [18] and by Magére [51]. The two methods
rely on the same principle and are almost identical. For pedagogic reasons we will
here explain the inversion algorithm along the same lines as in [51]. To this end, we
introduce the following definition. A three-dimensional operator L is separable if and
only if it can be written in the following form:

L=I1QI®L,+IQL,QI+L,QI®I, (4.3)

with A® B ® C the tensor product of the one-dimensional matrices A, B, and C, and
I the one-dimensional identity matrix. Lynch et al. [44] showed that the inverse of an
inversible, separable operator L can be written as

LI'=P®P,QFP(IQIQA +IQA,QI+A,®IQI)'P'QP '@ P (4.4)

The matrices P, P, and P, are the matrices involving the eigenvector decomposition
of the one-dimensional operators L., L, and L., such that

P'L.P.=A,,  P'LP,=A,  P'LP =A, (4.5)

with Az, A, and A, diagonal matrices with as entries the eigenvalues of the correspond-
ing operators. The interest of this method, which is often called the fast diagonalization
method (FDM), becomes clear when the cost of an evaluation of L=v is compared to
the matrix-vector multiplication Lv, the basic ingredient of any iterative method. Using
(4.4), L™'v requires 6N* + N* multiplications, whereas Lv takes 3N* multiplications.
So the inverse is computed at the price of two matrix-vector products. Many authors
have used this fast diagonalization technique in the context of spectral methods, e.g.
[37], [36], and [71]. All these papers are based on mono-element computations. The
Helmholtz equation (4.1) is not immediately separable, due to the presence of the
weights and the geometric variables I, l,, and l,;: By studying Equations (2.51) and
(2.52), it is clear that the derivative with respect to, for example, z depends on y and
z via the weights and I, and l,. This prohibits the application of (4.4). Fortunately,
there is a simple way to overcome this problem. Let us define the mono-dimensional
matrices DX, D DY, B, Bf and Bf on an arbitrary element ; as

T’

k w XN I
(sz)a,l = ﬁ- Zquaquql + mpl a,l = 0, .y N
z g=

k

w X l
(Dw)s,m = 7% Z DyppgDom + —~—pm PBym=0,.,N
Iy poar 2At
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k

D..)* 2§ D a Do+ = =0,.,N
(Dzz)yn = quo 97Pa qn+mpn V=Y,

k
(Bx)f,,z = 45&1,011—z a,l=0,..,.N

2
lk
Bom = Spmpmy Fm=0,.,N
k
(BZ)k,n = 67npnl_z v, = 0, .ry N. (4.6)

2

In this way, we find on a arbitrary element € that the Helmholtz operator H* and
the mass matrix B¥ can be written as

H* = BfeBf@D: +B!® D! ® B!+ D:, ®Bf® B!

B* = Bf®B!® B (4.7)
The Helmbholtz equation (4.1) can then be written as
(B:®By®D;:+B.®Dyy® B, + D.. ® By® B;)u=B.® By ® B.f. (4.8)

Two remarks have to be made with respect to (4.8). First, boundary equations have
been eliminated and direct stiffness is applied to the mono-dimensional operators. In
order to simplify notations, we dropped the summation sign "X , 7 and the superscript
k in Equation (4.8). Second, redundant equations, which are present in the original
formulation due to direct stiffness (and do not harm an iterative method), have been
removed. This induces the necessity of a transformation to a global enumeration of the
velocity variables. More precisely, interface variables that indicate the same physical
point are eliminated, except one. We proceed by multiplying both sides of Equation
(4.8) by B;' @ B;' @ B! to arrive at

(I®I®B;'D,. +I®B;'D,, ® I+ B;'D..® I ® I)u = f. (4.9)

It is clear that the operator is now inversible and separable and can be inverted by the

FDM.

We now investigate the cpu time to compute a steady Stokes flow with solution
(2.86), (2.87) for two geometries displayed in Figure 4.3 and Figure 4.4. After twenty
time steps (At = 0.25) a steady solution has been obtained. Table I and II show
the computation times for the two different methods, measured on a Data General

Aviion machine (performance of 1 Mflops on a LINPACK benchmark problem).
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Figure 4.3: Geometry consisting of four spectral elements. Projection in y-direction, y between -1
and 1.
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Figure 4.4: Geometry consisting of four spectral elements. Projection in y-direction, y between -1
and 1.
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Iterative Helmholtz | Helmholtz by FDM
N 4 6 9 4| 6 9
Seconds | 437 | 2328 | 12080 | 54 | 205 945

Table I: Geometry as in Figure 4.3. Timings in seconds for 20 time steps (¥ = 1, At = 0.25, toler-
ance for the iterative Helmholtz solver is 10~12). Increasing degree N of polynomial approximation.

Iterative Helmholtz | Helmholtz by FDM
N 4 6 9 4| 6 9
Seconds | 427 | 2236 | 12145 | 73 | 275 1181

Table II: Geometry as in Figure 4.4. Timings in seconds for 20 time steps (v = 1, At =
0.25, tolerance for the iterative Helmholtz solver is 10712). Increasing degree N of polynomial
approximation.

We remark that the initialization time for the FDM, i.e. the time to compute the
eigenvalue/eigenvector decomposition, is always negligible (less than one second). A
comparison of Table I and Table II shows that the current implementation of the FDM
is faster for Geometry 4.3 than for Geometry 4.4. Comparing the new algorithm to the
iterative one (preconditioned by the diagonal of the Helmholtz operator), an impressive
acceleration is obtained. As expected, this speed-up increases for large N.

As will be shown in the next section, the acceleration is less important for small
values of vAt, because of the increasing efficiency of the diagonal preconditioner. We
recall that the application of the FDM method is confined to parallelepipedic geometries
because of the condition that the Helmholtz operator should be separable. There are,
however, some very interesting problems, like turbulence in square cavities or ducts that
fall within this class. Often, mono-domain spectral methods using FDM are applied to
solve these flows. This might lead to over-accurate results in some parts of the domain.
The extension of FDM to spectral element discretizations could alleviate this problem
by local refinements and lead to more acceptable values of the condition numbers for
the pressure operator. In the next section the extension of the FDM to geometries that
are decomposable in parallelepipeds is presented.
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The following section appeared as a paper in the Journal of Computational Physics,
Vol. 116, 1995, pp 135-142.

4.2 A fast Schur complement method for the spec-
tral element discretization of the incompress-
ible Navier-Stokes equations

W. Couzy and M.O. Deville
Applied Mechanics
Catholic University of Louvain
Louvain-la-Neuve, Belgium.

Classification: 65N30, 76D05

Abstract: The weak formulation of the incompressible Navier-Stokes equations in
three space dimensions is discretized with spectral element approximations and Gauss-
Lobatto-Legendre quadratures. The Uzawa algorithm is applied to decouple the ve-
locities from the pressure. The equation that results for the pressure is solved by an
iterative method. Within each pressure iteration, a Helmholtz operator has to be in-
verted. This can efficiently be done by separating the equations for the interior nodes
from the equations at the interfaces, according to the Schur method. Fast diagonaliza-
tion techniques are applied to the interior variables of the spectral elements. Several
ways to deal with the resulting interface problem are discussed. Finally, a comparison
is made with a more classical method.
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4.2.1 Introduction

In the past years, the spectral element discretization of the 3-D Navier-Stokes equations
has received considerable attention [29, 26, 42, 47, 65]. The advantages of this method
are numerous. The high degrees of the approximating polynomials combined with
high-order quadrature rules yield accurate solutions. In comparison with more classical
discretization methods, a low number of degrees of freedom is needed for a prescribed
level of accuracy. The clustering of the grid points close to the boundary, which is
typical for many spectral methods, makes the method attractive for flows dominated by
boundary-layer dynamics. The decomposition of the domain into several subdomains
(the spectral elements) ensures geometrical flexibility and a natural implementation on
parallel computers [29, 26].

There are many ways to uncouple the velocities from the pressure. Karniadakis et
al. [42] proposed a high-order splitting method, where the pressure is computed by a
Poisson equation with compatible boundary conditions. Another way of dealing with
this problem is the Uzawa technique [2] which is in fact a Gaussian elimination method
by block. An advantage of this approach is that the resulting system, which consists
of four positive (semi-) definite symmetric systems (one for the pressure and three for
the velocities), is equivalent to the original coupled set of equations. Hence, the system
is determined by velocity boundary conditions only and no additional conditions for
the pressure are needed. Usually, the four systems are solved by the Preconditioned
Conjugate Gradient Method (PCGM), an efficient iterative method for symmetric sys-
tems of equations. One of the attractive properties of the PCGM is that the matrix
system, which would take O(K,.N®) memory positions, is never built up explicitly (K.
corresponds to the number of subdomains and N is the polynomial degree in one space
dimension). Moreover, tensor products reduce the bulk of the work, which consists in
the computation of matrix-vector products, to O(K.N*). A disadvantage of the Uzawa
method, however, is the high cost required to compute the pressure. Since the pres-
sure matrix contains the inverse of a Helmholtz operator, a classical implementation
requires two nested PCGMs, resulting in large computation times. One way to deal
with this problem is operator splitting [48]. This method seems to work very well in
practice, although until now the consistency has not been proven for increasing order
of the time scheme.

This paper deals with another approach, first proposed by Patera [58], that reduces
rigorously the time to invert the Helmholtz operator and hence the time to compute the
pressure. To this end, the Schur complement method is used to separate the Helmholtz
equations at the interior nodes of each element from those at the inter-element inter-
faces. This leads to a set of independent subproblems which is, in general, easier to
solve than the original global problem: Iterative methods tend to converge faster due
to the locally reduced number of variables and the absence of inter-element coupling.
Direct methods can also be considered to invert the local Helmholtz operators. In
this paper, we will restrict ourselves to geometries consisting of non-deformed spec-
tral elements. In this case, a fast direct method [44] based on tensor products of the
eigenvalue/eigenvector decomposition of the one-dimensional operators is applied to
the interior nodes. This direct method, which we will often refer to as the diagonaliza-
tion method, is very fast; the inverse is computed at the price of two PCGM iterations.
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It is not surprising that the fast diagonalization method (FDM) is often used in the
context of spectral methods (see for example [58, 71]), where iterative methods tend to
converge slowly, due to a large value of N and ill-conditioned matrices. The dimension
of the corresponding Schur matrix is less by one than the dimension of the original
system, since it involves the interface variables only. Therefore, we might consider
classical direct methods as well as iterative methods. In the latter case, the conjugate
gradient method can be efficiently preconditioned by block Jacobi. Moreover, an im-
pressive improvement on vector computers can be obtained when the Schur matrix is
constructed explicitly. In this way, we avoid the evaluation of tensor products, which
is inefficient in terms of vectorization. Independently of the solution method for the
Schur matrix, we found that the new algorithm is an order of magnitude faster than
the classical one.

The outline of this paper is as follows. First, in section 4.2.2, we briefly present
the spectral discretization of the Navier-Stokes equations. In section 4.2.3 we discuss
the FDM and in section 4.2.4 we treat the Schur method for a particular problem.
Section 4.2.5 will deal with two test problems and comment on the parallelization of
the method.

4.2.2 Derivation of the discrete equations

The 3-D incompressible Navier-Stokes equations are discretized by the spectral ele-
ment method. For more details about the material of this section, we refer the reader
to the article of Maday and Patera [47] and to the lecture series by Rgnquist [65]. The
Navier-Stokes problem is formulated as follows: Find velocities u and pressure p in a
domain 2 C R3 such that

%—Re'lAy+y-Vg+Vp =

[5al

(4.10)

—~divu = 0, (4.11)

with ¢ € [0,T,4]- At the boundary 92 of the domain §2, we impose Dirichlet boundary
conditions for the velocity:

u=g on 0f). (4.12)

Here, Re = UL/v is the Reynolds number based on a characteristic velocity, length
and kinematic viscosity. Furthermore, b is a force vector and g contains the Dirichlet
boundary conditions. The extension to Neumann or mixed boundary conditions is
straightforward. As a starting point for the spectral element discretization, we use the
variational equivalences of (4.10 - 4.11):

Find (u,p) in X; x M such that Yw € Xo,Vg€ M
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(%,w)+}2e-l (Vy, Vw) + (u - Vu,w) — (p,divw) = (b,w) (4.13)

- (¢,diva) = 0, (4.14)
where

V6 ELHD)  (4,4)= [#@(edz,  ze (4.15)

The space £2() is the space of all square integrable functions over 2. The space X,
for the velocity, the space X, for the test functions and the space M for the pressure
are defined as follows:

X, = {ve|H'(Q)P, v satisfies boundary conditions} (4.16)
Xo = {ve|H'(Q)], v vanishes at 9N} (4.17)
M o= L@)={se L) [ d()ds=0) (4.18)

Expression (4.18) should be interpreted as an averaging procedure for the pressure.
H(Q) is the space of all square integrable functions whose first-order derivatives are
also square integrable over f).

The first step in the discretization process is to subdivide the domain @ = QU Q
into K. non-overlapping rectilinear elements ; such that the intersection of two or
more neighboring elements is either a face, an edge or a vertex. In order to simplify
the notation, we assume that the number of nodes N is equal in each direction and
on each element. Of course, this does not affect the general concept. Next, we have
to define the discrete polynomial subspaces Xy, C X, and M, C M, in which the
velocities and pressure will be approximated respectively. In order to avoid spurious
pressure modes, Maday and Patera [47] and Bernardi and Maday [7] proposed the use
of the following subspaces:

Xon = XgNPRi.(Q) (4.19)
M, = MnPN_g,KG(Q), (4.20)

with Py, = {¢ € L*(R); djq, is a polynomial of degree less than or equal to N}. Con-
sequently, the space X is defined as

Xos = XoN PR, (). (4.21)
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The choice for the spaces (4.19-4.20) implies the introduction of staggered grids. In our
case, the velocities will be approximated on a Gauss-Lobatto-Legendre grid, whereas
the pressure will be approximated on a Gauss-Legendre grid. Furthermore, the veloci-
ties are continuous along the element boundaries (while the pressure is not necessarily
continuous).

The spectral element discretization proceeds by the application over each subdomain
of two Gaussian integration rules, corresponding to the two grids mentioned above. We
should remark, that the three-dimensional rules are obtained by tensor products of the
one-dimensional formulas.

The final step consists in the discretization in time. In this paper we confine our-
selves to a simple time scheme. We choose Backward Euler for the viscous term, where
the convective terms at time t,,; are approximated by an explicit time-integration
method. The third-order explicit Adams-Bashforth scheme has been applied for its
advantageous stability characteristics; the overall order is one. We write the discrete

equations immediately in matrix notation, where we use the same symbols as in [47]
and [65]

1
-A—th:‘“ + Re'Au™*! — Dfpt! = BftH (4.22)

- D™ = 0, i=1,2,3. (4.23)

Here, B is the diagonal mass matrix, A is the discrete Laplace operator, D; is the
discrete divergence operator and the superscript T indicates the transpose. The right-
hand-side vector f' "+1 contains the volume force 5"*! and the explicit terms.

The Uzawa algorithm is applied to uncouple the velocities from the pressure. This
technique was originally designed for finite element computations, but is nowadays used
in spectral element computations as well (see [47],[65]). The attractive property of the
Uzawa method is that the uncoupled system, which consists of four positive (semi-)
definite, symmetric sets of equations, is equivalent to the original system. Starting from
the discrete equations (4.22-4.23), the Uzawa algorithm is obtained by multiplication
of the momentum equations by D; H~!, with

H = (Re'A+ At™'B). (4.24)

We obtain
—D;H'D{p"** = D,H'Bfi* (4.25)
Hu!*' = DIp' +Bfitt  i=1,2,3. (4.26)

Equation (4.25) is solved by the PCGM. Clearly, the Helmholtz operator H has to
be inverted within each PCGM-iteration. This can efficiently be done by the Schur
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complement method in combination with the FDM, which will be discussed in the
following sections.

4.2.3 The fast diagonalization method

For a tensorizable and separable operator it is possible to explicitly construct an inverse
having a similar tensor product structure. Under certain conditions, which we will
discuss later, H is such an operator. According to Lynch et al. [44], we can write

H'=P,@P,@P.(IQIRA+IQAQI+A. @IQI)T'P' QP @ P, (4.27)

Here, A® B denotes the tensor product of A and B, and A;, A, and A, are the diagonal
matrices of eigenvalues arising from the (1-D) generalized eigenvalue problems Hu = Au
in x-, y- and z-direction. The matrices P;, P, and P, are the corresponding matrices
containing the eigenvectors. The interest of this method becomes clear when the cost
of an evaluation of A~y is compared to the matrix-vector multiplication Hv, the basic
ingredient of any iterative method. Using (4.27), H v requires 6N* multiplications,
whereas Hy takes 3N* multiplications. So the inverse is computed at the price of two
matrix-vector products.

Many authors have used this fast diagonalization technique in the context of spec-
tral methods, e.g. [36], [37]. Streett and Hussaini [71] describe the application of this
method to the Uzawa technique. All these papers are based on mono-domain com-
putations. On the first hand this restriction seems obvious, since the condition that
the operator should be separable, does not allow non-rectangular geometries. If the
interface and boundary variables, however, are eliminated, we can use the FDM for the
interior nodes of each spectral element, provided that these elements are rectangular.
Note that, in fact, H is not a separable operator due to a multiplication by the weights.
Therefore, we solve the equivalent problem (HB~!)Bu = f instead. To avoid complex
notation, this diagonal shift is not explicitly represented in this paper. In the next
paragraph we will describe the Schur complement method which separates the interior
variables from the interface variables. In this way, we can take full advantage of the
FDM.

4.2.4 Schur complement method
Construction of the Schur complement

The use of the Schur method is a common practice in modern numerical mechanics.
The reduction of the problem to a set of subproblems often leads to memory savings and
faster algorithms. Moreover, these subproblems can be solved independently, leading to
a high degree of parallelism. Another argument is that different solvers can be applied
to the interior and to the interface variables. In our case, the latter reason is the most
important, although we will also discuss a parallel implementation in paragraph 4.2.6.

In order to explain the Schur method, we consider a domain as depicted in Figure
4.5. The parallelepipedic domain € is decomposed in four spectral elements §);, £, {23
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Figure 4.5: Geometry consisting of four spectral elements. Projection in y-direction (y=1).

and 0. The first three elements are of size [0, 1] x [0, 2] x [0, 1], but the fourth element
is two times as large in the z-direction. The interfaces I';,I', and T, are defined as
L. =0,n0,, T, = QN3 and T, = Q3 N Q4. Boundary variables are assumed to be
eliminated. We introduce the following notations for the unknowns u and the right-
hand side f: fi,u1 € , fo,us € O, f3,u3 € Q3, fa,us € Uy, fa,us € L, fr,up € T
and f,,u. € I'.. The Helmholtz equation Hu = f can be written as

(Hy 0 0 0  H, 0
0 Hyp 0 O Hye Hy
0 0 Hiy;z 0 0 Hy

0 0 0 Hy 0 0
Hal Ha2 0 0 Haa Hab

0 Hypy Ha 0 Hy,, Hy

\ 0 0 Hs H. 0 H,

The following notations have been used:

SEEER

H3c
H4c

Hbc

((w
U2
us
Ug

Uq

up
k Ue

[ fi
f2
fs
fa

fa

f
\ %

coupling between the unknowns for subdomain i and interface «
coupling between the unknowns for interface & and subdomain i

coupling between the unknowns for interface a and interface .

(4.28)

discretization of the Helmholtz operator on subdomain i (internal nodes)

We have that H; € RV XN° H . € RN'XN* and H,z € RN*N i € {1,2,3,4},
o, B € {a,b,c}. Moreover, it can be shown that H;, = HZ; and Hu,s = Hga. Elimi-
nation of the variables at the interior nodes leads to the following system, often called

the Schur complement:
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(Haa - HalHl—llHla - HaZHé_leZa)ua"}' (Hab - Ha2H2‘21H2b)ub =
fa. - HalHl-ilfl - Ha2H2_21f2
(Hyp — HioHy' Hyy — HysHy Ha)up+  (Hya — HeoHyy Hao)ua+ (4.29)
(Hye — HaHg HaJue = fo — HoHyy f — HoHR' fs )
(Hcc - Hc3H3—31H3c - Hc4H4_41H4c)uc+ (ch - HcSH:;sl H3b)ub =
fo— HsHZ' fs — HaHE fa

System (4.29) shows that the unknowns of the three interfaces, although they do not
have any node in common, are coupled in a direct way. Moreover, the appearance of
the matrices Hopg (@ # B) is due to the high-order approximations and is absent in
classical discretization methods, as the finite element or the finite difference technique.
Schematically, the Schur complement of our example has the following form

O O 0 Ug
0o a0 up | =rhs. (4.30)
o O O U

where the square box O represents an N? x N? full block matrix. The FDM is used
to evaluate the expressions H;'f; in the right-hand side of (4.29) and to compute the
variables at the interior nodes:

Hyuw, = —Hyu.+ fi

Hyu; = —Hzu, — Hypup + f2 (4.31)
Hzuz = —Haupy — Hseu. + f3 ° )
Hyus = —Hacuc + f4

In case of a more general (curvy) geometry, the Schur complement method can still
be useful. Although the FDM does not apply anymore, the inverse of the Helmholtz
operators can be computed by a classical direct method or by an iterative method
preconditioned by finite elements [24]. The advantage is that these computations are
decoupled per element.

The Schur complement problem (4.29), involving the interface variables, can be
solved either by a direct or by an iterative method. In the case of a direct method, it
is clear that the implicit, tensorized form in which the Schur matrix (4.29) is written,
should be replaced by an explicit formulation. It is also interesting to construct the
matrix explicitly when an iterative method, like PCGM, is used. This becomes clear
when we take a closer look at the block-matrices that form the Schur matrix. Using
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expression (4.27) to evaluate Hi;' and Hs;', the number of operations to multiply one
of the block-matrices, for example (Hyo — Hoy Hyi' Hio — Haoo Hyp  Hp,), is 1TN%. When
this block is constructed explicitly, the operation count of a block-vector multiplication
is reduced to N%. Moreover, since the explicit formulation does not contain tensor
products, block-vector products can efficiently be computed on vector computers. It
can be shown that the price to construct these blocks is O(N®). This computation is
done once and for all in a preprocessing stage, so that its cost will be amortized.

Preconditioning

Let us first discuss the preconditioning of the original Helmholtz operator H. The
condition number of this operator depends on At. For small values of At, the operator
H = (Re"' A+ At~'B) tends to the diagonal matrix B, containing the Gauss-Lobatto-
Legendre weights. For larger values of At, the Laplacian A becomes dominant. The
matrix B~'A is ill-conditioned, since its condition number is proportional to N* [65].
A preconditioner that works well for small and large values of At is the diagonal of the
Helmholtz matrix H. This preconditioner is used when we compare the new method
to the classical one. Alternatives could be a preconditioner based on the incomplete
Choleski {47] or the finite element method.

In this paper, however, we are not concerned with the preconditioning of the Helmholtz
operator, but with the associated Schur complement. Although the condition number
of the Schur matrix is smaller than that of the original system, preconditioning is still
essential. Many preconditioners have been proposed in the literature, e.g. [8], [16]. In
this paper, we will consider two preconditioners; the inverse of the diagonal of (4.29)
and the block diagonal matrix, which has as entries the inverse of the diagonal blocks
of (4.30). The first preconditioner is easy to construct and its cost per multiplication
is negligible, but its efficiency is low, as will be shown later. The effect of the block
diagonal preconditioner, also called block Jacobi, is impressive. A question, however, is
whether the price to construct this preconditioner (K, matrices of dimension N? x N?
have to be inverted) is not too high, especially when compared to the inversion of the
complete system (4.29). For this simple, four-element problem this might indeed be the
case, but it is interesting to compare the cost for a larger number of interfaces. Let us
define the number of interfaces by K;. Taking into account that the block matrices on
the diagonal are symmetric, computing the preconditioner requires K; N®/6 operations,
whereas the inversion of the complete Schur complement requires K>N°®/6 operations.
Hence, the iterative method becomes attractive for larger K;. The construction of the
preconditioner is performed once and for all and the cost is spread out over hundreds
of pressure iterations.

In order to give some heuristics about the spectrum of the Schur complement and
of the Schur complement premultiplied by the diagonal and the block-diagonal pre-
conditioners, we computed the condition numbers of these three operators for different
values of K;, N and AtRe~!. Table III represents the results for a geometry with
dimensions [0, 1] x [0,4] x [0,1], with respectively 4, 8 and 16 elements in y-direction
and one in the remaining directions. For this particular mesh, the Schur complement
is tridiagonal by block. We remark that the results representing a Navier-Stokes sim-
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At = 0.25, Stokes At =0.01, Re =10
K;|N| CcS [D™’CS|(BD)”’CS| CS | D~'CS | (BD)™'CS
35266 2.45 1.02 [1.10] 1.09 1.00
3|7 [[461] 367 1.02  [1.29] 1.22 1.00
39736 492 1.02 [ 157] 1.36 1.00
3 [11]10.94 | 6.19 102 [ 1.98] 1.54 1.00
7 |5 [ 288 2.68 1.38 | 1.08] 1.08 1.00
7 |7 518 | 4.14 138 [121] 116 1.00
79| 827 ] 563 138 [1.47] 1.30 1.00
7 [11]1234] 7.4 138 [ 1.89 [ 1.50 1.00
15| 5 || 484 | 4.60 329 [1.07] 1.06 1.00
15] 7 [[ 793 ] 6.50 329 [1.19] 1.15 1.00
15| 9 [[12.68] 8.67 329 [1.46] 1.30 1.00

Table I11: Condition number of the Schur complement (CS), the Schur complement premultiplied by
the diagonal preconditioner (D~1CS) and the Schur complement premuttiplied by the block-diagonal
preconditioner ((BD) ! CS) for different values of K; and N.

ulation (At = 0.01, Re = 10) give rise to condition numbers close to one. Moreover,
they seem to be more or less independent of the number of interfaces. For At = 0.25,
Re = 1, we see that the condition number of the Schur complement, for a fixed value
of K;, is of order O(N?). The diagonal preconditioner seems to reduce the condition
number to O(N) and the block-diagonal preconditioner yields a condition number that
is independent of N. There is no obvious relation between the spectrum and Kj, other
than that the condition number grows as K; increases.

Although the construction of an efficient preconditioner for the pressure operator
(4.25) is beyond the scope of this paper, we make the following remarks: for large
values of At, this operator is well-conditioned and can be preconditioned by a diagonal
matrix containing the Gauss-Legendre weights. The problem is much more difficult for
small values of At. In a recent paper, Rgnquist [63] proposes a preconditioner based on
the decomposition of the pressure system into two pressure systems. Here, we confine
ourselves to the simple diagonal preconditioner based on the Gauss-Legendre weights.

4.2.5 Comparison of different methods

Numerical results for a simple test problem

The new algorithm, based on the Schur method and the direct inversion is compared to
the classical one, where the complete Helmholtz equation is solved by the PCGM. The
difference between a direct and an iterative method in solving the Schur complement
is examined. Moreover, in the case of an iterative solver, the performance of the
preconditioners is investigated. The tests have been run on a Convex C3820 vector
computer. Every program has been compiled with and without vector optimization.
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The routines that perform the multiplication by the Schur complement or by the inverse
of the Schur complement (in the case of an iterative or direct method respectively) are
written in BLAS.

As a test problem, we have taken the Stokes flow, in which the non-linear terms in
(4.10) are neglected. The geometry is given in Figure 4.5. The degree of the approxi-
mating polynomials is equal to ten for the velocities and eight for the pressure, K, = 4
and K; = 3. The analytical solution is given by

T
T . T . T T
u(zy,22,23) = (—cos(izl)sm(-ixs),0,szn(§x1)cos(§x3))
. T ., T
p(z1,z2,23) = —7rsm(—2-a:1)sm(—2-z3). (4.32)

At t = 0, the fluid is at rest and the boundary conditions match the analytical solution.
After ten time steps (At = 0.5) a steady solution is obtained. Four different meth-
ods are compared: The classical iterative (CI) method, the direct Schur complement
(DS) method, the iterative Schur complement method preconditioned by the diagonal
(ISD) and the iterative Schur complement method preconditioned by the block-diagonal
(ISB). Table IV shows the results of the runs without vector optimization. The accu-

Method | CI { DS | ISD | ISB
Seconds | 2637 { 191 | 330 | 223

Table IV: Timings in seconds after ten time steps for the test problem without vector optimization

racy of the four methods is of the same order. We found a maximum error of 3-10~° for
the pressure and of 8-10~7 for the velocities. The speed of the three methods which are
based on the Schur method (DS, ISD and ISB) is much higher than that of the classi-
cal method. Furthermore, we notice that the direct inversion of the Schur complement
(DS) is faster than in the iterative methods (ISB and ISD). Finally, preconditioning
with the block diagonal matrix is preferred to the diagonal preconditioner. We found
that, for any Schur method, the preprocessing time (construction of the Schur com-
plement and preconditioner, eigenvalue decomposition of mono-dimensional operators
necessary for fast diagonalization) is less than two seconds.

The results for the vectorized programs can be found in Table V . We notice that,
as expected, the Schur methods benefit more from vectorization than the classical
method. The difference between the methods DS, ISD and ISB has almost completely
disappeared. This can be explained as follows: The time for the computation of the
interfaces has become negligible with respect to the computation of the interior nodes,
which, due to the tensor products, does not vectorize well. An analysis of the distri-
bution of the cpu time over the different subroutines reveals that for this particular
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Method | CI | DS | ISD | ISB
Seconds | 1565 | 105 | 114 | 111

Table V: Timings in seconds after ten time steps for the test problem with vector optimization

f e
5
g = d
h c
a b X

Figure 4.6: Geometry consisting of eight spectral elements. Projection in y-direction (y=0.5). The
sets of interior points are enumerated 1..8; the interfaces a..h.

problem, the ISB method spent a considerable amount of time (about 47%) to compute
the interior nodes by FDM, whereas the interface routines took only 5%.

Numerical results on an eight-element geometry

In this paragraph we consider a more complex geometry, consisting of the cube [0, 1]
with a hole in the center [0.4,0.6] x [0, 1] x [0.4,0.6]. The number of spectral elements
is eight (K; = K, = 8) and the polynomial degree is ten. Figure 4.6 shows a projec-
tion of the cube in the y-direction. Homogeneous Dirichlet boundary conditions are
applied everywhere, except at the top plane (z = 1), where u;, = 16zy(z — 1)(y — 1).
The Schur complement that results after elimination of the interior nodes is somewhat
more complex than that of the four-element matrix (4.29). We will refrain from giving
the full system and give, as an example, the equations at the interface a

(Hoo — HaH HY, — HooHyy H Yug + (Hap — HaoHy Hi)uy —
HaH HR up = fo — HoHG L — HoH 2 . (4.33)
The equations at the other interfaces are given by similar expressions, since the geom-
etry is symmetric with respect to the interfaces. Schematically, the Schur complement

can be written in the following form:
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System (4.31) illustrates that for large K; direct inversion of the Schur complement is

not a good idea (see discussion in paragraph 4.2.4). Therefore, an iterative method
(ISB) is preferred.

Problem Stokes Navier-Stokes
At = 0.5 | Re = 100, At = 0.005
Method Cl |ISB| CI ISB
Seconds 702 | 40 | 670 140
Average number of iterations | 87 | 18 | 17 6

Table VI: Timings in seconds after one time step for the eight-element problem on a Convex 3820
using vector optimization. The average number of iterations (tolerance 10712) is given per Helmholtz
solve (CI) or per solve of the Schur complement (ISB).

Table VI compares the cpu time of the ISB and CI methods for the first time step of
a Stokes flow and a Navier-Stokes flow (Re = 100, where the characteristic velocity U
equals one ). Again, the new algorithm is much faster than the previous one. The large
differences between the computation times for the Stokes and Navier-Stokes problem
can be explained by the fact that for small values of At more iterations will be needed
to compute the pressure, whereas the Helmholtz operator is well conditioned, resulting
in a low number of internal iterations, as is illustrated by the last line of Table VI.

4.2.6 Closing remarks

In Fischer et al. [29] and in Fischer and Patera [26], the parallelization of the classical
CI method is discussed. Large computational kernels, like the computation of gradients
and the multiplication by the Helmholtz operator H can be performed in parallel on
each spectral element.

The parallel efficiency of our method will not differ very much from that of the orig-
inal method, at least when computers based on shared memory are considered: The
additional computational kernels can naturally be parallelized. The work to construct
the Schur complement method and its preconditioner can be divided over different
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processors. Clearly, the computation of the interior nodes by FDM can be done in-
dependently on each element. Finally, when an iterative method is used to solve the
Schur complement system, the matrix-vector multiplication is split in block matrix-
vector operations. In table VII, we give the results on the parallel Alliant FX/8 for the
Stokes and Navier-Stokes problems, defined in the previous paragraph. The parallel
efficiency is about 85% for the Stokes and 80% for the Navier-Stokes problem.

Problem Stokes Navier-Stokes
At =05 Re =100, At = 0.005
Mode | vec | vec+par | vec vec+par
# proc. | 1 4 1 4
Seconds | 544 160 1694 532

Table VII: Timings in seconds of the first time step for the test problem on an Alliant FX/8. The
method used is ISB.

On distributed memory computers, where communication is an issue, the Schur
method might have a disadvantage compared to the original CI method. According to
Fischer et al. [29], the latter method only requires the communication of scalars (to
assemble the dot product) and points at the interfaces (for the direct stiffness). The
interfaces are only exchanged between neighboring elements. In our case, the FDM
and the construction of the preconditioner are communication free. The construction
of the Schur complement matrix requires some communication, but this is done only
once in a preprocessing stage. The difficulty is related to the implementation of the
iterative method to solve the Schur complement. Since the Schur matrix is in general
not block diagonal (see for example (4.30,4.34)), the interface variables have to be
exchanged between processors. In the case of system (4.34) for instance, uj and us
have to be sent to the processor that computes the first row. The time to send these
O(N?) messages can be relatively large with respect to the fast block matrix-vector
multiplication, which is of order O(N*). Preliminary results show that the performance
of the iterative solver depends heavily on the architecture of the parallel distributed
memory computer.

The algorithm we investigated in this paper leads to an important acceleration
of the Uzawa algorithm applied to the discrete Navier-Stokes equations. Since the
conditions for the FDM are very restrictive, the present method can only be applied to
geometries consisting of non-deformed spectral elements. This is a serious limitation.
However, since the Schur method decouples the global Helmholtz operator H in K,
local operators Hj;, classical direct methods can also be considered. Once the inverses
H;; (or the LLT decomposition) have been computed, the Schur complement matrix can
be constructed, yielding no extra computational effort to solve the Schur complement
problem, apart from a higher preprocessing cost. The decoupled problems for the
interior nodes (Hj;u; = r.h.s.) can be solved either by multiplication by the local inverse
(or by back substitution) or by an iterative method preconditioned by finite elements
[24]. Fischer and Rgnquist [28] already showed in the context of preconditioning of the
pressure operator that the construction of local inverses by a classical direct method

72



is feasible and advantageous in terms of computation times. Both the parallelization
on distributed memory machines and the implementation of deformed geometries will
be the subject of future research.
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SPPS (Services du Premier Ministre. Programmation de la Politique Scientifique).
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Figure 4.7: Comparison of the methods presented in the previous two sections with respect to
their cpu time (on a Data General workstation) to compute steady Stokes solution. K = 4, V =9,
At =0.25,v = 1.

4.3 Incomplete Schur preconditioning

Before discussing some of the disadvantages of the Schur complement method and some
suggestions to precondition the Helmholtz operator on generally deformed geometries,
we will first compare several techniques to solve the analytical problem presented in
Section 4.1. For the geometry displayed in Figure 4.4, we computed a steady Stokes
flow with analytical solution (2.86), (2.87) and v =1, At = 0.25, N = 9. We compare
the cpu time for the iterative Helmholtz solver preconditioned by the diagonal of H, the
Schur complement method solved by an iterative (with resp. diagonal and block diag-
onal preconditioners) or direct technique and the FDM applied to the entire geometry
(see Section 4.1). As expected, the cpu times for the Schur complement methods lie
in between the two extreme; the fully iterative Helmholtz solver preconditioned by the
diagonal and the FDM applied to the entire domain. Furthermore, since the problem
is rather small, a direct inversion of the Schur matrix works out well.

The solution of the Helmholtz equation by the Schur complement method requires
respectively the FDM for the computation of the right-hand side (H;!f;, according
to Equation 4.29), the inversion of the Schur complement matrix, preferably by an
iterative method, and a second application of the FDM to compute the velocities at
the interior nodes (c.f. Equation 4.31). This process is shown in Figure 4.8.

The Schur complement method has been tested on a number of relatively small test
problems. The potentially very complex structure of the Schur matrix refrained us from
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Figure 4.8: Solution of the Helmholtz problem by block-diagonally preconditioned Schur comple-
ment method.

treating large problems. Because of the high-order coupling, the number of entries (i.e.
block matrices) is much higher than for interface operators based on, for example, finite
element discretizations. A solution to this problem could be to divide the geometry in
the smallest possible number of boxes. Inside each box consisting of multiple spectral
elements the FDM can be applied and the size of the interface matrix will be small. In
this way, the 3D backward-facing step geometry, for example, can be decomposed in two
"superboxes” which have only one interface in common. Almost any mesh allows such
a decomposition by large blocks. Unfortunately, this approach is in contradiction with
our goal to implement the solver on a parallel computer, which requires decomposition
in many, small parts, instead of a few, large parts. Nevertheless, this idea of reducing
the size and complexity of the Schur problem remains attractive for scalar computers.
Besides the doubtful efficiency on parallel computers, the aforementioned method can
still not deal with deformed geometries.

It is not unusual to precondition operators on deformed geometries by matrices
that are constructed on nondeformed meshes. In Section 2.4, we have showed that
the number of iterations depends on the rate of deformation. In the following, we
will investigate this strategy for the Helmholtz operator. To this end, let us consider a
geometry ) decomposed in K deformed spectral elements {Q:}K ;. We then define the
dimensions of the corresponding parallelepipedic spectral elements §2; as the average
difference in the x, y, resp. 2z coordinates of the eight corners of €, as has been
illustrated in Figure 2.1, Section 2.4 (2D case). The Helmholtz operator can then be
preconditioned by the Schur complement method applied to the abstract geometry
consisting of the set of parallelepipedic elements {{2}X_,. Then, we still have to deal
with the complex structure of the Schur matrix. In the previous section it has been
shown that the block diagonal is an excellent preconditioner for the Schur matrix.
Therefore, it is a logical idea to replace the (complicated) Schur matrix by its block
diagonal. Heuristically, we expect that this will not dramatically increase the number
of iterations when the geometry is already deformed. We will call this technique the
incomplete Schur method. It is schematically displayed in Figure 4.9.

We have tested the incomplete Schur method on a box geometry ([0,4] x [-1,1] X
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Figure 4.9: Solution of the Heimholtz problem on deformed geometries by incomplete Schur
preconditioning.

[0,1]) consisting of 4 x 2 x 2 spectral elements. The elements in the x-direction are
deformed by the function asin(7y)sin(rz), with a a parameter that determines the
rate of deformation. We solved a Poiseuille flow (Stokes, v = 1), using the precondi-
tioned pressure correction method (see Chapter 5 and Chapter 6). The tolerance for
convergence is set to 1079 for the velocities and 10~¢ for the pressure. The results

a=0 a=0.15

Preconditioner | N=6 N=8 N=10 N=6 N=8 N=10
Inc. Schur 417, 8 | 470; 25’ | 521; 61° | 1481; 20’ | 943; 50’ | 1162; 134’
Diagonal 2425;197 | 2496; 49’ | 3096; 118’ | 2829; 24’ | 2987; 70’ | 3509; 175’

Table VIII: Number of Helmhottz iterations and cpu time in minutes (R3000 Silicon Graphics) to
perform 10 time steps (At = 0.1) to compute a Poiseuille flow. The interfaces in x-direction are
deformed by the function a sin(7y) sin(7 z).

Preconditioner N=6 N=8 N=10
Inc. Schur 1819; 39’ | 2227; 109’ | 2830; 293’
Diagonal 6245; 60’ | 8157; 173’ { 10249; 814’

Table IX: Number of Helmholtz iterations and cpu time in minutes (R3000 Silicon Graphics) to
perform 100 time steps (At = 0.01) to compute a Poiseduille flow. No deformation.

have been depicted in Table VIII (At = 0.1) and in Table IX (At = 0.01). In general, a
good acceleration of the convergence rate is obtained. We should note that the results
of this section are encouraging, but preliminary: We can not explain the high number
of iterations for the incomplete Schur algorithm (N = 6, & = 0.15, Table VIII).
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Chapter 5

Decoupling methods

In this chapter we focus on techniques to decouple the pressure from the velocity field.
This induces a time error the order of which should be at least the same as the order
of the overall time scheme. A convenient way to analyze such decoupling (projection)
methods is by writing them as generalized block LU decompositions, according to the
paper of Blair Perot [9]. A family of high-order projection methods will be derived.
Several arguments are given to apply the decoupling procedure to the space-discrete
equations and not to the space-continuous equations. The methods are validated by
numerical tests.

5.1 Projection methods applied to space-discrete
and -continuous Navier-Stokes equations

Let us recall the spectral element discretization of the incompressible Navier-Stokes
(NS) equations using the notations of Chapter 2 and Chapter 3:

%Bg”“ + Re7' Ayt — DTprt! = B (5.1)

~-Du™' = 0. (5.2)

Boundary conditions are incorporated in the operators. The right-hand-side vector f
contains all explicit terms, resulting from a BDF scheme of order s for the linear terms
and an explicit time discretization for the nonlinear terms by either the extrapolation
method or an operator-integration-factor splitting method, as discussed in Chapter 3.
The constant 3; depends on the order s of the BDF. The velocity belongs to Xy and
the pressure to My, defined in Equation (2.69). We can write (5.1) and (5.2) as

(5T)E)-(F) e

(4



with H = %;B + Re!'A. Problems arise if we apply the conjugate gradient method
directly to (5.3): The zero block in the continuity equation often leads to no, or very
slow convergence of the iterative method. Some solutions using fill-in exist (see e.g.
Dahl and Wille [22]), but it is common practice to derive separate equations from
(5.3) for the three velocity components and the pressure. As an example, we already
proposed the Uzawa method in Section 2.6.

The simplest, extensively studied decoupling method is the fractional step method,
which goes back to Chorin [17] and Teman [73]. This method introduces a first-order
time error which can be improved to second order by computing a correction to the
pressure (see e.g. Van Kan [75]). However, these projection methods are applied to
the space-continuous (time-discrete) NS equations and require an additional boundary
condition for the pressure. This additional condition has to be approximated at an
order which is at least the same as the decoupling error (see Karniadakis et al. [42]).
This is quite a difficult task and it is not easy to analyze these schemes.

In a recent article of Blair Perot [9], which is excellent because of its simplicity,
it is proposed to apply the decoupling method to the discrete (in time and in space)
set of equations (5.3). Boundary conditions have already been incorporated and the
projection error can easily be studied. This allows not only to find in retrospect the
correct pressure boundary condition for the fractional-step method applied to the space-
continuous equations, but also to find a general formulation of projection methods of
any order. This is done by applying so-called generalized block LU decompositions to

_ T un+1 n4+1
(5 797 ) (50)=(5%57). (5.4)

with @ an arbitrary matrix that determines the projection method and is to be defined
later. We close this section by referring to the article of Maday et al. [48] who provide
an operator-integration-factor splitting technique which is a very good alternative for
the projection methods discussed in this chapter.

5.2 Generalized block LU decompositions

The solution of the block LU decomposition of (5.4) takes place in two steps:

( —HD —Dg?DT ) (10%:‘1 ) - ( Bio"“ ) (5.5)
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and

(597 ) ()= (5. 59

Here, u* is an intermediate velocity field that is not necessarily divergence-free. The
second step (5.6) can be seen as the projection of the non divergence-free u* on the
divergence-free field u™*!. For this reason, the above method is often called the pro-
jection method. Note that since boundary conditions have already been applied to the
discrete operators, no problems arise for the solution of the pressure p**!, as would
have been the case when the continuous operators are subjected to a block LU decom-
position. The power of this approach is that the system (5.5), (5.6) covers a large class
of projection methods, depending on the choice for Q.

The first, most obvious choice for @ is
Q=H" (5.7

In this way, Equations (5.5) and (5.6) are equivalent to the original system (5.3) and no
decoupling error has been introduced. This method is often referred to as the Uzawa
method and has as a disadvantage that the inverse of H appears in the computation
of the pressure. The performance of the Uzawa method will depend on the efficiency
this inversion is computed with.

A second choice is

Q=251 (5.8)

3

which leads to a method we will refer to as the fractional-step (FS) method, although
this term was originally introduced for space-continuous splitting. By means of (5.5),
(5.6), it is easily verified that the decoupling error, introduced by the fact that Q is
only an approzimation of H™! relies on the following relation

_ DTpn-H _ (_HQDTpn-H) = %AB_IDT})’H'I — O(At) (59)

In the momentum equations (5.1) there is a factor At~! in front of the velocity which
implies together with (5.9) that the local time error is of order two. Consequently, the
FS method is first-order accurate in time. Furthermore, it possesses a non-vanishing
decoupling error, even when the problem is stationary. Note that the decoupling error
is not determined by a rigorous error analysis, but by simply computing the order of the
perturbation with respect to the original matrix. The results are verified by numerical
tests in the next section. Note also that we speak here about the order of accuracy of
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the velocities, denoted by =,. The order of the pressure is a source of confusion and
contradictory statements can be found in literature. Here, we confine ourselves to the
remark that we numerically found out that the order of accuracy =, of the pressure
respects 7, — 1 < 7, < 7,. This holds for all the time schemes we tested in this chapter.

The first-order accurate result (5.8) can be improved by choosing a better approxi-
mation for H~! (see [9]), for example

A (A
=737 (ﬂ,

2
5 > Re'B"'AB™1, (5.10)

which is nothing more than a Taylor-series approximation of H~!. This leads to a
second-order decoupling error based on the following relation:

At
BsRe

2
_ DTpn-H _ (_HQDTpn+1) = ( ) (AB_1)2DTP"+1 = O(At)2 (511)

In practice, this method does not work well, because (5.10) is positive definite only for
very small values of AtRe™!. Its third-order analogue

At
Bs

At
Bs

Q=ﬁB-1—(

S

2 3
) Re-lB-lAB-1+( ) Re~%(B~'A)?B! (5.12)

is always positive definite and yields a decoupling error based on

3
—_ DTpn+1 - (—HQDTp"'H) — (_B%) (AB—I)SDTpn-H = O(At)s. (5.13)

We will call this method BP3. Note that all the decoupling errors (5.9), (5.11), and
(5.13) are non-vanishing for steady problems and that different choices of @) lead to
different pressure operators, requiring each different preconditioning techniques. It
turned out that especially the pressure operator for (5.12) is ill conditioned. This will
be discussed in Chapter 6.

Another way of improving the decoupling error of the fractional-step method con-
sists in modifying (5.4) in

— T n+1 +1 T.n
(_IZ H(?D )(pnﬁ_pn>=(Bf JD” ) (5.14)
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Applying the block LU decomposition to (5.14), with

Q="2p (5.15)

s

leads to the pressure-correction (PC) method [75], which is a second-order scheme.
The decoupling error is determined with the aid of

_DTpn-H - (_HQDT(pn+1 _ pn)) _ (_DTpn)

At
BsRe

AB'DT(p™! —p") = O(At) (5.16)

This decoupling error vanishes when the problem is steady (i.e. p**! — p" = 0). The
same technique (i.e. adding DTp" to the right-hand-side vector f™*! and computing a
correction term for the pressure) can be applied to the BP3 scheme [45]. In this way,
we obtain what we will call the BP3PC scheme with a fourth-order decoupling error,
based on the following estimate

(ﬂﬁ‘;e) (AB~'3DT(p™*! — p™) = O(At)?, (5.17)

which vanishes for steady problems.

Following the above described strategy, projection methods of fifth order, sixth
order, etc. can be be derived. The practical interest of such methods is, however,
limited, for the following reason: The overall order of the time schemes based on the
different choices for @ is only the minimum of the order s of the BDF, the order
of the time scheme used for the evaluation of the nonlinear terms, the order of the
implicit /explicit splitting error and the order of the decoupling error.

5.3 Numerical tests

In this section we will numerically verify the order of five of the aforementioned decou-
pling methods, and we will compare the cpu time for each of these methods to obtain
a certain level of accuracy. The test problem consists of an eight-element geometry
0 = (0,1)3 with a hole [0.4;0.6] x [0,1] x [0.4;0.6], as has been used in Chapter 3 and
in Chapter 4. The analytical solution is given by

. 7r . T . T .3 T
u(z1,2,23) = sin(wt) (— cos(§z1) sm(§z2), sm(Ezl) cos(Emg), 0) (5.18)
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(5.19)

p(z1,22,23) = —mwsin(wt) sin(%zl) sin(%xg),

for t € [0,T]. Throughout this section, the initial condition is zero velocity and pres-
sure.

5.3.1 Accuracy of decoupling methods

As a first test, we take Re = 10, T = 0.75 and N = 6. The order of the BDF is
three and the nonlinear terms are discretized by a third-order extrapolation scheme.
There is no implicit/explicit splitting error. For this small value of the Reynolds
number, we expect large decoupling errors. Table I reveals that, as far as the velocity

Method | At=_ | At=g [At=q5 | At =5 |
Frac. Step | 0.66; 1.55 | 0.85; 1.81 | 1.07; 2.09 | 1.31; 2.38
PC 1.71; 2.17 | 2.06; 3.22 | 2.64; 3.82 | 3.18; 4.42
BP3 0.75; 0.71 | 1.14; 1.55 | 1.68; 2.53 | 2.45; 3.48
BP3PC | 1.66; 1.72 | 2.11; 3.07 | 3.23; 4.30 | 4.29; 5.36
Uzawa | 3.03; 4.82 | 3.92; 5.63 | 4.82; 5.82 | 5.42; 5.71

Table I. Number of correct decimal digits (-log(max error)) for the pressure resp. u; velocity
component (T' = 0.75, Re = 10).

is concerned, three schemes show the order of accuracy we expect: The fractional-
step method is first-order, the pressure-correction method is second-order and the BP3
method is third-order accurate, although the large error constant of the latter scheme
yields somewhat disappointing results. The Uzawa method is third-order accurate,
but for small values of At, the spatial error becomes dominant. (The presentation of
the results by the number of correct decimal digits is often used in the context of the
analysis of time-integration schemes. It allows for a quick verification of the order of
the method: Since — log(0.5) =~ 0.301, we find that by dividing the step size by two,
a gain of 0.3 digits corresponds to order 1, a gain of 0.6 digits to order 2, etc.) Note
the important improvement of BP3 by computing a pressure correction (BP3PC). The
latter scheme is formally of order three, due to the BDF3 and the extrapolation for
the nonlinear terms, but shows a fourth-order behaviour. This is explained by the fact
that the decoupling error is, apparently, dominant.

The order of accuracy of the pressure is much less documented in literature. Van
Kan [75] mentions that the order of the pressure for his pressure-correction scheme is
less than two. Blair Perot [9] states that the order for the pressure is always inferior to
the order of the velocity. Our results show that, except for Uzawa of course, the order
of the pressure is somewhere in between the order of the velocity and the order of the
velocity minus one.

We repeated aforementioned problem, but with a Reynolds number of Re = 50
this time. The results are presented in Table II and show that the pressure-correction
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Frac. Step PC BP3 BP3PC Uzawa
At = ﬁ 1.85; 2.09 | 3.49; 4.13 | 3.89; 4.21 | 4.96; 5.13 | 5.10; 5.13

Table II: Number of correct decimal digits (-log(max error)) for the pressure resp. u; velocity
component (I" = 0.75, Re = 50).

method, BP3, and especially the BP3PC method are very close to the "optimal” Uzawa
scheme. This is due to the fact that the decoupling error is proportional to Re™!, Re~3,
and Re~3, respectively. For Re > 50 the difference between the five methods will even
be smaller.

5.3.2 Performance of decoupling methods

Performance depends on the speed the Helmholtz equation is solved with and on the
efficiency of the pressure preconditioner. In this section we will present results with and
without the fast semi-direct inversion method for the Helmholtz equation which has
been discussed in Chapter 4. The preconditioning of the pressure operator is presented
in the next chapter. All the results of this section are obtained with the most efficient
preconditioning technique in terms of cpu time that can be found in Chapter 6.

The problem is the same as in Section 5.3.1, with Re = 50, T = 0.3. The Helmholtz
equation is inverted by the solver based on the Schur complement method and fast
elemental solves. We will compare the Uzawa method, PC, and BP3PC as regards
the cpu required to obtain a certain level of accuracy, say 107%, for the u,-velocity
component. This implies that the Uzawa method proceeds in time with a time step
of At = 0.02. The corresponding error in the pressure is 4.919-¢. To get the same
precision for the velocity, BP3PC requires a step size At = 0.01 (the corresponding
error in the pressure is 6.3;0-s). The cpu time to get this typical accuracy is 1.6 times
larger for BP3PC than for Uzawa. There are three reasons that BP3PC can not win
the race. First, BP3PC needs more time steps to attain the same precision. Second,
the pressure preconditioner is somewhat more efficient for Uzawa than for BP3PC.
Finally, the most important reason is that a very fast algorithm is available to invert
H. This inversion is done at almost the same computational cost as an evaluation of Q
(5.12). The PC method is a low-order method and a step size of about At = 0.0015 is
needed to obtain the required accuracy. The computation took more than three times
as much cpu time as for Uzawa.

Next, we consider a geometry [—1, 1] x [-1,1] x [-1, 1] consisting of four spectral

elements in y-direction, with solution (5.18), (5.19). We take N =7, T = 0.5 and a
Reynolds number of 50 (based on a characteristic length L = 0.5) and compare the
number of time steps for Uzawa, PC and BP3PC to obtain a 1.6,9-s precision in the
velocity. This time, the Helmholtz equations are solved by a PCGM with a diagonal
preconditioner. The total cpu time is normalized with respect to the PC method.
We assume that spatial errors are negligible with respect to temporal errors. The
order of the BDF is three. As expected (see Table III), Uzawa is the most accurate
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Method || cpu time | Max. At
Uzawa 3.5 0.045
PC 1.0 0.017
BP3PC 5.2 0.025

Table III: Maximum time step and corresponding cpu time to obtain a 1.6E-5 precision in the
velocity. N = 7, K = 4, Re = 50, T = 0.5. The cpu time is normalized with respect to the
preconditioned PC method.

method, followed by BP3PC. On first sight, the results for the BP3PC method seem
disappointing, but they can be explained by the fact that Re~!At is not small enough.
This works out negatively in two ways: The decoupling error is large, leading to a
relatively small Af to obtain the demanded accuracy and the preconditioner is not
optimal for Re~'At in this range.

Finally, we define a problem on four deformed spectral elements in a row (N = 6,
Q= [-3,11x10,2] x [-1,3]), with a steady solution. This solution corresponds to
(5.18) and (5.19), without the time dependent term sin(wt). The three interfaces are
deformed by a sine function. Since there is no reason to use high-order time schemes
for steady problems, the BDF3 is replaced by BDF1 (yielding §; = 1). In this case, no
fast Helmholtz solver is used. We take Re = 50, At = 0.015 and compare the number
of time steps and cpu time to obtain a 2,o-« precision for the u,-velocity component.
The results for Uzawa have been obtained with the two-step preconditioning technique
(see Chapter 6). In Table IV, we give the number of time steps to obtain the aforemen-
tioned precision, the cpu time (measured on a small workstation) and the error in the
stationary solution at ¢t = 10. We remark that after 600 time steps the two methods
that are based on the computation of a correction to the pressure (PC and BP3PC)
still iterate to compute the pressure, although the solution does hardly change. Uzawa
and BP3 "recognize” that the solution is stationary. Apparently, the pressure correc-
tion takes a long time (if not forever!) to damp out. The results for Uzawa, PC and

PC BP3 | BP3PC | Uzawa
time steps 78 83 78 78
cpu time 1 2.75 2.21 4.82

error in steady flow | 8.89-5 | 1.5;0-¢ | 8.810-5 | 8.8;0-5

Table IV: Number of time steps, cpu time (normalized with respect to PC) to obtain 20—« precision
for u,-velocity component and error in u,-velocity component (stationary flow). Four deformed
spectral elements, N = 6, Re = 50, At = 0.015, tolerance of 10~!! and 10~ on velocity and
pressure resp.

BP3PC are exactly the same, except for cpu time. It was expected that these three
methods would show the same error for the steady solution, since no decoupling errors
occur. It is somewhat surprising, however, that the error of 2,9-« is obtained after
an identical number of iterations. The BP3 method does have a decoupling error for
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steady problems. It is clear that PC is the fastest method, followed by BP3PC and
BP3. In comparison with the previous test, the performance of the Uzawa method has
dropped, due to the absence of fast Helmholtz solvers.

5.4 Conclusions and recommendations

In this chapter we have presented a class of projection methods which have been applied
to the spectral-element discretization of the incompressible Navier-Stokes equations in
three dimensions. By writing these methods as generalized block LU decompositions,
the order of accuracy can be determined and new methods can be derived. In general,
the decoupling error does not vanish in the case of steady problems. This can be cured
by computing a correction to the pression. Numerical tests showed, however, that this
correction damps out very slowly. A combination of a correction-based method (PC or
BP3PC) for the first part of the time-integration interval and Uzawa or BP3 for the
final part could be an attractive solution.

The decoupling error is proportional to Re~1At to a certain power, implying that the
most interesting application is the computation of flows with Reynolds numbers that
are moderate or high (typically Re > 75). For Stokes problems, the Uzawa method
remains the only serious candidate. Not only accuracy, but also performance depends
on Re"'At. In Section 5.3.2 a number of projection methods have been compared
as regards the cpu time required to obtain a certain level of accuracy. The Reynolds
number for these tests was chosen to be fifty. For higher values, it is no longer accuracy
that determines the maximum time step, but stability. In fact, for Re > 100, we will
see that simulations using the maximum At obtained from stability considerations lead
to negligible differences in the time accuracy of PC, Uzawa, BP3 and BP3PC.

Finally, we give some recommendations which method to use for some typical situ-
ations (see Table V). It concerns heuristic guidelines rather than scientifically estab-
lished rules.

ReAt™! | steady (s) accuracy | fast Helmh. recommended
unsteady (u) | important solver method(s)
small s+u yes+no yes+no Uzawa
large s yes+no yes+no PC (BP3PC)
large u yes yes Uzawa, BP3PC, BP3
large u yes no BP3PC, BP3, (Uzawa ?)
large u no yes+no PC (BP3PC)

Table V: Recommended method as a function of the Reynolds number divided by the time step,
the time dependence of the flow, the need of accurate solutions (in time) and the existence of a fast
Helmholtz solver.
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Chapter 6

Preconditioning of the pressure
operator

In this chapter we focus on the iterative solution of the pressure operator for small
values of Re~'At. This corresponds to the simulation of Navier-Stokes flows at moder-
ate or high Reynolds numbers which requires small time steps because of the stability
condition due to the explicit treatment of the nonlinear terms. We recall that for
this range of values of Re'At, a simple preconditioner works well for the Helmholtz
problem (P~ = (diagH)™'). The diagonal preconditioner for the pressure operator,
P~' = B~ is, however, only useful for large values of Re~1At. In the following we
will assume that Re™'At <« 1.

6.1 Introduction

In the previous chapter, we discussed several decoupling methods leading to different
pressure operators. We mention S,,,

1 B
w=DH DT H=-—A+-_B 6.1
5 b, R’ T AL (6.1)
the Uzawa pressure operator; Sy, also referred to as E,
Spe = %—tE = %DB"DT : (6.2)
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the pressure-correction or fractional-step operator and, finally, Sp,,

At At at N\ r
Stp = 5-DB" (I—ﬂsReAB +(ﬂsReAB ))D, (6.3)

the operator related to BP3 and BP3PC, depending on whether the pressure or a
pressure correction is computed.

Several remarks have to be made with respect to these three operators. First, S,,
Spe, and Sp, are the product of at least three matrices that can not be assembled in a
preprocessing stage: Each evaluation requires at least three matrix-vector multiplica-
tions, using tensor-product factorizations. Furthermore, Sy, Sp., and S, are defined on
the Gauss-Legendre grid whereas H, B, and A belong to the Gauss-Lobatto-Legendre
grid. Hence, D does not only represent derivation, but also interpolation. Since, H,
B and A are defined on the velocity grid, they account for boundary conditions and
direct stiffness. In fact, they are responsible for the inter-elemental coupling of the
pressure operator. Unlike the velocity, there are no pressure nodes shared between two
adjacent interfaces, and continuity conditions are absent. It is postulated in [63] that
this is the reason that the pressure operator is more difficult to solve than the velocity
operator.

The preconditioning of the three pressure operators is related. For the continuous
operators, Cahouet and Chabard [12] showed that

~ V- (At = R A)Y = (Re T - AV (6.4)

see also Zhou [76]. The same is not true for the discrete operators. Nevertheless, it
follows from Equation (6.4) that P~1S, = I, with

be g1, (6.5)

-1 __ p-1p-1 ﬁ -1pT\-1 . p,-15H-1
P =Re7'B™ + =(DBDY) = ReT'BTN + T

suggesting that P! is a good preconditioner for S,. From Chapter 5 it follows that,
using an informal notation,

Sy = Spp + 0(—)3 (6.6)

Hence, by means of Equations (6.2), (6.5), and (6.6) the following relation between S,
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Sip and Sy, emerges:

Sy = Sip+ 0(%2)3 ~ (Re™ B 4+ 550)1. (6.7)

We conclude that the operators are equivalent for Re — oo. In Section 6.2, the
preconditioning of S, will be discussed and extended to S,. and S, in Section 6.3.

In Timmermans [74], some impressive results are obtained for a finite element pre-
conditioner of the Poisson operator. It is shown that when the linear finite elements
are constructed on the Gauss-Lobatto-Legendre mesh, the convergence rate (K = 1) is
independent of N. By discussing the differences between the approach of Timmermans
and ours, we will illustrate that finite element preconditioning is not a good idea in
our case. First, we notice that Timmermans uses the pressure-correction decoupling
method applied to the space-continuous operators. This implies not only that the pres-
sure can be discretized on the same grid as the velocities, but also that an additional
pressure boundary condition is needed (c.f. Chapter 5). The linear finite element op-
erator is then nothing more than a banded matrix with nine (twenty-seven) diagonals
in two (resp. three) dimensions, taking into account the pressure boundary condition.
The fact that the finite element matrix is spectrally close to the spectral matrix means
that the former operator inherits all the difficult modes from the latter. Consequently,
iterative methods will converge almost as slow for the finite element as for the spectral
element system. Direct methods are therefore to be used to solve the finite element
preconditioner. Efficient band solvers exist for the 2D and 3D linear finite element
Poisson operator. The inverse is computed in a preprocessing stage, diminishing the
cost per pressure iteration to the evaluation of the pressure operator and the (banded)
inverse. Their application to large 3D problems (typically K > 1and 7 < N < 12)
is, however, not yet feasible or, at least, very cpu demanding. Furthermore, when de-
coupling is applied to the space-discrete operators, it is logical to first construct Dpg
and Brg, the finite element equivalences of D and B respectively, and then to perform
the multiplication Spg = DrgBrgDEg. The structure of this product matrix is much
more complex than in the case of continuous decoupling, mainly (but not only) due to
the inverse of the non-diagonal finite element mass matrix. The bandwidth is larger,
there are more diagonals involved and sparsity patterns are difficult to recognize.

Summarizing, it is the author’s opinion that the only way in which finite element
preconditioning of the 3D pressure matrix resulting from a discrete decoupling can be
helpful, is to discretize directly the Poisson operator on a coarse grid (say N =2or N =
3). This will yield the loss of the independence of the condition number of N. Also from
the parallel-computing viewpoint, finite element preconditioners are not efficient when
the granularity imposed by the spectral element discretization is maintained. Moreover,
the relation between the condition number of the preconditioned operator and the
number of spectral elements K (which is not addressed in [74]), is more important
than the relation with N.
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Abstract: Seven preconditioners for the Uzawa pressure operator are discussed in the
context of the spectral-element discretization of unsteady, incompressible flows. An al-
ready existing algorithm, based on decomposition of the pressure operator, is modified
in order to reduce the number of iterations and cpu time. A two-stage precondition-
ing technique is set up to solve efficiently problems at high Reynold numbers. The
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problems in three dimensions.
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6.2.1 Introduction

In this paper, we focus on the solution of the large algebraic systems that result from
the spectral-element discretization [57] of the unsteady, incompressible Navier-Stokes
equations in three dimensions. Direct methods are not attractive in this context for
various reasons: for example, the inverse is expensive to compute and has to be kept in
memory. Moreover, the explicit form of the matrix which is to be inverted is not always
known and sparsity patterns are difficult to localize. Finally, the cost to compute an
evaluation of the original matrix can be kept low by using tensor products, while this is
not the case for the inverse matrix. For these reasons, iterative methods are preferred.

The number of iterations to converge is related to the condition number of the ma-
trix, which, on its turn, depends on the number of spectral elements and on the degree
of the approximating polynomials. In order to reduce the number of iterations, an effec-
tive preconditioning technique is essential. Here, we define an efficient preconditioner
as a matrix for which the condition number of the product of its inverse (which should
be cheap to construct) and the original matrix is close to urnity. The ultimate goal is to
develop a scalable preconditioner, implying that the convergence rate is independent
of the number of spectral elements.

Our spectral-element solver for the Navier-Stokes equations is based on the decou-
pling of the momentum and continuity equations by the Uzawa method [2]. An advan-
tage of this method is that no rediscretization of the original problem is required and
that, hence, no extra boundary conditions for the pressure are needed. The non-linear
terms are computed by an (explicit) extrapolation scheme, inducing the solution of one
system of symmetric, elliptic equations for each velocity component. The solution of
the pressure system, which is also symmetric, is much more difficult. This pressure
matrix is known to be ill conditioned, especially for high Reynolds numbers [46].

In a recent article, Rgnquist [63] introduces a technique to precondition elliptic
boundary-value problems. This method is the starting point for this paper and is based
on the decomposition of the pressure space into a "global-coarse” and a "fine” sub-
space. The coarse subspace contains the pressure modes that account for the long-range
interactions, and the associated coarse-grid operator is inverted by a direct method.
The fine-grid operator is inverted by an iterative method, preconditioned by a local,
elemental operator. In order to reduce the number of operations, we propose to con-
struct this preconditioner on a grid consisting of non-deformed spectral elements, even
though the original grid can be generally deformed. In this way, we are able to use
an efficient algorithm based on the fast diagonalization method (FDM) [44] to invert
the local preconditioner. Furthermore, we will study different types of boundary con-
ditions for this preconditioner and show the effect on the rate of convergence. Finally,
a framework of two-stage preconditioning accelerates the method for higher Reynolds
numbers. All different algorithms have been tested on a series of test problems.

6.2.2 Discrete formulation

The spectral element method was first proposed by Patera [57] and has been elaborated
in e.g. Maday and Patera [47], Ronquist [65] and Maday et al [46]. Here, we adopt the
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same notation as in the above mentioned papers.

The Navier-Stokes equations are given on a domain 2 by

% — Re'Au+u-Vu+Vp = }, (6.8)
—divu = 0 (6.9)

and are subjected to no-slip conditions on the boundary 9:
u=0. (6.10)

Here, u is the velocity, p is the pressure and b is a body force. The Reynolds number
Re = UL/v is based on a characteristic velocity U, a characteristic length L and the
kinematic viscosity v. When we will speak of a Stokes flow, we leave out the convection
term u - Vu and take Re = 1 in (6.8). The governing equations are written in their
variational form: Find (u,p) € X, X M such that Yw € X,,Vge M

(%,‘l_ﬂ_) + Re™! (Vy, V) + (u - Vy,w) — (p,divw) = (b,w) (6.11)

—(¢,dive) = 0, (6.12)

where

V¢v '4/) € [‘2(9) (¢3 d)) = ‘/Q¢(§)1/)(§)d_$_ = (xla X2, .'1:3) € ). (613)

The space X, for the velocity and the space M for the pressure are given by

X, = {ve|H(QUdN)[* v vanishes on N} (6.14)

M = C3(9) ={¢e L) /n #(z)dz = 0}. (6.15)

H!(Q) is the space of all functions that are square integrable and whose first-order
derivatives are also square integrable over 2. The space L£%(f) is the space of all
square integrable functions over 2.

The domain  is broken up into K spectral elements ; on which u and p are ex-
panded in Nth-order (resp. (N —2)th-order) tensor-product Lagrangian bases. Tensor-
product numerical quadrature rules based on the Gauss-Lobatto-Legendre grid are used
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to evaluate the integrals in (6.11,6.12), except for (p,divw) and (g, divy), which are
computed by tensor-product quadrature rules on the Gauss-Legendre grid. The chosen
time scheme is Euler Backward, where the non-linear terms at ¢ = ¢, are approx-
imated by third-order extrapolation in time. These terms are added, together with
(At)~'y"*!, and the body force b to become the new right-hand side vector f**'. The
discrete formulation of (6.11,6.12) reads:

AitBy;‘+1+Re-1Ag+l-D,.Tp"+l = Bt i=1,23  (6.16)

- D' = 0. (6.17)

Here, B is the diagonal mass matrix, A is the discrete Laplace operator, D; is the dis-
crete divergence operator and the superscript T indicates the transpose. The velocities
are in X, and the pressure is in M} (according to {7]), defined as

Xon = XgNPRg(9) (6.18)
M, = MnNPn_2x(), (6.19)
with Py g = {¢ € L*(R); $ja, is a polynomial of degree less than or equal to N}. The

Gauss-Lobatto-Legendre/Gauss-Legendre discretization for velocities/pressure guaran-
tees the absence of spurious pressure modes [7].

Starting from the discrete equations (6.16,6.17), the Uzawa algorithm [2] is obtained
by multiplication of the momentum equations by D;H~1, with

H :=(Re A+ At™1B). (6.20)
We obtain
Sp**' = —D;H'Bf (6.21)
Hu*' = DIp™'+Bfi"'  i=1,23. (6.22)
where
S:=D;H'DI. (6.23)

Tensor products reduce the cost of matrix-vector multiplications to O(K N*). Equation
(6.21) is solved by the preconditioned conjugate gradient method (PCGM). Clearly,
the Helmholtz operator H has to be inverted within each PCGM-iteration. This is
done by a PCGM, preconditioned by the diagonal of H.

6.2.3 Pressure preconditioners

For large values of Re~!At, the pressure operator B~1S is identity like, where B is the
diagonal mass matrix defined on the Gauss-Legendre grid [46]. This suggests that B
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is a good candidate for a preconditioner. Therefore, we define our first preconditioner

Pl as 3
P11 = B, (6.24)

Throughout this report, we will introduce preconditioners by defining their inverse
matrices, because the PCGM requires at each iteration a multiplication by the inverse of
the preconditioner. This matrix-vector multiplication, together with the multiplication
by the original matrix, are the basic computational units of any iterative method. In
this paper, we will often use the term ”evaluation” when we speak about these matrix-
vector multiplications. For small values of Re~1At, B~1S is no longer identity like. In
this case, Maday et al [46] found that S is spectrally close to D; B~ DT. We introduce
the symbol E to represent this pseudo-Laplace operator:

E :=D;B™'DT. (6.25)

Note that B! is defined on the Gauss-Lobatto-Legendre grid and has zeroes at entries
corresponding to Dirichlet boundary conditions. A preconditioner P that works for
both cases is defined by (see e.g. [46])

P'=Re'B '+ AtTIEL. (6.26)

The difficulty introduced by this preconditioner is that F itself is also ill conditioned,
implying that the problem in solving S is transferred to the iterative method to solve
E.

Another important remark is made by Rgnquist [63], who pointed out that the pres-
sure Poisson operator is more difficult to invert than the standard Laplace operator,
since the first one is in £2 and the latter in H!. Therefore, Rgnquist proposes to solve
the pressure in two different pressure subspaces. The first set of equations serves to
build up a global "skeleton” for the pressure. This coarse, global system contains the
constant pressure levels inside each element. The second subspace represents the local
variations of the pressure with respect to the global frame. Applied to our case, this
method consists in decomposing M}, into two disjoint parts My and M, n

Mo = £2(R)0Pox(Q), (6.27)
Myn = Lg’K(Q) N 'PN_Q,K(Q), (6.28)
where
cg,K(Q) = {¢ € cg(Qk)7 k=1,.., K}a (629)
such that
pﬂ+1 = (Jpo +pN) eE M, = Mh,o & Mh,N- (6.30)

Here, po accounts for the "skeleton” and pn for the local variation. The operator J
maps the local constant pressure level on the space M,. Instead of solving (6.21), we
now derive from

S(Jpo +pn) = —D;H'Bf+ (6.31)
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two equations to compute py and py. To this end, we multiply the left- and right-hand
side of (6.31) by JT and solve for po:

po = (JTSI)WJT(~D;H'Bf*' — Spw). (6.32)
We substitute (6.32) in (6.31) to find the following expression for py
(I-S8J(JT8I)JT)Spy = —(1 = SI(JTST) JT)D:H ' Bf 7+ (6.33)

We introduce the coarse-grid operator So and the fine-grid operator Sy as:

So=JTSJ, Sy=(1I-SJS;'JT)S (6.34)

and rewrite (6.33,6.32) as
Svpy = —(I-8JS'JT)D;H* Bf*! (6.35)
Sopo = JT(—D;H'Bf*' — Spn). (6.36)

Since (6.36) contains only K unknowns, a direct solution method is preferred. On the
other hand, an iterative method (i.e. the conjugate gradient method) is used to solve
(6.35). The key point in this algorithm is that (6.35) can be efficiently preconditioned by
block(S), corresponding to the elemental local S-matrices, where homogeneous Dirich-
let boundary conditions are imposed (to H~') on all boundaries and interfaces. The
advantages of this approach is that the preconditioner respects

ker(block(S)) = ker(Sn) (6.37)

and is completely decoupled per element. The latter aspect is important for the im-
plementation on parallel computers (see [28]).

In practice, block(S) is hard to construct. Therefore, we replace block(S) by
(At~'block(E)~14 Re~'B)~, which is, according to (6.26), spectrally close. We remark
that we do no longer have a compatibility between the null spaces of the preconditioner
and Sy, but this is not believed to prohibit or slow down the convergence of the iter-
ative method. In Rgnquist [63], in a slightly different context, the LLT decomposition
of block(E) is computed on each element by a direct method. We remark that the cost
to compute this decomposition is of order O(K (N —2)°) and that the cost of each back
substitution is of order O(K (N —2)¢). In order to reduce the cost of a back substitution
to an order of O(K (N — 2)°), Fischer and Rgnquist [28] construct a block( E) matrix
on a finite-element mesh. Here, we propose to use the FDM to bring the cost back to
O(K(N —2)*). A second advantage of the FDM is that the inverse matrix (or LLY
decomposition) does not have to be kept in memory.

6.2.4 Preconditioners based on FDM

The FDM , which we will use to construct our preconditioner, goes back to Lynch et al
[44], who gave explicit formulas for the inverse of a tensorizable and separable operator,
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say L. In particular, they showed that when such an operator L is written as

L=(I®I®L+IQL,QI+L.®IQI), (6.38)

its inverse is given by

L' = (RL®P,QP)A\ (PP Pt @ P, (6.39)

Here, A ® B denotes the tensor product of A and B. The matrices P, P, and P,
represent the eigenvector decomposition of the one-dimensional operators L., L, and
L,, such that

P'L.P.=A,, P'L,P,=A,,  P7'LP =A, (6.40)

with Az, Ay and A, diagonal matrices having as entries the eigenvalues of the corre-
sponding operators. The interest of this method becomes clear when the cost of an
evaluation of L™'v is compared to the matrix-vector multiplication Lv, the basic ingre-
dient of any iterative method. Using (6.39), L~1v needs twice as many operations as
the matrix-vector product. So the inverse is computed at the price of two matrix-vector
products.

In the following, we will show how the FDM can be used to invert block(E), i.e. how
to solve a system like block(E)z = g on an arbitrary, non-deformed spectral element.
If we denote by JZ,JT,JT the one-dimensional interpolation operators from the GLL

x? y)

to the GL grid; by w,, wy,w, the weights on the GL grid; by @,, Wy, @, the inverses of
the weights on the GLL grid with zeroes at the first and Nth position, corresponding
to homogeneous Dirichlet conditions; by D, D,, D, the one-dimensional derivation
operators on the GLL grid, based on information on the GL grid, then we can write
block(E)x = g on a nondeformed spectral element with dimensions a X b x ¢ as

3
(w: @ wy ® wz){i(Jz ® Jy ® D), ® by @ 0:)(JI @ JT ® DT) +
=5 (J: ® D, ® L:)(i, ® i, ® i:)(JT ® DY ® JT) +
b
(D ® 4, ® Jo)(: ® b, ® 6:)(DF @ I ® J)Hw. @wy @us)e = g.(641)

This expression can be rewritten as

{I®IQ® (a*J,@;J]) ' D0: DY +1® (V¥ Iy, JT ) Db, DT @ I +

(1, w,J7) ' D, %, DT @ I ® I}(w, ® w, @ wz)z =

96



2
%(w,szszT )7 ® (w, i@, JT) T @ (wo e JT) g (6.42)

Clearly, the term between braces is written under the form (6.38) and can be inverted
by the FDM. The other factors consisting of tensor products of the form (AQ BQ C)™?
are trivially inverted as A=! ® B~! @ C~!. After rearrangement of the terms, the cost
to evaluate the inverse is expressed by a polynomial in N, the leading term of which is

6K (N — 2)°.

At this point, two remarks have to be made. First, the matrix block(FE) can only
be inverted by the FDM on non-deformed grids. Otherwise, the operator block(E) is
not separable. In the case of deformed geometries, we construct therefore block(E) on
the corresponding non-deformed spectral elements. Numerical results, which we will
present in Section 6.2.6, show that this operator is still a good preconditioner, although
it does not take the deformation of the mesh into account. Second, the unit vector
belongs to the kernel on each spectral element, resulting in a zero eigenvalue in the
eigenvalue/eigenvector decomposition of each one-dimensional operator [63]). This is
fixed by replacing the zero eigenvalue in one direction by 10~2. Empirically, we found
that the number of PCGM iterations to solve (6.35) is practically the same when
block(E) is inverted by FDM (with modified eigenvalue) as when block(FE) is, on its
turn, inverted by an iterative method.

The above constructed preconditioner is called P2 (see Figure 6.1). Instead of impos-
ing homogeneous Dirichlet boundary conditions to block(E) (putting zeroes at entries
of B! corresponding to positions at the boundaries and interfaces), we propose to
impose nothing at interfaces, as is the case for Neumann boundary conditions of the
type g-:‘; = 0. For K > 1, this strategy automatically solves the problem of the zero
eigenvalue. In many cases, less iterations are required for this preconditioner which we
will call P3. When P3 is directly applied to precondition S (instead of Sn), we speak
of P4 (see Figure 6.1). The advantage of P4 is that only one S-evaluation is needed for

every PCGM iteration, whereas P2 and P3 require two S-evaluations (see (6.34,6.35)).

6.2.5 Two-stage preconditioners

In the previous paragraph, three preconditioners have been proposed that require at
each iteration one or two evaluations of the matrix S. These evaluations are very ex-
pensive since a Helmholtz equation has to be solved (see (6.21)). Therefore, we propose
a two-stage preconditioning technique which is especially interesting for small values
of Re~1At. The first stage consists in preconditioning the operator S by (6.26). We
recall that when this preconditioner is used, few iterations are needed to converge
(Re 'At < 1). In order to invert the preconditioner, a second preconditioning stage is
introduced, applying the same technique to E as has been applied to S in the previous
paragraphs. More precisely, the evaluation of (6.26) requires the solution of systems
like Eq =rhs. This equation is rewritten as E(Jqp + qn) =rhs, with gy € M} and
gn € M n. Analogously to (6.34), we introduce the coarse-grid operator Ey and the
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P'=at" block(E) "+ Re B' | [P =At" blok®? + Ré' B' | | P'= blocke®) * P! = block(®) *
Dirichlet Dirichlet-Neumann Dirichlet-Neumann Dirichiet

Figure 6.1: Overview of the seven preconditioners, indicated by P1,..,P7. The dashed arrows
point to splitting of the pressure space in a coarse-global and a fine subspace. The straight arrows
represent the preconditioners. The one-stage preconditioners (P1,P2,P3 and P4) can be found at the
left; the two-stage preconditioners at the right. The last line indicates the type of boundary conditions
that are applied to solve block( E).

fine-grid operator Ey as:

Ey=JTEJ, En=(I-EJE;'JT)E (6.43)

and solve
Exgv = (I - EJE;'J%)rhs (6.44)
Eoqo = JT(rhs — Egn). (6.45)

In this way we evaluate S only a few times (first stage), at the price of many, but cheap
evaluations of Ey. The matrix Ey, on its turn, is preconditioned by block(E); the
second stage. Again, we can apply homogeneous Dirichlet (P6) or Neumann-Dirichlet
(P5) boundary conditions to block(E). If we apply P5 directly to E, instead of to En,
we speak of P7. All preconditioners are schematically represented in Figure 6.1.

So the two-stage preconditioning technique consists in the introduction of an inter-
mediate preconditioner, with the aim to reduce the number of expensive S-evaluations.

6.2.6 Numerical results

In order to test the performance of the six preconditioners and P1, which we defined
previously as (P1)~! = B~1 (6.24), we solve a problem with analytical solution
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T
w(z1,z2,73) = (—cos(gzl)sin(%zg),sin(g-zl)cos(gzz),0) (6.46)

T

5 %) (6.47)

. T .
p(z1,22,23) = —wszn(gxl)sm(

on the domain [—1,1] x [0,16] x [—1,1], for a Navier-Stokes flow with Re = 100,
At = 0.01. Various values of K have been tested. In Table I, we compare

| K. x K, | preconditioner | § iterations | cpu time |

1x8 PI 132 212"
1x8 P2 19 2
1x8 P3 21 @
1x8 P4 22 27
1x8 P5 4(54) 28"
1x8 P6 4(56) 28"
1x38 P7 4(54) 20
2 % 8 P1 223 8'38°
2x8 P2 43 346"
2 % 8 P3 25 226"
2 % 8 P4 23 50"
2% 8 P5 5(60) 53"
2% 8 P6 5(128) 124"
2 x 8 P7 5(59) 327
3 x 12 P1 323 35'36”
3x 12 P2 60 15739”
3x 12 P3 50 1307
3x 12 P4 69 608"
3x 12 P5 7(133) 338"
3x 12 P6 6(212) 459"
3x 12 P7 7(179) 733"

Table I: Number of iterations and cpu time for first time step of the Navier-Stokes problem;
Re~ At = 1074, N=9, tolerance for convergence is set to 10~. K denotes the number of
elements in x-direction, K, denotes the number of elements in y-direction. The number of elements
in z-direction is always one. The number of iterations corresponds to the number of S-evaluations
(P1,P4,P5,P6,P7) or Sn-evaluations (P2,P3). For P5 and P6, the number of £ n-evaluations is indi-
cated between parentheses. For P7, the number of F-evaluations is indicated between parentheses.

the number of iterations for the pressure residual to converge to 10~ for the first time
step. It should be noted, that this residual is precisely the discrete divergence —D;u;.
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Figure 6.2: A projection (2 = 0) of the deformed mesh (a = 0.5). The geometry is contained in
the box [—1,1] x [0,8] x [—1,1]

In addition, we give the cpu time measured on one processor of the Convex 3820 vector
computer. Although it is difficult to draw general conclusions from Table I, we remark
that in terms of cpu time, the two-stage preconditioning scheme is always advantageous.
Furthermore, the application of Dirichlet and Neumann boundary conditions reduces
the number of iterations. We also conclude that direct preconditioning of the operator
(P4 and PT) is faster than via Sy, respectively Ey. Finally, we remark that the
rate of convergence depends on the number of spectral elements K. Since this test
considers only the first time step, start-up time (to compute eigenvalue/eigenvector
decomposition and Sp or Ep) takes a non-negligible amount of the total cpu time.
However, the same test extended to more time steps shows the same pattern.

Next, we test the influence of the deformation of the grid on the rate of convergence.
We take the previous test problem (6.46,6.47) on a geometry [—1,1] x [0,8] x [-1,1],
decomposed in 1 x 4 x 1 spectral elements. The interfaces are deformed in y-direction
by the function asin(7z)sin(rz). Table II displays the results for @ = 0, @ = 0.24 and
a = 0.5.

Preconditioner
a P1 P2 P3 P4 P5 P6 P7
0 90; 45” | 18; 16" | 15; 14” | 15; 8" | 4(43); 10” | 4(55); 11 | 4(43); 6”
0.24 || 121; 59" | 37; 32" | 31; 26” | 34; 15” | 4(76); 14”7 | 5(102); 16” | 4(76); 8”
0.5 || 168; 1’35” | 55; 54” | 51; 43” | 51; 26” | 5(128); 21”7 | 5(164); 25” | 5(126); 12”

Table II: Number of iterations and cpu time for the first time step of the Navier-Stokes problem:;
Re'At = 10~*, N=9, tolerance for convergence is set to 10~%, Four deformed spectral elements.
a indicates the rate of deformation. The number of iterations corresponds to the number of S-
evaluations (P1,P4,P5,P6,P7) or Sy-evaluations (P2,P3). For P5 and P6, the number of En-
evaluations is indicated between parentheses. For P7, the number of E-evaiuations is indicated

between parentheses.
For the latter value of &, a projection of the grid (z = 0) can be found in Figure 6.2.

The results confirm more or less the conclusions of the previous test. The cpu time for
the preconditioners based on the two-stage preconditioning technique does not suffer
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Figure 6.3: A projection in z-direction of the curvy channel. The geometry is contained in the box
[0,11] x {0,11] x [0,1].

much from the increasing deformation. This is explained by the fact that the number
of expensive S-evaluations only grows by one.

The third test is a Poiseuille flow in a curved channel, K = 6, N = 9. Boundary

conditions at z = 0 and z = 1 are 2;; = %—’f} = us = 0. At the inflow, a parabolic

velocity profile is imposed; at the outflow we impose the outflow conditions u; = —"2 =
u3 = 0. The initial solution at ¢ = 0 is given by ¥ = 0 and p = 0. The grid is dlspla.yed
in Figure 6.3. The results for a Stokes flow at ¢ = 0.5 (At = 0.5) can be found in Table
ML

preconditioner | no prec P1 P2 P4 P6 P7
iterations 200 73 55 52 | 26(996) | 26(1257)
cpu time 1h 28’49” | 58°37” | 1h 12’54 | 38°22” | 19’55 | 20’12

Table III: Number of iterations and cpu time to compute one time step. Stokes flow through a
curved channel. K = 6, N = 9,At = 0.5. Tolerance for convergence is set to 1075, The
number of iterations corresponds to the number of S-evaluations (P1,P4,P6,P7) or Sy-evaluations
(P2). For P6, the number of Ey-evaluations is indicated between parentheses. For P7, the number
of F-evaluations is indicated between parentheses.

As expected from the discussion in paragraph 3, the simple preconditioner P1 per-
forms rather well. The two-stage preconditioners need less cpu time than the one-stage
preconditioners. This is explained by the fact for large values of At, the Helmholtz
equation H is difficult to solve.
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Figure 6.4: A projection in y-direction of regularized driven cavity with a hole. The geometry is
contained in the box [—1, 1]. The dimensions of the hole are [0.4, 0.6] x [0, 1] x [0.4, 0.6].

The converged Stokes solution is used as the initial guess for the Navier-Stokes
problem Re = 100, At = 0.0075, K = 6, N = 9. In Table IV, we give cpu timings for
the first ten time steps. The interest of the two-stage technique is clearly shown.

preconditioner || no prec | P2 | P4 | P6 P7
cpu time 35°59” [ 53" | 4 [1'32” | 1217

Table IV: Cputime to compute soiution at¢ = 0.075. Navier-Stokes fiow through a curved channel;
with Stokes flow as initial solution. K = 6, N = 9, At = 0.0075. Tolerance for convergence is set
to 1078,

The last test consists of the computation of a Stokes and a Navier-Stokes flow in
a regularized driven cavity with a hole. The dimensions of the cube are [0,1]® with
the hole in the center [0.4,0.6] x [0,1] x [0.4,0.6]. The number of spectral elements is
eight and the polynomial degree is ten. Figure 6.4 shows a projection of the cube in
the y-direction. Homogeneous Dirichlet boundary conditions are applied everywhere,
except at the top plane (z = 1), where u; = 16zy(z — 1)(y — 1). The Helmholtz
problem is solved by a combination of a Schur complement method and FDM, as
discussed in Couzy and Deville [19]. For the current Stokes problem, this implies that
the Helmholtz problem is solved about 15 times faster than with the standard diagonal
preconditioner. For the Navier-Stokes problem, speed ups of about a factor four have
been reported. The results can be found in Tables V and Table VI. Table V clearly
shows that, for a Stokes flow, the two-stage preconditioners (P6,P7) do not work well.
This can be explained by the fact that, because of the fast Helmholtz solver, an S-
evaluation is almost as expensive as an E-evaluation. For both the Stokes and the
Navier-Stokes flow, we observe a rather poor performance of the preconditioners based
on homogeneous boundary conditions (P2,P6).

102



preconditioner || no prec | Pl P2 P4 P6 P7
iterations 123 24 87 24 24 25
cpu time 554”7 | 1°12” | 8’33” | 1’29” | 824" | 6’10”

Table V: Number of iterations and cpu time to compute solution at £ = 1. Stokes flow in a driven
cavitywithhole. K = 8, N = 10, At = 0.5. Tolerance for convergenceis setto 10~%. The number
of iterations corresponds to the number of S-evaluations (no prec.,P1,P4,P6,P7) or Sy-evaluations
(P2).

preconditioner || no prec | Pl P2 P4 P6 P7
iterations 1998 1597 | 443 | 393 48 47
cpu time 46°35” | 39’31” | 18’7” | 9’58 | 13’03” | 7’34

Table VI: Number of iterations and cpu time to compute solution at t = 0.035. Navier-Stokes
flow in a driven cavity with hole. Initial solution is Stokes flow. K = 8, N = 10, At = 0.0035.
Tolerance for convergence is set to 10~2. The number of iterations corresponds to the number of
S-evaluations (no prec.,P1,P4,P6,P7) or Sy-evaluations (P2).

6.2.7 Conclusions

In the previous paragraphs, we have studied a number of ways to precondition the
pressure operator that results when the Uzawa technique is applied to the three-
dimensional, unsteady, incompressible Navier-Stokes equations. The fast diagonal-
ization technique is used to reduce the cost of the construction and evaluation of the
preconditioner. Since the FDM can only be applied on parallelepipedic spectral ele-
ments, the preconditioner is constructed on a nondeformed grid. Numerical tests show
that the number of iterations is still significantly reduced in the case of deformed ge-
ometries. All preconditioners are local, elemental matrices and have great potential on
parallel computers with shared or distributed memory.

For problems at high Reynolds numbers (i.e. Re At < 1), a framework of two-
stage preconditioners has been set up. This concept reduces the number of expensive
S-evaluations. A considerable gain in cpu time is observed. The power of this technique
is that the number of iterations decreases when the physical complexity of the problem
increases (i.e. higher Reynolds numbers, implying ill-conditioned pressure operators).

The numerical tests point out that P4 (or P7) is the best preconditioner for problems
at large values of Re~1At, whereas P7 should be used for problems at high Reynold
numbers. Both P4 and P7 are based on a direct application of the block preconditioner
to the original operator S, resp. E (and not to Sy, resp. En). Moreover, P4 and P7
are based on Dirichlet-Neumann, and not homogeneous Dirichlet, boundary conditions.
Using P7, a relatively large problem consisting of 77823 degrees of freedom has been
solved in about three minutes per time step (Re = 100,At = 0.01, Convex 3820
computer, obtained performance about 20-25 Mflops). This opens the way to large-
scale simulations of complex three-dimensional unsteady flows on modern (parallel)
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computers.
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6.3 Preconditioning of different pressure opera-
tors

We recall from the previous section that the preconditioning of the Uzawa pressure
operator S, relies on the idea of Cahouet and Chabard [12] who stated that

1. p-1p-1, Ps p1
S,'~Re "B~ + —AtE . (6.48)
This leads to the observation that P, defined by

Pl'=Re'B'+ —ZitE-l, (6.49)

is a good preconditioner for all values of Re~!At. The problem of inverting S, is
transferred to E. We have seen that block(E)™! can be constructed by FDM and
neglecting interelemental coupling on nondeformed grids. This observation, together
with Equations (6.48) and (6.49) has led to a set of preconditioners for S,. We give
three of them, where we have modified the notation to fit better in the frame of this

section and to distinguish the different operators. First, we replace E~! in Equation
(6.49) by block(E)~! and precondition S, directly by P,:

P'=Re B4 %’tblock(E)'l — S, [P;1 - Su] : (6.50)

In the following we will use the symbolic notation that is given between the brackets; the
arrow points from the preconditioner to the operator. Since A—:E = Sy, the following
preconditioner P,. for the pressure correction operator S,. is immediate

Pp:l = block(E)™! — %;E = Spe [Pp-;l —g Spc] . (6.51)

Rgnquist [63] introduced the idea to solve the pressure in a coarse and a fine subspace.
This leads to an equivalent formulation for P,

P'=Re'B ' 4 %on}v, (6.52)
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where Eg ~ (= E~') means that the system Ep = g is solved by

Enpy = (I~ EJE;'JT)g  Eopo = J¥(p— Epn), (6.53)
with
Eo=JTEJ, Ey = (I - EJE;1JT)E, p =~ + Jpo. (6.54)

A two-stage preconditioning technique has been introduced in order to avoid expensive
S, evaluations:

fit '8, PR osPoS).  (6.55)

block(E)™ — g Re™'B™' + ~E
In the same way we define the two-stage preconditioner based on the idea of Rgnquist

block(E)™ —sg, Re™1B~! + ﬂ’ — 8, [P} =gy PP 8. (6.56)

It is then a logical step to precondition S,. in two subspaces:

At [

P! = block(E)™ — g, ﬂ_Eo,N = Spe P! =g, s,,c] . (6.57)

Equation (6.7) shows us that (Re"!At <« 1) S, and S, are almost identical, suggesting
the following preconditioner for Sp,:

P7'=Re'B'4 B, block(E) 1 S, [PJ 1o pr] : (6.58)

The BP3 pressure operator can also be solved in two subspaces, but this technique
has not been implemented. We close this overview with some remarks about the
boundary conditions. As has been said in the previous section, it is advantageous
to apply mixed boundary conditions to the elemental block(E) matrix (i.e. to B!).
More precisely, in the case of Dirichlet boundary conditions, the corresponding entry
in B7! is set to zero. At boundaries corresponding to Neumann conditions or an
interelemental interface, B! is not changed. This complies with the weak imposition
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Pl —E Pol —Ey

Noprec. |(P,)'—S,| P1'-S5, P13,

a=0 || 400;1848| 88,404 | (5)341;58 | (5)211;6.6
oa=0.1] 411;1994 | 118; 57.6 (7)576 ; 9.3 (7)478 ; 12.8
a=0.5| 450;320.9 | 295;212.0 | (9)2194 ; 27.3 | (9)1362 ; 32.0

Table VII: Uzawa method. Number of iterations and cpu time for one time step (At = 0.01, Re =
50, K = 16, N = 8) as a function of the deformation of the geometry () and preconditioner. For
the two-stage preconditioner, the number of "stage one" iterations (i.e. the number of multiplications
by P~!)is given between parentheses. The cpu time is normalized with respect to the preconditioned
PC method (o = 0), see Table PC. Tolerance 10~° for pressure and 107! for the velocity.

of 3/0n = 0. The block(E) operators that are used for the preconditioning of Ex will
be submitted to homogeneous boundary conditions for every boundary and interface
[63]. Consequently, the matrix block(E) has a zero eigenvalue on each spectral element
and the FDM can no longer be used. Two solutions have been proposed. First, the
zero eigenvalue can be replaced by 1072. In order to investigate the influence on
the number of iterations to solve E, we compared FDM to an iterative method to
solve the block(E) preconditioner. Of course, an iterative method is very unattractive
because of its excessive cpu requirements, but it gives the exact "inverse” of block(E)
(at a precision of 10712), which is not the case for the FDM, because of the modified
eigenvalue. It turned out that the two different ways of inverting the preconditioner
hardly influences the number of iterations. Sometimes, FDM led even to slightly faster
convergence than the "exact” iterative method. Second, Neumann boundary conditions
can be applied at interfaces. In this sequel, we have adapted the first solution.

No prec. | P! =g Spc | Pol =By Spe
a=0 [[424;39| 87.1.0 58 1.4
o =01 437;40] 121:13 115 ; 24

a=0.5][527;49 | 343;3.5 278 ;5.5

Table VIII: PC method. Number of iterations and cpu time for one time step (At = 0.01,
Re =50, K = 16, N = 8) as a function of the deformation of the geometry (<) and preconditioner.
The cpu time is normalized with respect to the preconditioned PC method (o« = 0). Tolerance 10~°
for pressure and 1011 for the velocity.

Next, we test the preconditioners on a geometry [0,12] x [—1,1] X [-1, 1] consisting
of 4 x 2 x 2 spectral elements (N = 8). The three interfaces in x-direction are deformed
by the function asin(7y)sin(7z). At the inflow, we impose a Poiseuille profile and at
the outflow we have Qu;/0n = 0. In Table VII, we compare the number of iterations
and cpu time for one time step At = 0.01, Re = 50, s = 1 of the Uzawa method,
for different values of ¢ and for different preconditioners. Table VIII and Table IX
represent the same test, using the PC and BP method respectively. The cpu time for
Tables VII-IX, measured on a Silicon Graphics R3000 work station, is normalized with
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No prec. | P! — Sy,
a=0 |1395;103] 88;25
a=0.1} 410;10.7| 117 ;3.3
o= 05474 ;124 | 304;83

Table IX: BP method. Number of iterations and cpu time for one time step (At = 0.01, Re = 50,
K =16, N = 8) as a function of the deformation of the geometry (a) and preconditioner. The cpu
time is normalized with respect to the preconditioned PC method (a = 0), see Table PC. Tolerance
109 for pressure and 10~1! for the velocity.

respect to the preconditioned PC method on a non-deformed geometry (a = 0). As
expected, the PC method is the fastest. The interest of the two-stage preconditioning
technique is very well illustrated by Table VII. We also see that the number of iterations
increases with a, especially for the preconditioned operators. The difference in cpu time
accounts for a high, moderate and low cost to evaluate S, Si,, and S,., respectively.
In Section 6.1, we observed that for Re — oo the three operators Sy, Siy, and Sy
are equivalent. Under the same assumption, we have also that P,. = P,, discarding
the constant £,/At, which does not influence the convergence rate. We do, indeed,
find that P;' — S, P;* — Sy, and P;' — S, require about the same number of

u
iterations to converge.

The reason for solving the pressure in two subspaces is that the condition number
of the preconditioned Ex matrix is independent of the number of spectral elements K
(see [63]). The tests in the previous section did not exhibit enough elements to verify
this. In Table X, we give the number of iterations and cpu time for 16 < K < 128 and
compare two preconditioners, Pp'c1 — g Spc and Pp—cl —Ey Spe. First of all, we observe
that the number of iterations for both methods grows linearly with N. Second, the
number of iterations for Pp‘cl — gy Spc 15 always smaller than for Pp'c1 —g Sp.. Since
the evaluation of the pressure operator Ey is twice as expensive as the evaluation of F,
the latter preconditioner requires less cpu time, despite the larger number of iterations.
From this we conclude that, for this example, the solution in two subspaces does not
pay of. Third, the number of iterations grows for both preconditioning methods with
K. This increase is however much smaller for P;' — g, S It is the author’s opinion
that the number of iterations is not independent of K because of the changing aspect
ratio Iz : I, : I,. This influences the rate of convergence, explaining also the drop in
the number of iteration when going from 4 x 4 x 2 elements to 4 x 4 x 4. Finally, by
extrapolating the results to more than 128 elements, we expect that Py;' — g, Spe will
eventually win the race.
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dimensions

-1
PDC —)E Spc

-1
Ppc _)EN SPC

K=4x2x2, N=1

556 (393”)

457 (515”)

K=4x2x2, N=10

807 (1052)

662 (1357")

K=4dx2x2, N=13

1006 (2360”)

761 (2080")

K=4x4x2,N=17

760 (9317)

668 (1363”)

K=4dx4x2, N=10

1079 (2730°)

912 (38107)

K=4x4x2,N=13

1412 (68707)

1149 (9340%)

K=4x4x4, N=17

776 (21407)

554 (28907)

K=4x4x4,N=10

1093 (5610)

743 (69907

K—4dx4x4 N=13

1409 (13270°)

992 (15430”)

K=4x4x8 N=7

1282 (7923”)

740 (83007)

K=1x4x8 N=10

1810 (19630”)

1060 (21800”)

K=4x4x8 N=13

2346 (46100”)

)

Table X: Pressure correction method. Number of iterations and accumulated cpu time on K
processors of the Cray T3D for ten time step (At = 0.01, Re = 0.03371, s = 1). Tolerances
for velocity and pressure are resp. 10~1° and 1078, Subcycling method for the computation of the
nonlinear terms with M = 3. In order to get better parallel results, a modified version of the PCGM
has been used. This method failed to produce resutts for P,;' — g, S,c (K = 128, N = 13). See
the discussion in Section 7.3.1
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Chapter 7

Implementation and parallelization

In order to be able to actually perform numerical simulations, the theory that has been
developed and tested in the previous chapters has to be implemented on a computer.
The importance of careful programming is widely recognized. Everybody who has
actually implemented a computational fluid dynamics (CFD) problem knows that a
close inspection of only a few cpu-intensive routines (or even do-loops) can lead to
impressive speed-ups. Most of the optimization rules are general and valid on every
computer. A classical example is that loops over variables with multiple indices have to
be avoided. Some optimization heuristics depend on the architecture of the machine,
like, for example, cache manipulations. The differences between computers can be that
big, that the discretization and/or solution methods are chosen in accordance with the
target architecture. (Pseudo-) spectral Chebyshev methods, for instance, are known
to be efficient on vector computers. We can also imagine a situation in which a direct
method is preferred on one architecture and an iterative method on another. It is
important to consider these questions at an early stage. The interpretation of results
is also computer dependent. In general, it is not fair to compare the results supplied
by different methods without mentioning the computer and without assuming that the
code is optimized: Scientists become scientific programmers and the person who finds
a way to accelerate a commercial or scientific CFD computer code contributes as much
as the one who conceived the algorithms.

The interaction between the discretization/solution method and target machine is
especially important in the context of massively parallel computers based on distributed
memory. Such machines consist of a number of independent processors. Each process-
ing unit possesses its own cpu and memory and is connected to a number of neighboring
chips. A program that runs on a massively parallel processor (MPP) will typically let
each processor perform a certain number of computations on its local variables, fol-
lowed by a synchronization (communication) step. The synchronization phase is mere
overhead and should be as short as possible. Depending on the amount of operations
that can be done without communication, an application is called coarse, medium or
fine grained. It is clear that a high ratio of computation to communication leads to
parallel efficiency. The discretization should be chosen such that a high parallel perfor-
mance can be obtained. Not only granularity, but also an equal distribution of the work
load among the processors (also called load-balancing), a minimum of communication,
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and scalability are important issues.

A very common way to exploit parallelism for periodic, three-dimensional CFD
problems (for example in axisymmetric geometries) is to use a Fourier expansion in the
periodic direction. In this way, the problem is reduced to a number of two-dimensional
subproblems that can be solved in parallel. Another strategy is based on the decom-
position of the domain in a number of subdomains, each of which is mapped on one
processor. The solution method can either be direct (often in combination with a Schur
complement technique), see e.g. Zone et al. [77], or iterative. The spectral element
solver as discussed in the previous chapters embodies both domain decomposition and
efficient iterative solvers. Implementation on a parallel computer is, therefore, rather
straightforward (see e.g. Fischer and Patera [26]). The granularity can be tuned by N.
Each matrix multiplication takes O(N*) operations followed by a communication step,
so good parallel efficiency comes almost naturally with large values of N. However, the
question (or challenge) is to obtain good results for reasonable values of N which lie
within the same range as those on scalar machines. The interested reader is referred
to the review article of Fischer and Patera [27] for more details about parallel CFD.

The outline of this chapter is as follows. We will start by describing globally the
spectral element code, discarding parallelism. Then we discuss the hard- and software
of modern MPP’s, focused on the Cray T3D. Finally the implementation on the T3D
is presented and some results are given to illustrate the obtained parallel efficiency.

7.1 Sequential code

We start this section by giving an overview of the possibilities and limitations of the
developed spectral element code. We will first discuss the non-parallelized version.
This code consists of 9000 Fortran lines and has been built from scratch. The mesh
is defined by a parametric representation of the faces of the spectral elements and by
the interfaces (faces, edges and corners): A file has to be supplied defining the two
elements that share one face, the four elements that share one edge, and the eight
elements that share one corner. Everything which is out of the ordinary, like edges
that join three or five, instead of four elements or the situation in which two elements
with a different orientation share an interface is possible, but has to be programmed
by hand; A problem is defined by the boundary conditions (Dirichlet, Neumann or
symmetry), initial conditions, right-hand-side vector and geometry (mesh). The poly-
nomial degree N has to be the same on each element and in each spatial direction.
Routines from the following libraries are called: Linpack, Eispack, Blas, and ”Mitlib”,
a library developed at the Massachusetts Institute of Technology for the computation
of the Gauss-Lobatto-Legendre and Gauss-Legendre grid points and weights, spectral
derivatives, interpolants, etc. Furthermore, the iterative methods are programmed with
the aid of SLAP (sparse linear algebra package), developed at the Lawrence Livermore
National Laboratory. There is a difference between the parallel code and the one that
runs on sequential machines. The latter is capable of

e Deformed spectral element discretization. See Chapter 2.
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Time integration of the linear part of the Navier-Stokes equations by backward
differentiation schemes up to order three. See Chapter 3.

Time discretization of the nonlinear term by extrapolation. See Chapter 3.

Implicit-explicit splitting by the operator-integration-factor method, where the
nonlinear term is computed by the fourth-order classical Runge-Kutta method.
The nonlinear term can be evaluated in either its linearized or non-linearized
form. See Chapter 3.

The fast Helmholtz solver based on the Schur complement method has only been
implemented for a limited number of geometries. However, the incomplete Schur
method is general. According to Chapter 4.

Decoupling of the velocities from the pressure by the Uzawa method, pressure-
correction method and the third-order projection method acting on either the
pressure or the pressure correction. See Chapter 5.

Preconditioning of the aforementioned pressure operators by all the FDM-based
preconditioners, with or without solves in coarse and fine pressure subspaces. The
boundary conditions that are used to construct the block-diagonal precondition-
ers (at the interfaces) are either homogeneous Dirichlet or Neumann. According
to Chapter 6.

The parallel solver contains all these features, except the fast Helmholtz solvers.

As has been stated in the previous chapters, the operation count for the basic

operations, like the evaluation of all the operators and FDM-based preconditioners,
scales like O(K N*). This is almost exclusively due to loops with the following form:

10

20

DO 20 IEL = 1,NEL
DO20I=1N
DO20J=1N
DO 20K = 1N
SUM = 0.d0
DO 10M = LN
SUM = SUM + AZ(K,M) * B(L,J,M,IEL)
CONTINUE
C(L,J K,IEL) = SUM
CONTINUE

The main line of loop 10 can also be

or

SUM = SUM + AY(J,M) * B(I,M,K,IEL)

SUM = SUM + AX(I,M) * B(M,J,K,IEL)
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Here, N denotes the polynomial degree and NEL the number of spectral elements.
In most cases, the arrays AX, AY, and AZ depend on IEL as well. Do-loop 10 can
be seen as an N X N matrix-matrix multiplication and can be performed by BLAS.
The advantage of such a subroutine call is that BLAS is optimized on most machines.
Sometimes, BLAS is even written in assembler and care has been taken to reduce
the number of cache-misses. The relatively small size of the matrices has a positive
and a negative consequence: Each matrix-matrix multiplication can be done in-cache,
but vectorization will not improve the speed of the multiplication. Some O(K N?3)
operations, like a daxpy and a scalar product can also be performed by calls to the
BLAS library. The spectral element code is based on iterative solvers. Hence, the
memory requirements are relatively low.

7.2 Parallel architectures and programming mod-
els

There are two reasons that explain the popularity of MPP’s. The first one is technol-
ogy. There are limits on the hardware level, like transistor switching speed and signal
processing speed, that make it difficult to keep on improving the individual chips.
There is also a need for ever larger memory, which is easier to obtain by many ”small”
processors than by a single large one. Moreover, the computational capacity of these
MPP’s is expected to increase faster than their serial counterparts. This growth is not
only due to the ability of computer manufacturers to put more and more processors
together, but also to the increasing power of the individual chips. The second reason is
an economical one. It is well known that the highest Mflops rate per dollar is obtained
by massively parallel computers. For these reasons, the MPP’s are strongly represented
at the world most important computer sites.

We have mainly used the Cray T3D for parallel processing. This machine is the
first MPP developed by Cray and will be succeeded by the T3E and T3X (scheduled
for 1996 and 1997, resp.), which will eventually be able to run at a sustained speed of
one Teraflops (according to Cray). It is not appropriate in this context to give a full
overview of the hardware of the Cray T3D. We will restrict ourselves to saying that the
current EPFL configuration is equipped with 256 Dec Alpha RISC processors (DEC
chip 21064) containing 64 Mbytes of memory with a peak performance of 150 Mflops.
However, most single-node applications do not even come close to this figure for a
number of reasons: For example, all memory operations stall upon a cache miss. This
underlines the importance of the interpretation of most basic operations as matrix-
matrix products, which can, hopefully, entirely be computed in-cache. Another, less
serious problem is the extremely low speed the square roots are computed with.

All the 256 PE’s together constitute a theoretical peak performance of 38.4 Gflops.
Two processing elements (PE’s) reside on one node, which is placed in a three-dimen-
sional torus topology. In this way, each node is connected to six neighbors. In contrast
with the previous generation of parallel supercomputers, a message sent from node A
to B is considered to be independent of whether A and B are physically neighbors or
not. That is, according to computer vendors’ advertisement, the number of *hops”
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REAL U(N,2), V(N,2), SUM(2), MYSUM
CDIR$ SHARED U(:,:BLOCK), V(:,;BLOCK), SUM(:BLOCK)
CDIRS DOSHARED (IEL) ON SUM(IEL)
DO 10 IEL = 1,2
SUM(IEL) = SDOT(N, U(1,IEL), 1, V(1,IEL), 1)

10 CONTINUE
MYSUM = 0
DO 20 IEL = 1,2
MYSUM = MYSUM + SUM(IEL)
20 CONTINUE

Figure 7.1: Pseudo-code that illustrates the computation on two PE’s of the scalar product of U
and V by the work-sharing model. The ":BLOCK" declaration enforces that the first columns of arrays
U and V is stored on one PE and the second column on the other one. Note that the address space is
global. The arrays are supposed to be initialized. Do-loop 10 is a paraliel loop: Each processor calls
the BLAS subroutine SDOT to compute the local contribution of the scalar product. The last do-loop
represents communication: The local sum residing on the other PE has to be loaded to compute
MYSUM, which is identical on both processors, once the last line has been executed.

does not play a role.

The software that manages the inter-processor communication is crucial for the
appreciation of modern MPP’s. Keywords are ease of programming, speed, and com-
patibility. In addition, the availability of parallel debugging tools and profilers are
highly desirable. Cray uses the concept of programming model to indicate different
ways to manage communication. We will briefly introduce the three models supported
by Cray.

The first programming model, which is of little interest for our applications, is the
data-parallel model. Although a number of definitions for "data parallel” are used by
different companies, we refer here to the presence of array syntax, virtualization (the
user perceives a logical granularity , i.e. the array dimensions appropriate to the code)
and a set of intrinsic functions that are used for communication, global operations, etc.
(these intrinsics are typically those of Fortran 90). The parallelism is said to be fully
implicit; the communication and data distribution is taken care of by the compiler and
is invisible for the programmer.

The so-called work-sharing model is a natural style for a multiprocessor since it
contains a global addressing space. The data distributions are managed by compiler
directives which specify the way in which arrays are stored. These directives are also
used to distribute the work, for example parallel do-loops, over the different processors.
The resulting computer code is identical to a serial code, except for the directives.
Communication is implicit, but the synchronization and data decomposition is specified
by the user. In Figure 7.1, the computation of the scalar product by the work-sharing
programming model on two PE’s is illustrated.
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REAL U(N), V(N), OTHERSUM, MYSUM
INTEGER MYPROC
CCC  *** PVM INITIALIZATION ***
CCC  *** MYPROC EITHER 0 OR 1 ***
MYSUM = SDOT(N, U, 1, V, 1)
IF (MYPROC=0) THEN
CALL PVMFRECV(OTHERSUM,1)
MYSUM = MYSUM + OTHERSUM
CALL PVMFSEND(MYSUM,1)
ELSE IF (MYPROC=1) THEN
CALL PVMFSEND(MYSUM,0)
CALL PVMFRECV(MYSUM,0)
ENDIF

Figure 7.2: Pseudo-code that illustrates the computation on two PE’s of the scalar product of U
and V by PVM. The address space is local. The above program is started on both PE’s and the only
way to distinguish them is by the variable MYPROC, which obtains the value 0 on one PE, and the
value 1 on the other in the PVM initialization phase. The arrays are supposed to be initialized. Each
processor calls the BLAS subroutine SDOT to compute the local contribution of the scalar product.
The last fines represents simplified calls to the PVM communication library. PEO receives the local
value of PE1, adds it to its own value and sends the result back.

The third programming model is PVM (Parallel Virtual Machine). PVM is a well-
established message-passing library that allows the programmer to send messages from
one processor to another (originally, PVM was also conceived for heterogeneous net-
works). There is no longer a global address space, but each processor has its own
separate one. Communication, data distribution and synchronization are explicit. The
advantages of PVM are robustness and portability, since it is supported by a large
number of nowadays parallel computer vendors (Convex, Intel, etc.). Unfortunately,
however, there exist almost as many different PVM versions as computer vendors.
In particular, the Cray-PVM instructions for sends and receives differ slightly from
standard PVM. Moreover, "fast” sends and receives have not been implemented. As
another disadvantage, we mention that PVM is a C-library and that, consequently,
communication is managed by potentially slow routines. Figure 7.2 represents the
computation of the scalar product on two PE’s using the standard PVM programming
model. There exist so-called shared memory operations ("shmem-get” and "shmem-
put”) on the T3D, which can be used in the frame of a PVM program. These instruc-
tions allow a processor to get (or put) information from (or on) another PE by means
of direct addressing (i.e. by specifying the name of the array and the (logical) processor
it resides on). In this way, sends and receives do no longer have to match and very
fast communication is obtained. In the next section, we will report the speed of these
"shared” communication routines.

The term ”programming model” intrinsically implies a programmer’s point of view.
However, ease of programming is often difficult to combine with fast communication.
If no information is specified on the location of certain arrays (cf. implicit data dis-
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tribution), there is a potentially high ratio between communication and computation.
The work-sharing model and PVM are very much alike from the conceptual point of
view. Although the former does not require explicit communication, the programmer
should have a very clear view of where to place data and when to communicate it, as for
PVM. The concept of shared variables is present, but its use is immediately penalized
by expensive communication, and should be kept as low as possible. Our choice for the
standard PVM model, which had to be made at an early stage, was motivated by two
issues. First, PVM was available on the T3D before work-sharing. The first version of
the compiler for the latter model was expected to suffer from some start-up problems
and to be rather slow. Second, PVM is supported on many other MPP’s leading to a
portable code. At the moment of writing this thesis, these two arguments have become
less convincing: It will be shown that the work-sharing model is at least competitive
with PVM. Furthermore, once the communication routines based on standard PVM
have been written, they can easily be replaced by their shared-memory counterparts,
or even by NX routines, in the case of the Intel Paragon. The gain in efficiency that
can be obtained by calling the architecture-specific routines is very impressive, as will
be illustrated in the next section, and portability is easily recovered.

7.3 Parallel spectral element solver

In this section, we will study the parallelization of the iterative spectral element solver
using the PVM programming model. We will use the convention that there is a 1-1
mapping between the spectral elements and the processors. For reasons of convenience,
it is also assumed that K(= P, the number of processors) is a power of two.

7.3.1 Parallel conjugate gradient method

From several runs of the serial code, we deduce that more than 90% of the cpu time
is consumed by the PCGM’s to solve the Helmholtz and pressure equations. The
subcycling method comes in second place. Let us consider the PCGM to solve the
system Qu =rhs, where @ can be thought of as the Helmholtz operator or as one of
the pressure operators. The algorithm is depicted in Figure 7.3. Communication is
explicitly required for the computation of the scalar products and in most practical
cases also for the evaluation of Qp;, which requires the update of the interfaces (direct
stiffness). The preconditioner P is assumed to be block diagonal and can be evaluated
without communication, like the vector updates. From Figure 7.3 it is clear that two
scalar products are required in each PCGM iteration. They can not be computed at
the same time, so we will speak of two synchronization points. Although most cpu
time is spent in the evaluation of @p; and in the solution of Pz; = r;, it is, according
to Amdahl’s law, not correct to conclude that little attention has to be paid to the
remaining parts. Therefore, an algorithm that reduces the number of synchronization
points has a practical interest. Meurant [53] has proposed a modified version of the
PCGM which contains only one synchronization point: Three, instead of two scalar
products have to be computed, but this can be done at the same time. The modified
version is based on the observation that (41, zi41) can be computed before z;4;1. The
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solve Pz; = r;

Bi = (riy i) (Picry 2imy) ™
pi = zi + Bipia1

q: = Qp;

a; = (v, z:)(gi, pi) ™

Uip1 = Ui + Q5P;

if u;4; accurate enough quit
Tit1 = T§ — Q¢;

Figure 7.3: Standard version of the preconditioned conjugate gradient method to solve Qu =rhs.
The algorithm is initialized by ro =rhs—Quo, with up and p_, arbitrary. The preconditioner P is
assumed to be block diagonal. Steps that require communication are represented in boid.

q; = Qp;

solve Pv; = ¢;

o; = (14 2:)(giy pi)

Bit: = (Tiy 2i)(viy @:)(qiy i) > — 1
Uil = Ui + aip;

if u;4; accurate enough quit

Tiyl = T — Qig;

Ziy1 = z; — o4v;

Pi+1 = Ziy1 + Bis1pi

Figure 7.4: Modified version of the preconditioned conjugate gradient method to solve Qu =rhs.
The algorithm is initialized by ro =rhs—Qug, Pzo = 1o, po = 2o, With ug arbitrary. The precon-
ditioner P is assumed to be block diagonal. Steps that require communication are represented in
bold.
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computation of §; in the second line of the original PCGM (Figure 7.3) is then replaced
by Bit1, which can take place at the same time as a;: From riyy = r; — ayq; it follows
that

(ris1, 2ig1) = (i, 2ig1) ~ (g, 2ig1)- (7.1)

With the aid of the orthogonality relation (ry, z;) = 0 for ¢ # j and zi4; = z; — a; P~ ¢;,
we derive that

(rit1, zis1) = of (P i, ¢i) — (eugi, i) (7.2)

From Equation (7.2), —a;q; = ri41 — ri and the orthogonality relation it follows that
(rig1,2iq1) = CY?(P_I% g) — (ri, 2). (7.3)

It is clear that three scalar products have to be computed. The algorithm is then
rewritten, as displayed in Figure 7.4. Meurant reports that his version of the PCGM
converges in about the same number of iterations as the standard algorithm and that
unstable behaviour was not encountered. We can confirm the first claim, but not the
second one. In some situations in which the standard PCGM performs correctly, the
modified version fails to converge. We have already met one example in Chapter 6,
Table X. Another situation in which this modified method is often found to be unstable
is in the context of the solution of the Uzawa pressure operator. This is not only the
case when a modified PCGM is used for the inner and outer iterations, but also when
the outer or inner iterative solver is replaced by the modified PCGM. However, in
most practical situations the modified PCGM is reliable and less expensive in terms of
cpu time. Therefore, we have used the Meurant algorithm for all the tests that will be
presented in this chapter and in the next. In the following two sections we will focus on
the two operations that require communication; the computation of the scalar product
and direct stiffness, respectively.

7.3.2 Parallel computation of the scalar product

The computation of the scalar product by PVM has already been addressed in Fig-
ure 7.2. Usually, there are more than two PE’s involved and several techniques can
be used which differ in the way they communicate the local sums over the processors.
Their efficiency varies with the number of PE’s. We propose four algorithms. The most
straightforward method to construct the global sum out of the local contributions is
that all the processors send their result to one PE which performs the addition and
broadcasts the result back. (A broadcast is a send to all the other processors.) This
process is schematically represented for eight PE’s in Figure 7.5. All the PE’s will be
blocking until one of them has received all the messages, which come in sequentially.
Especially for a large number of spectral elements, the waiting time might become
unacceptably long. This saturation problem can be solved by communicating the local
sums along a binary-tree configuration, as has been displayed in Figure 7.6. In this
way, 2log P communication steps are necessary, but no processor is waiting for more
than one message at the time. It can be interesting to replace the broadcast by an
inverse binary tree. This approach is rather straightforward and is not represented in
a figure. The efficiency of this strategy allows us to investigate the speed of a PVM
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1 2 3 4 5 6 7 8

Figure 7.5: Sendall-broadcast algorithm to compute scalar product. The eight processors (K =
P = 8) are represented by black bars. Messages are indicated by straight arrows. The sendall-
broadcast technique consists of communicating all the local sums to one processor that performs the
addition. The final value is broadcast back.
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Figure 7.6: Tree-broadcast algorithm to compute scalar product. The eight processors (K = P =
8) are represented by black bars. Messages are indicated by straight arrows. The tree-broadcast
technique consists of communicating all the local sums to one processor in 2 log P steps. The final
value is broadcast back.
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Figure 7.7: Cascade algorithm to compute scalar product. The eight processors (K = P = §)
are represented by black bars. Messages are indicated by straight arrows. The cascade technique
is very similar to the tree-broadcast method, except that at the end of 2 log P communication steps,
all the processors possess the correct value.

broadcast instruction. Finally, we present the cascade algorithm (see e.g. [39]) in Fig-
ure 7.7. This is a clever modification of the binary tree algorithm (Figure 7.6), such
that the global result is known on every processor after ?log P communication steps.
By comparing the algorithms represented in Figure 7.6 and Figure 7.7, we see that the
latter leads to an explosive increase of the number of messages. However, none of the
processors is waiting for more than one message at the time and the final broadcast
is not necessary. We will refer to the four methods as respectively sendall-broadcast,
tree-broadcast, tree-tree, and cascade.

We have investigated the four algorithms on the T3D for a different number of
processors, using the PVM programming model. The results can be found in Table 1.
It should be noted that the cpu times are measured with the tool Apprentice, and
include waiting time. The sendall-broadcast method performs well on a small number
of processors, but is inefficient for P > 32, due to the fact that many messages have
to be received sequentially (although they may arrive in any order). The cpu time
for the three communication algorithms based on a binary tree increases by an almost
constant value each time the number of PE’s is doubled. It is remarkable that the
cascade method is the most efficient one, despite the high number of messages that are
sent. Apparently, the T3D does not get easily congested.

Two alternative ways to compute the scalar product have been investigated. They
are both based on (virtual) shared-memory operations and are exclusive on the T3D.
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K = P | Sendall-broadcast | Tree-tree | Tree-broadcast | Cascade
2 0.36 0.36 0.36 0.25
4 0.51 0.64 0.53 0.42
8 0.71 0.92 0.70 0.59
16 1.13 1.19 0.86 0.76
32 2.10 1.46 1.02 0.93
64 4.31 1.75 1.19 1.10
128 11.9 2.08 1.39 1.29
256 37.2 2.39 1.57 1.47

Table I: Time in seconds per processor to compute 1000 scalar products (/N = 9) on the Cray
T3D. Standard PVM programming model.

K = P | Sendall-bcst. (PVM) | cascade (PVM) | work-sharing(1) | work-sharing(2)
2 0.076 0.078 0.076 0.11
4 0.083 0.087 0.078 0.12
8 0.097 0.097 0.084 0.12
16 0.13 0.11 0.096 0.13
32 0.18 0.12 0.12 0.13
64 0.30 0.13 0.17 0.14
128 0.53 0.14 0.27 0.15
256 1.00 0.15 0.48 0.16

Table II: Time in seconds per processor to compute 1000 scalar products (N = 9) on the Cray
T3D. The sendall-broadcast and cascade algorithms have been implemented with so-called shared-
memory routines that belong to the Cray PVM programming model. The results in the third and fourth
columns have been obtained by the work-sharing model. The results in the third column have been
obtained by summing the local sums using a do-loop (as displayed in Figure 7.1). The results in the
last column are based on the summation of the local sums by the "native® sum instruction which is
part of the work-sharing model.
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The first option is the "shmem-get” instruction which allows the direct access of the
cache of other processors. Addressing is based on two parameters, the name of the
variable, and the processor it resides on. For this reason, the shmem-get instruction is
said to be based on shared memory. The data transfer is very fast. As an example,
we changed the "standard” PVM sends and receives by their ”shared” counterparts
and computed the scalar product by the sendall-broadcast and cascade algorithms. A
comparison between Table I and Table II reveals that, indeed, the shmem-get instruc-
tion allows for a fast data exchange. The previously observed problem of saturation
for the sendall-broadcast algorithm is not solved. Another alternative consists in the
use of the work-sharing model. The results for the computation of the scalar product
(based on Figure 7.1) can be found in the third column of Table II. The fourth column
displays the results when a special sum instruction, which belongs to the work-sharing
syntax, is used. In all cases, it is clear that the use of the special (architecture-specific)
communication instructions is worthwhile, although compatibility is sacrificed. The
issue of programming models is again discussed in Section 7.4.

7.3.3 Direct stiffness on parallel computers

The concept of direct stiffness is the implementation of Equation (2.49) and consists of
the summation of the contributions of two or more grid points that represent the same
physical node, followed by redistribution: On the physical grid, interface grid points are
unique (see Figure 7.8). In practice, however, two, or more elements (processors) that
share an interface possess their own, local copy of the same grid point. After certain
operations, the respective values may be different, and synchronization is necessary.
Here, we will distinguish two strategies to manage the communication which is involved
in this synchronization process.

The first method is represented for a two-dimensional geometry on the left of Fig-
ure 7.8: First, the edges are summed and then the corners. In three dimensions, these
two phases are preceded by summation of the faces. When direct stiffness is imple-
mented in this way, it is clear that a high number of messages is involved. The processor
that performs an update of a corner node (3D), for example, receives seven messages,
sums the eight corner values and redistributes the total sum. It is important that re-
ceives are non-blocking when more than one message can come in. The implication of
this is that the receiving node identifies the sender of the incoming message and waits
for the next one, instead of waiting for a message from a specific sender. Although Fig-
ure 7.8 suggests that there are two distinct communication phases, it should be noted
that the (faces,) edges and corners can be updated independently from each other.
Furthermore, this implementation is flexible as regards ”special” nodes, i.e. interfaces
that join an irregular number of faces, edges and/or corners.

The second method has been proposed by Fischer and Patera [26]. Their approach
consists in three consecutive element face exchanges (3D), as can be seen on the right
in Figure 7.8. In contrast with the above described method, complete faces (and faces
only) are exchanged. After three directional exchanges, corresponding to three spatial
directions, edges and corners have automatically received their correct values. It is
important to notice that each exchange has to be entirely completed before the next one
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Figure 7.8: Two methods to perform direct stiffness on a four-element grid of degree N = 5 (two
spatial dimensions). On the physical grid (depicted at the top), each node is unique. In practice,
however, each processor has its own copy of the grid points at interfaces, which have to be summed
and redistributed. On the left hand, edges and comers are updated by separate mechanisms. Many
messages are necessary. On the right hand two directional exchanges are performed. The number
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of messages is reduced, but synchronization between the two phases is needed.
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can start. If this rule is not respected, wrong values might occur at edges and corners.
Software barriers are required to enforce correct synchronization. This concept is very
simple, and the number of messages is much less than for the previously discussed
method. In [26] it is explained how special nodes can be handled: First, their local
contributions are accumulated, then the three directional exchanges are performed,
and, finally, the correct values are redistributed to the special nodes.

The two methods that have been proposed to perform direct stiffness have not been
tested individually, but in the frame of a larger test problem, which will be presented
in the next subsection.

7.3.4 Parallel efficiency on the Cray T3D

In this subsection and in the next, we will be concerned with the determination of the
parallel efficiency of the spectral element code. Unfortunately, the parallel code has
evolved independently of the sequential version, which makes the standard definition of
parallel efficiency (the quotient of the cpu time for the fastest serial code and P times
the cpu time of the parallel code) impossible. Therefore, we adopt the alternative
definition of parallel efficiency €y x to solve a K-element problem of degree N on K
Processors as

cpu time for communication

Enk = (1 - ) 100%. (7.4)

total cpu time

Again, the cpu time for communication and the total cpu time include the time that
processors are waiting for messages to arrive. Although the processors receive exactly

the same amount of work, problems concerning load-balancing are immediately de-

tected by this definition. The test problem that we have selected is the simulation of
a Navier-Stokes flow in a domain 2 = [-1,1]3, ¢t € [0,0.1], At = 0.01, Re = 0.03371,
with an analytical solution given by Equations (6.46) and (6.47). A BDF1 is chosen as
the temporal method, combined with a subcycling method based on the fourth-order
Runge-Kutta scheme, M = 3. The pressure-correction method is applied to decouple
the velocities from the pressure. The Helmholtz matrix is preconditioned by its diag-
onal and the pressure operator as P, ! —g S,.. The relative tolerance for the velocity
is 10719 and 10~® for the pressure. The modified version of the PCGM has been used.
In this subsection, we will only consider timings that have been obtained on the T3D.
Start-up time has been discarded.

It is our first goal to obtain some reference timings for different values of N and K.
To this end, we have used the fastest method to compute the scalar product; the cascade
algorithm. Direct stiffness is performed by separate communication of faces, edges
and corners. Standard PVM instructions have been used. The results are depicted in
Figure 7.9. We see that the efficiency increases with N. This is not surprising since the
number of operations on each spectral element (processor) scales like N4. For N = 10
and N = 13, the percentage of cpu time for communication grows slightly with K. This
is mainly due to an increasing ratio between the number of interfaces (which equals
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Figure 7.9: T3D. Parallel efficiency as a function of N and K. Standard PVM instructions. Direct
stiffness is performed separately on faces, edges and corners; Cascade algorithm for scalar products.

the number of messages during the direct stiffness phase) and the number of spectral
elements, and only partially to a degrading parallel performance. We investigated in
more detail the results for N = 10, K = 128: Only 5.6 percent of the total cpu time has
been used for communicating the scalar products around the processors; 22.5 percent
was taken by the direct stiffness phase, which can be subdivided in 7.5 percent for the
corners, 9.1 percent for the edges and 5.9 percent for the faces.

We will now show how the efficiency €y x can be improved. The first step is to
use the tri-directional face exchange to compute the direct stiffness. In the absence of
special nodes, we obtained much better results, as is shown in Figure 7.10. For a fixed
N, the only decrease in efficiency is due to the computation of the scalar product: the
computation of the direct stiffness is such that the number of messages per face during
one directional exchange is exactly one, followed by synchronization. This implies that
the direct stiffness procedure is scalable with respect to the number of processors.

Finally, we replace the standard PVM instructions by their ”shared-memory” PVM-
counterparts. As can be seen from Figure 7.11, parallel scalability has been achieved,
and communication time has become almost negligible. We conclude that the spectral
element solver runs very efficiently on the Cray T3D.

7.3.5 Parallel efficiency on the Paragon

The same program has also been tested on the Intel Paragon, at the ETH Zirich,
Switzerland. We took the same test case that led to the results of Figure 7.9 and
compared the performances of the two MPP’s. First, we remarked that PVM on the
Paragon produces disastrous results. At the time of the tests (fall of '94), PVM was

implemented as an intermediate layer between the Fortran program and the Intel com-
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munication routines. The function calls to and fro the different layers slow down the
performance of the program and lead to unacceptable cpu times. Therefore, we have re-
sorted to NX, the Intel library of communication routines. The cpu time and efficiency
are represented in Table III; the T3D results are the same as in Figure 7.9. We conclude

Cray T3D Intel Paragon

cpu time | Exx [ cpu time | Enk

=7, K=16 25 64.6% 53 78.7%
N=10, K=16 66 81.6% 169 90.2%
N=13, K=16 148 89.9% 390 94.0%
N=7, K=32 29 58.9% 69 74.6%
N=10, K=32 85 78.7% 234 88.0%
N=13, K=32 215 87.4% 590 92.4%
N=7, K=64 33 50.8% 74 70.2%
N=10, K=64 88 73.4% 233 85.3%
N=13, K=64 207 84.1% 563 90.6%

Table III: Cpu time in seconds (per processor), for a problem that ran on K = P processors and
parallel efficiency. Standard PVM instructions for the Cray T3D, NX for the Intel Paragon. Direct
stiffness is performed separately on faces, edges and comers; Cascade algorithm for scalar products.

that the single-processor performance for the T3D is considerably higher than for the
Paragon. The communication seems to be faster on the Paragon, but is in fact slightly
slower when we take the relatively low single-node speed into account. From further
tests, we deduce that the tri-directional face exchange method for the computation of
direct stiffness does not improve the parallel performance on the Paragon.

7.4 Discussion

We close this chapter by three remarks.

Parallel processing is a rapidly evolving domain, implying that decisions and choices
can become obsolete within the time span of a few months. This is more or less the case
for our decision to start the spectral element simulations (see next chapter) with a code
based on standard PVM, and not on shared-memory PVM-instructions. It was difficult
to foresee that architecture-specific communication would be much more efficient, as
has been shown in the previous sections. Furthermore, the loss of compatibility due to
the use of "shared” memory operations turned out to be not crucial: We learned by
experience that the FORTRAN routines which manage the communication are easily
rewritten. However, we should realize that it is not dramatic to have a code running at
a parallel efficiency of, let’s say, 80%, whereas 95% could also be obtained. Anyway, the
potential to develop a code which is almost optimal as regards parallelism is present,
and should certainly be exploited in the future. We remark also that the results of the
previous section could be different when ”special” nodes are present.
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As can be seen from Definition (7.4), a high parallel efficiency can either be obtained
by little, fast communication, or by slow single-processor performance. Therefore, we
have to assure ourselves that the good parallel results are not due to the latter factor.
The Apprentice performance analyzer allows us to measure exactly the speed at which
the spectral element solver runs. We found that for K = P = 128, a performance of
about 1.3 Gflops (N = 7), 2.7 Gflops (N = 10), 3.9 Gflops (N = 13) up to 6 Gflops for
the unrealistic value of N = 20 can be achieved. On the first hand, these results seem a
bit disappointing compared to the theoretical peak performance of 19.2 Gflops. On the
other hand, it is a well-known problem to obtain a reasonable single-node performance
on the current generation of MPP’s. This is mainly due to the fact that the processor
stalls on a cache miss. We are confident that the use of BLAS for all cpu-intensive
operations pushes the code to a performance which is quite optimal.

When a pressure preconditioner based on coarse and fine subspace solutions (see
Chapter 6) is used, a strategy has to be developed to perform the coarse-grid solves,
i.e. Eoz = rhs., cf. Equation (6.54). Fischer and Rgnquist [28] propose to construct
the inverse, which is a relatively small (K x K) matrix, in a preprocessing stage. The
computation of Ej'rhs. proceeds then as follows: First the right-hand-side vector,
which is stored in a distributed way over K = P processors, is gathered on each
processor by 2log P communication steps. Then, on each processor, the Kth line of
E;?! is multiplied with the right-hand-side vector. The gathering procedure represents
an additional communication overhead which leads to a degrading parallel efficiency.
However, the difference with the results as displayed in Figure 7.9, Section 7.3.4 is
always less than 3%.
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Chapter 8

Spectral element simulations

8.1 Study of the overall time accuracy

In the previous chapters the developed algorithms have been tested separately. Thisis a
sound strategy, because the interpretation of the results is not hindered by side effects.
It is, however, also appropriate to test all the components together, especially when
the overall order of accuracy of the time-integration schemeis concerned. Many factors
influence this global order: the time schemes for the linear and nonlinear terms, the
splitting method and the decoupling method. In this section we want to find out how
these factors interact, and if we can point out which component yields the dominant
error.

It is difficult to find a good three-dimensional benchmark problem with an analyt-
ical solution. Therefore, we resort to the test problem with a solution as described
in Equations (6.46) and (6.47). Here, both the velocity and the pressure have been
multiplied by e~*. Furthermore, we took & = (-1,1)3, N =9, K = 16, T = 0.75,
and a Reynolds number of Re = 100. The BDF is of order three. The error in the
first component of the velocity is depicted in Figure 8.1 for the following time-schemes:
pressure correction, the third-order projection method of Blair-Perot and Uzawa. Each
of these schemes has been combined with an extrapolation scheme (BDF3/EX3) or a
subcycling method (BDF3/RK4, M = 3).

As expected, the pressure-correction method is second-order, and the projection
and Uzawa methods are third-order accurate in time. The results for the former two
methods are independent of the scheme for the nonlinear terms. The implication of
this is that the decoupling error is dominant to the splitting error. In absence of a
decoupling error, the Uzawa method is more accurate when an extrapolation method
is used. However, for At < 0.01, the spatial error becomes dominant. We can conclude
that, for this problem, the decoupling error for the third-order projection scheme is
one to two orders of magnitude, and dominates the splitting error.
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Figure 8.1: Overall time accuracy of the Uzawa, the pressure correction, and the third-order
projection method. The latter two methods show the same results with the subcycling and the
extrapolation scheme.

8.2 Three-dimensional flow over a backward-facing-
step

In this section, we investigate the flow over a backward-facing step. An extensive
comparison between experimental data and the results from our spectral element sim-
ulations will be made. First, the flow characteristics are described, as they have been
observed by experiments and two-dimensional simulations. Then the three-dimensional
simulations will be exposed for different Reynolds numbers.

8.2.1 Description of the backward-facing-step flow

The two-dimensional flow over a backward-facing step (BFS) is very well documented.
One of the reasons is that the BFS flow at Re = 800 has been proposed as a benchmark
problem (see e.g. Sani and Gresho [68]). The results of Gartling [30] and Kim and
Moin [43] are often used as a reference solution. There is also an ongoing discussion on
the steadiness of the flow at Re = 800, which started with the paper of Kaiktsis et al.
[40]. The authors used a spectral element code and observed that the flow is unsteady
with eddies oscillating around the alleged steady solution. Gresho et al. [35] disagree
with this conclusion which is contradicted by four independent analyses that all show
steady state. Especially the results obtained by the NEKTON spectral element solver
are interesting because they suggest that marginally resolved flow in the streamwise
direction can alter the temporal behaviour of the numerical solution. The authors claim
also that high-order methods are more sensitive to this phenomenon than low-order

132



methods. The main argument for this theory is that high-order polynomials are forced
to fit through spatial variations that are too rapid to be represented accurately. This
results in nonphysical wiggles which are convected in the underresolved, streamwise
direction. Kaiktsis et al. react in a second paper [41] in which they conclude that,
indeed, the observed unsteadiness is unphysical and due to a lack of spatial accuracy in
the streamwise direction. Furthermore, they try to explain this phenomenon in terms
of convective instable behaviour, implying that beyond a critical Reynolds number
(Re > 700), upstream generated disturbances are amplified downstream, before the
flow reaches, eventually, its steady state. Convective instability in conjunction with
insufficient spatial accuracy is held responsible for unphysical unsteadiness.

The reason to bring up the discussion about the two-dimensional BFS flow is that
many lessons have been learned that apply also to the three-dimensional case. First,
care has to be taken that the flow is sufficiently resolved. In Gresho et al. [35], it
is suggested that the divergence computed in the "strong” way acts as a barometer
of the quality of the solution. A safer instrument is, however, grid refinement. The
fact that the flow is almost convectively unstable warns us that time integration over
a long interval will be necessary before a steady solution is reached. Finally, we recall
that the flow is weakly singular at the step corner, that is, the pressure is negatively
infinite. Therefore, mesh refinement is needed close to the corner in order to keep the
effects of the singularity local.

Another very important contribution has been made by Armaly et al. [1}, who
simulated experimentally the three-dimensional flow over a BFS for a large range of
Reynolds numbers. In particular, they investigated the flow for three-dimensionality,
steadiness and symmetry. Furthermore, they characterized the flow by the locations of
a number of recirculation zones as a function of the Reynolds numbers. Their paper
constitutes a good framework for comparison with numerical simulations. Let us briefly
describe the experimental set-up, the projection of which resembles very much to the
two-dimensional benchmark problem. The dimensions have been used for our numerical
simulations, as depicted in Figure 8.2.

The experiments were carried out in an air-driven flow channel incorporating a two-
dimensional BFS with an expansion ratio of 1:1.943. The downstream channel has
an aspect ratio of 18:1. The inlet section of the experimental setting was such that
the flow is two-dimensional and fully developed when arriving at the step. The flow
sticks to the solid boundaries, leading to two boundary layers in the transversal (z)
direction. In this chapter, we will non-dimensionalize all the lengths by the height of
the downstream section. The Reynolds number is based on the average inlet velocity
(two-third of Umax, Umax = 1), a characteristic length which is chosen as two times
the inlet height, and the kinematic viscosity v:

68647
Re = 208647 (8.1)

v

Armaly et al. predict that the flow is symmetric for all Reynolds numbers Re < 8000.
Furthermore, the flow is found to be two-dimensional for Re < 400 and Re > 6600.
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Figure 8.2: The geometry of the backward-facing step with a 1:1.94 expansion ratio. The inflow
profile is given as the tensor product of a parabola, which is zero at the walls and one at the center,
and a Blasius boundary-layer profile characterized by 6 g9 = 0.50. The size of the geometry behind
the step is 19, which is large enough to ensure fully developed outfiow. For the range of Reynolds
numbers that we consider, two recirculation zones are of interest. Their locations are indicated in the

plane of symmetry.
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Figure 8.3: Spectral element distribution. True aspect ratio.

For 400 < Re < 6600 three-dimensional effects have been observed. Each value of
the Reynolds number is characterized by a certain length of the recirculation zone.
In fact, there are three of them; The first one is located at the bottom half, directly
downstream of the step. The second one was measured at the upper wall downstream
of the expansion for 400 < Re < 6600. A third recirculation zone occurs at the bottom
wall, just downstream of the first one, for 1200 < Re < 2300. The positions of these
zones have been reported in detail.

There is a discrepancy between the results reported in Gresho and al. [35] and the
experimental results for Re > 400, due to the three-dimensionality of the flow. There-
fore, it seems interesting to apply our spectral element code to the three-dimensional
BFS flow for Re = 648, which is very well documented in the paper of Armaly. In this
text, we will go up to a Reynolds number of 343, leaving the problem at Re = 648
for the near future. To the author’s knowledge, reliable numerical 3D simulations are
rare. The spectral element discretization technique is very suited for this kind of fluid-
flow problems. Mesh refinement at places where accurate results are essential (in the
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boundary layers and behind the step) is obtained by taking many, small spectral ele-
ments. Larger elements can be used at the outflow and close to the plane of symmetry,
see Figure 8.3.

In Armaly et al., streamwise velocity profiles are supplied along a number of cross-
lines ("observation lines”) in the spanwise direction. Their conclusion on two- or three-
dimensionality is based on these streamwise velocity transverses. In this chapter, we
will also supply these profiles. Armaly et al. call a flow three dimensional if the
streamwise velocity component is constant (away from the boundary layer) in the
spanwise direction. However, strictly speaking, the flow is always three-dimensional,
since there is a dependence on z, on y (the parabolic profile), and on z (boundary layer).
Another way of defining three dimensionality is by investigating the spanwise velocity
component, either locally along the observation lines, or globally, by the parameter 7,
defined by

— ” U3 ”cz
T Nwlle + e lle + e (8.2)

The three-dimensional phenomena that we observe in our simulations are recognized
by both definitions; the streamwise velocity component is not constant in the spanwise
direction, and also the spanwise velocity component is not zero, leading to 5 # 0.

The BFS geometry that we used for our numerical simulations is displayed in Fig-
ure 8.2. The dimensions are essentially those used by Armaly et al., although the
outflow section is slightly shorter because the range of Reynolds numbers that we will
consider is smaller. According to the experimental data, we can safely assume that
the flow is symmetric. Hence, the spectral element simulations have been performed
in a half geometry. The two recirculation zones of interest for the range of Reynolds
numbers that we consider are indicated in the plane of symmetry. The inflow boundary
condition at z = —3 is the tensor product of a parabola and a Blasius profile:

u(—3,y,2) = (4.0035323 - b(—3,z) - (y + 0.48514851)(0.51485148 — 1),0,0)T. (8.3)

The Blasius profile b(z, z) mimics a laminar boundary layer and is characterized by its
thickness 6 go(z), which represents the z-value at which the boundary layer attains 99%
of its maximum (see e.g. Ryhming [66, pp. 216-226]). The boundary-layer thickness
is known to grow like O(z/Re)*/2. We set 699(—3) = 0.50 =~ 9/1/343 (9 is the distance
between the wall and the plane of symmetry).

In order to, eventually, obtain results for Re = 648, we have computed intermediate
results at Re = 172 and Re = 343. These simulation are presented in the next sections.

8.2.2 Backward-facing-step flow at Re = 172

The initial solution for the backward-facing-step flow at Re = 172 is the solution of
the Stokes problem. The spectral element mesh consists of 128 elements of degree 9
for the velocity and 7 for the pressure (see Figure 8.3). The elements are concentrated
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around the step. There are four layers of elements in the z-direction close to the step
and only two more downstream. The number of elements in the z,y-plane is 32, and
four in the z-direction. We respect the rule-of-the-thumb that at least 10 spectral grid
points are required to represent a boundary layer, i.e. the lengths of the elements
in the z-direction are respectively 0.5, 1.5, 3, and 4. The large aspect ratio of the
elements and the considerable difference in size in the x- and z-direction influence the
condition numbers of the operators negatively. The simulation has been carried out by
the pressure-correction method in conjunction with a subcycling scheme (BDF3/RK4,
M = 3). The third-order projection method has been applied to the converged solution,
but did not yield any modification of the results. The tolerances for the pressure and
velocities have been chosen as 3,9~ and 3,9-¢ respectively; the time step is about 0.008.
The simulation is proceeded until a steady state has been encountered, viz., until the
streamwise velocity component at a number of predefined points in the geometry does
no longer significantly change in time.

For reasons of lay-out, the figures representing the simulations at Re = 172 and
Re = 343 are given in Section 8.2.4. In Figure 8.5, the streamwise velocity component
is displayed in the plane of symmetry. The black zone represents negative velocities.
The length of the recirculation zone corresponds to the experimental results of Armaly
et al. and to the two-dimensional computations of Kim and Moin [43], see Figure 8.4.
In order to get an idea of the flow pattern at the recirculation zone, the streamwise
velocity component is represented in Figures 8.6 and 8.7, corresponding to the cross
sections z = 1.00 (at the middle of the zone) and z = 2.00 (at the end of the zone),
respectively. The spanwise velocity component is plotted at the former cross section
(z = 1.00), according to Figure 8.8. An unexpected phenomenon is encountered in this
figure embodied by a non-negligible spanwise velocity component which seems to have
its origin in the intersection of the recirculation zone and the boundary layer. Further-
more, in Figure 8.7 we see that the form of the zone of negative velocities changes in the
boundary layer, visualized by the small "dip” near the wall. From these observations,
we conclude that, despite the small value of 5 (7 = 9.2,0-5), three-dimensional effects
significantly influence the flow pattern. Their effect, however, is mainly limited to
the boundary layer, explaining the good qualitative agreement with the experimental
data as regards the length of the zone of recirculation. Three-dimensionality is more
pronounced for the case Re = 343 and will be discussed again in the next subsec-
tion. Finally the streamwise velocity component is plotted at the six observation lines
downstream of the separation zone (Figures 8.9 and 8.10). These figures show that
the flow develops rapidly downstream of the recirculation zone, and confirm the small
"overshoot” at the end of the boundary layer, which was also observed as a dip in the
recirculation zone (Figures 8.6 and 8.7).

8.2.3 Backward-facing-step flow at Re = 343

The simulation of the backward-facing step flow at the Reynolds number Re = 343
has been performed with the same mesh and parameters as presented in the previous
subsection. The transient is very long, as could be expected from the discussion in
Section 8.2.1. The streamwise velocity in the plane of symmetry is represented in Fig-
ure 8.11. Again, a good qualitative agreement as regards the length of the recirculation
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zone (see also Figure 8.4) with other computations and experiments is observed. The
recirculation zone is shown for three cross sections in Figures 8.12, 8.13, and 8.14. Like
for the plots at Re = 172, we see that the boundary-layer dynamics play an important
role. Close to the step (Figure 8.12), the form of the recirculation zone and boundary
layer are as expected, except for the small dip near the wall. Further downstream of
the step, this dip grows and, eventually, negative velocities appear along a large part
of the side wall. Although the flow near the plane of symmetry remains apparently
unaffected, we see that the influence of the boundary layer stretches out much further
than for Re = 172. The three-dimensionality is confirmed by Figure 8.15. From the
streamwise velocity components along the observation lines (see Figures 8.16 and 8.17),
we learn that the overshoot is still present far downstream of the recirculation zone. In
particular, the observation line for z = 3.22, y = 0.75, shows the vertical recirculation
zone at the side wall. Although the value of 7 is again rather small (n = 1.8;9-4),
Figure 8.18 indicates that three-dimensional effects are not limited to the boundary
layer. Moreover, the spanwise velocity component also changes sign near the side wall.

From the above described simulations, we conclude that the global behaviour corre-
sponds to the experimental data, but also that the modeling of boundary layer seems
to induce three-dimensional effects for Reynolds numbers which do not agree with the
observations of Armaly et al. In fact, many of the observed features were also found
in the experimental setting, but at a higher Reynolds number. It should be noted
that this premature transition to three-dimensionality is confirmed by computations
of Sagaut [67], who used the PEGASE code developed at the aerodynamics division of
ONERA, Chatillon, France.

In order to confident in our results, we first have to determine the quality of our
simulations. To this end, we repeated the computation on a finer grid, using a polyno-
mial degree of N = 11. The distribution of the spectral elements remained the same.
The initial solution of this "fine-grid” simulation is formed by the interpolated results
of the "coarse” grid. The steady-state solutions are compared in Figures 8.16 and 8.17,
from which we conclude that the spatial resolution is sufficient. The influence of the
modeling of the boundary layer has also been investigated. It should be noted that
the equation for the Blasius profile corresponds to the modeling of a boundary layer
over a flat plate. Therefore, we suggest that the same simulations are repeated with
a longer inflow channel, such that the flow can settle before entering the step-region.
Simultaneously, we take a thicker boundary layer to investigate the influence on three-
dimensionality. We found out that these two modifications only induce small differences
compared to the original case, and do not give a reason to change our conclusions. The
abundant tests of spatial and temporal accuracy of the code, as presented in previous
chapters, and the agreement of the lengths of the recirculation zone make us confident
that the results are correct from a numerical viewpoint.

8.2.4 Figures
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Length of the first recirculation zone
»
]

Figure 8.4: Comparison of the length of the first recirculation zone as a function of the Reynolds
number.

Figure 8.5: Re = 172. Streamwise velocity component in the symmetry plane. The black zones
represent negative values of the velocity; the consecutive shades of gray indicate a velocity increase
of 0.2 each.

138



Figure 8.6: Re = 172. Streamwise velocity component at z = 1.00, half-way the recirculation
zone. The black zones represent negative values of the velocity; the consecutive shades of gray
indicate a velocity increase of 0.2 each.

Figure 8.7: Re = 172. Streamwise velocity componentat z = 2.00, at the end of the recirculation
zone. The black zones represent negative values of the velocity; the consecutive shades of gray
indicate a velocity increase of 0.2 each.

Figure 8.8: Re = 172. Spanwise velocity component at z = 1.00, half-way the recirculation
zone. The black zones represent negative values of the velocity; the consecutive shades of gray
indicate a velocity increase of 0.02 each.

139



0.45 r— — T Y Y T T T

04

0.35

0.3

0.25

observation line x=3.22, ym0.250 —
obscrvation line x=5.75, y=0.276 ~-—- -

02
observation ine x=14.0, y=0.250 ------

spanwise velocity

0.15

0.1

0.05

L | 1 I 1 1

.
3 4 5 6 7 8 9
spanwise coordinate z

Figure 8.9: Re = 172. Streamwise velocity component along the three observation lines in the
lower part of the geometry, downstream of the recirculation zone.
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Figure 8.10: Re = 172. Streamwise velocity component along the three observation lines in the
upper part of the geometry, downstream of the recirculation zone.
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Figure 8.11: Re = 343. Streamwise velocity component in the symmetry plane. The black zones
represent negative values of the velocity; the consecutive shades of gray indicate a velocity increase
of 0.2 each.

Figure 8.12: Re = 343. Streamwise velocity component at z = (.26, just downstream of the
step. The black zones represent negative values of the velocity; the consecutive shades of gray
indicate a velocity increase of 0.2 each.

Figure 8.13: Re = 343. Streamwise velocity component at z = 0.99, at about one-third of
the recirculation zone. The black zones represent negative values of the velocity; the consecutive
shades of gray indicate a velocity increase of 0.2 each.
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Figure 8.14: Re = 343. Streamwise velocity component at z = 2.00, at about two-thirds of
the recirculation zone. The black zones represent negative values of the velocity; the consecutive
shades of gray indicate a velocity increase of 0.2 each.

Figure 8.15: Re = 343. Spanwise velocity component at z = 2.00, at about two-thirds of
the recirculation zone. The black zones represent negative values of the velocity; the consecutive
shades of gray indicate a velocity increase of 0.02 each.
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Figure 8.16: Re = 343. Streamwise velocity component along the three observation lines in
the lower part of the geometry, downstream of the recirculation zone. The results for N = 9and
N = 11 are given, but are difficult to distinguish.
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Figure 8.17: Re = 343. Streamwise velocity component along the three observation lines in
the upper part of the geometry, downstream of the recirculation zone. The results for N = 9 and
N = 11 are given, but are difficutt to distinguish.
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144



Chapter 9

Conclusions

In the previous chapters, the construction and validation of a spectral element solver
have been described. The Legendre spectral element discretization technique has be-
come a well-established tool for numerical simulations. Therefore, our attention has
been focused on the development of high-order time-integration schemes with advan-
tageous stability characteristics and on the construction of efficient iterative solution
methods for the discrete systems. The implementation on parallel computers is a third
point that has received much attention. Although the spectral element method be-
longs to the class of finite element methods, most of the difficulties that we encounter
are typically ”spectral”, like, for instance, high condition numbers and long-range cou-
pling. There are also substantial differences with the h-p finite element method which
have an impact on the structure of the operators. Therefore, many of the presented
algorithms apply only to spectral element discretizations, and some of them are even
limited to the particular choice for the Py — Pn_2 spaces. With this respect, we refer
in particular to the Helmholtz solver and to the pressure preconditioners.

As a starting point, we have used the Uzawa method to decouple the velocities from
the pressure. Unfortunately, this method has a major inconvenience, expressed by
the solution of the pressure system. Two nested, iterative methods lead to very long
computation times. A possible solution to this problem is to accelerate the inversion
of the Helmholtz system, to develop efficient preconditioners for the Uzawa pressure
operator, or both. The former proposition has been accomplished by the direct solution
of the Helmholtz equations, based on rapid diagonalization methods. Their application
is, however, limited to very simple geometries, but could be useful for the simulation of
turbulent duct flows. The generality is augmented by introducing a Schur complement
method which separates the Helmholtz system in K local problems and an interface
problem. The most general solution is the incomplete Schur preconditioner, which
can be used within the framework of deformed geometries. We have to remark that
the parallelization of these fast Helmholtz solvers is not evident and deserves further
study. Another way to accelerate the Uzawa method is by proper preconditioning.
To this end, a two-stage preconditioning technique has been developed. The first
stage effectively reduces the number of pressure iterations and, hence, the number of
Helmbholtz inversions. The second stage consists of local, elemental solves.

Another option is to replace the Uzawa method by a high-order projection method,
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applied to the discrete equations. The resulting equations for the velocities and the
pressure are no longer equivalent to the coupled Navier-Stokes system, but nested
iterative solves are avoided. The time error that is introduced by the projection method
is proportional to (At/Re)?. We have followed the suggestion of Blair Perot [9] to
construct projection methods for which ¢ = 3. The error can even be diminished to
At(At/Re)? by computing a correction to the pressure, instead of the pressure. The
numerical results show that, indeed, projection methods are very accurate and cheap,
especially for moderate to high Reynolds numbers.

The projection method gives rise to a pressure operator that can be preconditioned
along the same lines as the second stage of the Uzawa pressure matrix. It remains an
open question if the local solves should be combined with the construction of the coarse
pressure skeleton, as has been proposed by Rgnquist [63], or not. All the numerical test
in this thesis indicate that this approach leads to a lower number of pressure iterations,
but also to a higher cpu time. However, extrapolation of the results, combined with the
knowledge that the condition number of the preconditioned operator is independent of
K, predict that for K > 1 the coarse/fine solves a la Rgnquist should be preferred.

The accuracy in time depends on the order of the time schemes for the implicit and
explicit terms, the order of the linear /nonlinear splitting and the order of the decoupling
method. In this thesis we have presented a solver with a global order of accuracy in
time of three, implying that all of the aforementioned components are at least third-
order. The ingredients for a fourth-order method are also given. The implication of
an accurate time-integration scheme is that the time step is no longer governed by
considerations of precision, but of stability. We have adopted the operator-integration-
factor splitting method [48] for its large stability zones, which have been determined by
an original analysis. The explicit terms are integrated by the standard Runge-Kutta
method, which possesses almost optimal stability properties for a four-stage method.
In fact, it can be shown that the optimal B,y for an m-stage Runge-Kutta method
18 Bimag = m — 1. The use of stabilized Runge-Kutta methods with m > 4 will further
enhance the stability, but it should be investigated whether this also improves the
performance.

The spectral element solver has been implemented on the Cray T3D in Lausanne.
Initially, the most logical choice to manage the communication was by standard PVM.
Indeed, a good parallel efficiency has been obtained for values of N that are also
used for the simulation on serial computers. Moreover, the efficiency decays only
slightly for an increasing number of spectral elements and the code is portable to most
other MPP’s. Some additional tests have pointed out, however, that the use of shared
memory operations, such as "shmem-get”, leads to a much higher parallel performance:
On a typical test problem we have even obtained an efficiency which is independent of
the number of spectral elements. For future developments it is recommended to forget
about portability and to focus on architecture-specific communication routines, which
have proven to be superior on the Cray T3D and on the Intel Paragon.

Improvements are possible on many other levels. As far as the spectral element
method itself is concerned, it would be interesting to investigate the recent develop-
ments for stabilized spectral discretizations, based on finite element bubble functions
(see e.g. Canuto [13]). In a recent paper, Canuto and Van Kemenade [15] show that
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the addition of local bubble functions not only cures the instabilities due to convection,
but also removes spurious pressure modes in the Py — Py formulation. This approach
might imply that alternative preconditioners have to be found. The number of itera-
tions for the pressure operator can be reduced by supplying good initial guesses. One
way to do this has been proposed by Fischer [25]. His approach is based on projec-
tion and is especially effective in the case of flows with a significant dynamic activity.
This projection technique exhibits, for example, a 50% reduction of cpu time for the
simulation of an impulsively started flow past cylinder.

Scalability is an important issue when we want to simulate problems consisting of
many spectral elements (K = O(10%)). It is desirable that the computational complex-
ity does not augment as long as each spectral element can be mapped on one processor.
(The reader is referred to [62, Chapter 13] for a discussion on scalability in parallel pro-
cessing.) The coarse/fine pressure subspace preconditioner is an example of a scalable
algorithm, since the condition number of the preconditioned operator is independent
of K. Furthermore, the results obtained by shared memory PVM indicate that the
parallel efficiency remains constant for increasing values of K. The only part of the
solver that does not respect the concept of scalability is the Helmholtz solver. The
dependence of the condition number of the Schur preconditioner on K should be stud-
ied together with its parallelization. For an alternative approach we refer to Rgnquist
[64]. Throughout this thesis we have only considered algorithms with an operation
count of O(N*). Preconditioning of the Helmholtz and pressure operators leads to a
maximum increase of the number of iterations which is linear with N. Consequently,
the theoretical relation between N and the cpu time is of order N°, when we do not
take the effect of NV on the stability into account. In practice, however, we also see
that the performance increases considerably with N.

We close this chapter with some practical considerations. The simulations as de-
scribed in Chapter 8 could be performed much more effectively if we know how to
distribute the spectral elements and how to choose N to obtain a sufficient spatial res-
olution. The only tool we dispose of before starting the computation is common sense.
Error estimates could be computed by transforming the results to the Legendre space
and by investigating the spectrum. This will give information whether a sufficient pre-
cision has been obtained, and the mesh could be adapted (refined) accordingly. Tuning
of the solver is also a tricky issue: The optimal values for the time step, tolerances for
iterative methods, etc. are unknown and can only be approximated by trial and er-
ror and by the "intuition” of the programmer. Rigorous methods to determine these
parameters will certainly save a lot of cpu time.
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Appendix A

Characteristic polynomials

BDF1/AB3
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