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Version Abrégée.

Une approche globale au probléme de la commande des robots paralléles rapides est proposée
dans ce travail. Les différences fondamentales entre les robots série et paraliéles sont mises en évidence.
Un formalisme inspiré de celui de Denavit-Hartenberg permet de paramétriser la géométrie d'un robot
paraliéle quelconque en le considérant comme deux arbres articulés connectés par six liaisons simples.

Puis, il est montré que la modélisation de la cinématique et de la dynamique des robots paraliéles
est grandement facilitée si on choisit de représenter l'état du robot simultanément par les variables
décrivant la position des articulations motorisées et par les variables spécifiant la position de 'organe
terminal du robot dans I'espace opérationnel. Une forme générale du modéle de la dynamique inverse dit
*dans les deux espaces’ découle de cette approche.

Un algorithme basé sur 'approche Newton-Euler est développé pour le calcul rapide et efficace du
modéle de la dynamique inverse dans les deux espaces. Il est montré que sa complexité est comparable
4 celle de l'algorithme standard pour les robots série. Une formulation par la mécanique lagrangienne
permet 'analyse du modele dans les deux espaces. |l est montré que ses propriétés comrespondent a
celles bien connues des robots série & une importante différence pres: la matrice Jacobienne des robots
paralléles n'étant pas bomée, ces manipulateurs n'offrent des performances élevées que dans un sous-
espace de leur espace de travail qui doit &tre soigneusement défini.

Différentes stratégies pour le réglage en poursuite de trajectoire des robots rapides sont ensuite
examinées. Les avantages des méthodes basées sur fa connaissance du modéle dynamique et une
contre réaction robuste sur les variables opérationnelles sont décrits. Il est montré que pour les robots
paraliéles, une telle commande nécessite une puissance de calcul moindre lorsque la contre-réaction est
réalisée dans l'espace opérationnel, c'est-a-dire lorsque le réglage s'effectue sur les coordonnées
décrivant I'état de 'organe terminal du robot. Outre les avantages déja énumérés dans la fittérature, une
tefle structure peut étre implantée de fagon trés efficace sur un controleur multiprocesseurs en exploitant
la nature intrinséquement paralléle des algorithmes impliqués ainsi que leur mise en pipeline.

Finalement, I'approche proposée est appliquée au robot paralléle Delta. Une démarche
systématique permet d'obtenir les modéles cinématiques et dynamiques de ce robot sous une forme
extrémement compacte. L'analyse de la mafrice Jacobienne ainsi que quelques résultats de simulation
révélent les points forts et les limitations de ce manipulateur. L'implantation d'une commande basée sur
le modéle du Delta sur un controleur doté de quatre Transputers est décrite. Quelques résultats
expérimentaux obtenus sur un Delta doté d'une transmission & courroie crantée sont présentés et
discutés.
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Abstract.

A global approach to the problem of model-based control of fast paralle! robots is proposed in this
work. Fundamental differences between the well-known serial arms and parallel manipulators are first
explained. A formalism inspired form Denavit-Hartenberg's makes it possible to parametrize any parallel
manipulator by handling it as two tree robots connected through six standard links.

Then, itis shown that kinematics and dynamics modelling is greatly simplified when the robot's state
is represented both by the variables associated to the actuated joints and the variables specifying the end-
effector’s position in operational space. The inverse dynamics model of any parallel manipulator can then
be put under a standard form called "in the two spaces”.

A Newton-Euler based algorithm is proposed for the real-time computation of the model in the two
spaces Its complexity is shown not to be much larger than for serial arms. Through Lagrangian mechanics,
the model in the two spaces allows analysis of the robot's dynamics properties, such as passivity. These
properties are shown to be equivalent to those of serial amns, except that parallel robots offer good
performances only in a restricted workspace in which their Jacobian matrix remains bounded.

Various control strategies for the trajectory fracking problem for fast robots are then examined. The
advantages of model-based approaches combined with robust feedback laws in operational space are
described. it is shown that a control loop in operational space requires less computations than in joint
space for a parallel robot. Moreover, such a scheme can be very efficiently be implemented on a
multiprocessor control unit that exploits the intrinsically parallel and pipeline structure of the required
algorithms.

Finally, the proposed approach is applied to the Delta parallel manipulator. A systematic approach
leads to the kinematics and dynamics models of this robot, which are expressed under a very compact
form. The analysis of the Defta’s Jacobian matrix as well as some simulation results reveal the advantages
and weak points of this manipulator. The implementation of a model-based control law for the Delta on a
control unit with four Transputers is described. Some results obtained on a Delta with a crank belt
reduction are presented and discussed.
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Chapter |

Objectives, Motivations and Preliminaries.

1.1 Thesis.

The objective of this work is to provide a complete approach to the problems of designing a
trajectory tracking controller for high-speed parallel robots and to efficiently implement it. Many different
topics are discussed, but the underlying thesis can be stated in a few words as foliows:

A wide class of parallel robots can be modeled as two partial tree structures connected
through simple links. The corresponding dynamics model is called “in the two spaces” since it
uses the robot’s state simultaneously in joint space and in operational space. This formulation
makes it possible to find passive mappings in the dynamics of paraliel manipulators. A robust,
model-based control law can therefore be designed in operational space to achieve high-
performance trajectory tracking. The intrinsic parallel-pipeline structure of the comresponding
algorithms can be exploited on a multiprocessor control unit.

1.2 Report’s Outline.

Objectives, Motivations and Preliminaries.

The remaining of this chapter is intended as a presentation of the objectives of this work and the
motivations behind it. In Section 1.3, frequently used words are defined and robotics is presented as a
union of many different technologies, where dynamics is the glue that allows the analysis and the design
of all the elements in a robot's feedback loop.

Most of today’s industrial manipulators, such as those used in car factories, are the so-called seria/
arms. Section |.4 explains their limitations when fast, high-performance operation is required. A newer
family of manipulators called parallel robots allow better dynamical performance. In Section L5, their
history is sketched and it is shown that their structure poses additional and different problems than that of
serial arms.
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The structure of a robot's control unit is then discussed in Section [.6. Since the controlier can either
be designed to directly act on the joints' motors or virtually act on the robot's end-effector coordinates,
different kinematics transformations must be added to the control law itself. This intimate relationship
between dynamics and geomelry is exploited throughout this work.

Kinematics.

In Chapter ll, after some definitions, a new classification and modeling method for maniputators
with closed chains is proposed. It is based on the idea that any parallel robot can be considered as two
tree robots connected through simple links with free joints at both edges.

Then, the kinematics of serial ams and parallel robots are discussed and their fundamental
differences are shown: forward kinemalics transformations are very simple for open chain mechanisms,
but they do not exist in closed-form for general manipulators with closed chains. Conversely, inverse
kinematic transformations are simpler for paraliel manipulators than those for serial arms.

Dynamics.

In Chapter li, Lagrangian dynamics is applied to parallel manipulators. it is shown that the widely
used “Lagrange wilh multipliers® approach contains a hidden computation of the Jacobian matrix. When
the Jacobian is explicitly itroduced, an inverse dynamics model ‘in the two spaces® can be obtained for
any parallel robot. A new aigorithm to compute this model systematically and efficiently is derived, based
on the wel-known Newton-Euler algorithm for open chain robots. It is shown that the complexity of the
new algorithm is comparable with the latter.

The mode! “in the two spaces” can be formulated using operational space coordinates only, where
it becomes a generalization of the model in operational space of sefial arms. Analysis is then carried out
with this very general formulation. it is proved for the first time that passive mappings exist in the dynamics
of parallel manipulators as for sefial arms. However, this only holds in a restricted workspace of the robot
where singutarities of the inverse Jacobian are excluded. In this respect, some critical remarks about the
alleged higher stiffness and lower inertia of paraliel manipulators are also made.

Control.

The controd problem is covered in Chapter IV. The application of existing approaches to paralie!
robots is first discussed. It is shown that most of them use an exphicit model of the robot for feedforward
control and passivity as a tool to ensure some robustness in the feedback control. The advantages of
operational space control schemes for paralkel robots are presented. Finally, a controller which uses a
model in the two spaces and a robust feedback law in operational space is proposed. Among other
advantages, it is shown that the comesponding algorithm requires less computations than the equivalent
scheme i joint space.
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Implementation issues are then discussed A multiprocessor control unit is shown to be well suited
wmmmlnmdwmmmwmmwnm The intrinsical
paraliel structure of the algorithms involved is then fully exploited

Application to the Deita Robot

The proposed modeling approach and control strategies are applied to the Delta parallel robot in
Chapler V. The obtained algorithms for kinematics and dynamics computations are detailed and their
implementation on a multiprocessor control unit studied. A numerical analysis of the robot's Jacobian
matrix is performed, which shows the importance of defining the robot's usable workspace properly. A
Lagrange-based inverse dynamics model ‘in the two spaces” is developed and analyzed. Finally, some
simulation and experimental results lead to a critical discussion on the Delta's performances and
limitations

1.3 Robotics and Control.

1.3.1 Preliminary Definitions.

Ammpudafuisamechamwabbtommagmpe:wahdmaoenanmmsomata
certain task can be automatically performed. The public and end-users normally uses the word *robof” to
refer to the whole system that actually executes the task, i.e. the manipulator with its actuators and their
power amplifiers, the sensors and the conlrol unt, where a controller is implemented.

In Fig. 1, the robot is seen from the controller as a controlled plant in the natural sense, where the
manipulator refers only to a part thereof.

ROBOT

Fig.1: A Complete Robotized Plant.
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The controbler provides the power amphifiers with command signals that are computed from the
sensors’ measurements. This closed loop alows the robot fo execute any task defined by the user. The
appearance of modem real-time computers and software techniques allows to build very complex and
powerful control units that can greally enhance the robot's performance.

1.3.2 Robotics: a Multidisciplinary Technology.

A robot integrates many different technologies such as electro-mechanics, hydraulics or
pneumatics, mechanical construction, materials sciences, optics and signal processing. If one considers
the whole robotized plant shown in Fig. 1, other technologies such as artificial intelligence or discrete
event systems may even be considered when dealing with the ouler loop and its higher-level control

system.

From the implementation point of view, the control unit's hardware and software have to be
developed acoording to the structure of the control faw. This requives expertise in algorithmic, real-time
and possibly muliprocessing computer systems.

In this work, we consider all these problems from the point of view of dynamics. Since the robot's
tasks and performances are specified using time and/or frequencies, dynamics provides a uniform
framework for the robot's design and analysis and for the synthesis of a control law. The main problem is
that modem manipulators exhibit nonlinear behaviors that can not be treated using classical control

theory.

The manipulator's nonknearity is a direct consequence of ifs geomerical structure and useful
properties of its dynamics can therefore be derived from a purely geometrical analysis. Hence, the
kinematics and dynamics must be discussed before the control problem and the controller design are
addressed.

1.4 Serial Arms and their Limitations.

Today, the most widely used industrial manipulators are the so-called “senial ams”. They are made
of an open kinematic chain of bodies connected by joints. Linear and/or rotary motors are mounted on the
chain and drive each joint through a reduction which is typically a gearbox. The indisputable advantages
of serial arms are a simple structure, a large workspace compared to the robot’s size, and a complete
theory about their design, control and operation,

However, their dynamical performance is rather poor since their structure often has to carry the
actuators, at the expense of increasing their inertia. Moreover, each link has to bear flexion stresses that
introduce flexibikty in the joints or, even worse, in the links themselves. As a consequence, the first
resonance frequency of a typical serial anm kke the PUMA 560 is not higher than 10Hz [Leah89).
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Researchers have therefore tried to explicilly consider flexibility in the dynamics and fo develop
controters that allow the closed-loop bandwidth to exceed the resonance frequency of the amm. However,
this approach requires more sensors and a much higher computational burden for the controller. Even i
very interesting theoretical work has been done in this field, one point becomes clear : serial structures
are not well suited for fast manipulators.

1.5 Parallel manipulators.

1.5.1 Closed Chains.

Introducing closed chains in the maniputator structure has very positive effects on is stiffiness
because most of the bodies bear much smatler flexion stress. Since the structure itself is used as a
fransmission, actuators can be placed closer to the base or even be fixed on it.

1.5.2 Some History.

Mathemalicians such as Cauchy, Lebesgue or Bricard already studied structures with closed
chains more than one century ago. However, their use for manipulators could not be imagined before
1938, when Pollard [Poli38] took out a pakent for a car painting robot, but the technology did not allow him
to controt his invention at that time. Then, Mc Gough [Goug62] proposed in 1947 the paraliel structure with
six prismatic actuators which is now emoneously cafled “Stewart platform”. Aclually, Stewart [Stew6S5)
proposed a quite different design for a mobile platform to carry flight simulators’ cockpits.

Using this type of mechanisms for industrial manipulators has been considerad by a few
researchers, leading only recently to actual paraliel manipulators. Extensive directories of such robots
may be found in [Clav91] and [Mert90]. The latier reference is the most complete textbook on parafiel
manipulators, if not the ondy existing one.

Before the development of the Delta robot, paratiel structures were used for applications that
require strength and accuracy like assembly fasks, but not really high speed. Most of these machines were
rather heavy, some even used hydraulic actuators.

1.5.3 The Delta Robot Approach.

A new generation of parafiel robots appeared in 1985 with the development of the Delta robot at the
tnstitut de Microtechnique (IMT) of EPFL by Clavel [Clavg5), [Clav88), [Clav1]. His aim was to buid a
very fast 3-degrees-of-freedom robot for pick-and-place tasks. This successfully resutted in one of the
fastest industriat robot currently available (see Fig. 2). The Dekta is now manufactured and exploited
mostly in the packaging industry.
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Fig.2 : The Delta Robot.

1.5.4 State of the Art and Research Topics.

Since then, other fast manipulators were built, that are inspired from the Delta structure, for example
the Hexa [Pier91}, [Pier92], [Pierd2] or the Speed-R-Man [Rebo90},{Rebo91].

All these new paralle! robots outperform in speed any serial robot with a similar workspace. The
fundamental reason is that their natwal frequency is quite higher. The main drawback of paralie)
manipulators is the relatively small volume of their workspace compared to serial arms of comesponding
sizes.

Up fo now, the robotics and controt scientific communities have considered paraliel manipulators
as rather original and peculiar mechanisms, Most of the research in robotics does not handie the case of
paratiel robots. In fact, very few of the available results in the field of robot control can be apphied to them.

Most of the research has until now focussed on kinematics and static considerations about each
special structure. The few attempts to provide a systematic approach to the dynamics modelling, analysis
and control of parallel manipulators gave extremely complicated results that are useless for the engineer.
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1.6 .Structure of a Control Unit.

1.6.1 Operational Space Control versus Joint Space Controf.

The relationship between kinematics and dynamics can be understood intuitively by looking closer
at the functions included in a control uni.

« First, the information given by the user about the task to perform and the measurements made on the
robot and/or the commands sent to it are not directly compatible. On one hand, the desied task is
specified in the operational space where the position and orientation of the end-effector is directly
described relatively to a reference frame attached to the fixed base of the robot. Any user-defined
coordinales system may be used in this respect. On the other hand, the sensors give information about
the robot's joints and the actuators exert forces or torques on them. Hence, the actual inputs and
oulputs of the maniputator are specified in a joint space that reflects the robot's configuration measured
by the sensors. The control unit must do some geomelric conversions before comparing the user's
objectives and the measured data. Since they also involve speeds and accelerations, they are rather
refered to as kinematics transformations.

+ Second, the controer will compute the commands to send based on compatible values of the
reference irajectory and measwes. The design of this part of the control unit relies on dynamics.

Hence, two different structures of controllers are possible according to the direction of the
conversions, as shown in Fig. 3.

Operational space control may seem more involved than joint space control since it requires thvee
blocks instead of two. However, an important contribution of this work is to show that paralie] robots are
more easily described in operational space, leading to much simpler operational space controllers

1.6.2 Control of High-Performance Manipulators.

Many of today’s industriaf robots are operated at fow speeds and the reduction ratio of their motors
is so high that nonlinear dynamics effects can be neglected and each degree-of-freedom considered as
independent. The structure of the comresponding control unit is then a two-level hierarchy where multiple
independent, single input-single output (SISO) linear controlters at the lower level each control one of the
robot’s actuators. At the upper level, reference signals and optional feedforward information is computed
and fed to each conirolfer.

Enhancing the dynamical performance of manipulators is equivalent to brodening the bandwidth of
the controfted robot, which requires to improve each of the elements in the loop. Nowadays, sensors and
electric drives meet the requirements of the modem robotics market. New articulated structures and
composite materials alow to buikd much stiffer manipulators. Today, the challenge for a robot's designer
is to improve the controlers.
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Task Space to
Joint Space
Kinematics

Control Law

Fig.3 : Joint Space Control or Operational Space Control

Effects such as couplings, Coriolis and centripetal forces that were neglected until now can no more
be ignored when controlling a fast robot. Taking them into account requires new fools from the control
theory and more computing power in the control unit. Even the logical and hardware structures of the
control unit must be changed since a hierarchical structure is not adequate when couplings are
considered.

However, the fundamental source of these nonlinearities resides in the equations of the movement
of each of the bodies composing the robot's mechanical structure. A good understanding of the
manipulator's kinematics is therefore required before its dynamics can be analyzed and a proper controller
synthetized.
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Chapter It

Manipulator Kinematics.

i.1 Introduction.

In this chapter, an approach to manipulators' kinematics is presented that differs from the one given
in most robotics textbooks such as [Spon89]. In some textbooks, parallel maniputators are considered as
special cases and quickly handled as tree—obots with closure constraints, thus avoiding some difficult real
problems [Domb88}. The aim here is to emphasize the fundamental differences between the well-known
senial robots and the less studied parallel structures. These differences have important consequences on
dynamics, control and even on the control unit's design.

Rigorous definitions and basic concepts of robotics that will be used throughout this thesis are
presented. All the corresponding symbols and notations are listed in Appendix l. The notion of
degree-of-freedom is defined in Section 11.2 and the mobility of an articulated structure in Section I1.3.
Section 11.4 shortly reviews the nature and location of the manipulator's sensors and actuators.

Manipulator structures with open kinematic chains are described in Section I1.5 and their geometric
parametrization based on Denavit-Hartenberg parameters are discussed. In Section II.6, closed
kinematic chains are introduced and the limitations of the existing parametrizations are discussed.

A new formalism for the description of parallel manipulators is introduced in Section 11.7. Within this
methodology, a very wide class of parallel manipulators is described as two tree structures connected to
each other through six simple links. This allows to classify such mechanisms and provides a systematic
way to obtain their kinematics and dynamics models.

Section |1.8 compares the form of the kinematics transformations performed by serial and parallel
mechanisms. The fundamental result of this comparison is that serial arms are more easily described by
forward kinematics relations while parallel robots have a simpler formulation using inverse kinematics.

This difference entails important consequences on the differential kinematics models that can be
obtained for serial or parallel manipulators. They are dealt with in Section 1.9, where an extensive
discussion of the Jacobian matrix of manipulators is made.
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A first application of kinematics is considered in Section 11.10. The use of inverse kinematics to
convert reference signals from operational space fo joit space is discussed. It is shown that the required
computations exhibit a different structure for paralel and serial manipulators.

As a conclusion to this chapter, the fundamental differences between serial amms and paralie!
manipulators are summarized in a comprehensive table in Section I1.11.

Il.2 Degrees of Freedom of Rigid Bodies.

The mechanical structure of a manipulator is made up of bodies connected by joints. In this work,
the bodies are considered as perfectly rigid since the robot's closed loop bandwidth is kimited below the
manipulator’s resonance frequencies (see Chapter IV).

A single free rigid body has six degrees of freedom (DOFs) since it can be translated in three
independent directions and rotated around three independent axes.

The mobility of a structure is defined as the number of independent variables that uniquely define
the position and orientation of each of its elements in space.

i1.2.1 Bodies and Joints.

A structure made of ny connected bodies has less than 6n, DOFs since constraints are
introduced by the n; Joints. The i* joint in the structure is said to be a n,~DOF joint if it akows n,
independent relative movements between the two bodies it connects.

A prismatic joint is a 1-DOF joint that akows a relative translation of the two connected bodies along
acommon axis and a revolute joint allows a relative rotation around the axis. In these cases a single joint
variable is required to specify uniquely the refative position of the two bodies.

A joint driven by an actuator is an actuated joint. Only 1-DOF actuated joints exist in practice since
motors for more complex joints are too expensive and not adequately efficient. Non-actuated joints are
called free joints.

Any joint with 1 <, <6 can be considered as a combination of revolute and prismatic joints
connecting imaginary punctual and massless bodies. However, only a subset of those joints is actually
feasible from the mechanical engineering point of view and can be applied to manipulator’s structures.
Parallel robots contain free joints made up of universal joints that allow two rotations or ball-socket joints
that allow three rotations.
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1.3 Mobility of Articulated Structures.

11.3.1 Open-Chain Structure.

When no closed path exists along the bodies of the manipulator, it has an open chain structure. By
convention, the n, bodies include the fixed base and the structure therefore contains n ;= 0,1 joints
with a total mobility of

n = Yo, (1)

Note that adding one body to such a structure implies adding exactly one joint to connect it, thus
increasing the mobility of the whole by one.

11.3.2 Closed-Chain Structure.

A way to remove degrees of freedom in a structure is to add a joint without adding a body. A closed
chain is therefore created. Joints in a closed chain are not independent: it is not possible to move a single
joint in the loop without creating a displacement of at least another one because the loop satisfies a
closure constraint. The mobility of a spatial structure is given by the Griibler formufa [Meri90],[Clavg1]

)
n, = 6(nb—nj—1)+2ni, (1.2)

where n, is the mobility of the i joint in the closed chain.

However, this formula is valid only when the structure is in a generic configuration where no
superabundant constraints place the system in an hyperstatic state. Moreover, note that Eq. 1.2 gives the
total mobility of the structure, including intemal degrees—of-freedom that may allow a body to rotate about
an axis without causing any displacement in the remaining of the structure.

11.3.3 Configuration Space and Joint Space.

For any given articulated structure, Eq. il.1 and Eq. I1.2 imply the existence of a vector containing
ng independent variables that are sufficient to characterize in a unique way the position of all the bodies.
This vector defines the robot's configuration within a configuration space C < R.".
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A manipulator should therefore have at least n, actuators on independent joints to be controliable
and at least n, measwres of independent joint variables to be observable. All the measured information
about the manipulator's configuration is therefore collected in a vector q of n q independent joint
variables. q is defined in the joint space 2 c R ™.

Hence, the robot must be designed and operated in such a way that a one-to-one mapping
A o C exists (see § 114.1).

11.3.4 Operational Space.

As defined in §1.3.4, the user's goal is fo have some task performed by the robot with its
end—effector, not with the full manipulator structure. Since the end—effector is a body in space, its position
can be specified by a vector p of 3 < n, < 6 independent variables, where n, denotes its mobility. Any
task can therefore be defined in the operational space O < R™. A np-dimensional operational
coordinates system also has to be defined. Cartesian coordinates are generally used in practice to specify
the end-effector’s position. The robot's workspace is defined as the projection of O onto the
three~dimensional Cartesian space that contains all the possible end-effector positions.

if n, = 6, the end—effector can take any orientation in the workspace. In practice, orientations are
most often described by three~dimensional Ewler angles, direction cosines or rofl, pitch and jaw angles
because of their intuitive geometrical meaning. However, these representations suffer from the existence
of singularities and modulus problems that prevent to define a one-to-one 2 & C mapping. Thisis in
fact a consequence of the non-integrability of the rotations in a three-dimensional space.
Four-dimensional Euler parameters, Olinde-Rodrigues paramelers of quaferions [Chou92) are
equivalent ways to solve these difficulties but their less intuitive signification and the over-parametrization
they introduce has restricted their use to the academic wortd.

If n, < 6, the end—effector’s position and orientation are no more independently controflable. While
this may seem to imit the use of the robot, industrial applications have shown that many tasks only require
only one DOF in orientation, or even none. In this case however, it is highly desirable that the remaining
6~ n, orientalion degrees—of-freedom of the end—effector are constant in the workspace.

11.3.5 Non-Holonomic Robots.
From Eq. ll.1 and Eq. 1.2, n,, may differ from n,.

When n <n, the robot is said to be non-holonomic: in each point of the configuration space,
additional constraints such as frictions forbid n,—n, DOFs of the end-effector, which therefore remains
controable through the n, actuators. However, the robot can not follow any trajectory in configuration
space but may nevertheless reach any configuration after some maneuvening. Mathematically, non-
integrable constraints appear between the system’s velocities.
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This is very common in mobile robotics where two independent actuators (propulsion and steering)
may be used to move the robot in a three-dimensional space (position on a surface and orientation)
thanks to the friction between the wheels and the ground. Non-holonomy is not considered further as such
since no industrial manipulator takes advantage of this idea. However, the concept helps to understand
the inverse singularities that play an important role for paraliel manipulators {see § 11.9.5).

11.3.6 Redundant Robots.

Ifn Q> M the robot is said to be redundant. When the same end-effector position and orientation
can be achieved through muttiple (even infinite) configurations, a kinematical redundancy is reached. This
property can be used fo increase the robot's ability to avoid obstacles in the workspace and to optimize a
performance criterion such as minimizing the energy spent during operation. When a closed kinematic
loop exists, a redundant robot creates interna! workless forces that can for example be used to modify the
manipulator's stiffness on pumpose [AdIi90), [Adii91], [Kokk92]. This is a dynamical redundancy.

Since the modem approach to industrialization is to simplify the production process rather than to
use expensive general tools, redundant manipulators are not common in industrial applications.
Therefore, only general holonomic and non redundant manipulators with n=n_ = n, degrees of
freedom are considered further in this work.

q

1.4 Sensors and Actuators.

11.4.1 Actuators and Position Sensors.

In an open chain mechanism, all the joints are actuated and q contains the measurements of all
the associated relative positions. One—to—one 2 «» C mappings are therefore as trivial as the identity.

In a structure with closed chains, anly n, joints are actuated and q can be defined by selecting n A
independent joint variables among the n ; joints. The mapping A ~ C can then be one-to-n,, where
n, fepresents the number of possible configurations (called assembly modes) that are characterized by
the same measured q vector. Using the knowledge of the initial configuration and considering that any
q-trajectory of the robot in 2 should be continuous while the robot is moving, this mapping can be made
one-to—one as long as singular positions (see § 11.9.2) are avoided. Formally, however, this leads to very
important and difficult problems that are not adressed in this work.

The ambiguity can also be removed by measuring extra joints. This solution has also other
advantages (see § 11.8.1) but requires additional (expensive) sensors as well as sensory fusion techniques
to solve the coherency problem between the redundant measurements.
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I practice however, the q vector always contains the measures of all actuated joint variables for
different reasons:

» 1-DOF actuators and sensors are much simpler and cheaper than multi-degrees—of-freedom
devices;
+ modern “intelligent” actuators often inchide an inlegrated sensor;

+ neglected elastic modes of the transmission or structure between actuators and sensors may lead the
controlled system to instabikity. This is known in the robotics community as the non-coflocation
problem, See [Eppi93] for a good survey on this fopic.

Physically, high-performance position sensors are generally optical incremental encoders.
Electrionic counters provide the control unit with a continuous~time (no conversion delay), digital
estimation of the position. Since absolste emors of the sensors are extremely low, the main source of
disturbances is the quantification noise which may be considered as white noise.

11.4.2 Velocity Sensors.

Most modem efectric drives include a tachometer that gives an analog measurement of the motor’s
speed. In robotics, actuators often operate in a wide range of velocities, requiring expensive
high—resolution A/D converters. Moreover, electromagnetic noise disturbs the signal at very low speeds
and filering results in unwanted negative phase shifts.

To overcome these difficulties, @ common approach is to differentiale numerically the measured
positions. However, the signalfguantification noise ratio becomes poor for low speeds where oversampling
and fiiering techniques are required [Hans88). Some research has been done on velocity observers
based on position measurements only but the quantification problem was not considered [Canu91],
[Canu92).

A new idea for further research in this area is to inverse the time elapsed between two successive
detections of increments. This gives better signalinoise ratios for low speeds but requires specific
hardware to be developed.

IL4.3 Accelerometers.

Today's integrated accelerometers are much cheaper, lighter and more accurate than before.
Acceleration measurements are required in some adaptive control schemes (see Section IV.4). They may
also be used for the control of higher onder dynamics of the robot such as joint elasticity. However,
accelerometers are able to measure only linear accelerations of bodies in the robot's structure, not the
joint’s angular accelerations. Some nontrivial extra processing has therefore to be performed to convert
the measured acceleralions to the required coordinates system.
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I1.5.1 Serial Arms.
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I1.5.3 The Denavit-Hartenberg Parametrization.

[Hart64). This method was then extended to free-robots by including only one more parameter per joint
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Afifth parameter 6, {0, 1} is often added to specify whether the joint is revolute (o; = 0),in
which case the joint variable q; is equal to @, , or prismatic (o, = 0)with q, = r;.

Since the choice of 'x is ot umqueforthe bodnes atthe forks of a tree robot, an auxiuaqans X
is introduced, which is orthogonal to both 'z and " ‘z. Therefore, two additional parameters are included
in the extended Denavit-Hartenberg paramefers for tree~robots:

¥, angle between "x and " x afound "z
+ L, distance between %y and U along "z
A graphical representation of this formalism can be found in [Domb88).
Use of Denavit-Hartenberg Parameters in Kinematics.

These parameters are introduced in n + n,_ 4 x 4 homogeneous matrices
i { R a‘p} (4)

where " “p is the position of the i* frame’s origin and " 'R the 3 x 3 matrix of the direction cosines of
its base vectors with respect to the previous a, ® frame [Paui81], [Domb88]. Such a matrix is oblained by

" ‘iT = Rot(z, y)Trans(z, LORot(x, o) Trans(x, d)Rot(z, 8, Trans(z, r)), (1.5)

where Rot(...) denotes a homogeneous matrix comesponding to a rotation around a principal axis and
Trans(...) ahomogeneous matnix of transfation along a principal axis.

Homogeneous malrices allow to describe combinations of coordinates {ransformations performed
in a sequence by a simple inner product. Considering fwo consecutive joints on a chain, the mainx

1,2

2, 33, ia
T= T T ()
defines the image of the i frame’s base vectors in the antepenultimate frame.

This property is extensively used to obtain the end-effectors’ positions as functions of the joints for
open chains mechanisms (see Section I1.8).
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1.6 Geometry of Manipulators with Closed Chains.

11.6.1 Parallelograms and 5-Bars Mechanisms.

Simple closed kinematic chains such as 5-bars-mechanisms or plane parallelograms can be found

in manipulators that have a dominant senial structure (see Fig. 6)

Fig.6 : 3-DOF Robot with a *5-bars Mechanism®

They allow to stiffen the manipulator and to reduce its inertia at the expense of a reduction of the
workspace volume. Such manipulators can be handled as serial arms as long as their loops remain in a

plane and their free joints are 1-DOF only [Spon89], [Domb88)

I.6.2 Parallel Robots.

In this work, paralie! manipulators are defined as more general structures wilh spatial multiple or
interwoven kinematic loops. They consist in sub-chains that connect the end-effector to the base, with at
least one actuator on each sub-chain that is not shared with one. Such structures generally have many
multiple-DOFs free joints{see Fig. 7)

The robot is said to be fully parallel when it consists of n, sub-chains that have the same structure
The Delta, Hexa and Speed-R-Man robots as well as Gough's and Stewart platforms belong 1o this
family. Others, like Pollard's structure [Poll38] are almaost fully parallel since only geometrical dimensions
differ between the sub-chains. Many non—fully-paraliel structures have been obtained through systematic
generation of articulated structures [Clavd1]. However, no decisive advantage of such a mechanism over

fully parallel robots could be put forward to justify the investment in developing a non-fully—parallel robot




II. Manipulator Kinematics -35- Ph. Gughieimetti

:/ S WP /
I S S SIS S S

Fig.7 : Three degrees of freedom parallel robot

I.6.3 Extension to Cooperative Robots.

Serial arms In rigid contact with thelr environment or with another robot (cooperative robots) form
closed kinematic chains. They may therefore be considered as non-fully-parallel manipulators with
dynamics redundancy since no joint is free. The redundancy makes the control of contact forces with the
environment possible, There is therefore a strong connection between some ideas developed in the
present work and results from the very active research field of cooperative robots [DaucB8a), [DaucB8b),
[Chen81), [Koiva1), [KreuBd)

11.6.4 Limitations of the Denavit-Hartenberg Formalism.

The Denavit-Hartenberg modeling approach from § 11.5.3 clearly comesponds to the physical
structure of the manipulators it has been developed for: tree—robots and serial arms

Extending this formalism to mechanisms with closed chains is difficult because it does not provide
a systematic way lo describe the closed chain's closure constraints. In other words, the standard modeling
approach based on the Denavit-Hartenberg formalism implicitly assumes that all the joints are actuated
and independent, bul a satisfactory description of parallel manipulators would require a distinction
between actuated and free joints.

Another drawback of the Denavit-Hartenberg approach is the large number of local coordinates
systems it introduces. Some methods for dynamics modeling such as the recursive Newton-Euler
aigorithms were specially developed for open chains structures and alleviate this difficulty (see § 111.7.2)
In the general case however, the multiplication of coordinates systems makes the dynamics modeling a
very tedious task
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11.6.5 Natural Coordinates.

Villalonga, Garcia de Jalon and Unda proposed fo use a unique, fixed Cartesian coordinates
system called nafural coordinales to describe a mechanism’s motion [ViMg4], [Jalo87), [Unda87). The
position of each body is specified using the Cartesian coordinates of one or two points and one or more
unitary vectors attached to it.

The points are preferably placed on joints so that different bodies can share them, and the unitary
vectors are set on the joint's axis that are of interest in the model. The generalized natural coordinates
vector w contains all the point's positions and the vectors’s directions in Cartesian coordinates. With this
representation, all the possible constraints can be specified under a quadratic (or linear) form.

As a very general method, this approach is applicable to paraliel robots. However, it suffers fromiits
generality since & does nof provide a systematic methodology for parametrizing a given structure in a
unique manner and does not exploit geometrical properties of actual manipulators. Therefore, even if
dynamic modeling using Lagrange approach or Kane's equations can greally benefit of the natural
coordinates approach, thess technigues have not been used i real-time applications yet (see
Section 111.2).

I.7 A New Formalism for Parallel Manipulators.

11.7.1 Specificities of Parallel Manipulators.

Paraltel manipulators are not general articulated mechanisms. They cbey some design constraints
that are imposed either by mechanical engineering, by performance optimization or by economic
considerations. From the analysis of existing paralel manipulators, the following common design aspects
can be identified:

»  aclualed and measured joinis are 1-DOF;

+ no more than two free joints can be found in each sub—chain from the maniputator's base to its
end-effector;

« free joints are always 1-DOF revolute joints, 2-DOF universal joints or 3-DOF ball-socket joints,
rarely prismatic.
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1.7.2 A Wide Class of Parallel Manipulators.

The new model presented below for robot manipulators with closed chains can be applied to any
non redundant (n < 6 ) structure that satisfies the two last design aspects above. The first one is a result
of economic and technical considerations that were discussed in Section 11.4 but does not restrict the class
of manipulators that can be modeled with the proposed approach.

The second assumption is required to prevent mechanical lockings that occur in a chain of free
rods. The analysis of lockings is rather involved and beyond the scope of this work but it is somewhat
related to the inverse singularities (see § 11.9.5). This restriction can therefore be understood more as a
characteristic of manipulators rather than a limiting hypothesis.

The third point is the only real limitation on the class of parallel robots that can be handled with the
proposed method. However, since the first goal of a robot manipulator is to position its end-effector, there
is a fundamental reason to avoid free prismatic joints in a robot’s structure: they prevent to transmit a
driving force along a chain. Only normal forces and torques are transmitted but normal forces are
unwanted because of the flexion stresses they create on the structure and the torques cause forsion
stresses in the structure.

Therefore, all existing spatial parallel robots include 2-DOF universal joints or 3-DOF balt-socket
Joints, and plane loops in parallelograms of 5-bars mechanisms contain only free revolute joints. To the
best of the author's knowledge, no existing parallel robot tincludes free prismatic joints in its structure.
However, very specific devices such as the Delta's telescopic fourth degree-of-freedom combine free
prismatic joints with universal joints as a torque transmission, but this mechanism can easily be modeled
as an additional DOF placed in series with the manipulator and can therefore be included using the
methodology proposed below.

To summarize, the considered class of structures is only a small subset of all the possible
articulated mechanisms but it contains all the structures that may reasonably be used to build
non-redundant parallel maniputators.

11.7.3 The Double Tree Model.
An important consequence of the design aspects from § 11.7.1 is that each sub—chain that joins a
manipulator's base to its end—effector has its actuated joints either:
* between the base and the first free joint;
+  between the two free joints,
+ between the second free joint and the end—effector.
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Fig.8 : A Fancy 6 DOFs Parallel Manipulator.

The first case is typical of the Deita and derived robots, the second of the Gough-platform-tike
structures while the third one is met when a serial structure, most often a wrist, is placed on a parallel
carrier. Fig. 8 shows a fancy parallel robot with all the passible locations of the actuators. The grayed,
6-DOFs absiract joint represents the end—effector equivalent mobility. is role is explained in § H1.6.2.

I.7.4 Equivalent Structure.

The considered class of parallet manipulators can be modeled as:
+ 2 base-free attached to the base with allts °n joints actuated and 6 connection points °P, ;
+ an upper-tree attached to the end-efiector with allits “n joints actuated and 6 connection points P, ;

+ six links that connect both trees. The i* link connects point bPi to point “Pr Each kink has a free
universal joint at one edge and a free ball-socket joint at the other edge. By convention, the universal
jointis supposed attached to the base-tree. The number of actuated joints on the kink is lni e {0,1}
since two or more joints would be redundant. Note that these joints are likely to be prismatic since a
revolute joint would cause unwanted flexion stresses on the links.

The whole structure therefore has amobility of

6
n="n+"ne h ’ni , (IL.7)

i=1

verifying the Griibler formula {Eq. 11.2).
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The double tree equivalent structure is based on the idea that each link removes one DOF of the
upper tree relatively to the base tree by introducing the constraint

("Pi-bPijz—l? =0, (n8)

where 1. is the length of the i* link, which is either a constant (when Ini = 0) oravariable depending on
the only allowed actuated joint on the link ('ni = 1). Among all the existing parallel robots listed in
Table 1, the Gough platform is the only one that uses variable-length links.

bI'l un ‘n

Pollard{Polt38). 3 0 0

Delta [Clav85). 3 0 0

Hexa {Pier91}, 6 0 0

Speed-R-Man [Rebod1] (redundant). 6 0 0

Gough [Goug2]. 0 0 1

Stewart [Stew65]. 6 0 0

2 6-DOF cooperative serial arms 106 6-"n 0

with free spherical wrist.

Fancy robot from Fig. 8. 2 1 b11100"

Table 1 : Dimensions of Typical Parallel Manipulators.

11.7.5 Real and Abstract Links.

Some parallel robots have an actual structure that can directly be mapped on the double tree model.

The proposed formalism can also be applied to more general structures where one or more of the following
situations arise:

+ The link is upside—down, with a ball-socket joint at bF’i and a universal joint at "Pi. As a convention,

its length is then simply defined with a negative sign, which does not change the constraint relation
from Eq. 11.8.

+ The link allows fess than five DOFs of the upper tree relatively to the base tree, which is the case when
it does not have a free ball-socket joint at one edge and an universal joint at the other, but more
restrictive free joints. In Table 2, all the possible combinations of rotative free joints at both ends of the
links are represented together with their equivalent realization with a real link (black) and some
immaterial abstract links (gray). The length of the abstract links have to be defined as functions of their
real link’s fength so that the triangle equalities are verified.
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o | O P PR
base Revolute: 1-DOF Universal : 2-DOFs Balt-Socket: 3-DOFs
7 or (YI

type 2

or

type -3 type 0 type 1

/©\ forbidden
type -2 type -1 {unconirolable DOF)

Table 2 : Table of Equivalent Abstract Links.

+ The Knk has a null longth, that is the base-tree is directly connected to the upper—tree. Three more
equivalent structures correspond to these situations {see Table 3)

"

type 4

Table 3 : Null Length Equivalent Abstract Links.
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11.7.6 Geometric Parametrization.

With the conventions above, the geometry of any parallel manipulator is completely specified by:
« the extended Denavit-Hartenberg parameters of its base-tree;
« the extended Denavit-Hartenberg parameters of its upper-tree,
+ the type and signed length of its real links.
Since the integer numbers bn, “n and ]“i are small in practice (see Table 1), the double—tree
model is degenerated in most practical cases and it is therefore much easier to handle than one can

expect from its formal definition. As an example, the case of the Delta robot is extensively discussed in
Chapter V.

I1.8 Coordinates Transformations.

11.8.1 Forward Kinematics.

The forward kinematics mapping defined by the function

450

(119)
q-p = f(q)

gives the position and orientation of the end—effector in the operational coordinates system given the
manipulator's configuration, which is supposed to be uniguely obtainable from the position sensors.

Easy for Open Chains.

The composition of the transformations generated along a chain is obtained by multiplying the
i, a,
homogeneous matrices T (see Eq. I1.5):

"’I'OT - n+l,0R(q) n+|,0p(q)
0 1
I,OT(QI)'Z' lT(qz).”n.n—IT(qn).n¢l,nT , (11.10)

n+l

H ii- lT(qi)

i=1

from which f can be easily extracted.
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Considening Eq. II. 5 the only nonlinear functions that appear m T are sines and cosines of q,
when the joint is revolule T is therefore a smooth (infinitely many times differentiable) function of q .
f is therefore also smooth since it is made of products and sums of smooth functions (Eq. if.10).

Note that the modeling process above can automatically be performed using symbolic computation
packages such as Mathematica™. This process is based on the recumrence Eq. I1.6; therefore, the
algorithm has the same structure as the manipulator itself: sequential for a serial arm or recursive for a
tree-robot.

Difficult for Closed Chains.

Neither such systematic approach nor general results about the form of f(q) exist for
manipulators with closed chains. Geometncally, each P point of the double-tree model lays on a sphere
of radius 1, centered on the corresponding P point. Once q is fixed, these six spheres as well as the
distances between the P. 's are known. The problem is then to find the six Pl points.

Merlet {Meri90] showed that the solution is given by a root of a polynomial of high degree (40). This
number has very recently been reduced to 24. Each root corvesponds to a different configuration of the
structure that is characterized by the same vector q . For plane 3-DOF's paralie! manipulators such as the
ohe represented in Fig. 7, the degree of the polynomial can be as high as 6. However, classes of such
manipulators can be defined for which it is lower than five, thus allowing to obtain f in closed~form
[LeeGBE), [LeeK83a), {Goss91).

Simitarly, for spatial structures the degree is reduced when the manipulator’s geometry is simpified
by considering superimposed free joints and/or equal lengths of some bodies. In this respect, the Delta
robot may be considered as an extremely simplified spatial manipulator for which the degree is as low as
two and therefore allows f to be obtained in closed form. Hervé {Hervd1] showed that only one other
structure exists with such a nice property.

In general, f (q) must therefore be compuled numerically. A Newton-Raphson-based algorithm
that uses inverse kinematics relations and the Jacobian matrix is detailed in § 11.9.6.

Another approach would be to use additional position measwements from additional sensors
placed on some free joints. However, sensory firsion techniques are required fo solve the coherency
problem between the redundant measurements and to avoid non—collocation problems in control. In any
case, it is important to note that a one-to-one mapping 2 «> C can only be obtained for a parallel
manipulator when additional information is available about ks assembly atode to select the proper solution
from the set of possible ones.
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11.8.2 Inverse Kinematics.

The inverse kinematics mapping is defined by the function

0~

L (.11)
p—a=1f (p
Difficult for Open Chains.
Obtaining
a="f"(p) (1.12)

involves solving the nonlinear system of equations from Eq. 11.9.

This system has a closed form solution only when the robot has less than 6 DOFs, or when a
6-degrees—of-freedom chain contains three consecutive prismatic joints or three revolute joints with
convergent axis [Domb88]. All the current industrial robots are built to meet one of these conditions:
Cartesian robots meet the first one and other 6-DOFs manipulators include a spherical wrist to satisfy the
latter.

In these cases, a closed-form of ! canbe obtained, which contains inverse circular functions of
quotients and square roots [Domb88]. Note that these functions are not smooth, but may be considered
as such in the robot's workspace, where both f and f'I are one-to-one.

Simpler for Closed Chains.

For parallel manipulators, the inverse kinematics problem is brought back to the serial case since
each sub-chain that joins the manipulator base to its end-effector may be handled as an open chain with
no more than five DOFs. Moreover,

+ since free joints in these chains are often universal joints or ball-socket joints, many
Denavit-Hartenberg parameters of the sub-chains are equal to zero and computations are much
simplified;

+ only actuated joints are of interest, there is no need to compute anything about the free joints;

+ elements of ! (p) that correspond to different sub—chains are independent.

Therefore, computing the inverse kinematics of a n -DOFs parallel robot is much less complicated

than for a n -DOFs serial arm. Moreover, the structure of the algorithm is intrinsically parallel, which allows
to implement efficiently the algorithm on a muitiprocessor control unit.
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1.9 Differential Kinematics: the Jacobian and its Inverse.

1.9.1 The Jacobian Matrix of Open Chain Mechanisms.
Differentiating Eq. 1.9 yields
dp = J(q) - dq, {1.13)

where J is the Jacobian malrix defined by its generic element

_ % _ @ (11.14)

The Jacobian of serial manipulators can be obtained in a closed form by applying Eq. 11.14 fo the
general formulation of f (q) presented in § 11.9.1. Since the form of f is known, the elements of J can
only contain circular functions of q . For this reason, the Jacobian of seriat manipwlators is smooth and
bounded. lts importance in kinematics appears when the time derivaive of joint and operationat positions
is considered:

p=1@)-4q. (11.15)

11.9.2 Singularities in the Jacobian.

The Jacobian matrix becomes singular at certain manipulator configurations. In these cases, some
directions of the end-efiector's movements are lost since displacements caused by the joints are no more
independent. This happens mainly at the workspace boundary, but also for some positions in the
workspace itself, for example when the end-effector kies on a revolute joint's axis.

This situation can also be understood as a loss of mobility of the end-effector, resulting in a tocal
redundancy of the robot. When the robot is operated close fo these singularities, one may apply
pseudo-inverse-based strategies developed for redundant manipulators [Colb91].

11.9.3 The Inverse Jacobian Matrix of Open Chain Mechanisms.

The inverse Jacobian matrix can be defined by its generic element:

-1 _ 99 ¥ ip) . (1.16)

This matrix is unbounded since the forward Jacobian may become singular for certain manipulator
configurations.
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Since all industrial seriat arms have a closed form inverse kinematics relation q = f - (p) , their
inverse Jacobian can either be obtained using Eq. I1.16 or by inverting their forward Jacaobian. In practice,
the latter solution is often preferred and the inverse Jacobian is therefore written as a function of the joint
space variables q . The kinematics relation Eq. I1.15 is then written as

i='@-p (1.17)

Note that 1~ is unbounded, but regular since J is bounded. Formally, J ~! contains non-smooth
functions. However, from an intuitive point of view, it can be considered as smooth in the usable restricted
workspace where its elements remain real and bounded.

11.9.4 The Inverse Jacobian of Parallel Manipulators.

For parallel manipulators, the inverse Jacobian matrix is derived from Eq. 11.16 since the inverse
kinematic relation f'l(p) is well defined while f (q) is rot. The kinematic relation between velocities in
operational space and joint space takes a form which is slightly different from Eq. H.17 since the inverse
Jacobian is now parametrized by operational space variables:

g=1"'®p. (11.18)

From a practical point of view, the independence of the sub~chains may be expioited here again to
compute independent lines of ona multipracessor control unit.

11.9.5 Inverse Singularities.

An amazing property of the inverse Jacobian of manipulators with closed kinematic chains is that it
may become singular at some configurations. In this work, such configurations are called inverse
singularities to distinguish them from the Jacobian’ singularities described in § 11.9.2.

in these configurations, some of the actuators have no more independent action on the manipulator
or, in other words, the elements of § are no more independent. The robot is then not controllable any more
since the actuators can no more move the end-effector along certain directions.

However, contrarily to the case of mobile robots described in § 11.3.5, the friction constraints in a
manipulator's structure are generally not strong enough to prevent an actual displacement of the
end-effector to occur along the forbidden directions. In those configurations, the robot becomes
uncontrollable since some displacements of the end effector are possible without any action on the
actuators. The robot's state may even become unobservable when only actuated joint variables are
measured.
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The inverse Jacobian may become singular inside of the workspace. This singularity is known to
occur when at least three links of the double tree model become parallel or coplanar. A very chalienging
problem is o find all these configurations for a given manipulator structure. Searching for the roots of the
inverse Jacobian's determinant is a very tedious task, even with intensive use symbolic computafion
packages such as Mathematica™. However, some results were obtained for Gough's platform structures
using advanced mathematical tools such as Pliicker’s lines and Grassmann geometry [Meri89).

An even more important question is: *How to design a paralie! robot such that its inverse
singularities are oulside a given workspace?” (Clavel, 1993, personal communication]. While some
numerical results about the geometry of Gough's platforms were obtained [MaO91], the general problem
is much more difficull when the structure itself has to be determined with its assembly mode and
associated joint space.

11.9.6 Jacobian of Paralle} Robots.

Since f has no closed form, it is definitely impossible to obtain a closed form of the Jacobian of a
general paralie! manipulator as a function of the joint position q. The only way to analyticalty obtain it is
toinvert the manipulator's inverse Jacobian and therefore oblain it as a function of the operational position
p:

ip = el (1.19)

Contrarily to serial amms, the Jacobian matrix of a paraliel manipulator is unbounded for some
values, since the inverse Jacobian may become singular; this has very important consequences in
dynamics (see Chapler IlI).

For practical applications, no other choice is left than numerically inverting 7! (p) ifthe Jacobian
matrix is required in a parallel robot's control unit because the closed form is too complicated to allow an
efficient implementation.
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Application to Forward Position Kinematics.

The basic idea is to start from the measured q, an initial approximation of p denoted 0p and the
Jacobian matrix °J and to compute

B
N=]
!
~ -
—_—
<
|
o

o= 'p+* 14 (11.20)

for k = 1,2, ... until adesired precision is reached, for example when

Ag<eE, {I1.21)
where € is given by the resolution of the joint position sensors.

The re-evaluation of the Jacobian in the last line of Eq.11.20 is in fact necessary only when
elements of °J are so close to zero that sign changes may be suspected. In practice, the p and J
obtained during the previous sampling interval can be used as inital values. Since the robot is supposed
to move only a little during a sampling interval, three or four iterations are usually enough to reach the
precision criterion defined in Eq. 11.21.

11.8.7 Extended Jacobian Matrix and Absolute Accuracy.

A common problem for the designer of a manipulator is to obtain the maximal error on the
end-effector’s position as a function of the tolerances on all the mechanical parts. This is known as the
absolute accuracy problem.

When all the nominal dimensions are included in an extended joint position vector g that also
contains the articutated joint variables q, one can obtain an extended forward kinematic refation

p=1(@.peO (11.22)

An extended Jacobian can then be obtained as

op; _ k(@

W e o

(1123)

The maximal error of the end—effector’s position along the i* dimension of the operational space is
then given by

max (3p,) = max(J(§ - 89) . (11.24)



Modet-Based Control of Paraliel Robots: -48- aGlobai Approach in Operational Space.

The problem is not rivial since the maximization should be performed over the complete joint space
and for aK the possible 3G vectors that contain combinations of the negative and positive maximal
tolerances of each dimension. For serial robots however, the problem is made easier since the
boundedness and smoothness properties of the Jacobian matrix ¢an be exploited.

The absolute accuracy problem is much more involved for paraliel manipulators, for which none of
these advantages holds. First, the extended inverse Jacobian only has a closed form when each
sub~chain is parametrized by at most six elements of §:

- -1
%; o ( 125)

-l,,____ .
’ "o T opy

Second, if J-! is rectangular, the exiended Jacobian can only be oblained through a
pseudo—nversion, which lacks a physical significance.

Therefore, it is easier to address the problem from a reversed point of view: find the mechanical
folerances that guarantee a given maximal end—effector position error using the relation

max (83) = max(l"@ : s,-,). (1.26)

A very annoying consequence appears : at the inverse singulariies, the slightest mechanical error
is ampiified and causes very large errors of the end—effector’s position. Hence, the solution of the absolute
precision problem for paralie! robots depends on the definition of a restricted workspace in which the
maximization has to be performed.

11.9.8 Acceleration Kinematics.
For Open Chain Structure.

Differentiating £q. 1114 with respect to time gives the generic element of the time derivative of the
Jacobian matnx

) L _d@ 54 _ o @
hi@ = G300 = g @) - a?[ 2 3, %) 2

Nk=1

Similarly,

-t
-1 . ol w o (®
T (p.p) = ——( —— . p ) (11.28)
dp; E, dp, K
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Differentiating £q. I1.17 gives the acceleration of the end—effector

b =73 -4+3(q.4d -q. (11.29)

An inverse relation can be obtained from Eq. 11.29 at the expense of the manipulator's Jacobian
inversion, which is in practice computed numerically:

§=7"@- p-Jgd dl. (11.30)
Structures with Closed Chain.

Differentiating Eq. 1. 18 with respect to time gives the accelerations of the joints

q=7"@ 5+ .9 p. (11.31)

Through numerical inversion of the inverse Jacobian matrix, a direct relation can be obtained:

p=3[4-T " 0.p ). (1.32)



Mode!-Based Contsol of Parallel Rabots: -50- a Global Approach in Operational Space.

I.10 Desired Task and Generation of Reference Signals.

H.10.1 Task Description.

In Chapter I, the task was defined from a very general point of view, without any reference to time.
In this work, the considered tasks are paths defined in the n—dimensional operational space that the
robot's end-effector should track as closely as possible. The user is supposed to define the path’s
geometry as a function p, (s) of the curvilinear abscissa s and to specify its length s,

11.10.2 The Profile Function.

The reference signals generation requires o introduce a profile function s (t) for 0 <t <t, such
thats (0) = 0 ands(t;) = s, that gives the curvilinear abscissa as a function of time:

PO = pc(s)Lm for0gtsy,

NN e

B0 = a—spc(S) ‘o $(9),

p.V = azP (s) -$2(t) +-‘1p (s) -5(Y). (11.33)
¢ Js Fe s( ds ¢ s (1)

In most robotics apphcations, the profile function is not of interest for the user, who only requires
some constraints on velocities and accelerations to be respected. ideally, the profile function should be
automatically determined in order to minimize the task’s duration under the specified constraints [Bobr88).

However, none of the existing results allows to perform this optimization in real-time, which limits
their use to the case of very repelitive tasks. An attraclive idea is to consider the robot as constrained on
the trajectory, in which case its kinematics and dynamics can be written as functions of the cunvlinear
absciss only [Dahi92]. In this case, the complete robot control problem becomes SISO and on-line
travel-time minimization techniques could be developed [Da90]. In this work, since the paths to be
tracked are not supposed to be known in advance, fixed profile functions are used.

11.10.3 Conversion fo Joint Space.

When a joint space controd strategy is chosen (see § 1.6.1), conversion of the reference signals into
joint space is required and the inverse kinematics relations are used for this purpose.

However, it is a common habit in practice to implement only Eq. I1.11 to convert the reference
positions and then fo use numeric differentiation routines to oblain velocities and accelerations. In this
case, it is no more useful to compute Eq. I.17 and Eq. 11.30. This shortcut in the reference generation
result in a damaging of the signals’ quality since numerical emrors in the implementation of the position
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inverse kinematic relation Eq. 111 are amplified by the numerical differentiation. Such errors are non
negligible since inverse circular functions are involved in the f-! function. They may however be reduced
by using a high—precision representation of the real numbers in the control unit [Codourey, personal
communication, 1991]. Nevertheless, this shortcut should be avoided in high-performance robot control
since the reference acceleration signal plays a crucial role in the feediorward control generation (see
Chapter IV)

Different Schemes for Serial and Parallel Manipulators.

For a serial arm, the complele reference conversion algorithm should compute Eq. I1.11, Eq. IL17
and Eq. 11,30 according to the scheme In Fig. 9a. Note that the parameters of each block are indicated by

Fig.9 : Conversion of Reference Signals

grayed arrows. The corresponding flow of data is sequential: q_ musl be available in order to compute
J-1 and 4_ is required before I can be evaluated.

For a parallel manipulator, the scheme is different since Eq. I1.11, Eq. 11.18 and Eqg. 11.31 are used
The resulting scheme is given in Fig. 9b. In this case, the flow of daa is intrinsically parallel: almost all the
computations can be performed simultaneously
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.11 Conclusions.

The differences between parallel and serial manipulators and their kinematics models are

summarized in Table 4 below.
Serial arms. Paralel manipufators.
All joints measured. Yes. No.
Al joints actuated. Yes. No.
Systematic description of the §  Yes, Denavit-Hartenberg. New!
structure. ‘Double-Tree” model
fromSection I1.7.
Forward kinematics. Yes, easy. No general closed-form
solution. Numerical
algorithms in practice.
Inverse kinematics. No general solution, Yes,
yes in practical cases. easy in practice.

Jacobian matrix J

Function of q, easy to obain

Function of p, no usable

in closed form. closed form, obtained by
Bounded. inversion of J-1.
Jacobian singularities. Yes. Yes.
Robot becomes redundant.
Inverse Jacobian J-t Function of q.. Complicated | Function of p, easy to obtain
closed form., in closed form.
J-1 singularities. No. Yes.
Robot looses its stiffness.
Structure of the reference Sequential. Parallel.
signals conversion algorithm.

Table 4 : Comparalive Kinematics: Serial versus Paralle) Structures.

The advantages of serial ams rely on their very simple strucfure where each joint is both measured
and actuated. Their kinematics is then easily described using forward relations, where the commesponding
algorithms have an intrinsically sequential structure. Paraliel manipulators require a different modeling

approach which is based on inverse kinematics relations, with algorithms that exhibit a fundamentally
paraliel nature.
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Chapter (Il

Manipulator Dynamics.

.1 Introduction.

The dynamics of ideally rigid and frictionless manipulators are considered in this Chapter. As in the
previous one, special attention is paid to the differences between serial and parallel mechanisms. The
various approaches to the problem of modeling the dynamics of a system of rigid bodies are first
introduced in Section Ill.2. Their field of application in robotics is also mentioned.

Energy based methods are introduced in Section [I.3 with the principle of virtual work. Their
application to manipulators shows the key importance of the Jacobian matrix in dynamics. As a first
consequence of this fact, it is shown that paralle! manipulators may not be as stiff as they are often
regarded.

The Lagrange approach to dynamics is presented in Section 111.4 as a general method that explicitly
considers constraints and allows dynamics' analysis. The specific case of open chain mechanisms is dealt
with in Section II1.5 to introduce the concepts of inverse dynamics models in both joint space and
operational space.

In Section 1116, dynamics of parallel manipulators are discussed. It is shown that the elimination of
Lagrange multipliers is equivalent to solving a linear system of equations where the system’s matrix is the
manipulator’s inverse Jacobian. Next, a new formulation of the inverse dynamic model of a paralle] robot
is developed, based on the double tree model. The resulting dynamics model is called *in the two spaces”.

Algorithms to compute efficiently inverse dynamics models of manipulators are considered in
Section 1I1.7. First, the well-known Newton-Euler algorithm for tree robots is reminded and extended to
perform some useful kinematics computations. Then, a new algorithm is developed to evaluate
systematically the inverse dynamics model of any parallel robot described by the double-tree kinematics
model. fts complexity is shown to be of the same order of magnitude as the standard algorithm for
open~chain manipulators.
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In Section lL.8, a general formulation of the dynamics of all types of manipulators is derived from
the model in the two spaces. It is an inverse dynamics model in operational space only. Some important
properties of the dynamics of paraliel robots are then established. The most important result is that passive
mappings can be determined only locally. Then a comparison is made between dynamics of serial arms
and paraiiel robots. The common belief that paralief robots have lower inertia than serial ams is shown to
be unjustified if the restricted workspace of the robot is not comectly defined.

Finally, the original contributions discussed in this chapter are summed up in Section 111.9.

lil.2 Rigid Body Dynamics: an Overview.

Over the two past centuries, many methods of formulating the dynamics equations of systems of
rigid bodies have been developed. They can be classified as either Newton-Euler or energy methods. The
latter include Lagrange, Hamifton, and Kane’s equations [Kane85) as well as more recent results based
on screw theory [Penn92],[PeteS2] or motor algebra [Sugid7),[Sugi89). They alt eliminate the need to
identify the constraint forces and therefore somewhat rely on the very fundamental principfe of virtual work
detailed in Section I11.3.

H1.2.1 Newton-Euler for Control.

In the Newton~Euler approach, all forces applied to a rigid body are identified and set equal to the
inerial forces. s main drawback is the descriplion of constraint forces which, especially in
three-dimensional problems, becomes a tedious task.

For model-based control, an inverse dynamics mode! of the robot should be obtained fo compute
the actuator forces and forques from the desired acceleration, given the robot's state that contains
positions and velocities. The Newton—Euler method provides such models that can be computed very
efficiently for open—chain structures. This standard algorithm is reviewed in § 111.7.2 since # is used in the
new algorithm for the computation of the inverse dynamics model of paraliel robots proposed in § 11.7.4.

14.2.2 Lagrange for Analysis and Control.

A Variational Approach.

Lagrangian mechanics is certainly the most popular energy-based approach. Kinetic and potential
energies are specified and variational calculus is used to determine the dynamic equations of motion. The
constraints are eliminated through minimization of a definke integral using Lagrange multipliers. This has
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often been considered as a major drawback of the approach since Lagrange multipliers have no physicat
meaning in the general case. However, itis shown in Section 111.6 that a very interesting physical meaning
can nevertheless be found and used when parallel robots are considered.

A Tool for Analysis.

Itis undisputed that Lagrange and Hamilton approaches are fundamental tools for dynamic analysis
of mechanical systems. Once the rather abstract modeling process is finished, the resulting inverse
dynamic model may be putin a very compact symbolic form. Mareover, the model is physically meaningful
since geometrical dimensions and inertial parameters explicitly appear in the formulation together with
positions, velocities and acceleration (or momenta) variables.

An Efficient Approach to Model-Based Control.

On the contrary, the use of the inverse dynamics model obtained through this method for the model-
based contro! has been much debated. For serial anms, it has been recently been proved to be as efficient
as the algorithms based on the Newton—Euler approach (see § I11.7.2). For parallel manipulators, no
quantitative comparison has yet been published, but the elimination of Lagrange multipiiers was
commonly considered as a poorly efficient method. The result from Section lIl.6 below shows that this
opinion is unjustified when one considers that kinematics relations have any way to be included in the
controller.

l1l.2.3 Modern Theory and Simulation.

Modem approaches such as Kane's equations [Kane85) are based on the principle of virtual works;
they have been developed to alleviate problems met with the variational approach. These methods
provide a way to visualize externally applied forces, but they also require the differentiation of constraint
functions, which are not given any geometric significance. More recent techniques based on the screw
theory [Penn92],[Pete92) or on the motor algebra {Sugi87],[Sugi89) rather multiply the constraints by an
orthogonal complement [Ange88] to eliminate them. They are indeed appropriate to model large, complex
mechanisms. However, they do not exploit the specificities that distinguish an actual parallel manipulator
from a general articulated structure and therefore lack the analytical advantages of the variational
approaches. Moreover, Kane's approach requires a numerical integration of the constraint equations in
the general case, explaining probably why no model based-control has been implemented using this
method. However, early results such as Ait-Ahmed's thesis [Ait93] contribute to reduce these drawbacks.

Simulation Techniques.

For simulation purposes, a forward dynamic model of the manipulator should be available to
compute the manipulator's positions, velocities and accelerations comesponding to given actuator torques
and forces. Such models can be derived from inverse models using the compostte rigid body method of
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Watker and Orin [Walk82]. Featherstone [Feat87] proposed the articulated body method as a better
conditioned, more efficient alemative. Again, these methods implicitly use the serial structure of traditional
robot arms and may not be appilied to paraltel manipulators without extra care.

Today, the most widely used approach in simulation is based on Kane’s equations expressed in
nalural coordinates (see § 11.6.5). Simulation software packages such as Mechanica™ use symbolic
computations to build models with this technique and numerically integrating them using sophisticated
algosithms,

I3 Virtual Work Principle.

A very fundamental result in mechanics is the principle of virtual work of d'Alembert. One of its
consequence is that the virtual works of any set of generakized forces system that causes the same virfua/
displacement of the structure are equal. Virtual displacements differ from actual displacements in that they
must only satisfy the structure’s geometry and no other law of motion: the principle does not refer to any
geometric or inertial parameter and may therefore be considered as the fundamental connection between
dynamics and kinematics.

Since any generalized forces system can be used, the equality of the virtual works associated to
the the two coordinates systems of interest in robotics yields:
t7.3q = vT- 3p, (1)

where 1 is the forceftorque vector that corresponds to joint space virtual displacement 8q and v can be
thought of as forces/torques applied on the robot’s end-effector that cause the 3p virtual displacement in
operational space.

When the differential kinematics relation from Eq. 11.13 is introduced i Eq. lil.1, the importance of
the Jacobian matrix in dynamics clearly appears in a very fundamental relation in robot dynamics since it
holds for any structure:

t=JT.v (.2)
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I1.3.1 Application to Static Stiffness Determination.

As a first application of Eq. llf.2, the stiffness of a manipulator is discussed. The actuators are
supposed rigidly fixed, maintaining the robot in a constant configuration. A force v applied on the
end-effector causes a small deplacement 8p of it such that

v=K-8, (n3)

where K is the manipulator's stiffness matrix as seen from the end-effector, which depends on the
configuration.

It is assumed here that all the flexibility in the structure may be modeled as linear springs at the
actuated joints by

1, =k ,5q,i= l.n. (11.4)

This assumption is realistic as long as the deformations of the bodies in the structure are small,
which allows a first order approximation to be valid.

Using Eq. 1116, Eq. 1.2, Eq. JIL.3 and Eq. 111.4, the stiffness matrix is given by

K=1". a7t (In5)

Parallel robots are often considered stiffer than serial robots because their k. ; constants are much
higher because some bodies in their structure are stressed in traction and compression rather than flexion.
However, Eq. )II.5 shows that parallel robots have a structural fundamental drawback since K becomes
singular at the inverse singularities, indicating that the robot's stiffness is completely lost (see § 11.9.5).

This is discussed in § V.4.2 where the Delta’s workspace is defined as the subspace of Othatis
*far enough” from the inverse singularities to guarantee a minimal stiffness.
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lIl.4 Lagrange Method.

I4.4.1 A Very General Approach.

The most used approach of modeling articulated mechanical structures is based on the Lagrangian
e = ey —ep Where ey is the system’s kinetic energy, and e, (w) s ils pofential energy. w is any
m -dimensional vector of generalized coordinates that allow to specify the structure’s dynamics sfate in
an unique manner.

The i* generalized force that should be applied on the structure is given by

e
G = (i%(g\%]— (BT-2) dori = 1..n. ne)

Since the structure has only a mobiity n <m, n components of the generalized coordinates are
independent. Therefore only n generalized forces from ¢ can be exerted on the structure, the others
being set to zero. The nonzero elements of ¢ are grouped in the T vector of forces and torques that are
apphied on the manipulator through the n actuators.

Furthermore, m — n independent constraints between the m generalized coordinates can be
written under the form:

bw) =0,i=1.m-n, n.7)

and the (m - n) x m matnx B of the partial derivatives of the constraints obtained as
BA). = T,iori =l.m-n,j=1.m. (n.s)

Hence, Eq. Ill.6 can be viewed as a linear system of m equations with m unknown variables
{7, 1} , the veclor A grouping the m — n Lagrange muttipliers.

General Form of the Dynamics Equation.

The kinetic energy is a quadratic function of the generalized velocities of the form
. | R
ex(w, W) = 5 (WT- A (W) - W), (m.9)

where A(w) is a m xm symmetnc and positive definite matrix.
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Since the potential energy is independent of the velocities, Eq. I11.6 is a nonlinear differential
algebraic equation of the second order

g = A(W) W4T (w) -w-w+g(w)-(BT-%) (111.10)
d
where g (w) isthe vector with g; = éfwﬁ and I is a tensor containing the Christoffel symbols
i
1 aAk‘j aAk_i aAi,j
Lk = i[a_wl +37,~ -a—wk . (N.11)

To avoid introducing tensor calculus, Eq. [11.10 is usually written under the purely matrix form

g = A(w) W+ C(w, W) -w+g(w)— (BT.- Q) (n.12)

where C is a m x m matrix defined by its general element

Cij= Xl ¥ (1.13)
k=1

lIl.4.2 Physical Parameters.

The general form of the dynamics from Eq. lI.10 has the important property of being linear in the
paramelers [Spon89), i.e. it can be written as

T=Y(wW,W,W) - 0o, (I11.14)

where ¢ is a vector of n, expressions containing only geometric and inertial parameters of the
manipulatorand Y isa n x n, miatrix of functions of w, w, w only.

it should be stressed that this parametrization is not unique: it is possible to find many {¢@, Y}
pairs that satisfy Eq. I11.14. Khosla [Khos89a) showed that the number of independent parameters of ¢ is
always larger than the number of physical parameters of the manipulator . It is therefore impossible to
identify each of them independently, and this has important consequences in adaptive control (see
§1v.3.6).

Geometrical parameters such as lengths and radii are known with an extreme precision from the
design stage and masses can be measured before assembling the manipulator. Only inertia momentums
are possibly unknown and may therefore require an offline identification procedure. All these parameters
can then be considered as constant during the manipulator’s lifetime. However, when the robot carries
varying loads as in pick & place tasks, the quickly varying mass of the carried load affects most of the
elements of ¢.
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lIl.5 Open Chain Manipulators.

I1.5.1 Inverse Dynamics Model.

Since the kinetic energy and the potential energy of serial arms and tree—robots can be written as
functions of the g, g joint variables only, the generalized coordinates can be chosenas w = q. m is
then equal fo n and since no constraints on the generalized coordinates appear, the dynamics equation
of serial arms reduces to

7= A(q9) - §+°C(q.9) -4+ (q). (.15)

Eq. NI15 is an inverse dynamics model since it gives the input torquesforces © fo apply to the
structure as functions of the output acceleration ¢. Through inversion of A (q) , Eq. 1115 can be
transformed in a direct model under the state-space representation that is customary in control theory. In
this context, g and  clearly appear as the manipulator's sfate vanables. The state-space representation
is not used in robotics since analysis and model-based control are much easier wath the inverse model
from Eq. IL15.

The Inertia Matrix.

A (q) is known as the manipulator’s inertia matrix. It contains inertias on its diagonat and the
non-diagonal terms hold cross-inertias that reflect the couplings between the structure's
degrees—of-freedom.

Quadratic Forces.

The expression C (q,4) -q describes the so—called quadratic forces since products of
generatized velocities are involved. Terms that contain a g2 comespond to centripetal forces and those
with a 9q; for i  j denote Coriolis effects. C (q, §) is often caed the quadratic forces matnix.

Gravity Forces.

Finally, the g (q) vecior usualty describes the effects of the gravity on the structure. Note thak this
term can be included in the previous ones by considering the base of the robot as uniformly accelerated.
This is implicitly the case in the Newfon-Euler approach.

A Very important Property: Passivity.

From Eq. .11 and Eq. .13, one can observe that % q) - 2°C(q,q) is skew-symmeiric
[Orte89). This leads to a very important property of the dynamics of serial manipulators known as passivity,
which has extensively been used in the design of robust controlers as well as in the proofs of convergence
of adaptive schemes (see § 1V.5.3). This property is shown to hold afso for paralle! manipulators in § i1.8.2
and its physical meaning is discussed in § 111.8.3.



11l. Manipulator Dynamics. -61- Ph. Guglietmetti

111.5.2 Formulation of the Model in Operational Space.

As defined in § 1.3.1, a robot manipulator is supposed to perform a task with its end—effector. One
may therefore feel disconcerted by the model from Eq. 1115 where no reference to operational space is
made. Since the task and performance criteria are specified in operational space and the input torques/
forces are appiied at the joints, inverse kinematics clearly must appear somewhere in a dynamics model
that describes the input-output behavior from the user point of view. Introducing the inverse kinematics
relations Eq. 11.15 and Eq. [1.30 in the inverse dynamics model in joint space Eq. I11.15 yields

t=9A(q) - 3@ [p-¥q, 9 I'@pl] +°C(q,d) - I @p+g(Q). (11L.16)

The various matrices in Eq. I1.16 are functions of the manipulator’s state {q, 4} . Eq. 11.12 and
Eq. 11.17 can then be used to substitute operational state variables {p, p} forthe parameters if Eq. [1.11
is one-to-one in the considered workspace. This parameter substitution is indicated by a prime symbol in
the following developments. Note that any matrix with a prime has the same numerical value as the
original matrix for a given manipulator state given by a {position, velocity} pair, but their symbolic
representation differs. The resulting inverse dynamics model is then

T=M(p) - +D(p,p)-p+h(p), (11.17)
with

M(p) = SA'(p) - J-p) = A (f1(q)) - I-'(E-' (@), (1.18)
D(p.p) = ‘A" (p) - J-Yp, p)+°C (p,p) - I-'(p) (1.19)
h(p) = g@. (In.20)

Note that the manipulator's state is now defined in operational space as {p, p} .

The M (p) is a pseudo-inertia matrix since the (i, j) ' element contains the projection of the
manipulator's inertia along the i* dimension of operational space on the j* actuator. For simitar reasons,
the D (p, p) matrix is a pseudo-quadratic forces matrix.

Itis important to realize that the formulations in joint space (see Eq. 111.15) and in operational space
(see Eq. I1I.17) are absolutely equivalent from the dynamics paint of view as long as the kinematic
mapping f is one—to-one, or in other words, as long as the Jacobian remains regular. The difference
between both formulations is mainly that the joint space formulation describes the manipufator's motion
using easily measurable state variables while the operational space model is more related to the
end—effector's motion in the user—defined reference coordinates system.
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The latter formulation of the dynamics was first proposed by Khatib in 1930 [Khat80) to modet also
confact forces between the end-effector and the environment. An important contribution of this work is to
show that this formulation is also well suited to analyze and control parallel manipulators.

1Il.6 Parallel Manipulators.

14.6.1 Relation between the Lagrange Multipliers and the Jacobian Matrix.

In early attempts to model manipulators with closed chains, the structure is described as a single
tree with closure constraints. Two distinct approaches to solve the constraints have been proposed:

+ Nakamura and Ghodoussi introduced the Jacobian of the free joints with respect to the actuated ones
[Naka89). The motion of the free joints is therefore explicitly considered, which makes this approach
well suiled for simulation (see § I11.2.3). Kokkinis and Stoughton [Kokk91b) showed its equivalence with
the orthogonal complement formulation from Angeles and Lee fAnge88).

+  Luh and Zheng [Luh85] and Kleinfinger and Khai [KleiB6] simuftaneously proposed identical solutions
based on Lagrange multipliers. This approach is now very popular [Feat87), [Domb88), [Kreu88),
[Mili92). However, these authors did not realize the equivalence of the Lagrange multiptiers’ eNmination
with the computation of the manipulator’s Jacobian matrix that is established below.

Other approaches have been proposed for special cases such as Gough's platiorms by Do [Do88},
Geng [Geng92], Hekinski [Hel90], Ji [Ji93], Liu et al. [Li91], [Liu33] and also on paraliel wrists by Cox
{Cox89] or FujimotofFuji91}.

Generalized Coordinates.

Since the relation p = f(q) is not known in closed~form (if it exists...) for a general parael
manipulator, the kinetic and potential energy of the body that carries the end-effector can not be wriiten
as closed-form functions of the joint space positions q and velocities § (see § 11.8.1). This is the case for
all the bodies composing the robot's upper-tree and the links.
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Therefore, it is proposed here that choosing w = {9;---9, Py---p,} as the vector of
generalized coordinates makes it possible to develop an inverse dynamics model of any parallef
manipulator in a very systematic manner because the n constraints can be written under the very
standard form

.
bj(w) = q]"‘fj p)=0 (.21}

since the inverse kinematics relations Eq. Il.11 are known and avaflable in closed form. Therefore, the
inverse Jacobian matrix explicitely appears in tthe B matrix of the constraints that results from Eq. 1.8

B = [1 [_,—l]. (1.22)

Elimination of the Lagrange Multipliers.

Eq. i11.12 can be split in two parts

{ 1= A (W) - w+C(w, W) - w+Ig(w) =L (1.23)

ITh = PA(w) - w+PC (w, W) - w+Pg(w)

where

A(w) = FA(W)},C(W,W) - o, W’} and g (w) = {“g(w) : (f1:24)
PA (w) PC (w, W) *g (W)

Forgiven w, w and w, the terms in the right-hand side of Eq. 111.23 are constant vectors and J-T
is a constant matrix. Therefore, the Lagrange multipliers A can be found by solving the linear system
camesponding to the second line of Eq. 111.23, or symbolically

A= @[ A (W) W +°C(w,w) - w+ g (w)] (in.25)

that is defined for every p such that J™' is regular (see § 11.9.5).

111.6.2 Inverse Dynamic Model in the Two Spaces.

Assume that the kinetic energy and potential energy of each of the structure’s bodies can be
expressed either using operational space coordinates p or using joint space coordinates q . This is not a
restrictive hypothesis since any undesirable reference to q or ¢ can be removed by using the inverse
kinematics relations Eq. 1.1 and Eq. 11.17.
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Hence, the inertia matrix, the quadratic forces matrix and the gravity vector afe respectively:

A(W)=["‘A(q) o |
0o fa(p)

C(w,W):':qC(q"i) 0 J
0 *C(p,p)

g(w) = | 8@ (i1.26)
Pe (p)

The dynamiics equation of the sysiem is then

t=%(9) -§+°C(q,9) -4+% (@ +I [PA(p) -5+"Cp.p) - p+T5(@)].  (1.27)

This model is called the iverse dynamic model in the two spaces since it uses the robot’s state and
output both in joint space and in operational space.

This formulation is not really suied for analysis since kinematic relations should be included in
Eq. i11.27 fo reduce the dimension of the manipulator's state to 2n instead of 4n. It is however a very
interesting formulation when efficient implementation is requived, for example in model-based control
laws.

lIl.7 Efficient Computation of the Inverse Dynamics Model.

11.7.1 Intuitive Justification.

Considenng Eq. 1.2, Eq. I11.27 may be interpreted as the sum of two partial models of the
maniputafor. The robot inertia, or its kinetic energy, is split in the two spaces and a model is established
for each.

The model in joint space only represents apart of the dynamics that is independent of the closed-
chain structure of the manipulator. Considering the double—tree kinematic model from Section I1.7, the
dynamics of both base~ and upper- lrees, considered as disconnected from each other, are included in
this part of the model. The reaction on the base of the base tree is supposed to be absorbed, but the
reaction on the base of the upper-tree is a forceftorque that must somehow be applied on the
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end—-effector, as indicated by the 6-DOF abstract joint in Fig. 8. The operational space part of the model
represents this force/torque that is actually mapped on the actuators using Eq. 111.2. Note that the inertia
of the links is also split into the two sub-models, according to a position-dependent ratio.

On the basis of this idea, a new algorithm fo evaluate systematically the inverse dynamics model
of any parallel manipulator is proposed in § /1.7 4. It uses a slightly enhanced version of the Newton—Euler
algorithm proposed by Luh, Walker and Paul to compute efficiently the inverse dynamics model of robots
with open chains [Luh80b].

lIl.7.2 The Newton-Euler Algorithm for Open—Chain Manipulators.

This algorithm is described in most robotics textbooks [Asad86], [Feat87], [Domb88]. The
formulation from the latter reference is reminded here.

The structure’s kinematics is described by its Denavit-Hartenberg parameters (see § I1.5.3). The i*
body is described by its mass m,, its inertia matrix I with respect to the i* frame and the position of its
centerof gravity 'g in the same frame. The inputs are the structure's state {q, g} andits acceleration .

The algorithm consists of two iterative stages.
Stage 1: Forward lteration.

In a forward iteration along the tree's structure from the base to the end—effectors, the relative
velocities and accelerations are composed to obtain the absolute acceleration of each body. Then, the
inertia forcesftorques to apply on each can be computed. The convention about the numbering of the
bodies in § 11.5.3 allows to evaluate successively the expressions in Eq. .28 fori = 1,2, ...n.

i,a. ia_ ia
to | TR (i)
0 1
i, a i.a, 2,3, ..
w= R - '"'® (ii)
i by i
0= ®+3;2q; (1i1)
g o [n. R i, a‘(b] +o, [izf;'i e iZqijl (iv) (111.28)
W = i+ M e v
; i, ,0 i ; e
:,op, _ a.R ) [a. 5 a.U a.p} +o, ['zq} . 2- a,m % 'qu (vi)
F=m["%+U. ) (vii)
N=T-"0+"ox[1." o] (viii)
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The initial conditions o(o, o 06), 0 op' correspond to the base's absolute acceleration and
velocity in rotation. With o 05'5 = {0,0,9.81} T for example, the effect of Earth’s gravity is computed.

Stage 2 : Backward Keration,

A backward iteration from the end-effectors to the base sums the torques and forces transmitted
by the connected bodies and projects them on the corresponding joint. The expressions in Eq. .29 are
successively evaluatedfori = n,n~1,...,1.

Py k,
Ye=R+ § Y (i)
Kla =i
Ly  ha g ..
f= R-"'f (i) (t.29)

ii i i k k, k

"n=N+ [migx"op'] + 3 [ a"R."""q-f akpx a"f} (iii)

k|akxi
= [oii'jf+5'i“in T, Giv)

The output is the vector 7 of the torques/forces that ate to be applied on each joint.
Complexity and Efficiency Comparison with Respect to Lagrange.

From the complexity point of view, a straightforward evaluation of Eq. lll.15 is O (n3) and Luh,
Wakker and Paul's algorithm is O (n) . Lagrange and Newton-Euler formalisms were therefore first
considered as complementary approaches to manipulators’ dynamics (see Section I11.2), the former
allowng analysis, the latter more suéted for implementation.

The raw Newion-Euler algorithm was reported to require 238n — 33 floaling point elementary
operations (FLOP) in the case of a general am {LuhB0b). However, when redundant computations are
eliminated, only 173n — 244 FLOP are needed [Domb88). For a given arm, this burden is again reduced
by about 30%. Software packages such as SYMORO allow to generate automatically the minimal code to
implement Newton-Euler’s algorithm for any open-chain robot [Domb88).

Later, Lagrange and Newton~Euler approaches were later shown to be formally equivalent [Silv82).
When redundant computations were removed from Eq. lIL15 [Bala88), efficient implementations of
Lagrange dynamics where proposed that seem to require even fewer computations than a Newton-Euler
algonithm [Li88), [Baha91]. The main difference that remains is the structure of the algorithms:

+ Because of its iterative structure, the Newton-Euler algorithm can efficiently be implemented on
pipelined or vector processors such as digial signal processors (DSP). Multiprocessor control units
have also been used after some reformutation of the algorithm [Chen88), [LeeG86].
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+ The evaluation of the raw Lagrange model from Eq. [ll.15 can greatly benefit from n processors
working in parallel since the complexity on each is reduced to O (n2) [Zoma92]. However, this matrix
structure vanishes when redundant computations are removed.

Il.7.3 Extension.

The first Stage of the Newton—Euler algorithm produces as a side~effect the absolute translation
acceleration” °p' (see Eq. I11.28.vi) and relative angular acceleration " ‘o (see Eq. 111.28.iv) of each body.
The absolute positions, velacities and angular accelerations require two more expressions (75 FLOP) to
be computed at each step of the first stage:

(In.30)

i’0T=a"0T.i'a'T= i,0p i.Op @
0 1 :

“p=pe ox P G

The absolute positions, speeds and accelerations of the end-effector(s) can then be obtained by
evaluating Eq. !I1.28iiivv,viand Eq. .30 for i = n+ 1,n+2, ..., n+n_. in other words, the forward
kinematics relations Eq. 1110, Eq. .15 and Eq. .29 are evaluated simultaneously with the inverse
dynamics model at the expense of 75 FLOP per end-effector. Remembering that the matrix " aiR
contains the direction cosines of the end-effector’s frame with respect to the frame attached to the last
body in the chain, one can consider that, in most practical cases, I'aiR contains only three nonzero
elements that are either 1 or -1. The extra—cost per end-effector is then only 30 FLOP.

When the end—effectors have interactions with their environment, extemal forces and torques can
then be added to the comesponding F, and N,. Stage two is then evaluated for
i=n+n,n+n,-1,..,1,requiring 15n, FLOP more than the standard algorithm. This extended
algorithm therefore requires about 284n + 45n_ — 244 FLOP for a general tree robot.

ll.7.4 A New Algorithm for Parallel Manipulators.

The manipulators kinematics is parametrized as described in Section I.7. The dynamics
parameters of the bodies in both trees are defined as in § I11.7.2.

The inputs to the algorithm are the manipulator’s state and acceleration in both joint and operational
spaces {q,d,dq,p, p, p} . which must satisfy the constraint equations, that is the kinematic relations
between the two spaces. Moreover, the Jacobian matrix is also required. The output is the vector T of the
torques/forces to apply on each actuated joint.



Model-Based Control of Paraliet Robots: -68- a Global Approach in Operational Space.

Stage 1: Forward Newton-Euler lteration on the Trees.

The forward iteration of the Newlon-Euler algorithm from § 111.7.2 is applied on the base- and

upper—trees. The absolute acceleration of the twelve connection points "Pi and "Pi is obtained at the

same time.
+ Campue Eq.1128 and Eq U130 for i baseee for i = 1. {ne6), win *% = o,
%% = 0 p =0 and° equa! to the opposite of the acceleratnon due to gfawty The
n+i,0

positions °p, = ** "%, speeds ’p, = "0, andaccelerahons °p, = P of the base-tree
n+1
connecbon poonts are obtamedngs‘ well as meur rotation speed Q = "o "o and
} s Q. nnOR M‘(l)

Depending on the chosen representation of the orientations (see § I1.3.4), extract %% from p.and

% from p. Initiakize 0 0;‘;‘ as the translation acceleration in p minus the gravity acceleration.

Compute Eq. 111.28 and Eq. 11.30 for the upper-tree for i = 1 ...L"n + 6). This part is often trivial
since 'n = 0 in most practical cases (see Table 1). The positions, velocities and accelerations of the
upper-tree connection points are obtained as for the base tree.

Since the root of the upper-iree is a free body hokiing the end-effector with a given mass m,, and
inertia °1, compute the torquefforce on it with Eq. 11.28.vi and Eq. I1.28.vii, i = 0.

Stage 2: Links solution.

Since the positions, velocities and accelerations at both edges of each of the 6 finks are known, the

forces to apply at the connection points of the real links are computed.

For the sake of clarity, the bPi“Pi axis of the i® knk is supposed to be an axis of symmetry with the

center of gravity in its middle. These hypotheses are fulfilled in most practical cases and greatly reduce
the overall complexity of the obtained model The dynamics parameters of the i® link are therefore its mass

;. its inertia about the P P axis 1 and \ about any orthogonal axis crossing the center of gravity.

A useful vector relation is first reminded. Any vector w can be decomposed as

= Ywavxtw), (n.31)

where v”w = (wT-v)v is parallel to the unit vector v and Yy = wxv orthogonal to it
(see Fig. 10).

cofresponding joint variable in vector q.

Consider the i* ink. (is ength I, is constant if the link is ngidor I, = q; where j is the index of the

First, a unit vector along the link is defined by o=
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Fig.10 : Link with Colinear and Orthogonal Decomposition of Velocities.

. b, i i i
+ Since uPi - P = qj'v + |1i||" x ‘o, where 'w is the rotation about the center of gravity of the link
(see Fig. 10)and q ; is the joint variable associated to the link in the case of an actuated link :

i . . qiv_(up._bp‘.)
o = loxly = A1 (I11.32)

+ The rotation speed around v is imposed by the universal joint:

» {(bQiT-iv)iv, 1,>0

o = 0\ . (1.33)
(uQi ~'v)’v,1i<0

+ The same constraint on the accelerations gives the torques . in and ¥ in to apply at both edges of
the links:

. b, T iV . .
{b"T]:(Q ~|v) ii,u'l‘n=0,’1i>0
u,1

n=("a" V)i n=0i<0 (1134)

+ Ifthelinkis actuated, 7, = 'mq;.

+ The orthogonal rotation acceleration around the center of gravity can be obtained from the relation

ol s [y o (26, -( Vo ) ) o) (135)

. b.. i
8,2, = v[q,-11)
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+ Finally, the forces ®i¢ and ™'t applied at both edges of the link must satisfy Newlon equations:

£+ = %["P} + bl"'i]

b, i

N NCRRCERS) WEN

(1.36)

v x Do [ ->'6]] = .[(u—lu—b) i[l;j

Eq. 1,36 is a linear system of six equations for the six unknown components of ®if and “if.
However, since the forces on both edges act on five degrees—oi—ﬁeedom of the llnk the system is
under—determined. One may consider adding a constraint equation such as i R f =010
prevent intemal siress o be created in the knk. However, this constraint will anyway be satisfied in Stage
4, which maps the artificial forces onto the actuators. It is therefore sufficient to fix any single component
i *'f or "' toan arbitrary value and to solve Eq. H1.36 for the five remaining unknowns.

Stage 3: Backward Newton-Euler Hteration on the Trees.

The backward iteration of the Newton—Euler algorithm from § 111.7.2 is applied on the base~ and
upper-trees to obtain the torquesfiorces on the aclualed joints in both and the torquefforce on the
end-effector.

* Add the forces and torques required to move the links fo the connection points on the base-tree

(.37)

b,i

b,i
{an("pnn* £

Nn+i"—Nnﬂ+

+ Compute Eq. 111.29 for the base-tree.
* Add the forces and torques requited to move the links to the connection points on the upper—tree

F ,.«F .+"’if
{ n+i n+i i ("‘38)

wi
lei(_'NnH+ n

+ Compute Eq. Il1.29 for the upper- tree.

+ Evaluate Eq. lIl.29 for i = O to obtain the reaction force 0.9 and torque 1 on the end-effector.
According to the representation of the orientations, these force and torque vectors can be combined in
a n-DOF torquefforce vector in operational space %F. An extemal forceftorque exerted by the
enviconment can here be added if required.
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Stage 4: Mapping of the Forces on the Upper Tree’s Root onto the Joints.

+ Finally, the forces/torques in operational space to apply on the end—effector are mapped onto the joint
space with the fundamental refation Eq. 11.2:

= o+ (i11.39)

N1.7.5 Complexity, Optimization and Structure of the Algorithm.

Complexity.

Stages 1 and 3 compute the extended Newton-Euler algorithm from §111.7.3 once for the
upper-tree and once for the base-tree. Stage 2 requires 119 FLOP for a general, actuated link and
80 FLORP for a rigid link. Stage 4 requires 2n2 FLOP. For n < 6, this is negligible compared to the other
stages.

The total number of computations for a general parallel manipulator is therefore
02+ 284(% + “nJ +39'n +959 FLOP. For a Stewart platform(°n = 0,"n = 0,'n = 6), thisis
about the hatf of the cost of the standard Newton—Euler algorithm for a general 6-DOF serial arm. For the
Hexa, which is structurally very similar (°n = 6, “n = 0, 'n = 0), the cost is surprisingly about 50%
higher than for a serial arm.

From the purely dynamics point of view, one can therefore consider that the complexity of the
inverse dynamics model evaluation for a n-DOF parallel manipulator has the same order of magnitude as
for a n—DOF robot with open chains.

Comparison with Lagrange and Natural Coordinates.

Since Lagrange and Newton—Euler algorithms were shown to be equivalent for open—chain robots
(see § 11I.7.2), Stage 2 is the most apparent difference between these approaches. The forces at the
connection points are explicitly computed with the Newton-Euler algorithm, while a Lagrange approach
would implicitly only consider its energy. In this respect, the Newton-Euler algorithm is closer to a natural
coordinates approach where the absolute positions, velocities and accelerations of each body are given
in a unique reference frame where all the forces, working or nat, are also expressed. For this reason, itis
believed that many redundant or useless computations can be removed from the raw formulation of the
proposed algorithm.
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Importance of Kinematics Computations.

The cost of the kinematics transformations that are required to obtain the robot's state in the two
spaces as well as the Jacobian matrix should also be considered. The proposed dynamics algorithm
contains many expressions that are redundant with kinematics computations. Still, the main problem
remains to obtain the Jacobian matnix that solves the closure constraints. As mentioned in § 11.9.4, the only
practical solution is to invert the inverse Jacobian matrix, which is very time consuming. This is probably
why many authors consider parallel manipulators as much more involved than serial arms, especially if
they are not aware of the key importance of the J matrix.

A Paralle! Structure.

It is important to note that he proposed algorithm has an inherently paralie! structure instead of the
iterative structure of the onginal Newton—-Euler algorithm : Stage 2 can be computed for each link
independently, and this parallefism is propagated along both upper— and base- trees as long as the
comesponding sub~chains are not connected. How to exploit this structure and how to combine the
kinematics computations with it in a multiprocessor control unit is discussed in detail in Section IV.7.

l1.8 A General Framework: the Operational Space Formulation.

1i1.8.1 Projection of the Model in the Two Spaces onto Operational Space only.

Since no closed form of the direct kinematic relation f exists, it is impossible to obtain a closed form
inverse dynamics model in joint space only. In contrast, introducing the inverse kinematics transformations
from Eq. 11.11, Eq. I1.17 and Eq. 11.31 in Eq. 111.27 gives an inverse dynamics model in task space only:

1= @) [ 5+ @) 5] +
+9C(p,p) - T'@) - p+g(p) +
+1'[PA(p) -p+°C(p.p) -5+ (p)]

(11.40)

where a prime indicates a parameter substitution g — £~!(p) to prevent any confusion with the notations
introduced in Section lil 4.
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Grouping terms together and dropping all the p and p parameters to clarify yields:

t=17] v, (Hl.41)
where
v = [PA+3Tar] s T[0T #5004 2c)  pe [T 4 Py (l1.42)

Combining Eq. I11.42 and Eq. 11141 gives the inverse dynamics model in operational space

M(p) -5+D(p,p) -Pp+h(p), (11.43)

-
L}

M =1"A+%77",

D =3 +%cr +1"c,

h=%+1". (11.44)
For manipulators with open chains only, Eq. l1.43 is equivalent to Eq. II1.17. Contrarily to the

formulation in joint space from Eq. lIl.15 that is applicable to serial arms and tree—obots only, this
formulation is very general and should be used in future research:

* o obtain really general theoretical results that are applicable to all manipulators,
+ whenever contact forces are to be included in the model,

+ to develop universal controllers that may drive a wide class of robots.

111.8.2 Properties.

A problem with the formulation in operational space is that £q. 11.43 is not well suited for analysis
since the pseudo—inertia matrix M (p) and the pseudo—quadratic forces matrix D (p, p) do not
possess the properties of real inertia matrix and quadratic forces matrix discussed in Section IILS.
However, one can consider that Eq. 111.42 contains the true dynamic model of the mechanism while
Eq. 111.41 simply projects the input forces v that should be exerted in operational space onto the actuated
joints.
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Analysis can therefore be performed by studying Eq. I11.42 alone, with an inertia matsix, a quadratic
forces matrix and a gravity vector defined as fokows

°A = PA 4+ AT, (In.45)
°c=r"a "t «rMortsPe, (11.46)
o -Tq , P

g=J) g+'g. (11.47)

Some important properties of the dynamics of manipulators are obtained below from this
formulation. The proofs rely on three frivial properties from linear algebra.

Property 1: if S is symmetric, then TT - S - T is symmetric, YT € RP*®.

Proof: S=ST=TT.S-T=[TT.ST.T)T=[IT-S-T]T.

Property 2: if S is skew-symmetric, then TT. S - T is skew-symmelric, VT ¢ R %P,
Proof; §=-ST=TT-§-T=[TT-ST-T)T=—(TT-S- T} 7.

Property 3: if S is positive definite, then TT - S - T s positive definite, VT &€ & »*" regular.

Proof: Since S is positive definite, xT - TT-S-T-x>0=T -x=0.
Since T isregular, T-x =0 x = 0.
Therefore, Yx € X°%,x#0,xT-TT.S-T-x>0,ie. TT-S- T is positive
definite.

Symmetry of the Inertia Matrix in Operational Space.

Theorem 1: °A = PA+ 74T is symmetric Ype O ()l 20

Proof: Since A (w) is symmelnic, A and 9A" are symmetric by their definition in
Eq. 111.26. Property 1 implies that rTartis symmetric and °A is therefore
symmetric since it is the sum of two symmefric matrices.

Positive Definiteness of the inertia Matrix in Operational Space.

Theorem 2: °a = PA+ 377977 is positive definite (PD) for p such that J~' (p) is reguiar.

Proof: Since A (w) isPD, PA and A" are PD by their definition in Eq. I11.26. Since®A" is
PD, 779! is also PD by Property 3. °A being ihe sum of PD matrices is PD
itself.
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Passivity.

Theorem 3: °A - 2°C is skew-symmetric (S5)Vp € O|[1"(p)l =0.

Proof: From Eq. I11.45 and Eq. 111.46,
°a-2°C = [PA-2°c] +J T -2%c ]y « 1Ay -5 ™A ]
PA -2°C and *A’ - 29C" are SS because of the definition of °C and C' from
Eq. Ill.11, Eq. 11.13 and Eq. 111.26. Hence, using Property 2, J‘T(“A' - z“c)r‘
is 5. Finally, since 1A = [ ]"r! = [1Ma™],
7T9A5 ! Z 5 T9a " is also SS and °A — 2°C being the sum of SS matrices is
SS.

Theorem 4: The operational space dynamics Eq. I1.42 of a rigid manipulator define a passive

1

mapping v - p,ie. Vi, e R * ,3p> 0|j (vT - p) dt > B inany subspace of O

0
where inverse singularities are excluded.

Proof: This proof is derived from the one given in [Orte89] for serial arms using joint space
coordinates anly.
The Hamiltonian e ,(t) = %( pt)T - °A(p(t)) . p(t)) +¢e'5(p(t)) of the manipulator

atagiven time t is defined as the sum of the kinetic and potential energies expressed
in operational space. Differentiating it with respect to time and dropping parameters

de 1 0. p]
N N _H= ‘T,o LY A Vs .
for clarity yields o pT- A p+2[p A p] +3Bep p - Introducing

the dynamic equation obtained from Lagrangian mechanics gives
de,,

i pT-u+%pT- [°A-2°C] - p. The second term is zero because of

dey
Theorem 3, hence 5 pT - v. Consequently,
Y
j (0T - p)dt = ey(t,) - e,(0) 2 —e,,(0) since e,; represents an energy and is

0
therefore always non negative.
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Passivity in Joint Space.

Theorem 5: The dynamics of a rigid manipulator define a passive mapping T — g, ie.
t
vi,e R *,36>0] j (1T- §)dt = B inthe subspace of O where singularities
0
of both the Jacobian matrix and its inverse are excluded.

Proof: Eq. 115 and Eq. H41give t7-G = vT-J- 5 -p = vT.p if J and J-! ace
both regular. Since by Theorem 4 v — p is passive, T — ¢ is also passive.

HL.8.3 Is Passivity a Local Property?

Physically, a dynamic system is said passive when its intemal energy fades away when no extemal
energy is supplied. This is obviously a global property of all Hamikonian systems, which include articulated
mechanisms. It should therefore be clear that the manipulator itself is globally a passive system, while
Theorem 5 above only show that the specific mapping T — 4 is passive only in the regular workspace of
the robot. Unfortunately, applications to control rely on the existence of passive mappings, not on the
global property. However, as long as the robot is aperated in its restricted workspace, this limitation has
no practical consequences.

IN.8.4 A Critical Discussion on the Inertia of Manipulators.
Variation Range.

Some elements of %A ( q) can have very small values at certain configurations, for example when
abody is outstretched along a revolute joint's axis. The coresponding elements of A (q) may therefore
vary by one or even two orders of magnitude for a typical serial manipulator. This situation is unlikely to
happen in a parallel manipulator where the structure prevents to reach such extreme configurations. A
varies much less. Moreover, since the idea behind parallel manipulators is to lighten the carrier structure
with respect to the end-effector, it is reasonable to assume that 3A is not larger than PA . As a
consequence, “A can be considered as almost constant and equal to PA in the robot's restricted
workspace. The main cause of variations of °A in a parallel manipulator is therefore the payload, which
plays a much smaller role on a serial arm.

Smoothness and Boundedness.

Eq. lil.9 reveals that A (w) is obtained by projecting the directions of possible displacements of
the center of gravity of each body in the structure onto joint space. Considering the double-tree mode,
9A contains sums and products of the n local Jacobians that correspond 1o the center of gravity of each
of the bodies in the upper-tree and base-tree. Since the proof of the smoothness and boundedness of
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the Jacobian of open chain mechanisms(§ 11.9.1) also holds for the local Jacobians, 9A ( q) is asmooth
function of q . A more formal proof of these properties can be found in [Spon89). A (q) is also bounded
for maniputators with bounded prismatic joints’ strokes.

A similar development can be made for PA , which is also a smooth and bounded function of p.
However, °A (p) is formatly neither smooth nor bounded for manipulators since the inverse Jacobian
has none of these properties (see § 1.9.1). From a practical point of view, it seems nevertheless
reasonable to assume that °A (p) is smooth and bounded in the robot's restricted workspace.

A Critical Comparison.

When the pseudo-inertia matrix M (p) = JT- °A is considered, an upper bound can clearly be
found for serial arms, the lower bound of some elements being close to zero. For parallel manipulators, a
lower bound exists while an upper bound depends on the definition of the robot's restricted workspace
since some elements of M (p) are infinite at the inverse singularities.

It is therefore not true to state that parallel robots offer better performances than serial arms
because of their lower inertia. The situation is exactly the same as for the stifiness examined in § I11.3.1:
the advantages are restricted to a subspace of the workspace that should be very carefully defined.

111.8.5 A Note on Discrete-Time Models.

All the theory on manipulator dynamics has been developed in the continuous—time domain. Since
controllers are implemented on digital processors, research has tried to obtain discrete—time models in the
past. Neuman and Tourassis proposed a mode! that respects the principle of conservation of the total
energy {Neum85], {Tour85]. However, this is accomplished by sacrificing other properties such as the
existence of passive mappings that are fundamental in control. Actually, the quest for discrete-time robot
models ended when digital processors became powerful enough to reach high sampling rates where the
effect of sampling becomes negligible in the closed—oop bandwidth.
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1.9 Conclusions.

Parallel maniputators’ dynamic models can only be obtained in closed form using operational space
stale variables. Using Lagrangian mechanics, one can easily obtain such a model for a given manipulator
when an inverse kinematics model is available. The equivalence of the cancellation of Lagrange
muttipliers with the computation of the Jacobian is shown. An inverse dynamics model “in the two spaces”
is developed that can be efficiently implemented when fast evaluation of the inverse dynamics is required.

Dynamics analysis of parallel manipulators is camied out and important properties such as the
passivity of the v — p mapping are shown. With some weak restrictions, the passivity of T — q is also
proved, allowing advanced control methods developed for senal ams to be applied fo parallel robots.

Finally, some critical considerations about fundamental properties of parallel manipulators are
made. It is showed that the alleged higher stifiness and lower inertia of parallel manipuiators have ro
justification if the robot's workspace is not correctly defined.
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Chapter IV

Control.

IV.1 Introduction.

The aim of the first four Sections is to provide a survey of the existing approaches to the control of
serial robots. As shown in Chapter HI, the dynamics of paraliel manipulators operated in their regutar
workspace have the same fundamental properties as sefial robots. Hence, the full set of strategies
available to control serial arms can theoretically be applied to paratiel manipulators.

First, the classic control strategies based on linear theory and their limitations are discussed in
Section IV.2. The importance of additional dynamics such as frictions, actuator dynamics and joint
elasticity is also examined.

Then, the concept of feedback Mnearization is introduced in Section V.3, where the computed-
torque scheme is given. Control schemes in operational space that are equivalent to schemes in joint
space are also introduced. Experimental results obtained with various setups are reported.

Some adaptive techniques are then reviewed in Section V.4 to be complete. Finally, different
robust contro! schemes are detailed in Section IV.5. Many of the existing contro! laws contain both a
model-based part and robust part. This tradeoff is discussed with respect to recent thecretical resufts and
practical considerations.

The case of fast parallel manipulators is considered in Section IV.6. The tight connection between
dynamics and kinematics is discussed and itis shown that a control scheme in operational space requires
fewer computations than its equivalent in joint space. A model-based control scheme in operational space
is therefore proposad. It uses the real-time evaluation of the “inverse dynamics model in the two spaces’

developed in Chapter lil.

Implementation issues are discussed in Section IV.7. It is shown that the algorithms involved in the
proposed control scheme have an inherent parallel structure that can be exploited on a multiprocessor
control unit. The efficiency of the implementation can be further improved by introducing a pipeline in the
computations. An expefimental Transputer-based control unit corresponding to this design is briefly
described. Finally, the main contributions offered in this Chapter are reviewed in Section 1V.8.
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IV.2 Classical Control Strategies.

IV.2.1 Dynamics of Robots with Transmissions.

In most existing industrial serial ams, a transmission is introduced between each actuator and the
comesponding articulated body of the manipulator. Such an actuated joint is illustrated in Fig. 11. For the
sake of clarity, the i subscript is ommited in this paragraph

Transmission Elastic Shaft
(ratio n) (constant k,)

Actuator Load
(with Power Amplifier)

Fig.11 : Actuated Joint with Elastic Transmission.

Rigid Model.

Increasing the reduction ratio n, has the advantage of lowering the influence of the load's
parameters on the dynamics. For n_> 10, coupling effects and quadratic forces become negligible with
respect o other phenomena such as frictions that are amplified by the presence of the reduction. in this
context, if gravity is considered as an extemnal, unknown perturbation, the manipulalors dynamics
equation from Eq. Il.15 reduces to n independent single-input, single-output (S/S0) linear equations
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The transfer function between the body’s position q; and the torque T applied by the actuator is
first given in the case of an ideal perfectly rigid transmission (k, — e°)

kenr
ql(s) kenr A
— = - = , (v
us) : h By S| 54»E
{fegelog]) 00
where
.k
A=ju+>5 (IvV.2)
n

is the element on the diagonal of the inertia matrix that represents the approximately constant inertia
driven by the actuator and

. v3)

T
is the kinetic friction coefficient of the whole.

This transfer function has a pole in zero (integrator) and anotheronein s = B which is also very
close to the origin when kinetic friction in the system is minimized (see Fig. 12).

Drawbacks of Reductions.

Several undesirable phenomena are created or amplified by the presence of reductions:

« Stick-slip friction, which is very difficult to model accurately. Moreover, the stick-slip phenomenon is
associated with elastic deformations of the material where potential energy can be stored and released
according to very focal properties of the material’s surface. As a consequence, the passivity property
may not be preserved when this happens.

+ Backlash is often met when trying to reduce stick-slip in transmissions. It is highly undesirable for the
same reasons. |

+ Kinetic friction is enlarged. While this poses no fundamental problem, the manipulator is more damped
and more power is dissipated in heat in the reductions.

+ Elasticity is boosted. One may therefore be tempted to consider explicitly elasticity in the model.
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Fig.12 : Typical Open Loop Frequency Responses of a Serial Arm Joint.
(Elbow joint of a Puma 560 [Tam93))
Elastic Model.
When elasticity is considered, Eq. V.1 is replaced by a fourth-order mode! {Spon89]:
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Two complex conjugates poles appear that reveal the resonant mode associated to the elasticity of
the transmission. This mode is generally badly damped as a consequence of the designer's effort to get
rid of frictions. The comesponding natural frequency heavily depends on the considered robot joint. For
the three firsts joints of a typical serial industrial manipulator like the Puma 560, they are in the 5-15 Hz
range [Tam93]. Natural frequencies higher than 100 Hz are common on small parallel manipulators h as
the Delta or in wrists.

Actuator Dynamiics.

A model of the actuator itself should be appended to the above purely mechanical descriptions to
obtain the complete mode! of the process in Fig. 11.

Each of the robot's actuators produces a torquefforce t; that is related to the contro! signal u
applied at the actuator's power amplifier. In modern electrical drives, the latter features a current control
loop to achieve torquefforce tracking, i.e. 7, ~ u; . Usually, the presence of switching power devices such
as thransistors naturally lead to high gain control strategies. The closed-loop bandwidth is then mostly
limited by the motor’s inductance only. From the user's point of view, the actuator's behavior can be
approximated by a first order transfer function

= bl (V.6)

where k, ; is the torquefforce factor and t,_ ; is the dominant time constant of the system.

Introducing Eq. IV.1 in Eq. IV.4 or Eq. IV.5 would result in a modet of the fifth order. However, the
modem electric drives used in robotics have a typical cutoff frequency between 200 and 1000 Hz, which
usually exceeds the first natural frequency of the manipulator. As long as the robot's closed-loop
bandwidth remains at least one order of magnitude tower, the proportional approximation © = ko is
valid since the inner and outer loops build a cascaded control scheme.

However, this might not be the case for joints with low inertias as in wrists. In these cases, actuator
dynamics dominate elasticity phenomena and Eq. IV.6 should be included in the rigid mode from Eq. IV.1,
leading to a third-order model. Tam & al. (Tam91a)] examined solutions to this situation, which is not
considered further in this work.

IV.2.2 Decoupled Linear P{|)D Controllers.

A linear proportional-derivative (PD) controller can be designed to achieve exponential stabilization
of a joint described either by Eq. IV.1, Eq. IV.4 or Eq. IV.5 (see Fig. 12).
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Fig.13 : Typical Open-Loop Frequency Responses of a Serial Arm Joint with PD control.

With the rigid model (Eq. IV.1), no apparent kmit to the closeddoop bandwidth (and the
carresponding gain) is posed. With the elastic model from Eq. IV.4, the gain must be low enough, so that
the resonance is not excited. Things seem to change when Eq. IV.5 is considered since the closed-loop
bandwidth may again exceed the natural frequency associated to elasticity. However, it should be
stressed that the time response still contains a badly damped mode that may cause very large oscillations
of g, ;, even when q ; is stable ! This is also discussed in §IV.5.5 in the case of robust control
stralegies.

In practice, it is therefore advised to place the sensors on the actuator’s side of the elasticity and to
close the loopon q = q,, [Spond9).

Integrator versus Model-Based Gravity Compensation.

Anintegrator can be included in the control law to reject low-frequency perturbations such as gravity
effects to obiain zero steady-slate emor at a very low cost. In practice however, this possibility is very
kmited because of robustness considerations (see Fig. 12).
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Fig.14 : Typical Open-Loop Frequency Responses of a Serial Arm Joint with PID control.

The presence of an integrator in the control law therefore poses both practical and theoretical
problems:

+ When stick-slip friction accurs, limit cycles appear.

+ Overshoots are unavoidable if reference signals contain high frequencies.

+ Since a PID is not passive, no formal stability proof can be obtained when nonlinear dynamics are
considered (see § IV.5.3}.

1t is therefore often preferred to use PD control laws with model-based compensators, especially
for the gravity [Baya88], [Wen 88]:

u=K3a+K,q+8(a),

v.7)

where @ = q_- q isthe joint position error, K, and K, are diagonal matrices of constant gains and §
an estimate of the torque/force vector due to the gravity.
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Hats on symbols indicate that estimated, modeled or identified dynamics are used, which may
somewhat differ from the true parameters of the manipulator, For the sake of simplicity, hals will be
considered as implicit on the observed or measured sate vaniables g, q.

Iv.2.3 The Model-Based versus Robust Control tradeoff.

On one hand, Eq. IV.7 might be regarded as a very simple model-based control law since a part of
the inverse-dynamics model from Eq. 11115 should be computed in real time. On the other hand, it might
be considered as a robust control law since the stability margins of the constant PD controllers are
supposed o cope with the model uncertainties and perturbations caused by the neglected nonlinear
dynamics.

In this respect, a skightly modified version of Eq. IV.7 might be considered, where the gravity
compensation vector is a true feedforward command:

u=K3+Ka+(q,). (ive)

This control law is very popular in today's industrial robots since § might be computed off-ine, or
even oblained with a great accuracy for repetitive tasks through leaming[Tso 93]. However, it is intuitively
clear (and it is formally proved in [Wen 88)) that the gains of the PD controker from Eq. IV.8 should be
higher than those in Eq. IV.7 to cope with the perturbations introduced by the inaccurate compensation.

This is a simple itlustration of the underlying tradeoff that can be found in the robot control literature:
the computational burden of the controller can be reduced at the expense of high feedback gains that
might excite unmodeted dynamics such as flexibikity, while compensations of modeled nonlinear effects
can reduce these gains but require a large compiting power [Wen 88]. How to choose a good compromise
is discussed in § IV.5.4.

Towards Really Nonkinear Robots.

The numerous disadvantages of reductions have led designers to consider lower ratios or even
dicect-drive transmissions, especially for small, kght manipulators. In such robots, the nonlinear dynamics
can no longer be neglecied and the validity of the linear controller design above disappears.

However, various approaches from the nonlinear control theory presented below lead to control
laws that are similar to the PD+gravily control from Eq. IV.7. In Section IV.3 and Section IV.5 below,
relationships between existing nonknear approaches and fundamental concepts from the linear confrol
theory receive special attention.
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IV.3 Model-Based Control.

IV.3.1 Feedback Linearization.

Pure model-based controllers rely on the use of the inverse dynamics model from Eq. 1115 1o
generate the command tha! would produce the desired move of the robot. The open-loop control law

u="40q) q.+Ca9 -9+%@ (IV.9)

is considered first, where ¢§_ is supposed o be avalable from the reference signals generator
(see §11.10.3)

Combining Eq. lIl.15 and Eqg. IV.9 in serles results in the open-loop control scheme depicted in
Fig. 15

Fig.15 : Feedback Linearization in Joint Space

In the ideal case where
A=A,C=Cad g=g, (IV.10)
the input-output relation becomes

q() = Ijq(tl}dt (IV.11)

In other words, the robot is seen through its inverse dynamic model as linearized and decoupled
since each component of the output vector only depends on the comesponding element of the input vector.
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From a more theorefical point of view, this approach is an application of the feedback linearization
method. which is well known in nonlinear dynamics [Isid83]. The word “feedback” does not refer here 1o
any conlrol or stabilizing dynamics but simply to the fact that the system's stale is used in the linearizing
block, as indicated by the grayed aows in Fig. 15

IV.3.2 Closing the Loop : the Computed-Torque Scheme.

Markiewick [Mark74] proposed to exploit feedback linearization for the real-ime control of robots.
He called the comresponding scheme “compufed forque” since the inverse dynamics model is used in the
controller to compute the forces/torques that should be applied to the robot

The heavy computational burden involved in the computed-lorque approach as well as the mited
performances of the microprocessors in the seventies prevented the development of this idea until 1980,
when Luh, Walker & Paul developed the first efficient algorithm o compute the inverse dynamics model
of any serial arm (see § 111.7.2) [Luh80bj. Each of the n doubie integrators from Eq. IV.11 is controfled by
an independent PD conlrolier.

. S

Fig.16 : Computed-Torque Control Scheme.

The whole scheme is represented in Fig. 15. The complete control law is given by

(uv=A(q) - [4. +4) +C(gq.9) -4+ 2(q
(IV.12)

9y = Kp‘i * KJ:‘
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This control law may be considered as a generatization of the PD+gravity controf from Eq. {V.7 with
three major extensions:

« the quadratic forces are also compensated;
« the joint acceleration reference signal is introduced in the feedforward command;

« the feedback gains are no more constant since they are mulliplied by the inertia matrix A, which
depends on the manipulator’s position.

IV.3.3 Computation of the lnverse Dynamics.

Adding inverse dynamics in the contro! law allows to keep the feedback gains low enough without
limiting the tracking performance. The main problem in model-based conlrol is the computational burden
involved by the evaluation of the inverse dynamics model. Moreover, since its primary use is to generate
a feedforward command, this computation should be avaitable at sampling intervals that correspond to the
reference signal spectrum. Since the reference signals are generated from a nonlinear process (see
Section 1.10), their spectrum may exceed the closed-loop bandwidth. This situation frequently arises in
fast manipulators where the quadratic forces may become very important during short intervals (see the
exampie of the Delta in Section V.6).

As aconsequence, the inverse dynamics model must be computed at a higher frequency than twice
the closed-loop bandwidth, which is the kimit for the feedback control law according to Shannon's theorem.
Some authors used slower sampling rates for the model computation than for feedback, arguing that the
model does not vary faster than the robot's state. They are right only when quadratic forces are really
negligible and when reference signais do not contain high frequency components. This is not the case for
fast manipulators. (By the way, note that most simulation papers use sine reference signals!)

It is therefore an important issue in robot control to develop fast algorithms for the computation of
the inverse dynamics model.

Reducing the Computational Burden.

An advantage of the Lagrange formulation over Newton-Euler’s is that the model may be simplified
by dropping negligible terms. Since most industrial manipulators move very slowdy, quadratic forces are
usually not computed in the model [Khos8Sb), [Tarn93). In the same context, Aubin proposed to evaluate
the energy of each of the compuled torquesiforces and to neglect the weakest terms [Aubi91).

Another approach is to compute the model off-ine, based on reference values instead of the
measured state. Bayard and Wen formatly proved the validity of some schemes based on this idea [Wen
88). They showed that higher feedback gains are required to stabilize the robot when reference values are
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used in place of measurements. Moreover, they mention that the Newton-Euler algorithm can either be
computed with reference vakies only or with measwred state only, not a mix of both. As an efficient
attemative to the computed-torque scheme, the following control law was proposed:

= A 4, +C (40 -4, +8(a) +Kd+K A, (v.13)
where the feedforward command can entively be computed off-line while the feedback law is simply PD.

Note that such schemes requive the task to be known enough in advance for to compute the inverse
dynamics model. While this might be the case for repetitive tasks, modern apphications often demand
instantaneous reaction and on-ine generated tasks. For this reason, it is unlikely that such contro! laws
will be implemented on high-performance manipulators.

Iv.3.4 Model-Based Control in Operational Space.

As mentioned in the introduction to this chapter, all the control laws presented in the survey above
have an equivalent form in operational space. it has been shown that the convergence properties of a
given scheme are the same in joint space and in operational space [Khat87), as long as the singular
configurations of the manipulator are avoided.

In particular, model-based control laws in operational space can be derived from the feedback
linearization of the end-effector's motions along the operational coordinates. In this case, the inverse
dynamics model from Eq. 1143 is used. The comesponding scheme is given in Fig. 15 below. Note that
the conversion of the robot's state from joint space to task space is performed by an observer, which is
trivial for serial arms since £ (q) has a closed form. For paraliel robots numerical techniques can be
apphed (see § 11.8.1). A direct measurement of the end-effector’s position would be highly desirable to

solve this problem.

On the basis of this idea, Luh, Walker and Paul [Luh80a] developed the resolved-acceleration
scheme, which is the equivalent of the computed-torque scheme in operational space. The coresponding
control faw is

(IV.14)

{ v = M(p) - [f+P,] +D(0,p) - p+h(p)
By = K,p+Kgp

where p_ is the desired acceleration of the end-effector in operational space and p, p the state of the
robot in operational space.
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Fig.17 : Feedback Linearization in Operational Space

Simitarly, the equivalent to the PD+feedforward controf law from Eq. [V.13s
u=M(p) p.+D(p.p) P, +hip,) +jT1p:}[Kpﬁf K\ipj (Iv.15)

where JT (p_) is the Jacobian matrix computed from the reference position

IV.3.5 Advantages and Drawbacks.

A control law in operational space can be considered as a reformulation of the equivalent law in joint
space through a nonlinear change of coordinates. One should therefore not expect o improve radically
the robot's performance thanks to an operational space scheme. However, control in operational space
has two major advantages:

Since the desired task is defined in operational space, a scheme in operational space controls the
variables of interest to the user. Effects of the nonlinear kinematics of the manipulator are cancelled
and, when the nonfinear dynamics are also compensated, constant dynamic behavior of the end-
effector can be expected over the whole workspace.

« Such a constant behavior is highly desirable in applications where the control of the force exerted by
the end-effector on the environment is required, In this case, the forces/torques applied on the end-
effector can easily be included in the inverse dynamics model in operational space (Eq. lll.43), while
the joint space model (Eq. 1Il.15) is less suitable

From the implementation point of view, the computation burden associated to the evaluation of the
inverse dynamics model of a serial arm seems to be higher in operational space than in joint space when
only Eq. (1115 and Eq. lIL.17 are considered.
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However, a fair comparison should consider also that joint space schemes requite a conversion of
the reference signals (see § 11.10.3). While this might be computed off-line when repetitive tasks are to be
performed, modem applications often require the references to be generated on-line. in this context,
Dombre & Khal {Domb88] showed that the resolved-acceleration control Jaw (Eq. IV.12) is in fact less
expensive than the computed-torque control (Eq. IV.12) for serial ams because:

« the evaluation of the forward kinematics relation f is required instead of f-1, which is more difficult to
compute for serial ams (see § 11.8.2);

* inthe computed-torque scheme, the Jacobian has to be computed from the reference values while the
inertia matrix is computed from the robot's measured position, preventing fo take advantage of the
redundancy between kinematics and dynamics computations (see § 1.8.4).

When the PD+feedforward scheme is considered, the second advantage disappears. Moreover,
the amount of real-time computations required in the join space scheme (Eq. IV.13) is considerably
increased by the state observer and the multiplication by JT required in the operational space scheme
(Eq. IV.13).

IV.3.6 Reported Experimental Results.

Table 6 below summarizes some reported experimental results obtained with model-based control
strategies on serial arms.

All these contributions reported considerable improvement with model-based control over
independent PD control that was systematically used for comparison. Interestingly, no significant
difference could be found between the performance of the PD + feedforward scheme and the computed-
torque scheme.

Tam & al. obtained also comparable performance with the resolved-acceleration scheme in
operational space. They used a simplified inverse dynamics model where quadratic forces were neglected
and the inertia matrix considered as diagonal and argued that the higher sampling rate allowed by these
time-saving approximations compensate for the loss of accuracy in the model. However, the experiments
of Leahy & al on the same type of robot showed the importance of implementing the compensation of the
quadratic forces even at low velocities.
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Author Robot Control Unit Control Law
An& al. SLDDA 68000 computed-torque
[AnBY] (MIT 3-DOF direct-drive) h=7.5 [ms] Eq. IV.12
‘ * 68000 joint PD +
h=7.5 [ms} feed-forward () |
Eq. IV.13
Khosla & CMU DD Amn Il 68000 + computed-torque
Kanade (3-DOF direct-drive SCARA) 3 x TMS320 Eq. V.12
{Khos89b] h=2 [ms]
Leahy & al. PUMA 560 ? computed-torque
[Leah89] (industrial 6-DOF spherical) Eq. V.12
Tam & al PUMA 560 Microvax il + joint PD + ff
[Tam91b), (industrial 6-DOF spherical) 6 x special hard. Eq. V.13
[Tamg3). h=5.41 [ms)
‘ ¢ - computed-torque
Eq V12, =0
‘ ‘ ‘ resolved-acceleration
Eq V14, D =0

Table 5 : Reported Experimental Setups for Model-Based Controf of Serial Robots.
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IV.4 Adaptive Control.

The tutorial paper from Ortega and Spong [OrteB9)] is considered as the best review to date on
adaptive approaches to robot control. These authors consider as adaptive the control laws where
parameler estimation is explicitly included. A distinction is made between adaplive inverse dynamics
schemes and passivity preservation schemes.

IV.4.1 Adaptive Inverse Dynamics.

In this approach, the inverse dynamics model used in a computed-torque based control is identified
in real ime. The first such scheme has been proposed by Craig, Hsu and Sastry in 1986 [Craig6). it
assumes that the functional form of the estimated inertia matrix A , quadratic forces matrix C and gravity
vector g is known and that only the parameters @ from Eq. I11.14 have to be estimated. itis then showed
that the error dynamics is given by

K,§+ Ka+a=4"Y [$-9], (IV.16)

and therefore that an update law obtained from a Lyapunov approach can be found that guarantees global
convergence of the whole scheme.

However, measurements of the joint acceleration § as well as the boundedness of the inverse of
the estimated inertia matrix are required. This second drawback was removed in [Spon90}, where the
computed torque is implemented using fixed estimates of the inverse dynamics model like in Eq. IV.12,
but an additional term that depends on the identified parameters ¢ is added to g, .

Finally, the requirement of measured joint acceleration has been removed by Middieton and
Goodwin [Midd88] through very clever use of filkering combined with nonlinear dynamics.

IV.4.2 Passivity-Based Control Methods.

In these approaches aiso, the property of the manipulator's dynamics to be linear in its parameters
is exploited and the vector of identified parameters § is oblained in real time through a gradient-type
updating algorithm. However, using the control law from Egq. 1V.18, the resulling adaptive scheme does
nof require accelerations measurements or additional hypothesis on the identified parameters [Onte89).

The different schemes that follow this approach mainly difier by the type of the K (s) transfer
function, which is used in the control. The most welk known is the one from Slotine and Li {Slot87a] where
K(s) = sK;, with Kp being a diagonal matrix of positive gains. The same authors also proposed a
way to speed up the slow convergence rate obtained with gradient update techniques as in Craig's
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approach [Crai86). Least-squares estimates are known to be locally faster, but they unfortunately fack the
required passivity property. For this reason, Skotine and Li developed a modified least squares algorithm
that uses both the tracking error and the prediction eror [Slot87a).

IV.4.3 Simulation Results and Open Problems.

Schwartz [SchwS0} compared the adaptive schemes from Craig [Crai86] and from Slotine and Li
[Slot87a} for persistently and non-persistently exciting frajectories, with and without measurement noise
on a simulated 2-DOF serial am. The main results are that Craig’s method is slow (thousands of samples
before convergence) and inapplicable when measurements are noisy. Slotine and Li algorithm was shown
to suffer from the same problems, although convergence was a bit faster (hundreds of samples before
convergence) for noiseless measurements.

These serious limitations to the practical use of adaptive contro! laws arise from some theoretical
open problems. First, the transient performance is not addressed in the proposed approaches, nor do they
prove that the asymptotic convergence of the closed-loop system is uniform. It is therefore possible that
small changes in the dynamics may result in loss of stability, which can also happen in the presence of
bounded disturbances [Reed89). This sensitivity to disturbances can be overcome by requiring
persistently exciting signals to achieve uniform convergence of the parameters. However, this is not a
realistic solution from the practical point of view.

IV.4.4 Experimental Results and Conclusion.

While many theoretical contributions to the adaptive control of manipulators are published every
year, only a handful of actual experimental results is available [CraiB8], [Niem88), [Slot87b]. The obtained
convergence rates are so slow that application of the corresponding methads to fast manipulators is out
of question.

Much better results were obtained with the indirect adaptive method in which the parameters of a
computed torque controller are identified with a standard forgetting factor least-square algorithm. This
approach is not validated by any convergence proof but converged even in the presence of noise
[Schwd0] and gives the best results in practice! Fassler obtained high convergence rates with this
approach by considering only one varying parameter and taking advantage of the particular nature of the
manipulator (a 3-DOF cylindrical arm) {Faes88].

Adaptive schemes require very high quality measurements and large computing power that are not
acceptable from an economicat point of view as long as the performances are not shown to stand higher
than those obtained through model-based and robust control. Adaptive approaches are therefore not
considered further in this work.
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IV.5 Robust Control.

Abdallah & al. gave a very comprehensive survey on robust control in robotics in which three
different approaches are distinguished : linear multivariable, variable structure contro} and passivity
[Abda91).

IV.5.1 The Linear Multivariable Approach.

A The linear muitivariable approach aliows to design a knear controller thak replaces the n decoupled

PD in the computed-torque control so that is satisfies specified performance criteria in presence of
parameter variations. Bounds on the inertia matrix and on the mode! mismatch should be available to the
designer, but too conservative bounds lead to high gain feedback.

Becker & Grimm showed that controllers based on H__ theory can easily be obtained to obtain
bounded L, norm of the tracking emors [Beck88]. However, similar results for L, theory require
reformulation of the problem and addifional assumptions such as noiseless measurements.

Freund used a pole-placement approach that enswies stability when the robot's dynamics stay
within the given bounds [Freu82]. Fundamentally, the resulting control law is the same as Eq. IV.12 with
a polynomtial structure instead of the PD.

V.5.2 Variable Structure Controllers.

The theory of vaniable siructure (VSS) has been applied to the control of many nonlinear processes,
including robots since the work of Young in 1978 [Youn78]. The main feature of this approach is to drive
the ermor to a swilching surface on which the syslem is in sliding mode, unaffected by modeling
uncertainties and disturbances.

Unfortunately, for the schemes based on pure VSS theory, the control law is discontinuous with
respect fo the emor signal and therefore creates chaftering which excites high-frequency dynamics such
as elastic modes. To address this problem, Slotine proposed the “stuction control® [Slot83), [Siot85) where
the controtier is smoothed inside a possibly time-varying boundary layer. In this case, the control law is
given by

u=A(Q [4,+K2G+2Kq+06(q4,1]+C(q,d) -4+2(q, (v.a7)

where K is a diagonal malrix of constant gains and ¢ a noninear term determined by the extent of the
parametric uncertainties [Slot85}.
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This control law exhibits the same structure as the computed-torque controiler £q. IV.12 but
introduces robustness in a more formal way. However, asymptotic stability of the error can not be shown
as in passivity based approaches.

Iv.5.3 The Passivity Approach.

The passivity theorem [Deso75) guarantees that a closed-loop system is asymptotically stable if
each of the input-output mapping of each block in the loop is passive. Thus, since the T — ¢ mapping is
passive for any manipulator (see § I1.5.1 and § I11.8.2), any controller with a passive mapping 4 — T
asymptotically stabilizes the closed-loop system.

However, this result guarantees that (i—) 0 as t— o, but not that q — 0. Two possible
solutions are detailed below.

Using a Filtered Version of the Error Signal.

A passive map T — p exists for any robot, where p = [sI+ (K (s))/s] -q is a filtered
version of the eror signal q [Orte89].

When K (s) is chosen such that [sI+ K (s) /s]-! is a strictly proper, stable transfer function,
it may be shown [Orte89] that both q and q are asymptotically stable with the control law

u=AW@ [4+KE@D+@ D[4+ 2] +2(@) +K,- [s1+ X2 ]q v

where K, is a positive definite constant gain matrix.

This approach is widely used in the design of adaptive controllers based on the passivity property,
which will be discussed in § IV.4.2. However, its use for the design of fixed robust controllers is not
obvious.

Using LaSalle’s Theorem for Regulation.

Another approach is to consider the control law
u =y +K(s)q, (v.19)

where K (s) is strictly positive real (SPR}and u, is L., bounded.

Note that the inclusion of an integrator in K (s) to reconstruct q destroys the SPR condition. By
an appropriate choice of K (s) and u,, the passivity theorem can be applied to show that q and u, are
bounded in the L, norm. Since K~(s) is SPR, q is asymptotically stable.
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However, the development above impies that the ertor § is bounded, but not asymptotically stable
in the case of time-varying references. Using LaSalle’s theorem [Spon89), it is nevertheless passible to
obtain asymptotic stability of G when the gravity is perfectly compensated through a suitable feedforward
control. The comresponding controf law is then

u=g(g) +K(5)q. (Iv.20)

This approach is said robust since stability is guaranteed regardless of the robot's parameters, as
long as K (s) is strctly positive real.

in this context, Anderson [Ande89] showed that an a priori knowledge of the variations of the inertia
matrix can be exploited in a control law of the form

u= K@i+K@a+2(q). (v.21)

where the diagonal gain matrices K@ and K ,(q) are obtained from the singular values of the modeled
inertia matrix A (q) .

The same kind of reasoning led to the proof of the globally asymptotically stabifity of the linear PD
contro! on each joint, provided that the gravity effects are compensated, as in Eq. IV.7 {Pade88].

V.5.4 A Unified Point of View Thanks to Lyapunov.

Bayard and Wen established a convenient lemma to handle third-order terms in the Lyapunov
function derivative for robot manipwlators [Wen 88}. This avoids the need for a generalization of the
invariance principle to time-varying systems and therefore replaces LaSalle’s theorem when addressing
varying reference signals. Bayard and Wen could prove the global exponential stability of a dozen of non-
adaptive conlrol laws for the robot tracking problem [Wen 88] and obtain the comresponding lower bounds
of the feedback gains, Similar results were obtained for seven adaptive laws using the very same theory
[Baya88].

Many of the control laws mentioned above belong to the set examined by Bayard & Wen, who
clearly showed that each one provides a compromise solution to the tradeoff between computation and

convergence properties.
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IV.5.5 Limitations of High Gain Feedback Control Laws.

Purely robust controf laws that do not use any inverse dynamics model evaluation are most often
proposed by researchers with an electrical engineer background. Since the power amplifiers of DC motors
use switching transistors to control the currents in the motor's coils as a function of its position, it seems
reasonable to modify the control law to achieve acceleration, speed or even position control that would be
robust with respect to inertia variations and external perturbations.

Obtaining a high quality estimation of the motor's speed is the main problem in practice [Canu91],
which reguires the most part of the computing power of the digital signal processor (DSP) traditionally
used for these applications. Moreover, it should be stressed that no transmission delays are tolerated in
such schemes, requiring the DSP to work at a very high sampling rate and directly connected to the power
amplifier. In this case, the closed-loop bandwidth is theoretically only limited by the actuator's dynamics
(see § IV.2.1), reaching hundreds of Hertz.

However this approach is not realistic in practice if the elastic and flexible modes of the manipulator
are not taken into account in the controller's synthesis. Even if these dynamics are not directly in the
control loop, their reaction on the actuator can be high enough to cause an unstable behavior of the
mechanical structure while the controlled loop keeps being stable [Eppi93]. Note that the elastic modes
are often weakty damped because of the low frictions and, most important, that their natural frequency
varies with the manipulator's inertia, preventing to use standard notch filters as for machine-tools.

For this reason it is claimed here that all the results published in the field of variable structure, high
gain or robust control of robots should be examined vary carefully : applied high gain control schemes
must explicitly consider at least the joint efastic mode and therefore run into the problems described in
§1V.2.1. In all the available experimental results, the gains are reduced so that the controlled bandwidth
is limited below these natural frequencies and they therefore belong to the classical control schemes
mentioned in Section IV.2. In this case, there is no need of sampling periods shorter than a few
milliseconds.

This rather polemical assertion is somewhat supported by the fact that no experimental result is
available that show the effectiveness of a purely robust controlier on an industrial manipulator. In this
context, it can also be mentioned that some important robot manufacturers produce their own actuators,
power amplifiers and controllers, but do not use such techniques.
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IV.6 A Control Strategy for Fast Parallel Manipulators.

IV.6.1 Applications of Parallel Manipulators and Associated Control Schemes.

As mentioned in § 1.5.2, many parallel structures are used as strong, rigid mobile platforms. Their
stiffness has then been exploited in tasks requiring force control while the Delta robot initiated their use
when speed is the major consideration, Three distinct approaches to the control problem appeared
successively:

+ I flight-simulator cabins, the goat is to create artificial accelerations of the platform. The equivalent
accelerations of the joints are obtained through Eq. 11.31. Additional slow dynamics are added to re-
center the platform in its workspace. Since the platform's inertia varies littie, a joint space control
scheme based on a PD+gravity contro! law gives salisfactory resuts [Stew65]. Since only inverse
kinematics is required, parallel structures have an advantage over serial arms when the computational
burden is considered.

+ When a certain force has to be exerted by the end-effector on the environment, the mapping onto joint
forces is made through Eq. 1.2, where the Jacobian is involved. On paraliel manipulators, the
inversion of the inverse Jacobian is required (see § 11.9.6). Moreover, since robofs in contact with thei
envirohment move very slowly, the effects connected to their dynamics are negligible and a static
model is sufficient in practice. The advantages of a control scheme in operational space enumerated
in §1v.3.5 become evident in this conlext and such approaches gave excellent practical results
[Meri38).

+ As for serial arms, achieving high performance for faster manipulators with low reduction rations
require full compensation of their dynamics. The Delka even initiated a series of paralie) manipulators
that are so fast that the magnitude of the quadratic forces can exceed all other dynamics
(see Chapter V). The very few available contributions fo the controf of such manipulators are detailed
in§ive3.

1V.6.2 Simplified Models for Fast Manipufators.

In most practical cases, the #nk’s inertia is negligible with respect to the other bodies. In this case,
the inertia matrices YA and "A become constant, block diagonal o even diagonal. The quadratic forces
are therefore zero and the inverse dynamics model reduces to

t=%-4+%(q@ +1T[Pa- 5+ 5 (p)). (v.22)

Such simplified models have been developed and used for the Delta robot [Codo91a), [Codo91b),
the Hexa [Pierd1], [Pier92), [Pierd1}, and Speed-R-Man {Rebo90}, [Rebo91).
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IV.6.3 Reported Experimental Results.

Because of the lack of systematic approach to model parallel manipulators, it is difficult to compare
objectively the few experimental results obtained on the various manipulators. The results listed in Table 6
use model-based control laws that depend on the considered robot.

Author Robot Controt Unit Control Law
Codourey Delta 3xT800 joint PD + ff
[CodoS1a, (3-DOF fully parallel, Transputer Eq.IV.13
[Codo91b] direct-drive) h=7.5ms)

Kokkinis & al, CRSM 5YR 80286 + joint PD + ff
[Kokk91a], (3-DOF spatial 5 bars, AT&T DSP32
[Kokk91b] direct drive) h=1.7 [ms]
° y y operational PD + ff
‘ ‘ ‘ resolved-acceleration
(see comment below )
Karidis, Zai & al {BM “Hummingbird™ 3xT800 computed-torque
(Kari92), (3-DOF plane 5 bars, Transputer Eq. V12, & =0

[Zai92] direct drive) h=0.125 {ms]

Table 6 : Reported Experimental Setups for Model-Based Control of Parallet Robots.

While joint space PD control gives satisfactory performance on geared industrial manipulators,
Codourey obtained noteworthy improvements by adding a feedforward command [Codo91a), {Codo91b}.

18M's Hummingbird micropositioner has a plane 5 bars structure that allows an inverse dynamics
model in joint space only to be obtained. Its accelerations of about 50 G are of the same order of
magnitude than those obtained with the Delta, but the speeds are much lower since the Hummingbird's
workspace is only 13x13x1 [mm}. The quadratic forces are therefore neglected in the computed-torque
control scheme that is computed at the astounding rate of 8 KHz [Kari92), [Zai92)].

Kokkinis, Nakamura and Uecker developed a control scheme in operational space that is similar to
the one proposed in this work, except that the free joints are explicitly used in the model (see § 111.6.1)
[Kokk91a]. They obtained about the same performance as with the joint PD + feedforward control law.

A Note about Robust and Adaptive Approaches.

Some resuits with robust control laws on parallel robots are reported. These strategies meet the
same problems as for serial arms (see § 1V.5.5) : since no filtering of the natural frequencies of the
structure is done, it is suspected that the behavior of the whole structure is not as good as the nice
performance displayed in joint space.



Modet-Based Control of Parallel Robots: -102. aGlobal Approach in Operational Space.

To the best of the knowledge of the author, the only adaptive law specifically developed for parallel
manipulators by Walker [Walk90] has not been experimentally tested.

IV.6.4 Joint Space Versus Task Space Contro! Schemes.
The oomputéd~!orque scheme and resolved acceleration scheme for parallel robots are displayed
respectively in Fig. 18 and Fig. 19.Both schemes require to:
+ evaluale the forward kinematics relation (Eq. 11.22),
« compute the inverse Jacobian malrix (Eq. I1.16),
< invert it fo get the Jacobian (Eq. I1.19),
+  evaluate the forward speed kinemalics relation (Eq. I1.15),
+ compute the inverse Jacobian's derivative (Eq. 11.31),
+ apply the PD. (or robust) control law,
« calculate the acceleration mapper,
+  apply the PD (or robust) control law,
+ evaluate the inverse dynamics model in the two spaces (see § 111.6.2 and § il.7.4).
Therefore, as displayed in Fig. 18 and Fig. 19, both schemes require exactly the same amount of
computations. However, the computed-torque scheme requires conversion of the reference signals from
task space fo joint space, as discussed in § 0.10.3. Therefore, the discussion in §1V.3.5 about the

advaniages of the task space control scheme for serial ams remains perfectly valid when parallel
manipulators are considered.
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Fig.19 : Resoived-Acceleration Scheme for a Paraliel Manipulator
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IV.7 Implementation Considerations.

IV.7.1 Previous Work on Controllers for Serial Arms.

How to design the hardware and software of an advanced robot control unit has been investigated
by many researchers. Many resuls are avaitable for senial arms controffers.

In the early 80's, Luh and Lin studied how to distribute optimally the computational load among
processors working in paralle! [Luh80b). This is known to be an NP-complete problem [Bokh88], [Sark89]
for which a solution can be found only when the computational load is divided in a small number of parts
to be assigned to processors. Such an coarse grain parallelism is known to lead to poorty efficient
solutions, where efficiency is defined as

. _ execution fime on a single processor
efficiency = == colion fme W paralelcn (Iv.23)

Efficiency is a measure of the average business rale of the processors working in paraliel.

A more promising approach is to expioit the knowledge of the fine grain structure of the algorithms
either by using multiprocessor controllers or by designing specific elecironic circuits. A (non exhaustive)
list of important contributions fo these two trends is given below. More references can be found in
Graham's excellent survey on computer architecture for robotics {Grah89).

Parallel Software Design.

Parallel evaluation of inverse kinematics has been studied by Sugimoto [Sugi9), Towassis
{Tour89] and Zhang & Paul [Zhan91]. Wander and Tesar proposed a pipetined computation of the inverse
dynamics (Wand87], while parallel implementation was investigated by Chen and Lee {Chen88}, Fijany
[Fi§a88], {FijaB9} and Zomaya & Momis [Zomad0}, [Zoma92], who implemented their algorithms on
Transputers. The use of massively paraltel systems based on sysfokic networks has been examined by
Javaheri and Orin for the evaluation of the inertia matrix [Java88).

Hardware Design.

Special VLSI circuits were developed by Chang & Lee to compute the inverse kinematics relation
[LeeG87] or the pseudo-inverse Jacobian for redundant arms {Chan89] and by Hsia & al to compute the
Jacobian together with its derivative and inverse {Hsia91]. A restructurable VLS! vector processor based
on three floating-point processing units (FPU) was proposed by Sadayappan & al. as a basis of a general
robot control unit [Sada89). Ish-Shalom and Kazanzides developed a control unit based on multiple digital
signal processors (DSP) working in parallet {tsh-89).
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A Comment on the use of DSP’s

Interestingly, using a single DSP to conirol a robot is not a widespread idea, which is mainly
supported by Kokkinis' work [Kokk91a), [Kokk91b). The reason is probably that such processors are
specialized devices that are optimized to perform simple, linear operations such as scalar products on
data flowing “through” the processor at a very high rate.

In robotics, the bandwidth of the input and output signals does not exceed 1 KHz. Vector and matrix
operations represent only a small fraction of the total computations, while several transcendental functions
have to be evakiated.

A single DSP is therefore better fitted to control the inner loop in a power amplifier rather than the
outer loop discussed in this work.

iv.7.2 Parallel Controllers for Parallel Robots.

As shown in Chapter Il and Chapter Ill, the structure of the aigorithms involved in the computation
of kinematics and dynamics of parallel manipulators is very different from the serial case. As a
consequence, the results mentioned in § IV.7.1 can not be used without deep modifications.

The patalielism of the proposed model-based contro! scheme in operational space is first analyzed
from a coarse grain perspective, then its fine grain structure is exhibited and a matching parallefpipeline
structure of the control unit is proposed.

Coarse Grain Structure.

The different blocks of Fig. 19 have to be evalualed during each sampling interval. Their
dependencies force this evaluation to follow a sequence that is depicted in Fig. 20. With this
representation, the computation of each block can only take place when all the superimposed blocks have
fiest been evaluated.

It can therefore be seen that the complete algorithm has a dominant sequential structure, where
only the control law can possibly be computed at the same time as J-!, while the generation of the
reference signals can be done in paraliet with the sequence of kinematics computations.

This coarse grain analysis shows that an implementation on two processors might be considered,
but that the efficiency of such a setup is likely fo be poor because of the dissymmetry of the computational
burden assigned to each processor.

The possible sampling period is therefore limited by the traversal time of the data through the most
loaded processor :

to= L+ +t vttt (Iv.24)
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Fig.20 : Coarse Grain Structure of the Resolved Acceleration Scheme for Parallel Robots.

Fine Grain Structure.

Examining Fig. 20 closer shows that the blocks in light gray correspond lo aigorithms that have an
intrinsic paraliel structure over the n dimensions of either the joint space or operational space. In other
words, these blocks might be divided in n independent blocks that can be computed in parallel

White blocks are also parallefisable, but the comesponding operations are so simple that the
computational time that could be saved is counterbalanced by the overhead caused by the communication
of data between the processors. Their traversal time is even negligible with respect to the other blocks. It
is therefore not worthwhile to parallefize these blocks.

Dark gray blocks are not parallelisable. In fact, the inversion of a matrix is, but the involved
techniques are not worth to be used for small n as in robotics applications

Medium gray blocks have a structure that combines some paralielisable parts with non-
paralielisable parts. The generation of reference signals contains the profile generator, which is not
parallelisable and a geometric part that can be paralielised according to the dimensions of operational
space. The forward kinematics relation has a similar structure in the rare cases where it has a closed form
(Delta). The more general iterative Newfon-Raphson-based algorithm described in § Ii 9.6 has an inherent
sequential+paraliel structure. Exploiting this fine grain paraliel structure leads to the situation shown in
Fig. 21 below.




IV. Control, Ph. Gugheimett

start of sampling inlerval
Vp="p#91.(%q-q)

| fi=f('p) Yarts(p) : T, "0 p)

| =lpv U g |

| 2g, = Mp) g, ) zqn;fn 2

[ e=2pe % 3qq) |

1) ] 5N

I PD Control Law | Iy e I L)

l Accederalion Mapper

s/ I Dynamics of chain 1 | Dmm;»fmaml | Dynamics of chain n

¥ time end of sampling interval
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The traversal time is then

Design of a Parallel + Pipeline Control Unit.

The main fact that appears in Fig. 21 is that the white and dark gray blocks can be impiemented on
a central processor while the light grayed blocks can be implemented on n penpheral processors that

exchange data only with the central processor. The topology of the processors nel Is therefore a star

Moreover the sequential structure found in the coarse grain analysis has the following interesting
consequence: the central is busy while the peripherals are idle, and the central waits while peripherals
compute. This is illustrated in Fig. 22, were the CPU usage of both types of processors is displayed over
a single sampling interval. The sequence of operations corresponds o Fig. 21 where realistic proportions
between the computation times were introduced

Central Periphenid
Processor Processor

wd formerend of 8
= and of samphng interval k
. start of sampling inferval k+1
p bme
% CPU Usage
Examining Eqg. V.25, one may remark that, if t, iscloselo (1, +1,+1t,+1t)/n,alhe n+

processors are idle about haii 0
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If the central processor is too busy, meaning that the peripherals are under-utilized, the designer is
suggested to take the decision of reducing the number of peripherals by grouping the tasks that were
assigned to two of them on a single one. This is very likely to occur in controfiers for 6-DOF fully parallel
robots, where one peripherial processor would typically be associated to 2 DOFs

If the central processor is less than 50% busy (as represented in Fig. 22), the designer can choose
to de-paralielize an algorithm and move it from the peripherals to the central processor This is illustrated
in Fig. 23 which is obtained from Fig. 22 by moving a small process from the (three) peripherial
processors 1o the central one. As in the previous case, the sampling period has 1o be lengthened bya
factor that remains smaller than 2.

Once all the processors are busy about 50% of the time, a two-stage software pipeline structure
can be introduced that allow 1o double the sampling frequency at the expense of adding one sampling
period of delay in the feedback loop. The original idea proposed here is to interleave two consecutive
sampling periods so that the second one begins while the first one is nol yet terminated. The traversal time
of the algorithm remains the same, but covers two sampling periods instead of one. Since the processors
are now 100% busy this shows the perfect efficiency of the proposed parallel control unit, as shown in
Fig. 24 where the computations associaled 1o successive sampling intervals are represented by different
gray levels

end of sampling interval k-2
start of sampling interval k

end of sampiing interval k-1
start of samping mierval k+1

&nd of sampling nenval k |
start of sampling interval ke2

‘ 5

Fig.24 : Interleaving Sampling Intervals to obtain 100% CPU Usage
in a Two-Stages Pipelined Control Unit.
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IV.7.3 Control Unit Design.

Practical Constraints and the Transputer.

From an implementation point of view, the design of such a control software is possible only when
a real-time kemel features pseudo-parallelism on each processor, which is represented by the horizontal
lines pattern in Fig. 24. Otherwise it would be an impossible task for the programmer to code manually the
sequence of operations to run on each processor. The Transputer has the advantage of offering a
hardware kemel with ultra-fast task switching that introduces almost no overhead.

An important overhead is nevertheless infroduced by the communications between processors.
Fig. 21 shows that not less than 9 exchange of data between the central and each of the peripherals must
take place in one traversal of the algorithm, or 18 when pipeline isimplemented. While the Transputer finks
are able to transfer large data packets at 20 Mbit/s, this rate falls to no more than 2 Mbit/s (about 60000
floating point numbers per second) when only a few bytes are fransferred.

Finally, it is clearly not possible to obtain 50% business of each processor. The designer can be
happy if rates between 40% and 60% can be obtained. After the implementation of the pipeline, an overall
efficiency higher than 50% with n = 3 can be interpreled as a success since it means that the control
unit works more than twice as fast as a single-processor control unit.

Description of an Experimental Transputer-Based Control Unit.

The experimentat control unit developed for the model-based control of the Delta robot is sketched
in Fig. 25. The computing power is provided by the four (NMOS T-800 Transputers named “Central” and
“Periph. 1-3°,

Since the robot interface hardware is accessed through a single Transputer Link, a fifth “Host” T 800
had to be used. it also executes the development system (TDS) and simple tasks such as the user
interface and the reference signal generation. This Transputer is much less loaded than the four others
and would probably be replaced by the PC processor itself in a newer design,

The performance of this control unit is discussed in Chapler V, where the implementation of the various
algorithms as well as the load-balancing procedure are detailed.
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Fig.25 : Structure of the Experimental Conirol Unit

IV.8 Conclusions.

A complete discussion of control techniques that were proposed for the control of robots leads to
consider them as compromises between purely model-based and purely robusl approaches.
Experimental results showing the effectiveness of model-based strategies are more convincing than the
avallable results regarding adaptive or robust control, especially when fast manipulators are considered

Moreover, the advantages of task space control over joint space schemes are discussed For
parallel robots, a model-based scheme with a feedback loop in task space requires fewer computations
than its equivalent in joint space. Such a scheme is therefore proposed, where the inverse dynamics
model in the two spaces is involved

Finally, the structure of the proposed aigorithm is examined and an efficient implementation on 3
multiprocessor control unit with a parallel+pipeline structure is described
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Chapter V

Application to the Delta Robot.

V.1 Introduction.

In this chapter, the modeling process and controller design procedure proposed in this thesis are
applied to the Delta robot. The kinematics and dynamics of the Delta robot as well as implementation
issues are discussed in great detail.

In Section V.2, the structure of the Delta manipulator and its application to fast pick & place tasks
are first presented. Under the hypothesis that the sub-chains are identical, the parametrization of the
manipulator is discussed and the kinematics and dynamics parameters of the experimental Delta given.

The kinematics of the Delta is completely solved in Section V.3, where the inverse algorithms for
positions, velocities and accelerations are detailed. A Newton-Raphson forward kinematics algorithm is
shown to be more general than a closed-form formutation. Special attention is given to the analysis of the
complexity of the proposed algorithms. it is shown that they all efficiently take advantage of a
multiprocessor control unit.

The problem of the singularities and inverse singularities is dealt with in Section V.4. Their location
is analyzed and a map of the Jacobian's determinant over the robot’s workspace is given to show their
influence in it. The very difficult problem of defining a usable workspace in which the Delta robot offers a
bounded stiffness is considered. A numerical case study leads to an attempt of defining the usable
workspace with respect to the inverse singularities.

In Section V.5, the dynamics of the Delta robot is analyzed. First, a simplified mode! where the
inertia momentum of the forearms is neglected is presented in the format of a model in the two spaces.
This simplifying hypothesis is then removed and a full model is obtained through a Lagrange approach
where kinematics is explicitly introduced.

Some simulation and experimental results lead to a critical discussion on the Delta’s performances
and limitations in Section V.6.

The main contributions in this chapter are finally summarized in Section V.7.
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V.2 Experimental Setup.

V.2.1 The Delta Manipulator.

The Deka is a 3-DOF fully parafiel robot designed by Clavel at the Institut de Microtechnique (IMT)
of the EPFL [Clav85), [Clav88], {Clav91]. The main objective was to design a very fast manipulator for pick
& place tasks. Typically, it can pick a 10 g mass and place it 30 cm further along a half-eliptic trajectory
in 0.12 [s], aklowing a 4 cycles/s cadency. The platform can reach accelerations of 300 m/s? and travel
speeds close to 10 [m/s]. These performances allow to say that the Deita robot is the fastest industrial
manipulator in the world.

The Delta is operated upside-down, the base “hanged on the ceiing” as represented in Fig. 26.

Fig.26 : The Delta Robot.
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The Deta’s structure has two imbricated types of closed kinematic chains:

» Three sub-chains connect the base to the platform. Each consists of two parts: an am attached to the
robot's base through an actuated 1-DOF revolute joint and a forearm linking the amm to the platform

holding the end-effector.

+ Each forearm is made of a pair of rods with ball-sockets joints at both edges. Struts maintain each pair
of ball-socket joints at each edge of the foream separated. The three constraints introduced by these
three rigid closed chains remove three degrees of freedom of the platform. in particular, when the
structure has certain symmetry properties, the forearms form what Clavel calls a “parallelogram in
space” that prevents the platform's rotations. The Delta is then functionally equivalent to a 3-DOF

Cartesian camier.

V.2.2 Geometrical Description.

Standard Parametrization of the 6-DOF Structure.

According to the parametrization of parailel robots introduced in § 11.7.5, the Delta structure is
described by the Denavit-Hartenberg parameters of its base tree (see Table 7) and upper tree

(see Table 8).
! 4 ¥i 5 & 5; 5
1 0 0 0 W0 | q 0
2 o | 200 | o 0 | g 0
3 o | 2 | o w | q 0
4 1 0 0 180° - 1,
5 2 0 0 180° : 1
6 3 0 0 180° - 1.
7 1 0 0 180° o,
8 2 0 0 180° )
9 3 0 0 180° -,

Table 7 : Parametrization of the Delta Manipulator Base Tree.

Moreover, the signed length of the six links is required. Each forearm can be viewed as a complex
link of type 0 (see Table 2). The intemal degrees-of- freedom are removed by springs that connect each
pair of rods. Therefore, = [l 1, 1, -1, -1 -1 ] .
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i 3 T; ¢ d o 6, I,
1 6 0 0 T, - . 1,
2 0 120° 0 T - . 1,
3 .0 240° 0 I, - - 1,
4 0 0 0 T . - -l
5 0 120° 0 I, . - -1,
6 0 240° 0 I, - . -1,

Tabile 8 : Parametrization of the Delta Manipulator Upper Tree.

Simplifying Hypothesis and 3-DOF Parametrization.

The geometry of the Delia robot is sketched in Fig. 27.When the three sub-chains are identical and
the thvee-fold symmetry perfect, five scalar parameters {r,r,,1,1,,1,} suffice to specify the
dimensions of the whole structure.

Since the platform remains paraliel fo the base, only r, = r, - r, appears in the kinematics. 1,
and r, /1, are not involved in kinematics but guaraniee the stiffness of the structure. Each forearm can
therefore be modeled as a single bar of length 1, .

V.2.3 The Deita-IA Robot.

All the numerical and experimental results presented in this chapter were developed for a prototype
of the Delta robot designed at IMT and built in coltaboration with the Institut d'Automatique (IA) of EPFL
where it is used as a test bench for robot control algorithms.

Sensors, Actuators and Transmissions.

Thiee brushless DC-motors offering 2 [Nm) maximum torque drive each amm through a crank beit
transmission with n, = 10+ 1 reduction ratio. incremental sensors with 20°000 increments per tum are
mounted on the motors.

For the sake of simplicity, the experimental case study proposed in this chapter and the control
software were developed for a fictitious equivalent direct-drive robot with actuators offering 20 [Nm] and
sensors with 200'000 increments per arm tum.
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Fig.27 : Geometry of the Delta Robot.

Geometrical Dimensions.

The Delta-1A has the following dimensions:

1, = 0.260 [m]
1, = 0.480 [m] "
r, = 0.194[m] v

r, = 0.030 (m]
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According to Clavel's convenlion, itis a Delta740 since 1, +1, = 740 [mm] . These geometrical
dimensions result from Clavel's study on their refation with the robot’s workspace size (Clavd1]. For pick
& place tasks, a good compromise between the workspace's height and surface is obtained with

r/1,=2063 and 1, /1, =2. (v.2)

Dynamics Parameters.

Extending the hypothesis of perfect gsomelrical symmetry of the robot (see § V.2.2) to dynamics,
only a handful of parameters are required to describe the inertia of each body. Because the Delta’s
structure can easily be disassembled, it is easy to accurately measure the masses m, of each am, m,,
of each pair of the rods (foreamm) and m,, of the platform:

m, = 0.200{Kg]
m, = 0.088Kg] . (v.3)
m,_ = 0.092[Kg]

The amms and forearms where considered as homogeneous bodies with an axial symmetry, their
center of gravity faying in their middie:

=1/2 = 0.130['m]
{g‘ * [ (v.4)

g, = h/2 = 0.240[m}

With the same hypothesis, the inertia momentum of the forearms about any axis orthogonal to the
rod passing through the center of gravily is

2
m, )
J = sz_b = 0.0017[Kg.m3. (v5)

Finally, the tolal inertia j, of the arm, actuator rofor and transmission was identified through an off-
line least squares identification procedure (see § V.6.3). The obtained value is

i, = 0.0131[Kg.m3, (V6)
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V.3 Kinematics.

V.3.1 Preliminary Definitions.

To simplify the following developments, three auxiliary cartesian frames are obtained by rotating the
reference frame around the z axis according to the rotation matrices:

cosy, —siny; 0
R = Isiny, cosy, 0.1 =123, v.7)
0 0 1

where the v, angles are taken from Table 7. A unit vector along each arm is defined in the corresponding
auxiliary frame:

) cosq;
V=1l ¢ | (v.8)

sing;

It is useful to define the V matrix as the basis generated by these unit vectors in the operational
space:

V= [lR-'vl 2R~2vl 3R»3v]' v9)
Then, the position of the three first connection points on the base tree is

r

b i 2
P =R ||| +1V

0

Li=1,23. (v.10)

1
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The three corresponding connection points on the upper tree, which is the platform itseff, are

W . ™
P, = p+'R 1, =R-|'p+ If =123,
0 0

where
ip - iR—l p= iRT'p
since 'R isan orthogonal matrix.

The constraint introduced by the coesponding link is

i 1i, T ru b 1]i i
W=i;R-[Pi—Pi]=E pP-

is the unit vector along the i* forearm in its corresponding auxiliary frame and

W = []R~ 1w| 2R~2w| 3R~3w]

the basis generated by these unit vectors in operational space.

V.3.2 Inverse Kinematics.

(v.11)

(V.12)

(V.13)

(v.14)

(v.15)

Many different approaches are possible fo oblain an inverse kinematics algorithm. However,
special attention should be given fo singularities that can artificially be introduced. Stemheim’s algorithm
[SterB7] and Clave!'s both suffer from such defecis, that were solved by Codourey {Codo91a]. Here, a

comected and optimized version of this latter algorithm is proposed.
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The i* constraint equation (Eq. V.13) can be written as

(ipx-nJiVﬁ BV, -l = 0 (V.16)
where
. .
I, = (|§—|§+('px—r,) +‘p§+‘pf)/213. (v.17)
FromEq. V.16,
v, = (‘c-(ipx-f,)ivx)/ipz (v.18)

Since v is a unit vector with ivy =0
NVelVie (V.19)

Combining Eq. V.17 and Eq. V.19 yields a second order equation in ivx , with solutions

. o f ) \
2 2
Ic(lpx - l'r)i.)pz |pz + (‘px - rr/! —]3

N, = . (v.20)
i2 i 2
| ( Py~ rr)

The solution with the plus sign is excluded since it comesponds to a situation where the arm is
directed towards the inside of the robot. Finally, from Eq. V.8,

g, = aan2(v,,'v) (v.21)

where atan2 is a function of two parameters that computes an arctangent in the four quadrants. It is now
commonly available in numerical libraries.

Complexity Analysis.

This algorithm requires 63 FLOP plus the expensive evaluation of three square root and three
atan2. On a single T-800 Transputer processor, it requires 240 [ps). This is 12 FLOP or 4 [us] less than
Codourey’s algorithm [Codo91a). When implemented on the three “peripheral’ T-800 working in parallel,
the computation time drops to 88 [s), which cormesponds to a very satisfactory 91% efficiency.
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V.3.3 Inverse Jacobian.

Differentiating Eq. V.14 with respect to time leads to a relation between the joint velocities and
platform speeds in the auxiliary frames

= ’liRT. [*p,~"p] = l-l-(ip_laiv) = ll(ip-lauvq'i),i = 1,23, (v.22)
b b b
where
-sing;
iL _dv !
VE o= . V23
%, ] (v.23)
cosq;

After some transformations detailed in [Gugi91), Eq. V.22 for i = 1, 2,3 can be wrilten in the

form:
T .
W p=1Xq, (v.24)
where
Wi o 0
X = 0o ZwT.y 0 . (V.25)
0 0 3wT Sy

Considening Eq. V.24 with respect to Eq. I1.17, one can see that the Delta’s inverse Jacobian is
given by a rather simple expression:

e xtwT (v.26)

while, as explained in § 11.9.6, the closed form of the Jacobian
-T
J=1X-W (v.27)

is t00 complicated to be of any practicat use since an inversion of W is involved.
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Complexity Analysis.

The inverse kinematics algorithm described in § V.3.2 intemally computes the v vectors required
for the inverse Jacobian evaluation. Obtaining the 'w vectors from Eq. V.14 and the inverse Jacobian
(Eq. V.15, Eq. V.25 and Eq. V.26) then requires only 60 more FLOP. This takes 140 [us] on a single T-
800. On three T-800, inverse kinematics and inverse Jacobian are computed in only 128 {us). Efficiency
is then as high as 96% because more computations are performed in paralle! for the same communication
overhead.

Then, a straightforward numerical inversion of the inverse Jacobian would require 45 FLOP
(65 [us])- In the proposed control scheme (see Fig. 19), the Jacobian is only used in dot products with
vectors, which each requires 15 FLOP.

Since such an operation is equivalent to solving a linear system of equation where the inverse
Jacobian is the system's matrix, another approach is {o LU-decompose ! , which requires only 13 FLOP
(24 [us]), and then spend 15 FLOP to solve each system. This technique, which saves only 40 [us] in the
case of the Delta, leads to very important savings in the case of 6-DOF manipulators.

V.3.4 Forward Kinematics and State Observer.
Why the Closed-Form Forward Algorithm Should Not Be Used.

Forward kinematics requires to solve Eq. V.13 simuitaneously for i = 1, 2, 3, which is a system
of quadratic equations in p . Because of the very particular structure of the perfect Delta, this problem is
geometrically equivalent to finding the intersection of three spheres, for which a closed-form solution
exists [Clav88], [Codo31a). As implemented by Codourey, this takes 268 [us] on a single T-800.

Researchers should be aware that the condition of existence of such a closed-form is very delicate.
A single change in one of the robot’s parameters is sufficient to destroy it. All the results that suppose the
existence of a closed-form forward kinematics relation cannot be generalized yet since such a refation is
not currently available for a general parallel manipulator. For theis reason, it is advised here not to use the
forward kinematics relation any more.

Use the lterative Newton-Raphson Algorithm Instead!

The forward kinematics transformation required in the state abserver block of the proposed control
scheme (see Fig. 19) is implemented using the Newton-Raphson algorithm described in § 1.9.6. A
measure of the convergence rate of this algorithm is the number of iterations n_ required to achieve a
precision comesponding to one increment of the robot’s position sensars. Since n_ depends on the quality
of the first approximation, the worst case is obtained when the robot moves at its maximum velocity.
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A simulation was performed where the robot is supposed to move at 10 [m/s] all over the
workspace. Considering a sampling frequency of 1 [KHz), successive points in operational space are
1 fom] apart. The complete algorithm with Jacobian update requires exactly two ierations to reach the
desired precision but takes 928 [us] of a single T-800 CPU time. When the Jacobian is not re-evaluated
only once, three steps are required in less than 2% of the cases, and CPU time is reduced to 640 [us].
This might seem very slow compared to the closed-form forward kinematics algorithm.

However, fixing the number of iterations to n, = 2 allows to optimize the iteralive algorithm and
exploit its parallel+pipeline structure on four processors. Since the inverse Jacobian and its LU-
decomposition are evaluated in the algorithm, the direct speed fransformation p = J- G can be
performed at a very low extra cost. Finally, the complete state observer requires 343 (usj on four T-860
processors. The efficiency is close to 50%, indicating that the computational load is equaly divided
between the central processor and the thvee peripheral processors.

V.3.5 Inverse Jacobian’s Time Derivative and the Acceleration Mapper.

3™ is obtained by difierentiating Eq. V.26 with respect to fime:

e I [xewToxewT], (v.28)
a

where

X,; = BT ik, AT ivqi (v.29)

since v = ‘v, (see Eq. V.8 and Eq. V.23), and

W = [ig. 15| 2R 2| R 0] (v30)

The power of the approach in the two spaces appears since Eq. V.22 allows to compute the
required 'w vectors once the velocities are available in both operationat and joint spaces.

In the proposed control scheme, J"l is only used fo map operational accelerations to joint space
thanks to Eq. 11.31, which is reminded here:

G=1"p+7"p. (v.31)
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Complexity Analysis.

Evaluating it p takes 120 FLOP or 268 [us] of T-800 CPU time. This computation ¢an be
completely paralielized on the three peripheral processors with a very high efficiency of 95%. Then, the
acceleration mapper needs only 18 more FLOP to complete.

The kinemalics part of the control scheme proposed in Fig. 19 finally takes 1320 fus] on a single
T-800 and 582 [us] when paratilized, giving a 57% efficiency. Considering the FLOP count and the
communication overhead, this reveals that the peripherals processors are more loaded than the central
pracessor.

V.4 Singularities and Definition of the Usable Workspace.

V.4.1 Singularities and Inverse Singularities.

The geometrical meaning of W (Eq. V.15) and X (Eq. V.25) helps to find the configurations where
either the Jacobian or its inverse becomes singular.

+ Elements on the diagonal of X contain the cosine of the angle between 'w along the forearm and
"Lv, which is orthogonal to the arm and belongs to its plane of rotation. Therefore, the Jacobian
(Eq. V.27) becomes singular when at least one forearm is colinear to the amm of the same sub-chain.
This occurs only on the exteral suiface of the robot's workspace.

+ Columns of W contain the unit vectors along the forearms in the same reference frame. This matrix
and 77! (Eq. V.26) become singular when two or more forearms are parallel or coplanar.

Inverse singularities may exist inside the robot's workspace. However, designing a Delta such that
1, > 1, +r, makes it impossible to have the three forearms in the same plane, and this is guaranteed by
Clavel's fiest design rule (Eq. V.2). To forbid configurations where forearms are parael, r, should be
farger than 1_, which is not the case according to the second design rules. Consequently, a subspace of
the workspace should be defined, where the robot can be operated safely.

Analysis of the Jacobian’s Determinant.

As mentioned earkier i this work, a parallel robot has advantages over a serial amm only if it is
operated "far enough” from the singularities of both types. However, no physically meaningful nom
available as a measure of the distance to them. In a first attempt to qualitatively represent the regularity
of the kinematics in the workspace, the Jacobian’s determinant might be used.

Fig. 28 represents the value of |J| on seven horizontal skces of the Delta's workspace. In the upper
part of the workspace, the proximity of three inverse singularities clearly appears. The three levels in the
middle correspond to the zone where the robot is usually operated in pick & place tasks. The robot's
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properties are here remarkably constant over a wide part of the workspace. Only three small bumps reveal
the influence of the inverse singulariies. At the lower levels, the curved surface indicates the
neighborhood of another inverse singularity in the center of the section,

V.4.2 Defining a Usable Workspace.
A Purely Geometrical Definition.

Clavel based the original definition of the Delta’s usable workspace on mechanical design
considerations. Limits were posed on the extent of some angles to prevent collisions between bodies and
avoid dislocation of the ball-socket joints. This definition allows fo obtain an approximation of the
workspace's volume and main dimensions. The possibility of entering inverse singularities is avoided
thanks to additional constraints, but security margin is introduced. Moreover, the algofithm to check if a
point belongs to the workspace requires to check the values of the angles at the free joints. I can therefore
not easily be combined with the kinematics algorithm presented in this chapter. In practice, existing
implementation simply check that the robot's position in joint space belongs to the cube

Unin 9 Sy 1 = 12,3 {v.32)

where q_. and q_ .. are chosen such that the other constraints are satisfied.
A New Definition based on Performance Considerations.

ltis proposed here to consider a new definition of the workspace 4/ as the subspace of O where
eigenvalues of the matrix 3" - ™ stay within given bounds B and B:

W = {pe Olpseig[i (@ 1 (] <B}. (v.33)

The physical meaning of this definition can be undersiood when considedng Eq. .S in§ 111.3.1. For
a fully parakel robot like the Della, aff the k, ; elasticity constants can be considered equal and the
1757 matrix appears as a factor in the sfifiness matrix. The bounds B and B therefore limit the
workspace to the configurations where the structure has a sufficient but finite stiffness. Singulanities of the
Jacobian and inverse singwarities are therefore excluded with a physically meaningful security margin.
Note that only static stiffness is considered: natural frequencies can not easity be determined because of
the varying inertia and couplings.

However the proposed definition can clearly not be easily implemented. A solution is to consider
the simple definition from Eq. V.32 and to defermine numerically the bounds q,,;, and q_ . such that
the corresponding workspace is included in .
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The lowest eigenvalue of J T 17 attained in the workspace is plotted in Fig. 29 as a function of
q,,;, inthe right hand side of the graph and q,,,,, inits left hand side. Note how the stiffness decreases
rapidly when q_ . — acos (-r./1.) =-129° butsloweras q_,, increases. On the other hand, it can
be seen that the closed chain structure of the Delta results in stiffening the open chain mechanism up to
a factor 9 for some configurations.

Choice of the Bounds.

Choosing B = 1 guarantees that the robot is stiffer than an serial arm with the same joint

elasticity, but the corresponding workspace is then very much reduced.

Considering the low inertia of the open chains and the high associated natural frequency (about
88 Hz according to the identification process detailed in § V.6.3), choosing B = 0.1 still ensures correct
performance of the robot. The coresponding workspace, givenby q_. = —125° andq . = 15°is
represented in Fig. 30.

V.5 Dynamics.

Many different techniques were used in various attempts to obtain an inverse dynamics model of
the Detta. In early attempts, no distinction was made between kinematics and dynamics. The resulting
models were extremely complicated and therefore not usable for analysis or real-time implementation.

Another approach was initiated by Codourey, where a much simpler model was developed, that
could be used in a model-based control strategy [Codo91a). The model's formulation was greatly
simplified by assuming forearms with negligible inertia momentum. This hypothesis was then removed by
Mitler, who obtained a relatively simple modet through a Lagrange-with-multipliers approach [Mill92]. In
both works however, the difficulty is somewhat alleviated by using numerical differentiation techniques to
obtain the robot’s state in both spaces instead of exact kinematics relations.

In this context, the contribution of this thesis is to introduce kinematics in the dynamics model,
allowing to replace numerical differentiations by explicit expressions. This approach furthermore allows to
obtain models equivalent to Codourey’s and Miller's, but with a much simpler formulation that allows
analysis of the robot's dynamics.

The complete inverse dynamics model the Delta is established in three steps using a Lagrange
based approach. First, only gravity forces are considered. Then a simplified mode! is obtained, where no
Coriolis forces appear. Finally, the complete model in the two spaces of the Delta is given and discussed.
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V.5.1 Modelling Gravity Effects.

The potential energy of the Delta in an uniform polential field defined by the vector ¢ is:

1
T . T T T
ep=¢ - |mp+mgV -y +mb[laV +g W ] il (v.34)
1

In the usual case where the z axis of the robot is aligned with the Earth’s gravity field,
s" = [0 0 9.81] Imis?). Eq. V.34 becomes

3
m, g .
ep = 9.8l(mc + 3—;’T'-’]pz +981 Y (mg, +my, (1-g,/1))"y,. (V.35)

i=1

From this expression, the gravity forces vectors of the model in the two spaces Eq. I11.27 are easily
obtained:

%(q) = 9.8l(mag‘+mbl [l-f—bJJ[cosql c0sq, cosqs].r (v.36)
b
and
T
’g(p) = [o 0 9.81(mc+3me-gbjI : (v.37)
b

As mentioned in §1V.2.2, PD+gravity controllers are the simplest for which formal proofs of
convergence exist. In the case of the Deffa, the control law in joint space comesponding to Eg. IV.7 s

= Kd+Ka+2(q) +37-Pg(p). (V.38)



V. Application to the Detta Robot -131- Ph. Guglelmetti

V.5.2 The Simplified Model.

Modelling the forearms as two punctual masses connected by rods of negligible inertia momentum,
the kinetic energy of the manipulator is

1 Bpl .2 3. 2 g .2
e = i[m°+3m"f)|pl +§(Ja+mbla(l—i)]lql , (v.39)

where g, /1, is the ratio of the forearm’s mass placed at the connection point with the platform.

The inertia matrix in generalized coordinates can immediately be extracted from Eq. V.39. Since it
is diagonal, it has the more general block diagonal structure given in Eq. I11.26 and its elements are
constant, i.e. they do not depend on the manipulator’s position:

Aq) = [ja+m,,l§[1—f—"]]1. (v40)
b
PA(p) = (mc+3mb%JI. (v.41)
b

Consequently, the comesponding quadratic forces matrices °C (q, §) and PC (p, p) are zero.
The simplified inverse dynamics madel in the two spaces therefore is

1= 4+% @+ - [Pa@ 5+ (@] (v.42)

Note that some quadratic forces are indeed modeled in Eq. V.42 because the acceleration mapper
involves products of velocities (see Eq. 1.31 and Eq. 11.32). intuitively, when the platform follows a curved
trajectory, its centripetal acceleration is mapped onto joint space.

V.5.3 The Complete Model in the Two Spaces.

Miller established the first complete model of the Delta through a Lagrange-with-multipliers
approach [MillS2]. It could therefare not be put in a form that allows analysis because the implicit inertia
matrix in generalized coordinates has not the block diagonal structure of Eq. 111.26 since couplings remain
between joint coordinates and operational coordinates. As shown below, these couplings can be removed,
so that an equivalent mode! in the two spaces with the form of Eq. H11.27 is obtained.
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The kinetic energy of the i* forearm is

", + P, “pi_"pi|2]
2 f oy |

[? + :—;)llﬂz + (E;—b + 'Ii%’],(ip - Ia“'vqi)l2 + (me- 2:—;-’}( ipT . (ip - la““vqi))J
b b

g2 (M, )22 T
my|p} +[T"+'—g)laqi—mblap ~"'Viq.l]

b
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. |2
e = 3| my ‘+Jb

B |

DI v

(V.43)

where
v = [IR. uvl 2R~uv| 3R~“'v] ) (v.44)

The total kinetic energy of the system becomes

e = %(p"', [(mc+37mb)l_m;|a[lv.,-l +J_T'Lv1j:l 'P*(j‘+(m7b+f—;-’)l:]lq|2].

b

(v.45)
The corresponding inertia matnx in joint space is diagonal and constant as in the simplified mode!:
o (my,
A = (m(;hl—;’]li]l. (V.46)
b

while the inertia matrix in operational space is here position dependent:

PA(p) = (m¢+3—;1”)1-m—;-'1[*v-1“ +7T T (v.47)

The quadratic forces matrix C might be obtained from the partial derivatives of e, as described in
§ I11.4.1. An atemative approach suggested by Slotine & Li [Slot91]is used here, which rekies on the skew-
symmelry of A — 2C. As a consequence of this property:

A=clsC. (v.48)
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Slotine & Li suggest that the C matrix can be guessed by examining A in the case of simple
manipulators with a few degrees of freedom. However, it should be stressed here that Eq. V.48 alone does
not define C in an unique manner. Therefore, one shouid be careful when using this technique and check
that the guessed C is equal to the quadratic forces matrix obtained through Eq. I11.13.

In the case of the Delta, this approach leads to %C = 0 and

! -
’Cp.pqd) = -mz“[LV‘J"“Vf 1 (v.49)

Note that velocities in joint space are still involved in £q. V.49. They can easily be replaced by their
equivalent in operational space using the inverse Jacobian if required. For the purpose of mode! based
control, the formulation in Eq. V.49 is entirely satisfactory and the complete model in both spaces is:

t=%1(q) q+%@+1"-[PA(p) -5 +"C(p, B0 ) -p+ 8 (P)]. (V.50)

V.5.4 Complete Versus Simplified Model: A Comparison.

As mentioned by Codourey, the assumption of negligible inertia momentum of the forearms is
acceptable in practice when these parts are made of fight material such as carbon fiber. In results below,
the torques obtained from the simplified model differ only by a few percents of those obtained from a full
model, and this happens only at very high velocities.

Codourey showed that the g, parameter in the simplified model (Eq. V.40 and Eq. V.41) could be
adjusted to minimize the tracking emor. The best results were obtained with g, /1, = 2/3 [Codo91a].
Considering the complete model, this is justified since the introduction of Eq. V.5 in Eq. V.46 gives exactly
Eq. V.40 while the inertia matrix in Eq. V.47 has eigenvalues close to those of Eq. V.41 in the central part
of the workspace, where

vt +J‘T.*st]31 (V51)

. iL o, " i .
since the vectors v is almost colinear to 'w fori = 1,2, 3.
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V.5.5 Implementation Issues.
Complexity Analysis.

Once the 7 is available, the cost of a PD+gravity controfler (Eq. V.38) is only 27 FLOP. Once the
accelerations are known in both spaces and the LU decomposition of 17 are avalable, the simplified
mode! from Eq. V.42 requires only 33 FLOP to be computed, pus 15 FLOP for the PD controller either in
Joint space or task space. Evaluating the complete model from Eq. V.50 is about three times more
expensive (112 FLOP).

For various reasons detailed below, & is not worth the effort trying to paraliehize the model evaluation
itseff.

Load Balancing.

Since the kinematics algorithms could be efficiently parallelized, the central processor is less
loaded than the peripherals (see § V.3.5). It is consequently not advisabie to try to share the low burden
associated (o the dynamics model and control law on the peripheral processors in order to take advantage
of the parallel+pipeline structure of the controlier.

Sampling Period and Practical Limitations.

Finally, the 127 FLOP of the complete model based control law are executed in 284 [us) of T-800
CPU time, giving 3 traversal time of the complete algorithm of 1604 [us) on a single T-800 or about
866 fus] on four, offering a 54% efficiency. Since an overhead of about 100 [us} is introduced by the
communication with the robot's interfaces which are accessed through a Transputer link (see Fig. 25 on
page 111), sampling period of 2 [ms}] on a single Transputer or 1 [ms] with four T-800 can be achieved.

With the technique of interleaving sampling periods proposed in § IV.7.2, the sampling period can
furthermore be reduced to 0.5 [ms] on a conlrol unit with the proposed architecture. However it becomes
exiremely difficult to design the control software so that no deadlock can occur while dozens of paraliel
processes exchange two sets of data over a limited number of communication channels. For this reason,
the software developed in the framework of this thesis could not reach the required degree of reliability to
safely operate the experimental Delta robot with a sampling period shorter than 1 [ms].

Comparison with Former Approaches.

Considering that the complexity of the inverse kinematics algorithms is about 250 FLOP, it can be
stated that the complete model of the Delta robot is about 50% more complex than the model of a general
3-DOF serial arm (275 FLOP [Domb388}). This confims the resulls from § 111.7.5, where the complexity of
the Newton-Euler algorithm for serial ams and paraltel manipulators is compared.
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The models derived by Codourey [Codo91a] and Miller [Mill92] require inverse kinematics relatians
only to map the reference positions onto joint space. Numerical differentiation techniques are applied to
obtain velocities and accelerations in both spaces. To allow a comparison with the proposed approach,
the cost of these operations (93 FLOP) should be added to the reported complexity of the evaluation of
Codourey's simplified model (133 FLOP) and Miller's complete model (206 FLOP) [Mil92].

Therefore, it can be stated that the proposed closed-form models are about 20% more complex
than the earlier corresponding models with numerical differentiations. However, unlike previous results
that allowed only feedforward dynamics compensation, true computed-torque and resolved-acceleration
schemes can be built with the proposed models, which moreover explicitly provide the Jacobian matrix.

V.6 Simulations, Experimental Results and Analysis.

V.6.1 A Simple Test Path.

To illustrate the Detta's possibilities, the robot's motwn along a test path is first simulated. The
Delta’s platform starts from p, = [0 —0.400 —0. 350] [m] and follows a circular path of center

T
= [0 0 _0,350] in the horizontal Oxy plane until position p, = [0 0.400 (0) -0. 350] [m] is
reached. A cycloidal velocity profile with maximal accelerations of 120 [m/s?] is used (see [Codo91a}).

The positions, velocities and accelerations in operational space are displayed in the left hand side
column of Fig. 31. The dotted curves indicate the modulus of the end-effector velocity and acceleration.
The inverse kinematics algorithms described in Section V.3 were used with the parameters of the Delta-
1A (see § V.2.3) to compute the corresponding positions, velocities and accelerations in joint space, which
are shown in the right hand side column of Fig. 31.

The various terms of the inverse dynamics model in the two spaces are represented in Fig. 32.
Dotted curves in Fig. 34a represent g dashed curves represent i".P g while solid curves give the sum
of both contributions. A similar convention IS used in Fig. 32b where 9A - §_, J7 - PA - 5, and the sum
of both is represented. The Coriofis term iT.5c. p is represented in Fig. 32c. Finally, the total torque
obtained through the evaluation of Eq. V.50 is displayed in Fig. 32d with solid curves while dotted curves
represent the result of the simplified model from Eq. V.42.

Analysis.

This path of about 1.25[m] is tracked in 0.253fs]). The platform’s speed reaches 10[m/s] and,
because of the path’s curvature, the normal acceleration in the middle of the trajectory is twice the
specified maximal tangent acceleration. Consequently, the torques required to accelerate the platform
(dashed curves in Fig. 32b) have about the same magnitude as the torques associated to the acceleration
of the joints (dotted curves in Fig. 32b).
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Fig.31 : Simple Test Path: Kinematics.

Even when moving at fop speed, the Corioks terms (Fig. 32¢) are one order of magnitude lower than
the inertia terms. However, one can remark that they globally reduce the magnitude of the total required
forque. This can be seen in Fig. 32d where the resulls of the simplified mode! (dotted curves)
systemalically exceed those from the complete model (sokid curves).

A Comment on the Generation of Optimat Paths.

Itis interesting to note that the actuators power is very well used on this simple test path: all three
forques reach about the same magnitude and, during most of the trave! time, at least one is close to its
maximal value. It is therefore suspected that this half-circular path is close to the time minimal path
between the two diamelrically opposed points p_ and p_ .
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Fig.32 : Simple Test Path: Dynamics.

For fast pick & place manipulators such as the Delta, generating a path that minimizes the travel
time between two points is a very challenging problem. Straightforward approaches such as nonfinear
programming are known to give the optimal solution, but are computationally very expensive. In this
respect, techniques based on successive refinements might be more appropriate. ltis suspected that fairly
good sub-optimal initial guesses might be obtained by taking the properties of the robot's dynamics into
account. In this context, it is clear from the obtained dynamics models that the eigenvalues of the Jacobian
matrix play a crucial role that should be examined.

In the case of the Delta, a closer look at Fig. 28 can already help the trained user in getting an
intuitive idea of the minimal-time paths.

V.6.2 A Simple Pick & Place Task.

A second simulation and analysis is made for the pick & place task experimented by Codourey
[Codo91a).

The robol's end effector moves from starting point p, = [0.125 0 0. 350] [m] t9 end point

= [0.125 0 -0. 350] {m] along a half-efliptic path through point p, = [0 0 0. 310] .The path
is about 0.292fm] long. Using a cycloidal profile with accelerations up to 80 [m/s3, it is performed in
0.153(s.



Modek-Based Control of Paraliel Robots: -138. a Global Approach in Operational Space.

Kinematic values are displayed in Fig. 33 and dynamics in Fig. 34 with the conventions already
defined in § V.6.1. Since the trajectory lays in the Oxz plane, the joints number 2 and 3 perform the same
motion and the comesponding curves are therefore supenmposed.
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Fig.33 : Pick & Place Task: Kinematics.

Analysis.

The Coriolis effects plotted in Fig. 34c have a low magnifude compared to the inertia terms.
Therefore, as expected from the discussion in § V.5.4, the results of the simplified and complete models
are very close.
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Fig.34 : Pick & Place Task: Dynamics.

Moreover, the centrifugal effects induced by the platform’s motion along a curved trajectory also
have a limited magnitude (dashed curves in Fig. 34b} because:

+ the path is quite short, preventing the platform to reach a really high speed;
+ the path is not much curved in its middle part;

+ the path is well centred. Ifs top lays in a region of the workspace where the Jacobian’s eigenvalues are
small (seeFig. 28), reducing the magnitude of the projection onto joint space.

Comment on the Application of the Delta to Pick & Place.

Even if the test path considered here is somewhat ideal, the analysis above remains qualitatively
valid for all upwardly curved paths that cross the workspace in its upper part. Since this is typicafly the
case in pick & place tasks, it can be stated that the Delta robot is extremely well suited for this type of
applications.

In this context, since the robot's dynamics is dominated by the linear behaviour of the arms,
actuators and transmissions (dotted curves in Fig. 34b), it is clear that independent linear controliers on
each joint perform satisfactorily. Codourey [Codo91a] obtained a very good tracking performance just by
adding a proper feedforward control. As indicated in § IV.3.5, there is no reason to think that a full resolved
acceleration control scheme would offer better performance.
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On the other hand, these considerations show the vital importance of the choice of the Della’s
actuators, sensors and transmissions since the influence of unmodelled dynamics in these elements
exceeds the influence of unmodelled dynamics in the structure ifself.

V.6.3 Identification of Actuator and Transmission Dynamics.

Actuator Dynamics.

To evaluate the dynamics of the actuators, an identification was performed by exciting the power
ampiifiers with a pseudo-random binary sequence of torque setpoints and measuring the positions with a
1 KHz sampling frequency. The Bode plot of the identified ARMA mode! with 4 poles is shown in Fig. 35
in the case of an unloaded actuator.

Frequency (Hz)

: ST N S iil [ [
10° 10' 107 10°
Frequency (H2)

Fig.35 : Unloaded Actuator Frequency Response.

The two dominant poles are the integrator and the viscous friction pole at about 1 Hz (see § IV.2.1).
A very badly damped resonance moreover appears. Experiments have shown that the resonance is
actually at 550 Hz and folded up to 450 Hz because of the 1 KHz sampling frequency. The cause of this
annoying phenomena certainly resides in the cumrent loop implemented in the power amplifiers: the
electrical time constant of the actualors is reported fo be equal to 1.86 [ms)], which corresponds to a



V. Application (o the Detta Robot. -141 - Ph. Guglieimetti

538 [Hz] cutoff frequency. Since no guard fitter can be introduced before an incremental counter and a
high order lowpass digita filter would require a higher sampling frequency, this resonance can not be
cancelled and strongly limits the performances of the robot.

Transmission and Arm Dynamics.

When the arm is driven through the reduction, the mechanical resonance appears (see § IV.2.1).
Since the sensors are mounted on the actuators, two zeros also appear in the model (see § IV.2.1). The
Bode plot of the identified ARMA mode! with 6 poles and 2 zeros corresponding to this case is given in
Fig. 36.

Bode plot
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Fig.36 : Actuator + Transmission + Arm Frequency Response.

The identified inertia is
j, = 0.0131 [Kg.m7, (V52)

and the resonance frequency is about 125 [Hz).

From these values, the elasticity constant of the transmission can be evaluated to
k, = 8080[N.m/rad], which is 38% less than the value obtained from the belt's specifications. The beft's
stiffness can be raised by increasing its tension, but experiments have shown that the resonance’s
damping then becomes lower, counterbalancing the advantage of a higher natural frequency.
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Nominal Natural Frequency of a Single Chain.

Neglecting the arm's flexibility and considering each chain in the configuration where the forearm
is orthogonal to the amm, the joint's inertia becomes j, = 0.0253 [Kg.m?] and the associated natural
frequency of the open chain can be evaluated to about 88 Hz. Note that the actuator’s inertia at joint level
is only j = 0.0065 [Kg.n7, indicating that a more powerful motor with an higher inertia or a larger
reduction ratio would give a better batanced osciltator.

V.6.4 Applicability of the Proposed Control Scheme.

The performance of the Delta profotype avaitable for the experimental part of this work is limited by
the very poor behaviour of the actuators power ampifiers and transmissions. The velocity step response
of a single actuator is given in Fig. 37, where the presence of an undamped oscillation is clearly visible.
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Fig.37 : Actuator Velocity Step Response.

In this context, it is useless fo design advanced control laws that fake the manipulator dynamics into
account. In practice, preminary experiments have shown that the proposed contro} schemes perform
worse than independent PD control on each joint. More successful implementations of model-based
control faws have been reported on newer, direci-drive Delta prototypes [Codo91a].

On the other hand, commercial versions of the Delta reach comparable performances with very
high reduction ratios, where the nonlinear part of the dynamics can be neglected or compensated through
proper feedforward control. Leaming technigues [Tso 93] are likely to be very useful in practice since the
Deka is most often applied to repetitive tasks.
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V.7 Conclusions.

A systematic approach is used to model the Delta parallel robot. The constants that parametrize the
manipulator's geometry and dynamics are enumerated. Their numerical values for the prototype Delta
manipulator available at IA-EPFL are given.

Then, through extensive use of unit vectors along the bodies building the Delta structure, inverse
kinematics models for position, speed and acceleration mappings are proposed that result in very efficient,
parallelizable algorithms. A first analysis of the robot's performance is proposed based on a numerical
study of the Jacobian matrix. A coherent definition of the robot's usable workspace is derived.

The inverse dynamics model in the two spaces of the Delta is then developed in three steps: the
gravity compensator is obtained, then a simplified model with neglected inertia momentum of the forearms
is established to finally obtain a complete model in a very handy and compact formulation.

Simulation results are reported that allow some important remarks on the dynamics of the Delta
manipulator and its influence on applications. Finally, experimental identification results of the actuator's
dynamics are displayed. Because of the very poor behaviour of the power amplifiers and transmissions,
the available Delta prototype could not be operated correctly with the proposed control laws.
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Chapter VI

Conclusions.

The five sentences in the thesis from Section .1 propose a general framework for the model-based
control of fast paraltel manipulators. A series of original contributions and clearer formulation of known
results are then developed in this report to back up these five sentences.

A wide class of parallel robots can be modelled as two partial tree structures connected through
simple links.

Parallel manipulators are not general mechanical structures: as any other robot, they are
specifically designed to perform a given task with their end-effector while their structure transmit forces
and torques from the actuators to the end-effector.

Based on considerations about the mobility of a structure with closed kinematic chains, a wide class
of parallel manipulators is defined. Most of the existing paralle! manipulators such as the so-called Stewart
platform and its variations, the Pollard, Hexa, Speed-R-Man and Hexa belong to this class.

A formalism inspired from the Denavit-Hartenberg parametrization is proposed, that allows a
systematical parametrization of the geometry of such manipulators.

The comresponding dynamics model is called “in the two spaces” since it uses the robot's state
simultaneously in joint space and in operational space.

Parallel manipulators are constrained systems. They are many different ways to parametrize their
dynamics and to define the comresponding constraints. For the manipulators belonging to the defined
class, the kinetic and potential energy of the constrained system can be systematically and simply
obtained using a vector dependent generalized coordinates that contains both the variables associated to
the actuated joints and the variables describing the end-effector's position in operational space. In this
case, the constraints can simply be represented by the inverse kinematics equations relating the joint
positions to the end-effector’s position.

Using this formalism, it is shown thal the standard *Lagrange with multipliers” approach leads to a
very handy and compact formulation of the manipulator’s inverse dynamics model called “in the two
spaces” where the manipulator's Jacobian matrix explicitty appears.
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An algorithm that akow real-time implementation of the proposed inverse dynamics model is
proposed. It is based on a based the Newton-Euler method derived by Luh, Walker and Paut's for serial
ams. The analysis shows that the evaluation of the dynamics of a paraiel manipulator is much more
expensive than for a serial am.

This formulation makes it possible to find passive mappings in the dynamics of parallel
manipulators.

The analysis of the inverse dynamics model in the two spaces allows fo show the existence of a
passive mapping from the forces apptied on the end-effector and its velocity. It is shown that a passive
mapping from the lorques on the actuated joints to the joinls velocity exist only locally, in sub-spaces
where the Jacobian matrix remains bounded. Therefore, all the control laws developed for serial amms can
be applied to parallel robols as long as they are operated far from “inverse singulariies® that do not exist
in seniat amms.

A robust, model-based control law can therefore be designed in operational space to achieve high-
performance trajectory tracking.

Among other control strategies, model-based schemes have shown their superiofity in many
practical applications. The inverse dynamics model in the two spaces makes it easy to design such
schemes with a feedback loop either in joint space (computed torque) or in operational space (resolved
acceleration). it is shown that, among other advantages, this latter approach requires less computing
power than its equivalent in joint space.

The intrinsic parallel-pipeline structure of the corresponding algorithms can be exploited on a
multiprocessor controf unit.

Many algorithms involved in a model-based control scheme of a paralkel robot are shown to have
an intrinsic paralel structure that allow to efficiently implement them on a muitiprocessor controt unit.
However, some parts of the algorithms can not be paralielized and should be impiemented on a single
processor. Since about half of the computing time is spent in paralielized parts and the other half in
sequential parts, it is possible to halve the sampling time by interleaving the compitations related to two
consecutive sampling intervals. A mulliprocessor control unit with a star topology is required to implement
this two-stages paraliel-pipeline struchure.

Application to the Defta Robot.
A prototype of the Defia robot is taken as an application example for whole proposed approach.

First, inverse kinematics models are developed systematically using unit vectors attached to the
arms and foreams of the Delta. The resulting formulation aows analysis of the properties of the structure
over the robot's workspace. It is shown that the Delta offers a high stifiness and low inertia only in a kmited
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part of its workspace. A "usable workspace” where the robot's performances satisfy given requirements
should therefore be carefully defined. A very simple and conservative solution is proposed.

Then, the Delta’s inverse dynamics model in the two spaces is obtained in three steps. The gravity
compensation terms are derived first, then a simplified model equivalent to the one proposed by Codourey
is obtained. It neglects the inertia momentum of the robot's forearms. This hypothesis is then removed in
a complete model, which is equivalent to Miller’s but explicitly introduces closed-form kinematics relations
instead of using numerical techniques.

The complexity of the various proposed algorithms is analysed and computing time obtained on the
experimental control unit with 4 Transputers are given. A sampling frequency of 1fKHz] can be reached
for the complete model-based control law.

Finally, simulation results lead to interesting remarks about the robot's performance and application
field. Some experimental results obtained when identifying the dynamics of the Delta prototype are given.
They show a very bad performance of the available power amplifiers that prevented satisfactory
experimental results in closed loop to be obtained.
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Appendix |

Notations.

Scalars, Vectors, Matrices, Sets and Vector Spaces.

Capital letters except O denote matrices.
Lower case symbols except i, j, n, m, s, t, z, T indicate vectors.
i, j, n, m, s, t, z, © denote integer, real or complex scalar numbers.

Sets and vector spaces are specified by cursive capitals, like 4

Functions, Expressions, Sets.

Most of the vectors and matrices encountered in this document are also functions of some parameters.
A parenthesized list of parameters (...) is specified in the definition of each symbol. However for the
sake of clarity, the parameters are often omitted in the developments.

In expressions, brackets [...] are used to enclose vector or matrix terms while parenthesis denote
scalar terms.

Sets are defined using braces {...} .

Matrix Operators, Subscripts and Superscripts.

Subscript ¢ denotes a reference signal.
Subscript b denotes a feedback signal.
Subscript f denotes a feedforward signal.

i, j or numbered subscripts are used to specify scalar elements of vectors, column vectors in
matrices.

Subscripts on scalars are used as specifiers : e, denotes the potentialenergy, ey the kinetic energy.

Pre-superscripts are used to denote blocks of a matrix that correspond to a projection of the matrix onto
a subspace of smaller dimension e.g. 9A and PA .

Matrix transposition is denoted by a T superscript like in JT.
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+  Combined matrix inversion and transposition uses the convention JT-1 = J-1T = §-T
Diacritical Marks.

+ Time denivatives are denoted by doted symbols ke p or A.

+ Hats are used to denote estimated signals, e.g. M.

+ Eror or deviation signafs are specified by tiides: g = q_~q

+ A prime is given io functions whose parameters have been converted from joint space to operational

space : C'(p,p) = C(f(q),J-q§). Primed symbols are formally equal to the corresponding
unprimed symbols. This notation is introduced to avoid confusions when parameters are dropped.

Alphabetical List of Symbols with Reference to their Definition.

a  veclorof n +n, integer indexes describing the structure of a tree robot. §1.53
A mxm inertia matrix. 4.1
%A nxn block of A coresponding to joint space. §M.6.1
PA  nxn blockof A comesponding to operalional space. §111.6.1
°A  nx n inertia matrix in operational space. §H1.8.2
A Joint space, subspace of X ™. §0.33
b Vector of the m — n constraints. §M4.1
B Matrix of the derivatives of the constraints. §H.4.1
C  mxm quadratic forces malrix. §M41.
9C  Bloc of C comesponding to joint space. §116.1
PC  Bloc of C comesponding to operational space. §116.1
°C  nxn quadralic forces malrix in operational space. §1.8.2
C  Configuration space, subspace of ® " §1.33
d,  Denavit-Hartenberg parameter of the i joint. §1.5.3
D  Pseudo-quadratic forces matrix, §11.5.2
ey Hamittonian of the struciue. §i8.2
ey Kinetic energy of the structure. g4
¢, Lagrangian of the structure. §i.4.1
ep  Polential energy of the structure. §ll4.1
f  Forward kinematics mapping A — O. §1.8.1

-1 Inverse kinemalics mapping O — 4. §Nh8.2
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R jf Force exerted by the i body on the j*. §1Ml.7.2
F,  Force exerted on the i* body. §N.7.2
ig Cartesian position of the i body’s center of gravity with respect to the i* frame.  §11.7.2
g  Vectorof m extemal forces due to gravity. §11.4.1
g,  Position of the center of gravity of the Delta's arm along v. §v.a23
g, Position of the ceneter of gravity of the Detta’s forearm along w . §v.a3
qg Bloc of g corresponding to joint space. §1.6.1
Ps  Bloc of g corresponding to operational space. §111.6.1
G, Transfer function of the linearized i* joint. §iv.ai
°h Gravity forces vector in operational space. §1i1.8.2
h  Pseudo-gravity vector. §i.52
T Inertia matrix of the i body with respect to the origin of the i frame. §ili.7.2
j,  Inertia of one of the Delta’s arms at the joint level, including actuator and transmission.§ V.2.3
jy  lnertia of one of the Delta's forearms about its center of gravity. §Vv.23
iy Inertia of the actuator. §Iv.21
j;  Inertia of the load. §iv.21
J Jacobian n x n matrix. §119.1
k.  Elasticity constant of a transmission. §11.31
k,  Torque constant of the actuator. §1v.21
K, Diagonal matrix of proportional gains. §Iv.21
K, Diagonal matrix of derivative gains. §iIv.21
1, Lengthof the Deita's arms. §v2z2
1,  Lengthof the Delta's forearms. §v.22
1, Halfthe distance between each pair of rods ofthe Delta’s forearms. §v.22
1, Lengthof the i link. §1.7.5
L  Stiffness matrix. §11.3.1
m  Number of generalized coordinates w . §ill4.1
m, Mass of one of the Della's arms. §v.23
m,  Mass of one of the Delta's forearms. §v23
m_  Mass off the Delta’s platform and carried load. §Vv23
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m, Mass of the i* body. §i.7.2
M Pseudo-inertia malrix. §UL.5.2
n  Mobiity of an holonomic non redundant robot. §1.36
n, Number of assembly modes. §hd1
n,  Number of rigid bodies in the robot's structure. §i.21
n,  Number of end-efectors in the robot's structure. §152
n;  Number of joints in the robot’s structure. §h.21
n,  Mobikty of the i* joint. §121
n Mobility of the robot’s structure. §0.31
n, Mobitity of the robot's end-effector. §1.34
n,  Reduction ratio of the transmission. §V.21
n,  Number of sub-chains in a parallet manipulator. §1.6.2
®n Number of actuated joints i the base tree. §N74
“n Number of actualed joints in the upper tree. §i.74
'n,  Number of actuated joints in the i link, §I74
ng, Number of ¢ parameters. §il4.2
N; Torque exerted on the i body. §1.7.2
O  operational space, subspace of ® %. §1.34
“Jp  Cartesian position of the i* frame’s ofigin with respect to the j* frame. §115.3
p  Position vector of the end-effector in operational space p € O. §1L.34
t’Pi i* connection point on the base-tree. §1.74
°P, i connection point on the upper-tree. §1.7.4
q  Position veclor in joint space qe 4. §1.3.3
Qpin 2 q,,,, Bounds on the Delta's joints positions. §V.4.2
r,  Radius of the Deita’s base. §v.22
r,  Radius of the Della's platiorm. §v.22
r,  Characteristic radius of the Deka. §v.22
r,  Denavit-Hartenberg parameter of the i* joint. §15.3
'R Rotation matrix of the i* auwxary frameof the Dela robot. §V.31

3R 3x 3 rotation matrix of the diection cosines of the it frame's base vectors
with respect to the previous j* frame. §15.3
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s Laplace-transform variable (complex),

or curviliear abscissa along the trajectory (scalar). §11.10.1
t Time domain variable (scalar). §11.10.1
to  Initial time. §11.101
to  Finaltime. §1.10.1
Ui Dominant time constant of the i actuator. §Iv.21
T Homogeneous (4 x 4) matrix defining the i joint’s transformation with

respect to the a, ™. §11.5.3
u  Controi command. Input of the robot's power amplifiers.
v Unit vector along the i* link of a general manipulator. §l.74

Unit vector along the i* amm of the Deita robot. §Vv.31
V  Base matrix formed by base vectors along the Delta’s arms. §Vv.3i
w  Vector of the m generalized coordinates §1.4.1

or natural coordinates. §116.5
i Unit vector along the i forearm of the Delta robot. §Vv.31
W Base matrix formed by base vectors along the Delta's forearms. §V.3.1
'x  Unit vector attached to the i* joint. §1153
X Auxiliary diagonal matrix useful in the Delta’s modeling process. §Vv.33
Y (nx “w) matrix of the nonlinear functionsin dynamics §14.2
z  z-ransform variable. §1.10.3
'z Unit vector attached to the i* joint. §1.53
o,  Denavit-Harlenberg parameter of the i® joint. §11.53
B,B Upper and lower bounds. §v42
B Kinetic friction coefficient in a transmissiont. §iv.2i
B, Kinetic friction coefficient at thge load fevel. §Iv.21
B,, Kinetic friction coefficient at the actuator level. §iv.2i
v, Extended Denavit-Hartenberg parameter of the i* joint. §1.53
I’  mxmxm tensor of the inertia matnix’ Christoffel symbols. §M41
, Extended Denavit-Hartenberg parameter of the i joint. §1.5.3
¢  Vectorof m generalized forcesftorques applied on the structure. §1l.4.1
6.  Denavit-Hartenberg parameter of the i joint. §153
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vt Curvinear abscissa along the trajectory. §1.10.2
A Vectorof the m — n Lagrange mukiphers. §i4.1
o, P joinl's prismatic/revolute specifier. §1153
"In Torque exerted by the i" body on the . §M7.2
1T Vector of torques/forces apphied on the actuated joints. te 2 Section Nt.3
v Vector of torques/forces applied on the end-effector. ve O Section 1.3
¢ Vectorofthe ng parameters. §M.4.2
'@ Vector of rotation about the center of gravity of link i. §M.7.4
*Q;  Vecor of rotation about °P;. §M74
“Q;  Vector of rotation about “P,. §74

"I Vector of the i* frame’s rotation velocity with respect to the j* frame. Section 1.7
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