000031489 001__ 31489
000031489 005__ 20190509131846.0
000031489 0247_ $$2doi$$a10.5075/epfl-thesis-1011
000031489 02471 $$2nebis$$a665886
000031489 037__ $$aTHESIS
000031489 041__ $$afre
000031489 088__ $$a1011
000031489 245__ $$aSimulation numérique des traitements de surface par laser
000031489 269__ $$a1992
000031489 260__ $$bEPFL$$c1992$$aLausanne
000031489 300__ $$a180
000031489 336__ $$aTheses
000031489 520__ $$aThis work deals with the numerical modeling of laser surface treatments, particularly laser remelting (a laser beam melts part of a moving work piece) and laser cladding (injection of powder in the melt pool produces a thin metallic layer on the work piece). A two-dimensional stationary model is presented for laser cladding. This model takes into account the solid-liquid phase change process and the important velocity field in the melt pool. A pure thermal problem is studied, which corresponds to a laser remelting model when the liquid particles movements are neglected. The enthalpy variable is introduced and thus the model reduces to solving the so-called stationary Stefan problem (a diffusion-convection equation, degenerated on the phase change interface). We present a Finite Element discretization for the corresponding regularized problem and give some a priori and a posteriori estimates. An efficient adaptive mesh algorithm is then presented. Finally we solve the complete laser cladding model (the two phase change and hydrodynamic problems) using a Finite Element Method and discuss some numerical results.
000031489 700__ $$0241282$$g106096$$aPicasso, Marco
000031489 720_2 $$aRappaz, Jacques$$edir.$$g106185$$0241279
000031489 8564_ $$uhttps://infoscience.epfl.ch/record/31489/files/EPFL_TH1011.pdf$$zTexte intégral / Full text$$s6452297$$yTexte intégral / Full text
000031489 909C0 $$xU10795$$0252201$$pASN
000031489 909CO $$pDOI$$pSB$$ooai:infoscience.tind.io:31489$$qDOI2$$qGLOBAL_SET$$pthesis
000031489 918__ $$cIACS
000031489 919__ $$aASN
000031489 920__ $$b1992
000031489 970__ $$a1011/THESES
000031489 973__ $$sPUBLISHED$$aEPFL
000031489 980__ $$aTHESIS