NEURAL MODELS OF INCREMENTAL
SUPERVISED AND UNSUPERVISED LEARNING

THESE NO 863 (1990)

PRESENTEE AU DEPARTEMENT D'INFORMATIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

A.l. ETHEM ALPAYDIN

Ingénieur informaticien diplomé de |I'Université de Bogdazici, Istanbul
de nationalité turque

acceptée sur proposition du jury :

Prof. J-D. Nicoud, rapporteur
M. P. Clarke, corapporteur
Prof. Ch. Jutten, corapporteur
Prof. L. Personnaz, corapporteur

Lausanne, EPFL
1990

To the memory of Pumuckl

Acknowledgments

This research is supported by the Fonds National Suisse de la Recherche
Scientifique.

I thank Jean-Daniel Nicoud for giving me a chance by engaging me when
I had nothing accomplished, and the patient support he provided despite my
stubbornness over the three years this work lasted.

Peter Clarke, Christian Jutten, and Léon Personnaz, I thank for stimulating
discussions on various occasions which shaped considerably the evolution of my
research and their invalueable feedback on this dissertation.

The database of handwritten numerals used throughout the work was kindly
supplied by Isabelle Guyon. The tests whose results are given in section 2.10 were
made during a short stay at the AT&T Bell Labs at Holmdel, NJ. I would like to
thank Dr. L. Jackel and other members of the group for useful discussions and
the help they have given.

Marie-Jo Pellaud, a unique combination of warmth and efficiency, I thank,
for helping me in all sorts of things, large and small. She did not even say a word
when I monopolized her Mac twice each for one month to typeset this dissertation.

Gregory Baratoff wrote the first versions of GAR and GAL simulators of
section 3.6 for which I thank him.

I owe a lot to my colleagues at the Laboratoire de Microinformatique, past
and present. They showed me understanding, patiently explaining over and over,
trying to make some sense out of my babblings in French. The way you get good
ideas is by working with talented people you have fun with.

The group Carnac is a wonderful forum to learn and discuss many things con-
nectionist; its members are ready to share their knowledge, listening, correcting,
and guiding the novice.

My family and my friends, near and far, new and old, supported and en-
couraged me. It is due to their confidence in me that I have dared to undertake
enterprises which I could not otherwise. Although mere thanks are inadequate, I
thank them.

Contents

05 11) ¢ 1 17 U i
RSUING . ..o iii
A DS act .. vii
P ace . xi

1. Introduction And Preliminaries

1.1, System Operationociuiiiuiiiiiitnsiiiinrt ittt terararenearierecnnnns 3
1.2, Decision Theory . ..o vntiriti ettt e ittt e tr e et 8
1.3. Parametric Classification............iiniiiini it it it ittt i e iaaanenenenns 9
1.4. Non-parametric Classification............. .. it i 10
1.5. Quantifying Success In Classification.............. ... ittt i, 13
1.6, Quality ASSeSSIMENt ittt ittt ta ittt et e 13

2. Incremental Supervised Learning

2.1. Learning And Adaptation...........oooiiiiiiiiiii i e e 17
2.2. Designing A Supervised SM Network......... ..o 18
2.3. Grow And Learn (GAL) ..ottt i e e 20
2.4. GAL: A Didactic EXxample.o iiiiiiiiiiiiiiii ittt et aeaaaas 23
2.5. Forgetting In GALoo ittt it i it et i 30
2.6. GAL With Rejectcoiiitiiiiitie it it it e ae et rae e ees 34
2.7. Comparing GAL With Similar Algorithms............... il 37
2.8. Recognition Of Handwritten Numerals Using GALc.cooiiiiiiiiiia 49
2.9. Preprocessing Handwritten Numerals Before GAL...................cocoiiiinaan... 50
2.10. Testing GAL With A Big Databaseo it 54
2.11. Learning A Mapping With GAL it iiiieiiie i iienanes587
2.12. ACritique Of GALo i i it e e e e e, 61
3. Incremental Unsupervised Learning
3.1, On Featuresoo.inini ittt ittt iiiiiires i iat e taenesearrienenracaannes 65
3.2. Incremental Unsupervised Learning...............ooooiiiiiiiiiiiiiiiii ... 66
3.3. Grow And Represent (GAR)..........covimiiiiiiiiiiiiii it 67
34. GAR: ADidactic Example.... .o 69
3.5. Comparing GAR With The Self-Organizing Map ...t 74
3.6. Development Of Feature Detector Cells By GAR...........c.coviiiiiiiiiiininenn.. 75
37. ACritique of GARot e e 79
4. Conclusions
4.1. A Biological Viewo i e 83
4.2. Incremental Learningoouioiiiiiiiiiiii ittt 85
4.8, GAL .. o e e e e, 86
0 TR 7. 87
4.5. Future Directions.........ooiiiiniriiiiiiiiii it ieriiiieie et ietaantacanrnancannss 87
References. e 89
Curriculum Vitae........ ..o 93

Pub i cations ... oo 94

iit
Modéles neuronaux d’apprentissage
incrémental supervisé et non-supervisé

Résumé de la thése de E. Alpaydin
LAMI-EPFL, Juillet 1990

Mots-clés. Réseaux de neurones artificiels, Parallélisme, Apprentissage incrémental, Apprentissage
supervisé, Apprentisage non-supervisé, Reconnaissance de formes, Reconnaissance de caractéres.

C’est en détectant les régularités et les invariants que les systemes, soit naturels, soit artificiels,
peuvent réduire la complexité des signaux qu’ils doivent traiter. C’est une opération d’abstraction
dont I'une des formes est la classification. Le signal est assigné 4 une classe générale indépendamment
de sa forme particuliére.

De nombreuses tiches ne sont pas encore formalisées; par exemple, en reconnaissance de formes,
on ne peut pas écrire une définition générale de la lettre ‘A’ comme une équation mathématique.
La seule possibilité est de ’apprendre & partir des exemples. Le critére pour décider si une image
correspond a un ‘A’ ou pas est de calculer si cette image est assez similaire & un des ‘A’ vu auparavant.
Il y a, entre autres, deux problémes ici pour lesquels deux méthodes sont proposées dans la présente
thése:

{1} Un probléme est de pouvoir eziraire la définition d’une classe d partir des ezemples. Une
méthode qui s’appelle Grow-and-Learn (GAL) est proposée pour ce but avec la propriété que la
définition d’une classe est eztensible. On commence par la définition la plus simple et on I’étend
quand des classes similaires sont rencontrées pour pouvoir extraire les différences plus fines.

(2] Un autre probléme est de trouver un critére de similitude.

a. Une possibilité est de choisir un ensemble de caraciéristiques importantes sur lesquelles on
se base pour comparer les formes. Une méthode qui s’appelle Grow-and-Represent (GAR)
est proposée pour apprendre de telles caractéristiques & partir des exemples. Un réseau
de GAR, comme celui de GAL, est un réseau dynamique dont la structure est modifiée
pendant apprentissage.

b. Une autre possibilité est d’utiliser sa connaissance de I’application pour pouvoir définir des
techniques de pré-iraitement qui faciliteront ’apprentissage de classes. Deux techniques
sont proposées pour la reconnaissance de chiffres manuscrits dans ce but.

Toute nouvelle approche doit étre évaluée et testée prudemment avec une application réaliste.
Les deux méthodes proposées ont été testées avec des chiffres manuscrits dont la reconnaissance
présente un intérét économique évident, mais il faut noter que ces méthodes ne sont pas limitées a la
reconnaissance de caractéres ou & la vision, mais peuvent étre utilisées avec d’autres types d’images
ou de signaux.

L'opération effectuée par un systéme pour générer une certaine sortie, est une fonction de ’entrée
et de la structure du systéme. Cette structure est composée de deux types de composants: ceux qui
sont modifiables et ceux qui sont fixes. Les composants modifiables, quand ils existent, s’appellent
les paraméires et constituent la mémosre du systéme. Lorsqu’un systéme ne correspond plus aux
besoins imposés par Penvironnement, il doit étre modifié. La modification d’un systéme, quand elle
est faite en modifiant les paramétres, s’appelle ’adaptation paramétrique. Parfois elle nécessite la
modification de la structure et dans ce cas une adapiation structurelle doit étre effectuée.

Les régles d’apprentissages actuellement utilisées dans le domaine des réseaux neuronaux, sauf
quelques exceptions, sont basées sur la modification paramétrique. La structure du réseau, ¢’est-
a~dire, les nombres d’unités cachées et leurs interconnexions sont définies par le programmeur du
réseau et ’algorithme ne peut modifier que les poids des connexions. Il n’y a aucune régle qui permet
de décider la structure nécessaire 3 partir d’une application ou d’un ensemble d’apprentissage donné.

iv

Si la structure choisie ne correspond pas bien a ce qui est nécessaire pour cette tache, le réseau ne
converge pas vers le bon résultat.

Deux algorithmes, dits incrémentauz, sont proposées ici; ils s’appellent GAL et GAR pour
I’apprentissage supervisé et non-supervisé. Dans ces algorithmes, pendant [’apprentissage, des unités
et leurs connexions sont ajoutées lorsque c’est nécessaire. On sait que le fait de pouvoir modifier la
structure d’un réseau en lui ajoutant des unités et des liens peut diminuer le temps d’apprentissage
et améliore la qualité de généralisation.

GAL convient pour Papprentissage supervisé. On associe & chaque classe un certain nombre
d’exemplaires qui sont ses membres typiques ou ses prototypes. Etant donné un certain vecteur
d’entrée, le plus proche exemplaire déja stocké est cherché comme dans la méthode du plus-proche
voisin en utilisant une mesure de ressemblance qui dépend de I’application. Pendant ’apprentissage,
si un vecteur d’entrée est classifié faux, un nouvel exemplaire est créé dans la position du vecteur
d’entrée. Aucune modification n’est faite si la réponse du réseau est déja juste.

Les vecteurs stockés comme des exemplaires dépendent i l’ordre ou ils sont vus pendant
P’apprentissage; il peut donc arriver qu’un exemplaire ne soit plus nécessaire & cause d’une addi-
tion plus récente. On est seulement interessé & stocker les vecteurs proches des frontiéres de classes,
donc si un vecteur qui est plus proche d’une frontiére est ajouté, les exemplaires plus a Vintérieur
ne sont plus nécessaires. Pour se débarrasser de tels exemplaires et diminuer le besoin en mémoire
(donc la vitesse de reconnaissance sur une machine séquentielle), une phase de sommeil est intro-
duite pendant laquelle ces exemplaires sont éliminés. Un exemplaire est détruit si I’exemplaire le
plus proche appartient a la méme classe. L’erreur qui peut augmenter i cause de ces éliminations,
est compensée dans la prochaine phase de réveil quand le réseau continue & apprendre avec son
ensemble d’apprentissage. Les deux phases de révetl et sommeil s’alternent et finalement, le réseau
converge vers un ensemble d’exemplaires ol plus aucune addition ou élimination n’est nécessaire.

GAL est comparé aux autres algorithmes d’apprentissage (RCE, LVQ, la rétro-propagation du
gradient) du point de vue des besoins en mémoire, en vitesse d’apprentissage, et en succés de re-
connaissance. Il est spécialement intéressant du point de vue du temps d’apprentissage. Il permet
particulierement d’apprendre on-line, c’est-a-dire directement pendant !'utilisation, car chaque as-
sociation est apprise dans une itération alors qu’une centaine d’itérations sont nécessaires dans le
cas des algorithmes qui font la descente du gradient. GAL est un bon choix si les formes doivent
étre apprise en temps-réel, par exemple, dans les applications robotiques. Testé avec des chiffres
manuscrits, la comparaison avec d’autres algorithmes est aussi favorable tant du point de vue du
taux de succés que de la taille de réseau. Avec une base de données qui contient 9000 exemplaires,
AT&T Bell Labs obtiennent un taux de succés de 94.3% avec la méthode du plus-proche voisin
quand tout P’ensemble d’apprentissage est stocké. La tétro-propagation du gradient, aprés un ap-
ptentissage qui dure 3 jours, arrive 3 95.3%. GAL en stockant 10% de ’ensemble d’apprentissage et
aprés 5 heures d’apprentissage arrive & 92.3%, le succés maximum possible étant 94.3%.

GAR convient pour ’apprentissage non-supervisé; il extrait les caractéristiques statistiquement
importantes de la distribution du signal d’entrée. Etant donné un vecteur, P'unité la plus proche
est cherchée comme dans GAL. Associé avec chaque unité, un seuil définit une région de dominance
ayant la forme d’une hypersphére dont le rayon est une fonction du seuil. Une unité est activée si
elle est la plus proche et si son activation est plus grande que son seuil. Pendant Papprentissage, si
le vecteur d’entrée ne peut activer aucune unité, une unité est ajoutée dans la position du vecteur
d’entrée. Si une unité est activée, ses poids de connexions sont tirés avec un petit facteur vers le
vecteur d’entrée .

Comme ’extraction de caractéristiques est une forme de codage, on doit étre sir que pendant ce
processus, V'information perdue est minimisée. La théorie de I'information dit que pour maximiser le
transfert d’information, des unités qui codent des événements spéciaux, doivent avoir une probabilité
égale d’étre activées. On en déduit que dans un réseau compétitif o ’espace d’entrée est divisé
entre les unités, les unités qui sont dans les régions ol la densité est haute doivent avoir des régions
de domination petites et les unités qui sont dans les régions ou la densité est basse doivent avoir des
plus grandes régions de domination. Dans le cas de GAR, on associe & chaque unité, un compteur
de trophée dont la valeur est augmentée chaque fois que V'unité gagne la compétition et est activée.

v

Quand cette valeur arrive & une limite, le seuil d’unité est modifié pour diminuer la région de
dominance de cette unité.

GAR, pendant la phase de sommeil, contrdle la condition que toutes les unités aient la méme
probabilité d’étre activée. Un certain nombre d’itérations est fait sans modification de poids des
connexions et les trophées sont comptés. Les unités dont les compteurs de trophées sont inférieurs a
une certaine valeur sont éliminées. C’est seulement quand les unités ont la méme probabilité d’étre
activées que le réseau réalise une bonne approximation de la densité du signal d’entrée. Le pouvoir
de détruire des unités ayant un petit nombre de trophées et d’en ajouter quand des formes assez
différentes sont rencontrées implique que si le signal d’entrée change dans le temps, le réseau est
capable “d’oublier” les anciennes caractéristiques en ajoutant les nouvelles.

La thése montre de plus qu’une structure ayant une couche de GAR pour I'extraction de ca-
ractéristiques et une couche de GAL pour la classification est une bonne alternative a la rétro-
propagation du gradient. On peut avoir plusieurs couches de GAR pour extraire des caractéristiges
de plus haut niveau.

Neural models of incremental
supervised and unsupervised learning

Thesis summary, E. Alpaydin
LAMI-EPFL, July 1990

Keywords. Artificial neural networks, Parallel processing, Incremental learning, Supervised learning,
Unsupervised learning, Pattern recognition, Optical character recognition.

1t is by detecting the regularities and invariants that systems, be they natural or artificial, can
decrease the complexity of the signal that they should process. This is an abstraction operation,
and one type of it is classification where the signal is assigned to a general class independently of
its particular apparence.

There are a number of tasks that are not yet formalized; for example in pattern recognition,
nobody knows how to write a general definition of the character ‘A’ as a mathematical equation.
The only possibility left is to learn from examples. The criterion to decide whether an image is an
‘A’ or not, is to compute if it is similar to any of the ‘A’ seen before. There are two problems, among
others, for which two methods are proposed in this thesis:

(1] One problem is to be able to eztract the definition of a class from its ezamples. A method
named Grow-and-Learn (GAL) is proposed which has the property that the definition of a class
is eztensible. One starts from the simplest definition and extends it when similar classes are
encountered to be able to extract finer definitions.

[2] Another problem is that of finding the similarity crilerion.

a. The idea is to choose a set of salient characteristics based on which patterns are compared
for similarity. A method named Grow-and-Represent (GAR) is proposed to learn such
characteristics from examples. A GAR network, similar to GAL, is a dynamic network
whose structure is modified during learning.

b. Another possibility is to use one’s knowledge of the task to be able to heuristically define
application-dependent preprocessing techniques that will facilitate learning of classes. Two
techniques have been proposed for recognition of handwritten numerals towards this aim.

Any new approach should be evaluated and tested carefully with a real application. Despite the
fact that the methods proposed here are not limited to character recognition or vision, but can be
used with other types of images or signals, all models proposed have been tested with handwritten
numeral recognition which has an evident economical utility.

The operation carried out by a system to give out a certain output, is a function of the input and
the system’s structure. This structure is composed of two types of components: the modifiables and
the fixed ones. The modifiable components, when they exist, are called the parameters and make up
the memory of the system. The modification of a system, when done by modifying the parameters
is called parameiric modification. But sometimes it requires the modification of the structure also,
in such a case, a structural adaptation should be carried out.

Learning rules currently used with neural networks, a few exceptions aside, are based on para-
metric modification. The structure of the network, i.e., the number of hidden units and their
interconnections, is defined by the programmer and the learning rule can modify only the connec-
tion weights. There is no rule which allows one to determine the necessary structure from a given
application or training set. If the structure chosen does not correspond to what is necessary for that
task, the network does not converge to a good result.

Two incremental algorithms are proposed here for supervised and unsupervised learning which
are called GAL and GAR respectively. With these algorithms, the network has a dynamic structure;
units and their connections are added during learning when necessary. It is known that the ability

viii

to modify network structure by adding units and links may decrease learning time and improve
generalization quality.

GAL is for supervised learning. Associated with each class is a certain number of eremplars
which are its typical members or its prototypes. Given a certain input vector, the closest is sought
as in nearest-neighbor method using an application-dependent distance measure. During learning, if
an input vector is currently classified wrongly, a new exemplar is added at the position of the input
vector. No modification is done if the network response is already correct.

As the actual vectors that are stored as exemplars depend on the order they are encountered
during learning, it may be the case that an exemplar is no longer necessary due to a recent addition.
One is only interested to store the vectors closest to class boundaries thus if a vector closer to the
boundary is added, the ones interior ate no longer necessary. To get rid of such units and decrease
memory requirements (and recognition speed on a sequential machine), a sleep phase is introduced
during which such units are eliminated. An exemplar unit, if the closest exemplar to it also belongs
to the same class is purged. Error that may be increased due to such deletions are compensated for
in the next awake phase when the network goes on learning with the training set. Succesive awake
and sleep phases, allow the network to converge to a set of exemplar units where no further additions
or deletions are necessary.

GAL is compared with other learning algorithms, e.g., RCE, LVQ, and gradient-descent based
methods, in terms of memory requirements, recognition speed, and success. It proved itself to
be interesting especially in terms of learning time. In particular, it allows on-line learning as an
association is learned at one-shot, i.e., in one iteration, whereas hundreds are necessary in the case
of gradient-descent based algorithms. GAL is a good choice when patterns are to be learned in
real time, e.g., in applications in robotics. The computation is not complex and thus can easily be
realized in hardware. It also compared well in terms of success and network size when tested with
handwritten numerals. With a database containing around 9000 examples, AT&T Bell Labs obtained
94.3% with the nearest-neighbor method when all the training set is stored. Back-propagation of
the gradient, after learning for three days, reaches 95.3%. GAL, storing 10% of the training set and
after five hours of learning reaches 92.3%, maximum possible success being 94.3%.

Although it is for learning of categories, GAL can easily be extended to learn also continous
mappings. Discretizing the range into segments of small size and treating these segments as if they
are different classes, GAL can very quickly learn such mappings. The tolerance value chosen during
this discretization determines the finesse of the mapping.

GAR is for unsupervised learning; it extracts statistically important features of the input signal
distribution. Given an input vector, the closest unit is sought as in GAL. Associated with each unit
is a threshold that defines a region of domination having the form of a hypersphere whose radius
is a function of the threshold. A unit is activated by the input vector if it is the closest and if its
activation is greater than its threshold. During learning, if the input vector cannot activate any
unit, a unit is added at the position of the input vector with an initially large domination region. If
the input vector activates a unit, that unit’s weight vector is moved towards the input vector with
a small gain factor.

As feature extraction is a way of encoding, one should make sure that during this process,
information loss is minimized. It is known that units that code for special events, to maximize
information transfer, need to have equal probability of being activated. This implies that in a
competitive mechanism where the input space is divided between units, those units that lie in high
density regions should have small region of dominations whereas in low density regions, units should
have larger regions of domination. To achieve this in GAR, associated with each unit, is a parameter
named a trophy counter whose value is increased whenever a unit wins the competition and gets
activated. When this counter reaches a certain limit value, the threshold is modified to get a smaller
region of domination.

GAR in sleep mode, checks if the condition of equal probability of being activated is satisfied
or not. A certain number of iterations are performed without any weight vector modification and
trophies are counted. Units whose trophies are smaller than a certain value are deleted. Only when

ix

the units have equal probability of being activated, does the network performs a good approximation
of the probability density of the input signal. The ability to delete units with low trophies and adding
when significantly different patterns are encountered, also implies that when the input signal changes
in time, the network is able to “forget” the old features and learn the new ones.

The thesis also shows that having a multi-layer structure made up of a GAR layer for feature
extraction and a GAL layer for classification is a good alternative to back-propagation. One, of
course, can have several GAR layers to be able to extract higher-order features.

Preface

I have a number in my head
Though I don’t know why il’s there
When numbers get serious

You see their shape everywhere

—Paul Simon, “When numbers get serious”

Afew words of explanation are called for before one proceeds to the following chapters.

This is not an introductory text nor a review of any of the subjects to which this work is
related. None of the fields that this work touches, learning, pattern recognition, nor artificial neural
networks, need another introductory text. So many of such books have been written in recent years
by people who have a lot more knowledge and experience than I do that I have left altogether aside
giving an overview of any of these fields.

As time passes, needs of society get ever more complex. Designing and building machines
for more and more complicated and detailed tasks is rapidly becoming tiresome, not to mention
maintaining them during utilization. General-purpose learning machines or machines that can build,
program, or supervise other machines may sound like science-fiction but seems to be the only way out.
Self-modifiability, or adaptation during operation is a must, not an extra feature in any application.
The idea followed in the work is to have a general-purpose system that can learn to recognize simple
forms, be they characters of any alphabet, icons, signs, or whatever. Thus none of the techniques
proposed in the text is limited to optical character recognition but they are all tested with real-world
visual forms, namely, handwritten numerals.

There are a number of tasks nobody knows how to formalize, for which there is no complete
computational theory. To take an example, nobody knows how to define ‘A’ as a mathematical
equation. The only way left is to learn from examples. The criterion one uses to decide whether
a certain image is an A or not, is whether it is similar enough to any of the A seen before. The
problem now turns into that of defining an appropriate similarity measure.

Whether just a coincidence or not, but the tasks we cannot formalize are those that we do in
everyday life, which, for this very reason, are good candidates to be implemented in machinery. Not
only us, but also a great part of the animal kingdom, can accomplish such tasks seemingly very
easily.

Maybe I should stress at this point that if one builds a machine to perform a certain task,
then the machine should be superior to a human for that particular task. Either it operates in
environmental conditions not suitable for a human, or is faster, or cheaper, or does not take coffee
breaks. It is prime time that we should get rid of our chauvinism related to brain or any other
biological system and stop seeing a struggle of “artificial” versus “natural.” A thing is good because
it is good, not because it is natural. A thing is bad because it is bad, not because it is artificial.
Surrounded by machines whose inner functioning they do not understand, and which in a hundred
years or so started to dominate job territories and enterprises previously theirs, people find relief in
hearing that they have 1010 neurons in their brains which is a far greater number of components than
computers have, or that even an amoeba has as much information in its DNA as 1,000 Encyclopedia
Brittanicas. ! One unfortunately notes that what once initially started as ignorance finally led to a

1 This calculating of numbers, converting them into bits and speculating on information storage capacity
is mere fancy. What is important is not really the capacity to store that many states but the machinery
that will be able to detect and process such states, Otherwise one is tempted to say: “There are so many
thousands of dust particles in one square centimeter of cloth, there are that many millions of atoms in one

xii

hostility towards a “system” which people identify with science and which they take as destroying
the “meaning” of their lives. It is not strange then that these people get good hold of their “mind”
and “intelligence” and be unwilling to accept that those may someday be implemented on a machine.
There is nothing degrading about thinking of brain as a certain machine; what is degrading is to
think of it as unable to understand how something works, even if that something is itself.

Understanding a system implies being able to form a computational theory of it as pointed out
by David Marr. However for the same task, one may propose explanations at various levels. One
may look at the level of ions moving around, or at the level of individual neurons, at the network
level or at the overall system level. For each of these levels, one specifies a certain data representation
and an algorithm to perform the required operation on these data, which is then implemented using
a certain technique. According to the complexity of the task and implementation constraints, one
then chooses a particular level of algorithm and implementation which is formalized independently
of the complexities of the underlying layers. For example, if one is at the level of neurons, the fact
that a neuron fires is important but the chemical processes that take place to make the neuron fire
are not.

The symbolic approach in artificial intelligence dominating since 1960s, concentrates on the
highest psychological level in understanding and replicating intelligence. The idea is to simulate
directly the cognitive capabilities using a set of procedures in Lisp or Prolog on the pretext that the
behavior of the system can be written as a set of symbolic transformations and that the rules of these
transformations are independent of how these symbols are represented. The connectionist or sub-
cognitive approach wotks at a lower level, at the level of neuronal networks. The idea is that what we
call intelligence is the behaviour that emerges as a result of the interaction of concurrently operating
non-linear units performing simple computations. Learning in these networks correspond to dividing
a global task like pattern recognition into a set of simple tasks over a network of processing units
which execute in parallel and which constantly exchange information over the links connecting them.

The problem with the symbolic approach, I believe, is that it ignores the physiology of the brain.
Whatever the brain does is constrained by what it can or cannot do, so, trying to build artificial
correspondants of human abilities without taking into account how humans do them is an error.
Similarly there is a danger with the second approach when it concentrates on very low-level details.
Say we take a lobster and we are able to record for all neurons in its brain, the input and output
relationships. In a huge memory, we store what all neurons should give as output when they are
given this or that as input and using a very powerful computer, we are able to do this in real time.
There is no doubt that this computer would exactly behave like the lobster it simulates. However
this does not give us any knowledge at all about the behaviour of the lobster. Carver Mead’s work on
artificial retina by replacing synapses with transistors is a good example for this. What we want is
a higher-level explanation telling us why the neurons bother to take those values given these inputs.
For example, we can say that retinal ganglion cells enhance edges and one way to enhance edges is
by applying a Laplacian filter and one way to implement a Laplacian filter is by a cell having an
on-center-off-surround receptive field. But there are other ways to implement a Laplacian filter and
there are other ways to enhance edges. We are in no way bound to use the same implementation
technique or algorithm when implementing a human capability in silico.

A computer program cannot be more intelligent than its programmer and should not be more
intelligent than its user. In the case of adaptive or learning systems, this has a corollary: A learning
system cannot be more intelligent than its training set and should not be more sophisticated than
what its test set necessitates. Thus the system learns from examples and what it knows is limited
to the set of examples shown. The learning process is one of induction and it is required that the
system when defining the classes, finds the simplest possible conditions for it to generalize well to
patterns unseen during learning.

Another requirement is that in some tasks rapid adaptation is needed. In such cases, the system
does not have time to perform thousands of iterations to be able to gradually learn by reinforcement.

dust particle, thus everytime you clean your jacket, you are throwing one volume of Eacylopedia Brittanica
away.

xm

Think of a robot that is sent to Mars; there is no training set and no quick human remote interference
is possible. The robot somehow should be able to make use of what it encounters, learn from them
as quickly as possible and thus be able to successfully accomplish its task.

The approach named incremental learning implies a dynamic network whose structure gets
modified during learning. Unlike most popular learning algorithms where only the connection weights
are modified iteratively, in an incremental network, units and links can also be added. Such a strategy
satisfies the previously mentioned two conditions, namely:

¢ One starts from the simplest possible definition of a class. This definition, during learning when
necessary is supplemented to get more complicated definitions. When similar patterns that
belong to different classes are encountered, units are added to get finer class separations.

o As learning a new pattern necessitates one iteration requiring either network modification or
no change at all, this way of learning is very fast. This makes such algorithms quite interesting
where on-line learning is necessary, e.g., robotics.

The work involves two methods for incremental learning of classes, i.e., supervised learning,
and features, i.e., unsupervised learning. The requirements during supervised learning are already
mentioned. In the case of unsupervised learning, the aim is to be able to extract features auto-
matically given examples. One first requires a fast capability to learn features when significantly
different patterns are seen; this also implies an incremental strategy. Secondly, one requires that
in a changing environment where the input signal changes in time drastically, the features should
change also implying forgetting the old ones and learning the new.

To make the idea more clear, let me mention the driving force that led me look for incremental
solutions. The task is to learn a visual object as a sequence of eye fixations.

One wants to perform recognition as fast as possible, thus the sequence, i.e., the eye trajectory,
should be kept as short as possible. Initially differentiating between quite different objects, just one
or two fixations may be sufficient but as similar objects are seen, the learning system should be
able to extend automatically the sequences as to be able to differentiate between similar objects.
Because one does not have enough time to perform many iterations, a method is needed by which
this change in the sequence can be done very rapidly.

An object’s definition is not only related to the trajectory followed by the eye but also to what
the eye sees, i.e., the small region of the object currently accessible to analysis. Because the whole
operation needs to be carried out very rapidly, one also needs a mechanism by which the content of
such regions can be learned at one shot. This implies an ability to learn rapidly significantly different
features. One also requires that if fine differences exist between commonly occurring features, such
differences can be caught to allow a finer definition of objects.

Both of these pointed out a need for incremental learning, supervised and unsupervised.

The following text is organized as follows:

In the first chapter, a general introduction is made to several concepts used throughout the rest
of the text. One point important made there is the distinction between what I call structural and
parametric adaptation.

The second chapter proposes Grow-and-Learn (GAL); an incremental supervised learning algo-
rithm. It is explained and compared with similar algorithms like RCE, LVQ, and discriminant-based
approaches like back-propagation.

Grow-and-Represent (GAR) is an incremental unsupervised learning algorithm. It is explained
and compared with Kohonen’s self-organizing map in the third chapter.

The final chapter draws the conclusion.

INntfroduction
and
Preliminaries

(Socrates, narrating his discussion with Glaucon)

Just as in learning to read, I said, we were satisfied when we knew the letters
of the alphabet, which are very few, in all their recurring sizes and combinations;
not slighting them as unimportant whether they occupy a space large or small, but
everywhere eager to make them oul; and not thinking ourselves perfect in the art
of reading until we recognize them wherever they are found:

True—

Or, as we recognize the reflection of letlers in the water, or in a mirror,
only when we knew the leiters themselves; the same art and study giving us the
knowledge of both:

FEractly—

FEven so, as [maintain, nesther we nor our guardians, whom we have fo
educate, can ever become musical until we and they know the essential forms, in
all their combinations, and can recognize them and their images wherever they are
found, not slighting them either in small things or great, but believing them all to
be within the sphere of one art and study.

— Plato, “The Republic,” Book III, 402.

1.1. SYSTEM OPERATION

A system operates as to give an output (x) which is a function (@) of the system state (o) and
current input (A):

x = ¢(),0). (1.1)

Associated with each input is a certain required output, 4. The aim of building a system is to
have x equal to v.

In the context of pattern recognition, A is the input pattern, e.g., a character image, a speech
signal, k is the class to which the input belongs to, e.g., a character code, identity of the speaker,
and ¢() corresponds to the recognition or classification operation.

o, the system state, covers all we need to know about the operation of the system. There are
two ways by which & may be realized: The machine may be built by a higher-level designer, or the
machine may learn by itself. In a general sense, ¢ has two parts: those which are fixed and those
which are modifiable. The modifiable parts constitute the memory, and because the content of the
memory affect ¢(), memory locations are also called parameters whose values can get different values
at different times to get different output.

#() is a universal function which, given o and a particular input A, gives the output x. For
example, ¢() may be a computer and ¢ its program. Building up a system means:

[1] Finding out what is expected from the system; what output is required given a certain input,
i.e., the (1,7) pairs.
[2] Defining o so that these mappings can be accomplished.

symbol concept
A input

™ actual output
¥ required output
o system structure
() operation function
() performance measure
n performance or cost of the system
p() probability density of)
v() joint probability of A and ¥
¥() adaptation function

It may be the case that we know exactly the function mapping from A to 4 in which case we
can write down o exactly. In such a case, the system is built and when the designer is confident
that no significant changes will occur in the environment, it may be fixed.

In general however, what we only have is a set of observations, A and corresponding v values,
which constitute our empirical knowledge. These pairs make up the so-called training set. The aim
then, is to define & based on these values so that when a certain X is given as input, x will be
equivalent to 4. That A may or may not be an element of the training set.

The performance of a system may be measured by defining a distance measure between « and
7, ®(). System performance, 7, can then be computed by summing up over all possible A:

n=]x(1,¢(A,a))dA. (1.2)

When A are not uniformly distributed, we are more interested in “average success” and want
to take into account the probability density of A, (). In such a case, n is a weighted sum where
weights are densities (White, 1989):

q:/r(w,é{,\‘a]]p{d,\)d,\. (1.3)

= is normalized so that x(y,7) = 0 and as () becomes bigger, performance gets worse. The
system should be built, i.e., o should be specified, so as to minimize 5 (Fig. 1).

Fig. 1. System operation and paramelers. M is the memory which is optional.

1.1.1. Adaptation

A system, if it does, may learn in two ways: by instruction or by ezperience.

In learning by instruction, the system is given explicit information concerning what is required
of it. In learning by experience, the system gives a certain output, , receives feedback from the
environment, 7, changes itself by modifying modifiable parameters of & and retries. Learning by
experience thus is iterative.

One possibility is to store explicitly the entire training set which is the easiest way of learning
by instruction. Training sets however tend to be big and highly redundant. Thus an intelligent way
would be to decrease memory and computational requirements by summarizing the knowledge lying
therein.

If we define v() as the joint probability of ¥ and A, it is clear that when there is no “noise,”
knowledge of () implies knowledge of ©(). When there is noise however, as our empirical knowledge,
(A7), includes noise, () does not reflect exactly u(). In such a case, ¢() becomes a probabilistic
relationship between A and ¥ and is equal to the expected value of x realized “on average” given A:

¢(0,A) = E(x|A). (1.4)

which may be erroneous. The average of error is by definition 0. When there is no noise:

¥ = E(x|A). (1.5)

5

n is written down as a function of & given a certain training set. The aim then is to find the
global minimum of this function; given a certain initial &, modify it to ¢’ so that;

n(e’) = minn(e;). (1.6)

n with an analogy to physical systems is named the energy function, or with an analogy to
optimization problems, the cost function. Many algorithms have been proposed in the past to be
able to perform a search towards the global minimum in such problems. See (Ackley, 1987) for a
review.

Thus, a system when it is modifiable, has its parameters modified in such a way as to minimize
1. The adaptation function, ¥(), if there is one, modifies system state, o, as to decrease n (Fig. 2).

a(t+7)=y(a(t), A n k7). (1.7)

7 is the time constant of the system. The modification of the system state is done generally by
modifying the values of memory locations, each one named a parameter.

% ()
n
K
- ()
1 Y
ENVIRONMENT

Fig. 2. System operation, parameters, and adaptation. ¥() can also be a part of 0.

In Fig. 2, we may also envisage to put memory before #() and ¥() and have them also modifiable
in time by a function which we may name ¥?(). In this way, cost function can change in time; the
system may learn how to teach or may change what it is teaching.

Note that the final ¢ achieved at the end which may arrive to a global minimum (but which
also risks to get caught in a local minimum), depends heavily on several factors:

[1] The system design parameters, e.g., x(),
(2] The training set characteristics, e.g., (v,1), (),
(3] The environmental factors, e.g., ¥().
Testing the system under conditions where any of these different factors are different, will not
give good results. The set of (\,7) used to test a system’s performance is called the test set. To be
fair, no adaptation occurs during test,

An adaptive machine is one that is modified so that its output will be correct when the envi-
ronment changes (Holland, 1975). This modification can be done by a high-level system or by the
system itself. The word “adaptation” generally implies the more interesting latter case. It should
be pointed out that a modifiable machine is superior fo a fized one only if the system requirements,

6

i.e., tmposed by the environment, change in time. Making adaptation possible, increases system
complezity and thus cost.

As biologists emphasize (Dawkins, 1982), adaptedness is recognized as an informational match
between organism and environment. An animal that is well adapted to its environment can be
regarded as embodying information about its environment, in the way that a key embodies infor-
mation about the lock it is built to undo. A camouflaged animal has been said to carry a picture of
its environment on its back.

Modification may be of two types: In structural modification, the structure does not have any
modifiable parts and any modification requires restructuring the system. In parametric modification,
the structure of the system is defined in terms of some parameters; by changing these parameters,
different structures, thus different operations are achieved. Adaptation that may be achieved through
parametric adaptation is limited to how these parameters are defined. Structural modification, in
theory, has no such limitation. In a parametrically modified machine, the existence of parameters
whereby information may be stored means that the system has memory in which result of past
experiences, at least indirectly, are stored. In a structurally modified machine, the machine itselfis
the result of past experiences.!

1 Evolution by “survival of the fittest” is structural modification, education is parametrical adaptation.

1.1.2. Example: Learning Logic Array

The system should somewhat be able to store A and corresponding ¥ values so that, when a
certain input is given, the required output can be given out. One possibility when possible A values
are of a finite size, is to explicitly store all such pairs and look for a match when an input is given.
This idea can be used when the dimensionality of A is small, as memory size increases exponentially.
As a simple example to see how a system modifies its parameters during training as a function of the
error, let us take a case where a system can learn a logic function from examples, named a Learning
logic array (LLA) (Alpaydin, 1990a).

When a logic function with some inputs and output is to be implemented, it is generally hard-
wired using some, preferrably optimal, number of logic gates. When the specification of the function
is modified, the system is halt, the old circuit is removed, and a new circuit is placed in its stead.
One approach is to make the gates programmable, thus allowing the modification of the logic func-
tion by just modifying the values of some memory elements, i.e., enabling or disabling connections.
This second approach is the soft approach, as opposed to the former hAard approach. The third
approach proposed here is the learning approach, where modification of these memory elements are
also performed by the system itself, thus removing the need of a higher-level supervisor completely,
who either needs to build the new circuit in the hard approach, or determine and program the
connectivities in the soft approach. The higher level informs the system with the required output
and the system modifies its parameters in a rather simple way to accommodate it.

The idea is very simple. The diagram for a two-input function is given in Fig. 3. There lies a
first layer which is a n to 2" decoder. The decoder layer gives out unit vectors, i.e., one of the outputs
is “on” at a time, others are all “off,” thus the actual output of the function can be computed using
an OR gate. The connections from the decoder outputs to the actual output are enabled or disabled
according to the states of J-K flipflops, each governing one line. The state of the flipflop, as can
also be writlen as a logic function, can be determined by the system itself. One gives the required
output, r, by which the system checks if there is an error using an XOR gate.

|
LD"

2-to-4
‘ decoder

ls

Fig. 8. A two-input, one-output LLA. z and y are inpuls, a is the only “on” output of the decoder,
b is system’s output, r is the required oulput, e is the error signal when b and r do not match. Only
one of the “and gate-flipflop” conneclion coniroller are shown, there are altogether four.

First, the connection from the decoder output a to output b is important only when a is “on.”
Besides, when there is no error, nothing needs to be modified. But when there is an error, the error

8

should be due the connection connected to the currently “on” output of the decoder. The state of
that connection should be toggled, i.e., disabled if currently enabled, and vice versa. A J-K flipflop
when both inputs are “on” acts as a toggle. The error signal when the required output is known,
is computed by a XOR gate. Another possibility is to remove the XOR gate altogether and feed
an external error signal directly to the AND gates preceding the flipflops. No special initialization
phase is required.

In this example, the binary input signal z,y corresponds to A, b is %, r is . 7() is implemented
as an XOR and ¥() is the and gate-flipflop combination. The decoder acts as an associative map to
map the given input to any of the (four) stored combinations; in this case, all possible A are stored.
Another possibility, as output is binary, is to store only those A for which v is “on,” but then one
needs to make a search in memory, e.g., by a content-addressable memory (CAM).

LLA: A Critique. In applications where the input signal is high-dimensional and highly redundant
and only a small number of output classes exist, LLA is not a good idea because of the n-to-2”
decoder. When n is the number of inputs, and k¥ the number of data pairs stored, the utility of
LLA is proportional to k/2”. In the case of a logic function, k& corresponds to cases where the
output should be “on.” The higher is this value, the more LLA becomes interesting. To alleviate
the problem of combinatorial explosion, one would like to be able to cascade such structures each
having only a small number of inputs. The problem remaining is to propagate the error back to
internal layers. Alexander has significant work done related to using RAMs for pattern recognition;
see (Alexander, 1990) for a recent review.

1.2. DECISION THEORY

When input A have discrete values as in the previous case, one can classify by comparing a
given input with all those stored. When a match is found, corresponding v, i.e., class code, is given
out. This approach may turn out not to-be feasible if one of the following occurs:

[I] When the dimensionality of the input is high, the size of the memory required to store all
possible A,y pairs grows exponentially—as seen in the LLA above.

(2] Due to noise, one may have input values different from stored patterns. Although differences
may be small, this causes a non-match.

These two conditions force one to look for the closest stored pattern instead of an exact match.
In such a case, one defines a set of discriminant functions g;(A) for each class i where the value of
this function denotes our confidence level that the input belongs to that class. One then chooses the
most likely class.

gi(A) = max (9;(2) - (1.8)

In the case of Bayes decision theory (Duda & Hart, 1973), maximum discriminant function
corresponds to minimum conditional risk. When the loss terms are equal, this implies maximum a
posteriori probability. When P(\}y;) is the a priori probability that input is A given that input is of
class i and P(¥;), the probability of class 1, the a posteriori probability that input is of class i given
that it is A is given as:

9i(A) = P(%ild) = P(My:) P(vi)- (1.9)

1.3. PARAMETRIC CLASSIFICATION

When the input vectors A for a given class i are continous valued, mildly corrupted versions of a
single prototype vector 4;, i.e., due to noise, one can assume that patterns belonging to classes obey
a multi-variate normal distribution. This is also what one would expect if features, i.e., components
of), are chosen to extract those features that are different for different classes but as similar as
possible for patterns belonging to the same class.

Case 1. The simplest case occurs when features, A;, are statistically independent and when each
feature has the same variance, 0%.2 In this case, class clusters have the shapes of hyperspheres and
therefore the probability that a certain pattern A belongs to a certain class i decreases as distance,
e.g., Euclidean, between A and the class mean, y; increases. This is a minimum-distance classifier
and the operation is called templaste matching. The boundaries between classes are hyperplanes
that pass through medians (orthogonal to the line between the means). In case where a priori
probabilities are not equal, one can add logarithm of this to shift the boundary away from the more
probable mean.

Case 2. Another simple case occurs when the covariance matrices for all classes are equal. In this
case, class densities are hyperellipsoids centered around the mean having equal sizes and shapes
for all classes. One cannot use the Euclidean distance in this case, but should take into account
the principal axes of the hyperellipsiods which are the eigenvectors of the covariance matrix. One,
in this case, either needs the Mahalanobis distance or should perform a linear transformation that
rotates and scales the axes so that hyperellipsoids become hyperspheres. The separating hyperplane
is not orthogonal to the line between the means but is parallel to the principal axis of the density,
i.e., that eigenvector of the covariance matrix having the largest eigenvalue.

Case 3. In the general case, classes have arbitrary shapes and discriminants have quadratic equa-
tions.

The above mentioned approaches are valid when our assumption about having normal densities
are correct. They are called parametric, parameters being those of distributions, namely, mean, the
elements of the covariance matrix, and the a priori class probabilities. In cases where these are not
known or costly to compute, one looks for non-parametric methods.

2 This is for example the case when noise is added to binary images. The probability that noise, i.e.,
pixel inversion, occurs at a pixel, follows a Bernoulli distribution. The overall effect of noise over the image
is a sum of independent Bernoulli distributions and thus follow a Binomial distribution. It follows from the
“central limit theorem” (Ross, 1987) that for large images and small noise probabilities, this approximates
a normal distribution. When n is the number of pixels in the image and p, probability that there is a pixel

inversion, mean is np and variance is np(1 — p).

10

1.4. NON-PARAMETRIC CLASSIFICATION

In non-parametric methods, the aim is to take samples (that form the training set) and use
them most efficiently to approximate class separations. There are two approaches by which classes
can be represented:

{1} Prototype based methods,
[2] Linear discriminant based methods

In the prototype based methods, associated with each class, one stores a set of prototypes
which are also called exemplars or reference vectors, which are the typical members of that class.
The criterion to decide whether a given input vector belongs to a certain class is than that of checking
if its similar enough to any of its prototypes. In this approach, connection weights are the reference
vectors themselves out of which the most similar to the input vector is sought.

In methods based on linear discriminants, one tries to find out the equations of the hypersurfaces
that separate a class from all others. Whereas only linear separability can be achieved with one
layer, one by having several of such layers with an embedded non-linearity can satisfy more complex
criteria. In this approach, the connection weights give the factors of linear discriminant and the
order of the hypersurface is a function of the number of non-linear layers.3

1.4.1. Prototype based methods

In the nearest-neighbor classification, each class is represented by a finite number of samples. A
given input vector is compared with all samples using a certain metric, and is assigned to that class
whose sample is the closest. To be more precise on borders, some kind of a voting scheme over the
k nearest samples may be employed to give rise to k-nearest-neighbor methods.

As training sets tend to be big and redundant, one is usually tempted to summarize the empirical
information given somewhat as to minimize the cost and operational speed of the classifier. One may,
assuming hyperspheric clusters, compute the class means only. By having as many reference vectors
as there are classes and performing a time average of labelled vectors of the training set, during a
supervised process, one can find out class means (Oja, 1982). Trying to compute the variances also
leads to the approach named Parzen windows.

The assumption of hyperspheric class shapes rarely hold; one then needs to approximate an
arbitrary class shape as a sum of many small hyperspheres. This is called the k-means algorithm.
A variant of the same approach is the learning vector quantization (LVQ) (Kohonen, 1988). In both
the k-means and LVQ (and the more recent version LVQ2), the number of reference vectors need
to be predefined. The reference vectors are updated during a supervised learning process. During
recognition, as in the nearest-neighbor method, the closest reference vector is sought.

In the restricted coulomb energy (RCE) model (Reilly et al., 1982), a variant of the Parzen
windows, units have hyperspheric domination regions whose radii are defined by thresholds calibrated
during a supervised learning process. The number of units is not fixed but they are allocated in an
incremental manner when they are necessary.

3 The techniques quickly introduced in this section are explained in a more detailed manner with formal
equations and using examples and are compared between themselves and the supervised algorithm proposed
in this thesis. See section 2.7

11

1.4.2. Distance measures
These approaches require definition of an appropriate distance measure by which patterns can
be compared. It should first be pointed out that the measure to be employed depends on the

application and also concerns about implementation constraints like time and complexity.
When one wants to compare two vectors A and B, the simplest is to compute their correlation.

C(A,B)=)_A;iB;. (1.10)

Correlation has the disadvantage that the result depends on the absolute magnitude of the vectors
instead of only the difference between them. If the information lies not in the magnitude but the
orientation of the vectors, one can compute the angle between two vectors:

6 = arccos (—\/Z_%——f\'/-ﬁz—_—B—!) . (1.11)

One can use the Euclidean distance.

E(A,B) = /Z(A; - B;)2. (1.12)

To reduce computational complexity, one can compare vectors in terms of the square of the
Euclidean distance:

E*(A, B) = ||A|* - 2C(4, B) + || BII*. (1.13)
When one wants to compare a given vector, P, with a number of vectors, W;, to choose the closest

(for example in nearest-neighbor method where P is the input vector and W; are the stored sample
vectors):

EX(P,W;) = ||PI - 2C(P, W) + ||Wil1>. (1.14)

IP||? can be dropped out as it is a constant term. Moreover, when W; are normalized, i.e., all have
the same magnitude, the ||W;||?> term can also be ignored and one is left with a correlation.

12

1.4.3. Linear discriminant functions

Another possibility is to assume that the forms of the discriminant functions are known and
look for the parameters of the discriminant function. The most popular case is when they are linear
having the form:

g(A) = wT X 4 wp. (1.15)

where w is the weight vector and wyp is the threshold. This hyperplane divides the input space defined
by the elements of A into two halfspaces: Those for which g(J) is greater than 0 and those for which
it is less than 0. The weight vector is orthogonal to the hyperplane, thus defines its orientation, and
the threshold defines the location of the hyperplace with respect to the origin.

The parameters of the discriminant, i.e., w and wp, can be determined by an iterative gradient-
descent process. In the perceptron criterion function (Duda & Hart, 1973), the error is the sum of the
distances from the misclassified samples to the decision boundary. In the LMS rule (Widrow & Hoff,
1960), the error criterion is the sum of the squared error. In a gradient-descent procedure, during
an iterative process, one moves some distance from current w(wg also included) in the direction of
steepest-descent, i.e., along the negative of the gradient.

When classes are linearly separable, the discriminant function of classes can be defined as linear
discriminants which can be implemented as a one-layer network. One in this approach tries to define
gi(X) for class i such that:

_ J >0, if A belongs to class i;
%) = {< 0, otherwise. (1.16)

When this condition is not satisfied, one needs more complicated decision boundaries than
hyperplanes.

[1] One can try to separate classes in a pairwise fashion by hyperplanes. With c¢ classes, one needs
¢(c — 1)/2 hyperplanes, one for every pair. One then needs another layer of ¢ units to conjunct
the results of pairwise separation (Duda & Hart, 1973) (Knerr et al., 1989).

(2] One can add additional terms involving the product of pairs of components to obtain quadratic
discriminant funciions. In the neural network jargon, units implementing such products are
called high-order or pi units (Rumelhart et al., 1986) (Personnaz et al., 1987).

[3] One can have multiple layers of linear discriminants to be able to thus define hypersurfaces of
unlimited forms. To be able to implement gradient-descent in such networks, the non-linear
transfer function should be a differentiable function instead of a thresholding (le Cun, 1985)
(Rumelhart et al., 1986).

13
1.5. QUANTIFYING SUCCESS IN CLASSIFICATION

When a system performs a classification, there are five possibilities:

[1] There is a success if the class found by the system is the correct class:

k# REJECT Ay # REJECT Ak = ¥ = success. (1.17)

[2] There is an erroneous reject if the system responds with a reject where in fact a class is associ-
ated.

& = REJECT Ay # REJECT = ErroneousReject. (1.18)

(3] If the system responds with a reject when there is no class associated, this is a normal reject.

k= REJECT Ay = REJECT = GoodReject. (1.19)

[4] If the system assigns it to a class when in fact there is no class associated, this is a nuisance;
whether it is considered an error depends on the task. Normally such a situtation will not be

encountered.
x# REJECT Ay = REJECT = Nuisance. (1.20)
(5] Finally there is an error, if the system responds with a class and that class is not the correct
one.
k# REJECT Ay # REJECTAK # v = Error. (1.21)

Throughout this work success, error, and reject are quantified where reject corresponds to the
erroneous reject case.

1.6. QUALITY ASSESSMENT

The quality of a network solution is given as:

Quality=A* NETSIZE+ B+ SWP.TIME+ NOSWP 4+ C* SUCTEST. (1.22)

where

A<0,B<0,C>0

NETSIZE is the size of the network which is computed as the size of the memory (in bits)
required to store the connection weights; we want to minimize this. SWP_TIME is the time it takes
to perform one learning sweep over the training set and NO_SW P is the number of sweeps it takes
to learn the training set. The total learning time is SWP_TIME « NO_SW P which we also want
to minimize. SUC_TEST is the success on test set that we want to maximize. The application
determines which of these three constraints are more important and surely then one network or
learning algorithm may be superior to another for one task while worse for another task.

14

Incremental
Supervised

_earning

It is the object of science 1o replace, or save, experiences, by the reproduction and
anticipation of facts in thought. Memory is handier than ezperience and ofien
answers the same purpose.

In the reproduction of facts in thought, we never reproduce the facts in full,
but only that side of them which is important o us, moved to this directly or
indirectly by a practical interest. Qur reproductions are invariably abstractions.

Sensations are not signs of things; but, on the conirary, a thing is ¢ thought-
symbol for a compound sensation of relative firedness. Properly speaking, the world
is not composed of “things” as its elements, bul of colors, tones, pressures, spaces,
times, in short what we ordinarsly call individual sensations.

In the reproduction of facts, we begin with the more durable and familiar
compounds, and supplement these later with the unusual by way of corrections.
All judgments are such amplifications and corrections of ideas already admitted.

— Ernst Mach, “The Economy of Science,” The Science of Mechanics.

16

17
2.1. LEARNING AND ADAPTATION

In the previous chapter, I have mentioned the difference between structural and parametric
modification. One may arrive to the conclusion that although structural modification (SM) sounds
better, it is not feasible to implement in a real world environment, and that parametric modification
(PM) is enough. In this and the following chapter, I will discuss two algorithms for supervised and
unsupervised learning, both based on SM. In this introductory section, I would like to make the
point about relative merits and drawbacks of these two types of modification. Basically, what
will be stressing is the difference between learning and adapiation, which terms I have used in an
interchangeable manner in the previous chapter.

The task we have assigned ourselves is to design a system that, when given examples, will be
able to modify its functioning so that, according to a certain criterion of goodness defined, it will
become better. Thus, according to the application, we are given the A, 4 pairs and the #(), and are
asked to define ¢’ that minimizes p—which variables we have defined in the first chapter. To repeat,
o-has two parts: those that are modifiable, i.e., parameters, and those that are not. If one wants to
perform PM only, one should make sure that the modifiable parts really cover all that may need to
be modified. In other words, the unmodifiable parts should be general enough so as to be able to
handle all cases, so that achievable & can always fulfill requirements imposed by the environment.

Turing machine for example, is such a general machine that by loading the tape, i.e., parameters,
with different instructions and data, one can perform any computation. Computers are descendants
of Turing machines that are more specialized on arithmetic and logic.

As I define the terms for my own usage from now on, learning is finding o’ from no predefined
initial structure, and adaptation is finding a o(t + r) from o(t); learning is finding out the required
structure from scratch, adaptation is iterative modification of the structure.

Learning then is clearly SM as initially there is no structure at all. Adaptation can partially be
accomplished by PM except in certain cases. As an example let us take curve-fitting. If we know
that the data is of second order, we define our structure as y = cz2 + bz + a and by PM, find out
the best values of constant factors like a, b, and ¢ that minimize the difference between the actual
values given in the training set and values estimated by the fitted function. If we do not have any
idea of the order however, we need SM. We also need SM if our idea of the order is wrong. There
are two intertwined problems here; first the order of the polynomial needs to be determined and
second, the values of the constant factors should be computed. One approach to carry this out is
an incremental one by small modifications of the structure.

A computer program cannot be more intelligent than its programmer and should not be more
intelligent than its user. Similarly a learning system cannot be more intelligent than its training set
and should not be more sophisticated than what its test set necessitates.

As we want to solve a problem as simply as possible, in curve fitting, we favor lower-order
polynomials. During learning, we start from the lowest-order and check if we can make a good fit
with it. If we cannot, we increase the order by one, and re-try, till we get an error Jess than a certain
tolerance. Hence, one staris from the simplest description, and passes to more complex descriptions
if and when necessary. It should be stressed that one should always try to look for the simplest
explanation, otherwise one cannot generalize but risks to specialize too much on the training data.
That is why, passing from one structural level to another should be done rather reluctantly. A
lower-order function that gives little error should be preferred to a high-order perfect fit (Fig. 1).

In curve fitting, we start with y = a and check for the a value that minimizes error. If error is
so big that this cannot be taken as a good fit, we add one more term to get y = bz + a and now
look for suitable a and b values, etc.

Passing from one level of complexity to another is SM and determining values of parameters
like a, b that minimizes error is PM. One works at a certain level and does one’s best at that level;
if that is still not sufficient, one passes to the next level of complexity or sophistication (in a manner
similar to Kuhn’s “paradigm shifts”).

18

-

Fig. 1. Two polynomials of different orders are fitted on the same set of points. Lower order deviates
more but is to be preferred to the higher order one.

What do these have got to do with neural networks ?

Neural network algorithms perform parametrical modification which, when-—as they are generally—
based on gradient-descent, require a lot iterations. One pre-defines the network structure, ie.,
the number of hidden layers, units, and connectivities. Learning algorithms like back-propagation
modify the connection weights only. This is clearly PM, and thus is adaptation.

Solution of a problem with a neural network similarly requires, to the first, determination of
the network structure, and to the second, computation of the synaptic weights.

Small changes in the environment can be compensated for by a modification of some parameter
values, i.e., synaptic weights, but in learning from scratch, the structure of the network should
also be determined. Learning by changing connection weights only is time-consuming and does not
always work; freedom to modify the network structure is also needed.

It was noted before (Valiant, 1984) (Baum, 1989) that learning algorithms where units and links
may also be added may lead to shorter learning times and better generalization. Such algorithms
are called incremental. In this chapter, [will discuss how one can learn categories incrementally.

2.2. DESIGNING A SUPERVISED SM NETWORK

One should first make sure that the network can learn any discriminant function. This requires
at least a three-layer network of threshold units (Lippman, 1987) (Pao, 1989), or something as
powerful. The complexity of the mapping ability of such a network depends also on the number
of its hidden units. Following the motto of “starting from simple and making more complex when
necessary,” one would like to start with a small number of units and add when necessary.

However, we cannot do this using, say, back-propagation, or any other learning algorithm that
distributes associations on a large number of shared connections. In such cases, because the connec-
tions are shared and because of the non-linearity, one cannot just add units without disturbing old
associations. There are two possibilities:

{1] If one can make sure that when this new unit gets activated, none of the ancient units get
activated, there will be no problem. The units thus should somehow be able to suppress other
ones when they get control. This implies a competitive strategy and a local representation.

(2] The other possibility is to divide the network into separately trained subnetworks where such
subnetworks can be added in an incremental fashion. One needs a certain mechanism whereby
addition of a new subnet improves capability instead of corrupting the harmony as one would
normally expect. One apptoach is to have subnets that have different conceptual interpretations
where the output of one has priority over another, i.e., a competition between subnets. Another
approach is to have each subnet as another hidden layer.

19

2.2.1. A historical view of supervised incremental learning

This section gives a list of the incremental learning algorithms known to me. They are alse
classified to belong whether to [1] or [2] above. I will discuss these algorithms in greater detail in a
later section after Grow-and-Learn (GAL) is explained.

o The first incremental neural network-based learning algorithm I know of is the Restricted
Coulomb Energy (RCE) model proposed by Reilly, Cooper, and Elbaum (1982). This algo-
rithm uses [1]. Associated with each class are a number of prototypes. Each prototype unit
performs a dot product and thresholds the activation. This defines a hypersphere of domination
around each unit whose radius, which is a function of the threshold, may get modified iteratively
during learning. Thus, the space is divided into zones dominated by prototype units.

o The very first version of Grow-and-Learn (GAL) (Alpaydin, 1988) ! was based on [1]. First, the
effect of the already existing units were calculated. If the existing units could not perform the
required association, then, a new unit was added. This unit’s synaptic weight vector was set
equal to the input vector so that it would be the unit that would be activated in that case. The
weights from this newly added unit to class units were computed to be just a little bit bigger
to undo the effect of the others. Learning was one-shot, i.e., only one iteration was needed to
learn an association, but for complicated training sets, many units were allocated unnecessarily.

o One approach is based on [2] but units of somewhat different conceptual interpretations are used
(Knerr et al., 1989). In this method, one first tries to train a one-layer network with output
units corresponding to classes by the Perceptron learning algorithm, assuming that classes are
linearly sepatable. For the classes which this condition is not satisfied, one adds a subnet and
tries to mutually separate classes by adding units to check for these conditions. For cases where
this does not work either, one performs a piecewise approximation of boundaries using logical
functions using additional subnets.

o Another approach which is also based on (2] is to add the unit always as a new hidden layer
and train the connections of this last layer only (Mézard, 1989).

¢ The Probabilistic Neural Network by Specht (1990} involves assigning units to store each vector
in the training set. However, one can hardly call it incremental as all vectors in the training set
are stored.

¢ The Piecewise Linear Network of Kong and Noetzel (1990) is an incremental variant of LVQ.
The difference being that instead of having a fixed number of units, when an input vector
significantly different from a stored one is seen, it is added as a new unit. The winner-take-all
that seeks the closest implies this of type [1].

I will compare in a later section approaches [1] and {2] in greater detail and list their merits and
drawbacks.

! The RCE model was not known to me when I proposed GAL.

20

2.3. GROW-AND-LEARN (GAL)

We have seen in the previous chapter when we discussed discriminants that the biggest problem
one encounters when one wants to learn classes is to approximate the shape of classes’ distributions.
When the distribution is normal and variances on all dimensions are equal, just storing the mean is
sufficient as classes have hyperspheric shapes. When it is not, many exemplars of that class need to
be stored. In this way, we define the class distribution as a sum of many hyperspheres. How many
of them will be necessary is not known, that is why algorithms similar to k-means, e.g., Learning
Vector Quantization (LVQ) of Kohonen (1988), cannot guarantee finding the best solution as the
number of codebook vectors is pre-determined. Of course, one can always store all the vectors in
the training set and perform nearest or k-nearest neighbor search. This is a rich man’s solution, as
training sets are big. One wants to minimize the memory and complexity by somehow summarizing
the salient characteristics of the distribution.

Another factor that one wants to minimize, additional to network size, is the time it takes the
network to learn the content of the training set. Iterative algorithms based on gradient-descent, par
excellence, require many iterations which, for real problems, are counted using multiples of tens of
hours. That is why, with iterative algorithms, off-line learning is employed.

Another reason for this, except speed, is that, algorithms where associations are distributed over
a set of connections during learning, need to be introduced vectors in an unbiased fashion, showing
all the categories with their real densities; one cannot guarantee this in a real working environment.

With back-propagation for example, one cannot just perform a number of iterations with one
association only to be able to add it to system’s memory; as weights are distributed, the network
needs to see the whole set In an on-line system, one does not have time to re-learn the whole training
set when a new association is to be added. Thus iterative algorithms cannot learn on-line. To be
able to learn on-line, two conditions should be satisfied:

(1) Adding a new association should be done very quickly.
(2) Addition of a new association should not disturb associations unrelated.

What one wants, is to be able to extend class definitions if need arises. Grow-and-Learn (GAL)
is based on this idea (Alpaydin, 1990b). GAL is an incremental algorithm for supervised learning.
The network grows when it learns category definitions, thus the name.

2.3.1. Network structure

A GAL network has the structure seen in Fig. 2. The first layer is the layer of input units which
may be binary or analog depending on the input representation. The second layer is the layer of
exemplar units and the third is the layer of class units. A class may have more than one exemplar.
W;. and T.. denote the connections from input unit i to exemplar unit e and from exemplar unit e
to class unit ¢ respectively. W;. values depend on the input representation. T, are 1 or 0 depending
on whether e is an exemplar of class ¢ or not. When P is the input vector, the activation of an
exemplar unit, A., is the distance between P and the weight vector of unit e, that is W7, computed
using a suitable metric, denoted here D(). Assume that D() is normalized such that D(A4, 4) is
0 and D(A, B) increases as A and B get further distant. A winner-take-all layer then chooses the
closest, i.e., minimum.

A. = D(P,WT).

_§1, if A, = min;(4;);
E = {0, otherwise. (21)
The winner-take-all guarantees that there will be only one unit activated. The unit whose weight
vector is closest to the input vector will be the only active unit. For the class layer the response of
a class unit is calculated as below after which there will be exactly one active class unit:

Class layer C

Exemplar
layer [

WINNER-TAKE-ALL

iEEL) D

w

Input layer P

Fig. 2. GAL network structure.

22

2.3.2. Learning in GAL

Initially there are no exemplar units nor any class units. Learning proceeds as follows (Fig. 3):

When a new input P is given as a member of a certain class ¢, the system first checks if class ¢
already exists. If not, a new class unit is created and labelled as c. An exemplar unit, e, is created
which currently is the only exemplar of that class. Connections are set as follows:

Vi, VVic = B
1, ifo=cg;
Vo, Teo = {O, otherwise. (2:3)

If class ¢ already exists, then P is given as input to the network and response of the network,
r, is calculated as in (2.1) and (2.2). If the class found by the network, r, is the same as the class
desired, ¢, no modification is done. If it is not, a new exemplar ¢ is created and the W and T
connections are set as in (2.3).

The winner-take-all-type non-linearity effectively divides the space into regions of domination
among the exemplar units by hyperplanes which pass through points that are of equal distances to
two exemplar units (based on the metric used). An exemplar unit’s domination region includes all
the points in the training set for which that exemplar is the closest. A class’s domination region is
the sum of its exemplars’ domination regions.

START

P,c

Y Y

r=network(P) create class ¢

Y

add anew
ex. with P

Fig. 8. Flowchart of a learning iteration in GAL. P is the input vector, ¢ is the desired class for P
and r is the class found by the network.

2.4. GAL: A DIDACTIC EXAMPLE

As an example to show how GAL works, a two-dimensional input signal is chosen so that the
input space and the discriminants can be easily displayed. The simulation program is in C, runs
under UNIX on a Sun 4 workstation. Classes are coded using different texture patterns, white implies
that no class is associated. Each dimension is discretized into 100 levels; out of 10,000 possibilities,

7,074 are associated with classes (Fig. 4).

Fig. 4. Input space used as ezample. Different textures denote different classes, white implies that
that point is not a valid input with which no class is associated.

At each iteration, a point is chosen at random using a uniform distribution and if it is associated
with a class (not all white), given as input to GAL. The input vector has two dimensions: the z and
y coordinates between 0.0 and 1.0. Euclidean distance is used as the metric.

To test GAL, all the 10,000 points are sequentially given as input and the response of the
network is displayed. The maximum error is also 7,074.

The network evolves as seen in the following figures. The black lines on the left represent the
class boundaries currently known by the network. The black points on the right correspond to the
position of exemplar units.

NIW

Fig. 5. After 1 iteration, 1 exemplar unit is stored and the error i1s 5158. To the right is network’s
current knowledge. The black point shows the position of the exemplar. As only one class is seen by
the system, the system knows nothing ezcept that class.

Fig. 6. After 2 iterations, 2 exemplar units are stored, and the error i1s {222. The black line to the
left is the separating hyperplane.

25

T

&

Fig. 8. After 4 iterations, § ezemplar units are stored, and the error 1s {020. The inpul encountered
in this fourth ileration 1s already correctly classified, so another exemplar 1s not added.

i

rl?

Fig. 10. After 10 iterations, 5 ezemplar uniils are siored, and the error 1s 3026.

27

H“""IIIM--.

Fig. 11. After 20 ilerations, 11 ezxemplar units are stored, and the error is 1742. Note that

some

classes have multiple ezemplars.

Fig. 12. After 100 iterations, 22 exemplar units are stored, and the error is 499.

Fig. 13. After 500 iterations, {1 exemplar units are stored, and the error is 190.

T =T
W)\ M” e

Fig. 14. After 1000 iterations, 50 exemplar units are stored, and the error is 62.

29

i

|

Fig. 15. After 5000 sterations, 67 exemplar units are stored, and the error is 4.

Notice first that the class forms are not important and that convex or concave classes are
learned. Note also that when discriminants are low-order, e.g., linear, GAL tries to approximate
this in a piecewise manner using a lot of units.

In Fig. 16, the number of exemplar units, i.e., memory required, as a function of the learning
iterations made is drawn; as seen, it saturates.

No. exemplars

60.1
50.
40 .1

30.1

20,

10.

p- + + + 4 t-
' 2000. 4000. 6000. 8000. - -orations

Fig. 16. The number of exzemplar units vs. the number of training iterations made.

30

In Fig. 17, error on test set as a function of the number of training iterations made, is drawn.

6RFFCL
500 .1

400 .1

300'T
200.1

100.1

+ + + e —— . — .
1000. 2000. 3000. 4000. 5000. 6000. 7000 crations

Fig. 17. Error on test set vs. number of learning iterations.

The size of a GAL network is computed as follows (I, E, and C are the number of input,
exemplar, and class units respectively. P is the number of bits required to represent the value of an
input unit. E to C connections are always binary.):

size of GAL net = I« Ex P+ E « C bits. (24)

For this example, each unit’s value is encoded using 7 bits to be able to represent values between
0 and 100. With 67 exemplar units and 6 classes, the network size is:

2x67 %7+ 67 »6 = 1340 bits.

This value is computed so that it can be compared with the size of the memory required for other
approaches.

2.5. FORGETTING IN GAL

The algorithm tends to store those input patterns that are closest to the boundaries for finer
separation of classes. In such a learning scheme, the actual exemplars stored depend on the order
of encountering the vectors. A unit previously stored when an exemplar that is nearer to boundary
is stored, becomes useless (Fig. 18). Such exemplar units, as now they are in the domination region
of another unit of the same class, are useless and may be eliminated to decrease network size.

A/C B/C

Fig. 18. A and B are associaied with the first class and C is associaied with the second class. If A
15 encountered before B, B also needs lo be stored; if B is stored first, A is not stored.

To accomplish this, in a so-called sleep mode, the following procedure is employed (Fig. 19).
START

Get a random ex.
unit e

P=W(e)

Y

c=network(P)

!

disable e

'

r=network(P)

Fig. 19. Flowchart of forgetting during sleep in GAL.

The system is closed to the environment and an exemplar unit e is chosen at random. The
input vector is set equal to e's synaptic weight vector.

¥, 1= Wi, (2.5)

The response of the system with this exemplar unit, ¢, is computed. Then, e is disabled and
the system response without ¢ is also computed, r. If r and ¢ are the same, then ¢ is deleted from

32

the network. Otherwise, it is kept as its elimination will cause a wrong shift of the class boundaries.
Note that such an elimination strategy may cause error to increase as we cannot make sure that all
the points lying in the domination rpgion of e is dominated by other exemplars of the same class.

When a sleep pass is applied, 27 units out of 67 are eliminated but the error goes up to 146
from 4. One can see how the exemplars inside the regions are effectively removed (Fig. 20).

Fig. 20. Follownng Fig. 15, after sleep, {0 exemplar units are stored with error 146.

To remedy error that may be introduced by sleep, one uses alternating awake and sleep modes.
The best strategy | have arrived to is to have awake iterations till I get 100% on the training set, and
then perform a sleep. This is alternated, and finally, GAL settles down to a set of exemplar units
where no longer additions are possible because one has already 100%, and no more eliminations are
possible because all the units are near the class boundaries. When I switched to awake mode and
performed 5,000 more iterations, the result is shown in Fig. 21.

=

Fig. 22. After 12030 iterations, 57 exemplar units are stored, and the error is 3. This is after one
more sleep pass where 3 units are eliminated and 2,000 more awake iterations where 3 more units

are added.

34

Sleep mode thus allows having a network with 10 less units (around 15 %) while not increasing
the error rate but of course at the expense of more iterations. The network size is then (using
equation (2.4)):

2%57 %7457 »6 = 1140 bits.

Comparison with the case without reject will be given afterwards so one can judge whether the gain
in memory is worth the time one loses during sleep.

2.6. GAL WITH REJECT

GAL as explained hitherto, does not reject, i.e., refuse to classify an input saying “I don’t
know.” This in a real-world application is necessary.? It is better to refuse to classify if the input
is not similar enough to any of the known classes, than just choosing the most similar. The way I
propose to handle this is to check the winner and the next highest activated exemplar and refuse to
classify if they belong to different classes and if there is no great difference between their activations.
If i is the exemplar with the highest activation, and j is the next highest:

A,’ = meax(Ae).
Aj = r?:,x(A,)
one rejects if:

class(i) # class(j) AND |A; - Ajl < O0r1m (2.6)

where 0 pr specifies how large the reject region will be.

After two iterations with two exemplar units, when 8L ;5s is 0.05, the domination regions differ
as seen in figure Fig. 23. As seen, instead of having a separating hyperplane between two exemplars,
one now has a region symmetric around it on both sides containing those points that are not much
closer to one exemplar with respect to the other.

When the example given above is attempted with this approach, the following results are
achieved (Fig. 24):

2 To say that you know when you know and to say that you do not know when you do not know, that is
knowledge. — Confucius, The Analects.

W“'” =

T
H

Fig. 23. Opsag 38 0.05

TRIE T
ol =~ P

Fig. 24. After 10,000 iterations, 166 exemplar units are stored, and the error 1s 0, with 6 rejects.
ELIM = 005

36

After one more sleep and one awake passes, the result is as seen in Fig. 25.

=Rl

Fig. 25. After 12076 iterations, 132 ezemplar units are stored, and the error is 0, with 46 rejects.

The network size is now 2671 bits. As now any input vector is compared with two vectors, to
guarantee that a certain region is dominated by a class, two very close exemplars are required. That
is why, the number of exemplars are nearly doubled.

Error vs. reject. By modifying the 0,5 value, one can play with reject and error percentages.
For example, given a certain error and reject status, to be able to decrease error percentage, one
should increase 0 5 value to increase reject percentage which, generally also decreases success.
The question as to whether it is worth rejecting or not, depends on the application. It depends on
the relative risks of giving wrong answers and rejects. It also depends on how much of the error
can be trapped as reject; this depends on the signal and the 875 chosen. The ability to reject
is especially required in applications where the risk of misclassification is high, in such cases, one
wants to be able to reject doubtful inputs instead of possible misclassifying even if that implies also
rejecting possibly correctly classifiable inputs. The rejected inputs are then possibly subjected to
classification by a more sophisticated—costlier and slower—e.g., manual, procedure.

2.7. COMPARING GAL WITH SIMILAR ALGORITHMS

In this section, the same example will be used with similar learning algorithms commonly used
with neural networks to be able to comment on GAL’s relative advantage and disadvantages.

2.7.1. Restricted coulomb energy (RCE) model

RCE (Reilly et al., 1982) is probably the most similar algorithm to GAL. Instead of a winner-
take-all network that chooses the closest as in GAL, in RCE, “prototype” units have thresholds
with which they compare their activations. A prototype unit gets activated if its activation is less
than the threshold.® This defines a hyperspheric domination region whose radius is equal to the
threshold around each unit which contains all the points “close enough” to that prototype. When
P is the input vector and WT the prototype vector with index i and 7} its threshold, the output
Aj, is computed by a winner-take-all network:

(2.7)

0, otherwise.

i'm { 1, if D(P,WT)<T;:

If an input vector cannot activate any unit, a unit, indexed e, is added at this position with an
initially large domination region, i.e., large threshold, Tynr. (Fig. 26).

Vi, Wi, = P;.

Te = TinrT- (2.8)

Il

Fig. 26. In the RCE model, a prototype unit’s domination region is shown, initial radius is 0.4.

3 A distance measure like D() as defined before is assumed where D(A,A) =0 and D(A, B) increases
as A and B get further apart. Euclidean distance used here is one such distance. A word of caution:
Original article on RCE uses dot product where D(A, A) is maximum and D(A, B) decreases as A and B
get further apart.

38

During learning, if an input vector activates more than one unit, this implies that that input
vector lies in a part of the space which is the intersection of at least two hyperspheres. In such a
case, those units which are not of the correct class are penalized and their thresholds are decreased
in such a manner so as not to get activated in a future iteration with the same vector—the threshold
of the unit is set equal to its activation minus a small epsilon value. If this condition occurs during
test, the input vector is rejected (Fig. 27).

Te = D(P,WT) - ¢ (2.9)

Fig. 27. How the space is divided with the RCE algorithm between 3 units are shown. The unit at
the bottom had its radius decreased due to an error. Black regions show points which activate more
than one prototype unit. White regions show points which do not activate any unit, Both are reject
cases during test.

After 10,000 iterations, RCE with the same problem gives the result shown in Fig. 28.

One notices that units that lie in the interior of the class regions have large thresholds (radii)
thus big domination regions. When they get closer to the boundaries, they tend to get more closer
to each other to be able to approximate boundaries as a combination of small arcs.

RCE when compared with GAL has two drawbacks: First, calibration of thresholds require iter-
ations, thus an RCE network learns slower than a GAL network. Secondly, as units have symmetric
domination regions, to be able to cover a certain region of any shape one tends to need more units
using RCE. In GAL, as always the closest is sought, units need not have symmetric domination
regions. The merit of RCE with respect to GAL however is that a set of thresholdings is cheaper to
implement than a winner-take-all network.

Like GAL, RCE also suffers from a dependency on the order of vectors in the training set.

Fig. 28. RCE model after 10,000 iterations. There are 58 units stored and the error and reject
values are § and 180 respectively.

40

2.7.2. Learning vector quantization (LVQ) model

The LVQ model (Kohonen, 1988) is similar to GAL in the sense that there are a set of “reference
vectors” which together define a class region and when an input is given, the closest is sought.
Difference however is that the network structure is fixed so no units are added or eliminated but
their number should be predefined. Generally, with n reference vectors for each class, the n first
vectors of that class in the training set are taken to initialize the reference vectors (Fig, 29). An
LVQ network does not reject; however a strategy as proposed previously for GAL can be employed.

|

Fig. 29. With 20 units for each class, the LVQ network is initialized as seen. Error is 247.

Learning takes place as follows. Given the input vector P as belonging to class ¢, the closest
reference vector, indexed e, is sought:

D(P,WT) = min D(P, WT). (2.10)
If unit e is of the correct class—C, is equal to c—then reference vector e is moved towards the input

vector with a gain factor decreasing in time, a(t). If C, # ¢, WT is moved away from the input
vector:

=i Gze
Vi, Wi. = Wi + f(Co,c)a(t)(P; — Wi.). (2.11)

Units finally approximate the probability density of the input signal (Fig. 30).

LVQ also seems to be dependent on initial conditions. With a different set of initial reference
vectors (Fig. 31), one obtains a different result despite the fact that weight vectors are tuned during
a learning process. This is due to the “gap” in one of the classes.

Increasing the number of units although increases success on the training set, beyond a certain
optimal number, decreases the success on the test set. To my knowledge, there are no guidelines
that help one to compute the optimal number of reference vectors that will be used for each class,
except trial-and-error. As it is one of a statistical process, one is advised to carry out a long learning
process while decreasing the gain very slowly for better convergence.

41

]|]

il

Fig. 31. With also 20 units, a different set of initial reference vectors. Error is 326.

LVQ2. A variant of LVQ, named LVQ2, has recently been proposed (Kohonen et al., 1988) to better
converge to asymptotic boundaries in the Bayesian sense. It is one of a finetuning process whereby
in conditions where the mid-plane of two reference vectors does not coincide with the real boundary,
both reference vectors are modified as to move the mid-plane closer to the real boundary.

When e is the index of the closest reference vector and f the index of the next closest:

D(P,WT) = min D(P,W])

D(P,W]) = rn#in D(P,WT). (2.12)

g

Fig. 32. After 10,000 LVQ iterations, error reduces to 15. The initial reference vector in the
“island” helped.

if the following condition is satisfied

C.#c¢ AND Cy=c AND D(P,M)< 8 (2.13)

where M is the mid-point of W] and W}r

Vi, M; = (2.14)

and 2 gives the size of the “window” in which corrections are permitted, W7 is moved away from
the input vector and W] is moved towards it:

Vi, Wi, = Wi, — a(t)(P; — Wi.)
Vi, Wiy = Wiy + a(t)(P; — Wyy). (2.15)

For the last case given above for LVQ, LVQ2 is used to finetune. After 5,000 LVQ iterations,
5,000 LVQ2 iterations are made. The result is shown in Fig. 33.

Both in LVQ and LVQ2, as small modifications are done on vectors, one may need high precision
to store them and complex machinery to be able to perform high precision computations.

8

Fig. 38. After 5,000 LVQ and 5,000 LVQ? iterations, error is 12.
2.7.3. Linear separation of classes (LS)

One can also try to separate classes from each other using linear discriminants. Separating a
class from all others with a hyperplane is rarely possible in a real world application, however the
advantage of looking for such simple solutions is that, if they work, they give quite good generaliza-
tion over the test set. Learning the weights is done by an jterative, gradient-descent procedure, the
previously mentioned LMS rule which is also called the delta rule.

In the case of linear discriminant-based methods, weight vectors denote the equation of the line
separating a class from all others; W;; is the weight of the connection from the i** input unit to class
unit j. Initially connection weights are chosen at random with small magnitudes to break possible
symmetries. This rule is not limited to classification but one can learn any mapping from a given
input vector to the output units. In the case of classification, one output unit is dedicated to each
class and for a correct classification, only that unit should have a high activation (> 0.9), others
being inactive (< 0.1). At each presentation of an input vector P belonging to ¢** class unit, the
output of units are computed as a weighted sum filtered through a non-linearity.*

1
OJ' = W (2.16)

The modification done at time t + 1 is computed as follows:
AWt + 1) = eb; P; + aAW;;(t). (2.17)
where
8 = (R; — 0;)0;(1 - 0). (2.18)

€ is the gain, R; is the desired output for output unit j which is 1.0 if class of P is j, and 0.0
otherwise. The term O;(1 — Oy) is the derivative of the non-linear function given in (2.16). The

4 Note that this is not exactly thee delta rule; a non-linearity is not in fact necessary. What is employed
here, which converges to the same solution with the delta rule is the one-layer case of the generalized delta
rule, commonly named “back-propagation.”

44

first term of (2.17) is thus to advance along the negative of the gradient where the error criterion is
the sum of the squared error. The second term is the momentum term, a being its gain, taking into
account the modification made in the previous learning iteration to be able to disable oscillations
during descent.

During test, if there is no unit active or if there are more than one, the input is rejected. The
network size is given by the formula:

Network size = NI« NO=«WP

where NI, NO, and W P are the number of input units, number of output units, and the number of
bits required to store each connection weight. For this example, it is 74 bits. Discriminants found
by the network are shown in Fig. 34:

Fig. 84. One layer network trymng to seperate classes from each other using linear discriminants.
After 10,000 iterations, error and reject values are 3 and 4008 respectively.

45

2.7.4. Pairwise separation of classes (PS)

Another possible approach is to pairwise separate classes. As it requires c(c — 1)/2 hyperplanes
with ¢ classes for all possible pairs, it is realistic for small ¢. In a network scheme, this corresponds
to defining a hidden layer of ¢(c — 1)/2 units, and c units in the last layer (Duda & Hart, 1973)
(Knerr et al., 1989). The connections from the input units to the hidden units can be learned by
the delta rule; the connections from the hidden units to the class units are predefined and fixed.

The learning procedure is the same as explained in the previous section with the only exception
that required outputs are imposed on the hidden units, H) separating in a piecewise manner. To
separate class ¢ from class j, a hidden unit is assigned which has the desired value:

-1.0, if class of P is j; (2.19)

1.0, ifclassof Pisi;
Hiseyj = {
Hsey; otherwise.

If the desired class is not equal to i or j, the desired output is set equal to the actual output for
no modification to be done on the weights connected to that hidden unit. To make sure that there
are ¢(c — 1)/2 of them, the extra condition that ¢ > j is imposed. The connections from H units to
class units C, named T are set as follows:

1.0, ifi=k
Tiectjk = { -1.0, ifj=k; (2.20)
0.0, otherwise.

A class unit C) computes its activation as follows:

_JL0, ify y Hy*The=c;
Ce= {0.0, otherwise. ' (2:21)

When applied to the didactic example, the result shown in Fig. 35 is achieved. Network size is
given as:

NO*(NO-1)

Network size= NI » 5

+WP. (2.22)
Here it is 210 bits.

2.7.5. Multi-layer network of discriminants

Still another discriminant based approach is using a multi-layer scheme of linear discriminants.
Learning of weights is done by the error back-propagation algorithm, also named the generalized
delta rule which stands out to be the most popular learning algorithm used with artificial neural
networks (Rumelhart et al., 1986). Two different network structures with two, and three-layers of
units are used. There are no rules by which one can decide how many hidden units will be necessary,
thus it is chosen by the programmer. In what follows, they are chosen arbitrarily.

The connections are learned as previously shown in (2.17). For a connection leading to a unit
which is not an output unit, where no required output can be defined, the §, are computed using
the § of the units of the following layer (indexed k), thus comes the name back-propagation of error:

8 = On(1=0n)Y_ 6 Wi (2.23)
k

BPN2: Two layer back-prop net. There is one layer of 128 hidden units. Update and momentum
factors are 0.5 and 0.9 respectively. The network size is computed according to the formula given in
(Guyon et al., 1989). For a network with one hidden layer, the size is computed as:

46

—

Fig. 35. Pairunse separation of classes using linear discriminants. After 500,000 iterations, error
and reject values are 110 and 909 respectively.

Network size= NI« NH « BPI + NH « NO = log;(N H). (2.24)

where NI, NH, and NO are the number of input, hidden, and output units respectively. BPI is
the precision required to store the connection weights from the input units to the hidden units. For
the connections leaving a hidden layer, the number of bits required is estimated as logs(N H). For
the example problem, with 128 units, network size is 7168 bits.

S

Fig. 36. 2 layer back-prop network with 128 hidden units. After 500,000 iterations, errvor is 84 and
there are 108 rejects.

47

BPN3: Three layer back-prop net. There are two layers of hidden units with 64 in the first and
32 in the second. Update and momentum factors are 0.1 and 0.2 respectively. With bigger values,
the network does not converge. The network size is 14144 bits.

5

Fig. 37. § layer back-prop network with 64 hidden units in the first layer and 32 in the second.
After 500,000 iterations, error is 84 and there are 79 rejects.

48

2.7.6. Summary of results

The table summarizes the results achieved for the same example using different network struc-

tures and learning rules.

1.

Learning Network Network
Network Iterations!:? Units® Connections® Error Reject®
GAL 12,030 57 171 3 0
GAL, 12,076 132 396 0 46
RCE 10,000 58 232 3 180
LvVQ 10,000 120 360 15 0
LvQ2 10,000 120 360 12 0
LS 10,000 0 18 3 4,008
PS 500,000 15 135 110 909
BPN2 500,000 128 1158 84 108
BPN3 500,000 64+32 2470 84 79

The time it takes to perform that many iterations is not given here as programs have too much
graphic I/O and thus given times would not be significant. However, one can roughly say that
the more there are connections, the heavier will be the computational load and thus the longer
will be the simulation time on a sequential computer—like the one used here. Simulation time
increases linearly as the number of connections increase.

. One should also note that one iteration in each model is not computationally equivalent. In

incremental models, in the beginning there are less units and thus an iteration takes less and
it takes more as the number of units increases. In the case of BPN2 and BPN3 models, there
is also complete connectivity after (and between) the hidden units which further increases
computational load. In methods based on linear discriminants, all the connections are modified
in every learning iteration. LVQ (and LVQ2) takes less time than these models as only one
(two in the case of LVQ2) reference vector is updated at one iteration. The computational
complexity of RCE is still less which requires either allocation of a unit or modification of the
threshold or nothing at all. GAL is still simpler which requires either allocation of a unit or
nothing at all.

. The number of units needed is automatically defined in the case of GAL, GAL,, and RCE and

predefined (without any trial-and-error) in others.

. In the case of GAL, each exemplar unit is connected to all the input units, here 2, and is

connected to only one output unit. RCE is like GAL with the addition of the modifiable
threshold needed to be stored with each unit which here is counted as an additional connection.
LVQ and LVQ2 are like GAL. In the case of discriminant based schemes, all the units except
the input units have an extra connection with a “bias” unit. In the case of the output layer of
the PS, this is not necessary. In BPN2, there is complete connectivity between the hidden and
output units. In BPN3, there is complete connectivity in all layers. Note that this is not a total
indication of the memory requirement of a network; the precision to store the weights should
also be taken into account. Such precision is needed in the case of RCE for the threshold, in
the case of LVQ, LVQ2 and BPNi for all synaptic weights. In GAL and RCE, as weights are
just assigned once and not further modified, the precision required is that of the input and no
further. This is a great advantage as will be seen further; only binary weights are required to
learn binary images.

. This is the erroneous reject case implying that the network rejected although the input does

belong to a class.

49
2.8. RECOGNITION OF HANDWRITTEN NUMERALS USING GAL

To test and compare GAL in a real-world application it is applied to recognition of handwritten
numerals.

The database is made up of 1200 examples of 10 digits written by 12 people where each example
is a bitmap normalized to the size 16 by 16 pixels (Guyon et al., 1989). This is a relatively easy
database as writers all followed a given writing style. The database is divided into two parts. First
600 make up the training set with which the network is trained. Remaining 600 make up the test
set and are used to test how well the network generalizes. Images are not preprocessed. Hamming
distance is used as the distance measure.

As results obtained depend on the ordering of vectors in the training set, 30 runs were made
each time choosing a different random ordering. Average and best case results were given. Models
tested are nearest-neighbor (NN), GAL, GAL,, RCE, and LVQ.

time/sweep no of
Network (sec.)! sweeps Average? Best Worst

NN 740-600 1 600-93.2,6.83

GAL 96-102 4 117.3-89.8,10.1 119-91.8,8.2 115-88.2,11.8
GAL, 110-133 4 148.2-86.3,2.5¢ 147-88.7,2.9 142-84.0,2.9
RCE 91-109 6 142.0-74.129 144-77.7,2.0 131-70.7,2.7
LVQ 36-100% 50 100.0-92.9,7.2 100-94.0,6.0 100-91.7,8.3

1. Format is (seconds)-(number of units).

2. Format is (number of units)-(success percentage),(error percentage). In the case of GAL and
LVQ there is no reject; in the other models, the rest is reject.

3. With nearest-neighbor as all vectors in the training set are stored, one always gets the same
result, thus one cannot talk of best or worst cases.

4. One can play with the threshold 8z 1ar to decrease error further by getting a higher reject (and
possibly lower success) percentages. Typically one is interested how much percent needs to be
rejected to get 1% error (le Cun et al., 1989).

5. All models except LVQ use integer arithmetic for distance computation. These simulations are
done on a Sun 4/110 with a floating-point processor and accelarators.

6. Results obtained by LVQ can probably be increased by performing more sweeps over the training
set with a smaller gain factor. In this simulation, starting from 0.1, it is decreased linearly till
0.0. Increasing the number of reference vectors per class from 10 to 15, increased the success
on the training set from 99.2 to 100.0, but decreased the highest success on the test set to 93.7.
Having 8 reference vectors per class decreased both.

A few words on LVQ2. With this example I have also used LVQ2, however it seemed to work
worse than LVQ. LVQ2 only modifies a reference vector when the following condition is satisfied
(see section 2.7.2): When i is the closest reference vector and j is the next closest and the input
does not belong to class of i but that of j and when the input vector is less than a certain (small)
distance from the mid-point of i and §. When this tight condition is satisfied, i is moved away from
the input vector and j is moved towards the input vector.

One immediately notes that reference vectors should be initialized somehow before LVQ2 can
be applied as otherwise some reference vectors (those that lie in interior regions) will never get
modified. I use LVQ. In the case of didactic two dimensional example in this way, LVQ2 does seem
to improve success. However in the case of handwritten numerals, I rarely got a success with LVQ2

50

higher than that of LVQ (in 30 runs). One probably needs a special initialization phase which, to
my knowledge, was not mentioned anywhere.

Discriminant-based methods. One can improve generalization by employing a method based on
discriminants. Results achieved with methods like pairwise separation of classes and a muiti-layer
network, for the same database is given in (Guyon et al., 1989) and they do increase success on test
set to around 98%.

Such models as they are not based on individual “exemplat” or “reference vectors” but find
general class boundaries allow better generalization and thus lead to higher success values. This
they do at the expense of bigger networks—GAL uses one bit per connection whereas those need
more>—and slower learning.® For the problem of character recognition, as systems can learn off-line
and as characters’ definitions never change, learning time is not important; success on test set is
more important. An algorithm like GAL will probably be more significant in an application where
patterns need to be learned very fast, i.e., on-line. The computational complexity of GAL is also
less, thus although it has less success on the test set, it is still interesting for many tasks.

Searching the best learning algorithm. As was also pointed out in the first chapter, it does not
make much sense to say in a general manner that a learning algorithm is better than another one.
An algorithm cannot be compared with another one regardless of what the task is; only with respect
to one application, can one compare algorithms between themselves. Success rate may be the most
important factor for one application, e.g., character recognition, network size can be important in
another one, e.g., when the network is realized in silicon, or learning time can be vital in still another
application, e.g., in real-time pattern learning and recognition tasks, e.g., robotics.

2.9. PREPROCESSING HANDWRITTEN NUMERALS BEFORE GAL

The success achieved with GAL in the previous section are not very satisfactory; one then nat-
urally looks for ways to improve success without using a discriminant-based approach that increases
learning time. Two techniques are proposed to preprocess digit images in this section that are ap-
propriate to the application and thus allows a better generalization and higher success on the test
set.

S 4-5 bits for pairwise separation of classes (Personnaz, personal communication).
8 It is reported (le Cun et al., 1989), 23 sweeps over the training set (167,693 pattern presentations) were
necessary for back-propagation which took three days on a Sun 4/260, to learn handwritten digits.

51

2.9.1. Gaussian filter

A 3x3 Gaussian filter is applied before recognition using GAL. This has the advantage that when
the image is displaced less than 3 pixels, the distance between two images is less, thus invariance
to small displacements (translations, shifts) is achieved. Note that when bigger filters are used,
one risks to lose details as filtering by a Gaussian is a form of “blurring.” The Gaussian in the
discrete case is approximated as a matrix. Multiplying this matrix with the input values lying in
its receptive field to get a scalar is called a convolution, the matrix similarly is called a convolution

kernel or mask.
1 31
G=|3 5 3
1 3 1

. _ J 1, if pixel at position (i, j) is on;
Pizi; = {0, otherwise. (2.25)
2 2
Inputieie4j = Z 2 G(a,b) * Piz(i-14a)(j~1+0)- (2.26)
a=04=0

The equations given are for the discrete case. For continous functions, double sums should be
replaced by double integrals. Matrices are addressed starting from 0 and the first index corresponds
to the row index. A character image, in this case a ‘0’, and the result achieved after application of
the Gaussian filter is shown in Fig. 38.

Fig. 38. Character image, to the left before, to the right after application of the Gaussian filter. In
the figures, each point where two lines meet corresponds to a pirel. Original image is binary, the
filtered one has 21 discrete levels.

Following are the results obtained using Euclidean distance as the similarity measure. Database
used is the same. Best and worst cases are chosen according to success only. GAL without reject is
used, thus anything which is not a success is an error.

52

Connection value range : 0..21, 5 bits

Number of sweeps during training 03

Sweep time (during test) : 51 seconds with 79 units
Nearest-neighbor limit : 97.5%

Average over 30 runs

Number of exemplars stored : 95.9

Size of the network 1 95.9 %256 # 5+ 95.9 * 10 = 123711 bits
Success on test set : 93.4%

Best case:

Number of exemplars stored : 98

Success on test set : 94.8%

Worst case:

Number of exemplars stored : 95

Success on test set : 91.8%

The fact that less exemplars need to be stored with higher success implies that the GAL network
generalized better.

Although the Gaussian filter increased processing, because there are now less units stored, there
is not a large overhead. Remember that it took 96 seconds to perform a sweep without the Gaussian
filter using 102 units.

2.9.2. Centering the image on its center of gravity

By preprocessing one performs a transformation from the input space to an intermediate space
in which lower order discriminants can be defined. Thus one, by preprocessing, indends to transform
original patterns so that those patterns that belong to the same class will be more similar to each
other and those of different classes will be as different from each other as possible. Such an operation
is inherently dependent on the application.

When it comes to recognition of handwritten digits, one looks for a way by which different digits
can be discriminated from each other. Extracting structural features like lines, or corners necessitate
heavy computation. The idea proposed in this subsection is to better center the image according to
its pixel density over the matrix. One computes, what can be called the “center of gravity” of the
image: A weighted average of pixels where “on” pixels count and where weight decreases as distance
increases. Formally, it is a Gaussian filter where the kernel is as big as the bitmap size. The pixel
where this value is the maximum is taken as the new center and image surrounding it till a certain
distance equal on all sizes is extracted to form the new centered image. It is this image which is fed
to the recognizer.

This ability to compute a region of “interest” and extracting its content from its background
makes the system invariant to translalion. Let us define a big, e.g., of size 64 by 64, original image
that is named R. We know that somewhere in it is a 16 by 16 image that we need to recognize. This
is implemented as follows:

(1] First, R is checked in parallel according to a certain “criterion of being interesting.” In this
particular task, a region gets more interesting as the number of “on” pixels in it increase. Each
pixel takes into account its value and those of its neighbors. The affect of a neighbor decreases
as it is further; this is to make sure that images will be centered.

~_ |1, if pixel at position (3, j) is on;
Rij= {0, otherwise. (2.27)

The effect of a pixel at the relative position (a, b) decreases as distance increases. As kernel size
is 24 by 24, maximum distance is 12v/2.

53

VaZ + b2
G Y,; =1~ ———e. 2.28
aussYy, TV ()
The effect thus is 1.0 at the center where @ = b = 0 and 0.0 at the corners where a = b = 12.
11 1
Yij= Z Z Riysj+b * GaussYo . (2.29)
a=-12b=-12

(2] The pixel for which this value is highest becomes the new center.
Yicje = max (Yi;)- (2.30)

This point of highest pixel density, due to Gaussian which weights further pixels less, is different
for different numerals; for 0, it is near the center, for 6, it is below, and for 9 it is above the center.
[3] The region surrounding this point is then extracted, which here is named F. To make sure that
this new image covers the whole ancient image, its size should be bigger than 16; in this case,

24 is chosen.

Fiip; = Ricm1244ije-12415, 1=0...23, j=0...23. (2.31)

An example image, pixel densities, and the image extracted is given in Fig. 39.
[4) A Gaussian filter with a smaller kernel size, i.e., 5 by 5, is applied as it proved its utility in the
previous section.

JITR

GaussX,p =1 - ——. 2.32
AUSSAqh 2\/§ ()
2 2
Xi; = z Z Fitaj4s * GaussXa 5. (2.33)
a==24==-2

This X vector then is given as input to the GAL network. The results are summarized below.
GAL without reject is employed on the same database.

Connection value range (approx. (2.28) and (2.32)) : Y 7 bits, X 5 bits

Size of the preprocessing network :40%40+24 %24 T+ 2452424424 %5
= 8,110, 080 bits
Number of sweeps during training : 3
Sweep time : 1 hour 15 minutes
Nearest-neighbor limit (storing 600 exemplars) : 99.2%
Average over 30 runs
Number of exemplars stored 1712
Success on test set : 96.3%
Best case
Number of exemplars stored 1 79
Success on test set : 97.8%
Worst case
Number of exemplars stored : 63

Success on test set : 95.0%

Fig. 39. An ezample. To the top, 64 by 64 original tmage, down to the left, density of pizels and to
the right the 24 by 24 matriz extracted.

2.10. TESTING GAL WITH A BIG DATABASE

Recently I have tried GAL with a big database of handwritten numerals provided by the US
Post Office to the AT&T Bell Labs, Holmdel, NJ. Pixels have values between 0.0 and 1.0 depending
on the gray level. The database is divided into two sets; 7291 examples make up the training set
and the remaining 2007 are used to test the quality of generalization.

The form of GAL without any reject was employed to be able to get highest success possible,
thus anything which is not a success is an error. The results previously achieved (with 0% reject)

55

with this database are:

¢ 95.3% Back-propagation and
o 94.3% Nearest-neighbor.

The back-propagation network (le Cun et al., 1990) is a four layer constrained network with
weight sharing. Original image is 16 by 16 gray level. In the first hidden layer there are 12 different
features with a kernel size of 5 by 5, duplicated on all positions on an 8 by 8 grid. The second
hidden layer has also 12 features but placed on a 4 by 4 grid also viewing 5 by 5 neighborhoods and
connected to 8 out of the 12 features of the first hidden layer. The third hidden layer has 30 units
and is fully connected to the second hidden layer and also gives full connections to the output layer
which has 10 units. Summarizing, the network has 1256 units, 64,660 connections, and 9,760 free
parameters. It takes three days to learn on a SUN-4/260 with 167,693 pattern presentations. For
1% error, 12.1% should be rejected which leaves 86.9% correct classification. Unfortunately, I did
not have time to test GAL, to see how much do I need to reject to get 1% error.

As a first trial, the pixel images were used without any preprocessing at all. Due to limited
amount of time, only two trials were made. Each trial contained three awake passes over the training
set—which takes around five hours on a Sun 4 Sparc. Successes achieved are 91.6 and 92.3 % by

storing 850 and 860 exemplars respectively. The number of exemplars stored as a function of training
iterations is given in Fig. 40.

No. exemplars
700.1

600.t1
500.1
400.1
300.1
2001
100.1

Train. set

1000, 2000, 3000. 4000. 5000. 6000. 7000.

Fig. {0. Number of ezemplars stored as a function of the training iterations. 16 by 16 images
without any preprocessing were used.

As a preprocessing technique, the “center of gravity” of the image was computed and the image
is placed in a 24 by 24 frame centered around the point of highest density, as mentioned in the
previous section. Because of time limitation, the city-block distance was employed instead of the
Euclidean distance in density computations to decrease pre-processing time. Successes achived are
92.0 and 91.8 storing 864 and 872 exemplars respectively. Using Euclidean distance can increase
success. The number of exemplars stored vary as a function of the training iterations as shown in
Fig. 41.

56

No. exemplars
700.1
600 .1
500.1
400.1
300

200.1

1 2

100 .

Train. set

1000. 2000. 3000. 4000. 5000. 6000. 7000.

Fig. 41. Number of exemplars stored as a function of the training iterations. 24 by 24 “centered”
images were taken as input.

A cheap, fast pre-processing technique that improves success when GAL is used with images is
a Gaussian filter. A 3 by 3 such filter, previously shown, was employed and the successes achieved
are 91.2 and 91.4 by storing 670 and 643 respectively. Although success did not go up, the fact that
less exemplars were stored implies that GAL generalized better. The number of exemplars stored
vary as a function of the training iterations as shown in Fig. 42.

Finally note that as success achieved by a GAL network over the test set, i.e., the actual
exemplars stored, depends on the order of the vectors in the training set, these results cannot be
taken as the highest possible. They do give an idea about the average success.

I thought initially that with such a big database, the number of exemplars would saturate; it
does not, it seems to increase linearly. With approaches that are variants of the nearest-neighbor
method this is normal; as the dimensionality increase so does the need for more vectors. This
is discouraging. What is encouraging is that by storing around 10% of the training set, one can
get as close as 2% to the success achieved by the nearest-neighbor method. When compared with
back-propagation, success is 3% less but learning time is five hours instead of three days. Possible
hardware implementation of a GAL network, due to its simplicity, will also be quite easier than that
of a back-propagation network. It should be noted a network that is easy to integrate and build and
very fast to train, even if its success is not the best, rests as an attractive alternative.

57

No. exemplars

600.1
500.1
400 .4
300.¢
200 .4

100.1

1000. 2000. 3000. 4000. 5000. 6000. 7000, ~2i0- Set

Fig. {2. Number of ezemplars stored as a function of the training ileralions. 24 by 24 “centered”
tmages with a 3 by 8 Gaussian filter applied on them were laken as input.

2.11. LEARNING A MAPPING WITH GAL

GAL is a supervised algorithm to learn categories thus inherently it performs a mapping from a
continous or discrete domain to a discrete range. However when one wants to perform any mapping,
the ability to map to a continous range is also required. Thus using GAL for this task requires
discretization of the range.

This is done in the following manner. The continuous output value is divided into discrete
values having a certain range named tolerance. The system does not discriminate between output
values whose difference is smaller than this value. In this way, a continous range is discretized by
being divided into small segments. Decreasing this tolerance value leads to a finer mapping. In the
case of a category-based scheme, each such segment is taken as a different class.

58

Fig. 43. Function 1o be learned.
2.11.1. Learning a function with one parameter

It is applied as explained above to learn the function

y = —3sin(=3z) + 0.5

seen in Fig. 43.

Learning proceeds as follows. The network is introduced z and y where y = g(z) and g() is
the function that we want to learn, i.e., approximate with the network. One looks for the closest
exemplar e whose z. is closest to the given z:

llz. = 2|} = miin |z — z||. (2.34)
A unit is added if

lve — yl| > TOLERANCE. (2.35)

The added unit f has its z and y values set equal to those of the input:

z=z,y=y (2.36)

In the sleep mode, one chooses an exemplar unit, e, at random, disables unit e, gives z, as
input and computes the closest unit f. Unit e is eliminated if

lve — |l < TOLERANCE. (2.37)

During test, given a certain z value, the closest z, is sought and y, is given out as response. Result
achieved using GAL in this manner after 800 learning iterations is seen in Fig. 44. Both functions,
original and approximation, superposed are also given there. For this mapping, GAL added 86 units,
then eliminated 2, and is left with 84 units. The mean square error (MSE) is 1.533E-5. As seen the
approximation function has a ladder-like shape. The difference between two steps is equal to the
tolerance value chosen, here 0.01. Each step is the domination region of one unit. The width of a
step increases as the derivative of the function at that region decreases; the more horizontal-like is
the part of a function, the less number of units are required to approximate it.

59

Fig. 44. GAL’s approzimation and its superposition with the original funclion.
2.11.2. Improving response by interpolation

The behavior of GAL can be improved by adding an interpolation mechanism. Here, instead of
choosing the closest one, one chooses the two closest and uses their values to interpolate the function
value for the given point. When e and f are the two closest units, the response y is computed as:

= —p)Y Y
v=y.+(z 3c)zl . (2.38)

With this approach, GAL used only 16 units. Tolerance value was the same, 0.01. The approx-

imation and its superposition with the original function is given in Fig. 45. MSE is 1.986E-5.

. .
N \
N

Fig. 45. With interpolation, GAL’s approrimation and ils superposition with the original function.

By modifying the tolerance value, one decreases the number of units stored at the expense of
a worse approximation. For the same function, when a tolerance value of 0.1 is used, there are 6
units stored and MSE is 285.152E-5. With a tolerance value of 0.001, 40 units are stored and MSE
is 0.025E-5 (Fig. 46).

60

AN
N \
N
N N\
N

Fig. 46. To the left, tolerance is 0.1 and to the right, tolerance is 0.001.

\ N\

N, W,
. \\\\ \%

Fig. 47. Two layer back-propagation network learning the same function. To the left with 8 hidden

units, to the right with 16 hidden units. Both are after 200,000 learning iterations.

2.11.3. Learning a function with back-propagation

The same function is also learned with a two layer back-propagation network with 8 and 16
hidden units. € and « values are 0.3 and 0.5. Response of networks after 200,000 iterations are given
in Fig. 47. MSE values are 47.202E-5 and 35.974E-5 respectively for networks with 8 and 16 hidden

units. Both of these values are more than what is achieved by GAL in 800 iterations.

61

2.11.4. Robustness

As can be seen, GAL learns very well and very fast when the learning environment is perfect.
However one rarely encounters such perfect circumstances.

One may have noise in the z and y values during learning which degrades GAL’s performance
as one may during learning encounter two significantly different y values for = that are very close.
Back-propagation, as it is an iterative procedure, will be less affected by such conditions.

The curse of dimensionality exists also for this problem; as the number of parameters of the
function to be learned increases, so does the number of units GAL needs to store.

Another shortcoming of GAL with respect to back-propagation is that in some applications one
may not have any access to required y values for some range of z. Thus an effective interpolation
mechanism may be needed. GAL takes the closest value and gives it out, or takes two and performs a
linear interpolation. Back-propagation under such circumstances would interpolate better. However
note that when it comes to extrapolation, back-propagation does not work well either. Keep also in
mind that under such circumstances with the expense of a computational overload, one can perform
an interpolation of a higher order with GAL to improve success.

2.12. A CRITIQUE OF GAL

GAL basically can be defined as a variant of the nearest-neighbor method, where one, instead of
storing all the vectors in the training set, stores only a subset. The successive awake and sleep passes
over the training set allows the system to choose a good subset, namely those which are closest to
class boundaries. One should note that as generally training sets tend to be big and redundant, the
advantage of GAL cannot be underestimated in terms of minimizing memory and computational
requirements.

One problem with GAL is that the final set of exemplars achieved depends on the ordering of
vectors in the training set. For the same training set, when vectors are chosen in different orders,
one may get different final set of exemplars. Although all give 100% on the training set, they may
give different results on the test set. Neither the number of exemplars nor the success vary that
much, but the problem is that they may vary. 1 advise to eventual GAL users, if they have all
the training set stored somewhere, to order the set in several ways, i.e., at random, and try GAL
several times—as done above while benchmarking. Whichever of the networks arrived at the end is
best, when one does not have any access to the test set, is a question one cannot readily answer.
For example, one cannot make sure that the one using the smallest number of units to handle the
training set will give the highest result with the test set. Note that when one tries to learn on-line,
there is only one order and thus only one final set of exemplars is possible.

GAL is very simple to understand and use; there are no parameters for which optimal values
need be searched (except the @prpr value in case of reject that needs to be tuned to get the required
reject rate to guarantee a certain maximum error percentage). No a priori knowledge of task is
required to tune the network simply because there is nothing that can be tuned.

The idea of simplifying network complexity by assessment of relevance of units and eliminating
those that are not very important is not a new idea. It is commonly used in the case of adaptive
filtering (Jutten, personal communication). Previously with back-propagation, several researchers
have proposed techniques to compute the relevance of units and/or links to be able to delete them if
their absence does not contribute too much to system error. Examples are “pruning” by Rumelhart,
“gkeletonization” by Mozer and Smolensky (1989) and “optimal brain damage” by le Cun (1989).
The aim basically is to reduce the number of free variables, i.e., parameters that define the network

62

structure, namely, the connection weights, and thus be able to improve generalization. If one makes
an analogy with curve-fitting, the idea is to eliminate the higher-order terms if their absence does
not cause too much deviation.

The idea of “forgetting” or “reverse learning” to improve the quality of association exists in
the literature. Hopfield, Feinstein, and Palmer (1983) proposed learning random vectors with a
negative factor using the Hebbian learning rule to eliminate local maxima in a Hopfield network
(Hopfield, 1982). It was also applied to the Boltzmann machine (Hinton & Sejnowski, 1986). The
idea originated from the proposal of Crick and Mitchison (1983) which basically says that during
Rapid Eye Movement (REM) sleep when dreaming occurs, an active process of reverse learning or
forgetting occurs to increase the capacity of the memory by getting rid of certain unwanted stored
associations. This will be further mentioned in the concluding chapter when biological plausibility
of incremental learning is discussed.

GAL does not extract any features; there are no hidden units trained to extract features common
to many classes. One just assigns patches of the space to classes without taking into account the
class densities. There is no limitation on the shape of classes that can be learned. However, if class
boundaries are low order, e.g., linear, GAL does not do a good job; it assigns many units to piecewise
approximate a line which causes a waste of units as seen in the example shown previously. However,
when class separations have strange forms, i.e., concave, GAL can handle them.

In an algorithm based on iteratively modifying the connection weights, one can find good low-
order separating boundaries. In GAL, there is local representation; connection weights are not
shared to store many associations. The disadvantage is, as [have already mentioned, one cannot
find common characteristics shared by many patterns. The advantages are two: To the first, one
can add or delete an exemplar unit without disturbing other exemplar units. One can modify the
system without disturbing its past knowledge. Adding one more association in GAL is one iteration.
In back-propagation for example, one cannot just perform iterations with one vector only; because
the weights are shared, modifying the weights in favor of one association only will disturb the others.

The second advantage is that one does not need to make thousands of iterations.

It was proposed (Mézard, 1989) (Knerr et al., 1989) to use an incremental addition of units with
an iterative learning process to be able to get the best of both worlds. Although such algorithms
may find low-order discriminants, I think, they lose what is best in an incremental learning, namely,
the ability to add an association at one shot, just by one ileration.

The main advantage of an incremental learning algorithm is that there is no longer the concept
of a lraining set that needs to be explicitly stored, and over which several passes should be made for
tls contents to be learned off-line. In GAL, patterns and the classes with which they are associated
are learned as they are encountered. The network slowly builds up, new classes and new exemplars
are added when necessary and are eliminated when they are no longer needed. This implies the
possibility of on-line learning, that is, directly during use.

Relatively low success achieved by GAL can be increased by preprocessing input patterns as
shown in the case of handwritten numerals. In the next chapter, I will propose a method, also
incremental, to learn features, i.e., characteristics that are shared by many patterns, from examples
by which success can further be improved.

Although GAL is an algorithm for learning of categories, it can easily be modified to learn any
kind of mapping, including those where the range is continuous. It also proved itself to be a lot
faster—1000 times—than back-propagation.

Incremental
Unsupervised

Learning

To detect regularities in the relations of objects and so construct theoretical physics
requires the disciplines of logic and mathematics. In these fundamentally tauio-
logical endeavors we invent surprising regularities, complicated transformations
which conserve whatever truth may lie in the propositions they transform. This
is invariance, many steps removed from simple sensation but not essentially dif-
ferent. It is these reqularities, or invariants, which I call ideas, whether they are
theorems of greatl abstraction or qualities simply sensed.
—Warren S. McCulloch, “Why the Mind Is in the Head.”

64

65
3.1. ON FEATURES

In the previous chapter when talking of preprocessing, I have mentioned the need of defining
an intermediate space which would facilitate learning discriminants, or in the general case, learning
of any mapping. It was also mentioned that the definition of this space is independent of how it is
actually divided between classes. One, during this process, does not need a supervisor to actually
label patterns as belonging to this or that class; learning to define such an intermediate space is
called unsupervised learning. Dimensions of this space, as also mentioned, are called features and
transforming an input vector to the feature space is called feature extraction. The feature space
is also referred to as the representation. Representation A is said to be better than another one,
B, when in A discriminants are defined using lower-order polynomials which thus allows better
generalization.

Definition of the feature space is that of extracting the statistically salient properties of the input
signal. The aim is to define “a model of ‘what usually happens’ with which incoming messages are
automatically compared, enabling unexpected discrepancies to be immediately identified” (Barlow,
1989). As it is that of finding the regularities, it is the redundancy of the signal, i.e., the signal
distribution, that is important. It allows one to find out where for example, the high-density regions,
i.e., very frequent events, are. It naturally follows that many iterations are necessary for a statistical
process to converge to real values.

Oja has shown (1982) that a unit whose weight vector is modified by being pulled towards the
current input vector with a gain factor decreasing in time, acts as a principal component analyzer,
i.e., finds the data components having maximum variance. When more than one such unit is used, a
mechanism is needed to forbid them to specialize all on the same set of components but have them
maximally sensible to different set of signals. One thus should penalize correlated output between
feature-detector units.

Sanger (1989) achieves this with an explicit Gram-Schmidt orthogonalization and finally gets
the n principal axes of the distribution, i.e., the first n eigenvectors of the covariance matrix.

In competitive algorithms, one implements a competition between units using a winner-take-all -
type non-linearity after which only one unit is modified: the closest (Kohonen, 1982) (Rumelhart &
Zipser, 1986). Given the input space and N units, due to competitition between units, the network
acts as if the input space is divided into N boxes and a unit becomes active when current input lies
in its box. Learning in this sense means deciding on the size and position of boxes. In such methods,
the weight vectors converge to the eigenvectors of subsets of the distribution.

In self-supervised backpropagation or “encoder” problem, a two-layer network is trained to
perform the identity mapping, yet the number of hidden units is set to be fewer than the number of
inputs. The hidden units must therefore discover an efficient encoding of the input data (Cottrell &
Fleming, 1990, see also references therein). The hidden units do not find the eigenvectors themselves,
but find a set of vectors that have equal variance and span the same space as the eigenvectors do.

The quality of the transformation is proportional to how well the density of the weight vectors,
WT, approximate the probability density of the input signal. When N is the number of units,
regardless of the distribution of the input signal, we want each unit to win the competition, i.e.,
activated, with an equal probability of 1/N. Information conveyed is maximized in this case. The
reason for this is the following (Barlow, 1963).

The capacity of a channel carrying in an interval ¢;, one member of a set (an “alphabet”) of n

alternative mutually exclusive symbols of probabilities Py, P2, ..., P, is:
s 1
I= .E,; P;,Iogp—ﬁ. (3.1)

This capacity is maximum when all the probabilities are equal to each other and each therefore
has the value 1/n. In this case,

I = logpn. (3.2

66

In a pure competitive learning method, when the distribution of the input signal is not uniform,
there will be units which gain the competition more than other units and thus will have more chance
of being modified. There may even be units which never win the competition. Thete are two ways
to get around this problem:

(1) Units are modified even if they do not win the competition. The update factor for such units
is less than that for the winner. Kohonen (1982) proposed using a Mexican-hat function which
has the effect that when a unit is pulled towards the input, its neighbors are moved also. This
will help these neighbors to get closer to the region of high density and will give them a chance
to win the competition and get modified eventually.

[2] The second possibility is to make the frequent winners less susceptible to win by imposing ad-
ditional constraints. Rumelhart and Zipser (1986) use a threshold which defines a hyperspheric
domination region (volume) around each unit. Winners increase their threshold (when dot
product is used as the similarity measure), i.e., their regions get smaller, and losers decrease it.
DeSieno (1988) proposes a “conscience” factor for each unit which affect the result of the com-
petition; units that have won frequently in the past, “feel guilty” and tend to lose competition
afterwards.

The result of such modifications is that there will be more units in a higher density region.
Units lying in low density regions have larger boxes and box size decreases as density increases. One
therefore makes sure that units have equal probability of being activated.

3.2. INCREMENTAL UNSUPERVISED LEARNING

The algorithms mentioned above for unsupervised learning use a static network structure whose
parameters, i.e., synaptic weights, are modified during learning. That is to say, there are a fixed
number of boxes whose positions and sizes change during learning. After learning, the synaptic
weight vectors of the units approximate the distribution of the input signal.

The idea of adding new feature detector units, when a sufficiently different input is encountered,
is not new. ART (Carpenter & Grossberg, 1987) has it by a vigilance parameter which is used as the
threhold. In ART however, this parameter is the same for all the units and is fixed, thus information
transfer is not maximized; one assumes uniform distribution.

As variants of the self-organizing map, methods have been proposed by which units are added
in an incremental fashion to a map. Angéniol et al. (1989) have proposed it for solving the travelling
salesman problem. Jockush (1990) adds one unit at a time near the closest unit; because position
with respect to closest is chosen randomly, map topology is not completely conserved. Rodrigues &
Almeida (1990) propose an algorithm by which a number of units are added at once on all sides, their
positions being interpolated from the ancient units as to conserve the existing map organization.

67
3.3. GROW AND REPRESENT (GAR)

GAR, following the idea of structural modification mentioned in chapter 1, is an incremental
algorithm. The network structure is dynamic; units and links are added and removed during learning
if and when necessary.

3.3.1. Learning in GAR

In the case of an incremental unsupervised learning scheme, initially there are no boxes; they
are added when and where necessary and removed when no longer relevant. This capability implies
that even if the input signal characteristics changes in time, the network is able to modify itself to
accommodate it. The network structure is given in Fig. 1. The first layer is the layer of input units
which can have binary or analog values. The second layer is the layer of units that interest us which
are linear, where each unit computes the distance between its synaptic weight vector and the input.

RN

Fig. 1. GAR network structure

In GAR, the distance between current input P and synaptic weight vector of unit i, W7 is
computed using a distance measure D(). It is assumed here, as previously, that D(4, A) = 0 and
D(A, B) increases as A and B get further apart.

A; = D(P,W]). (3.3)

Associated with each unit is a threshold value 7,; unit u is selected during learning if:
Ay = min(4;) AND A, < T, (34)
L]

Such a thresholding implies a hypersphere around each unit with radius Tj,; a vector P is in
the hypersphere of unit u if the distance between them is smaller than this radius. Therefore, input
vector P activates unit u if u is the closest unit and if P lies in the hyperspheric domination region
of u, ie, D(P,WT) < T..

Originally, only the units of the input layer exists. Learning proceeds as follows:

" [1] Input P is given and the unit responses, A;, are computed.
[2) If the input does not lie in the domination region of any unit, i.e., no unit is selected, a unit u
is added and its weight vector is set equal to P. Originally, a unit has a certain initial Tyyrr,
which as we will see afterwards may change in time:

Vp, Wpu = Pp.
Ty = Tinr1T- (3.5)

{3] If the input does lie in the domination region of a unit, say u, the weight vector of u is pulled
towards the input vector with a gain equal to a* T,,, where a, the gain, is between 0 and 1:

68

Vp, Wou = Wou +ax Ty x (P, — Wpy). (3.6)

Scaling the update factor with T, is to make sure that in big regions the modifications will be
big, and in small regions they will be small. Other units’ weight vectors are not modified. a, gain,
need not be decreased in time; when T, is decreased during learning, so does the update factor.

Above it is mentioned that the size of the domination region of a unit should be inversely
proportional to the input density in that region. This implies in GAR that units lying in a high
density region should have smaller radii, T. For this purpose, a so-called trophy count, 7, is
associated with each unit. When a unit is selected as closest, i.e., wins the competition, its trophy
count is incremented by 1. When it reaches a limit value, T3¢ 4x, the unit’s T is decreased to
decrease the size of the region of domination. A certain Tpssy is defined as the minimum T value.
The process proceeds as follows:

When unit u is selected:

Tu =Tu+1
if (Tu > TMAX)
Ty =Ty — v+ (Tu — TmiN)
T =0
v is the gain denoting step size in modifying T towards Tarrn and naturally is between 0 and 1.

To converge better to the mean of a region, one can divide the update factor with the trophy

count:

axT,
141,

Vp, Wou = Wy + *(Pp — Wpu). 3.7
This has the effect that as a unit gets higher trophy, the modification will be less and final W7
will converge to the mean. This is analogical to the idea of decreasing the update factor with time,
as proposed by Oja (1982).
What I call boxes or regions are sometimes called clusters. The idea is that similar enough
patterns will cause the same unit to get activated, and thus the weight vectors of these units can be
thought of acting as cluster prototypes for grouping similar patterns under the same cluster index.

3.3.2. Forgetting

We have said previously that what we want is to approximate as well as possible the probability
density of our input signal with the density of the synaptic weight vectors of the units. If P; is the
probability that unit i is selected as the responding unit, we want P; to be equal to 1/N where N is
the number of units. The information transfered, as mentioned before, is maximized when as here,
the variances of units are equal. As units when they are added have initial, not so low T values, it
may be the case that a unit does not have a large effective domination region due to overlapping
hyperspheres; the distance between two units is smaller than the sum of their radii. Units for which
these overlappings are big, may be eliminated in a sleep mode.

In sleep mode, inputs are generated as usual and trophies are counted. In this phase, thresholds,
T, are not taken into account, the closest is chosen; no T modification is done either. Finally, a unit
is eliminated if its trophy count, r, is less than a certain limit value. When M is the number of
iterations and N is the number of units, unit u is eliminated if:

re<(l- k)% (3.8)

where k is between 0 and 1; a typical value is 0.5.
The sleep phase is important to have the units converge to good results. Experience has shown
that for every approximately 5 awake sweeps over the training set, a sleep phase should be made.

69

Elimination of units with low trophies also allows the system to handle the case when the
probability density of the input signal changes in time, if ever this happens. For example, a unit
which originally dominated a high density region when the signal changes as to have low density
there, will have small trophy count in that region and will be eliminated in the next sleep pass. Next
awake pass during learning, as there will be no unit there, will add a unit with a large T, radius,
i.e., big domination region.

This ability implies that when the signal changes in time, GAR is able to forget the old features
and learn the new ones.

3.4. GAR: A DIDACTIC EXAMPLE

As examples to show how GAR works, two-dimensional input signals are chosen to simplify
displaying of results. Two example distributions are used: Uniform and exponential. Distance
measure is Euclidean (Fig. 2).

When u is a random variable uniformly distributed between 0 and 1, z, random variable obeying
an exponential distribution is computed as:

(3.9)

Fig. 2. Uniform and ezponential distributions used in ezamples.

On choosing the parameters. In an unsupervised learning method, be it GAR, or the self-
organizing map or another, there is one subtle task, which is choosing the parameters of the process.
There ate a number of parameters that are interdependent and that need to be tuned to get good
results and they depend on the application. They do not have very wide range of possible values;
some can even be fixed, for example, £ and a are always fixed to 0.5 and 0.8 respectively. By
decreasing Thsr N, one changes the number of features extracted. M, duration of sleep, is equal to
the size of the training set. 7as4x, trophy limit, and , threshold gain factor, determine the number
of iterations to be made. Having a large ¥ and small raps4x one can converge very fast. However
note that as feature extraction is a statistical process, one is advised to carry out a large number
of iterations. The approach taken in the examples in this chapter is to use a relatively large trophy
limit and small gain for good convergence. This prudent approach by making a lot of iterations will
always work. One can play with the parameters to achieve fast convergence however such special

T0

parameter combinations will be application dependent. In the case of one or two dimensional signals,
one can display the input signal and the features on screen and by comparing them, evaluate if a
good approximation has been made. When one passes to high dimensions however, such a control
is no longer possible and one can only be advised to be patient.

The parameters are set as follows,

k 0.5 Elimination factor during sleep
a 0.8 Update factor

M 10,000 Duration of sleep

TiniT 0.8 Initial threshold

TrmiIN 0.2 Final threshold

TMAX 100 Trophy limit

b 0.02 Threshold increase factor

The regions of domination evolve as shown in Fig. 3. Each texture denotes domination region
of a different unit; ’x’s denote unit positions. White are the points which are not dominated by any
unit; if they are encountered, units will be added there. Notice the hyperplane boundary when units
are close, and circular regions when they are sufficiently apart, i.e., distance between two units is
greater than the sum of their radii.

Fig. 3. Evolution of unil positions and domination regions with GAR for uniform distribution.
From top-left to bottom-right, after 500, 1,000, 6,500, and 77,000 sterations.

71

For the exponential distribution, regions change in time as in Fig. 4.

Fig. 4. Evolution of regions GAR for exponential distribution. After 500, 1,000, 6,500, and 77,000

tlerations.

When distributions have different, even concave, shapes, GAR is able to learn them. Starting
from Fig. 5, the evolution of GAR for square and cross-shaped uniform distributions with uniform
and exponential densities are shown; parameters used are given below.

Tinir
Tymin
TMAX

0.5
0.8
4,000
0.5
0.05
100
0.02

Elimination factor during sleep
Update factor

Duration of sleep

Initial threshold

Final threshold

Trophy limit

Threshold increase factor

72

Fig. 5. Uniform square-shaped distribution

® ° o
. [
. o
®
[J
° . °
° .
° .
° .
® ® * L 4
hd °
. . .
* o e o
... .
e _ el
° o o o o *
*
[° °
°
° ° °
°
°
]
° ° .
°
[° ¢
°
L] Q..

. . *
[4 3 []
® ° 'Y
&
Y []
L * . Y
[
[4 ®
4 L4 .
L 4
b ®
® *
L 4 ® [4
®
L]
[4 L]
® ° [4 .
L * L L4
L 4
L 2 ° o o ®

. After 4,000, 20,000, 60,000, and 150,000 iterations.

.
I,___l [
L
'i

L
L 4 [4
. [J
¢ L
[4
[4
L J
[]
*
* []

Fig. 7. Uniform cross-shaped distribution. After 1,500, 38,000, 90,000 and 500,000 iterations.

.
.
L 2
'S [2
. °
. . PY .
.
.]
o © ¢ o
o o ¢
o o0 ®
* s 0 ®
L
®o o0
ooo...'.’otoo.
. .
¢ 0o 0, 0 ¢ .
e 0 PY o ¢ * 0'
.....
e e y7 L %00 e
e o
* ..
L4 o.o
.
°)
o o
e L0 0

.
.
.
.
.
'y
.
* o
2K PR
¢ o ¢ .
.
e o
e @
.
* o

.
. .
.
. ° .
. °
* .
0..
o..
o
o © ¢
L 4
® ¥
*0 D
....'..o e ® o o
9 o0 o o e o
0000..0.. ...0
00000 45, o
o0 0, o 0 0 o0 o
) []
o o _ °
* 00
* . e
L 2 ...
e® 0 0,
XXX NN

73

Fig. 8. Erponential cross-shaped distribution. After 1,500, 36,000, 97,000 and 500,000 iterations.

74

3.5. COMPARING GAR WITH THE SELF-ORGANIZING MAP

GAR is compared with Kohonen’s self-organizing map (Kohonen, 1982), the most popular
unsupervised learning algorithm actually. Input signal is two dimensional, distributions are uniform
or exponential like in the above case. Distributions have two different shapes: square and cross. The
number of units are manually defined. Parameters of the self-organizing map are set as follows:

Size of map
Initial update factor

Rate of decrease of update factor

Initial neighborhood

Rate of decrease of neighborhood

Mexican-hat function

Two dimensional: 12 by 12

0.99

0.9999

12

0.9999

Linearly decreasing proportional to distance

For the distributions and parameters above, one achieves the following results with the self-

organizing map.

es 8 4 ., o
eV & v g o
L S
]

ML
v

Y 9 p e
9 v g g o
% s s0 0
Cv s s 0
¢o v
¢0°.°°
6c v ¢ 9 0
¢V o & 4 ¥

(-]

¢ € oo g go ¢ &

e € € g

cec 6 ¢ g g

e® 6 6 6 8 € ¢ o . go

.o°°u.ccccco

.

$ 8 o , & .
. .

L e 3 ™ e © °
o v o
gv » * 8 & o ® °
"o.:‘.l $ 8 @ @ -
™

o @ s & @
“ o o’ ¢ * &
¢ ¥ es® ? 4
c® " ® s & o e

v [}
"R D Sl °
06'556656'00 .
U'“ s a g 86 ¥ * ¢
vt s s s 8 3
PR B .
s oces & 880 ¢ 8 - Y
¢ee s 8% 86 g 8 8 © .

Fig. 9. For uniform and ezponential square-shaped distributions, results by Kohonen’s self-organizing
map. After 50,000 iterations.

Fig. 10. For uniform and exponential cross-shaped distributions, results by Kohonen’s self-organizing
map. After 50,000 sterations.

75

One notices with the cross-shaped distribution that to be able to conserve topology, the self-
organizing map needs to allocate practically unnecessary units where there are “gaps.” GAR does not
has this disadvantage as no initial space is defined. In a map an initial space is defined, here having
a rectangular shape, which is later distorted to fit the actual space. There is no such predefinition
in GAR.

3.6. DEVELOPMENT OF FEATURE DETECTOR CELLS BY GAR

In this section, 1 will talk about development of feature detector cells using GAR. The network
after a process of unsupervised learning during which it is shown examples, extracts a set of fea-
tures. These features are then tested by adding a Grow-and-Learn (GAL) layer and their quality is
quantified in terms of:

[1] success achieved on the test set, and

[2] memory requirements, i.e., number of exemplars stored.
The self-organizing map is also used to extract features and compared with GAR. Various post-
processing techniques are tested before classification.

The application is recognition of handwritten numerals with the same database used in the
previous chapter. Input to GAR network is 5 by 5 windows extracted from 24 by 24 binary images,
“centered” versions of 16 by 16 images as explained previously. Distance measure used is the
Euclidean distance.

The parameters of GAR are set as follows:

Parameter Value

TiniT 0.150 Initial threshold value

TaiIN 0.125 Final threshold value

a 0.5 Update factor

¥ 0.01 Factor for increasing the threshold
TMAX 400 Trophy limit

k 0.5 Factor used in sleep

A relatively big threshold limit, Tassn, is used to get a small number of masks. The masks
shown in Fig. 11 are generated after 5 epochs where each epoch includes 5 awake and 1 sleep passes
over the data set. ‘

Thus 4 units were generated and each unit effectively becomes a detector of one of the features
shown above. When an input vector is given, each unit computes the Euclidean distance between its
weight vector and the input vector. With the same database, one gets the following features using
Kohonen’s self-organizing map (Fig. 12).

These features are replicated for all positions in the original 24 by 24 character image. Any 5
by 5 region is given as input to 4 feature detectors and thus for each pixel in the original image, 4
values are computed:

\/ Tazo ZpmolPizas — Wya)?
5

Pizg is the 5 by 5 region extracted from character image, W7 is the weight vector of the f** feature

detector. Acty is 1.0 when they are the same and decreases till 0.0 as they get further apart. Thus

the total 24 by 24 image is then represented by 24 » 24 «+ 4 = 2304 numbers. It is this vector that is
given as input to a supervised learning algorithm, here GAL.

Acty =10~ ,f=1...4. (3.10)

76

Fig. 11. Features learned by GAR.

Fig. 12. Features learned by a one dimensional self-organizing map.
3.6.1. Testing learned features with GAL

Using GAL, one performs a number of awake passes, generally two or three, till no more units
are added then a sleep pass is performed to eliminate unnecessary exemplar units. One iterates this
process till no more additions or deletions are possible. This is done 20 times as GAL depends on
the order of vectors in the training set by using a different random order at each trial. Best and
worst cases and the average is given together for the number of exemplars stored by GAL, and the
success on test set. Success on test set with the nearest-neighbor method (NN) is also given. This
is done both for features extracted by GAR and those extracted by the self-organizing map.

77

[1] With masks extracted by GAR.

NN Best Average Worst
Units 600 68 67.7 65
Success 99.2 97.8 96.3 93.2

[2] With masks extracted by the self-organizing map.

NN Best Average Worst
Units 600 75 70.1 71
Success 99.2 97.7 96.1 95.2

Success with the nearest-neighbor method without any features is 96.7; the fact that this value
increased imply the utility of the feature extraction process.

3.6.2. Post-processing the output of feature detectors

In the approach mentioned above, the input vector to GAL, as mentioned, has 3456 dimensions
with each element requiring many bits to be represented. This is too costly both in terms of memory
and computation. One can perform some post-processing to simplify the representation of the input
vector. There are various possibilities in calculating the output of units, Oy, from their activations,
Ap.

A. The quite commonly used one is to choose the highest activation and give to it the output
value 1 and 0 to all others. Thus feature detectors between themselves are organized as a
winner-take-all network and the feature closest, m, becomes the winner.

Am = max A;. (3.11)
Om = 1,
0;=0, VYi£m (3.12)

This has the advantage that less precision, i.e., 1 bit, is required to code each output. Thus the
output for each position is 4 bits and the total input vector is 2304 bits long. The problem however is
that one loses information because wherever the vector is in that unit’s domination region, the same
output vector is given out. One can no longer do any interpolation. This problem may partially be
solved by using a lot of units thus decreasing the sizes of domination regions.

78

[1] With masks extracted by GAR.

NN Best Average Worst
Units 600 119 123.2 122
Success 95.3 94.7 92.4 90.5

[2] With masks extracted by the self-organizing map.

NN Best Average Worst
Units 600 138 1325 126
Success 94.8 92.2 89.7 87.7

B. Another possibility is to choose a small number of units that have the highest activation, use
their values and set all others to 0 (Hecht-Nielsen, 1988). For example, when one takes only
the two highest, m and n, the vector can be computed as follows:

Am = max A4;,
3

An = maxAs. (3.13)
tgm
Om = 1.0,
On = 0.5, (3.14)

0; =00, YimAi#n.

The highest takes the value 1.0, and the second highest 0.5, all the rest are set to 0.0. Now as
any feature output can take one of three different states, two bits are necessary. Thus total GAL
input requires a vector 2403 « 2 = 4806 bits long.

(1] With masks extracted by GAR.

NN Best Average Worst
Units 600 90 85.4 81
Success 97.8 97.2 95.0 93.5

[2] With masks extracted by the self-organizing map.

NN Best Average Worst
Units 600 90 80.9 79
Success 98.8 96.7 95.4 93.8

Overall, the two algorithms, GAL and the self-organizing map, seem to have performed equally
well.

79
3.7. A CRITIQUE OF GAR

As aresult of using GAR, the distribution of the synaptic weight vectors of the units approximate
the distribution of the input signal. Input values may be binary or analog. In “tie-cases” only one
unit should be modified.

GAR has too many parameters that need to be tuned to get good features. This, however, seems
to be a general property of unsupervised learning algorithms as, for example, the self-organizing map
also has a lot.

The dynamically growing structure of the network allows to have a network whose size is a
function of the signal. The number of units used is not fixed and pre-defined by the programmer
but depends on the Tassn value which indicates how close the units are allowed to be with respect
to each other. Thus the network size depends on the signal and not on the programmer’s intuition.
The idea of adding a new unit when an input is different from the stored, also exists in the ART.
In their model, a vigilance parameter fixed and same for all units, controls how large clusters, i.e.,
boxes or domination regions, are allowed to be. The problem with ART however is that it does not
take into account densities, thus there will be information loss during feature extraction.

As there is no modification of neighbors, there is no topology defined between units, thus GAR’s
output is not a topological map. This may be a disadvantage if a final topology is required. One
can use an approach as proposed in (Rodrigues & Almeida, 1990) to have an incremental learning
of a topological map.

However, the advantages of not having a topology are that, first, as no neighbors are modified,
less computation is done and second, no border effects are encountered. What is more, when concave
shapes are used, i.e., gaps in the distribution, a topological map wastes units in trying to “bridge”
these gaps, which is not the case with GAR. This phenomenon can also be noticed in the cross-
shaped distribution given in the above example. In the case of GAR, there is no initial space defined
which needs to be modified to fit the input signal.

One is of course free to have multi-layer GAR networks to be able to extract still higher-order
features. In this case, one should perform training of the first layer and once it is over, can pass to
the training of the second layer, etc. One can train the two layers at the same time, however, the
second order features learned before the first order features have converged will not be of any use so
it is faster to train layers one at a time.

The idea of eliminating units with low trophies allows the network to re-organize itself when the
distribution of the signal changes in time. In a Kohonen self-organizing map, this requires increasing
the gain and if the Mexican-hat shrinks in time, re-enlarging it. The novel property of GAR is that
if the signal changes in time so that the salient features change, GAR is able to forget automatically
the old ones learning the new.

A multi-layer network made of a layer of GAR for feature extraction followed by a layer of GAL
for classification gives interesting results in terms of success. Such a scheme is rather similar to
the counter-propagation network (Hecht-Nielsen, 1988) and can be a good alternative to the back-
propagation of the gradient. Several GAR layers may be used before GAL to extract higher-order
features. To be able to decrease memory and computational cost, one may post-process output of
feature detectors to code feature activations using less bits.

80

Conclusions

i mean that the blond absence of any program
except last and always and first lo live

makes unimportant what you and i believe;

nor for philosophy does this rose give a damn ...

since the thing perhaps is
to eat flowers and not to be afraid.
— e.e. cummings.

82

83
4.1. A BIOLOGICAL VIEW

There is no evidence that neurones are generated post-natally. So, dynamically adding new units
has no biological plausibility. The brain is built according to some genetic program with an abundant
number of cells. The neurons are generated at an average rate of 250,000 per minute in utero (Cowan,
1979). This proliferation may be succeeded by a migration process where young neurons migrate
from one part of the brain to another. Finally, they settle down, maturate, specialize, and form
synapses (Kandel & Schwartz, 1985).

This initial redundant structure loses then between 15% and 85% of its components. This
phenomenon of “cell death” takes place both during embryonic and post-natal days. Cell death
before birth is an intrinsic phenomenon; the criteria to decide which one to eliminate are genetic
if we are to assume that an embryo cannot experience anything. Post-natal cell death depends on
experience where the structure during a critical development period is tested against the environment
and fine-tuned or polished—the word “sculptured” is also used (Cowan, 1979)—to better match
the environment. It seems like the genetic plans foresee an environment with some variance and
according to what is really encountered during this short period just after birth, the unnecessary
parts are eliminated. This is not that much different from starting from nothing and adding when
necessary. To make a statue, one, when using clay, adds clay; when using marble, one removes.

Before cell death starts, the majority of the axons have reached their target fields and have just
started establishing connections. The fact that these two phenemona overlap, suggests that there
is some sort of a feedback process “back-propagated” from the axons to the soma—a retrograde
transport of a “trophic,” i.e., nourishing, substance which probably is glia-derived when the axons
are growing (before birth) and driven by the activity of the target cells once the synapses are formed.

In the case of post-natal development, the utility criterion by which relevance of neurones
are assessed is related to the functional activity of the cells in the target field on which synapses
were formed—retrograde maintenance modulated by activity (Clarke, 1985). If the target field is
destroyed, the cell death increases to around 100% and if it is artificially extended, death proportion
decreases (Cowan et al., 1984).

Not only the cells die, but also the synapses are eliminated during development. Although
the dendritic branching of a neuron is determined genetically, most neurons seem to generate many
more processes than are needed or than they are subsequently able to maintain. There is a phase
of process elimination during which many (and in some cases all but one) of the initial group of
connections are withdrawn (Cowan, 1979).

The creation of many and then elimination of most, naturally brings into mind the idea of
“competition” and “selection of the fittest.” As early as 1881 Roux “suggested that cells, including
neurons, may be involved in a Darwinian struggle for survival during development” (Clarke, 1985).

Dawkins proposed (1971) selective neuron death as a possible memory mechanism. My con-
vinction is that cell death during the critical period is to form the central pathways, which thus
require structural modification. Memory, achieved through everyday learning, however, can better
be formed through parametric modification, i.e., of synaptic efficacies.

Pondering on this, one may relate post-natal synapse elimination and cell death to each other:

o There should be a tendency for a cell to have as small a number of synapses on its dendrites as
possible. This corresponds to saying that the condition thatl should be satisfied to make a cell
fire is tried to be kept as simple as possibdle.

o A synapse’s fate is a function of the activities of the pre- and post-synaptic cells. A neuron
by itself cannot fire another cell; a cell needs coincident activity from many cells to fire (Crick
& Asanuma, 1986). For a synapse to be considered “useful,” the pre- and post-synaptic cells
activities should in time be similar, their firing should coincide, i.e., be correlated. It was
proposed that (Schmidt & Tieman, 1989) it is not the activity level per se, but the correlation
of pre- and post-synaptic activity that leads to synaptic stabilization—the so called Hebbian
law. A synapse for which this correlation is not high, is susceptible to be eliminated.

84

o A cell which loses most of the synapses on its axons, is also likely to die. Although no experi-
ments have yet addressed the relationship between activity dependent branch elimination and
cell death, it was proposed that (Schmidt & Tieman,1989) branch elimination might occur first
and lead to cell death in those cases where the number of branches falls below a critical number.
The synaptic learning method used both in GAL and GAR, is related to the proposal of Hebb

(1949).

It was initially proposed by Crick and Mitchison (1983) that some sort of a “reverse learning” to
get rid of parasitic memory traces occurs during Rapid Eye Movement (REM) sleep when dreaming
occurs. The idea basically is that, the system is closed to its environment, e.g., sleep, inputs are
generated by the system itself, e.g., dreaming, and unwanted modes of behaviour emerging due to
accumulation of experience are eliminated during an active process of unlearning. It is said that “we
dream in order to forget.”

When applied to artificial neural networks, their proposal is based on the assumption that in
networks where many associations are distributed, parasitic confabulation stable states, i.e., local
minima that do not correspond to any vector in the training set, exist which decrease the quality of
the network as an associative memory. When applied to Hopfield’s model, (Hopfield et al., 1983),
random vectors were used as inputs to the system and a Hebbian learning with a negative factor
was applied to increase the energy of such states. The same idea later with Boltzmann machine was
applied by Hinton and Sejnowski (1986) which they call the phase™.

In GAL and GAR, forgetting can be done more efficiently than these two models. First, because
the vectors are stored locally, the system knows exactly what to unlearn. The second advantage
is that, because the weights of units are not distributed, the system can “forget” at ome shot; no
iterative procedure is necessary. I believe that if some sort of an unlearning does occur during
sleep, it cannot be with random inputs. Dreams although not perfectly logical, are not completely
random either; dreams are not hallucinations. Jouvet’s suggestion that “species-specific behaviours
are rehearsed during sleep governed by a genetical preprogram” (in Kandel & Schwartz, 1985)!
seems more convincing to me. We make “simulations” of real life during sleep, whose aim is rather
similar to military manoeuvres. This we can also think of as a sort of off-line learning.

Y Jouvet, M. (1983) “Neurophysiology of dreaming,” in M. Monnier and M. Meulders (eds.) Functions
of the nervous system, 4, Psycho-Neurobiology, Amsterdam:Elsevier, pp. 227-248.

85

4.2. INCREMENTAL LEARNING

Incremental learning implies having a strategy which includes not only the modification of the
system parameters but also the system structure by which one has a larger scope of adaptation.
Parametric adaptation whereby only parameters can be modified is limited to how these parameters
are defined, structural modification which can modify the system structure as well has no such
limitation.

In the case of neural networks, parametric adaptation is the usual approach which involves
modification of the synaptic weights only. As there is no rule whereby one can compute the necessary
network structure given a training set or application, the usual approach is one of trial-and-error. A
more recent approach is to start with a large one and “prune” those units that are not very relevant
based on a certain criterion of relevance.

Structural adaptation, named incremental learning, implies a dynamic network whose structure
can also be modified by adding or deleting units and links. As such a learning method has a larger
scope than weight modification of a static network, it is more promising as growing recent interest
in such networks point out.

To make the idea clearer, let me take the common analogy made between curve fitting and
learning. In curve fitting, one is given a set of points and is asked the equation of the polynomial
that gives a good fit to these set of points. The aim then is to be able to interpolate for points
whose values are not previously given. In classification, the problem is similar, one is given a set of
patterns labelled as members of this or that class and then is asked to somehow find class definitions
based on these examples so that, when later unlabelled patterns are presented, the system will be
able to say to which class they belong.

There are two problems in curve fitting, the first is that of finding the order of the polynomial
and second the constant factors once the order is defined. For example, when the polynomial is
y = az? + bz + ¢, the order is 2 and the factors are a, b, and ¢. In parametric modification, one
assumes a certain order and computes the best values of these factors that minimizes error. In
structural modification, one can also play with the order of the polynomial by adding or deleting
terms.

As in any scientific endeavour, one wants to find out the simplest definition possible. Thus in
structural modification, one starts with the lowest order polynomial and checks if a good fit can be
made with it, if not the order of the polynomial is increased and a good fit is checked for, etc. till a
reasonable fit is reached.

In the case of learning classes, one learns the discriminants that seperate the members of one
class from all others. When a fixed network structure is chosen where only the synaptic weights are
modified, one assumes a certain order of the hypersurface where only the factors of the hypersurface
are modified. In the case of a network, the order is given by the number of hidden layers. The factors
correspond to the synaptic weights. The necessity to perform thousands of iterations to learn a set
of associations by tuning weights is generally accepted to be the main drawback of neural models.
In the case of structural learning, the complexity of the class discriminants also get modified in time.
It is the environment that shapes the network.

GAL and GAR have their sections where they are compared with other learning algorithms to
get an idea of their relative advantage and disadvantages. In the following sections, I will just stress
a few general points.

86
4.3. GAL

GAL is an incremental algorithm to learn classes from examples. It learns very fast; each pattern
takes one iteration to learn. This is its basic advantage and makes it interesting for applications
where patterns need to be learned on-line, in real-time.

Basically what is envisaged is to have a dynamic network structure where the structure gets
modified as a function of the error. As is said, it is the environment, i.e., the training set, that
shapes the network. This opposes sharply to learning algorithms where the network has a static
structure whose synaptic weights are modified as a function of the error. The problem with having
a static structure is that of being able to correctly guess the best structure before learning. To
my knowledge, there is no method by which one can compute the required network structure, i.e.,
number of hidden layers, units and their connectivities, from a given data set. There are some very
general rules related to the shape of class separations one can achieve. For example, if there is no
hidden layer, classes need to be linearly separable. With one hidden layer, one can learn convex
shapes. One can separate classes two by two using one hidden unit for each pair. With two hidden
layers, one can also learn concave shapes. The problem however is that when one is given a data set,
one does not know the shapes of classes and the approach is that of trial-and-error which depends
to a great extent on designer’s knowledge of the task and his experience.

In the case of GAL, there is only one layer because a winner-take-all type of non-linearity is
powerful enough to perform any kind of separation. It is the number of units in this layer that is
important and that changes.

Learning in GAL involves either allocating a unit or not, and once a unit is committed its
weight vector is no longer modified. Thus there is no parameter finetuned during a statistical
learning process. The first advantage of this is that learning time is less. Second, to store synaptic
weights one needs as much precision as needed for the input vector. For example as seen in chapter
2, one needs binary weights to learn binary images. Although it is a variant of the nearest-neighbor
method, it is in this regard, namely by requiring a lot less memory, better than the nearest-neighbor.
Of course, as the network gets smaller, the computational complexity decreases, and, on a sequential
computer, so does the recognition time. The sleep mode allows getting rid of units that are no longer
necessary which allows a further decrease of the network size.

In the case of RCE, although weight vectors are not modified either, there is a modifiable
threshold associated with each unit which needs to be calibrated as a function of the error. This
threshold needs also to be stored and operated on with high enough precision. The domination
regions in RCE are hyperspheric and thus is symmetric around each unit which may be disturbing.
GAL, due to the winner-take-all non-linearity, can have regions that are not symmetric.

In LVQ, the weight vector of the closest reference vector is modified with a small factor. This
implies higher precision for the weight vectors and longer learning time. Another nuisance of LVQ
is to determine the number of reference vectors needed as it is pre-determined and fixed.

In discriminant-based methods, the first problem is the determination of the necessary network
structure, i.e., number of hidden layers, hidden units, connectivities, etc. once a problem is given.
This is generally done based on trial-and-error as the programmer gains more intuition related to
the task. Because all the weights are modified at each learning iteration, such methods are slow. As
the update factor is also less than 1, one also needs high precision to store weight vectors and to
perform computations with them.

In algorithms that are similar to nearest-neighbor, the percentage of the training set that needs
to be stored as exemplars depend on the dimensionality of the input vector, the so-called “curse of
dimensionality.” As the number of dimensions of the input vector goes high, more exemplars are
stored.

The second factor that influences the percentage of the patterns stored is the quality of the rep-
resentation. The better is a representation, the less are the exemplars stored. Better representations
can be achieved by preprocessing or feature extraction. Especially preprocessing improves success
and minimizes memory required without slowing down learning time.

87

From the point of view of success, GAL is interesting. Although its success is not as high as
discriminant-based methods, when preceded with a preprocessing or feature extraction layer, GAL
compares easily with such methods also in terms of success as experiences have shown. Preprocessing
or feature extraction also gives GAL immunity to noise which it does not have otherwise as exemplars
once committed, are not modified afterwards.

Despite the fact that GAL is for learning of categories, it can easily be modified to learn also
continous mappings. One needs to discretize the range into small segments with a required precision
and then use GAL as if each of these segments is a different class. It is shown that this leads to a
very rapid learning of such mappings.

4.4. GAR

GAR is an incremental algorithm to learn features from examples. As feature extraction is a
statistical process, to converge to good results, one needs to perform a large number of iterations.
The aim is to approximate as well as possible the probability density of the input signal.

The advantage of GAR with respect to Kohonen’s self-organizing map is that there is no initial
space defined that needs to be fit to the input space. There is no topology defined between units,
thus GAR’s output is not a topological map. The advantages are that, to the first, no border effects
are encountered and to the second, when the input space is not convex, no units are wasted in trying
to bridge the gap.

One interesting property that GAR has, thanks to its sleep mode, is that it allows the probability
density of the input signal to change in time. That is, when the salient features change in time,
GAR is able to pass to a new set eliminating automatically the old.

GAR and GAL can be combined to perform feature extraction and classification. In such a case,
first the GAR layer is trained to extract features, GAL layer is then trained based on the output
of the GAR feature detectors. One can have more than one GAR layer before GAL to be able
to extract higher order features. The advantage of post-processing the output of feature detectors
before classification has also been shown. Such a combination, namely a GAR layer for feature
extraction followed by a GAL layer for classification is similar to the counter-propagation network
as proposed by Hecht-Nielsen (1988) and stands out to be a good alternative to the currently most
popular back-propagation algorithm.

4.5. FUTURE DIRECTIONS

GAL and GAR in this dissertation are applied to the recognition of handwritten numerals only.
They should now be used for other tasks, with signals of other modalities, so that one will be able
to better evaluate their scope of usage. For example in storing and recognizing temporal relations,
a time delayed version of GAL can be used, although how well, we do not yet know. Similarly in
applications related to robotics where real-time learning is necessary, it will be interesting to try
and use a GAL, or GAR+GAL, and see what it brings at what cost.

One possible research direction is to extend GAR to the level of individual connections. When
a GAR network is trained, one predefines the size and position of the receptive fields. It will be
rather useful if one can start from highly redundant, big receptive fields and then somehow compute
relevance of individual connections and then eliminate those who are not necessary, in a way as
to automatically find good receptive field sizes and good features. Whether the usual Hebbian
dynamics, in terms of the covariance of the pre- and post-synaptic signals, is sufficient, I do not
know.

88

89
References

[0] Ackley, D.H. (1987) A connectionist machine for genetic hillclimbing, Kluwer Academic Pub-
lishers.
[1] Alexander, I. (1990) “Ideal neurons for neural computers,” in R. Eckmiller, G. Hartmann, G.
Hauske (eds.) Parallel Processing in Neural systems and Computers, North-Holland.
(2] Alpaydin, E. (1988) “Grow-and-Learn,” EPFL-LAMI, Internal note.
[3] Alpaydin, E. (1990a) “Learning logic array,” Int. Joint Conf. on Neural Networks, January,
Washington, USA. -
[4] Alpaydin, E. (1990b) “Grow-and-Learn: An incremental method for category learning,” Int.
Neural Network Conf., July, Paris, France.
(5] Angéniol, B., de La Croix Vaubois, G., Le Texier, J.-Y. (1989). “Self-organizing feature maps
and the travelling salesman problem,” Neural networks, 1, 289-294.
(6] Barlow, H.B. (1963) “The information capacity of nervous transmission,” Kybdernetik, 2, 1 also
in Brain theory: Reprint volume, G.L. Shaw, G. Palm, (eds.) (1988) World Scientific, 683.
(7] Barlow, H.B. (1989) “Unsupervised learning,” Neural Computation, 1, 295-311.
[8] Baum, E.B. (1989) “A proposal for more powerful learning algorithms,” Neural Computation,
1, 201-207.
[9] Carpenter, G.A., Grossberg, S. (1987) “ART2: Self-organization of stable category recognition
codes for analog input patterns,” Applied optics, 26, 4919-4930.
[10] Clarke, P.G.H. (1985) “Neuronal death in the development of the vertebrate nervous system,”
Trends in Neuroscience, 8, 345-349.
[11] Cottrell, G., Fleming, M. (1990) “Face recognition using unsupervised feature extraction,” Int.
Neurgl Network Conf., Paris, July 1990.
[12] Cowan, W.M. (1979) “The development of the brain,” Scientific American, 241(3), 106-117.
(13] Cowan, W.M., Fawcett, J.W., O’Leary, D.D.M., Stanfield, B.B. (1984) “Regressive events in
neurogenesis,” Science, 225, 1258-1265.
[14) Crick, F.H.C., Asanuma, C. (1986) “Certain aspects of the anatomy and physiology of the
cerebral cortex,” in Parallel distributed processing, J.L. McClelland, D.E. Rumelhart (eds.) 2,
MIT Press, 333-371.

[15] Crick, F. Mitchison, G. (1983) “The function of dream sleep,” Nature, 304, 111-114.

[16] Dawkins, R. (1971) “Selective neurone death as a possible memory mechanism,” Nature, 229,
118-119.

[17) Dawkins, R. (1982) The extended phenotype, Oxford University Press.

[18] Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L., and Hopfield, J. (1987)
“Large automatic learning, rule extraction, and generalization,” Complezr Systems, 1, 877-922.

[19] DeSieno, D. (1988) “Adding a conscience to competitive learning,” IEEE Int. Conf. on Neural
Networks, San Diego, USA.

[20] Duda, R.O., Hart, P.E. (1973) Pattern classification and scene analysis, John Wiley and sons.

[21] Guyon, 1., Poujoud, 1., Personnaz, L., Dreyfus, G., Denker, J., and le Cun, Y. (1989) “Compar-
ing different neural architectures for classifying handwritten digits,” Int. Joint Conf. on Neural
Networks, Washington, USA.

[22] Hebb, D.O. (1949) The organization of behaviour, Wiley. Chapter 4: “The first stage of per-
ception: Growth of the assembly,” Chapter 5: “Perception of a complex: The phase sequence,”
in Brain theory: Reprint volume G.L. Shaw, G. Palm, (eds.) (1988) World Scientific, 224-270..

[23] Hecht-Nielsen, R. (1988) “Applications of counterpropagation networks,” Neural Networks, 1,
131-140.

[24] Hinton, G.E., Sejnowski, T.J. (1986) “Learning and relearning in Boltzmann machines,” in
Parallel distributed processing, D.E. Rumelhart, J.L. McClelland (eds.) 1, MIT Press, 282-317.

[25] Holland, J.H. (1975) Adaptation in natural and artificial systems, University of Michigan Press.

(26] Hopfield, J.J. (1982) “Neural networks and physical systems with emergent collective compu-
tational abilities,” Proc. Nat’l Acad. Sci., 79, 2554-2558.

90

(27] Hopfield, J.J., Feinstein, D.I., Palmer, R.G. (1983) “Unlearning’ has a stabilizing effect in
collective memories,” Nature, 304, 158-159.

(28] Jockush, S. (1990) “A neural network which adapts its structure to a given set of patterns,”
in Parallel processing in neural systems and computers, R. Eckmiller, G. Hartmann, G. Hauske
(eds.), North-Holland.

(29] Kandel, E.R., Schwartz, J.H. (1985) Principles of neural science, 2nd edition, Elsevier.

(30] Knerr, S., Personnaz, L., Dreyfus, G. (1989) “Single-layer learning revisited: A stepwise proce-
dure for building and training a neural network,” Neurocomputing: Algorithms, architectures,
and applications, Fogelman-Soulié, F. (ed.), NATO ASI Series, Springer.

(31] Kohonen, T. (1982) “Self-organized formation of topologically correct feature maps,” Biological
Cybernetics, 43, 59-69.

[32) Kohonen, T. (1988) Self-organization and associative memory, 2nd edition, Springer.

(33] Kohonen, T., Barna, G., Chrisley, R. (1988) “Statistical pattern recognition with neural net-
works: Benchmarking studies,” JEEE Int. Conf. on Neural Networks, San Diego, July.

{34) Kong, Y., Noetzel, A. (1990) “A training algorithm for a piecewise linear neural network,”
International Neural Network Conference, Paris, July 1990.

[35] le Cun, Y. (1985) “Une procedure d’apprentissage pour reseau a seuil,” Proceedings of Cognitiva
85, 599-604, Paris.

(36] le Cun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.
(1989) “Backpropagation applied to handwritten zip code recognition,” Neural Computation,
1, 541-551.

[37) Lippman, R.P. (1987) “An introduction to computing with neural nets,” IEEE ASSP mag., 4,
4-22.

[38] Mach, E. (1883) “The economy of science,” The science of mechanics also in The world of
mathematics, J.R. Newman (ed.) (1988) New edition, Tempus books, 3, 1759-1767.

[39] Marr, D. (1982) Vision, Freeman.

(40] McCulloch, W.S. (1965) Embodiments of mind, MIT Press.

[41] Mézard, M. (1989) “Learning algorithms in layered networks,” NATO ARW on Neurocomputing,
February, Les Arcs, France.

[42) Mozer, M.C., Smolensky, P. (1989) “Skeletonization: A technique for trimming the fat from a
network via relevance assessment,” Connection Science, 1, 3-26.

[43]) Oja, E. (1982) “A simplified neuron model as a principal component analyzer,” Journal of
mathematical biology, 15, 267-273.

[44] Pao, Y.-H. (1989) Adaptive patiern recognition and neural networks, Addison-Wesley.

[45] Personnaz, L., Guyon, 1., and Dreyfus, G. (1987) “High-order neural networks: Information
storage without errors,” Europhysics Letlers, 4, 863-867.

[46] Reilly, D.L., Cooper, L.N., and Elbaum, C. (1982) “A neural model for category learning,”
Biological Cybernetics, 45, 35-41.

[47]) Rodrigues, J., Almeida, L. (1990) “Improving the learning speed in topological maps of pat-
terns,” International Neural Network Conference, Paris, July 1990.

{48] Ross, S.M. (1987) Introduction to probabdility and statistics for engineers and scientists, Wiley.

[49) Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986) “Learning internal representations by
error propagation,” in Parallel distributed processing, D.E. Rumelhart, J.L. McClelland (eds.),
1, (1986) MIT Press, 318-362.

[50] Rumelhart, D.E. Zipser, D. (1986) “Feature discovery by competitive learning,” in Parallel
distributed processing, D.E. Rumelhart, J.L. McClelland (eds.) 1, (1986) MIT Press, 151-193.

[51] Sanger, T.D. (1989) “Optimal unsupervised learning in a single-layer linear feedforward neural
network,” Neural Networks, 2, 459-473.

[62] Schmidt, J., Tieman, S.B. (1989) “Activity, growth cones and the selectivity of visual connec-
tions,” Comments on Developmental Neurobiology, 1, 11-28.

{53] Specht, D. (1990). “Probabilistic neural networks,” 3, 109-118.

[564) Valiant, L.G. (1984) “The theory of the learnable,” Communications of the ACM, 27, 1134~
1142.

91

[55) White, H. (1989) “Learning in artificial neural networks,” Neural Computation, 1, 425-464.

[56] Widrow, B., Hoff, M.E. (1960) “Adaptive switching circuits,” 1960 IRE WESCON convention
record, 96-104 also in Neurocomputing: Foundations of research, J.A. Anderson, E. Rosenfeld
(eds.), (1988) MIT Press, 126-134.

92

Name

Sex

Date of birth
Nationality

Marital status
Professional address

Private address
Scholar curriculum

Professional Curriculum

93
Curriculum Vitae

A. L. Ethem Alpaydn

M

23/6/1966

Turkish

Single

Laboratoire de microinformatique

Ecole Polytechnique Fédérale de Lausanne

IN-F 1015 Lausanne Switzerland

Av. du Mont d’or 15, 1007 Lausanne Switzerland

(1983-1987) B.S. degree in Computer Engineering from
Bogazigi University Istanbul, Turkey

(1988) Postgraduate course in Computer Science from
EPF Lausanne, Switzerland

(1984-1986) Part-time programmer in Bilpaz A.$. Istanbul, Turkey
(1986) Part-time programmer in Eltek A.S. Istanbul, Turkey
(1987-) Assistant in LAMI-EPFL Lausanne, Switzerland

94
Publications

[0] Alpaydin, E. (1988). “Distributed representation and associative storage of knowledge,” Annales
du groupe CARNAC, EPFL, 1, 41-50.

(1] Alpaydin, E. (1988). “Optical character recognition using artificial neural networks,” un-
published postgraduate course project report, Cours postgrade en informatique technique,
Département d’Informatique, EPFL.

(2] Alpaydin, E., Marchal, P. (1989). “Snark: A neural optical character reader,” in Pfeifer, R.,
Schreter, Z., Fogelman-Soulié, F., and Steels, L. (eds.) Connectionism in Perspective, 309-315,
Amsterdam: North Holland.

[3] Alpaydm, E. (1989). “What is a feature that it may define a character, and a character that
it may be defined by a feature 7”7 NATO Advanced Research Workshop on Neurocomputing,
February, Les Arcs, France.

[4] Alpaydin, E. (1989). “Why an ‘A’ is an ‘A’ ? ” presented at European Congress on System
Science, October, Lausanne, Switzerland, (1989) at Journées d’Electronique EPFL, October,
Lausanne, Switzerland (Invited Paper), and (1990) abstract to appear in Artificial Intelligence
Abstracts. .

[5] Alpaydin, E. (1989). “Optical character recognition using artificial neural networks,” IEE Int.
Conf. on Artificial Neural Networks, October, London, UK.

(6] Alpaydin, E. (1990). “Learning logic array,” Int. Joint Conf. on Neural Networks, January,
Washington, USA.

[7] Alpaydin, E. (1990). “Why are neural networks ? Will we have Neural Instruction Multiple
Data (NIMD) machines ?” 4** Annual Symposium on Parallel Processing, April, Fullerton,
USA.

(8] Alpaydin, E. (1990). “Grow-and-Learn: An incremental method for category learning,” Int.
Neural Network Conf. July, Paris, France.

