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INTRODUCTION

Non technical one...
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POWER ELECTRONICS LABORATORY AT EPFL

Ecole Polytechnique School of
Fédérale de Lausanne Engineering

EPFL — STI — IEM — PEL

Institute of
Electrical
and Micro
Engineering

> Active since February 2014

Typically: 10-12 PhDs, 2-4 Post-Docs, 1Eng, 1Ass.
» Funding CH: SNSF, SFOE, Innosuisse

Funding EU: H2020, S2R JU, ERC CoG

Funding: Industry OEMs

> www.epfl.ch/labs/pel/

v

v

A\

[LPE

Competence Centre

A Power Electronics Laboratory
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www.epfl.ch/labs/pel/

PEL RESEARCH FOCUS

MVDC Technologies and Systems
> System Stability
> Protection Coordination

High Power Electronics Converters Components

> Multilevel Converters » Semiconductors

> Solid State Transformers > Magnetics
> Power Electronics Converters

> Medium Frequency Conversion > Modeling, Characterization, Optimization
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MEDIUM VOLTAGE
APPLICATIONS

...and the role of the power electronics
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MEDIUM VOLTAGE AC DRIVES

Traditional MV application

>

>

>

>

~ 65% of electricity goes into motors
Efficiency gains with VSD

Flexibility

Standardized voltages

Typical ratings

>

>

1kV to 36kVac
up to hundreds of MW

Industry segments

>

>

>

Cement

Oiland gas

Marine and offshore
Metals

Mining

Marine

Power

Pulp and paper

Water and wastewater

=PFL reswen

4 Source: ABB
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MEDIUM VOLTAGE AC DRIVES

Continuous evolution since 80’s:
> Topologies: NPC, FC, NPP, ANPC, CHB, MMC
» Semiconductors: SCR, GTO, IGCT, IGBT, (SiC?)
» PWM: SHE, OPP, SVPWM
> Control: Scalar, RFOC, DTC, MPC

> Type: Majority is VSI; few CSI - f:sn::: piposelmediumivoltags d"‘:‘z — —
lype
Output voltage 2.3/3.3/4.0/4.16kV 4.0KkV - 6.9kV 6.0-6.9kV
Mv DriVeS PrOdUCt Map Optional: 6.0 / 6.6kV with step-up transformer Optional: 4.16 kV with step-down transformer
Overall landscape
C==Es
s
b anm
-
4 Source: GEMV Drives 4 Source: ABBMV Drives

SINAMICS PERFECT SINAMICS PERFECT
HARMONY GH180 HARMONY GH150

Technical
Specifications

4 Source: SIEMENS Sinamics MV Drives

=PFL reswen
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POWER ELECTRONICS DOMINATED POWER SYSTEM

4 A modern power system with many Inverter Based Resources (IBR) as DC technologies
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POWER GRIDS

Soft-Open Point (MVDC)

> Connecting two AC grids (asynchronous)

> Short links - substation

> Long links - network

> Increasing operational flexibility

> Improving voltage profile

> Noincrease in short circuit current

National Grid
Group A

Normally
Open Point

National Grid
Group B

Generation
Dominated Group

Flexible Power Link

MVDC

Dominated Group

A Flexible Power Link (FPL), Soft-Open Point (SOP) [1]

4 ABB's ACS6000 Medium Voltage drive with 5kV DC link

4 ABB's ACS6000 multi-drive line up - around 33 meters long - modular design done 20 years ago!

E P F L PELS Webinar
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POWER GRIDS

MVDC Collection Networks
» MVDC collection

> \oltage level - case by case

v

Efficiency driven
Off-shore / On-shore
AC-DC and DC-DC converters needed

A\

v

4 Assembly of 10 MMC full-bridge submodules - Building Blocks!

E P F L PELS Webinar

—MVDC clusterN—  — MVDC Cluster N — MVDC Cluster N—

PVArray  PVArray Server Server Charging  Charging
Pole Pole

¥ ¥la

MVDC MVDC MVDC

A A ]

MVAC MVAC MVAC

WV

NHN
NHN
INHN]
NN [0

Point of B Point of Point of
@)  interconnection ) Interconnection C) Interconnection

A MVDC collection networks for a) PV generation; b) high power Data Centers and c) Fast EV Charging [1]

Wind Turbine & Wind Turbine & Wind Turbine & Wind Turbine &
Generator Generator Generator Generator

+ 4+ 4+ 14
MVDC

HVAC Transmission HVDC

Short distance Long distance
shore to shore

Cluster

OIN

4 MVDC collection network for wind application [1]
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MODULAR MULTILEVEL CONVERTER

IGCT-based MMC

> \ersatile hardware platform

> Half-Bridge/Full-Bridge

> Direct MMC for Hydropower CFSM
Rail Inter-ties (3-ph to 1-ph)
STATCOM

v

v

4 Assembly of 10 MMC full-bridge submodules - Building Blocks!

E P F L PELS Webinar

4 HITACHIENERGY: MV MMC layout: Source: M. Vasiladiotis, DMMC for CFSM”, PELS online workshop

m;ﬁ %

STATCOM, Flicker

([}
:

Rail, MVDC, Energy Storage

DC-
or
AC

f

Pumped Hydro, Grid Interties

A HITACHIENERGY: MV MMC Applications: Source: M. Vasiladiotis,' DMMC for CFSM”, PELS online workshop

July 3,2024
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SOLID STATE TRANSFORMER

SST is just another converter

> Galvanically Isolated Modular Converter

» Power Electronic Building Blocks (PEBBs) ( — —— _ PEBB)
» Medium frequency transformer (MFT) for isolation /J} )J}
L, L,
» Can be designed for any conversion _® — L L — ®_
> AC-AC, AC-DC,DC-DC,DC-AC ;:[} ):[} )? ):[} ):[} ):[} {[}
» Endless topological variations
% L —=—d ling between stages—— ) qPH‘Pﬁ J
Conventional Transformer vs. SST
Grid Tx SST
Controlability No Yes

Efficiency n=99% p,

Q compensation No Yes (: )
Fault tolerance No Yes

Size Bulky Compact
Cost Low High

i
H

| Direct comparison makes not much sense! | ;_[
i

A Conventional AC grid transformer A Solid-State Transformer interfacing two AC systems [2], [3]
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POWER ELECTRONICS TRACTION TRANSFORMER (ABB)

Characteristics

>

>

1-Phase MVAC to MVDC
Power: 1.2MVA

Input AC voltage: 15kV, 16.7Hz
Output DC voltage: 1500 V

9 cascaded stages (n +1)
Input-Series Output-Parallel
Double stage conversion

99 Semiconductor Devices

>

>

>

>

HV PEBB: 9 x (6 x 65KV IGBT)
LV PEBB: 9 x (2 x 3.3kV IGBT)
Bypass: 9 x (2 x 6.5kV IGBT)
Decoupling: 9 x (1x 3.3kV Diode)

9 MFTs

>

>

>

v

Power: 150kW
Frequency: 1.75kHz
Core: Nanocrystalline
Winding: Litz

Insulation / Cooling: Oil

E P F L PELS Webinar

LV PEBB’s

MRC
(Motor side of

Resonant Converter)

Motor side

b

1500V DC+
—

Ude_pos M

Legend:

6.5 kV 200 A IGBT
6.5 kV 400 A IGBT
3.3kV 800 A IGBT
—= i + directior
measurements

s1

?
Idc_pos M

- Udc_np_L9

1500V DC-
-

Udc_neg M

Controlled
by MICAS

?
Idc_neg M

B Udcnp 8

Catenery PETT
15kV 16 2/3 Hz Power Electronics Traction Transformer
Pantograph
HV PEBB'’s
Short RC
. . AFE
v |Line side crout b tmeme  Resorant
%[ IGBT's End) Converter)
+ Resonant Converter
'II_ Earth dischn.
mcB
| —
'II— Earih discpn.
jo—:
3 2
83
i LEVEL7
8 TR

A ABBPETT scheme [4], [5]

10}08UU0D BUY|

I_LineLow

Ude_np_7

LEVEL6
RE

LEVEL5
RS

Ude_np_L6

LEVEL4

QC MRCS - Ude_np_LS

- Udc_np_4

LEVEL3
RS

LEVEL2
sc2 AFE2 LRC2 TR2
I

e .13
J1]

é - MRC2 - Udo_np_L2

Ude_posHVL1

il

Ude_np_L1

Udc_negHVL1 "

AUX supply
15kVA. 3x400V @ 50HZ
5kVA 36V dc
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PETT DESIGN

Retrofitted to shunting locomotive
> Replaced LFT + SCRrectifier
> Propulsion motor - 450kW
> 12 months of field service

> No power electronics failures

v

Efficiency around 96%
> Weight: ~# 45t

Technologies
» Standard 3.3kV and 6.5kV IGBTs
> De-ionized water cooling
> Qil cooling/insulation for MFTs
» n+1redundancy

> IGBT used for bypass switch

Reality
> No product development
> No early adopters
> No customers

> No business case

E P F L PELS Webinar

= = Operating with9 levels _|

——  Operating with 8 levels

i i

H
0 200 400 600 800

Output Power (kW]

A ABBPETT prototype [4], [5]

July 3,2024
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SOLID STATE TRANSFORMERS

UNIFLEX-PM FREEDM HEART (Kiel) EMPOWER (EPFL)

4 Reduced scale prototype 4 Reduced scale prototypes [7] 4 Reduced scale prototypes 4 Full scale prototype

GE HUST XD Electric Company DELTA

A Full scale prototype [6] 4 Full scale prototype [8] A Fullscale prototype [9] A Full scale prototype
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SOLID STATE TRANSFORMERS

UNIFLEX-PM FREEDM HEART (Kiel) EMPOWER (EPFL)

4 Reduced scale prototype 4 Reduced scale prototypes [7] 4 Reduced scale prototypes 4 Full scale prototype

GE HUST XD Electric Company DELTA

A Full scale prototype [6] 4 Full scale prototype [8] A Fullscale prototype [9] A Full scale prototype

SST is an attractive research topic and many technology gaps need to be addressed before it becomes the commercial reality!
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HIGH POWER DC-DC CONVERTERS

v

Inherent building block of most SST topologies

v

Interface between different MVDC levels

v

Enabling technology for MVDC
> Integration of renewable DC energy sources

> Integration of Fast / Ultra Fast EV charging

» Medium Frequency conversion

L J

—~Vehicle side

| 50

i

|
I I e

Energy
Storage
RE
AC

MVAC

=l

EJalala) |

DC}

> E I I AC{} -
(=
A RENE

4 Concept of amodern power system A FastEV charging concept
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DC-DC SST

Fractional Power Processing
> Multiple MFTs

» Equal power distribution among PEBBs

» MFT isolation cost?

» Various PEBB configurations

PEBB PEBB

: :
I~

(a)ISOP

(b) IPOP (c)Isos

A Different and well known structures for modular designs

Bulk Power Processing
> Single MFT

> Isolation problem solved only once

> Various configurations/operating principles

E P F L PELS Webinar

58

o—mm— "~ DC)
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DC)
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|
|— DCY—t—+~. , AC DC |

A Fractional power processing with ISOP structure

A Bulk power processing concept
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DC-DC SST

Fractional Power Processing ——

N
» Multiple MFTs N\ ; DC
» Equal power distribution among PEBBs / }

» MFT isolation cost? I:DC

L

» Various PEBB configurations

~__ PEBB :< PEBB PEBB

I~ JRENGIREN IFER

N AC] | bC
oC MFT &€
(d)IsoP e) IPOP (f)1ISOS

A Different and well known structures for modular designs A Fractional power processing with ISOP structure

DC)

v
BTy W
0
/{}5
=
p=d
T

IS
o /
(@]
T

—-

Bulk Power Processing
> Single MFT

> Isolation problem solved only once

> Various configurations/operating principles A Bulk power processing concept

Both design approaches are valid, and have their pros and cons! Many factors should be considered!
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MEDIUM VOLTAGE RESEARCH

..and how to do it at the University

PELS Webinar



MEDIUM VOLTAGE RESEARCH AT UNIVERSITY

Doable with careful and strategic planning
> Infrastructure - surface and volume
> Protection - of personnel and equipment
> Safety - of personnel
> Training - of personnel
» Patience - of everyone involved

» Funding - alot of it

A PEL Low Voltage and Medium Voltage switchgear A Source: PES,ETH
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MEDIUM VOLTAGE LABORATORY

Versatile and Flexible Infrastructure
> AC voltages: up to 3.3kV, 6kV, 9kV, 11kV, 15kV, 20kV
» DC voltages: up to £ 5kV, & 10kV
> MV electrical machines: IM, SM, DFIM (0.5MW, 6kV)
PD test setup (100kV, 200mA)
> LVAC and LVDC power distribution

> Distributed and mobile cooling systems

v

4 MV Power Electronics Laboratory

E P F L PELS Webinar

July3,2024

A MV Power Electronics Laboratory
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MMC RESEARCH PLATFORM

High power university lab prototype and versatile HIL system

c P I- I PELS Webinar Power Electronics Laboratory



DUAL MMC MVDC SUPPLY

MMC demonstrator ratings are:
> 500KkVA (2 x 250 kVA)
> £10kVge ¢ 2x33KkVye

> 8low voltage cells per branch = 16 cells per MMC phase = 48 cells in total - per MMC

> Industrial central controller and communication (ABB AC PEC 800)

3.3kVac

Yd11y0

terminal phase-leg 1 phase-leg 2 phase-leg 3 inductor
cabinet cabinet cabinet cabinet cabinet
TO %%
=)
>
4 W
10
| % .|
4
0 |.2
A -~
> | £
~ | =
= | &
= | g I
ik T %% |
&
0
A
= e ———
i = r
0

4 Flexible Dual MMC Power Supply

E P F L PELS Webinar
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3.3kVac

MMC1
— branch
—— phase-leg

___ branch
inductors

A
%}—#—@ 400V A

MMC2
— branch
—— phase-leg

branch
inductors
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DIELECTRIC DESIGN - INSULATION COORDINATION (1)

System partitioning

control  phase-leg 1 phase-leg 2 phase-leg 3 GIMC trafo
cabinet  cabinet cabinet cabinet cabinct

== T

0 O e 5
N e 5
I o o
TV

400V,

o o
CEL ] | B0 | (5=
o
1

m E skl | ENF
su1s_||sune s

Zone1 (ins. coord. inside a SM’s enclosure) system voltage: 1kV ¢
Zone 2 (ins. coord. branch)

> Horizontal system voltage: 1kV .
> Vertical system voltage: 36 kV .

Zone 3 (ins. coord. branch - cabinet (at GND)) system voltage: 6.6 kV ¢

Zone 4 (ins. coord. for LV circuits) system voltage: 0.4 kV

E P F L PELS Webinar

branch
phase-leg
multi-windings
transformer

Zone 1
M Zone 2
W Zone3
M Zone 4

Standards

> UL840 for cell PCB (< 1kV)
» |IEC61800-5-1(AC motor drives)

> Pollution degree 2: “Normally, only non-conductive pollution occurs. Occasionally,
however, a temporary conductivity caused by condensation is to be expected,
when the PDS is out of operation.”

> Overvoltage category II: “Equipment not permanently connected to the fixed
installation. Examples are appliances, portable tools and other plug-connected
equipment.”’

Zone 2

> Box at dc- cell's potential (floating)
> Box corner radius: 3mm
> MKHP (high CTI material) drawer holding 4 cells

E [¥/n]

2. @833E+0AS5

1. GU4SEEAS

1, BBSTE+DAS

1, GETOE+EAS
1, 5252E+805
1. 3895E 4805
1, 2567E+BAS
1. 1119E+BA5
9, 7318E+0@Y4
8, SU42E+0EY
&, GSEREEAY
5. SE9TE+EAY
Y. 1814E+EAY
2. 7938E+BAY
1. YBE2E+BAY
1, B5B5E+0A2

A

July3,2024

E-field FEM simulations for drawer design
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DIELECTRIC DESIGN - INSULATION COORDINATION (11)

v MV MMC converter laboratory prototype layout compliant with:

> UL840 (for cell)
> |EC 61800-5-1

V' Complete AC dielectric withstand tests on real prototype [10]

>

AC dielectric withstand test result

4 Cabinet with 32 cells in Faraday cage during insulation coordination testing 4 Drawer holding 4 cell (MKHP material)
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MECHANICAL DESIGN

4 MMC coupled air-core branch inductors

4 MMC - Actual mechanical assembly A MMC Submodule thermal heat-run test setup [11]
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MMC SUB-MODULE

Low voltage based sub-module including cell controller

E P I- I PELS Webinar Power Electronics Laboratory



SUB-MODULE OPTIMIZATION

Submodule

> 12kV /75 Afull-bridge IGBT module

> Ccell =225mF

Thermal design [12]

> Celllevel: detailed FEM
> Cabinet level: simplified FEM

=PFL reswen

A CFD simulations

Semiconductor losses
> Virtual Submodule concept has been utilized [13]
> Closed-loop waveforms are approached by analytical waveforms

- upper IGBT ———
Vi \T‘ X “ioata
i
Neas F“"
2 .
v ™ IDiode,u
c:l.k Ugpr,
= hepry
= Iiodes
m
analytical expressions modulation virtual submodule
B, B B P [ Py P,
Ponrs ] Posrs I Py I Pro I P I s\ I Sitched model
“
£
B B =
g 2 S
S S =l
£
£
M2 0 M2 T M2 0 M2 T -T2 0 T2 m
¢ [rad] o [rad] ¢ [rad]
A PS-PWM, DC circ 4 PS-PWM, DC+2" circ 4 Time benchmark
July 3,2024
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SUB-MODULE

Key Features
> Low voltage power components
> Semikron full-bridge IGBT module 1.2 kV/75 A
> Bank of electrolytic capacitors Cqp,,=2.256 mF
> Protection devices: Bypass thyristor, Relay and OVD
» Two interconnected PCBs: Power PCB and Control PCB

> Metalic enclosure

POWER PCB 10

5 - Current Sensor
4 - Voltage Dividers 6 - Thyristor Module

1 - Balancing Circuitry 3 - IGBT Module 7 - Bypass Relay

2 - SM Capacitors
4 Qverview of the Power PCB

CTRL PCB 09

Flyback-based DSP-based SM GD1.4 Protection with POF
ASPS with planar controller pulse trafo
transformer

4 Qverview of the Control PCB

E P F L PELS Webinar

45V 433V

GND

upper kvel [ TX
control RX

' Adapted CTRL Board

Flyback
ASPS

e v

Ast~—1
08+ ~—]

™ sq

o AGT+ =] —a

Vsnm. ;
]
foultems

Hybrid
Balancing

*
Dischage Torme

+15 @

A MMC Sub-module Structure: Yellow parts - Control PCB

4 Developed MMC FB sub-module based on the 1.2kV IGBTs

July 3,2024
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AUXILIARY SUB-MODULE POWER SUPPLY (I)

Possible concepts Planar design [14]
> Externally supplied > PCB windings (isolation requirements!)
: g:ggz Vg\r/iloo'a > Planar ferrite cores with custom gapping
> Inductive Power Transfer (COSMO ferrites)

> Internally supplied

Matlab design tool
> DC-DC step down of some sort
> Flyback > Account for flux fringing
Choi > BH curve for CF297
oice
> Jiles-Atherton parametrization FEM
> Flyback with 6 isolated secondaries ) )
0a | ] ] I I > Validate Matlab design
*8..14 + F ’
Ve a = 02 > 3D model for accurate leakage flux
9..15
0
4000
£ 2000
0
Vea| ==
VHSV
— 800
= 60
g 400
=~ zog ]
= ! I I I I . 10 :ﬁ
E 15 |- X | =
E 1| % | E
=
2% 05| | & 51 |
S \ I S
_ T

A 20 2® o 0
180 3 4025 %% 685 01 02 03 04 05 06 07 08 09 1

Ip[A]

E P I-l I PELS Webinar July 3,2024 Power Electronics Laboratory | 25 of 51



AUXILIARY SUB-MODULE POWER SUPPLY (1)

Transformer assembly AC dielectric withstand test
> 14 copper layers PCB > Way below threshold level of 10pC
> Custom gapped ferrite E+l core :
/// \\\
/ S
/ \\

Tests
YOKOGAWA @ 7018/01/04 15520 Nowehi-Res  Fdue OH £9.2V YOKOGAWA @ 2018/01/04 16:238 Nomchi-Res  Fdse OH £ 9.8V YOKOGAWA @ 2018/01/04 1652216 Normcki-Res  Fdwe OH1 T 178 ¥
piriy kel fy 510 e ks bz | it el
e o e 110l 11 1 T e S =1 P s 1 N A R ] e A °1 1 e 122 "
ain = 128 ms/die| W = 3125 1 blus/div Vv i il : 12.5 M 50ms/dliv|
- il - o B
Ao 1 I
i | I
V. sy gets energized ‘l ‘ UVLO turn-off
SIS G =
= s Vo /threshold
Voo UVLO turn-on
threshold
o 4 loss of regula-|
=i ting capabilit
s e e e s =
5 Vo Visy R R
S el S48 aasusRaBRdiR)
Vi prot
A Start-up 4 Steady-state operation 4 Shut-down sequence
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MMC SUB-MODULE TESTING

How to validate hardware and software?

c P I- I PELS Webinar Power Electronics Laboratory



MMC SUBMODULES

4 |n-house built MMC submodule 4 Production of the MMC cells

120 MMC Submodules are produced in total

=

Each and every unit must be thoroughly tested!!!
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FUNCTIONAL SUBMODULE TESTS

Extensive testing of every sub-module

> Power tests
» Thermal heat-runs
> Over current tests

> Loss of power supply

v

DC link over voltage
> Terminal over voltage

> Short-circuit tests

4 Developed MMC FB sub-module

E P F L PELS Webinar

AC current [A]

time [s

A MMC SM over current test

time s

4 MMC SM over voltage test

10 AC current 4]

— P voltage [V
. v

052 054 050 058 05 062 064
time ]

A Power supply under voltage detection

July 3,2024

0]

200)

60 M‘
™

00

B

100

A Short circuit test (Desat detection)

time s

DC valtage [V]
— AC voltage [V]

o[ Ac e

>

100)

S0l

0|

00)

200)

0l

— oo ]
e o1 om0z om  05 0% o4
time [s]
Gate Driver failure
AC voltage V]
o 5 o 5T o o
time Js|

A AC terminals over voltage detection
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HEAT RUN TEST

Heat Run Test platform

> Custom made GUI Experimental

> Monitoring and setting main variables/parameters setup

> Logging function GUI

> Simulink-based programming

» FOL communication to each SM S-branch

$ MMC-branch

Main i S
controller
SM

S-branch MMC-branch
| el ipt SM1s

Z§ Taa) |

° ° 2

i
(S SM4 @

800V

4 -g

o — 1

g

d

Electrical 220V :
scheme e ¢

A MMC mini-RT-HIL A MMC testing platform detail
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MODULAR MULTILEVEL CONVERTERS

Single MMC ratings:
> 3.3kVac
> £5kV
> 250kW

Single MMC as:
> \oltage source

> Source source

Two MMCs in:
> Series connection

> Parallel connection

terminal phase-leg 1 phase-leg 2 phase-leg 3 inductor
cabinet cabinet cabinet cabinet cabinet
[ = 1
== P i o ey
2 | OO0 | Coo0) | COojie i |
Hicsanllc=aajj===x Il L1)) b
12 | D000 ) CO00 | ([Ooo0)
| E = ‘ f N
g & 5%%)_/,_@400%(;
w | g = — >
HHEEEEE= P‘W\ = icz
2 | OO0 | OOo0) | Cooojry — branch
Hi=sasllIssaa)i==am] I LT G hatews
L] o000 | 5000 | [pO00)

—#]

4

—+mmcz(d)| —#mmcz()

SVS I PVS

— MMCl@H — MMCl@
]

—mmcz(D)| —{mmez()

SCS I PCS

4 Possible configurations with two MMCs

E P F L PELS Webinar

A EPFL PEL - Dual MMC-based MVDC source - layout

A EPFL PEL - Dual MMC-based MVDC source - realized 2 x 250kW system
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MEDIUM VOLTAGE POWER HARDWARE DESIGN

capacitors

Prot. circuitry—
GDs circuitry

F-IGBT module cover

4 pins connector
——Grounding
ASPS circuitry
Act. bal. circ.

A PEL SM - exploded view [15]

E P F L PELS Webinar

Many design considerations

>

>

v

v

v

v

Electrical
Thermal
Dielectric
Mechanical
Integration
Manufacturing

Testing

Control

A EPFL PEL - Dual MMC-based MVDC source - realized 2 x 250kW system

July 3,2024
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MMC DIGITAL TWIN

RT-Box based distributed HIL system
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RT-HIL SYSTEM

System summary [16], [17], [18], [19]
> 6 RT-Boxes - one per Branch of the MMC
> 1RT-Box - Application (AC and DC side)
ACS 800 PEC - ABB Industrial controller
ABB other peripheral control boards

\

—— To_Controller

~<——From_Controller
Adjustment

A\

v

> Integrated into IT cabinet

Adjusted
¢ f control-boards

Interface
board

Branch RT Box

Modelling

4 Transformation of MMC cell into digital twin equivalent system

A Application (Grid) RT Box

Significant effort and customization is needed to establish the RT-HIL system!
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RT-HIL SYSTEM

RT Box Interface board
—— —— |—> COMBI IO [«—
Application [« [:<]
|—> PECMI [«
(8] 8
Branch An <A
1..8 Master le—|—
[T PEC [
(8] 8] T
Branch Bn |[«5 l/—
L.8 Slave !
[T PEC [
[8] (8]
Branch Cn [« 41 ¢
1T L8 —3| Control
—3 HUB
Branch A ] 8>
ranch Ap- < 1.8 Controller
[TTIT
8] 8 ——— POF - UART
Branch Bp [« - 1.8 ——— Ethernet
[TTTIT SEP
8] 8] ——— POF - ML
Branch Cp 1« - s ——— POF - MLDL
‘ ’ ' ‘ ‘ I T = Electrical
1- Grid RT Box Ethernet
2 - Interface board g switch
3 - Branch RT Box Front Rear 1 - Master PEC 2 - Slave PEC 3 - CHUB
4 - Adjusted control cards D A > 4 - PECMI 5 - COMBI I0
PC

4 Digital Twin - Realized RT-HIL system for control verification purpose: (left) front view; (middle) wiring scheme; (right) back view.
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RT-HIL TOOLS

%"% Optic fiber =8 Controller, IGBT driver H sicdrier |
Cell] { ¥ - Y
8 e J}
C )-M" Cell] DChus |
@l o Fuse [ | : LIRS
o &7§ LT 1 il = 1 ‘
= T o« il w
ST LU J
Insulation i
8 E] Barrier thmg;
e J
2 T =
(<} el 1PT link Aux. power supply, sampling, and bus bar
4 Analogue simulator: LV PETT vs. MV PETT A Grid emulator: RT-HIL system and power HW under development (Semikron-Danfoss IGBTs, WOLFSPEED SiC MOSFETs)

RT-HIL tools are great asset to de-risk development and validate control software!
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DIRECT CURRENT
TRANSFORMER

EMPOWER-in the MVDC power distribution networks
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EMPOWER - AN EUROPEAN RESEARCH COUNCIL CONSOLIDATOR GRANT

MVDC Grids DC-DC Conversion DC Protection
e‘rc > DC Transformer > Resonant principles » HV semiconductors
. ENERGY CONVERSION TECHNOLOGIES AND SYSTEMS > Flexibility > Medium frequency conversion > Active protection

4 EMPOWER-ing the future energy systems > Stability > Absence of the control loops > Selectivity

AC

AC-1 DC-1

DC

‘s

C-2 bC | | DC-2
X | X
4 4
VAC—4 VAC-S - | VL)C—S | VDC -4

DC

State of the art Scope of the EMPOWER project

A Today’s AC and tomorrow’s DC power distribution networks enabled by DC Transformers A The EMPOWER - Holistic and Integrated

Can we make a simple DC Transfomer behaving as close as possible to an equivalent AC transformer?
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DIRECT CURRENT TRANSFORMER

Key details
> IMW, BkHz, 5kV-10kV

» 3L-NPC + split-capacitors legs °
» Resonant conversion
> 4.5kV and 10kV IGCTs — _—

- T MFT = «
> Nanocrystalline MFT core - Lo}
> Copper pipes as winding (oil insulated) é ‘ 6

@) O

] o

o—4 ———o0

A |GCT based DC Transfomer

IGCT voltage
IGCT current

0 0.25 0.5 0.75 1
Time (periods)

4 Direct Current Transformer demonstrator 4 Typical waveforms experienced by IGCT during operation
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POWER SEMICONDUCTOR: IGCT

Objectives

» BkHz switching frequency

» Benefit from low conduction loss

> Benefit from ZVS

» Remove clamp circuit

commercial unit

A Commercial vs SOFTAGE gate unit [20]

Clamp Circuit

SOFTGATE unit

A Clamp circuit for hard switching operation

EPFL v

cathode cathode

i gate n

Asymmetric IGCT Reverse Conducting (RC)-IGCT

A State-of-the-art IGCT device types [21].

te

concentration

cathode

IGCT
e c

anode

GCT anode

o0 el
cathode gate cathode 5293‘ diode anode

nt

diode cathode

separation region

20

cathode segments
b; S
/ “

gate contact region

Slow IGCT < 125Hz

cathode

)

gate

cathode
o

Reverse Blocking (RB)-IGCT

2 StakPak IGBT (SPT+]
A £ S A AT

V=15V

Cy=104F Req=8.20
R=0.620 Fast IGCT >350Hz | Cee=330nF

L=300nH 5SHY 4014511 L5=200nH

4
VT (V)

A |GCT vs. IGBT. Plasma distribution (conduction); technology curve at 2.8kV, 2kA, 125°C [21].

July 3,2024
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GATE DRIVERS

SOFTGATE IGCT gate unit
> Turn-ON function

> Retrigger function

» Backporch function

> Negative-Voltage Backporch functions

Main Supply Doubler ON Stage OFF Channel
20V

Y
ol e

ry T ov S Smz

[

4 Simplifed SOFTGATE circuitry

3

EMI Filter

Isolated Power Supply

Fibrs Optics

A Realized SOFTGATE gate unit [22] A SiC MOSFET dual gate drivers: 17kV class [23], and 3.3kV class [24]
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IGCT: ZVS VERSUS ZCS?

60 o
© o
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= 40 |- Loq.
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=k Ny
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my 20 OCb }
0 ]
@
0 | %%ON>'®?%m%%%§m
60
o
— - T
g 400 OooO%oo O%Q)OOOOO% e !
5 OO
? - OGO’)C@JL
5 20
0
120 —
o
= 0 o OO i
= |
E oy,
3 %OO%O Qb%oo —
oF 40 - L
clsve IRl
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LrlA]

A Parametric sweep with different dead-times of 0 10 us, 0 12 ps, and o 14 ps, respectively [25]

E P I- I PELS Webinar July 3,2024

> Dead-time - from 10 usto 14 ys
> Turn-off current -from3Ato 15 A

A Flexible and reconfigurable IGCT test setup [26]
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DESIGN OPTIMIZATION

v

Multi-objective optimization problem
> Multiple competing objectives

> Meeting converter parameters

> Respecting constraints

> Manufacturability

> Atrtificial or Natural Intelligence?

Genetic Algorithm
e

NSGA-II Design

Number of Turms
N

v Source: (https://formlabs.com/ch/)

Neural Networks

> ANN must be trained somehow

» Measurements, simulations, FEM, datasheets

Spec. / Obj.

Learning Alg.

Design Results

.

‘Winding and Core Losses
PP

s

Ratings
Topology
Excitation
Cost / loss

Mass / volume
Reliability

Blackbox / greybox model
No direct physical meaning

S S |

]
J g

4 Design flowchart using NSGA-Il algorithm [27]

E P F L PELS Webinar

papers, etc.)

Training Data (;

NP

(s 3

A |nductor design with the help of ANN [28]

July3,2024

Brute Force

» Exhaustive search concept
> All possible combinations
» Computationally intensive

> Easy toimplement

4 10’000 combinations
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MEDIUM FREQUENCY TRANSFORMERS

— 0% ——20% 40% ——60% ——80% 100%

00

200
100

e
-100 \/

1 [A]

-300)
0 20 40 60 80 100 120 140 160 180 200
tlus]

A Core, 100kW, 10kHz, Ferrite MFT [29], [30], [31] A Planar, 100kW, 10kHz, Nanocrystalline MFT 4 Core, 300kW, 20kHz, Nanocrystalline MFT
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1MW MFT PROTOTYPE

A B c D M,

256 mm 318 mm 232mm ~ 324 kg

4 MFT cores during assembly.
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1MW MFT PROTOTYPE

Pipe windings assembly:

> Copper hollow conductors, made by Luvata [34]
» Spacers made of thermoplastic POM material

> Oil vessels from Etronit | and B66, produced by
Elektro-Isola [35]

> Midel 7131[36] insulation fluid used
> Air pockets in each vessel for oil expansion

> Air breathers with silica gel to keep moisture away

4 Winding assembly details
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1MW MFT PROTOTYPE

Ty T T - 4 7 4 /?;"/r' T i o
e A i ! v/ L)

4 1MW prototype of the 2-vessel MFT structure A Fully assembled prototype of the 2-vessel MFT
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DCT FEATURES

DCT L
DC Vs
/_L:__l/ _’ - Cdc,z
DC ; ?
T

30F ]
15
0 —

c el @ d)

@

1

[
=

<04  -03 -02 -0.1 0 0.1 0.2 03 -0.8-0.7-0.6 -0.5-0.4 -0.3 -0.2-0.1 0 0 0.1 0.2 0.3 04 050 0.1 02 03 04 05 0.6 0.7 0.8
Time (5) Time (ms) Time (ms) Time (ms)

(a) (b) © (d)

4 Experimental results during the power reversal A Two low voltage DCTs for experimental validations (PEL's MFTs)

Scaled-down DCT prototypes are used due to their availability in the lab.
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MVDC RT-HIL POWER DISTRIBUTION NETWORK

5KV | DCC}
(23 e
AC bC AC
g HE -
DC DC bC
L= BC
15 20 16 l//:/
5KV S
@ -~ B T
19 DC
w7 | L
I bC
HJ DC
17 18 c| —igg 10KV I {:}
08
B b —T23 AC
TV
HJDC HJ{Jc é—,)s kv 109
04 05 21 21 DC /Jj
- 7
/Jﬂ DC
DC o7
~ o6
10 kV
O
_0 __ 02 03
AC~ DC {:} DC {:}
DC AC AC

4 MVDC PDN deployed on the RT-HIL system

E P F L PELS Webinar

Application

DSP GCC
DSP MOT

DSP GCC

Central

DSP GCC
DSP MOT

DSP GCC
DSP MOT

DSP GCC
DSP MOT

DSP GCC

——— CAN
Ethernet

—— SFP
UsB

4 8xRTBox1+1xRTBox3

July 3,2024

A MVDC PDN RT HIL system
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SUMMARY
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POWER ELECTRONICS DOMINATED POWER SYSTEM
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MEDIUM VOLTAGE RESEARCH AT UNIVERSITY

Ecole Polytechnique School of
Fédérale de Lausanne Engineering

EPFL — STI — IEM — PEL

Institute of
Electrical
and Micro
Engineering

Few things to consider:
» Good infrastructure is a must - Investment of money
> Safety must be ensured - Investment of time
> Mechanical Design - Often more important than the Electrical design
> Dielectric Design - Insulation Coordination, Safety
> Electrical Design - Power Density is not a key here
» Thermal Design - Many technologies are available
> Control development - RT HIL tools are great asset
> It takes time, money and a lot of patience...

4 Medium Voltage Power Electronics Laboratory
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THANK YOU FOR YOUR ATTENTION

The webinar pdf can be downloaded from:
> https://www.epfl.ch/labs/pel/publications-2/publications-talks/
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