

MEDIUM VOLTAGE POWER ELECTRONICS RESEARCH: CHALLENGES AND OPPORTUNITIES

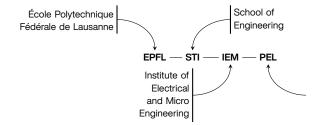
Prof. Dražen Dujić

École Polytechnique Fédérale de Lausanne (EPFL) Power Electronics Laboratory (PEL) Switzerland

INTRODUCTION

Non technical one...

2014 – today	École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland	
2013 - 2014	ABB Medium Voltage Drives, Turgi, Switzerland	
2009 - 2013	ABB Corporate Research, Baden-Dättwil, Switzerland	
2006 - 2009	Liverpool John Moores University, Liverpool, United Kingdom	
2003 - 2006	University of Novi Sad, Novi Sad, Serbia	


Education

Experience

2008 PhD, Liverpool John Moores University, Liverpool, United Kingdo
--

- 2005 M.Sc., University of Novi Sad, Novi Sad, Serbia
- 2002 Dipl. Ing., University of Novi Sad, Novi Sad, Serbia

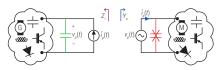
POWER ELECTRONICS LABORATORY AT EPFL

- Active since February 2014
- Typically: 10-12 PhDs, 2-4 Post-Docs, 1 Eng, 1 Ass.
- ► Funding CH: SNSF, SFOE, Innosuisse
- ► Funding EU: H2020, S2R JU, ERC CoG
- Funding: Industry OEMs
- www.epfl.ch/labs/pel/

Competence Centre

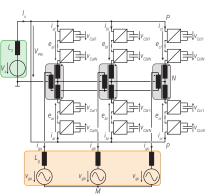
Power Electronics Laboratory

P PELS Webinar

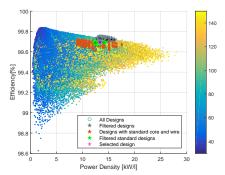

PEL RESEARCH FOCUS

MVDC Technologies and Systems

- System Stability
- Protection Coordination
- Power Electronics Converters



High Power Electronics Converters


- Multilevel Converters
- Solid State Transformers
- Medium Frequency Conversion

Components

- Semiconductors
- Magnetics
- Modeling, Characterization, Optimization

MEDIUM VOLTAGE APPLICATIONS

...and the role of the power electronics

MEDIUM VOLTAGE AC DRIVES

Traditional MV application

- $\approx 65\%$ of electricity goes into motors
- Efficiency gains with VSD
- ► Flexibility
- Standardized voltages

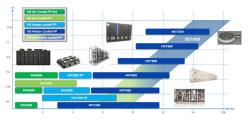
Typical ratings

- 1kV to 36kVac
- ▶ up to hundreds of MW

Industry segments

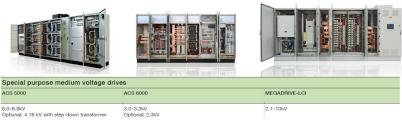
- Cement
- Oil and gas
- Marine and offshore
- Metals
- Mining
- Marine
- Power
- Pulp and paper
- Water and wastewater
- ▶ ...

▲ Source: ABB


MEDIUM VOLTAGE AC DRIVES

Continuous evolution since 80's:

- ► Topologies: NPC, FC, NPP, ANPC, CHB, MMC
- Semiconductors: SCR, GTO, IGCT, IGBT, (SiC?)
- ▶ **PWM:** SHE, OPP, SVPWM
- ► Control: Scalar, RFOC, DTC, MPC
- Type: Majority is VSI; few CSI



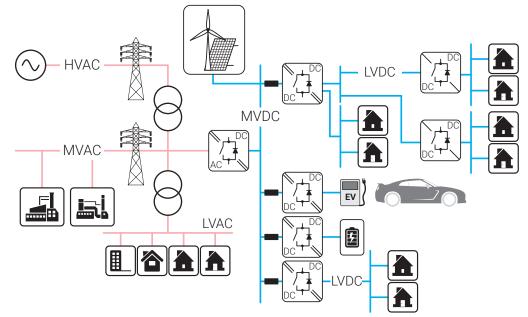
	General purpose medium voltage drives			
Туре	ACS 1000	ACS 2000	ACS 5000	
	2.3 / 3.3 / 4.0 / 4.16kV Optional: 6.0 / 6.6kV with step-up transformer		6.0–6.9kV Optional: 4.16 kV with step-down transformer	

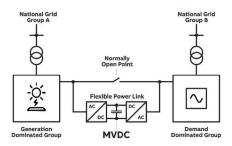
▲ Source: GE MV Drives

MV Drives Product Map

▲ Source: ABB MV Drives

▲ Source: SIEMENS Sinamics MV Drives


POWER ELECTRONICS DOMINATED POWER SYSTEM



A modern power system with many Inverter Based Resources (IBR) as DC technologies

POWER GRIDS

Soft-Open Point (MVDC)

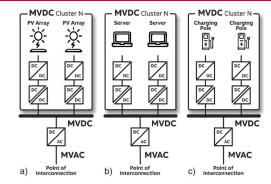
- Connecting two AC grids (asynchronous)
- Short links substation
- Long links network
- Increasing operational flexibility
- Improving voltage profile
- No increase in short circuit current

▲ Flexible Power Link (FPL), Soft-Open Point (SOP) [1]

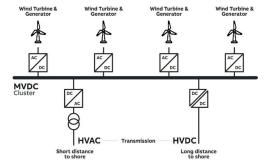
ABB's ACS6000 Medium Voltage drive with 5kV DC link

ABB's ACS6000 multi-drive line up - around 33 meters long - modular design done 20 years ago!

PELS Webinar


POWER GRIDS

MVDC Collection Networks

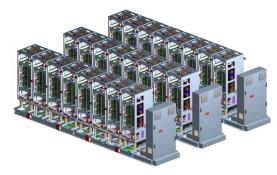

- MVDC collection
- Voltage level case by case
- Efficiency driven
- Off-shore / On-shore
- AC-DC and DC-DC converters needed

Assembly of 10 MMC full-bridge submodules - Building Blocks!

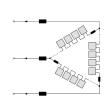
MVDC collection networks for a) PV generation; b) high power Data Centers and c) Fast EV Charging [1]

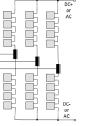
MVDC collection network for wind application [1]

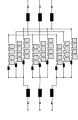
ΞPF


MODULAR MULTILEVEL CONVERTER

IGCT-based MMC


- Versatile hardware platform
- ► Half-Bridge/Full-Bridge
- Direct MMC for Hydropower CFSM
- Rail Inter-ties (3-ph to 1-ph)
- ► STATCOM





A HITACHI ENERGY: MV MMC layout: Source: M. Vasiladiotis,"DMMC for CFSM", PELS online workshop

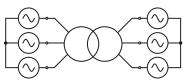
STATCOM, Flicker

Rail, MVDC, Energy Storage Pumped Hydro, Grid Interties

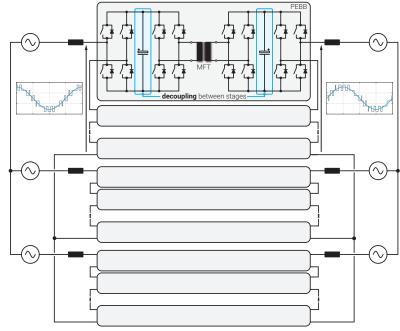
▲ HITACHI ENERGY: MV MMC Applications: Source: M. Vasiladiotis,"DMMC for CFSM", PELS online workshop

P P PELS Webinar

SOLID STATE TRANSFORMER


SST is just another converter

- Galvanically Isolated Modular Converter
- Power Electronic Building Blocks (PEBBs)
- Medium frequency transformer (MFT) for isolation
- Can be designed for any conversion
- ► AC-AC, AC-DC, DC-DC, DC-AC
- Endless topological variations


Conventional Transformer vs. SST

	Grid Tx	SST
Controlability	No	Yes
Efficiency	$\eta \ge 99\%$	$P_{?}$
Q compensation	No	Yes
Fault tolerance	No	Yes
Size	Bulky	Compact
Cost	Low	High

Direct comparison makes not much sense!

Conventional AC grid transformer

▲ Solid-State Transformer interfacing two AC systems [2], [3]

POWER ELECTRONICS TRACTION TRANSFORMER (ABB)

Characteristics

- I-Phase MVAC to MVDC
- Power: 1.2MVA
- Input AC voltage: 15kV, 16.7Hz
- Output DC voltage: 1500 V
- 9 cascaded stages (n + 1)
- Input-Series Output-Parallel
- Double stage conversion

99 Semiconductor Devices

- HV PEBB: 9 x (6 x 6.5kV IGBT)
- LV PEBB: 9 x (2 x 3.3kV IGBT)
- Bypass: 9 x (2 x 6.5kV IGBT)
- Decoupling: 9 x (1 x 3.3kV Diode)

9 MFTs

- Power: 150kW
- Frequency: 1.75kHz
- Core: Nanocrystalline
- Winding: Litz
- Insulation / Cooling: Oil

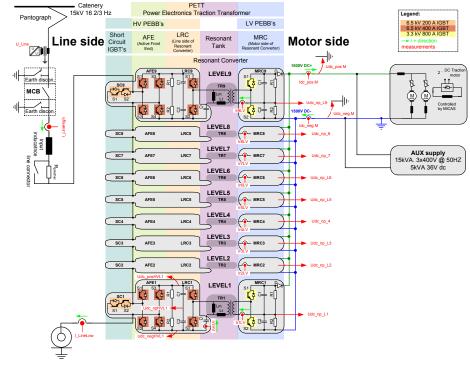
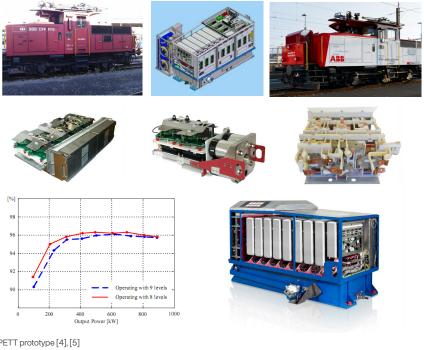


ABB PETT scheme [4], [5]

PETT DESIGN

Retrofitted to shunting locomotive


- Replaced LFT + SCR rectifier
- Propulsion motor 450kW
- 12 months of field service
- No power electronics failures
- Efficiency around 96%
- ▶ Weight: ≈ 4.5 t

Technologies

- ► Standard 3.3kV and 6.5kV IGBTs
- De-ionized water cooling
- Oil cooling/insulation for MFTs
- n+1redundancy
- IGBT used for bypass switch

Reality

- No product development
- No early adopters
- No customers
- No business case

▲ ABB PETT prototype [4], [5]

PELS Webinar

SOLID STATE TRANSFORMERS

UNIFLEX-PM

▲ Reduced scale prototype

HUST

▲ Reduced scale prototypes [7]

▲ Reduced scale prototypes

XD Electric Company

▲ Full scale prototype

DELTA

GE

▲ Full scale prototype [6]

- ▲ Full scale prototype [8]

HEART (Kiel)

▲ Full scale prototype [9]

▲ Full scale prototype

Ann

SOLID STATE TRANSFORMERS

UNIFLEX-PM

Reduced scale prototype

FREEDM

HUST

▲ Reduced scale prototypes [7]

Reduced scale prototypes

EMPOWER (EPFL)

▲ Full scale prototype

GE

▲ Full scale prototype [6]

▲ Full scale prototype [8]

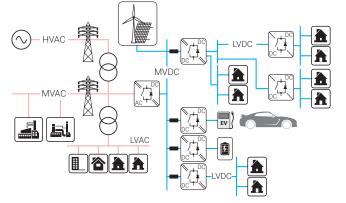
XD Electric Company

HEART (Kiel)

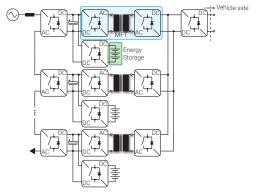
▲ Full scale prototype [9]

▲ Full scale prototype

SST is an attractive research topic and many technology gaps need to be addressed before it becomes the commercial reality!

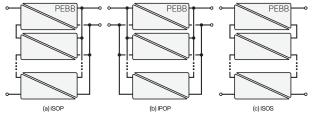


HIGH POWER DC-DC CONVERTERS

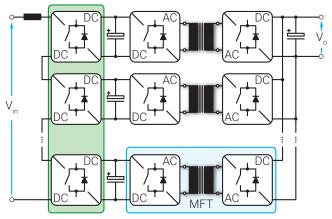

- Inherent building block of most SST topologies
- Interface between different MVDC levels
- Enabling technology for MVDC
- Integration of renewable DC energy sources
- Integration of Fast / Ultra Fast EV charging
- Medium Frequency conversion

▲ Employment of a DC-DC SST within RES-based systems

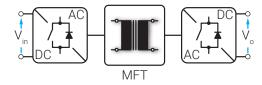
▲ Concept of a modern power system



▲ Fast EV charging concept


DC-DC SST

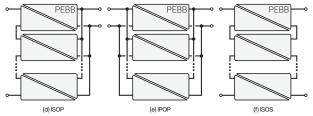
Fractional Power Processing


- Multiple MFTs
- Equal power distribution among PEBBs
- MFT isolation cost?
- Various PEBB configurations

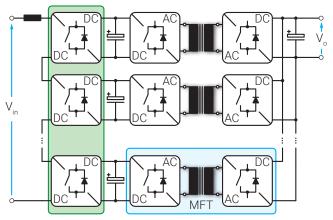
▲ Different and well known structures for modular designs

Fractional power processing with ISOP structure

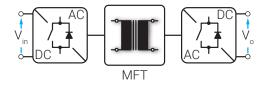
Bulk power processing concept


Bulk Power Processing

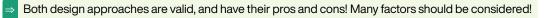
- Single MFT
- Isolation problem solved only once
- Various configurations/operating principles


DC-DC SST

Fractional Power Processing


- Multiple MFTs
- Equal power distribution among PEBBs
- MFT isolation cost?
- Various PEBB configurations

▲ Different and well known structures for modular designs



Fractional power processing with ISOP structure

- Bulk Power Processing
 - Single MFT
 - Isolation problem solved only once
 - Various configurations/operating principles

Bulk power processing concept

PELS Webinar

MEDIUM VOLTAGE RESEARCH

...and how to do it at the University

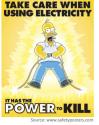
Doable with careful and strategic planning

- Infrastructure surface and volume
- Protection of personnel and equipment
- Safety of personnel
- Training of personnel
- Patience of everyone involved
- Funding a lot of it

PEL Low Voltage and Medium Voltage switchgear

Testing Infrastructure (2)

- Significant Planning and Realization Effort
- Power Supply / Cooling / Control / Simulation (Integrated)



Considerable Investment (I)

Large Space & Infrastructure Requirement / Considerable Investment (I) Remark: Education and MV Power Electronics

- PhD Students are Missing Practical Experience / Underestimate the Risk
- High-Power-Density Power Electronics Differs from Conventional (Passive) HV Equipment
- Very Careful Training / Remaining Question of Responsibility

High Costs / Long Manufacturing Time of Test Setups

- Complicated Testing Due to Safety Procedures → Lower # of Publications/Time
- ▲ Source: PES, ETH

PELS Webinar

Versatile and Flexible Infrastructure

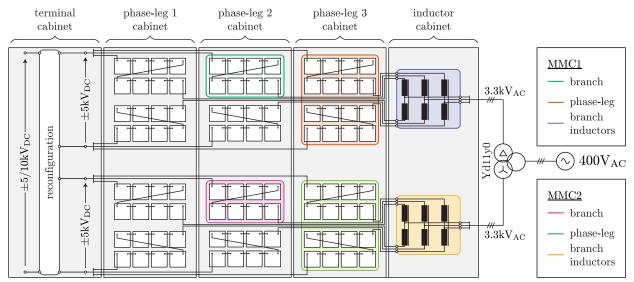
- AC voltages: up to 3.3kV, 6kV, 9kV, 11kV, 15kV, 20kV
- DC voltages: up to \pm 5kV, \pm 10kV
- MV electrical machines: IM, SM, DFIM (0.5MW, 6kV)
- PD test setup (100kV, 200mA)
- LVAC and LVDC power distribution
- Distributed and mobile cooling systems

MV Power Electronics Laboratory

MV Power Electronics Laboratory

ΞPF

MMC RESEARCH PLATFORM


High power university lab prototype and versatile HIL system

DUAL MMC MVDC SUPPLY


MMC demonstrator ratings are:

- ▶ 500 kVA (2 x 250 kVA)
- $\pm 10 \text{ kV}_{dc} \leftrightarrow 2 \times 3.3 \text{ kV}_{ac}$
- ▶ 8 low voltage cells per branch \Rightarrow 16 cells per MMC phase \Rightarrow 48 cells in total per MMC
- ▶ Industrial central controller and communication (ABB AC PEC 800)

Flexible Dual MMC Power Supply

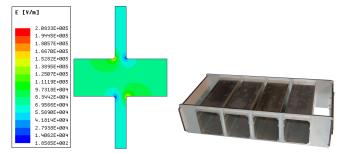
DIELECTRIC DESIGN - INSULATION COORDINATION (I)

Zone 1 (ins. coord. inside a SM's enclosure) system voltage: $1 \rm kV_{ac}$

Zone 2 (ins. coord. branch)

- Horizontal system voltage: 1kV_{ac}
- Vertical system voltage: 3.6 kV_{ac}

Zone 3 (ins. coord. branch - cabinet (at GND)) system voltage: 6.6 $\rm kV_{ac}$

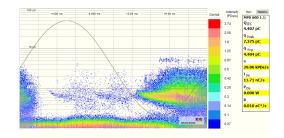

Zone 4 (ins. coord. for LV circuits) system voltage: $0.4\,kV_{ac}$

Standards

- UL840 for cell PCB (< 1kV)
- IEC61800-5-1 (AC motor drives)
 - Pollution degree 2: "Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation is to be expected, when the PDS is out of operation."
 - Overvoltage category II: "Equipment not permanently connected to the fixed installation. Examples are appliances, portable tools and other plug-connected equipment."

Zone 2

- Box at dc- cell's potential (floating)
- Box corner radius: 3 mm
- MKHP (high CTI material) drawer holding 4 cells

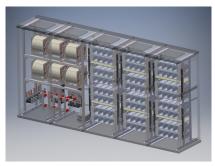

E-field FEM simulations for drawer design

DIELECTRIC DESIGN - INSULATION COORDINATION (II)

- $\checkmark~$ MV MMC converter laboratory prototype layout compliant with:
 - UL840 (for cell)
 - IEC 61800-5-1
- $\checkmark~$ Complete AC dielectric withstand tests on real prototype [10]

▲ Cabinet with 32 cells in Faraday cage during insulation coordination testing

AC dielectric withstand test result

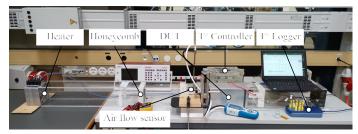


Drawer holding 4 cell (MKHP material)

PELS Webinar

ΞPF

MECHANICAL DESIGN



MMC CAD development

MMC - Actual mechanical assembly

▲ MMC coupled air-core branch inductors

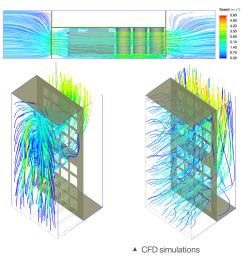
▲ MMC Submodule thermal heat-run test setup [11]

PELS Webinar

EPF

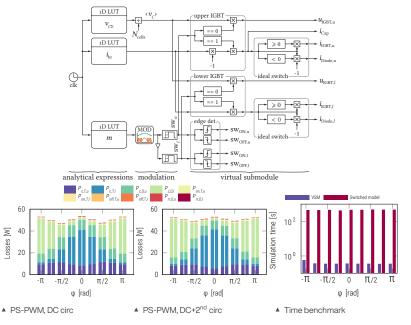
MMC SUB-MODULE

Low voltage based sub-module including cell controller


SUB-MODULE OPTIMIZATION

Submodule

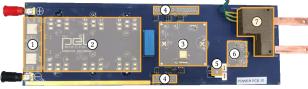
- 1.2 kV / 75 A full-bridge IGBT module
- $C_{cell} = 2.25 \,\mathrm{mF}$


Thermal design [12]

- ► Cell level: detailed FEM
- Cabinet level: simplified FEM

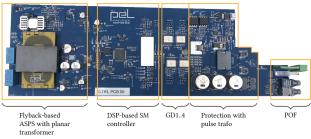
Semiconductor losses

- Virtual Submodule concept has been utilized [13]
- Closed-loop waveforms are approached by analytical waveforms

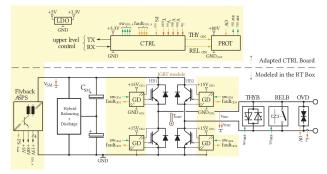


ΞP

SUB-MODULE


Key Features

- Low voltage power components
- Semikron full-bridge IGBT module 1.2 kV/75 A
- Bank of electrolytic capacitors C_{sm} = 2.25 mF
- Protection devices: Bypass thyristor, Relay and OVD
- ► Two interconnected PCBs: Power PCB and Control PCB
- Metalic enclosure



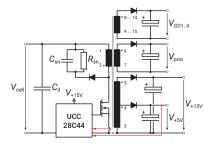
- 1 Balancing Circuitry 2 - SM Capacitors
- 3 IGBT Module 5 - Current Sensor 4 - Voltage Dividers
- 7 Bypass Relay 6 - Thyristor Module

Overview of the Power PCB

Overview of the Control PCB

MMC Sub-module Structure: Yellow parts - Control PCB

Developed MMC FB sub-module based on the 1.2kV IGBTs

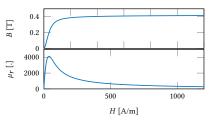

AUXILIARY SUB-MODULE POWER SUPPLY (I)

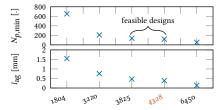
Possible concepts

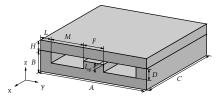
- Externally supplied
 - Single wire loop
 - Siebel, GVA
 - Inductive Power Transfer
- Internally supplied
 - DC-DC step down of some sort
 - Flyback

Choice

Flyback with 6 isolated secondaries

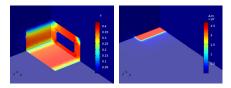


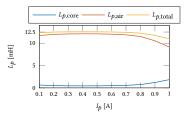

Planar design [14]


- PCB windings (isolation requirements!)
- Planar ferrite cores with custom gapping (COSMO ferrites)

Matlab design tool

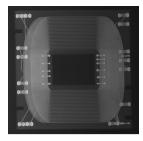
- Account for flux fringing
- ► BH curve for CF297
- Jiles-Atherton parametrization

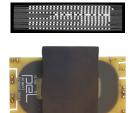




FEM

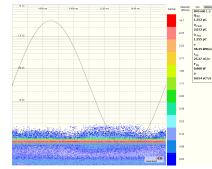
- Validate Matlab design
- 3D model for accurate leakage flux

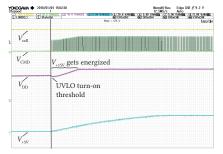



EΡ

AUXILIARY SUB-MODULE POWER SUPPLY (II)

Transformer assembly

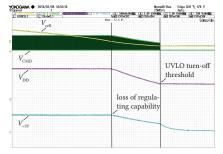

- ► 14 copper layers PCB
- Custom gapped ferrite E+I core



AC dielectric withstand test

Way below threshold level of 10pC

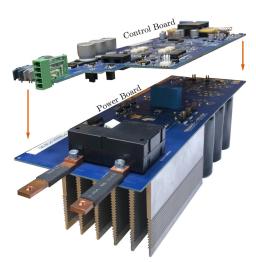
Tests



▲ Start-up

ΞP

▲ Steady-state operation


Shut-down sequence

MMC SUB-MODULE TESTING

How to validate hardware and software?

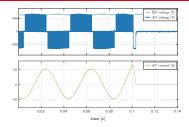
MMC SUBMODULES

▲ In-house built MMC submodule

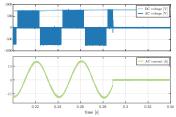
Production of the MMC cells

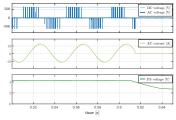
120 MMC Submodules are produced in total

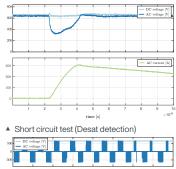
Each and every unit must be thoroughly tested!!!

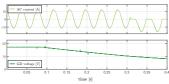

FUNCTIONAL SUBMODULE TESTS

Extensive testing of every sub-module

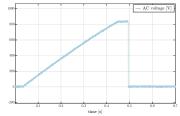

- Power tests
- Thermal heat-runs
- Over current tests
- Loss of power supply
- DC link over voltage
- Terminal over voltage
- Short-circuit tests
- ▶ ...


▲ Developed MMC FB sub-module


MMC SM over current test



MMC SM over voltage test



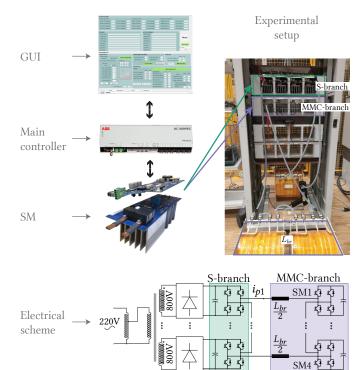
Power supply under voltage detection

▲ Gate Driver failure

AC terminals over voltage detection

PELS Webinar

FΡ


HEAT RUN TEST

Heat Run Test platform

- Custom made GUI
- Monitoring and setting main variables/parameters
- Logging function
- Simulink-based programming
- FOL communication to each SM

▲ MMC mini-RT-HIL

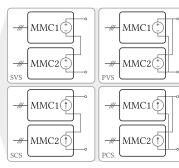
MMC testing platform detail

PELS Webinar

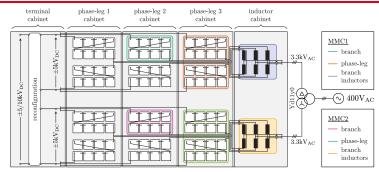
MODULAR MULTILEVEL CONVERTERS

Single MMC ratings:

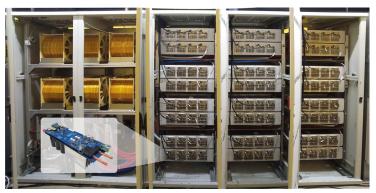
- 3.3kVac
- ► ±5kV
- ▶ 250kW


Single MMC as:

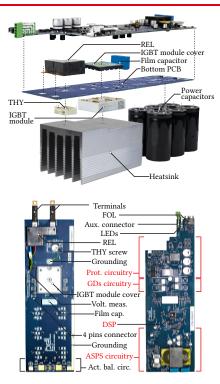
- Voltage source
- Source source


Two MMCs in:

- Series connection
- Parallel connection


MMC1

Possible configurations with two MMCs


EPFL PEL - Dual MMC-based MVDC source - layout

▲ EPFL PEL - Dual MMC-based MVDC source - realized 2 x 250kW system

PELS Webinar

MEDIUM VOLTAGE POWER HARDWARE DESIGN

▲ PEL SM - exploded view [15]

Many design considerations

- Electrical
- Thermal
- Dielectric
- Mechanical
- Integration
- Manufacturing
- Testing
- Control
- ▶ ...

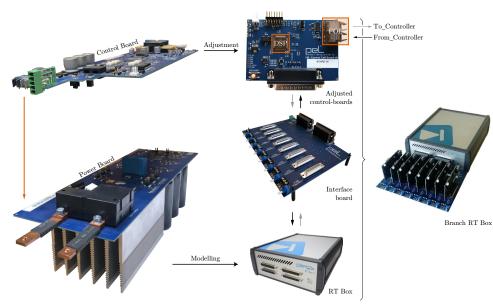
▲ EPFL PEL - Dual MMC-based MVDC source - realized 2 x 250kW system

PELS Webinar

EPF

MMC DIGITAL TWIN

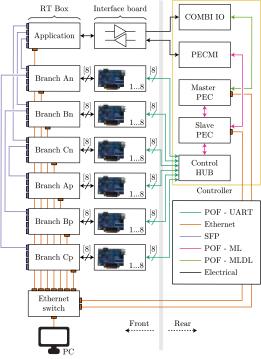
RT-Box based distributed HIL system


RT-HIL SYSTEM

System summary [16], [17], [18], [19]

- 6 RT-Boxes one per Branch of the MMC
- 1RT-Box Application (AC and DC side)
- ACS 800 PEC ABB Industrial controller
- ► ABB other peripheral control boards
- Integrated into IT cabinet

▲ Application (Grid) RT Box


▲ Transformation of MMC cell into digital twin equivalent system

Significant effort and customization is needed to establish the RT-HIL system!

P P PELS Webinar

RT-HIL SYSTEM

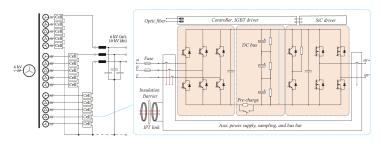
1 - Master PEC 2 - Slave PEC 3 - CHUB 4 - PECMI 5 - COMBI IO

Digital Twin - Realized RT-HIL system for control verification purpose: (left) front view; (middle) wiring scheme; (right) back view.

PELS Webinar

EPEL

RT-HIL TOOLS

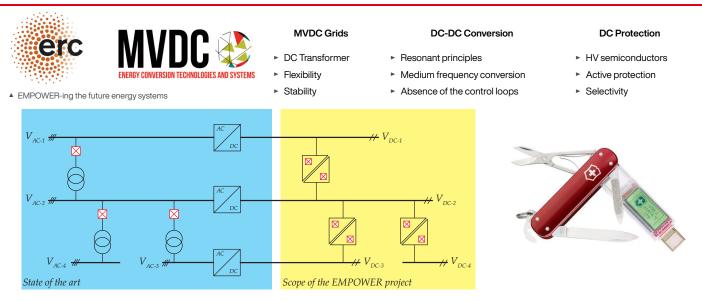


Analogue simulator: LV PETT vs. MV PETT

▲ Grid emulator: RT-HIL system and power HW under development (Semikron-Danfoss IGBTs, WOLFSPEED SiC MOSFETs)

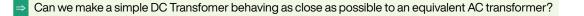
RT-HIL tools are great asset to de-risk development and validate control software!

PELS Webinar


EPF

DIRECT CURRENT TRANSFORMER

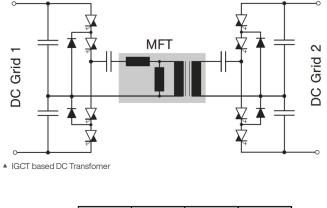
EMPOWER-in the MVDC power distribution networks

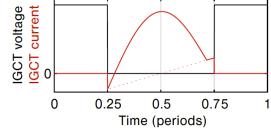


EMPOWER - AN EUROPEAN RESEARCH COUNCIL CONSOLIDATOR GRANT

▲ Today's AC and tomorrow's DC power distribution networks enabled by DC Transformers

▲ The EMPOWER - Holistic and Integrated


DIRECT CURRENT TRANSFORMER


Key details

- 1MW, 5kHz, 5kV-10kV
- 3L-NPC + split-capacitors legs
- Resonant conversion
- ► 4.5kV and 10kV IGCTs
- Nanocrystalline MFT core
- Copper pipes as winding (oil insulated)

Direct Current Transformer demonstrator

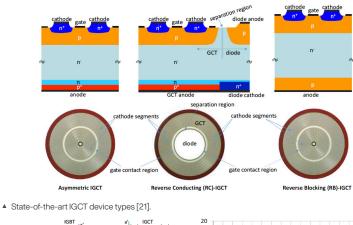
▲ Typical waveforms experienced by IGCT during operation

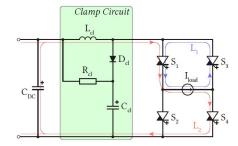
PELS Webinar

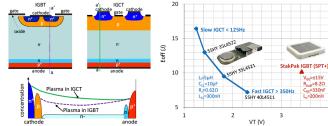
EPF

POWER SEMICONDUCTOR: IGCT

Objectives

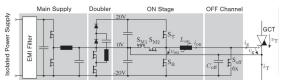

- 5kHz switching frequency
- Benefit from low conduction loss
- Benefit from ZVS
- ► Remove clamp circuit




SOFTGATE unit

▲ Commercial vs SOFTAGE gate unit [20]

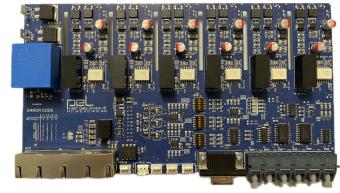
Clamp circuit for hard switching operation


▲ IGCT vs. IGBT. Plasma distribution (conduction); technology curve at 2.8kV, 2kA, 125°C [21].

PELS Webinar

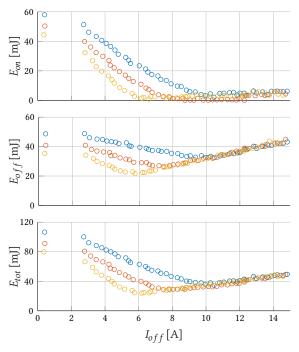
GATE DRIVERS

SOFTGATE IGCT gate unit


- Turn-ON function
- Retrigger function
- Backporch function
- Negative-Voltage Backporch functions

▲ Simplifed SOFTGATE circuitry

▲ Realized SOFTGATE gate unit [22]



▲ 6 channel IGBT gate driver for 3-phase two-level VSI

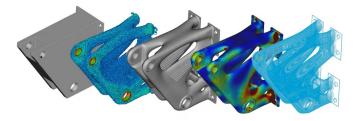
▲ SiC MOSFET dual gate drivers: 1.7kV class [23], and 3.3kV class [24]

ΞP

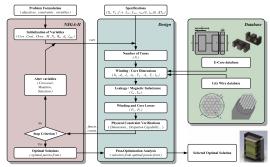
▲ Parametric sweep with different dead-times of o 10 µs, o 12 µs, and o 14 µs, respectively [25]

- Dead-time from 10 µs to 14 µs
- Turn-off current from 3 A to 15 A

▲ Flexible and reconfigurable IGCT test setup [26]

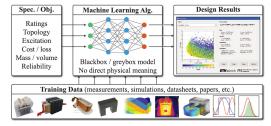

PELS Webinar

EPFL


DESIGN OPTIMIZATION

- Multi-objective optimization problem
- Multiple competing objectives
- Meeting converter parameters
- Respecting constraints
- Manufacturability
- Artificial or Natural Intelligence?

Source: (https://formlabs.com/ch/)

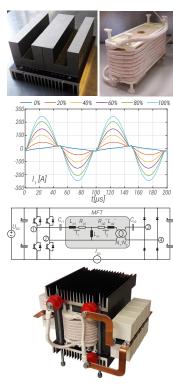

Genetic Algorithm

▲ Design flowchart using NSGA-II algorithm [27]

Neural Networks

- ANN must be trained somehow
- Measurements, simulations, FEM, datasheets

▲ Inductor design with the help of ANN [28]


Brute Force

- Exhaustive search concept
- All possible combinations
- Computationally intensive
- Easy to implement

10'000 combinations

MEDIUM FREQUENCY TRANSFORMERS

Core, 100kW, 10kHz, Ferrite MFT [29], [30], [31]

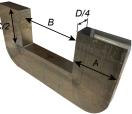
......

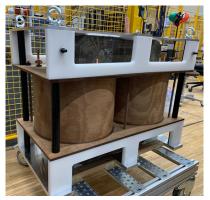
A Planar, 100kW, 10kHz, Nanocrystalline MFT

Core, 300kW, 20kHz, Nanocrystalline MFT

PELS Webinar

EΡ


July 3, 2024


Power Electronics Laboratory | 41 of 51

1MW MFT PROTOTYPE

Α	В	С	D	M_{c}	
140 mm	256 mm	318 mm	232 mm	\approx 324 kg	
			C/2	B	D/4

▲ Nanocrystalline C-cut cores - Hitachi Metals [32]

▲ Full-scale prototype of the 2-vessel MFT [33]

MFT cores during assembly.

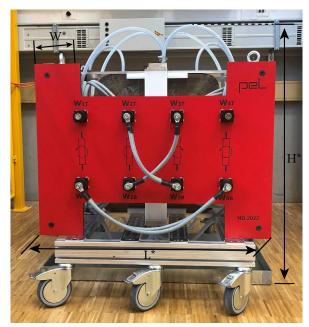
EPF PELS Webinar

1MW MFT PROTOTYPE

Pipe windings assembly:

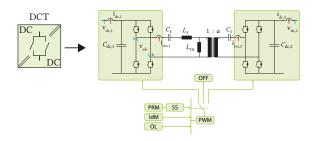
▲ Winding structure with the hollow pipe conductors

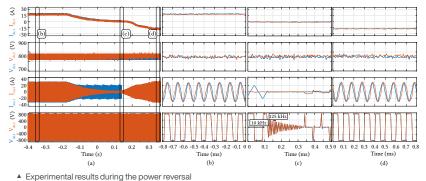
- Copper hollow conductors, made by Luvata [34]
- Spacers made of thermoplastic POM material
- Oil vessels from Etronit I and B66, produced by Elektro-Isola [35]
- Midel 7131 [36] insulation fluid used
- Air pockets in each vessel for oil expansion
- Air breathers with silica gel to keep moisture away

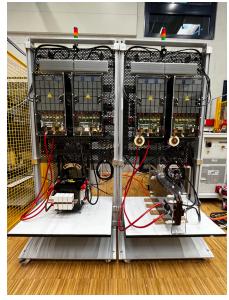


Winding assembly details

1MW MFT PROTOTYPE

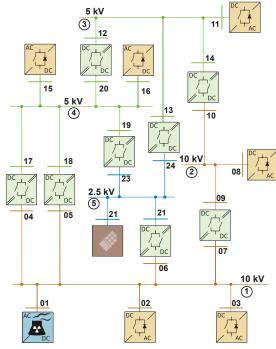

▲ 1MW prototype of the 2-vessel MFT structure

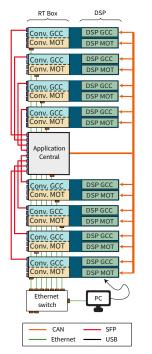

▲ Fully assembled prototype of the 2-vessel MFT


EPFL PELS Webinar

DCT FEATURES

A Power Reversal Algorithm with Soft Start, Idling Mode, Overload protection




[▲] Two low voltage DCTs for experimental validations (PEL's MFTs)

Scaled-down DCT prototypes are used due to their availability in the lab.

MVDC RT-HIL POWER DISTRIBUTION NETWORK

MVDC PDN deployed on the RT-HIL system

▲ 8 x RT Box 1+1 x RT Box 3

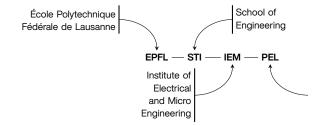
▲ MVDC PDN RT HIL system

EPEL PELS Webinar

Power Electronics Laboratory | 46 of 51

SUMMARY

POWER ELECTRONICS DOMINATED POWER SYSTEM



EPEL PELS Webinar

MEDIUM VOLTAGE RESEARCH AT UNIVERSITY

Few things to consider:

- Good infrastructure is a must Investment of money
- Safety must be ensured Investment of time
- Mechanical Design Often more important than the Electrical design
- Dielectric Design Insulation Coordination, Safety
- Electrical Design Power Density is not a key here
- Thermal Design Many technologies are available
- Control development RT HIL tools are great asset
- It takes time, money and a lot of patience...

Medium Voltage Power Electronics Laboratory

PELS Webinar

BIBLIOGRAPHY

- [1] Juergen K. Steinke et al. "MVDC Applications and Technology." PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2019, pp. 1–8.
- [2] S. Inoue and H. Akagi. "A Bidirectional Isolated DC-DC Converter as a Core Circuit of the Next-Generation Medium-Voltage Power Conversion System." IEEE Transactions on Power Electronics 22.2 (Mar. 2007), pp. 535–542.
- [3] Johann W Kolar and Gabriel Ortiz. "Solid-state-transformers: key components of future traction and smart grid systems." Proc. of the International Power Electronics Conference (IPEC), Hiroshima, Japan. 2014.
- D. Dujic et al. "Power Electronic Traction Transformer-Low Voltage Prototype." IEEE Transactions on Power Electronics 28.12 (Dec. 2013), pp. 5522–5534.
- [5] C. Zhao et al. "Power Electronic Traction Transformer-Medium Voltage Prototype." IEEE Transactions on Industrial Electronics 61.7 (July 2014), pp. 3257–3268.
- [6] M. K. Das et al. "10 kV, 120 A SiC half H-bridge power MOSFET modules suitable for high frequency, medium voltage applications." 2011 IEEE Energy Conversion Congress and Exposition. Sept. 2011, pp. 2689–2692.
- [7] A. Q. Huang. "Medium-Voltage Solid-State Transformer: Technology for a Smarter and Resilient Grid." IEEE Industrial Electronics Magazine 10.3 (Sept. 2016), pp. 29–42.
- [8] D. Wang et al. "A 10-kV/400-V 500-kVA Electronic Power Transformer." IEEE Transactions on Industrial Electronics 63.11 (Nov. 2016), pp. 6653–6663.
- [9] Xiaodong Zhao et al. "DC Solid State Transformer Based on Three-Level Power Module for Interconnecting MV and LV DC Distribution Systems." IEEE Transactions on Power Electronics 36.2 (2021), pp. 1563–1577.
- [10] A. Christe, E. Coulinge, and D. Dujic. "Insulation coordination for a modular multilevel converter prototype." 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). Sept. 2016, pp. 1–9.
- [11] I. Polanco and D. Dujic. "Thermal Study of a Modular Multilevel Converter Submodule." PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2020, pp. 1–8.
- [12] E. Coulinge, A. Christe, and D. Dujic. "Electro-Thermal Design of a Modular Multilevel Converter Prototype." PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. May 2016, pp. 1–8.
- [13] A. Christe and D. Dujic. "Virtual Submodule Concept for Fast Semi-Numerical Modular Multilevel Converter Loss Estimation." IEEE Transactions on Industrial Electronics 64.7 (July 2017), pp. 5286–5294.
- [14] A. Christe et al. "Auxiliary submodule power supply for a medium voltage modular multilevel converter." CPSS Transactions on Power Electronics and Applications 4.3 (Sept. 2019), pp. 204–218.
- [15] Ignacio Polanco Lobos and Drazen Dujic. *Condition Health Monitoring of Modular Multilevel Converter Submodule Capacitors." IEEE Transactions on Power Electronics (2021), pp. 1–1.
- [16] S. Milovanovic and D. Dujic. "Upscaling Small Real-Time Simulators for Large Power Electronic Systems." Bodo's Power Systems 5 (2021), pp. 72–74.
- [17] Stefan Milovanović, Min Luo, and Dražen Dujić. "Virtual Capacitor Concept for Computationally Efficient and Flexible Real-Time MMC Model." IEEE Access 9 (2021), pp. 144211–144226.
- [18] S. Milovanovic, M. Luo, and D. Dujic. "Virtual Capacitor Concept for Effective Real-Time MMC Simulations." PCIM Europe Digital Days 2021, May 2021, pp. 437-444.
- [19] Stefan Milovanović et al. "Hardware-in-the-Loop Modeling of an Actively Fed MVDC Railway Systems of the Future." IEEE Access 9 (2021), pp. 151493–151506.
- [20] Jakub Kucka and Drazen Dujic. "IGCT Gate Unit for Zero-Voltage-Switching Resonant DC Transformer Applications." IEEE Transactions on Industrial Electronics 69.12 (2022), pp. 13799–13807.
- [21] Umamaheswara Vemulapati et al. "Recent advancements in IGCT technologies for high power electronics applications." 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe). 2015, pp. 1–10.
- [22] Jakub Kucka and Drazen Dujic. "SOFTGATE An IGCT Gate Unit for Soft Switching." PCIM Europe 2022; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2022, pp. 1–9.
- [23] Chengmin Li, Jing Sheng, and Drazen Dujic. "Reliable Gate Driving of SiC MOSFETs With Crosstalk Voltage Elimination and Two-Step Short-Circuit Protection." IEEE Transactions on Industrial Electronics 70.10 (2023), pp. 10066–10075.
- [24] Rui Wang and Drazen Dujic. "Active Voltage Balancing With Seamless Integration Into Dual Gate Driver for Series Connection of SiC Mosfets." IEEE Transactions on Power Electronics 39.6 (2024), pp. 6635–6639.
- [25] Gabriele Ulissi et al. "Resonant IGCT Soft-Switching: Zero-Voltage Switching or Zero-Current Switching?" IEEE Transactions on Power Electronics 37.9 (2022), pp. 10775–10783.
- [26] Dragan Stamenkovic. "IGCT Based Solid State Resonant Conversion." PhD thesis. EPFL, 2020.
- [27] Asier Garcia-Bediaga et al. "Multiobjective Optimization of Medium-Frequency Transformers for Isolated Soft-Switching Converters Using a Genetic Algorithm." IEEE Transactions on Power Electronics 32.4 (2017), pp. 2995–3006.
- [28] Thomas Guillod, Panteleimon Papamanolis, and Johann W. Kolar. "Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design." IEEE Open Journal of Power Electronics 1 (2020), pp. 284–299.

BIBLIOGRAPHY

- [29] M. Mogorovic and D. Dujic. "Medium Frequency Transformer Design and Optimization." PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. May 2017, pp. 1–8.
- [30] M Mogorovic and D Dujic. "Thermal Modeling and Experimental Verification of an Air Cooled Medium Frequency Transformer." Proceedings of the 19th European Conference on Power Electronics and Applications (EPE 2017 ECCE Europe), Warsaw, Poland. 2017.
- [31] Marko Mogorovic and Drazen Dujic. *100 kW, 10 kHz Medium-Frequency Transformer Design Optimization and Experimental Verification.* IEEE Transactions on Power Electronics 34.2 (2019), pp. 1696–1708.
- [32] Hitachi Metals Ltd. Japan. https://www.hitachi-metals.co.jp/e/. URL: https://www.hitachi-metals.co.jp/e/.
- [33] Nikolina Djekanovic and Drazen Dujic. "Design Optimization of a MW-level Medium Frequency Transformer." PCIM Europe 2022. 2022, pp. 1–10.
- [34] Luvata Pori Oy, Finland. https://www.luvata.com/.URL: https://www.luvata.com/.
- [35] Elektro-Isola A/S, Denmark.https://www.elektro-isola.com/.URL:https://www.elektro-isola.com/.
- [36] Midel 7131. https://www.midel.com/.URL:https://www.midel.com/.

The webinar pdf can be downloaded from:

https://www.epfl.ch/labs/pel/publications-2/publications-talks/