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ABSTRACT: Nanocluster aerosols (NCAs, <3 nm particles) are associated with climate
feedbacks and potentially with human health. Our recent study revealed NCA formation
owing to the reaction of ozone with human surfaces. However, the underlying mechanisms
driving NCA emissions remain unexplored. Squalene is the most abundant compound in
human skin lipids that reacts with ozone, followed by unsaturated fatty acids. This study
aims to examine the contribution of the squalene−ozone reaction to NCA formation and
the influence of ozone and ammonia (NH3) levels. In a climate-controlled chamber, we
painted squalene and 6-hexadecenoic acid (C16:1n6) on glass plates to facilitate their
reactions with ozone. The squalene−ozone reaction was further investigated at different
ozone levels (15 and 90 ppb) and NH3 levels (0 and 375 ppb). The results demonstrate that the ozonolysis of human skin lipid
compounds contributes to NCA formation. With a typical squalene-C16:1n6 ratio found in human skin lipids (4:1), squalene
generated 40 times more NCAs than did C16:1n6 and, thus, dominated NCA formation. More NCAs were generated with increased
ozone levels, whereas increased NH3 levels were associated with the stronger generation of larger NCAs but fewer of the smallest
ones. This study experimentally confirms that NCAs are primarily formed from squalene−ozone reactions in ozone−human
chemistry.
KEYWORDS: ozone chemistry, ammonia, human skin lipids, particle formation, fatty acid

■ INTRODUCTION
Nanocluster aerosol (NCA) particles represent airborne
nanoparticles that are <3 nm in diameter. Originating from
traffic emissions1 and atmospheric processes,2,3 NCAs
constitute a considerable fraction of outdoor aerosols by
number4,5 and could become climatically relevant aerosol
particles outdoors, depending on their physiochemical proper-
ties and atmospheric conditions.6,7 Despite the unknown
health effects of exposure to NCAs, concerns have been raised
because of their ability to deeply penetrate the human lungs
and even reach the brain.8,9 In indoor environments where
humans spend most of their time,10 NCAs could dominate the
total particle number.11 Indoor NCAs could be transported
from outdoors and generated from high-temperature processes
(e.g., cooking and burning candles),12,13 heated surfaces,14,15

and ozone−terpene reactions.16 Additionally, ozone−human
chemistry represents an intriguing yet understudied source of
indoor NCAs. Our previous studies were the first to report
NCA formation via ozone−human chemistry17 and ozone
chemistry on worn clothing.18 Moreover, our recent study
showed that the NCAs formed during ozone−human
chemistry can grow into ultrafine particles ranging from 10
to 55 nm, depending on ventilation and indoor air move-
ment.19 Nevertheless, the driving mechanisms of ozone−
human chemistry generating NCAs remain unexplored. A
fundamental question yet to be addressed is which constituent

of human skin lipids plays the most significant role in NCA
formation in the presence of ozone.

Human skin lipids contain both saturated and unsaturated
compounds; the latter react with ozone more rapidly.20,21

Among these, squalene is the most abundant compound in
human skin lipids that readily reacts with ozone, followed by
unsaturated fatty acids.22−24 Although extensive research has
been dedicated to studying the gas-phase products resulting
from the reaction of ozone with squalene and fatty acids,22−33

our understanding of particle formation by these reactions
remains limited. Previous studies reported the formation of
>10 nm secondary organic aerosols (SOAs) resulting from the
reaction of ozone with surface-sorbed squalene.34,35 However,
these studies have not delved into the NCA size range or
explored the relative contribution of squalene and unsaturated
fatty acids to NCA formation in the presence of ozone. In
addition, our previous study revealed the dependence of NCA
emissions on factors such as human age, clothing coverage, and
air temperature and humidity but overlooked the potential
influence of the ozone level.17
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In addition, humans are a potent source of ammonia
(NH3),

36 which is known as an important player in
atmospheric particle formation.37−39 It was previously
presumed that human-emitted NH3 may play a role in NCA
formation during the ozone−human reaction,17 a hypothesis
that merits further investigation.

In view of these knowledge gaps, this study reports, for the
first time, the formation of NCAs resulting from the squalene−
ozone reaction. In a climate-controlled chamber, we measured
NCAs generated from ozone’s reaction with surface-sorbed
squalene and compared them with those resulting from the
reaction of ozone with 6-hexadecenoic acid (C16:1n6), one of
the most abundant unsaturated fatty acids in human skin lipids.
We investigated the influence of ozone and NH3 levels on the
generation of NCAs from squalene−ozone reactions. The
results hold the potential to contribute to a deeper under-
standing of the mechanisms driving human-derived NCA
generation and the effect of ozone chemistry on indoor NCA
levels.

■ METHODS AND MATERIALS
Experimental Procedure and Design. We performed

experiments in a 1.9 m3 stainless-steel climate chamber
(detailed in Section S1 and Figure S1). Reactants (squalene
or C16:1n6) painted on a 0.24 m2 glass plate were exposed to
ozone to investigate NCA formation. A typical human surface
has an area of 1.8 m2. The reactive surface:volume ratio (0.24
m2/1.9 m3 = 0.13 m−1) corresponded to one person per 14 m3,
which is commonly found indoors.40 A specific quantity of
pure squalene (purity of >99%, Acros Organics, Thermo Fisher
Scientific) or pure C16:1n6 (purity of >99%, Cayman) was
dissolved in 10 mL of methanol, and then the mixture evenly
painted on a glass plate using a glass stick. The painted glass
plate was then placed on the stand inside the chamber. After
the chamber door was closed, the chamber was ventilated with
filtered air at an air change rate of 3 h−1 for 45 min to reduce
the background contamination and then at a rate of 1 h−1 for
an additional 45 min to stabilize the experimental conditions.
Ozone was subsequently injected into the chamber to initiate

the reaction at an air change rate of 1 h−1. After a reaction
period of either 3 or 6 h, the glass plate was removed from the
chamber and the measurement continued for an additional 20
min to capture the NCA decay. The full experimental
procedure is visually detailed in Figure S3.

Table S1 lists the three experimental conditions investigated
in this study. In experiments A comparing the reactions of
ozone with squalene and C16:1n6, we applied 20 mg of
squalene (equivalent to 83 mg/m2) and 5 mg of fatty acid
(equivalent to 21 mg/m2) as reactants, respectively. The
quantities were within the range detected on human skin. Each
reaction lasted for 3 h with a steady-state ozone level of ∼60
ppb. In experiments B exploring the influence of the ozone
level, 750 mg of squalene reacted with 90 ppb ozone for 3 h,
followed by an additional 3 h period with 15 ppb ozone (in
total 6 h). In experiments C, we studied a 3 h ozone reaction at
30 ppb without NH3, followed by an additional 3 h with ozone
at 30 ppb and NH3 at 375 ppb, which approximates the NH3
levels inside the chamber occupied by an adult.36 In
experiments B and C, the amount of squalene was increased
to correspond to the typical total amount found in human skin
lipids.
Instrumentation and Quality Control. NCAs in the size

range of 1.2−2.8 nm were sampled at a flow rate of 2.5 L/min
and measured in real time at 2 min time intervals with a Nano
Condensation Nucleus Counter (Airmodus A11 nCNC
System, Airmodus). The principle of the measurement has
been described in previous studies17,41,42 and in Section S2.
The instrument was positioned immediately outside the
chamber, and to minimize the particle sampling losses, we
sampled NCAs with a core sampling probe at a carrier flow of
5 L/min.43

The ozone concentration inside the chamber was measured
with a time resolution of 1 min with an ozone monitor (model
724, Tanabyte) at a sampling flow rate of 2.0 L/min. The level
of NH3 was monitored at 30 s time intervals with a sampling
flow rate of 140 mL/min using an NH3 analyzer (LSE NH3-
1700, LSE Monitors). The air temperature and relative

Figure 1. Time series of total NCA number concentration (1.2−2.8 nm) and ozone (top) and size-resolved NCA concentration (bottom) in
experiments comparing the reactions of ozone with (A) squalene and (B) fatty acid C16:1n6. The upside-down triangle represents the moment at
which ozone was injected into the chamber. Dp is the activation diameter determined by the nCNC instrument (detailed in Section S2). The data
are from a single experiment from experiments A, whereas the replicate showed good reproducibility (Table S1 and Figure S4).
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humidity (RH) were recorded using a HOBO UX90 sensor
(Onset Inc.).

Before the experimental campaign, all instruments under-
went full service and calibration. Due to limited resources, each
experiment had one replicate, with variations typically falling
within 20%, demonstrating the robust reproducibility of the
results (Table S1).
Data Analysis. Real-time NCA concentrations were

derived through the inversion of raw data by the stepwise
method44 using four size bins (1.2−1.5, 1.5−1.7, 1.7−1.9, and
1.9−2.8 nm). The average rate of emission of NCAs was
obtained using the material-balance equation:

= +E V N( )i i i (1)

where N̅i (cm−3) is the steady-state particle number
concentration for particle size i, E̅i (particles per hour) is the
particle number emission rate per hour for particle size i, V (V
(cm3) is the chamber volume, α (h-1) is the air change rate,
and βi (h−1) is the particle deposition rate obtained via
exponential fitting of the particle number concentration during
the decay period after each experiment. Because of the
relatively low particle concentration inside the chamber, we
neglected the coagulation sink in the calculation.

■ RESULTS AND DISCUSSION
Comparing the Reactions of Ozone with Squalene

and Fatty Acid. Figure 1 shows the time series of the ozone
mixing ratio and NCA size distribution in experiments
comparing the reactions of ozone with squalene and fatty
acid C16:1n6. After ozone was injected into the chamber, the
NCA levels in both reaction experiments started to increase.
This finding supports the inference from our previous study
that ozonolysis of human skin lipid compounds contributes to
NCA formation.17 Although the steady-state ozone levels were
similar in both experiments (55 and 56 ppb), the steady-state
NCA levels were 40 times higher during ozonolysis of squalene

relative to that of C16:1n6, indicating that squalene plays a
dominant role in NCA formation when ozone reacts with
human skin lipids. The size distributions of NCAs further
demonstrated the disparity between the two reactions. The
squalene−ozone reaction generated an abundant concentration
of NCAs in the smallest size range (1.2−1.5 nm), which
subsequently grew. In comparison, the ozonolysis of C16:1n6
emitted a much lower level of the smallest NCA, with no
obvious signals detected for >1.7 nm NCAs (see also Table
S1).

The reaction between ozone and C16:1n6 mainly produces
gas-phase decanal and C6H10O3, with the latter potentially
contributing to NCA formation via nucleation due to its low
volatility.22,23 In comparison, the squalene−ozone reaction is
notably more complex due to the presence of multiple
unsaturated C�C bonds in squalene.22,24,25 In addition to
generating gases such as acetone and 6-MHO,22,23 the
squalene−ozone reaction can also produce low-volatility
compounds that may nucleate, thereby forming NCAs.
Squalene is mostly surface-sorbed indoors. Hence, the reaction
of ozone with squalene vapors is negligible relative to surface
chemistry.22 Previous studies examined surface-bound chem-
icals formed after the reaction of ozone with surface-sorbed
pure squalene, including but not limited to 6-MHO, 4-OPA,
geranylacetone, C17-trienal, secondary ozonides, and succinic
acid.25,45−49 These low-volatility compounds are expected to
contribute to NCA formation. In addition, Criegee inter-
mediates formed during ozonolysis of squalene have the
potential to propagate chain reactions in the autoxidation of
unsaturated lipids, which is linked with NCA formation.50,51

Influence of the Ozone Level. The NCAs generated by
the squalene−ozone reaction were strongly influenced by the
ozone level, as illustrated in Figure 2A. The NCA level inside
the chamber reached 1.4 × 104 cm−3 at a steady-state ozone
level of 89 ppb. When less ozone was injected, causing a
decrease in ozone levels, the NCA concentration followed the
trend of ozone until reaching a new steady-state level of 1.0 ×

Figure 2. Influence of the ozone level on NCA emissions from ozone−squalene chemistry. (A) Time-series plot of the NCA concentration and size
distribution following a decrease in the level of ozone. The upside-down filled triangle represents the moment at which ozone was injected into the
chamber at a high flow rate (target at 90 ppb), whereas the upside-down hollow triangle represents the moment at which less ozone was injected
(target at 15 ppb). The data are from a single experiment from experiments B, whereas the replicate showed good reproducibility (Table S1 and
Figure S4). (B) Correlation between the steady-state ozone level and NCA emission rates across all experimental runs for the reaction of ozone
with squalene. The two square dots represent experiments using 20 mg of squalene, whereas the round dots represent experiments using 750 mg of
squalene.
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103 cm−3 when the ozone concentration stabilized at 14 ppb.
Such an obvious decrease was observed for all size bins,
especially for >1.7 nm particles. Combining ozone and NCA
emission rate data from all squalene−ozone experiments
revealed a positive correlation between them [N = 10; R2 =
0.95 (Figure 2B)]. Similar correlations were observed between
ozone and >10 nm SOA for the ozonolysis of squalene,34,35

skin-oiled clothing,52 and occupants.53 It is noteworthy that
this correlation held true despite the use of different amounts
of squalene applied to the glass plate [20 and 750 mg (Figure
2B)]. This finding indicates that squalene was in excess during
the squalene−ozone reaction,54 which was mainly constrained
by the gas-phase ozone level and transportation, aligning with
the observed ozone−human reaction.17 The results also
highlighted the importance of controlling the indoor ozone
level in reducing the level of exposure of humans to NCAs and
other products initiated from indoor ozone chemistry.

The absence of data on ozone loss impedes our ability to
calculate the NCA yield. Our recent investigation of the impact
of air change rates on NCA formation via ozone−human
chemistry indicated a positive correlation between the NCA
formation rate and the ozone removal rate, which provided
insights into this study regarding the dependence of NCA
generation on ozone level.19

Influence of the NH3 Level. The influence of NH3 on
NCA formation was less pronounced compared to the
influence of ozone, as shown in Figure 3. Upon injection of
NH3 into the chamber, there was a slight decrease in NCA
level, although the ozone concentration remained the same.
The decrease was mainly caused by the decrease in the level of
the smallest NCAs (1.2−1.5 nm). However, emissions of larger
NCAs (1.5−1.9 nm) increased with the NH3 level, especially
for 1.7−1.9 nm NCAs, with the emission rate doubled at 375
ppb NH3 (Figure 3 and Table S1). This indicates that NH3

could contribute to the stabilization and growth of NCAs. NH3
has been found to enhance SOA formation during ozone−
terpene reactions.55,56 In addition, NH3 can react with acidic
products from squalene−ozone reaction to form salts.39,57

When such a reaction happens between gas-phase NH3 and
freshly formed particle-phase acidic products, it may lead to a
slight decrease in the level of the smallest NCAs but
subsequently promote their growth.58

Limitations and Future Outlook. We selected C16:1n6
as the representative unsaturated fatty acid owing to its
relatively high abundance in human skin lipids.23,59 Other fatty
acids and other unsaturated skin lipid compounds (such as
esters and waxes) may have different NCA generation
behaviors when they react with ozone. However, given the
complexity and diversity of squalene−ozone reaction pro-
cesses, we suspect that squalene is still the key contributor to
NCA generation via ozone chemistry on human surfaces.
Moreover, the ozonolysis of squalene may vary when occurring
on real human skin relative to a glass plate. This process could
be influenced by the skin temperature, moisture content,
surface roughness, and clothing coverage.

In addition, this study examined the ozonolysis of squalene
and fatty acid separately. The reaction of ozone with the
mixture of these compounds, as they exist in real human skin
lipids, may synergistically enhance NCA generation. This is
expected due to the introduction of more low-volatility
products and the potential reactions among these products,
which merit additional examination.

It is worth noting that the smallest size bin of the detected
NCAs could consist of large organic gaseous clusters formed
during the ozonolysis of squalene. After the installation of a
zero-check HEPA filter at the inlet of the nCNC during the
squalene−ozone reaction, the instrument showed <10
particles/cm3 in the smallest size bin, whereas there were no

Figure 3. Influence of NH3 level on NCA emissions from ozone−squalene chemistry. The top plot shows time-series concentrations of NCAs,
ozone, and NH3 inside the chamber. The upside-down red triangle represents the moment at which ozone was injected into the chamber (target at
30 ppb), whereas the upside-down green triangle represents the moment at which NH3 was injected (target at 375 ppb). Note that the NH3
concentrations were divided by 10. The bottom charts represent the dependence of steady-state NCA emission rates for each size bin on the NH3
levels. The bar plots are from a single experiment from experiments C, whereas the diamond dots represent the replicate, indicating good
reproducibility (also in Table S1).
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signals for larger NCAs (Figure S5). Although the HEPA filter
may also eliminate low-volatility gases to some extent, the
efficiency is considerably lower than the efficiency of filtering
aerosol particles.60 Hence, it indicates that the detected NCAs
during the ozonolysis of squalene in this study were
predominantly in the aerosol phase. Nevertheless, it should
be noted that the activation diameters of the detected NCAs,
presumably organic, can differ from those of the calibration
compounds (monodisperse NiCr oxide particles), as suggested
by Rörup et al.61 The exact size of NCAs formed by ozonolysis
of squalene merits further investigation.

In addition to the ozone and NH3 levels investigated in this
study, another potential influencing factor that merits further
study is RH. RH can alter the gaseous products from the
ozonolysis of squalene as well as the gas-to-particle conversion
process,24,34,62 as the water molecules may help to stabilize the
initial clusters. Our previous studies showed inconsistent
results with respect to the influence of RH on NCAs formed by
ozone−human/clothing chemistry. In ozone−human experi-
ments, increased RH from 18% to 35% enhanced NCA
generation,17 whereas the level of NCAs decreased when RH
increased from 40% to 65% during ozonolysis of skin-oiled
clothing.18 Hence, future studies should examine the effect of
RH on gaseous- and particle-phase products derived from
ozone−squalene chemistry.

The NCA emission rates obtained from the squalene−ozone
reaction in this study (Table S1) were on the same order of
magnitude as those observed for the ozone−human reaction in
another chamber study,17 which were 2−3 orders of magnitude
lower than emissions from cooking11 and the use of three-
dimensional (3D) printers.15 However, sources such as
cooking and 3D printing are sporadic, whereas the
squalene−ozone reaction takes place continuously whenever
humans encounter ozone and thus contributes substantially to
daily indoor NCA levels (discussed in Section S3). Moreover,
we expect that NCAs generated from ozone−squalene
reactions would be more pronouncedly distributed close to
the reactive surface relative to the bulk air.63 This may imply
that the NCA level can be higher in the peri-human
microenvironment than in room air (the phenomenon termed
“personal cloud”64−66). Such a spatial variation of NCAs
generated from ozone−squalene chemistry merits future
examination.

This study is the first to report NCA formation from the
squalene−ozone reaction. This experimentally confirms that
NCAs appear to be formed from ozone−squalene reactions in
ozone−human chemistry and enhances our understanding of
the role of ozone and NH3 in the process. The interpretation
can be further enhanced by analyzing gas-phase product
measurements in parallel, which should be performed in future
studies. In addition, analysis of the chemical composition of
the formed particles has the potential to reveal the oxidation
products or water-bound molecules that contribute to NCA
generation. Finally, the health effect of the generated NCAs
remains to be further explored.
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