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Single-cell epigenomic reconstruction 
of developmental trajectories from 
pluripotency in human neural  
organoid systems

Fides Zenk    1,3,4 , Jonas Simon Fleck1,2,4, Sophie Martina Johanna Jansen    1, 
Bijan Kashanian1, Benedikt Eisinger1, Małgorzata Santel    1, 
Jean-Samuel Dupré    2, J. Gray Camp    2  & Barbara Treutlein    1 

Cell fate progression of pluripotent progenitors is strictly regulated, 
resulting in high human cell diversity. Epigenetic modifications also 
orchestrate cell fate restriction. Unveiling the epigenetic mechanisms 
underlying human cell diversity has been difficult. In this study, we use 
human brain and retina organoid models and present single-cell profiling 
of H3K27ac, H3K27me3 and H3K4me3 histone modifications from 
progenitor to differentiated neural fates to reconstruct the epigenomic 
trajectories regulating cell identity acquisition. We capture transitions 
from pluripotency t hr ou gh n eu ro ep it helium to retinal and brain region and 
cell type specification. Switching of repressive and activating epigenetic 
modifications can precede and predict cell fate decisions at each stage, 
providing a temporal census of gene regulatory elements and transcription 
factors. Removing H3K27me3 at the neuroectoderm stage disrupts fate 
restriction, resulting in aberrant cell identity acquisition. Our single-cell 
epigenome-wide map of human neural organoid development serves as a 
blueprint to explore human cell fate determination.

During development and differentiation, cells undergo remarkable 
cell fate transitions, starting from pluripotent cells and multipotent 
progenitors to give rise to all major cell types of the body. During these 
transitions, developmental plasticity becomes increasingly restricted 
until the cells stop dividing and acquire their terminal fate. Despite 
recent progress in the field of epigenetics and reprogramming, the 
details of how human cells acquire and maintain their identity remain 
elusive. What is known is that, during differentiation, histone modi-
fications are involved in the packaging of DNA on nucleosomes and 
can either directly or indirectly influence the expression of underlying 

genes1. In vivo, chromatin regulation during differentiation is dynamic 
and complex, and recent studies have shown that mutations within 
histone tails or enzymes that modify the histone tails are involved in 
neurodevelopmental disorders, which emphasize their importance 
in the developing nervous system2,3. Previous bulk studies of histone 
modifications in human developing tissues failed to capture the indi-
vidual trajectories of furcating fates4. In the present study, we explore 
how epigenetic changes on chromatin are involved in cell fate decisions 
during the human brain and retina development using organoids and a 
primary developing human brain as validation. We include H3K27me3 
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(H3K27ac and H3K4me3) and anti-correlation for the repressive mark 
H3K27me3 (Extended Data Fig. 2a,b). Based on these matches, we trans-
ferred annotated cell labels from RNA to the other modalities, obtain-
ing a high number of peaks per cell state (Extended Data Fig. 2c). After 
label transfer, cell state proportions were similar among all modalities, 
and even rare populations, such as intermediate progenitors, could be 
recovered in the histone modification dataset, supporting integration 
accuracy (Extended Data Fig. 3a). Next, we examined neuronal cell 
state heterogeneity and found inhibitory and excitatory neurons in 
all regional branches (Extended Data Fig. 3b,c) with the exception 
of the telencephalon branch, which contained a strong majority of 
excitatory neurons. The different cell lines showed similar cell type 
distributions, and all lines contributed to all different cell states and 
brain regional identities, indicating reproducibility of the differen-
tiation across cell lines (Extended Data Fig. 3d,e). We detected highly 
enriched signal (peaks) of activating marks at known regulators of 
cell type and regional identity (for example, FOXG1, telencephalic 
branch; NEUROD2, telencephalic neurons; SIX6, retinal branch; LHX5, 
neuroepithelium and non-telencephalon neurons; HOXB2, rhomben-
cephalic branch; POU5F1, pluripotent stem cells (PSCs); and AQP4, 
astrocytes) (Fig. 1k,l and Extended Data Fig. 3f) and found H3K27me3 
signal (repressive) in cell states that lack expression of the respec-
tive genes (Fig. 1m). To our knowledge, these data provide the first 
comprehensive epigenomic atlas of human central nervous system 
development in organoids containing activating and repressive histone 
modifications along with RNA expression on the single-cell level. This 
resource can also be browsed interactively at https://episcape.ethz.ch.

Epigenomic switches during regional diversification
To visualize the branching of neuroepithelial cells into neuronal progen-
itor cells (NPCs) and neurons of different brain regions, we computed 
terminal fate probabilities based on RNA expression for each regional 
identity using CellRank22,23. We summarized these probabilities for each 
high-resolution cluster and used them to construct a graph represen-
tation of the differentiation events (Fig. 2a,b). A force-directed layout 
of this graph revealed the transition of PSCs into neuroepithelium, 
which then diversified into branches of region-specific neurogenesis  
(Dien, diencephalon; MRh, mesen-/rhombencephalon; Ret, retina; Tel, 
telencephalon) (Fig. 2b). By mapping the matched high-resolution  
clusters of chromatin modalities (Fig. 2a and Extended Data Fig. 2b) 
onto this representation, we could visualize histone modifications 
switching between neuroepithelium and brain region branches 
(Fig. 2c). For each chromatin modification, we computed a gene 
activity score by summarizing fragment counts over the gene body 
plus an extended promoter region. We first selected the top 15 regula-
tors that showed differential enrichment between regions (Extended 
Data Fig. 4a). Visualizing gene activities on the graph layout revealed 
that region-specific transcription factors (for example, FOXG1, NEU-
ROD2, LHX5 and VSX2) tend to be broadly repressed by H3K27me3 
outside of their expression domain and show low levels of H3K4me3 
(Fig. 2c). To validate the epigenetic regulatory patterns for the forebrain 
branch, we generated single-cell multiome (scRNA-expression and 
scATAC-chromatin accessibility from the same single cell) and bulk 
CUT&Tag data from a primary developing forebrain at 19 gestational 
weeks (gw) (Extended Data Fig. 4b–f). We found the same enrichment 
of activating and repressing histone modifications on these regional 
regulators (Extended Data Fig. 4e). For all three histone modifications, 
the 50 highest enriched regions (peaks) in the telencephalon branch of 
the organoids showed similar enrichment in the primary developing 
brain sample (Extended Data Fig. 4f). Intersection of the bulk CUT&Tag 
peaks from the primary developing brain with the scCUT&Tag peaks 
from the organoids revealed a high overlap (Extended Data Fig. 4g).

Overall, we found that most protein-coding genes were either 
expressed or repressed at some point in the developmental timecourse 
(61%); some were never repressed and always active (16%); some were 

as a repressive mark at developmental genes5, H3K27ac as a mark of 
active enhancers and promoters6,7 and H3K4me3 as a mark of active 
or bivalent promoters of developmental genes5,8,9. In addition, these 
marks interact with one another and can act in concert or be mutually 
exclusive10,11. We provide an atlas of these marks over organoid develop-
ment and identify different modes of epigenetic regulation during fate 
restriction and neuronal specification. We integrate all modalities and 
explore dynamics over differentiation trajectories from pluripotency 
using gene regulatory network (GRN) analysis and find that perturba-
tion of a non-redundant member of the PRC2 complex, embryonic 
ectoderm development (EED), which disrupts the writing of H3K27me3 
in the early neuroepithelium, results in loss of fate restriction and the 
emergence of aberrant cell states.

Results
Single-cell epigenomic atlas of brain organoid development
To dissect the role and dynamic turnover of histone modifications 
during human brain and retinal organoid development, we per-
formed CUT&Tag and mRNA sequencing in single cells (scCUT&Tag 
and scRNA-seq) on a timecourse, covering cell fate transitions from 
induced pluripotent stem cells (iPSCs) to terminally differentiated 
neurons and glial cells. We recorded three histone modifications 
(H3K27ac, H3K27me3 and H3K4me3) and RNA expression from the 
same single-cell suspensions of five different cell lines at six develop-
mental timepoints in brain organoids (days 5, 15, 35, 60, 120 and 240) 
and of one cell line at two timepoints in retina organoids (days 45 and 
85) (Fig. 1a and Extended Data Fig. 1a–c). Retinal cells emerge from 
the developing diencephalic neuroepithelium and can spontaneously 
arise in unguided brain organoids, supporting the inclusion of both 
organoid systems in a neural epigenomic trajectory reconstruction.

Dimensionality reduction and embedding with uniform mani-
fold approximation and projection (UMAP)12 using the scRNA-seq 
data (38,149 cells) revealed diverse populations at each timepoint. We 
annotated clusters by comparing gene expression to reference data-
sets13,14 and analyzing marker gene expression. The cells represented 
in the dataset cover transitions from early pluripotent stages at day 5 
to a stratified neuroepithelium at day 15, with progenitors diversifying 
into retina and brain regional identities (telencephalon, diencephalon 
and non-telencephalon) between days 35 and 60 (Fig. 1b,c). Brain 
region-specific and retinal neurons start to develop from day 35 and 
increase in abundance over time (Fig. 1b,c), and, by day 120, astrocytes 
and oligodendrocyte precursor cells (OPCs) appear, coinciding with 
the gliogenic switch during the second trimester of human embryonic 
development (Fig. 1b,c)15,16.

We investigated the spatial distribution of H3K27ac, H3K27me3 
and H3K4me3 by immunofluorescence and found that all nuclei 
stain for the three histone modifications (Fig. 1d). We established 
scCUT&Tag in brain organoids and recorded the genome-wide distribu-
tion of H3K27ac (33,533 cells), H3K27me3 (34,357 cells) and H3K4me3 
(42,053 cells) in the same cell suspensions as used for the scRNA-seq 
experiments. We obtained high-quality data from all experiments as 
reflected by the fraction of reads in peaks (Extended Data Fig. 1c), the 
nucleosome pattern and the comparably high number of fragments 
(median: H3K4me3, 722; H3K27ac, 641; H3K27me3, 302) recovered 
from each cell (Supplementary Fig. 1a–d)17–19. Dimensionality reduction 
and embedding with UMAP revealed remarkable cell state diversity 
over the timecourse for each modality (Fig. 1e–j).

To annotate cell states within the epigenomic datasets, we first 
performed a high-resolution Louvain clustering20 for each modality 
separately to enhance robustness through increasing fragment counts 
per modality (H3K27me3, 104,000 mean fragments; H3K27ac, 236,000 
mean fragments; H3K4me3, 417,000 mean fragments). Next, we  
compared each epigenomic high-resolution cluster with the annotated 
scRNA-seq clusters using minimum-cost, maximum-flow (MCMF) 
bipartite matching21 based on correlation for activating histone marks 
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Fig. 1 | Single-cell epigenomic atlas of human brain organoid development 
from pluripotency to neurogenesis. a, Experimental outline. scCUT&Tag and 
scRNA-seq were performed at different developmental timepoints during brain 
and retina organoid development (number of pooled organoids per timepoint: 
brain: EB (d5): 500, d15: 150, d35: 50, d60: 25, d120: 20, d240: 20, retina: d45: 50, 
d85: 50). b, Dimensionality reduction and embedding with UMAP of scRNA-seq 
data with cells colored based on developmental timepoint reveals heterogeneity 
of cell states and the neuroepithelium as a branching point. c, UMAP embedding 
of scRNA-seq data with cells colored and labeled by cell state (IP, intermediate 
progenitor; RGC, retinal ganglion cell; RP, retinal progenitor). d, DAPI staining 
of an organoid at day 90; scale bar, 1,000 µm (left). One ventricle of an organoid 

stained for H3K27ac, H3K27me3 and H3K4me3; scale bar, 100 µm (right) 
(Methods). This is a representative image. The experiment was performed 
three times on biological replicates. e–j, UMAP embedding of scCUT&Tag data 
for H3K27ac (e,f), H3K4me3 (g,h) and H3K27me3 (i,j) colored and labeled by 
timepoint (e,g,i) or cell state (f,h,j). k–m, Genome browser snapshots of the 
enrichment of the respective mark (H3K27ac (k) and H3K4me3 (l)—enriched 
at active genes; H3K27me3—enriched at repressed genes (m)) at four different 
marker genes (FOXG1—telencephalon, POU5F1—pluripotency, SIX6—retina and 
AQP4—astrocytes). Each signal track represents the summarized signal of all cells 
of the annotated cell state. Shaded areas highlight the detected peaks. d, day; 
Tel., telencephalon; rhomb., rhombencephalon; pro., progenitors; neu., neurons.
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always inactive and repressed (15%); and some were not repressed and 
inactive (8%). Inactive genes were enriched for Gene Ontology (GO) 
terms for sensory perception, immune system, skin development and 

fertilization, indicating repression of non-neural programs. Interest-
ingly, inactive genes without repressive histone modifications tended 
to be enriched for motifs of transcription factors that were either not 
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Fig. 2 | Integration of chromatin and RNA modalities reveals epigenetic 
switches during brain region diversification. a, Schematic of the multimodal 
data integration through high-resolution cluster matching between histone 
marks and RNA (see Extended Data Fig. 2b and the ‘Matching of scRNA and 
scCUT&Tag’ subsection for details). b, Schematic of the human brain (top) and 
force-directed layout (bottom) of the matched high-resolution clusters colored 
by regional branch and cell state; it shows the neuroepithelium as a branching 
point for regional identities. c, Force-directed layout colored by RNA expression 
and gene activities (abundance of histone modifications at the gene and an 
extended promoter region +2 kb upstream) of all three chromatin marks for 
NEUROD2, FOXG1 (telencephalon), LHX5 (non-telencephalon) and VSX2 (retina). 
d, Alluvial plot of bivalent H3K27me3 and H3K4me3 peaks at the neuroepithelium 
stage. Most peaks get resolved and become enriched for either of the two marks 
in a specific brain-regional branch (blue-H3K27me3 and pink-H3K4me3). Peaks 

that stay bivalent in any of the brain regions are labeled in purple. e, Heatmap 
of signal enrichment of region-specific peaks showing switching between 
H3K27me3 and H3K27ac. Expression of the closest gene is shown in the right 
panel (Dien, diencephalon; MR, mesen-/rhombencephalon; NE, neuroepithelium; 
Ret, retina; Tel, telencephalon). f, Genomic tracks showing switching peaks 
close to region-specific genes (blue-H3K27me3 and green-H3K27ac). g, UMAP 
embedding of NPCs and astrocytes from the 1-month to the 8-month timepoints 
within the dataset (IP, intermediate progenitor; oRG, outer radial glia). h, UMAP 
embedding colored by gene expression of a general astrocyte marker (AQP4) 
and regional marker genes (FOXG1, telencephalon; RSPO3, diencephalon; 
HOXB2, rhombencephalon). i, Scatter plot showing the regional variance of gene 
expression for NPCs and astrocytes (see Methods, ‘Analysis of pseudotemporal 
and regional variance’ subsection, for details).
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expressed (FEV, FLI1 and KLF14) in the timecourse or restricted to 
specific cell states (ETS1). This suggests that chromatin repression 
is not required in instances where the corresponding transcription 
activator is absent or when the transcription factors act as repressors 
themselves (Extended Data Fig. 4h)24,25.

We investigated chromatin modifications during the formation 
of different brain regions from the neuroepithelium, identifying 
differential histone modifications across regions and cell types. We 
found consistent patterns between different cell lines, suggesting 
similar epigenetic programs during branch specification (Extended 
Data Fig. 5a–c and Supplementary Table 1). Ontology analysis26 of 
genes in close proximity to H3K4me3 and H3K27ac peaks revealed 
a strong enrichment in developmental processes. In particular, acti-
vating H3K4me3 and H3K27ac peaks had enrichments for receptor 
signaling and metabolic processes (PSCs), embryonic development 
and morphogenesis (non-neural ectoderm (NNE)) and patterning and 
nervous system development (neuroepithelium). Within the branches 
of regional neurogenesis and astrocyte differentiation, activating 
peaks were found enriched near genes associated with neuron matu-
ration and differentiation (Tel), brain regional development (MRh), 
eye and sensory organ development (Ret), gliogenesis and glia cell 
differentiation (astrocytes (Ast)), cerebrospinal fluid production 
as well as metabolic and immune processes (choroid plexus (Chp)) 
(Extended Data Fig. 5a,b). In contrast to H3K4me3 and H3K27ac modi-
fications, repressive H3K27me3 domains were found at developmental 
regulators not involved in brain development. We found H3K27me3 
peaks close to genes associated with heterochromatin assembly or 
regulation of cellular stress (PSC), mesenchymal stem cell proliferation 
(NNE), BMP signaling (Tel) and regulation of other cell fates, such as  
pancreatic cells or keratinocytes (Dien and MRh) (Extended Data Fig. 5c 
and Supplementary Table 2). We analyzed transcription factor motifs 
enriched in the branch-specific peaks for each histone modification 
(Extended Data Fig. 5d–f and Supplementary Table 3). We found that 
motifs were enriched for regional regulators, such as FOXG1, NEUROD2 
(Tel), OTX2, EMX2, LMX1A (Dien), HOXB2, ZIC1, PAX7 (MRh) and PAX6, 
VSX2 and VAXs (Ret).

Chromatin domains defined by H3K27me3 and H3K4me3 
co-enrichment at repressed genes have been termed bivalent and were 
previously reported to occur at genes that require rapid activation dur-
ing development8,9,27. We observed abundant H3K27me3 and H3K4me3 
co-marked chromatin domains within the matched high-resolution 
clusters at the neuroepithelium stage (Fig. 2c,d, Extended Data Fig. 6a–c  
and Supplementary Table 4). We refer to these domains as bivalent 
and found that approximately 90% of them show full sequence overlap 
between both histone modifications. Several transcription factor bind-
ing motifs were enriched (Extended Data Fig. 6d and Supplementary 
Table 5), among them known regional regulators as well as EGR1, an 
immediate-early gene previously described to be involved in epigenetic 
remodeling28,29. Bivalent domains became activated (installation of 
H3K4me3 and removal of H3K27me3) predominantly in the telencepha-
lon and diencephalon branch, whereas most bivalent peaks acquired 
repression (H3K27me3) in the mesen-/rhombencephalon (Fig. 2d).  
A smaller subset of domains remained bivalent as cells transitioned into 
the regional branches. We next analyzed switching between H3K27me3 
and H3K27ac, which are considered mutually exclusive as they are 
installed on the same histone H3 lysine 27 residue and rarely co-occur 
within a nucleosome5,6,11. Indeed, we did not find co-enrichment of 
H3K27ac and H3K27me3, suggesting that the high-resolution clusters 
can discriminate between switching and co-enrichment. We identi-
fied a set of repressed H3K27me3 peaks during the neuroepithelial 
stage that switched into an active state (depletion of H3K27me3 and 
enrichment of H3K27ac) in individual regional branches (Fig. 2e and 
Supplementary Table 6). This set of peaks showed enrichment for 
many known regional regulators and overlapped well with the motifs 
called from the H3K4me3/H3K27me3 co-regulated peaks, indicating 

lineage-specific activation (Extended Data Fig. 6e and Supplementary 
Table 7). This epigenetic activation in individual regional branches was 
accompanied by region-specific expression of nearby genes (Fig. 2e), 
including important regulators of regional identity, such as EMX1 and 
NFIB (Tel), RSPO3 and LMX1A (Dien), WNT7A (MRh) and VSX2 and 
VAX2 (Ret) (Fig. 2f). We found that 60% of these genes showed previous 
bivalency within the neuroepithelium.

Next, we wanted to analyze regionalization also within the 
glial lineage. We integrated all NPCs and astrocytes from the data 
of 1-month-old to 8-month-old organoids. This revealed a small 
population of outer radial glia cells within the forebrain branch 
(Fig. 2g and Supplementary Fig. 2a–f ). In addition, we observed 
region-specific gene expression in astrocytes within the organoids 
(Fig. 2g,h). We calculated the regional variance of gene expression 
between NPCs and astrocytes from different regions (Fig. 2i) and 
found that FOXG1, OTX2, HOXB2 and LHX2 as well as the ZIC and 
IRX family define regionalization in both neuron and astrocyte 
populations, similar to observations in mouse and primary human 
tissue30–33 (Supplementary Fig. 2a–j).

Characterizing regulatory elements in the developmental 
timecourse
Next, we sought to characterize the different chromatin states within 
the dataset unbiasedly. We first applied rigorous filtering criteria to 
the peak set and performed dimensionality reduction and embedding 
using UMAP on all different classes of peaks based on their detec-
tion in high-resolution clusters (Fig. 3a,b). This clustering revealed 
distinct regulatory states of the different classes of histone modi-
fications and separated promoter and distal regions (Fig. 3b,c and 
Extended Data Fig. 7a,b). Overall, promoter elements were detected 
in more high-resolution clusters than distal elements (Extended Data 
Fig. 7c). We quantified the enrichment of the different histone modi-
fications across the genome and, as expected, found that all marks, 
and particularly H3K4me3, showed strong enrichment around the 5′ 
untranslated region (UTR) and promoter region, whereas H3K27ac and 
H3K27me3 showed enrichment also at distal intergenic sites (Extended 
Data Fig. 7d).

The peaks identified in this timecourse intersected with 50–60% 
of experimentally validated enhancers of the VISTA collection that 
vary across brain regions34, which suggests that the timecourse cov-
ers the majority of epigenetic states of brain region development 
(Extended Data Fig. 7e). To identify whether this representation of 
regulatory regions could also reveal co-regulation of peak sets, we 
performed cluster analysis and used Genomic Regions Enrichment 
of Annotations Tool (GREAT) enrichment26 to annotate the clusters 
(Fig. 3d, Extended Data Fig. 7f–h and Supplementary Tables 8 and 9). 
We found distinct enrichments for all different peak classes. Among 
the promoter clusters, we identified one cluster containing mostly 
housekeeping functions and nuclear processes (cluster 1), and another 
cluster contained peaks involved in nervous system development 
and specific neuronal processes (for example, generation of action 
potentials—cluster 2). This cluster also showed enrichment for neu-
ronal transcription factors (POU4F2 and LMX1B). Distal elements 
enriched in H3K27ac (clusters 3 and 4) were also strongly enriched for 
terms and transcription factors related to neuronal, glia and nervous 
system development (NEUROD1, NEUROG2 and NFIB). For H3K27me3 
peaks, we identified two major clusters. One contained more promoter 
peaks and showed co-enrichment for H3K4me3 (cluster 5, previously 
referred to as ‘bivalent’). This cluster of peaks was enriched for gen-
eral developmental processes. Cluster 6 contained distal H3K27me3 
enriched peaks and was enriched with terms important for neuron 
homeostasis and nerve development. We found that most peaks are 
not exclusive to one cell state but are dynamically marked by different 
histone modifications (active and repressive) in several different cell 
states (Extended Data Fig. 7f–h).
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Epigenetic activation precedes gene expression during 
neurogenesis
We next explored histone modification dynamics during differentiation 
from PSCs to region-specific neurons. Focusing on the dorsal telen-
cephalon trajectory, we ordered cells along pseudotime using RNA 
velocity22 for RNA and diffusion maps35 for histone marks. To obtain 
an even timepoint distribution over pseudotime for all modalities, we 
subsampled cells before grouping them into 50 equally sized bins. As 
expected, we found that pluripotent cells are enriched in chromatin 
domains co-marked by repressive H3K27me3 and activating H3K4me3 
(ref. 8) (Extended Data Fig. 8a), which decrease along with a gain of 
repressed (H3K27me3) and active (H3K27ac) domains until the NPC 
stage. Interestingly, H3K27me3 and H3K4me3 co-marked domains 
increase in abundance again at the end of the trajectory when NPCs 
differentiate into neurons (Extended Data Fig. 8a). We validated the 
detected signal with bulk CUT&Tag data from the human developing 
cortex (Extended Data Figs. 4b–f and 8b–d) and found that the chro-
matin status of repressed, active and H3K27me3/H3K4me3 co-marked 
domains was consistent with the organoid data. Due to the limitations 
of bulk measurements, we cannot rule out that some of the bivalency 

annotated in the primary human developing cortex data is attributed 
to tissue heterogeneity. However, the primary tissue mainly contained 
cells of the telencephalon lineage, and we found a complete overlap 
of H3K27me3 and H3K4me3 in 90% of the regions that we annotate 
as bivalent.

Next, we clustered genes based on their pseudotemporal expres-
sion and histone modification patterns and found six major gene 
groups with distinct pseudotemporal dynamics (Fig. 4a; Supplemen-
tary Table 10 contains the full list of clusters). Clusters 1 and 2 (GO 
enrichment: structure formation, cell adhesion and signaling recep-
tor activity) capture the epigenetic silencing of pluripotency genes 
during the transition from pluripotency to neuroepithelium (Fig. 4a) 
following two different pseudotemporal dynamics: genes in cluster 1 
become downregulated and lose active histone modifications while 
gaining H3K27me3 at the neuroepithelium stage (Fig. 4b; POU5F1), 
whereas genes in cluster 2 install H3K27me3 only at the NPC stage while 
expression decreases right after exiting pluripotency (Fig. 4b; FOXO1). 
Cluster 3 genes (Fig. 4a; GO enrichment: epithelium and central nerv-
ous system development) are expressed in the neuroepithelium and 
in neural progenitors and show transcription reduction concurrently 
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Fig. 3 | Landscape of regulatory elements during neural organoid 
development. a, Bar plot showing counts of different peak classes within the 
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more than 50 high-resolution clusters (H3K27me3, H3K27ac and H3K4me3: 3,116; 
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embedding of regulatory regions identified in the developmental timecourse 
based on their detection rates in high-resolution clusters colored by peak class. 
The encircled clusters were identified by Louvain clustering (Extended Data  
Fig. 7f); GREAT enrichment and transcription factor motif enrichment in 
selected and encircled clusters are shown in d (Extended Data Fig. 7 contains 

all clusters). c, Same UMAP embedding as in b, colored by the identity of the 
regulatory element promoter (TSS ± 2 kb) or distal (black), showing that bivalent 
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enriched terms as the bar above. Transcription factor motifs enriched per cluster 
are shown below each bar plot. snRNA proces., small nuclear RNA processing; 
Nerv. sys., nervous system; Postsyn., postsynaptic.
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Fig. 4 | Pseudotime reconstruction from pluripotency reveals epigenetic 
priming during neuronal differentiation. a, Heatmap (left) showing gene 
activity scores for H3K27me3, H3K27ac and H3K4me3 as well as RNA expression 
over the telencephalic neuron differentiation trajectory from pluripotency 
(Methods). All k-means clusters are annotated with representative GO terms and 
example genes (right). Bar plots below show the timepoint distribution. Nepi, 
neuroepithelium. b, Line plots showing scaled expression and gene activity 
scores across pseudotime bins of selected examples from multiple k-means 
clusters (Methods). Genes expressed during pluripotency and at the progenitor 
stage show accurate alignment of the pseudotimes for RNA expression and 
active histone modifications (POU5F1, FOXO1 and LHX5), whereas neuron-
specific genes exhibit epigenetic priming (GRIA2 and NEUROD2). c, Genome 
browser snapshots of the neuron-specific gene NEUROD2 showing levels of 
H3K27me3, H3K27ac and H3K4me3 on the gene and RNA expression over 
pseudotime. d, Quantification of histone modifications and RNA expression 
on the NEUROD2 locus (c) over pseudotime, showing chromatin regulation 
preceding RNA expression. e, Jitter plots showing log-normalized fragment 
counts along pseudotime. f, Quantification of the shift in pseudotime among 

the establishment of histone modifications, chromatin accessibility and RNA 
expression (n = 19 genes, median ± Q1/Q3; Methods). g, Detection rate of scATAC 
and scRNA expression measured from the same cells of a primary developing 
brain at 19 gw; the neuron-specific genes NEUROD2 and NEUROD6 show priming 
of chromatin (Supplementary Fig. 4g–i). Neu, neuron. h, GRN inferred using 
Pando from multiome data colored by regulatory regions detected in scCUT&Tag 
modalities (Methods). i, Scaled detection rate of NEUROD2 upstream regulators 
(pink—left; for example, HEY1, KLF7 and SOX2) and downstream targets (light 
blue—right; for example, CNTN1 and RAS11B) identified from the GRN over 
pseudotime. j, Force-directed layout of the telencephalon, diencephalon and 
mesen-/rhombencephalon branch (left). Line plots showing smoothed, averaged 
pseudotemporal gene expression and activities of k-means clusters with late 
pseudotime expression (Supplementary Fig. 6a–f) in the telencephalon (cluster 
1), diencephalon (cluster 1) and mesen-/rhombencephalon (cluster 4) trajectory 
(right). Representative GO terms of genes within the k-means clusters with 
late pseudotime expression reveal, again, terms related to neuronal identity 
(Supplementary Tables 13–15).
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with gain in H3K27me3 (Fig. 4b; LHX5). In contrast, genes in clusters 4 
and 5 (Fig. 4a; GO enrichment: regionalization, telencephalon develop-
ment and cerebral cortex development) are also expressed in NPCs but 
showed an increase in active histone modifications and expression after 
H3K27me3 levels decreased (Fig. 4b; POU3F3). Strikingly, we observed 
that neuronal genes in cluster 6 lose H3K27me3-mediated repression 
and accumulate H3K27ac and H3K4me3 marks before RNA expression 
initiates (Fig. 4b–f; NEUROD2 and GRIA2).

To consolidate this analysis and ameliorate the influence of poten-
tial confounders, such as distribution of timepoints and data quality, 
we repeated the pseudotime inference for the single timepoint day 
120 after strict quality filtering using diffusion maps for all modali-
ties (Supplementary Fig. 3a–d). After clustering, we obtained, again, 
a cluster enriched in neuronal genes (Supplementary Fig. 3b, cluster 
5, and Supplementary Table 11) that showed priming with activating 
marks before RNA expression.

To characterize the series of events leading to transcriptional 
activation of the primed genes, we measured transcriptome and chro-
matin accessibility in the same single cells (sc-Multiome-seq) using the 
single-cell suspension of 120-d organoids also used for scCUT&Tag. 
This revealed that the activating histone modifications H3K27ac and 
H3K4me3 are established shortly before an increase in chromatin 
accessibility can be detected, followed by RNA expression (Fig. 4e,f). 
We observed the same effect in unbiasedly selected neuronal genes 
(Supplementary Fig. 4a–c). These results support a model in which 
chromatin can be primed with activating histone modifications  
directing the future expression of target genes1,36.

We used our single-cell multiome data of the human developing 
brain (19 gw), where transcription and chromatin accessibility are 
recorded from the same cell, to test whether neuronal genes also show 
epigenetic priming in the primary human cortex. Indeed, neuronal 
genes (NEUROD2, NEUROD6, BCL11B and STMN2) showed a gain in 
accessibility before RNA expression in the developing human cortex 
(Fig. 4g and Supplementary Fig. 4d–i). This supports a role for epige-
netic priming during nervous system development, in particular for 
neuron-specific genes36,37, and similar to reports from other develop-
mental systems1,6,38–40. Recently, H3K4me3 was shown to be required 
for pausing release of PolII (ref. 41). It is interesting to hypothesize that 
H3K4me3 marks on these neuronal genes build up gradually before 
PolII is released into elongation.

To investigate the gene regulatory mechanisms underlying 
neuronal gene priming, we inferred a GRN based on an integrated 
scRNA-seq and scATAC-seq dataset of organoid development14 
informed by histone modification-marked regulatory regions in our 
scCUT&Tag dataset. We focused on a subnetwork including all genes 
in the neuronal cluster as well as common transcription regulators that 
were shared between at least three of the genes in the neuronal cluster. 
We then summarized epigenetic modifications over pseudotime at 

transcription factor binding regions. This revealed bHLH transcription 
factors (such as NEUROD2 or NEUROG2; Supplementary Fig. 5a–e) 
as a central hub in this network and showed stepwise activation with 
loss of repressive marks and gain of active chromatin marks on its 
regulatory elements throughout pseudotime (Fig. 4h and Supplemen-
tary Table 12). In line with NEUROD2 being a central mediator of gene 
regulation in the primed cluster, bHLH transcription factors have been 
suggested to act as priming factors at lineage-primed enhancers42. We 
examined the expression of genes acting upstream and downstream 
of NEUROD2 and found that most upstream regulators (for example, 
HEY1, KLF7 and SOX2) are expressed after activating marks are installed 
and chromatin has gained accessibility at the NEUROD2 locus but 
before NEUROD2 is expressed (Fig. 4i, expression profiles in pink). This 
suggests that activating chromatin marks establish a transcriptionally 
permissive landscape before NEUROD2 transcriptional regulation. In 
contrast, and, as expected, most downstream target genes (such as 
CNTN1 and RAS11B, expression profiles in blue) are expressed after 
activation of NEUROD2 expression (Fig. 4i). To explore epigenetic prim-
ing of neuronal genes in other brain region trajectories, we extended 
the pseudotime analysis to the diencephalon and mesen-/rhomben-
cephalon branch (Fig. 4j). We identified two clusters of late expressed 
neuronal genes in all branches (for example, KCNN2, MAP3K13, NEU-
ROD2, SLIT1, STMN2, SLC6A1, NSG1 and CPLX2) for which we detected 
a similar epigenetic priming as observed in the telencephalon (Fig. 4a,j, 
Supplementary Fig. 6a–f and Supplementary Tables 13–15).

Taken together, our analysis provides insight into the dynamic 
interplay of histone modifications and RNA expression during dif-
ferentiation from pluripotency to neurons in distinct regions of the 
developing human brain organoid and shows epigenetic priming of 
neuronal genes.

Perturbation of H3K27me3 reveals its role during fate 
acquisition
We tested the role of histone modifications in early brain organoid 
development by inhibiting H3K27me3 (EED/PRC2) with A395 43 from 
pluripotency until the neuroepithelium stage (day 0–15; Fig. 5a and 
Extended Data Fig. 9a,b), overcoming strong developmental defects 
in full PRC2 knockouts (KOs)43,44. At later stages, depletion of EZH2 
mouse cortical progenitors altered timing and favored differentia-
tion over self-renewal45. At the neuroepithelial stage (days 15–18), we 
profiled EED inhibitor–treated and control organoids using scRNA-seq 
and bulk CUT&Tag (Fig. 5a and Extended Data Fig. 9c). This revealed a 
concentration-dependent depletion of H3K27me3 and enrichment of 
the competitive, activating H3K27ac histone mark (Fig. 5b,c, Extended 
Data Fig. 9c,d and Supplementary Table 17). Many H3K27me3 peaks also 
showed co-enrichment for H3K4me3 in the neuroepithelium (Fig. 5b). 
By scRNA-seq, we observed an upregulation of gene expression in 
proximity to H3K27me3-depleted peaks (Fig. 5c and Supplementary 

Fig. 5 | Aberrant cell fate acquisition upon H3K27me3 depletion. a, Schematic 
of the experiment. b, Heatmaps showing H3K4me3, H3K27me3 and H3K27ac 
bulk CUT&Tag signal on H3K27me3 peaks in control and H3K27me3 as well as 
H3K27ac signal upon EED inhibitor treatment. Regions are ordered by H3K27me3 
intensity (two biological replicates). c, Scatter plot showing the log2 fold change 
of the CUT&Tag signal on H3K27me3 peaks in organoids treated with different 
EED inhibitor concentrations versus control (top) and histogram showing the 
distribution of fold changes (right). Heatmap showing the log2 fold change 
of the expression of the closest gene from the DE analysis in scRNA-seq data 
(bottom). d, Genomic tracks showing bulk CUT&Tag profiles for H3K27me3 and 
H3K27ac at genomic regions around STMN2 and POU5F1. e, UMAP embedding 
of the scRNA-seq data colored by treatment (left) and annotated Louvain cluster 
identity (right), 12,901 cells from two biological replicates, each pool containing 
50 organoids. f, Bar plot showing cluster enrichment of treated cells versus 
control (top) and distribution of treatments in clusters (bottom). Common odds 
ratio (height of the bar) and P value (transparency of the bar) were obtained from 

a two-sided Cochran–Mantel–Haenszel test stratified by sampling timepoint 
(Methods). g, Circular plot of differential transition probabilities between the 
different cell states (defined in e) (Methods and Extended Data Fig. 9h). Inhibitor-
treated cells show an enrichment at the terminal states of the graph. Cells tend 
to remain pluripotent or differentiate in neurons or off-lineage states, such as 
neural crest and NNE. h,i, Bar plots quantifying the expression (h) and bivalency 
(i) of the top 200 differentially expressed genes in the cell populations (n = 200 
genes) identified from the developmental brain organoid atlas (Fig. 1c). 
 Error bars denote the standard deviation. Genes with bivalent histone 
modifications tend to become upregulated in PSCs and NE (Extended Data  
Fig. 10c,d). j, Transcription factor motif enrichment in H3K27me3-depleted 
peaks close (10 kb) to differentially expressed genes in the NNE (cluster 7; 
Extended Data Fig. 10e,f). k, Schematic showing how H3K27me3-mediated 
repression of transcription factor motifs could affect lineage decisions when 
cells exit from pluripotency and lead to preferential stabilization of the NNE fate. 
NE, neuroepithelium.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01652-0

Neuro-
epithelium

1 2 3 4 5 6 7 8

Neuroepithelium

Non-neural
ectoderm

Neurons

H3K27me3
H3K27ac

H3K27me3
H3K27ac

D
M

SO
10

 µ
M

EE
D

 in
h.

chr 6 (5 kb) chr 8 (20 kb)

STMN2POU5F1

H3K27me3 H3K27me3H3K27ac H3K27acH3K4me3
DMSO

Inhibition
of EED

(H3K27me3 loss)

Single-cell
RNA sequencing

Bulk CUT&Tag on
histone

modificaions

a

b

Total H3

Total H3
(0–100)
(0–50)

(0–100)
(0–50)

(0–100)

(0–100)
(0–250)

(0–50)

(0–250)

(0–50)

(0–100)

(0–100)

H3K27me3
H3K27ac

H3K27me3
H3K27ac

D
M

SO
10

 µ
M

EE
D

 in
h. Total H3

Total H3

H
3K

27
m

e3
 lo

g 2F
C

(in
hi

bi
to

r v
s 

co
nt

ro
l) 4

2

0

–2

–4

1

3

10

EED inhibitor
(µM)H3K27me3 peaks

Closest gene log2FC
(treatment vs DMSO)

0≤–1 ≥1

c

d STMN2

0 50 0 50 0 50

e

7

5

8
Neural crest

4

1

3

6
2

PSC
1
3
10

EED inhibitor
(µM)

DMSOC
om

m
on

 lo
g 2 o

dd
s 

ra
tio

2

0

4

–2

Cluster enrichment over DMSOf

h j

1

2

3

0

4

M
ot

if 
lo

g-
fo

ld
 e

nr
ic

hm
en

t

H3K27ac
H3K4me3

H3K27me3
H3K4me3

Non-neural ectoderm, neural crest and
neurons get enriched in EED inhibition

PSC

Neuroepithelium gets de-
pleted in EED inhibition

O�-lineage transcription
factors are repelled by

H3K27me3

O�-lineage transcription  factors
access their target genes

k Control EED inhibition

U
M

AP
2

UMAP1
12,901 cells

UMAP1

DMSO

1 µM

3 µM

10 µM

EED inhibitor treatment Louvain clusters/cell states

TF motifs in H3K27me3 depleted peaks

EED inhibitor treatment

MRh
Tel

Astrocytes

Dien

Retina

PSCs
NE

NNE

U
M

AP
2

Clusters

Normalized coverage

H
3K

27
m

e3
 p

ea
ks

 ±
 5

 k
b 

(n
 =

 7
,6

91
)

PS
C

N
N

E

N
E

N
PC

N
eu

As
t

C
hP

O
PC

s

Pluri-potent Neural Other lineages

RN
A 

ex
pr

es
si

on
of

 to
p 

20
0 

D
E 

ge
ne

s

0

0.1

–0.1

0.2

0.3

0.4

–2

0

–1

1

2
Active

Repressed

i

Enrichment of
EED inhib./control

Neurons

Neural
crest

Pluripotency

Non-neural
ectoderm

g

0 20–20

C
hr

om
at

in
 s

ta
te

 a
t

to
p 

20
0 

D
E 

ge
ne

s
bi

va
le

nt

10 µM EED-inhibitor

Day 0
EB

Day 15
Neuroepithelium

C
D

X2
G

LI
3

PO
U

5F
1

RX
RA

ZI
C

3
N

FY
B

ZI
C

5
G

AT
A3

BA
RH

L1
PK

N
O

X1
PO

U
2F

1
M

AF
F

EL
F3

PO
U

3F
1

TE
AD

3
KL

F6
ZB

TB
44

EG
R1

N
R2

F1
ZN

F9
3

IR
F3SP

4
TF

AP
2B

ST
AT

1
SP

8
TF

AP
2C

ST
AT

2
TF

AP
2A

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01652-0

Table 17). STMN2 and POU5F1 are exemplary genes showing strong 
H3K27me3 depletion, concomitant gain of H3K27ac and upregulation 
of mRNA expression (Fig. 5c,d).

We integrated the scRNA-seq data between conditions, per-
formed clustering and annotated the resulting populations (Fig. 5e). 
We observed a large neuroepithelial progenitor population (clusters 
1, 2, 3 and 6) but found inhibitor-treated cells enriched among pluripo-
tent cells (cluster 4), NNE (cluster 7), neural crest (cluster 5) and neu-
rons (cluster 8) (Fig. 5e,f and Extended Data Fig. 9e–g). We calculated 
transition probabilities using CellRank22,23 and confirmed that cells 
transition from the neuroepithelium and pluripotency to NNE, neural 
crest and neurons (Fig. 5g and Extended Data Fig. 9h). We performed 
differential expression (DE) analysis in the neuroepithelium cluster 
and found that many treatment-upregulated genes were also marker 
genes for the ectopic clusters (Extended Data Fig. 10a and Supplemen-
tary Tables 18–20). These genes exhibit an inhibitor-dependent loss 
of H3K27me3, gain in H3K27ac and upregulation of mRNA (Extended 
Data Fig. 10b), indicating that loss of H3K27me3 shifted cell identity 
toward ectopic cellular states. Indeed, the top upregulated genes upon 
H3K27me3 inhibition were expressed outside of the neuroepithelium 
in our developmental atlas (Fig. 5h). We found that genes most strongly 
upregulated upon loss of H3K27me3 resided in transcriptionally per-
missive H3K27me3/H3K4me3 bivalent domains within the neuroepi-
thelium and PSCs, thereby primed for activation upon H3K27me3 loss 
(Fig. 5b,i). This suggests that H3K27me3 is required to stabilize cell fate 
decisions when cells progress from pluripotency to neuroepithelium 
(Fig. 5h,i and Extended Data Fig. 10c,d).

We investigated which transcription factors might destabilize cell 
fate decisions at the exit from pluripotency by analyzing binding motifs 
within H3K27me3-depleted peaks in close proximity to upregulated 
genes in the ectopic clusters (Fig. 5j). This revealed a motif enrich-
ment for the TFAP2 family members that regulate the specification 
of neural crest and NNE46,47, STAT family members that are involved 
in cell proliferation and multiple transcription factors that regulate 
neuronal developmental processes (for example, EGR1, KLF6 and 
SP8) (Extended Data Fig. 10e). Most of them are expressed during the 
neuroepithelium stage (Extended Data Fig. 10f). We hypothesize that 
these transcription factors have enhanced access to their target genes 
upon depletion of H3K27me3 and induce a cascade of dysregulation 
that alters cell fate choice (Fig. 5k). Our observation offers a mechanis-
tic explanation to the alterations in developmental timing observed 
in other systems10,45,48. Interestingly, approximately 60% of cells still 
established neuroepithelial identities, despite loss of H3K27me3. This 
supports that the neuroectoderm comprises a default fate that cells 
assume without inductive signals49,50.

Overall, we identified the molecular framework of how 
H3K27me3-mediated repression ensures lineage fidelity during early 
central nervous system development. We delineate its effect on imme-
diate branch points within early developmental stages at single-cell 
resolution.

Discussion
During early human brain development, gene expression must be 
tightly coordinated to enable controlled differentiation into various 
cell types. It has been challenging to study the epigenetic mechanisms 
that influence these dynamic processes on a global scale and with 
single-cell resolution. In our research, we addressed this by measur-
ing histone modifications at single-cell resolution in brain organoids, 
which simulate critical aspects of early human brain regionalization 
and cell type formation in vitro. Throughout a developmental organoid 
timecourse, we combined scCUT&Tag profiles indicating repressed and 
active chromatin states with RNA expression data. We discovered that 
chromatin modification profiles were highly specific to particular cell 
populations, and we identified region-specific regulatory elements 
near key cell fate determinants, often marked by epigenetic switches 

at fate bifurcation points to prime gene expression. These findings sug-
gest that chromatin modifiers are essential in regional diversification 
and cell fate stabilization, supported by EED perturbation experiments, 
which led to widespread H3K27me3 depletion, activation of typically 
repressed genes and cells adopting unintended states. These results 
imply that dynamic histone modifications are crucial for proper cell 
fate determination and brain regionalization. Additionally, our devel-
opmental atlas of histone marks will serve as a valuable reference for 
understanding the epigenomic landscape of human brain development, 
aiding future studies on cell fate commitment and reprogramming.
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Methods
The use of human embryonic stem (ES) cells for the generation of brain 
organoids was approved by the ethics committee of northwest and 
central Switzerland (2019-01016) and the Swiss federal office of public 
health. Under the Swiss Human Research Act, research performed with 
fully anonymized human specimens does not require an institutional 
review for research as long as consent was approved in the first place.

Cell and organoid culture
Cell lines used in the study were derived from different sources:

 409b2-iCRISPR (female), originally from the RIKEN BRC cell bank, 
modified by the S. Pääbo laboratory51

HOIK1 (female), HipSci resource52

WIBJ2 (female), HipSci resource52

WTC (GM25256) (male), Coriell Institute53

B7 (female), B. Roska laboratory54

For culturing, cells were grown on Matrigel (Corning, 354277) 
coated six-well dishes in mTeSR Plus (STEMCELL Technologies, 100-
0276) supplemented with penicillin–streptomycin (1:200, Gibco, 
15140122). To propagate the cells, they were dissociated with Try-
plE (Gibco, 12605010) or EDTA in DPBS (final concentration 0.5 mM) 
(Gibco, 15575020) and kept on Rho-associated protein kinase (ROCK) 
inhibitor Y-27632 (final concentration 5 µM, STEMCELL Technologies, 
72302) for 1 d. Cells were stored in liquid nitrogen in mFreSR (STEM-
CELL Technologies, 05855) and tested for mycoplasma (Venor GeM 
Classic, Minerva Biolabs) after each thawing cycle.

To generate brain organoids, cells were grown to a confluency of 
approximately 50% and dissociated with TryplE. In total, 2,000–3,000 
cells were aggregated in 96-well ultra-low attachment plates (Corning, 
CLS7007) to form embryoid bodies (EBs). We followed an unguided 
protocol to obtain brain organoids55, with a few modifications. EBs were 
aggregated and cultured in mTeSR Plus, and neural induction medium 
was added when the EBs had reached around 400–500 µm (usually day 
5). Retinoic acid containing neural differentiation medium was added 
only from day 40 onward37. Cerebral organoids were grown shaking 
in 6-cm dishes for up to 8 months. To generate retinal organoids, we 
applied a protocol that allows the simultaneous aggregation of hundreds 
of EBs in agarose molds54. After neural induction, these are transferred 
(1 week) to Matrigel-coated six-well plates and allowed to attach. The 
neural induction medium used in both protocols is highly similar, allowing 
comparability of the neuroepithelium stage (both media contain DMEM/
F12 (Gibco, 31331‒028), 1× N2 supplement (Gibco, 17502‒048), 1% NEAA 
solution (Sigma-Aldrich, M7145) and 2 mg ml−1 heparin (Sigma-Aldrich, 
H3149‒50KU) (1 µl ml−1 for brain organoids); in case of brain organoids, 
1% GlutaMAX was added). After 2 weeks, neural differentiation medium 
was added, and retinal structures were scraped off after 4 weeks.

Drug treatment
We targeted the H3K27me3-reader EED56 (A395, MedChemExpress, 
HY-101512) that prevents allosteric activation of the PRC2 complex. 
For A395, concentrations between 1 µM and 10 µM were tested, and 
H3K27me3 was depleted in bulk experiments at 1 µM as shown by 
western blot. EED was inhibited from days 0–15 (experiment 1) and days 
0–18 (experiment 2), by adding the inhibitor when seeding the EBs. This 
time window coincides with the formation of the neural epithelium. 
The medium was changed every other day, and a fresh dose of inhibi-
tors was addded. We treated two different cell lines (HOIK1 and WIBJ2). 
We used single-nucleotide polymorphisms (SNPs) to assign the cells 
bioinformatically to each cell line. Full blinding of the experiments on 
inhibitor-treated organoids was not possible due to the phenotypes 
evident from the development of organoids.

Preparation of single-cell suspensions
Brain organoids were generated in batches. In each batch, five differ-
ent stem cell lines (409b2-iCRISPR, B7, WTC, HOIK1 and WIBJ2) were 

used and dissociated together. The cell lines were demultiplexed using 
SNPs. For retinal organoids, only B7 was used. We sampled developmen-
tal transitions from the pluripotent EB (day 5) and neuroepithelium  
(day 15) to neuronal differentiation in brain (days 35, 60, 120 and 240) 
and in retina organoids (days 45 and 85). Organoids were cut into 
pieces using a scalpel and thoroughly washed with HBSS buffer without  
Ca2+/Mg2+ (STEMCELL Technologies, 37250).

A papain-based neural dissociation kit (Miltenyi Biotec, 130-092-
628) was used to obtain single-cell suspensions. Then, 1,900 µl of 
pre-warmed buffer X with 50 µl of Enzyme P was added to the organoids 
and incubated for 15 min at 37 °C. A mix of 20 µl of buffer Y and 10 µl 
of DNase was added to each sample before tituration (10 times with 
a p1000 wide bore tip). The samples were then incubated twice for 
another 10 min and titurated with a p1000 and a p200 in between.

The reaction was stopped with HBSS buffer without Ca2+/Mg2+, 
and the cells were filtered at 30 µm. After an additional wash, the cells 
were stored in CryoStor CS10 (STEMCELL Technologies, 07930) or 
processed for further experiments. For all scCUT&Tag experiments, 
cells were kept from the same cell suspension to perform scRNA-seq. 
Cell viabilities were between 80% and 95%.

We performed the data collection on independent organoid 
batches from different cell lines. We demultiplexed them based on 
SNPs and treated them, therefore, as replicates. For day 60, we pro-
cessed independent biological replicates, and, for day 120, we used 
the same cell suspension as a technical replicate. An overview of all the 
experiments is shown in Extended Data Fig. 1c. No statistical methods 
were used to pre-determine sample sizes, but our sample sizes are 
similar to those reported in previous publications17–19. No data points 
were excluded from the analysis. Organoids for each timepoint were 
picked blinded. First computational analysis and inspection of the data 
were performed blinded.

Preparation of single-cell suspensions from human fetal brain
Human fetal brain tissue (19 gw) was obtained after elective pregnancy 
termination and informed written maternal consent from Advanced 
Bioscience Resources. The donor consented to the research use of the 
tissue without restrictions. The tissue was fully anonymized, and all 
experiments were performed in accordance with relevant guidelines 
and regulations. The estimated age of the fetus was calculated using 
clinical information, such as the last menstrual period and anatomi-
cal data obtained through ultrasound measurements. Dissected fetal 
brains were kept in DMEM + antibiotics on wet ice until preparation of 
the single-cell suspension for up to 48 h. Single-cell suspensions were 
prepared following the same protocol as for organoids. At this devel-
opmental timepoint, the cortex has already expanded and comprises 
the majority of the cells in the population. We tried to enrich cortical 
material by separating larger pieces from the material. The resulting 
single-cell suspensions were cryopreserved until further use. Nuclei 
suspensions for 10x multiome experiments were prepared following 
the scCUT&Tag protocol, and the nuclei were processed following the 
manufacturers’ instructions.

Cloning and purification of Tn5
Plasmids no. 123461 (pA/G-MNase) and no. 124601 (3XFlag-pA-Tn5-Fl) 
were ordered from Addgene. Protein A and Protein G were amplified 
using the primer pairs (FZ461_ProtA_rev, FZ462_HindIII_ProtA_fw 
and FZ459_EcoRI_ProtG_rev, FZ460_ProtG_fw) and fused by poly-
merase chain rection (PCR) (below). Protein A in the original vector 
(3×Flag-pA-Tn5-Fl, Addgene, 124601 (ref. 57)) was then replaced with 
the fusion product through EcoRI and HindIII restriction digest.

The final plasmid was transformed into chemically competent 
Rosetta cells to express the protein. The bacteria were grown to an 
optical density at 600 nm (OD600) of 0.4–0.6; expression was induced 
with 0.25 mM IPTG; and the protein was expressed at 18 °C overnight. 
Cells were harvested and stored at −80 °C until further processing. 
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The purification was performed on Chitin resin (New England Biolabs, 
S6651S) as described58, with small modifications. The cells were lysed 
using the Diagenode Bioraptor Plus at the high setting for 15 cycles, 
30 s on/30 s off.

After dialysis and concentration using Amicon Ultra-4 Centrifugal 
filters (Millipore, UFC803024), the protein was diluted to 50% glycerol 
final and loaded with adapters before use (below).

 FZ459_EcoRI_ProtG_revgaattctttatcgtcatctacggctggcgtcaactca 
gacgcg
 FZ460_ProtG_fwaaaaagctaaacgatgctcaagcaccaaaaacaacttataaatt 
agtcatcaacggg
 FZ461_ProtA_revaatttataagttgtttttggtgcttgagcatcgtttagctttt 
tagcttctgc
FZ462_HindIII_ProtA_fwccaagcttaaaagatgacccaagccaaagtgctaacc
FZ444_Tn5MErev[phos]CTGTCTCTTATACACATCT
FZ445_Tn5ME-ATCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
FZ445_Tn5ME-BGTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

scCUT&Tag
Starting from 1.5–3 Mio cells, nuclei were isolated following the 10x 
Genomics CG000365 Demonstrated Protocol. The 0.1× buffer was used 
for all experiments, adjusting the final concentration of Digitonin to 
0.01% (Thermo Fisher Scientific, BN2006). In general, we followed the 
bulk CUT&Tag protocol, with a few adjustments57.

After lysis, the nuclei were directly transferred into scCUT&Tag 
wash buffer (20 mM HEPES (pH 7.5) ( Jena Bioscience, CSS-511), 150 mM 
NaCl (Sigma-Aldrich, S6546), 0.5 mM Spermidine (Sigma-Aldrich, 
S0266), 1% BSA (Miltenyi Biotec, 30-091-376), 1 mM DTT 
(Sigma-Aldrich, 10197777001), 5 mM sodium butyrate (Sigma-Aldrich, 
303410), Roche Protease Inhibitor (Sigma-Aldrich, 11873580001)) and 
washed once for 3 min at 300g. The buffer was supplemented with 
2 mM EDTA before the antibodies were added (see Supplementary 
Table 21 for further details). The samples were incubated on a rocking 
platform at 4 °C overnight.

The next morning, the cells were washed once, and the second-
ary antibody was added to the suspension for 1 h at 20 °C on a rocking 
platform or Eppendorf thermomixer. The cells were then washed 
twice and transferred into scCUT&Tag med buffer (20 mM HEPES 
(pH 7.5) ( Jena Bioscience, CSS-511), 300 mM NaCl (Sigma-Aldrich, 
S6546), 0.5 mM Spermidine (Sigma-Aldrich, S0266), 1% BSA (Miltenyi 
Biotec, 130-091-376), 1 mM DTT (Sigma-Aldrich, 10197777001), 5 mM 
sodium butyrate (Sigma-Aldrich, 303410), Roche Protease Inhibitor 
(Sigma-Aldrich, 11873580001)) including 2 µg of homemade Tn5. The 
cells were incubated for 1 h at 20 °C and then washed again twice with 
scCUT&Tag med buffer. To induce the cutting of the Tn5, 10 mM final 
MgCl2 (Sigma-Aldrich, M1028) was added, and the sample was incu-
bated for 1 h at 37 °C. After the incubation, the reaction was stopped 
with 15 mM EDTA final, and the sample was filled up to 600 µl with 
diluted nuclei buffer of the 10x Genomics scATAC kit v1.1 supplemented 
with 2% BSA. The nuclei were filtered through a 40-µm Flowmi filter 
(Sigma-Aldrich, BAH136800040) and washed with diluted nuclei buffer 
supplemented with 2% BSA.

The final nuclei suspension was quality controlled and counted 
with a trypan blue assay on the automated cell counter Countess 
(Thermo Fisher Scientific). Finally, 15,000–20,000 nuclei were loaded 
per experiment. In cases where fewer nuclei were recovered, all nuclei 
were loaded. To run the Chromium Chip, 5 µl of cell suspension was 
mixed with 3 µl of PBS and 7 µl of ATAC buffer from the kit.

Libraries were prepared following the manufacturer’s instructions, 
except that two PCR cycles were added to the barcoding PCR, and, after 
10 cycles of indexing PCR, 5 µl of the library was used to determine the 
final number of cycles in a Roche LightCycler59. Usually, scCUT&Tag 
libraries required 12–16 PCR cycles during the indexing. After SPRIse-
lect clean-up (Beckman Coulter, B23318), the libraries were quality 
controlled and sequenced following the 10x Genomics scATAC v1.1 

sequencing recommendations. Usually, 50–100 Mio reads per library 
were enough to cover the complexity.

H3K27me3 rabbit, Diagenode, C15410195, A0824D
H3K27ac rabbit, Diagenode, C15410196, A1723-0041D
H3K27ac mouse, monoclonal (MABI0309), GeneTex, GTX50903
H3K4me3 rabbit, Diagenode, C15410003, A1052D
H3 mouse, Active Motif, 39763, 20418023
β-Catenin mouse, 1:5,000, BD Biosciences, 610154
Guinea pig anti-rabbit antibodies online, ABIN101961
Alexa Fluor–conjugated antibodies, Thermo Fisher Scientific
HRP-conjugated antibodies, Jackson ImmunoResearch

Bulk CUT&Tag
Starting with 0.1–1 Mio cells after dissociation, cells were transferred 
into CUT&Tag wash buffer (20 mM HEPES (pH 7.5) ( Jena Bioscience, 
CSS-511), 150 mM NaCl (Sigma-Aldrich, S6546), 0.5 mM Spermidine 
(Sigma-Aldrich, S0266), 5 mM sodium butyrate (Sigma-Aldrich, 
303410), Roche Protease Inhibitor (Sigma-Aldrich, 11873580001)). 
After 15 µl of BioMag, Concanavalin A beads (Polysciences, 86057-3)  
in binding buffer (20 mM HEPES (pH 7.5), 10 mM KCl, 1 mM CaCl2, 1 mM 
MnCl2) were added to the sample and incubated on the wheel for 15 min 
at room temperature. Subsequently, the cells were collected on a mag-
net and lysed through the addition of CUT&Tag wash buffer supple-
mented with 0.01% Digitonin. Lysis was monitored under a microscope 
with trypan blue staining. After lysis was complete, the nuclei were 
washed again with CUT&Tag wash buffer. If possible, all samples were 
split, and H3 or another chromatin mark CUT&Tag was performed on 
the same starting material, to be used as normalizer. The antibody was 
added together with 2 mM EDTA final, and the sample was incubated 
on a rocking platform at 4 °C overnight.

The samples were washed once with CUT&Tag wash buffer, and 
the secondary antibody was added to the reaction and incubated 
for 1 h at 20 °C on a rocking platform. After two additional washes, 
the Tn5 was added (1:100) in CUT&Tag med buffer (20 mM HEPES  
(pH 7.5) ( Jena Bioscience, CSS-511), 300 mM NaCl (Sigma-Aldrich, 
S6546), 0.5 mM Spermidine (Sigma-Aldrich, S0266), 5 mM sodium 
butyrate (Sigma-Aldrich, 303410), Roche Protease Inhibitor 
(Sigma-Aldrich, 11873580001)). Tn5 was allowed to bind for 1 h at 
20 °C on a rocking platform. After two additional washes, the cut-
ting was induced through the addition of 10 mM MgCl2 in CUT&Tag 
med buffer. After 1 h at 37 °C, the reaction was stopped by adding a 
final of 20 mM EDTA, 0.5% SDS and 10 mg of Proteinase K. The reac-
tion was then incubated at 55 °C for 30 min and finally inactivated at 
70 °C for 20 min.

The DNA fragments were purified using the ChIP DNA Clean & 
Concentrator Kit (Zymo Research, D5205). For the elution from the 
columns 2 pg of Tn5-digested and purified lambda DNA (New England  
Biolabs, N3011S) were added to be used as spike-in normalizer 
for later analysis, when needed. Purified fragments were indexed 
for 15 cycles (1 × 5 min at 58 °C, 1 × 5 min at 72 °C, 1 × 30 s at 98 °C, 
14 × 10 s at 98 °C, 30 s at 63 °C, 1 × 1 min at 72 °C, ∞ at 4 °C) using 
NEBNext HighFidelty 2× PCR Master Mix (New England Biolabs, 
M0541S) and Illumina i5 and i7 indices59. The libraries were then 
purified using AMPure beads (Beckman Coulter, A63881), measured 
and quality controlled with Qubit DNA HS Assay (Thermo Fisher 
Scientific, Q32854) and on a TapeStation (Agilent, 5067-4626) and 
then sequenced (PE, 2 × 50 bp).

Hashing and scRNA-seq
Cells were either processed right after dissociation or recovered after 
cryostorage. To recover the cells after cryostorage, the cryovials were 
incubated in a water bath at 37 °C until only a small ice piece was left 
inside the tube. The cells were then transferred into pre-warmed 
DMEM/F-12 (Gibco, 31330038) supplemented with 10% FBS final 
(Merck, ES-009-B). After washing twice with DPBS (Gibco, 14190144) 
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supplemented with 0.5% BSA, the cells were filtered with a 40-µm 
Flowmi filter and counted using the trypan blue assay on the automated 
cell counter Countess (Thermo Fisher Scientific). Cell viability was 
approximately 80–95%. Cells were further diluted to be processed in 
the 10x Genomics single-cell RNA expression v3.1 assay, strictly follow-
ing the manufacturer’s guidelines.

To generate single-cell RNA expression libraries of the drug 
treatment, we turned to cell hashing60 for better comparability of the 
samples. For hashing, 100,000–300,000 cells were resuspended in 
50–100 µl of DPBS + 0.5% BSA. Then, 5 µl of Human TruStain FcX (Fc 
Receptor Blocking Solution, BioLegend, 422302) was added to the 
sample and incubated for 10 min on ice. Next, 2 µl of TotalSeq Cell 
hashing antibodies (BioLegend) was added to the cells and incubated 
for 30 min on ice with gentle agitation every 10 min.

Replicate 1:
HTO1 - GTCAACTCTTTAGCG - DMSO_ctrl
HTO3 - TTCCGCCTCTCTTTG - 1 µM A395
HTO4 - AGTAAGTTCAGCGTA - 3 µM A395

Replicate 2:
HTO1 - GTCAACTCTTTAGCG - DMSO_ctrl
HTO5 - AAGTATCGTTTCGCA - 1 µM A395
HTO7 - TGTCTTTCCTGCCAG - 3 µM A395
HTO8 - CTCCTCTGCAATTAC - 10 µM A395

After incubation, cells were washed twice with DBPS + 0.5% BSA. 
Depending on the starting amount, the cells were resuspended in 
20–40 µl of DPBS + 0.5% BSA and counted. Then, the cell suspensions 
were mixed and processed in the 10x Genomics single-cell RNA expres-
sion v3.1 assay, strictly following the manufacturer’s guidelines with 
slight adjustments. A maximum of 20,000 cells were targeted per 
experiment, and HTO additive primer was added to the cDNA synthesis 
following the TotalSeq technical protocol (https://www.biolegend.
com/en-us/protocols/totalseq-a-antibodies-and-cell-hashing-with-
10x-single-cell-3-reagent-kit-v3-3-1-protocol). To generate gene expres-
sion and hashing libraries, we followed the protocol CG000206 Chro-
mium Next GEM SingleCell v3.1 Cell Surface Protein and sequenced 
according to the manufacturer’s guidelines.

Western blot
Next, 1–3 organoids were directly collected into 50 µl of Laemmli sam-
ple buffer and homogenized with an electric grinder (Fisherbrand, 
12-141-368). DNA was sheared by sonication in the Diagenode Biorap-
tor Plus (high setting for 15 cycles, 30 s on/30 s off). Samples were 
subsequently run on SDS-PAGE and transferred to PVDF membrane 
using Wet-Blot. Then, 2–10 µl of extract was loaded per lane. The ECL 
signal was recorded using the iBright system (Invitrogen). The sig-
nal was compared to antibody stainings of loading controls (H3 and 
β-Catenin), and the membranes were quality controlled by Ponceau 
(Sigma-Aldrich, P7170-1L) staining. See Supplementary Table 21 for 
details on the antibodies.

Immunostaining
Organoids were fixed overnight in 4% paraformaldehyde. The next 
day, the organoids were washed three times for 5 min with DPBS and 
then transferred into 30% sucrose in DPBS until they sank to the bot-
tom of the tube. Then, the organoids were transferred into cryomolds 
(Sakura, 4565) and embedded in Tissue-Tek O.C.T. (Sakura, 16-004004) 
on dry ice. The organoids were sliced on a Cryostar NX70 (Thermo 
Fisher Scientific) into 20-µm-thick slices at −17 °C. The slices were 
transferred to glass slides and washed with PBS. After a quick wash, 
antigen retrieval was performed for 20 min at 70 °C in 1× pre-heated 
HistoVT One (Nacalai, 06380). Slides were washed three times for 
5 min with PBS + 0.2% Tween and then transferred to blocking and 

permeabilization (PBS, 0.1% Triton, 5% serum, 0.2% Tween, 0.5% BSA) 
for 1 h. The antibodies were added to the blocking solution overnight at 
4 °C (see Supplementary Table 21 for further details). The next day, the 
slides were washed again three times for 5 min with PBS + 0.2% Tween, 
and the secondary antibody was added in PBS supplemented with 2% 
BSA and 0.2% Tween for 2 h at room temperature. Last, the slides were 
washed again three times for 5 min with PBS + 0.2% Tween, adding 
DAPI to the last wash. The slides were then mounted in Prolong Glass 
Antifade and imaged on a Nikon Ti2 spinning disk or a confocal Zeiss 
LSM 980 microscope.

Data processing for scRNA-seq
To compute transcript count matrices, sequencing reads were aligned 
to the human genome and transcriptome (hg38, provided by 10x 
Genomics) by running Cell Ranger (version 5.0.0) with default param-
eters. Count matrices were then pre-processed using the Seurat R 
package (version 3.2)61.

Cells were filtered by unique molecular identifier (UMI), number 
of detected genes and fraction of mitochondrial genes as follows:

UMIs > 2,000
UMIs < 1.5 × 105

detected genes > 1,000
fraction of mitochondrial reads < 0.2
Transcript counts were normalized by the total number of counts 

for that cell, multiplied by a scaling factor of 10,000 and subsequently 
natural-log transformed (NormalizeData()).

Pre-processing and clustering of scCUT&Tag data
We aligned the sequencing reads to the human genome and transcrip-
tome (hg38, provided by 10x Genomics) using Cell Ranger ATAC (ver-
sion 1.2.0) with default parameters to obtain fragment files and peak 
calls. The fragment files and the peak count matrices were further 
pre-processed using Seurat (version 3.2)62 and Signac (version 1.1)61. 
We removed cells with fewer than 200 (H3K27ac and H3K4me3) or 100 
(H3K27me3) fragment counts from the analysis. For quality control, we 
checked the following metrics using Signac: the transcription start site 
(TSS) enrichment score (TSSEnrichment()), in particular for activating 
and promoter marks; the nucleosome signal (NucleosomeSignal()); 
the percentage of reads in peaks; and the ratio of reads in genomic 
blacklist regions.

We then created a unified set of peaks from the union of peaks from 
all samples by merging overlapping and adjacent peaks. The unified set 
of peaks was re-quantified for each sample using the fragment file (Fea-
tureMatrix()). Peak counts were normalized by term frequency-inverse 
document frequency (tf-idf) normalization using the Signac functions 
RunTFIDF(). Latent semantic indexing (LSI) was performed by running 
SVD (RunSVD()) on the tf-idf-normalized matrix. To visualize the data 
in two dimensions (2D), UMAP12 was performed on LSI components 
2–30. We then called high-resolution clusters using Louvain cluster-
ing in each group separately with the following resolutions to obtain 
similar cluster sizes:

EB: 2
Mid: 5
Late: 10
8 months: 5
Retina: 5

Demultiplexing
We used demuxlet63 to demultiplex cells pooled from different stem 
cell lines. For B7 and 409B2-iCRISPR, SNPs were called using bcftools 
based on DNA sequencing52,64 data or downloaded from the HipSci 
website (HOIK1 and WIBJ2) and the Allen Cell Atlas (WTC). All files 
were merged using bcftools, and sites with the same genotypes in all 
samples were filtered out. Demuxlet was run with default settings. 
For RNA, cells with ambiguous or doublet assignments were removed 
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from the data. Otherwise, the best singlet assignment was considered 
the lines’ genotype.

Integration and annotation of scRNA-seq data
First, we grouped the dataset into five groups depending on the sample 
of origin:

EB: 4-day-old brain organoids in EB stage
Mid: 15-day-old brain organoids in neuroepithelium stage
Late: 1–4-month-old brain organoids
8 months: 8-month-old brain organoids
Retina: 6-week-old and 12-week-old retina organoids

Initial integration was based on mid and late groups. We computed 
the 2,000 most variable features using the Seurat function FindVari-
ableFeatures() and computed cell cycle scores using the Seurat function 
CellCycleScoring(). Subsequently, the data were z-scaled; cell cycle 
scores were regressed out (ScaleData()); and principal component analy-
sis (PCA) was performed using the Seurat function RunPCA() based 
on variable features. We used the first 10 principal components (PCs) 
to integrate the different timepoints in the dataset using the Cluster 
Similarity Spectrum (CSS) method65. The missing samples EB, retina 
and 8 months were then projected into CSS space using the css_pro-
ject() function. To obtain a 2D representation of the data, we performed 
UMAP12 using RunUMAP() with spread = 0.8, min.dist = 0.2 and otherwise 
default parameters.

To annotate the data, we first called high-resolution clusters using 
Louvain clustering in each group separately with the following resolu-
tions to obtain similar cluster sizes:

EB: 1
Mid: 2
Late: 5
8 months: 2
Retina: 2
Clusters were annotated with cell types and regional identities 

using VoxHunt66, comparison to reference datasets13,14 and marker 
expression.

Hashing
Count matrices were generated with CITE-seq-Count (version 1.4.5 
running under Python version 3.6.13) and intersected with transcript 
matrices from Cell Ranger. The hashtag counts were normalized with 
centered log-ratio (CLR) transformation. Doublets were filtered out 
using hashtag information.

Calculation of gene activity scores
To enable comparison of gene expression with chromatin modifica-
tions in the same feature space, we computed gene activity scores for 
each gene and chromatin modality. We summarized fragment counts 
over the gene body plus an extended promoter region (+2 kb). For this, 
we used the Signac function GeneActivity() with default parameters. 
Fragment counts representing gene activities were subsequently log 
normalized with a scaling factor of 10,000.

Annotation of peak regions
To obtain genomic annotations for peak regions from all chromatin 
modalities, we used the function annotatePeak from the R package 
CHIPseeker67 with default parameters.

Matching of scRNA and scCUT&Tag
To integrate cell populations between RNA and chromatin modalities, 
we matched high-resolution clusters based on the correlation of gene 
expression with gene activity scores. For this, we performed MCMF 
bipartite matching between the modalities as described in https://
github.com/ratschlab/scim (ref. 21). The function get_cost_knn_graph() 

was used with knn_k = 10, null_cost_percentile = 99 and capacity_
method = ‘uniform’. As a distance metric (knn_metric), we used the 
correlation distance provided by scipy68 for activating marks H3K27ac 
and H3K4me3 and the negative correlation distance for the repres-
sive mark H3K27me3. Unmatched clusters from either modality were 
matched based on maximum (or minimum) correlation.

Data representation
In all box plots, the center line denotes the median; boxes denote lower 
and upper quartiles (Q1 and Q3, respectively); whiskers denote 1.5× 
the interquartile region below Q1 and above Q3; and points denote 
outliers. All error bars shown in the manuscript depict the standard 
deviation. For bar plots, the absolute numbers are given within the 
plot or the legend.

Graph representation of regional diversification
To visualize differentiation trajectories into regionalized neuronal 
populations, we constructed a graph representation based on terminal 
fate probabilities. For this, we first obtained count matrices for the 
spliced and unspliced transcriptome using kallisto (version 0.46.0)69 
by running the command line tool loompy fromfastq from the Python 
package loompy (version 3.0.6)(https://linnarssonlab.org/loompy/). 
We subset the dataset to cell populations on the neuronal trajectory 
from pluripotency (PSCs, neuroepithelium, NPCs and neurons) and 
computed RNA velocity using scVelo (version 0.2.4)22 and scanpy 
(version 1.8.2)70. First, 2,000 highly variable features were selected 
using the function scanpy.pp.highly_variable_genes(). Subsequently, 
moments were computed in CSS space using the function scvelo.
pp.moments() with n_neighbors = 20. RNA velocity was calculated 
using the function scvelo.tl.velocity() with mode = ‘stochastic’, and a 
velocity graph was constructed using scvelo.tl.velocity_graph() with 
default parameters. To order cells in the developmental trajectory, a 
root cell was chosen randomly from cells of the first timepoint (EB), 
and velocity pseudotime was computed with scvelo.tl.velocity_pseu-
dotime(). The obtained velocity pseudotime was further rank trans-
formed and divided by the total number of cells in the dataset. Based 
on the velocity pseudotime, we computed fate probabilities into the 
following manually annotated terminal cell states: dorsal telencepha-
lon neurons, diencephalon neurons, midbrain neurons, hindbrain 
neurons and retinal ganglion cells. For this, we used CellRank (version 
1.3.0)23. A transition matrix was constructed with a palantir kernel (Pal-
antirKernel()) based on velocity pseudotime. Absorption probabilities 
for each of the pre-defined terminal states were computed using the 
GPCCA estimator. Based on the computed fate probabilities, we next 
constructed a graph representation. We used PAGA to compute the 
connectivities between clusters (scvelo.tl.paga()) and summarized 
transition scores for each of the clusters. To find branch points at 
which the transition probabilities into different fates diverge, we 
constructed a nearest-neighbor graph between the high-resolution 
clusters based on their transition scores (k = 10). We further pruned the 
graph to only retain edges going forward in pseudotime—that is, from 
a node with a lower velocity pseudotime to a node with a higher veloc-
ity pseudotime. Additionally, we removed edges connecting different 
regional trajectories. The resulting graph is directed with respect 
to pseudotemporal progression and represents a coarse-grained 
abstraction of the fate trajectory, connecting groups of cells with both 
similar transition probabilities to the different trajectories and high 
connectivities on the transcriptomic manifold.

Differential peak analysis between regional identities
To find peaks with differential enrichment in regional trajectories, we 
performed differential peak analysis for each chromatin modality. We 
fit a GLN with binomial noise and logit link for each peak i on binarized 
peak counts Y with the total number of fragments per cell and the 
region label as the independent variables:
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Y~n_fragments+region
In addition, we fit a null model, where the region label was omitted:
Y~n_fragments
We then used a likelihood ratio test to compare the goodness of 

fit of the two models using the lmtest R package (version 0.9) (https://
cran.r-project.org/web/packages/lmtest/index.html). Multiple testing 
correction was performed using the Benjamini–Hochberg method.

Analysis of bivalent and switching peaks
To find genomic regions that were marked by both H3K27me3 and 
H3K4me3 (bivalency), we extended all peaks of both modalities by 2 kb 
in both directions before intersecting them. For all intersecting peaks, 
we aimed to find instances where bivalency is resolved during regional 
diversification. For this, we selected matching peaks that showed dif-
ferential enrichment in any region with opposite effect sizes. Out of 
these, we further selected matching peaks where both modalities were 
detected in more than 5% of cells in any high-resolution cluster in the 
neuroepithelial stage (bivalent in neuroepithelium). We performed an 
analogous analysis for H3K27me3 and H3K27ac to find regions where 
switching occurs upon regional diversification. Here, we selected match-
ing peaks from both modalities for which only one mark was detected in 
the neuroepithelial stage (>5% detection in any high-resolution cluster).

Embedding and clustering of regulatory regions
From peaks detected in all chromatin modalities, we aimed to reveal 
and stratify regulatory regions with distinct detection patterns across 
the developmental timecourse. We first applied rigorous quality con-
trol to all peaks in all modalities and retained only peaks that were 
detected in more than 50 high-resolution clusters and detected in more 
than 10% of cells in at least one cluster. We then merged peaks from all 
modalities through intersection and represented them by the detection 
rate of peaks in high-resolution clusters from all individual modalities. 
This resulted in a region × cluster matrix, which was z-scaled, and the 
number of detected clusters was regressed out using the Seurat func-
tion ScaleData(). Next, we performed PCA and UMAP embeddings, 
and Louvain clustering was performed based on 20 PCs. The class of 
regions was determined through the combination of chromatin marks 
that were detected in this region across the entire dataset. Regions were 
labeled as ‘promoters’ if they were within 2 kb of the TSS of a gene and 
as ‘distal’ if they were farther than 3 kb from a gene body.

Functional enrichment of regulatory regions
Our previous analyses revealed brain region-specific peaks (top 50 
differentially enriched peaks per region) and distinct clusters or regula-
tory regions. To understand if clusters of regulatory regions captured 
distinct functional enrichments or transcription factor binding sites, 
we performed functional enrichment with GREAT as well as transcrip-
tion factor motif enrichment. GREAT enrichment was performed using 
the R package rGREAT71. We performed the analysis using the local 
implantation with the ‘GO:BP’ gene set based on TxDB hg38 gene defi-
nitions (https://bioconductor.org/packages/release/data/annotation/
html/TxDb.Hsapiens.UCSC.hg38.knownGene.html). For transcription 
factor motif enrichment, we first discovered motifs in each peak using 
motifmatchr (version 1.14)72 through the Signac function FindMotifs(). 
Next, we performed a two-sided Fisherʼs exact test to test for differen-
tial enrichment of peaks versus background. P values from both analy-
sis were multiple testing corrected using the Benjamini–Hochberg 
method. As a background for both analyses, we used the combined set 
of regulatory regions that passed filtering criteria.

Reconstruction of the telencephalic neuron differentiation 
trajectory from pluripotency
To reconstruct the differentiation trajectory leading up to telence-
phalic neurons in higher resolution, we first extracted all cells anno-
tated as EB, neuroepithelium, telencephalic progenitors and neurons. 

We next sought to compute a pseudotime describing the progression 
along this trajectory for all modalities separately. For all chromatin 
modalities, we used LSI components 2–10 to compute diffusion maps 
with the R package destiny35. Ranks along the first diffusion component 
were used as a pseudotemoral ordering. For RNA, we used the function 
scvelo.tl.velocity_pseudotime() from scVelo22 to compute a pseudotime 
based on RNA velocity. To obtain an even distribution of timepoints for 
all modalities, we next subsampled the trajectory for each timepoint 
group to the lowest cell number in any modality but a minimum of 100. 
The subsampled trajectory was then stratified into 50 bins of equal cell 
number or 20 bins in case of neurogenesis trajectories.

Distribution of chromatin states during differentiation 
pseudotime
To assess how genomic regions change chromatin states during dif-
ferentiation, we first selected regions where peaks of the three marks 
were detected in more than 5% of cells in any pseudotime bin. For each 
mark, we further determined a detection threshold by computing the 
median detection for all peaks in these regions in all pseudotime bins. 
For each modality and chromatin bin, we defined regions with peaks 
above this detection threshold as detected. If a region was marked 
by H3K27me3 and H3K4me3 in the same bin, they were annotated as 
bivalent, and, if they were marked by H3K27me3 and H3K27ac in the 
same bin, they were annotated as active promoters.

Clustering of pseudotemporal expression patterns
To discover groups of genes with similar pseudotemporal expres-
sion patterns, we clustered smoothed expression patterns based on 
a dynamic time warping distance. For this, genes for clustering were 
selected by intersecting 6,000 highly variable genes in RNA with genes 
detected in more than 2% of cells in any pseudotime bin for all chroma-
tin modalities. For these genes, the average log-normalized expression 
and gene activity was computed for each modality and pseudotime 
bin. We smoothed the mean expression for each gene’s values using a 
generalized additive model with a cubic spline (bs = ‘cs’), which was fit 
using the R package mgcv70. Smoothed expression over pseudotime 
bins for all modalities was used to compute a dynamic time warping 
distance between all genes using the R package dtw73, which was further 
used for k-means clustering with the R package FCPS74. For each of these 
clusters, we performed GO enrichment against the 6,000 most highly 
variable genes from RNA. One of these clusters was highly enriched for 
neuron-related biological processes, and the genes in this cluster were 
further used in subsequent analyses. Figure 4a shows a subset of the 
clustering that covers all pseudotemporal patterns. We provide the 
full list of genes in Supplementary Table 10.

Reconstruction of the neurogenesis trajectory for the 
4-month timepoint
To better understand pseudotemoral expression and chromatin modi-
fication dynamics during neurogenesis, we sought to further mitigate 
potential confounding factors, such as distribution of timepoints, data 
quality and the pseudotime inference procedure. For this, we subset the 
data to telencephalic NPCs and neurons from the 4-month timepoint 
and applied the following additional quality filters to remove outliers: 
H3K27ac: >1,000 peak fragments per cell; H3K4me3: >316 (102.5) peak 
fragments per cell, <10,000 peak fragments per cell; H3K27me3: <3,162 
(103.5) peak fragments per cell. Pseudotime inference was subsequently 
performed using diffusion maps as described above. For RNA, we 
re-computed a set of 2,000 variable features, excluding cell cycle genes, 
further regressed out cell cycle scores (ScaleData()) and performed PCA 
(RunPCA()). We used the first 20 PCs to compute diffusion maps with 
the R package destiny35. Analogous to the CUT&Tag data, ranks along 
the first diffusion component were used as a pseudotemoral ordering. 
The trajectory was then divided into 10 or 20 bins (depending on the 
analysis). Supplementary Fig. 3b shows a subset of the clustering that 
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covers the major pseudotemporal patterns. We provide the full list of 
genes in Supplementary Table 11.

Detection of inflection point for neuronal genes
To examine at which point the CUT&Tag signal at neuronal genes (from 
clustering analysis described above) changes during neurogenesis 
relative to their expression, we sought to identify the first pseudotime 
bin in which the detection rate significantly increases for active histone 
modifications, chromatin accessibility and RNA expression or decreases 
for repressive histone modifications (Fig. 4f). For this, we used the neu-
rogenesis pseudotime from the 4-month timepoint divided into 10 bins 
and defined the first bin as the baseline. For each subsequent bin, we 
performed differential detection analysis against the baseline using a 
binomial linear model as described above. Multiple testing correction 
was performed using the Benjamini–Hochberg method. Based on this, 
we determined the first bin with false discovery rate (FDR) < 0.05 and 
log2 fold change > 0.25. We performed a similar analysis in Supplemen-
tary Fig. 4i using the multiome data of the 19-gw fetal brain sample. This 
analysis was performed on all neuronal genes that were selected based 
on having maximal expression in neurons over NPCs and detection of 
H3K27ac in more than 5% of cells in any neuronal high-resolution cluster. 
From this, we computed a ‘pseudotime lag’ as the difference between 
the first divergent bin in the RNA and chromatin modifications.

Analysis of multiome data of the developing human brain
We aligned the sequencing reads to the human genome and transcrip-
tome (hg38, provided by 10x Genomics) using Cell Ranger Arc (version 
2.0.0) with default parameters to obtain fragment files, peak calls and 
transcript counts. The data were further pre-processed and analyzed 
using Seurat (version 3.2)62 and Signac (version 1.1)61. Quality control 
was performed using the following criteria: 1,000–6,000 detected 
features per cell (RNA), more than 1,500 UMI counts per cell (RNA) and 
1,000–50,000 detected peaks per cell (ATAC). Based on RNA expression, 
we further performed variable feature selection, z-scaling and PCA. The 
first 20 PCs were used as an input for Louvain clustering and UMAP. The 
clusters were manually annotated based on expression of marker genes. 
To specifically analyze the telencephalic neuron trajectory in these 
data, we extracted clusters corresponding to dorsal telencephalon 
NPCs, intermediate progenitors and neurons. For this subset of the 
data, we again performed variable feature selection, z-scaling and PCA 
and used the first 20 PCs to run UMAP and to compute diffusion maps 
with destiny35. Ranks along the first diffusion component were used as 
a pseudotemoral ordering. The velocity pseudotime was further rank 
transformed and divided by the total number of cells in the dataset.

GRN analysis
To assess how the chromatin modifications shape the GRN during 
neurogenesis, we first inferred a GRN using Pando based on a dataset 
with integrated RNA and ATAC modalities over organoid develop-
ment14. To select genomic regions for GRN inference, we performed 
region-to-gene linkage using the Signac function LinkPeaks() and inter-
sected these regions with CUT&Tag peaks with more than 5% detection 
rate in any high-resolution cluster from all modalities. We used these 
regions to infer the GRN with the Pando function initiate_grn(). We 
further ran find_motifs() using the transcription factor motifs provided 
by Pando and inferred the GRN using infer_grn() with the following 
non-default parameters: peak_to_gene_method = ‘GREAT’, tf_cor = 0.2, 
downstream = 100,000 and aggregated ATAC data to high-resolution 
clusters called by the authors (aggregate_peaks_col = ‘highres_clus-
ters’). We filtered this network for significant positive connections with 
FDR > 0.01, Pearson correlation > 0.2 and coefficient > 0. To investigate 
the regulation of neurogenesis using this network, we extracted a 
subnetwork containing all neuronal genes (from clustering analysis 
described above) as well as transcription factors shared by at least 
three of these genes. For the regulatory regions in this network, we 

evaluated the epigenetic status in each pseudotime bin by applying 
a detection threshold of 5% for each chromatin modality. Network 
visualization and analysis was performed with ggraph (TLP; https://
ggraph.data-imaginist.com/authors.html) and tidygraph (TLP; https://
tidygraph.data-imaginist.com/authors.html). The subnetwork in 
Fig. 4h shows genes in the neuronal cluster with priming of active epi-
genetic marks (a - cluster 6) at early (left) and late (right) pseudotime 
stages. This subnetworks includes all genes in that cluster as well as 
transcription factors identified in the GRN to regulate at least three 
of the genes within that cluster. Edges represent regulatory regions 
with a transcription factor binding motif, and edge color indicates 
epigenomic state. For example, the transcription factor binding motif 
for KLF7 in the vicinity of NEUROD2 is marked by H3K27me3 at the 
NPC stage and gains H3K27ac/H3K4me3 at the neuron stage. Instead, 
the two binding motifs for JUN in the vicinity of NEUROD2 remain 
H3K27me3 and H3K27ac marked, respectively. Node size represents  
pagerank centrality.

Analysis of pseudotemporal and regional variance
To assess how expression and enrichment of genes and peaks varied 
during neurogenesis over pseudotime and between regions, we first 
selected 4,000 highly variable genes and peaks with detection in more 
than 5% of cells in any high-resolution cluster. Next, we computed 
the average expression and activity for each high-resolution cluster. 
We fit three Gaussian linear models for each gene i with mean cluster 
expression (Y) as the response variable and region assignment and/or 
pseudotime as the independent variables:

 (1) Y ~ region
 (2) Y ~ pseudotime
 (3) Y ~ pseudotime + region

We used the R2 value of these models as the fraction of variance 
explained by region (1), pseudotime (2) or branch and pseudotime (3).

An analogous analysis was performed to compare regional vari-
ance between astrocytes and NPCs. For each cell state, we fit a Gaussian 
linear model as

Y ~ region and used the R2 value of the model as a measure of 
regional variance.

Pre-processing and integration of drug treatment scRNA-seq 
data
The scRNA-seq data of A395-treated organoids were pre-processed 
analogous to the scRNA-seq data from the developmental timecourse. 
We then used Harmony75 with default parameters to integrate the dif-
ferent samples. Using the Harmony integration, we performed Louvain 
clustering with a resolution of 0.2 and annotated the clusters based on 
canonical marker gene expression.

Pre-processing of bulk CUT&Tag data
The FASTQ reads from the bulk CUT&Tag experiment were aligned to 
the human genome (hg38) using bwa76. Next, normalized bigWig files 
were obtained using deeptools bamCoverage77 with –ignoreDuplicates, 
-bs 200 and –normalizeUsing RPKM. To normalize bigWig files based on 
spike-ins, we first aligned spike-in reads to the human genome (hg38) 
using bwa76. Next, we computed scaling factors from the resulting BAM 
files using multiBamSummary bins with default parameters and used 
the result to perform normalization with bamCoverage77 (–ignoreDu-
plicates, -bs 200 and –scaleFactor). Heatmaps were generated using 
deeptools computeMatrix and plotHeatmap on the all H3K27me3 
peaks from the stages PSC, NNE and neuroepithelium of the devel-
opmental timecourse that were detected in more than 5% of the cells.

Differential peak analysis in the perturbation experiment
To obtain enrichment scores on the level of peaks, we summarized nor-
malized bigWig files to the peaks from the developmental timecourse 

http://www.nature.com/natureneuroscience
https://ggraph.data-imaginist.com/authors.html
https://ggraph.data-imaginist.com/authors.html
https://tidygraph.data-imaginist.com/authors.html
https://tidygraph.data-imaginist.com/authors.html


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01652-0

for each modality. Based on these peak intensities, we computed the 
log2 fold change of treated versus control samples for each sample and 
concentration separately. The log2 fold changes were then summarized 
by computing the mean for each concentration.

Inference of terminal fate probabilities in the perturbation 
experiment
To better resolve the differentiation hierarchies in the perturbation 
data, we computed transition probabilities into terminal fates based 
on RNA velocity. Count matrices for the spliced and unspliced transcrip-
tome were obtained using kallisto (version 0.46.0)69 by running the 
command line tool loompy fromfastq from the Python package loompy 
(version 3.0.6) (https://linnarssonlab.org/loompy/). We used scVelo 
(version 0.2.4)35 and scanpy (version 1.8.2)70 to perform RNA velocity 
analysis. The 2,000 most highly variable features were selected using 
the function scanpy.pp.highly_variable_genes() and used to compute 
moments in PCA space using the function scvelo.pp.moments() with 
n_neighbors = 20. RNA velocity was calculated using the function scvelo.
tl.velocity() with mode = ‘stochastic’, and a velocity graph was con-
structed using scvelo.tl.velocity_graph() with default parameters. To 
order cells in the developmental trajectory, a root cell was chosen ran-
domly from cells of the first timepoint (EB), and velocity pseudotime 
was computed with scvelo.tl.velocity_pseudotime(). We next computed 
fate probabilities into the following manually annotated terminal cell 
states: NNE, neural crest and neurons. For this, we used CellRank  
(version 1.3.0)23. A transition matrix was constructed with a palantir 
kernel (PalantirKernel()) based on velocity pseudotime. Absorption 
probabilities for each of the pre-defined terminal states were computed 
using the GPCCA estimator. Fate probabilities for each cell were visual-
ized using a circular projection78. In brief, we evenly spaced terminal 
states around a circle and assigned each state an angle αt. We then com-
puted 2D coordinates (xi, yi) from the F ∈ RNxnt  transition probability 
matrix for N cells and nt  terminal states as

xi = ∑
t
fit cosαt

yi = ∑
t
fit sinαt

To visualize enrichment of perturbed cells in this space, we used 
the method outlined in Nikolova et al.79. Here, the k-nearest neighbors 
graph (k = 100) was computed using Euclidean distances in fate prob-
ability space, and enrichment scores were visualized on the circular 
projection. Otherwise, the method was performed as described in 
the preprint.

Differential gene expression analysis in the perturbation 
experiment
To assess the changes in gene expression upon treatment with A395, we 
performed DE analysis based using a logistic regression framework. To 
test for global DE while accounting for compositional differences, we con-
sidered the Louvain cluster label as a covariate in the model. We further 
accounted for sampling timepoint and sequencing depth (UMI count):

treatment ∼ Y_i + n_UMI + timepoint + louvain_cluster

We used the Seurat function FindMarkers() to perform the test 
for each condition separately and for all conditions combined. The 
resulting P values were FDR adjusted using the Benjamini–Hochberg 
method. We used a significance threshold of FDR < 0.01 and absolute 
log2 fold change > 0.1.

Differential composition analysis
To test for compositional differences upon treatment with A395, we 
performed a Cochran–Mantel–Haenzel test stratified by sampling 

timepoint for each Louvain cluster and concentration separately. The 
resulting P value was FDR corrected, and a significance threshold of 
10−4 was applied.

Calculation of repression, activation and bivalency scores
To assess the epigenetic state of differentially expressed genes in 
different cell states, we computed repression (H3K27me3), activa-
tion (H3K4me3) or bivalency (H3K27me3 and H3K4me3) across 
high-resolution clusters. To compute activation and repression scores, 
we used the Seurat function FindModuleScore() to compute the gene 
activity deviation from background for H3K4me3 and H3K27me3. We 
computed the means of these scores for each high-resolution cluster 
and subsequently z-scaled them. A bivalency score was defined as 
zscale(H3K4me3 score) − zscale(H3K27me3 score). Here, a value close 
to 0 indicates bivalency, whereas positive and negative values indicate 
predominant activation (H3K4me3) and repression (H3K27me3), 
respectively.

Transcription factor motif enrichment
To determine whether transcription factor motifs were enriched in 
a set of regulatory regions, we performed transcription factor motif 
enrichment. For this, position weight matrices (PWMs) of human tran-
scription factor binding motifs were obtained from the CORE collec-
tion of JASPAR 2020 (ref. 80). Motif positions in peak regions were 
determined using the R package motifmatchr (version 1.14)72 through 
the Signac function FindMotifs(). We then used a Fisherʼs exact test to 
obtain P values for differential enrichment of motifs in these regions. 
The P values were FDR corrected, and a significance threshold of 0.05 
was applied. We applied this analysis on region-specific peaks as well 
as on identified bivalent and switching peaks. Additionally, we applied 
this analysis to find transcription factors with putative involvement in 
aberrant cell fate determination upon EED inhibitor treatment. Here, 
we selected genomic regions in proximity (<10 kb distance) to genes 
with DE in ectopic clusters (FDR < 10−4, log2 fold change > 1) that were 
depleted upon treatment (log2 fold change < −1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All raw sequencing data have been uploaded to the European Genome 
Phenome Archive (https://ega-archive.org/studies/EGAS50000000155). 
All processed data are available at https://episcape.ethz.ch, where they 
can be browsed interactively. Processed data can also be downloaded at 
https://doi.org/10.5281/zenodo.10471808 (ref. 81).

Code availability
All code generated in the study, including analysis parameters, is  
available at https://github.com/quadbiolab/organoid_epigenomics 
and https://doi.org/10.5281/zenodo.10964284 (ref. 82).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Epigenetic profiling of brain organoid development.  
a, Schematic of brain and retina organoid development in relation to  
early human brain development and emergence of cell state heterogeneity.  
b, Brightfield images of organoids during development (scale bar 500 µm) 
and the corresponding representative images of nuclei suspensions without 
adjusting the concentration (scale bar 100 µm). These are representative images 
of multiple experiments, each preparation has been performed multiple times 

and each organoid batch contained up to 96 organoids per cell line. c, Table 
giving an overview of the samples, cell lines and time points processed in the 
presented analysis including important quality control metrics like recovered 
number of cells per cell line, the fraction of reads in peaks, the sequencing 
saturation rate as well as total number of reads per sample and fraction of reads 
that maps to the reference genome (BO-Brain Organoids, RO-Retina Organoids, 
K27ac – H3K27ac, K4me3 – H3K4me3, K27me3 – H3K27me3).
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Extended Data Fig. 2 | Multi-modal matching between high-resolution 
clusters and cell type annotation. a, Schematic of the profiled modalities and 
their functional molecular role. H3K27ac marks active promoters and enhancers, 
H3K4me3 marks active promoters. H3K27me3 marks repressed regions with 
inactive promoters. b, Heatmaps showing correlation of high-resolution clusters 
across modalities. Clusters matched by bipartite matching during integration 
are indicated with a cross (see Methods ‘Matching of scRNA and scCUT&Tag’ for 
details). c, Barplot showing the total number of detected peaks for each histone 
modification in each cell state (H3K27ac: PSC-287442, NNE-40770, NE-60818, 

Tel NPC-97930, Tel IP-79388, Cort Neu-0137, Dien NPC- 81152, Dien Neu-3836, 
MRh NPC-72112, Mesen Neu-40315, Rhom Neu-30485, RPC-110547, RGC-60662, 
Ast-111708, ChP-69642, H3K27me3: PSC-40267, NNE-33245, NE-30462, Tel 
NPC-61953, Tel IP-37903, Cort Neu-19555, Dien NPC-103617, Dien Neu-13200, 
MRh NPC-82809, Mesen Neu-22834, Rhom Neu-7681, RPC-152647, RGC-12307, 
Ast-72446, OPC-2934, ChP-38992, H3K4me3: PSC-35922, NNE-25000, NE-34006, 
Tel NPC-65608, Tel IP-26895, Cort Neu-44418, Dien NPC-49196, Dien Neu-43978, 
MRh NPC-47889, Mesen Neu-24198, Rhom Neu-21049, RPC-78329, RGC-29680, 
Ast-61828, OPC-40994, ChP-40390).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cell type distribution across modalities and cell lines. 
a, Barplot of absolute cell number per time point (top panel) for all modalities. 
Stacked barplot of cell type fraction within each time point (bottom panel) 
for all modalities. b, UMAP embedding of neuronal populations in the time 
course colored by excitatory and inhibitory identity (left panel) or brain region 
of origin (right panel). c, UMAP embedding as in b colored by the expression 
(log(transcript counts per 10k + 1) of excitatory neuronal subtype markers 
(top panel) and inhibitory neuronal subtype markers (bottom panel). d, UMAP 
embedding of all modalities in the developmental time course colored by cell 

state (top panel) and cell line (bottom panel). e, Stacked barplot showing cell type 
fractions for each cell line in the dataset. This shows that all cell lines contribute 
to all major regional branches and cell states. Retina organoids have only 
been derived from the B7 cell line. f, Same UMAP as in d colored by expression 
(log(transcript counts per 10k + 1); in case of RNA-seq) and gene activity 
(log(fragment counts per 10k + 1 on gene body +2 kb promoter region); in  
case of CUT&Tag) of genes marking different regional identities and cell states 
(Non-tel. – Non-telencephalon).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Single-cell ‘multiome’ and bulk CUT&Tag data of 
human developing cortex at gestation week 19 validating the regulation 
of regional identity markers in the telencephalon lineage. a, Heatmap 
showing gene expression (log(transcript counts per 10k + 1) and gene activity 
(log(fragment counts per 10k + 1 on gene body +2 kb promoter region) of the top 
15 regional markers in the different brain regional branches of the time course. 
b, Schematic of the experimental setup. c, UMAP embedding of the single-cell 
multiome (co-measurement of scRNA-expression and sc-chromatin accessibility) 
data from the human developing brain colored by annotated cell states (right). 
Stacked barplot, showing the cell state distribution within the sample, reveals 
that most cells originate from the telencephalon. d, UMAP embedding as in (c) 
colored by gene expression of cell state markers used to annotate the different 
cell populations. e, Regional markers identified in Fig. 2e,f recapitulate the 
switching of activating and repressing marks in signal tracks of bulk H3K27me3, 

H3K27ac and H3K4me3 CUT&Tag data from a primary developing telencephalon 
(FOXG1, NEUROD2, STMN2, EMX1, NFIB) while non-telencephalon regional 
markers remain repressed (RSPO3, LMX1A, VSX2). f, Heatmaps showing the 
bulk CUT&Tag enrichment from the primary developing human brain on the 
highest enriched telencephalon peaks (+/−5 kb) from the scCUT&Tag organoid 
time course per modality. This shows that the chromatin state between regional 
marker genes in the telencephalon branch is similar between organoid and 
primary tissue. g, Intersection of human primary bulk CUT&Tag peaks with 
scCUT&Tag peaks from organoids, showing overlap between the organoids and 
primary tissue. h, Transcription factor motif enrichment in the gene sets that 
are actively repressed by H3K27me3 (left panel) and inactive but not repressed 
(right panel), showing potential regulators of inactive chromatin in the early 
developing brain.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Cell type- and region-specific chromatin modification 
peaks and corresponding transcription factor motifs. a–c, Heatmaps showing 
normalized signal enrichment (mean tf-idf-normalized fragment counts) at 
state- and region-specific peaks for H3K27ac (a), H3K4me3 (b), and H3K27me3 
(c) for all different cell lines used in the dataset (in order: 4- 409B2, B-B7, H-HOIK1, 
W-WIBJ2, T-WTC, the retina branch has been derived from B7 only) (Tf-idf, term 
frequency-inverse document frequency). Selected genes in proximity to these 

peaks and representative GO Biological Process terms are indicated on the  
right (see Methods ‘Functional enrichment of regulatory regions’ for details). 
d–f, Scatter plots showing log2 fold enrichment of transcription factor motifs in 
region-specific peaks H3K27ac (d), H3K4me3 (e), and H3K27me3 (f) versus their 
expression fold change in the respective regions. Colored dots indicate a motif 
enrichment Fisher exact test FDR < 0.01.
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Extended Data Fig. 6 | Cell type- and region-specific chromatin modification 
peaks. a, Schematic of the human brain colored by brain region (left) and force 
directed-layout of the main regional branches, colored by annotated brain 
region and developmental stage (right). b, Heatmap of peak enrichment (tf-idf-
normalized fragment counts) of lineage-specific peaks showing co-occurrence of 
H3K27me3 and H3K4me3 marks in the neuroepithelium and switch to activator 
(H3K4me3) or repressor (H3K4me3) in a regional branch. Expression of the 
closest gene is shown in the right panel (min-max scaled log(transcript counts 
per 10k + 1)). c, Overlaid genomic tracks showing enrichment of bivalent peaks 
close to lineage-specific genes in the neuroepithelium that switch to activation 

or repression in the regional branches (overlaid blue-H3K27me3, magenta-
H3K4me3). d, Scatter plot showing transcription factor motif enrichment in 
the H3K27me3 and H3K4me3 co-marked peaks plotted against their expression 
fold change in the respective regions (see Methods ‘Transcription factor motif 
enrichment’). Colored dots indicate a motif enrichment Fisher exact test 
FDR < 0.01. e, Scatter plot showing transcription factor motif enrichment in 
the H3K27me3 and H3K27ac switching peaks plotted against their expression 
fold change in the respective regions. Colored dots indicate a motif enrichment 
Fisher exact test FDR < 0.01.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Characterization of regulatory elements within the 
developmental time course. a, Stacked barplot showing counts of distal, gene 
body and promoter peaks for all different classes of regulatory regions identified 
in the time course. b, UMAP embedding of all identified genomic regions 
from Fig. 3b colored by log10-transformed distance to the next gene. c, UMAP 
embedding of different peak classes colored by log10-transformed detection 
in high-resolution single-cell clusters. d, Barplots showing annotation of peaks 
in regulatory regions per histone modification (see Methods ‘Annotation of 
peak regions’). e, Barplot showing the fraction of validated VISTA enhancers 

for different brain regions intersecting with scCUT&Tag regulatory regions. f, 
UMAP embedding of regulatory regions from Fig. 3b colored by Louvain cluster 
identity (left panel). Table of top 5 significantly enriched terms in GREAT analysis 
(right panel) (see Supplementary Table 8 for more details). g, Barplot showing 
the fraction of brain region-specific peaks per cluster and histone modification. 
h, UMAP embedding of regulatory regions from Fig. 3b colored by the cell state 
where the respective peak is uniquely identified for each histone modification 
(left panel). Barplots quantifying the cell state specific peaks per Louvain cluster 
identified in f for each histone modification (right panel).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Chromatin states of the telencephalon branch 
in organoid and primary data. a, Stacked barplot showing the fraction of 
different chromatin states over pseudotime bins from PSC to neurons during 
brain organoid development (see Methods ‘Distribution of chromatin states 
during differentiation pseudotime’ for details). Bivalent domains are enriched 
in PSCs, depleted in NPCs and become abundant again at the neuronal stage. GO 
enrichment analysis of genes close to bivalent domains reveals enrichment for 
growth, cell cycle, telencephalon development, regulation of gene expression 
at early stages (PSC and neuroepithelium) and membrane organization 
and protein transport at later stages (NPC and neuron). b, Schematic of the 
experiment. The cortex was dissected from human developing brain samples 

and profiled using bulk CUT&Tag on H3K27me3, H3K27ac and H3K4me3 histone 
modifications. c, H3K27me3, H3K27ac and H3K4me3 bulk CUT&Tag signal from 
a primary developing cortex at gw 19 grouped by chromatin states identified 
from organoids in (a), (bivalent, active, repressed and dynamically changing). 
Region groups from (a) were identified starting with NPC to neurons. We plotted 
the signal on the TSS of the gene closest to the domain. For the categories active 
and repressed, only genes that were exclusively active/repressed in 90% of bins 
were considered. d, Boxplots showing the aggregated signal of the respective 
epigenetic marks for all region groups (n = 507 bivalent genes, n = 332 active 
genes, n = 215 repressed genes, n = 449 genes dynamically marked throughout 
development).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Aberrant cell fate acquisition upon depletion of 
H3K27me3. a, Brightfield images of organoids at day 15 treated with DMSO 
(control) or different concentrations of A395, an EED inhibitor. b, Western 
Blot of cellular extracts of 15 day old organoids shows depletion of H3K27me3 
upon treatment with 1 µM A395. H3, β-Catenin and Ponceau serve as loading 
controls. This is a representative image of two replicates. The experiment has 
been performed 3 times on independent organoid batches. c, Heatmap of bulk 
H3K27me3 CUT&Tag signal on H3K27me3 peaks of two replicates of the inhibitor 
treatment ordered by intensity, showing consistent depletion of H3K27me3.  
d, Heatmap of bulk H3K27ac CUT&Tag signal on H3K27me3 peaks of two 
replicates of the inhibitor treatment ordered by intensity, showing consistent 

increase of H3K27ac. e, UMAP embedding colored by Louvain cluster annotation 
of the DMSO control and all inhibitor treated cells. f, UMAP embedding colored 
by expression of genes marking annotated Louvain clusters from (e). g, Barplot 
showing the log2 fold enrichment of different Louvain clusters over DMSO 
for the two replicates of the EED inhibitor treatment. Showing consistent 
trends between the experiments. h, Circular layout of differential transition 
probabilities between different cell states from the inhibitor treatment, showing 
an enrichment of H3K27me3 depleted cells at the terminal states of the graph 
(left), the circular plot colored by the expression of different marker genes 
(right) (see Methods ‘Inference of terminal fate probabilities in the perturbation 
experiment’ for details).
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Extended Data Fig. 10 | Effect of H3K27me3 depletion on lineage 
commitment in human brain organoids. a, Vulcano plot of the log2 fold change 
between the inhibitor treatment and the controls in the neuroepithelium clusters 
(1-4 and 6) versus the –log10(p-value). P-values were derived from a likelihood 
ratio test and were multiple testing corrected using the Benjamini-Hochberg 
method. Genes are colored by the identity of the ectopically formed clusters 
where they act as cluster markers (for example ANXA2, S100A10, non-neural 
ectoderm; STMN2, NEFM, neurons, see Methods Differential gene expression 
analysis in the perturbation experiment for details). b, IGV browser snapshot 
showing the inhibitor concentration dependent reduction of H3K27me3 and gain 
of H3K27ac at selected targets from (a) (top panel) Boxplot of upregulated genes 

in the neural epithelium showing gene expression per cluster (n = 12901 cells, 
bottom panel). c, Barplots quantifying the gene activity score of H3K4me3 on 
the top 200 DE genes between inhibitor treatment and control (n = 200 genes). 
d, same as c for H3K27me3. Error bars in c and d denote the standard deviation. e, 
GO term enrichment of transcription factors corresponding to enriched binding 
motifs in H3K27me3 depleted peaks in proximity to differentially genes non-
neural ectoderm (cluster 7). f, UMAP embedding colored by cluster annotation 
of the DMSO control and all inhibitor treated cells (left panel). UMAP embedding 
colored by gene expression for several transcription factors with enriched 
binding motifs (Fig. 5j) in H3K27me3 depleted peaks close to deregulated genes 
(right panel).
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection See Methods. No software was used for Data collection.

Data analysis Software used in the analysis: 

scanpy 1.8.2 

kallisto 0.46.0 

loompy 3.0.6 

scvelo 0.2.4 

cellrank 1.3.0 

motifmatchr 1.14 

cellranger arc 2.0.0 

cellranger 5.0.0 

CITE-seq-count 1.4.5 

seurat 3.2 

signac 1.1 

tidyverse 1.3.2 

Pando 1.0.3 

 

All custom code generated in the study including analysis parameters is available at https://github.com/quadbiolab/organoid_epigenomics. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw sequencing data will be deposited to the European Genome Phenome Archive (https://ega-archive.org/). All processed data are available at https://

episcape.ethz.ch, where they can be browsed interactively. They can be downloaded at https://doi.org/10.5281/zenodo.10471808. 

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We have not collected information about sex and gender.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

We have not collected or used information about race, ethnicity or other groupings.

Population characteristics not applicable

Recruitment Human material was collected fully anonymized and after informed consent.

Ethics oversight The use of human ES cells for the generation of brain organoids was approved by the ethics committee of northwest and 

central Switzerland (2019-01016) and the Swiss federal office of public health. Under the Swiss Human Research Act, 

research performed with fully anonymized human specimens does not require an institutional review for research as long as 

consent was approved in the first place. The human derived iPCS lines used in the study are available commercially and usage 

is regulated within the MTA.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used several embryoid bodies/organoids (between 5-100 depending on the size) from 5 different cell lines for each timepoint of the 

experiment.  No statistical methods were used to pre-determine sample sizes, but our sample sizes are similar to those reported in previous 

publications.

Data exclusions No datasets were excluded from the study. For single cell analysis we performed strict quality filtering and exclduded individual cells that did 

contain high quality data. For the details and filtering criteria see: Methods -  Data processing for scRNA-Seq and Preprocessing and clustering 

of scCUT&Tag data

Replication We used 5 different cell lines and multiple organoids for each timepoint of the timecourse. We demultiplexed them based on SNPs and 

treated them, therefore, as replicates. For day 60, we processed independent biological replicates, and for day 120, we used the same cell 

suspension as a technical replicate.  All attempts of replication were successful. 

We validated the enrichment of non-Neuroepithelium cells upon EED-inhibition in two independent organoid batches  All bulk Cut&Tag 

experiments of the inhbitor treated cells were performed in duplicate. All attempts of replication were successful.

Randomization We randomly chose organoids that we analysed in the timecourse and we randomly selected organoids that were exposed to the inhibitor 

treatment.

Blinding Organoids for each timepoint were picked blinded. Full blinding of the experiments on inhibitor treated organoids was not possible due to the 

phenotypes evident from the organoids development. First computational analysis and inspection of the data were performed blinded.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used A detailed list of all antibodies used in the study is provided in the materials and methods. 

H3K27me3 Diagenode, #C15410195, A0824D 

H3K27ac Diagenode, #C15410196, A1723-0041D 

H3K27ac GeneTex, GTX50903 

H3K4me3 Diagenode, #C15410003, A1052D 

H3 Activemotif, #39763, 20418023 

β-Catenin BD Bioscience, #610154 

guinea pig anti rabbit antibodies online, #ABIN101961 

Alexa-Fluor conjugated antibodies ThermoScientific 

HRP-conjugated antibodies Jackson ImmunoResearch

Validation Antibodies used in this study are commercially available and have been validated by the manufacturer. We further validated 

antibodies against H3K27me3, H3K27ac by Western Blot in the control and upon inhibition of the respective epigenetic writer. 

H3K27me3 Diagenode, #C15410195, A0824D (validated by ChIP in E(z)-KD in Zenk et al. 2017, Science and here by EED inhibition Ext. 

Data Fig. 11b) 

H3K27ac Diagenode, #C15410196, A1723-0041D (according to manufacturer validated for ChIP and NGS applications) 

H3K27ac GeneTex, GTX50903 (validated by CUT&Tag in CBP-KD embryos in Ciabrelli et al. 2023, Science Advances) 

H3K4me3 Diagenode, #C15410003, A1052D (according to manufacturer used in more than 180 publications, validated for ChIP) 

H3 Activemotif, #39763, 20418023 

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) A detailed list of all cell lines used in the study is provided in the materials and methods. 

Authentication Cell lines used in the study were authenticated through comparing single nucleotide polymorphisms identified from single 

cell RNA and CUT&Tag to reference datasets.

Mycoplasma contamination Regular PCR testing of all cell lines used in the study confirmed that they were free mycoplama contamination.

Commonly misidentified lines
(See ICLAC register)

None.
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