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Dynamic downscaling of atmospheric forcing data to the hectometer
resolution has shown increases in accuracy for landsurface models,
but at great computational cost. Here we present a validation of a
novel intermediate complexity atmospheric model, HICAR, developed for
hectometer scale applications. HICAR can run more than 500x faster than
conventional atmospheric models, while containing many of the same physics
parameterizations. Station measurements of air temperature, wind speed, and
radiation, in combination with data from a scanning Doppler wind LiDAR, are
compared to 50 m resolution HICAR output during late spring. We examine the
model’s performance over bare ground and melting snow. The model shows
a smaller root mean squared error in 2 m air temperature than the driving
model, and approximates the 3D flow features present around ridges and
along slopes. Timing and magnitude of changes in shortwave and longwave
radiation also show agreement with measurements. Nocturnal cooling during
clear nights is overestimated at the snow covered site. Additionally, the thermal
wind parameterization employed by the model typically produces excessively
strong surface winds, driven in part by this excessive nocturnal cooling over
snow. These findings highlight the utility of HICAR as a tool for dynamically
downscaling forcing datasets, and expose the need for improvements to the
snow model used in HICAR.

KEYWORDS

intermediate complexity model, snow-atmosphere, downscaling, wind lidar, validation,
katabatic winds

1 Introduction

The state of the atmosphere is intertwined with land surface processes in a myriad of
ways, affecting surfacemass and energy balances throughwind driven transport or radiative
forcing, to name just two. The scales of these processes are often very heterogeneous, with
ridges and depressions modifying the wind field over horizontal scales of tens of meters
(Raderschall et al., 2008; Mott et al., 2010; Sauter and Galos, 2016). While land surface
models have been run at the spatial scales of these heterogeneous processes for decades
(Lehning et al., 2006; Liston and Elder, 2006; Sauter et al., 2020), they are not responsible
for simulating these processes themselves. Instead, information about these processes
are passed to land surface models through the atmospheric forcing data supplied to the
models. One way of obtaining this forcing data is through dynamic downscaling, where
atmospheric models are forced with coarse-resolution atmospheric data and run at a target
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horizontal resolution. Dynamic downscaling has been used at
the scale of tens of kilometers for downscaling reanalysis data
(Bozkurt et al., 2019) and has led to improvements in representing
land surface processes at these scales (Gao et al., 2017; Sharma et al.,
2023). Applications of dynamic downscaling for forcing land surface
models at the hectometer scale are sparse, but similarly show
improvements over other downscaling techniques (Vionnet et al.,
2017; Voordendag et al., 2023). However, the computational
demands of dynamic downscaling to the hectometer scale limit
the application to short time series (hours to days) and small
domains (catchment scale) (Sauter and Galos, 2016; Gerber et al.,
2018; Vionnet et al., 2021; Goger et al., 2022; Saigger et al., 2023)).

This has led to widespread use of statistical downscaling
in the land surface modeling community at the hectometer
resolution. Statistical downscaling techniques have yielded
reasonable simulations of seasonal snowpack (Winstral and Marks,
2002; Dadic et al., 2010), but often fail to capture inter-variable
dependencies (Michel et al., 2021). Statistical downscaling treats
variables in a “piece-wise” approach where each atmospheric
variable is downscaled separately from one another. Thus dynamic
downscaling is expected to better represent processes such as
preferential deposition of snow (Lehning et al., 2008), where the
interaction between terrain features and atmospheric stability
induce changes in near-surface vertical winds, which in turn
modify the deposition of precipitation (Wang and Huang, 2017).
Additionally, statistical downscaling approaches may assume spatial
patterns to be temporally fixed, limiting their use in climate
change studies where the validity of these assumptions is unknown
(Gutmann et al., 2012; Gutiérrez et al., 2013). Thus, although
Physics-based dynamic downscaling has high computational costs,
it remains attractive for many downscaling problems, especially
under future climate scenarios.

To provide an alternative to weather models typically
used in dynamic downscaling studies, the Intermediate
Complexity Atmospheric Research (ICAR) model was proposed
(Gutmann et al., 2016). ICAR was evaluated alongside the WRF
model (Skamarock et al., 2008) in a previous study, showing
predictive accuracy of wind speed and temperature similar to
the WRF model at a handful of stations (Kruyt et al., 2022).
However, the ICAR model suffered from little diurnal variability
at a valley site, as well as a lack of ridge-scale flow features
when compared to observations or the WRF model. These
issues largely stem from ICAR being developed with a focus on
downscaling to target resolutions at the kilometer scale, and not
at the hectometer scale, where the evaluation was performed. To
improve on these shortcomings, the High-resolution Intermediate
Complexity Atmospheric Research (HICAR) model was recently
introduced, addressing shortcomings in ICAR’s dynamics at high
resolutions while still more than 500x faster than the WRF model
(Reynolds et al., 2023). A direct validation of the HICAR model is
still needed to understand how useful it may be for applications
of dynamic downscaling. This study presents such a validation,
focusing on processes which are of particular relevance to seasonal
snowpack modeling. At the hectometer scale, flow features such
as leeside recirculation, turbulent eddies, and thermally driven
slope flows all dominate the near-surface flow field. Leeside
recirculation can result in preferential deposition during snowfalls
(Lehning et al., 2008), turbulent eddies enhance surface energy

exchange (Haugeneder et al., 2024), and thermal flows effectively
distribute surface heating throughout the surface layer (Farina
and Zardi, 2023). This surface heating is itself driven by radiative
forcing, which depends uponboth cloud cover aswell as topographic
shading. HICAR’s ability to represent these processes is crucial for
solving the surface energy balance and, particularly in the case of
snowpack models, the surface mass balance.

This paper continues with section 2, where an overview of an
observational campaign which occurred during winter 2021/2022
is given. Section 2 also contains a description of model changes
implemented to represent some of the high-resolution processes
discussed above. Section 3 presents a comparison of HICAR
simulations with observations, focusing on near-surface flow
features observed by a Doppler wind LiDAR. Lastly, a conclusion
and summary of the study’s main points are given in section 4.

2 Methods

2.1 Observational campaign

In late April and Early May of 2022, a field campaign was
conducted over amountainous region outside ofDavos, Switzerland,
in the eastern Swiss Alps (Figure 1). A wind LiDAR (Section 2.1.1)
was deployed within this domain, and five existing automatic
weather stations (AWS) nearby recorded air temperature, wind
speed, and wind direction during the period of the campaign. One
station, located at the exposed summit Weissfluhjoch (WFJ), lies
roughly 2 km south of and 400 m above thewind LiDAR. In this way,
the WFJ station gives an estimate of the mesoscale conditions over
the study area.Thefive stations included in the study are a part of two
different measurement networks: the Swiss Meteorological Network
(SMN) and the IntercantonalMeasurement and Information System
(IMIS). Sensors in the SMN feature ventilated temperature sensors,
while the sensors in the IMIS network feature standard, solar-
shaded temperature sensors. For wind sensors, IMIS stations sport
propeller-type anemometers, while the SMN stations have 2D sonic
anemometers.

2.1.1 Wind LiDAR scans
To validate the representation of wind speeds and flow features

in HICAR, a Halo Photonics Streamline Doppler LiDAR was
deployed. The ridge of Gaudergrat lies roughly the same elevation
to the west of the location, while the pass Parsennfurgga rises
over the LiDAR to the east. RHI (Range-Height Indicator) scans,
where the laser is swept through a vertical slide of the atmosphere,
were conducted every half hour. These scans sampled the flow
structures over both aforementioned terrain features, starting over
the Gaudergrat and ending at Parsennfurgga. The LiDAR was
deployed fromApril 22nd toMay 10th, with atmospheric conditions
supporting good scan returns from May 1st to May 5th.

2.1.2 RHE scans
In addition to conventional RHI scans, we also introduce a new

scan type, Reynolds-Haugeneder Elevation (RHE) scans. RHE scans
are similar to PPI (Plan Position Indicator) scans, where azimuthal
angle changes with a fixed elevation angle. However, for RHE scans,
elevation angles are allowed to change for each azimuthal scan angle.
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FIGURE 1
Map of the study domain. The upper panel shows the region around Weissfluhgipfel in the eastern Swiss Alps. The cyan dots indicate the location of
the Swiss Meteorological Network (SMN) weather stations, which feature ventilated temperature sensors. The yellow dots correspond to stations from
the Intercantonal Measurement and Information System (IMIS). The WFJ and SMN_DAV1 SMN stations shown in Figures 3, 4 are labeled. 50 m HICAR
simulations were performed over the area contained within the blue square. The orange rectangle indicates the region shown in detail in the lower
panel. This area focuses on the region around the wind LiDAR deployment, with the wind LiDAR shown as a pink triangle, and the orientation of the RHI
scans presented in Section 3 given by the dashed black line. Of note are the Gaudergrat and Parsennfurgga, which the RHI transect crosses to the left
and the right of the LiDAR, respectively.
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FIGURE 2
Schematic of how RHE scan angles are determined. The upper, circular graphics show the domain from above, with north facing upward. The green
line cutting across the circle corresponds to the scan line from the wind LiDAR. In the bottom of the two panels, the view of the LiDAR in the terrain is
shown, with the process of iteratively increasing the elevation angle until it clears the terrain. The azimuth of each scan, and the resultant scan
elevation determined, is shown.

Elevation angles are chosen such that the distance between the laser
and underlying terrain maxima is minimized. In this way, the ridge
crest flow is best sampled for all points around the LiDAR. RHE
scans are created by taking a high-resolution DEM of the LiDAR
area, and shooting rays outward from the position of the LiDAR at
each of the azimuthal scan angles (Figure 2). These rays increase in
elevation angle, from 0° upwards until they no longer intersect the
surroundingDEM.This elevation angle is then saved as the elevation
angle for the current azimuthal angle, and the next azimuthal angle
is considered. RHE scans avoid large overshoots of the terrain which
occur in PPI scans, and which are not helpful when validating
near-surface flow features.

2.2 Model changes

The measurements in section 2.1 were conducted to validate
a novel atmospheric model, HICAR (Reynolds et al., 2023). This
model lacks a traditional Navier-Stokes-based dynamical core, and
instead treats the 3D wind components as diagnostic variables
when computing a mass-conserving wind field (Sherman, 1978;
Forthofer et al., 2014).This saves significant computational time, but
the predicted flow structures have not yet been validated against
observations. In addition to the near-surface flow parameterizations
existing in HICAR, a parameterization of thermal flows has also
been introduced since the publication of (Reynolds et al., 2023).The
following sections detail model changes relevant to this thermal-
flows parameterization. The terrain parameters required in the
following sections, including those for terrain-shading of radiation
and the ridge distances for the slope flow parameterization, can

be calculated using a python script contained in the HICAR
distribution.

2.2.1 Thermal flow parameterization
One potential application of HICAR is modeling the seasonal

snowpack. In snow-covered environments, katabatic winds, and the
interplay between katabatic and valley winds in the spring play an
important role in the surface wind field (Haugeneder et al., 2024).
To address this, a thermal flow parameterization has been added to
HICAR following the formulation in Grisogono et al. (2015) based
on the popular Prandtl model of thermal winds (Prandtl, 1942).This
model extends an existing parameterization of thermal winds, that
ofOerlemans andGrisogono (2002), whichwas tested over an alpine
glacier and showed reasonable agreement with station observations
up to a height of 13 m. The updated formulation in Grisogono et al.
(2015) allows for a vertically varying thermal eddy diffusivity and
for the inclusion of additional terms representing enhanced mixing
due to induced near-surface temperature gradients during anabatic
winds. A full derivation of their method is included in the above
publication. One mechanism of note is that the strength of the
thermal flow correction is largely dependent on the temperature
anomaly between the surface and the air aloft, in this case 200 m
above the surface. Another important feature of this enhanced
parameterization is that it produces stronger thermal flows over
shallower slopes than steeper ones. The physical reason for this
is the adiabatic heating that occurs to an air mass as it descends
to lower altitudes. This heating rate is balanced by cooling due
to negative sensible heat fluxes. As a slope becomes steeper, an
air mass descends more elevation, and thus experiences greater
adiabatic heating, while covering less distance along the terrain
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TABLE 1 Differences between model setups tested.

Run Microphysics
scheme

Thermal winds

HICAR_ISH_Therm ISHMAEL Yes

HICAR_ISH ISHMAEL No

HICAR_Mor_Therm Morrison Yes

where cooling of the air parcel may occur. For slopes of lower angle,
the air parcel traverses a greater distance along the terrain to cover
the same vertical drop, resulting in a greater net cooling of the air
mass, a larger density difference to the surrounding air, and thus
stronger katabatic winds. Modeling studies using LES simulations
and observational campaigns have noted that slopes of intermediate
angle should experience stronger katabatic flows when compared to
steep slopes or very flat slopes (Zhong and Whiteman, 2008; Zardi
and Whiteman, 2013). An LES study of upslope flows over slopes
of various angles showed a similar dependency of maximum wind
speed on slope angle, perhaps due to the same mechanism acting in
reverse (Schumanndlr, 1990).

The thermal wind parameterization introduces a dependency of
the winds on physics processes which are updated more frequently
than model input data is ingested. In version 1.1 of HICAR, a
new wind field was only solved for each input time step. To more
tightly couple the model dynamics with the physics, an update to
HICAR’s wind solver has been added, allowing for more frequent
solutions to the wind field. In the current study, this has been
set so that a new wind field is solved for every 10 minutes of
simulation time, allowing for the modeled surface winds to respond
to rapidly changing surface energy fluxes around sunrise and
sunset.

2.2.2 Physics parameterizations
The new thermal flow parameterization in HICAR depends

in part upon the surface sensible heat flux calculated by a
land surface model. Daytime sensible heat fluxes are driven
primarily by incoming radiation at the grid cell. To this
point, the RRTMG radiation transfer scheme (Thompson et al.,
2016) is used in HICAR to compute both direct and diffuse
shortwave radiation, as well as incident longwave radiation
(Thompson et al., 2016). These radiation fields are then modified

to account for sloping terrain surfaces and occluded sky view
from surrounding terrain (Mott et al., 2023). The computation
of these terrain parameters, namely, horizon line and sky
view fraction, is normally computationally expensive, especially
for high-resolution domains with many grid points. We use
the HORAYZON python library developed by Steger et al.
(2022) to efficiently calculate these terrain parameters for
our domain.

These terrain-modified radiation inputs are then passed to the
land surface model (LSM). NoahMP has been added to both the
ICAR and HICAR models, widening the choice of land surface
process representations. NoahMP has also beenmodified in HICAR
to allow for the incident direct and diffuse shortwave radiation
amounts calculated by RRTMG to be used directly, instead of a
fixed partitioning of 70% direct and 30% diffuse hard-coded into
NoahMP. These modifications allow for NoahMP to give improved
estimates of sensible heat flux in complex terrain. NoahMP contains
its own formulation for calculating surface exchange coefficients,
and is not coupled to the surface exchange coefficients calculated by
the surface layer scheme. To improve the representation of surface-
atmosphere energy exchange, in particular during stable conditions,
we add the revisedMM5 surface layer (Jiménez et al., 2012) scheme’s
calculation of exchange coefficients toNoahMP. Tomake this change
to NoahMP consistent with the rest of themodel physics, the revised
MM5 surface layer scheme itself has been added to the model, and
coupled to the Yonsei University (YSU) PBL scheme (Hong et al.,
2006).

Lastly, the ISHMAEL microphysics scheme (Jensen et al., 2017)
has also been added to HICAR, with the necessary steps to couple
it to the RRTMG radiation scheme. This novel microphysics scheme
is part of the growing class of adaptive habit (AHAB) microphysics
schemes capable of evolving solid hydrometeor shape through
time. This ability is crucial for resolving particle fall speeds and,
thus, mass and energy exchange rates between hydrometeors and
the atmosphere. For these reasons, the ISHMAEL scheme is also
expected to offer an improvement in cold-cloud microphysics
relative to the Morrison microphysics scheme (Morrison et al.,
2005) already included in HICAR (Woods et al., 2007). Taken
together, the ISHMAEL scheme may improve patterns of snowfall
deposition in complex terrain and the mass-energy exchange
between hydrometeors and the atmosphere. To evaluate the impact
of this novel microphysics scheme, we perform HICAR simulations
with both the Morrison and ISHMAEL schemes in Section 3.

TABLE 2 Statistics of the 2 m air temperature estimates of various model runs as compared to observations. The XSMN columns are values computed
against the SMN stations, where ventilated temperature sensors are used. The IMIS stations are included as well in the XIMIS and XAll columns to allow for
more points of comparison. For the IMIS stations, times where wind speeds are less than 1.5 m/s are not considered in the analysis under the assumption
that moderate wind speeds are enough to passively ventilate the sensors. The best score in each category is bolded.

Run RMSESMN (°C) MBESMN (°C) RMSEIMIS (°C) MBEIMIS (°C) RMSEAll (°C) MBEAll (°C)

COSMO 1.46 −0.22 2.38 −1.91 1.99 −1.24

HICAR_ISH_Therm 1.84 −0.39 2.05 −1.26 1.97 −0.91

HICAR_ISH 1.98 −0.60 2.20 −1.41 2.22 −1.09

HICAR_Mor_Therm 2.67 1.34 2.28 0.44 2.44 0.80
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FIGURE 3
Comparisons of observations, the HICAR model, and the COSMO 1.1 km resolution model used to force the HICAR model. The upper plots show 2 m
air temperature in °C from the two SMN stations. The lower plots show wind roses at the two sites calculated from observations of wind at 10 m height
above ground. The data are grouped according to cardinal direction such that each data source can be compared with the others. The weight of the
color indicates the wind speed, and the distance along the radial axis indicates the frequency of occurrence. As a reanalysis product, we stress that
COSMO output data here has assimilated the SMN data in a post-processing step.

2.3 Modeling setup

To evaluate the HICAR model, it was run over a
period covering the observational campaign described above.
Following the methodology of Reynolds et al. (2023) and
Gerber et al. (2018), elevation data from ASTER Global Digital
Elevation Model V002 and Corine land use data were used
(European Environment Agency, 2006; ASTGTM, 2019), with
atmospheric forcing data coming from the COSMO1Emodel (www.
cosmo-model.org). One caveat to the setup of this study which
differs from the setup used in Reynolds et al. (2023) is the lack of
vertical velocity data from COSMO1 during our simulation period.
To generate the diagnostic wind field HICAR requires some initial
estimate of the 3D wind field. It then computes a final wind field
by eliminating divergence in the wind field while minimizing the
difference between the initial and final wind fields. Without an
input of vertical velocity from COSMO1, an initial vertical velocity
field of 0 is passed to the diagnostic wind solver. The underlying
assumption here is that one solution for the vertical velocity field
which eliminates divergence would be the vertical velocity field used
by COSMO1. If there is no bias in the initial guess (using a wind
field of 0) then the solution which minimizes changes to the initial

3 d wind field should favor a solution close to the original COSMO1
vertical velocity.

Starting with forcing data from the 1.1 km horizontal resolution
COSMO1E model, nested HICAR simulations were performed at
horizontal resolutions of 1km, 250, 100, and 50 m. The blue square
shows the final domain used for the 50 m simulations in Figure 1.
Static data and forcing variables used from COSMO1E follow the
methodology outlined in Reynolds et al. (2023). 1km simulation
HICAR runs were run from 1October 2021 to 10May 2022, in order
to spin up the seasonal snowpack present during the observational
campaign. The higher resolution simulations performed for the
period of the campaign were then initialized with the snow cover of
their parent domain.The high-resolution 50 m simulations were run
fromApril 25th toMay 10th. HICAR uses the NoahMP land surface
scheme to parameterize land-surface processes (Niu et al., 2011), the
YSU PBL scheme, and the RRTMG radiation scheme. Starting at
the 250 m resolution simulation, the parameterization of terrain-
induced sheltering introduced in Reynolds et al. (2023) is used.
This scheme uses a 3D version of the Sx parameter (Winstral and
Marks, 2002) to reduce wind speeds in the lee of prominent terrain
features. The effects of this parameterization on the near-surface
flow field are investigated in Section 3.3. Lastly, the PBL scheme is
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FIGURE 4
Observations of incoming longwave and outgoing shortwave at the WFJ SMN station compared to results from the HICAR model over a 5 day period.
The choice of these variables was limited to the observations available at the WFJ station. The first 2 days have little cloud cover, as evident by the
amount of incoming longwave, followed a period of intermittent cloudiness over the final 3 days. In the lower panel, the solid blue line indicates
outgoing shortwave radiation as forecasted by HICAR, while the dashed blue line indicates outgoing shortwave radiation calculated using a constant
surface albedo (α) of 0.8.

turned on for all simulations, even down to a horizontal resolution
of 50 m. PBL schemes are commonly turned off for atmospheric
modeling setups in the gray zone (Chow et al., 2019), or a scale-
aware scheme is used (Shin and Hong, 2015). These steps are done
because the atmospheric model is assumed to resolve some of the
turbulent eddies at these scales, and so parameterized mixing in the
form of a PBL scheme should not “double-count” this turbulence.
Because HICAR does not consider momentum in its solution of a
wind field, it is not known how much turbulent motion the model
does resolve. As will be discussed in Section 3.4, HICAR does not
appear to resolve turbulentmotion driven by vertical wind shear and
buoyancy. For this reason, the YSU PBL scheme remains active for
model runs at all resolutions.

To test the impact of different model settings on simulations
of air temperature and winds, three different model setups were
performed (Table 1): one run using the Morrison microphysics
scheme and the thermal wind parameterization, HICAR_Mor_
Therm, a run using the ISHMAEL microphysics scheme and the
thermal wind parameterization, HICAR_ISH_Therm, and lastly a
run with the ISHMAEL microphysics scheme and no thermal wind
parameterization, HICAR_ISH. These different modeling strategies
are only compared in Table 2 and Figure 10. At all other points in the
paper, the HICAR_ISH_Therm run is used and referred to simply as
“HICAR”.

3 Model evaluation

3.1 Point comparisons

Comparisons of 2 m air temperature, wind speed, and wind
direction as measured at the AWSs SMN_DAV1 and WFJ and

as modeled by HICAR are shown in Figure 3 from April 28th
to May 10th. As seen in Figure 1, SMN_DAV1 is located on the
valley bottom, while WFJ is located roughly 1,000 m above near
a mountain peak. The three IMIS stations do not have ventilated
temperature sensors, so only periods with wind speeds greater
than 1.5 m/s are used in computing these statistics, assuming
that this allows for some passive ventilation (Erell et al., 2005).
These conditions of higher wind speeds tend to occur during
the day, especially at the lower elevation stations that experience
valley winds. Thus, when comparing against the IMIS stations, our
comparison is biased toward mid day periods.

From the statistics of air temperature presented in Table 2 it is
clear that the performance of HICAR depends on the microphysics
scheme used. The Morrison microphysics scheme produces the
highest positive mean bias error (MBE) of any of the model runs,
with a MBE of 0.8°C across all AWSs in the modeling domain,
and an MBE of 1.34°C at the ventilated SMN stations. At SMN
stations, the ISHMAEL runs all show slight cold biases.These results
suggest that theMorrisonmicrophysics scheme results in slightly too
warm of temperatures with our modeling setup. The cold biases of
the ISHMAEL schemes may be attributable to the strong surface-
atmosphere decoupling shown in Figure 3 which leads to very cold
temperatures over snow on calm, clear nights. We thus expect that
solving for these low biases would change the results such that
the HICAR run with the Morrison microphysics scheme would no
longer have the lowest MBE. The best results in RMSE are obtained
once the thermal wind parameterization is switched on with the
ISHMAELmicrophysics scheme, yielding an RMSE of 1.97°C across
all stations. This score is an improvement over the RMSE of the
COSMO1 data (1.99°C), and the same run improves the MBE as
well (−0.91°C for HICAR, −1.24°C for COSMO1), demonstrating
HICAR’s added value as a downscaling scheme. For this reason,
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FIGURE 5
Demonstration of a Reynolds-Haugeneder Elevation (RHE) scan. The bottom right panel shows the difference in scan elevation relative to terrain
elevation, with darker areas indicating scan locations closer to the surface. Radial velocities relative to the LiDAR location (pink triangle) are shown in
the left panels, with the bottom panel showing data from the LiDAR scan and the upper panel output from the HICAR model. The dashed black line
shows the orientation of the RHI scans discussed in later sections. The upper right panel shows modeled flow lines in the first model level in black, and
flow lines in the second model level in gray.

the rest of the analysis uses only the HICAR simulation with the
ISHMAEL microphysics scheme and thermal winds.

Of note is the difference in performance when using all stations
or simply the two SMN stations. As noted above, statistics including
the IMIS stations are biased toward daytime measurements. At the
high elevation station (WFJ) where a snow cover is present, HICAR
displays excessive night time cooling during clear nights. Thus,
biasing the period of observations towards daytime measurements
benefits HICAR in thismetric. Still, we include both sets of statistics,
as using all stations increases the number of observations available
for comparison. Additionally, the COSMOdata has been assimilated
to the SMN stations but not the IMIS stations, so this second group
of AWSs is necessary.

When comparing the wind patterns at the valley site, the
observations show strong winds coming from the up-valley
direction (NE), and winds distributed roughly evenly along the
up- and down-slope directions (N and S). The 1 km COSMO data
simulates winds channeled along the valley axis (NE, SW), with

overall lower wind speeds than the observations. HICAR shifts
the distribution of the COSMO winds toward the up- and down-
slope directions, unfortunately effectively removing any signal of
channeled valley winds in the process. However, the wind speeds
predicted by HICAR are higher than those of COSMO, and
more inline with the observations. These findings suggest that
the thermal wind parameterization, as implemented, results in
excessive deflection of the input winds in the slope direction. At the
WFJ site, winds are predominately affected by synoptic conditions,
and thus little thermal flow signal is seen. Overall, the HICAR
wind directions remain close to the wind directions predicted by
COSMO. As observed at the valley site, however, wind speeds from
HICAR are increased when compared to COSMO, better matching
observations.

The differences in 2 m air temperature at the WFJ site are worth
further discussion because of the dependency on radiative forcing
that they highlight. In Figure 4 we observe that before sunset on
April 30th, HICAR simulated cloudier conditions than observed.
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FIGURE 6
Radial velocities computed from the HICAR model relative to the position of the wind LiDAR (pink triangle), compared to observations of radial velocity
from the LiDAR itself. Flow from the left to the right (east to west) over Parsennfurgga is seen to induce an area of recirculation behind the ridge. The
approximate region of recirculation is marked with the dashed black line in both panels.

This is shown by the higher incoming longwave (LW) radiation and
less outgoing shortwave (SW) radiation compared to observations.
As a result, HICAR had higher temperatures than observations
during this period (Figure 3).The opposite situation can be observed
during the next night on May 2nd. HICAR simulates much colder
temperatures than observed due to underestimating cloud cover.
These results show a strong dependency of 2 m air temperature
on the radiative forcing terms calculated by the RRTMG radiation
scheme. It is possible that this strong dependency is compounded
by underestimating turbulent fluxes during clear nights when stable
conditions persist over the snow cover.This would result in excessive
cooling of the near-surface layer. Previous studies using snow
models have observed similar excessive nocturnal cooling of the
snowpack, and suggest limiting the lower bound of the exchange
coefficient under such stable conditions (Martin and Lejeune,
1998; Lafaysse et al., 2017; Mott et al., 2023). In a future study, we
will explore the representation of snow-atmosphere interactions
in more sophisticated snowpack models to improve this potential
shortcoming.

3.2 Ridge crest wind patterns

To investigate HICAR’s representation of spatial patterns of
winds over exposed ridge crests, we employ the RHE scans
introduced in Section 2.1.2. Figure 5 gives an example of an RHE

scan. The bottom right panel shows the difference between scan
elevation and terrain elevation. The upper right panel shows
modeled wind vectors from HICAR overlaid on the terrain. Black
arrows show the flow field in the first model level (∼10 m above
ground), while gray arrows show the flow field in the second
model level (∼30 m above terrain). It is already apparent that
the thermal wind parameterization is highly localized to the first
model level, and this point will be discussed later in Section 3.5.
When comparing the terrain map in the upper right panel with
the scan elevation difference in the bottom right, we see that the
scan elevation is closest to the terrain over local terrain maxima.
This approach maximizes our sampling of areas where terrain-
induced speedup may be observed. The wind LiDAR scan shown
in the bottom left panel indicates high radial velocities towards
the LiDAR over Weissfluhgipfel in the bottom left corner of the
panel. The general near-surface wind direction over the peak, as
simulated by HICAR, runs mostly perpendicular to the axis of the
RHI scans, indicated by the dashed black line. Radial velocities
simulated by the HICAR model are shown in the upper left panel.
These radial velocities are calculated from the 3D HICAR wind
field by projecting the wind vector at each point along the scan
vector from the wind LiDAR. The HICAR model simulates the high
wind speeds over Weissfluhgipfel observed in the LiDAR data but
overestimates the local reduction in wind speeds observed just south
of the wind LiDAR location in the midslopes of Weissfluhgipfel.
Using the modeled streamlines shown in the upper right panel, we
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FIGURE 7
Radial velocities computed from the HICAR model relative to the position of the wind LiDAR (pink triangle), compared to observations of radial velocity
from the LiDAR itself. Flow from the left to the right (east to west) over Gaudergratt creates turbulent structures which extend roughly 500 m aloft. The
HICAR model simulates flow reversal relative to the wind LiDAR near the surface, but fails to capture any turbulent motions as observed.

can interpret this region of low radial velocities as being due to flow
deflection around the ridge of Weissfluhgipfel. The scan elevation
plot indicates that this region of the scan was slightly above the
surface, so the synthetic RHE scan generated from the HICAR data
is rather sampling the simulated flow field above the surface. The
deflection simulated results in wind directions perpendicular to the
LiDAR location, thus yielding near-0 radial velocities. Although
the model overestimates this reduction, its ability to simulate the
presence of such a fine-scale feature could still be considered a
success of the model. Moving to the east of the Figure, wind speeds
along the ridge crest containing Parsennfurgga can be examined.
Here, we see good agreement between observed and modeled radial
velocities, including predictions of radial velocity direction around
the south-eastern axis of the RHI scan where the sign of radial
velocity changes. Figure 10 shows a flow field as simulated by
HICAR just a few days prior over Parsennfurgga. In the top panel,
channelling of the synoptic scale winds through Parsennfurga, and
the associated speed up, are resolved by the model. Over the summit
of Schwarzhorn (the peak in the lower right of the figure), we do
note that HICAR under predicts wind speeds, although the LiDAR
data also suggest a local minimum in radial velocities over the peak
compared to mid-slope wind speeds. Lastly, Figure 5 indicates that
the synoptic-scale flow near the surface was oriented more westerly
than HICAR predicts. This is evidenced by the line along which
the sign of the radial velocity changes. Judging from the LiDAR

data, it is observed to be slightly more horizontal than the line of
sign reversal seen in the HICAR data, which roughly follows the
axis of the RHI scan. This difference is likely due to the COSMO1
forcing data, which greatly confines the synoptic scale winds of
the HICAR simulation. The dependency of the HICAR model on
accurate forcing data results in an inability to correct for inaccurate
input wind direction, although the difference between model and
observations appears to only be on the order of≈15°. Taken together,
we see that the HICAR model greatly relies on the input data
used, but can add significant fine-scale detail to the simulated wind
field, including regions of flow speed up, reduction, channeling,
and deflection.

3.3 Leeside structures

As outlined in Reynolds et al. (2023), HICAR features a
parameterization for lee-side separation when the bulk Richardson
number near the surface is below a critical threshold. The
positioning of the wind LiDAR was chosen to scan into the leeside
of a mountain ridge to validate this flow parameterization. Figure 6
shows the results of an RHI scan from the wind LiDAR for a time
in the early morning of May 2nd. The scan shows flow moving from
the east to the west over the Parsennfurgga. In these RHI figures,
the perspective is that of a viewer standing north of the LiDAR and
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FIGURE 8
Downwelling shortwave radiation, sensible heat fluxes, and 2 m air temperature as modeled by HICAR from the pre-dawn hours on April 28th until
17:00 UTC. The upper left panel shows the orography over the region of interest. No plot of shortwave is shown for 5:00 UTC, as the sun was still below
the horizon. The location of the wind LiDAR and orientation of the RHI transect are shown by the pink triangle and dashed black line, respectively.

looking toward the south in Figure 1. As the flow encounters the
ridge crest on the left, it seems to separate the lower-level airflow
from the upper-level flow, creating an eddy-like structure on the
lee side where we observe a reversal in the flow direction. This
disturbance propagates downwind, with the flow reversal extending
farther downwind than the location of the wind LiDAR. Weak wind
speeds not exceeding ≈1m/s are observed in this flow separation
region. The results from HICAR accurately predict the occurrence
of this eddy-like structure. The wind speeds within this region
are also in approximate agreement with the observations from the
LiDAR. The lateral extent of the eddy-like structure is different
in the HICAR model as compared to observations. In HICAR,
the parameterization for eddy extent relies on a user parameter
for maximum extent and the bulk Richardson number in the lee

side (Reynolds et al., 2023). Figure 6 indicates that the maximum
extent of the lee side parameterization, which was set at 600 m in
these simulations, may be limiting the growth of longer regions
of flow recirculation. This highlights the promise of the existing
parameterization for capturing non-local flow dynamics, but also
the need for focused testing of the parameterization assumptions
and functional relationships between terrain descriptors and flow
modification.

3.4 Turbulent flow features

An important distinction of the HICAR model is its lack of a
mass andmomentum-based solution to the wind field.This is one of
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FIGURE 9
Radial velocities computed from the HICAR model relative to the position of the wind LiDAR (pink triangle), compared to observations of radial velocity
from the LiDAR itself. Flow from the right to the left (west to east) is undercut by downslope flows running down from Parsennfurga and entraining air
aloft.

the core advantages of the model in terms of computational speed,
but also results in an expected under-performance for turbulent
flows. Figure 7 illustrates such a scenario.Thewind LiDAR observed
easterly flow over the Gaudergrat around midday on May 4th,
generating regions of alternating flow direction within the first
500 m above the surface. HICAR, however, simulates only one
radial flow reversal as a function of height. This is likely produced
by the leeside parameterization (Section 3.3), as both areas of
flow reversal occur in the lees of Parsennfurga and Gaudergrat.
Additionally, radial velocities of greater magnitude exist closer to
the surface, due to either 1) the thermal flow parameterization, or
2) a rotation of the wind direction as a function of height. Since
using a single wind LiDAR restricts us to comparisons of radial
velocity, apparent flow reversal or increases in radial velocity in
the RHI figures may be due to subtle rotations of the wind vectors
towards or away from the LiDAR (best illustrated by consulting
5). Taken together, we can see that HICAR simulates unstable
near-surface conditions, as evident by the activation of the leeside
flow parameterization, and strong vertical shear near the surface.
In reality, these combined factors should produce the turbulent
near-surface flow observed by the wind LiDAR, but HICAR
lacks any ability to consider vertical shear or buoyancy-driven
turbulence in its flow modifications. This instance demonstrates
HICAR’s inability to simulate turbulent flow under all atmospheric
conditions.

3.5 Thermal flows

The model changes to HICAR, as detailed in Section 2.2.1, all
seek to improve the model’s representation of the surface energy
balance. Implementing a terrain-shading radiation parameterization
and the direct coupling of RRTMG’s direct and diffuse shortwave
radiation fields with the NoahMP land surface model are the main
improvements contributing to this change in simulating surface
energy fluxes. In the following discussion, positive sensible heat
fluxes (Qs) corresponds to an upward heat flux, and negative Qs to a
downward heat flux.The results of themodel changes detailed earlier
is indirectly on display in Figure 3, where the 2 m air temperature
shows a clear diurnal signal and the effects of cloud cover. Figure 8
shows the heterogeneity in total modeled downwelling shortwave
radiation throughout a day, centered on the deployed wind LiDAR
(Figure 1). The differences in modeled shortwave radiation between
the two daytime periods show the effects on radiative input induced
by the complex terrain surrounding our site.

This heterogeneity is also reflected in the maps of sensible heat
flux. For the map at 9:00 UTC, high-elevation areas receiving more
solar radiation generally experience a positive sensible heat flux as
the snow cover over the domain heats up to 0°C. This is because
the 2 m air temperature at these higher elevation areas is still below
freezing at 9:00 UTC, resulting in a positive sensible heat flux. The
sharp transition in sensible heat fluxes in the upper region of the
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FIGURE 10
A comparison of modeled flow lines at 10 m height above ground for
a 50 m resolution HICAR simulation without the thermal wind
parameterization (top panel) and one with the parameterization
(bottom panel). Thickness of the flow lines corresponds to wind
speed, with thicker lines indicating higher wind speeds. For a time in
the early morning hours over snow cover, the use of the thermal wind
parameterization is shown to give stronger downslope flows.

figure is due to a transition from snow-covered, low-vegetation land
surface types to forested model grid cells. NoahMP allows low-
vegetation land surface types such as brush to become partly buried
under snow, changing the surface albedo and exchange coefficients
over such grid cells in comparison to forested grid cells. At 17:00
UTC, the pattern in sensible heat fluxes at high elevation areas
is roughly reversed as the solar elevation angle swings across the
sky, and the terrain shading parameterization captures the resultant
effects on slope-scale shortwave irradiance.The high-elevation areas
also experience more negative sensible heat fluxes at 17:00 UTC, as
the overlaying air temperature is now above 0°C at the end of the
clear, sunny day. For the map at the pre-dawn hour of 5:00 UTC,
the pattern of sensible heat flux is seen to vary primarily with air
temperature, with exposed areas tending to have sensible heat fluxes
of greater magnitude due to stronger wind speeds driving greater
surface energy exchange. These results for Figure 8 demonstrate the
model’s ability to simulate heterogeneous patterns of surface energy
fluxes.

Section 3.1 demonstrated the model’s ability to simulate
downwelling radiative terms of the surface energy balance
accurately. These terms are the driving forces behind the simulated
2 m air temperatures presented in Figure 3 and Table 2, which

showed agreement with observations. We thus conclude that
patterns of sensible heat fluxes shown in Figure 8 are reasonable,
and now focus on the parameterization of thermally driven slope
flows, which depend on these sensible heat fluxes.

The parameterization of slope flows follows the methodology
outlined in Section 2.2.1. Figure 9 displays an RHI scan done in
the early morning of May 3rd when little cloud cover was present
and the snow-covered surface was able to cool due to longwave
radiation. The LiDAR observations from this time show a thin layer
of downslope flow moving toward the LiDAR from Parsennfurgga,
and a reduction in wind speeds downwind from the LiDAR when
compared to flow aloft. Lastly, flow away from the LiDAR is observed
just over the crest of Gaudergrat. These observations suggest the
presence of low-level slope flows down from Parsennfurgga, which
entrain overlaying flow, slowing down thewesterly flow aloft. Results
from the HICAR model during this time show similar phenomena,
with slope flows dominating the near-surface flow structure during
this time. The primary difference between observations and HICAR
is the difference in the vertical extent of the slope flows. Such strong
vertical shear should induce turbulence, mixing up this near-surface
layer. This would both lower the near-surface wind speeds, and
distribute their influence vertically. HICAR’s approach to solving
for the 3D wind field does not currently consider this process, and
thus the strong vertical shear remains. One potential solution would
be to modify the parameterization proposed by Grisogono et al.
(2015) to smooth the correction to the wind field when shear is
present. A broader picture ismade available by Figure 10, illustrating
the effect that this parameterization has on surface flows. The top
panel shows wind speeds and direction at the 10 m height for a
simulation run without the slope flow parameterization, while the
bottom panel shows the same model output from a simulation run
with the slope flow parameterization. The two primary effects of
the parameterization appear to be both an increase in wind speeds
along the downslope direction as well as a rotation of the mid-slope
wind vectors to point more downslope. As a result, this effectively
inhibits up-valley flow from spilling over the sub-ridge in themiddle
of Figure 10. During daytime hours over this late-season snow cover,
air parcels from lower elevations tend to be heated due to their
starting position over snow-free ground. The presence of balancing,
katabatic flows produced by the snow cover is crucial to block
the impingement of these warmer flows. Thus, the sort of lower-
elevation flow-blocking displayed in Figure 10 is expected to be a
necessary component of simulating late-season snow covers. As seen
in Figure 3, the surface winds also reach higher speeds with the
use of the thermal wind parameterization. The wind roses of the
earlier figure suggest that the speed up shown in Figure 10 may be
excessive.

4 Conclusion

This study assessed the efficacy of a new intermediate complexity
atmospheric model designed for use at hectometer scales in alpine
terrain. Three nested simulations were presented, stepping down
to a simulation with a target resolution of 50 m run for 14 days.
Each individual simulation takes an afternoon to run on a high-
performance computing cluster, and consumes roughly 100 node-
hours for the 210x213x40 simulation domain. As input, the model
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requires only topography and land cover data, as well as kilometer-
scale output from a NWP model. With many regional weather
forecasting offices now producing forecasts at this horizontal
resolution, the study setup presented here could be repeated for
numerous other locations. Ultimately this highly efficient setup
allows for comparison of different physics options as done in
this study. Such a comparison may be especially useful when
used in combination with traditional, compressible atmospheric
models.

Using sensors of incoming and outgoing radiation, air
temperature, and wind speed, we have evaluated the model at
valley bottom and mountain top sites in the late spring. During this
time, ephemeral snowpack at high elevations significantly affects the
exchange of energy between the surface and the atmosphere. The
results overall demonstrate the clear added value of the HICAR
model in its ability to improve forecasts of variables crucial to
land-surface modeling. The findings of this study have particular
relevancy to seasonal snowpack modeling, where forecasts of
snowpack depend heavily on the surface energy balance, driven
by downwelling radiation and air temperature, and accumulation
processes influenced by winds and precipitation (Mott et al., 2023).
Using measurements at several sites, we have found that using an
adaptive-habit microphysics scheme improves the representation
of 2 m air temperature while allowing for reasonable predictions
of surface input radiation as affected by cloud cover. Additionally,
the use of the thermal wind parameterization of Grisogono et al.
(2015) improved simulated 2 m air temperature by allowing
for improved near-surface ventilation during periods of surface
radiative cooling. The mean bias error between one 50 m resolution
HICAR simulation and five temperature sensors over a roughly 2-
week period was found to be 0.18°C, compared to a mean bias error
of −1.24°C for the driving model.

A spatial evaluation of the wind fields simulated by HICAR
was conducted using data from a wind LiDAR deployed in
complex, snow-covered terrain. A new type of LiDAR scan pattern,
RHE scans, was also introduced and detailed, allowing maximum
sampling of near-surface winds in complex terrain. The LiDAR
device measured eddy-like structures in the leeside of terrain
features and low-level thermally driven slope flows over the course
of its 16-day deployment. Simulations with the HICAR model
display similar features, demonstrating that the model can represent
the presence and timing of such flow features. These interactions
between terrain and flow are the primary drivers of flow field
variability at these scales, and represent large modifications to the
forcing wind field supplied by the 1.1 km COSMO data. Turbulent
flow features were also observed by the wind LiDAR which HICAR
can not represent. This is due to the lack of any consideration of
momentum in the model’s solution of a 3D wind field.

Despite advantages for simulating 2 m air temperature when
using the thermal wind parameterization, its use produced strong
vertical gradients in wind speed. In reality, such strong vertical
shear should producemechanical mixing which allows for a transfer
of momentum to higher altitudes. HICAR does not consider
momentum, however, and so this shear remains in the wind field.
Comparison of HICAR’s wind field at a valley station also showed
that the thermal wind parameterization shifted the dominate flow

regime from a mix of valley and slope flows to favoring almost
exclusively slope flows. Both points indicate that the thermal
flow correction is likely overestimated in the model, and requires
some correction. An effect of vertical shear dampening could be
approximated by modifying the thermal wind parameterization to
apply a smoother correction.

Lastly, a large negative model bias in 2 m air temperature was
observed over snow during clear nights. Due to the timing of this
bias, and its presence in simulations both with and without the
thermal wind parameterization we suspect that it is caused by overly
inefficient exchange between the snow and atmosphere under stable
conditions. As noted earlier, the snow modeling community has
identified that current exchange parameterizations often produce
excessively stable conditions over snow and result in excessive
cooling of the snow surface (Martin andLejeune, 1998; Schlögl et al.,
2017). These shortcomings may be overcome by coupling HICAR
to a more physically rigorous snowpack model, which will be
explored in a future study. The period of evaluation chosen here,
with heterogeneous snow cover and late-season storms of mixed
precipitation phase, represents one of the most challenging periods
of the snow season to correctly model. We thus anticipate the
model performance to transfer well to periods of the snow season
dominated either primarily solid precipitation or melt driven by
incoming radiation. CouplingHICARwith land surfacemodelsmay
prove to be mutually beneficial, as these models would themselves
benefit from high resolution atmospheric forcing data. Such a
demonstration of a two-way coupled HICAR-snowpack model
would prove the use of the model for applications where dynamic
downscaling has long been attractive but remained technically
prohibitive.

Data availability statement

HICAR can be used for non-profit purposes under the
GPLv3 license (http://www.gnu.org/licenses/gpl-3.0.html, last
access: 1 February 2023). Code for the model is available at
https://github.com/HICAR-Model/HICAR. The exact release
(v1.2) used in this publication is available at https://doi.org/10.
5281/zenodo.10679307. Data from the IMIS stations are available
at https://measurement-data.slf.ch/, data from the SMN stations
are available at https://opendata.swiss/en/dataset/automatische-
meteorologische-bodenmessstationen, and data from the Wind
LiDAR observations are available at 10.16904/envidat.481. Output
from the COSMO1 model was obtained through MeteoSwiss. The
basemap layer used in Figure 1 comes from Swiss Topo. Similarly,
topographic data for generating the RHE schematic and designing
the scans was obtained from Swiss Topo swissALTI3d (https://www.
swisstopo.admin.ch/de/hoehenmodell-swissalti3d).
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