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Abstract
In this paper, we present a new parameterization and optimization procedure for minimizing the weight of ribbed plates. 
The primary goal is to reduce embodied CO2 in concrete floors as part of the effort to diminish the carbon footprint of the 
construction industry. A coupled plate-beam finite element model and its computational mesh enable simultaneous topology, 
shape and sizing optimization of ribbed plate systems. Using analytical sensitivity analysis and gradient-based optimization, 
we achieve significant weight reductions in the range of 24–57%, in comparison to reference designs with regular ribbing 
patterns. The results strengthen the argument in favor of ribbed plates as a structural system that can serve the environmen-
tal goals of the construction industry. While our focus is on ribbed concrete plates in buildings, the proposed mesh-based 
design parameterization is applicable in the general case of optimizing stiffened shells—with potential contributions also to 
automotive and aerospace applications. All computer codes used in this study are freely available through a public reposi-
tory, https://​zenodo.​org/​recor​ds/​11489​996.
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1  Introduction

Concrete is the most extensively used material in the con-
struction industry worldwide. Reinforced and prestressed 
concrete structures are often the preferred choice due to 
various advantages, e.g., in terms of economy, durability 
and fire resistance. The popularity of concrete comes with a 
high environmental price tag: cement production is a major 
contributor to global CO2 emissions, accounting for 7–8% 
and increasing steadily (Andrew 2019). The environmental 
impact of cement can be reduced by optimizing concrete 
structures, aiming to minimize embodied CO2 (for example, 
Paya-Zaforteza et al. 2009; Yepes et al. 2012; Miller et al. 
2015; Eleftheriadis et al. 2018; Jayasinghe et al. 2021; Press-
mair et al. 2023). While minimizing concrete weight is not 

directly equivalent to minimizing embodied CO2, it is clear 
that employing advanced shape and topology optimization 
techniques can lead to significant reduction in the use of raw 
materials. In the current work, we propose a formulation for 
comprehensive optimization of a specific type of concrete 
plate that can be used for reducing weight and embodied 
CO2 of building floors: ribbed plates that comprise of a thin 
concrete plate, supported by a network of beams.

The term ribbed plates is used herein, but often there are 
other names that refer to the same structural system. In its 
simplest form, a ribbed plate consists of a series of parallel, 
unidirectional beams, creating T-sections with the top plate 
and acting in unidirectional bending. The most commonly 
applied ribbed plate system is the generalization to two-way 
bending, also known as a waffle slab. This system consists 
of a network of beams that are organized in a Cartesian pat-
tern, typically aligning with the edges of the plate in case the 
floor layout is regular. A famous system of ribbed plates was 
developed by Pier Luigi Nervi, who positioned the beams 
according to the directions of principal bending moments, 
leading to irregular patterns that are both efficient and aes-
thetically appealing (Halpern et al. 2013). In several cases, 
the network of supporting beams is named a grillage—a 
term that literally refers to a series of co-planar beams that 
transfer transverse loads by out-of-plane bending.
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Over the years, the optimization of ribbed plates has 
received attention from researchers in the field of structural 
optimization. The most frequently used representation is that 
of a grillage that undergoes layout optimization, extending 
the classical truss layout optimization. Analytical solutions 
to grillage optimization have been studied by Rozvany since 
1972 (Rozvany 1972) and a thorough review can be found 
in Rozvany et al. (1995). Numerical approaches to grillage 
optimization are typically based on a ground structure para-
metrization, following its widespread application in truss 
layout optimization. This was first introduced by Sigmund 
et al. (1993) and has been further developed by Bolbotowski 
et al. (2018).

Recently, a detailed engineering design of reinforced con-
crete ribbed plates has been studied (Whiteley et al. 2023). 
In their work, the authors generated optimal grillage lay-
outs by solving a plastic design formulation. The resulting 
optimization problems can be solved to global optimality 
by efficient linear programming techniques—an advantage 
in comparison to approach proposed herein, that leads to 
non-convex problems and can only find a local optimum. 
Subsequently, they designed reinforced concrete ribs and 
plates according to code requirements for ultimate limit 
states. In their interpretation, the ribs had uniform width and 
variable depth, leading to efficient utilization of material in 
bending. The weight of concrete was reduced by up to 30% 
compared to waffle slabs, showing the tremendous potential 
of employing advanced optimization for this class of struc-
tural systems. Another step towards practical application was 
presented by Huber et al. (2023), who designed the ribbing 
pattern according to the principal bending moments, follow-
ing Nervi’s approach. Subsequently, they performed sizing 
optimizations and adjustments of thicknesses near columns 
to avoid shear failures. Eventually, prototypes were fabri-
cated with reinforced concrete using 3D-printed formwork 
to deal with the complex geometry. Weight savings of up to 
40% compared to a solid slab have been reported.

Another approach to achieve optimum ribbed plates is 
by employing continuum topology optimization (Ma et al. 
2023). The authors present two formulations. One is based 
on 3D continuum, where it is necessary to map the densities 
such that constructable ribs emerge without internal voids. 
The other is based on a shell model, where it is necessary to 
parameterize the thickness such that the domain is divided 
into regions of a thin plate and regions with additional ribs. 
The results benefit from the added design freedom com-
pared to layout optimization, while constructability may be 
an issue because of the complex geometries that are charac-
teristic of continuum topology optimization.

In a recent study (Majdouba 2022), a comprehensive 
computational exploration of optimized ribbed plates has 
been conducted. Two distinct parameterizations have been 
studied: (1) 3D continuum topology optimization with 

casting constraints, resembling the work of Ma et al. (2023; 
2) Mesh-based topology, shape and sizing optimization of 
ribbed plates, relying on a plate-beam finite element model. 
Weight savings in the order of 20% compared to waffle slabs 
have been demonstrated, alongside two important findings: 
(1) The mesh-based optimization of plate-beam models 
achieved weight reductions that are close to those of contin-
uum topology optimization, which in principle offers more 
design freedom for a much higher computational cost; (2) 
Optimized plate-beam models are more efficient than Ner-
vi’s patterns, leading to a weight reduction of roughly 10% 
more than Nervi’s plates.

Building upon the preliminary results of Majdouba 
(2022), this paper presents the mesh-based optimization of 
plate-beam models. The key difference compared to grillage 
optimization is that the upper plate is modeled and coupled 
to the network of beams that are attached to it. This allows 
for consistent load transfer from the top surface to the beams 
when beams are eliminated and arbitrary spacing between 
beams is created. Another advantage is that the T-section 
behavior is automatically accounted for in the optimization. 
While in principle the mesh serves as a ground structure, 
we optimize also the nodal positions to relax the bias of the 
predefined ground structure and to get closer to a free-form 
optimization of the ribbed plate.

The remainder of the paper is organized as follows: The 
plate-beam finite element model is presented in Sect. 2. The 
optimization problem formulation and sensitivity analysis 
are presented in Sects. 3 and 4. Several numerical examples 
are shown in Sect. 5, emphasizing the comparison to tradi-
tional waffle slabs and the achieved relative weight savings. 
Finally, a concluding discussion is provided in Sect. 6.

2 � The plate‑beam model

2.1 � Design parameterization

A key aspect of the current study is the design param-
eterization. The geometric parameters of the plate and 
beams that affect their stiffness are treated with topology 
and sizing variables. These include the plate thickness t 
and the beam depth h which are both uniform throughout 
the plate to promote constructability; and the beam widths 
bi that are specific for each beam segment, are uniform 
along the length of the segment, and can be reduced to 
zero—enabling topology optimization of the layout. The 
layout of the beams is affected also by the coordinates of 
their nodes, that serve as shape variables. Conveniently, 
these nodes are the vertices of the triangulation of the 
upper plate. The main advantage of this parameterization 
is that when beams move or disappear (due to zero width), 
the bending of the plate is still modeled consistently. A 
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sketch of a small part of a plate with an attached beam 
is shown on Fig. 1. A key parameter that affects the cou-
pling between the beam and the plate is the eccentricity 
e =

h

2
+

t

2
 which is design-dependent. Potentially, a beam 

segment can exist in every edge of the triangulation, mean-
ing that the mesh plays the role of a ‘ground structure’ like 
in classical layout optimization (Dorn et al. 1964; Rozvany 
et al. 1995; Gilbert and Tyas 2003).

2.2 � Finite element model

Simulation of the structural response is achieved by finite 
element analysis (FEA) of the plate and beams. This 
requires a model that captures the bending of the plate, 
the bending and torsion of the beams, and the T-section 
effect that arises from the in-plane stiffness of the plate. 
A schematic representation of the three types of finite 
elements that are combined in the current formulation is 
given in Fig. 2.

As there is no direct coupling between the membrane 
and bending behaviors of the plate itself, a triangular ele-
ment can be created by superimposing a Constant Strain 
Triangle (CST) element, which models membrane behav-
ior, and a Discrete Kirchhoff Theory (DKT) element, 
which models bending behavior. Upon assembly of these 
two components, a simple flat shell element is created with 
five degrees of freedom (DOF) per node j,

The CST element contributes to the membrane DOF

which represent in-plane displacements. The DKT element 
contributes to the plate DOF

which represent the out-of-plane displacement and rota-
tions. The stiffness matrix for a triangular CST element with 
DOF as in Eq. (1) is formulated following common FEA 
textbooks (e.g., Zienkiewicz and Taylor 2000; Bathe 1996; 
Cook et al. 2001). In formulating the stiffness matrix for the 
triangular DKT element with DOF as in Eq. (2), we follow 
the derivation of Batoz et al. (1980) and related work (Batoz 
1982; Jeyachandrabose et al. 1985). Finally, at each node we 
add �z which is a drilling DOF that represents in-plane rota-
tion. In the following, the plate’s 18-by-18 element stiffness 
matrix is denoted keP . A detailed derivation of keP in global 
coordinates is omitted herein for brevity, but the implemen-
tation in MATLAB (Mathworks 2023) is freely available for 
the readers. The stiffness coefficients on the diagonal entries 
corresponding to �z are given a value which is a small frac-
tion of the diagonal entries corresponding to w. Therefore, 
the structure’s stiffness w.r.t. drilling rotations is governed 
by the beams only.

{Uj}
T = {u v w �x �y}.

(1){UCST
j

}T = {u v}

(2){UDKT
j

}T = {w �x �y}

Fig. 1   Design parameterization of a ribbed plate system. The sketch 
shows a cut-out of the plate with a beam spanning two edges of the 
plate’s triangulation. The stiffness is determined by the sizes t and h 

that together are constrained by the overall depth H; and by the width 
bi that can vanish to zero. The shape of the layout is determined by 
optimizing the nodal coordinates {Xj,Yj}
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The beam element is a standard two-node, three-dimen-
sional Euler-Bernoulli beam element with a rectangular 
cross section (e.g., Weaver and Gere 2012). We take the 
torsional constant as Ji = �hb3

i
 for a certain beam segment 

i, assuming that h ≥ bi and then � =
1

3
− 0.21

bi

h

(
1 −

b4
i

12 h4

)
 . 

This condition is suitable in the current context because 
beams can only vanish by reducing their width bi while the 
depth h is common for all beams and is larger than the 
maximal allowable bi . Denoting the 12-by-12 beam 

stiffness matrix in its local coordinate system as kl
eB

 , we 
first consider its eccentricity e w.r.t. the plate’s mid plane,

where T i s  a  12-by-12 matr ix with entr ies 
T1,5 = −T2,4 = T7,11 = −T8,10 = e and zeros otherwise. 
These entries reflect the coupling between displacements 
of the beam in parallel to the plate’s plane and rotations 
of the plate’s plane. Finally, the beam stiffness matrix in 
global coordinates is computed by applying the operator R 
that accounts for the relative rotation between the local and 
global coordinate systems,

The structure’s stiffness matrix K is then a sum of all plate 
and beam element-level contributions, assembled according 
to global DOF numbering,

where NP is the number of plate elements; keP,i is the stiff-
ness matrix of the i-th plate element; NB is the number of 
beam elements; and keB,i is the stiffness matrix of the i-th 
beam element. We note that the displacement fields of the 
plate and beam elements are compatible not only at the 
nodes but also along the edges of the triangular elements, 
i.e., along the length of each beam segment. This is because 
the same interpolations are used in both types of elements: 
cubic for out-of-plane displacements and linear for in-plane 
displacements.

2.3 � Verification

In principle, the combination of three types of finite ele-
ments does not impose any significant technical difficulty. 
Nevertheless, there is some room for errors in the deriva-
tion and implementation, of the DKT element in particular. 
Hence we present a verification of the implementation in 
which we solve a simple problem of a rectangular plate stiff-
ened with two beams in a cross-like pattern, see Fig. 3. This 
example is taken from Chang (1973), specifically Table 4-15 
in the reference where results using FEA are compared to 
results obtained with series expansions. The size of the rec-
tangular plate is 0.762 m × 1.524 m, its thickness is 6.35 mm 
and it is simply supported in all four edges. Two beams are 
used to stiffen the plate, dividing it into four identical panels. 
The beams have cross-section sizes of 12.7 mm×127 mm in 
the x-direction and 12.7 mm×76.2 mm in the y-direction.

We use MATLAB’s built-in PDE solver to mesh the 
domain with four levels of resolution, having maximum 

(3)k̂
l

eB
= T

T
k
l

eB
T

(4)keB = R
T
k̂
l

eB
R.

(5)K =

NP∑

i=1

keP,i +

NB∑

i=1

keB,i

Fig. 2   CST, DKT and 3-D beam elements that are used in this work. 
The DOF are shown in global coordinates and local element-level 
numbering
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side lengths of 0.2, 0.1, 0.05 and 0.025. The numerical 
results of the vertical displacements at the center of the 
plate (the intersection of the beams) and at the center 

of each of the four panels are detailed in Table 1. It can 
be seen that our results are very close to the reference, 
in particular with the coarser meshes. A colored plot of 
the vertical displacements, computed using a mesh with 
maximum side length of 0.05, is presented in Fig. 4. The 
figure clearly shows the stiffening effect of the beams that 
restrain the deflections in the central axes of the plate.

3 � Optimization problem formulation

The aim of optimization is to minimize the weight of the 
structure, while ensuring its structural integrity. In pre-
liminary design of concrete structures, the geometry is 
determined according to service limit states which are 
usually defined in terms of allowable deformations. In the 
case of a plate or slab, a limit should be imposed on the 

Fig. 3   An example of a rectangular plate stiffened by two beams 
(after Chang (1973)). All edges of the plate are simply supported

Table 1   Verification of the implementation on the example of a stiff-
ened rectangular plate

The displacements are given in [m×10−3]

Mesh size 0.2 0.1 0.05 0.025 REF

w at center of plate −0.2258 −0.2332 −0.2351 −0.2366 −0.2285
w at center of 

panel
−1.5683 −1.6348 −1.6457 −1.6702 −1.6300

Fig. 4   Vertical displacements of the rectangular stiffened plate, com-
puted using a mesh with maximum side length of 0.05. Numerical 
results are detailed in Table 1
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maximal vertical displacement. This leads to the following 
problem formulation,

where x is a vector of mathematical design variables that are 
linked to physical design variables according to the specific 
context as detailed in the following.

3.1 � Physical design variables

The first NB design variables govern the widths bi of each beam 
segment,

where b and b̄ are lower and upper limits for the width and 
0 ≤ xi ≤ 1 . The limit b is chosen as a small number for 
numerical stability and b̄ can be chosen based on design 
intentions. The exponent pb is an optional SIMP-like penalty 
parameter. For pb = 1 , sizing of the beams is obtained, while 
for pb > 1 intermediate widths are penalized and topology 
of the beam layout is gradually achieved, depending on the 
value of pb and on the other geometric parameters.

The next two variables in the vector x govern the depth of 
the beams and the thickness of the plate, which are both uni-
form throughout the design domain to resemble the construc-
tion method of waffle slabs. These parameters are related to 
their design variables by linear interpolation,

where h is chosen as a small number for numerical stability, 
t is chosen based on engineering judgement, and

 Notice that there are no explicit values for h̄ and t̄ . An upper 
limit H̄ is imposed on the total depth H, so the upper limits 
are simply h̄ = H̄ − t and t̄ = H̄ − h.

The last set of variables in the vector x governs the nodal 
coordinates, organized as follows

(6)

minimize
x

f0(x) = VP + VB

subject to: f1(x) =
𝛿

𝛿⋆
− 1 ≤ 0

f2(x) =
t + h

H̄
− 1 ≤ 0

x ≤ x ≤ x̄

subject to: K(x)u = fEXT + fSW

bi(x) = b + (b̄ − b)x
pb
i

i = 1, ...,NB

(7)h(x) = h + (h̄ − h)xNB+1

(8)t(x) = t + (t̄ − t)xNB+2

0 ≤xNB+1
≤ 1

0 ≤xNB+2
≤ 1

where j = 1, ...,NN and NN is the number of nodes. The coor-
dinates X̂j , Ŷj represent the raw design update that stems from 
the design vector x and the corresponding limits x and x̄ are 
set according to the geometry of the domain. However, the 
actual nodal coordinates are determined after applying a few 
smoothing iterations, see Sect. 3.5. Equation (9) is written as 
if all nodes can move in both directions in the x − y plane. 
Nevertheless, some movements are restricted according to 
the specific design domain. These coordinates are removed 
and re-introduced before and after design updates.

3.2 � Volume objective function

The objective function is the volume of the structure, built 
up from the volume of the plate and the volume of the 
beams,

where AP is the area of the plate which is constant; t(x) , 
h(x) and bi(x) are the geometric parameters as detailed in 
Sect. 3.1; and li(x) is the length of the i-th beam segment 
that depends on its nodal coordinates.

3.3 � Constraints

The problem formulation (6) includes two general con-
straints. The constraint f1(x) limits the maximum deflec-
tion, where

and � contains all the vertical (or out-of-plane) displace-
ments and is a subset of the displacements vector u . The 
vector u depends implicitly on the design variables x through 
the equilibrium equations. The limit 𝛿⋆ is based on engineer-
ing requirements and is typically set to 1/750 of the span 
between supports. The definition (11) is not differentiable, 
meaning some smooth approximation should be employed. 
We replace 𝛿 with its smooth counterpart,

and use p� = 16 throughout all numerical examples. How-
ever, in order to avoid rescaling of the threshold 𝛿⋆ to accom-
modate the over-estimation of the p-norm, the optimizer is 
given the value of the true constraint (11) and the derivatives 

(9)

{
X̂1, Ŷ1, ..., X̂j, Ŷj, ..., X̂NN

, ŶNN

}
=

{
xNB+2+1

, xNB+2+2
, ..., xNB+2+2j−1

,

xNB+2+2j
, ..., xNB+2+2NN−1

, xNB+2+2NN

}

(10)f0(x) = VP + VB = APt(x) + h(x)

NB∑

i=1

bi(x)li(x)

(11)𝛿 = ‖�‖∞

(12)�̃ = ‖�‖p�
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are taken by differentiation of �̃  . This strategy works well 
and no problems are encountered with satisfying the deflec-
tion constraint.

The second constraint f2(x) limits the overall depth of the 
ribbed plate system to a prescribed value H̄ , and depends 
explicitly on x through Eqs. (7) and (8). Clearly, for stiffness 
it is best to increase the depth, in particular of the beams. On 
the other hand, increasing the overall depth has negative archi-
tectural implications because it limits the usable height of the 
storey. Furthermore, increasing the overall storey height may 
increase the overall cost of the building. This trade-off will be 
addressed in some of the examples in Sect. 5. Notice that the 
parameter H̄ indirectly limits the maximal depth of the beams 
and thickness of the plate, as discussed in Sect. 3.1.

3.4 � Equilibrium equations

The ultimate component of (6) are the equilibrium equa-
tions, where the stiffness matrix �(�) is formulated based 
on Eqs. (3), (4) and  (5). It depends explicitly on all types of 
design variables. The force vector fEXT (x) represents the exter-
nal load applied on the plate’s surface, which is distributed 
uniformly in the current context. This vector is assembled from 
the individual contributions of each plate element according 
to the area of the triangular element that depends on its nodal 
coordinates. Therefore, while fEXT (x) is always physically uni-
form, its distribution to nodal loads depends on x through the 
nodal coordinates and hence is design-dependent. The second 
part of the force vector, fSW (x) , is the load due to self-weight 
of the structure. It depends explicitly on all types of design 
variables: the weight of the plate depends on t(x) and its nodal 
distribution depends on the coordinates; similarly, the weight 
of the beams depends on h(x) , bi(x) and li(x).

3.5 � Mesh smoothing

One part of the design parameterization are the nodal loca-
tions which are controlled by shape design variables. This 
means that the mesh changes its shape without updating the 
connectivity, and some acute distortions may occur. To reduce 
distortion we apply a simple form of Laplacian smoothing, that 
recursively places each node according to the average of the 
nodes that are connected to it (Field 1988),

 where Nj is the number of vertices that are connected by an 
edge to the vertex j, Xj is the set of indices of vertices that 
are connected by an edge to the vertex j and the coordinates 

Xj =
1

Nj

∑
k∈Xj

X̂k

Yj =
1

Nj

∑
k∈Xj

Ŷk

X̂m , Ŷm are directly related to the design variables, see 
Eq. (9). This is a rather naive approach but it performs suf-
ficiently well for the purpose of the current study. Because 
the mesh connectivity is unaltered during optimization, the 
coefficients for each nodal coordinate can be computed prior 
to the optimization and are collected in the matrix L . As 
some nodal movements are restricted in either one or two 
directions, the application of L may differ between direc-
tions, hence

where LX and LY are adaptations of L to the specific active 
and passive nodes in each direction, and NL is the number 
of smoothing cycles.

4 � Sensitivity analysis

To solve the optimization problem in Eq. (6), we employ 
sequential convex programming, specifically MMA (Svanberg 
1987). As a first-order algorithm, MMA requires an evalua-
tion of the objective and constraints, as well as their first-order 
derivatives. All derivatives are formulated analytically and the 
numerical implementation is verified by comparison to finite 
differences. However, a complete description of the derivations 
is lengthy and may not be useful to the readers. We resort to a 
brief presentation of the main components, that together with 
the available MATLAB codes can provide the readers with a 
complete understanding of the sensitivity analysis. We note 
that due to the complexity of some of the derivatives, manual 
derivation is challenging so analytical differentiation with 
MATLAB’s symbolic engine was used. Symbolic expressions 
were then converted to numerical function calls for executing 
the optimization.

In the following, we provide general expressions of the 
derivatives w.r.t. all types of physical design variables accord-
ing to their exposition in Sect. 3.1. The chain rule is subse-
quently applied to obtain the derivatives w.r.t. x . For brevity, 
nodal coordinates after smoothing, i.e. 

{
Xj, Yj

}
 , are represented 

here as a generic coordinate Cj.

4.1 � Volume objective function

Observing Eq. (10), the volume objective has explicit deriva-
tives w.r.t all types of design variables,

(13)
X = L

NL

X
X̂

Y = L
NL

Y
Ŷ
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where Ωj defines the set of edges in the mesh that is con-
nected to the j-th node, so that the derivative of �li

�Cj

 contrib-

utes to �f0
�Cj

.

4.2 � Deflection constraint

As explained above, the derivative of f1(x) is computed 
according to the smooth approximation of the maximum 
deflection, Eq. (12). Applying an adjoint technique to elim-
inate the implicit dependence on the state u , the derivative 
w.r.t. a generic physical design variable � is

with the adjoint vector computed from the equation

Since �̃  is simply an aggregation of vertical displacements, 
the right-hand-side of Eq.  (15) is a vector with entries 
�∑NN

i=1
u
p�
6i−3

� 1

p�
−1

u
p�−1

6i−3
 at the third DOF of each node i and 

zeros otherwise.
Once the adjoint vector is computed, the three separate 

terms in Eq. (14) can be evaluated. These depend on the spe-
cific context of � , whether it represents bi , h, t or Cj . In the fol-
lowing, the index i refers to a certain element that can be either 
a plate or a beam. Furthermore, the notations eP and eB are 
used to designate element-level expressions such as stiffness 
or loads, for plates and beams respectively.

The case of � representing bi , the width of beam element i:

The case of � representing h, the height of all beams:

�f0

�bi
= hli

�f0

�h
=

NB∑

i=1

bili

�f0

�t
= AP

�f0

�Cj

= h
∑

i∈Ωj

bi
�li

�Cj

(14)
𝜕f1

𝜕𝜉
=

1

𝛿⋆
�
T

(
𝜕K

𝜕𝜉
u −

𝜕fEXT

𝜕𝜉
−

𝜕fSW

𝜕𝜉

)

(15)K
T
� = −

(
��̃

�u

)T

.

�
T �K

��
u = �

T �K

�bi
u = �

T
i

�keB,i

�bi
ui ,

�
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The case of � representing t, the thickness of the plate:
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operations of Eq. (13).
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the plate thickness is chosen as roughly 20% of the total 
depth. Then, the beam layout is assumed to be parallel to 
the plate edges and the beam widths are assumed uniform. 
By trial and error, the beam width can be found for which 
the maximum deflection satisfies the design requirement 
of 1/750 of the span. The examples share a common set 
of numerical parameters that are detailed and explained 
in Table 2. Additional specific parameters and specific 
choices that are different from the default, are detailed in 
the text.

When optimizing the plate’s structural parameters, there 
are two competing goals in mind: 1) Minimizing the vol-
ume, which directly affects the amount of material resources 
invested in the plate itself and indirectly in the vertical sys-
tem of the building; 2) Minimizing the total depth, which 
indirectly affects costs and benefits of the complete building, 
e.g., architectural height of a floor, total height of the build-
ing, cost of external cladding, and magnitude of horizontal 
forces. We do not attempt to provide a complete trade-off 
study herein but the effect of the total available depth will 
be shown in the numerical results.

Solutions of the optimization problem (6) are sought 
by MMA (Svanberg 1987). In the numerical experiments, 
it was observed that MMA is more stable when splitting 
the design updates to two phases within each design cycle: 
first, the variables that govern bi , h and t are updated, and 
subsequently the variables that govern nodal positions are 
updated. Given the non-convex nature of the optimization 
problem, we only expect to find local minima solutions. The 
results hereafter have been obtained after some numerical 
experimentation, aiming to find a common set of parameters 
that yield consistent results for all examples—in terms of 
weight savings and constraint feasibility. We did not conduct 

further experiments to determine whether better minima 
could be found.

5.1 � Example 1: 10‑by‑10, simply supported

In this example, we optimize a 10 m-by-10 m plate with 
vertical supports in all edges—resembling a plate supported 
by stiff beams. Our reference design is based on the com-
mon waffle-like pattern with H = 0.4 m and t = 0.08 m. The 
beam width is bi = 0.1 m for all beams and the grid consists 
of 16-by-16 voids. The overall volume is 18.88 m3 and the 
maximum vertical deflection is 0.0126 m. The plate’s verti-
cal deflections are displayed in Fig. 5, superimposed on a 
two-dimensional view of the beam layout.

Utilizing double symmetry, we optimize the bottom-
left quadrant, a 5 m-by-5 m domain with a triangular mesh 
consisting of 145 nodes, 400 edges and 256 triangles. The 
boundary conditions for displacements and rotations, the 
restricted node movements for shape optimization and the 
initial mesh are sketched in Fig. 6. In the initial design prior 
to optimization, the plate thickness is t = 0.1 m, the beam 
depth is h = 0.2 m and all the beams are assigned bi = 0.1m.

Table 3 and Fig. 7 show the results of three optimization 
runs, displayed on the full 10 m-by-10 m plate. In all three 
cases, the maximum beam width is b̄ = 0.12 m. Runs #1 and 
#2 are with a total depth of H̄ = 0.35 m whereas run #3 is 
with H̄ = 0.40 m. Accordingly, t = 0.07 m in runs #1 and #2 
and t = 0.08 m in run #3. Finally, run #1 applies sizing to the 
beam widths while runs #2 and #3 include a SIMP penalty 
to promote a uniform cross-section of all beams.

Table 2   Numerical parameters common to all examples

Description Symbol Value

Young’s modulus E 30e6 kN/m2

Poisson’s ratio � 0.2
Concrete specific weight � 25 kN/m3

External load f 5 kN/m2

Maximum optimization iterations NO 100
Stopping tolerance � 1e-3
External MMA move limit for topology/siz-

ing
s1 0.2

External MMA move limit for nodes s2 0.05
Minimal beam width b 1e-3
Optional SIMP penalty pb from 1 to 3, 

every 25 
iter

Minimal beam depth h 1e-3
Laplacian smoothing iterations NL 10

Fig. 5   Waffle-pattern reference design for a simply supported plate, 
Example 1. The volume is 18.88 m3 and the maximum deflection is 
0.0126 m
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The results show that the simultaneous topology-shape-
sizing optimization of the plate-beam system can lead to sig-
nificant weight savings that exceed 30%, without increasing 
(and in some cases with decreasing) the total depth. Mesh 
movement together with elimination of beams create irreg-
ular spaces between beams, whose deflection is evaluated 
consistently with the plate-beam model. We see that in the 
sizing formulation (run #1) there were relatively large mesh 
movements and stiff diagonal regions were created by clos-
ing the gaps between beams via mesh distortion. The effect 
of artificial plate stiffness due to mesh distortion is discussed 
and quantified in Sect. 5.4. As expected, fewer beams are 
used when applying a SIMP penalty and when increasing 
the total depth—the latter tendency is explained by the rela-
tively higher stiffness-to-weight ratio of deep beams, hence 
the optimizer chooses fewer beams that utilize the available 
depth.

5.2 � Example 2: 10‑by‑10 on 4 columns, fixed 
conditions

In this example, we optimize a 10 m-by-10 m plate sup-
ported on 4 columns at the corners. The columns have 
fixed conditions—meaning they restrain vertical displace-
ments and out of plane rotations. These conditions can 
model a single internal span of a floor where the adjacent 
spans restrain rotations above the columns and continu-
ity of bending moments is possible. Our reference design 
is again a waffle-like structure, with H = 0.53 m and 
t = 0.08 m. The beam width is bi = 0.1 m for all beams and 
the grid consists of 16-by-16 voids. The overall volume 
is 23.30 m3 and the maximum deflection is 0.013 m. The 
plate’s deflections are displayed in Fig. 8, superimposed 
on a two-dimensional view of the beam layout.

Double symmetry is utilized again and the initial mesh 
is the same as in Example 1. The boundary conditions 
for displacements and rotations, the restricted node move-
ments for shape optimization and the initial mesh are 
sketched in Fig. 9. In the initial design prior to optimiza-
tion, the plate thickness is t = 0.1 m, the beam depth is 
h = 0.3 m and all the beams are assigned bi = 0.1 m. When 
solving this setup, relatively larger mesh movements have 
been observed compared to Example 1. To avoid severe 
mesh distortion, a more conservative move limit was cho-
sen, s2 = 0.025 . To balance this conservative measure, 
the number of smoothing steps was reduced to NL = 5 . 
Based on extensive numerical experimentation, we can 
say that in general the computational procedure produces 
good results for various combinations of s2 and NL , but a 
complete parametric study towards optimal choices of the 
parameters is beyond the current scope.

Table 4 and Fig. 10 show the results of three optimiza-
tion runs. In all three cases, the maximum beam width 
is b̄ = 0.12 m. Runs #1 and #2 are with a total depth of 
H̄ = 0.48 m whereas run #3 is with H̄ = 0.53 m, and 
t = 0.08 m in all runs. Finally, run #1 applies sizing to the 
beam widths while runs #2 and #3 include a SIMP penalty 
to promote a uniform cross-section of all beams.

The results show again that the simultaneous optimiza-
tion of the plate-beam system can lead to significant weight 
savings that herein exceed 40% in one case. Again, these 
savings are achieved with the same total depth as in the 

Fig. 6   Problem setup for the bottom left quarter of a simply sup-
ported plate, Example 1. The boundary conditions are stated along 
each edge. Red arrows represent restricted directions for node move-
ments along the boundaries and gray lines represent the initial mesh

Table 3   Numerical results of 
Example 1

All runs use their minimal allowable t and maximal allowable depth H. The deflection constraint is satisfied 
precisely. The rightmost column includes the savings in volume, compared to the reference design

run pb H̄[m] t iters t[m] h[m] � [m] V [m3]

#1 1 0.35 0.07 100 0.07 0.28 0.0126 11.8211 (-37%)
#2 3 0.35 0.07 90 0.07 0.28 0.0126 13.3781 (-29%)
#3 3 0.40 0.08 88 0.08 0.32 0.0126 12.4635 (-34%)
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reference design, or with a smaller depth. The mesh move-
ment is somewhat more subtle than in Example 1, due to the 
more conservative move limit. Still, the mesh optimization 
allows to create variable spacing between beams and arbi-
trarily shaped voids that contribute to the weight savings.

5.3 � Example 3: 10‑by‑10 on 4 columns, 
with cantilevers

In this example, we optimize a 10 m-by-10 m plate sup-
ported on 4 columns that are positioned internally, leaving 
a cantilevered strip of 1.875 m in all edges of the plate. The 
columns restrain only vertical displacements and bending 
resistance comes from the loads on the cantilevers. Our 
reference design consists again of 16-by-16 voids organ-
ized in an orthogonal pattern. The total depth is 0.27 m, 
of which the plate is 0.05 m, and the beam width is 0.1 m 
for all beams. The overall volume is 12.48 m3 and the 
maximum deflection is 0.0108 m. The plate’s deflections 
are shown in Fig. 11, superimposed on a two-dimensional 
view of the beam layout.

Double symmetry is utilized and the initial mesh 
is the same as in the previous examples. The boundary 

Fig. 7   Optimized layouts (black lines) and vertical displacements (colored map) of Example 1, a 10-by-10 simply supported plate. The second 
row shows the optimized meshes

Fig. 8   Waffle-pattern reference design for a plate on four fixed col-
umns, Example 2. The volume is 23.30 m3 and the maximum deflec-
tion is 0.0130 m
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conditions for displacements and rotations, the restricted 
node movements for shape optimization and the initial 
mesh are sketched in Fig. 12. In the initial design prior to 
optimization, the plate thickness is t = 0.07 m, the beam 
height is h = 0.15 m and all the beams are assigned bi = 0.1

m.
Table 5 and Fig. 13 show the results of three optimi-

zation runs. In all three cases, the maximum beam width 
is b̄ = 0.12 m. Runs #1 and #2 are with a total depth 
of H̄ = 0.25 m whereas run #3 is with H̄ = 0.27 m, and 
t = 0.05 m in all runs. Finally, run #1 applies sizing to the 
beam widths while runs #2 and #3 include a SIMP penalty 
to promote a uniform cross-section of all beams.

The displacement maps in Fig. 13 reveal an interest-
ing, non-trivial optimized design: while the uniform refer-
ence design exhibits upwards displacements of the canti-
levered corners—which are nearly half of the downwards 

displacement in the center—the optimized designs reduce 
these displacements, and in some cases eliminate them. It 
is known that for such a cantilevered plate, maximum stiff-
ness is achieved when the columns are positioned such that 
there is zero rotation above the columns (Mróz and Rozvany 
1975; Fuchs and Brull 1979; Zelickman and Amir 2022). 
Given that the locations of the columns are fixed, the opti-
mization aims at a similar goal by manipulating the stiffness 
of the internal span and the cantilevers. Another noticeable 
manipulation are the larger displacements along the plate’s 
edges, compared to the reference design. The optimized 
designs show better utilization of the design space by bring-
ing several regions close to the deflection constraint, while 
in the reference design the maximal deflection is obtained in 
the center and the displacements along the edges are much 
lower. This type of design intervention was not possible 
in the previous two examples, hence the displacements of 
the optimized designs were very similar to the reference 
responses. We notice that the node movements are not sig-
nificant in this example, except perhaps for some curvatures 
near the columns in run #3.

5.4 � Example 4: Trapezoidal domain on 4 columns, 
fixed conditions

One of the attractive features of the current design parame-
terization is that any domain shape can be treated, based on a 
triangular mesh of the surface. In this example, we optimize 
a trapezoidal plate which is supported at its vertices on 4 
columns that have fixed conditions. The trapezoidal shape is 
created by trimming an equilateral triangle with side length 
of 12 m. Generating a traditional design for this domain is 
not as straightforward as for the rectangular domains. We 
choose a ribbing pattern based on a coarse triangulation of 
the domain, with beams placed every 1 m. The reference 
design has a total depth of 0.42 m, of which the plate is 
0.07 m, and the beam width is 0.12 m for all beams. The 
overall volume is 12.62 m 3 and the maximum deflection is 
0.015 m. This value meets the requirement w.r.t. the critical 
span between columns which is 12 m. The plate’s deflec-
tions are displayed upon the design in Fig. 14. The relative 
inefficiency of a uniform triangular design can be inferred 
from the deflection map: there are three stiff edges where the 
deflections are close to zero, and the allowable deflection is 
observed only along the long edge.

Fig. 9   Problem setup for the bottom left quarter of a plate on 4 col-
umns, Example 2. The boundary conditions are stated along the sym-
metric edges and near the column. Red arrows represent restricted 
directions for node movements along the boundaries and gray lines 
represent the initial mesh

Table 4   Numerical results of 
Example 2

All runs use their minimal allowable t and maximal allowable depth H. The deflection constraint is satisfied 
precisely. The rightmost column includes the savings in volume, compared to the reference design

run pb H̄[m] t iters t[m] h[m] � [m] V [m3]

#1 1 0.48 0.08 100 0.08 0.40 0.0130 14.2519 (-39%)
#2 3 0.48 0.08 72 0.08 0.40 0.0130 15.8755 (-32%)
#3 3 0.53 0.08 87 0.08 0.45 0.0130 13.5704 (-42%)
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The boundary conditions for displacements and rotations, 
the restricted node movements for shape optimization and 
the initial mesh are sketched in Fig. 15. The initial mesh is 
the pattern of the reference design, consisting of 81 nodes, 
208 edges and 128 triangles. In the initial design prior to 
optimization, the plate thickness is t = 0.1 m, the beam 
height is h = 0.2 m and all the beams are assigned bi = 0.1m.

Table 6 and Fig. 16 show the results of three optimiza-
tion runs. All runs are with a total depth of H̄ = 0.4 m and a 
minimal plate thickness t = 0.07 m. Runs #1 and #2 are exe-
cuted on a coarse triangulation with relatively large spacing 
between nodes, so they allow a higher maximum beam width 
and larger move limit for the nodes, as seen in Table 6. Run 
#3 uses a triangulation with double resolution to show the 
effect of mesh refinement, so b̄ is decreased to 0.12 m and the 
move limit is the default value. The results show significant 
potential savings in material volume, exceeding 50% in all 
cases. These savings are primarily a result of allowing larger 
deflections along the edges as can be seen in Fig. 16. The 
feasible design space is utilized better and more regions are 
close to being active in the deflection constraint. In runs #1 
and #2, it can be seen that the meshes hardly move. This is 
because of the relatively “stiff” boundary conditions for the 

Fig. 10   Optimized layouts (black lines) and vertical displacements (colored map) of Example 2, a 10-by-10 plate fixed to four columns. The sec-
ond row shows the optimized meshes

Fig. 11   Waffle-pattern reference design for a plate on four columns 
with cantilevers, Example 3. The volume is 12.48 m3 and the maxi-
mum deflection is 0.0108 m
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mesh that restrict any movement along the edges, and perhaps 
also because the initial mesh accommodates nearly optimal 
beam directions. The refined mesh in run #3 enables an inter-
esting pattern of curved ribs—resembling a post-processing of 
continuum topology optimization in the design of a box girder 
(Baandrup et al. 2020)—however, the quantitative benefit is 
small and the volume is only slightly lower than in run #1.

As observed in Fig. 16 (bottom right), mesh distortions 
may occur. This raises the question whether the optimizer 
exploits mesh distortions to achieve artificial plate stiffness 
and hence numerically improve the structural performance. 
To examine this effect, we manually remeshed the solution 
of run #3 such that triangles in the highly condensed and dis-
torted region were replaced with healthier triangles, and a sub-
sequent re-analysis was performed. The resulting displacement 
field and mesh pattern are presented in Fig. 17. The overall 

displacement field is the same, while the maximum displace-
ment is � = 0.0151 , only slightly higher than with the distorted 
mesh. This validates the quality of the optimized design, but at 
the same time also emphasizes the need for a more robust mesh 
optimization—as artificial stiffness is present.

6 � Discussion

The purpose of this study was to present a computational 
procedure for optimizing ribbed plates, aiming at reducing 
their weight and indirectly also their embodied CO2. The 
chosen design parameterization, that relies on a coupled 
plate-beam model and on the finite element mesh, allows 
to unify topology-, shape- and sizing optimization of ribbed 
plate systems—a unique feature in comparison to the litera-
ture. Another advantage of the parameterization is that it 
enables to optimize any plate domain as it uses a triangular 
mesh as a flexible ground structure for optimizing the layout 
of ribs. The main results are as follows: 

1.	 Throughout several design examples, significant weight 
savings in the range of 24–57% have been demonstrated, 
compared to reasonable reference designs with regular 
ribbing patterns.

2.	 The weight reductions are achieved without increas-
ing the total depth of the plate and imposing additional 
architectural compromise. In some cases, weight savings 
have been achieved together with reduction of the total 
depth.

3.	 The optimized designs show better utilization of the 
design space by bringing several regions close to the 
deflection constraint, while in the reference designs the 
maximal deflection is typically obtained in one region 
of the plate.

The results of this study, together with results from recent 
studies on ribbed plates (Whiteley et al. 2023; Huber et al. 
2023; Ma et al. 2023), strengthen the argument in favor of 
ribbed plates as an environmentally-aware structural sys-
tem. While the fabrication as reinforced or prestressed 
concrete plates may be costly, the tremendous reduction in 
quantity of raw materials motivates more detailed explo-
rations. An interesting implication of the study is related 

Fig. 12   Problem setup for the bottom left quarter of a plate on 4 
columns with cantilevers, Example 3. The boundary conditions are 
stated along the symmetric edges and near the column. Red arrows 
represent restricted directions for node movements—the column’s 
node and along the boundaries. Gray lines represent the initial mesh

Table 5   Numerical results of 
Example 3

All runs use their minimal allowable t and maximal allowable depth H. The deflection constraint is satisfied 
precisely. The rightmost column includes the savings in volume, compared to the reference design

run pb H̄[m] t iters t[m] h[m] � [m] V [m3]

#1 1 0.25 0.05 100 0.05 0.20 0.0108 8.5640 (-31%)
#2 3 0.25 0.05 100 0.05 0.20 0.0108 9.5142 (-24%)
#3 3 0.27 0.05 100 0.05 0.22 0.0108 8.7252 (-30%)
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Fig. 13   Optimized layouts (black lines) and vertical displacements (colored map) of 10-by-10 plate, on four columns with cantilevers. The sec-
ond row shows the optimized meshes

Fig. 14   Reference design (black lines) and vertical displacements 
(colored map) for a trapezoidal plate supported on four fixed columns 
at the vertices, Sect. 5.4. The volume is 12.62 m3 and the maximum 
deflection is 0.0150 m

Fig. 15   Problem setup for the trapezoidal plate on 4 fixed columns, 
Example 4. The boundary conditions are stated for each of the col-
umns. Red arrows represent restricted directions for node move-
ments—along the perimeter. Gray lines represent the initial mesh
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to the optimality of Nervi’s patterns: using formal optimi-
zation, we do not obtain ribs in the directions of principal 
moments of a flat plate, and preliminary results with our 
mesh-based approach showed weight savings of roughly 
10% beyond Nervi’s savings, when compared to standard 
slabs (Majdouba 2022). Another important implication is 
the generality of the proposed procedure: while our focus 
herein is solely on concrete plates in buildings, the mesh-
based approach is applicable in the much more general con-
text of stiffened shells. Therefore, future work may expand 
the method towards thin and possibly curved shells that are 
stiffened by beams of arbitrary sizes, positioned in arbitrary 

locations and directions (e.g., Wang et al. 2017; Zhang et al. 
2018; Savine et al. 2021).

As a first exploration of a new design parameterization 
and a corresponding optimization procedure, the study is 
bounded by several limitations. While our main application 
field is ribbed concrete plates, we limit ourselves to linear 
elastic modeling. This could suffice for preliminary design, 
but concrete cracking and reduced bending resistance should 
be taken into account to check the design for service limit 
state. Furthermore, detailed design of reinforcement for 
ultimate limit state as conducted by Whiteley et al. (2023) 
is out of the current scope. Nevertheless, weight savings 

Table 6   Numerical results of 
Example 4

All runs use their minimal allowable t and maximal allowable depth H. The deflection constraint is satisfied 
precisely. The rightmost column includes the savings in volume, compared to the reference design

run pb b̄[m] s2[m] iters t[m] h[m] � [m] V [m3]

#1 1 0.15 0.10 100 0.07 0.33 0.0150 5.4266 (-57%)
#2 3 0.15 0.10 100 0.07 0.33 0.0150 5.8831 (-53%)
#3 1 0.12 0.05 100 0.07 0.33 0.0150 5.3813 (-57%)

Fig. 16   Optimized layouts (black lines) and vertical displacements (colored map) of a trapezoidal plate, fixed to four columns at the vertices. 
The second row shows the optimized meshes
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w.r.t reference designs are valid because they use the elastic 
deflection as a basis for comparison. We expect that the sav-
ings will not differ significantly when inelastic deformations 
will be modeled because the nonlinearity in service limit 
states is mild. Strength requirements could be integrated in 
an extension to the current formulation. The vanishing of 
beams and the number of constraints are expected to pose 
numerical challenges, that could be addressed by various 
techniques that have been developed in the context of topol-
ogy optimization with stress constraints. Another limitation 
is the naive approach for controlling the mesh movement. 

This aspect of the optimization is rather delicate, and a more 
robust procedure for moving the mesh and avoiding exces-
sive distortions should be adopted in future work.

Acknowledgements  The authors are grateful to the anonymous review-
ers for the thorough review and numerous helpful comments. The 
authors would like to thank Krister Svanberg for his implementation 
of MMA in MATLAB.

Funding  Open access funding provided by Technion - Israel Institute 
of Technology.

Declarations 

 Conflict of interest  The authors state that there are no Conflict of in-
terest.

Replication of results  All MATLAB codes used in this study are freely 
available through a public repository, https://​zenodo.​org/​recor​ds/​11489​
996.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Andrew RM (2019) Global CO2 emissions from cement production, 
1928–2018. Earth Syst Sci Data 11(4):1675–1710

Baandrup M, Sigmund O, Polk H, Aage N (2020) Closing the gap 
towards super-long suspension bridges using computational 
morphogenesis. Nat Commun 11(1):1–7

Bathe K-J (1996) Finite element procedures. Prentice Hall, Upper 
Saddle River

Batoz J-L (1982) An explicit formulation for an efficient tri-
angular plate-bending element. Int J Numer Methods Eng 
18(7):1077–1089

Batoz J-L, Bathe K-J, Ho L-W (1980) A study of three-node tri-
angular plate bending elements. Int J Numer Methods Eng 
15(12):1771–1812

Bolbotowski K, He L, Gilbert M (2018) Design of optimum grillages 
using layout optimization. Struct Multidisc Optim 58:851–868

Chang S-YP (1973) Analysis of eccentrically stiffened plates. Uni-
versity of Missouri-Columbia, Ph.D

Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and 
applications of finite element analysis, 4th edn. Wiley, New 
Jersey

Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal 
structures. J Mecanique 3:25–52

Eleftheriadis S, Duffour P, Greening P, James J, Stephenson B, 
Mumovic D (2018) Investigating relationships between cost 
and CO2 emissions in reinforced concrete structures using 

Fig. 17   Re-analysis of run #3 after mesh repairing. Top: the opti-
mized layout (black lines) is superimposed upon the vertical displace-
ments (colored map). Bottom: the repaired mesh. The displacement is 
less than 1% larger than with the distorted mesh

https://zenodo.org/records/11489996
https://zenodo.org/records/11489996
http://creativecommons.org/licenses/by/4.0/


	 O. Amir, A. Majdouba 103  Page 18 of 18

a BIM-based design optimisation approach. Energy Build 
166:330–346

Field DA (1988) Laplacian smoothing and Delaunay triangulations. 
Commun Appl Numer Methods 4(6):709–712

Fuchs MB, Brull MA (1979) A new strain energy theorem and its 
use in the optimum design of continuous beams. Comput Struct 
10(4):647–657

Gilbert M, Tyas A (2003) Layout optimization of large-scale pin-
jointed frames. Eng Comput 20(8):1044–1064

Halpern AB, Billington DP, Adriaenssens S (2013) The ribbed floor 
slab systems of Pier Luigi Nervi. In: Proceedings of IASS annual 
symposia, vol. 2013, pp. 1–7. International Association for Shell 
and Spatial Structures (IASS), Madrid, Spain. Issue: 23

Huber T, Burger J, Mata-Falcón J, Kaufmann W (2023) Structural 
design and testing of material optimized ribbed RC slabs with 3D 
printed formwork. Struct Concr 24(2):1932–1955

Jayasinghe A, Orr J, Ibell T, Boshoff WP (2021) Minimising embodied 
carbon in reinforced concrete beams. Eng Struct 242:112590

Jeyachandrabose C, Kirkhope J, Babu CR (1985) An alternative 
explicit formulation for the DKT plate-bending element. Int J 
Numer Methods Eng 21(7):1289–1293

Ma J, He Y, Zhao Z-L, Xie YM (2023) Topology optimization of 
ribbed slabs and shells. Eng Struct 277:115454

Majdouba A (2022) Weight reduction of ribbed concrete slabs using 
structural optimization techniques. Master’s thesis, Technion—
Israel Institute of Technology, Haifa, Israel

Mathworks (2023) MATLAB Version 9.14.0.2239454 (R2023a). The 
Mathworks, Inc., Natick

Miller D, Doh J-H, Mulvey M (2015) Concrete slab comparison and 
embodied energy optimisation for alternate design and construc-
tion techniques. Constr Build Mater 80:329–338

Mróz Z, Rozvany G (1975) Optimal design of structures with variable 
support conditions. J Optim Theory Appl 15:85–101

Paya-Zaforteza I, Yepes V, Hospitaler A, Gonzalez-Vidosa F (2009) 
CO2-optimization of reinforced concrete frames by simulated 
annealing. Eng Struct 31(7):1501–1508

Pressmair N, Xia Y, Wu H, Langelaar M, Hendriks MA, Majdouba A, 
Mogra M, Grisaro H, Amir O, Kromoser B (2023) Bridging the 
gap between mathematical optimization and structural engineer-
ing: design, experiments and numerical simulation of optimized 
concrete girders. Struct Concr. https://​doi.​org/​10.​1002/​suco.​20220​
1096

Rozvany G (1972) Grillages of maximum strength and maximum stiff-
ness. Int J Mech Sci 14(10):651–666

Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization 
of structures. Appl Mech Rev 48(2):41–119. https://​doi.​org/​10.​
1115/1.​30050​97

Savine F, Irisarri F-X, Julien C, Vincenti A, Guerin Y (2021) A com-
ponent-based method for the optimization of stiffener layout on 
large cylindrical RIB-stiffened shell structures. Struct Multidisc 
Optim 64(4):1843–1861

Sigmund O, Zhou M, Rozvany G (1993) Layout optimization of large 
FE systems by new optimality criteria methods: applications to 
beam systems. In: Concurrent engineering: tools and technolo-
gies for mechanical system design, pp. 803–819. Springer, Berlin

Svanberg K (1987) The method of moving asymptotes-a new 
method for structural optimization. Int J Numer Methods Eng 
24(2):359–373

Wang B, Tian K, Zhou C, Hao P, Zheng Y, Ma Y, Wang J (2017) Grid-
pattern optimization framework of novel hierarchical stiffened 
shells allowing for imperfection sensitivity. Aerosp Sci Technol 
62:114–121

Weaver W, Gere JM (2012) Matrix analysis of framed structures. 
Springer, New York

Whiteley J, Liew A, He L, Gilbert M (2023) Engineering design of 
optimized reinforced concrete floor grillages. Structures 51:1292–
1304. https://​doi.​org/​10.​1016/j.​istruc.​2023.​03.​116

Yepes V, Gonzalez-Vidosa F, Alcala J, Villalba P (2012) 
CO2-optimization design of reinforced concrete retaining walls 
based on a VNS-threshold acceptance strategy. J Comput Civil 
Eng 26(3):378–386

Zelickman Y, Amir O (2022) Optimization of plate supports using a 
feature mapping approach with techniques to avoid local minima. 
Struct Multidisc Optim 65:1–16

Zhang W, Liu Y, Du Z, Zhu Y, Guo X (2018) A moving morpha-
ble component based topology optimization approach for RIB-
stiffened structures considering buckling constraints. J Mech Des 
140(11):111404

Zienkiewicz OC, Taylor RL (2000) The finite element method: solid 
mechanics, vol 2. Butterworth-Heinemann, Oxford

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/suco.202201096
https://doi.org/10.1002/suco.202201096
https://doi.org/10.1115/1.3005097
https://doi.org/10.1115/1.3005097
https://doi.org/10.1016/j.istruc.2023.03.116

	Mesh-based topology, shape and sizing optimization of ribbed plates
	Abstract
	1 Introduction
	2 The plate-beam model
	2.1 Design parameterization
	2.2 Finite element model
	2.3 Verification

	3 Optimization problem formulation
	3.1 Physical design variables
	3.2 Volume objective function
	3.3 Constraints
	3.4 Equilibrium equations
	3.5 Mesh smoothing

	4 Sensitivity analysis
	4.1 Volume objective function
	4.2 Deflection constraint

	5 Design examples
	5.1 Example 1: 10-by-10, simply supported
	5.2 Example 2: 10-by-10 on 4 columns, fixed conditions
	5.3 Example 3: 10-by-10 on 4 columns, with cantilevers
	5.4 Example 4: Trapezoidal domain on 4 columns, fixed conditions

	6 Discussion
	Acknowledgements 
	References




