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Abstract
In algorithms for solving optimization problems constrained to a smooth manifold,
retractions are a well-established tool to ensure that the iterates stay on the manifold.
More recently, it has been demonstrated that retractions are a useful concept for other
computational tasks on manifold as well, including interpolation tasks. In this work,
we consider the application of retractions to the numerical integration of differen-
tial equations on fixed-rank matrix manifolds. This is closely related to dynamical
low-rank approximation (DLRA) techniques. In fact, any retraction leads to a numer-
ical integrator and, vice versa, certain DLRA techniques bear a direct relation with
retractions. As an example for the latter, we introduce a new retraction, called KLS
retraction, that is derived from the so-called unconventional integrator for DLRA. We
also illustrate how retractions can be used to recover known DLRA techniques and to
design new ones. In particular, this work introduces two novel numerical integration
schemes that apply to differential equations on general manifolds: the accelerated for-
ward Euler (AFE) method and the Projected Ralston–Hermite (PRH) method. Both
methods build on retractions by using them as a tool for approximating curves on
manifolds. The two methods are proven to have local truncation error of order three.
Numerical experiments on classical DLRA examples highlight the advantages and
shortcomings of these new methods.
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1 Introduction

This work is concerned with the numerical integration of manifold-constrained ordi-
nary differential equations (ODEs) and, in particular, the class of ODEs evolving
on fixed-rank matrix manifolds encountered in dynamical low-rank approximation
(DLRA) [20]. This model-order reduction technique has attracted significant attention
in recent years, finding numerous applications in fundamental sciences and engineer-
ing [10, 16, 22, 25]. A key feature of DLRA is that it can bring down the computational
cost, in termsof storage andcomputational time,without compromising accuracywhen
solving certain large-scale ODEs as they arise, for instance, from the discretization of
partial differential equations.

Several works have already pointed out the close connection of specific DLRA
techniques to retractions on fixed-rank manifolds, the latter featuring prominently in
Riemannian optimization algorithms [1, 5]. For instance, the projector-splitting inte-
grator for DLRA proposed in [24] is shown in [4] to define a second-order retraction.
The other way around, the more frequently encountered fixed-rank retraction defined
with the metric projection on the manifold is centrally used in the projected Runge–
Kutta methods for DLRA developed in [19]. Furthermore, the recently proposed
dynamically orthogonal Runge–Kutta [9] schemes extend Runge–Kutta schemes to
theDLRA setting bymaking use of high-order approximations to themetric projection
retraction. In this work, we consider a unified framework for relating popular DLRA
time integration techniques to particular retractions on the fixed-rank manifold. This
not only covers the existing relations mentioned above but it also allows us to pro-
vide a novel geometric interpretation of the so-called unconventional integrator [8] by
showing that it defines a second-order retraction that coincides with the orthographic
retraction modulo a third-order correction term.

Low-rank retractions can also be used to design new time integration algorithms
on fixed-rank matrix manifolds, based on the insight [29] that retractions can be used
to conveniently generate manifold curves. For instance, any retraction allows one to
define a manifold curve passing through a prescribed point with prescribed veloc-
ity. If the retraction additionally possesses the so-called second-order property, the
acceleration can also be prescribed. In addition, as put forth in [26], a retraction can
be used to define a smooth manifold curve with prescribed endpoints and prescribed
endpoint velocities. We use these two retraction-based curves as the building block
for two novel numerical integration schemes for manifold-constrained ODEs and in
particular for DLRA, namely the accelerated forward Euler method and the Projected
Ralston–Hermite (PRH) method.

The proposed novel numerical integrators are then tested in two classical scenarios:
the Lyapunov differential equation and a synthetic example [18, §2.1]. The first sce-
nario serves as an effective numerical test to examine the impact of model errors, i.e.,
the magnitude of the normal component of the projected vector field, while the second
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analyzes the proposed method’s robustness in dealing with small singular values, a
notable concern in the context of numerical integrators for DLRA. We showcase that
the AFE numerical method maintains its robustness when dealing with small singu-
lar values but is sensitive to the presence of significant model errors. In contrast, the
PRHmethod ismore susceptible to the influence of small singular values butmaintains
accuracy levels comparable to the second-order ProjectedRunge–Kutta (PRK) scheme
[19]. Furthermore, for large model errors, it is illustrated that the computational time
of the proposed PRH method is comparable to that of the PRK counterpart. The com-
putational time of the accelerated methods is primarily dominated by the computation
of the acceleration, namely, the Weingarten map.
Outline Sect. 2 collects preliminary material on differential geometry and DLRA.
The link between retractions and existing DLRA techniques is discussed in Sect. 3.
Then, Sect. 4 presents two new retraction-based integration schemes: the Accelerated
Forward Euler method in Sect. 4.1 and the Projected Ralston–Hermite integration
scheme in Sect. 4.2. Numerical experiments reported in Sect. 5 assess the accuracy and
stability to small singular values of bothmethods and provide performance comparison
with state-of-the-art techniques. In Sect. 6, a discussion on future work directions
concludes the manuscript.

2 Preliminaries

2.1 Differential geometry

In this section, we briefly introduce concepts from differential geometry needed in
this work. The reader is referred to [5] for details.

In the following, M denotes a manifold embedded into a finite-dimensional
Euclidean space E . When necessary,M is endowed with the Riemannian submanifold
geometry: for every x ∈ M, the tangent space TxM is equipped with the induced
metric inherited from the inner product of E . The orthogonal complement of TxM
in E is the normal space denoted by NxM. The orthogonal projections from E to
TxM and NxM are respectively denoted by Π(x) and Π⊥(x) := (I − Π)(x). The
disjoint union of all tangent spaces is called the tangent bundle and denoted by TM.
Every ambient space point p ∈ E that is sufficiently close to the manifold admits
a unique metric projection onto the manifold [3, Lemma 3.1] and we denote it by
ΠM(p) := argminx∈M‖p − x‖.

For a smooth manifold curve γ : R → M, its tangent vector or velocity vector at
t ∈ R is denoted by γ̇ (t) ∈ Tγ (t)M. If the curve γ is interpreted as a curve in the
ambient space E , or if γ maps to a vector space, we use the symbol γ ′(t) to indicate
its tangent vector at t ∈ R.

The Riemannian submanifold geometry of M is complemented with the Levi-
Civita connection ∇ which determines the intrinsic acceleration of a smooth manifold
curve γ as γ̈ (t) := ∇γ̇ (t)γ̇ (t), ∀ t ∈ R. We reserve the symbol γ ′′(t) to indicate the
extrinsic acceleration of the curve intended as a curve in the ambient space E .
Manifold of rank-r matrices. The leading example in this work is the case where
E = R

m×n and M = Mr , the manifold of rank-r matrices. We represent rank-r
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matrices and tangent vectors toMr with the conventions used in [31] as well as in the
MATLAB libraryManopt [6] thatwas used to perform the numerical experiments. Any
Y ∈ Mr is represented in the compact factored form Y = UΣV 	 ∈ Mr with U ∈
R

m×r , V ∈ R
n×r both column orthonormal and Σ = diag(σ1, . . . , σr ) containing

the singular values ordered as σ1 ≥ · · · ≥ σr . Any tangent vector T ∈ TYMr is
represented as T = U MV 	 + UpV 	 + U V 	

p , where M ∈ R
r×r , Up ∈ R

m×r

and Vp ∈ R
n×r such that U	Up = V 	Vp = 0. The manifold Mr inherits the

Euclidean metric fromR
m×n so each tangent space is endowed with the inner product

〈W , T 〉 = Tr(W 	T ) and the Frobenius norm ‖W‖ = ‖W‖F, for any W , T ∈ TYMr .
Then, the orthogonal projection onto the tangent space at Y of any Z ∈ R

m×n is given
by

Π(Y )Z = UU	Z V V 	 + (I − UU	)Z V V 	 + UU	Z(I − V V 	). (2.1)

The metric projection onto the manifoldMr of a given A ∈ R
m×n is uniquely defined

when σr (A) > σr+1(A). It is computed as the rank-r truncated SVD of A and we
denote it by ΠMr(A).
Retractions. A retraction is a smooth map R : TM → M : (x, v) → Rx (v) defined
in the neighborhood of the origin x of each tangent space TxM such that it holds
that Rx (0) = x and DRx (0)[v] = v, for all v ∈ TxM. The defining properties of
a retraction can be condensed into the fact that for any x ∈ M and v ∈ TxM the
map τ ∈ R → σx,v(τ ) = Rx (τv) is well-defined for any sufficiently small τ and
parametrizes a smooth manifold curve that satisfies σx,v(0) = x , σ̇x,v(0) = v. If the
manifold is endowed with a Riemannian structure and it holds that σ̈x,v(0) = 0 for
any x and v, then the retraction is said to be of second order.

2.2 DLRA

To explain the basic idea of DLRA, let us consider an initial value problem governed
by a smooth vector field F : Rm×n → R

m×n :

{
A′(t) = F(A(t)), t ∈ [0, T ] ,

A(0) = A0 ∈ R
m×n .

(2.2)

DLRA aims at finding an approximation of the so-called ambient solution A(t) ∈
R

m×n on the manifold of rank-r matrices, for fixed r � min {m, n}, in order to
improve computational efficiency while maintaining satisfactory accuracy. Indeed,
representing the approximation of A(t) in factored form drastically reduces storage
complexity. The central challengeofDLRAconsists in computing efficiently a factored
low-rank approximation of the ambient solution without having to first estimate the
ambient solution and then to truncate it to an accurate rank-r approximation. In the
following, the rank is fixed a priori and does not change throughout the integration
interval. Then, the DLRA problem under consideration associated with the ambient
Eq. (2.2) can be formalized as follows.
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Problem 2.1 Given a smooth vector field F : R
m×n → R

m×n , an initial matrix
A0 ∈ R

m×n and a target rank r such that σr (A0) > σr+1(A0), the DLRA problem
consists in determining t → Y (t) ∈ Mr solving the following initial value problem

{
Ẏ (t) = Π(Y (t))F(Y (t)), t ∈ [0, T ] ,

Y (0) = Y0,
(2.3)

where Y0 = ΠMr (A0) ∈ Mr , the rank-r truncated singular value decomposition of
A0.

The origins of the above problem are rooted in the Dirac–Frenkel variational principle,
by which the dynamics of (2.2) are optimally projected onto the tangent space of the
manifold. In fact, for anyY ∈ Mr , the orthogonal projection of F(Y ) to TYMr returns
the closest vector in the tangent space:

‖F(Y ) − Π(Y )F(Y )‖F = min
V ∈TYMr

‖F(Y ) − V ‖F . (2.4)

This optimality criterion together with the optimal choice of Y0 are the local
first-order approximation of the computationally demanding optimality Yopt(t) =
ΠMr (A(t)). The gap (2.4) between the original dynamics and the projected dynam-
ics of Problem 2.1 is known as the modeling error [19]. Given appropriate smoothness
requirements on F and assuming the modeling error can be uniformly bounded in a
neighborhood U ⊂ R

m×n of the trajectory Y ([0, T ]) ⊂ M of the exact solution
of (2.3) as

max
Y∈U∩Mr

‖F(Y ) − Π(Y )F(Y )‖F ≤ ε, (2.5)

then it can be shown, see e.g. [19, Theorem 2], that there exists a constant C > 0
depending on the final time T such that

‖A(T ) − Y (T )‖F ≤ C (δ0 + ε) , (2.6)

where δ0 = ‖A(0) − Y (0)‖F denotes the initial approximation error.
In recent years, several computationally efficient numerical integration schemes to

approximate the solution to Problem 2.1 have been proposed [8, 19, 24]. Their output
is a time discretization of the solution, where Yk ∈ Mr approximates Y (kΔt), for
every k = 0, . . . , N , assuming—for simplicity—that a fixed step size Δt = T /N is
used. Existing error analysis results [18, 19] state that, provided the step size is chosen
small enough, the error at the final time can be bounded as

‖YN − A(T )‖F ≤ C̃
(
δ0 + ε + Δtq)

, (2.7)

for some integer q ≥ 1 and a constant C̃ > 0 that depends on the final time and the
problem at hand. The constant q is called the convergence order of the time stepping
method.
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Themost direct strategy to numerically integrate Problem 2.1 is to write Y in rank-r
factorization and derive individual evolution equations for the factors [20]. However,
the computational advantages of such an approach are undermined by the high stiffness
of the resulting equations when the r th singular value of the approximation becomes
small, which is often the case in applications. In turn, this enforces unreasonably small
step sizes in order to guarantee the stability of explicit integrators. The projector-
splitting schemes proposed by Lubich and Oseledets [24] were the first to remedy this
issue. Since then, a collection of methods have been designed that achieve stability
independently of the presence of small singular values [7–9, 17, 18]. Aswe show in the
following section, some of these DLRA algorithms are directly related to retractions.

3 DLRA algorithms and low-rank retractions

The concept of retraction was initially formulated in the context of numerical time
integration on manifolds. In the work of Shub [27], what is now called a retraction
was proposed as a generic tool to develop extensions of the forward Euler method that
incorporate manifold constraints. Indeed, any retraction admits the following first-
order approximation property. Let t → Y (t) denote the exact solution to a manifold-
constrained ODE such as (2.3) but on a general embedded manifoldM. Provided the
vector field governing the ODE is sufficiently smooth, the defining properties of a
retraction imply that [27, Theorem 1]

‖Y (t + τ) − RY (t)(τ Ẏ (t))‖ = O(τ 2). (3.1)

This mirrors the local truncation error achieved by the forward Euler method on a
Euclidean space while ensuring that the curve τ → RY (t)(τ Ẏ (t)) remains on the
constraint manifold. Hence, if Yk indicates an approximation to the exact solution
Y (tk) at time t = tk , the update rule

Yk+1 = RYk

(
Δt Ẏk

)
(3.2)

for approximating the solution at t = tk+1 = tk +Δt , for a given step sizeΔt > 0, is a
retraction-based generalization of the forward Euler for manifold-constrained ODEs.
By virtue of (3.1), for any retraction onM, the scheme (3.2) achieves local truncation
error of order two (see Sect. 4 below for the definition of the order), which implies
global first-order convergence under certain conditions [13, Section II.3].

Let us now specialize the discussion on the relation between retractions and numer-
ical integration of manifold-constrained ODEs to the DLRA differential equation
of Problem 2.1 evolving on the fixed-rank manifold Mr . Implementing the general
scheme (3.2) requires the choice of a particular low-rank retraction. A substantial
number of retractions are known for the fixed-rank manifold [4] and, as discussed in
the following, several existing DLRA integration schemes are realized as (3.2) for a
particular choice of retraction on Mr .
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3.1 Metric-projection retraction

A large class of methods to numerically integrate manifold-constrained ODEs fit into
the class of projection methods; see [12, §IV.4]. Each integration step is carried out in
the embedding space with a Euclidean time-stepping method and is followed by the
metric projection onto the constraint manifold. For the DLRA differential equation of
Problem 2.1, projection methods have been studied in [19]. One step of the projected
forward Euler method takes the form

Yk+1 = ΠMr (Yk + ΔtΠ(Yk)F(Yk)), (3.3)

where ΠMr coincides with the rank-r truncated SVD. This integration scheme fits
into the general class of retraction-based schemes (3.2). Indeed, given X ∈ Mr and
Z ∈ TXMr , themetric projection of the ambient space point X +Z defines a retraction
[3, §3],

RSVD
X (Z) := ΠMr(X + Z) , (3.4)

which we refer to as the SVD retraction. Since Z ∈ TXMr , the matrix X + Z is
of rank at most 2r . This allows for an efficient implementation of this retraction, as
detailed in Algorithm 1.

The projected forward Euler method has order q = 1 [19, Theorem 4]. To achieve
higher orders of convergence, projected Runge–Kutta (PRK) methods have been pro-
posed [19, §5]. The intermediate stages of such methods are obtained by replacing the
forward Euler update in (3.3) with the updates of an explicit Runge–Kutta method.
Although the update vectors may not belong to a single tangent space, the PRK recur-
sion can still be written because the SVD retraction has the particular property that it
remainswell-defined not only for tangent vectors but also for sufficiently small general
vectors Z ∈ R

m×n (a property that makes it an extended retraction [4, §2.3]). We shall
abbreviate the PRK method with s ≥ 1 stages as PRKs. Note that PRK1 coincides
with the projected forward Euler method above.

Algorithm 1 SVD retraction on Mr .
Input: X = U0Σ0V 	

0 ∈ Mr , Z = U MV 	 + UpV 	 + U V 	
p ∈ TXMr .

1: QU RU = Up with QU orthonormal;
2: QV RV = Vp with QV orthonormal;

3: [US, ΣS, VS] = SVD

([
Σ + M R	

V
RU 0

])
;

4: Σ1 = ΣS(1 : r , 1 : r);
5: U1 = [

U0 QU
]

US(:, 1 : r);
6: V1 = [

V0 QV
]

VS(:, 1 : r);

7: return : U1Σ1V 	
1 =:RSVD

X (Z);
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3.2 Projector-splitting KSL retraction

The expression (2.1) for the orthogonal projection of Z ∈ R
m×n onto the tangent

space at Y = UΣV 	 ∈ Mx can be expressed as

Π(Y )Z = Z V V 	 − UU	Z V V 	 + UU	Z . (3.5)

The projector-splitting scheme forDLRA introduced in [24] is derived by applying this
decomposition to the right-hand side of (2.3) and using standard Lie–Trotter splitting.
Each integration step comprises three integration substeps identified with the letters
K, S and L, corresponding respectively to the three terms in (3.5). When each of the
integration substeps is performed with a forward Euler update, we refer to this scheme
as the KSL scheme. The scheme is proved to be first-order accurate independently of
the presence of small singular values [18, Theorem 2.1].

As shown in [4, Theorem3.3], one step of theKSLschemeactually defines a second-
order retraction for the fixed-rank manifold. In fact, it coincides modulo third-order
terms with the orthographic retraction presented in Sect. 3.3.1. The KSL retraction is
denoted by RKSL and its computation is summarized in Algorithm 3. Hence, the KSL
integration scheme fits into the general scheme (3.2) for Problem 2.1 as it can simply
be written as

Yk+1 = RKSL
Yk

(ΔtΠ(Yk)F(Yk)) . (3.6)

Algorithm 2 KLS retraction
Input: X = U0Σ0V 	

0 ∈ Mr , Z = U MV 	 + UpV 	 + U V 	
p ∈ TXMr .

1: (K-step) U1SU = U0(Σ0 + M) + Up with U1 orthonormal;
2: (L-step) V1SV = V0(Σ

	
0 + M	) + Vp with V1 orthonormal;

3: L = U	
1 U0;

4: R = V 	
1 V0;

5: (S-step) Σ1 = L
[
(Σ0 + M) R	 + V 	

p V1
]

+ U	
1 UpR	; � equivalent to U	

1 (X + Z)V1

6: Optional: [Ũ1, Σ̃1, Ṽ1] = SVD(Σ1);
7: Optional: U1 ← U1Ũ1, Σ1 ← Σ̃1, V1 ← V1Ṽ1;
8: return : U1Σ1V 	

1 =:RKLS
X (Z);

3.3 Projector-splitting KLS retraction

Recently, a modification to KSL projector-splitting method [8] was proposed to
improve its (parallel) performance, while maintaining the stability and accuracy prop-
erties of the KSL method. The scheme is known as the unconventional integrator and
it is a modification of the KSL scheme where the L-step is performed before the S-
step. Hence, when each of the integration substeps is performed with a forward Euler
update, we refer to it as the KLS scheme. The KLS scheme comes with the computa-
tional advantage of allowing the K-step and L-step to be performed in parallel without

123



BIT Numerical Mathematics            (2024) 64:25 Page 9 of 27    25 

compromising first-order accuracy and stability with respect to small singular values
[8, Theorem 4].

Aswe prove in the next section, one step of theKLS scheme also defines a retraction
for the fixed-rank manifold. We denote it by RKLS and its computation is detailed in
Algorithm 2. Then, as for other schemes so far, the KLS integration scheme for DLRA
takes the simple form

Yk+1 = RKLS
Yk

(ΔtΠ(Yk)F(Yk)) . (3.7)

Algorithm 3 KSL retraction
Input: X = U0Σ0V 	

0 ∈ Mr , Z = U MV 	 + UpV 	 + U V 	
p ∈ TXMr .

1: (K-step) U1Σ̂1 = U0(Σ0 + M) + Up with U1 orthonormal;

2: (S-step) Σ̃0 = Σ̂1 − (U	
1 Up + (U	

1 U0)M);

3: (L-step) V1Σ
	
1 = V0Σ̃

	
0 + Z	U1 with V1 orthonormal;

4: Optional: [Ũ1, Σ̃1, Ṽ1] = SVD(Σ1);
5: Optional: U1 ← U1Ũ1, Σ1 ← Σ̃1, V1 ← V1Ṽ1;
6: return : U1Σ1V 	

1 =:RKSL
X (Z);

3.3.1 The KLS retraction and the orthographic retraction

The goal of this section is to prove that the update rule of the KLS scheme, as detailed
by Algorithm 2, defines a second-order retraction. The strategy to reach this goal is
based on the observation that the KLS update is obtained as a small perturbation of
another commonly encountered retraction, known as the orthographic retraction.

Algorithm 4 Orthographic retraction
Input: X = U0Σ0V 	

0 ∈ Mr , Z = U MV 	 + UpV 	 + U V 	
p ∈ TXMr .

1: U1SU = U0(Σ0 + M) + Up with U1 orthonormal;
2: V1SV = V0(Σ

	
0 + M	) + Vp with V1 orthonormal;

3: Σ1 = SU (Σ0 + M)−1S	
V ,

4: Optional: [Ũ1, Σ̃1, Ṽ1] = SVD(Σ1);
5: Optional: U1 ← U1Ũ1, Σ1 ← Σ̃1, V1 ← V1Ṽ1;
6: return : U1Σ1V 	

1 =:RORTH
X (Z);

The orthographic retraction. Specialized to the fixed-rank matrix manifold Mr , the
orthographic retraction consists in perturbing the point X ∈ Mr in the ambient space
as X + Z ∈ R

m×n and projecting back onto the manifold but only along vectors from
the normal space of the starting point, see Fig. 1. Formally this reads:

RORTH
X (Z) = argmin

Y∈(X+Z+NXMr )∩Mr

‖X + Z − Y‖F . (3.8)

A closed-form expression for the solution of this optimization problem for the case
of Mr is established in [4, §3.2] and is the output of Algorithm 4. By virtue of the
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Fig. 1 Orthographic retraction and its inverse

analysis carried out in [3], the orthographic retraction is a second-order retraction.
A remarkable property of the orthographic retraction is that its local inverse can be
computed easily. As suggested by the construction illustrated in Fig. 1, the inverse
orthographic retraction is obtained by projecting the ambient space difference onto
the tangent space, i.e.,

(
RORTH

X

)−1
(Y ) = Π(X)(Y − X). (3.9)

This opens the possibility to use the inverse orthographic retraction in practical numer-
ical procedures such as Hermite interpolation of a manifold curve [26] used in the
definition of the Projected Ralston–Hermite scheme in Sect. 4.2.

A careful inspection of the computations for the orthographic retraction reported in
Algorithm 4 reveals that it is identical to the update rule of the KLS scheme given in
Algorithm 2, up to the computation ofΣ1. LetΣKLS

1 andΣORTH
1 denote the quantities

computed respectively at step 5 of Algorithm 2 and step 3 of Algorithm 4. Note that
ΣORTH

1 can be rewritten without explicitly computing the factors SU and SV . Using
the relations

SU = L(Σ0 + M) + U	
1 Up, SV = R(Σ	

0 + M	) + V 	
1 Vp, (3.10)

with L = U	
1 U0, R = V 	

1 V0 we evince that

ΣORTH
1 = SU (Σ0 + M)−1S	

V

= L
[
(Σ0 + M)R	 + V 	

p V1

]
+ U	

1 UpR	 + U	
1 Up(Σ0 + M)−1V 	

p V1.

(3.11)

This highlights that the quantityΣ1 computed in theKLS scheme and the orthographic
retraction differ by

ΣORTH
1 − ΣKLS

1 = U	
1 Up(Σ0 + M)−1V 	

p V1. (3.12)
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Using this observation together with the second-order property of the orthographic
retraction allows us to show that the KLS procedure defines a second-order retraction.
This link with the orthographic retraction mirrors the same observation made for the
closely related KSL scheme [4, Theorem 3.3].

Proposition 3.1 The procedure of Algorithm 2 defines a second-order retraction
(called the KLS retraction).

Proof The proof relies on a necessary and sufficient condition for a retraction to
be a second-order retraction stated in [3, Proposition 3]. On a general Riemannian
manifold M, a mapping R : TM → M is a second-order retraction if and only if
for all (x, v) ∈ TM the curve t → Rx (tv) is well-defined for all sufficiently small t
and satisfies

Rx (tv) = Expx (tv) + O(t3), (3.13)

where t → Expx (tv) is a parametrization of the geodesic passing through x with
velocity v obtained with the Riemannian exponential map at x [5, Definition 10.16].

Given X ∈ Mr and Z ∈ TXMr , the orthonormalizations of the first two lines
of the KLS scheme in Algorithm 2 are uniquely defined provided the matrices to
orthonormalize have full rank. This is the case for any Z sufficiently small by lower
semi-continuity of the matrix rank. By smoothness of the orthonormalization process,
we know that the matrix Σ1 depends smoothly on Z . Since for Z = 0 we have
Σ1 = Σ0, assumed to be full rank, the matrix Σ1 has full rank for sufficiently small
Z . Hence U1Σ1V 	

1 = RKLS
X (Z) is uniquely and smoothly defined for any Z in a

neighborhood of the origin of TXMr and belongs toMr .
Now, consider the curves t → RORTH

X (t Z) and t → RKLS
X (t Z), well-defined for

sufficiently small t . Since these curves share the left and right singular vectors U1(t)
and V1(t), their difference is given by

RORTH
X (t Z) − RKLS

X (t Z) = t2U1(t)
	Up(Σ0 + t M)−1V 	

p V1(t) = t2C(t),

where C(t) := U1(t)	Up(Σ0 + t M)−1V 	
p V1(t). Let us show that C(t) = o(t), i.e.

limt→0 C(t)/t = 0. Since U1(0) = U0 and V1(0) = V0, by definition of tangent
space of Mr , we know that U1(0)	Up = 0 and V 	

p V1(0) = 0. Hence C(0) = 0 and
therefore

lim
t→0

C(t)

t
= lim

t→0

C(t) − C(0)

t
. (3.14)

This coincides with C ′(0) since C is smooth for small t . But since
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C ′(0) = U ′
1(0)

	UpΣ
−1
0 V 	

p V1(0)︸ ︷︷ ︸
=0

+ U1(0)
	Up︸ ︷︷ ︸

=0

d

dt
(Σ0 + t M)−1

∣∣
t=0V 	

p V1(0)︸ ︷︷ ︸
=0

(3.15)

+ U1(0)
	Up︸ ︷︷ ︸

=0

Σ−1
0 V 	

p V ′
1(0) = 0 (3.16)

we can infer that C(t) = o(t) and therefore that RKLS
X (t Z) = RORTH

X (t Z) + o(t3).
Using the result [3, Proposition 2.3] explained in the beginning of the proof and the
second-order property of the orthographic retraction, we obtain that the retraction
curve t → RORTH

X (t Z) approximates the geodesic t → ExpX (t Z), as RORTH
X (t Z) =

ExpX (t Z) + O(t3). Combining the two results leads to

RKLS
X (t Z) = RORTH

X (t Z) + o(t3) = γX ,Z (t) + O(t3) + o(t3) = γX ,Z (t) + O(t3).
(3.17)

Using once again the result from [3, Proposition 2.3], this implies that RKLS
X is indeed

a second-order retraction. �� ��

4 New retraction-based time stepping algorithms

Having seen in Sect. 3 that existing DLRA time integration algorithms can be directly
relatedwith particular low-rank retractions, wewill nowdiscuss the opposite direction,
how low-rank retractions can be used to produce new integration schemes.

Before proceeding to the derivation of the newmethods, we first briefly describe the
rationale behind these methods for the initial value problem (2.2) evolving in R

m×n .
We let A(Δt) denote the exact solution at time t = Δt and Ã(Δt) its approximation
obtained by performing one step of a given numerical integration scheme starting from
A(0). The scheme is said to have order q if the local truncation error satisfies

‖A(Δt) − Ã(Δt)‖ = O(Δtq+1). (4.1)

In other words, any curve Ã(·) on R
m×n that is a sufficiently good approximation of

A(·) in the vicinity of 0 defines a suitable numerical integration scheme. In the two
methods we propose, the curves Ã are constructed through manifold interpolation,
based on retractions.

By definition, see Sect. 2.1, any retraction induces manifold curves with prescribed
initial position and velocity. If, additionally, the retraction has second order, it is
possible to prescribe an initial acceleration.

Proposition 4.1 ([5, Exercise 5.46], [29, Corollary 3.2]) Let R be a retraction on M
and consider arbitrary x ∈ M and v, a ∈ TxM. Then the curve

σ(t) = Rx

(
tv + t2

2
a

)
(4.2)

123



BIT Numerical Mathematics            (2024) 64:25 Page 13 of 27    25 

is well-defined for all t sufficiently small and satisfies

1. σ(0) = x and σ̇ (0) = v,
2. σ̈ (0) = a if R is a second-order retraction.

When setting x = γ (0), v = γ̇ (0) and a = γ̈ (0) for a smooth manifold curve γ ,
it is shown in [29, Proposition 3.22] that the Riemannian distance between γ and the
retraction curve constructed by Proposition 4.1 satisfies

d(γ (t), σ (t)) = O(t3), t → 0, (4.3)

if R is a second-order retraction.

4.1 An accelerated forward Euler scheme

The first method we propose for DLRA is obtained by accelerating the projected
forward Euler scheme (3.3) through a second-order correction.

4.1.1 Euclidean analog

For illustration, let us first derive the accelerated forward Euler method for the initial
value problem (2.2) evolving in R

m×n . If the solution to (2.2) is sufficiently smooth,
we get from its Taylor expansion that

A(Δt) −
(

A(0) + Δt A′(0) + Δt2

2
A′′(0)

)
= O(Δt3).

Assuming we can compute A′′(0) = DF(A0)[F(A0)], the differential of the vector
field along F(A0), the Euclidean accelerated forward Euler (AFE) scheme is defined
by the update

AAFE(Δt) = A0 + Δt F(A0) + Δt2

2
DF(A0)[F(A0)] . (4.4)

The Euclidean AFE scheme is of order q = 2 since the local truncation error is
by construction of order O(Δt3). The scheme is conditionally stable with the same
stability domain as any 2-stages explicit Runge–Kutta method of order 2 [14, Theorem
2.2]. That being said, this scheme requires the evaluation of the Jacobian at each step,
which renders the AFE scheme non-competitive on Euclidean spaces. In fact, for
Euclidean ODEs there are simple second-order methods using only the evaluation of
the vector field, such as Runge–Kutta methods.

In the following, we generalize the AFE scheme for the DLRA differential equation
of Problem 2.1 by first showing how to compute the acceleration of the exact solution.
As we will see below, in Proposition 4.3, it is the sum of two terms: the tangent
component of the ambient acceleration and the acceleration due to the curvature of
the manifold. The latter is expressed using the Weingarten map, a classical concept of
Riemannian geometry that we briefly introduce in the next section.
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4.1.2 TheWeingarten map

As before, we consider a Riemannian submanifold M embedded into a finite-
dimensional Euclidean space E ; see [23, §8] for a more general setting.We letXT(M)

and XN(M) denote the set of smooth tangent and normal vector fields onM, respec-
tively.

The Weingarten map is constructed from the second fundamental form. The latter
measures the discrepancy between the ambient Euclidean connection and the Rieman-
nian connection ∇ on the submanifold M. For every W , Z ∈ XT(M) and x ∈ M,
we have that ∇W Z(x) = Π(x)DW Z(x), were D is the Euclidean connection corre-
sponding to standard directional derivative. Hence, the vector

DW Z(x) − ∇W Z(x) = DW Z(x) − Π(x)DW Z(x) (4.5)

belongs to the normal space at x and depends smoothly on x . Hence, the function
(I − Π)DW Z is a smooth normal vector field on M.

Definition 4.1 The second fundamental form II : XT(M) × XT(M) → XN(M) is a
symmetric bilinear map defined by II(W , Z) = (I − Π)DW Z .

Definition 4.2 The Weingarten map is

W : XT(M) × XN(M) → XT(M)

(W , N ) → W(W , N )
(4.6)

defined by the multilinear form 〈N , II(W , Z)〉 = 〈W(W , N ), Z〉 , ∀ Z ∈ XT (M).

Since∇W Z can be shown to depend only on the value of the vector field W at x , using
the properties of the Levi-Civita connection both the second fundamental form and the
Weingarten map can be defined pointwise, i.e. depending only on values of the vector
fields at x [23, Proposition 8.1]. Given w, z ∈ TxM and n ∈ NxM, the Weingarten
map Wx : TxM × NxM → TxM is defined pointwise as

〈Wx (w, n), z〉x = 〈W(W , N ), Z〉 ∣∣
x (4.7)

for any W , Z ∈ XT(M) and N ∈ XN(M) satisfying W (x) = w, Z(x) = z and
N (x) = n. The following characterization relates the Weingarten map at x with the
differential of the tangent space projection.

Proposition 4.2 ([2, Theorem 1]) For any x ∈ M, w ∈ TxM and n ∈ NxM, the
Weingarten map satisfies

Wx (w, n) = DΠ(x)[w] n = Π(x)DΠ(x)[w] n = Π(x)DΠ(x)[w]Π⊥(x)q

(4.8)

for any q ∈ TxE � E such that Π⊥(x)q = n.

123



BIT Numerical Mathematics            (2024) 64:25 Page 15 of 27    25 

Expression for the fixed-rank manifold.Dependingon the conventions used to represent
points and tangent vectors, many equivalent expressions are known for theWeingarten
map of the fixed-rank manifold, see for example [2, 11]. In our conventions, for any
Y = UΣV 	 ∈ Mr , T = U MV 	 + UpV 	 + U V 	

p ∈ TYMr and N ∈ NYMr the
Weingarten map can be computed as

WY (T , N ) = N VpΣ
−1V 	 + UΣ−1U	

p N ∈ TYMr . (4.9)

This expression nicely highlights two notable features that are known for the fixed-rank
manifold: it is a ruled surface with unbounded curvature. In fact, along the subspace
associated to theU MV 	 term,Mr is flat,while the curvature along the other directions
grows unbounded as σr (Y ) → 0.

4.1.3 The accelerated forward Euler (AFE) integration scheme for DLRA

With the definitions introduced in Sect. 4.1.2, we can compute the acceleration of the
DLRA solution curve allowing to generalize the AFE integration scheme to Prob-
lem 2.1.

Proposition 4.3 If a smooth curve on Mr is defined by Ẏ = Π(Y )F(Y ) for some
smooth vector field F : Rm×n → R

m×n, then its intrinsic acceleration can be com-
puted as

Ÿ = Π(Y )DF(Y )[Π(Y )F(Y )] + WY (Π(Y )F(Y ),Π⊥(Y )F(Y )). (4.10)

Proof By definition of the Levi-Civita connection for Riemannian submanifolds we
have

Ÿ = ∇Ẏ Ẏ = Π(Y )DẎ (Π(Y )F(Y )) . (4.11)

Using the product rule and the fact that Π(Y )2 = Π(Y ), it follows from the last
equality of Proposition 4.2 that

Π(Y )DẎ (Π(Y )F(Y ))

= Π(Y )
(
Π(Y )DF(Y )[Ẏ ] + Π(Y )DΠ(Y )[Ẏ ]F(Y )

)
= Π(Y )DF(Y )[Π(Y )F(Y )] + Π(Y )DΠ(Y )[Π(Y )F(Y )]Π⊥(Y )F(Y )

= Π(Y )DF(Y )[Π(Y )F(Y )] + WY (Π(Y )F(Y ),Π⊥(Y )F(Y )).

��
Hence, to mimic the Euclidean AFE update defined by Eq. (4.4), we need to con-

struct a smooth manifold curve YAFE(Δt) such that

YAFE(0) = Y0, ẎAFE(0) = Ẏ (0), ŸAFE(0) = Ÿ (0).
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Proposition 4.1 shows that we can construct such a curve using a second-order retrac-
tion. Let RII indicate any second-order retraction, then the manifold analogous of the
AFE update (4.4) reads as

YAFE (Δt) = RII
Y0

(
Δt Ẏ0 + Δt2Ÿ0/2

)
. (4.12)

Then, the AFE scheme for DLRA takes the form

Yk+1 = RII
Yk

(
ΔtΠ(Yk)F(Yk) + Δt2

2
Ÿk

)
(4.13)

with

Ÿk = Π(Yk)DF(Yk)[Π(Yk)F(Yk)] + WYk

(
Π(Yk)F(Yk),Π

⊥(Yk)F(Yk)
)

.

(4.14)

As a consequence of (4.3), this scheme admits a local truncation error of order O(Δt3).
All the retractions for the fixed-rank manifold presented in Sect. 3 have the second-

order property. In principle, all of them are suited to be used as RII in (4.13), however,
experiments reported in Sect. 5 suggest the orthographic retraction is the most conve-
nient in terms of speed, accuracy and stability.

4.2 The projected Ralston–Hermite integration scheme

As put forth in [26], retractions can also be used to define a manifold curve
with prescribed endpoints and endpoint velocities. For tangent bundle data points
(x0, v0), (x1, v1) ∈ TM and some parameters t0 < t1, we denote by H the retraction-
based Hermite (RH) interpolant defined by [26, Corollary 7], which satisfies

H(ti ) = xi , Ḣ(ti ) = vi , i = 0, 1. (4.15)

We will employ the notation H(t; (p0, v0, t0), (p1, v1, t1)) to underline the depen-
dence of H on the interpolation data. The curve H is constructed by a manifold
extension of the well-known De Casteljau algorithm. But instead of using geodesic
segments as building blocks of the procedure, the RH interpolant is defined with end-
point curves constructed with the use of a retraction and its local inverse, making the
method more efficient and more broadly applicable. An efficient evaluation of the
curve H requires a retraction for which the inverse retraction admits a computation-
ally affordable procedure to evaluate. On the fixed-rank manifold, the orthographic
retraction is a suitable candidate to construct the RH interpolant.

As stated in [26, Theorem 17], the RH interpolant achieves O(Δt4) approximation
error as Δt → 0 in the case where the interpolation data is sampled from a smooth
manifold curve at t0 and t1 = t0 +Δt . The Projected Ralston–Hermite (PRH) scheme
aims at leveraging this approximation power to define a numerical integration update
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rule with small local truncation error. Let us derive the PRH method for the initial
value problem (2.2) evolving in Rm×n .

4.2.1 Euclidean analog

Given A0, A1, V0, V1 ∈ R
m×n and t0 < t1, the Hermite interpolant τ →

HP(τ ; (t0, A0, V0), (t1, A1, V1)) is the unique third-degree polynomial curve inRm×n

that satisfies HP(ti ) = Ai , H ′
P(ti ) = Vi , for i = 0, 1. The polynomial curve HP

can be used to define the following multistep integration scheme for the initial value
problem (2.2):

Ak+2 = HP (tk+2; (tk, Ak, F(Ak)) , (tk+1, Ak+1, F(Ak+1))) . (4.16)

Working out the expression for HP allows rewriting the recursive relation (4.16) as

Ak+2 = 5Ak − 4Ak+1 + Δt (2F(Ak) + 4F(Ak+1)) (4.17)

= Ak+1 + Δt

(
2F(Ak) + 4F(Ak+1) − 5

(
Ak+1 − Ak

Δt

))
. (4.18)

As pointed out in [13, §III.3], this scheme has a local truncation error O(Δt4), the
highest possible order for explicit 2-step method using these terms. However, it is not
zero-stable and thus does not produce a convergent scheme of order 3. Nevertheless,
this update rule can be combined with suitably chosen intermediate steps to recover
stability. Consider the family of multistep methods obtained by taking an intermediate
forward Euler step of length α ∈ (0, 1) combined with the update rule (4.16) as

{
Ak+α = Ak + αΔt F(Ak),

Ak+1 = HP(tk+1; (tk, Ak, F(Ak)) , (tk+α, Ak+α, F(Ak+α))).
(4.19)

These schemes are all part of the family of explicit Runge–Kutta methods as it can be
shown that

Ak+1 = Ak + Δt

[(
1 + 1

α
− 1

α2

)
F(Ak) +

(
1

α2 − 1

α

)
F(Ak+α)

]
. (4.20)

For any α ∈ (0, 1), the scheme satisfies the first-order conditions of Runge–Kutta
methods. Choosing α to satisfy also the second-order conditions narrows down the
family to the scheme with α = 2/3. This scheme is an explicit second-order Runge–
Kutta method known as the Ralston scheme and is defined by the following Butcher
table.

0
2
3

2
3
1
4

3
4
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4.2.2 The Projected Ralston–Hermite (PRH) integration scheme for DLRA

Expressed in the form (4.19), the update rule of the Ralston scheme consists of a
forward Euler step followed by a Hermite interpolation step. We can leverage this
formulation and the RH interpolant (4.15) to extend the Ralston method to the man-
ifold setting. Let R denote any retraction and RI denote any retraction that can be
used in practice to evaluate the RH interpolant (i.e. whose inverse can be efficiently
computed). To indicate which retraction is used to construct the retraction-based Her-
mite interpolant H , we add it to its list of arguments. The Projected Ralston–Hermite
(PRH) scheme for Problem 2.1 is then defined as

⎧⎪⎨
⎪⎩

Yk+2/3 = RYk

( 2
3Π(Yk)F(Yk)

)
,

Yk+1 = H(tk+1; (tk, Yk,Π(Yk)F(Yk)) ,
(
tk + 2

3Δt, Yk+2/3,

Π(Yk+2/3)F(Yk+2/3)
)
,RI).

(4.21)

A suitable candidate for both retractions is R = RI = RORTH, the orthographic
retraction. As experiments in Sect. 5 suggest, this generalization to themanifold setting
of the Ralston scheme maintains its second-order accuracy.

4.2.3 The APRH integration scheme

For the sake of completeness, a third scheme can be obtained by combining the AFE
and the PRH schemes. Replacing the intermediate forward Euler step of the PRH
scheme with an AFE update defines what we call the Accelerated Projected Ralston–
Hermite scheme (APRH). It is defined by the recursive relation

⎧⎪⎪⎨
⎪⎪⎩

Yk+2/3 = RII
Yk

(
2
3ΔtΠ(Yk)F(Yk) + 2Δt2

9 Ÿk

)
,

Yk+1 = H(tk+1; (tk, Yk,Π(Yk)F(Yk)) ,
(
tk + 2

3Δt, Yk+2/3,

Π(Yk+2/3)F(Yk+2/3)
)
,RI),

(4.22)

where Ÿk is given by (4.14).

5 Numerical experiments

In this section, we illustrate the performances of the accelerated forward Euler (AFE)
method, the Projected Ralston–Hermite (PRH) method and the accelerated Projected
Ralston–Hermite (APRH) method. Experiments were executed with Matlab 2022b on
a laptop computer with Intel i7 CPU (1.8GHz with single-thread mode) with 8GB of
RAM, 1MB of L2 cache and 8MB of L3 cache. The implementation leverages the
differential geometry tools of the Manopt library [6]. In particular, the orthographic
retraction provided byManopt is used for the implementation ofAFE, PRHandAPRH.
An implementation of theKSL andKLS retractions as described byAlgorithms 3 and 2
were added to the fixed-rankmanifold factory. For the implementation of the projected
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Table 1 Summary of the acronyms of the methods considered in the numerical experiments

KSL Projector-splitting integrator [4]

KLS Unconventional integrator [8]

PRKs (s = 1, 2, 3) Projected Runge–Kutta methods [19]

AFE Accelerated forward Euler method, Sect. 4.1

PRH Projected Ralston–Hermite method, Sect. 4.2

APRH Accelerated Projected Ralston–Hermite method, Sect. 4.2.3

Runge–Kutta method of [19], we also added an implementation of the truncated SVD
extended retraction, accepting as input tangent vectors of arbitrary tangent spaces. See
Table 1 for a summary of the acronyms of the methods appearing in the numerical
experiments. For the sake of completeness, we recall that an s-stage Projected Runge–
Kutta (PRKs)method for givenButcher table, as provided in [19], is defined as follows

(PRKs)

{
Yk+1 = R(Yk + h

∑s
j=1 b jΠ(R(Z j ))F(R(Z j ))) ,

Z j = Yk + h
∑ j−1

l=1 Π(R(Zl))F(R(Zl)) ,

whereR denotes themetric projection on the fixed-rankmanifoldMr .We refer to [19,
§5] for a detailed description of its efficient implementation, alongwith a recapitulation
of the Butcher table for each s-stage method up to the third order.

5.1 Differential Lyapunov equation

The modeling error (2.4) introduced by DLRA is associated with the normal compo-
nent of the vector field of the original differential equation. The effect of this error on
the performance of DLRA integrators can be assessed by considering a class of matrix
differential equations, the so-called differential Lyapunov equations [30, §6.1], which
take the form

{
A′(t) = L A(t) + A(t)L	 + Q, t ∈ [0, T ] ,

A(0) = A0,
(5.1)

for some A0, L, Q ∈ R
n×n . Indeed, if A0 has rank exactly r and the matrix Q is zero,

then A(t) is also of rank-r for every t ∈ [0, T ] [15, Lemma 1.22]. Therefore, the norm
of Q is proportional to the modeling error.

In the following, L is the discretized 1D Laplace operator on a uniform grid, that
is, L is the tridiagonal matrix with −2 on the main diagonal and 1 on the first off-
diagonals. For the source term, we take Q = ηQ̃/‖Q̃‖F for some η > 0 and where Q̃
is a full-rank matrix generated from its singular value decomposition with randomly
chosen singular vectors and prescribed singular values, decaying as σi (Q̃) = 102−i ,
for i = 1, . . . , n. The initial condition is taken to be of rank exactly r and is also
assembled from a randomly generated singular value decomposition with a prescribed
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Fig. 2 Convergence of the error at final time for different DLRA integration schemes applied to the
Lyapunov Eq. (5.1) with sources terms of different norms. The top plot in each panel is the final error
‖YΔt (T ) − A(T )‖2 versus the step size Δt , where YΔt is the approximation of A obtained with a step size
Δt . The bottom plot reports the evolution of the singular values of the reference solution over time. The
red dashed curves correspond to discarded singular values
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geometric decay of non-zero singular values: σi (A0) = 32−i , for all i = 1, . . . , r , and
σi (A0) = 0, for all i = r + 1, . . . , n.

In Fig. 2, we report the results with n = 100 and r = 12 of the following experi-
ments. For different values of η, we numerically integrate the rank-r DLRAdifferential
Eq. (2.3) applied to (5.1) with different numerical schemes and different time steps
up to T = 0.5. A reference solution to the ambient Eq. (5.1) is found by using the
MATLAB routine ode45 between each time step, for a time step that is the smallest
among those considered for the numerical integrators. We then plot as a function of
the step size the 2-norm discrepancy between the reference solution at final time and
its approximation obtained by numerical integration. The numerical results for the
KSL and the KLS scheme were very similar to the ones of PRK1. Hence, they were
omitted not to overcrowd the plots.

The panels of Fig. 2 correspond to the cases (a) η = 0, (b) η = 0.01, (c) η = 0.1, (d)
η = 1.0. When the source term is zero, the reference solution is also of rank exactly
r , as can be seen from the value of the best approximation error in panel (a). In this
regime, the AFE and the PRH scheme both exhibit O(Δt2) error convergence, while
the APRH scheme seem to reach an asymptotic O(Δt3) trend. The trade-off between
accuracy and computational effort that can be seen in Fig. 3a shows that in this simple
setting, the PRH, AFE and APRH schemes have comparable performances to PRK2.
Turning on the source term determines a non-negligible best approximation error due
to the growth of singular values that were initially zero, as can be seen in the bottom
plots of panels (b), (c) and (d). The larger the source term’s norm, the faster and the
greater these singular values grow. Then, the numerical integrators converge to the
exact solution of the projected system and so the error with respect to the ambient
solutions stagnates at a value slightly higher than the best 2-norm approximation.
While the PRH scheme preserves the O(Δt2) trend up to some oscillations as η

increases, the AFE and APRH schemes seem to suffer instability when the normal
component of the vector field is too large. In this more realistic scenario where the
normal component of the vector field is non-negligible, only the PRH scheme remains
comparable to PRK2 in terms of the trade-off between accuracy and effort, see Fig. 3b
and Table 2.

5.2 Robustness to small singular values

A fundamental prerequisite for competitive DLRA integrators is to be resilient to the
presence of small singular values in the solution. A detailed discussion on the topic can
be found in [18]. In applications, very often the ambient solution admits an exponential
decay of singular values. Hence, a good low-rank approximation is possible but the
occurrence of small singular values is inevitable for DLRA to be accurate: a rank-
r approximation of the solution must match the r th singular value of the ambient
solution, which is small if the approximation error is small.

The smaller the singular values of the solution, the greater the stiffness of the DLRA
differential Eq. (2.3): the Lipschitz constant of the vector field F gets multiplied by the
Lipschitz constant of the tangent space projection, which is inversely proportional to
the smallest non-zero singular value of the base point [20, Lemma 4.2]. Accordingly,
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Fig. 3 Computational effort in terms of wall-clock time against the error with respect to the reference
solution achieve by different numerical integration schemes and with different step sizes. The results were
collected from the same experiment of panels (a) and (d) of Fig. 2

Table 2 Average time in
milliseconds per step for the
experiments of Fig. 2d

PRK1 KSL KLS AFE PRH APRH PRK2 PRK3

5.27 5.41 5.88 7.71 12.62 17.38 10.41 14.16

standard numerical integration methods fail to provide a good approximation unless
the step size is taken to be very small. Projector-splitting integrators for DLRA avoid
such step size restrictions as the error convergence results are independent of the
smallest non-zero singular value of the approximation. These schemes are commonly
qualified as robust to small singular values. The robustness property was shown for
the KSL scheme [18, Theorem 2.1] and the KLS scheme [8, Theorem 4]. The PRK
methods also enjoy the robustness property [19, Theorem 6]. In the following, we
experimentally study the robustness of the AFE, PRH and APRH integration schemes
to the presence of small singular values.

The typical setting to assess the stability to small singular values of a given inte-
gration scheme, considers a matrix curve t ∈ [0, T ] →A(t) ∈ R

n×n of the form

A(t) = U (t)Σ(t)V (t)	 (5.2)

with

U (t) := exp (tΩU ) , Σ(t) := exp(t)D, V (t) := exp(tΩV ), (5.3)

for some n × n skew-symmetric matrices ΩU ,ΩV and a diagonal matrix D =
diag(σ1, . . . , σn), for a positive and geometrically decaying sequence σi . A rank-r
approximation of this curve is reconstructed by numerically integrating with the given
scheme the DLRAEq. (2.3) where the scalar field F is replaced by the exact derivative
of the ambient curve (5.2):
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Fig. 4 Error at final time ‖YΔt (T ) − A(T )‖2 versus the step size Δt of DLRA integration applied to (5.4)
for reconstructing the curve (5.2) for different values of rank

A′(t) = U (t)
(
ΩU Σ(t) + Σ(t) + Σ(t)Ω	

V

)
V (t)	. (5.4)

The approximation error at final time is constituted mainly of the integration error
which can be reduced by decreasing the step size, and the modeling error is affected
only by the choice of r . A scheme is said to be robust to small singular values, if the
integration error is independent of the choice of r . In practice, one must observe that
the trend of the error as a function of the step size is unaffected by the choice of r for
step sizes where the modeling error is negligible compared to the integration error.

Figure 4 shows the results for the experiment described in the previous paragraph
with a curve of the form (5.2) with randomly generated ΩU and ΩV , initial singular
values σi = 2−i and n = 100. The panels from left to right correspond respectively
to the AFE, the PRH and the APRH schemes. Note that for the AFE and the APRH
schemes, we use the exact expression for the second derivative of (5.2) given by

A′′(t) = U (t)
(
Ω2

U Σ(t) + Σ(t) + Σ(t)(Ω2
V )	

+ 2ΩU Σ(t) + 2ΩU Σ(t)Ω	
V + 2Σ(t)Ω	

V

)
V (t)	. (5.5)

The results for AFE show the ideal outcome: the error curves for increasing values of
r are superimposed until the modeling error plateau determined by the value of r is
reached. These results empirically suggest that the AFE integration scheme is robust
to small singular values. On the other hand, the PRH and APRH schemes which rely
on retraction-based Hermite interpolation suffer from small singular values. Panels (b)
and (c) of Fig. 4 exhibit the same oscillatory convergence trend that could be observed
for both schemes in the experiments on the differential Lyapunov equation in Sect. 5.1.

A partial explanation for the oscillatory behavior observed in panels (b) and (c) of
Fig. 4 for the PRH and the APRH schemes comes from studying robustness of the
retraction-based Hermite interpolant (4.15) to the presence of small singular values
at the interpolation points. Consider the following experiment. Take Y0 (σr ) ∈ Mr ⊂
R

n×n with n = 100, r = 12 defined by

Y0(σr ) = U0diag(1, . . . , σr )V 	
0

123



   25 Page 24 of 27 BIT Numerical Mathematics            (2024) 64:25 

Fig. 5 Robustness to small singular values of the retraction-based Hermite interpolant (5.6). The solid line
is the median of the error over 100 randomly generated instances for each value of σr while the dashed and
dotted lines correspond to the percentiles [0.05, 0.25, 0.75, 0.95] of the sampled error

for some randomly generated orthogonal matrices U0 and V0 and with σi logarithmi-
cally spaced on the interval [σr , 1], for some σr ≤ 1. To obtain the second interpolation
point, we first move away from Y0 with the orthographic retraction along a random
tangent vector Z ∈ TYMr such that ‖Z‖F = 1 to get Ỹ1 = RY0(σr )(Z). Then, the
second interpolation point is Y1, obtained from Ỹ1 by replacing its singular values
with

σi (Y1) = σi (Y0)(1 + ξi ),

for some random ξi drawn from a uniform distribution on [1/2, 2]. This way, the
singular values decay of bothY0 andY1 mimic a situation encountered in one step of the
PRH and APRH integration schemes, when the smallest singular value of the current
approximation is of the order of σr . Then, we randomly generate Z0 ∈ TY0Mr and
Z1 ∈ TY1Mr with ‖Z0‖ = ‖Z1‖ = 1 and form the retraction-based interpolant (4.15)
given by

H(τ ) = H(τ ; (0, Y0, Z0) , (1, Y1, Z1)), τ ∈ [0, 1] . (5.6)

For different values of the smallest singular value σr , we measure the discrepancies∥∥Z0 − Ḣ(0)
∥∥
F and

∥∥Z1 − Ḣ(1)
∥∥
F, where derivatives of H are obtained by finite dif-

ferences. The experiment is repeated for each σr on 100 randomly generated instances
and the error distribution is plotted against σr in Fig. 5. These results unequivocally
indicate the fragility of retraction-based Hermite interpolant on the fixed-rank mani-
foldwhen small singular values are present in the interpolation points. As σr decreases,
the velocity error in τ = 0 increases, and even more severely in τ = 1. The fact that
the error is non-negligible even for moderately small values of σr suggests that the
PRH and APRH integration schemes may occasionally employ inaccurate retraction-
basedHermite interpolants. This may contribute to the oscillatory behavior of the error
observed PRH and APRH in Figs. 2 and 4.

6 Conclusion

This work contributes to strengthening the connection between retractions and numer-
ical integration methods for manifold ODEs and especially DLRA techniques. In
particular, we show that the so-called unconventional integration scheme [8] defines a
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second-order retraction which approximates up to high-order terms the orthographic
retraction. It remains an open question whether the same observation can be made for
the recently proposed parallelized version of KLS [7].

We also derive three numerical integration schemes expressed in terms of retrac-
tions and showcase their performance on classic problem instances of DLRA. The
derivation and the numerical results show that the methods can achieve second-order
error convergence with respect to the time integration step. However, themethods have
shown mixed results. While the AFE and the APRH schemes exhibit instability in the
presence of large normal components of the ambient vector field, the PRH scheme
appears more resilient to this aspect. On the other hand, the occurrence of small singu-
lar values in the approximation had no apparent effect on the performance of AFE but
for the PRH and APRHmethods, small singular values may explain occasional devia-
tions from the expected second-order convergence behavior. We observe that the PRH
scheme delivers similar performance, both with respect to computational time and
accuracy, compared to its existing counterpart, PRK2. However, the high-order accel-
erated version, APRH, is found to be less favorable compared to analogous schemes
such as PRK3. This is largely due to the additional computational cost incurred by the
Weingarten map.

For other low-rank tensor formats, such as the Tucker or the tensor-train formats,
retractions have also been proposed [21, 28]. However, to the best of our knowl-
edge no retraction with an efficiently computable inverse retraction is known and the
orthographic retraction has remained elusive due to the complexity of the normal space
structure for these manifolds. Yet, the KLS scheme has been extended to low-rank ten-
sormanifolds [8, §5]. Hence, assuming the connectionwith the orthographic retraction
carries over to the tensor setting, it may be possible to retrieve the orthographic retrac-
tion for such tensor manifolds as a small perturbation of the KLS update. Then, the
possibility to easily compute the inverse orthographic retraction would enable using
also in the case of low-rank tensor manifolds the retraction-based endpoint curves and
the numerical integration schemes presented in this work.
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