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TheMountain snowpack storesmonths ofwinter precipitation at high elevations,
supplying snowmelt to lowland areas in drier seasons for agriculture and human
consumption worldwide. Accurate seasonal predictions of the snowpack are
thus of great importance, but such forecasts suffer from major challenges such
as resolving interactions between forcing variables at high spatial resolutions.
To test novel approaches to resolve these processes, seasonal snowpack
simulations are run at different grid resolutions (50 m, 100 m, 250 m) and with
variable forcing data for the water year 2016/2017. COSMO-1E data is either
dynamically downscaled with the High-resolution Intermediate Complexity
Atmospheric Research (HICAR) model or statistically downscaled to provide
forcing data for snowpack simulations with the Flexible Snowpack Model
(FSM2oshd). Simulations covering complex terrain in the Swiss Alps are
carried out with the operational settings of the FSM2oshd model or with a
model extension including wind- and gravitational-induced snow transport
(FSM2trans). The simulated snow height is evaluated against observed snow
height collected during LiDAR flights in spring 2017. Observed spatial snow
accumulation patterns and snow height distribution are best matched with
simulations using dynamically downscaled data and the FSM2trans model
extension, indicating the importance of both accurate meteorological forcing
data and snow transport schemes. This study demonstrates for the first time the
effects of applying dynamical downscaling schemes to snowpack simulations at
the seasonal and catchment scale.

KEYWORDS

dynamical downscaling, complex topography, snow-atmosphere interactions, snow
processes, snow hydrology

1 Introduction

Approximately one-sixth of the world’s population relies onwater from spring snowmelt
for agriculture and human consumption (Barnett et al., 2005), highlighting the importance
of snow as a temporary water storage worldwide (Ragettli et al., 2015). Snow serves as a
major water resource in drier seasons to lowland areas for regional ecosystems, groundwater
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recharge, human consumption, agriculture as well as hydro power
(Viviroli et al., 2011). With both magnitude and intensity of winter
snowfall events decreasing (Hanzer et al., 2018), snow covered area
is declining globally due to climate change (Sturm et al., 2017). The
runoff regimes in snow and ice dominated catchments will show
increased winter flow and decreased summer runoff in the future
(e.g., Barnett et al., 2005; Horton et al., 2006), which may lead to a
water shortage in downstream catchments (Arnoux et al., 2020). In
order to understand these expected changes and their impact on
water availability as well as extreme events, an accurate forecast of
the winter snowpack is essential.

Snowpacks in mountain areas exhibit a high spatial variability
(Schirmer et al., 2011; Freudiger et al., 2017). The complex
interaction between precipitation, wind, and topography, acting at
various temporal and spatial scales, results in the heterogeneous
snow distribution found in alpine terrain (Clark et al., 2011;
Gerber et al., 2017; Mott et al., 2018). There are three primary
processes governing snow accumulation patterns in alpine terrain at
catchment scale: 1) orographic precipitation at the mountain range
scale, 2) preferential deposition at the ridge scale (Lehning et al.,
2008) and 3) post-deposition snow transport at the slope scale
(Vionnet et al., 2017). Orographic precipitation refers to any
precipitation that is either entirely produced or altered by the
interaction of atmospheric processes with mountain terrain
(Stoelinga et al., 2013). Preferential deposition, which is defined
as spatially varying deposition of precipitation due to topography-
induced flow field modification close to the surface (Lehning et al.,
2008), is an essential process that governs variability in snow
accumulation on themountain ridge scale (Mott and Lehning, 2010;
Gerber et al., 2017). Post-depositional processes, particularly at the
slope scale, strongly influence the final pattern of snow accumulation
on the ground. This includes wind-induced snow transport (e.g.,
Pomeroy and Gray, 1990; Mott et al., 2018) and redistribution by
avalanches (Bernhardt and Schulz, 2010). Following redistribution,
variable ablation is affected by radiative processes controlled by solar
elevation angle, cloud cover topographic shadings, and seasonal
changes in temperature (Lehning et al., 2006; Brauchli et al., 2017).
In order to capture spatial variabilities of snow cover and thus
obtaining more accurate simulations of snowmelt, aforementioned
processes have to be represented in the modeling chain.

Accurately describing the snow-atmosphere interactions in
complex terrain is crucial for forecasting seasonal snow cover
dynamics as well as run-off generation during spring melt and
requires accurate wind forcing fields. However, wind fields are
represented in varying complexity and are often not available at
adequate high-resolution. Atmospheric models that resolve wind
fields are computationally expensive over large domains, and their
usage is therefore often limited to specific events, regions, and fewer
downscaling studies (Reynolds et al., 2021). In order to acquire
the high resolution data needed, downscaling methods are used,
which bridge the gap between the resolution of climate models and
regional or local scale processes (Fowler et al., 2007). Dynamical
downscaling uses atmospheric models to downscale coarser
model output. This approach has the benefit of being physically
rigorous; all downscaled fields are considered at the same time,
so interdependencies between downscaled variables are resolved,
which is a priori not the case for other (statistical) downscaling
(Michel et al., 2021). The High-resolution Intermediate Complexity

Atmospheric Research (HICAR) model is a variant of the existing
ICAR model, developed specifically for simulations down to
the hectometer scale (Reynolds et al., 2023), while maintaining
relatively low computational costs. HICAR can greatly decrease
the required computational time compared to other regional
climate models such as the Weather and Research Forecasting
model (WRF), while demonstrating reasonable agreement with
precipitation output of WRF, and is thus a more efficient solution
to problems with multiple model runs at high resolutions and large
spatial extents (Horak et al., 2019; Kruyt et al., 2022).

Further studies have investigated the influence of more
sophisticated physics-based snow models and models including
snow transport schemes on the accuracy of snowmelt and
streamflow predictions. Bernhardt et al. (2012) found that the
inclusion of snow transport processes into the model can improve
the accuracy of the distributed snow predictions. However, the
effect of snow cover redistribution on predicted melt rates is only
detectable if the observed area is small. Griessinger et al. (2019)
fed output from a multi-layer energy-balance snowmelt model
into a semi-distributed hydrological model. Streamflow predictions
were improved, especially at higher elevations where snow most
prominently affected catchment hydrology. Brauchli et al. (2017)
identified the effects of a more heterogenous snowpack on the
melt season at the sub-basin scale. They found that a more rapid
runoff pulse originates in areas with a shallower snow cover and
an extended melting period is caused by snowmelt from deeper
areas. This highlights the importance of an adequate representation
of snow accumulation patterns to predict snowmelt and streamflow
in mountain catchments.

It is challenging to accurately forecast snow accumulation
patterns, particularly in areas with complex terrain, where
interactions between local wind and precipitation fields strongly
influence snow distribution at the mountain ridge scale
(Gerber et al., 2018). Even today’s state-of-the art models are
challenged with providing temporally resolved wind speed and
direction to study entire seasons of snow accumulation in complex
terrain (Dujardin and Lehning, 2022). Thus, high resolution
simulations, especially over large extents of complex terrain and
long time series are rare (Gerber et al., 2018). Model runs typically
have limited applications, focusing on individual blowing snow
events or small domains (Groot-Zwaaftink et al., 2013; Mott et al.,
2018). However, in order to examine the impact of near surface
processes like preferential deposition and wind-induced snow
transport on snow distribution impacting snowmelt, a time series
of high resolution wind and precipitation fields for an entire season
is required (Vionnet et al., 2021).

This study evaluates the influence of applying dynamically
downscaled forcing data and post-depositional snow transport
schemes on snowpack and snowmelt simulations over an entire
season. Statistically downscaled and dynamically downscaled
forcing data at resolutions of 250 m, 100 m and 50 m are provided for
snowpack simulations over the water year 2016/2017. Simulations
are performed for an Alpine domain covering complex terrain
with the Flexible Snow Model (FSM2oshd) (Mott et al., 2023)
and a model extension including wind- and gravitational-induced
snow redistribution (Quéno et al., 2023). The simulation results
are evaluated with observed snow height collected with LiDAR in
the spring 2017. This study demonstrates the impact of applying
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TABLE 1 Overview of the model runs.

Model run Resolution [m] Forcing data Model Time frame

run 1 50 COSD FSM2oshd 01.10.2016–31.07.2017

run 2 50 COSD FSM2trans 01.10.2016–31.07.2017

run 3 50 HICAR FSM2oshd 01.10.2016–31.07.2017

run 4 50 HICAR FSM2trans 01.10.2016–31.07.2017

run 5 100 COSD FSM2oshd 01.10.2016–31.07.2017

run 6 100 COSD FSM2trans 01.10.2016–31.07.2017

run 7 100 HICAR FSM2oshd 01.10.2016–31.07.2017

run 8 100 HICAR FSM2trans 01.10.2016–31.07.2017

run 9 250 COSD FSM2oshd 01.10.2016–31.07.2017

run 10 250 HICAR FSM2oshd 01.10.2016–31.07.2017

dynamical downscaling schemes to snowpack simulations on
seasonal snowpack heterogeneity at the catchment scale.

2 Methodology

Simulations are performed with various forcing data at different
resolutions with the Flexible Snow Model (FSM2oshd) (Table 1).
A dynamical downscaling model (HICAR) and a semi-statistical
downscaling approach (COSD) are used to downscale COSMO
data to resolutions of 250 m, 100 m and 50 m. Simulations are
run with the operational snow cover model FSM2oshd (Mott et al.,
2023) and a model extension by Quéno et al. (2023) including
wind- and gravity-induced snow redistribution (FSM2trans). The
model setup including snow transport is only applied to the forcing
data with a resolution of 50 m and 100 m as snow transport
processes are important at smaller scales and can be considered as
sub-grid processes beyond 100 m resolution (Mott and Lehning,
2010). All simulations are run in the time frame from 01.10.2016
to 31.07.2017 to include the entire snow accumulation and
ablation period.

2.1 Description of site

The simulation domain is located in the region of Davos in
the Eastern Swiss Alps (Figure 1). This domain is chosen, because
it is representative for complex terrain including a large elevation
gradient and steep mountain ridges. The climate in the Davos
region is characterized asmoderate central alpine.Theyearly average
temperature is 3.5 °C and the average yearly precipitation is about
1,000 mm. A high percentage of precipitation (around 40%) falls as
snow and a large part of the landscape is covered with snow between
November andApril.Themaximumsnowheight is typically reached
in the beginning of March. The simulation domain focuses on
the Dischma valley since LiDAR data of snow height is available

in the valley for model evaluation. The domain has a size of
14 km and 12.5 km in the west-east and north-south directions,
respectively, which is an area of 175 km2. The elevation ranges
between 1,650 m and 3,193 m with a mean elevation of 2,480 m
and a mean slope of 26.1°. The landuse of the area is characterized
through steep mountain ridges at higher elevations and grassland at
lower elevations of the valley.The influence of human infrastructure
on the valley is low with only a few small villages and one main road
through the valley.There are some forested slopes at lower elevations
of the domain, but vegetation is mostly sparse. A subdomain is
chosen to analyse snow accumulation patterns at themountain ridge
scale.The subdomain is 13 km2 and has amean elevation of 2,609 m.

2.2 Forcing data

2.2.1 COSMO-1
The COSMO model (Consortium for Small-scale Modeling) is

run operationally by various countries for daily operational weather
forecasting including the Swiss weather service, MeteoSwiss. The
model is a limited-area numerical weather prediction system, which
is capable of simulating the state of the atmosphere over complex
terrain like the alpine area (www.cosmo-model.org). The COSMO-
1 reanalysis product is used as input for different downscaling
approaches to produce forcing data for simulations with the
FSM2oshd snowpack model. It is calculated eight times a day with a
horizontal grid size of 1.1 km for a domain centered on Switzerland.

2.2.2 COSMO semi-statistical downscaling -
COSD

The available COSMO data is downscaled from 1.1 km
resolution to 250 m, 100 m and 50 m resolution to better account for
small scale topographic effects. In this semi-statistical downscaling
approach within the OSHD model framework (Mott et al., 2023),
all meteorological variables are independently downscaled. Near
surface air temperature, relative humidity and air pressure are
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FIGURE 1
Simulation domain around the Dischma Valley including a mountain ridge subdomain. Map data from Swisstopo, copyright Bundesbehörden der
Schweizerischen Eidgenossenschaft.

downscaled by linear interpolation with lapse rate correction
(Mott et al., 2023). Wind is downscaled using a statistical correction
based on the local terrain with observed forecast biases, which
removes much of the observed forecast systematic bias. An
optimization scheme is used in order to match the observed
distributions of wind speed with the downscaled wind speed
(Winstral et al., 2017). Precipitation is split into solid and liquid
based on air temperature. The solid precipitation is updated using
data assimilation taking snow monitoring data to correct for
snowfall undercatch (Magnusson et al., 2014). Total precipitation
is then linearly interpolated to the target resolution using linear
interpolation without lapse rate correction. Direct and shortwave
radiation are dynamically downscaled following the approach of
Jonas et al. (2020). Longwave radiation is downscaled applying the
approach of Helbig and Löwe (2014).

2.2.3 HICAR
The HICAR model is a variant of the existing ICAR model

(Gutmann et al., 2016) developed specifically for simulations down
to the hectometer scale and in complex terrain (Reynolds et al.,
2023). ICAR is a simplified three dimensional atmospheric model
which offers an alternative to statistical methods and modern
non-hydrostatic numerical weather prediction models such as the
WRF Model (Skamarock and Klemp, 2008). HICAR differs from
the base ICAR model in a number of ways, but in particular

through the addition of a diagnostic wind solver similar to that
proposed in Sherman (1978) and a higher order advection scheme
(Wicker and Skamarock, 2002). These additions allow for an
improved representation of wind fields in complex terrain like the
Swiss Alps (Reynolds et al., 2023).

Input requirements for theHICARmodel are three-dimensional
time varying temperature, pressure, humidity, and wind fields.
Temperature and humidity are only applied at the boundaries of the
model while fields of wind and pressure are used from the driving
low-resolution model throughout the domain. The low-resolution
fields from the COSMO-1E input data are linearly interpolated to
theHICARhigh resolution grid while pressure is adjusted according
to the change in elevation between interpolated input grid and
HICAR grid. The grid dimensions of the domain and of the input
forcing time steps are specified at run time. HICAR uses the Smooth
Level Vertical (SLEVE) coordinate which employs a scale dependent
vertical decay of underlying terrain features (Schär et al., 2002).

The HICAR model introduces a new wind solver capturing
dynamics induced by the underlying high-resolution terrain. Two
terrain descriptors highlight areas where direct wind adjustments
to the interpolated fields are necessary (Reynolds et al., 2023).
Empirical adjustments to the wind fields can lead to a violation
of mass conservation. Thus, further corrections to the 3D wind
field must be applied to ensure mass conservation (Sherman,
1978; Ross et al., 1988). The shortwave radiation scheme in HICAR
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calculates the above topography radiation per horizontal surface.
Radiation downscaling has been implemented to split the shortwave
into diffusive and direct components per inclined surface taking into
account the sky view fraction and the horizon line matrix which is
accounting for topographic shading effects (Steger et al., 2022). A
higher order advection scheme (odd-ordered up to the fifth order) in
combination with the SLEVE coordinate system (Schär et al., 2002)
are implemented and reduce numerical diffusion in simulations.The
surface scheme used in HICAR is the Noah land surface model
described in Chen and Dudhia (2001). HICAR uses the Morrison
microphysics scheme to calculate sources and sinks to mass species
and energy (Morrison et al., 2005).

2.3 FSM2oshd model

The FSM2oshd model is included in the modular framework
of the Operational Swiss Hydrological Service (OSHD), which is
conducting ongoing analysis of snow water resources as a necessary
input for hydrological forecasting (Mott et al., 2023). It is a physics-
based model, which solves the complete mass and energy balance of
the snowpack for open and forested areas (Mazzotti et al., 2020) at
an hourly temporal resolution.The FSM2oshdmodel is an extension
of the Flexible Snow Model (FSM2) (Essery, 2015) with adapted
snowpack process parametrizations and new model components
for snow cover fraction (Helbig et al., 2021) as well as forest
processes (Mazzotti et al., 2021). The model is run at a horizontal
resolution of 250 m in the operational setting, but can be applied at
higher resolutions for research purposes.

Simulations with a resolution of 100 m and 50 m can be run
with the snow transportmodel setup FSM2trans.This setup includes
the process of wind- and gravitational-induced snow redistribution
(Quéno et al., 2023). The implementation of gravitational snow
transport is based on Bernhardt and Schulz (2010). The routine
is executed at every time step of the simulation, checking the
snow depth and minimum angle for each grid cell. If the holding
snow depth and minimum angle is exceeded, snow is transferred
to the lower neighbours and is partitioned based on vertical
distance between grid cells. Hysteric features have been added
to the original model to account for better determination of
avalanche deposit extents (Quéno et al., 2023). The wind-driven
snow transport scheme implemented in FSM2trans is based on
the Snowtran-3D model (Liston et al., 2007). It simulates wind-
driven snow redistribution over topographically variable terrain.
The model simulates transport due to saltation and suspension,
as well as blowing snow sublimation, based on the wind shear
stress calculated, using surface snow properties and wind fields.
Contrary to Quéno et al. (2023), the simpler original snowpack
layering of FSM2oshd is used instead of the newly developed
density-dependent layering.

2.4 Evaluation

ALiDAR data set from spring 2017 is used formodel evaluation.
LiDAR data was collected in the Dischma valley on a snow-off flight
and three different snow-on flights in spring: 20.03.2017, 31.03.2017
and 17.05.2017 (Mazzotti et al., 2019). Bührle et al. (2023) compares

snow depth observations with airplane photogrammetry in the
same study region for several years. This study found that average
snow depth for the selected season, 2017, was lower than seasonal
average for other years in the period 2018–2021. However, similar
distribution patterns between all years occurred and the relative
snow depth distribution seems to be almost independent of the
average snow depth.

In order to compare the LiDAR data with the simulation results
of snow height, the original LiDAR data with a resolution of 2 m
is upscaled to a resolution of 50 m, 100 m and 250 m. In the area
of the LiDAR data (very) small glaciers exist. The use of LiDAR
data over a glacier is not suitable in this setup, since the glacier
itself may experience melt or movement between the snow off and
snow-on LiDARflights, resulting in erroneous depthmeasurements.
The glacierized parts of the LiDAR data are masked. Further, the
LiDAR dataset showed some obvious outliers in steep terrain, which
were removed.

Several approaches are chosen to compare observed snow
height with simulated snow height in the simulation domain.
First statistical parameters, including minimum, maximum, mean
and standard deviation (SD), are calculated for the simulated and
observed snow height in the LiDAR area. Further, elevation-aspect
plots are created that show the mean snow height per elevation-
aspect band above 2,000 m. Elevation is divided in bands of 100 m,
while aspect is divided in bands of 40°. The probability density
function (PDF) is calculated for simulated and observed snowheight
for elevations above 2,000 m and 2,500 m, since snow transport
processes are most active at higher elevations.

3 Results and discussion

3.1 Snow accumulation

The simulated snow height is compared with the observed snow
height for each simulation run at the ridge scale for 31.03.2017
(Figure 2). The 50 m resolution simulation results are shown for
a subdomain, focusing on a ridge (Figure 1). Compared with the
observed snow height (Figure 2A), COSD-FSM2oshd and HICAR-
FSM2oshd runs show a low spatial variability with HICAR-
FSM2oshd overestimating the average snow height. The simulation
runs with snow transport show a greater spatial heterogeneity with
less snow at the ridges and snow deposition areas with high snow
heights on the lee side of mountains. It is visible in Figure 2 that the
overall variability of snow height matches the observed LiDAR data
best for HICAR-FSM2trans runs. Snow erosion and accumulation
areas may differ in their location, however, the overall patterns are
well reproduced, which is of greater importance than a cell by cell
comparison for the application in hydrological models.

Figure 2 shows that higher elevations are most impacted by
snow redistribution. Higher elevations are usually steeper and
exposed to higher wind speeds, resulting in stronger wind- and
gravitational-induced snow redistribution from higher to lower
elevations (Winstral andMarks, 2002; Bernhardt and Schulz, 2010).
Lehning et al. (2011) explained the spatial variability of snow by
altitude and land surface roughness, while Grünewald et al. (2014)
attributed snow height variability to four topographic parameters:
elevation gradient, slope, aspect, and wind sheltering. Note that
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FIGURE 2
Observed and simulated snow height on 31.03.2017 for simulation runs with 50 m resolution and the ridge subdomain. (A) Observed snow height. (B)
Simulated snow height for different downscaling methods (COSD and HICAR) and different model versions (FSM2oshd and FSM2trans). (C) DEM of
ridge subdomain.

slope and roughness are highly correlated Lehning et al. (2011).
The study area has a dominance of steep, rocky exposures above
a certain elevation. In these areas snow distribution is expected
to be highly variable, which is reflected in the HICAR-FSM2trans
simulations. Simulations without snow transport schemes show a
high accumulation of snow on mountain ridges, which is in not in
line with LiDAR observations.

Figure 3 shows the mean snow height in aspect and elevations
bands for all simulation runs with 50 m resolution and observed
snow height on 17.05.2017. The figure is calculated for the
entire domain above 2,000 m, since amount of simulation cells is
low for lower elevations. All simulations show some aspect and
elevation dependency.However, simulation runswithCOSD forcing
data show a rather uniform distribution of mean snow height,
while the snow height distribution across elevation and aspects is
more heterogeneous for runs with HICAR forcing. The HICAR-
FSM2oshd run shows an overestimation of snow height, while the
HICAR-FSM2trans run is in very high agreement with the observed
snow height.

Gerber et al. (2018) found that terrain-flow-precipitation
interactions increase snow accumulation on the windward side
of mountain ridges, while near surface particle-flow interactions,
which represents preferential deposition, enhances leeward snow
precipitation and therefore snow accumulation. Sharma et al. (2023)
found that most active areas for snow erosion are windward
sides of ridges with zones of deposition found immediately on
the leeward side of ridges. Simualtions with HICAR forcing, that
are expected to better represent orogrpahic precipitation and
preferentail deposition, show an increased variability of snow
height depending on aspect and elevation. This indicates a better
representation of aforementioned processes. Combining HICAR
forcing data with post depositional snow transport processes leads
to the highest agreement with observed snow height. With a better
representation of the spatial distribution of snow, a more accurate
simulation of melt rates is expected. The temperature gradient
in mountainous areas leads to higher temperatures in valleys
than at mountain peaks, which leads to earlier and higher melt
rates in lower elevations. Further, higher radiation input on south
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FIGURE 3
Elevation-aspect plot for simulated and observed snow height for 50 m resolution simulations above 2,000 m elevation and for 17.05.2017. The
simulated snow height is shown for different downscaling methods (COSD and HICAR) and different model versions (FSM2oshd and FSM2trans).

facing slopes leads to earlier and higher melt rates than on north
facing slopes.

Figure 4 shows a boxplot with the mean snow height from all
simulation runs with 100 m resolution and LiDAR data upscaled
to a 100 m resolution. Generally, runs with HICAR forcing data
have a higher average snow height than runs with COSD forcing
data, while FSM2trans runs have a lower mean snow height than
runs with FSM2oshd. The variability of snow height increases
with FSM2trans runs, especially with HICAR-FSM2trans runs, and
matches the observed variability more accurately. For example,
observed snow height on the 17.05.2017 ranges between 0 m
and 7.26 m, while the COSD-FSM2oshd run ranges between 0 m
and 2.08 m and the HICAR-FSM2oshd run between 0 m and
2.74 m. The snow height ranges between 0 m and 4.53 m, and
0 m and 7.55 m for COSD-FSM2trans and HICAR-FSM2trans
runs, respectively.

Figure 5 shows a PDF for simulated and observed snow height
for all simulations and LiDAR days. The PDF curves are shown
for elevations higher than 2,500 m since snow transport schemes
have the biggest impact at higher elevations. Simulationswith COSD
forcing data show a sharp peak of probability around a snow height
of 1 m–1.5 m on 20.03.2017 and 31.03.2017. HICAR runs show a
lower peak around a snow height of approximately 2 m.These peaks
are lower for 17.05.2017 and snow height distribution ismuchwider,
indicating an increase in snow height variability later in the melting

season. Simulations with FSM2trans show a wider distribution of
snow height than simulations with FSM2oshd, in better agreement
with the LiDAR data. Especially the PDF curve of HICAR-
FSM2trans runs matches the observed snow height distribution
well. Snow height distributions between simulation runs with
different resolutions show very similar patterns, indicating small
difference in accumulation patterns caused by applying different
model resolutions.

Other studies indicate a stronger effect of model resolution
on snow accumulation patterns. Vionnet et al. (2014) found that
the model reproduces snow erosion and deposition patterns at
the ridge scale at a grid spacing of 50 m. Similarly, Gerber et al.
(2018) demonstrates that lee-side flow separation and snowfall
enhancement at the mountain ridge scale begin to form at
a model resolution of 50 m or finer. One possible reason for
the similarity in results is that processes at the ridge scale
are well represented by 100 m and 50 m runs, while there is
a need for finer resolutions to resolve smaller scale patterns
of local topographic features which modify atmospheric flow,
and generate snow erosion and deposition. Mott and Lehning
(2010) found that running their model at a horizontal resolution
of 50 m reproduces processes at the ridge scale but misses
small scale deposition patterns. They were able to partially
reproduce smaller patterns using resolution of 10 m and 5 m. This
suggest a requirement for higher resolution modeling in complex
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FIGURE 4
Boxplot of simulated and observed snow height for runs with 100 m resolution on all days observed snow height is available (20.03.2017, 30.03.2017,
17.05.2017).

terrain, possibly even at higher resolutions than 50 m. However,
HICAR-FSM2trans is capable of replicating realistic patterns and
distributions even at a 100 m resolution, which is critical for
hydrological applications.

An important research question that can be addressed, is the
relative importance of processes that shape the snow accumulation
variability on mountains, namely, orographic precipitation,
preferential deposition and post-deposition snow redistribution.
Simulations with HICAR input should better represent pre-
depositional processes with more complex and heterogeneous wind
and precipitation patterns. Simulations with HICAR forcing data
without any snow transport show an increase in variability of
spatial snow height distribution. Scipiõn et al. (2013) quantified
the importance of orographic precipitation patterns compared to
near surface processes for snow accumulation variability. They
found that the spatial variability of snow deposition on the ground
is significantly larger than the variability of snowfall measured
several hundred meters above the ground. The authors attribute
this disparity as a signature of the fact that the main processes
governing snow accumulation take place close to or at the surface.
Mott and Lehning (2010) found evidence of preferential deposition

at 50 m grid spacing simulations with enhanced leeward slope
loading, which was caused by lower deposition velocities of
snow on windward slopes due to strong wind speed and updraft
as well as higher deposition velocities on the leeward side of
ridges. Other studies found that accumulation is only minimally
influenced by near surface flow fields (Vionnet et al., 2017). The
results of this study show an increase in variability of spatial snow
height distribution with HICAR forcing data, possibly indicating
a better representation of orographic precipitation and preferential
deposition. However, simulations without FSM2trans show a large
disparity between simulated and observed snow height, indicating
the importance of post-depositional snow transport. The highest
agreement with observed snow height data is found for HICAR
FSM2trans runs. Vionnet et al. (2017) revealed with simulations
at 50 m grid spacing that wind-induced, post-deposition snow
transport is the main source of snow accumulation during a
snow fall event. This study highlights the importance of both,
high-resolution meteorological forcing data and post-deposition
redistribution processes, leading to the conclusion that models
with snow transport schemes require high-resolution wind and
precipitation fields.
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FIGURE 5
Probability density function (PDF) curves for simulated and observed snow height above 2,500 m elevation for all simulation runs. Results are shown
for all days observed snow height is available (20.03.2017, 30.03.2017, 17.05.2017) and all simulation resolutions (50 m, 100 m, 250 m).

3.2 Snow height bias

Snow height output of all simulation runs is subtracted from the
aggregated observed snow height in order to analyse differences in
snow height for each simulation cell. Figure 6 shows a bias map of
simulations with 50 m resolution for 20.03.2017 (A) and 17.05.2017
(B). It shows that runs with HICAR forcing have the greatest wet
bias, especially at higher elevations, while COSD-FSM2trans shows
the greatest dry bias.The valley bottomdisplays awet bias forCOSD-
FSM2oshd and COSD-FSM2trans earlier in the melt season, but by
the middle of May most snow in the valley has melted. Generally,
FSM2trans runs have a greater underestimation of snow height than
FSM2oshd runs and runs with HICAR forcing data are generally
wetter than runs with COSD forcing data (Table 2).

The bias analysis shows relatively high biases on some parts of
the domain, whereas other analyses like variability and distribution
of snow height show a good agreement between observed snow
height and simulated snow height of HICAR-FSM2trans. Other

studies found differences in bias between dynamically downscaled
and statistically downscaled precipitation data as well as increasing
biases with higher resolutions (Leung and Qian, 2003). In this
study, the sum of precipitation or snowfall does not change
notably with resolution (Table 2), nor does the mean bias for the
domain. Therefore, the findings of a higher precipitation bias with
higher resolutions can not be supported. Silverman et al. (2013)
found a difference in magnitude between dynamically downscaled
precipitation with WRF and a statistical downscaling approach,
where precipitation from WRF was much higher especially on
mountain peaks. One explanation for possible overestimation of
precipitation is that many of the physics parametrizations used in
meso-scale models were initially developed for coarser resolutions.
As resolutions increase, there is less topographic smoothing, which
allows for the preservation of higher elevations and thus enhances
orographic effects, making it possible for higher precipitation
amounts to exist (Gerber et al., 2018). The underestimation of
precipitation in statistical models may come from a variety of
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FIGURE 6
Snow height bias calculated as the simulated snow height subtracted from the observed snow height at 50 m resolution for simulation runs with
different downscaling methods (HICAR and COSD) and different model versions (FSM2oshd and FSM2trans). (A) 30.03.2017. (B) 17.05.2027.

TABLE 2 Sum of precipitation [mm], snowfall [mm], rainfall [mm] and ratio of snow- and rainfall in the simulation domain for each resolution and
downscaling method (COSD and HICAR).

Input Resolution [m] Precipitation [mm] Rainfall [mm] Snowfall [mm] Ratio

COSD 250 965 374 591 1.58

HICAR 250 1,094 330 764 2.19

COSD 100 965 306 659 2.15

HICAR 100 1,104 329 775 2.36

COSD 50 966 306 660 2.16

HICAR 50 1,091 330 761 2.31

reasons including complex physical interactions at high elevations,
which are not represented. Statistical models do not use information
about wind direction, speed, air-flow dynamics or cloud properties.
In complex terrain these physical parameters can lead to strong non-
linearities in precipitation elevation relationship (Silverman et al.,
2013). The bias analysis results show that the snowheight results of
simulations with HICAR forcing lead to a wet bias and simulations
with COSD forcing lead to areas with dry biases. However, these
biases are considerably reduced by running simulations with the
FSM2trans model setup. This shows that the implementation
of snow transport schemes is a vital part for snow height
bias analysis. Precipitation input may be accurate but without
redistribution of snow and sublimation losses due to blowing

snow, observed snow heights cannot be correctly represented
by simulations.

3.3 Snow ablation

A time series of mean daily snowmelt in the melt period from
15.03.2017 to 15.07.2017 is plotted for each simulation run and
the whole domain (Figure 7) with the date of the LiDAR flights
shown as dashed lines. The melt patterns for simulation runs
with different resolutions are very similar with small differences
in magnitude of major melt events. The runs with COSD forcing
generally show lower melt rates than the runs with HICAR forcing,
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FIGURE 7
Mean daily snowmelt of the whole domain for the melting season from 15.03.2017 to 15.07.2017 for each simulation run with different downscaling
methods (COSD and HICAR), different model versions (FSM2oshd and FSM2trans) and resolutions (50 m, 100 m, 250 m). Dashed lines indicate time of
LiDAR flights.

which follows the higher snow input of the HICAR forcing data.
This is also clear in Figure 8, which shows the cumulative snowmelt
from 15.03.2017 to 15.07.2017. The snowfall input is on average
17% lower for COSD forcing and cumulative melt is 18.3% lower
for COSD forcing snowmelt output. The difference in melt rates
can thus mostly be explained with the difference in snowfall input
(Table 2). Further Figure 7 shows that simulations withHICAR have
the highest early season melt compared to COSD simualtion runs.

Through snowdrift and avalanches, snow is transported to lower
elevations and overall variability of snow height in the domain
increases.This leads to a more pronounced snowmelt in April, while
there is lessmelt during the peak season, through shallow snowpacks
and snow accumulations at lower elevations. These findings are
in agreement with Brauchli et al. (2017), who found that a greater
variability in snow height at the beginning of the melt season leads
to more differential melt over space and time. In addition to a
more pronounced onset of melt, they also observed a prolonged
melt period caused by delayed melt out in areas with deeper snow
accumulation. Snow transport schemes are expected to move snow
to depressions, bowls or other shady topographic features, where
it is protected from radiation and contributes to melt water later

in the season. HICAR-FSM2trans runs have the highest melt rates
in the beginning and the end of the melting season as well as the
highest variability of snow height in the domain.This shows that the
effects on melt rates by including dynamically downscaled forcing
data and snow transport processes are considerable. This contrasts
other studies that found the inclusion of snow transport processes
can improve the accuracy of spatial snow variability, but the effect
on predicted spatial melt rates are only detectable for small areas
(Bernhardt et al., 2012; Musselman et al., 2015).

The cumulative melt plot shows a difference in the total
melt between simulations with FSM2oshd and FSM2trans. This
difference can be attributed in part to additional sublimation
caused by snow transport. Cumulative snow drift sublimation
is an output of FSM2trans simulation runs and the mean is
calculated for the whole simulation domain. The mean cumulative
sublimation for 100 m runs with HICAR-FSM2trans is 6.32 mm,
which is 0.87% of the total snowfall, and 5.7 mm for COSD-
FSM2trans, which is 0.87% of the sum of snowfall. For 50 m runs
the mean cumulative sublimation is 5.49 mm and −3.43 mm with
0.72% and 0.52% of the sum of snowfall for HICAR-FMS2trans
and COSD-FSM2trans, respectively. This shows that drifting snow
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FIGURE 8
Cumulative mean daily snowmelt calculated over the entire season and shown for 15.03.2017 to 17.05.2017 for each simulation run with different
downscaling methods (COSD and HICAR), different model versions (FSM2oshd and FSM2trans) and resolutions (50 m, 100 m, 250 m). Dashed lines
indicate time of LiDAR flights.

sublimation is highest for simulation runs with HICAR forcing
data. These findings are in agreement with previous studies in
Alpine environments, where Groot-Zwaaftink et al. (2013) found
that drifting snow sublimation over a season is small with a value
of about 0.1% of precipitation. Further, Bernhardt et al. (2012)
estimated drifting snow sublimation of 1.6% of snowfall over a
whole season, indicating that additional sublimation through wind-
induced snow transport is only a minor contributor to the loss of
snow height.

4 Conclusion

The snow cover in alpine terrain is highly spatially variable.
This heterogeneity has an influence on the magnitude and timing
of snowmelt in spring. For this reason, an accurate representation
of the snow cover is essential for forecasting streamflow at the
catchment outlet. In this study, multiple simulations with the
FSM2oshd snowpack model are run over the water year 2016/2017
in a domain of complex terrain in the Swiss Alps with different
resolutions (250 m, 100 m and 50 m). Simulations are either run

with the operational version of the FSM2oshdmodel orwith amodel
extension that includes post-depositional snow transport processes
(FSM2trans). The forcing data supplied to the snowpack model are
either semi-statistically downscaled within the OSHD framework or
dynamically downscaled with HICAR.

The snow height from simulations is evaluated with LiDAR
data collected in March and May 2017. Spatial snow accumulation
patterns and snow height distribution are best matched with
HICAR-FSM2trans simulations, indicating the importance of both
accurate meteorological forcing data and snow redistribution
schemes. Overall patterns of spatial variability are well reproduced
compared to observed snow height. Higher elevations are most
impacted by snow redistribution since they are usually steeper and
exposed to higher wind speeds, resulting in stronger wind- and
gravity-induced snow redistribution. Further, a high agreement for
elevation-aspect bands with the observed snow height is shown,
which is expected to lead to more accurate melt curves since
radiation and temperature input are responsible for melt and highly
influenced by elevation and aspect. Snow height distribution is
replicated even at a 100 m resolution, which is critical for an accurate
prediction of snowmelt. The snow height distribution over the
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scale of the entire domain has greater relevance than a cell by cell
comparison of snow height.

The bias analysis shows that simulation runs with HICAR
forcing data show a wet bias in higher elevations and a dry bias
in the valley, likely because microphysics schemes are calibrated
for low-resolution and therefore less steep terrain. The wet
bias of HICAR can be attributed to the preservation of higher
elevations, which enhances orographic effects. Runs with COSD
forcing show a wet bias in the valley and a larger dry bias on
higher elevations. In comparison to HICAR, the semi-statistical
downscaling does not use information about wind direction and
speed, air flow dynamics or cloud properties, which can lead to
non-linearities in precipitation elevation relationships. The mean
bias is much lower for FSM2trans simulation runs, suggesting
that snow transport schemes are a vital part for snow height
bias analyses.

The snowmelt curves show a more pronounced melt in
the beginning of spring with FSM2trans simulations, while also
simulating highest melt rates in the end of the melting season.
Snow is transported to lower elevations during the accumulation
season and shallower snowpacks in snow erosion zones can be
found, resulting in a more rapid snowmelt signal in the beginning
of the melting season. Later in the year, thicker snowpacks that
accumulated in depressions, bowls or other shady topographic
features contribute to late season melt events and prolong the melt
period. Future researchmay implement snowmelt and runoff output
from snowpack simulations with dynamically downscaled forcing
data in hydrological models to investigate how predicted streamflow
is influenced and improved.
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