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A B S T R A C T   

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) 
is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes 
challenging when the phases constituting the sample under investigation share common elements and overlap 
spatially. In this paper, we present a methodology to identify, segment, and unmix phases with a substantial 
spectral and spatial overlap in a semi-automated fashion through combining non-negative matrix factorization 
with a priori knowledge of the sample. We illustrate the methodology using a sample taken from an electron 
beam-sensitive mineral assemblage representing Earth’s deep mantle. With it, we retrieve the true EDX spectra of 
the constituent phases and their corresponding phase abundance maps. It further enables us to achieve a reliable 
quantification for trace elements having concentration levels of ~100 ppm. Our approach can be adapted to aid 
the analysis of many materials systems that produce STEM-EDXS datasets having phase overlap and/or limited 
signal-to-noise ratio (SNR) in spatially-integrated spectra.   

1. Introduction 

A scanning transmission electron microscope (STEM) equipped with 
one or multiple silicon drift X-ray detector(s) (SDD) is a fast, robust and 
widely-used tool for the chemical analysis of materials from the 
microscale down to the nanoscale. With the spectrum imaging (SI) 
technique, an energy-dispersive X-ray spectrum is acquired at each 
scanned point, enabling chemical analysis for every spatial pixel in the 
SI dataset. Such a STEM-EDXS SI dataset allows a detailed chemical 
analysis of materials [1–3]. However, when the sample is made of 
several phases that overlap within the thickness of the STEM specimen, 
the technique cannot directly deliver an individual quantification of 
each phase from relevant pixels, but only an average composition of a 
mixture of phases. This becomes problematic when the phases share 
some elements. For example, identifying chemically-similar multiphase 
nanoprecipitates in complex fission products remains difficult when 
characterizing irradiated nuclear fuels using STEM-EDXS [4]. 
STEM-EDXS tomography might be an option for phase quantification in 
such scenarios. However, its application requires long acquisition times 

with high accumulated electron beam doses, and therefore is unsuitable 
for beam sensitive samples as studied here. Moreover, EDXS is prone to 
artifacts in the quantification when the geometry of the sample in the 
microscope changes (absorption, shadowing, effect of take-off angle), 
therefore EDXS tomography is best done on samples prepared as needles 
or tip-mounted lamellae. This is not always feasible for mechanical 
reasons, as is the case here, where the STEM lamella must be attached at 
many points on the supporting grid because of strong internal stresses in 
the starting material. 

Another drawback of STEM-EDXS is the low X-ray counting statistics, 
in large part due to the small sample thickness, which is typically around 
or less than 100 nm, which in turn limits the interaction volume for X- 
ray emission (as compared to analysis of bulk samples with a scanning 
electron microscope). This is a key factor limiting the precision of STEM- 
EDXS when quantifying minor elements, making trace element quanti
fication very challenging. Theoretically, these quantification limitations 
could be reduced by using large electron probe currents and/or counting 
for a long time. However, such strategies increase the risk of beam 
damage, contamination, and specimen drift. Furthermore, if the 
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material of interest is highly sensitive to electron dose, such as macro
molecules and polymers [5,6], metal-organic frameworks [7,8], and 
low-dimensional materials [9,10], STEM-EDXS measurement would 
hardly attain sufficient signal-to-noise ratio (SNR) for accurate and 
precise quantification. 

In the past decade, machine learning (ML) algorithms, such as 
principal component analysis (PCA) [11–13], independent component 
analysis (ICA) [14–16], and non-negative matrix factorization (NMF) 
[17–19], have been exploited for the analysis of various electron mi
croscopy datasets. For instance, PCA is widely used for denoising. 
However, its bias can induce artefacts into the reconstructed dataset [20, 
21]. In comparison, NMF is a promising method for separating different 
phases of a complex sample because it assumes a non-negativity for all 
the collected signals, which is a physically sound assumption. The 
returned results are then more easily interpretable [19]. Nonetheless, 
the components extracted by NMF are not necessarily identical to the 
characteristics of the actual physical phases, hence the spectra cannot 
directly be used to quantify phases [17]. Finally, the abundance maps 
may not equal the actual quantitative distributions of phases. This in
formation, namely the physically sound spectra and abundance maps, is 
however what is needed for understanding the properties of the mate
rial, such as mechanical [22,23], transport [24,25] and magnetic [26, 
27]. 

To address these limitations of NMF, here we propose a new meth
odology that combines NMF with a priori knowledge of the sample. 
Using a test sample, this methodology is explained in Section 3.2, after 
presenting a “classical” STEM-EDXS analysis and its limitations in Sec
tion 3.1. Using our approach, we retrieve the physical EDX spectra of 
phases and their quantitative distribution maps in a sample where the 
constituent phases have significant spatial and spectral overlap. By 
making relevant statistical analyses, in Section 3.3 we show how the 
EDX peak signal intensities are significantly increased, allowing us to 
quantify trace elements having concentration levels as low as ~100 
ppm. 

2. Experiment procedures 

2.1. Sample synthesis and preparation 

The material studied in this paper is a mineral assemblage syn
thesised in a laser-heated diamond anvil cell (LHDAC), a tool for 
reproducing the pressure and temperature conditions of Earth’s deep 
interior in the laboratory. The starting material was a glass synthesised 
in an aerodynamic levitation laser furnace [28], with a pyrolitic 
composition that represents the average Earth’s mantle composition in 
terms of major elements. Additionally, trace amounts of Nd, Sm, and U 
(0.3 wt.% for each) were added to the starting material. The nominal 
composition of the starting material, as measured by EDXS in a scanning 
electron microscope, is detailed in Table 1. 

Using the LHDAC, the starting material was first compressed to 71 
GPa, heated to ~4500 K and then held in a molten state for 2 min using 
double-sided laser-heating, followed by fast cooling to ~3900 K at a rate 
of around 90 K/s. The sample was next quenched by switching off the 
laser power (ramp down time ~10 μs), then slowly decompressed and 
unloaded from the diamond anvil cell. From this sample, a STEM spec
imen was prepared from the centre of the heated spot using the focused 
ion beam (FIB) lift-out technique with a Zeiss Auriga. 

2.2. STEM-EDXS SI acquisition 

The STEM imaging and EDXS measurements were performed on an 
FEI Tecnai Osiris microscope operated at 200 kV high tension, using an 
electron probe with a convergence semi-angle of ~12 mrad and nominal 
current of 750 pA. This microscope is equipped with four windowless 
Super-X SDD EDXS detectors and Esprit 1.9 acquisition software from 
Bruker. EDXS SI data, with a dimension of 512 × 512 pixels, were ac
quired using a pixel size of 1.7 nm and a pixel dwell time of 60 μs. With 
46 frames, the total acquisition time amounted to 12 min for each SI 
map. The mapped area has an estimated average thickness of 117 nm 
and reaches a maximum of 156 nm. The EDXS acquisition parameters 
yield an average of ~160 counts per pixel. This ensures an appropriate 
SNR for characterizing the minor elements (i.e., Al Kα, Fe Kα, Ca Kα) 
without inducing severe electron beam damage of the specimen, which 
is prone to degradation (material loss) under excessive electron beam 
dose. 

3. Results and discussion 

3.1. Conventional STEM-EDXS analysis 

We first present a conventional STEM-EDXS analysis of the mineral 
assemblage. Fig. 1 shows its high-angle annular dark-field (HAADF) 
image, and the EDXS elemental maps of integrated peak counts. 
Through qualitative analysis of these elemental maps, we have identi
fied three mineral phases, known to be the stable minerals in the lower 
mantle [29]: bridgmanite (MgSiO3 with minor amounts of Fe, Al, and 
Ca, abbr. Brg), ferropericlase ((Mg, Fe) O, abbr. Fp), and Ca-perovskite 
(CaSiO3 with minor amounts of Al, Nd, Sm, and U, abbr. CaPv). Three 
regions of interest (i.e., ROI_Brg, ROI_Fp, ROI_CaPv) are selected to 
study the three phases as indicated in Fig. 2(a); their pixel-integrated 
EDX spectra are displayed in Fig. 2(b)-(d). 

A fundamental question for geoscientists is assessing the interphase 
partitioning behavior of trace elements in Earth’s mantle, such as Nd, 
Sm, Hf, Lu, U, since this evidences different chemical differentiation 
events in Earth’s mantle [30,31]. While CaPv is fractionally the minor 
phase, it is the predominant host for trace elements [32], as illustrated 
by the Nd Lα, Sm Lα, and U Mα peaks in the spectrum of ROI_CaPv (Fig. 2 
(d)). Brg is also reported to host trace elements, albeit with a signifi
cantly reduced solubility [30]. In Fig. 2(b), we inspect the X-ray signals 
of Nd Lα, Sm Lα, and U Mα, which were summed from a relatively large 
area of the matrix Brg (i.e., ROI_Brg). As depicted in the insets, the U Mα 
peak is hardly discernible, and the Nd Lα and Sm Lα peaks are too noisy 
to provide reliable elemental quantification. Meanwhile, we observe a 
signal of Mg Kα in the spectrum of ROI_CaPv (Fig. 2(d)). Since Mg only 
exists in small amounts in CaPv [33,34], this signal must come from Brg 
which is superimposed with the CaPv in the electron beam path. Simi
larly, we observe a Si Kα peak in the spectrum of ROI_Fp while Fp cannot 
contain any Si, indicating that Fp and Brg spatially overlap. After 
selecting more ROIs and inspecting their spectra, we also identified that 
the two precipitates overlap with each other as well as Brg in some areas. 

Quantifying each relevant phase is essential for studying the inter
phase chemical partitioning behavior. Brg’s chemical composition can 
be directly obtained from the ROI_Brg spectrum. However, precise 
quantification of trace elements such as Nd and Sm within Brg poses 
inherent challenges owing to their low concentrations and the beam- 
sensitivity of Brg. These limit the attainment of a high signal-to-noise 

Table 1 
The nominal composition of the starting material with standard deviation.  

Atomic% Mg Si Al Ca Fe Nd Sm U O       
(ppm) (ppm) (ppm)  

average 19.30 16.65 1.75 0.83 2.44 477 455 130 58.83 
std dev 0.83 0.51 0.16 0.03 0.05 19 15 14 0.27  
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ratio (SNR) for trace elements despite integrating over a large ROI. 
Moreover, detecting U in Brg is nearly impossible due to its even lower 
concentration. 

Regarding the composition of Fp and CaPv, they cannot be 
straightforwardly quantified from ROI_Fp and ROI_CaPv since both of 
them share many elements with Brg and always spatially overlap with 
Brg. Typically, petrologists follow a three-step procedure to obtain the 
compositions of precipitates in such overlapping scenarios. This 
approach relies on the unique element in each pair of precipitate-matrix: 
Si for the Fp-Brg pair and Mg for the CaPv-Brg pair. Once the compo
sitions of Brg and the phase-mixture are characterized, the overlapping 
coefficient between each precipitate-matrix pair can be calculated. 

Subsequently, the composition of the precipitate is attained by sub
tracting the proportion of Brg in the phase mixture. We used this 
approach to determine the compositions of the three phases from the 
EDX spectra of ROI_Brg, ROI_Fp, and ROI_CaPv using the Cliff-Lorimer 
ratio method. All the k-factors utilized for elemental quantification are 
derived from X-ray emission cross-sections generated using the state-of- 
the-art calculations of the ’emtables’ (Electron Microscopy Tables) li
brary [35]. The results are reported later in Table 2 and also Table S1 in 
the Supporting Information. Note that the errors reported Table 2 are 
calculated purely from Poisson statistics, as explained later in Section 
3.3. In such an analysis, selecting appropriate ROIs for Fp, CaPv, and Brg 
is an exacting and tedious process, given the complicated overlap 

Fig. 1. HAADF image and EDXS elemental intensity maps of integrated peak counts of a mineral assemblage of the specimen. Each elemental map’s intensity scale is 
self-referential, with a linear scaling from 0 fractional intensity for the pixel spectrum with the lowest integrated peak counts to a value of 1 for the pixel spectrum 
with the highest integrated counts. 

Fig. 2. ROIs of Brg, Fp, and CaPv are selected and indicated in (a), and their corresponding EDX spectra are presented in (b), (c), and (d), respectively. The two insets 
of (b) show the X-ray signals of U Mα, Nd Lα and Sm Lα in the ROI_Brg. The inset of (d) shows the X-ray signals of U Mα in the ROI CaPv. 
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between these phases. On the one hand, large ROIs are desirable to 
achieve a sufficient SNR for precise elemental quantification. On the 
other hand, it is essential to avoid troublesome 
two-precipitate-overlapping areas (i.e., three-phase-overlapping areas) 
where no distinct element is available to differentiate the phases. 

In order to tackle these limitations, we now develop an innovative 
methodology aimed at segmenting overlapped phases in a semi- 
automated fashion. This approach enables the generation of high SNR 
spectra, resulting in improved precision in phase quantification. Keeping 
to the same test sample, we demonstrate the effectiveness of this 
methodology with the detection and quantification of trace elements in 
the matrix Brg phase. 

3.2. NMF decomposition and NMF-aided phase unmixing 

Our segmentation method is based on NMF. The EDXS signal in each 
pixel of a STEM-EDXS SI dataset can be regarded as a linear combination 
of a number of individual phase spectra. Here, we assume that there is 
negligible effect of electron beam spreading that would introduce "cross- 
talk" of X-ray signal between neighboring pixels, thus preserving the 
linearity of the phase spectra. This we justify by recourse to the sub- 
nanometer probe size and experimental conditions (pixel size, sample 
thickness, convergence semi-angle) detailed in Section 2.2, together 
with the phase sizes in the sample that consistently exceed 20 nm. Under 
this assumption, unmixing the phases is defined as the problem of 
determining a) the individual spectrum of each phase and b) the abun
dance map, which indicates the local weighting of each phase spectrum. 
While matrix factorization [36] is a popular linear unmixing technique 
that matches the proposed assumption, its non-negative variant – NMF – 
applies a further non-negativity constraint that particularly suits EDXS 

data. The NMF is performed using the Hyperspy package [37]. 
First, PCA was applied to the dataset to evaluate the number of 

outputted components that must be specified in the NMF decomposition. 
According to the PCA scree plot (Fig. 3(a)), the first three components 
account for the majority of variances of the dataset, consistent with the 
EDXS analysis of Section 3.1. Therefore, we decompose the SI dataset 
into three components using NMF. Fig. 3(b)-(d) shows the resultant 
component spectra and corresponding abundance maps. All the spectra 
are normalized by their maximum peak intensity. Fig. 3(b) demonstrates 
that the three component spectra capture the main chemical features of 
the three phases. The spectrum of NMF#0 contains the major elements 
comprising Brg; the Si Kα and Ca Kα peaks disappear in the spectrum of 
NMF#1, consistent with Fp; and the Mg Kα peak is absent in the spec
trum of NMF#2, compatible with CaPv. Moreover, Fig. 3(d) shows that 
the spatial distribution of NMF#0 is similar to that of the Brg matrix 
phase, while the spatial distributions of NMF#1 and NMF#2 resemble 
those of the Fp and CaPv precipitates, respectively. 

Despite these similarities between NMF components and phase 
characteristics, a closer examination of the components’ spectra reveals 
that they do not fully coincide with the actual spectra of the physical 
phases. This is unsurprising, given that we only impose a non-negativity 
constraint here. First, in Fig. 3(c), we see ditches approaching zero in
tensity around the Si Kα and Ca Kα energy range in the spectrum of 
NMF#1 and a ditch around the Mg Kα energy range in the spectrum of 
NMF#2. Similar ditches from NMF decomposition were observed pre
viously [17]. Physically, we understand that EDXS comprises a contin
uum X-ray spectrum (i.e., bremsstrahlung background) and 
characteristic X-ray peaks. However, without additional constraints, 
NMF decomposition fails to account for the bremsstrahlung background 
and returns zero when it assigns no element in a given energy range. We 

Table 2 
Compositions and their associated Poisson errors of Brg obtained from ROI_Brg and Mask_1. The errors are calculated as described in Section 3.3  

Atomic% Mg Si Al Ca Fe Nd Sm U O       
(ppm) (ppm) (ppm)  

ROI_Brg 18.30 21.33 2.20 0.87 1.81 285 334 – 55.30 
Error 0.03 0.03 0.01 0.005 0.007 8 10 – 0.07 
Mask_1 18.30 21.12 2.21 0.83 2.05 252 314 101 55.32 
Error 0.009 0.009 0.003 0.002 0.003 3 3 3 0.02  

Fig. 3. (a) The scree plot of PCA decomposition; (b) the three component spectra of NMF decomposition; and (c) their respective zoomed-in spectral features; (d) the 
abundance maps of NMF decomposition. 
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further point out that the spectrum of NMF#0 fails to recover signals of 
trace elements such as Nd Lα and Sm Lα. Nevertheless, these elements 
are known to be present in the Brg, as was shown in the ROI_Brg spec
trum in Fig. 2(b). Equally, elemental quantifications of the components’ 
spectra done using the Cliff-Lorimer ratio method do not match with the 
compositions determined from the manually selected ROIs. 

While the NMF-derived component spectra show inaccuracies 
compared to the actual phase spectra, the spatial loading maps are 
similar to the true phase distributions, as inferred by comparison to the 
elemental maps in Fig. 1. Here, we exploit this resemblance for unmixing 
the phases spatially. As demonstrated in Fig. 4, we generate two binary 
masks, named mask#1 and mask#2, covering the two types of precip
itate and derived from the abundance maps of NMF#1 and NMF#2, 
respectively. The union of the two masks covers all the precipitates. The 
complement of the union therefore results in a mask called mask#Brg 
(Fig. 4(e)), which covers all the available pure Brg areas. The intersec
tion of mask#1 and mask#2 then represents the problematic three- 
phase-overlapping areas. The remaining masks, mask#Fp+Brg and 
mask#CaPv+Brg (Fig. 4(f)-(g)), are respectively obtained by subtracting 
the three-phase-overlapping areas from mask#1 and mask#2. As a 
result, we create a pure Brg mask and two masks representing the 
mixtures of Fp+Brg and CaPv+Brg. It is impossible to spatially segment 
Fp or CaPv from Brg, since the latter is a matrix phase that is distributed 
almost everywhere. 

Creating accurate mask#1 and mask#2 that cover all precipitates is a 
crucial step. For this purpose, we adapted a graph-based algorithm 
(GrabCut) [38] to perform the segmentation task. In comparison, 
traditional algorithms such as histogram thresholding [39], edge-based 
segmentation [40], and region-based methods such as watershed 
transform [41] not only require careful human supervision, they do not 
return a correct segmentation in our case, as our data do not always have 
a good background-to-foreground contrast ratio. In contrast, GrabCut 
views an image as a graph: every pixel is a vertex, and constraints be
tween neighbouring pixels are considered as edges. Each edge is 
weighted by the computed affinity or similarity between two vertices. 
Pairs of vertices (pixels) within a subgraph have high affinity, while 

those from different subgraphs have low affinity. The partition of 
vertices into different subsets is therefore conducted by minimizing the 
cost of cutting edges [42,43]. Each subgraph is then an image segment. 
The method does not solely utilize boundary or regional information but 
both to achieve optimal global segmentation. Moreover, it simply re
quires a user-specified rectangle drawn loosely around the object of 
interest as the input to perform an accurate segmentation. 

By applying the mask#Brg, mask#Fp+Brg, and mask#CaPv+Brg 
generated by GrabCut to the original EDXS SI dataset, we respectively 
generate a map of pure Brg, a map of Fp+Brg mixture, and a map of 
CaPv+Brg mixture. From these, the full pixel-integrated spectrum of Brg 
is readily obtained in Fig. 5(a), and the spectra of the Fp+Brg mixture 
and CaPv+Brg mixture are displayed as dashed curves in Fig. 5(b)-(c). 
As mentioned earlier, the a priori knowledge that Brg is a silicate, while 
Fp is an oxide without Si, enables us to separate the spectrum of Fp from 
the spectrum of Fp+Brg mixture. To do this, we first normalise the 
spectrum of Brg and Fp+Brg mix by their Si Kα intensity, as shown by 
Brg_norm and Fp+Brg_norm in Fig. 5(b). Next, we obtain the spectrum 
of Fp by subtracting the contribution of Brg from the spectrum of 
Fp+Brg mixture. Then, because CaPv is a Ca-enriched silicate that tol
erates little Mg in its crystal structure, an analogous routine is applied to 
extract the CaPv spectrum from that of the CaPv+Brg mixture, now 
based on normalisation by the Mg Kα intensity. 

Having obtained the actual spectra of all three phases (Fig. 6(a)-(c)), 
we leverage them to identify their spatial abundances. Calculating the 
abundances of phases can be considered as a problem of linear spectral 
mixture analysis (LSMA) [44] with predefined endmembers. LSMA is 
often solved based on a least-squares criterion. To produce meaningful 
abundances of materials, we choose a fully constrained least squares 
LSMA (FCLS-LSMA) that imposes two constraints on the weights of 
endmembers in each pixel: the abundance sum-to-one constraint and the 
abundance nonnegativity constraint. Applying FCLS-LSMA pix
el-by-pixel, the abundance maps of Brg, Fp, and CaPv are obtained; see 
Fig. 6(d)-(F). 

In this section, we have presented a comprehensive demonstration of 
how our NMF-aided method effectively unmixes phase signals in STEM- 

Fig. 4. (a)-(b) Abundance maps of the second and third NMF components; (c)-(d) binary masks generated from (a) and (b), respectively; the binary mask of (e) Brg, 
(f) the mixture of Fp and Brg, (g) the mixture of CaPv and Brg. 
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EDXS data, allowing for the extraction of individual phase spectra and 
abundance maps. We demonstrated our methodology using a mineral 
assemblage containing many regions where two or more phases overlap, 

but also regions of pure matrix phase. The root cause of this micro
structure is the precipitation of second phases during solidification, that 
is driven by poor solubility of certain elements in the matrix phase. Such 

Fig. 5. The normalised spectrum of (a) Brg (solid curve), (b) Brg (solid curve) and Fp+Brg mixture (dashed curve), and (c) Brg (solid curve) and CaPv+Brg mixture 
(dashed curve); the insets are the binary masks of Brg, Fp+Brg mixture, and CaPv+Brg mixture, respectively, from which the spectra are integrated. 

Fig. 6. Phase spectra of (a) Brg, (b) Fp and (c) CaPv, and the distribution maps of (d) Brg, (e) Fp, and (f) CaPv.  

Fig. 7. (a) 3 Brg ROIs; (b) the masked Brg map; (c) the spectral comparison between the masked Brg and 3 Brg ROIs.  
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precipitation – occurring in liquid or solid state – and resulting micro
structure of nanometric or micrometric second phases (defined by the 
segregation of certain element(s)) within a matrix phase, is common to 
many geological and materials samples, such as metal alloys. Inherently, 
such materials typically share the two characteristics required for the 
NMF-aided method: a sample having pure regions of at least one phase 
(matrix); and phases that do not share all the same elements (elemental 
segregation). Therefore, we believe that there is a wide scope for 
adapting our methodology to the analysis of such mineral or materials 
samples. 

3.3. Enhancing trace element SNR: improving elemental quantification 
and detection limits 

In Section 3.1, we showed how noisy the Nd and Sm signals of the 
spectrum integrated over the pixels of ROI_Brg spectrum are, and that 
the U signal is undetected. As shown with the blue spectrum in Fig. 7(c), 
by instead integrating over all the pixels covered by the masked pure Brg 
areas (Fig. 7(b)), the U Mα peak becomes visible, and the Nd Lα peak and 
Sm Lα peak are smoother and more distinguishable from the back
ground. This enhancement allows us to include U in the spectral quan
tification of Brg via the Cliff-Lorimer ratio method presented in the 
compositional Table 2, and also improves the quantification of Nd and 
Sm. Errors given in Table 2 are calculated based on the assumption that 
the number of X-rays detected follows Poisson statistics, hence the error 
is given by atomic fraction × 1/

̅̅̅̅̅̅
Np

√
where Np is the number of counts in 

a fitted peak. Table 2 shows how X-rays integrated from the larger area 
of Mask_1 have reduced Poisson errors compared to those from the 
limited zone of Brg_ROI. We further discuss this reduction in Poisson 
error for improved trace element quantification later in this section. It is 
noted that other EDXS quantification errors such as X-ray absorption, 
errors in cross-sections, and possible spectrum fitting errors are not 
accounted for in Table 2. 

We now delve deeper into the statistical basis of the quantification 
improvement, starting with the influence of the number of integrated 
pixels on Brg spectra. In Fig. 7(a), we show three Brg ROIs of varying size 
(small, medium and large) for generating Brg spectra of different SNRs. 
The respective trace element peaks are shown in Fig. 7(c), along with the 
spectrum from their summation (Brg ROI_Sum). This comparison dem
onstrates a significant enhancement in SNRs for trace element peaks 
with increasing spectral counts due to a larger number of summed 
pixels. 

Given this result, we now further leverage our NMF-aided phase 
unmixing method by applying it to two other maps (Fig. 8(a), (c)) 

located in neighbouring areas. This process generates more Brg maps, as 
seen in Fig. 8(b), (d). Subsequently, in Fig. 8(e), the U signal from the 
three masked areas are summed to give the brown spectrum 
“Brg_Mask_Sum”. By making this spectral integration over a large 
number of pixels, it is seen that there is now a sufficient SNR to clearly 
differentiate the U Mβ peak from the background. 

To evaluate this improvement quantitatively, in Table 3, we list the 
SNRs of U Mα, Nd Lα, and Sm Lα calculated for each Brg ROI, together 
with their corresponding integrated number of pixels. Here, the net 
elemental signal (S) is defined as the area of the peak above the back
ground, and the noise (N) is taken as the standard deviation (σ) of the 
background on either side of the actual or expected peak [45]. The SNR 
is then given by SNR = S/N = S/σ. By comparing the signals of Brg ROI_S 
with those of Brg Mask_1, we observe that the SNRs of Nd Lα and Sm Lα 
improve by a factor of 10.2 and 8.3, respectively. Further, the SNR of U 
Mα increases by a factor of 5.5 from the signal of Brg ROI_L to that of Brg 
Mask_Sum. Fig. 9 demonstrates that the SNRs of trace elements 
approximately follow a square root relationship with the number of 
summed pixels, as expected from Poisson statistics. Phenomenologi
cally, the SNRs of trace elements should approach around 10.0 to 
distinguish their signals from the background. For instance, the SNR of 
Nd Lα increases from 3.9 in Brg ROI_S (see the orange spectrum in Fig. 7 
(c)) to 9.8 in Brg ROI_M (see the green spectrum in Fig. 7(c)), enabling 
the emergence of the Nd Lα peak from the background. Similarly, the 
SNR of Sm Lα increases from 7.1 in Brg ROI_S to 12.9 in Brg ROI_M, 
resulting in a more discernible Sm Lα peak. Furthermore, the SNR of U 
Mα jumps from 2.2 in Brg ROI_L (see purple spectrum in Fig. 7(c)) to 9.7 
in Brg Mask_1 (see the blue spectrum in Fig. 7(c)), effectively differen
tiating the U Mα peak from the background. 

Improving the SNRs of trace element signals reduces two aspects of 
uncertainties in elemental quantification. Primarily, we achieve a better 
spectrum fitting with reduced fitting errors. Fig. 10(a)-(c) illustrate the 
spectral fitting of U Mα of Brg ROI_L, Brg Mask_1, and Brg Mask_Sum. 
The fitting uses Gaussian models for X-ray peaks and assumes a Pois
sonian error variance. The reduced chi-squared (χ2

red) is a general 
method for assessing the goodness of a fit. If a model is fitted to data and 
the resulting χ2

red is larger than one, it is considered a “bad” fit; whereas 
if χ2

red < 1, it is considered an overfit. The “best” fitting is the one whose 
value of χ2

red is closest to one. The χ2
red of Brg ROI_L is 1.24, and the value 

improves to 0.95 when integrating over the areas of Brg Mask_1. 
Furthermore, the χ2

red of Brg Mask_Sum is 0.97 which is the closest to 
one, indicating a satisfactory fitting. Considering the emission and 
detection of a characteristic X-ray as statistically independent events, 

Fig. 8. (a), (c) The HAADF images; (b), (d) the masked Brg maps of two neighboring mineral assemblages; (e) the spectral comparison of the masked Brg areas.  
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the number of X-rays detected over any finite time interval follows the 
Poisson law. Under this approximation, we calculated the quantification 
errors of the trace elements via the Cliff-Lorimer ratio method and show 
them in Fig. 10(d)-(e). By increasing the signal intensities of the trace 
elements, the Poisson error of Nd concentration and Sm concentration 
has been reduced from ±25 ppm and ±19 ppm in Brg ROI_S to ±3 ppm 
in Brg Mask_1. Similarly, the Poisson error of the U concentration has 
decreased from ±3.4 ppm in Brg Mask_1 to ±2.0 ppm in Brg Mask_Sum. 

The proposed NMF-aided phase quantification not only reduces the 

quantification uncertainties in trace elements, but also extends the limit 
of detection (LOD) in STEM-EDXS. Here, we illustrate this improvement 
by examining the spectra of Fp. The LOD, as defined by American 
Chemical Society [46,47], is the lowest concentration of an analyte that 
can be determined to be statistically distinct from a blank. In other 
words, the LOD is equal to the concentration of an analyte whose SNR 
equals three. To assess the LOD improvement, we normalize the spectra 
of Fp obtained from ROI_Fp, map 1, and the three maps by their maximal 
intensities. Fig. 11 presents their energy range of 4.8 keV to 6.0 keV, 
covering the Nd Lα and Sm Lα energy range. As expected, no elemental 
signals are detected in the Fp spectra since neither Nd nor Sm can be 
incorporated into the crystal structure of Fp [32]. Notably, the spectrum 
of Fp obtained through NMF-aided phase unmixing exhibits a significant 
reduction in noise level. To quantify the LOD improvement, we take the 
concentration of Mg as a reference, and use the Cliff-Lorimer ratio 
method to convert the LOD of Sm from units of counts to units of con
centration. Consequently, the LOD of Sm in Fp (if Sm were present in Fp) 
decreases from 176 ppm to 106 ppm going from ROI_Fp to the map 1 Fp 
mask. Furthermore, when we obtain the Fp spectrum by applying 
NMF-aided method to the three maps, the LOD of Sm in Fp further de
creases to 65 ppm. 

4. Conclusion 

In this study, we present an NMF-aided method for phase analysis 
that successfully unmixes phases with substantial spatial and spectra 
overlap, while increasing the sensitivity and precision of STEM-EDXS 
quantification. We have applied the method to analyse a beam sensi
tive mineral assemblage that is experimentally synthesised to represent 
of Earth’s lower mantle (i.e., Brg, Fp, and CaPv). Despite having many 
elements in common and experiencing significant spatial overlap, the 
physical phase spectra and phase abundance maps are obtained using 
the proposed approach. Furthermore, we reveal and quantify trace el
ements such as Nd, Sm, and U in Brg. STEM-EDXS spectrum imaging 

Table 3 
The SNRs of trace elements in Brg when integrating over different numbers of pixels.  

Areas ROI_S ROI_M ROI_L ROI_Sum Mask_1 Mask_2 Mask_3 Mask_Sum 

Number of pixels 3922 5980 24,360 34,262 170,081 142,030 132,096 444,207  
Nd Lα 3.9 9.8 14.6 16.4 40.0 36.0 33.8 53.5 

SNR Sm Lα 7.1 12.9 27.0 33.1 59.0 51.0 48.9 83.9  
U Mα – – 2.2 2.3 9.7 6.1 4.5 12.2  

Fig. 9. The SNRs of Nd Lα, Sm Lα, and U Mα and their square root fit with the 
numbers of summed Brg pixels. The cluster of data points on the left corre
sponds to the individual ROIs as well as to their sum, the cluster in the middle 
corresponds to the three masked regions, and the data point on the right side 
corresponds to the sum of the masks. 

Fig. 10. Spectrum fitting of (a) Brg ROI 3, (b) Brg Mask 1, and (c) Brg Mask sum; concentration with Poisson errors of (d) Nd and Sm, and (e) U.  
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combined with the proposed method should be suitable for analysing a 
wide variety of materials that have complex volumetric phase re
lationships, restricted SNR and beam sensitivity, or vital trace constit
uents. Moreover, we believe that the presented strategy can also be 
straightforwardly adapted to other spectroscopic techniques, in partic
ular STEM electron energy-loss spectroscopy. 
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