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Abstract

Solar electricity is set to play a pivotal role in future energy systems. In view of a

market that may soon reach the terawatt (TW) scale, a careful assessment of the

performance of photovoltaic (PV) systems becomes critical. Research on PV fault

detection and diagnosis (FDD) focuses on the automated identification of faults

within PV systems through production data, and long-term performance evaluations

aim to determine the performance loss rate (PLR). However, these two approaches

are often handled separately, resulting in a notable gap in the field of reliability.

Within PV system faults, one can distinguish between permanent, irreversible effects

(e.g. bypass diode breakage, delamination and cell cracks) and transient, reversible

losses (e.g. shading, snow and soiling). Reversible faults can significantly impact (and

bias) PLR estimates, leading to wrong judgements about system or component

performance and misallocation of responsibilities in legal claims. In this work, the PLR

is evaluated by applying a fault detection procedure that allows the filtering of

shading, snow and downtime. Compared with standard filtering methods, the

addition of an integrated FDD analysis within PLR pipelines offers a solution to avoid

the influence of reversible effects, enabling the determination of what we call the

intrinsic PLR (i-PLR). Applying this method to a fleet of PV systems in the built

environment reveals four main PLR bias scenarios resulting from shading losses. For

instance, a system with increasing shading over time exhibits a PLR of �1.7%/year,

which is reduced to �0.3%/year when reversible losses are filtered out.
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1 | INTRODUCTION

1.1 | Exponential growth and decay?

Following the rapid expansion of the photovoltaic (PV) systems mar-

ket and advancements in cell technology, solar power is more than

ever promoted as one of the safest, cleanest and most abundant

energy sources. Global cumulative capacity increased by 1 order of

magnitude in the last 10 years, reaching the 1 TWp milestone in

2022,1 and is predicted to more than double to 2.3 TWp in 2025.2,3

Yearly installed capacity is growing exponentially, with an additional

240 GWp in 2022.4 This value should further increase to about

3 TWp per year in order to meet the 2050 target of 70 TWp of global

capacity5—the market is therefore at the cusp of TW-scale growth.

This also follows a 90% decrease in cost of solar between 2009 and

2021.2 With this expected increase in PV deployment, along with the

growing amount of novel cell technologies entering the market,6–9

module and system reliability are more than ever central topics in the

field.10–12 It has arguably never been more important and relevant to

have a robust understanding of long-term performance loss mecha-

nisms in PV, with new degradation and failure modes potentially aris-

ing from the changing bill of materials (BOM), module configurations

and varying environmental factors.13–18 Reliability is also crucial for

any PV technology's commercial viability, with target lifetimes increas-

ing to 40 + years.19,20 New accelerated testing and field monitoring

methods capable of dealing with the rapid market expansion and

upscaling should be developed with a focus on data-based solutions

to leverage the increasing flow of PV monitoring data from inverters

and smart-metres. Digitalisation is therefore key in guiding operation

and maintenance (O&M) activities and reducing their cost, extending

PV system lifetime, and consequently improving system performance

and energy yield, thus reducing the levelised cost of electricity

(LCOE).

1.2 | Performance loss rate (PLR) and PV system
monitoring: A brief review

PV system performance is most commonly assessed with the PLR

metric. While certain key performance indicators (KPI), for example,

the performance ratio (PR), are clearly defined in standards such as

the IEC 61724-1:2021, there is still no consensus for the definition of

the PLR.21–24 The most common misconception observed in literature

is the commutable use of the terms degradation rate (Rd) and PLR: In

general, PLR refers to system-level performance losses, including both

reversible (e.g. soiling, shading and snow) and irreversible effects, such

as module-level degradation. In this work, the PLR is defined as the

change in annualised PR relative to the first year, following the defini-

tion of Deceglie et al.23 The degradation rate (Rd), defined as the rate

at which a PV module efficiency decreases over time, is therefore a

component of the PLR.

An additional layer of complexity in the PLR is the abundance of

methods and variations of the PLR metric.22,25,26 Although the general

steps to compute the PLR are similar in all cases, the statistical model

to extract the final reported value can vary significantly, leading to

large differences in results as well as complex uncertainty assess-

ments. Lindig et al. provide a succinct summary of the state of the art

and best practises for PLR calculations.22 Common PLR analysis pipe-

lines include (i) input data quality evaluation, (ii) data filtering,

(iii) performance metric selection, (iv) aggregation and (v) PLR calcula-

tion using statistical models. However, there are no uniform

approaches to reliably calculate the PLR, as concluded by the Interna-

tional Energy Agency (IEA) Photovoltaic Power System Program

(PVPS) Task 13 report.21 Instead, an ensemble approach is deemed

the most reliable calculation method, which consists in comparing

multiple analysis pipelines (varying the filtering approaches and statis-

tical models) and taking the mean inlier estimate. In this work, the

Year-on-Year (YoY) methodology is used as the statistical model, as it

is considered one of the most reliable regression analysis methods for

long-term performance assessment of PV systems27,28 and is imple-

mented directly in PLR analysis pipelines such as RdTools.29 Other sta-

tistical models include least-squares linear regression (LR),17 seasonal

trend decomposition using LOESS (locally estimated scatterplot

smoothing) (STL),18,30 statistical clear-sky fitting (SCSF)31,32 and

various nonlinear models such as Facebook Prophet (FBP)33,34 and

piece-wise regression.35,36

Lindig et al. also emphasise other challenges and opportunities for

performance loss estimations, such as the potential actionable insights

that can be gained through a component break-down analysis of the

PLR. Detailed knowledge of individual performance losses could

inform operations and maintenance (O&M) activities and reduce noise

in the PLR value. More recently, Deceglie et al. further highlight the

importance of distinguishing recoverable and nonrecoverable

losses,23,37 which have implications in the O&M and module technol-

ogy and operational environments, respectively. This work aims to

answer this open question, providing a method to filter reversible and

irreversible performance losses.

1.3 | Loss factors and degradation modes (DMs)

In this work, a fault is used as the general term for any effect causing

module power loss or safety issues.38–42 Within PV system faults, cer-

tain categorisations are useful to further distinguish between a perma-

nent, irreversible effect, known as a DM,43 or transient, reversible

losses, hereby called a loss factor (LF).44 Importantly, as well as causing

intermittent output losses, in the long run, LFs may lead to DMs, caus-

ing irreversible damage. For example, a typical LF is recurring shading,

which causes performance loss and may evolve into hot spots, poten-

tially leading to long-term damage such as delamination and glass

cracks.45–48 There is therefore a complex interplay between these LFs,

which can act as stressors on multiple system components and levels,

leading to further system faults.11 Figure 1A shows the decomposition

of the PLR between DMs and LFs, with example fault types.

Typically, PV manufacturer warranties state that module perfor-

mance should remain above 80% of nominal power after 25 years,
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which translates to module degradation below 0.8%/year, assuming a

linear trend. Figure 1B (adapted from Köntges et al.49) shows typical

performance loss scenarios with the impacting DMs. To ensure mod-

ules last long and continue to perform above the warranty levels, it is

vital to avoid early and midlife degradation which would cause severe,

irreversible power loss. However, as discussed above, when consider-

ing data-based approaches to quantify module or system performance

loss, LFs and external faults are embedded in the PLR metric. This can

cause unexplained high values of performance loss, for example, due

to evolving and growing losses over time. In particular, PV systems in

the built environment are often subjected to recurring shading events

and high temperature working conditions,50–52 which can therefore

have both direct effects on their long-term performance or cause neg-

ative bias in the performance trend analyses. While high temperatures

are relatively well understood and studied, with the IEC TS 63126

directly addressing solutions and modification in PV installations with

high temperatures,53,54 shade-induced degradation is not yet fully

understood.45 With routine shading events being prevalent in these

types of systems, bypass diode (BPD) activation is expected to occur

more frequently, which could lead to accelerated degradation due to

the heat dissipation and potential damage to the BPD or nearby

components.55–57

1.4 | The case of PV in the built environment

The rapid PV market expansion will drive a growth in building-

integrated and building-applied PV systems (BIPV and BAPV,

respectively).58–60 In particular, BIPV systems are dual purpose, as

they not only produce energy but also provide construction functions

within building skins, thus reducing the cost of refurbishment and ren-

ovation of existing buildings. However, BIPV systems are known to

have unique and variable operating environments, as they are often

subjected to elevated operating temperatures and regular shading,

demanding special attention to the module and system design.61–63

Along with the potential short-term reduction of energy yield, these

conditions risk affecting the long-term performance of such systems,

through accelerated degradation mechanisms or early failures.45,64 It

is therefore vital to have a clear understanding of the operating condi-

tions and additional stresses for PV in the built environment, with tai-

lored monitoring solutions.45,61 Thus, the methods developed in this

work are applied to a fleet of BIPV and BAPV systems in Switzerland,

in order to gain insights in their long-term operation and how the

identified LFs (especially shading) affect their performance and reli-

ability. The applicability of these findings to larger PV installations is

described in the discussion section.

1.5 | Proposed integrated solution

Within this context, this work proposes a novel method to evaluate

the PLR of PV systems by applying a fault detection and diagnosis

(FDD) procedure that allows the filtering of shading, snow and down-

time losses. Compared with standard filtering methods, which do not

reflect the intrinsic system health due to the inherent inclusion of

reversible losses in the data, the addition of FDD analysis within PLR

pipelines offers a solution to avoid the influence of such reversible

effects, enabling the determination of what we call the i-PLR.

This work applies the developed Fault Detection and Diagnosis

Algorithm (FDDA) to BIPV systems, in combination with their long-

term performance assessments. This paper is structured as follows:

Section 2 describes the methodology, focusing first on the FDDA, and

then the PLR assessment. Section 3 describes the results, which are

are divided in three parts: (i) example daily profiles of the identified

fault types; (ii) a case study of a BIPV system, where the full i-PLR

pipeline is applied and an on-site analysis is conducted to validate and

confirm the identified issues and (iii) fleet analysis results, highlighting

the main findings in terms of patterns in LFs and PLRs. Section 4

F IGURE 1 (A) Two components of the performance loss rate (PLR): degradation modes and loss factors. (B) Typical performance loss
scenarios for PV modules, adapted from Köntges et al.49 A few typical degradation modes are highlighted in yellow, and loss factors in blue—
varying stressors over time can impact the performance trend. The goal of this work is to decouple these various hidden effects from the
performance trend.
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discusses the results within the broader PV context, highlighting both

innovations and limitations. Finally, Section 5 concludes on the main

outcomes and future work.

2 | METHODS

The PLR should be understood as the sum of reversible and

irreversible performance loss effects in PV systems, and the goal of

this work is to decouple reversible loss effects from the metric in

order to better reflect PV system long-term performance. To this end,

two main analysis steps are required: (i) a fault detection step to

identify reversible effects and (ii) a PLR estimation step including

fault-type filtering.

2.1 | Developed fault detection algorithm

The primary goal of the developed fault detection algorithm is to iden-

tify LFs (reversible faults) within the PV system data. Building upon

the previous work of Fairbrother et al.,45 an algorithm capable of dis-

tinguishing six operating conditions is developed, based on the analy-

sis of string-level DC outputs compared with simulated outputs. The

general analysis pipeline is described here, following the flowchart

logic shown in Figure 2:

1. Data acquisition. The required data for the algorithm are the fol-

lowing: (i) PV system DC outputs (current, voltage and power), PV

system metadata (system tilt, orientation, DC size/capacity) and

site-specific meteorological data (global, direct and diffuse irradi-

ance). In this case, satellite-based irradiance data are used.65

2. Data preprocessing. The PV system data are filtered and cleaned

before running the fault detection analysis. A filter checks for out-

liers in the DC power data, based on the known system capacity

(0 <PDC ≤ 1:5 �PSTC , with PDC [W] the DC power and PSTC [Wp] the

string or system capacity). Plane-of-array irradiance is also calcu-

lated at this step using a transposition model based on system ori-

entation and tilt (in this work, the Hay–Davies model is used66).

3. PV output modelling. The pvlib Python library is used to simulated

DC outputs (current, voltage and power).67 The Sandia Array Per-

formance Model (SAPM) is used as a basis for the modelling.68

Specifically, the ModelChain class is used to create a digital twin of

the studied system or string, with the Faiman temperature model.

4. Day type classification. The irradiance data are used to distinguish

four types of daily weather (cloudless, nearly cloudless, cloudy,

overcast), which is used as an input for the fault classification. The

day type classification model is based on a Support Vector

Machine (SVM) classification model trained on over 10 years of

labelled meteorological data, using the direct normal irradiance

(DNI) as input parameter for training.69 Alternatively, the detect_-

clearsky function from pvlib can be used to identify time steps with

clear-sky conditions.

5. Fault classification. The comparison of the actual and simulated

DC outputs (specifically the combination of voltage and current),

along with the day type information, allows for the identification

of six distinct operating conditions. For each analysed day, statisti-

cal thresholds based on the daily standard deviations of the volt-

age and current are defined around the simulated outputs, and the

FDDA checks whether the actual DC values fall within or outside

the defined boundaries, as detailed in.45 The distinguished faults

are described below, and example daily profiles are given for each

fault type in section 3:

F IGURE 2 Simplified flowchart of the developed fault detection and diagnosis algorithm (FDDA) and long-term performance assessment. The
outputs of the FDDA are used to filter the loss factors and compute corresponding yield losses, leading to the definition of the intrinsic PLR (i-
PLR) reflecting system degradation.
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• F0jNormal: Represents the normal performance state, with no

faults or anomalies detected. The voltage and current are within

the defined boundaries.

• F1jSnow: Snow-related losses, generally characterised by a drop in

current and/or lower voltage due to the activation BPDs or inac-

tive modules, depending on the snow cover. Inhomogeneous snow

cover will yield current losses and low voltage, while homogeneous

snow can cause downtime (if snow if opaque) or high voltage and

low current (if there is low light transmittance through the snow).

Specifically, snow is detected if IDC <0:1 � Isimð Þ, where IDC [A] is the

DC current and Isim [A] the simulated DC current.

• F2jCloudy: Transient shading faults due to passing clouds, causing

mismatches in current and/or voltage. These faults can be charac-

terised by drops in voltage and current in cloudy or partially cloudy

conditions, where short-term and nonrecurring shading from

clouds is expected. The mismatch occurs mostly due to the uncer-

tainty in the satellite-based weather data, which has limited accu-

racy at 10–15 min time steps. These faults are detected only for

cloudy or overcast days, based on the day type classification step,

where voltage or current are below the defined thresholds:

VDC <Vsim�2 �σVð Þ and IDC < Isim�0:5 �σIð Þ, where VDC [V] is the

DC voltage, Vsim [V] the simulated DC voltage, σV the daily stan-

dard deviation of DC voltage used to define the fault detection

thresholds and σI the daily standard deviation of DC current. The

higher weight applied to the voltage threshold reflects the lower

variability of DC voltage in a given day, while a lower weight is

applied to current as the daily standard deviation is inherently

higher (directly correlated to the irradiation variations during the

day).45

• F3jShading (BPD activation): BPD activation is a common LF in

BIPV systems, as it occurs during shading events due to external

elements. The voltage will decrease abruptly due to the bypassed

module sections with partial shading. These faults are only

detected during cloudless or nearly cloudless days (to avoid the

uncertainty of partial shading in diffuse light conditions), when

VDC <Vsim�2 �σVð Þ. These faults are mostly recurring shadowing,

due to trees, chimneys or building elements, which cause periodic

shadows. The shading pattern usually evolves with a seasonal

trend due to solar angle dependencies.

• F4jShading (MPPT): Similar to F3, although their data fingerprint is

different. Partial shading can cause mismatches in the current out-

put of the string due to modules receiving varying irradiance levels,

causing multiple steps in the I–V characteristic of the string.

Depending on the inverter type, the maximum power point track-

ing (MPPT) algorithm can adjust the voltage to higher values, with

limited current defined by the shaded module(s). In such conditions

where there are multiple MPPs, tracking algorithms that start scan-

ning from the open-circuit voltage can therefore remain at high

voltages with limited current: VDC >Vsimþ2 �σVð Þ and

IDC < Isim�0:5 �σIð Þ.
• F5jDowntime: State of downtime or data loss, where PV strings

and/or data logging are disconnected or malfunctioning. This can

occur in extreme events, for example, during lightning or hail

storms, or can be linked to connection or server issues, broken

fuses or simply offline inverters. The fault is detected when the DC

parameters (current, voltage and power) are missing or equal to

0 during daylight.

2.2 | Long-term performance and i-PLR

Once the FDD step identifies the time steps during which PV systems

experience LFs, the next step of the analysis is the determination of

the PLR (see Figure 2). The main steps for computing the PLR pro-

posed by the IEA PVPS Task 13 experts24 consist of (i) input data

cleaning, (ii) data filtering, (iii) performance metric selection,

(iv) aggregation and (v) use of a statistical modelling method to

calculate the PLR. However, there is no consensus on a single PLR

computations strategy, with possible variations in almost all calcula-

tion steps. Thus, data quality and data-related uncertainties play a sig-

nificant role in the PLR values, which adds a layer of complexity in the

determination of a single, robust quantification of a system's

health.22,70–73 Although there is no standardised approach, the year-

on-year (YoY) methodology is often deemed the most robust regres-

sion analysis method for long-term performance assessment of PV

systems.27,74 It relies on the comparison of normalised yields through

subsequent years. This results in a statistical distribution of PLR

values, where the median is usually taken as the system PLR. The

analysis steps are generally as follows: Firstly, the string-level PV sys-

tem yield is normalised using the PR, defined as the quotient between

the system's final and reference yield. Following the IEC 61724-1

guidelines, the PR can be further adjusted for temperature depen-

dence and is denoted PR0 as follows:

PR0 ¼
P

kPmp,k � τk
� �

P
k

Ck,25 ∘ C � P0ð Þ �Gi,k � τk
Gi,ref

� � ð1Þ

Ck,25 ∘ C ¼1þ γ � Tmod,k�25 ∘Cð Þ ð2Þ

Where for the k time steps with recording interval τ, Pmp W½ � is
the measured DC power at MPP, P0 Wp½ � the rated power, Gi Wm�2

h i

the measured in-plane irradiance, Gi,ref ¼1000Wm�2 the irradiance at

which P0 is determined (STC), Ck,25 ∘ C the power rating temperature

adjustment factor, Tmod
∘C½ � the module temperature and γ %= ∘C½ �

the relative maximum power temperature coefficient. For the

standard PR, the temperature correcting term is set to 1.

In this work, the standard PR is used (no temperature correction).

The next step involves filters which are applied to remove outliers and

improve data quality (using the data at 15 min time steps)—an irradi-

ance filter to remove extreme irradiance conditions ( < 100 W m�2 or

> 1250 W m�2) and a PR filter with low and high thresholds of 0:3

and 1:2, respectively (removing extreme shading mismatches and irra-

diance peaks due to cloud reflections). The novelty compared with

standard PLR pipelines is then introduced with the fault type filter.
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This step aims to remove all influence of reversible faults, that is, LFs,

from the system data, making use of the prior FDDA results. To do so,

all time steps that are detected in operating conditions F1–F5 are

filtered out, leaving only the F0 state which represents normal opera-

tion, essentially decoupling the reversible losses from the PV system

data. The PR is then aggregated to daily averages, and a final clear-sky

filter is applied (based on the day type classification step), removing

cloudy or overcast days.69 The PR values are then renormalised to the

first year of operation data in order to compute the annualised perfor-

mance loss. Finally, the PLR can be computed using the YoY regres-

sion analysis, which results in a histogram of PLRs, of which the

median value is considered as the final system PLR. Specifically,

instances of PLRs (denoted YoY) are computed by comparing the PR

from 1year to the next:

YoY ¼PRd
year i�PRd

year i�1

Δt years½ � ð3Þ

where PRd
year i is the daily PR on a given day in year i, PRd

year i�1 the

daily PR of the prior year and Δt the difference between the two

points in years. Repeating this for all PR values yields a distribution of

YoY comparisons, of which the median is selected as the final PLR.

When the fault type filtering is applied, this value is what we define as

the i-PLR, reflecting the intrinsic PV system degradation. Removing

the fault type filtering step would yield the standard PLR, which can

then be compared with the intrinsic value to gain insights on the

impact of LFs on the PLR.

2.3 | Understanding and assessing uncertainties

The subject of uncertainty should also be discussed when computing

metrics such as the PR and PLR. There are two main components to

the uncertainty: (i) analytical uncertainty, associated with the limita-

tions inherent in the measurement instrument or method itself, that

is, the uncertainty of the satellite- or ground-based irradiance mea-

surements, which translates to a measurement uncertainty in the PR,

and (ii) statistical uncertainty, associated with the variability observed

in a set of measurements, that is, the uncertainty related to the statis-

tical tool used to evaluate the PLR. For the first component, minimis-

ing the uncertainty can be achieved by using well maintained and

calibrated ground sensors. However, access to pyranometer data is

often not possible for smaller commercial or residential PV systems,

and satellite-derived data were found to be a valid alternative when

ground measurements are not available.75 Regarding the statistical

uncertainty, the exact methods depend on the statistical model cho-

sen for the PLR estimation. The general formula to determine the

95% confidence interval (CI) is as follows:

UPLR ¼ k �uPLR ð4Þ

where UPLR is the expanded uncertainty, k the coverage factor

(k¼1:96 for 95% CI) and uPLR the standard uncertainty derived from

the measurement results. In the case of LR models, uPLR is determined

from the variance of the linear model coefficients.22 For the YoY

method applied in this work, bootstrap resampling of the probability

density function of individual YoY instances is used to determine the

uncertainty.76

Importantly, the CIs of PLR measurements need to be reported

clearly. The uncertainty of PLR assessments is inconsistently shared in

current literature (often only the median value is published), which

leads to further misunderstanding of the metric. Statistical significance

is especially crucial for the PLR when values are compared, for exam-

ple, examining the performance of different PV technologies or cli-

mates. Without clear CIs, no conclusion can be made on the statistical

significance of results.

3 | RESULTS

3.1 | Identified fault types and LFs

Figure 3 shows example daily profiles of DC current IDC [A] and volt-

age VDC [V], with statistical thresholds based on simulated model out-

puts Isim and Vsim shown as shaded areas. Heat maps below each fault

type example show detected faults (at 15min. time steps) as well as

relative current loss [%], which is a quantification of the relative differ-

ence between the simulated and actual currents. These fault examples

are extracted from different PV system string, hence the variations in

current and voltage axis ranges. The following comments can be made

for each fault type:

• F0jNormal: Voltage and current are both within the defined

thresholds. This example shows a typical clear-sky day for a good

performing system, with the expected gradual voltage drop due to

increasing irradiance and thus operating temperature during the

day.

• F1jSnow: Extremely low current and reduced voltage indicate par-

tial coverage of modules with opaque snow, causing the limited

module(s) to dictate current behaviour, and BPD activation causing

the voltage drop.

• F2jCloudy: Typical cloudy or overcast days see a voltage curve

which does not diminish in the middle of the day like in the exam-

ple of F0, as the temperature is more stable. Here, a drop in volt-

age during short-term inhomogeneous irradiance conditions is

observed in the morning, likely due to a mismatch between the

satellite-based irradiance data and the actual observed irradiance.

• F3jShading (BPD activation): A 50% drop in voltage is observed in

the afternoon, indicating BPD activation due to some form of par-

tial shading in the string.

• F4jShading (MPPT): In this case of irradiance mismatch, the maxi-

mum power point tracker (MPPT) adjusted the voltage and current

to the local instead of global MPP, causing a limited current and

high yield losses.

• F5jDowntime: The system disconnected for around 30 min in the

evening, causing a gap in the data.

6 QUEST ET AL.
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3.2 | Shaded BIPV system case study: FDD
validation

The developed pipeline is applied to a BIPV rooftop system located in

the Bern region of Switzerland as a case study and validation for the

developed FDDA. The system is east–west oriented, with two 24�

tilted roof sides, separated into four strings connected to two

inverters. The total system capacity is 21:3 kWp, and this case study

will focus on the two west-facing strings of 5.22 kWp capacity each.

The system was also analysed on-site to validate the data-based

results, with a full system check in August 2022.

Figure 4 shows the FDD analysis resulting heat maps, where col-

ours correspond to the different operating conditions (see Figure 3

for detailed examples of daily production profiles). Yearly heat maps

are shown for the system lifetime, highlighting the evolution of LFs

over time. The two strings of the roof are analysed separately, with

string 1 representing the bottom half of the rooftop and string 2 the

top. The following observations are made:

• During all analysed years, morning F4 faults are detected in

string 1, corresponding to decreased power output due to par-

tial shading, where a mismatch in the string causes the MPPT

F IGURE 3 Example daily
production profiles for the identified
loss factors, showing DC voltage and
current (solid lines), with simulated
thresholds (shaded areas), along with
fault type and current loss heat maps.
Current and voltage ranges vary due
to different systems being used for
the example faults. The current loss is

computed relative to the simulated
output, with values ranging from 0 to
1, where 1 is equivalent to 100%
current loss. Used abbreviations: BPD,
bypass diode; MPPT, maximum power
point tracker.
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to function at higher-than-expected voltage and lower current

(local MPP identified by the inverter MPPT algorithm). Given

the repeating and stable nature of the fault over time, it is likely

caused by a permanent shading element. Through on-site analy-

sis of the system, the fault is confirmed to be due to a chimney

(highlighted in blue in the roof photograph in Figure 4), which

shades modules in the string during morning hours (sun rising

from the east).

• Due to the string arrangement, string 2 only shows chimney shad-

ing in the evening hours, as the sun sets in the west.

• Recurring BPD activation (F3) is observed for string 1 in the eve-

ning hours, with a pattern of increasing intensity over time. The

year 2017 is notably unaffected by the fault, which indicates a

change in the shading element. Through on-site analysis, the fault

is identified as shading from a tree in front of the west-facing roof

(highlighted in orange in the roof photograph in Figure 4), which

casts a large shadow in afternoon hours.

• With the heavy snow during the 2017 winter (detected in the

FDDA as F1 faults), as well as trimming and cutting of branches

during that year (confirmed by the PV system owner), the tree was

not found to create shadow losses. Notably, the chimney-related

shading stress is still observed during that year. From 2018

onward, the tree is seen to shade with increasing intensity, likely

linked to the growing branches and foliage.

F IGURE 4 Yearly fault type heat maps of the two strings of the west-facing building-integrated PV (BIPV) system rooftop, from 2014 to
2021. Recurring shading events are observed in the morning and evening hours, especially for string 1, due to a chimney and nearby tree. String
2 also sees recurring shading, started from 2019 onwards due to the tree. System information and stringing layout are shown at the top, where
the shading elements (chimney and tree) are highlighted in the system photograph.
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• String 2 being on the top side of the roof, the tree shading does

not cause any recurring BPD activation until 2019, where it starts

appearing and increases in the subsequent years. This is attributed

to the tree growth, creating a progressively larger shading area and

reaching the modules of string 2.

• Looking at string 1 during the year 2021, and considering the shad-

ing faults F3 due to the tree, potential yield gains over the year are

estimated at �0.63 MWh/year, representing a potential 10%

increase in total string output for that year if the tree were cut

down or reduced enough in size to avoid direct shadowing of

modules.

• Linking back to Figure 1 with the LFs and DMs, string 1 is found to

have at least one broken BPD through the on-site analysis, which

is likely directly tied to the recurring shading events, causing heavy

thermal and thermomechanical stress in the repeated activation.

The FDD analysis therefore yields important outcomes for both the

system owner and installer or manufacturer, leading to the quantifica-

tion of avoidable losses due to surrounding elements. With this case

study, the defined fault types of the FDDA are therefore validated,

and the patterns in the heat maps correlate directly to the shading

induced by the surrounding elements. Notably, even without on-site

confirmation of the shading origin, the fault evolution over time

indicates the variable nature of the shadowing elements, which would

be enough to suppose an avoidable loss pattern.

3.3 | Shaded BIPV system case study: Long-term
performance assessment

The next step in this case study is the long-term performance assess-

ment. Figure 5 shows the resulting PR trends and PLR values for the

two analysed strings, distinguishing between the standard PLR and

i-PLR. The intrinsic PR trend and i-PLR value are the result of the

additional filtering of LFs resulting from the prior FDD step.

Comparing both methods highlights the impact of the identified LFs

on the long-term performance of the strings. The yearly relative yield

losses per fault type are also shown for each string, calculated as the

relative difference between the simulated DC power and actual

power during time steps where each LF is detected. The following

observations are made:

• For string 1, the standard PLR is found to be �1.7%/year, which is

higher than the expected �0.5 to �0.75%/year described in litera-

ture for crystalline Silicon technology.77 This could indicate that

(i) the system is degrading over time, causing lowering

F IGURE 5 (Left) Daily performance ratio trends and reported performance loss rates for standard performance loss rate (PLR) and intrinsic
PLR (with fault type filtering, removing the loss factors detected through the fault detection algorithm) for the two analysed building-integrated
PV (BIPV) strings. The resulting PLR values are reported in the figure legends, and represented by a solid linear trend line to highlight the
difference between the two methods. (Right) Yearly relative yield losses (comparing simulated optimal yield and actual yield) per identified fault
type. For string 2, the relative shading losses (isolating F3 and F4) are shown separately to highlight their increase over time.
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performance, (ii) the system is experiencing conditions which lead

to decreasing yield patterns over time or (iii) a combination of the

above, which is the most likely explanation when using the stan-

dard PLR computation methods. With the help of the detailed

FDDA results, the decoupling of performance loss effects is possi-

ble, and the result of this filtering is a median i-PLR of �0.3%/year.

The i-PLR is therefore 80% higher compared with the standard

method.

• Looking at the relative yield losses over time, shading losses

increase by a factor 3 between 2017 and 2021, leading to a drift in

the daily PR trend. The increasing shading therefore directly

impacts the long-term performance results, creating a bias which is

not directly linked to system degradation, but only reversible loss

effects.

• String 2 shows good agreement between the PR trends prior to

2018, at which point a progressive increase in shading losses also

starts to cause a negative bias. Although the relative losses are

minor compared with string 1, the resulting standard PLR is still

higher than the i-PLR, which shows almost no change in perfor-

mance when looking at the system in normal operating conditions

(filtering all detected LFs).

Figure 6 shows the exact PLR values and the CIs resulting from the

statistical method. The CIs show that the difference between the

PLR and i-PLR is statistically significant. Interestingly, string 1 still

sees significant i-PLR (around �0.3%/year), while the i-PLR for

string 2 is close to zero. This indicates that most of the performance

losses observed in the standard PLR for string 2 are likely due to

reversible LFs, and the intrinsic system health is stable over the

study period.

This case study highlights (i) the importance of understanding

the PLR value and how it is not a quantification of degradation

but rather an indicator of the overall system performance and

(ii) that LF analysis and FDD should be used in tandem with long-

term performance assessments to decouple these effects, giving a

better reflection of actual system health rather than system output

performance.

3.4 | Fleet analysis: Loss patterns and i-PLR bias

Having seen examples of the FDDA results for a specific case study, it

is interesting to expand the results to a fleet of systems. A total of

250þ individual strings were analysed, from 60þ BIPV and BAPV sys-

tems in Switzerland. After data cleaning and processing, results are

obtained for 54 systems, corresponding to 160 strings. The goal here

is to determine the different types of biases caused by the reversible

faults categorised through the FDDA. Future work will focus on

applying the full pipeline to larger fleets of systems and extracting rel-

evant performance statistics.

Given the observations from the case study, the results for the

fleet of systems are therefore used to distinguish the impact of LFs on

the PLR, with a focus on partial shading, which is especially relevant

to PV systems in the built environment. To do so, the FDDA and PLR

pipelines are applied to all 160 strings, and the i-PLR is compared with

the PLR along with the evolution of estimated shading losses over

time. The results of this analysis yielded four categories of losses or

four typical patterns of PLR bias due to the influence of evolving

shading losses in time. Figure 7 shows the results for four representa-

tive BIPV strings, selected for each category. The standard and i-PLR

F IGURE 6 Standard and intrinsic
performance loss rate (PLR) values
for the two case study strings. (Left)
median PLR values and confidence
interval (CIs). (Right) table reporting
the PLR results and CIs.
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values are compared, with the corresponding PR trends, as well as the

evolution of relative shading losses in time. The main loss and bias

patterns are categorised as follows:

1. Increasing shading: when shading losses increase over time, the

standard PLR is negatively biassed and shows higher values than

the i-PLR due to the down shift in PR. This results in an overesti-

mation of the PV string performance degradation.

2. Decreasing shading: when shading losses decrease over time, the

standard PLR is positively biassed and shows lower values than

the i-PLR due to the up shift in PR. This results in an underestima-

tion of the PV string performance degradation.

3. Constant shading: when shading losses do not vary over time, the

standard and i-PLR are the same, as there is a constant shift in PR

trends.

4. No recurring shading: when there are no or very low shading

losses over time, the standard and i-PLR are the same and there is

no shift in PR trends.

4 | DISCUSSION

The definition of the i-PLR and the developed methodology combin-

ing FDD and PLR assessments into one analysis pipeline were shown

to successfully decouple the reversible losses, which are also quanti-

fied, from the PV system degradation. The following discussion will go

through the scientific innovations of the proposed method, as well as

the caveats and limitations.

4.1 | Scientific impact and innovations

• The combination of fault detection methods with long-term perfor-

mance data analytics brings many interesting insights regarding the

reliability of PV systems. The double approach enables the decou-

pling of intrinsic and extrinsic performance loss effects, which has

been highlighted in recent works as an important research area for

PV system reliability.22,23 The results highlight the importance of

taking into account LFs when analysing PV system data, as they

can cause significant biases in the final PLR value.

• The defined i-PLR metric is therefore a reflection of module

degradation, although it still accounts for other system compo-

nents degradation. Consequently, it serves as valuable information

for installers and O&M companies in relation to contractual

guarantees and module warranties. The FDD outputs may hold

significant relevance for optimising O&M procedures, facilitating

the transition from reactive/preventative maintenance to a

predictive maintenance approach. With strong potential savings in

O&M costs, this solution can help increase the reliability and

profitability of PV projects.78

• This work also highlights the importance of a correct definition of

performance metrics in the PV reliability field. The standard PLR is

still a useful and informative metric; however, its scope is often

misrepresented in literature and in industry applications. The i-PLR

defined here can be considered a step closer to the quantification

of system degradation, although this value should still not be con-

fused with module-level degradation.

• The results presented in this work have a unique focus on small-

scale PV systems in the built environment. Various studies have

F IGURE 7 Comparison of daily performance ratio (PR) trends for the intrinsic and standard performance loss rates (PLRs) for the four
identified shading loss scenarios (exemplified with different building-integrated PV [BIPV] systems), highlighting the potential shift in PR after
filtering for loss factors and the impact on the PLR evaluation. Corresponding yearly relative shading loss evolution is also shown.
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already reported utility-scale systems performance,24,37 but such

findings may not be readily applied to small systems,45 where the

definition of the i-PLR is particularly relevant given the prevalence

of shading faults, which are seen to have a high impact on the PLR.

• Focusing on small-scale PV systems also allows for higher granular-

ity in the treatment of data—the developed algorithms and analysis

methods can be applied on a string-level (e.g. 20 modules con-

nected in series), as opposed to the typical system-level approach

most common in literature. This adds valuable insights in the

observed mismatches in performance and allows for more detailed

and effective classification of defects. In large-scale PV installa-

tions, the use of central inverters typically reduces data granularity,

leading to the overlapping of LFs and DMs.

4.2 | Limitations and future work

• The current work is only applied to BIPV and BAPV systems,

although the methodology is not limited to any particular system

configuration. The input requirements are simply the DC

system outputs and satellite or ground-based weather data. In gen-

eral, small-scale systems will benefit from higher data granularity

but lack on-site meteorological data monitoring, while utility-scale

systems are often equipped with pyranometers or weather stations

but tend to have low spatial granularity in terms of inverter data.

There is therefore a trade-off between the precision of FDD and

uncertainty of performance trend: Results of the FDD analysis will

typically be more detailed for small-scale systems, as there can be

superposition of DMs for larger installations. However, uncertainty

linked to solar resource inputs may be lower for larger systems,

which can impact the assessment of the PLR.

• The identified LFs do not cover all potential reversible loss effects.

Extensions could include soiling, which is a reversible fault causing

bias in the PV system data.37 The main limitation in the case of

soiling is that the losses do not manifest in a finite time step with

specific DC output fingerprints; the losses are progressive, affect-

ing mainly the current, and are often too low to be able to quantify

accurately without soiling sensors. A potential way around the soil-

ing impact in system performance is to filter for clear-sky days that

occur after precipitation events, which would minimise the impact

of soiling accumulation.

• There are many sources of uncertainty in the analysis pipeline,

which compound and transfer to the final PLR value: measurement

uncertainties related to the inverters and meteorological data

sources (high for satellite-based), uncertainties in the fault detec-

tion and statistical thresholds, errors in the performance metric

(PR) and statistical uncertainty in the PLR calculation (here the YoY

method). Minimising these uncertainties will be the focus of future

work.

• Climate and technology have also been shown to impact the accu-

racy and uncertainty of PLR assessments.79 The proposed method

in this work, namely, the inclusion of fault detection steps in the

PLR analysis pipeline, is in theory climate- and technology-

independent. Specifically, the concept of filtering reversible losses

from PV system data should be independent of the system location

or module type. Nevertheless, given that the YoY statistical

method is used to compute the PLR and that this method has been

shown to be biassed in certain climates, future work should exam-

ine the sensitivity of the i-PLR in various conditions (e.g. using syn-

thetic data with induced faults and PLR for various technologies

and climates).

• Although the i-PLR is a better reflection of the DMs affecting the

PV system and therefore arguably serves as a better representation

of system reliability linked to the manufacturer's warranty, it is still

not to be confused with module-level degradation and includes all

system and electrical losses.

5 | CONCLUSION

This work is a first attempt to bridge the gap between the fields of

FDD and PLRs in PV systems. Reversible LFs, which impact short-

term PV system performance, are shown to impact and bias the PLR

evaluation of PV systems. The developed fault detection method is

shown to successfully identify partial shading, snow and downtime

losses in a case study with on-site validation, where evolving yield

losses over time led to a shift in PR trend. This approach may be

extended to further identify, classify and filter other LF (e.g. soiling).

Furthermore, a fleet analysis of PV systems in the built environment

enabled the identification of four distinct PLR bias patterns associ-

ated with changes in yield losses over time. While the presented

results are specific to BIPV and BAPV systems, the combined FDD

and PLR pipeline is applicable to all PV system configurations, and

future work will examine larger PV system fleets with varying config-

urations and capacities. Overall, the introduction of the newly

defined i-PLR, with the additional filtering of reversible losses, pro-

vides a more accurate reflection of PV system health and reliability

compared with the standard PLR. Future work in the field

should therefore consider integrating such filtering steps in order to

improve accuracy in performance assessments and avoid erroneous

interpretations of the PLR. Additionally, further research should

address the limitations of the presented work, such as improving the

coverage of identified LFs and minimising the sources of uncertainty

in the analysis pipeline.
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APPENDIX A: KEY DEFINITIONS

As highlighted throughout this work, clear definitions of metrics are

vital in the understanding of performance loss effects in PV systems,

as there is often confusion surrounding performance loss and degra-

dation rates. The following key definitions are presented to solidify all

of the main concepts:

� Loss factor (LF): transient and reversible effects that cause power

loss in PV modules or systems due to external factors. Examples of

such factors include partial shading, snow and soiling.

� Degradation mode (DM): permanent and irreversible effects that

lead to a loss of performance in PV modules or systems due to the

degradation of internal components. Examples of such degradation

include cell cracks, delamination and glass breakage.

� Performance ratio (PR): metric used to assess the performance of a

PV module or system, defined in the IEC 61724-1 as the quotient

between the system's final yield and its reference yield (see

Equation (1)). The Performance Ratio takes into account various

factors that can affect the performance, including losses due to

shading, soiling, temperature variations (the temperature-corrected

PR can solve this) and other environmental and operational condi-

tions. In this work, the system-level standard PR is used.

� Degradation rate (Rd): rate of annual decrease in a PV module's

performance, expressed as a percentage of the original efficiency

lost. This reduction reflects irreversible material degradation due to

the cumulative impact of various factors, including environmental

conditions, damage to module components and the effects of long-

term wear and tear, that is, the module-level DMs. The degradation

rate does not encompass system-level losses or reversible loss fac-

tors, and exclusively addresses module-level degradation. There-

fore, at the system-level, the degradation rate represents the

average module degradation across the PV array.

� Performance loss rate (PLR): metric used to quantify the annual

reduction in PV module or system performance, defined as the
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change in annualised performance ratio relative to the first year of

operation (see Equation (3)). The PLR includes both the reversible

loss factors (e.g. shading and snow) and irreversible DMs (e.g. cell

cracks and delamination).

� Intrinsic performance loss rate (i-PLR): adjusted PLR metric, where

loss factors causing reversible losses are filtered out using a fault

detection and diagnosis algorithm, therefore reflecting the intrinsic

system losses and DMs.

16 QUEST ET AL.
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