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Abstract

Let F be a family of n pairwise intersecting circles in the plane. We show that
the number of lenses, that is convex digons, in the arrangement induced by F is at
most 2n−2. This bound is tight. Furthermore, if no two circles in F touch, then the
geometric graph G on the set of centers of the circles in F whose edges correspond
to the lenses generated by F does not contain pairs of avoiding edges. That is, G
does not contain pairs of edges that are opposite edges in a convex quadrilateral.
Such graphs are known to have at most 2n− 2 edges.

1 Introduction

Given a family F of circles in the plane we consider the planar arrangement that is induced
by the circles in F and denote it by A(F). The arrangement A(F) consists of vertices
that are intersection points of circles in F and also of edges that are arcs of circles in F
delimited by two consecutive vertices. Finally, A(F) consists also of faces that are the
connected components of the plane after removing from it the union of all circles in F .
A digon in A(F) is a face in the arrangement A(F) that has two edges. We distinguish
between two types of digons in arrangements of circles. A lens in A(F) is a face with two
edges in A(F) that is equal to the intersection of two discs bounded by circles in F . Each
of the two circles in F corresponding to a lens is said to support the lens. The lens is said
to be created by these two circles supporting it. Lenses are in fact just the convex digons
in A(F). The arrangement A(F) may contain also digons that are not convex. These are
digons that are equal to the difference of two discs bounded by circles in F . They are
called lunes.

Grünbaum[6] conjectured that the number of digons in arrangements of n pairwise
intersecting pseudo-circles is at most 2n− 2. This conjecture of Grünbaum was verified in
by Agarwal et al.[1] for arrangements of pseudo-circles surrounding a common point. In a
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recent work by Felsner, Roch, and Scheucher[4], Grünbaum’s conjecture was verified for
any arrangement of pairwise intersecting pseudo-circles under an additional assumption
that the family of pseudo-circles contains three pseudo-circles every two of which create a
digon in the arrangement.

In this paper we will be concerned with digons that are lenses in a family of pairwise
intersecting circles. We will show that the number of lenses in an arrangement of n pairwise
intersecting circles without any further assumption is at most 2n− 2.

Theorem 1. Let F be a family of n pairwise intersecting circles in the plane. Then A(F)
has at most 2n− 2 lenses. This bound is tight for n > 4.

The simple construction in Figure 1 shows that the bound in Theorem 1 is best possible
for n > 4. There are 5 circles in this construction and 8 lenses. One can generalize the
construction for any number of circles by suitably adding more circles to the three smaller
circles in the figure.

Figure 1: A family of 5 pairwise intersecting circles with 8 lenses.

It is interesting to note that the number of lenses in arrangements of pairwise intersecting
unit circles is different. It is shown in[10] that there are at most n lenses in any arrangement
of pairwise intersecting unit circles in the plane and this bound is best possible.

There has been a lot of research about lenses in arrangements of circles and pseudo-
circles that are not necessarily pairwise intersecting. We will not survey here the vast
literature about digons in arrangements of circles and pseudo-circles and on related
situations where we allow curves to intersect more than twice and only refer the reader
to[5] and the many references therein. The case where circles need not be pairwise
intersecting is of completely different nature. We remark that in such a case the best
constructions show that it is possible that n circles will determine Ω(n4/3) many lenses.
The best known upper bound is O(n3/2 log n) given in[8], that is following the footsteps
of[11]. The case of unit circles is of particular interest because of its relation to the
celebrated unit distance problem posed by Paul Erdős[3].
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Going back to families of pairwise intersecting circles, the number of lunes in these
arrangements was studied in[2].

Theorem 2 ([2]). Let F be a family of n pairwise intersecting circles in the plane. Let G
be the geometric graph on the set of centers of the circles in F whose edges correspond to
pairs of discs bounded by circles in F whose difference is a lune in A(F). Then G is a
bipartite planar embedding. Consequently, A(F) has at most 2n− 4 lunes.

Theorem 2 is used in[2] to derive a linear upper bound (that is not tight) for the
number of lenses in arrangements of pairwise intersecting circles in the plane. Theorem 1,
that we prove here, provides the tight upper bound for the number of lenses in a family of
pairwise intersecting circles in the plane.

Similar to the proof of Theorem 2, the proof of Theorem 1 relies too on studying the
corresponding geometric graph G = G(F) whose vertices are the centers of circles in F
and two centers are connected by an edge in G(F) iff the corresponding circles in F create
a lens in A(F). We will show that unless we allow two circles in F to touch, then G does
not contain a pair of avoiding edges. Two straight line segments (or edges in a geometric
graph G) are called avoiding if they are opposite edges in a convex quadrilateral. Handling
the case of F having pairs of touching circles will require only a bit more effort. This is
because if we allow touching circles in F , the geometric graph G(F) may contain pairs of
avoiding edges. Luckily, we will be able to compensate for this.

The important property of geometric graphs that do not contain pair of avoiding edges
is given in[7] and[12] (see also[9] for a different and shorter proof of the same result, based
on graph drawing).

Theorem 3 ([7, 12]). Let G be a geometric on n vertices. If G does not have a pair of
avoiding edges, then it has at most 2n− 2 edges. This bound is tight for n > 4.

Our main goal is to prove Theorem 1. In order to prove Theorem 1 we start by making
some assumptions without loss of generality that will help to simplify the presentation.

We first observe that we may assume that no two discs bounded by the circles in F
may contain each other. Assume that C1 and C2 are two circles in F such that the disc
bounded by C1 fully contains the disc bounded by C2. Because every two circles in F
intersect, it must be that C2 touches C1 internally. We claim that in such a case C1 cannot
support any lens. The reason is that if C1 create a lens together with a circle C3 in F ,
then necessarily C3 and C2 cannot intersect (see Figure 2).

We can therefore remove C1 from F and conclude Theorem 1 by induction on the
number of circles in F . We henceforth assume that no two discs bounded by circles in F
may contain each other. We conclude that if two circles in F touch, then they must touch
externally and consequently no more than two circles in F may be pairwise touching at a
common point.

For reasons that will become clear later, it will be more convenient for us to assume
that if C1 and C2 are two circles in F that support a lens, then the segment connecting the
center of C1 to the center of C2 is not collinear with any center of circle in F that is not
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C1

C2

C3

Figure 2: C2 cannot be contained in the disc bounded by C1.

on that segment. We can indeed assume this without loss of generality. This is naturally
the case if we assume that no three centers of circles in F are collinear. If we want to
avoid this assumption, then we can just apply a generic inversion to the plane. In such
a case three centers of circles in F will remain collinear only if they form a pencil, that
is only if they pass through two common points (or mutually touch at a point, which is
impossible in our case). However, in such a case where we have several circles in F passing
through two common points, then only the two extreme circles may create together a lens
(see Figure 3). In such a case the segment connecting the centers of these two extreme
circles will not be collinear with any other center of a circle in F not on that segment. In

C3
C4

C5

A1 A2 A3 A5A4

C1

C2

Figure 3: A pencil of circles. Only the two extreme circles, C1 and C5 in this figure, may
create a lens.

order to prove Theorem 1 and in order to allow also touching circles in F , we define the
geometric graph G = G(F) on the set of centers of the pairwise intersecting circles in F
in the following way. The edges of G will be either red, or blue. We connect two centers
of circles in F by a red edge if the corresponding circles create a lens. We connect two
centers of circles in F by a blue edge if the corresponding circles touch.

The following theorem is of independent interest and is also an intermediate step before
proving Theorem 1.
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Theorem 4. The geometric graph G(F) does not contain pairs of avoiding edge unless
there are four circles C1, C2, C3 and C4 in F passing through a common point at which C1

and C3 touch each other and also C2 and C4 touch each other. Only in such a case it is
possible to have avoiding edges in G(F). The avoiding edges in such a case can only be a
pair of two opposite red edges in the quadrilateral whose vertices are the centers of such
four circles C1, C2, C3, and C4.

We present the proof of Theorem 4 in Section 2. Then we bring the proof of Theorem
1 in Section 3.

2 Proof of Theorem 4.

Assume that e and f are two avoiding edges in G(F). Then e and f remain two avoiding
edges in the graph G that corresponds only to the four circles in F whose centers are the
four endpoints of e and f . This is because by removing, or ignoring, all other circles in F
we cannot destroy the digons, or pairs of touching circles corresponding to the edges e and
f . For the proof we will indeed assume that F is a family of only four circles. These are
the four circles in the original family F that are centered at the endpoints of the avoiding
segments e and f . Consequently, G = G(F) is a geometric graph with only four vertices.
Denote by A1 and A2 the vertices of e and let A3 and A4 be the vertices of f . Because
e and f are avoiding, we assume without loss of generality that A1A2A3A4 is a convex
quadrilateral. For i = 1, 2, 3, 4 denote by Ci the circle in F centered at Ai. Denote by Di

the closed circular disc bounded by Ci.
In order to simplify the presentation of the proof we would like to assume that there is

a point M common to three of the circles C1, C2, C3, and C4. We can assume this without
loss of generality. This is because if this is not the case we inflate the circle C1 keeping its
center A1 fixed until the first time C1 passes through an intersection point of two other
circles from F , namely an intersection point of two of the circles C2, C3, and C4.

More precisely, assume that no three of C1, C2, C3, and C4 pass through a common
intersection point. Because C1 and C2 create a lens or externally touch, it must be that the
intersection points on C2 with the circles C3 and C4 lie outside of D1. We start inflating
C1 until the first time it meets an intersection points of two of C2, C3, and C4. When this
happens C1 still intersects with each of C2, C3, and C4 because each of C2, C3, and C4

contains at least one intersection point that is not surrounded by C1, while each of C2, C3,
and C4 contains also points in D1 because before we inflated C1 it intersected each of
C1, C2, and C3, while D1 only increases through the inflation of C1. The only thing that
is left two show is that e and f are still edges in G(F), that is, we need to show that even
after the inflation of C1 it is still true that C3 and C4 create a lens or touch and the same
is true for C1 and C2. The reason this is true is that the intersection points of C1 with
any of C2, C3, and C4 move continuously with the inflation of C1. Therefore, if C3 and
C4 create a lens, then the edges C3 ∩D4 and C4 ∩D3, remain edges in A(F) also after
inflating C1. It is also clear that if C3 and C4 touch, then they remain touching regardless
of the inflation of C1. If C1 and C2 create a lens, then the edges C1 ∩ D2 and C2 ∩ D1
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remain edges in A(F) also after inflating C1 and therefore C1 and C2 create a lens also
after we inflate C1.

The only case where we need to be careful is if C1 and C2 touch each other before
we inflate C1. In this case as we start inflating C1 it creates a lens with C2 and by the
argument above it will create a lens with C2 also when the inflation of C1 is stopped.

We conclude that by inflating C1, keeping its center fixed, we may assume that three of
the circles in F pass through a common point while e and f remain two avoiding edges in
G(F). Therefore, we assume without loss of generality that C1, C2, and C3 pass through a
common intersection point that we denote by M .

Denote by s1, s3, and s4 the arcs C2 ∩D1, C2 ∩D3, and C2 ∩D4, respectively. We note
that each si may be degenerate and equal to a single point in case Ci and C2 touch. Notice
that M is an endpoint of both s1 and s3. For i = 1, 3, 4 let Si denote the center of the arc

si. We notice that Si is the point of intersection of the ray
−−−→
A2Ai with C2. For this reason

and because A1A2A3A4 is a convex quadrilateral, the point S4 must lie in the shorter arc
of C2 delimited by S1 and S3 (see Figures 4 and 5).

C2
Ci

si

Si

A2

Ai

Figure 4: The arc si with its center Si.

We claim that the intersection of s1 and s3 is equal to the point M . Indeed, otherwise
s1 and s3 are both nondegenerate arcs and the relative interiors of s1 and s3 overlap. Then
arc s1 is an edge of the lens D1 ∩ D2 and cannot contain any intersection points in its
relative interior. The arc s1 can also not be equal to s3, or else A1, A2, and A3 are collinear,
contrary to the assumption that they are three vertices of a convex quadrilateral. We
conlude from here that it must be that s3 strictly contains s1 (see Figure 5).

Because S4 lies in the shorter arc of C2 delimited by S1 and S3, it follows that S4 lies
in the relative interior of s3. Consequently, S4 lies in the interior of D3. At the same time
S4 lies also in D4. This shows that S4, that is a point on C2, belongs to the lens or is
equal to the touching point D3 ∩D4. This is possible only if S4 is an intersection point of
C3 and C4. However, the latter case is impossible because S4 lies in the interior of D3.

Having shown that the intersection of s1 and s3 is equal to the point M , we observe
that M cannot belong to the interior of D4, or else D3∩D4 cannot be a lens nor a touching
point. Consequently, M cannot belong to the relative interior of the arc s4. Combining
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C2

C1

A2

A1

S1

A3

A4

C4

S3

S4

C3
M

Figure 5: The impossible case where s3 contains s1.

this with the fact that S4 belongs to the shorter arc of C2 delimited by S1 and S3, we
conclude that s4 is contained in s1, or it is contained in s3 (see Figure 6).

A2

A1

A3

A4

M

C4

C2

C1

C3

s3

s1

Figure 6: M cannot belong to the relative interior of s4.

We claim that s4 must be equal to the point M and hence C2 and C4 touch each other
at M . In order to prove this we consider the two possible cases s4 ⊂ s1, and s4 ⊂ s3.

Case 1. s4 ⊂ s1. In this case s1 must be a nondegenerate arc, or else both C1 and C4

touch C2 at the same point M which is impossible. Therefore, s1 is an edge of the lens
D1 ∩D2 and it cannot contain any intersection points in its relative interior. Hence either
s4 is equal to an endpoint of s1, or s4 is equal to s1. The latter case is impossible as it
would imply that A1, A2, and A4 are collinear, contrary to the assumption that they are
vertices of a convex quadrilateral. In the former case s4 must be equal to the point M
because S4, that is equal to s4 in this case, lies in the shorter arc of C2 delimited by S1
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and S3 (see Figure 7).

C2

C1

C3

C4

A2

A3

A1

M

S1

S3

Figure 7: C4 must touch C2 at M . The dotted circles show impossible positions of C4.

Case 2. s4 ⊂ s3. In this case s3 must be a nondegenerate arc, or else both C1 and C3

touch C2 at the same point M which is impossible. We notice that s4 is contained in both
D4 and D3 and therefore s4 is contained in the lens D4 ∩D3. This is impossible unless
s4 is a single point that is equal to an intersection point of C3 and C4 and in particular
belongs to C3. Then s4 must be equal to one of the two endpoints of s3. It must be equal
to the point M because S4, that is equal to s4 in this case, lies in the shorter arc of C2

delimited by S1 and S3 (see Figure 7).
Having shown that that C1, C2, and C4 pass through M we can argue symmetrically

that C3 touches C1 at M , as illustrated in Figure 8.
We observe that in such a case the circle C1 could not be inflated by a factor greater

than 1, or else it would be disjoint from C3 in the original configuration of the circles. To
summarize, we have shown that if e and f are two avoiding edges in G(F), then necessarily
C1 touches C3 at a point M and C3 touches C4 at the same point M . This concludes the
proof of Theorem 4.

3 Proof of Theorem 1.

We need to show that F determines at most 2n − 2 lenses. We consider the geometric
graph G = G(F) defined just before the statement of Theorem 4. Proving Theorem 1 is
equivalent to showing that the number of red edges in G(F) is at most 2n− 2.

If no two circles in F touch each other, then it follows from Theorem 4 that the graph
G(F) consists of red edges only. Moreover, no two edges in G(F) are avoiding. If the set
of vertices of G(F), that is the set of centers of the circles in F , is in general position in
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C1

C2

C3

C4

A2

A1

A3

A4
Me

f

Figure 8: The only configuration in which e and f may be avoiding. Both pairs of circles
C2 and C4 as well as C1 and C3 mutually touch at M .

the sense that no three of them are collinear, then we can apply Theorem 3 and conclude
that G(F) has at most 2n− 2 edges. Consequently, F determines at most 2n− 2 lenses.
If the set of vertices of G(F) is not in general position, then strictly speaking we cannot
apply Theorem 3 because Theorem 3, as most other theorems about geometric graphs, is
stated and proved for geometric graphs whose set of vertices is in general position. This is
a standard assumption in most results concerning geometric graphs. In order to be able
to apply Theorem 3, we perturb a bit the vertices of G(F) to make them lie in general
position. We notice that by perturbing the vertices of G(F) we may not create pairs of
avoiding edges, unless there is an edge in G(F) that is collinear with another vertex in
G(F) not on this edge (see Figure 9, where in the perturbed picture on the right e and f2
are avoiding as well as e and f3).

e

f1

f2 f3

e

f1

f2 f3

Figure 9: The edge e is collinear with a vertex not on e.

As we assumed without loss of generality, this cannot not happen. No edge e in G(F)
is collinear with a vertex not on on e. We may therefore apply Theorem 3 to the perturbed
geometric graph and conclude that G(F) has at most 2n− 2 edges as before. This proves
Theorem 1 in the case where no pair of circles in F touch each other.

In the more general case where we allow circles in F to touch each other, the graph
G(F) may contain pairs of avoiding red edges. However, in this case we can use the
blue edges in G(F) as follows. By Theorem 4, whenever the graph G(F) contains pairs
of avoiding edges it must be because of the very special structure as described in the
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statement of Theorem 4 and shown in Figure 8. If e and f are two avoiding edges in G(F),
then they are necessarily red edges that correspond to two lenses in A(F). Let A1A2A3A4

be the convex quadrilateral such that e = A1A2 and f = A3A4. We assume without loss of
generality that A1, A2, A3, and A4 is the clockwise cyclic order of these points as vertices
of the convex quadrilateral A1A2A3A4 (see Figure 8). For i = 1, 2, 3, 4 denote by Ci the
circle in F centered at Ai. By Theorem 4, A1 and A3 are connected by a blue edge in
G(F) and so are A2 and A4. This corresponds to that C1 and C3 must touch, at a point
that we denote by M , and so are C2 and C4.

C1

C3

A2

A1

A3

Me

f

A blue edge
L

A lens

Figure 10: The blue edge A1A3 is uniquely charged.

We remove either the red edge e, or the red edge f from G(F) and charge the avoiding
pair e and f to the blue edge A1A3. We claim that the blue edge A1A3 cannot be charged
for another red edge in this way. This is because once we fix A1 and A3 and therefore
also C1 and C3, then we determine also the touching point M of C1 and C3. We claim
that the edges e and f are determined as well. Indeed, e is the edge that corresponds to
the unique lens L supported by C1 such that M is a vertex of L in A(F) and A1, A2,M
is the clockwise order of these three points, where A2 is the center of the other circle in
F supporting L (see Figure 10). Any other such lens L′ would overlap with L, which is
impossible.

By a symmetric argument we show that the edge f is determined by the blue edge
A1A3. We conclude from this that the blue edge A1A3 in G(F) can be charged to at most
one pair of avoiding edges in G(F).

After repeating this procedure for every remaining pair of avoiding edges we are left
with a subgraph G′ of G(F) in which no two edges are avoiding. The number of edges,
red and blue, in G′ is greater than or equal to the number of red edges in G. We apply
Theorem 3 to G′, after possibly perturbing the vertices of G′, as we did already before,
and conclude that G′ has at most 2n− 2 edges. Therefore, there are at most 2n− 2 red
edges in G(F). Consequently, there are at most 2n− 2 lenses in A(F), as desired.
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[11] R. Pinchasi and R. Radoičić, On the Number of Edges in a Topological Graph with no
Self-intersecting Cycle of Length 4, Towards a Theory of Geometric Graphs, 233–243,
Contemp. Math., 342, Amer. Math. Soc. Providence, RI, 2004.

[12] P. Valtr, On geometric graphs with no k pairwise parallel edges, Discrete Comput.
Geom. 19 (1998), no. 3, Special Issue, 461–469.

the electronic journal of combinatorics 31(2) (2024), #P2.46 11


	Introduction
	Proof of Theorem 4.
	Proof of Theorem 1.

