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ABSTRACT

Electrical stimulation of the visual nervous system could improve the quality of life of patients affected by acquired blindness by
restoring some visual sensations, but requires careful optimization of stimulation parameters to produce useful perceptions. Neural
correlates of elicited perceptions could be used for fast automatic optimization, with electroencephalography as a natural choice as it can
be acquired non-invasively. Nonetheless, its low signal-to-noise ratio may hinder discrimination of similar visual patterns, preventing its
use in the optimization of electrical stimulation. Our work investigates for the first time the discriminability of the electroencephalo-
graphic responses to visual stimuli compatible with electrical stimulation, employing a newly acquired dataset whose stimuli encompass
the concurrent variation of several features, while neuroscience research tends to study the neural correlates of single visual features. We
then performed above-chance single-trial decoding of multiple features of our newly crafted visual stimuli using relatively simple
machine learning algorithms. A decoding scheme employing the information from multiple stimulus presentations was implemented,
substantially improving our decoding performance, suggesting that such methods should be used systematically in future applications.
The significance of the present work relies in the determination of which visual features can be decoded from electroencephalographic
responses to electrical stimulation-compatible stimuli and at which granularity they can be discriminated. Our methods pave the way to
using electroencephalographic correlates to optimize electrical stimulation parameters, thus increasing the effectiveness of current visual
neuroprostheses.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0195680

INTRODUCTION

Electrical stimulation (ES) can elicit visual sensations in a large
number of patients affected by acquired blindness.1,2 Stimulation can
be delivered via retinal3,4 or optic nerve5,6 prostheses for retinal degen-
eration or cortical prostheses7 for optic neuropathies or stroke-
induced blindness. In most visual prostheses, a camera captures a
stream of visual scenes, which are first processed through computer
vision algorithms8–12 and then converted to stimulation patterns
through an a priori model of the visual sensations (phosphenes) pro-
duced by stimulation. In retinal stimulation, it is customary to model

phosphenes as round and to build stimulation protocols from “pixeli-
zations” of the target visual scenes,13,14 resulting in suboptimal stimu-
lation protocols as this assumption is only approximately true.15 The
“pixelization” approach is even more suboptimal in the case of optic
nerve stimulation because of the very elongated phosphenes generated
in this case.16

In Ref. 17, we employed neural network models inspired DiCarlo
and colleagues’ work18,19 to show in silico that the ES of the optic nerve
may be optimized by the cortical activation elicited by stimulation as a
feedback signal. A similar approach has been proposed in vivo in
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mice,20 with both stimulation and recordings at the same cortical area.
Such “end-to-end” optimization strategies evaluate the performance of
different candidate stimulation protocols implicitly taking into
account the limits of current interfaces, while in other encoding
techniques the construction of stimulation targets does not take
them into account. Moreover, such optimization process does not
require knowledge of all the anatomical and functional details nec-
essary to build a detailed biophysical model like the ones available
for animal models, which still require very invasive or destructive
imaging techniques.21

Here, we investigate whether electroencephalography (EEG)
can be used as a feedback cortical signal to optimize ES protocols,
allowing stimulation protocol optimization without resorting to
invasive procedures except for the neuroprosthesis implantation.
EEG has been used in the past to characterize the cortical response
to electrical stimulation,22–25 but no framework has been formu-
lated for automatic optimization based on EEG to the best of our
knowledge. Even though EEG is an ideal candidate in terms of
non-invasiveness, it is characterized by poor signal-to-noise ratio
(SNR) and spatial resolution,26 which could prevent the discrimi-
nation of structural features of visual stimuli. In addition, in our
case, we need to consider stimuli compatible with the perceptions
elicited by ES (phosphenes), consisting of solid bright blobs on a
uniform background. Increasing the stimulation amplitude of a
given electrode contact increases the size of the solid blob and thus
the average luminance of the stimulus (as it recruits more cells
without substantially altering their firing rates16,27). This makes
our ideal visual stimuli quite different from those employed in neu-
roscientific settings, where investigations have focused either on
the semantic valence of “complex” images, representing, e.g.,
human faces, animals, and everyday-life objects,28–31 or on the
response to structural variations and in different subject cohorts of
“simple” stimuli like distributed gratings32–36 or checkerboards.37–39

In general, the different visual stimuli in such datasets vary the value
of a single feature at a time, e.g., the size of isoluminant stimuli. This
implies that the results obtained by existing studies may not be
immediately translatable to our scenario and motivated us to acquire
a new dataset of EEG correlates, characterizing the response to such
phosphene-like visual stimuli. We then proceeded to investigate
whether the distributions of the EEG correlates with several stimulus
features of our visual stimuli were statistically distinguishable and to
evaluate whether a classification algorithm could reliably assign an
EEG response to a given feature class.

Such EEG response classifiers could be used to “evolve” ES proto-
cols until the elicited response is assigned to a given target class as illus-
trated in Fig. 1(a). The use of an EEG decoder allows optimization of
stimulation parameters relying on a quantitative marker and may sub-
stantially speed up the optimization process, as also discussed in Ref.
17. While such evolution should ideally happen on the basis of the
decoding of single EEG trials, it is possible that the information from
multiple trials may be required because of the very low SNR of EEG
signals.26 Multi-trial decoding can be performed by simple concatena-
tion of several trials along the time- or the channel-dimension or by
training and testing the decoder on event related potentials (ERPs).40

The former approach leads to results dependent upon trial ordering
unless complex training schemes are employed, while the latter
approach requires a very large dataset, so that an acceptable number of

samples remains after trial averaging. Here, instead, we aggregated the
class probabilities for the single trials.40,41 We then characterized the
improvement in decoding accuracy produced by using several trials at
a time with respect to a single one.

RESULTS

In the present work, we analyzed data from ten healthy subjects
positioned in front of a screen covering most of their visual field
[Fig. 1(b)]. We flashed different rectangular bright stimuli on a black
background, for a total of 50 repetitions of each one of 60 different
stimuli (see supplementary material Fig. 1). Each visual stimulus was
flashed in and kept for 750ms, then flashed off. The next stimulus was
flashed in after an inter-stimulus time randomly chosen in the range of
(1000 and 1250) ms [Fig. 1(c)]. In order to assess the possibility to dis-
criminate several features of a stimulus, we defined a set of decoding
tasks, respectively, to decode information about the location of the pre-
sented stimulus, its size, or both. To do this, we formed classes from
different sets of the 60 original stimuli, and we determined ten decod-
ing tasks where it was necessary to discriminate whether a stimulus
belonged to one of several mutually exclusive classes. The set of stimu-
lus classes and decoding tasks is detailed in supplementary material
Fig. 2.

Figure 2 shows the ERPs in the occipital channels for the bars
and blocks tuning sets, to give an example of modulations related to
the size of the stimuli and thus to their luminosity. In general, larger
visual stimuli produce a larger positive and a smaller negative devia-
tion in the ERP with respect to baseline. This means that scaling the
size of a given visual stimulus does not result in a scaled copy of the
EEG response as it could be expected. The dependency of the ERP on
the stimulus size is similar across different subjects, even considering
inter-subject variations in the ratios between the peak amplitudes for
different stimulus sizes. Instead, Fig. 3 displays the ERPs in the occipi-
tal channels for the coarse left vs right and superior vs inferior tuning
sets, to give an example of modulations related to the location of the
stimuli, irrespective of their size. The inter-subject differences in the
ERPs corresponding to stimulus in different locations of the visual
field are more marked. For example, stimuli in the left part of the
visual field produced a larger negative deflection in the right part of
the scalp, and stimuli in the lower part of the visual field produced
larger negative deflections in the ERPs. In both cases, the time inter-
vals where the responses for the different classes were significantly
different are shown. For most tasks and subjects, several regions
reached statistical discriminability (p< 0.05) among the different
classes.

In Fig. 4(a), subject-wise accuracies for the tenfold cross vali-
dation folds or Monte Carlo resamples are shown with the corre-
sponding chance level. As can be seen from Fig. 4(b), the decoding
accuracy is significantly above chance both in the location decoding
tasks and in the blocks decoding tasks. When accuracy is not sig-
nificantly higher than chance for a task and subject, it tends to be
so for more than one subject, suggesting an intrinsic difficulty of
the decoding task, rather than a low signal quality from the specific
subject. The decoding performance is variable across subjects, con-
firming an important inter-subject variability. As expected, we
noticed that our decoding algorithm had worst performance for
tasks that included many classes whose stimuli differ only slightly
(e.g., blocks and bars, where the difference between bar3, block4,
and bar5 is only one block), or when concurrent increases in
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luminosity and eccentricity of the stimulus were present. In the lat-
ter case, higher luminosity would tend to produce high ERP
responses, while higher eccentricity would lead to decreased ERP
amplitudes, possibly leading to a compensation of the two effects
(out vs center decoding task).

Decoding scores for three subjects with and without ICA
removal of ocular activity showed no substantial differences
(supplementary material Fig. 3). In supplementary material Fig. 4,
we show features’ importance for the RBF SVM decoding for left vs
right and superior vs inferior portions in subject 1. The complete

FIG. 1. Experimental setup. (a) Workflow for the use of an EEG decoder of visual features in the optimization of electrical stimulation for vision restoration. (b) Positioning of
the subjects with respect to the screen, screen dimensions, and covered portion of the visual field. Stimuli were flashed on a region of the screen, divided into 25 equally sized
squares. Participants were asked to fixate the center of the screen where a red dot was presented. (c) Representation of the visual stimulation sequence, consisting of baseline,
stimulus, and random post-stimulus intervals.
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FIG. 2. ERPs for luminosity-related classes. ERPs (0–0.75 s) for luminosity-related classes (1-block vs 3-bars vs 5-bars, and 1-block vs 4-blocks vs 9-blocks)
for three subjects in the occipital and parietal channels. Chosen subjects (subjects 1, 2, and 10) are those that had best, worst, and average classification
scores. Different colors correspond to different stimuli, while colored bands correspond to time intervals where the single-trial responses for the different classes
are significantly different, with the band color representing the level of significance. The location of the shown channels is displayed in the topographic map in the
top left.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 026123 (2024); doi: 10.1063/5.0195680 8, 026123-4

VC Author(s) 2024

 03 July 2024 09:58:52

pubs.aip.org/aip/apb


FIG. 3. ERPs potentials for location-related classes. ERPs (0–0.75 s) for location-related classes (left vs right, and superior vs inferior) for three subjects in
the occipital and parietal channels. Chosen subjects (subjects 1, 2, and 10) are those that had best, worst, and average classification scores. Different colors
correspond to different stimuli, while colored bands correspond to time intervals where the single-trial responses for the different classes are significantly different,
with the band color representing the level of significance (see legend). The location of the shown channels is displayed in the topographic map at the top left
corner.
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map of features’ importance and averaging across time to get a spa-
tial map and across channels to get a temporal map of importance
are displayed.

In Fig. 5(a), it is possible to observe how the performance of
multi-trial decoding varies when an increasing number of trials is
employed in the decoding. Multi-trial decoding can lead to impor-
tant increases in accuracy, even if different subjects lead to differ-
ent performance increases. Interestingly, in some cases multi-trial
decoding led to a decrease in accuracy. To investigate such phe-
nomenon, the performance for single- and multi-trials for each
cross-validation fold or Monte Carlo resampling is shown in sup-
plementary material Fig. 5, together with the confidence interval of
the random decoder for the given task and subject. We then inves-
tigated whether there is a dependency of the accuracy variation led
by multi-trial decoding upon the initial accuracy and show the
results of this analysis in Fig. 5(b). When such dependency was sta-
tistically significant, we found a positive correlation between the
two variables, meaning that multi-trial decoding produced higher
performance increases with respect to single-trial decoding when
the initial performance of the single-trial was higher.

DISCUSSION

In this work, we defined a novel set of visual stimuli compatible
with ES of the visual system and showed that the EEG ERPs corre-
sponding to different stimulus classes are statistically distinguishable.
We then performed single-trial decoding using traditional ML, obtain-
ing above chance-level accuracies, and improved them with a multi-
trial decoding strategy.

The ability to decode visual stimuli from EEG activity is a premise
for the optimization of the ES using such technique as feedback. In
fact, it can allow determination of whether the applied electrical stimu-
lation produces a sensation with specific target features without the
need to rely on subjective feedback collected via questionnaires. The
optimization process exploits a set of decoders trained on healthy sub-
jects, where the association between visual perception and EEG corre-
late is known, as it corresponds to the visual stimulus generating the
EEG response. The optimization loop would thus consist in choosing a
target perception, applying a stimulation protocol on the patient, char-
acterizing the features of the elicited perception passing the EEG
evoked activity through the above-mentioned decoders (establishing

FIG. 4. Single-trial decoding. (a) Classification accuracy for all subjects and decoding tasks, evaluated as the mean of a tenfold cross-validation or ten resamplings. Error bars
represent the standard deviation over the ten folds and resamplings. (b) P-values obtained from the Wilcoxon test for all macro-classes and all subjects. The analysis tests if
the median accuracy obtained with single-trial decoding is greater than that obtained with a random decoder. Cells have been highlighted in red if p< 0.0001, orange if
p< 0.001, yellow if p< 0.005, and white if p> 0.005.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 026123 (2024); doi: 10.1063/5.0195680 8, 026123-6

VC Author(s) 2024

 03 July 2024 09:58:52

https://doi.org/10.60893/figshare.apb.c.7242919
https://doi.org/10.60893/figshare.apb.c.7242919
pubs.aip.org/aip/apb


FIG. 5. Multi-trial decoding results. (a) Subject-wise accuracy curves obtained by varying the number of trials used in the multi-trial inference. (b) Dependency of the variation
of accuracy from single-trial to 15-trial (multi-trial) inference upon the single-trial variation. Positive values account for an increase in accuracy between single- and multi-trial
inference. The black line represents the least squares fit of the points in each subplot, and the levels of significance associated with the line slopes are reported in the subplot
titles. (c) Average confusion matrices for subject 1, single-, 2-, 3-, and 15-trial inference. Averages are computed across the tenfold cross validation/10 Monte Carlo resam-
plings. In the subplot titles, we report the average accuracy across folds.
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whether the evoked perception occupies the left or right, superior or
inferior visual field), and proposing the next candidate stimulation to
minimize the discrepancy between the features of the evoked and tar-
get perceptions.

In our analyses, preprocessing was kept to a minimum, i.e., to
bad channel rejection and frequency filtering. This is coherent with
our final goal of using such analyses to optimize visual stimulation in
real-time. Indeed, bad channel rejection can be performed at the begin-
ning of acquisition. During the optimization experiments, after each
candidate stimulus is administered, the corresponding EEG epoch is
filtered (which can be done in real-time) and passed through a set of
decoders establishing its similarity to a given target natural stimulus so
that the next candidate stimulus is determined. Instead, the application
of other state-of-the-art methods to improve signal quality like, e.g.,
ICA can be time intensive and normally requires expert input (e.g.,
manually selecting artefactual independent components), which would
add a substantial amount of time between the presentation of different
candidate stimuli, reducing the amount of explorable candidates dur-
ing an experimental session. Additionally, recent works report that the
use of such techniques often leads to marginal or no improvement in
the target application,42 thus not justifying a drastic reduction in the
throughput of our optimization routine.

The presented ERPs do not show the typical peaks studied in the
literature related to visual responses like N70 and P100. It is interesting
to remark that even though not visible in the ERPs, the information
present at such latencies is exploited by the employed RBF SVMs, as
we observed peaks of feature importance in those locations, particu-
larly evident in occipital and parietal areas, corresponding to visual
sensory areas. Thus, the peaks could be covered by the surrounding
neural activity and not be visible through averaging but they may be
highlighted by the nonlinear processing performed by our kernel
machine. The very small amplitude of the components linked to lower
sensory cortical areas may be linked to the fact that they are generally
observed in correspondence to variations in stimulus spatial frequency
and orientation.43 Additionally, it is known that stimuli of large size
trigger surround suppression in lower visual areas because of the ten-
dency of neurons to suppress the activation of other neurons with
neighboring receptive fields.44–46 Responses with latencies similar to
ours have been found in healthy controls under visual stimulation in
Ref. 47.

Typically, EEG decoding is performed either by extracting fea-
tures defined in the literature and passing them to traditional machine
learning or by passing the whole spatiotemporal signal to deep learning
(DL) architectures. In our case, neither strategy was feasible. The lack
of knowledge about the present class of stimuli prevented us from
extracting meaningful features, while the small set of collected data
prevented the use of DL techniques. We thus chose a “hybrid”
approach, feeding each spatiotemporal data point (as an independent
feature) to SVMs, which are known to display low sensitivity to irrele-
vant features48 and are one of the most widely used state-of-the art
techniques for EEG decoding.49–51 While several automatic and semi-
automatic denoising techniques that could (at least in principle)
improve our decoding performance exist, their contribution is debat-
able in the general case.42

Another aspect contributing to the choice of a relatively simple ML
algorithm is the speed of prediction, which would have been substan-
tially higher with DL or even recurrent architectures. Decreasing the

prediction speed decreases the number of stimuli that can be adminis-
tered during an optimization run, which could lead to worse optimal
stimuli than in the case of longer optimization runs with higher perfor-
mance decoders. The interplay between decoder performance and pre-
diction time and thus the ability to explore more candidate optima
should be tackled in future developments of the present work.

Here, we gave a quantitative idea of what tasks lead to a successful
decoding (corners, five vertical and horizontal lines) and which ones are
too difficult given our simple decoding strategy (luminosity, out vs cen-
ter). The twomost difficult tasks were characterized by an elevated num-
ber of target classes (luminosity) or by the concurrent variation of
stimulus size and location. The latter is particularly difficult as, in gen-
eral, stimuli that occupy more peripheral portions of the visual field
excite a lower number of photoreceptor and thus of neurons in higher
areas because of the foveated nature of the human retina,52,53 which also
happens in the case of smaller visual stimuli. Thus, we have a partial
compensation of the two effects of moving peripherally and increasing
the size of a stimulus, negatively affecting the decoder performance.

When we referred to the decoding of the stimulus size, what
was actually decoded depended on a combination of size, luminos-
ity, and luminance. We could have chosen stimuli where size was
the only feature that varied, e.g., by using a black-and-white check-
erboard pattern on a gray background, as in most studies in the
neuroscience of vision field. Here, we did not apply a correction for
stimulus luminosity as we were not interested in determining the
neural correlates of given visual features in isolation, such as stimu-
lus size and location. Instead, we strived to determine whether
EEG could be a technique capable of discriminating visual stimuli
compatible with ES and simple enough to be composed to build
and study simplified visual scenes in the future. ES produces solid
light blobs whose luminosity, size, and location are intertwined
and related to the chosen stimulating contact in the implanted elec-
trode and the stimulation protocol and amplitude.16 Crafting a set
of visual stimuli in which single stimulus features are maximally
decoupled and distinguishable could still be of translational inter-
est as it could allow the implementation of better feature extractors
preceding decoding. Other than increasing the resulting decoding
accuracy, this could reduce the number of trials required to attain a
given performance, speeding up the process of stimulation optimi-
zation and thus decreasing the burden for the target subject.

Multi-trial decoding generally led to an increase in performance,
except in cases in which the single-trial performance was not signifi-
cantly higher than chance. In those cases, we did not observe system-
atic worsening of the performances but rather unpredictable behavior.
All of this is reasonable, since the presented multi-trial approach
employs calibrated classification probabilities. When the probability of
correct classification is not above chance, the classification probabilities
are not informative and the outcome when merging is unpredictable.
Moreover, the above observation serves as a rule of thumb for estab-
lishing when to employ multi-trial decoding: when single-trial perfor-
mance is significantly above chance.

While the visual stimuli employed in this work are much simpler
than the visual scenes that the healthy is confronted with in everyday
life, they are not so far from what is possible through current visual
neuroprostheses.6,54,55 In particular, existing visual neuroprostheses
provide limited resolution, given by inter-electrode crosstalk and by
the hardware complexity to accommodate high electrode counts in the
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retina or optic nerve because of anatomical reasons.56 To cope with
such limited resolution, it is customary to heavily simplify the scenes
coming from an external camera, focusing on reconstruction of the
shapes and locations of a few salient objects and omitting most of the
structural details.57,58

We remark that decoders trained on a cohort of healthy subjects
may not be usable out of the box on patients because of the differences
between the cortical correlates of electrical and visual stimulation and
of the possible plastic modifications that occurred in patients after the
insurgence of blindness.59,60 In both cases, extensive characterization
of the neuroprosthetic device after implantation will be needed, map-
ping simple stimuli to the evoked sensations determined through
patient feedback. Then, transfer learning in the form of fine-tuning of
the decoders on patient data (correspondence between visual percep-
tion evoked through electrical stimulation and corresponding evoked
EEG) and domain adaptation techniques (matching the distribution of
responses from healthy subjects and target patient) could be used to
facilitate generalization.

METHODS
Experimental setup

EEG signals were acquired from a 128-channel gel-based ANT
Neuro cap using eego64TM software. We acquired data from ten
healthy subjects (3 females), 236 2 years old (average 6 standard
deviation). All participants had normal or corrected-to-normal vision
and no history of neurological disorders. They were positioned in front
of a 75 in. screen (166� 93 cm2) at a distance of 40 cm, so that the
screen covered a field of view of 100� horizontally and 128� vertically
[Fig. 1(b)].

Each subject performed two experimental sessions lasting
approximately one hour on different days. Each experimental session
was divided into 30 sub-sessions consisting of the administration of 50
visual stimuli each. Subsequent sub-sessions were separated by a rest-
ing period controlled by the subject (on the order of a few minutes).
Each visual stimulus was flashed in and kept for 750ms, then flashed
off. The next stimulus was flashed in after an inter-stimulus time ran-
domly chosen in the range of (1000 and 1250) ms [Fig. 1(c)]. During
each sub-session, subjects were asked to fixate a red dot in the center
of the screen so that the administered visual stimuli spanned their
whole visual field.

For each experimental session, we administered 25 repetitions of
each one of 60 different visual stimuli, representing gray (luminosity
equals 0.5) squares and rectangles with different sizes, locations, and
orientations (vertical and horizontal) on a black background (luminos-
ity equals 0). The complete set of visual stimuli is shown in supplemen-
tary material Fig. 1.

Data preprocessing

For each session, we removed EEG channels with an impedance
higher than 100 kX (5 channels on average). We acquired signals at a
sampling frequency of 1 kHz. We bandpass filtered the continuous
recordings from each session between 0.5 and 30Hz to remove low
frequency drifts, including bands up to beta. Specifically, we used the
mne.Raw.filter function to create a one-pass, zero-phase, non-causal
FIR filter designed using window method with Hamming window,
with lower and upper cutoff frequencies (defined as half-amplitude
cutoff in the middle of the transition band) 0.25 and 33.75Hz,

respectively. For each stimulus presentation, we considered the signal
between –0.3 and 0.75 s, with respect to the stimulus onset. We will
refer to the signal between 0 and 0.75 s as an epoch or trial. In
symbols,

Xnm
j t½ � ¼ Xm

j Tn � 0:3ð Þ � fs
� �þ t
� �

;

for t ¼ 1; …; 1:05 � fsb c 2N;

where �b c indicates the floor function, thus s � fsb c refers to the sample
number at time s seconds. Tn is the time of occurrence of the nth stim-
ulus presentation, while j indicates the recording channel, and m the
subject.

We performed baseline correction by subtracting from
each epoch the average value of its baseline, taken in the interval
(�0.3, �0.1) s,

Xnm
j t½ �  Xnm

j t þ 0:3 � fsb c½ � � 1
0:2 � fsb c

X 0:2�fsb c
i¼1 Xnm

j i½ �:
Then, we performed another step to reject bad channels: for each
channel, we computed the average of the RMS value over all epochs,
or

aRMSmj ¼
1
Nn

XNn

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

t¼1 Xnm
j t½ �

� �2
r

:

(

We removed from the dataset all channels with outlier average RMS
(aRMS), namely, all the values of j so that

aRMSmj > q aRMSmj0 j
0; 3

n �
þ 1:5 � IQR aRMSmj0 j

0
n �

; or
��

aRMSmj < q aRMSmj0 j
0; 1

n �
� 1:5 � IQR aRMSmj0 j

0
n �

;
��

where q S; kð Þ indicates the kth quartile of the set of values S, and IQR
is the interquartile range,

IQR Sð Þ ¼ q S; 3ð Þ � q S; 1ð Þ:

Stimulus classes

In order to assess the possibility to discriminate several features
of a stimulus, we defined a set of decoding tasks, respectively, to decode
information about the location of the presented stimulus, its size, or
both. To do this, we formed classes from different sets of the 60 origi-
nal stimuli, and we determined ten decoding tasks where it was neces-
sary to discriminate whether a stimulus belonged to one of several
mutually exclusive classes. The set of stimulus classes and decoding
tasks is detailed in supplementary material Fig. 2. The decoding tasks
“left vs right” and “superior vs inferior” discriminated stimuli belong-
ing, respectively, to the left or right portion and superior or inferior
portion of the screen grid and thus to the subject visual field. The tasks
“vertical bars” and “horizontal bars” insert a finer granularity in the
decoding of the vertical or horizontal location of a stimulus in the sub-
ject visual field, introducing five levels (two blocks left to the center,
one block left to the center, center, one block right to the center, two
blocks right to the center). The tasks “corners” and “outer vs middle”
allow to further investigate the possibility of decoding different loca-
tions in the visual field. “Bars,” “blocks,” and “luminosities” allow to
decode stimulus sizes on, respectively, 3, 3, and 5 levels. “Outer vs
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center” is used to study the decoupling of stimulus size and location,
trying to distinguish large stimuli in the outer part of the visual field
and small stimuli in the central part of the visual field.

Event related potential (ERP) analysis

ERPs were computed by averaging multiple epochs belonging to
the same class, i.e.,

YC;m
j t½ � ¼ 1

NC

X
n2C

Xn;m
j t½ �;

where C indicates the class, m the subject, j the channel, t the time
step, and NC the number of samples from class C. A statistical analysis
was performed using the MNE function mne.stats.permutation_
cluster_test with default parameters to see if there was a significant
difference between the responses from two or multiple classes. This
analysis was done separately for each subject and recording channel in
the occipital and parietal lobes (identified as the channels containing
an “O” or a “P” in their identifier).

We chose to show the results relative to subjects 1, 2, and 10 as
they yielded the best, worst, and average single-trial decoding accura-
cies, respectively.

Single- and multi-trial decoding

Classification was done using a support vector classifier (SVC)61

calibrated using the function sklearn.calibration.CalibratedClassifierCV
with default parameters (where the calibration happens on the training
set).

The spatiotemporal matrix of EEG signals for a trial was reshaped
into a one-dimensional array of features, concatenating the time-signal
from each EEG channel, considering all channels (not just the occipital
and parietal ones). Thus, the EEG signal values corresponding to each
couple of time points and channels were treated as an independent fea-
ture in the classification.

When the classes used in a decoding task were composed of
approximately the same number of stimuli, i.e., the corresponding
dataset was balanced, we estimated the decoding accuracy for the given
decoding task using a tenfold cross-validation. Balanced decoding tasks
are ideally composed of the same number of trials per class, even
though on averagefour trials out of the 3000 acquired for each subject
were not recorded by the acquisition software, thus resulting in a possi-
ble mismatch of a few trials across different classes. Instead, when the
dataset corresponding to a given decoding task was heavily unbal-
anced, the accuracy was estimated using cross validation employing 10
random resamplings (without replacement) of the trials from each
class until the number of trials of the least represented class for each
decoding task was reached. The resulting number of samples for each
decoding task is detailed in supplementary material Table 1.

We standardized the signals in the training and test sets using z-
scoring as follows:

Xn;m
i;j  

Xn;m
i;j � lmj
rmj

;

where we computed the mean and standard deviation for each subject
(m) and channel (j) on the training set (for standardizing both training
and test set) as

lmj ¼
1

Ni � Nn

X
t

X
n

Xn;m
j ½t�;

rmj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Ni � Nn � 1

X
t

X
n

Xn;m
j ½t� � lmj

� �2
s

;

where Ni is the number of time steps and Nn is the number of trials.
In order to determine whether our decoding accuracy was signifi-

cantly above chance, we compared the decoding accuracy obtained for
each task and subject to the accuracy obtained by a random decoder.
Such a decoder produced the same number of decoding labels as the
given subject for the selected decoding task. We thus compared the ten
accuracy values corresponding to the ten different folds/resamplings
both for the real subject and for the random decoder using a Wilcoxon
test, after checking that each set of ten accuracy values was not
Gaussian. The obtained p-values were corrected using Bonferroni cor-
rection for the number of subjects, considering each task as an inde-
pendent scenario.

Additionally, we computed a sensitivity map of our RBF SVMs to
the input features, providing a measure of feature importance, using
the method introduced in Ref. 62 and employed for EEG decoding in
Ref. 63. The computation of such maps was performed using the code
from Ref. 63 freely accessible at https://github.com/gretatuckute/
DecodingSensitivityMapping/.

In order to compute the predicted labels through multi-trial
decoding, for each fold, we considered the test set and predicted the
classification probabilities for each sample therein. Then, we combined
such probabilities using a sliding window of N trials on the shuffled
test set, with N ranging from 2 to 15. Accuracies were calculated based
on the combined probabilities using an argmax function, as for single-
trial.

The aggregated probability, pk, to belong to macro-class k is
obtained from the equation

pk ¼

QN
i¼1

pi;k
pi;M

	 
1=N

XM

j¼1
YN

i¼1
pi;j
pi;M

	 
1=N
" # ; k ¼ 1; …; M:

Here, i is the trial and N the total number of trials to aggregate
(here, ranging from 1 to 15). M is the number of alternative
macro-classes constituting the given tuning set (e. g., M ¼ 2 for
coarse left vs right and M ¼ 5 for fine left vs right).41 The original
probabilities, pi;j, were obtained after calibrating the trained SVMs
through Platt’s scaling.64 The method used to combine probabili-
ties did not affect calibration.55

Independent component analysis

Even though subjects were instructed to fixate the center of the
screen during the whole experiments, residual movement activity
might influence decoding scores. To test and ensure that the decoding
was based only on the neural correlates of the stimuli, rather than eye
movements, we also calculated, for subjects 1, 2, and 10, the decoding
accuracy after removing ocular activity (blinks and horizontal eye
movements) by means of independent component analysis (ICA).65

As ICA algorithm we used the Picard ICA algorithm within the MNE
toolbox for Python (function mne.preprocessing.ICA).
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SUPPLEMENTARY MATERIAL

See the supplementary material for further information on exper-
imental design, effect of eye artifact removal on decoding performance,
feature importance analyses, and further information on multi-trial
performance.
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