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Abstract
Hüsler–Reiss vectors and Brown–Resnick fields are popular models in multivariate 
and spatial extreme-value theory, respectively, and are widely used in applications. We 
provide analytical formulas for the correlation between powers of the components of 
the bivariate Hüsler–Reiss vector, extend these to the case of the Brown–Resnick field, 
and thoroughly study the properties of the resulting dependence measure. The use of 
correlation is justified by spatial risk theory, while power transforms are insightful 
when taking correlation as dependence measure, and are moreover very suited damage 
functions for weather events such as wind extremes or floods. This makes our theoreti-
cal results worthwhile for, e.g., actuarial applications. We finally perform a case study 
involving insured losses from extreme wind speeds in Germany, and obtain valuable 
conclusions for the insurance industry.

Keywords  Brown–Resnick random field · Hüsler–Reiss random vector · Insured wind 
losses · Power damage functions · Reanalysis wind gust data · Spatial dependence

AMS 2000 Subject Classifications  60G60 · 60G70 · 62H10 · 62H11 · 62H20 · 
62P05 · 62P12

1  Introduction

Extreme-value theory (EVT) offers many statistical techniques and models useful 
in various fields such as finance, insurance and environmental sciences. Max-stable 
random vectors (e.g., de Haan and Resnick  1977) naturally arise when extending 

 *	 Erwan Koch 
	 erwan.koch@unil.ch

1	 Expertise Center for Climate Extremes (ECCE) Faculty of Business and Economics (HEC) ‑ 
Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland

2	 Institute of Mathematics, EPFL, Station 8, 1015 Lausanne, Switzerland

https://orcid.org/0000-0001-7730-8941
http://crossmark.crossref.org/dialog/?doi=10.1007/s10687-023-00474-w&domain=pdf


	 E. Koch 

1 3

univariate extreme-value theory to the multidimensional setting, and several paramet-
ric multivariate max-stable distributions, such as the Hüsler–Reiss model (Hüsler and 
Reiss 1989), have been proposed. Max-stable random fields (e.g., de Haan 1984; de 
Haan and Ferreira 2006; Davison et al. 2012) constitute an infinite-dimensional gen-
eralization and are particularly suitable to model the temporal maxima of a given var-
iable at all points in space since they represent the only possible non-degenerate lim-
iting field of pointwise maxima taken over suitably rescaled independent copies of a 
field (e.g., de Haan 1984). One famous example is the Brown–Resnick field (Brown 
and Resnick 1977; Kabluchko et al. 2009) which, owing to its flexibility, is gener-
ally a good model for spatial extremes of environmental variables. Finite-dimensional 
distributions of the Brown–Resnick field are Hüsler–Reiss distributions so there is a 
natural and close link between Hüsler–Reiss vectors and Brown–Resnick fields.

Our main theoretical contributions are explicit formulas for the correlation 
between powers of the components of bivariate Hüsler–Reiss random vectors, ana-
lytical expressions of the spatial correlation function of powers of Brown–Resnick 
fields, and a careful study of its properties; some results are rather technical to 
obtain. Studying the correlation function of a field is prominent as it naturally 
appears when computing the variance of the spatial integral of that field (e.g., Koch  
2019b). If the field models an insured cost, its spatial integral models the total 
insured loss over the integration region, and its variance is thus of interest for any 
insurance company. The correlation function also explicitly shows up in the stand-
ard deviation of the central limit theorem (CLT) of the field, and is thus key for the 
behaviour of the spatial integral when the size of the integration region becomes 
large (e.g., Koch 2019b). Moreover, despite its drawbacks, correlation is commonly 
used in the finance/insurance industry, making its study useful from a practical 
viewpoint. Finally, the criticism that it does not properly capture extremal depend-
ence is somewhat irrelevant here as we consider the correlation between random 
variables which already model extreme events.

In a more general setting than EVT, it is often insightful to consider the correla-
tion between various powers of two random variables rather than focusing only on 
the correlation between these variables. Applying simple non-linear transformations 
such as the absolute value or powers before taking the correlation sometimes allows 
one to detect and characterize a strong dependence that would not have been spot-
ted otherwise; this partially alleviates the defect that correlation only captures linear 
dependence. In finance, it is common to look at the autocorrelation of powers of 
the absolute values of asset returns. Returns generally do not exhibit any significant 
autocorrelation (e.g., Cont 2001) whereas their squares or other power values (see, 
e.g., Ding et al. 1993, who consider powers ranging from 0.125 to 5) show a signifi-
cantly positive serial correlation.

More importantly for the setting of this work, considering powers (including 
unity) of random variables is also valuable when these variables are used to model 
the impact of natural disasters such as, e.g., windstorms or floods. According to 
physics, the total cost arising from damaging wind to a specific structure should 
increase as the square (e.g., Simiu and Scanlan 1996) or the cube (e.g., Lamb and 
Frydendahl 1991; Emanuel 2005; Powell and Reinhold 2007) of the maximum wind 
speed. Moreover, several studies exploring insured costs have found that power-laws 
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with much higher exponents are appropriate (e.g., Prahl et al. 2012). In the case of 
flood, the cost is commonly assumed to be proportional to z∕(z + 1) , where z > 0 is 
the inundation level measured in meters (e.g., Hinkel et al. 2014; Prahl et al. 2016), 
which approximately behaves like a power-law with exponent unity for levels much 
below one meter. Thus, as max-stable vectors and fields are suited to model com-
ponentwise and pointwise maxima, studying their powers is worthwhile for assess-
ing costs from extreme wind or flood events. Likewise, powers of random variables 
naturally arise when modelling the electricity production by wind plants or hydro-
electric stations. Wind energy and power available to wind plants are proportional 
to the cube of wind speed (e.g., Burton et al. 2021) and, similarly, the power of a 
hydroelectric station is linearly related to the water discharge. Thus, powers of max-
stable vectors can be appropriate models for the multivariate extremal production of 
such generating stations. Note that Brown–Resnick fields have already been used to 
model extreme wind speeds (e.g., Ribatet 2013; Einmahl et al. 2016) and extreme 
river discharges (e.g., Asadi et  al.  2015). Owing to the ubiquity of power-laws in 
physics and other domains, powers of max-stable vectors and fields may certainly be 
suited models for other applications.

In the second part of the paper, we use our theoretical results to study the 
spatial dependence of insured losses from extreme wind speed for residential 
buildings over a large part of Germany. We use ERA5 (European Centre for 
Medium-Range Weather Forecasts Reanalysis 5th Generation) wind speed rea-
nalysis data on 1979–2020 to derive seasonal pointwise maxima, we fit the 
Brown–Resnick and Smith random fields, and use the appropriate power dam-
age function for the considered region, according to Prahl et  al. (2012). The 
best fitted model leads to a correlation displaying a slow decrease with the dis-
tance. We also consider other power values and we find that, for a fixed dis-
tance, the correlation between insured costs evolves only slightly with the value 
of the damage power; this is useful information for insurance companies.

The rest of the paper is organized as follows. Section  2 first briefly reviews 
Hüsler–Reiss vectors and Brown–Resnick fields, and then details our main theoreti-
cal contributions. We present our case study in Section 3, and Section 4 summarizes 
our main findings and provides some perspectives. All the proofs are gathered in 
Appendix A. The code and data required to reproduce the results of the case study 
will be available in a publication on the Zenodo repository. Note that some elements 
of this article are revised versions of results from Sections 2.2 and 3 and Appendix 
A of the unpublished work by Koch (2019a). Throughout the paper, ′ designates 
transposition and ℕ∗ = ℕ�{0}.

2 � Theoretical results

2.1 � Preliminaries

A random variable Z has the standard Fréchet distribution if ℙ(Z ≤ z) = exp(−1∕z), z > 0 . 
A random vector Z = (Z1, Z2)

� having standard Fréchet marginals is said to follow the 
bivariate Hüsler–Reiss distribution (Hüsler and Reiss 1989) with parameter h ∈ [0,∞] if
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 where Φ denotes the standard Gaussian distribution function.
This is a popular and flexible distribution for max-stable random vectors, and the 

parameter h interpolates between complete dependence ( h = 0 ) and independence 
( h = ∞ ). The i-th component, i = 1, 2 , of any bivariate max-stable vector follows 
the generalized extreme-value (GEV) distribution with location, scale and shape 
parameters �i ∈ ℝ , 𝜏i > 0 and �i ∈ ℝ . If X = (X1,X2)

� is max-stable with such GEV 
parameters, then

where (Z1, Z2)� is a max-stable vector with standard Fréchet marginal distributions.
In the following, a max-stable random field with standard Fréchet margins will 

be called simple. The class of Hüsler–Reiss distributions is tightly linked to the 
Brown–Resnick random field (Brown and Resnick  1977; Kabluchko et  al.  2009) 
which is a flexible and widely used max-stable model. It is very suited to model, 
e.g., extremes of environmental data (e.g., Davison et al. 2012, Section 7.4, in the 
case of rainfall) as it allows realistic realizations as well as independence when dis-
tance goes to infinity. If {W(x)}

x∈ℝd is a centred Gaussian random field with station-
ary increments and with semivariogram �W , then the Brown–Resnick random field 
associated with the semivariogram �W is defined by

where the (Ui)i≥1 are the points of a Poisson point process on (0,∞) with intensity 
function u−2du and the Yi, i ≥ 1 , are independent replications of

where Var denotes the variance. It is a stationary1 and simple max-stable field whose 
distribution only depends on the semivariogram (Kabluchko et al. 2009, Theorem 2 
and Proposition 11, respectively). Its finite-dimensional distribution functions are 
Hüsler–Reiss distributions (Kabluchko et al. 2009, Remark 24) and, in particular, for 
any x1, x2 ∈ ℝ

d,

(1)

ℙ(Z1 ≤ z1, Z2 ≤ z2)

= H(z1, z2; h)

= exp

(

−
1

z2
Φ

(

h

2
−

log(z2∕z1)

h

)

−
1

z1
Φ

(

h

2
−

log(z1∕z2)

h

))

, z1, z2 > 0,

(2)Xi =

{

�i − �i∕�i + �iZ
�i
i
∕�i, �i ≠ 0,

�i + �i logZi, �i = 0,

(3)Z(x) =

∞
⋁

i=1

UiYi(x), x ∈ ℝ
d,

Y(x) = exp (W(x) − Var(W(x))∕2), x ∈ ℝ
d,

(4)ℙ(Z(x1) ≤ z1, Z(x2) ≤ z2) = H
�

z1, z2;
√

2𝛾W (x2 − x1)
�

, z1, z2 > 0.

1  Throughout the paper, stationarity refers to strict stationarity.
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A commonly used semivariogram is

where 𝜅 > 0 and � ∈ (0, 2] are the range and the smoothness parameters, respec-
tively, and ‖ ⋅ ‖ denotes the Euclidean norm. The Smith random field with positive 
definite covariance matrix Σ (Smith 1990) corresponds to the Brown–Resnick field 
associated with the semivariogram

see, e.g., Huser and Davison (2013).
If {X(x)}

x∈ℝd is max-stable, there exist functions �(⋅) ∈ ℝ , 𝜏(⋅) > 0 and �(⋅) ∈ ℝ 
defined on ℝd , called the location, scale and shape functions, such that

where {Z(x)}
x∈ℝd is simple max-stable. In the following, if {X(x)}

x∈ℝd is defined by 
(7) with {Z(x)}

x∈ℝd being the Brown–Resnick field associated with the semivari-
ogram �W , then X will be referred to as the Brown–Resnick field associated with the 
semivariogram �W and with GEV functions �(x) , �(x) and �(x) . If, for all x ∈ ℝ

d , 
�(x) = � , �(x) = � and �(x) = � , then X will be termed the Brown–Resnick field 
associated with the semivariogram �W and with GEV parameters � , � and �.

2.2 � Theoretical contributions

Several dependence measures for max-stable vectors and fields have been intro-
duced in the literature: the extremal coefficient (e.g., Schlather and Tawn  2003), 
the F-madogram (Cooley et  al.  2006) and the �-madogram (Naveau et  al.  2009), 
among others. Here we propose a new spatial dependence measure which is the cor-
relation of powers of max-stable vectors/fields and not of max-stable vectors/fields 
themselves. As explained in Section  1, taking power transforms when using cor-
relation is standard practice when dealing with financial time series. For X being 
defined by (2) with (Z1, Z2)� following the Hüsler–Reiss distribution (1), we study 
Corr(X

�1
1
,X

�2
2
) , where Corr denotes the correlation, and �i ∈ ℕ∗ such that 𝛽i𝜉i < 1∕2 

(to ensure finiteness of the correlation). This allows obtaining the expression of 
Corr(X�(x1)(x1),X

�(x2)(x2)) , x1, x2 ∈ ℝ
2 , where X is the Brown–Resnick field associ-

ated with any semivariogram and with GEV functions �(x) , �(x) , �(x) , and �(x) is a 
function taking values in ℕ∗ such that 𝛽(x)𝜉(x) < 1∕2 for all x ∈ ℝ

2 . If those GEV 
functions and �(x) are not spatially constant, the field {X�(x)(x)}

x∈ℝ2 is not second-
order stationary and its correlation function does not only depend on the lag vector. 
Taking constant GEV and power functions as in the case study is however reason-
able when the region considered is fairly homogeneous (in terms, e.g., of elevation, 
weather influences and distance to a coastline) or not too large. Moreover, every 
non-stationary random field can be approximated by piecewise stationary fields; see 

(5)�W(x) = (‖x‖∕�)� , x ∈ ℝ
d,

(6)�W (x) = x�Σ−1x∕2, x ∈ ℝ
d;

(7)X(x) =

{

�(x) − �(x)∕�(x) + �(x)Z(x)�(x)∕�(x), �(x) ≠ 0,

�(x) + � logZ(x), �(x) = 0,
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Koch (2019b) and references therein. Therefore, although the most general setting 
will still be considered for the sake of completeness, our main focus will be on

where X is the Brown–Resnick field with GEV parameters � , � , � , and � ∈ ℕ∗ such 
that 𝛽𝜉 < 1∕2 ; in this setting, X� is second-order stationary.

On top of being useful for various other applications, powers of rescaled max-
stable random fields constitute appropriate models for the field of insured costs from 
high wind speeds (see Section 3.1 for details) and so (8) can be viewed as the corre-
lation function of insured wind costs, thus being useful for actuarial practice.

Before presenting the main results, we recall the importance of correlation for 
risk assessment in a spatial context, which justifies studying the correlation despite 
the existence of dependence measures specifically designed for max-stable fields. 
Moreover, powers of max-stable fields are not necessarily max-stable themselves, 
making these measures not directly usable.

Denote by C the set of all real-valued and measurable2 random fields on ℝ2 hav-
ing almost surely (a.s.) locally integrable sample paths. Furthermore, let A denote 
the set of all compact subsets of ℝ2 with a strictly positive Lebesgue measure and 
Ac be the set of all convex elements of A . For any A ∈ Ac , let bA denote its bar-
ycenter and �A be the area obtained by applying to A a homothety with center bA 
and ratio 𝜆 > 0.

Let C ∈ C model the insured cost per surface unit triggered by events belonging 
to a specific class (e.g., European windstorms) during a given period of time. The 
total insured loss on a given region A ∈ A can thus be modelled by

and Theorem 4 in Koch (2019b) yields

Hence the correlation is explicitly involved in the variance of the total insured loss, 
which is a key quantity for an insurance company.

Moreover, assuming that C belongs to C , has a constant expectation and satis-
fies the CLT (see Koch et al. 2019, Section 3.1) (which holds for C = X� if X is the 
Brown–Resnick field associated with the semivariogram (5) and with GEV param-
eters � , � and � such that 𝛽𝜉 < 1∕2),

(8)DX,�(x1, x2) = Corr
(

X�(x1),X
�(x2)

)

, x1, x2 ∈ ℝ
2,

L(A,C) = ∫A

C(x)dx,

(9)Var(L(A,C)) = Var(C(0))∫A ∫A

Corr(C(x),C(y))dxdy.

(10)� =

[

Var(C(0))∫
ℝ2

Corr(C(0),C(x))dx

]1∕2

2  Throughout, when applied to random fields, the adjective “measurable” means “jointly measurable”.
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is the standard deviation of the normal distribution appearing in the CLT of C and 
is thus (Koch 2019b, Theorems 2 and 5) essential for the asymptotic distribution of 
L(�A,C) and the asymptotic properties of spatial risk measures induced by the field 
C and associated with value-at-risk and expected shortfall. The analysis of (8) is 
thereby insightful for the risk assessment of wind damage; the formulas derived in 
this paper are used in an ongoing study.

As (2) specifies a transformation of simple max-stable random vectors, we first 
deal with such vectors. In the next theorem, we take a random vector Z = (Z1, Z2)

� 
following the Hüsler–Reiss distribution (1). If � ∈ ℝ and Z is a standard Fréchet 
random variable, it is easily shown that Z� has a finite second moment if and only 
if 𝛽 < 1∕2 , which imposes, in order for the covariance Cov(Z�1

1
, Z

�2
2
) to exist, that 

𝛽1, 𝛽2 < 1∕2 . This covariance and other expressions throughout this section involve, 
for 𝛽1, 𝛽2 < 1∕2,

where Γ denotes the gamma function, and, for 𝜃, h > 0,

with � denoting the standard Gaussian density function.
We can now state the following result, which is a cornerstone of this section.

Theorem 1  Let Z = (Z1, Z2)
� follow the Hüsler–Reiss distribution (1) with parameter 

h. Then, for all 𝛽1, 𝛽2 < 1∕2,

Remark 1  Theorem 1 stems from unpublished work in Section 4.5.1 of the PhD the-
sis by Koch (2014).

(11)

I𝛽1,𝛽2 (h) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Γ(1 − 𝛽1 − 𝛽2), if h = 0,

∫
∞

0

𝜃𝛽2
�

C2(𝜃, h) C1(𝜃, h)
𝛽1+𝛽2−2 Γ(2 − 𝛽1 − 𝛽2)

+C3(𝜃, h) C1(𝜃, h)
𝛽1+𝛽2−1 Γ(1 − 𝛽1 − 𝛽2)

�

d𝜃, if h > 0,

C1(�, h) = Φ

(

h

2
+

log �

h

)

+
1

�
Φ

(

h

2
−

log �

h

)

,

C2(�, h) =

[

Φ

(

h

2
+

log �

h

)

+
1

h
�

(

h

2
+

log �

h

)

−
1

h�
�

(

h

2
−

log �

h

)]

×

[

1

�2
Φ

(

h

2
−

log �

h

)

+
1

h�2
�

(

h

2
−

log �

h

)

−
1

h�
�

(

h

2
+

log �

h

)]

,

C3(�, h) =
1

h2�

(

h

2
−

log �

h

)

�

(

h

2
+

log �

h

)

+
1

h2�2

(

h

2
+

log �

h

)

�

(

h

2
−

log �

h

)

,

(12)Cov
(

Z
�1
1
, Z

�2
2

)

= I�1,�2 (h) − Γ(1 − �1)Γ(1 − �2).
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We adapt Theorem 1 to the more realistic setting where the margins are general 
GEV distributions with non-zero shape parameters. The support of such margins 
possibly includes strictly negative values, and we thus consider powers which are 
strictly positive integers.

Theorem  2  Let Z having (1) as distribution function with parameter h, and let 
X = (X1,X2)

� be the transformed version of Z by (2) with �i ∈ ℝ , 𝜏i > 0 and �i ≠ 0 , 
i = 1, 2 . Moreover, let �i ∈ ℕ∗ such that 𝛽i𝜉i < 1∕2 , i = 1, 2 . Then,

where

and, for i = 1, 2,

where, for � ∈ ℝ , 𝜏 > 0 , � ≠ 0 , and � ∈ ℕ∗ such that 𝛽𝜉 < 1∕2,

The combination of (13) and (14) immediately yields the expression of 
Corr(X

�1
1
,X

�2
2
) . We have assumed in Theorem 2 that �i ≠ 0 but, as shown now, the 

case �1 = �2 = 0 is easily recovered by taking �1 = �2 = � and letting � tend to 0 in 
(13). Before stating the next result, we recall that the distribution function of any 
bivariate max-stable vector (Z1,Z2)� with standard Fréchet margins can be written

where the function V, called the exponent measure, is strictly positive, homogeneous 
of order −1 , and satisfies V(z,∞) = V(∞, z) = 1∕z for any z > 0.

Proposition 1  Let �1, �2 ∈ ℕ∗ , 𝜀 > 0 and 
S𝛽1,𝛽2,𝜀 = {𝜉 ≠ 0 ∶ 𝜉 < min{1∕[2𝛽1(1 + 𝜀)], 1∕[2𝛽2(1 + 𝜀)]}} . Let Z be a simple 
max-stable vector with continuous exponent measure and let X� = (X1,� ,X2,�)

� be the 

(13)

Cov

(

X
�1
1
,X

�2
2

)

=

�1
∑

k1=0

�2
∑

k2=0

Bk1,�1,�1,�1,�1,k2,�2,�2,�2,�2
I(�1−k1)�1,(�2−k2)�2

(h)

−

�1
∑

k1=0

�2
∑

k2=0

Bk1,�1,�1,�1,�1,k2,�2,�2,�2,�2
Γ(1 − [�1 − k1]�1)Γ(1 − [�2 − k2]�2),

Bk1,�1,�1,�1,�1,k2,�2,�2,�2,�2

=

(

�1

k1

)(

�1 −
�1

�1

)k1
(

�1

�1

)�1−k1
(

�2

k2

)(

�2 −
�2

�2

)k2
(

�2

�2

)�2−k2

,

(14)
Var

(

X
�i
i

)

=

�i
∑

k1=0

�i
∑

k2=0

Bk1,k2,�i,�i,�i,�i
{Γ(1 − �i[2�i − k1 − k2])

− Γ(1 − [�i − k1]�i)Γ(1 − [�i − k2]�i)},

Bk1,k2,�,�,�,�
=

(

�

k1

)(

�

k2

)(

� −
�

�

)k1+k2
(

�

�

)2�−(k1+k2)

.

ℙ(Z1 ≤ z1, Z2 ≤ z2) = exp(−V(z1, z2)), z1, z2 > 0,
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transformed version of Z by (2) with �i ∈ ℝ , 𝜏i > 0 and �i = � ∈ S�1,�2,� , i = 1, 2 . Let 
X0 = (X1,0,X2,0)

� be built as X� but with � = 0 . Then,

Using similar arguments, we get lim�→0 Var(X
�i
i,�
) = Var(X

�i
i,0
) , which yields

This result obviously applies if Z follows the Hüsler–Reiss distribution (1).
Next proposition, which is an immediate corollary of Theorem 2, provides all the 

necessary ingredients for the computation of our dependence measure DX,� in (8).

Corollary 1  Under the same assumptions as in Theorem  2 but with �1 = �2 = � , 
�1 = �2 = � , �1 = �2 = � and �1 = �2 = � , we have

with

and, for i = 1, 2,

The following theorem, which is a direct consequence of (4) and Corollary  1,  
gives the expression of DX,�.

Theorem 3  Let X be the Brown–Resnick field associated with the semivariogram �W 
and with GEV parameters � ∈ ℝ , 𝜏 > 0 , � ≠ 0 , and let � ∈ ℕ∗ such that 𝛽𝜉 < 1∕2 . 
Then

where Cov
(

X�(x1),X
�(x2)

)

 is given by (15) with h =
√

2�W (x2 − x1) and Var(X�(0)) 
is given by (17).

Note that the case � = 0 is easily recovered as explained above.

lim
�→0

Cov
(

X
�1
1,�
,X

�2
2,�

)

= Cov
(

X
�1
1,0
,X

�2
2,0

)

.

lim
�→0

Corr
(

X
�1
1,�
,X

�2
2,�

)

= Corr
(

X
�1
1,0
,X

�2
2,0

)

.

(15)

Cov
(

X
�

1
,X

�

2

)

= g�,�,�,�(h)

−

�
∑

k1=0

�
∑

k2=0

Bk1,k2,�,�,�,�
Γ(1 − [� − k1]�)Γ(1 − [� − k2]�),

(16)g�,�,�,�(h) =

�
∑

k1=0

�
∑

k2=0

Bk1,k2,�,�,�,�
I(�−k1)�,(�−k2)�(h),

(17)
Var

(

X
�

i

)

=

�
∑

k1=0

�
∑

k2=0

Bk1,k2,�,�,�,�
{Γ(1 − �[2� − k1 − k2])

− Γ(1 − [� − k1]�)Γ(1 − [� − k2]�)}.

(18)DX,�(x1, x2) = Cov
(

X�(x1),X
�(x2)

)

∕Var(X�(0)), x1, x2 ∈ ℝ
2,
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Remark 2  The combination of (4) and Theorem 2 yields the following more general 
result than Theorem 3. Let {X(x)}

x∈ℝ2 be the Brown–Resnick field associated with 
the semivariogram �W and with GEV functions �(x) ∈ ℝ , 𝜏(x) > 0 , �(x) ≠ 0 , and 
let �(x) be a function taking values in ℕ∗ such that 𝛽(x)𝜉(x) < 1∕2 for any x ∈ ℝ

2 . 
Then,

where Cov
(

X�(x1)(x1),X
�(x2)(x2)

)

 is given by (13) with h =
√

2�W (x2 − x1) , 
�i = �(xi), �i = �(xi), �i = �(xi) , �i = �(xi) , i = 1, 2 , and Var(X�(xi)(xi)) is given by 
(17) with �i = �(xi), �i = �(xi), �i = �(xi) , �i = �(xi).

The Smith field being a member of the class of Brown–Resnick fields, Theorem 3 
and Remark 2 also apply for X being the Smith field with any covariance matrix.

The analytical formulas in Theorems 1, 2 and 3, Corollary 1, and Remark 2 allow 
one to get the true values (up to minor numerical integration errors) of the respective 
quantities, which is clearly useful in many situations. They also constitute a reference 
enabling the assessment of approximated computation methods. One is Monte Carlo 
(MC) estimation, which consists in simulating many realizations of Hüsler–Reiss 
vectors or Brown–Resnick fields, taking their powers, and computing the empirical 
covariance or correlation. We assess its performance in a simulation study exposed 
in Appendix C.1, and show that, in some configurations, the approximation is poor 
for a number of simulations S as large as 105 . Increasing S to 106 or 107 leads to 
high computation times compared to those associated with our analytical formulas. 
Another approximated method is empirical estimation based on the available data. 
We evaluate its performance in Appendix C.2 and demonstrate that, for a number of 
temporal observations and sites commonly encountered in applications, the errors 
are non-negligible and larger than the MC estimator’s ones (for S sufficiently large). 
In a data analysis context, the model parameters must first be estimated before our 
formulas or MC can be used. Then, the formula-based approach consists in plug-
ging the estimates in our analytical expressions, and the MC approach entails simu-
lating using the obtained parameter estimates. In that context, even our method is 
not perfectly accurate because of estimation errors on the model parameters, and 
confidence intervals for the quantity of interest can be derived by combining the 
delta method and results by Koch and Robert (2022). Nonetheless, owing to the con-
clusions from Appendix  C, we expect the formula-based estimator to outperform 
the MC estimator and, provided the model is well-specified and S is large enough, 
the MC one to be more accurate than the empirical estimator. We thus recommend 
the use of the analytical formulas presented above rather than the MC or empirical 
approaches. If the model is strongly misspecified, the empirical estimator may how-
ever obviously outperform both the formula-based and MC ones.

The analytical formulas we propose are valuable also because they enable us to 
study the mathematical properties of the involved quantities (e.g., their evolution 

(19)

Corr
�

X�(x1)(x1),X
�(x2)(x2)

�

=
Cov

�

X�(x1)(x1),X
�(x2)(x2)

�

√

Var(X�(x1)(x1))Var(X
�(x2)(x2))

, x1, x2 ∈ ℝ
2,
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with respect to the various parameters and ‖x2 − x1‖ ) and to obtain analytical 
expressions of Var(L(A,C)) in (9) and � in (10); see a subsequent work about spa-
tial risk measures.

The influence of the marginal parameters and of the power � merits some theoreti-
cal comments. Let Z = (Z1, Z2)

� and X = (X1,X2)
� be as in Theorem 2 and suppose 

that X1 and X2 are a.s. strictly positive (i.e., 𝜉1, 𝜉2 > 0 and 𝜂1 − 𝜏1∕𝜉1, 𝜂2 − 𝜏2∕𝜉2 > 0 ). 
For � ∈ ℝ , 𝜏 > 0 and � ≠ 0 , the transformation z ↦ � − �∕� + �z�∕� , z > 0 , is 
strictly increasing and the same applies for x ↦ x� , x > 0 , with � ∈ ℕ , and z ↦ z�

∗ , 
z > 0 , with 0 < 𝛽∗ < 1∕2 . Thus, owing to the invariance of the copula of a distribu-
tion under strictly increasing transformations of the margins, the copula of (X�1

1
,X

�2
2
)� 

is the same whatever the values of �i ∈ ℕ∗ , and is the same as the copula of (Z�∗
1

1
, Z

�∗
2

2
)� 

whatever the values of �∗
i
 such that 0 < 𝛽∗

i
< 1∕2 . However, the correlation between 

two random variables does not only depend on their copula but also on their mar-
gins, and is typically not invariant under non-linear transformations. We do not have 
equality between Corr(X�1

1
,X

�2
2
) and Corr(Z�∗

1

1
, Z

�∗
2

2
) in general, as can also be seen 

directly from the formulas, and this also holds in the particular case where Z , X 
and �1, �2 are as in Corollary 1 and �∗

1
= �∗

2
= �∗ such that 0 < 𝛽∗ < 1∕2 . We have 

Corr(X
�

1
,X

�

2
) ≠ Corr(Z

�∗

1
, Z

�∗

2
) and, for � ≠ 1 , Corr(X�

1
,X

�

2
) ≠ Corr(X1,X2) . Thus, 

DX,� in (8) is not invariant with respect to the marginal parameters � , � , � and the 
power � . Taking the appropriate values of those quantities is necessary when using 
DX,� for concrete risk assessment problems, and studying its sensitivity with respect 
to � is also of interest. The conclusions of this paragraph regarding the correlations 
are a fortiori true if X1,X2 are not a.s. strictly positive; in that case, even the men-
tioned equalities of copulas do not hold in general.

We now investigate the behaviour of the function g�,�,�,� defined in (16) in 
order to derive useful conclusions about DX,� and because we need it in an ongo-
ing work about spatial risk measures. Next proposition states the strict decreas-
ingness and continuity of g�,�,�,� , and characterizes its behaviour around 0 and 
at ∞ . The proof of Point (i) is appealing as it first involves showing a result 
(Proposition 3 in Appendix A.6.1) about the correlation order, which is a clas-
sical concept of dependence comparison in actuarial risk theory (e.g., Denuit 
et al. 2005, Section 6.2).

Proposition 2  For all � ∈ ℝ , 𝜏 > 0 , � ≠ 0 and � ∈ ℕ∗ such that 𝛽𝜉 < 1∕2 , the func-
tion g�,�,�,� defined in (16) 

	 (i)	 is strictly decreasing.
	 (ii)	 satisfies 

 and is continuous everywhere on [0,∞).
	 (iii)	 satisfies 

(20)lim
h→0

g�,�,�,�(h) =

�
∑

k1=0

�
∑

k2=0

Bk1,k2,�,�,�,�
Γ(1 − �[2� − k1 − k2])
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By Theorem 3, DX,�(x1, x2) depends on x1 and x2 through �W(x2 − x1) only. As a  
variogram is a non-negative conditionally negative definite function, it fol-
lows from Berg et  al. (1984, Chapter  4, Section  3, Proposition 3.3)  that 
d(x1, x2) =

√

2�W(x2 − x1) , x1, x2 ∈ ℝ
2 , defines a metric. For many common mod-

els of isotropic semivariogram �W , �W(x2 − x1) is a strictly increasing function of 
‖x2 − x1‖ , which implies by (18) and Proposition 2(i) that DX,�(x1, x2) is a strictly 
decreasing function of ‖x2 − x1‖ ; such a decrease of the correlation with the dis-
tance seems natural. Moreover (18) and (20) give that lim

x2−x1→0
DX,�(x1, x2) = 1 , 

and (18) and (21) imply, provided lim
‖x2−x1‖→∞ �W(x2 − x1) = ∞ , that 

lim
‖x2−x1‖→∞ DX,�(x1, x2) = 0 . The faster the increase of �W to infinity, the 

faster the convergence of DX,�(x1, x2) to 0. These results are consistent with our 
expectations. For a function f from ℝ2 to ℝ , by lim

‖h‖→∞ f (h) = ∞ , we mean 
limh→∞ inf

u∈B1
{f (hu)} = ∞ , where B1 = {x ∈ ℝ

2 ∶ ‖x‖ = 1}.

3 � Case study

We focus on insured losses from wind extremes for residential buildings over a large 
part of Germany, more precisely over the rectangle from 5.75◦ to 12◦ longitude and 
49◦ to 52◦ latitude (see Fig. 1). We apply the results developed in Section 2.2 for 
assessing the spatial dependence of those losses. For the insured cost field, we use 
the model introduced in Koch (2017, Section 2.3), that is

where E is the strictly positive3 and deterministic field of insured value per surface 
unit, D ∶ ℝ ↦ [0, 1] is the damage function, and X is the model for the random field 
of the environmental variable generating risk. Applying the damage function D to 
X allows getting at each site the insured cost ratio, which, multiplied by the insured 
value, gives the corresponding insured cost. We assume the risk to be generated by 
wind speed maxima and we model the latter with a Brown–Resnick and a Smith 
max-stable model. Section 3.1 outlines and thoroughly justifies the power damage 
function D that we will use. In Section 3.2 we describe the wind speed data and per-
form model estimation, selection and validation. Finally, we apply in Section 3.3 the 
results of Section 2.2 using the derived insured cost model.

(21)

lim
h→∞

g�,�,�,�(h)

=

�
∑

k1=0

�
∑

k2=0

Bk1,k2,�,�,�,�
Γ(1 − [� − k1]�)Γ(1 − [� − k2]�).

(22)C(x) = E(x)D(X(x)), x ∈ ℝ
2,

3  As shown in the aforementioned ongoing project about spatial risk measures, the assumption of strict 
positiveness everywhere is reasonable.
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3.1 � Power damage function

We consider the damage function

where � ∈ ℕ∗ and c1 > 0 . The quantity c1 corresponds to the wind speed for which 
the insured cost ratio equals unity. We define D only for w ≤ c1 as c1 is typically 
much larger than the finite upper endpoint of the distribution of wind speed maxima 
over Germany (see below).

Power functions are well suited to the case of wind. The total cost for a specific 
structure should increase as the square or the cube of the maximum wind speed since 
wind loads and dissipation rate of wind kinetic energy are proportional to the second 
and third powers of wind speed, respectively. For arguments supporting the use of 
the square, see. e.g., Simiu and Scanlan (1996, Eqs. (4.7.1), (8.1.1) and (8.1.8) and 
the interpretation following Eq. (4.1.20)). Regarding the cube, see, among others, 
Lamb and Frydendahl (1991, Chapter  2, p. 7)  where the cube of the wind speed 
appears in the severity index, and Emanuel (2005). In his discussion of the paper 
by Powell and Reinhold (2007), Kantha (2008) states that wind damage for a given 
structure must be proportional to the rate of work done (and not the force exerted) 
by the wind and therefore strongly argues in favour of the cube. In addition to this 
debate about whether the square or cube is more appropriate for total costs, several 
studies in the last two decades have found power-laws with much higher exponents 
when insured costs are considered. For instance, Prahl et  al. (2012) find powers 
ranging from 8 to 12 for insured losses on residential buildings in Germany (local 
damage functions). Prahl et al. (2015) argue that, if the total cost follows a cubic law 
but the insurance contract is triggered only when that cost exceeds a strictly positive 
threshold (e.g., in the presence of a deductible), then the resulting cost for the insur-
ance company is of power-law type but with a higher exponent. We have validated 
this statement using simulations and observed that the resulting exponent depends 
on the threshold (not shown).

Several authors (e.g., Klawa and Ulbrich 2003; Pinto et al. 2007; Donat et al. 2011) 
use, even in the case of insured losses, a cubic relationship that they justify with the 
physical arguments given above. However, they apply the third power to the differ-
ence between the wind speed value and a high percentile of the wind distribution and 
not to the effective wind speed; as shown by Prahl et al. (2015, Appendix A3), this 
is equivalent to applying a much higher power to the effective wind speed. Note that 
exponential damage functions are sometimes also encountered in the literature (e.g., 
Huang et al. 2001; Prettenthaler et al. 2012); we do not consider such functions here.

According to Prahl et al. (2012) who use (23) as well, a spatially-constant expo-
nent of 10 seems appropriate in our region for insured losses on residential build-
ings; see their Fig.  2. Finally, (23) yields c1 = w∕D(w)1∕� for any w > 0 and one 
reads in Prahl et  al. (2012, Fig. 1) D(26) ≈ 10−5 , leading to c1 ≈ 82.2 m s −1 . Our 
damage function is then

(23)D(w) = (w∕c1)
� , w ≤ c1,

(24)D(w) = (w∕82.2)10, w ≤ 82.2.
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As will be seen, the normalization does not play any role in our application.

3.2 � Wind data and model for extreme winds

3.2.1 � Wind data

We consider hourly maxima of the 3 s wind gust at 10 m height (as defined by the 
World Meteorological Organization) from 1 January 1979 08:00 central European 
time (CET) to 1 January 2020 at 00:00 CET. This is publicly available data from the 
European Centre for Medium-Range Weather Forecasts (ECMWF); more precisely 
we use the “10 m wind gust since previous post-processing” variable in the ERA5 
(ECMWF Reanalysis 5th Generation) dataset. The covered region is a rectangle 
from 5.75◦ to 12◦ longitude and 49◦ to 52◦ latitude and the resolution is 0.25◦ latitude 
and 0.25◦ longitude, leading to 338 grid points. We randomly choose 226 of them to 
fit the models and use the remaining 112 for model validation; see Fig. 1. This area 
encompasses the Ruhr region in Germany and is associated with high residential 
insured values per surface unit.

We derive at each grid point the 42 seasonal (from October to March) maxima 
and fit the models to the resulting pointwise maxima. For the first and last season, 
the maxima are computed over January–March and October–December, respec-
tively. Focusing on October–March allows us to get rid of seasonal non-stationarity 
in the wind speed time series and to mainly account for winter storms rather than 
intense summer thunderstorms.

Fig. 1   The grey and white cells 
correspond to the 226 and 118 
calibration and validation grid 
points, respectively
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3.2.2 � Model

We consider both the Brown–Resnick field with semivariogram (5) and the Smith 
field. As mentioned above, max-stable models are very natural ones for pointwise 
maxima, and the Brown–Resnick field generally shows good performance on envi-
ronmental data. We model the location, scale and shape parameters as constant 
across the region, which is reasonable here (this can be explained by the homoge-
neity in terms of elevation and weather influences). Using trend surfaces for these 
parameters rather than fitting them separately at each grid point is standard prac-
tice as it reduces parameter uncertainty, allows a joint estimation of all marginal 
and dependence parameters in a reasonable amount of time and enables prediction 
at sites where no observations are available. Allowing anisotropy in the semivari-
ogram of the Brown–Resnick model would be pertinent but would not modify our 
main conclusions. Isotropy already leads to a very satisfying model and makes our 
dependence measure (8) isotropic in the original space, which facilitates our discus-
sions in Section 3.3.

Both models are fitted using maximum pairwise likelihood (e.g., Padoan et  al.   
2010) implemented in the fitmaxstab function of the SpatialExtremes R 
package (Ribatet  2020); marginal and dependence parameters were jointly esti-
mated using the Nelder–Mead algorithm with a relative convergence tolerance of 
1.49 × 10−8 . We then perform model selection by minimization of the composite like-
lihood information criterion (CLIC); see Varin and Vidoni (2005). According to that 
criterion, the Brown–Resnick field is the most compatible with the data; see Table 1.

Although uncomplicated, our choice of constant marginal parameters leads to a 
decent fit at the marginal level (not shown), and we now mainly discuss the quality 
of the fit of the dependence structure (joint distribution after normalization to remove 
the effect of the margins). Figure 2 shows that the theoretical pairwise extremal coef-
ficient function of the fitted Brown–Resnick model agrees reasonably well with the 
empirical pairwise extremal coefficients for the validation grid points. It is slightly 
above their binned estimates when those are computed using the empirical distribution 
functions. This small underestimation of the spatial dependence likely comes from the 
choice of parsimonious trend surfaces for the location, scale and shape parameters, 
and disappears when we compute the empirical extremal coefficients using the mar-
ginal parameters’ estimates. Overall Fig. 2 indicates that the proposed model fits the 
pairwise extremal dependence structure of the data fairly well. Figure 3, which is the 
analog of Fig.  7 in Davison et  al. (2012), compares the theoretical (from the fitted 
Brown–Resnick model) and empirical distributions of groupwise maxima, minima 
and means for groups of grid points of various sizes (2, 40 and 118 in the first, second, 
and third rows, respectively). It thus offers a complementary assessment to Fig. 2 as it 
reflects the quality of the modelled extremal dependence structure in higher dimen-
sions than two. Taking the maximum, minimum and mean as statistics enables us to 
consider various features of the joint distributions while making the analysis tractable. 
The fit displayed by Fig. 3 is quite satisfactory. Finally Fig. 4 suggests, for two seasons 
with different ranges of values, that realizations from our model have similar patterns 
as observed pointwise maxima, although being slightly rougher. The combination of 
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these goodness-of-fit assessments shows that the proposed model is well suited to our 
data, and so that this case study is useful in practice.

Having shown that our model performs well, we fit it to the data corresponding 
to all grid points in order to get as accurate parameters’ estimates as possible; see 
Table 2. Our estimates are in line with general findings on wind speed extremes. 
Many studies point out that the shape parameter � is usually slightly negative, entail-
ing that the distribution of wind speed maxima has a finite right endpoint. E.g., 
Ceppi et al. (2008) obtain a � ranging from −0.2 to 0 by fitting a generalized Pareto 
distribution (GPD) to in situ observations over Switzerland. Similarly, Della-Marta 
et  al. (2007) fit a GPD to ERA-40 (ECMWF Reanalysis originally intended as a 
40-year reanalysis) windstorms data over Europe and find negative values, between 
−0.1 and −0.3 on most of land areas; see their Fig. 4.15. Note that the commonly 
encountered strict negativity of � for wind speed maxima makes the condition 
𝛽𝜉 < 1∕2 in (8) non-restrictive for this kind of application, since 𝛽 > 0 . Typical val-
ues for the location and scale parameters � and � for yearly maxima over Europe 
are about 25 m s −1 and 3 m s −1 , respectively; e.g., considering annual maxima at 

Table 1   CLIC values and parameters’ estimates (standard errors inside the brackets) of the Brown–
Resnick and Smith models

Brown–
Resnick

CLIC � � � � �

10’503’932 3.28 (1.11) 0.83 (0.06) 25.69 (0.41) 3.05 (0.22) −0.12 (0.02)

Smith CLIC �
11

�
12

�
22

� � �

10’603’208 4.17 (0.75) −0.17 (0.05) 1.03 (0.19) 25.71 (0.37) 3.07 (0.20) −0.12 (0.01)
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Fig. 2   Model’s performance on the validation grid points. Theoretical pairwise extremal coefficient func-
tion from the fitted Brown–Resnick model (red line) and empirical pairwise extremal coefficients (dots). 
The grey and black dots are pairwise and binned estimates, respectively. The empirical extremal coef-
ficients have been computed based on the empirical F-madogram using the empirical distribution func-
tions (left) and the obtained GEV parameters (right). The binned estimates have been obtained by first 
averaging, for any distance, the F-madogram estimates over all pairs of grid points at that distance
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35 weather stations in the Netherlands, Ribatet (2013) obtains trend surfaces whose 
intercepts are about 27 m s −1 for � and 3.25 m s −1 for � . Finally, a value of the 
smoothness parameter � between 0.2 and 1 seems reasonable; e.g, Ribatet (2013) 
obtains 0.24 on the Netherlands data and, on similar ones, Einmahl et al. (2016) find 
0.40. We obtain a higher value perhaps because reanalysis data tend to be smoother 
than in situ observations.
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Fig. 3   Performance of the fitted Brown–Resnick model on the validation grid points. The top row con-
cerns maxima for pairs of validation grid points separated by a low (left), moderate (middle) and long 
(right) distance. The middle row focuses on minima (left), mean (middle) and maxima (right) for a group 
of 40 validation grid points chosen randomly. The bottom row concerns minima (left), mean (middle) 
and maxima (right) for all 118 validation grid points. Overall envelopes at the 95% confidence level are 
depicted in dark grey. Note that the data have been transformed to the standard Gumbel scale by using 
a specific fit of the GEV distribution at each grid point. The theoretical quantiles and envelopes have 
been obtained by simulating realizations of a simple Brown–Resnick model with parameters � and � in 
Table 1 and taking the logarithm
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3.3 � Results

Using (22), (23) and the facts that E(x) > 0 for any x ∈ ℝ
2 and c𝛽

1
> 0 , we get

Therefore, our dependence measure (8) naturally appears in concrete assessments 
of the spatial risk associated with extreme wind speed. In this section, we thor-
oughly study the evolution of DX,�(x1, x2) with respect to ‖x2 − x1‖ , where X is the 
Brown–Resnick model fitted to the data in Section 3.2.2, i.e., with semivariogram (5) 
and parameters in Table 2, and where � has the proper value on our region, i.e., 10. 
The integral in I�1,�2 (see (11)) has no closed form and therefore a numerical approxi-
mation is required. For this purpose, we use adaptive quadrature with a relative accu-
racy of 10−13 . Figure 5 shows a decrease of DX,� from 1 to 0 as the Euclidean distance 

Corr(C(x1),C(x2)) = Corr
(

X�(x1),X
�(x2)

)

= DX,�(x1, x2).
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Fig. 4   Comparison between observed fields of pointwise maxima and realizations from the fitted Brown–
Resnick model. On the left, pointwise maxima over the period October 2005–March 2006 (top) and the 
period October 2002–March 2003 (bottom). On the right, examples of realizations from the model hav-
ing values comparable with those in the first column
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increases, in agreement with our theoretical results of Section 2.2. The decrease is 
quite slow owing to fairly large range � and rather low smoothness � . For two sites 
5◦ and 10◦ away, DX,10 is still as high as 0.65 and 0.48, respectively. The latter conclu-
sion is however hypothetical as the largest distance between two grid points in our 
region is about 6.93◦ ; fitting our model on a wider region would be possible, but the 
assumption of spatially-constant GEV parameters and power might be less suitable. 
This slow decrease points out the need for an insurer to cover a wider region than the 
one considered here in order to benefit from sufficient spatial diversification.

As already mentioned, various values (basically from 2 to 12) of damage pow-
ers have been proposed in the literature and the appropriate one may depend on the 
insurance contract. Moreover, as explained in Section 1, taking powers (such as the 
square) of the variables of interest is sometimes worthwhile when using correlation 
as dependence measure. For example, if the true power is 6, it may also be valu-
able to study Corr([X6(x1)]

2, [X6(x2)]
2) = Corr(X12(x1),X

12(x2)) . For these reasons, 
investigating how DX,�(x1, x2) varies with � for a given max-stable model X and vari-
ous values of ‖x1 − x2‖ is useful. Figure 6 shows that whatever the model considered 
(including the one fitted to our data) and for any given Euclidean distance, DX,� is 
only faintly sensitive to the value of � ; more precisely, it very slightly increases in a 
concave way with � . On top of being potentially insightful for the understanding of 
max-stable fields, this finding is valuable for actuarial practice as it shows that mak-
ing a small error on the evaluation of � is not very impactful as far as correlation is 
concerned. Nonetheless this does not imply that the computations should be done 
with � = 1 regardless of the true power value. First, although evolving little with � , 
our dependence measure is not constant with � and so using the right value is recom-
mended for accuracy. Second, � strongly affects Var(X�(x)) for any x ∈ ℝ

2 , and thus 
for instance the covariance function and the variance in (9).

Table 2   Parameters’ estimates (standard errors inside brackets) when using all grid points for the fit

� � � � �

3.39 (1.18) 0.81 (0.05) 25.71 (0.41) 3.03 (0.22) −0.12 (0.02)

Fig. 5   Evolution of D
X,10(x1, x2) 

with respect to ‖x2 − x1‖ for X 
being the Brown–Resnick field 
with semivariogram (5) and 
parameters in Table 2
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Although the smoothness parameter ‖x2 − x1‖ has been estimated on the data, we 
also consider various values since � heavily affects the rate of decrease of DX,� as 
the distance between the two sites increases, and thereby the rate of spatial diversi-
fication for an insurance company. This allows us to figure out the impact of the use 
of rougher or smoother data, of estimation error, and of model misspecification. We 
take � = 0.5, 0.81, 1.5, 2 ; the value 0.81 is the one we obtained on our data, � = 2 
corresponds to the Smith field with Σ = I2 (see (6)), � = 1.5 is intermediate between 
these two settings, and � = 0.5 corresponds to a quite rough field. In accordance 
with the discussion at the end of Section 2.2, Fig. 6 shows that DX,� decreases from 
1 to 0 as the Euclidean distance increases, and this at a higher rate for larger values 
of � . The decrease is faster for the Smith field than for all Brown–Resnick fields 
having 𝜓 < 2 , and if the true value of � is close to 0.5 or even 0.81, using the Smith 
model leads to a serious underestimation of the dependence between insured costs. 
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Fig. 6   Evolution of D
X,� (x2 − x1) with respect to the distance ‖x2 − x1‖ and the power � , where 

X is the Brown–Resnick field with semivariogram (5) with � = 0.5 (top left), 0.81 (top right),

1.5 (bottom left) and 2 (bottom right) , and whose other parameters are given in Table 2
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The minimum Euclidean distance required for DX,10 to be lower than 0.1 equals 
43.60◦ for � = 0.81 , instead of around 9.54◦ for � = 2 (not shown).

The results outlined in the two previous paragraphs remain qualitatively 
unchanged with other values of � , � , � , and choosing a specific value for � does not 
induce any loss of generality in our study; should � be different, the appropriate 
plots would be the same as in Fig. 6 with the values on the x-axis multiplied by the 
ratio between the true value and the one chosen here.

Finally we briefly study the extension of (8) where the marginal parameters 
and the power are site-specific. We consider two sites x1, x2 that are 3◦ away, but 
our findings hold more generally. We successively investigate the effects of a spa-
tially-varying power, location, scale and shape; more precisely we evaluate (19) 
where X is the Brown–Resnick model with semivariogram (5)

•	 with parameters in Table 2 and �(x1), �(x2) ∈ {1,… , 12}.
•	 with parameters in Table 2 apart from the location ( �(x1), �(x2) ∈ [15, 35] ), and 

�(x1) = �(x2) = 10.
•	 with parameters in Table  2 apart from the scale ( �(x1), �(x2) ∈ [2, 4] ), and 

�(x1) = �(x2) = 10.
•	 with parameters in Table 2 apart from the shape ( �(x1), �(x2) ∈ [−0.2,−0.06] ), 

and �(x1) = �(x2) = 10.

The ranges for the GEV parameters have been chosen to be approximately cen-
tred on the estimates obtained on the data. Figure 7 shows that, for a fixed �(x1) , 
the correlation increases with �(x2) on [1, �(x1)] and then decreases. The highest 
correlation is thus obtained for �(x2) = �(x1) = � , and, as already seen, slightly 
increases in a concave way when � increases. Also, the higher the difference 
between �(x1) and �(x2) , the lower the correlation. Similar conclusions hold for 
the scale and shape parameters, although the variations of the correlation are 
smaller for the chosen range of values. For �(x1) = �(x2) = � , the increase with 
respect to � is concave, whereas for �(x1) = �(x2) = � , the increase with respect 
to � is linear. The findings for the location are similar to those for the scale and 
shape although, for �(x1) = �(x2) = � , the correlation slowly decreases in a con-
cave way as � increases.

Remark 3  In practice, site-specific GEV parameters are often modelled through smooth 
functions of covariates such as latitude, longitude and elevation; see, e.g., Blanchet and 
Lehning (2010), Davison et al. (2012), and Ribatet (2013). The choice of the appropriate 
functions and covariates is of course specific to the problem considered.

4 � Conclusion

Hüsler–Reiss vectors and Brown–Resnick fields are popular and widely used models 
for componentwise and pointwise maxima. We provide explicit formulas for the corre-
lation between powers of the components of bivariate Hüsler–Reiss vectors and deduce 
analytical expressions for the correlation function of powers of Brown–Resnick fields. 
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Although extremal models are considered, studying the correlation function makes 
sense as the latter is required when we are interested in the variance or the asymptotic 
distribution of the spatial integral of a field, which is typically the case in spatial risk 
assessment. Moreover, applying power transforms to random variables is relevant for 
various types of applications, among which the study of impacts due to natural dis-
asters. In the second part of the paper, we use our theoretical contributions and rea-
nalysis wind gust data to study the spatial dependence of modelled insured losses from 
extreme wind speeds for residential buildings in Germany. We find that the dependence 
decreases slowly with the distance and that our dependence measure is not very sensi-
tive to the power value.

Although our insured loss model is supported by the literature, thoroughly 
assessing its performance on insured loss data is prominent for practice, and this 
is done in an ongoing work. The theoretical results obtained here are used in Koch 
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Fig. 7   Heatmap of Corr(X�(x1)(x1),X
�(x2)(x2)) , where X is the Brown–Resnick field with semivariogram 

(5) with: parameters in Table 2 and �(x1), �(x2) ∈ {1,… , 12} (top left); parameters in Table 2 apart from 
the location ( �(x1), �(x2) ∈ [15, 35] ), and �(x1) = �(x2) = 10 (top right); parameters in Table  2 apart 
from the scale ( �(x1), �(x2) ∈ [2, 4] ), and �(x1) = �(x2) = 10 (bottom left); parameters in Table 2 apart 
from the shape ( �(x1), �(x2) ∈ [−0.2,−0.06] ), and �(x1) = �(x2) = 10
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and Robert (2022) as well as in another current study where spatial risk measures 
(Koch 2017, 2019b) are applied to concrete assessment of the risk of impacts from 
extreme wind speeds. Other potentially interesting applications of the derived 
expressions include flood risk assessment and evaluation of extremal joint elec-
tricity production by several wind plants or hydroelectric stations. As estimation 
is arduous for max-stable fields, it could also be useful to investigate the possibil-
ity of estimating the parameters of Hüsler–Reiss distributions and Brown–Resnick 
random fields by equating the theoretical correlation and the empirical one, and 
to seek the optimal power value for this purpose. Appendix B, which deals with 
simple Brown–Resnick fields, can be useful in this respect. Finally, a more detailed 
study, both theoretically and numerically, of the correlation function expressed in 
Remark 2 (non-stationary case) would be welcome, and deriving analytical formulas  
of (8) for other classes of max-stable fields such as the extremal t model (Opitz   
2013) as well as r-Pareto fields (e.g., de Fondeville and Davison 2018) would be 
useful for applications.

Appendix A: Proofs

A.1 For Theorem 1

Proof  First, we show the result for h = 0 . In that case, Z1 = Z2 a.s. (e.g., Hüsler and 
Reiss 1989, Section 2). Hence, since Z1 and Z2 follow the standard Fréchet distribu-
tion, �[Z�i

i
] = Γ(1 − �i) , i = 1, 2 , and thus

Now, we prove the result for h > 0 . We have

where l denotes the bivariate density of Z . We make the change of variable

The corresponding Jacobian matrix is written

Cov
(

Z
�1
1
, Z

�2
2

)

= Γ(1 − �1 − �2) − Γ(1 − �1)Γ(1 − �2)

= I�1,�2(0) − Γ(1 − �1)Γ(1 − �2).

�

[

Z
�1
1
Z
�2
2

]

= ∫
∞

0 ∫
∞

0

z
�1
1
z
�2
2
l(z1, z2)dz1dz2,

(

z1
z2

)

=

(

u

� u

)

=

(

Ψ1(u, �)

Ψ2(u, �)

)

= Ψ(u, �).

JΨ(u, �) =

⎛

⎜

⎜

⎝

1 0

� u

⎞

⎟

⎟

⎠

,
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and its determinant is thus det(JΨ(u, �)) = u . Therefore, introducing

we have

Differentiation of (1) yields (see, e.g., Padoan et al. 2010, Eq. (4))), for z1, z2 > 0,

where

Therefore, for any u, 𝜃 > 0,

a(z1, z2) = z
𝛽1
1
z
𝛽2
2
l(z1, z2), z1, z2 > 0,

(A1)

�

[

Z
�1
1
Z
�2
2

]

= ∫
∞

0 ∫
∞

0

a(z1, z2)dz1dz2

= ∫ ∫Ψ−1((0,∞)2)

a(Ψ(u, �)) det(JΨ(u, �))dud�

= ∫
∞

0 ∫
∞

0

u�1��2u�2 l(u, �u)udud�

= ∫
∞

0 ∫
∞

0

u�1+�2+1��2 l(u, �u)dud�.

(A2)

l(z1, z2) = exp

(

−
Φ(w)

z1
−

Φ(v)

z2

)

×

[

(

Φ(w)

z2
1

+
�(w)

hz2
1

−
�(v)

hz1z2

)

×

(

Φ(v)

z2
2

+
�(v)

hz2
2

−
�(w)

hz1z2

)

+

(

v�(w)

h2z2
1
z2

+
w�(v)

h2z1z
2
2

)

]

,

w =
h

2
+

log
(

z2∕z1
)

h
and v =

h

2
−

log
(

z2∕z1
)

h
.
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We denote by Fsf
 the Fréchet distribution with shape and scale parameters 1 and 

sf > 0 , i.e., if X ∼ Fsf
 , ℙ(X ≤ x) = exp(−sf∕x), x > 0. Using (A1) and (A3) and the 

fact that the density of X ∼ Fsf
 is lf (x) = sf∕x

2 exp
(

−sf∕x
)

 , we obtain

where �k(F) stands for the k-th moment of a random variable having F as distribu-
tion. It is immediate to see that �k(Fsf

) = sk
f
Γ(1 − k) , which, combined with (A4), 

yields the result.	�  □

(A3)

l(u, �u) = exp

(

−
1

u

[

Φ

(
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2
+

log �

h
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�
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u4

[

Φ

(

h

2
+

log �

h

)

+
1

h
�

(

h

2
+

log �

h

)

−
1

h�
�

(

h

2
−

log �

h

)]

×

[

1

�2
Φ

(

h

2
−

log �

h

)

+
1

h�2
�

(

h

2
−

log �

h

)

−
1

h�
�

(

h

2
+

log �

h

)]

+
1

u3

[

1

h2�

(

h

2
−

log �

h

)

�

(

h

2
+

log �

h

)

+
1

h2�2

(

h

2
+

log �

h

)

�

(

h

2
−

log �

h

)]}

= exp

(

−
C1(�, h)

u

)(

C2(�, h)

u4
+

C3(�, h)

u3

)

.

(A4)
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A.2 For Theorem 2

Proof  Using (2) and the binomial theorem, we obtain

which directly yields (13) by Theorem 1.
If Z is standard Fréchet, �(Z�∗ ) = Γ(1 − �∗) for any 𝛽∗ < 1∕2 , which gives, for 

𝛽∗
1
, 𝛽∗

2
< 1∕2,

Using this together with (2) and the binomial theorem yields (14).	�  □

A.3 For Proposition 1

Proof  For i = 1, 2 , Xi,� follows the GEV distribution with parameters �i , �i and � , the 
density of which we denote by fi . Let us assume that � ∈ S�1,�2,� and 𝜉 > 0 . We have 
for all 𝛼 > 0

and thus

for any subset S of (0,∞) . We deal with the second integral in (A5), for which there 
is a potential problem at ∞ . We have

where we used the change of variable z = [1 + �(x − �i)∕�i]
−1∕� . As 

[�i + �i(z
−� − 1)∕�] ∼

z→0
�iz

−�∕� , (A7) is finite provided 𝛼𝜉 < 1 . Choose 
0 < 𝜉∗ < 1∕𝛼 , such that (A7) computed at �∗ is finite. Introducing g(�) = (z−� − 1)∕� , 
𝜉 > 0 , where z ≥ 0 , we have

Cov
(

X
�1
1
,X

�2
2

)

=

�1
∑

k1=0

�2
∑
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(

�1

k1

)(
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)k1
(
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(

�2
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)(
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)k2
(

�2
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Z
(�1−k1)�1
1

, Z
(�2−k2)�2
2

)

,

Cov(Z�∗
1 , Z�∗

2 ) = Γ(1 − [�∗
1
+ �∗

2
]) − Γ(1 − �∗

1
)Γ(1 − �∗

2
).

(A5)�[|Xi,�|
�] = ∫

0

�i−�i∕�

|x|�fi(x)dx + ∫
∞

0

x�fi(x)dx

(A6)sup
�∈S

�[|Xi,�|
�] ≤ sup

�∈S �
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|x|�fi(x)dx + sup
�∈S �

∞
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x�fi(x)dx

(A7)
∫

∞
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x� exp
(

−[1 + �(x − �i)∕�i]
−1∕�

)

[1 + �(x − �i)∕�i]
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= ∫
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�i + �i(z
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exp(−z)dz,
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A well-known inequality states that log(z−�) ≥ 1 − 1∕z−� for any z ≥ 0 , which yields 
z−�(log(z−�) − 1) ≥ −1 and thus g�(�) ≥ 0 . Combined with the fact that 0 ≤ z ≤ 1 , 
this gives for any 0 < 𝜉 ≤ 𝜉∗

and therefore, taking � = �i(1 + �),

Combining this result with a similar reasoning for the first integral in (A5) and using 
(A6) yields sup𝜉∈(0,K] �[|X

𝛽i
i,𝜉
|

1+𝜀] < ∞ for some K > 0 . Now, let Y� = X
�1
1,�
X
�2
2,�

 and 
Y0 = X

�1
1,0
X
�2
2,0

 . By Cauchy–Schwarz inequality,

It follows from Billingsley (1999, p. 31) that the (X1,�)� , (X2,�)� and (Y�)� are uni-
formly integrable for � around 0 (from the right).

Now, it is well-known that Xi,�

d
→ Xi,0 , i = 1, 2 , which implies by the continuous 

mapping theorem that X�i
i,�

d
→ X

�i
i,0

 . Moreover, for any z1, z2 ∈ ℝ,

and

where V is the exponent measure of (Z1, Z2)� . Thus, by continuity of V,

and therefore

Consequently, the continuous mapping theorem yields

dg(�)

d�
=

z−�(log(z−�) − 1)

�2
+

1

�2
.

|

|

|

[

�i + �i(z
−� − 1)∕�

]�
exp(−z)

|

|

|

=
[

�i + �i(z
−� − 1)∕�

]�
exp(−z)

≤ [

�i + �i(z
−�∗ − 1)∕�∗

]�
exp(−z)

sup
𝜉∈(0,𝜉∗]∫

1

0

[

𝜂i + 𝜏i(z
−𝜉 − 1)∕𝜉

]𝛽i(1+𝜀) exp(−z)dz

= ∫
1

0

[

𝜂i + 𝜏i(z
−𝜉∗ − 1)∕𝜉∗

]𝛽i(1+𝜀) exp(−z)dz < ∞.

sup
𝜉∈(0,K]

�

[

|

|

|

Y𝜉
|

|

|

1+𝜀
]

≤
√

sup
𝜉∈(0,K]

�

[

|

|

|

X
𝛽1
1,𝜉

|

|

|

2(1+𝜀)
]

√

sup
𝜉∈(0,K]

�

[

|

|

|

X
𝛽2
2,𝜉

|

|

|

2(1+𝜀)
]

< ∞.

ℙ

([

Z
�

1
− 1

]

∕� ≤ z1,
[

Z
�

2
− 1

]

∕� ≤ z2

)

= ℙ
(

Z1 ≤ (1 + �z1)
1∕� , Z2 ≤ (1 + �z2)

1∕�
)

= exp
(

−V
(

[1 + �z1]
1∕� , [1 + �z2]

1∕�
))

,

ℙ
(

log Z1 ≤ z1, logZ2 ≤ z2
)

= exp(−V(exp(z1), exp(z2))),

lim
�→0

ℙ

([

Z
�

1
− 1

]

∕� ≤ z1,
[

Z
�

2
− 1

]

∕� ≤ z2

)

= ℙ
(

logZ1 ≤ z1, log Z2 ≤ z2
)

,

([

Z
�

1
− 1

]

∕�,
[

Z
�

2
− 1

]

∕�
)� d

→

(

log Z1, log Z2
)�
.
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and hence, applied again, Y�
d
→ Y0 . Finally, Theorem  3.5 in Billingsley (1999) 

yields that lim�→0 �(X
�i
i,�
) = �(X

�i
i,0
) , i = 1, 2 and lim�→0 �(Y�) = �(Y0) . The result 

follows immediately. Similar arguments give the same conclusion for 𝜉 < 0.	�  □

A.4 For Corollary 1

Proof  The result is an immediate consequence of Theorem 2.	�  □

A.5 For Theorem 3

Proof  Under the stated assumptions, X� is second-order stationary and thus, for any 
x1, x2 ∈ ℝ

2,

which yields

By (4), we know that (X(x1),X(x2))� can be written as the transformed version of Z 
by (2) with �1 = �2 = � ∈ ℝ , 𝜏1 = 𝜏2 = 𝜏 > 0 and �1 = �2 = � ≠ 0 , where Z has (1) 
as distribution function with parameter h =

√

2�W (x2 − x1) . It follows from Corol-
lary 1 that Cov(X�(x1),X

�(x2)) is given by (15). Moreover, since X(0) follows the 
GEV distribution with parameters � ∈ ℝ , 𝜏 > 0 and � ≠ 0 , X�(0) follows the same 
distribution as X�

1
 and X�

2
 in Corollary 1 and hence has the same variance given by 

(17).	�  □

A.6 For Proposition 2(i)

In this section, we denote by FX the distribution function of any random variable X 
and by FX1,X2

 the distribution function of any random vector X�

2.

A.6.1 Preliminary result

We first need the following result.

Proposition 3  Let X = (X1,X2)
� and Y = (Y1, Y2)

� be random vectors such that FX1
= FY1

 
and FX2

= FY2
 . We have

(X
�1
1,�
,X

�2
2,�
)�

d
→ (X

�1
1,0
,X

�2
2,0
)�,

Var(X�(x1)) = Var(X�(x2)) = Var(X�(0)),

DX,�(x1, x2) = Corr
(

X�(x1),X
�(x2)

)

= Cov
(

X�(x1),X
�(x2)

)

∕Var(X�(0)).
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for all strictly increasing functions f1 ∶ (0,∞) → ℝ and f2 ∶ (0,∞) → ℝ , provided 
the covariances exist.

Proof  The proof is partly inspired from the proof of Theorem 1 in Dhaene and Goovaerts 
(1996). Let f1 ∶ (0,∞) → ℝ and f2 ∶ (0,∞) → ℝ be strictly increasing functions. 
Assume that, for all z1, z2 > 0,

We have

and the same equality for Y . Consequently, since, for all z1, z2 > 0 , f −1
1

(z
1
),

f −1
2

(z
2
) > 0 , it follows from (A8) that, for all z1, z2 > 0,

Since X1 and Y1 have the same distribution and this also holds for X2 and Y2 , we 
deduce that

Using (A9), (A10) and Lemma 1 in Dhaene and Goovaerts (1996), we obtain

	�  □

A.6.2 Proof of Proposition 2(i)

Proof  Let Z = (Z1, Z2)
� be a random vector having the Hüsler–Reiss distribution 

function (1) with parameter h. We immediately obtain that, for all Y1,

where

FX1,X2
(z1, z2) < FY1,Y2

(z1, z2) for all z1, z2 > 0

⟹ Cov(f1(X1), f2(X2)) < Cov(f1(Y1), f2(Y2)),

(A8)FX1,X2
(z1, z2) < FY1,Y2

(z1, z2).

ℙ(f1(X1) ≤ z1, f2(X2) ≤ z2) = ℙ
(

X1 ≤ f −1
1

(z1),X2 ≤ f −1
2

(z2)
)

(A9)ℙ(f1(X1) ≤ z1, f2(X2) ≤ z2) < ℙ(f1(Y1) ≤ z1, f2(Y2) ≤ z2).

(A10)f1(X1)
d
= f1(Y1) and f2(X2)

d
= f2(Y2).

Cov(f1(X1), f2(X2)) = ∫
∞

0 ∫
∞

0

[

Ff1(X1),f2(X2)
(u, v) − Ff1(X1)

(u)Ff2(X2)
(v)

]

dudv

< ∫
∞

0 ∫
∞

0

[

Ff1(Y1),f2(Y2)
(u, v) − Ff1(Y1)

(u)Ff2(Y2)
(v)

]

dudv

= Cov(f1(Y1), f2(Y2)).

(A11)

�ℙ(Z1 ≤ z1, Z2 ≤ z2)

�h
(h)

= exp

(

−
1

z1
Φ

(

h

2
+

1

h
log

(

z2

z1

))

−
1

z2
Φ

(

h

2
+

1

h
log

(

z1

z2

)))

T2,
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For all z1, z2 > 0 , we introduce y = z2∕z1 , which is strictly positive. We have

which is strictly negative. Thus, (A11) gives that, for all h ≥ 0 and z1, z2 > 0,

Let us consider h1 > h2 > 0 , and Z1 = (Z1,1, Z1,2)
� and Z2 = (Z2,1, Z2,2)

� following 
the Hüsler–Reiss distribution (1) with parameters h1 and h2 , respectively. We get 
from (A12) that FZ1,1,Z1,2

(z1, z2) < FZ2,1,Z2,2
(z1, z2) for all z1, z2 > 0 . Since the compo-

nents of Z1 and Z2 all follow the standard Fréchet distribution, we have FZ1,1
= FZ2,1

 
and FZ1,2

= FZ2,2
 . Now, as 𝜏 > 0 , for � ≠ 0 , the function

is strictly increasing. Hence, letting

Proposition 3 yields

Furthermore, we know from (15) that, for i = 1, 2,

T2 = −
1

z1

(

1

2
−

log(z2∕z1)

h2

)

�

(

h

2
+

log(z2∕z1)

h

)

−
1

z2

(

1

2
+

log(z2∕z1)

h2

)

�

(

h

2
−

log(z2∕z1)

h

)

.

T2 =
1

z2

�

−
z2

z1

�

1

2
−

log(z2∕z1)

h2

�

�

�

h

2
+

log(z2∕z1)

h

�

−

�

1

2
+

log(z2∕z1)

h2

�

�

�

h

2
−

log(z2∕z1)

h

��

=
1

z2

�

−y

�

1

2
−

log y

h2

�

�

�

h

2
+

log y

h

�

−

�

1

2
+

log y

h2

�

�

�

h

2
−

log y

h

��

=
1

√

2�z2

exp

�

−
h2

8
−

(log y)2

2h2

��

−y

�

1

2
−

log y

h2

�

y−1∕2 −

�

1

2
+

log y

h2

�

y1∕2
�

= −
y1∕2

√

2�z2

exp

�

−
h2

8
−

(log y)2

2h2

�

,

(A12)𝜕ℙ(Z1 ≤ z1,Z2 ≤ z2)∕𝜕h(h) < 0.

f ∶ (0,∞) → ℝ

z ↦

(

� − �∕� + �z�∕�
)�

Yi,j = � −
�

�
+

�

�
Zi,j

� , i, j = 1, 2,

(A13)Cov
(

Y
𝛽

1,1
, Y

𝛽

1,2

)

< Cov
(

Y
𝛽

2,1
, Y

𝛽

2,2

)

.
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Finally the combination of (A13) and (A14) gives that g𝛽,𝜂,𝜏,𝜉(h1) < g𝛽,𝜂,𝜏,𝜉(h2) , 
showing the result.	�  □

A.7 For Proposition 2(ii)

Proof  Let X be the Brown–Resnick field associated with the semivariogram 
�W(x) = ‖x‖2∕2 , x ∈ ℝ

2 , and with GEV parameters � , � , and � ≠ 0 , and � ∈ ℕ∗ 
such that 𝛽𝜉 < 1∕2 . It is well-known that X is sample-continuous.

The field X� is stationary by stationarity of X and has a finite second moment 
since 𝛽𝜉 < 1∕2 . Accordingly, � is second-order stationary. Moreover, � ≠ 0 is sam-
ple-continuous and thus, by the same arguments as in the proof of Proposition 1 in 
Koch et al. (2019), continuous in quadratic mean. Hence, the covariance function of 
X� is continuous at the origin. It implies by Theorem 3 that

which, combined with (17), yields (20). This easily gives limh→0 g�,�,�,�(h) =

g�,�,�,�(0) , which implies that g�,�,�,� is continuous at h = 0 . The continuity of g�,�,�,� 
at any h > 0 comes from the fact that the covariance function of a field which is 
second-order stationary can be discontinuous only at the origin.	�  □

A.8 For Proposition 2(iii)

A.8.1 Preliminary results

Lemma 1  Let {X(x)}
x∈ℝ2 be a measurable max-stable random field with GEV 

parameters � ∈ ℝ , 𝜏 > 0 and � ≠ 0 . Let � ∈ ℕ∗ such that 𝛽𝜉 < 1 . Then, the random 
field X� belongs to C.

Proof  The field X� is obviously measurable. Furthermore, as X has identical univari-
ate marginal distributions, the function x ↦ �[|X(x)�|] is constant and hence locally 
integrable. Therefore, Proposition 1 in Koch (2019b) yields that X� has a.s. locally 
integrable sample paths.	�  □

Let B(ℝ) and B((0,∞)) denote the Borel �-fields on ℝ and (0,∞) , respectively.

(A14)

Cov
(

Y
�

i,1
, Y

�

i,2

)

= g�,�,�,�(hi)

−

�
∑

k1=0

�
∑

k2=0

Bk1,k2,�,�,�,�
Γ(1 − [� − k1]�)Γ(1 − [� − k2]�).

lim
x→0

Cov
�

X�(0),X�(x)
�

= lim
x→0

�

g�,�,�,�(‖x‖) −

�
�

k1=0

�
�

k2=0

Bk1,k2,�,�,�,�
Γ(1 − [� − k1]�)Γ(1 − [� − k2]�)

�

= Var
�

X�(0)
�

,
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Lemma 2  Let {Z(x)}
x∈ℝ2 be a simple max-stable random field. Let � ∈ ℝ , 𝜏 > 0 , 

� ∈ ℝ and � ∈ ℕ∗ . The function defined by

is measurable from ((0,∞),B((0,∞))) to (ℝ,B(ℝ)) and strictly increasing. Moreover, 
if 𝛽𝜉 < 1∕2 , then �[|D𝛽,𝜂,𝜏,𝜉(Z(0))|

2+𝛿] < ∞ for any � such that 0 < 𝛿 < 1∕(𝜉𝛽) − 2.

Proof  The fact that D is measurable and strictly increasing is obvious. Denoting 
Y = [D�,�,�,�(Z(0))]

1∕� , we have, for 𝛿 > 0,

which is finite (see the proof of Proposition 1) provided 𝛽(2 + 𝛿)𝜉 < 1 as Y follows 
the GEV distribution with parameters � , � and � . The latter inequality is satisfied for 
any strictly positive � such that 𝛿 < 1∕(𝜉𝛽) − 2.	�  □

A.8.2 Proof of proposition 2(iii)

Proof  Let X be the Brown–Resnick field associated with the semivariogram 
�W(x) = ‖x‖2∕2 , x ∈ ℝ

2 , and with GEV parameters � , � and � ≠ 0 , and � ∈ ℕ∗ such 
that 𝛽𝜉 < 1∕2.

The field X is sample-continuous and thus measurable, which yields by Lemma 
1 that X� ∈ C . Now, we have X�(x) = D�,�,�,�(Z(x)) , x ∈ ℝ

2 , where Z is the simple 
Brown–Resnick field associated with the semivariogram just above, and x ∈ ℝ

2 is 
defined in (A15). In addition, by Lemma 2, D�,�,�,� satisfies the assumptions on the 
function F of Theorem 3 in Koch et al. (2019). Thus, the latter theorem yields that 
X� satisfies the CLT. This implies that

which entails, using Theorem 3, that

Since g�,�,�,� is strictly decreasing, this necessarily implies that

i.e., (21).	�  □

(A15)D𝛽,𝜂,𝜏,𝜉(z) =

{
(

𝜂 − 𝜏∕𝜉 + 𝜏z𝜉∕𝜉
)𝛽
, 𝜉 ≠ 0,

(𝜂 + 𝜏 log z)𝛽 , 𝜉 = 0,
z > 0,

�

[

|

|

|

D�,�,�,�(Z(0))
|

|

|

2+�
]

= �

[

|

|

|

Y�|
|

|

2+�
]

= �
[

|Y|�(2+�)
]

,

∫
ℝ2

|

|

|

Cov
(

X𝛽(0),X𝛽(x)
)

|

|

|

dx < ∞,

∫
ℝ2

�

g𝛽,𝜂,𝜏,𝜉(‖x‖) −

𝛽
�

k1=0

𝛽
�

k2=0

Bk1,k2,𝛽,𝜂,𝜏,𝜉
Γ(1 − [𝛽 − k1]𝜉)Γ(1 − [𝛽 − k2]𝜉)

�

dx < ∞.

lim
h→∞

(

g�,�,�,�(h) −

�
∑

k1=0

�
∑

k2=0

Bk1,k2,�,�,�,�
Γ(1 − [� − k1]�)Γ(1 − [� − k2]�)

)

= 0,
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Appendix B: Case of simple Brown–Resnick fields and � ∈ ℕ∗

This appendix explains that the results obtained in Sections  2.2 and 3.3 are 
similar if the Brown–Resnick field considered is simple and the power satisfies 
𝛽 < 1∕2 . As standard Fréchet margins are rarely encountered in practice, the 
interest of this section mostly lies in a better understanding of some properties 
of simple Brown–Resnick fields and in possible applications to inference (using, 
e.g., the method of moments).

First we consider the dependence measure Corr(Z�(x1), Z
�(x2)) , where 

{Z(x)}
x∈ℝ2 is a simple Brown–Resnick max-stable random field and 𝛽 < 1∕2 . The  

condition 𝛽𝜉 < 1∕2 with � ∈ ℕ∗ of (8) translates into X� ; any negative value  
is allowed as simple max-stable fields are a.s. strictly positive. We introduce, for 
𝛽 < 1∕2,

which arises when setting �1 = �2 in the function I�1,�2 specified in (11). Denot-
ing by �W the semivariogram of Z, it follows from Theorem 1 and (4) that, for all 
x1, x2 ∈ ℝ

2 and 𝛽 < 1∕2 , Cov(Z�(x1), Z
�(x2)) = I�(

√

2�W (x2 − x1)) − [Γ(1 − �)]2 . 
Then Corr(Z�(x1), Z

�(x2)) (provided that � ≠ 0 ) is readily derived and its behaviour 
is similar to the one we observed in Section 3.3 (not shown); for more details, see 
Figs. 3 and 4 in the unpublished work by Koch (2018).

We now investigate the function I� in further details. Very similar proofs as for 
Proposition 2 yield, for 𝛽, 𝛽1, 𝛽2 < 1∕2 , that the functions I�1,�2 defined in (11) and I� 
are strictly decreasing, limh→0 I�(h) = Γ(1 − 2�) (implying that I� is continuous eve-
rywhere on [0,∞) ) and limh→∞ I�(h) = [Γ(1 − �)]2 . This entails that, for any h ≥ 0 , 
lim�→−∞ I�(h) = ∞ . Figure 8, obtained using adaptive quadrature with a relative accu-
racy of 10−5 , shows that the decrease of I�(h) for a given � with respect to h is more 
and more pronounced when |�| increases, and that, for h fixed, the absolute value of 
the slope of I�(h) increases very fast with |�| , in link with rapid divergence to ∞ . Obvi-
ously, the behaviour of Cov(Z�(x1), Z

�(x2)) is similar; the same holds true for I�1,�2.

Appendix C: Performance of the Monte Carlo and empirical estimators

C.1 Monte Carlo estimator

We numerically assess the performance of the Monte Carlo (MC) estimator of 
DX,�(x1, x2) in various configurations, for X being a Brown–Resnick field with semi-
variogram (5). In each of these, we compute the relative errors of 100 estimates and 
display the resulting root mean square error (RMSE) in Table  3. We recall that the 
relative errors can be computed as the true value is known and given by (18). We set 

I𝛽(h) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Γ(1 − 2𝛽) if h = 0,

∫
∞

0

𝜃𝛽
�

C2(𝜃, h) C1(𝜃, h)
2𝛽−2 Γ(2 − 2𝛽)

+C3(𝜃, h) C1(𝜃, h)
2𝛽−1 Γ(1 − 2𝛽)

�

d𝜃 if h > 0,



	 E. Koch 

1 3

x1 = (0, 0)� and � = 0.8 , and let � , � , � , � , � , x2 , and S vary, where S denotes the num-
ber of simulations used in the MC estimation. For each combination of sites (x1, x2) , 
we need to simulate the Brown–Resnick field at only two sites and we therefore simu-
late S realizations from a bivariate Hüsler–Reiss vector with appropriate parameters; 
S is thus the number of independent pairs of observations. We do so using the rmev 
function of the mev R package (Belzile et al. 2022) which provides exact simulations.

Table 3 shows that the RMSE increases with the power � , and that this effect is 
stronger for strictly positive values of the shape parameter � . For 𝜉 > 0 , the RMSE also 
increases with � . For 𝜉 > 0 , the RMSE increases when the product �� increases and 
becomes very large (up to 66.5% in the table) when it approaches 1/2; this is not sur-
prising as DX,�(x1, x2) is well defined if and only if 𝛽𝜉 < 1∕2 . For a given value of the 
product, the error is the largest when � is the largest and � the smallest. Moreover, the 
RMSE tends to increase when the distance between x1 and x2 increases and, consist-
ently, to decrease when the range parameter � increases. It also increases when going 
from � = 25 to � = 5 or from � = 3 to � = 10 , except for � = 1 where there is no effect. 
When increasing S from 104 to 105 , the RMSE decreases in almost all configurations. 
In the cases where 𝛽𝜉 < 1∕4 , it is divided by a factor close to 3, which is expected 
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Fig. 8   Evolution of the function I� with respect to the distance h and the power � for � ∈ [−1.6, 0.45]
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according to the CLT. On the other hand, the decrease is very small for 𝛽𝜉 > 1∕4 , prob-
ably because the MC estimator has no variance and does not satisfy the CLT. Overall, 
the MC estimator performs rather well when the sites are not too far apart, � is large 
enough and �� and � are not too high. But, in some configurations, a large number of 
simulations would be needed to reach a reasonable accuracy.

C.2 Empirical estimator

We numerically assess the performance of the empirical estimator of DX,�(x1, x2) 
where x1 = (0, 0)� and x2 = (1, 1)� or (3, 3)� , in similar configurations as in Sec-
tion C.1. Instead of simulating S realizations from a bivariate Hüsler–Reiss distribu-
tion, we simulate 42 temporal observations of a Brown–Resnick field on a rectangle 
from 0◦ to 6.25◦ longitude and 0◦ to 3◦ latitude with a grid spacing of � latitude and 
0.25◦ longitude; the number of observations and the grid are the same as in the case 
study (up to a translation for the grid). We take (5) as semivariogram with � = 0.8 , 
and let � , � , � , � , � vary. As before, we use the rmev function of the mev R pack-
age, which provides exact simulations of the Brown–Resnick field.

Since DX,�(x1, x2) depends on x1 and x2 only through ‖x2 − x1‖ , we compute the 
empirical estimate in three different ways:

•	 Method 1: we consider the observed time series at x1 and x2 , take their power, 
and compute the empirical correlation. The time series are of length 42.

•	 Method 2: we create two time series by concatenating all time series at respec-
tively grid points si and sj such that sj − si = x2 , and take the empirical correlation 
of their power. This allows benefiting from the fact that DX,�(x1, x2) depends on x1 
and x2 only through x2 − x1 . For x2 = (1, 1)� and x2 = (3, 3)� , respectively 198 and 
14 pairs satisfy the condition, leading to time series of length 8316 and 588.

•	 Method 3: we build two time series by concatenating all times series at respectively 
grid points si and sj such that ‖sj − si‖ = ‖x2‖ , and take the empirical correlation 
of their power. This capitalizes on the fact that DX,�(x1, x2) depends on x1 and x2 
only through ‖x2 − x1‖ . For x2 = (1, 1)� and x2 = (3, 3)� , respectively 396 and 28 
pairs satisfy the condition, leading to time series of length 16632 and 1176.

We repeat this procedure 100 times independently, derive the relative errors by 
comparison with the true value given by (18), and provide the resulting RMSE in 
Table 4. The comparison of the three methods yields insight about the benefits of 
concatenating dependent time series.

Table 4 shows, as expected, that the RMSE is generally smaller for the second 
method than for the first one. However, the decrease is rather low given the large 
increase of the number of observations (by a factor 198 and 14 for x2 = (1, 1)� and 
(3, 3)� , respectively), and this comes from the strong spatial dependence which dra-
matically reduces the effective sample sizes of the formed time series. The relative 
decrease is larger for � = 1 than for � = 3 because the associated spatial depend-
ence is weaker. Moreover, we observe an increase in some configurations where 
𝛽𝜉 > 1∕4 , which is due to a slow convergence in link with the absence of variance 
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Table 4   RMSE (computed using the relative differences) of the estimates in various configurations (in 
% ). Cases (a), (b), (c), (d) are the same as in Table 3. The three panels correspond, from top to bottom, to 
Methods 1, 2, and 3

(a) (b) (c) (d)

(3, 3)� � = 1 � = 3 x
2

� � (1, 1)’ (3, 3)’ (1, 1)’ (3, 3)’ (1, 1)’ (3, 3)’ (1, 1)’ (3, 3)’

-0.12 1 10.3 21.8 10.3 21.8 10.3 21.8 19.2 58.2
-0.12 2 10.2 22.0 10.9 24.8 10.5 23.5 19.8 58.6
-0.12 3 10.3 22.7 13.8 29.8 12.3 27.3 21.0 59.8
-0.12 4 10.7 23.8 17.5 35.1 15.0 31.6 22.7 61.4
-0.12 8 14.5 30.7 31.1 51.8 27.0 47.1 31.8 70.0
-0.24 1 10.8 22.5 10.8 22.5 10.8 22.5 19.4 58.8
-0.36 1 11.6 24.0 11.6 24.0 11.6 24.0 20.5 60.9
-0.48 1 12.7 26.0 12.7 26.0 12.7 26.0 22.2 64.6
-0.24 2 10.3 21.9 10.1 23.1 10.0 22.3 19.1 58.2
0.12 1 10.9 23.8 10.9 23.8 10.9 23.8 22.3 60.7
0.12 2 12.0 26.2 15.1 31.6 14.0 29.9 25.5 62.8
0.12 3 13.7 29.2 21.2 39.8 18.9 36.9 29.5 65.0
0.12 4 16.0 32.7 27.0 46.7 24.0 43.3 34.1 67.1
0.06 8 22.1 41.0 39.9 60.5 36.4 57.0 44.9 77.0
0.24 1 12.0 26.2 12.0 26.2 12.0 26.2 25.5 62.8
0.36 1 13.7 29.2 13.7 29.2 13.7 29.2 29.5 65.0
0.48 1 16.0 32.7 16.0 32.7 16.0 32.7 34.1 67.1
0.24 2 14.7 30.4 18.6 36.4 17.4 34.7 31.1 64.3
-0.12 1 7.0 16.8 7.0 16.8 7.0 16.8 12.3 38.7
-0.12 2 7.5 17.5 9.0 20.5 8.4 19.3 13.0 39.6
-0.12 3 8.1 18.5 11.6 25.2 10.3 22.8 13.9 41.2
-0.12 4 8.7 19.7 14.6 30.2 12.6 26.9 15.0 43.2
-0.12 8 12.2 26.0 30.1 47.5 25.0 42.7 20.5 52.6
-0.24 1 6.4 16.3 6.4 16.3 6.4 16.3 11.5 38.3
-0.36 1 6.2 16.3 6.2 16.3 6.2 16.3 11.1 39.2
-0.48 1 6.1 16.7 6.1 16.7 6.1 16.7 11.0 40.8
-0.24 2 6.7 16.6 7.9 18.7 7.4 17.7 11.9 38.2
0.12 1 8.8 19.6 8.8 19.6 8.8 19.6 15.3 43.5
0.12 2 10.1 22.0 13.1 27.3 12.1 25.6 17.4 46.7
0.12 3 12.0 25.1 20.2 36.6 17.7 33.5 20.7 49.8
0.12 4 15.1 29.5 29.1 45.3 25.3 41.4 26.4 53.6
0.06 8 23.6 39.2 53.4 62.5 47.7 58.6 40.7 63.4
0.24 1 10.1 22.0 10.1 22.0 10.1 22.0 17.4 46.7
0.36 1 12.0 25.1 12.0 25.1 12.0 25.1 20.7 49.8
0.48 1 15.1 29.5 15.1 29.5 15.1 29.5 26.4 53.6
0.24 2 13.5 27.2 17.8 33.4 16.5 31.6 23.7 50.8
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and inapplicability of the CLT; see the related comments in the assessment of the 
MC method.

The RMSEs obtained with Methods 2 and 3 are comparable. Method 3 
involves twice as many observations, but the difference in effective sample size 
is probably low owing to the strong spatial dependence mentioned above. Also, 
the number of independent replications used to compute the RMSE (100) is per-
haps too low for a systematic decline to be visible. Nevertheless, we do observe 
a rather systematic decrease (although slight) for � = 1 , because the associated 
spatial dependence is weaker.

In terms of evolution of the RMSE with respect to the various parameters, the con-
clusions are similar to those obtained for the MC estimator in Section C.1, but the dif-
ferences between the RMSEs in the best (e.g., � = −0.12 and � = 1 ) and worst (e.g., 
� = 0.06 and � = 8 ) cases are much smaller than in the study of Section C.1. This is 
due to much lower effective sample sizes that prevent us from seeing the effects of fast 
and slow convergence in the respective configurations. Overall, the values of RMSE are 
large and so the use of the exact formula is recommended if the model is well-specified.
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Table 4   (continued)

(a) (b) (c) (d)

(3, 3)� � = 1 � = 3 x
2

� � (1, 1)’ (3, 3)’ (1, 1)’ (3, 3)’ (1, 1)’ (3, 3)’ (1, 1)’ (3, 3)’

-0.12 1 6.9 16.9 6.9 16.9 6.9 16.9 12.0 34.6
-0.12 2 7.4 17.8 9.0 20.7 8.4 19.6 12.7 36.0

-0.12 3 8.0 18.8 11.7 25.3 10.4 23.0 13.7 37.8
-0.12 4 8.7 20.0 14.8 30.2 12.7 26.9 14.7 40.0
-0.12 8 12.3 26.3 30.9 49.9 25.6 44.2 20.3 49.4
-0.24 1 6.3 16.1 6.3 16.1 6.3 16.1 11.2 33.6
-0.36 1 5.9 15.7 5.9 15.7 5.9 15.7 10.8 33.6
-0.48 1 5.9 15.8 5.9 15.8 5.9 15.8 10.7 34.4
-0.24 2 6.6 16.5 7.8 18.8 7.3 17.8 11.5 33.9
0.12 1 8.8 20.1 8.8 20.1 8.8 20.1 15.0 40.2
0.12 2 10.1 22.4 13.2 27.7 12.1 26.0 17.2 43.4
0.12 3 12.0 25.7 20.5 38.2 17.9 34.7 20.6 46.8
0.12 4 15.2 30.6 29.7 48.6 25.7 44.2 26.5 51.3
0.06 8 24.0 42.0 54.7 69.7 48.8 65.1 41.1 62.1
0.24 1 10.1 22.4 10.1 22.4 10.1 22.4 17.2 43.4
0.36 1 12.0 25.7 12.0 25.7 12.0 25.7 20.6 46.8
0.48 1 15.2 30.6 15.2 30.6 15.2 30.6 26.5 51.3
0.24 2 13.6 28.0 18.0 34.9 16.7 32.9 23.6 48.4
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