Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Strong gravitational lensing's 'external shear' is not shear
 
research article

Strong gravitational lensing's 'external shear' is not shear

Etherington, Amy
•
Nightingale, James W.
•
Massey, Richard
Show more
June 12, 2024
Monthly Notices Of The Royal Astronomical Society

The distribution of mass in galaxy-scale strong gravitational lenses is often modelled as an elliptical power-law plus 'external shear', which notionally accounts for neighbouring galaxies and cosmic shear along our line of sight. A small amount of external shear could come from these sources, but we show that the vast majority does not. Except in a handful of rare systems, the best-fitting values do not correlate with independent measurements of line-of-sight shear: from weak lensing in 45 Hubble Space Telescope images, or in 50 mock images of lenses with complex distributions of mass. Instead, the best-fit external shear is aligned with the major or minor axis of 88 per cent of lens galaxies; and the amplitude of the external shear increases if that galaxy is discy. We conclude that 'external shear' attached to a power-law model is not physically meaningful, but a fudge to compensate for lack of model complexity. Since it biases other model parameters that are interpreted as physically meaningful in several science analyses (e.g. measuring galaxy evolution, dark matter physics or cosmological parameters), we recommend that future studies of galaxy-scale strong lensing should employ more flexible mass models.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.48 KB

Format

Adobe PDF

Checksum (MD5)

39b6fe1034c18344a7f5781f2203f3a7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés