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The dynamic landscape of sustainable smart cities is witnessing a significant transformation due to the
integration of emerging computational technologies and innovative models. These advancements are
reshaping data-driven planning strategies, practices, and approaches, thereby facilitating the achieve-
ment of environmental sustainability goals. This transformative wave signals a fundamental shift d

marked by the synergistic operation of artificial intelligence (AI), artificial intelligence of things (AIoT),
and urban digital twin (UDT) technologies. While previous research has largely explored urban AI, urban
AIoT, and UDT in isolation, a significant knowledge gap exists regarding their synergistic interplay,
collaborative integration, and collective impact on data-driven environmental planning in the dynamic
context of sustainable smart cities. To address this gap, this study conducts a comprehensive systematic
review to uncover the intricate interactions among these interconnected technologies, models, and
domains while elucidating the nuanced dynamics and untapped synergies in the complex ecosystem of
sustainable smart cities. Central to this study are four guiding research questions: 1. What theoretical and
practical foundations underpin the convergence of AI, AIoT, UDT, data-driven planning, and environ-
mental sustainability in sustainable smart cities, and how can these components be synthesized into a
novel comprehensive framework? 2. How does integrating AI and AIoT reshape the landscape of data-
driven planning to improve the environmental performance of sustainable smart cities? 3. How can AI
and AIoT augment the capabilities of UDT to enhance data-driven environmental planning processes in
sustainable smart cities? 4. What challenges and barriers arise in integrating and implementing AI, AIoT,
and UDT in data-driven environmental urban planning, and what strategies can be devised to surmount
or mitigate them? Methodologically, this study involves a rigorous analysis and synthesis of studies
published between January 2019 and December 2023, comprising an extensive body of literature totaling
185 studies. The findings of this study surpass mere interdisciplinary theoretical enrichment, offering
valuable insights into the transformative potential of integrating AI, AIoT, and UDT technologies to
advance sustainable urban development practices. By enhancing data-driven environmental planning
processes, these integrated technologies and models offer innovative solutions to address complex
environmental challenges. However, this endeavor is fraught with formidable challenges and com-
plexities that require careful navigation and mitigation to achieve desired outcomes. This study serves as
a comprehensive reference guide, spurring groundbreaking research endeavors, stimulating practical
implementations, informing strategic initiatives, and shaping policy formulations in sustainable urban
development. These insights have profound implications for researchers, practitioners, and policy-
makers, providing a roadmap for fostering resiliently designed, technologically advanced, and environ-
mentally conscious urban environments.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open
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Abbreviations

AAM Advanced Air Mobility
AI Artificial Intelligence
AIoDT Artificial Intelligence of Digital Twin
AIoT Artificial Intelligence of Things
CTIS Cooperative Intelligent Transportation System
CNNs Convolutional Neural Networks
CV Computer Vision
DL Deep Learning
DRL Deep Reinforcement Learning
FL Fuzzy Logic
IML Interpretable Machine Learning
IoDT Internet of Digital Twin

IoT Internet of Things
LULC Land Use and Land Cover
ML Machine Learning
NLP Natural Language Processing
PED Positive Energy Districts
PRISMA Preferred Reporting Items for Systematic Reviews

and Meta-analyses
RL Reinforcement Learning
SDGs Sustainable Development Goals
SVR Support Vector Regression
SVM Support Vector Machine
UDT Urban Digital Twin
XAI Explainable Artificial Intelligence
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1. Introduction

In recent years, the rapid pace of urbanization and technological
advancement has accelerated the transformation of cities towards
smarter and more sustainable pathways in response to the esca-
lating complexity of ecological degradation and the pressing chal-
lenges of climate change. Central to this transformation are
innovative technologies and models, notably artificial intelligence
(AI), artificial intelligence of things (AIoT), and urban digital twin
(UDT), which collectively offer unprecedented opportunities for
advancing sustainable urban development and planning. The syn-
ergistic interplay of their applied data-driven solutions presents a
powerful framework for advancing sustainable smart cities, facili-
tating informed decision-making, and fostering resilient urban
ecosystems. However, to fully leverage their capabilities, a
comprehensive understanding of their collaborative integration is
imperative in the context of data-driven environmental planning in
the urban landscape.

The convergence of AI, AIoT, UDT, data-driven urban planning,
and environmental sustainability has emerged as a critical frontier
in the development of sustainable smart cities. In recent years, AI
and AIoT have significantly transformed data-driven urban plan-
ning practices, as evidenced by notable research contributions in
the field [1e6]. This integrated approach highlights the synergistic
potential of AI and AIoT technologies in reshaping urban planning
strategies to address complex environmental challenges. Indeed,
these technologies have significantly impacted multiple urban
domains by optimizing resource management, enhancing energy
efficiency, maximizing the utilization of renewable energy sources,
streamlining waste management processes, improving trans-
portation systems, preserving biodiversity, reducing environmental
footprints, and mitigating the potential risks of climate change
[7e16]. Through the provision of comprehensive environmental
data, the facilitation of seamless integration of urban systems, and
the coordination of various urban domains, AI and AIoT technolo-
gies closely align with the fundamental responsibilities of urban
planners. The intelligence of AI lies in its capacity to learn from
analysis results and outputs, a process that mirrors the funda-
mental logic of planning practice: gathering information, analyzing
it, and producing plans or policies to address challenges and
improve the quality of life [4]. In particular, AIoT is on the verge of
significant transformations, poised to create more sustainable,
efficient, resilient, and environmentally conscious urban
environments.

Given the above, AI and AIoT have become foundational tech-
nologies in sustainable urban development. They have led to the
2

emergence of the concepts of urban AI [17,18] and urban AIoT
[8,19,20]. Urban AI integrates advanced AI techniques into urban
systems, streamlining processes and augmenting decision-making
capabilities. Conversely, urban AIoT synergizes AI capabilities
with the Internet of Things (IoT) infrastructure, facilitating the
creation of intelligent urban environments capable of real-time
monitoring, analysis, and management. The amalgamation of ur-
ban AI and urban AIoT fuels innovation across various areas of ur-
ban planning and governance, providing effective solutions to
multifaceted urban challenges [8,19]. By leveraging data-driven
insights, predictive modeling, optimization techniques, commu-
nity engagement, and adaptive strategies, urban planners can
harness AI and AIoT to create more sustainable, resilient, and in-
clusive cities that meet the evolving needs of citizens and
stakeholders.

Sustainable smart cities are increasingly embracing and
leveraging AI and AIoT technologies [7,19,21e24], represent dy-
namic ecosystems that demands a fundamental reevaluation of
their current planning approaches to tackle complex environ-
mental challenges. The ongoing transformation of sustainable
smart cities highlights the imperative for a profound shift in un-
derstanding and planning urban environments. At the heart of this
transformation lies the concept of UDTd a dynamic virtual replica
of a real-world city's physical, spatial, and functional aspects, mir-
roring its structures, systems, and dynamics in real-time. UDT, a
tool for simulating urban environments and developing scenarios
for planning and policy problems [25,26], enables innovative ap-
proaches and reinforces strategies for tackling the environmental
challenges faced by sustainable smart cities [19,27,28]. It is a
powerful tool for local governments, allowing them to simulate
“what-if” scenarios and potential solutions to address diverse ur-
ban conditions. UDT facilitates identifying and implementing tar-
geted intervention measures to advance environmental
sustainability goals by enabling analysis, visualization, and
response to these conditions. Consequently, its adoption is rising
globally, with examples found in various regions and cities, espe-
cially in emerging sustainable smart cities.

By leveraging smart IoT sensors, advanced data analytics,
powerful AI algorithms, and innovative visualization methods, UDT
integrates vast and diverse data from multiple sources to facilitate
real-time monitoring and improve predictions and decision-
making in urban planning. Indeed, AI and AIoT technologies have
recently found their way into the computational functionalities of
UDT [29,30], enriching data-driven environmental planning ini-
tiatives [31e36] in sustainable smart cities. By integrating AI
models, such as machine learning (ML), deep learning (DL),



Fig. 1. The PRISMA flowchart for literature search and selection. Adapted from Page
et al. [41].
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computer vision (CV), and natural language processing (NLP),
planners can effectively manage vast datasets, identify patterns,
and discern trends via UDT systems, thereby facilitating more
informed decision-making across various domains through auto-
mation, optimization, and prediction.

To understand the significance of AI and AIoT in data-driven
environmental planning in the context of sustainable smart cities,
it is important to trace the trajectory of urbanization and the
evolutionary path of planning models. Environmental planning
involves assessing, managing, and optimizing the use of natural
resources and the environment to foster sustainable development,
minimize environmental impact, and enhance the well-being of
communities. Smart cities, as hubs for technological advancements,
have experienced remarkable developments and concurrent chal-
lenges. In this dynamic landscape, the emergence and adoption of
data-driven technologies, spurred by the imperative for sustainable
development, have given rise to the concept of sustainable smart
cities [21,37e40]. This emerging urbanism paradigm emphasizes
environmental sustainability across various domains (see Ref. [7]
for a bibliometric analysis and detailed review). At the nexus of
these transformative trends, integrating AI and AIoT with UDT in
sustainable smart cities is rapidly evolving, merging their physical,
spatial, functional, digital, and computational realms to elevate
their environmental performance.

The focal point of this study revolves around the multifaceted
contributions of UDT, facilitated by the capabilities of AI and AIoT, to
data-driven environmental planning in sustainable smart cities.
The synergistic interplay of AI, AIoT, and UDT fosters a dynamic
relationship where each component influences and complements
the other. With its advanced algorithms and data processing ca-
pabilities, AI harnesses insights from vast UDT data generated via
IoT devices to optimize decision-making processes. AIoT enhances
the capabilities of IoT devices through AI algorithms, enabling them
to adapt, learn, and optimize their performance autonomously.
Conversely, UDT provides AI with rich, real-world context and
spatial data, enhancing the accuracy and relevance of AI-driven
analyses and predictions. UDT integrates real-time data from IoT
devices with AI-driven simulations to predict and evaluate various
scenarios for data-driven environmental planning. Planners can
also explore ways to optimize the collection and configuration of
data generated through their planning efforts, leveraging AI ana-
lyses to facilitate more effective data-driven and evidence-based
decision-making processes to achieve better sustainability out-
comes [4,5]. The synergistic interplay enables more precise envi-
ronmental assessments, scenario simulations, and proactive
sustainable urban development strategies, empowering stake-
holders to make informed decisions for creating resilient and
environmentally conscious cities. By integrating AI and AIoT capa-
bilities with UDT frameworks, urban planners can harness the po-
wer of advanced data analytics, predictive modeling, and real-time
monitoring to optimize environmental strategies.

While the scholarly landscape has primarily explored urban AI,
urban AIoT, and UDT in isolation, a significant knowledge gap exists
regarding their synergistic interplay, collaborative integration, and
collective impact on data-driven environmental planning in the
dynamic context of sustainable smart cities. To address this gap,
this study conducts a comprehensive systematic review to uncover
the intricate interactions among these interconnected technolo-
gies, models, and domains while elucidating the nuanced dynamics
and untapped synergies in the complex ecosystem of sustainable
smart cities. The study formulates the following four research
questions (RQs) to guide the comprehensive systematic review.

RQ1: What are the theoretical and practical foundations un-
derpinning the convergence of AI, AIoT, UDT, data-driven
3

planning, and environmental sustainability in sustainable smart
cities, and how can these components be synthesized into a
novel comprehensive framework?
RQ2: How does integrating AI and AIoT reshape the landscape of
data-driven planning to improve the environmental perfor-
mance of sustainable smart cities?
RQ3: How can AI and AIoT augment UDT's capabilities to
enhance data-driven environmental planning processes in sus-
tainable smart cities?
RQ4: What challenges and barriers arise in integrating and
implementing AI, AIoT, and UDT in data-driven environmental
urban planning, and what strategies can be devised to surmount
or mitigate them?

Guided by these research questions, the study aims to
comprehensively understand the current research landscape and
its evolving dynamics. It offers invaluable insights into the trans-
formative potential of integrating AI, AIoT, and UDT to advance
data-driven environmental planning in sustainable smart cities.
These insights, combined with foundational knowledge, can serve
as a roadmap to guide future investigations, strategic initiatives,
practical implementations, policy formulations, and innovative
approaches to sustainable urban development.

The remaining sections of this study are structured as follows:
Section 2 outlines and justifies the methodology employed in the
study. Section 3 presents the results, addressing the four research
questions posed earlier. Section 4 provides a detailed discussion
encompassing an interpretation of results, a comparative analysis,
the implications, the limitations, and suggestions for future
research. Finally, Section 5 summarizes the study's key findings and
contributions.

2. Materials and methods

This study presents a comprehensive systematic review, exam-
ining the intricate interplay of AI, AIoT, UDT, data-driven urban
planning, and environmental sustainability, as well as the nuanced
dynamics and untapped synergies in the dynamic landscape of
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sustainable smart cities. The current scholarly landscape is inher-
ently fragmented, primarily because the convergence of these
technologies, models, and domains is relatively new d yet rapidly
evolving. The topics are emerging and coming together, and as
research progresses and technologies advance over time, themes
will become evident. A thorough systematic review of a novel
landscape of research and practice featuring emerging topics and
themes serves several important purposes. One of these is to
ascertain the current state-of-the-art knowledge in this rapidly
evolving interdisciplinary field. This enables researchers to acquire
a more profound understanding of emerging discoveries, trans-
formations, innovations, and findings, laying the groundwork for
more extensive explorations and empirical investigations. Another
purpose is establishing the context and relevance of emerging
topics and themes. Researchers can better grasp their significance
in the field by contextualizing the new interconnected technolo-
gies, models, and domains in the broader research domain.

In this systematic review, the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) approach was
employed for literature search and selection [41]. This approach is a
widely accepted framework designed to enhance systematic re-
views' transparency, consistency, rigor, and comprehensiveness. It
encompasses several stages, including defining eligibility criteria
for study selection, developing a thorough literature search strat-
egy, selecting relevant studies, extracting data, appraising the
quality of studies, and analyzing and synthesizing the extracted
data. Adhering to the PRISMA approach ensured a high level of
methodological rigor in the comprehensive systematic review,
enhancing the findings' reliability and validity. Furthermore, this
approach facilitated the identification of emerging patterns, trends,
and gaps in the existing body of literature, ultimately contributing
to a more comprehensive understanding of the multifaceted
research topic at hand.

Fig. 1 illustrates the three-phase flowchart associated with the
PRISMA approach. From the array of bibliographic databases
accessible, Scopus, Web of Science (WoS), and ScienceDirect were
chosen due to their extensive coverage of the high-quality peer-
reviewed studies relevant to the multifaceted topic at hand. The
number of records identified was found to overlap across these
databases. Employing a thorough search strategy to retrieve the
relevant scholarly literature, a set of pertinent keywords was
carefully selected based on the combination of sustainable smart
cities, UDT, AI, AIoT, urban planning, and environmental sustain-
ability. The search string encompassed vital combinations such as
“sustainable smart cities AND artificial intelligence OR artificial
intelligence of things,” “sustainable smart cities AND urban digital
twin,” “sustainable smart cities AND urban planning,” “sustainable
smart cities AND environmental sustainability AND artificial in-
telligence,” “urban digital twin AND artificial intelligence OR arti-
ficial intelligence of things,” “urban digital twin AND urban
planning,” “urban digital twin AND environmental sustainability,”
and “urban digital twin AND urban planning AND environmental
sustainability.” These were used to search against the title, abstract,
and keywords of documents to produce initial insights. These
combinations ensured specificity, diversity, and relevance in
searching and retrieving the sought data.

The inclusion criteria filtered studies based on pertinence, reli-
ability, language, publication date, and publication type (article,
conference paper, or book chapter), providing definitive primary
information. Exclusion criteria were applied to remove studies
unrelated to the focal topics and their interlinkages and irrelevant
to the research aims and questions. Based on these predefined in-
clusion/exclusion criteria, the selection process involved initial
screening based on titles and abstracts, followed by a detailed full-
text review for eligibility. The search query retrieved 425 records
4

from three databases (Scopus ¼ 239, WoS ¼ 169, and
ScienceDirect ¼ 17). After removing duplicates, 149 records were
eliminated. Subsequently, titles and keywords were scrutinized,
leading to the exclusion of 28 more records. The remaining 248
records underwent abstract screening against the inclusion and
exclusion criteria, removing 49. The full-text screening of the
remaining 199 records led to excluding an additional 27 records.
Ultimately, this process yielded a final selection of 172 publications.
Additionally, 13 extra records were included through other sources
and alerts, bringing the total number of records included in the final
analysis to 185. Throughout the process, a critical appraisal was
conducted to assess the quality of the selected studies. The search
process encompassed various peer-reviewed articles, conference
proceedings, and book chapters. The objective was to establish a
nuanced understanding of the multifaceted research topic, gain
deeper insights into theoretical frameworks and contextual land-
scapes, identify potential opportunities and synergies, and antici-
pate challenges and barriers along with related mitigation
strategies.

The literature search for this comprehensive systematic review
was conducted in early September 2023, aiming to capture the
latest developments in the dynamic field of sustainable smart cit-
ies. The chosen time frame spans from January 2019 to December
2023 to ensure a comprehensive review of recent literature,
aligning with the rapid advancements and emerging trends in the
specified technological areas of AI, AIoT, and UDT in relation to
data-driven urban planning and environmental sustainability do-
mains. This period allowed us to encapsulate the latest five years of
scholarly contributions, providing up-to-date analysis and synthe-
sis of knowledge and exploring the most contemporary perspec-
tives on the multifaceted interplay of these technologies, models,
and domains. However, it was observed that fewer studies were
published in 2019 compared to subsequent years. This lower
number of studies in 2019 could be attributed to several factors
related to the topic of the study and evolving research trends. One
possible explanation is that the topic experienced increased
research interest in the years following 2019, leading to more
studies being conducted and published. Additionally, changes in
research priorities and technological advancements may have
influenced the publication landscape, with researchers shifting
focus to explore emerging areas of interest.

Guided by an inductive approach, a content analysis was per-
formed on the included studies to gather the data needed to
analyze and synthesize the existing literature. The obtained in-
sights enabled the identification of key themes, patterns, and var-
iations, ensuring a comprehensive analysis and synthesis. A quality
assessment was performed to ensure the credibility and reliability
of the selected studies, contributing to drawing meaningful con-
clusions related to the technological convergence and synergistic
integration in question. Particularly, peer-reviewed studies from
reputable sources were given precedence, and an evaluation was
applied to ascertain the validity and robustness of the methodol-
ogies employed in each study by assessing the strengths and
weaknesses of the research design. Overall, the guided extraction of
insights enabled the identification of key themes, patterns, varia-
tions, and insightful nuances, ensuring a comprehensive data
analysis. This process included breaking down the data into distinct
parts, assigning appropriate labels, identifying connections and
relationships between these labels, and developing central themes
derived from the identified labels. Throughout this phase, a
continuous comparison of new data with existing labels and cate-
gories was conducted to ensure a thorough exploration. Subse-
quently, the data synthesis phase encompassed integrating,
interpreting, and developing overarching themes from the
analyzed data. This entailed categorizing information based on
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commonalities and differences, formulating conceptual and
descriptive categories that encapsulated the essence of the data,
and constructing a narrative that interwove key findings and
insights.

Specifically, the comprehensive systematic review combined
configurative, aggregative, and narrative synthesis techniques.
Configurative synthesis was utilized to explore the foundational
theories and practical applications that underpin the convergence
of AI, AIoT, UDT, data-driven planning, and environmental sus-
tainability in the context of sustainable smart cities. Aggregative
synthesis techniques were employed to analyze how the integra-
tion of AI and AIoT influences data-driven planning, reshaping ur-
ban landscapes to enhance the environmental performance of
sustainable smart cities. They were also used to identify how AI and
AIoT augment the capabilities of UDT to advance data-driven
environmental planning processes in sustainable smart cities. A
narrative synthesis was adopted to analyze and interpret the
findings gathered from the comprehensive systematic review
process. This synthesis technique involved organizing and sum-
marizing the key themes, concepts, and insights extracted from the
literature on AI, AIoT, UDT, data-driven planning, and environ-
mental sustainability in the context of sustainable smart cities. By
synthesizing these findings narratively, the study provided a
coherent and nuanced understanding of the synergistic effects of
these technologies and models on data-driven environmental ur-
ban planning. Narrative synthesis was instrumental in weaving
together the findings from the configurative and aggregative syn-
thesis stages, allowing for the development of a balanced narrative
that synthesized the diverse perspectives and insights uncovered
throughout the comprehensive systematic review process. It facil-
itated the elucidation of the intricate interplay of AI, AIoT, UDT,
data-driven planning, and environmental sustainability, providing
a holistic understanding of their integrated implications for sus-
tainable urban development.
Fig. 2. An overview of the primary conceptual and practical foundations identified
along with their interconnections.
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3. Results: analysis and synthesis

This section presents the results of the comprehensive system-
atic review, providing insights into the synthesized evidence across
185 studies. It focuses on the theoretical and practical foundations
underlying this convergence, the transformative impact of AI and
AIoT integration on the landscape of data-driven urban planning to
enhance environmental sustainability outcomes, and how the AI-
and AIoT-augmented UDT advance data-driven environmental ur-
ban planning processes. Lastly, attention is given to the challenges
and barriers inherent in the integration and implementation of AI,
AIoT, and UDT in data-driven environmental urban planning, along
with strategies to surmount or mitigate them.

3.1. Theoretical and practical foundations

This section analyzes and synthesizes the existing literature on
the theoretical and practical foundations underlying the conver-
gence of UDT, AI, AIoT, data-driven urban planning, and environ-
mental sustainability in the dynamic context of sustainable smart
cities. It examines the concept of sustainable smart cities, shedding
light on the evolving landscapes influenced by urban AI, urban AIoT,
and UDT and their effects on the changing dynamics of urban
planning in terms of its data-driven and environmental di-
mensions. This sets the stage for a comprehensive exploration of
the contributions made by emerging urban computing, modeling,
and planning paradigms to advancing environmental goals in sus-
tainable smart cities.

Fig. 2 illustrates key technologies, models, and domains and
their interconnections in a circular form from a hierarchical
perspective. The relationship among AI, AIoT, UDT, data-driven
urban planning, environmental strategies, data-driven environ-
mental planning, and environmentally sustainable urban devel-
opment goals is symbiotic, dynamic, and multifaceted. AI and AIoT
technologies are key enablers in the data-driven urban planning
process, providing advanced analytics and insights from vast
amounts of data generated by IoT devices embedded in urban en-
vironments. UDT systems further enhance this process by creating
detailed virtual replicas of sustainable smart cities, enabling real-
time monitoring, simulation, and optimization of various systems
in these cities. These technologies and models, when integrated,
facilitate the development and implementation of data-driven
environmental planning strategies aimed at addressing chal-
lenges such as energy usage, waste generation, pollution, resource
depletion, and climate change. By leveraging AI and AIoT capabil-
ities within UDT frameworks, urban planners and policymakers can
make informed decisions, optimize resource allocation, and design
interventions to achieve environmentally sustainable urban
development goals, ultimately leading to more efficient, resilient,
and livable cities.

3.1.1. Sustainable smart cities
Sustainable smart cities refer to urban environments that

leverage advanced technologies and data-driven solutions to
enhance efficiency, improve the quality of life, and address envi-
ronmental challenges while ensuring long-term viability. Emerging
in response to the criticism directed at traditional smart city ini-
tiatives [42e46], sustainable smart cities are increasingly inte-
grating data-driven technologies with a focus on achieving the
sustainable development goals (SDGs) [47e49]. Ahad et al. [50]
comprehensively reviewed the enabling technologies for smart
cities, identified key challenges encompassing technical, socioeco-
nomic, and environmental dimensions, and proposed best practices
for realizing sustainable smart cities. The study conducted by del
Mar Martínez-Bravo and Labella-Fern�andez [51] aims to elucidate
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the concept of “sustainable smart cities” and propose a broader
understanding. It advocates for sustainability-coherence, limited
growth, heightened awareness, and combining bottom-up and top-
down initiatives as essential characteristics of sustainable smart
cities. Evaluating their strengths and weaknesses becomes para-
mount as sustainable smart city projects proliferate globally. Hence,
there is a need to develop assessment tools to provide essential
performance indicators for multiple stakeholders engaged in urban
development.

Transitioning from smart to sustainable smart cities necessitates
a holistic approach to sustainability, with a heightened emphasis
on environmental and technological factors. The existing body of
literature provides valuable insights into pathways for fostering
more intelligent and environmentally conscious urban futures.
Sustainable smart cities exemplify the integration of technological
advancements and environmental strategies, leveraging AI and
AIoT solutions for renewable energy, energy conservation, water
resource management, waste management, sustainable trans-
portation, pollution control, climate change mitigation, and intel-
ligent infrastructure [7,8]. Numerous studies have explored the
roles of not only AI and AIoT but also UDT in advancing environ-
mental sustainability through innovative approaches to planning
and management in sustainable smart cities [7,8,22e24,27,28,52].

By assimilating the latest advancements and cutting-edge
technologies, sustainable smart cities can evolve into dynamic
change agents capable of responding to the growing needs of their
citizens, the dynamics of their environment, and the mounting
pressures of urbanization. The defined principles and practices of
sustainable smart cities provide a foundational blueprint for navi-
gating the complex landscape of environmental sustainability. They
exemplify the collaborative integration of UDT with AI and AIoT to
shape urban environments that are technologically advanced and
environmentally resilient, empowered by sophisticated data-
driven planning systems.

3.1.2. Urban digital twin
UDT represents a sophisticated technological concept reshaping

sustainable urban development's landscape. It represents a detailed
and dynamic virtual replica that mirrors the city's physical, func-
tional, spatial, and behavioral aspects in real-time or near-real-
time, providing a dynamic platform for analysis, planning, and
decision-making. The primary goal of UDT is to serve as a powerful
tool for enhancing urban planning, management, and governance
processes and practices to advance progress toward SDGs [53e56],
with a particular emphasis on attaining the environmental objec-
tives of sustainable smart cities [27,28]. UDT, continuously updated
with real-time data from IoT sensors and devices and analyzed
using AI models and techniques [29,30,57], enables city planners
and stakeholders to monitor, model, simulate, and visualize com-
plex urban systems, understand behavioral patterns, test scenarios,
predict environmental changes, optimize urban infrastructure
design, and enhance services.

The multifaceted and crucial role of AIoT in UDT lies in inte-
grating AI computational and analytical functionalities into IoT
devices across urban infrastructures. This enables real-time data
acquisition, analysis, and prediction and empowers IoT systems and
applications with intelligence and decision-making capabilities.
This integration plays a pivotal role in establishing a dynamic and
responsive framework for smarter, more resilient, and sustainable
urban ecosystems that improve the quality of life for citizens while
minimizing environmental impact.

Drawing insights from real-world implementation in various
sustainable smart cities worldwide, UDT has demonstrated its ca-
pacity to provide a detailed and interactive platform tailored for
diverse data-driven planning and design functions [57e63],
6

including.

� Simulation and modeling: UDT enables accurate and dynamic
three-dimensional (3D) city simulations based on spatial,
environmental, socio-economic, historical, and real-time data.
This allows planners to model and test scenarios and potential
solutions to assess their impact and effectiveness.

� Data-informed decision-making: It supports data-driven deci-
sion-making by extracting meaningful insights based on inte-
grated data. Planners can analyze trends and patterns to make
more informed choices in sustainable urban development.

� Collaborative planning: It fosters collaboration among stake-
holders, including city planners, architects, engineers, commu-
nity members, and citizens, in a virtual environment, promoting
inclusive and participatory planning.

� Resource allocation optimization: It provides insights into the
efficiency of urban infrastructure, energy and material usage,
and transportation systems, optimizing resource allocation for
overall sustainability.

� Resilience planning enhances urban resilience by allowing
planners to simulate and plan for natural disasters, climate
change, and emergency response strategies.

� Monitoring and management: Real-time UDT monitoring en-
ables proactive urban service management. Planners can
promptly identify and respond to issues, ensuring efficient city
infrastructure operation.

UDT is a virtual testing ground for urban planning strategies and
decisions. It leverages advanced technologies to create a compre-
hensive and dynamic representation of a city, enabling more
effective, adaptive, data-driven, and collaborative approaches to
sustainable urban development.

3.1.3. Urban artificial intelligence
AI is the simulation of human intelligence processes by com-

puter systems or machines. These processes include perception,
learning, reasoning, problem-solving, decision-making, and lan-
guage understanding. AI systems are designed to perform complex
tasks that typically necessitate human-like intelligence, including
visual perception, object detection, speech recognition, data
pattern recognition, emotion detection, discernment of communi-
cation behavior, and making predictions and decisions based on
complex datasets. AI can be characterized as the ability to achieve
objectives in diverse and uncertain environments using highly
adaptive, general-purpose systems through self-directed learning
[64]. While humans may automate tasks manually, AI can reliably
and efficiently execute high-volume tasks autonomously [65].

AI encompasses a wide variety of models and technologies,
including ML, DL, CV, NLP, Evolutionary Computing (EC), and ro-
botics. These models have been applied to various urban planning
and design functions [1e6] in the context of environmental sus-
tainability in sustainable smart cities [7,8,21,22,24,27,66,67]. The
integration of AI technologies into urban planning and design
processes underscores the pivotal role of AI in advancing the
development of sustainable smart cities. At the heart of this inte-
gration lies the overarching goal of AI: to develop systems capable
of autonomous task performance and adaptive learning. This col-
lective human-like intelligence function is central to the applica-
tion of AI in sustainable smart cities, where AI systems are
harnessed to optimize urban planning and design processes to
address complex challenges.

In light of the above, urban AI, as an interdisciplinary field, ex-
plores howAI technologies can be applied to urban contexts. It aims
to enhance urban planning, design, management, governance, and
decision-making processes by providing insights, predictions, and
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recommendations to improve cities' efficiency, resilience, and
livability [8,19]. Cugurullo et al. [68] explored AI's multifaceted
impact on urban environments, highlighting the co-constitutive
relationship between AI and modern cities. Cugurullo et al. [17]
critically assessed the transformation of urbanism due to AI, high-
lighting its distinct theoretical and practical implications for urban
development. The authors argued that AI urbanism, influenced by
AI, presents a new paradigm potentially leading to post-smart cit-
ies. They compared smart urbanism with AI-driven urbanism, dis-
cussing limitations and potentials while providing conceptual tools
for understanding its impact. Palmini and Cugurullo [18] focused on
the intersection of AI urbanism and sustainability, critiquing the
notion of sustainable AI urbanism and proposing a redefined
framework. The authors advocated for a shift towards sustainability
in AI urbanism by reexamining fundamental ideas and design
cultures. Palmini and Cugurullo [69] charted the landscape of AI
urbanism by examining its conceptual sources and spatial impli-
cations. The authors provided a framework for understanding the
AI-urbanism relationship, emphasizing the need for both qualita-
tive and quantitative approaches and considering the material
impact of AI on cities for fostering sustainable urban innovation.
Overall, urban AI intersects with data-driven environmental plan-
ning by leveraging advanced computational techniques and large
datasets to analyze urban environments and their ecological
impact. Urban AI can process vast amounts of data from various
sources to model and predict environmental trends. By integrating
AI-driven insights into environmental planning processes,
decision-makers can make more informed decisions to promote
sustainability, resilience, and human well-being in urban areas.

3.1.4. Urban artificial intelligence of things
In the rapidly changing landscape of technological innovation,

the theoretical foundation and symbiotic interaction of AI and IoT
encapsulated in the concept of AIoT stand as core pillars shaping the
trajectory of sustainable smart cities. AIoT, as a technological
framework, harnesses the complementary strengths and capabil-
ities of AI and IoT to reshape urban landscapes [8,13,15,19,70]. It
entails incorporating AI techniques and algorithms, especially ML
and DL, into IoT devices to enhance functionality and augment in-
telligence [13,15,71]. AIoT aims to make IoT devices collect and
transmit data and analyze and interpret these data using AI tools,
therebymaking IoT systemsmore adaptive, efficient, and capable of
autonomous decision-making. This goal is achieved through digital
instrumentation, digital hyper-connectivity, datafication, algo-
rithmization, and platformization [72]. Parihar et al. [73] explore
IoT growth, AI integration benefits, AIoT architecture, applications,
and implementation challenges.

Urban AIoT is about integrating AI and IoT technologies in urban
environments to analyze, understand, and improve urban systems
and processes and coordinate urban domains and networks. It in-
volves deploying AI algorithms and techniques to analyze vast data
collected from urban infrastructures and systems and diverse IoT
devices embedded throughout the city's environment. This en-
compasses data from transportation systems, energy grids, water
and waste management systems, smart buildings, public safety
sensors, environmental monitoring devices, and other urban IoT
deployments [8,10,13e16,74]. Urban AIoT aims to enhance cities'
efficiency, sustainability, and livability by enabling intelligent
decision-making, predictive analytics, and process automation
across diverse domains. This integration allows cities to leverage
real-time data insights to optimize resource allocation, improve
service delivery, and address urban challenges effectively.

It is crucial to highlight the growing body of research exploring
the transformative potential of AI and AIoT in promoting environ-
mental sustainability and addressing climate change risks in the
7

context of sustainable smart cities. While previous studies have
examined aspects of AI and AIoT in these individual domains
[9,12,75], the comprehensive systematic review by Bibri et al. [8]
stands out for its extensive analysis of applied AI and AIoT solutions
for environmental sustainability and climate changemitigation and
adaptation in emerging smarter eco-cities. This review analyzes
and synthesizes a diverse and large body of research, covering the
multifaceted dimensions of the integration of eco-urbanism, smart
urbanism, and AI or AI-driven urbanism, thereby providing a ho-
listic understanding of environmentally sustainable smart urban
development.

Intelligent technology, propelled by the synergies of AI and AIoT
principles, is poised to revolutionize the framework of sustainable
smart cities. Recent advancements and cutting-edge resources
underscore the collaborative impact of AI and AIoT in optimizing
urban operational functioning and planning. Integrating AI and IoT
technologies lays the groundwork for developing more sustainable
cities and heralding a new era of urban intelligence. In this context,
AIoT catalyzes cities to leverage networked devices and smart al-
gorithms for informed and data-driven decision-making. The syn-
ergistic interplay and distinctive character of AI and AIoT emerge as
crucial elements shaping the broader vision of intelligent and
resilient urban areas, charting the crossroads of technology and
sustainability.

3.1.5. Urban planning
Urban planning is a multidisciplinary and complex process

encompassing designing, regulating, and managing land use and
resources in urban areas and their connecting infrastructure. Its
overarching goal is to enhance the overall quality of life, effectively
address the challenges of urbanization and ecological degradation,
and contribute to achieving SDGs. It encompasses various con-
ceptual domains, commonly classified into different types,
including strategic planning, sustainable planning, land use plan-
ning, transportation planning, local and regional planning, infra-
structure planning, and environmental planning [76]. These
conceptual areas address diverse aspects of sustainable urban
development. However, urban planning grapples with the intricate
challenges arising from the dynamic nature of urban environments.
Characterized by the complexity of multidimensional and systemic
factors, urban planning confronts what is frequently referred to in
policy analysis as “wicked problems” [77]. These typically involve
multiple stakeholders, tangled interdependencies, and unpredict-
able outcomes. In essence, wicked problems demand holistic,
adaptive, and collaborative strategies to traverse their complex
nature and find sustainable solutions.

Batty and Marshall [78], Marshall [79], and Portugali [80]
explored the complexity of urban systems and their implications
for urban planning. They highlighted the shift from traditional top-
down planning approaches to a bottom-up perspective, empha-
sizing cities' dynamic and continually evolving nature. Additionally,
they discussed the challenges posed by complexity, including the
unknowability of urban systems and the difficulty of predicting
their future states. These studies advocate for a more nuanced
understanding of urban complexity and adopting planning strate-
gies that embrace and harness complexity to generate functional
urban complexity. Bibri [76] built on these insights by examining
the role of data-driven technologies in planning sustainable smart
cities. The author argued that sustainable cities are inherently
complex systems and proposed a framework for data-driven sus-
tainable smart cities. This framework leverages urban computing
and intelligence to analyze and optimize urban systems to improve
sustainability, efficiency, resilience, equity, and quality of life. By
integrating complexity, sustainability, and data-intensive sciences,
the study contributed to advancing the planning and design of
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sustainable cities by harnessing the power of big data and emerging
technologies.

Bettencourt [81] discussed the utility of big data in urban
planning by framing the planning process as a broad computational
problem. The author illustrated that by aligning new data sources
with urban policies under general conditions, one can apply
fundamental engineering and applied science principles to devise
novel, more efficient solutions for urban problems. The study
argued that big data is pivotal in facilitating information flows and
channels, coordinating mechanisms, fostering cooperative
communication, and supporting learning and sharing processes
among diverse constituents and heterogeneous collective and in-
dividual actors acting as data agents. However, it is also highlighted
that irrespective of the abundance of available data, achieving a
comprehensive form of urban planning remains computationally
challenging, especially in large cities. Nevertheless, as suggested by
Sanchez [4], a practical approach to envisioning the integration of
AI into sustainable planning practice involves identifying strategic
points of intervention that align with typical planning tasks: (a)
community visioning, (b) plan-making, (c) standards, policies, and
incentives, (d) development work, and (e) public investments.
Planners can analyze the tasks associated with each point and
consider how AI could automate or enhance these processes.

In the contemporary urban development landscape, the
imperative for a data-driven approach to planning arises from the
need to address complex and dynamic challenges facing cities.
Conventional urban planning often has inefficiencies, uncertainties,
and a lack of real-time insights. Integrating advanced technologies
and digital models offers a transformative solution by infusing
data-driven methodologies into planning.

3.1.6. Data-driven urban planning
Urban planning has undergone a transformative shift, adopting

a dynamic, data-driven approach that extends beyond traditional
methods, propelled by cutting-edge approaches and innovative
strategies. Data-driven urban planning heavily relies on analyzing,
interpreting, and utilizing various forms of data to inform decision-
making processes. It focuses on understanding urban dynamics,
identifying patterns, and predicting future trends, a practice asso-
ciated with UDT as a data-driven urban planning system [19]. This
approach leverages data-driven technologies to aid urban planners
in developing more informed and effective strategies for improving
urban infrastructure, enhancing public services, and addressing
sustainability and resilience challenges [81e83]. Komninos et al.
[84] extended the prevailing theory of urban development to smart
city planning, exemplifying a strategy emphasizing economic,
environmental, and social sustainability. This approach represents
a departure from traditional planning paradigms, emphasizing the
integration of technologies, active user engagement, and the
exploration of emerging opportunities, reflecting the evolving na-
ture of cities. The endeavor to construct cities characterized by
resilience, adaptability, functionality, and livability requires a stra-
tegic orchestration of land use, infrastructure, services, and more,
with advanced technologies playing a key role.

In the last decade, the landscape of data-driven planning in
smart cities has witnessed the exploration of diverse advanced
methods, with a predominant reliance on big data analytics and IoT
[85e91]. Recent research particularly underscores the pivotal role
of AI in urban planning, with real-time data, advanced data ana-
lytics models, AI algorithms, and spatial analysis emerging as in-
tegral tools [2,6,92].

In the realm of sustainable smart cities, data-driven urban
planning has evolved into a dynamic process that harnesses the
latest AI and AIoT models and techniques to envision cities attuned
to the needs of citizens and responsive to environmental
8

challenges. This process increasingly intertwines with AI, IoT, AIoT,
and UDT. AI-driven decision support systems enhance the effi-
ciency and effectiveness of urban planning strategies. IoT contrib-
utes to data-driven urban planning by connecting physical objects
and infrastructure to the internet, allowing real-time data collec-
tion and monitoring [85,89,90]. IoT sensors placed throughout the
city can capture information on various environmental parameters.
These real-time data feed into decision-making processes enabled
by AI for optimizing urban systems and enhancing the immediacy
of information available to city planners [4]. AIoT further enriches
data-driven urban planning, enabling real-time monitoring, effi-
cient resource utilization, advanced analytics, predictive modeling,
adaptive approaches, and more intelligent decision-making and
automation. As regards UDT, which incorporates AI, IoT, and AIoT
into its functionalities [19,29,30], it contributes to data-driven
planning by facilitating simulations, scenario forecasting, and
visualization of urban systems and dynamics for decision-making
purposes. Integrating AI, IoT, AIoT, and UDT transforms traditional
urban planning into a dynamic, data-driven, comprehensive
approach. This empowers city planners with actionable insights for
informed decision-making to build smarter and more sustainable
cities.

3.1.7. Environmental planning
Environmental planning plays a crucial role in ensuring the

sustainable development of urban areas, addressing key challenges
related to resource management, pollution control, and ecosystem
preservation. Ndubisi [93] defined it as “the process of under-
standing, evaluating, and providing options for the use of landscape
to ensure a better fit with human habitation.” Environmental
planning is a means to mediate the dialogue between human ac-
tivities and natural processes, drawing upon an understanding of
the reciprocal interaction between people and the environment
[94]. It entails a comprehensive framework of methodologies,
plans, and strategies that revolve around evaluating, managing, and
optimizing natural resources and ecosystems. This multifaceted
approach is designed to foster sustainable development, mitigate
environmental footprints, and improve the overall well-being of
communities [95]. Mersal [96] provided an overview of the
importance of environmental/ecological planning in sustainable
urban development and proposes a conceptual framework for
developing sustainable urban ecosystems. Ndubisi [93] examined
different historical and comparative approaches to this planning
process, highlighting their distinct perspectives on the interaction
between human activities and the environment. In relevance to this
study, environmental planning aims to create environmentally
responsible, resource-efficient, and resilient cities to climate
change. This aligns with smarter eco-cities, which advocate for
promoting efficient public transportation, energy optimization,
waste reduction, water conservation, biodiversity protection,
pollution control, and climate change mitigation [8].

In recent years, the adoption of advanced technologies has
emerged as a transformative force in environmental planning, of-
fering innovative tools and methods to tackle complex challenges
[97e99] and forge a path towards sustainable smart cities. Data-
driven technologies, especially AI and AIoT, play a key role in
improving the efficiency and effectiveness of environmental plan-
ning processes and practices. This entails harnessing state-of-the-
art tools, such as ML/DL models, expert systems (ES), decision
support systems (DSS), geographic information systems (GIS),
remote sensing, big data analytics, and planning support systems
(PSS) [75,92,100]. For example, studies on biodiversity and
ecosystem services have utilized ML techniques for modeling
competition and population dynamics and especially modeling
ecosystem services, while species conservation efforts have
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benefited from ML and DSS [101e103]. These technological ad-
vancements enable planners to gather, analyze, and interpret vast
amounts of environmental data with heightened levels of perfor-
mance and speed. Essentially, converging environmental planning
and advanced technologies represent a powerful synergy. By har-
nessing the capabilities of cutting-edge tools, planners can unravel
the complexities of sustainable development more effectively,
ensuring that environmental considerations are at the forefront of
decision-making processes.
3.1.8. Data-driven environmental sustainability strategies
In sustainable smart cities, environmental sustainability strate-

gies entail plans or actions designed to ensure that urban activities
are carried out in a manner that preserves and protects the natural
environment in urban areas. Examples of these strategies include
renewable energy adoption, energy efficiency improvements (e.g.,
buildings, transportation, and infrastructure), waste reduction and
recycling programs, green space preservation and expansion, water
conservation measures, transportation policies, green building
standards, and climate mitigation and resilience planning. Envi-
ronmental sustainability strategies in smart sustainable cities are
increasingly shaped by data-driven approaches and AI/AIoT solu-
tions to tackle complex environmental challenges [8,22,23,27,104].
These data-driven strategies leverage various data sources,
including sensor data, satellite imagery, historical records, and
more, to analyze environmental impact, track progress, and opti-
mize resource management. Data-driven approaches, along with
AI/AIoT, play a crucial role in enhancing the environmental per-
formance of smart sustainable cities. They include smart energy
management, smart grids, traffic management, waste manage-
ment, water management, air quality monitoring, green space
management, pollution control, carbon footprint tracking, disaster
management, circular economy initiatives, and urban planning (see
Refs. [7,8] for detailed reviews). They rely heavily on data, AI al-
gorithms, and AIoT tools to understand current environmental
conditions, predict future trends, and make informed decisions to
minimize environmental impact while promoting sustainability in
smart cities and beyond [9e14,15,16,75]. In the context of sustain-
able smart cities, AIoT can enhance environmental sustainability
strategies by enabling real-time monitoring, analysis, and optimi-
zation of resource use.
Fig. 3. A novel synthesized framework for data-driven environmental planning in
sustainable smart cities.
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Based on data-driven strategies, planners can gain deeper in-
sights into and address environmental challenges, pinpoint areas
for improvement, and devise targeted interventions by harnessing
data from diverse sources. For example, data on air quality, water
usage, waste generation, and transportation can inform decisions
on infrastructure development and resource management to
advance environmental sustainability goals. Moreover, data-driven
environmental sustainability strategies are embedded in UDT
platforms to monitor and assess the environmental performance of
sustainable smart cities [19,28]. In this context, urban planners can
test strategies for reducing carbon emissions, improving energy
efficiency, and enhancing ecosystem resilience before imple-
mentation by simulating the impact of different environmental
policies and interventions. Overall, environmental sustainability
strategies are closely linked with data-driven urban planning, UDT,
and AIoT in sustainable smart cities, which can integrate these
approaches to developmore effective and responsive approaches to
address complex challenges and create healthier, more resilient
urban environments.
3.1.9. A novel synthesized framework for data-driven
environmental planning in sustainable smart cities

Derived from the analysis and synthesis of the theoretical and
practical foundations driving the convergence of AI, AIoT, UDT,
data-driven urban planning, and environmental sustainability in
sustainable smart cities, the novel conceptual framework (Fig. 3)
illustrates an interconnected ecosystem among these critical ele-
ments. This interconnectedness establishes a comprehensive
framework for advancing sustainable smart cities. At its core, this
framework integrates cutting-edge technologies to drive data-
driven environmental urban planning practices. AI and AIoT
empower UDT and facilities’ urban planning by providing sophis-
ticated algorithms and real-time data processing capabilities,
enabling predictive analytics, optimization, and decision-making in
urban environments. This synergy fosters smarter and more effi-
cient resource allocation, infrastructure management, environ-
mental management, and service delivery, ultimately enhancing
the sustainability of urban ecosystems.

Data-driven urban planning, facilitated by AIoT and UDT tech-
nologies, serves as the central element of this framework. It le-
verages vast amounts of urban data to inform planning decisions,
infrastructure design, and policy formulation, leading to more
resilient, adaptable, and environmentally conscious cities. In this
context, it is shaped by environmental planning, which prioritizes
sustainable development practices and aims to mitigate the
adverse impacts of urbanization on the environment. Urban plan-
ners can anticipate future challenges, identify optimization op-
portunities, and develop strategies to mitigate environmental
impacts by harnessing data analytics and predictive modeling.

Environmental sustainability is a central tenet of this frame-
work, guiding the integration of AI, AIoT, UDT, and data-driven
urban planning practices. Sustainable smart cities can implement
proactive measures to address environmental concerns such as air
and water pollution, energy consumption, waste management, and
climate change mitigation by leveraging advanced technologies
and data-driven insights. The framework emphasizes the impor-
tance of promoting strategies that support long-term environ-
mental sustainability and resilience in urban areas. In essence, this
conceptual framework represents a holistic approach to sustainable
urban development, where AI, AIoT, UDT, data-driven urban plan-
ning, and environmental sustainability converge to create intelli-
gent, livable, and environmentally friendly cities.
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3.2. Adoption of artificial intelligence and artificial intelligence of
things in data-driven environmental urban planning

The preceding subsection has offered foundational insights and
synthesized perspectives on the substantial impact of prominent
data-driven solutions and approaches on shaping the multifaceted
landscape of urban planning. These insights and perspectives hold
particular significance in sustainable smart cities, highlighting the
crucial role of advanced technologies and environmental strategies
in their evolution. This subsection particularly emphasizes the
significance of AI and AIoT-based tools and methodologies in
enhancing data-driven environmental urban planning processes
and practices. It synthesizes research examining the intersection of
AI, AIoT, and data-driven environmental urban planning, encom-
passing two sets of studies on their linkages: partial and compre-
hensive explorations.
3.2.1. Research on partial explorations of linkages
The growing body of research on utilizing and integrating AI and

AIoT in data-driven urban planning underscores their instrumental
role in advancing environmental sustainability objectives. This has
led to the emergence of novel approaches to data-driven environ-
mental planning to tackle the mounting challenges of urbanization,
ecological degradation, and climate change encountered by smart
cities. Such developments reflect a response to the increasing
scholarly interest in, and policy emphasis on, environmentally
sustainable urban development practices, particularly in recent
years (see Ref. [7] for a bibliometric analysis). They particularly
highlight the crucial contributions of AI and AIoT in enhancing
operational efficiency mechanisms and strategic planning methods
[8,19,21,22,24,27,104,105]. In light of this, the conventional ap-
proaches to urban planning, which have long grappled with the
dynamic properties and behaviors of complex systems [78e81],
have served as a fertile ground and significant opportunity for the
integration of AI and AIoT to deepen our understanding of the
complexities inherent in urban environments. In this context, any
city or urban area that adopts AI will need to integrate it fully into
the wider urban planning practice to handle urban complexities
[106]. Nevertheless, bridging the gap between AI capabilities and
Table 1
Integration of AI, IoT, and AIoT in data-driven environmental urban planning.

Area AI contribution IoT contribution

Sustainable
transportation

Predictive modeling for traffic flow
optimization, route planning, and
infrastructure development.

Real-time monitoring of
patterns and transporta

Energy efficiency Optimization of energy distribution and
consumption.

Smart grid managemen
energy usage.

Water
management

Prediction of water quality and quantity
in distribution.

IoT sensors for monitori
levels and quality.

Waste
management

Intelligent waste sorting and recycling. IoT sensors for waste lev
and collection.

Environmental
monitoring

Automated analysis of satellite imagery
for environmental changes.

IoT devices for real-time
collection and monitorin
environmental factors.

Climate change Climate modeling and simulation for
mitigation strategies.

IoT sensors for monitori
related parameters and
climate data.

Land use GIS data analysis for land use planning
and management.

IoT devices for monitori
changes and soil conditi

Biodiversity Species identification and habitat
mapping.

IoT sensors for real-time
tracking, habitat surveil
biodiversity indicators.

Ecosystem Ecosystem modeling and simulation. IoT devices for monitori
health and dynamics.
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planning applications for sustainable smart urban development is
challenging. These challenges stem from the intricate and multi-
dimensional nature of sustainable development [107,108], com-
pounded by the realities of urban life (e.g., citizen/stakeholder
behaviors, socioeconomic factors, political dynamics, and gover-
nance challenges) and the intricacies of human-environment in-
teractions adds another layer of complexity [109].

In data-driven environmental planning, the symbiotic rela-
tionship between AI and IoT and the synergistic potential of AIoT
offers unprecedented opportunities for enhancing decision-making
processes and driving sustainable urban development initiatives
forward. AIoT provides access to massive real-time data on urban
systems and dynamics and applied intelligence capabilities,
thereby improving various facets of data-driven environmental
planning. Table 1 outlines the distinctive contributions of AI, IoT,
and AIoT across various domains of sustainable smart cities in
environmental sustainability and climate change. These insights
are derived from a wide-ranging collection of relevant studies,
encompassing both comprehensive explorations
[8,9,12,13,21e23,66,104,110e112] andmore targeted investigations,
both focused on the utilization of AI and AIoT to tackle complex
environmental challenges.

Targeted investigations pertain to renewable energies systems
[10], hydrogen-based hybrid renewable energy systems [113],
photovoltaic power generation forecasting [114], energy manage-
ment systems [115], energy demand side [116], waste management
[117,118], sustainable transportation development [119], ecosystem
services [98], biodiversity protection [120], urban water resource
management [99,121], air pollution [122], flood resistance [123],
flood risk assessment [124], and flood prediction [16]. Important to
note is that the energy sector is a primary user of AI in smart cities
[8,125], with various technologies supporting the monitoring,
analysis, and application of planning processes to combat pollution
in urban environment. As noted by Sanchez [4], the prevailing
discourse on AI in planning predominantly revolves around smart
city technologies focused on data capture and analysis for optimi-
zation processes such as transportation and energy management.
Conversely, relatively scant attention is given to AI's utilization in
urban planning and decision-making endeavors, encompassing
AIoT contribution

traffic
tion systems.

Integration of AI algorithms for traffic prediction with IoT sensors
for real-time data collection and analysis.

t for efficient AI-driven analysis of IoT data to identify energy-saving
opportunities and optimize energy usage in real-time.

ng water AI algorithms analyzing IoT data for early detection of leaks and
contamination and optimizing water distribution.

el monitoring AI-powered optimization of waste collection routes based on IoT
data, predictive maintenance for waste management systems, and
waste composition analysis.

data
g of

Integration of AI for image recognition and pattern analysis with IoT
devices for comprehensive environmental monitoring.

ng climate-
gathering

AI-enhanced analysis of IoT data for predicting climate trends and
events, optimizing mitigation strategies, and implementing
adaptive measures.

ng land use
ons.

AI-driven optimization of land use planning, zoning optimization,
and green space allocation through analysis of IoT data and
predictive modeling.

wildlife
lance, and

AI algorithms analyzing IoT data to identify biodiversity hotspots,
track changes, and inform conservation efforts.

ng ecosystem AI-driven analysis of IoT data to assess ecosystem resilience,
identify threats, and inform conservation strategies.
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scenario planning and generative designs [4].
AIoT offers support across a spectrum of urban planning prac-

tices, facilitating the integration of sustainable urban technologies
like IoT. Given the vast scale of IoT data, AI aids city development
and regional development while considering environmental sus-
tainability [126]. AI can assist in regional planning by predicting
future growth and development [127], and the emerging applica-
tions of AIoT provide valuable data-driven insights for planning at
both urban and regional levels [20,128]. By integrating AI and AIoT
innovations into urban planning and design processes and frame-
works, sustainable smart cities can achieve long-term environ-
mental sustainability, enhance environmental quality, and
ultimately improve the overall well-being of urban inhabitants.

These studies illustrate the role of AI and AIoT in shaping and
supporting applications for planning the natural and physical
environment. Their findings provide a comprehensive under-
standing of these advanced technologies' technical capacity and
synergistic potential in fostering the evolution of sustainable smart
cities towards greater efficiency, resilience, and livability. AI con-
tributes by enabling data-driven insights and advanced computa-
tional and analytical capabilities, while IoT complements these
efforts with real-time monitoring and data collection through a
network of interconnected sensors and devices. AI algorithms,
powered by vast datasets generated via IoT infrastructure, enable
real-time analysis and informed decision-making for data-driven
environmental planning. This technological convergence provides
urban planners with tools to model and simulate various scenarios,
predict environmental impacts, identify intervention measures,
and devise strategies for more efficient land use, resource utiliza-
tion, ecological resilience, and infrastructure design.

Data-driven environmental planning is evolving into a symbi-
otic relationship with AI and AIoT, providing urban planners with
enhanced capabilities to seamlessly integrate urban systems, co-
ordinate urban domains, and couple urban networks. This syner-
gistic integration empowers them to conceive and implement
integrated solutions for tackling complex environmental chal-
lenges. It creates a dynamic system where advanced technologies
contribute to adaptive and proactive urban environments. This
innovative approach aligns with the goals of sustainable smart
cities, fostering a harmonious balance between urban develop-
ment, technological innovation, and environmental preservation.

3.2.2. Research on comprehensive explorations of linkages: machine
learning, deep learning, computer vision, and natural language
processing

Research systematically or specifically investigating AI or AIoT
and data-driven urban planning linkages has gained prominence
recently. Scholars have investigated the intricate interplay between
these domains, aiming to uncover their potential synergies and
implications for sustainable urban development. Recent publica-
tions indicate a surge in the utilization of AI models, especially ML,
DL, CV, and NLP, as a pivotal tool for decision support in data-driven
urban planning. Kamrowska-Załuska [92] evaluates the potential
use of AI-driven urban big data analytics to support city design and
planning. The author presents a conceptual framework to examine
how these tools influence urban design in the context of urban
change. The discussion covers the implications of applying AI-
based tools and geo-localized big data in addressing specific
research problems in urban planning and design and their impact
on planning practices. The insights and recommendations are
tailored for urban planners intrigued by the emerging field of AI-
based urban big data analytics and urban theorists seeking inno-
vative approaches to understanding urban change.

Koumetio Tekouabou et al. [2] conducted a comprehensive
analysis of AI-based methods for smart and sustainable urban
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planning, identifying common urban planning issues and the pre-
dominant data and ML and DL techniques employed. By synthe-
sizing the existing literature, the authors identified key areas of
focus, data sources, and geographic regions, offering insights for
urban planning researchers and practitioners. They also discussed
prevailing trends, critical issues, current challenges, existing gaps,
and future research directions in this dynamic field. They reveal
that DL methods are the preferred choice for addressing land use,
buildings, and climate challenges, predominantly relying on satel-
lite image data. Similarly, Son et al. [5] systematically explored
data-driven urban planning for smart and sustainable develop-
ment, focusing on applying AI technologies in urban contexts. The
authors highlighted the role of AI, especially ML and DL, in
addressing economic, social, and environmental challenges in cities
while emphasizing the importance of collaboration and data-
driven approaches. The findings underscore the need for inte-
grating AI into urban planning processes to achieve smarter and
more sustainable cities.

The advancements in CV methods and their robust computing
capabilities have shown promising opportunities for advancing
sustainable urban development by enhancing data-driven planning
practices. To gain a better understanding of how CV can be inte-
grated into the urban planning process to create more sustainable
smart cities, Marasinghe et al. [3] conducted a systematic review of
CV applications in urban planning, highlighting the opportunities
offered by CV to support various planning tasks while acknowl-
edging existing challenges. Their findings unveil several key points:
(a) CV has the potential to facilitate numerous urban planning
tasks, spanning from data collection and analysis to issue identifi-
cation and prioritization, public participation, plan design and
adoption, and implementation and evaluation; (b) CV can enhance
decision-making processes through diverse visual information,
though its limitations must be taken into account; and (c) CV uti-
lization in urban planning holds promise for advancing efforts in
sustainable urban development.

In addition, Koumetio Tekouabou et al. [2] demonstrated that DL
and CV can identify global urban issues related to land use, build-
ings, climate, and the natural environment. CV methods in urban
sensing can collect various environmental and socioeconomic data
from vast collections of images and videos [129]. Understanding
visual environments entails more than just identifying physical
objects and environmental attributes; it also encompasses human
experiences and perceptions [130]. Song et al. [5] emphasized the
importance of CV as a key element in advancing AI for enhancing
urban planning and design by investigating user experiences. The
authors highlight the significance of this user knowledge in
providing researchers and professionals with empirical evidence to
evaluate planning and design interventions. CV enables pro-
fessionals to analyze diverse locations, leveraging fine-grained in-
formation on microscale urban features and large datasets, thus
enabling them to gain insights and predict people's perceptions of
urban environments [131].

Additionally, applications of ML for CV tasks in the domain of
urban planning and design include exploring associations between
people's urban density and urban characteristics [132] and
analyzing associations between eye-level urban design quality and
on-street crime density [133]. Urban planners and policymakers
can gain valuable insights and empirical evidence to guide de-
cisions in sustainable urban planning and design by utilizing CV
techniques to investigate and assess the spatial correlation and
underlying factors contributing to diverse urban challenges and
prospects [3]. The emergence of spatial-explicit geospatial AI
(GeoAI), which integrates spatial attributes and reasoning into AI
computations, is increasingly prevalent in urban studies [134,135],
offering diverse applications and opportunities for environmentally
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sustainable urban planning and development.
In data-driven urban planning, CV techniques have been utilized

for different planning and design activities. These tasks include
evaluating planning outcomes, monitoring designs, assessing
spatial vitality and user experiences, and enhancing planning and
design processes. AI has enabled urban researchers, designers, and
planners with extensive proficiency in utilizing CV for designing,
observing, and modeling urban environments and planning, eval-
uation processes, and stakeholder participation (Wael et al., 2022).
Visual data are of critical importance in the process of urban
planning and design, thereby the significance of CV [130,136] as a
valuable tool for decision-making and planning processes [136]. In
particular, CV holds significant promise in its ability to provide
accessible and cost-effective tools for urban assessment and
modeling [137,138].

Furthermore, CV plays an important role in the sensor city
approach, which employs IoT technologies to gather and synthesize
data for enhancing urban planning and sustainability efforts [139].
CV can empower urban planners and policymakers to evaluate
diverse scenarios and their impacts on the sustainability and
resilience of cities throughout the planning cycle and to track the
progress and outcomes of their interventions [138,140]. Overall, CV
has emerged as a pivotal technology for smart and sustainable ur-
banism initiatives, which strive to create resilient and environ-
mentally friendly urban environments through data-driven
methodologies that enhance sustainable urban planning [141,142].

Urban planners have traditionally grappled with copious textual
content encompassing plans, policies, reports, stakeholder
engagement, and community feedback from public engagement
initiatives. NLP emerges as a vital tool for analyzing such textual
data, enabling the extraction of valuable insights (e.g., sentiment
analysis, topic modeling, and named entity recognition) to under-
stand public opinions, identify trends, and inform decision-making
processes in urban planning and design. Planning scholars have
leveraged NLP techniques to analyze social media content,
capturing public sentiment and opinions on various subjects across
diverse temporal and spatial contexts [143]. Moreover, NLP facili-
tates the examination of perceptions regarding urban parks based
on environmental features [144], the analysis and visualization of
users' sentiment towards the built environment [145], the extrac-
tion of relevant information from planning documents [146,147],
and the integration of spatial development plans [148]. Kaklauskas
et al. [149] developed an “affective system” for researching emo-
tions in public spaces for urban planning, drawing from behavioral
economics, the psychology of judgment and decision-making, and
human emotional affective and physiological states. This frame-
work enhances urban planners' ability to analyze planning pro-
cesses effectively and make informed decisions. Considering the
above insights, integrating NLP techniques into data-driven urban
planning offers a valuable avenue for enhancing environmental
sustainability. By analyzing diverse textual data, planners can
identify emerging environmental trends, understand public senti-
ments regarding environmental issues, and utilize these insights to
inform decision-making processes to foster sustainable urban
development initiatives.

Worth noting is that in data-driven environmental planning,
ML, DL, CV, and NLP play interconnected roles in harnessing data
for informed decision-making. ML algorithms analyze historical
and real-time environmental data to identify patterns and trends,
while DL models process complex environmental datasets with
multiple layers of abstraction. To assess environmental conditions
and changes, CV techniques extract spatial information from im-
agery and sensor data. NLP enables the extraction of insights from
textual data, including reports, policies, and public feedback. Sus-
tainable urban development is further enhanced by the integration
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of these technologies. Together, these empower planners to un-
derstand and model urban systems and dynamics and address
environmental challenges effectively in urban areas [5,6].

However, the adoption of AI and its subset models in urban
planning is anticipated to be a gradual process, demanding
considerable time and resources [4] d despite the promising
prospects and opportunities it holds, together with AIoT, for
advancing environmental goals in sustainable smart cities. Despite
the increasing research on AI-driven urban planning, challenges
persist in translating research into practical applications, primarily
due to the concerns expressed by urban planners about adopting AI
in the field [3,4,150]. Nonetheless, given the anticipated pivotal role
of AI and AIoT in strategic city planning aimed at bolstering envi-
ronmental sustainability and resilience [2,5,19,92], planners must
proactively prepare for the transformative implications this herald
for sustainable urban development. This includes reimagining how
future cities will be planned, designed, and managed. To prepare
planners for the AI revolution, Sanchez [4] outlined several chal-
lenges that must be addressed, including.

� Overcoming fear and uncertainty surrounding AI adoption.
� Acquiring new skills necessary for leveraging AI technologies
effectively.

� Adapting to changing data needs and considerations inherent in
AI-driven planning processes.

� Establishing clear goals to guide AI implementation strategies.
� Ensuring transparency and explainability in AI systems.
� Mitigating bias encountered in AI algorithms and decision-
making processes.

� Addressing ethical concerns arising from using new methods
and data in AI-driven planning endeavors.

Sanchez et al. [6] underscored the significance of integrating AI-
related techniques into urban planning, noting the timeliness of
this endeavor in light of the growing availability of data, faster
processing speeds, and the development of planning-related ap-
plications. However, urban planners need to ensure the effective
integration of AI and AIoT technologies and their responsible use in
future urban planning endeavors. Andrews et al. [1] investigated
the expanding role of AI in the planning profession and its potential
implications for communities. The authors offered insights into
how planners can effectively integrate AI into their practices while
ensuring fairness and inclusivity.

3.3. Artificial intelligence, artificial intelligence of things, and urban
digital twin: advancing data-driven environmental urban planning

This subsection explores the profound impact of AI- and AIoT-
driven UDT on data-driven environmental planning in sustainable
smart cities. It highlights the effectiveness of this technological
integration in shaping and enhancing sustainable urban develop-
ment practices, particularly in simulating various scenarios, pre-
dicting outcomes, and optimizing resource management strategies.
By providing insights into the evolving landscape of AI and AIoT
adoption in data-driven urban planning systems through UDT, it
underscores their significant role in advancing environmental
sustainability goals.

3.3.1. Applications of urban digital twin for environmentally
sustainable urban development and planning

Integrating AI and AIoT with UDT in city modeling and simula-
tion has yielded positive outcomes in advancing data-driven
environmental planning and the design of sustainable smart cit-
ies. Several recent studies have explored this synergistic approach's
potential, uncovering valuable insights and applications. Table 2



Table 2
Integrating AI and AIoT with UDT for environmentally sustainable smart city applications.

Citations AI techniques UDT type UDT simulation focus Key contributions

Austin et al.
[57]

Semantic knowledge
representation, ML

Smart city Energy usage analysis in buildings Proposal of a smart city DT architecture for complementary roles
in data collection, event identification, and automated decision-
making.

Shen et al.
[34]

ML, AI Positive energy
districts (PEDs)

Optimization of PEDs Optimization of livability in urban environments for
sustainability dimensions.

Lv et al.
[151]

DL, convolutional neural
network (CNN), support
vector regression (SVR)

Cooperative
intelligent
transportation
system (CITS)

Security and performance analysis, path
planning optimization, impact analysis
of transportation network

Improved DL algorithm for CITS DTs and enhanced security and
performance.

Bindajam
et al.
[152]

SVM, artificial neural
network (ANN), cellular
automata (CA)

Land use and land
cover (LULC)

Past-to-future LULC analysis, ecosystem
services estimation, sensitivity analysis

Prediction and analysis of LULC dynamics and impact on
ecosystem services.

Agostinelli
et al. [32]

AI, ML Building energy
management

Energy efficiency, renewable energy
production

Assessment of different scenarios for energy efficiency
interventions and renewable energy production in a residential
complex and evaluation of the effectiveness of integrative
systems for renewable energy production.

Lu et al.
[153]

AI, federated learning Smart city with
multi-energy
system

Smart transportation, smart energy grid Proposal of a DT-based smart city system to address operational
challenges in complex environments.

Fan et al.
[154]

AI, multi-actor game-
theoretic decision making,
dynamic network analysis

Disaster city Situation assessment, decision making,
coordination

Vision for leveraging AI and human intelligence in disaster
management through a DT paradigm

Deena et al.
[155]

AI, ML Building energy
management

Testing energy-efficient intervention
scenarios and optimizing energy usage

Development of a DT-based optimization system for energy
management in a residential area

Strielkowski
et al.
[156]

AI Energy sector Safety, security, and reliability of energy
networks

Overview of DT in smart grids and its application in improving
energy network safety and reliability, as well as use cases for
design, operation, control, and maintenance planning in energy
utilities.

Wu et al.
[35]

AI, classificaton algorithms Transportation Transportation infrastructure Classification and prediction of the intelligent development of
transportation infrastructure based on space type, function type,
and facility use.

Almusaed
and
Yitmen
[33]

AI simulation models Smart building
design

User experience optimization, building
performance prediction, intelligent
design feature creation

Integration of AI simulation models with DT and development of
intelligent building design features.

Ye et al. [36] Multi-agent interactions,
clustering algorithms

Infrastructure
resilience

Conceptual framework development Integration of AI into UDT, development of human-centered UDT
for community resilience.

Liu et al.
[135]

Genetic and evolutionary AI
algorithms

Freight parking
management

Real-time parking connectivity, logistics
efficiency optimization, urban resource
allocation

Integration of cognitive DTs with logistics, improved logistics
efficiency, and resource allocation optimization.

Manocha
et al.
[157]

Fuzzy logic (FL) Flood prediction Flood forecasting, situational analysis,
blockchain security

DT-based flood prediction, improved decision-making for flood
management, and enhanced data security.

Nica et al.
[158]

Predictive modeling
algorithms, DL

Cities Sustainable urban governance, smart
city environments

Configuration of immersive virtual spaces through various
technologies in DT cities and optimization of IoT-based smart
city environments through DT simulation, DL sensing
technologies, and urban data fusion.

Sabri et al.
[159]

Geosimulation, spatial-
visual intelligence, GeoAI

Spatially-explicit Smart water infrastructure and flood
management

Incorporation of accurate location-based data using GIScience
methods and roadmap for creating spatially-explicit UDT for
smart urban water and flood management systems.

Salunke A. A
[160].

Reinforcement learning (RL) Traffic flow Urban dynamics, traffic flow
optimization

Introduced RL empowered DT in transportation, energy, and
planning applications.

Gkontzis
et al. [56]

AI-driven data analyses,
forecasts

Neighborhood
level

Enhancing urban resilience Enhanced urban resilience; visualization, analysis, and
prediction of urban system responses; and improvements in
urban functionality, resilience, and resident quality of life.

Ziakkas et al.
[161]

ML, AI Advanced air
mobility (AAM)
systems

Certification of AAM systems Certification of advanced AAM systems, design and remote
testing of eVTOL aircraft simulator prototypes, and effective and
efficient AAM design while mitigating AI-related risks.

Kamal et al.
[162]

Deep reinforcement
learning (DRL)

Traffic signal Traffic signal control for reduced CO2

emissions and fuel consumption
Proposed a DT-based adaptive traffic signal control approach for
reduced CO2 emissions and fuel consumption.
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summarizes relevant studies discussing the application of both AI/
AIoT in UDT environments. It illustrates how AI/AIoT UDT are in-
tegrated to enhance planning, infrastructure management, energy
systems, building design, transportation systems, flood risk
assessment and prediction, urban dynamics, and more.

The coupling of UDT's detailed replica with AI's analytical
prowess allows for more accurate forecasting of urban and envi-
ronmental conditions. Researchers have successfully simulated and
predicted the impact of various urban development scenarios
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related to different spheres of urban life, contributing to proactive
data-driven environmental urban planning. By leveraging AI algo-
rithms in UDT, cities can efficiently monitor and allocate resources,
such as energy, water, and waste [33]. Shen, Saini, and Zhang [34]
focused on PEDs in terms of integrating various systems and in-
frastructures to facilitate optimal interactions among buildings,
mobility, energy, and advanced technologies to enhance environ-
mental sustainability. This exploration focuses on both the process
of creating a DT for PEDs and its optimization for enhancing
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livability. Moreover, the combination of AI and UDT has proven
particularly effective in addressing urban mobility and trans-
portation challenges. Through sophisticated simulations, AI-driven
UDT models can predict traffic patterns, optimize public trans-
portation routes, and propose intelligent traffic management stra-
tegies [35,160,162]. This contributes to reduced congestion and
improved transportation efficiency and aligns with the broader
goal of sustainable urban mobility in terms of CO2 emissions
reduction. Moreover, AI-driven UDT applications have demon-
strated their capacity to support informed decision-making in land
use planning [152], central to environmental sustainability
regarding ecosystem services, biodiversity conservation, urban
heat island mitigation, and water resource management. For
example, AI has been used in urban planning research to measure
the urban heat island effects [163].

The findings of these studies underscore the potential of inte-
grating AI within UDT frameworks to support holistic approaches
to data-driven environmental planning. This integration ensures
the conservation of natural resources, the enhancement of
ecosystem services, and the reduction of environmental impacts, all
contributing to the overarching goal of fostering environmental
sustainability in urban development. Furthermore, the insights
derived from integrating AI with UDT for city modeling and
simulation in sustainable smart cities mark significant progress in
various facets. Advanced simulation models empower decision-
makers to pinpoint areas for improvement, implement targeted
interventions, and elevate the overall sustainability performance of
urban environments.

Based on the insights gathered from Table 2, Fig. 4 illustrates an
AIoT-driven UDT framework designed to enhance data-driven
environmental planning in sustainable smart cities. This frame-
work incorporates various components, including an AIoT data
warehouse, AIoT-driven UDT models, environmental information
device assistance, cloud interfaces, and decision support systems.
By integrating these elements, the framework addresses the needs
of a sustainable smart city ecosystem, enabling the generation of
AIoT-driven UDT insights essential for effective data-driven envi-
ronmental planning initiatives.
3.3.2. The dynamic interplay of urban digital twin, artificial
intelligence, and artificial intelligence of things in data-driven urban
planning and design

This subsection explores the dynamic interplay of UDT, AI, and
AIoT in data-driven urban planning and design, providing insights
into their synergistic and collaborative capabilities for advancing
sustainable and intelligent urban environments. It emphasizes the
Fig. 4. An AIoT-driven UDT framework for data-driven e
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critical role of AI- and AIoT-driven UDT approaches in shaping the
trajectory towards environmentally sustainable smart urban
futures.

Beckett [29] explored the integration of UDT, 3D modeling,
visualization tools, and spatial cognition algorithms in the context
of AI-based smart city design and planning, providing a nuanced
understanding of the evolving landscape of urban development.
The author accentuated the pivotal role of AI in UDT, demonstrating
how its integration enhances urban design and planning strategies.
As evidence of 3D virtual simulation technology, data-driven urban
analytics, and real-time decision support systems continues to
grow, it has become crucial to explore the integration of IoT-based
DT with AI-based urban design and planning, along with real-time
urban data. This will propel urban planning and design processes to
new heights of sophistication. The synthesis of prior findings in this
research offers insights into the evolving landscape of data-driven
planning and design technologies, shedding light on the effective
utilization of remote multi-sensing data, simulation modeling al-
gorithms, and augmented analytics tools in pursuing sustainable
and intelligent urban development. Lastly, while not explicitly
focused on environmental sustainability aspects, the implications
of this research suggest the potential contribution of these inte-
grated approaches to data-driven environmental planning and
design, thereby advancing smart, sustainable urban development
initiatives.

The DT algorithms proposed by Zvarikova et al. [164] constitute
an approach that leverages 3D spatiotemporal simulations in vir-
tual urban environments. The authors deploy diverse urban sensing
data to drive ML, CNNs, and advanced DT algorithms, creating a
robust and sophisticated framework for urban simulation. This
enhances the accuracy of spatiotemporal modeling and highlights
the potential for AI, particularly ML, and DL, to transform the way
virtual urban environments are simulated. Furthermore, using
these AI algorithms holds promise for enhancing data-driven
environmental planning processes through more accurate and
comprehensive urban simulations, facilitating informed decision-
making for sustainable urban development.

Similarly, the UDT architecture introduced by Austin et al. [57]
highlights the importance of semantic knowledge representation
and reasoning in conjunction with ML, providing a valuable
contribution to the intersection of AI and urban planning. This
integration enhances data collection, event identification, and
automated decision-making. The emphasis on ML techniques
within the UDT architecture signifies a notable advancement in
applying AI and ML in urban contexts. The study's focus on energy
usage analysis in buildings in the Chicago Metropolitan Area
nvironmental planning in sustainable smart cities.
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exemplifies the practical impact of the successful integration of
semantic andML approaches, demonstrating the potential of AI and
ML to drive intelligent decision-making processes in the context of
smart cities. The findings emphasize AI and ML's innovative role in
shaping urban planning's future, with implications for sustainable
smart city development.

In addition, Zayed et al. [30] addressed the promising frontier
for DT applications across various real-world domains driven by the
convergence of AI and IoT. The authors comprehensively explored
the burgeoning integration of DT technology with AI techniques
and IoT applications. They focused on the challenges, opportunities,
and recent developments in this innovative domain. They further
examined the incorporation of AI and DT in developing IoT-based
applications, present tools for implementing DT systems, and
analyze recent AI approaches in the DT domain. The study con-
tributes to understanding AI-driven DT applications and identifies
open research directions in this evolving field. Wang et al. [165]
examined the Internet of digital twins (IoDT), emphasizing its po-
tential for facilitating dynamic data exchange and mission coop-
eration across physical and virtual entities. IoDT refers to a network
of interconnected digital replicas of physical entities, enabling data
exchange and collaboration across various domains. The authors
provided a detailed exploration of IoDT, including its architecture
and enabling technologies. They argued that IoDT, despite its
promise, faces significant challenges due to its decentralized nature
and information-centric routing.

Though not directly addressing the concept, Zayed et al. [30] and
Wang et al. [165] both hint at the evolving landscape of artificial
intelligence of digital twin (AIoDT). This concept, introduced in
Ref. [19,166], emphasizes the integration of AI with IoDT to bolster
the functionalities and capabilities of diverse AIoT applications for
environmentally sustainable smart cities. However, while Zayed
et al. [30] focused on the integration of AI techniques with UDT
technology in IoT applications, Wang et al. [165] explored the
broader concept of IoDT. Despite their distinct scopes, the two
studies revolve around the synergistic potential of AIoDT in facili-
tating dynamic data exchange, mission cooperation, and innovative
sustainability solutions. By integrating the findings of these studies,
a more nuanced understanding of AIoDT emerges, emphasizing its
role in driving sustainable urban development and addressing
critical challenges in data processing and exchange. Moreover,
these studies collectively identify key research directions and pave
the way for future advancements in AIoDT, positioning it as a
cornerstone in the quest for innovative and resilient sustainable
smart city solutions. In addition to enhancing functionality and
capabilities for various real-world AIoT applications, the integration
of AI with IoDTdAIoDTd holds significant promise for optimizing
data-driven environmental urban planning processes. By harness-
ing AIoDT technologies, urban planners can gain valuable insights
into environmental factors and develop more effective strategies
for sustainable urban development.

Overall, the reviewed studies illuminate the groundbreaking
potential of AI and AIoT in shaping the future of urban planning and
design through UDT across theoretical, technical, and practical di-
mensions. By integrating ML, DL, CV, and NLP with UDT frame-
works, urban scholars and planners are set to transform how
sustainable smart cities can be planned and designed to realize
environmental goals. These findings underscore the importance of
leveraging AI- and AIoT-driven UDT systems to address the chal-
lenges of rapid urbanization and escalating ecological degradation,
thereby fostering the development of more resilient, efficient, and
livable urban environments.
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3.4. Challenges, barriers, risks, and related mitigation strategies

This section examines the intricate spectrum of difficulties and
solutions stemming from the convergence of AI, AIoT, UDT, data-
driven urban planning, and environmental sustainability in sus-
tainable smart cities, particularly emphasizing their practical ap-
plications. The main objective is to provide readers with a
comprehensive understanding of the underlying dynamics of
technological convergence and synergistic integration of these
technologies, models, and domains in sustainable smart urban
development.

3.4.1. Data privacy and security concerns
In sustainable smart cities, where data integration and inter-

connected devices are pervasive, prioritizing the security and pri-
vacy of their infrastructures and systems is paramount.
Implementing strong security and privacy measures is essential to
guard against cyber threats and uphold the confidentiality of citi-
zens' data. The rising utilization of AI and AIoT technologies,
especially concerning integrating UDT frameworks in sustainable
smart cities, signifies a crucial yet complex stage in urban devel-
opment. As these technologies become integral to the urban fabric,
concerns about the privacy and security of citizen’ data have gained
considerable prominence and are impending the implementation
of AI, AIoT, and UDT [8,28,73,167e169] or AI/AIoT-driven UDT in
various domains. Wang et al. [165] offered a comprehensive ex-
amination of IoDT architecture, security, and privacy, which
inherently encompasses IoT d and extends to AIoT. The authors
argued that security and privacy concerns hinder the deployment
of IoDT (and hence AIoDT) due to inherent vulnerabilities and
decentralized structure. They also presented state-of-the-art de-
fense mechanisms in the context of IoDT. In light of the importance
of security and privacy issues addressed in Wang et al.'s review
[165] of IoDT, its implications extend to the broader domain of UDT,
which is integral to data-driven environmental planning in sus-
tainable smart cities. By identifying and addressing security flaws
and privacy invasions in IoDT (and hence AIoDT), this work con-
tributes to building a more robust foundation for implementing
UDT. As UDT systems play a crucial role in monitoring and man-
aging various environmental parameters, ensuring their security
and privacy enhances their effectiveness in supporting data-driven
environmental planning initiatives. Therefore, Wang et al.‘s study
[165] indirectly supports the advancement of environmental
planning practices by fortifying the underlying digital infrastruc-
ture essential for sustainable urban development.

The vast amounts of data collected through various sensors,
devices, and interconnected systems pose potential risks to citi-
zens, as personal information is increasingly susceptible to misuse
and unauthorized access. Striking a delicate balance between har-
nessing the power of data for informed urban planning decisions
through UDT and ensuring the protection of individuals' privacy
rights has become an imperative task for city planners, policy-
makers, and technology developers alike [28,55,169,170]. The
complexity of UDT and the abundance of available data amplify
data privacy threats, making it nearly impractical to ensure privacy
by design principles. It is impossible to ensure that their integration
maintains user anonymity [171]. The real challenge lies in navi-
gating the fine line between leveraging data to enhance the effi-
ciency, functionality, sustainability, and livability of urban
environments and addressing the valid concerns of citizens
regarding the privacy and security of their personal information.
Implementing UDT involves creating detailed virtual replicas of
urban environments’ physical and functional aspects, necessitating
the integration of diverse datasets from multiple sources. The
multifaceted nature of these data, encompassing everything from



S.E. Bibri, J. Huang, S.K. Jagatheesaperumal et al. Environmental Science and Ecotechnology 20 (2024) 100433
energy consumption patterns to travel behavior and mobility mode
and waste management, amplifies the complexity of the privacy
and security landscape.

In a similar vein, the security and privacy concerns associated
with AI and AIoT have been extensively separately discussed,
reflecting the critical importance of safeguarding personal data and
ensuring ethical and responsible use of AI and IoT technologies
[8,73,167]. Urban planners, technology developers, and policy-
makers must collaboratively devise robust frameworks that incor-
porate privacy-enhancing mechanisms, stringent data protection
measures, and transparent governance structures to instill confi-
dence among citizens while realizing the transformative potential
of AI and AIoT technologies in shaping the future of sustainable
smart cities. Recommendations include transparent practices,
accountability, transparency, bias mitigation, data minimization,
informed consent, and ethical design. Policymakers are urged to
develop adaptable regulations, prioritize privacy and security, and
involve stakeholders. However, the research emphasizes both the
imperatives and challenges associated with regulatory compliance
and governance frameworks [170,172], including the legal and
licensing complexities arising from UDT with partially open data
[173]. Ensuring data privacy and security while collecting and
sharing sensitive information in UDT poses ethical and regulatory
challenges.

3.4.2. Ethical and social considerations
Integrating AI, AIoT, and UDT marks a transformative leap in

modeling, simulation, and data-driven decision-making capabil-
ities. However, this newfound power necessitates carefully exam-
ining ethical and social dimensions apart from privacy and security.
Ethical and social considerations entail fairness, bias, transparency,
and accountability in decision-making processes [8,169,174e176],
with far-reaching implications. The dynamic interplay of AI, AIoT,
and UDT requires a nuanced ethical and social approach, recog-
nizing its potential implications for various aspects of urban life,
including management, planning, governance, and services in the
context of sustainable smart cities. A primary challenge is ensuring
fairness in AI algorithms, particularly when monitoring, modeling,
and simulating urban environments and processes within UDT
frameworks. Algorithmic bias has the potential to perpetuate and
exacerbate existing disparities in sustainable smart cities, leading
to unequal representation and outcomes [177]. Fairness, exten-
sively discussed in the broader AI field [175,178] and AIoT domain
[8,167], becomes crucial in the UDT context. Obstacles to achieving
transparency include the complexity of UDT models [25] and
reluctance towards sharing data [26,179]. Research has demon-
strated that a lack of transparency diminishes citizens' participa-
tion in UDT [171].

Responsible and transparent use of AI and AIoT in the devel-
opment and implementation of UDT is imperative to enable urban
planners and policymakers to comprehend decision-making pro-
cesses and identify and mitigate potential areas of bias. While
numerous scholars contend that the design of UDT frequently
overlooks social and ethical considerations [53,59,179,180], future
research on data fairness and transparency is essential to enhance
public acceptance and citizen inclusion in UDT initiatives in sus-
tainable smart cities [28]. Moreover, accountability mechanisms
must be established to trace decisions made by AI algorithms back
to their sources, ensuring that responsible parties can be answer-
able for the consequences of AI- and AIoT-driven decisions and
actions within the UDT framework. Challenges such as legal un-
certainties, unclear responsibilities for accountability [55], and
conflicting goals among stakeholders [181] may lead to resistance
from city officials or residents to the implementation of UDT [182].
Addressing these concerns is vital to fostering trust and acceptance
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in adopting UDT for sustainable smart cities.
As UDT become increasingly embedded in urban planning

processes, ethical and social considerations should not be treated as
an afterthought but as integral components in designing and
adopting AI and AIoT technologies. Collaborative efforts among
technologists, urban planners, ethicists, and policymakers are
essential to establish robust ethical and social frameworks that
guide the responsible deployment of AI and AIoT-driven UDT. In
particular, Andrews et al. [1] stress planners need to comprehend
AI's ramifications to harness its benefits judiciously and address
potential risks, such as exacerbating societal disparities. The au-
thors propose actionable strategies for planners to embrace AI
responsibly, enhance planning procedures, and prioritize human-
centered approaches. Additionally, they advocate for ethical AI
practices and underscore planners' need to actively shape AI-based
planning tools to foster equitable and inclusive outcomes for
communities. Addressing ethical and social challenges is crucial for
sustainable smart cities to fully leverage the potential of integrating
AI and AIoT with UDT while upholding fairness, equality, trans-
parency, and accountability principles. This proactive approach
ensures that technological advancements align with ethical and
social considerations, fostering a harmonious coexistence between
technological innovation and societal well-being in sustainable
urban development.

3.4.3. Explainable artificial intelligence and interoperable machine
learning

XAI and IML intersect with ethical and social issues in UDT by
promoting transparency, accountability, and fairness in decision-
making processes. They address bias, privacy, and trust concerns,
ensuring that AI/AIoT-driven UDT systems are understandable and
interpretable for various stakeholders. Explainable AI (XAI) and
interpretable ML (IML) encounter significant challenges in AI, AIoT,
and, consequently, AI/AIoT-driven UDT solutions for sustainable
smart cities. They strive to enhance AI models' clarity, compre-
hensibility, and credibility for stakeholders engaged in sustainable
urban development. While XAI elucidates the decision-making
process of AI systems, IML focuses on creating ML models that
yield easily interpretable outcomes. XAI and IML are essential for
developing AI, AIoT, and associated UDT systems that foster trust-
worthiness and effective human-AI interaction, which are crucial
for informed decision-making in sustainable smart cities. However,
numerous challenges arise in this context, including complexity
and interpretability, black-box models, algorithmic bias, the trade-
off between accuracy and interpretability, data privacy and security,
and dynamic urban environments [176,183e187]. The primary
challenge lies in empowering AI/AIoT-driven UDT systems with
significant capabilities while simultaneously ensuring they can
explain intricate decision-making processes to various domain
experts.

Recent research has concentrated on XAI to address concerns
regarding the application of AI across various domains. For
example, Mayuri, Vasile, and Indranath [187] explored the appli-
cation of XAI/IML techniques to render AI/ML models explainable/
interpretable. Ghonge [183] discussed several XAI case studies, use
cases, and their impacts and challenges in smart city applications.
Javid et al. [184] offered a comprehensive examination of XAI in
smart cities, delineating current and future developments, trends,
enabling factors, use cases, challenges, and solutions. Among
particular relevance to this study, Jagatheesaperumal et al. [188]
explored the transformative impact of XAI on the AI landscape,
focusing specifically on its role in bolstering trust among end-users
regarding machine interactions. Indeed, in light of the exponential
growth in IoT interconnected devices, the need to ensure trust-
worthiness becomes increasingly paramount. The authors
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examined XAI frameworks, shedding light on their defining char-
acteristics and relevance in the IoT context. They also provide in-
sights into various XAI services commonly applied in IoT
applications, including those pertinent to the Internet of City
Things (IoCT). Additionally, they suggest implementation choices of
XAI models for IoT systems in these applications. Their study is one
of the first comprehensive compilations of XAI-based frameworks
tailored to meet the evolving demands of future IoT use cases.
Collectively, these endeavors highlight the critical role of XAI and
IML in navigating the complexities of AI/AIoT-driven UDT solutions
for sustainable smart cities.

3.4.4. Interoperability and standardization
The seamless integration of diverse technologies in the complex

web of the sustainable smart city ecosystem presents a complex
puzzledwith challenges regarding interoperability and the lack of
standardized protocols and frameworks. As sustainable smart cities
evolve into more interconnected hubs of innovation, driven by the
rapid progress of AI and AIoT technologies, integrating UDT into
these cities' management and planning processes becomes
increasingly pivotal for holistic urban development. However, a
notable obstacle arises from the inconsistency among various
technological components. The absence of interoperability and
standardized practices hinders the smooth exchange of data and
information between diverse systems. Consequently, this impedes
the optimal functionality and broader adoption of UDT [28,30,169].
Extensive discussions in the literature highlight the complexities
surrounding interoperability and standardization, expressing
concern about the lack thereof in prevailing UDT systems and in-
frastructures [28,169,189,190]. These challenges are exacerbated by
the inherent heterogeneity of urban environments, which neces-
sitates adaptable and scalable solutions for data collection, pro-
cessing, and analysis. Overall, the interoperability of systems and
standards across different technological platforms may present
technical hurdles in seamlessly integrating AI, AIoT, and UDT
solutions.

UDT can be seen as an encapsulation of all the pertinent data
applicable to the environmental planning of sustainable smart
cities. Interoperability, the capacity of devices, systems, and pro-
cesses to exchange contextualized information, emerges as a sig-
nificant challenge for implementing UDT in sustainable smart
cities. This capability allows UDT to act on shared data and infor-
mation, enhancing planning decisions and predictive outcomes.
Interoperability issues specifically arise when the diverse compo-
nents of UDT, such as IoT devices, sensors, data platforms, analytical
tools, and computing models, need to collaborate cohesively to
support the comprehensivemodeling and simulation capabilities of
UDT [191]. The diverse origins and functionalities of these tech-
nologies and tools often result in proprietary systems that operate
in silos, creating barriers to the smooth flow of information [170].
The data can be tightly coupled to applications, potentially losing
information at the software interface [63]. This fragmented land-
scape impedes the real-time synchronization required for accurate
3D representations and undermines the collaborative potential of
interconnected systems in sustainable smart cities. It is widely
recognized that interoperability is one of UDT's most pressing un-
resolved issues [55,169]. Interoperability and standardization in the
urban context face various impediments, such as data silos created
by infrastructure providers [192], organizational structures in
government agencies [179], and the integration of multi-scale and
multi-domain workflows [193,194]. Presently, data sharing be-
tween UDT and urban systems is limited, potentially hindering
sustainable smart cities' progress in adopting UDT for advancing
environmental planning [28].

To effectively tackle the challenges posed by the complex
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landscape of sustainable smart city infrastructure, it is imperative
to prioritize developing and adopting standardized protocols.
These protocols are pivotal in facilitating seamless communication
and interoperability across sustainable smart cities' diverse tech-
nologies and systems [28,195]. Furthermore, addressing these
challenges extends beyond technological harmonization; it high-
lights the critical need to establish interoperable interfaces cutting
across various fields [172]. By fostering compatibility and synergy
among disparate systems, the goal is to create a unified ecosystem
that transcends individual technological silos. The crux of this
endeavor lies in establishing a common means of data exchange
and interaction. This foundational step is essential for unlocking the
true transformative potential of UDT. Sustainable smart cities can
harness the full power of AI and AIoT technologies through inter-
operability. This, in turn, facilitates more effective environmental
planning initiatives, aligning with the broader objective of building
cities that are not only technologically advanced but also resilient
and environmentally conscious.

3.4.5. Environmental risks
The rapid advancement and convergence of AI, AIoT, and UDT

have ushered in a new era of technological innovation with trans-
formative implications for sustainable urban development. While
these technologies promise enhanced efficiency, connectivity, data-
driven insights, and intelligent decision-making in urban planning,
it is crucial to critically examine their environmental costs and
risks. As sustainable smart cities embrace innovative solutions for
advancing environmental sustainability goals, understanding the
potential ecological impacts of AI, AIoT, and UDT integration be-
comes paramount. Table 3 presents the environmental challenges
stemming from the widespread adoption of these technologies,
alongside potential strategies to alleviate them. These insights are
distilled from several studies on UDT (e.g.,
Ref. [28,55,194,196e198]) and AI and AIoT (e.g.,
Ref. [7,8,40,174,199e202]).

Integrating AI, AIoT, and UDT brings forth a spectrum of envi-
ronmental challenges that necessitate careful consideration.
Balancing technological innovation's benefits with environmental
quality preservation requires a concerted effort to mitigate these
risks. Stakeholders in urban development must navigate these
challenges with a commitment to minimizing the ecological foot-
print of advanced technologies. This requires carefully designed
strategies and best practices to foster a harmonious balance be-
tween urban technological landscapes and environmental well-
being.

3.4.6. Resource allocation and financial constraints
Implementing and sustaining AI/AIoT-driven UDT in sustainable

smart cities demands substantial technological infrastructure
deployment, operation, and maintenance investments. In addition
to the substantial initial development costs associated with
implementing this large-scale system, there are significant ex-
penses for operation and maintenance to ensure reliability and
meet real-time expectations. However, despite these investments,
the long-term cost-effectiveness of UDT remains to be fully sub-
stantiated [28]. The challenges associated with resource allocation
and funding mechanisms represent formidable obstacles to real-
izing the transformative potential of UDT. The financial commit-
ments required for deploying the requisite sensor networks for
reliable real-time data collection, data storage facilities, computa-
tion resources, and licensing commercial platforms are consider-
able and often exceed the budgetary capacities of sustainable smart
city planning initiatives. The exploitation of the full potential of the
technical components of UDT may be constrained by financial
considerations, necessitating a careful balance between costs and



Table 3
Key environmental risks and mitigation strategies.

Environmental risks Mitigation strategies

The energy demands associated with AI training, data processing, and operating IoT
devices and UDT systems can lead to heightened carbon footprints and strain
energy resources. These processes often require significant computational power,
which consumes considerable electricity.

Implement energy-efficient algorithms and hardware, invest in renewable energy
sources, promote green computing, and optimize data center cooling systems.

The rapid obsolescence of technology components and devices of AIoT and UDT can
result in the accumulation of e-waste, posing challenges for proper disposal and
recycling.

Promote product durability, encourage recycling and reuse programs, and advocate
for the development of sustainable and modular device designs.

The production and disposal of hardware components for AI, AIoT, and UDT devices
and systems contribute to resource depletion, impacting ecosystems and
biodiversity.

Adopt circular economy practices, utilize eco-friendly materials, and explore
alternative and sustainable sourcing options for technology components.

Inadequate management of e-waste may lead to the release of harmful substances
into the environment, posing risks to soil, water, and air quality.

Strengthen e-waste management systems, enforce responsible disposal practices,
and invest in research for eco-friendly electronic materials.

Large-scale data centers, crucial for AI, AIoT, and UDT operations, can have
substantial environmental footprints, including water usage, land use, and CO2

emissions.

Utilize energy-efficient data center designs, explore decentralized computing
models, and prioritize the use of renewable energy sources for data center
operations.

The deployment of IoT sensors and infrastructure may affect local ecosystems,
thereby potentially disrupting natural habitats and biodiversity in urban areas.

Implement strategies that consider biodiversity and ecosystem preservation, and
integrate green infrastructure

Integration of UDT in management and planning systems may lead to various
environmental impacts, including also potential disruption of urban ecosystems
and vast electricity demand due to tremendous calculations for data-driven AI
models and massive IoT networks envisioned.

Employ sustainable UDT design principles, consider the life cycle of UDT
components, conduct thorough environmental impact assessments for UDT projects,
and explore energy-efficient computation methods for UDT processes.
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functionality [203,204]. Therefore, governments, municipal bodies,
and private entities face critical decisions on allocating resources
more effectively to develop and implement UDT in pursuing sus-
tainable smart urban development. Furthermore, UDT's continuous
maintenance, updating, and expansion add to the financial burden
over time. Indeed, the most efficient UDT systems entail higher
initial investment costs and possess greater technical complexity
compared to established conventional planning practices,
rendering their promotion and acceptance a challenging task
[55,198,204]. The costs associated with the utilization and main-
tenance of the system are also substantial [179].

Addressing these challenges requires a strategic approach to
financial planning and recognizing the long-term benefits that UDT
can bring to sustainable urban development. Collaboration be-
tween the public and private sectors and innovative financing
models could be crucial in overcoming financial barriers. Sustain-
able funding mechanisms must be devised to ensure the long-term
viability of UDT initiatives, fostering a commitment to ongoing
innovation, resilience, and adaptability in sustainable smart cities.
Moreover, the initiatives that promote knowledge-sharing and
capacity-building can empower local governments and munici-
palities to make informed decisions about resource allocation for
UDT projects. However, resource constraints and disparities in ac-
cess to UDT infrastructure can exacerbate inequalities in urban
communities, highlighting the need for inclusive and equitable
deployment strategies. Addressing this challenge requires a holistic
and collaborative approach involving multidisciplinary stake-
holders to ensure UDT-driven urban planning initiatives’ effective
and sustainable implementation. By navigating these challenges
effectively, sustainable smart cities can unlock the full potential of
AI/AIoT-driven UDT to create resilient, efficient, and environmen-
tally sustainable cities.

3.4.7. Community engagement and inclusivity
Ensuring that AI/AIoT-driven UDT contributes to inclusive urban

development and addresses the needs of diverse communities is a
multifaceted challenge that extends beyond technological consid-
erations. It necessitates a comprehensive approach that includes
robust community engagement strategies. Without careful planning
and intentional efforts, there is a risk that sustainable smart city
initiatives, particularly those considering the implementation of
UDT, may inadvertently perpetuate or exacerbate existing
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socioeconomic disparities and social inequalities. The concept of a
people-centric UDT seeks to recenter socioeconomic aspects at the
forefront of the discourse. This vision advocates that UDT should
prioritize enhancing the quality of life for all citizens rather than
solely pursuing economic efficiency [59]. Among the current hurdles
to achieving inclusivity are the bias of developers' socio-economic
background, contributing to a deficiency in cultural diversity in
data [25] and the selection of information communication methods
[59]. Researchers highlight a notable gap in effective citizen and
community engagement methods and an unclear understanding of
the benefits of UDT among citizens [25,28,170,171]. One of the key
aspects of addressing this challenge is to prioritize inclusive com-
munity engagement throughout the entire lifecycle of UDT projects
in sustainable smart cities. This involves establishing mechanisms
for soliciting input from diverse community members, including
those from marginalized or underrepresented groups [205].
Community-based participatory approaches can empower residents
to actively contribute their perspectives, expectations, needs, and
concerns, fostering a sense of ownership in the decision-making
processes related to urban planning and development [206].

Effective community engagement is about information
dissemination and creating avenues for meaningful dialogue and
collaboration. It requires a shift towards co-creation, where com-
munity members become active partners in shaping UDT's goals,
features, and deployment strategies [207]. Additionally, urban
planners and policymakersmust consider the accessibility of digital
technologies, ensuring that the benefits of UDT reach all citizens
and communities, regardless of their socioeconomic status or
technological literacy. Charitonidou [25] explored the impact of the
virtual public sphere on urban experiences in an emerging data-
driven society, focusing on urban-scale DT d a tool for simulating
urban environments and developing scenarios for policy problems.
The author examines the shift from technical to socio-technical
perspectives in smart cities, contending that, despite the inten-
tion of UDT to improve citizen participation in decision-making
related to urban planning, concerns arise due to its reliance on a
limited set of variables and processes. The study provides useful
insights into the tension between reality and idealism in abstract-
ing variables in urban scale DT, revealing challenges in this
abstraction process. Regardless, the socio-cultural context of
different communities influences the acceptance and adoption of
UDT and other technology-driven solutions, necessitating tailored
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approaches to stakeholder engagement and communication.
Overall, while technological advancements in AI, AIoT, and UDT

offer immense potential for revolutionizing data-driven environ-
mental planning in urban contexts, it is imperative to recognize
that technical solutions do not solely determine urban sustain-
ability. Rather, it is a multifaceted concept encompassing socio-
economic and cultural dimensions, which play pivotal roles in
shaping the livability and inclusivity of cities. Neglecting these di-
mensions of urban sustainability can have profound implications
for urban communities. For instance, urban planning and devel-
opment projects that prioritize technological solutions without
considering the needs and preferences of diverse social groups risk
exacerbating existing inequalities. Moreover, a narrow focus on
efficiency and optimization may inadvertently prioritize economic
interests at the expense of social equity and cultural preservation.
For example, implementing AI/AIoT-driven UDT projects that
optimize resource allocation and enhance operational efficiency
may inadvertently overlook marginalized communities’ access to
essential services. Therefore, an inclusive approach to urban sus-
tainability requires a holistic understanding of the socio-economic
and cultural contexts in which technological solutions are imple-
mented. This entails engaging with local communities, under-
standing their needs and aspirations, and incorporating their
perspectives into the planning and decision-making processes. By
adopting a more inclusive and participatory approach, urban
planners and policymakers can ensure that technological ad-
vancements in AI, AIoT, and UDT are leveraged to promote social
equity, cultural diversity, and sustainable city development.

In conclusion, this study has examined the intricate interplay of
AI, AIoT, UDT, data-driven urban planning, and environmental
sustainability through conceptual and thematic categories. Each
category serves as a focused lens through which the multifaceted
dimensions of the topic have been analyzed, drawing insights from
various studies to offer a well-rounded perspective. This deliberate
organization has not only enhanced the clarity and coherence of the
study but has also facilitated a more profound understanding of the
synergies, challenges, and potential pathways forward in this bur-
geoning field. This study lays the groundwork for further research
and practical implementations to foster sustainable smart urban
environments guided by innovative computational technologies
and models.

4. Discussion

The discussion section provides a critical analysis and inter-
pretation of the findings derived from the study, focusing on
elucidating the relevance of the results in the broader context of the
research domain. It entails interpreting the findings, comparing
themwith the existing literature to contextualize their significance,
and addressing their practical and theoretical implications in
advancing knowledge. Additionally, it acknowledges any limita-
tions of the study and discusses their potential impact on the
interpretation of results to ensure a balanced assessment. Finally,
suggestions for future research directions are proposed based on
the insights gained from the current study, guiding the trajectory of
further investigations in the field.

4.1. Interpretation of results

In response to RQ1, the study elucidates the theoretical and
practical underpinnings of the convergence of AI, AIoT, UDT, data-
driven planning, and environmental sustainability in the context
of sustainable smart cities. These foundational components are
rooted in a multidisciplinary framework emphasizing interdisci-
plinary and transdisciplinary approaches. Their integration
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involves leveraging advanced technologies to inform data-driven
decision-making processes in sustainable urban development
practices. The study identified and forged these components
essential for synergistically integrating AI, AIoT, and UDT to advance
data-driven environmental planning in sustainable smart cities.
These components' complex yet interconnected nature un-
derscores the need for holistic strategies in sustainable urban
development.

Transitioning to RQ2, the findings indicated that integrating AI
and AIoT technologies brings about a fundamental shift, reshaping
the landscape of urban planning and unveiling innovative path-
ways to enhance the environmental performance of sustainable
smart cities. By utilizing AI and IoT technologies and combining
their capabilities, these cities can gather real-time environmental
data, analyze trends, and optimize resource allocation to mitigate
environmental impacts and foster sustainability. This underscores
the potential of technology- and data-driven solutions in address-
ing complex environmental challenges.

Moving forward to RQ3, the study demonstrated that AI and
AIoT have the potential to augment the capabilities of UDT, enabling
advancements in data-driven environmental planning processes in
sustainable smart cities. By integrating AI-driven analytics and IoT-
generated data into UDT platforms, these cities can simulate
various environmental scenarios, assess the impact of urban
development projects, and optimize infrastructure designs to
enhance environmental sustainability. This highlights the syner-
gistic relationship between emerging technologies and environ-
mental urban planning methodologies.

Finally, in addressing RQ4, the study uncovered a complex
terrain marked by various challenges and barriers that arise in the
integration and implementation of AI, AIoT, and UDT in data-driven
environmental planning processes in sustainable smart cities.
These include privacy and security concerns, ethical and social is-
sues, lack of data interoperability, environmental risks, financial
constraints, regulatory inadequacies, lack of community engage-
ment, and stakeholder conflicts. Surmounting or mitigating these
challenges and barriers requires concerted efforts and robust
strategies. These involve implementing robust privacy and security
measures for data protection, addressing ethical and social con-
cerns through transparent and inclusive decision-making pro-
cesses, developing standardization protocols and frameworks,
sustainable technology and eco-design practices, securing funding
and resources, and devising sustainable funding schemes, advo-
cating for robust data governance frameworks that support inno-
vation while safeguarding public interests, and facilitating
stakeholder collaboration and conflict resolution through effective
communication and engagement and capacity-building endeavors.
This highlights the importance of addressing socio-technical chal-
lenges to effectively deploy technology- and data-driven solutions
in urban contexts.

4.2. Comparative analysis

The systematic review represents a significant advancement in
research and practice by addressing a conspicuous gap in the
existing literature. While prior review studies on sustainable smart
cities have predominantly focused on isolated components such as
AI [22e24], AIoT [7,8], and UDT [28,208], they have often over-
looked the convergence of these technological elements and its
significant impact on data-driven environmental urban planning.
To put it differently, the intersection of advanced technologies and
collaborative models in the context of sustainable smart cities has
received limited attention regarding their data-driven approaches
to environmental planning. Specifically, the intricate interplay and
potential synergies among AI, AIoT, and UDT functionalities to
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advance data-driven environmental planning processes have thus
far remained underexplored, if not entirely neglected. This study
fills a crucial void in the literature by conducting a comprehensive
systematic analysis of these interconnections. It transcends tradi-
tional approaches by offering a holistic perspective that sheds light
on the complex relationships, nuanced dynamics, and untapped
potentials associated with emerging sustainable smart cities.
Moreover, the critical insights presented in this systematic review
challenge the prevailing paradigm of studying isolated compo-
nents, advocating instead for an integrated and interdisciplinary
research approach in sustainable smart urban development.

Furthermore, it becomes evident that while several studies have
recently begun to address the intersection between AI and AIoT
technologies and urban planning practices [1,3,4,6], environmental
sustainability has received comparatively less attention. This
disparity is also noticeable in studies focusing on the integration of AI
and AIoT with UDT [30,165]. While these studies have made strides
in understanding the potential of these advanced technologies from
various perspectives, there remains a significant gap in compre-
hensively addressing environmental sustainability within the
framework of sustainable smart cities. This highlights the need for
further attention towards integrating environmental sustainability
considerations into developing and implementing AI and AIoT-
driven UDT solutions for data-driven urban planning and design.

4.3. Implications for research, practice, and policy making

The study holds profound implications across three crucial di-
mensions: research, practice, and policymaking. In the realm of
research, scholars and researchers can leverage the conceptual and
theoretical insights gained from this study to advance further in-
vestigations into the synergistic integration of AI, AIoT, and UDT for
driving sustainable urban development forward, focusing on data-
driven environmental planning. Additionally, the study un-
derscores the potential for fostering interdisciplinary collaboration,
encouraging scholars from diverse fields to join forces in exploring
the complex dynamics of sustainable smart urban development.
This collaborative approach contributes to a more holistic under-
standing of this field and enriches the discourse on technological
integration and interdisciplinary convergence.

In urban planning, practitioners stand to gain significant advan-
tages from the redefined landscape influenced by AI, AIoT, and UDT
technologies. Acquiring actionable insights, these practitioners can
leverage technological advancements to enhance environmental
sustainability practices and implement targeted interventions for
more resilient and environmentally focused urban development.
Additionally, the study imparts valuable perspectives on the ethical
and social considerations associated with AI, AIoT, and UDT, pro-
moting the development of responsible and inclusive urban plan-
ning strategies. This multifaceted approach equips practitioners
with a holistic view, allowing them to comprehend the complexities
of urban environments while prioritizing sustainability, resilience,
and the well-being of communities. Furthermore, practitioners can
make more informed decisions based on real-time data and pre-
dictive analytics by leveraging AI, AIoT, and UDT technologies. This
improves the efficiency and effectiveness of data-driven environ-
mental urban planning initiatives and facilitates adaptive and pro-
active strategies to address emerging challenges and opportunities
in sustainable urban development.

In the policy domain, policymakers are presented with a
transformative opportunity to incorporate the insights gleaned
from this study into strategic initiatives for sustainable smart urban
development. This knowledge enables them to formulate effective
policies that advance sustainable smart cities and align with the
synergistic integration of AI, AIoT, and UDT technologies,
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addressing key challenges and promoting environmentally
conscious urban planning. Moreover, policymakers can leverage
this knowledge to develop regulations and governance frameworks
that promote these technologies' ethical and responsible use and
encourage inclusive approaches for sustainable smart cities. The
study contributes to shaping policies that not only navigate the
complexities of emerging technologies but also prioritize the long-
termwell-being of urban communities and the preservation of the
environment.

4.4. Limitations

While this comprehensive systematic review contributes
significantly to understanding the convergence of AI and AIoT, UDT,
urban planning, and environmental sustainability, it is still impor-
tant to acknowledge certain limitations. One inherent limitation
lies in the rapidly evolving nature of AI, AIoT, and UDT technologies,
which may introduce new dimensions and considerations not
captured in the analysis and synthesis of the selected studies.
Moreover, the study's scope is confined to the existing body of
literature, potentially excluding emerging trends or perspectives.
Additionally, synthesizing diverse research findings involves some
abstraction, which might oversimplify nuances present in individ-
ual studies. Furthermore, the temporal constraint, covering studies
from January 2019 to December 2023, may omit recent de-
velopments in the field. Also, the review process may introduce
biases, and the inclusion criteria might exclude relevant studies
that do not precisely align with predefined parameters. Lastly, the
interpretation of findings may be influenced by the researchers'
perspectives, leading potentially to subjective judgments. The
study recognizes that potential biases in the review process and the
interpretation of findings are intrinsic to any comprehensive
analysis and synthesis of existing literature.While these constraints
are acknowledged, the study underscores the need for ongoing
research to capture recent developments, refine methodologies,
and address potential biases. As the landscape of sustainable smart
cities continues to evolve, future research endeavors can build upon
these acknowledged limitations to further enrich the understand-
ing of the complex dynamics in this interdisciplinary field.

4.5. Recommendations for future research

As the comprehensive systematic review explores the multi-
faceted interplay of AI, AIoT, UDT, data-driven urban planning, and
environmental sustainability in the dynamic landscape of sustain-
able smart cities, it reveals a terrain ripe with potential for future
research endeavors. By pinpointing critical gaps and their impli-
cations, this subsection outlines a roadmap for advancing sustain-
able smart cities (Table 4). These identified gaps pave the way for
strategic initiatives aimed at propelling sustainable smart urban
development forward, while the recommendations serve as a
cornerstone for further investigations into the transformative po-
tential at the nexus of data-driven technology, urban planning, and
environmental sustainability.

This comprehensive set of recommendations for future research
emerges from an in-depth analysis of the challenges and obstacles
inherent in the dynamic interplay of AI, AIoT, UDT, data-driven
urban planning, and environmental sustainability. The proposed
research avenues aspire not only to fill existing gaps but also to
pave the way for a more inclusive, safe, and environmentally sus-
tainable urban future. Collaborative efforts across disciplines
involving researchers, urban planners, technologists, and policy-
makers are essential to collectively investigate these unexplored
territories and create resilient and equitable sustainable smart
cities.



Table 4
Research gaps, implications, and corresponding future research.

Research gaps Implications Corresponding future research

Data privacy and security in AI,
AIoT, and UDT applications

Safeguarding sensitive information and ensuring citizen privacy
are imperative for building trust in sustainable smart city
technologies.

Investigate robust measures and mechanisms for data security and
privacy in AI, AIoT, and UDT applications and propose policy
frameworks to protect user personal and sensitive data in data-
driven urban planning initiatives.

Ethical and societal considerations
in AI, AIoT, and UDT integration
in urban planning.

Ensuring responsible and equitable technology deployment,
addressing potential biases, and safeguarding societal values in
urban development.

Conduct in-depth studies on the ethical and societal implications of
integrating AI, AIoT, and UDT in data-driven urban planning;
investigate relevant frameworks emphasizing fairness,
transparency, and accountability; and develop frameworks for
human-centric decision-making and evaluate their impact on
diverse communities and citizens.

Interoperability obstacles in
sustainable smart city
ecosystem.

Hindering seamless communication and coordination among
diverse technologies and systems in AI/AIoT-driven UDT.

Investigate standardized protocols and interfaces to enhance AI/
AIoT-driven UDT interoperability, assess the effectiveness of
interoperable interfaces in diverse urban contexts, and promote a
cohesive and integrated sustainable smart city ecosystem.

Long-term environmental impacts
of integrating AI, AIoT, and UDT
in urban planning.

Uncovering the environmental costs and risks of ongoing and
future AI, AIoT, and UDT in data-driven urban planning initiatives
is essential for long-term goals of sustainability.

Undertake comprehensive studies assessing the long-term
environmental implications of AI, AIoT, and UDT applications in
data-driven urban planning, considering factors, such as energy
consumption, resource depletion, water usage, e-waste, and overall
ecological footprint, as well as develop solutions and strategies
promoting sustainable and eco-design principles and green
computing approaches.

Community engagement and
inclusivity.

Ensuring active participation and representation of diverse
communities in AI/AIoT-driven UDT is fundamental for equitable
and inclusive urban development.

Explore methods for enhancing community participation in AI/AIoT-
driven UDT initiatives, develop strategies for inclusivity in data-
driven decision-making processes in urban planning, and assess the
impact of innovative technologies on marginalized communities.

Financial capital and funding. Adequate financial resources are essential for implementing and
scaling AI/AIoT-driven UDT in sustainable smart city initiatives.

Examine funding models for AI/AIoT-driven UDT initiatives; explore
alternative funding models, public-private partnerships, and
innovative financing mechanisms to support UDT projects; and
assess the economic feasibility of these projects and their cost-
effectiveness in the long run.

AI, AIoT, UDT, and data-driven
urban planning integration

Seamlessly integrating AI, AIoT, UDT, and urban planning
requires overcoming various technical and logistical challenges.

Investigate strategies and frameworks to overcome integration
challenges, promote a cohesive and interconnected urban
ecosystems, and evaluate the effectiveness of integrated systems in
real-world urban contexts by conducing case studies and applying
best practices.

AI and AIoT governance and
regulatory frameworks

Establishing governance and regulatory frameworks is crucial for
responsible and ethical use of AI and AIoT in urban planning.

Investigate existing AI and AIoT governance models; propose
regulatory frameworks for AI and AIoT applications in urban
planning contexts; and formulate governance frameworks and
regulations to guide the ethical deployment of AI and AIoT in urban
planning.
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Furthermore, future research endeavors can address the iden-
tified limitations to enhance the robustness and comprehensive-
ness of systematic reviews in this domain. Firstly, researchers can
adopt more flexible methodologies that accommodate the dynamic
nature of AI, AIoT, and UDT technologies, allowing for real-time
updates and the inclusion of emerging trends. Additionally,
expanding the temporal scope beyond the predefined timeframe
can capture recent developments and ensure the currency of the
literature synthesis. Furthermore, efforts can be made to mitigate
biases introduced during the review process by employing rigorous
approaches to study selection and data analysis. Embracing inter-
disciplinary collaboration and incorporating diverse perspectives
can enrich the interpretation of findings and mitigate the risk of
subjective judgments. Moreover, future research can explore
innovative methodologies for synthesizing heterogeneous data
sources and capturing nuanced insights from individual studies. By
addressing these avenues, future research can advance knowledge
and understanding of sustainable smart cities, laying the founda-
tion for informed decision-making and resilient urban develop-
ment strategies.
5. Conclusion

As AI, AIoT, and UDT increasingly permeate urban landscapes, a
21
profound and nuanced understanding of the implications of their
incorporation into data-driven environmental planning processes
to advance sustainable urban development practices becomes
imperative. In addressing the challenges and complexities of urban
planning and environmental sustainability, the call to embrace and
leverage integrated and holistic data-driven solutions has never
been more emphasized in the dynamic landscape of sustainable
smart cities. This underscores the critical importance and relevance
of embarking on a thorough exploration d a comprehensive
analysis and synthesis of various research strands d with the pri-
mary objective of generating cohesive new insights and
perspectives.

This comprehensive systematic review addressed a critical
knowledge gap. This involved uncovering the intricate interplay of
AI, AIoT, UDT, data-driven urban planning, and environmental
sustainability and elucidating the nuanced dynamics and untapped
synergies in the complex ecosystem of sustainable smart cities.
Guided by the formulated research questions, the findings of this
comprehensive systematic review provided fertile insights into the
theoretical foundations, practical applications, and anticipated
challenges associated with the convergence of these technologies,
models, and domains. Specifically, they surpassed mere interdis-
ciplinary theoretical enrichment, offering valuable insights into the
transformative potential of integrating AI, AIoT, and UDT
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technologies to advance sustainable urban development practices.
By enhancing data-driven environmental planning processes, these
integrated technologies and models offer innovative solutions to
address complex environmental challenges. However, this
endeavor is associated with formidable challenges and complex-
ities that must be carefully navigated and overcome to achieve
desired outcomes.

The contributions of this study resonate within academic
discourse and practical knowledge. By synthesizing diverse per-
spectives, resolving inconsistencies, harnessing synergies, identi-
fying challenges and barriers, acknowledging limitations, spotting
research gaps, and providing forward-looking suggestions for
future research endeavors, the study offers a comprehensive un-
derstanding of the symbiotic relationship and collaborative inter-
action among AI, AIoT, UDT, urban planning, and environmental
sustainability. These insights have profound implications for re-
searchers, practitioners, and policymakers, providing a roadmap for
fostering resiliently designed, technologically advanced, and envi-
ronmentally conscious urban environments.
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