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Randomized measurement protocols such as classical shadows represent powerful resources for quantum
technologies, with applications ranging from quantum state characterization and process tomography to machine
learning and error mitigation. Recently, the notion of measurement dual frames, in which classical shadows are
generalized to dual operators of positive operator-valued measure (POVM) effects, resurfaced in the literature.
This brought attention to additional degrees of freedom in the postprocessing stage of randomized measurements
that are often neglected by established techniques. In this work, we leverage dual frames to construct improved
observable estimators from informationally complete measurement samples. We introduce novel classes of
parametrized frame superoperators and optimization-free dual frames based on empirical frequencies, which
offer advantages over their canonical counterparts while retaining computational efficiency. Remarkably, this
comes at almost no quantum or classical cost, thus rendering dual frame optimization a valuable addition to the
randomized measurement toolbox.
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I. INTRODUCTION

As our abilities to build and operate large quantum infor-
mation processing systems steadily progress [1], the question
of finding the most effective strategies to interrogate such
devices becomes more and more pressing. Indeed, it is well
known that to fully reconstruct and store quantum states pro-
duced during, say, a quantum simulation, one would need
to afford exponentially many physical measurements and a
similarly large amount of classical memory.

Luckily, in most practical situations far less than full
knowledge about a state is enough to represent meaningful
information. For instance, one may encode a specific problem
in the form of a Hermitian operator whose expectation value,
evaluated on a carefully optimized quantum state, returns the
desired answer [2,3]. This evaluation procedure, also called
operator averaging, is much cheaper than full tomography
under reasonable sparsity assumptions. In practice, however, it
can still result in considerable sampling costs [4,5]. This mo-
tivated the emergence of several protocols to design [6–16],
group [2,17–26], and schedule [27–29] optimized sets of
quantum measurements over the last few years.

Among these, approaches based on randomization
[11,12,30–33], as well as general positive operator-valued
measures (POVMs) [34,35], received substantial attention.
Upon input of a target quantum state, these strategies return
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a statistical estimator for it, which is often referred to as
a classical shadow [36]. Although, in general, shadows
are not valid quantum states by themselves, they can be
efficiently stored and processed and can be used to reconstruct
several incompatible expectation values simultaneously
[11]. Notably, shadows allow for a separation between the
data acquisition phase, which can be carried out without
fixing a target observable, and the classical processing
and reconstruction stage. The power and flexibility of
classical shadows led to the development of numerous
applications beyond the simple task of operator averaging.
These include the reconstruction of fidelity measures [37]
and of genuine quantum properties of states [38–40], the
characterization of quantum processes [41], classical and
quantum machine learning [42–44], and error mitigation
techniques [45–47]. Often, shadows conveniently serve as a
bridge between quantum and classical representations such as
tensor networks.

Focusing on the data collection step, several works have
considered the optimization of informationally complete (IC)
measurement operators to yield estimators with favorable sta-
tistical properties [7,12,15]. However, little emphasis has so
far been put on studying how the postprocessing stage governs
the quality of these estimators, particularly of those con-
structed from overcomplete measurement schemes. In fact,
it was only in a recent publication that Innocenti et al. [48]
raised awareness on this point, highlighting the existence
of often neglected degrees of freedom associated with the
so-called measurement dual frames [49,50]. In other words,
while classical shadows protocols embody the principle “mea-
sure first, ask questions later” [30], much remains to be said
about how such questions should be asked.

In this work, we dive deeper into the application of frame
theory to IC quantum measurements for digital quantum
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computing architectures. We present efficiently computable
classes of parametrized dual frames, together with the cor-
responding optimization routines. Indeed, while a number of
results are known concerning optimal choices of measurement
settings and dual frames for both tomography and observable
estimation [48], these are often impractical or impossible to
realize at scale due to inherent technical (e.g., lack of con-
nectivity, device noise) or fundamental (e.g., memory or data
processing requirements) limitations. By leveraging a product
structure, our proposed methods ensure consistent improve-
ments over standard settings while remaining applicable, in
principle, up to large sizes of the target qubit registers. We
support our analytical findings with numerical investigations.
These suggest that dual frame optimization—even when sub-
ject to certain pragmatic constraints—can significantly boost
the quality of shadow estimators for generic operator aver-
aging tasks. In particular, it reduces the performance gap
between randomized projective measurements and local di-
lation POVMs, which are substantially more demanding to
implement.

The paper is organized as follows. In Sec. II we review
the theory of observable estimation with generalized mea-
surements from a frame theory point of view. In Sec. III we
develop methods to optimize dual frame operators to improve
the variance of overcomplete POVM estimators. Finally, in
Sec. IV we showcase our methods on paradigmatic numerical
examples.

II. THEORY

A. Generalized measurements

The most general class of measurements in quantum me-
chanics are described by the POVM formalism. An n-outcome
POVM is a set of n positive semidefinite Hermitian operators
M = {Mk}k∈{1,...,n} that sum to the identity, i.e.,

∑n
k=1 Mk = 1.

Given a d-dimensional state ρ, the probability of observing
outcome k is given by Born’s rule as pk = Tr[ρMk]. Standard
projective measurements (PMs) are a special case of POVMs,
where each POVM operator is a projector such that Mk =
|φk〉〈φk| for some pure states φk . A POVM is said to be in-
formationally complete (IC) if it spans the space of Hermitian
operators [49]. Then, for any observable O, there exist ωk ∈ R
such that

O =
n∑

k=1

ωkMk . (1)

Given such a decomposition of O, the expectation value 〈O〉ρ
can be written as

〈O〉ρ = Tr[ρO] =
∑

k

ωkTr[ρMk] = Ek∼{pk}[ωk]. (2)

In other words, 〈O〉ρ can be expressed as the mean value of
the random variable ωk over the probability distribution {pk}.
Given a sample of S measurement outcomes {k(1), . . . , k(S)},
we can thus construct an unbiased Monte Carlo estimator of
〈O〉ρ as

ô : {k(1), . . . , k(S)} �→ 1

S

S∑
s=1

ωk(s) . (3)

B. PM-simulable POVMs

Digital quantum computers typically only give access
to projective measurements (PMs) in a specified compu-
tational basis. More general POVMs can be implemented
through additional quantum resources, e.g., by coupling to
a higher-dimensional space in a Naimark dilation [51] with
ancilla qubits [52] or qudits [8,34] or through controlled
operations with midcircuit measurements and classical feed-
forward [53]. While these techniques have been demonstrated
in proof-of-principle experiments, their full-scale high-fidelity
implementation remains a challenge for current quantum de-
vices [8]. Of particular interest are thus POVMs that can be
implemented without additional quantum resources, i.e., only
through projective measurements in available measurement
bases.

More complex POVMs can be built from available projec-
tive measurements through convex combinations of POVMs:
For two n-outcome POVMs M1 and M2 acting on the same
space, their convex combination with elements Mk = pM1,k +
(1 − p)M2,k for some p ∈ [0, 1] is also a valid POVM. This
can be achieved in practice by a randomization of measure-
ments procedure, which simply consists of the following two
steps for each measurement shot. First, randomly pick M1 or
M2 with probability p or 1 − p, respectively, then perform
the measurement associated with the chosen POVM. We call
POVMs that can be achieved by randomizations of projective
measurements PM-simulable. On digital quantum computers
the easiest basis transformations are single-qubit transfor-
mations of the computational basis. POVMs that consist of
single-qubit PM-simulable POVMs are thus the most readily
accessible class of generalized measurements and have found
widespread application. These include classical shadows and
most of their derivatives; see Appendix A.

Importantly, PM-simulable informationally complete
POVMs are overcomplete [54]. The decomposition of
observables from Eq. (1) is thus not unique. In this work, we
leverage these additional degrees of freedom to build better
observable estimators; see Fig. 1.

C. Frame theory and dual space

We will now outline a formal approach to obtain the co-
efficients ωk in Eq. (1) for a given observable O. First, we
note that the minimal number of linearly independent POVM
elements for an IC-POVM is n = d2. We call such POVMs
minimally informationally complete. In that case, the coef-
ficients ωk are unique. However, for POVMs with n > d2,
such as those that arise from IC PM-simulable POVMs, the
decomposition in Eq. (1) is not unique. This redundancy is de-
scribed by frame theory, as outlined in Ref. [48] and detailed
in Appendix B.

The set of POVM operators M = {Mk}k∈{1,...,n} forms a
frame for the space of Hermitian operators if and only if it
is IC. For any frame, there exists at least one dual frame
D = {Dk}k∈{1,...,n}, such that

O =
n∑

k=1

Tr[ODk]Mk (4)
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FIG. 1. Schematic of dual frame optimization. Generalized mea-
surements are performed on the quantum system. Upon obtaining
outcome k, the corresponding canonical dual operator Dk , also
known as classical shadow, can be efficiently computed and stored
on a classical computer. The expectation value of any observable
O can be estimated from a sample of dual operators. Leveraging
additional degrees of freedom, one can optimize these dual operators
through classical postprocessing, effectively reducing the estimation
variance.

for any Hermitian operator O. Therefore, the coefficients ωk

can simply be obtained from the duals D as

ωk = Tr[ODk]. (5)

Notably, dual operators generalize the concept of classi-
cal shadows of a quantum state [11], thus providing a
direct connection to the popular randomized measurement
toolbox [30].

For a minimally IC POVM, only one dual frame exists. It
can be constructed from the POVM elements as

|Dk〉〉 = F−1|Mk〉〉, k = 1, 2, . . . , n (6)

with the canonical frame superoperator

F =
n∑

k=1

|Mk〉〉〈〈Mk|, (7)

where we have used the widespread vectorized “double-ket”
notation detailed in Appendix C. Thus, the frame superopera-
tor can be used to transform between the POVM space and
the dual space. For an overcomplete POVM, the canonical
frame superoperator creates one of infinitely many possible
dual frames. We will further explore this point in Sec. III B.

D. Observable estimation

The theory of frames and duals enables a systematic
approach to estimate observable expectation values from a
given set {k(1), . . . , k(S)} of POVM measurement outcomes:
First, one picks a valid dual frame D, and construct the
dual operators {Dk(1) , . . . , Dk(S)} for the observed outcomes.
Then one computes the corresponding operator coefficients
{ωk(1) , . . . , ωk(S)} through Eq. (5). Finally, Eq. (3) yields an
estimate for 〈O〉ρ . The statistical variance of this estimator is
given by the standard error on the mean

Var[ô] = Var[ωk(s) ]

S
. (8)

The numerator, also known as the single-shot variance (SSV),
depends explicitly on the POVM M, the duals D (when they
are not unique), the observable O, and the state ρ as

Var[ωk | M, D, O, ρ] = E
[
ω2

k

] − E[ωk]2

=
∑

k

Tr[ρMk]Tr[ODk]2 − 〈O〉2
ρ. (9)

Throughout this work, the SSV is used as a performance
measure for POVM-based estimators. Note that the second
term 〈O〉2

ρ depends on neither the POVM nor the dual frame.
However, the first term can be decreased both by adjusting the
POVM M but also by optimizing the duals D (if they are not
unique) when the POVM itself remains unchanged; see the
schematic in Fig. 1.

The minimal SSV is achieved by performing a PM in
the eigenbasis of O = ∑

k λk|ok〉〈ok|, in which case Mk =
Dk = |ok〉〈ok|, where |ok〉 are the eigenvectors of O [55,56].
While this measurement is usually not easily implementable,
it serves as a lower bound for all estimations of 〈O〉ρ with
a

√
S scaling. In practice, one typically chooses a specific

type of POVM measurement that the quantum hardware can
implement, e.g., PM-simulable POVMs or dilation POVMs.
The POVM operators can then be parametrized and classi-
cally optimized to minimize the SSV. This can either happen
during repeated measurement rounds in an adaptive quantum-
classical feedback loop [7,14] or a priori [12,15]. Since the
SSV depends on both the observable and the generally un-
known state, the POVM operators can be optimized either
under knowledge of the targeted observable only or by taking
into account an approximation of the state obtained from a
classical reference calculation. However, the SSV depends
both on the POVM operators as well as the chosen duals
whenever these are not unique. Crucially, the dependence on
the dual frame can be controlled purely during the postpro-
cessing phase and thus comes with no additional cost in the
quantum resources. Moreover, an optimization of the dual
operators can also be individually tailored to different observ-
ables that one might want to estimate from the same set of
IC data.

For a fixed IC-POVM M and state ρ, the dual frame that
minimizes the SSV as a function of D, irrespective of the
observable O, is obtained from Eq. (6) when using a modified
frame superoperator given by

Fopt =
n∑

k=1

1

Tr[ρMk]
|Mk〉〉〈〈Mk| (10)

and rescaling each dual operator by 1/Tr[ρMk] [48]. This,
however, requires knowledge of the state ρ. If no prior in-
formation on ρ is available, the best choice of duals can
be considered the one that minimizes the SSV as a uniform
Haar average over all states. In that case, the optimal duals
are obtained from a modified frame superoperator given by
Favg = ∑n

k=1 |Mk〉〉〈〈Mk|/Tr[Mk]. It is important to point out
that this choice is the one generally employed in classical
shadows protocols [30]. More explicitly, a standard classical
shadow ρ̂s, namely, a single-shot estimate of the state obtained
by constructing an inverse measurement channel, is equivalent
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to the “average-optimal” dual Dk obtained from inversion of
the frame superoperator Favg introduced above.

III. DUAL FRAME OPTIMIZATION

A. Local POVMs and duals

A POVM-based estimation of observables is only feasi-
ble if the POVM operators themselves as well as the dual
operators can be efficiently handled classically. Therefore,
most POVM-based estimation schemes employ local POVMs,
where every Mk acts nontrivially only on few qubits. This
is crucial in order to keep a local structure in the frame
superoperator from Eq. (7), such that it can be constructed
and inverted efficiently. Moreover, also the duals themselves
need to be efficiently processable in order to compute the
observable coefficients ωk via Eq. (1). However, this is not
guaranteed by the optimal dual frame Fopt, even when the
POVM operators have a product structure. This implies that
the optimality results presented in the previous chapter cannot
be applied in general.

In the following we consider N-qubit systems where the
POVM effects are tensor products of single-qubit n-outcome
POVM effects; that is, each global effect can be written as

Mk = Mk1,k2,...,kN = M (1)
k1

⊗ M (2)
k2

⊗ · · · ⊗ M (N )
kN

, (11)

where M (i) = {M (i)
ki

}n
ki=1 is a n-outcome single-qubit POVM

acting on qubit i. To fully leverage the ability of optimizing
duals for the SSV, we require a parametrization of suitable
dual frames, such that they remain efficiently processable. We
provide this through a parametrized frame superoperator in
the following.

B. Parametrization of duals

1. Weighted frame superoperator

If M is overcomplete, the set of all valid duals can be ex-
plicitly parametrized through a singular value decomposition
[57]; see Appendix D. In principle, this parametrization could
be used to optimize the dual frame for a minimal SSV. How-
ever, it is not straightforward to impose a product structure
on the dual operators in this way. For a more practical, albeit
nonexhaustive parametrization of the dual frames, we thus
define a weighted frame superoperator

Fα =
∑

k

αk|Mk〉〉〈〈Mk|, (12)

which resembles the canonical frame superoperator F , but
with the contribution of each effect Mk rescaled by a factor
αk ∈ R. If Fα is invertible, the effects given by

|Dk〉〉 = αkF−1
α |Mk〉〉 (13)

form a valid dual frame which is invariant under uniform
scaling of the coefficients. Notice that if all the coefficients
{αk} are positive, then Fα will be positive definite and hence
invertible. We can hence think of the parameters {αk} as
a probability distribution when restricting them to positive
values.

Assuming the POVM has a product structure as in Eq. (11),
it is the degree of correlations in the multivariate proba-

bility distribution αk that determines what kind of product
structure the resulting duals from Eq. (13) will have. In
the simplest case, when αk fully factorizes, i.e., αk1,k2,...,kN =
α

(1)
k1

α
(2)
k2

· · · α(N )
kN

, the dual frame will be of product form as in
Eq. (11). More generally, if αk is a product of distributions
that each act on at most m qubits, then the duals will be
tensor products of terms that act on m qubits. In this case,
the traces to compute ωk in Eq. (5) factorize into blocks that
involve constructing matrices of at most size 2m × 2m. This
way, the complexity of the dual operators in the postprocess-
ing can be tuned by imposing restricted correlations in the
distribution αk.

We thus propose the following general procedure to im-
prove statistical estimators based on overcomplete POVMs
such as classical shadow methods. First, a collection of shots
{k(1), . . . , k(S)} is measured from a fixed POVM. For a given
parametrization of duals through Eq. (13), the single-shot
variance in Eq. (9) is estimated with the (corrected) sample
variance of the values {ωk(1) , . . . , ωk(S)}. An optimizer will then
minimize the SSV as a function of the parameters entering
the weighted frame superoperator, yielding an estimator of
〈O〉ρ with the smallest possible variance. This can be repeated
independently for each observable of interest starting from
the same collection of samples, harnessing the true power of
IC measurements. As this dual optimization does not require
changing the quantum circuits to be executed or increasing the
sample size, we consider it to be a “free lunch” improvement
over standard classical shadows techniques.

In practice, the optimization landscape of the dual param-
eters αk could be difficult to navigate, due to the complicated
dependency of the duals on αk in Eq. (13). Also, a simul-
taneous optimization of the duals and the POVM operators
themselves can be cumbersome, as it requires a quantum-
classical feedback loop. As an alternative to optimizing a
parametrization of the dual operators, we thus propose the
following procedure to obtain suitable dual frames for a fixed
and overcomplete IC POVM, which we refer to as empirical
frequencies dual frames.

2. Empirical frequencies dual frames

When no knowledge about the state is available, the
average-optimal dual frame should be used, as discussed in
Sec. II D. As the POVM measurement is repeated and the
number of shots S increases, we gain some knowledge about
the state, which we can leverage to approximate the optimal
dual from Eq. (10). More precisely, the measured frequencies
fk = #k/S (where #k is the number of times the outcome
k was obtained) follow a multinomial distribution and con-
verge to the true measurement probabilities pk = Tr[ρMk] as√

pk(1 − pk)/S. One could thus replace the outcome prob-
abilities pk = Tr[ρMk] in the optimal dual frame with the
empirical frequencies fk = #k/S; that is, we use the global
empirical dual frame

|Dk〉〉 = 1

fk
F−1|Mk〉〉,

where F =
∑

k

1

fk
|Mk〉〉〈〈Mk|, (14)
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which is a weighted frame superoperator with αk = 1/ fk =
S/#k. However, an obvious issue arises if an outcome is not
obtained ( fk = 0). We address this by adding a regularization
to the empirical frequencies with a bias term. This biases the
outcome probabilities with respect to the fully mixed state
1
d 1, borrowing an idea from Ref. [56]. The resulting biased
empirical frequencies are given by

f̃k({k(1), . . . , k(S)}, Sbias) = #k + Tr
[

1
d 1Mk

]
Sbias

S + Sbias
. (15)

If we assume that all effects are non-null, then αk = 1/ f̃k > 0,
which ensures the frame superoperator is invertible. Note that,
for S = 0, we recover the average-optimal dual frame, while
for S → ∞ the empirical dual frame converges to the optimal
dual frame from Eq. (10).

The global empirical dual frame still suffers from two is-
sues: First, for sizable qubit numbers, the number of different
POVM outcomes n eventually becomes much larger than the
available shot budget S. In this regime, it is difficult to improve
over the average-optimal dual with the above global empirical
dual frame. Second, the dual matrices can become exponen-
tially large when the correlations in f̃k are not restricted, as
discussed in Sec. III B 1. Both of these issues are overcome
when relaxing the task from learning the global distribution pk

to recovering only the most relevant few-qubit correlations of
this multivariate distribution. In the simplest case, the (poten-
tially biased) outcome probabilities fk can be approximated
with the product of marginal probabilities

fk =
N∏

i=1

f
(i)
ki

, with f
(i)
ki

=
∑

{k j} j �=i

fk1,...,kN . (16)

While this does not model correlations between POVM out-
comes of different qubits, it still presents an advantage over
the average-optimal dual frame, while ensuring the dual frame
is of product form; see Sec. IV.

The correlations captured by the empirical frequencies can
be systematically tuned up by partitioning k into marginals
of larger sizes. Let � = {λ1, . . . , λl} be a partitioning of the
qubit indices {1, . . . , N} into subsets λi that each contain up
to m terms. We can then approximate the global distribution
fk (or f̃k) as a product of m-body marginals fλi ,

f�k =
l∏

i=1

fλi , with fλi =
∑

{k j} j /∈λi

fk1,...,kN . (17)

This leads to dual frame operators that are tensor products of
m-local terms. The question arises how to optimally choose
the partitioning �. Ideally, pairs of qubits whose POVM out-
comes are highly correlated should preferably be grouped into
the same set. We quantify this through the empirical mutual
information I (i, j) shared by two qubits, given as

I (i, j) =
∑
ki,k j

f{i, j} ln

⎛
⎝ f{i, j}
f
(i)
ki
f
( j)
k j

⎞
⎠. (18)

This quantifies the price one has to pay when approximating
the joint distribution f{i, j} through the product of marginal dis-
tributions f(i)ki

f
( j)
k j

, given by their Kullback-Leibler divergence.

In a practical setting, the maximally allowed degree mmax

should be chosen such that the classical cost in computing
the traces of the resulting 2m × 2m dual matrices is deemed
tolerable, and sufficient statistics are gathered to capture the
m-body marginals, which becomes exponentially more diffi-
cult as m increases. Once mmax is chosen, one can define a
cost function C for � that is given by the sum of the pairwise
mutual information over all set,

C(�) =
∑
λi∈�

∑
j,k∈λi
j �=k

I ( j, k). (19)

While the optimal partitioning can be straightforwardly com-
puted from this cost function for small qubit numbers, this
becomes infeasible for larger N due to the superpolynomial
scaling of the number of different partitionings. In such a
setting, one can construct a well-performing partitioning by
first computing I (i, j) for all pairs of qubits, and then putting
pairs of highest values into the same subset with a greedy
allocation strategy.

IV. NUMERICAL BENCHMARKS

We now showcase the methods for dual frame optimization
developed in Sec. III on numerical examples. In the following,
in Sec. IV A we first benchmark the performance of different
classes of POVM operators and dual frames by optimizing
their single-shot variance for generic random states and ob-
servables. Then, in Sec. IV B, we demonstrate how the explicit
optimization of the operators can be circumvented by using
only the empirical frequencies of the outcomes to obtain a
well-performing dual frame.

A. Performance limit of different POVM classes

Here we investigate which class of single-qubit POVMs
and dual frames yields the best possible estimators. In this
idealized setting, we assume full knowledge of the underlying
state ρ. Our procedure is the following: We first sample a
Haar-random pure state ρ. We construct random observables
O by sampling eigenvalues λ1, . . . , λd uniformly at random
from [−5, 5] and applying a Haar-random unitary U that
yields O = Udiag(λ1, . . . , λd )U †. As discussed in Sec. II D,
the optimal measurement would be the projective measure-
ment in the eigenbasis with a SSV of 〈O2〉ρ − 〈O〉2

ρ . For a
given observable O, we therefore evaluate a class of POVMs
M and duals D by their class performance

F (M,D) = min
M∈M,D∈D

{
Var[ωk | M, D, O, ρ]

〈O2〉ρ − 〈O〉2
ρ

}
, (20)

with Var[ωk] given as in Eq. (9). Similarly, we quantify
the ability to estimate several observables {Oi}i∈{1,...,Nobs}
from the same IC POVM data through the cumulative class
performance

FC(M,D) = min
M∈M{Di}i∈D

⎧⎨
⎩

∑Nobs
i=1 Var[ωk | M, Di, Oi, ρ]∑Nobs

i=1

〈
O2

i

〉
ρ

− 〈Oi〉2
ρ

⎫⎬
⎭. (21)

Note that the duals D in Eqs. (21) and (20) are implicitly
defined through the POVM operators M but carry free param-
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FIG. 2. Performance of different classes of POVMs and dual frames for estimating random observables, shown as violin plots. Color
indicates the employed class of duals. Each distribution is built from 200 repetitions of sampling a Haar-random pure state and an observable
(or set of observables) and subsequently minimizing the class performance F (or cumulative performance FC) for each combination of POVM
and dual frame. Horizontal markers show the median of each distribution. For blue distributions a fixed dual frame is used. For orange
distributions, the optimal dual frame is used. The red dashed line represents the optimal lower bound which is saturated for the projective
measurement in the eigenbasis of the observable. (a) Single-qubit system with one observable; (b) two-qubit system with one observable;
(c) single-qubit system with five observables; (d) two-qubit system with five observables. For two-qubit systems, the class performance is
computed for the cumulative variance of all observables and the optimized dual frames are limited to product form for the green distributions.
For the light-green distributions, the duals are reoptimized for every observable.

eters as in Eq. (13). We use a BFGS optimizer to compute
F and FC for five classes of single-qubit POVMs detailed
in Appendix A, namely, classical shadows, locally biased
classical shadows, mutually unbiased bases (MUB) POVMs,
and general PM-simulable POVMs (all six outcomes each),
as well as four-outcome dilation POVMs. The distributions of
the achieved performance limit for 200 random states, ρ state,
and observables O (or set of Nobs = 5 observables {Oi} for FC)
are shown in Fig. 2 for single-qubit and two-qubit systems.

In all cases, the class performance improves significantly
when moving beyond the canonical dual frame. Therefore,
the additional degrees of freedom leveraged by our dual op-
timization improve POVM estimators beyond what can be
achieved by optimizing the POVM operators alone. Trivially,
on a single-qubit observable, the MUB, PM-simulable and
dilation POVMs all reach the optimal performance F = 1,
as the eigenbasis projectors are included in this class of
POVMs; see Fig. 2(a). However, when estimating several
observables from the same POVM data, the cumulative per-
formance is again improved by adapting the dual frame for
each observable; see Fig. 2(c). For two-qubit observables,
no measurement setting will consistently reach the optimal
performance as we restrict ourselves to single-qubit POVM
operators; see Fig. 2(b). The optimized local duals perform

slightly worse than the optimized global duals but still con-
siderably better than canonical duals. When estimating several
two-qubit observables, optimizing the dual operators gives a
more significant performance improvement than adding more
complexity to the measured POVM operators by going from
classical shadows to more general PM-simulable POVMs; see
Fig. 2(d). The optimal local dual frame depends on the ob-
servable, hence it should be reoptimized for every observable,
offering an additional slight improvement.

A common trend in the results of Fig. 2 is the following:
As more degrees of freedom are optimized in a PM-simulable
POVM, the performance gains become increasingly smaller
and reach a plateau when using the canonical dual frame
[see, e.g., blue violins in Fig. 2(d)]. However, these gains
become increasingly larger when using optimized dual
frames. In other words, it becomes less and less worthwhile
to add further degrees of freedom to the POVM operators
when using the canonical dual frame, which is the opposite of
what is observed when using optimized dual frames. This is
especially true when estimating several observables from the
same POVM data. In all cases, PM-simulable POVMs with
optimized duals (even local ones) come close to or surpass
the performance of optimized dilation POVMs. Interestingly,
the average-optimal dual frame (see Sec. II D) does not offer
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FIG. 3. Variance reduction compared to classical shadows with
canonical duals for different types of empirical frequencies dual
frames. Violin plots show the distribution over 200 random pairs of
states and observables.

reliable performance improvements, indicating that this result
might not be practical in a realistic setting.

B. Empirical frequencies dual frames

Next, we showcase how to bypass the explicit optimiza-
tion of the dual frame with the use of empirical frequencies
dual frames as introduced in Sec. III B 2. We first investi-
gate the performance of the m-body marginal distributions
in the infinite shot limit, i.e., we construct the marginal
probabilities in Eq. (17) from the exact outcome distribu-
tions pk. In Fig. 3 we show how the improvement over
canonical duals scales with an increase in the system size.
Here we plot the ratio of the variance of classical shadows
estimators when using optimized duals compared to canonical
duals. Distributions in violin plots are obtained from 200 ran-
dom samples of states and (single) observables. Remarkably,
as the system size increases from one to four qubits, the
improvement of the optimal global duals becomes more and
more pronounced. At four qubits, the variance of this optimal
estimator is less than half of the variance of the canonical
dual estimator. This can be understood as a consequence of
increasing the classical resources that go into the construction
of the dual operators. The duals derived from the single-qubit
marginal distributions (one-local duals) become less perfor-
mant as the system size increases. This comes as no surprise,
as the product of the marginal distributions will capture the
true correlated distribution less and less successfully with
increasing qubit number. The performance of the marginal du-
als can be systematically improved by including higher-order
correlations, as shown by the two-local and three-local duals.
These are constructed by choosing the optimal partitioning of
the four qubits into subsets of sizes (2,2) and (3,1) accord-
ing to Eq. (19). Overall, these numerical results show that
marginal frequencies dual frames can offer a straightforward
improvement over canonical dual frames. Their performance
can be systematically boosted by introducing higher-order
correlations.

FIG. 4. Convergence of the single-shot variance with increasing
shot number for estimators based on empirical frequency dual frames
on random four-qubit states and observables. The POVM operators
are single-qubit classical shadows. For the solid line data, a bias of
Sbias = 1296 is used, while dashed lines are obtained with Sbias =
128. Error bars are the standard deviation over 15 repetitions of
sampling the indicated number of shots from the underlying POVM
distribution.

Finally, we investigate how well empirical frequencies
perform in the practically relevant setting of finite samples.
In Fig. 4 we show how the SSV improves with increasing
sample size S for different types of marginal distributions
when estimating a single four-qubit observable. Note that we
use the biased empirical frequencies introduced in Eq. (15)
to choose the dual frame, but plot the true underlying SSV
according to Eq. (9) instead of estimating the variance from
the finite sample. To illustrate the role of Sbias, we show the
convergence with one lower value of Sbias = 128 and one
larger value of Sbias = 1296 (the number of different POVM
outcomes). In the regime where S � Sbias, the duals remain
close to the canonical duals by design. As S increases, the
empirical frequencies eventually converge to their true under-
lying values. The bias controls the rate and stability of this
statistical convergence. The smaller bias is sufficient to give
a smooth convergence for the more restricted marginal distri-
butions (dotted lines). In fact, the empirical frequencies with
the one-local, two-local, and three-local marginals already
offer a concrete improvement over the canonical dual variance
with only a few hundred measurement samples, which is well
below the total number of POVM outcomes. However, when
approximating the global outcome distribution (blue curves),
choosing too small of a bias will render the empirical fre-
quencies unstable (dashed blue line). On the other hand, for
the one-local and two-local duals, the larger bias comes at
the price of a significantly slower convergence, illustrating
a tradeoff between stability and speed. In practice, Sbias can
nevertheless always be chosen large enough such that the
empirical frequencies dual frame gives a performance that is
at least as good as the canonical duals. Our results indicate
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that a reasonable choice for Sbias is on the order of the degrees
of freedom in the marginalized probability distributions.

V. DISCUSSION

In this paper we investigated the connection between frame
theory and randomized overcomplete quantum measurements
[48]. In particular, we developed and tested scalable dual
frame optimization strategies that allow us to significantly
sharpen the performances of “measure-first” schemes while
acting entirely at the data postprocessing stage.

Inspired by known analytical results which, albeit optimal,
are hardly realizable in practice, we identified a minimal set of
constraints that guarantee an efficient and effective computa-
tional pipeline. More specifically, we proposed a marginalized
version of dual frames offering advantages even if restricted
to a structure of limited correlations. This class of duals
can, in principle, be parameterized and iteratively refined in
combination with, e.g., adaptive POVMs [7]. Furthermore, we
described an optimization-free dual frame, based on empirical
outcome frequencies, that converges (in the statistical sense)
to the best m-local one. This approach does not require any
prior knowledge or assumptions on the state being measured,
and can be tuned up systematically to capture the most rele-
vant correlations in the measurement outcomes of individual
qubits. By removing the need to explicitly optimize the dual
frame, this solution significantly simplifies the navigation of
the measurements space when searching for the most suitable
POVM/dual combination. Our techniques are especially rele-
vant for use cases that require estimating several observables
for the same state, as the dual operators can be optimized
for every observable independently. Beyond reconstructing
expectation values, all our proposed methods are applicable to
an extensive set of tasks, including reduced state tomography,
machine learning. and error mitigation.

To support our analysis, we performed numerical simu-
lations in both the infinite statistics limit and in the finite
sample regime. Remarkably, our results suggest that, with
a judicious selection of the dual frame, overcomplete PM-
simulable POVMs can come close to the best results obtained
with dilation ones in the context of operator estimation. Due to
the inherent simplicity of their implementation, PM-simulable
POVMs might then be preferable in practical applications.
Our simulations—albeit collected at modest scales and for
generic, Haar-random states and observables—also indicate
that the advantage unlocked by using global duals increases
with the system size, while the relative improvement brought
by simple single-qubit marginal dual frames decreases. We
note that, in most practical settings, observables are seldom
dense and are rather linear combinations of Pauli strings with
finite weight, e.g., Hamiltonians encountered in condensed
matter, lattice problems, and quantum chemistry. For such
local Pauli strings, one can construct a dual that acts globally
on the qubits that make up the nontrivial support of the ob-
servables. Furthermore, physically relevant states most often
exhibit a distinctive and restricted correlation structure, which
can be exploited in the construction of our proposed mutual-
information-based dual frames. We leave the in-depth study
of these aspects to future work.

As a next step, one could aim at better characterizing the
gap between ideal and marginal dual frames in a systematic
way, possibly using tools from probability theory [58,59]. In
parallel, it would also be interesting to focus on the devel-
opment of alternative classes of efficiently computable dual
frames which could help reduce such performance separa-
tion. Examples might draw inspiration from Clifford [31,33]
and matchgate [32,60] shadows, or make use of classical
techniques such as tensor networks [46] and neural network
quantum states [61]. Combining estimates obtained with dif-
ferent dual frames, for example, through a median of means
[11], could also improve the overall quality of the estimators.

To conclude, and as a key takeaway, our work confirms that
dual frames deserve a greater attention whenever overcom-
plete IC techniques are employed to reconstruct properties
of quantum states. In fact, the freedom they offer concerns
only the classical processing of outcomes and can be straight-
forwardly leveraged to improve any shadow-based protocol
without overheads in sampling or quantum circuit complexity.
We therefore expect that the careful selection of duals will
soon become a standard component of randomized and IC
measurement toolboxes, significantly enhancing their perfor-
mance.

Note added. Recently, we became aware of related work
by J. Malmi et al. [62], in which the authors report estima-
tion improvements using dual optimization in the context of
Hamiltonian simulation and quantum chemistry. A. Caprotti
et al. [63] also report complementary results concerning opti-
mised shadow inversion maps.

ACKNOWLEDGMENTS

We thank David Sutter for fruitful discussions. This re-
search has received funding from the European Union’s
Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie Grant Agreement No. 955479
(MOQS—Molecular Quantum Simulations). This research
was supported by the NCCR MARVEL, a National Centre
of Competence in Research, funded by the Swiss National
Science Foundation (Grant No. 205602).

APPENDIX A: CLASSES OF SINGLE-QUBIT IC POVMS

In this Appendix, we detail the classes of single-qubit
IC POVMs used for numerical benchmarks in Sec. IV A. In
Sec. II B we introduced the concept of convex combinations
of POVMs that can be implemented through classical random-
ization of the involved POVMs. Here we build on this concept
to construct POVMs of increasing complexity. We use the
notation ⊎

i

qiMi = {qiMi,k}i,k (A1)

to denote a convex combination of POVMs Mi acting on the
same Hilbert space, such that the POVM M i is implemented
with probability qi.

1. Classical shadows

Let PZ = {|0〉〈0|, |1〉〈1|} be the computational basis mea-
surement. Under transformation of single-qubit Clifford
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gates {H, S} (with the Hadamard gate H and the phase
gate S), we get access to the projective measurements in
the X and Y basis, i.e., PX = {|+〉〈+|, |−〉〈−|} and PY =
{|+i〉〈+i|, |−i〉〈−i|}. In their simplest formulation, classical
shadows protocols [11] implement the POVM

1
3 PX � 1

3 PY � 1
3 PZ (A2)

by measuring a given qubit in one of these Pauli bases with
equal probability.

2. Locally biased classical shadow

Classical shadows can be generalized by treating the prob-
abilities of measuring a qubit with PX , PY , or PZ as additional
degrees of freedom [12]. We refer to the ensuing single-qubit
POVM

qX PX � qY PY � qZ PZ (A3)

as locally biased classical shadows (LBCS). This POVM car-
ries two free parameters qX and qY , with qZ = 1 − qX − qY .

3. MUB-POVM

Consider a set of different orthonormal bases for a d-
dimensional Hilbert space. These bases are said to be mutually
unbiased bases (MUB) if for any pair of bases {|ak〉}k, {|bk〉}k

in the set, we have |〈ak|bk′ 〉|2 = 1
d ∀k, k′. For a set of MUB,

each basis {|ψ i
k〉}k induces a projective measurement Pi =

{|ψ i
k〉〈}|k . We refer to a POVM which is a convex combination

M = ⊎
i qiPi of PMs induced by mutually unbiased bases as

a MUB-POVM. It can be shown that any single-qubit MUB-
POVM can be obtained by applying a fixed unitary operator
U to the effects of the LBCS POVMs [64], resulting in the
POVM

qXU †PXU � qY U †PY U � qZU †PZU , (A4)

where the notation U †PiU is understood element-wise, e.g.,
U †PXU = {U †|+〉〈+|U,U †|−〉〈−|U }. In addition to the two
degrees of freedom of the LBCS POVM, MUB POVMs thus
carry three parameters that define the single-qubit unitary U ,
which we parametrize as

U (θ, φ, λ) =
(

cos (θ/2) −eiλ sin (θ/2)
eiφ sin (θ/2) ei(φ+λ) cos (θ/2)

)
. (A5)

4. General six-outcome PM-simulable POVM

Finally, the most general type of single-qubit PM-
simulable POVM we consider is obtained similarly to the
MUB POVMs, with a different unitary rotating each projec-
tive measurement, resulting in the POVM

qXU †
X PXUX � qY U †

Y PY UY � qZU †
Z PZUZ . (A6)

For the numerics presented in Sec. IV A, we parametrize each
unitary UX , UY , and UZ as in Eq. (A5).

5. Four-outcome dilation POVM

For a single qubit, a four-outcome dilation POVM is repre-
sents a minimal IC measurement. In practice, it can be realized
by applying a two-qubit dilation unitary Udilation to the targeted

qubit in state ρ and a second ancillary qubit that is prepared in
a fixed state, typically |0〉. Then both qubits are measured in
the computational basis, and the four possible outcomes will
occur with the probability Tr[ρMk] of the four POVM effects
Mk . The POVM effects are parametrized through the entries
in the unitary Udilation. We follow the explicit parametrization
of Ref. [7], which leads to eight real parameters that define the
set {Mk}.

APPENDIX B: FRAME THEORY

Here we review the fundamentals of frame theory and
highlight the connection to the POVM formalism. Let V be
a vector space with an inner product 〈·, ·〉. Let F = { f k}k∈K
be a set of vectors in V . If there exist positive real numbers A
and B such that 0 < A � B < ∞ and

A〈v, v〉 �
∑
k∈K

|〈v, f k〉|2 � B〈v, v〉 for all v ∈ V, (B1)

then the set F is called a frame. Given a frame F , the tightest
bounds A and B are called the frame bounds of F . This
definition implies that a frame spans the vector space V , which
is a necessary condition for a set to be a frame. Note that this
condition is also sufficient for finite sets in finite-dimensional
vector spaces, but not in general [65].

If the vectors constituting the frame are linearly indepen-
dent, then the frame is a usual basis, and it is referred to
as minimally complete. Otherwise there is some redundancy
and the frame is said to be overcomplete. It can be seen as a
generalization of the notion of a basis.

Let F = { f k}k∈K ⊂ V be a frame. A frame D = {dk}k∈K
⊂ V such that

v =
∑
k∈K

〈v, dk〉 f k =
∑
k∈K

〈v, f k〉dk for all v ∈ V (B2)

is called a dual frame to F . We see from the definition that if
D is a dual frame to F , then F is a dual frame to D. In other
words, duality is a reciprocity relation. A fundamental result
of functional analysis is the existence of a dual frame for any
frame [66]. More precisely, if F is minimally complete, it has
exactly one dual frame. If F is overcomplete, it has infinitely
many dual frames.

To summarize, a frame F spans V and it always has a dual
frame D. This offers a very convenient and natural way to find
suitable coefficients to express any vector using the frame F .
For any v ∈ V ,

v =
∑
k∈K

ck f k, with ck = 〈v, dk〉 for all k ∈ K. (B3)

1. Frame operator

After establishing the existence of a dual frame D for any
frame F , let us now consider explicit constructions for it.
Given a frame { f k}k∈K ⊂ V , the linear operator

F : V → V

v �→
∑
k∈K

〈v, f k〉 f k (B4)

is called the canonical frame operator. The canonical frame
operator F is
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(1) Self-adjoint: 〈v,F (v)〉 = ∑
k∈K |〈v, f k〉|2 =

〈F (v), v〉 for all v ∈ V ,
(2) Positive definite: 〈v,F (v)〉 = ∑

k∈K |〈v, f k〉|2 �
A‖v‖2 > 0 for all v ∈ V \{0}.

The canonical frame operator F is thus invertible and its
inverse F−1 is linear, self-adjoint and positive definite. Con-
sider a frame { f k}k∈K ⊂ V and its canonical frame operator
F . The set of vectors

{dk ∈ V | dk = F−1( f k ), k ∈ K} (B5)

is called the canonical dual frame to { f k}k∈K. To see that it is
indeed a dual frame to { f k}k∈K, simply note that we can write
any v ∈ V as

v = FF−1v =
∑
k∈K

〈F−1v, f k〉 f k

=
∑
k∈K

〈v,F−1 f k〉 f k =
∑
k∈K

〈v, dk〉 f k, (B6)

where we used the fact that F−1 is self-adjoint. Consider
now a frame F = { f k}k∈K ⊂ V and a set of real coefficients
{αk}k∈K ⊂ R. The operator

Fα : V → V

v �→
∑
k∈K

αk〈v, f k〉 f k (B7)

is called an α-frame operator. If the operator Fα is invertible,
the set

D = {dk ∈ V | dk = αkF−1
α ( f k ), k ∈ K} (B8)

is a valid dual frame to F . If all the coefficients {αk}k∈K are
positive, then the α-frame operator will be positive definite
and hence invertible. Last, this α-parametrization of the dual
frame is invariant under uniform scaling of the coefficients;
i.e., the sets of coefficients {αk}k∈K and {C · αk}k∈K, with
C > 0, will give the same dual frame.

2. Application to POVMs

As we consider only Hilbert spaces H of finite dimension,
d < ∞, the set of Hermitian operators is an operator-valued
vector space V = Herm(H). Together with the Hilbert-
Schmidt inner product, 〈O1, O2〉 = Tr[O†

1O2], it forms a real
Hilbert space of dimension dop = d2. Therefore, the definition
of a frame can be applied to the vector space V = Herm(H).
In this case, a frame is a set {Mk} ⊂ Herm(H), for which there
exist A, B ∈ R>0 such that

A‖O‖2
HS �

∑
k

|Tr[OMk]|2 � B‖O‖2
HS (B9)

for all O ∈ Herm(H). In the following, we will consider only
finite sets of operators {Mk} acting on a finite-dimensional
space H. Hence, a set {Mk}n

k=1 is a frame if and only if it spans
Herm(H), and an n-outcome POVM is a frame for Herm(H)
if and only if it is informationally complete.

However, note that a general frame for Herm(H) is not
necessarily a POVM: indeed, it does not necessarily have
positive semidefinite elements nor does it necessarily sum up
to the identity. For an IC-POVM M = {Mk}n

k=1, a dual frame

D = {Dk}n
k=1 ⊂ Herm(H) exits such that

O =
n∑

k=1

Tr[ODk]Mk =
n∑

k=1

ωkMk (B10)

for all O ∈ Herm(H), where the coefficients ωk = Tr[ODk]
are real as O, Dk ∈ Herm(H).

We can relax the IC condition if we are only interested in
operators O ∈ span(M). Then there still exists a dual frame
on span(M) for the following reasons. Note that span(M)
is a vector space and M is trivially a frame on the vector
space span(M). Therefore, there exists a dual frame D on
this vector (sub-)space. Finally, as O ∈ span(M), we can write
O = ∑

k Tr[ODk]Mk = ∑n
k=1 ωkMk by definition of a dual

frame.

APPENDIX C: DOUBLE-KET NOTATION

Here we detail the vectorized double-ket notation used
throughout the main text as in Ref. [54]. The set of Hermitian
operators Herm(H) is an operator-valued vector space. Hence,
we can associate a vector to each Hermitian operator

O =
d∑

i, j=1

oi, j |i〉〈 j| ↔ |O〉〉 =
d∑

i, j=1

oi, j |i〉 ⊗ | j〉. (C1)

The definition of the double-bra naturally follows

〈〈O| =
d∑

i, j=1

o∗
i, j〈i| ⊗ 〈 j|. (C2)

With this convention, the Hilbert-Schmidt inner product has a
natural form

Tr[A†B] =
d∑

j,k=1

a∗
j,kb j,k = 〈〈A|B〉〉. (C3)

Let M = (|M1〉〉 |M2〉〉 · · · |Mn〉〉) ∈ Cdop×n denote a frame for
Herm(H). With the double-ket notation, a dual frame D =
(|D1〉〉 |D2〉〉 · · · |Dn〉〉) ∈ Cdop×n is a frame that satisfies the
condition ∑

k

|Mk〉〉〈〈Dk| =
∑

k

|Dk〉〉〈〈Mk| = I

⇐⇒ MD† = DM† = I, (C4)

where I denotes the identity on Herm(H). The canonical
frame superoperator F ∈ Cdop×dop is given by

F = MM† =
n∑

k=1

|Mk〉〉〈〈Mk| (C5)

and acts on |X 〉〉 ∈ Cdop as F |X 〉〉 = ∑n
k=1 |Mk〉〉〈〈Mk|X 〉〉 =∑n

k=1 Tr[MkX ]|Mk〉〉. Then the elements of the canonical dual
frame are given by

|Dk〉〉 = F−1|Mk〉〉, k = 1, 2, . . . , n (C6)

or, in a denser notation,

D = (MM†)−1M. (C7)
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APPENDIX D: SVD PARAMETRIZATION OF DUALS

A general parametrization of dual frames can be obtained
by resorting to the singular values decomposition (SVD). The
proof given below follows closely the derivation originally
presented in Ref. [57].

Let M = (|M1〉〉 |M2〉〉 · · · |Mn〉〉) ∈ Cdop×n denote a frame
with bounds A and B. By applying the SVD, we obtain

M = U
MV †, (D1)

where U ∈ Cdop×dop , V ∈ Cn×n are unitary and


M =

⎡
⎢⎢⎣

σ1 0 · · · 0 0 · · · 0
0 σ2 0 0 · · · 0
...

. . .
...

...
...

0 0 · · · σdop 0 · · · 0

⎤
⎥⎥⎦ ∈ Rdop×n,

(D2)

where
√

B = σ1 � σ2 � · · · � σdop = √
A > 0 are the singu-

lar values of M [65].

A frame D = (|D1〉〉 |D2〉〉 · · · |Dn〉〉) ∈ Cdop×n is a dual
frame to M if and only if

MD† = DM† = 1

⇐⇒ U †MVV †D†U = U †DVV †M†U = 1

⇐⇒ 
M�
†
D = �D


†
M = 1, (D3)

where �D = U †DV . The solutions to (D3) are

�D =

⎡
⎢⎢⎢⎢⎣

1
σ1

0 · · · 0 s1,1 · · · s1,n−dop

0 1
σ2

0 s2,1 · · · s2,n−dop

...
. . .

...
...

...

0 0 · · · 1
σdop

sdop,1 · · · sdop,n−dop

⎤
⎥⎥⎥⎥⎦

∈ Cdop×n (D4)

with arbitrary si, j ∈ R for all i, j. Hence, all dual frames to M
can be expressed as

D = U�DV † ∈ Cdop×n, (D5)

where �D has the form (D4) and where U,V depend on the
frame M. Note that if M is a minimally complete frame (i.e.,
n = dop), then there is no freedom in the choice of �D which
means that D is unique, as expected. By setting si, j = 0, ∀i, j,
we obtain the canonical dual frame [57].
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