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SUMMARY

We consider optimal regimes for algorithm-assisted human decision-making. Such
regimes are decision functions of measured pre-treatment variables and, by leveraging
natural treatment values, enjoy a superoptimality property whereby they are guaranteed
to outperform conventional optimal regimes. When there is unmeasured confounding,
the benefit of using superoptimal regimes can be considerable. When there is no unmea-
sured confounding, superoptimal regimes are identical to conventional optimal regimes.
Furthermore, identification of the expected outcome under superoptimal regimes in nonex-
perimental studies requires the same assumptions as identification of value functions under
conventional optimal regimes when the treatment is binary. To illustrate the utility of super-
optimal regimes, we derive identification and estimation results in a common instrumental
variable setting. We use these derivations to analyse examples from the optimal regimes
literature, including a case study of the effect of prompt intensive care treatment on survival.

Some key words: Causal inference; Dynamic treatment regime; Instrumental variable; Natural value of
treatment; Optimal regime; Single world intervention graph.

1. Introduction

Foundational work on causal inference and dynamic treatment regimes presents a promis-
ing pathway towards precision medicine (Robins, 1986; Murphy, 2003; Robins, 2004;
Richardson & Robins, 2013; Tsiatis et al., 2019; Kosorok et al., 2021). In a precision-
medicine system, decision rules might be algorithmically individualized based on an optimal
rule previously learned from nonexperimental or experimental data (Topol, 2019). How-
ever, wide-scale implementation of such a system will usually roll out under the supervision
of existing medical care providers (Matheny et al., 2019). Indeed, there is some resis-
tance to the notion that implementation of an optimal regime, successfully learned from
the data, will result in better expected outcomes compared with existing human decision
rules. This resistance stems in part from the belief that existing care providers will have
access to relevant information for decision-making that is not recorded in the observed
data (Verghese et al., 2018). While this belief does not preclude identification of decision
rules that are optimal with respect to a set of measured covariates (Miao et al., 2018;
Cui & Tchetgen Tchetgen, 2021b,c; Han, 2021; Kallus & Zhou, 2021; Pu & Zhang, 2021;
Qiu et al., 2021; Qi et al., 2023), care providers may be inclined to override the treatment
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2 M. J. Stensrud, J. D. Laurendeau AND A. L. Sarvet

recommendations provided by the identified optimal regimes, based on their privileged
patient observations.

We present a method for leveraging human intuition, encoded in intended treatment
values, by identifying a superoptimal regime using data from either nonexperimental or
experimental studies, and we clarify when a fusion of such data is beneficial. The superop-
timal regime indicates to a care provider, in an algorithm-assisted decision setting, precisely
when expected outcomes would be maximized if the care provider overrides the opti-
mal regime recommendation and, importantly, when the optimal regime recommendation
should be followed regardless of the care provider’s assessment. This superoptimal regime is
identical to the conventional optimal regime in settings with no unmeasured confounding.
However, when there is unmeasured confounding, the superoptimal regime yields expected
outcomes that are as good as or better than both the optimal regime and the implicit fac-
tual regime independently implemented by the care provider in the observed data, which
have been studied in previous works (Miao et al., 2018; Cui & Tchetgen Tchetgen, 2021b,c;
Han, 2021; Kallus & Zhou, 2021; Qi et al., 2023). Furthermore, in many settings identifi-
cation of the superoptimal regime requires no additional assumptions beyond those used
to identify the optimal regime and its expected outcome, i.e., value function. Indeed, we
can identify superoptimal regimes by making small modifications to existing results (Cui &
Tchetgen Tchetgen, 2021b,c; Qiu et al., 2021).

This article builds on the literature arising from historical interest in the so-called aver-
age treatment effect on the treated (Bloom, 1984; Heckman, 1990). One strand of literature
expands on the average treatment effect on the treated by identifying and estimating a gen-
eral class of causal parameters defined by the values of patients’ natural treatment choices
or intentions in the absence of intervention (Robins et al., 2004, 2007; Haneuse & Rotnitzky,
2013; Richardson & Robins, 2013; Young et al., 2014; Díaz et al., 2021). While this strand
of literature is ostensibly interested in the values of parameters like the average treatment
effect on the treated per se, a second strand of literature is especially concerned with effect
heterogeneity and the implications for transportability of clinical trial results. This second
strand focuses on identification of parameters similar to the average treatment effect on the
treated by using augmented experimental designs, sometimes referred to as patient prefer-
ence trials. Unlike conventional two-arm randomized trials, patient preference trials include
an additional, third arm where individuals can choose the treatment they receive (Knox
et al., 2019). While recruitment to the third arm historically has been done in different ways
(Rücker, 1989; Collinge et al., 2009; McLaughlin & Spiess, 2022), modern formulations of
patient preference trials require that individuals state their treatment preference before ran-
domization to treatment, control, or taking their stated preferred treatment (Long et al.,
2008; Knox et al., 2019). The third arm corresponds to an observational setting in the sense
that a representative sample of individuals selects treatment based on their own preferences.
If these preferences are associated with the response to treatment, then knowing the prefer-
ences provides information that is relevant to making decisions. However, this information
is inaccessible in conventional randomized trials. We can view patient preference trials as
target trials (Hernán & Robins, 2016) that would allow the identification of our parameters
of interest by design.

Finally, an independent collection of works in the machine learning literature has stud-
ied the optimal selection of treatment based on a patient’s treatment intentions in an
online experimental learning setting (Bareinboim et al., 2015; Forney et al., 2017; Forney &
Bareinboim, 2019).
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Optimal regimes for algorithm-assisted human decision-making 3

The present work unifies and extends these related, but independently developed, liter-
atures and our framing clarifies connections between optimal and superoptimal regimes
that are obscured in the extant literature. Furthermore, like the literature characterized by
Robins et al. (2004), Richardson & Robins (2013) and others, we do not focus on, or restrict
ourselves to, experimental settings: we emphasize the nonexperimental setting and treat the
experimental setting as a special case.

2. Preliminaries

2.1. Nonexperimental data structure

Consider a treatment A ∈ {0, 1}, a pre-treatment vector L ∈ L and an outcome Y ∈ R.
Suppose that we have access to n independent and identically distributed observations of
(L, A, Y) among patients who received treatment in a nonexperimental setting. An unmea-
sured variable U ∈ U can be a common cause of A and Y . Some of our results, in particular
those in the case study in § 7, will further rely on observations of an instrumental variable
Z ∈ {0, 1}.

2.2. Potential outcomes and the natural values of treatment

Let superscripts denote potential outcome variables. In particular, Ya is the potential
outcome when the treatment A is fixed at the value a ∈ {0, 1}. More specifically, we let Yg

be the potential outcome under an arbitrary regime g, where the treatment is assigned as
a function of measured covariates. Following Richardson & Robins (2013), we use the +
symbol to distinguish between the assigned value of treatment under the regime, Ag+, and
the natural value of treatment under the regime, Ag. The natural value will be important in
our arguments, and we state its definition explicitly (Richardson & Robins, 2013).

DEFINITION 1 (Natural value of treatment). The natural value of treatment Ag is the
value of treatment that an individual would choose in the absence of it being assigned by an
intervention.

We use counterfactuals to define the natural values of treatment, like previous authors
(Muñoz & Van Der Laan, 2012; Haneuse & Rotnitzky, 2013; Young et al., 2014). How-
ever, we could alternatively give the natural values an interventionist interpretation, which
does not require conceptualization of counterfactuals: following Robins et al. (2007) and
Geneletti & Dawid (2011), the natural value of treatment is a variable that is temporally
prior to, but deterministically equal to, the active treatment in nonexperimental data.

The natural value of treatment under the regime g, Ag, is equal to A in any nonexperimen-
tal study that investigates the effect of a point treatment; that is, A = Ag with probability
1. Thus, if A is observed, then Ag is observed. In particular, this is true in nonexperimental
studies that identify causal effects in the presence of unmeasured confounding, for instance
by using instrumental variables or proxy variables (Miao et al., 2018; Tchetgen Tchetgen
et al., 2020).

To fix ideas about natural treatment values, consider a doctor who determines whether a
patient will be transferred to an intensive care unit, or ICU; let A = 1 denote ICU admis-
sion and A = 0 no ICU admission. In the observed data, the doctor determined the ICU
admission and thus the natural value Ag is equal to A with probability 1. We could, how-
ever, conceive of a regime where the assigned ICU admission, Ag+, is determined by some
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Fig. 1. A dynamic SWIG with instrumental variable Z describing a regime that depends on A and L, consistent
with a superoptimal regime.

arbitrary function g of the pre-treatment covariates L. It is possible that the assignment Ag+
differs from the natural value A.

2.3. Definitions of treatment regimes

In this subsection we formally define L-optimal and L-superoptimal regimes in a point-
treatment setting, where the prefix L emphasizes their definitional dependence on the
elements of the covariate vector L. Throughout, we assume that larger values of Y are desir-
able. Furthermore, we assume a non-exceptional law, so that there is a unique (super)optimal
regime. We elaborate on this assumption in the Supplementary materials.

DEFINITION 2 (L-optimal regimes). The L-optimal regime gopt assigns treatment
Agopt+ = a given a vector L = l by

gopt(l) ≡ arg max
a∈{0,1}

E(Ya | L = l).

DEFINITION 3 (L-superoptimal regimes). The L-superoptimal regime gsup assigns treat-
ment Agsup+ = a given A = a′ and L = l by

gsup(a′, l) ≡ arg max
a∈{0,1}

E(Ya | A = a′, L = l).

We refer to the counterfactual expectation E(Ya | L = l) as a conditional value function.
In particular, E(Ygopt | L = l) and E(Ygsup | A = a′, L = l) are conditional value functions
under the L-optimal and L-superoptimal regimes, respectively.

Treatment rules given by L-optimal and L-superoptimal regimes can be presented in
single world intervention graphs, or SWIGs (Richardson & Robins, 2013), as illustrated by
the instrumental variable setting shown in Fig. 1: the green arrow encodes regime-specific
effects of the measured covariates L on the assigned value of treatment under the regime,
Ag+, a feature of both the L-optimal and the L-superoptimal regimes; the blue arrow
further encodes the effect of the natural value of treatment A on Ag+, a feature of the
L-superoptimal, but not the L-optimal, regime.

Consider again the setting in which a patient might be transferred to an ICU. Suppose
we have access to nonexperimental data from a setting where physicians determined ICU
admission and thus A = Ag. Using these data, an investigator aims to find the dynamic
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Optimal regimes for algorithm-assisted human decision-making 5

regime for ICU admission that gives the highest seven-day survival in a future decision set-
ting. To specify this regime, we could assign Ag+ as a function of measured covariates L
describing the patient’s age, gender and a collection of clinical measurements. However,
beyond using the values of L, we could also ask the treating physician the following ques-
tion: if you were to choose, would you transfer the patient to an ICU? The answer to this
question would encode the natural treatment value A, when assuming that the answer actu-
ally agrees with the decision they would have made if we did not intervene. We can indeed
use both L and A as input to our decision rule; a superoptimal regime will precisely let Ag+
be a function of both L and A.

This brief example suggests how natural treatment value interventions can feasibly be
implemented; just before intervening we ask the decision-maker about the treatment they
intend to provide, and then we record their response to this question as a covariate. Nearly
identical measurement strategies for ‘patient preference’ or ‘intent’ are employed in the lit-
erature on patient preference trials; see, for example, Rücker (1989), Long et al. (2008) and
Knox et al. (2019).

We now consider results for superoptimal regimes in settings with observational data,
wherein unmeasured confounding between the treatment and the outcome is often expected.
Such settings are increasingly studied in the optimal regimes literature (Miao et al., 2018;
Cui, 2021; Cui & Tchetgen Tchetgen, 2021b,c; Han, 2021; Kallus & Zhou, 2021; Qi et al.,
2023).

3. Superoptimal regimes and their properties

Our first proposition states that L-superoptimal regimes are always better than, or as
good as, L-optimal regimes.

PROPOSITION 1 (Superoptimality). The expected potential outcome under the L-
superoptimal regime is better than or equal to that under the L-optimal regime:

E(Ygopt | L = l) � E(Ygsup | L = l)

for all l ∈ L.

Proof. Using laws of probability and Definitions 2 and 3,

E(Ygopt | L = l) =
∑

a′
E(Ygopt | A = a′, L = l) pr(A = a′ | L = l)

�
∑

a′
E(Ygsup | A = a′, L = l) pr(A = a′ | L = l)

= E(Ygsup | L = l),

where the inequality follows because, by the definitions of gopt and gsup,

E(Ygopt | A = a′, L = l) � E(Ygsup | A = a′, L = l)

for all a′ ∈ {0, 1}. �
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6 M. J. Stensrud, J. D. Laurendeau AND A. L. Sarvet

Proposition 1 is not surprising because the regime gsup uses more observed information
than gopt; that is, the L-superoptimal regime is optimized, not only with respect to L, but
also with respect to A. A similar argument has appeared in Bareinboim et al. (2015) for an
online bandit setting with no additional covariates, proposing that rewards are maximized
when an agent bases decisions on their natural treatment choice.

In the remainder of this article, we will assume that interventions on the treatment
variable A are well-defined, such that the following causal consistency assumption holds.

Assumption 1 (Consistency). If A = a′, then Y = Ya′
for all a′ ∈ {0, 1}.

Remark 1. Consistency in Assumption 1 can equivalently be formulated as Y = YA. This
formulation highlights that the factual outcome is equivalent to a particular counterfactual
outcome under a regime that assigns treatment Ag+ according to the trivial regime g(A, L) =
A for all patients. Thus, the factual regime is a member of the class of regimes that depends
on A and L, among which gsup maximizes the expected potential outcome. Hence, under
consistency, the expected potential outcome under the L-superoptimal regime is better than
or equal to that under the factual regime.

We will also invoke the usual positivity assumption.

Assumption 2 (Positivity). We have that pr(A = a | L) > 0 with probability 1 for all
a ∈ {0, 1}.

The following lemma, which exploits positivity and consistency, is similar to arguments
that have appeared in work on treatment effects on the treated (Robins et al., 2007; Geneletti
& Dawid, 2011; Bareinboim et al., 2015; Dawid & Musio, 2022) and will be used in our
derivations of identification results.

LEMMA 1. Under consistency and positivity, E(Ya | A = a′, L = l) for a, a′ ∈ {0, 1} and
l ∈ L can be expressed as

E(Ya | A = a′, L = l) =
{

E(Y | A = a′, L = l), a = a′,
E(Ya|L=l)−E(Y |A=a,L=l) pr(A=a|L=l)

pr(A=a′|L=l) , a |= a′.
(1)

Proof. When a = a′, the equation holds by consistency. When a |= a′, the result follows
from the law of total probability, positivity and consistency. �

Based on Lemma 1, we can use simple algebra to derive the following result, also leveraged
by Bareinboim et al. (2015) in a setting without covariates.

COROLLARY 1. Under consistency and positivity, the L-superoptimal regime gsup(a′, l) for
a′ ∈ {0, 1} and l ∈ L is equal to

gsup(a′, l) =
{

a′, E(Y |L = l) � E(Y1−a′ |L = l),
1 − a′, E(Y |L = l) < E(Y1−a′ |L = l).

The next proposition states conditions for identification of L-superoptimal regimes from
observed data.
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Optimal regimes for algorithm-assisted human decision-making 7

PROPOSITION 2 (Identification of superoptimal regimes). Under consistency and posi-
tivity, the L-superoptimal regime and its value function are identified by the joint distribution
of (L, A, Y) whenever E(Ya | L = l) for all a ∈ {0, 1} and l ∈ L is identified.

Proof. This follows from Lemma 1 and Corollary 1, because all the terms on the right-
hand side of (1) are identified under the two conditions in the proposition. �

Proposition 2 is useful because it justifies a two-step procedure for identification of L-
superoptimal regimes using nonexperimental data. First, we use existing approaches to
identify conditional outcome means and the conditional densities of the natural treatment
values, i.e., the propensities. Second, we apply the result in Lemma 1 to compute coun-
terfactual outcomes conditional on natural treatment values, which allow us to identify
L-superoptimal regimes. Furthermore, Proposition 2 shows that the L-superoptimal regime
gsup is identified whenever conditional potential outcome means, E(Ya | L = l), are identi-
fied in a nonexperimental study, which encompasses studies using instrumental variables or
proxy variables as important special cases.

Remark 2 (Instrumental variables). Corollary 2 implies that L-superoptimal regimes are
identified under assumptions suggested in two recent articles by Qiu et al. (2021) and Cui
& Tchetgen Tchetgen (2021c), who developed theory for identification and estimation of
optimal regimes in the presence of unmeasured confounding. That is, under assumptions
given in the Supplementary Material, the expected outcomes under the regimes of Qiu
et al. (2021) and Cui & Tchetgen Tchetgen (2021c) will be worse than or equal to those
under the L-superoptimal regimes, and in both cases the L-superoptimal regimes require
no extra assumptions for identification of value functions. However, there also exist alter-
native conditions for identifying optimal treatment rules in instrumental variable settings,
which require only identification of the causal effect conditional on L, or its sign, but not
E(Ya | L = l) itself, as thoroughly discussed by Cui & Tchetgen Tchetgen (2021b); see also
Han (2021).

Remark 3 (Proximal inference). Corollary 2 is also valid in proximal learning settings
(Miao et al., 2018). Interestingly, heuristic arguments have been used to justify the inclusion
of other covariates, but not the natural value A, in the decision function in proximal infer-
ence settings. Regarding the inclusion of an instrumental variable Z, Qi et al. (2023) write:
‘This may be reasonable since Z may contain some useful information of U , which can help
improve the value function.’

We emphasize that the results presented thus far have been agnostic to the absence of
unmeasured confounding, which is often equated with the following assumption.

Assumption 3 (L-exchangeability). We have that Ya ⊥⊥ A | L for a ∈ {0, 1}.
The next results describe different properties of the L-superoptimal regime that depend

on the truth value of L-exchangeability.

COROLLARY 2. L-exchangeability implies that gsup(A, L) = gopt(L) with probability 1.

Proof. Let a∗ = arg max
a∈{0,1}

E(Ya | L = l). If L-exchangeability holds, then

E(Ya∗ | L = l) = E(Ya∗ | A = a′, L = l)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asae016/7632090 by EPF Lausanne user on 03 July 2024

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae016#supplementary-data


8 M. J. Stensrud, J. D. Laurendeau AND A. L. Sarvet

for all a′ ∈ {0, 1} and l ∈ L. Thus, a∗ = arg max
a∈{0,1}

E(Ya | A = a′, L = l) for all

a′ ∈ {0, 1}. �

Remark 4. Suppose that an L-superoptimal regime yields better outcomes than an L-
optimal regime in a given study. Then it follows from Corollary 2 that L-exchangeability fails.
This fact can be used to construct tests for unmeasured confounding; see the Supplementary
Material for more details. Furthermore, when L-exchangeability fails, an investigator will
often assume that there exists a variable U , often called an unmeasured confounder, that
exerts effects on A and Y . Then, measuring U in the future will further improve decision-
making. Because A often represents a decision made by a human in the course of natural
practice, the investigation and measurement of causes of A, such as U , may be feasible.

COROLLARY 3. Consistency implies that E(Ygsup) � E(Y). When, additionally, L-
exchangeability holds, E(Ygopt) � E(Y).

Proof. As in Remark 1, Y = YA is generated under a special case of a regime that
depends on the natural value of treatment, where Ag+ = g(A, L) = A with probability 1.
Because gsup is the optimal such regime, E(Ygsup) � E(Y). When L-exchangeability holds,
application of Corollary 2 completes the proof. �

Remark 5. Given an identified optimal regime, suppose that a human care provider insists
that their own intuition about treatment decisions is superior, owing to their access to privi-
leged observations not used by the regime. Corollary 2 highlights that this insistence is
contradicted when the optimal regime is identified under assumptions of no unmeasured
confounding. Their claim might be illustrated by paths in the SWIG of Fig. 1: if this privi-
leged information were truly useful for decision-making, i.e., U → Yg, and were leveraged
by the clinician in the observed data, i.e., U → A, then we would not usually suppose that
Ya ⊥⊥ A | L.

Remark 6. Previous work provides optimality guarantees that exclude L-superoptimal
regimes. Kallus & Zhou (2021) considered a setting with unmeasured confounding and iden-
tified L-optimal regimes that are guaranteed to be as good as a ‘baseline’ regime. However,
their baseline regime is restricted to be a function solely of measured baseline covariates L.
Both the factual regime and the L-superoptimal regime are functions of unmeasured fac-
tors U when there is unmeasured confounding and so neither qualifies as a baseline regime.
Ben-Michael et al. (2022) gave a similar safety guarantee, requiring the baseline regime to
be a deterministic function of L. Thus, these safety guarantees in general cover neither the
factual regime nor the superoptimal regime.

4. On experimental data

Thus far we have considered only observed data (L, A, Y) generated in a nonexperimen-
tal setting. As anticipated in Definition 1, we did so because we leverage the natural value of
treatment, i.e., the treatment an individual would choose in the absence of it being assigned
by an intervention. In a nonexperimental setting, no intervention is made and the treat-
ment a patient actually receives, A, is indeed equal to this natural value. In experimental
settings, however, a patient’s natural treatment intentions may be subverted by the experi-
mental design. Therefore, we must introduce additional notation to disambiguate patients’
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Optimal regimes for algorithm-assisted human decision-making 9

received and intended treatments in the factual data. To this end, we let A∗ denote the treat-
ment a patient actually receives. Formally, we define a setting to be nonexperimental when
A = A∗ with probability 1, such that the actual treatment value equals the intended treat-
ment value in the preceding results. In contrast, A may not equal A∗ in an experimental
setting. Here we discuss several consequences of this distinction, including strategies for
identifying the L-superoptimal regime with experimental data that differ from those for the
nonexperimental setting.

A first consequence of the experimental setting is that Assumption 1, as defined, will
almost certainly be violated; in an experiment, a patient actually receives the treatment value
corresponding to A∗. To illustrate the argument, consider the assumption that Y = YA∗

in an experimental setting. If A |= A∗ for some individuals, then Y = YA∗ |= YA for
those individuals, so we would not expect Assumption 1 to hold. Instead, the following
assumption is more reasonable.

Assumption 4 (Consistency in an experiment). If A∗ = a, then Y = Ya for a ∈ {0, 1}.

The results in § 3 all suppose Assumption 1 and not Assumption 4. Therefore, they will
not in general apply to experimental data. Similar reasoning has historically motivated alter-
native trial designs, such as patient preference trials, in which investigators would attempt
to measure A and A∗ concurrently.

A second consequence of the experimental setting is that A∗ is usually allocated such
that Ya ⊥⊥ A∗ by design, and so covariates L will be measured for reasons other than con-
founding control. Therefore, it is unlikely that L-exchangeability, Assumption 3, will hold
in experimental data, as defined. Instead, the following assumption is more reasonable,

Assumption 5 (L-exchangeability in an experiment). We have that Ya ⊥⊥ A∗ | L for a ∈
{0, 1}.

Despite the irrelevance of the results in § 3, the experimental setting may seem especially
appealing for L-superoptimal regime identification: because A∗ is randomized by design, we
can adopt an even more elaborate exchangeability assumption that includes A as a covariate.

Assumption 6 ((L, A)-exchangeability in an experiment). We have that Ya ⊥⊥ A∗ | L, A for
a ∈ {0, 1}.

Furthermore, we do not have A = A∗ by definition, and so the following positivity
condition will usually hold.

Assumption 7 (Positivity in an experiment). We have that pr(A∗ = a | L, A) > 0 with
probability 1 for a ∈ {0, 1}.

Lemma 1 permits identification of the L-superoptimal regime even when Assumption 7 is
contradicted, as it is in a nonexperimental setting. With Assumptions 4, 6 and 7 and exper-
imental data (Forney & Bareinboim, 2019), for example in patient preference trial designs,
we might trivially identify the L-superoptimal regime without appealing to Lemma 1. In
this second approach, the natural treatment value A is simply regarded as an additional
covariate and thus effectively subsumed into L.
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10 M. J. Stensrud, J. D. Laurendeau AND A. L. Sarvet

LEMMA 2. Under consistency, positivity and (L, A)-exchangeability in an experiment, i.e.,
under Assumptions 4, 6 and 7,

E(Ya | A = a′, L = l) = E(Y | A∗ = a, A = a′, L = l).

Proof. The equality holds through sequential application of Assumptions 4 and 6, where
Assumption 7 ensures that the functional remains well-defined for all values of a, a′ ∈ {0, 1}.

�

Unfortunately, the natural treatment value A is not measured in most experimental set-
tings. Therefore, when only experimental data are available and A is unmeasured, Lemma 2
cannot be used to identify the L-superoptimal regime. However, the L-optimal regime can
be learned with such data via identification of E(Ya | L = l). The claim and proof are triv-
ial, by considering Lemma 2 without A in the conditioning set and replacing Assumption 6
with Assumption 5.

Remark 7. While not useful on its own for learning the L-superoptimal regime, knowl-
edge of the parameters E(Ya | L = l) from an experiment will be instrumental as a
supplement to nonexperimental data, even if L-exchangeability does not hold for those
nonexperimental data. Suppose that the nonexperimental data and the experimental data
are random draws from the same superpopulation. If the conditions of Lemma 1 are
met for the nonexperimental data, then its identification functional can be evaluated using
the combination of the parameters E(Ya | L = l) learned in the experiment and those
parameters of (L, A, Y) directly observed in the nonexperimental setting. This heuristic for
combining experimental and nonexperimental data has been suggested by Bareinboim et al.
(2015) for the identification of a ∅-superoptimal regime. Furthermore, patient preference
trials ensure the availability of such data by design, regardless of whether the natural treat-
ment values A are measured in the assigned treatment arms. As an illustration, consider
the ICU setting introduced in § 2.2. We could construct a three-arm trial in which we ran-
domly assign the patient to ICU admission, no ICU admission or following the doctor’s
preference.

5. On algorithm-assisted human decision-making

One vision for optimal regimes is to use them in an algorithmic treatment-assignment par-
adigm, wherein treatments are assigned completely according to learned algorithms without
human intervention. This algorithmic paradigm would replace current paradigms centred
on consensus standards-of-care guidelines and human care providers’ intuition, which could
be fallible. However, the medical community may be resistant to ceding control to such
algorithms in the absence of theoretical guarantees that expected outcomes will be better
under the targeted optimal regime. We have shown in Corollary 3 that the superiority of
the L-optimal regime is indeed guaranteed whenever L-exchangeability holds. Nevertheless,
the medical community has historically expressed a deep scepticism of L-exchangeability
or any identification strategy that depends on independence conditions in nonexperimen-
tal data; see, for example, the Journal of the American Medical Association’s prohibition on
causal language for the results of nonexperimental studies (AMA Manual of Style Com-
mittee, 2020). When an L-optimal regime is learned in the absence of L-exchangeability,
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Optimal regimes for algorithm-assisted human decision-making 11

for example when the L-optimal regime is learned using data from a conventional two-arm
trial, a clinician’s scepticism may be justified: it cannot be guaranteed that

E(Ygopt) � E(YA).

A primary benefit of the superoptimal regime gsup is to provide an algorithm with the
guarantee that

E(Ygsup) � E(YA).

We illustrated in § 4 that the superoptimal regime is estimable from a combination of experi-
mental and nonexperimental data whereby all relevant assumptions are enforced by design;
thus such results may be acceptable to a sceptical medical community.

Nevertheless, current formulations of the L-superoptimal regime gsup regard treatment
intentions A as simply an additional covariate. Thus, this formulation suggests a paradigm
where the algorithm is rhetorically centred. This radical departure from existing treatment
assignment paradigms may result in the persistence of scepticism and resistance, despite
the guarantees of the L-superoptimal regime. Therefore, we give the following equiva-
lent formulation of gsup that suggests a paradigm where the human care provider remains
centred.

PROPOSITION 3. There exists a function γ : L → {0, 1, 2} such that the following equality
holds with probability 1:

gsup(A, L) =

⎧⎪⎨
⎪⎩

gopt(L), γ (L) = 0,
A, γ (L) = 1,
1 − A, γ (L) = 2.

The function γ (l) is identified as

γ (l) =

⎧⎪⎨
⎪⎩

0, {τl(1) � 0, τl(0) � 0} or {τl(1) < 0, τl(0) < 0},
1, {τl(1) � 0, τl(0) < 0},
2, {τl(1) < 0, τl(0) � 0},

where we let τl(a′) = E(Ya=1 | A = a′, L = l) − E(Ya=0 | A = a′, L = l). A proof is pro-
vided in the Supplementary Material. Proposition 3 formulates an algorithm that directly
negotiates between the L-optimal regime gopt and a human care provider’s own privileged
intuition, captured by their natural treatment intention A. When a provider encounters a
patient, they are given the value of the random variable γ (L): if γ (L) = 0, then the provider
is instructed to follow the L-optimal regime’s recommendation, gopt(L); if γ (L) = 1, then
the provider is instructed to override the L-optimal regime’s recommendation and provide
the treatment according to their natural intention, A; finally, if γ (L) = 2, then the provider
is instructed to override the L-optimal regime’s recommendation and provide the treatment
opposite to their natural intention, 1 − A. With this formulation, the superoptimal regime
approach can be described as a strategy for optimally negotiating between a typical L-
optimal regime and a provider’s privileged intuition: when the L-optimal regime is already
known, the function γ can be learned to indicate to a care provider when the L-optimal
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12 M. J. Stensrud, J. D. Laurendeau AND A. L. Sarvet

regime should be followed, or else should be overridden as a function of their natural treat-
ment intention A. Because this formulation is equivalent to the L-superoptimal regime gsup,
the provider has guarantees that the algorithm will outperform the status quo. Thus, the
use of L-superoptimal regimes can be accurately described as algorithm-assisted human
decision-making.

However, the term algorithm-assisted human decision-making has also been used to
describe settings where the decision-maker receives information from an algorithm and
subsequently makes their decision. For example, consider an experiment that randomly
assigned judges to receive no information or output from a public safety assessment algo-
rithm (Imai et al., 2023). The algorithmic output included a recommended decision and
the predicted risks of certain adverse outcomes. The judges made their autonomous deci-
sions after receiving this information. The motivation for providing the algorithmic output
matches the motivation for L-optimal regimes, at least when adhering to classical decision-
making criteria (Sarvet & Stensrud, 2023a,b; Stensrud et al., 2023), that is, finding a decision
rule ‘that minimizes the prevalence of negative outcomes while avoiding unnecessarily
harsh decisions’ (Imai et al., 2023). However, this type of algorithm-assisted decision-
making could easily be augmented with algorithmic output of L-superoptimal regimes.
Specifically, the algorithm could output gsup(a′, L) for both a′ ∈ {0, 1}. Suppose that the
decision-maker receives this information before they state their intended treatment value;
the L-superoptimal regimes are provided for each intended treatment value. Then, the
decision-maker can use the algorithmic output even without uncovering their intended treat-
ment A. For example, an algorithm might inform an ICU doctor that for a patient with
covariates l the recommended treatment is gsup(a′, l) = a′ for both a′ ∈ {0, 1}. This means
that the algorithm supports the doctor’s intended decision for such a patient, whatever it
may be. So, if an ICU doctor plans to give treatment a′, they receive confirmation that this
aligns with the algorithm’s recommendation. However, if instead the algorithm suggests
gsup(a′, l) = a for any a′ |= a, then a doctor who intended to give such a treatment a′ would
be alerted to a discrepancy with the algorithm’s recommendation. They then have the option
to reconsider their decision. Therefore, knowing gsup(a′, l) for a′ ∈ {0, 1} gives the ICU doc-
tor additional information to support their decisions, even without the doctor disclosing
their intentions.

We emphasize that any override of the original algorithm, gopt or gsup, will in general
forgo the optimality guarantees of that original algorithm. In particular, we cannot formally
guarantee that the decision-maker, based on their free will, would make better decisions
using algorithmic information. To study such decision settings, we would need different
experimental data, where a decision-maker’s intended treatments are measured both before
and after they are given algorithmic information.

The effect of algorithms on natural human decisions themselves is related to a more
general complication that may arise with the use of L-superoptimal regimes in practice
(McLaughlin & Spiess, 2022). While an investigator might expect the conditional distribu-
tion of the potential outcomes given covariates, fYa|L, to remain stable across time, e.g., for
biological reasons, they might not expect the same stability in the conditional distribution
of the natural treatment given covariates, fA|L. For example, this conditional distribution
may change when individuals know that an algorithm will use A as input. When this gen-
eralizability problem is present, we cannot guarantee the performance of L-superoptimal
regimes in the future decision setting, as the L-superoptimal regime is a function of fA|L. In
contrast, we might still have guarantees for the L-optimal regime, because this regime is not
a function of fA|L. However, to guarantee that gopt in the observed data setting corresponds
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Optimal regimes for algorithm-assisted human decision-making 13

to the L-optimal regime in a future decision setting, we still need to make assumptions about
shared probabilistic structure across these settings; see, e.g., Bareinboim & Pearl (2013)
and Dahabreh et al. (2019). Thus, the conventional L-optimal regimes also require strong
assumptions for generalizability. To have analogous guarantees for gsup, we would further
need to make assumptions on the probabilistic structure of the natural value. For example, it
would be sufficient, but not necessary, that individuals make their intended decision A in the
same way as they would in the observed data. The plausibility of this condition is context-
dependent. Suppose that a decision-maker receives the results of a study showing that the
superoptimal regime agrees with the intended treatment value for individuals with a partic-
ular covariate value l. Then we would not expect the decision-maker to change their natural
decisions for such individuals in a future decision setting; the study just confirmed that their
intended treatment in this context is the best treatment option, given the observed data, and
we might believe that fA|l is stable. However, suppose instead that a decision-maker receives
the results from a study showing that their natural decisions for individuals with covariate
value l are opposite to those recommended by the superoptimal regime. If the decision-
maker changes their natural decision process after seeing these study results, then we would
not expect fA|l to be stable. To mitigate the problem of an unstable distribution, we could, in
the future decision setting, attempt to retrieve an intended treatment value that is represen-
tative of the study result. For example, we could instruct the decision-maker to provide the
previously learned algorithm with their intended treatment had they not received the recent
study results. We leave to future work the elaboration of weaker conditions for the stability
of superoptimal regimes.

Finally, consider a future decision setting where the L-optimal and L-superoptimal
regimes both maintain their nominal guarantees. As in classical settings without unmea-
sured confounding, the estimated L-optimal and L-superoptimal regimes, learned with
finite data, might differ from the true L-optimal and L-superoptimal regimes (Hubbard
et al., 2016). Thus, due to sampling variability, the estimated L-superoptimal and L-optimal
regimes might perform worse than the true L-superoptimal and L-optimal regimes, respec-
tively. Similarly, the estimated L-superoptimal regime might also perform worse than the
observed regime. In future work, we will study strategies to control the error of deviating
from the natural regime when the natural regime actually is optimal, based on familywise
error rates and false discovery rates.

6. On the nonprescriptive use of superoptimal regimes

The formulation of gsup in Proposition 3 highlights a counterintuitive possibility of an
L-superoptimal regime: when pr{γ (L) = 2} > 0, the L-superoptimal regime indicates that
a decision-maker should assign precisely the treatment value that is the opposite of their
natural intentions, 1 − A, for some patients. This could be the case when humans currently
use outcome-predicting variables in precisely the opposite way to that which would optimize
outcomes.

An algorithm-driven health-care system might dismiss this occurrence as an ancillary
curiosity; if γ (L) = 2, then providing treatment 1 − A would simply be the optimal
choice, given covariates A and L. However, gsup is more than simply a prescriptive treatment
policy; a positive probability of γ (L) = 2 might indicate an opportunity to radically adjust
existing theories or systems of patient care for some groups, which were apparently grossly
misformulated. The history of the study of human behaviour offers many examples of
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14 M. J. Stensrud, J. D. Laurendeau AND A. L. Sarvet

fallacies where humans systematically, but unintentionally, undermine their own objectives,
and iatrogenic harm is one well-documented subclass of this phenomenon. Detecting such
occurrences is surely an important scientific aim, as major paradigm shifts in medical his-
tory have been portended by the scientific community’s attention to such paradoxes (Kuhn,
1970).

Example 1 (Semmelweis). Consider the case of Ignaz Semmelweis, a 19th-century
Hungarian physician. Semmelweis famously observed that it was precisely the women who
were admitted to elite teaching hospital wards in anticipation of obstetric complications,
A = 1, who were experiencing increased mortality from puerperal fever. This observation
was ostensibly paradoxical: the elite venues, A = 1, purported to offer the best possible care.
If Semmelweis had used data to learn the L-superoptimal regime, he would have observed
that pr{γ (L) = 2} > 0; that is, there exist subgroups for which the best thing to do is to
not admit to the elite teaching hospital, i.e., Agsup+ = 0, precisely those patients who would
otherwise be admitted to such a ward, A = 1, and to admit those patients, Agsup+ = 1, who
would otherwise be treated in a less prestigious venue, A = 0. Semmelweis ultimately uncov-
ered an explanation: women sent to the prestigious hospitals were the most likely to need
surgical intervention, which was then often provided by physicians returning from autopsy
procedures with hands unwashed (Semmelweis, 1983). Semmelweis’s observations helped
initiate a hygiene and hand-washing revolution in medicine.

Semmelweis did not need the formalisms of superoptimal regimes to make his discovery.
Instead, he relied on savvy intuition and large effect sizes. Superoptimal regime methodology
provides a tool for systematic surveillance of iatrogenic harm, even when effect sizes are
modest, or human intuition would otherwise fail.

7. Case study: instrumental variables

7.1. Motivation

The results we have derived so far are general. They can be used in any setting where
value functions and the joint distribution of the factuals (L, A, Y) are identified. Thus, these
results could be of interest in a range of settings where investigators would otherwise aim
to find L-optimal regimes in the presence of unmeasured confounding. In each particular
setting, an investigator can derive explicit identification formulae, which in turn motivate
estimators.

In our first case study, we revisit an example from the seminal paper by Balke &
Pearl (1997), illustrating that L-superoptimal regimes for certain values of A can be point
identified even if L-optimal regimes are not.

Example 2 (Vitamin A supplementation and mortality). Balke & Pearl (1997) derived
bounds for average causal effects in instrumental variable settings. These bounds are
sharp under an individual-level exclusion restriction, Ya,z = Ya for all a and z, and the
exchangeability assumption Z ⊥⊥{Ya=1, Ya=0, Az=0, Az=1}, which holds by design when Z
is randomly assigned. The sharpness guarantees also hold under weaker assumptions (Swan-
son et al., 2018). To illustrate the practical relevance of these bounds, Balke & Pearl (1997)
analysed data from a randomized experiment in northern Sumatra, where 450 villages were
randomly offered oral doses of vitamin A supplementation, Z = 1, or no treatment, Z = 0.
Villages receiving vitamin A supplementation were encouraged to provide them to preschool
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Optimal regimes for algorithm-assisted human decision-making 15

children aged 12–71 months. The dataset contained 10 231 individuals from villages assigned
to vitamin A, Z = 1, and 10 919 untreated individuals, Z = 0. Balke & Pearl (1997) studied
the effect of consuming vitamin A supplementation, A = 1, versus no treatment, A = 0, on
survival, Y = 1, after 12 months. Leveraging that Z is an instrument, Balke & Pearl (1997)
reported bounds on the average treatment effect,

−0.1946 � E(Ya=1 − Ya=0) � 0.0054.

They concluded that the ‘vitamin A supplement, if uniformly administered, is seen as cap-
able of increasing mortality rate by much as 19.46% and is incapable of reducing mortality
rate by more than 5.4%’. Balke & Pearl (1997) did not consider further covariates, and thus
we define L = ∅. It follows that neither the L-optimal regime,

gopt = arg max
a∈{0,1}

E(Ya),

nor the value function E(Ya) are point identified, but both functionals are nontrivially
bounded. However, consider now the regime

gsup(a′) = arg max
a∈{0,1}

E(Ya|A = a′),

which uses the intended value of vitamin A consumption as input to the decision function.
Using Lemma 1 in this particular example, we have point identification of the superoptimal
regimes for the treated, which is an analogous parameter to the average treatment effect on
the treated,

E(Ya=1 − Ya=0 | A = 1) = 0.0032.

This example illustrates the point that, under conditions that do not identify an L-optimal
regime recommendation, the L-superoptimal regime recommendation for a particular value
of A is identifiable. Indeed, we conclude that among children who would consume vitamin
A supplementation when offered, the supplementation does have a beneficial effect. In this
example, the point identification of the superoptimal conditional average treatment effect
follows because vitamin A treatment was inaccessible to those randomly assigned to no
treatment, Z = 0 (see Balke & Pearl, 1997, Table 1), that is, there is one-sided compliance.

Whereas the L-superoptimal regime recommendation given A = 1 is point identified, the
L-superoptimal regime recommendation given A = 0 is not, that is,

−0.33 � E(Ya=1 − Ya=0 | A = 0) � 0.0069.

7.2. Point identification and estimation

To illustrate how explicit identification formulae and estimators can be derived, we fur-
ther build on recent work on optimal regimes (Cui, 2021; Cui & Tchetgen Tchetgen, 2021b;
Qiu et al., 2021). These results are presented in detail in the Supplementary Material, and
we provide an overview in this section. Specifically, we give new identification results for
L-superoptimal regimes. We derive the nonparametric influence function of correspond-
ing identification functionals and thereby motivate new estimators. Moreover, we suggest
a strategy to further improve efficiency when the investigator aims only to identify the
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L-superoptimal regime, given by the sign of the value function, as opposed to the value func-
tion itself. We apply these new methods to study the effects of ICU admission on survival
in § 8.

To illustrate the practical benefits of superoptimal versus optimal regimes in this setting,
in the Supplementary Material we revisit an example from Qiu et al. (2021, Remark 5), who
emphasized that an L-optimal regime can be worse than the regime that was implemented
in the observed data. We show that the L-superoptimal regime is strictly better than the
L-optimal regime in their example. We also give another example with a minor change to
the setting in Qiu et al. (2021), where the L-superoptimal regime outperforms both the L-
optimal and the observed regime.

7.3. Augmenting regimes with instruments

Instruments play an important role in L-superoptimal regimes which is different from
their role in L-optimal regimes. Let an (L, Z)-optimal regime be defined as

gz-opt(l, z) ≡ arg max
a∈{0,1}

E(Ya | L = l, Z = z),

which is isomorphic to an L-optimal regime, but further uses the instrument Z. An instru-
ment Z satisfies Ya ⊥⊥ Z | L, which can be read off the SWIG in Fig. 1. Using arguments
isomorphic to those of Corollary 2, the (L, Z)-optimal regime is always equal to the L-
optimal regime. However, interestingly, an (L, Z)-superoptimal regime is not necessarily
equal to an L-superoptimal regime. This follows because in many cases

Ya 	⊥⊥ Z | L, A;

see the SWIG in Fig. 1 as an example. Therein, it can be seen that Z would be d-connected to
Ya given L and A via the path Z → A ← U → Ya, which would be open conditional on A, a
collider. A similarly open path would remain if Z were alternatively associated with A via an
unmeasured common cause, which is often assumed in some instrumental variable models.
The practical implication is that using an instrument Z can further improve superoptimal,
but not optimal, regimes; see the Supplementary Material for more details. We give intuition
to this result in our ICU example in § 8.

8. Application: intensive care unit admissions

Following Keele et al. (2020), we study the effect of prompt ICU admission on seven-day
survival. We use resampled data from a cohort study of patients with deteriorating health
who were referred for assessment for ICU admission at 48 UK National Health Service
hospitals in 2010–2011 (Harris et al., 2015).

Our treatment of interest, A = 1, is ICU admission within four hours of arrival at the
hospital, referred to as ‘prompt ICU admission’. An individual is considered untreated,
A = 0, if they were not admitted within four hours. Our sample consists of 13 011 patients,
of whom 10 478 were treated. One reason for being untreated could be resource constraints,
e.g., lack of available ICU beds or insufficient staffing. As in Keele et al. (2020), we use an
indicator of the ICU bed occupancy being below or above the median as our instrument,
Z, which should affect the outcome Y only through its effect on A; see Fig. 1. We further
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Table 1. Marginal value functions under different regimes,
where the percentile 95% confidence intervals are estimated

by nonparametric bootstrap in 500 samples
Parameter Estimate (95% confidence interval)

E(Y) 0.86 (0.85, 0.86)
E(Y ĝopt) 0.93 (0.40, 1.00)
E(Y ĝsup) 0.97 (0.77, 1.00)

E(Y ĝz-sup) 0.98 (0.77, 1.00)

consider an individual’s age, recorded sex and sequential organ failure assessment score as
baseline variables, L.

In these nonexperimental data, the individual’s natural value of treatment is directly
recorded. In a future decision setting, we could measure the natural treatment variable by
asking the following question of a doctor treating a patient: would you promptly admit this
patient to an ICU? An answer of yes would correspond to A = 1, and a no would correspond
to A = 0, assuming a deterministic relation between the doctor’s response to this question
and what they actually would have done. Informally, the doctor’s response, A, serves as a
proxy for factors U that might indicate the risk of seven-day mortality. Furthermore, using
the current bed occupancy Z jointly with the doctor’s response A could provide a better
proxy for factors U not recorded in the observed data, even when ICU bed occupancy Z is
independent of U marginally. For example, suppose that U represents a physician’s judge-
ment of a patient’s underlying mortality risk based on unrecorded injury features or other
implicit judgements of patient frailty, encoded as ‘moderate’ or ‘severe’, and that a doc-
tor will admit all patients on low-occupancy days, but will admit only ‘severe’-risk patients
on high-occupancy days. Occupancy has little predictive capacity for a patient’s underlying
mortality risk marginally, but if it is known that a patient was admitted on a high-occupancy
day, then we can deduce that the patient must have been at ‘severe’ risk.

We estimated observed, L-optimal, L-superoptimal and (L, Z)-superoptimal regimes
based on the estimation algorithm in the Supplementary Material, where we also used
60-40 sample splitting to avoid the bias that would result from estimating and evaluat-
ing a (super)optimal decision rule in the same sample (Zhang et al., 2012; Qiu et al.,
2021). The point estimates of the marginal value functions suggest that the estimated
L-superoptimal, i.e., ĝsup, and (L, Z)-superoptimal, ĝz-sup, regimes outperform the alterna-
tives; see Table 1. The fact that the confidence intervals are wide is not surprising, despite the
large sample size, because of the reliance on an instrumental variable. However, the impre-
cision also requires us to caution against making strong conclusions about the estimated
(super)optimal regimes, because they could deviate from the true (super)optimal regimes
due to finite-sample uncertainty, as discussed in § 5, see also the Supplementary Material.

9. Future directions

An interesting problem is generalizing the results to longitudinal settings with time-
varying treatments. A complicating factor is that the non-baseline natural treatment values
will not in general correspond with observed treatment values, even when the data arise
from a nonexperimental setting. Nevertheless, their distributions may be identified under
assumptions commonly invoked to identify dynamic regimes that depend on the natural
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value of treatment in time-varying treatment settings, as described in Richardson & Robins
(2013) and Young et al. (2014). Generalizations to nonbinary treatments would also be of
interest in some settings.

Our identification results motivate estimators of L-superoptimal regimes. We specifically
provided semiparametric estimators in an instrumental variable setting. However, alterna-
tive estimators of superoptimal regimes can also be developed, and the properties of these
estimators must be evaluated on a case-by-case basis. Relatedly, we aim to construct estima-
tors of superoptimal regimes with error control, e.g., control of erroneously deviating from
the observed regime.

Finally, there exist results on L-optimal regime identification when conditional outcome
means are only partially identified (Cui, 2021; Cui & Tchetgen Tchetgen, 2021a; Pu & Zhang,
2021). The partial identification results can be derived, for example, under conditions that
are guaranteed by design. In contrast, point identification in settings with unmeasured
confounding, for example in the instrumental variable setting considered here, requires
homogeneity assumptions that are not guaranteed to hold. Using L-superoptimal regimes
under partial identification conditions is a topic for future investigations.
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