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Abstract
We analyze and implement the kernel ridge regression (KR) method developed
in Filipovic et al. (Stripping the discount curve—a robust machine learning
approach. Swiss Finance Institute Research Paper No. 22–24. SSRN. https://ssrn.
com/abstract=4058150, 2022) to estimate the risk-free discount curve for the Swiss
government bondmarket.We show that the insurance industry standard Smith–Wilson
method is a special case of the KR framework. We recapitulate the curve estimation
methods of the Swiss Solvency Test (SST) and the Swiss National Bank (SNB). In an
extensive empirical study covering the years 2010–2022 we compare the KR curves
with the SST and SNB curves. The KR method proves to be robust, flexible, trans-
parent, reproducible and easy to implement, and outperforms the benchmarks in- and
out-of-sample.We show the limitations of all methods for extrapolating the yield curve
and propose possible solutions for the extrapolation problem. We conclude that the
KR method is the preferred method for estimating the discount curve.
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1 Introduction

The risk-free discount curve, or zero-coupon yield curve, is a key variable for valuing
and hedging assets and liabilities and for various other tasks. It reflectsmarket expecta-
tions regarding the current and future states of the economy. The discount curve is not
observed and must be estimated from noisy quotes of fixed income instruments priced
bymarket participants. Any preferredmethod for estimating the discount curve should
arguably have the following desirable characteristics: (i) simple and fast to implement,
(ii) transparent and reproducible, (iii) data-driven, (iv) precise representation of the
term structure taking into account all market signals, (v) robust to outliers and data
selection choices, (vi) flexible for integration of external views, (vii) consistent with
finance principles.

We show that the kernel ridge regression (hereafter referred to as KR) method
developed in [10] satisfies these properties, and we apply it to the Swiss government
bond market. Compared to major bond markets, such as the U.S. Treasury market,
the Swiss market is much smaller and liquidity is lower, which may result in instru-
ments being priced less efficiently. This poses an additional challenge for downstream
applications that rely on yield information for less liquid maturity ranges for which
only limited data are available. This results in the need for reliable interpolation and
extrapolation of the yield curve in a suitable function space. The KR method does just
that. The KR curve is given in closed form as the solution of a kernel ridge regression
in a reproducing kernel Hilbert space (RKHS) [18] consisting of twice differentiable
functions on the positive half line. The KR curve is obtained by trading off the fitting
error and its smoothness.

Kernel methods such as KR are an integral part of machine learning, see, e.g.,
[24]. KR is a non-parametric estimation method for a curve in an infinite-dimensional
RKHS. The so-called Representer Theorem implies that the infinite-dimensional esti-
mation problem reduces to the determination of a finite number of coefficients. This
number depends on and is implied by the prevailing data. The KR estimator is cal-
ibrated with three hyperparameters, one of which tunes the trade-off between fitting
error and smoothness and the other two determine the smoothness measure. These
hyperparameters are selected by cross-validation, making the KR method fully data-
driven. KR thus differs fundamentally from parametric curve estimators, in which a
specific functional form of the discount (or yield) curve is predefined.

Applications of the KR method are manifold. KR curves can be used, for example,
as the basis for solvency capital calculations in the insurance industry or to reflect
the term structure of government bond prices as published by central banks. To this
end, we show how the current market standard in the European insurance industry,
the Smith–Wilson method [26], is formally embedded in the KR framework. We also
recapitulate the parametric curve estimationmethods of the Swiss Solvency Test (SST)
and the Swiss National Bank (SNB).

We conduct an extensive empirical study with daily data on Swiss government
bonds for the years 2010–2022, which are publicly available from a SNB website
[23]. However, matured bonds are retrospectively removed from this website. The
SNB provided us with the complete daily data on request, but only from September
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2018 for licensing reasons.1 The long sample 2010–2022, which we use for the long-
term analysis of KR, therefore has missing data. In turn, we use the complete but short
sample 2018–2022 for benchmarking. We discuss model selection and find that the
KR method is robust with respect to the choice of hyperparameters. In a comparative
study, we compare the fit and shapes of KR curves with the SST and SNB curves. The
KR method outperforms the benchmarks on all error metrics in- and out-of-sample.
Our results hold both at the aggregate level and for all pre-defined maturity buckets
and are robust over time.

The KR method is related to Gaussian process regression and therefore allows for
a Bayesian interpretation, based on which we derive confidence bands around the KR
curve estimates.We showwith examples that the confidence bands accurately indicate
the ranges of sparse or missing data.

We show how external views can be easily incorporated into the KR curve in the
form of constraints to match exogenously given yields. We also discuss the extrapo-
lation of the discount curve beyond the quoted maturity range. We find that none of
the methods in scope can credibly provide robust and accurate yield curves up to 100
years. Any estimation method in this range requires external information about long
term yields. On the other hand, we find that the stability of the KR method is already
significantly improved by adding longer dated bonds. We propose possible solutions
to the extrapolation problem. A detailed analysis is left for further research.

Given the fundamental problem of estimating the discount curve and its wide appli-
cation it is not surprising that there exists an extensive literature on the topic. The most
well known methods include Nelson–Siegel–Svensson [12, 17, 25], Smith–Wilson
[26], Fama–Bliss [7], Liu–Wu [15], and KR [10], arguably. Nelson–Siegel–Svensson
is parametric. Here a parsimonious smooth parametric form is specified and cor-
responding parameters are estimated by minimizing pricing errors, which leads to
a non-convex optimization problem. Smith–Wilson, Fama–Bliss, Liu-Wu, and KR
fall within the category of non-parametric methods. In contrast to Nelson–Siegel–
Svensson, these methods exhibit a larger flexibility. We show in the empirical part that
our non-parametric method captures global as well as local nuances of the discount
curve. In addition, there are many other frequently used methods such as spline based
methods. The underlying assumption is to model the discount curve or yield curve
locally by polynomials [1, 16, 27, 28].

The prevailing benchmark in the Swiss market is a form of the Nelson–Siegel–
Svensson method [17, 25] with additional constraints estimated by the SNB. The
underlying optimization problem is formulated in a BISworking paper [2]. A dynamic
Nelson–Siegel model for the Swiss discount curve is estimated in [4]. The European
Insurance and Occupational Pensions Authority (EIOPA) defines the technicalities
used in the regulatory Solvency II framework, in particular the Smith–Wilson method
[26], see [5, 14, 29]. For the Swissmarket, the FinancialMarket Supervisory Authority
(FINMA) [9] provides risk-free discount curves for the SST curves that are based on
Smith–Wilson.

The paper is structured in the following way. In Sect. 2, we introduce the formal
setup of the KR method. In Sect. 3, we establish the relationship between KR and

1 A special thanks to Robert Müller from the SNB for his insights and help.
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Smith–Wilson and outline the technicalities of the SST curves. In Sect. 4, we discuss
the data and model selection. This includes the choice of the error metrics and hyper-
parameters. In Sect. 5, we conduct a comparison study between the KR, SNB, and SST
estimates. In Sect. 6, we discuss the extrapolation problem. In Sect. 7, we elaborate
on the correspondence between kernel ridge regression and Bayesian interpretation
stemming from Gaussian processes. In Sect. 8, we conclude and and summarize the
key findings. The Appendix contains an analysis of KR curves with constraints at the
short end. An online appendix contains additional figures.

2 Formal setup

At a given business day, we observe prices of M fixed income securities with time
to cash flow dates 0 < x1 < · · · < xN . The prices are given by the vector P =
(P1, . . . , PM )�. Cash flows are captured by the matrix C whose entries Ci j denote
the cash flow of security i at x j . The unobserved discount curve is represented by a
function g : [0,∞) → Rwhere g(x) denotes the present value of a zero-coupon bond
with time to maturity x . This relates to the zero-coupon yield y(x) with maturity x
via g(x) = e−y(x)·x . We simply call y(x) the yield in what follows. The law of one
price implies that the vector of fundamental values Pg of all securities with underlying
discount curve g is equal to

Pg = Cg(x),

whereweuse the notation x :=(x1, . . . , xN )� andwrite f (x) :=( f (x1), . . . , f (xN ))�
for the corresponding array of values for any function f . The observed prices may
differ from the fundamental values due to the lack of a deep, liquid, and transparent
market, or data errors. Formally,

P = Pg + ε, (1)

where ε ∈ R
M denotes pricing errors.

In [10], the function g is estimated using the theory of reproducing kernel Hilbert
spaces (RKHS). This boils down to the kernel ridge regression (KR) problem

min
g∈Gα,δ

{ M∑
i=1

ωi (Pi − Pg
i )2

︸ ︷︷ ︸
pricing error

+λ ‖g‖2α,δ︸ ︷︷ ︸
smoothness

}
, (2)

for a regularisation parameter λ > 0 and exogenous weights ωi > 0. The hypothesis
spaceGα,δ consists of all twice differentiable functions g : [0,∞) → Rwith g(0) = 1
and finite norm given by

‖g‖2α,δ :=
∫ ∞

0

(
δg′(x)2 + (1 − δ)g′′(x)2

)
eαx dx, (3)
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for some shape parameter δ ∈ [0, 1] and maturity weight α ≥ 0. This norm entails the
two standard measures for tension, g′(x)2, and curvature, g′′(x)2, of a function g. We
denote by k : [0,∞) × [0,∞) → R the reproducing kernel related to Gα,δ .2 More
details on the space Gα,δ , including a closed-form expression for the kernel k, are given
in [10, Theorem 2]. For completeness, we recall here the expression for α > 0 and
δ = 0, which will prove to be the default setting in the empirical part:

k(x, y) = −min{x, y}
α2 e−αmin{x,y} + 2

α3

(
1 − e−αmin{x,y}) − min{x, y}

α2 e−αmax{x,y}.(4)

The above estimation problem is completely determined up to the hyperparameters
λ, α and δ. These parameters will be estimated via an out-of-sample cross validation
of the weighted pricing errors. This renders the KR method fully data-driven. With
regards to the choice of the weights ωi various possibilities arise. A common choice
in the finance literature is

ωi = 1

M

1

(Di Pi )2
(5)

where Di denotes the modified duration of security i . This choice of ωi in (2) corre-
sponds to a first order approximation of the mean squared yield fitting errors,

ωi (Pi − Pg
i )2 ≈ 1

M
(Yi − Y g

i )2,

where Yi and Y
g
i denote the yield to maturity (YTM) of the i-th security based on the

quoted price Pi and fundamental value Pg
i , respectively. An infinite weight ωi = ∞

is also possible and corresponds to an exact pricing of the i-th security, which gives
the flexibility for integration of external views on the yield curve, see Example 2.3
below.

The solution of problem (2) boils down to a simple kernel ridge regression, which
is given in closed form. We recall here the corresponding result in [10, Theorems 2
and A.1], where we define the N × N -kernel matrix K by Ki j = k(xi , x j ) and we
write 1 = (1, . . . , 1)�:

Theorem 2.1 (Kernel-Ridge (KR) Solution) The fundamental problem (2) has a
unique solution ĝ, which is given in closed form by

ĝ(x) = 1 +
N∑
j=1

k(x, x j )β j ,

where β = (β1, . . . , βN )� is given by

β = C�(CKC� + �)−1(P − C1), (6)

2 Note that Gα,δ is not a linear space, in view of the initial condition g(0) = 1. In fact, k is the reproducing
kernel of theRKHSHα,δ consisting of twiceweakly differentiable functions h : [0, ∞) → Rwith h(0) = 0
and finite norm (3). We then have Gα,δ = {g = 1 + h | h ∈ Hα,δ}.
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where � := diag(λ/ω1, . . . , λ/ωM ) where we set λ/∞ := 0.3

The solution (6) boils down to the inversion of a M × M-matrix, which is compu-
tationally a simple task. The KR framework is extremely flexible and covers a wide
range of possible solutions. In fact, many popular model curves such as Fama–Bliss,
Nelson–Siegel–Svensson, and the insurance industry standard Smith–Wilson lie in the
space Gα,δ for appropriate choices of α and δ, see [10, Theorem 2]. We elaborate on
the Smith–Wilson curves in more detail in the following section.

Remark 2.2 Thediscount curve g(x) is a functionof the time tomaturity x whose actual
values depend on the choice of the day count convention. In this paper we assume the
ACT /365 convention. That is, xi = i/365 where i denotes the number of calendar
days between the spot date and the cash flow date. Other methods in the literature may
be based on different day count conventions. E.g., the published SNB curve parameters
are based on the GERMAN 30/360 convention. Strictly speaking, one cannot directly
compare the discount curves of differentmethods unless they are based on the sameday
count convention. To compare the methods, one would have to compare the model
implied bond prices derived in the respective day count conventions. Numerically,
however, the differences are not economically significant. We compared time series
of yields y(x) of fixed maturities x ranging from 5 to 40 years implied by KR and
SNB curves under both ACT /365 and GERMAN 30/360 conventions. That is, we
compared y(x) with y(x +�x) where �x reflects the shift due to leap years during x
years. E.g., for x = 10, we set �x = 2/365. We found that the differences in yields
y(x) − y(x + �x) are of the order 10−6 for maturities up to x = 40, throughout the
sample, and of order 10−5 for x = 50, in first part of the sample. We also found that
the day count convention has a greater impact on the calculation of accrued interest,
which relates economic dirty prices to quoted clean prices. For simplicity, theACT/365
convention is used below to derive the model-implied prices for all methods.

Example 2.3 As an example for the integration of external views on the yield curve,
we consider here the practice of some central banks to force the implied short rate of
the estimated curve to match the prevailing benchmark short rate rshort, e.g., SARON.
This can simply be achieved in Theorem 2.1 by defining one of the instruments, say
i = 1, as zero-coupon bond maturing the next day, at x1 = 1/365, and specifying its
price P1 = e−rshort·x1 and cash flow C1 j = 1 for j = 1 and C1 j = 0 for j > 1, and
setting its weight ω1 = ∞.

3 Smith–Wilson curves

This section outlines the relationship of our KR method and Smith–Wilson (hereafter
referred to as SW).We first introduce the theoretical foundation to reformulate the SW
method as a problem of the form given in Eq. (2). SW plays an important role in the
insurance industry. Regulatory bodies such as the FINMA rely on risk-free discount

3 In this case, we also assume that the submatrix of CKC� that consists of all rows and columns i
corresponding to the infinite weights ωi = ∞ is invertible.
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curves based on SW, e.g., the interest rate curves used in SST to discount insurance
companies’ assets and liabilities. We then apply the theoretical findings and introduce
how to generate KR based SST curves. We also specify how our method can perfectly
replicate the SST curves given by FINMA. This allows in theory to generate SST
curves on a daily basis while FINMA provides SST curves only once a year.

3.1 Relation to KRmethod

SW [26] has been the insurance industry standard in Europe for constructing the
discount curve used in the regulatory Solvency II framework, see the technical doc-
umentations of the European Insurance and Occupational Pensions Authority [5],
the European Systemic Risk Board [6], and [13, 14, 29]. SW considers discount
curves of the form gSW (x) = e−y∞x g0(x), for some g0 ∈ G0,δ with δ ∈ (0, 1), and
y∞ = log(1+UFR) > 0, for the so-called ultimate forward rateUFR > 0. The SW
method assumes exact pricing of all bonds up to a certain maturity xN < ∞, which is
also called the last liquid point (LLP), and disregards all bonds with longer maturity.

Formally, SW solves the exact pricing problem with regularization

min ‖g0‖20,δ
s.t. P = CgSW (x),

gSW (x) = e−y∞x g0(x),

g0 ∈ G0,δ.

(7)

This can be brought into the form (2) by rewriting CgSW (x) = C̃g0(x) for the tilted
cash flow matrix

C̃ := C diag(e−y∞x).

Problem (7) now reads as

min ‖g0‖20,δ
s.t. P = C̃g0(x),

g0 ∈ G0,δ.
(8)

This is just a special case of Theorem 2.1 where all weights are infinite, that is,� = 0,
see Footnote 3. From the solution to (8) we thus obtain the SW discount curve

ĝSW (x) = e−y∞x ĝ0(x) (9)

where

ĝ0(x) = 1 +
N∑
j=1

k(x, x j )β j = 1 + ey∞x
N∑
j=1

W (x, x j )
1

δρ
ey∞x j β j︸ ︷︷ ︸
=ζ j

(10)
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and

β = C̃�(C̃K C̃�)−1(P − C̃1). (11)

Here

k(x, y) = 1

δ
min{x, y} + 1

2δρ

(
e−ρ(x+y) − eρ min{x,y}−ρ max{x,y})

= 1

δ
min{x, y} − 1

δρ
e−ρ max{x,y} sinh(ρ min{x, y})

with ρ := √
δ/(1 − δ), is the kernel given in [10, Theorem 2] for α = 0, δ ∈ (0, 1). In

the second equation, we used that max{x, y}− (x + y) = −min{x, y}. This is related
to the “Wilson kernel function”

W (x, y) = e−y∞(x+y)δρk(x, y).

Comparing this to [5, Paragraph 134], for the function H(u, v) = δρk(u, v), we see
that our parameters correspond to the SW parameters speed of convergence “α" and
ultimate forward intensity “ω” by

“α" = ρ, “ω" = y∞, (12)

respectively. A further inspection shows that then the above expressions (9)–(11) are
identical to the expressions in [5, Paragraphs 149–151], with coefficients ζ = “Cb"
in (10).

Remark 3.1 The SW parameters in (12) can be interpreted as follows. The larger the
speed of convergence “α" = ρ, the closer δ is to 1 in (3). As the auxiliary curve ĝ0
minimizes ‖g0‖0,δ , the quicker x �→ ĝ0(x) flattens out and converges to a constant.
In turn, the quicker the exponentially tilted SW curve x �→ ĝSW (x) = e−y∞x ĝ0(x)
converges to an exponential decay at rate “ω" = y∞, which is the ultimate forward
intensity or, equivalently, the infinite maturity yield.

Remark 3.2 From (9) and [10, Lemma 8(i) and (iii) and Lemma 1(iv)], it follows that
the SW curve gSW lies in Gα,δ for any α ∈ [0, 2y∞). The converse is not true: not
every curve g ∈ Gα,δ is of the SW–form g(x) = e−y∞x g0(x) for some g0 ∈ G0,δ .
Indeed, a counter-example is given by g(x) = e−γ x , which is element in Gα,δ , for any
α
2 < γ < y∞. However, the only possible pre-image g0(x) = ey∞x g(x) = e(y∞−γ )x

exhibits exponential growth for x → ∞. Hence, in view of [10, Lemma 2], g0 does
not lie in G0,δ . This implies that our KR curves are superior to SW in terms of our
objective function (2).

3.2 SST curves

The Swiss Solvency Test (SST) [9] is a supervisory tool applicable in Switzerland in
the insurance industry. The goal is to assess the capitalisation of an insurance company.
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Table 1 Historical SST
parameters

SST year LLP UFR (%) α

2022 15 1.95 0.1

2021 15 2.1 0.1

2020 15 2.25 0.1

2019 15 2.4 0.1

2018 15 2.55 0.1

2017 15 2.7 0.1

2016 15 2.7 0.1

2015 15 2.9 0.1

2014 15 2.9 0.1

2013 15 2.9 0.1

2012 15 2.9 0.1

This table contains the historical SST parameters since 2012. Source:
FINMA

To value a company’s assets and liabilities a risk-free discount curve is required. For
this FINMA publishes once a year the SST curve. As outlined in the technical doc-
umentation “Technische Beschreibung SST-Bilanz, risikolose Zinskurven und FDS”
(only available in German and French) on [9], since 2012, the SST curve is based
on the SW method described above with underlying Swiss government bond market
data taken from the SNB [23], which is also the data for our empirical study below.
Concretely, the SST curve matches the discount bond prices (computed from the zero-
coupon yields published by the SNB) with maturities 1 year, 2 years, …, 10 years and
15 years, and where 15 years is taken as the LLP. Additionally, FINMA publishes the
speed of convergence, “α", and the UFR. Table 1 contains historical SST parameters,
where “UFR” here in fact denotes the continuously compounded ultimate yield y∞.

4 Model selection

In this section we describe the data and the evaluation metrics for our empirical anal-
ysis. We then derive and discuss the baseline values for the hyperparameters λ, α and
δ, and weights ωi . We study their robustness and compare local and global optimal
hyperparameter values thereafter.

4.1 Data

For our empirical study we use public available data from the SNB [23]. The SNB
collects clean prices of Swiss government bonds on a daily basis excluding weekends
and national Swiss public holidays. To ensure price continuity a waterfall logic is
applied, [21, page 68], [22]. Concretely, every day at 10:30 Swiss time (until December
2020 and 11:00 from January 2021 onward) available quotes from a data provider are
captured. First choice is a traded price on the respective day. If no transaction was
executed the mid price between the bid and ask price is used. If the bid price is missing
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the ask price minus 25bps is reported. On the other hand, if the ask price is missing
the bid price is used. In the rare event that both prices, bid and ask, are missing the last
available traded price is stored in the SNB data set. The methodology was originally
published in 2002. All consecutive changes and revisions are documented and publicly
available, see [19]. From available clean prices and meta data the accrued interest can
easily be calculated to obtain dirty prices. We retrieved the accrued interest from
Bloomberg for each day assuming trade and settlement day are on this very same day.
Our empirical study is then carried out on dirty prices.

We noticed that the SNB removes matured bonds retrospectively from their website
[23]. The SNB provided us with the complete daily data on request, but only from
September 2018 for licensing reasons. As a result we use two samples, one long and
one short, in the following. The long sample contains daily prices from 1 January
2010 to 30 June 2022 of 22 Swiss government bonds, but exhibits missing data,4

The short sample contains all daily prices from 1 September 2018 to 30 June 2022
including three additional Swiss government bonds.5 We use the long sample for the
long-term analysis and selection of the KR hyperparameters, and the short sample for
the comparison study in the next section. Table 2 summarizes the key meta data of all
bonds in scope.

The maturity profile of all bonds is shown in Fig. 1. Each black line represents the
time to maturity of a particular bond. The red line indicates the bond with longest
remaining time to maturity. Before 2014 this was steadily decreasing from slightly
less than 40 years. In June 2014 a new 50 years bond was issued, which has remained
the longest maturity bond in the subsequent years. Moreover, it is evident from Fig.1
that prior to 2013 the sample does not include bonds with maturities less than 10 years.
This reflects the aforementioned missing data in the long sample. We have highlighted
the additional three bonds provided by the SNB that are part of our short sample in
blue. Note that also in the long sample period each coupon bond exhibits annual cash
flows (coupon payments). At any point in time these cash flows support the estimation
of the yield curve in shorter maturity buckets.

The data set contains only fully taxable and only non-callable bonds. This selection
is consistent with the standard filters applied in [7, 15]. In [12] they also exclude bonds
withmaturity less than 90 days due to data quality. Figure1 reveals that all bonds in our
long sample comply with this filter: their maturities are more than 90 days ahead. For
our short sample we apply the SNB filter: until the end of 2020, they excluded bonds
with a maturity less than 1 year, from 2021 onwards they only exclude bonds with
a maturity less than 3 months. Another frequently used filter differentiates between
on and off the run bonds and excludes the two mostly recently issued securities (with
maturities 2 years, 3 years, 4 years, 5 years, 7 years, 10 years, 20 years, and 30 years)
as proposed in, e.g., [12]. However, due to the relative small universe in the Swiss
government bond market this filter is not feasible. In fact, the concept of on and off
the run bonds does not apply.

4 According to [4, Table 1] 12 Swiss government bonds matured between 2010 and 2019, which are not in
our sample.
5 It also includes the Swiss government bond with maturity date 2019-05-12, which however is filtered out
of the short sample as its remaining time to maturity is less than one year.
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Table 2 Bond meta data

ISIN Coupon (%) Maturity First coupon date

CH0021908907 2.25 2020-07-06 2006-07-06

CH0111999816 2.0 2021-04-28 2011-04-28

CH0127181011 2.0 2022-05-25 2012-05-25

CH0008435569 4.0 2023-02-11 1999-02-11

CH0127181177 1.25 2024-06-11 2013-06-11

CH0184249990 1.5 2025-07-24 2014-07-24

CH0224396983 1.25 2026-05-28 2015-05-28

CH0031835561 3.25 2027-06-27 2008-06-27

CH0008680370 4.0 2028-04-08 1999-04-08

CH0224397346 0.0 2029-06-22 2017-06-22

CH0224397171 0.5 2030-05-27 2016-05-27

CH0127181029 2.25 2031-06-22 2012-06-22

CH0344958688 0.5 2032-06-27 2019-06-27

CH0015803239 3.5 2033-04-08 2004-04-08

CH0440081393 0.0 2034-06-26 2020-06-26

CH0557778310 0.25 2035-06-23 2022-06-23

CH0024524966 2.5 2036-03-08 2007-03-08

CH0127181193 1.25 2037-06-27 2013-06-27

CH0440081401 0.0 2039-07-24 2020-07-24

CH0127181169 1.5 2042-04-30 2013-04-30

CH0344958498 0.5 2045-06-28 2018-06-28

CH0009755197 4.0 2049-01-06 2000-01-06

CH0344958472 0.5 2055-05-24 2018-05-24

CH0224397338 0.5 2058-05-30 2017-05-30

CH0224397007 2.0 2064-06-25 2015-06-25

This table contains all the relevant meta data of the Swiss government bonds used in the empirical part. The
coupon rate of all bonds are paid annually. In blue highlighted are static data of bonds we received from
the SNB for the short sample. Source: Bloomberg Finance L.P

4.2 Evaluation

Throughout the paper we use the maturity buckets <1 year, 1 year–5 years, 5 years–
10 years, 10 years–15 years, 15 years–25 years and ≥25 years to report various result
on these aggregated levels. The choice of the maturity buckets is coarser as in [10, 15]
due to the sparser data compared to the U.S. Treasury case. Figure1 shows that bonds
are not evenly distributed across these buckets. More bonds fall into the longer end
buckets.

We apply the same weighted price and YTM errors as in [10], which are either
reported as time series or aggregated into the maturity buckets above. Specifically, we
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Fig. 1 Maximal time tomaturity for the full sample. The figure plots the available bonds and their respective
remaining time to maturity over time. The red line indicates the longest time to maturity available in the
data set at each point in time, i.e. it is the longest time to maturity of the outstanding bonds in the sample
at a particular point in time. Blue lines indicate bonds provided by the SNB used in our short sample

define the root mean squared error at time t as

RMSEt :=
√∑Mt

i=1
ωi,t

(
Pi,t − P̂i,t

)2

and the time average root mean squared error as

RMSE := 1

T

T∑
t=1

RMSEt .

Here P̂i,t = Pĝt
i,t denotes the model implied price of instrument i derived from the

estimated discount curve ĝt at time t , and ωi,t the corresponding weight for the price

error. Similarly, we write Ŷi,t = Y ĝt
i,t for the estimated model implied yield to maturity.

We use three different error metrics: a duration weighted error with weights given by
(5), a relative pricing error that correspond to weights ωi,t = 1

Mt P2
i,t
, which normalize

all bond prices to one, and a YTM based error that is given as the RMSE of model
implied yields to maturity,

√
1

Mt

∑Mt

i=1
(Yi,t − Ŷi,t )2.

The YTM RMSE is the preferred error metric for the estimation of the discount
curve. In fact, Fig. 2 shows box plots of the bid-ask implied bond YTM spreads across
maturity buckets.6 It reveals that bid-ask implied spreads of bondYTMs are essentially
uniform across maturity buckets, and range in the order of 4–7 bps, for maturities
≥1 year.

6 Since the SNB does not publish bid-ask bond prices we have used daily bid-ask prices from Bloomberg
and converted them to bid-ask yields.
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Fig. 2 Yield difference based on Bid-Ask spreads. The plot shows box plots per maturity buckets of
bid-ask implied yields. A box plot shows the quartiles of the data set, while the Whiskers show the rest
(minimum/maximum) of the distribution, except for the black points, which were determined to be outliers
using a method that is a function of the interquartile range. Bucket <1 year uses a y log-scale on the left
while all other buckets use a normal y scale on the right. Source bid-ask prices: Bloomberg Finance L.P.
Sample window corresponds to our long sample

Fig. 3 Logarithmic duration weights. The figure displays the time averaged logarithmic duration weights.
Based on the long sample

The duration weights convert price errors into YTM errors, accurately up to first
order, so that no additional modification of the weights ωi is required, see Fig. 3. We
therefore use duration weights in (2) for the estimation of KR curves in all subsequent
results.

We illustrate the empirical results by plotting the estimated yield time series for
1months, 3months, 6months, 1year, 5years, 10years, 15years, 20years, 30years,
40years, 50years, 80years, 100years tomaturity, see Figs. 13 and 15 below andfigures
in the online appendix. The 50years, 80years, 100years points are based entirely on
extrapolation.7 Besides the time series of single yieldsweplot the entire yield curves on
four representative example days, 2010-06-15, 2014-06-16, 2018-06-15 and 2022-06-
15. These example days are equally spaced over the sample period and cover different

7 The 50years point falls within the interpolation range on the day in June 2014 when the new 50years
bond was issued.

123



N. Camenzind, D. Filipović

interest rate regimes since 2010. We avoid month end or year end data, as they could
be biased.8

4.3 Choice of hyperarameters

The KR method outlined in Sect. 2 requires to choose hyperparameters λ, α and δ.
We find these optimal parameters in a purely data-driven way. On each day of the
sample period we perform a leave-one-out cross-validation, LOOCV, for a large grid
of values of λ, α and δ. The parameters run each through a predefined grid, λ ∈
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, α ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.10} and δ ∈ {0, 1e−06, 1e−05, 1e−04, 1e−03, 0.01, 0.1, 1}. We build
all possible combinations based on these grids. In [10], the regularization parameter
λ is scaled by the time-varying factor 1/(365 · xN ), where xN is the longest available
time to maturity in years of the quoted bonds any given day. E.g., for xN = 30, this
amounts to dividing λ by 10,950. Here we modify the scaling factor and set it to
the fixed value 10−4. Both scaling factors are of similar order and allow convenient
representation. For the ease of notation we report unscaled values of λ in all plots (e.g.,
“λ = 10” refers to a regularisation parameter value of 10−3). We use the long sample
without any further filtering for the optimal hyperparameter choice.

The minimal LOOCV based YTM RMSE is attained at the hyperparameter values
λ = 10, α = 0.02 and δ = 0. Figures4 and 5 show the heatmaps for fixed δ and α,
respectively. We find similar optimal values as in [10] for the U.S. Treasury market. In
particular, the differences in YTMRMSE for very small δ are negligible and the choice
of δ = 0 simplifies the model: the smoothness measure in the objective function (2)
only involves the second derivative. For λ we find an optimal value of 10, which
matches closely the optimal value in [10] for the U.S. Treasury market (λ = 1).
Recall that λ is chosen on a logarithmic scale and here we use a slightly different
scaling factor, as explained above. The optimal value for α is found at 0.02 and is
smaller as in the U.S. market (α = 0.05). As shown in [10] α can be interpreted
as the infinity maturity yield. Since the U.S. data exhibits structurally higher interest
rates this difference in the optimal value of α might be not surprising. However, a
word of caution is warranted as this interpretation is only valid under certain technical
assumptions and it does not make any statement about the speed of convergence nor
the behaviour of the resulting yield on any finite maturity in the extrapolation area. In
summary, we fix as baseline values λ = 10, α = 0.02 and δ = 0 in the following.
This corresponds to the kernel (4).

Figures 4 and 5 show that our model is robust with respect to small deviations from
the baseline values. However, these heatmaps represent an aggregated view over time
only. The following more granular analysis shows how the local optimal parameters
behave over time. We refer to “local optimal” for the optimal values of λ, α and δ on a
specific day while “global optimal” refers to our aggregated optimal baseline values.
Interestingly, we can observe that local optimal values of λ vary frequently, while for
α and δ the dispersion seems to be much smaller.

8 Month ends tend to distort prices as index rebalancing takes place. Year end is avoided due to low liquidity
in the Swiss market.
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Fig. 4 LOOCV YTM RMSE for λ and α. Based on daily LOOCV the YTM RMSE for a specific grid of
λ, α and δ is shown. The figure fixes the optimal δ and shows the two dimensional heatmap varying only λ

and α. The orange square indicates the lowest YTM RMSE for corresponding hyperparameters. Based on
the long sample

Fig. 5 LOOCV YTM RMSE for λ and δ. Based on daily LOOCV the YTM RMSE for a specific grid of λ,
α and δ is shown. The figure fixes the optimal α and shows the two dimensional heatmap varying only λ

and δ. The orange square indicates the lowest YTM RMSE for corresponding hyperparameters. Based on
the long sample

Do the hyperparameters capture relevant economic information about the discount
curve? If that were the case, we would see systematic patterns in the time series of the
local optimal hyperparameter values. Figures6, 7 and 8 show that this does not seem
to be the case. These plots compare local optimal hyperparameters over time against
global optimal values. Local optimal ones might change on a daily basis while global
optimal ones remain fixed. Local optimal values are plotted as blue dots along with
their medians.9 For α, which is on a linear scale, we also show the mean. We also add
the global optimal values. The lighter the blue dots the less constant the local optimal
solution is. The dashed vertical black lines indicate dates, where a new bondwas added
to the universe.We have also compared the local optimal values over time against some
common economic indicators, including the SNB policy rate, curve steepness or GDP.

9 In the online appendix we show histograms of each hyperparameter distribution.
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Fig. 6 Global vs local optimal hyperparameters for λ. The figure shows the local optimal values for λ over
time and the corresponding median. We show no mean due to the logarithmic scale. The black dashed lines
indicate the points in time where a new bond became available in the sample. Based on the long sample

Fig. 7 Global vs local optimal hyperparameters for α. The figure shows the local optimal values for α over
time and the corresponding mean and median. The black dashed lines indicate the points in time where a
new bond became available in the sample. Based on the long sample

For none of them we found any systematic pattern. We conclude that the fluctuations
in the local optimal hyperparameter values are mainly due to noise, which speaks for
the robustness of our method. All essential economic information of the bond market
in turn is captured by the KR curve.

To gauge how well the global optimal solution performs over time against the local
optimal solution, we plot daily YTM RMSEs of the two methods based on LOOCV
in Fig. 9. By construction, the local optimal errors are smaller than the global optimal
ones. The difference between the errors appears to be larger in the first half of the
sample. However, the magnitude is in the order of less than 5bps. Overall we find
that the global optimal solution matches closely the YTM RMSE of the local optimal
solution on a daily basis. There are no significant outliers in the differences in YTM
RMSE. This again speaks for the robustness and stability of our method, which is
based on global setting of baseline values for the hyperparameters.

Figure 9 also reveals some spikes of YTM RMSEs at the end of Q1 in 2020. This
is a period of extreme market turmoil due to the Corona virus. The online appendix
takes a closer look, showing that the spikes are due to outliers at the longer end of the
term structure.
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Fig. 8 Global vs local optimal hyperparameters for δ. The figure shows the local optimal values for δ over
time and the corresponding median. We show no mean due to the logarithmic scale. The black dashed lines
indicate the points in time where a new bond became available in the sample. Based on the long sample

Fig. 9 Global vs local optimal solution - LOOCV. The figure shows the out of sample (LOOCV) YTM
RMSE for the global optimal and local optimal hyperparameter values of the KR method. Based on the
long sample

4.4 Example days

To better understand the impact of different choices of values for the hyperparameter
λ, α and δ we plot on each example day the resulting yield curve as a function of
one hyperparameter. In each figure we set the non-varying hyperparameters to the
global optimal value found via LOOCV. Yield curves are shown up to 50 years.
This goes slightly beyond the longest available maturity on any day. The latter is
indicated with a vertical dashed red line. This representation is motivated as 50 years
is the maximal time to maturity available (on one single day) in the sample period
and FINMA provides yields up to 50 years for its SST curves. Figures10 details the
impact of different values for the hyperparameters.

Since λ acts as a smoothing parameter the larger the value the smoother the resulting
yield curve, see Figs. 10a, d, g and j. The optimal value of δ is found to be 0, so that the
smoothness penalty term only involves the second derivative of g in (3). It illustratively
shows the trade off between pricing error minimization and smoother curves in terms
of the norm ‖ · ‖α,δ .
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Figures 10b, e, h and k show the impact of varying α. Compared to λ, α affects the
curvemainly at longermaturities within the extrapolation range. This is also consistent
with the aforementioned link of α to the infinity maturity yield.

Figures 10c, f, i and l show the impact of varying δ. As describe above, the optimal
value for δ is 0 leading to smoother curves. A large value for δ assigns a larger weight
to the first derivative in (3). This results in more kinks and less smooth curves when
compared to smaller values of δ.

5 Comparison study

After the selection of the basemodel, we now compare the KRmethodwith the current
standard models in the Swiss market. We apply the same evaluation metrics defined in
Sect. 4.2 that were used to determine the optimal hyperparameters. First, we introduce
the most common benchmark methods in more detail. We then present a sophisticated
fitting error analysis, which clearly shows that our KR method performs best in all
criteria. We also compare the yield time series of the different methods, and look at
particular features on the example days across methods.

5.1 Benchmarkmethods

The current standard benchmark is from the SNB. The SNB itself fits aNelson–Siegel–
Svensson (hereafter referred to as NSS) yield curve

yN SS(x) = B0 + B1

(
1 − e

− x
T1

x
T1

)
+ B2

(
1 − e

− x
T1

x
T1

− e
− x

T1

)
+ B3

(
1 − e

− x
T2

x
T2

− e
− x

T2

)

and publishes estimated parameters B0, B1, B2, B3 and T1, T2 > 0 on a daily basis,
[20, 22]. A technical documentation regarding the estimation of these parameters was
also published in [2]. In short, the SNB uses a classical NSS [17, 25] with parameter
constraints to match the prevailing short rate rshort. Concretely, they set

B0 + B1 = rshort. (13)

Until the end of 2020, they set rshort to the LIBOR spot next, and as of 2021, they set
rshort to the SARON 1month-swap rate. This way, SNB creates an additional anchor
point at the short end of the yield curve, which is in contrast to the KR model.10 As
explained in Example 2.3, we could easily modify the KR method to include such an
anchor point as well. The resulting KR curves with SNB constraint are analyzed in
the appendix.

Below, we also compare to our own implementation of NSS, which we refer to
as “NSS”. We use a similar objective function for parameter estimation as in (2),∑

i ωi (Pi − P̂ N SS
i )2, where P̂ N SS

i is the implied price of security i using the esti-
mated NSS discount curve ĝN SS

t at time t . In this setting we use the duration weights

10 SNB also used the 3months, 6months, and 12months LIBOR as additional data points until the end of
2020, and the SARON 3months-swap rate instead of LIBOR from 2021 on.
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ωi to minimize the approximated YTM errors. We do not apply any constraint at
the short end of the yield curve for parameter estimation like the SNB. The NSS
curves are parsimonious parametric, and parameter estimation boils down to a highly
non-convex optimization problem. To guarantee numerical convergence in our NSS
implementation we use different standard solvers available, e.g., BFGS.

We also compare to our own implementation of the SST method as described in
Sect. 3.2, which we refer to as “SST”. In this way, we calculate daily SST curves as of
2012.We back tested and compared our own calculated SST curves with the published
annual FINMA SST curves, and we found that we can replicate the FINMA curves
exactly up to the basis point. Since the SST curves are known to have been biased
towards a relatively large UFR during the low interest regime, we do not report them
in all performance comparisons. We mainly include them to compare the shapes of
the resulting yield curves.

All metrics to compare KR, SNB, SST, and our own NSS, are calculated on a daily
basis. We distinguish between in- and out-of-sample errors. For the former, we use
all available data from the same day for estimation and evaluation. For the latter, we
estimate KR and NSS on any given day and take the available SNB NSS parameters.
Evaluation is then performed on the next following business day. The underlying
assumption is that the yield curve does not change significantly over the course of
one day. We use this procedure because for the SNB curves we only have access to
their estimated model parameters so that a cross-validation within the same day is not
feasible.

5.2 Fitting error

For the performance comparison, we use the YTM error, duration weighted error
and relative price error, which we introduced in Sect. 4.2. By definition the duration
weighted error should closely match the YTM error as a first order approximation.
This is confirmed in the results. In this section the SNBmethod is the only benchmark
method in scope. We use here the short sample to be as much aligned as possible to
the universe the SNB used while fitting their model parameters.

Figure 11 displays the aggregated errors by maturity bucket, both in- and out-of-
sample. On each day we split the available bonds into the corresponding maturity
buckets. The respective error of each bond is then assigned to this bucket. We perform
an average per day per bucket to derive a daily average error type per bucket. We
then average these daily averages over time to obtain aggregated numbers. As we can
see our KR estimates outperform the SNB in each maturity bucket for all error types
in- and out-of-sample. In-sample errors show a similar pattern as the out-of-sample
errors on a lower absolute level. As shown in Fig. 1, bond data for thematurity<1 year
bucket is very scarce. There are periods in the short sample during which this bucket
is empty.

We also provide the daily mean of the out-of-sample error for each bucket over
time in Fig. 12. This time series view confirms that the KR method is outperforming
the SNB consistently. There are no time periods in which KR would systematically
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Fig. 11 In- and out-of-sample error comparison. The figures show theYTMerror, durationweighted pricing
error and the relative pricing error per maturity bucket aggregated over time in bps. The first row shows
out-of-sample while the second row in-sample errors. Based on the short sample

underperform the SNB in any bucket. Similar results hold for the long sample, as
shown in the online appendix.

5.3 Yield time series

In this section, we study the time series of fixed points on the estimated yield curve
up to 30 years, which are within the maturity range that is covered by the bond data.
Below we also show the time series of yields with larger maturities. Note that very
short matured yields are mainly estimated from the coupon cash flows of the bonds as
we use the long sample. In contrast to the previous section we also include SST yields
in this comparison.

Figure 13 shows time series of the 1month, 1 year, 10 years and 30 years yield in the
left column. In the right column we show the rolling volatility of the yield estimates.

Let ŷt (x) = yĝt (x) denote the estimated yield with maturity x at time t derived from
the estimated discount curve ĝt . We then define the rolling volatility as square root of
the realized quadratic variation

σt (x) =
√√√√252

L

L−1∑
s=0

(
ŷt−s(x) − ŷt−s−1(x)

)2
,

where L refers to the lookback measured in business days (and we assume a year has
252 business days). Here we set L = 21, which is 1 month lookback.

For the 1month yield in Fig. 13a we see a large discrepancy between the KR and
the other two yields, which is due to missing short maturity bonds in the long sample
and the additional constraint imposed at the short end used by SNB (und thus inherited
by SST). Even for the two benchmark methods that use these additional anchor points
we see some questionable spikes, which get also fed through the rolling volatility
plot in Fig. 13b. A similar picture still emerges for the 1year yield in Fig. 13c and d.
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Fig. 13 Yield time series and rolling volatilities. The figures show the constant 1 month, 1 year, 10 years
and 30 years yield time series on the left hand side and the respective rolling volatility on the right hand
side. Based on the long sample

Remarkably, the KR yield estimates for 1month and 1 year are close to SNB and SST
in the second half of the sample, despite the fact that KR is based entirely on bonds
with maturities way beyond one year, which seems to indicate that bond and money
markets are integrated.

The longer dated yields, e.g., 10 years, in Fig. 13e and f, behave similarly across
methods. The same observation holds for the 30 years yield in Fig. 13g except for
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SST. This is not surprising because beyond its LLP of 15 years, the SST curve lies
systematically above KR and SNB during the low interest rate environment. This is
due to the exogenous choice of the UFR, which is larger than the market yields at the
long end. However, the repricing of the interest rate market towards the end of the
sample period is such that the gap almost disappears between KR, SNB and SST for
the 30 years yield in Fig. 13g. As a sanity check, we also observe that the SST yield
perfectly aligns SNB for the 1 year and 10 years point. The online appendix contains
the time series for additional maturities up to 40 years.

In summary, we find that the level and volatility of the yield time series of the KR
and SNBmethods are similar for maturities between 5 and 40 years. Beyond 40 years,
we see differences in the first part of the sample, before the introduction of the 50 years
bond in 2014. Moreover, no periodic pattern is observed in the level or volatility of
the yield time series. In particular, there are no visible year-end effects.

5.4 Example days

All estimation methods lead to smooth yield curves on the example days shown in
Fig. 14. On 2010-06-15 we can observe the additional short maturity bonds and the
constraint to match the prevailing short term rate (at that time it was CHF LIBOR) for
SNB. Upon availability the SST curves indirectly use this constraint, too. The input
parameter for the estimation of the SST curves are the estimated yields from the SNB.
Thus, by adding this short term rate constraint to the SNB it gets automatically feed
through SST. The KR method only uses coupon cash flows of longer maturity bonds
to estimate the discount curve on the short end in the long sample. However, it is
remarkable that already in 2014, where shorter maturity bonds were still missing, the
KR closely matches the SNB and SST curves below 10 years. It should be kept in
mind that no bond with maturity less than 1 year is available in the long sample before
2022. Thus, the existence of a bond in 2014 with time to maturity of approximately 8y
already increases the goodness of the fit (assuming the additional anchor points used
by the SNB are valid proxies to short term government bond yields). To some extent
this is almost an extrapolation exercise (only coupon cash flows are available) on the
short end of the curve. We have already observed this behaviour in Fig. 13.

Estimating the NSS parameters is a highly non-convex problem. In our own imple-
mentation of NSS we tested different standard solvers. We found that the estimates
depend significantly on the seeds of the optimizers.

To visualize this issue, we have included in Fig. 14 our own implementation of NSS.
We plot ten different curves, which result from slightly modified initial values of the
optimization algorithms. Concretely, we took the SNB NSS parameters prevailing at
that day and randomly perturbed each one by multiplying by exp (0.2 · Z), where Z
follows a standard normal distribution. The perturbed parameter values were entered
into the optimizer as initial values. The resulting curves are significantly spread for
maturities less than 10 years, and remarkably so at the long end for the first sample
day. In summary, we find that NSS curves are hardly reproducible, which is due the
non-convexity of the estimation problem.
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Fig. 14 Yield curve method comparison on example days. The four figures show the KR, SNB, NSS and
the SST curve where applicable for the example days. The grey lines are our own implementation of NSS
where we have slightly perturbed the initial values of the optimization algorithm (ten times). The vertical
dashed red line indicates the beginning of the extrapolation to the right. Based on the long sample

Figure 14c also shows a large discrepancy between the SST and the other curves at
the long end. This is due to the exogenous choice of theUFRduring the low interest rate
regime. At the end of the sample period, this gap has significantly narrowed as fixed
income markets have undergone an aggressive repricing of interest rates. Figure14
also confirms that the SST and SNB curves coincide at the maturity points 1 year, …,
10 years and 15 years, by construction, on all four example days. After the LLP of
15 years, the curves diverge quickly as the SST’s remaining anchor point is the UFR
while the KR and SNB curves are based on longer maturity bonds’ prices.

6 Extrapolation

So far we have focused on the time span up to 50 years. Duringmost of the long sample
period this is close to the longest maturity bond available in the sample universe. In this
section we examine the behaviour and comparison in the extrapolation range beyond
50 years. We sketch results up to 100 years, which may be of particular interest in
the actuarial science where, e.g., long-term liability cash flows need to be discounted.
Thus, a reliable and robust curve estimationmethod is of utmost importance. However,
any extrapolation of the Swiss discount curve is subject to great uncertainty, as the
longest maturity of Swiss government bond is less than 50 years. This is the case in
most comparable bond markets. Further below, we provide an outlook on ongoing
research that addresses the challenge of long-term extrapolation.
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Fig. 15 Longterm yield time series and rolling volatilities. The figures show the 50 years and 100 years
yield time series on the left hand side and the respective rolling volatility on the right hand side. The red
dash line indicates the issuance day of the Swiss government bond with longest maturity (2064-06-25).
Based on the long sample

6.1 Yield time series

To better understand the behaviour of extrapolated yields we extend the analysis of
Sect. 5.3. Here, we focus on yields that lie far in the extrapolation area, namely 50 years
and 100 years.

Figure 15 shows the time series of these yields and their 1 month rolling volatilities.
The yields in the left column once again show the artificially high UFR for the SST
curve. We observe large differences in the first part of the sample for absolute levels
and rolling volatility, prior to the introduction of the 50 years bond in June 2014. The
volatility of the KR yield time series drops significantly and KR and SNB yield levels
match closely after that date.

The time series of the SNB yield for 100 years exhibits some extreme spikes in late
2020 and early 2021, which are also captured by the rolling volatility. Figure16 takes
a closer look and shows the yield curves on some of these extreme days. The first row
includes the SST while the second omits it for better visualization. The SNB yield
curves are visibly downward biased in the extrapolation region, which is an artifact of
their rigid parametric form.

6.2 Example days

Figure 17 shows the impact of varying values of the hyperparameters λ, α and δ on
the extrapolated curves. These are extended plots from Fig. 10 for the same example
days. The effects described in Sect. 4.4 are magnified in the extrapolation region. In
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Fig. 16 Extreme SNB NSS forecast. The figures show the yield curves for the example days that lead to
the large increase in the rolling volatility for the 100 years yield for the SNB NSS in Fig. 15d. The first
row includes the SW SST curve while the second row only shows KR and SNB NSS to better visualize the
difference of the two. The vertical dashed red line indicates the beginning of the extrapolation to the right.
Based on the long sample

particular, the choice of α has a much more pronounced impact on the yield curve
beyond 50 years. Some of the extrapolated yield curves diverge. This is becauseKR is a
linear estimator of the discount curve, which can become negative in the extrapolation
region. The yield curve is a logarithmic transform of the discount curve and therefore
explodes when the discount curve approaches zero. The extrapolated curves behave
well for the last two example days, after the introduction of the 50 years bond in the
sample.

Figure 18 shows the extrapolated yield curves for all methods. These are extended
plots from Fig. 14. Also here, all effects described in Sect. 5.4 are magnified in the
extrapolation region. Notably, our own NSS curves exhibit a wide spread around the
SNB curve beyond 50 years. This again highlights the non-reproducibility of the NSS
estimates due to the critical non-robustness of the NSS method with respect to the
choice of initial parameters in the optimizer.

We conclude that none of the methods in scope can provide reliable and robust
extrapolations of the yield curve. Extrapolation is a choice and depends on additional
assumptions. Since many actuarial and other applications require yield curves with
horizons up to 100 years and beyond, we outline here two possible approaches to
obtain such extreme extrapolations.

The first approach is based on a multi-curve extension of the KR method. Hereby,
one jointly estimates the discount curves of several markets, including fixed income
markets with longer dated instruments. The method learns similarities between differ-
ent market curves, by regularizing their spreads, and thus provides additional anchor
points for specific markets (segments), where data quality is poor or not existing at
all. For example, the Austrian government bond market has a bond outstanding with
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Fig. 18 Yield curve method comparison on example days. The four figures show the KR, SNB, NSS and
the SST curve where applicable for the example days. The grey lines are our own implementation of NSS
where we have slightly perturbed the initial values of the optimization problem (ten times). The vertical
dashed red line indicates the beginning of the extrapolation to the right. Based on the long sample

a maturity of June 30, 2121.11 A joint estimation of the Swiss and Austrian discount
bond curves benefits the quality of the Swiss curve in the extrapolation region. Not
only other government bond markets can be used but also similar instrument markets,
e.g., swap markets. This is work in progress, see [3].

The second approach is based on a dynamic arbitrage-free interest rate model of
choice. In its simplest form, this could be a constant short rate rt ≡ r . A more flexible
and economically reasonable model is, e.g., the two-factor Gaussian affine model for
the short-rate process rt with stochastic mean-reversion level γt , as introduced and
estimated in [11]. The model parameters, say θ , can be efficiently estimated using a
past sample of bond data. Discount bond prices in this model are given in closed form
grt ,γt ,θ (x) depending on the prevailing values rt , γt and the parameter θ . We can then
extrapolate the KR curve g(x) beyond the last observed maturity xN by setting

gextra(x) = g(xN ) · grxN ,γxN ,θ (x − xN ), x > xN . (14)

Under the hypothetical assumption that the future values rxN , γxN are known today,
this extension yields an arbitrage-free and well-behaved discount curve for all x ≥ 0,
see [8, Section 2.2.3]. The model-based extrapolation (14) is fully transparent and
explainable. In fact, the role of the model parameters θ is well known. A plausible
choice of the future short rate is to set rxN = −g′(xN )/g(xN ) to be equal to the forward

11 Source: Bloomberg Finance L.P.
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Fig. 19 KR 3σ -confidence bands on example days. The figure shows yield curve estimates and confidence
bands (3σ ) based on theKRmethod. Resulting yields are drawn up to 50 years on the left and up to 100 years
on the right. The vertical dashed red line indicates the beginning of the extrapolation to the right. Based on
the long sample

rate implied by the KR curve at xN . This gives a smooth pasting such that gextra(x)
is twice weakly differentiable. The future mean-reversion state γxN can be set equal
to its risk-neutral mean-reversion level, which reflects risk-neutral stationarity. This is
work in progress.

123



Stripping the Swiss discount curve...

7 Statistical inference

There is a well known correspondence between kernel ridge regression and Gaus-
sian processes allowing for a Bayesian interpretation, see [10, Section 2.4] for more
details. Here we assume that the discount curve g is a Gaussian process with mean
function m : [0,∞) → R and covariance given by the kernel k. That is, g(x) ∼
N (

m(x), k(x, x�)
)
. We also assume that the pricing errors in (1) are independent

centered Gaussian random variables, ε ∼ N(0, �ε), with �ε = diag(σ 2
1 , . . . , σ 2

M ).
The posterior distribution of g given the observed prices P is again Gaussian with
posterior covariance function kpost given by

kpost(y, z) = k(y, z) − k(y, x�)C�(CKC� + �ε)−1Ck(x, z).

If the prior mean function is m(x) ≡ 0, and the pricing error variances equal σ 2
i =

λ/ωi , then the posterior mean function is equal to the KR estimate ĝ. We can now use
the posterior covariance function to compute confidence intervals around ĝ.

We illustrate this for the example days. Figure19 shows KR yield curves with
corresponding 3σ -confidence bands, along with the SNB and SST curves, with and
without extrapolation. The wide confidence bands indicate regions with scarce or
missing data (short end) and price dispersion (middle ranges). In fact, it is remarkable
how the KR method detects the range of missing data and adequately estimates a
confidence band. Extrapolation regions exhibit large uncertainty which is reflected
and quantified by the wide and expanding confidence bands. This uncertainty can
be drastically reduced by applying the multi-curve extension using debt markets that
exhibit longer dated bonds, see [3]. It is worth noting that SST curves sometimes lie
outside the 3σ -confidence bands, reflecting their bias towards the UFR.

8 Conclusion

An accurate and robust estimation of a discount curve is of vital importance for aca-
demic, industry, and regulatory purposes. The KRmethod developed in [10] proves to
satisfy all desirable characteristics of a preferred estimation method. (i) KR is simple
and fast to implement. The estimation boils down to a simple kernel ridge regression.
(ii) KR is transparent and reproducible. The kernel ridge regression admits a unique
solution, which is given closed form and linear in the data. (iii) KR is fully data-driven.
All hyperparameters are globally chosen by cross-validation. (iv) KR provides a pre-
cise representation of the term structure taking into account all market signals. It is
a fully flexible non-parametric method trading off between minimal the fitting error
and smoothness of the curve. (v) KR is robust to outliers and data selection choices.
Rewarding smoothness of the curve renders the estimates robust. (vi) KR is flexible
for integration of external views. The user can easily force single points of the curve
to match exogenously given yields, for example, at the short end or in the extrapola-
tion region. (vii) KR is consistent with finance principles. It reprices all fixed income
instruments based on the law of one price, and the smoothness of the curve is moti-
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vated by the economic principle of limits to excessive payoffs of trading strategies in
bonds with nearby maturities.

We apply theKRmethod to the Swiss government bondmarket.We find that theKR
method outperforms the SNB and SST benchmarks in all dimensions. Extrapolating
the yield curve beyond the observed maturity range remains an open challenge. We
propose two possible approaches, namelymulti-curve learning and dynamic stochastic
models, which will be the subject of future research.

This paper provides a technical input to the regulatory process to find a method to
improve the current insurance industry standard Smith–Wilson. It also offers itself as
a new method of choice for central banks.

I KR curves with SNB short end constraint

In this section, we analyze KR curves with the binding constraint that the implied
short rate of the estimated curve match the prevailing short rate rshort, as explained in
Example 2.3. Concretely, we apply the same constraint as used by the SNB curves,
which is encoded in the NSS parameters (13) whose values we retrieve from [20]. We
refer to the KR curves with this SNB type constraint as “KR–SNB” in the following.

Figure 20 shows that the out-of-sample fitting errors of KR–SNB curves are essen-
tially the same as for the unconstrained KR curves. In fact, a slightly larger error is
only observed in the first maturity bucket <1 year. This suggests that the KR curves
are very robust to local data perturbations.

This local robustness of the KR method is confirmed by the curves on the example
days shown in Fig. 21. In fact, KR–SNB and SNB curves coincide at the short end by
construction. This is particularly true for 2010-06-15, where the absence of short-dated
bonds was most pronounced, demonstrating the remarkable benefit of the additional
anchor point. The KR–SNB curves then quickly converge to the unconstrained KR
curves. Notably, the characteristic wiggles of the SNB and NSS curves in the <5 year
maturity range are not present in the KR–SNB curves. This suggests, once more, that
these wiggles are due to the functional rigidity of NSS and do not have any economic
content.12

The functional misspecification of the NSS curves also reveals itself at the long end.
Figure22, which corresponds to Fig. 16, shows that the KR–SNB curves coincide with
the unconstrained KR curves in the extrapolation range also on some specific days
where the SNB curves are ill-behaved.

Figure 23, which corresponds to Fig. 13, shows the time series of yields of vari-
ous maturities. It confirms that the KR–SNB curves interpolate the exogenous short
end with the unconstrained KR curves and the convergence takes place in the range
<10years. Notably, the 1 month yield time series of the KR–SNB curve is less spiky
than the one of the SNB curve. One notable exception is on the 15 January 2015, when
the SNB discontinued the minimum EUR/CHF exchange rate and lowered policy rate
to−75 bps. This economic shock is consequently also captured by theKR–SNB curve.

12 As mentioned in Sect. 5.1, SNB uses 3months, 6months, 12months LIBOR and SARON 3month-swap
rates, respectively, as additional data points, which we do not and which may partly explain the differences
between the SNB and KR–SNB curves in the <1 year maturity range.
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Fig. 21 Yield curve method comparison on example days. The four figures show the KR, KR–SNB and the
SNB curve for the example days. The vertical dashed red line indicates the beginning of the extrapolation
to the right. Based on the long sample

Fig. 22 Extreme SNBNSS forecast with SNB short end constraint. The figures show the yield curves for the
example days that lead to the large increase in the rolling volatility for the 100 years yield for the SNB NSS
in Fig. 15d. Here we include the KR–SNB constrained version, too. The vertical dashed red line indicates
the beginning of the extrapolation to the right. Based on the long sample

Another exception is on the 8 September 2010, when the SNB parameters B0 + B1
reported on [20] spike up by 70 bps, which might be a data error for which we could
not find any other explanation.

The short end constraint has an obvious impact on the confidence bands around the
KR–SNB curves. There is no uncertainty at the short end. Again it is remarkable how
the KR method adequately indicates the ranges of missing data. This is confirmed in
Fig. 24, which corresponds to Fig. 19.

In summary, we find the KR–SNB curves provide a valuable alternative to the
SNB curves, as they combine the short end constraint of the SNB method with all the
advantages of the KR method.
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Fig. 23 Yield time series and rolling volatilities with SNB short end constraint. The figures show the
constant 1months, 5years and 10years yield time series on the left hand side and the respective rolling
volatility on the right hand side. The vertical dashed red line indicates the beginning of the extrapolation to
the right. Based on the long sample
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Fig. 24 KR 3σ -confidence bands on example days with SNB short end constraint. The figure shows yield
curve estimates and confidence bands (3σ ) based on the KR–SNB method. Resulting yields are drawn up
to 50 years on the left and up to 100 years on the right. The vertical dashed red line indicates the beginning
of the extrapolation to the right. Based on the long sample
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