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A B S T R A C T 

Combining galaxy clustering information from regions of different environmental densities can help break cosmological 
parameter degeneracies and access non-Gaussian information from the density field that is not readily captured by the standard 

two-point correlation function (2PCF) analyses. Ho we ver, modelling these density-dependent statistics down to the non-linear 
regime has so far remained challenging. We present a simulation-based model that is able to capture the cosmological dependence 
of the full shape of the density-split clustering (DSC) statistics down to intra-halo scales. Our models are based on neural-network 

emulators that are trained on high-fidelity mock galaxy catalogues within an extended- � CDM framework, incorporating the 
effects of redshift-space, Alcock–Paczynski distortions, and models of the halo–galaxy connection. Our models reach sub- 
per cent lev el accurac y down to 1 h 

−1 Mpc and are robust against different choices of galaxy–halo connection modelling. 
When combined with the galaxy 2PCF, DSC can tighten the constraints on ω cdm 

, σ 8 , and n s by factors of 2.9, 1.9, and 2.1, 
respectively, compared to a 2PCF-only analysis. DSC additionally puts strong constraints on environment-based assembly bias 
parameters. 

Key words: cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he 3D clustering of galaxies contains a wealth of information about
he contents and evolution of the universe; from the properties of
he early universe to the nature of dark energy and dark matter,
nd to information on how galaxies form and evolve. Galaxy
lustering provided some of the first evidence of the accelerated
 E-mail: cuestalz@mit.edu 
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niverse (Maddox et al. 1990 ), helped establish the standard model
f cosmology through the detection of baryon acoustic oscillations
Perci v al et al. 2001 ; Cole et al. 2005 ; Eisenstein et al. 2005 ), and
as yielded accurate cosmological constraints (Anderson et al. 2014 ).
pcoming surv e ys such as DESI (DESI Collaboration 2016 ), Euclid

Laureijs et al. 2011 ), and Roman (Green et al. 2012 ) will probe
nprecedented volumes, enabling more stringent constraints that may
eveal inconsistencies challenging the standard cosmological model
r our understanding of how galaxies form and evolve. 
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The spatial distribution of galaxies is commonly summarized by 
ts two-point functions, the so-called two-point correlation function 
2PCF) or its Fourier space equi v alent, the po wer spectrum. For
 Gaussian random field, this compression would be lossless. As 
he distribution of density fluctuations evolves through gravitational 
ollapse, it becomes non-Gaussian: although o v erdensities can grow 

reely, underdensities are al w ays bounded from below, as the density
ontrast in regions devoid of matter can never go below δ = −1. As
 consequence, the density field develops significant skewness and 
urtosis, departing from Gaussianity (Einasto et al. 2021 ). 
The induced non-Gaussianity in galaxy clustering deems the 

orrelation function a lossy summary. For this reason, cosmologists 
av e dev eloped a wealth of summary statistics that may be able to
xtract more rele v ant information from the 3D clustering of galaxies.
xamples include the three-PCF (Slepian & Eisenstein 2017 ) or 
ispectrum (Gil-Mar ́ın et al. 2017 ; Sugiyama et al. 2019 ; Philcox &
vanov 2022 ), the four-PCF (Philcox, Hou & Slepian 2021 ) or
rispectrum (Gualdi, Gil-Mar ́ın & Verde 2021 ), counts-in-cells 
tatistics (Szapudi & Pan 2004 ; Klypin et al. 2018 ; Jamieson &
o v erde 2020 ; Uhlemann et al. 2020 ), non-linear transformations of

he density field (Neyrinck, Szapudi & Szalay 2009 ; Neyrinck 2011 ;
ang et al. 2011 , 2024 ), the separate universe approach (Chiang

t al. 2015 ), the marked power spectrum (Massara & Sheth 2018 ;
assara et al. 2023 ), the wavelet scattering transform (Valogiannis & 

v orkin 2022a , b ), v oid statistics (Hawken et al. 2020 ; Nadathur
t al. 2020 ; Correa et al. 2020 ; Woodfinden et al. 2022 ), k-nearest
eighbours (Banerjee & Abel 2020 ; Yuan, Zamora & Abel 2023b ),
nd other related statistics. Alternatively, one could a v oid the use
f summary statistics completely and attempt to perform inference 
t the field level (Lavaux, Jasche & Leclercq 2019 ; Schmidt 2021 ;
ai & Seljak 2022 , 2024 ). 
Ho we ver, utilizing these summary statistics has been limited by 

ur inability to model them analytically o v er a wide range of scales,
ifficulty compressing their high dimensionality, or due to a lack of
ccurate perturbation theory predictions or the difficulty in modelling 
he effect that observational systematics have on arbitrary summary 
tatistics (Yuan, Hadzhiyska & Abel 2023a ). This has now drastically 
hanged due to (i) advancements in simulations: we now can run 
arge suites of high-resolution simulations in cosmological volumes 
eRose et al. ( 2019 ); Nishimichi et al. ( 2019 ); Maksimova et al.

 2021 ), which enable us to forward model the relation between the
osmological parameters and the summary statistics with greater ac- 
uracy; and (ii) progress in machine learning techniques that allow us
o perform inference on any set of parameters, θ , given any summary
tatistic, s , provided we can forward model the relation s ( θ ) for a
mall set of θ values (Cranmer, Brehmer & Louppe 2020 ). Examples 
f the latter in cosmology are emulators, that model s ( θ ) mainly
hrough neural networks or Gaussian processes (Heitmann et al. 
009 ; DeRose et al. 2019 ; Zhai et al. 2023 ) and assume a Gaussian
ikelihood, or density estimators used to model directly the posterior 
istribution p ( θ | s ( x )) (Jeffrey, Alsing & Lanusse 2020 ; Hahn et al.
023 ) and make no assumptions about the likelihood’s distribution. 
While these adv ancements allo w us to constrain cosmology with 

emarkable accuracy, our primary focus extends beyond just finding 
he most informative summary statistics. We are interested in statis- 
ics that could lead to surprising results revising our understanding of
ow the universe formed and evolved. Notably, models beyond Ein- 
tein gravity that add degrees of freedom in the gravitational sector 
ust screen themselves from local tests of gravity, and can therefore 

nly deviate from general relativity in regions of low-density or low- 
ravitational potential (Joyce et al. 2015 ; Hou et al. 2023 ). Therefore,
urprises in this direction could be found in statistics that explore the
ependency of galaxy clustering to different density environments. 
oreo v er, previous work (Paillas et al. 2021 ; Bonnaire et al. 2022 ;

aillas et al. 2023b ) has demonstrated that these statistics also have
 large constraining power on the cosmological parameters. 

Although we have mentioned earlier that we can now run large
uites of simulations in cosmological volumes, this is only true for N -
ody, dark matter-only simulations. We still need a flexible and robust 
alaxy–dark matter connection model that allows us to populate dark 
atter simulations with realistic galaxy distributions. In this work, 
e employ halo occupation distribution (HOD) models, which use 

mpirical relations to describe the distribution of galaxies in a halo
ased on the halo’s mass and other secondary halo properties. In
articular, recent studies have found the halo local density to be a
ood tracer of dark matter halo secondary properties, both in hydro-
ynamical simulations (Hadzhiyska et al. 2020 ) and semi-analytical 
odels of galaxy formation (Xu, Zehavi & Contreras 2021 ). 
Here, we present a full-shape theory model for galaxy clustering 

n different density environments that can be used to infer the
osmological parameters from observations in a robust manner. In 
 companion paper (Paillas et al. 2023a ), we present the first cos-
ological constraints resulting from density-split clustering (DSC) 

sing the model presented in this manuscript that we apply to the
OSS DR12 CMASS data (Reid et al. 2016 ; Dawson et al. 2016 ). 
The paper is organized as follows. We define the observables and

ow we model them in Section 2 . In Section 3 , we demonstrate that
he model can accurately reco v er the parameters of interest in a range
f mock galaxy observations. We discuss our results and compare 
hem to previous findings in the literature in Section 4 . 

 A  SIMULATION-BA SED  M O D E L  F O R  

ENSITY-SPLIT  STATISTICS  

e are interested in modelling the connection between the cos- 
ological parameters, C, the additional parameters describing how 

alaxies populate the cosmic web of dark matter, G, and clustering as
 function of density environment, X 

obs . To solve the inverse problem
nd constrain C and G from data, we could use simulated samples
rawn from the joint distribution p( C, G, X 

obs ) to either, (i) model the
ikelihood of the observation p( X 

obs | C, G), subsequently sampling
ts posterior using Monte Carlo methods, or (ii) directly model the
osterior distribution p( C, G| X 

obs ), as demonstrated in Jeffrey et al.
 2020 ); Hahn et al. ( 2023 ), thus circumventing assumptions about
he likelihood’s functional form. Due to the Central Limit Theorem, 
e anticipate the likelihood of galaxy pair counts to approximate a
aussian distribution. In this section, we validate that this holds true

pecifically for density-split statistics and elucidate how simulations 
an model its mean and covariance. Additionally, modelling the 
ikelihood implies that we can use it as a measure of goodness-of-fit,
ary the priors of the analysis at will, and combine our constraints
ith those of other independent observables. 
In this section, we will proceed as follows: we begin by detailing

ur method for estimating density-dependent clustering. Subse- 
uently, we discuss our approach for simulating the observable for a
MASS-like mock galaxy sample. We conclude by introducing our 
eural network model of the observable’s likelihood. 

.1 The obser v ables 

.1.1 Two-point clustering 

he information contained on 3D galaxy maps is commonly summa- 
ized in terms of the 2PCF ξ gg ( r )(or the power spectrum in Fourier
pace), which measures the excess probability d P of finding a pair
MNRAS 531, 3336–3356 (2024) 
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f galaxies separated by a scale r within a volume d V , relative to an
nclustered Poisson distribution 

 P = n 
[
1 + ξ gg ( r ) 

]
d V , (1) 

here n denotes the mean galaxy density. While the spatial distribu-
ion of galaxies is isotropic in real space, there are two main sources
f distortions that induce anisotropies in the clustering measured
rom galaxy surv e ys: redshift-space distortions (RSDs) and Alcock–
aczynski (AP) distortions, which are dynamical and geometrical in
ature, respectively. 
RSDs arise when converting galaxy redshifts to distances ignoring

he peculiar motion of the galaxies. A pair of galaxies that is separated
y a vector r in real space, will instead appear separated by a vector
 in redshift space (to linear order in velocity): 

 = r + 

v · ˆ x 
a( z ) H ( z ) 

ˆ x , (2) 

here ̂  x is the unit vector associated with the observer’s line-of-sight,
 is the peculiar velocity of the galaxy, a ( z) is the scale factor, and
 ( z) is the Hubble parameter. 
AP distortions arise when the cosmology that is adopted to convert

ngles and redshifts to distances, denoted as fiducial cosmology,
iffers from the true cosmology of the universe. This effect is partially
egenerate with RSD. For close pairs, the true pair separation is
elated to the observed pair separation via the parameters q ⊥ 

and q � ,
hich distort the components of the pair separation across and along

he observer’s line-of-sight 

 ⊥ 

= q ⊥ 

r fid 
⊥ 

; r ‖ = q ‖ r fid 
‖ , (3) 

here the fid superscript represents the separations measured in the
ducial cosmology. The distortion parameters are given by 

 ‖ = 

D H ( z) 

D 

fid 
H ( z) 

; q ⊥ 

= 

D M 

( z) 

D 

fid 
M 

( z) 
, (4) 

here D M 

( z) and D H ( z) are the comoving angular diameter and
ubble distances to redshift z, respectively. 
Due to RSD and AP, the 2PCF is no longer isotropic but depends

n s , the pair separation, and μ, the cosine of the angle between the
alaxy pair separation vector and the mid-point line-of-sight. The
wo-dimensional correlation function can be decomposed in a series
f multipole moments 

	 ( s) = 

2 	 + 1 

2 

∫ 1 

−1 
d μ ξ (s , μ)P 	 ( μ) , (5) 

here P 	 is the 	 -th order Legendre polynomial. 

.1.2 DSC 

he density-split method (Paillas et al. 2023b ) characterizes galaxy
lustering in environments of different local densities. Instead of
alculating the two-point clustering of the whole galaxy sample
t once, one first splits a collection of randomly placed query
oints in different bins or ‘quantiles’, according to the local galaxy-
 v erdensity at their locations. The two-point clustering is then
alculated for each environment separately, and all this information
s then combined in a joint likelihood analysis. The algorithm can be
ummarized as follows: 

(i) Redshift-space galaxy positions are assigned to a rectangular
rid with a cell size R cell , and the o v erdensity field is estimated using
 cloud-in-cell interpolation scheme. The field is smoothed using a
aussian filter with radius R s , which is performed in Fourier space

or computational efficiency. 
NRAS 531, 3336–3356 (2024) 
(ii) A set of N query random points are divided into N Q density bins,
r quantiles, according to the o v erdensity measured at each point. 
(iii) Two summary statistics are calculated for each quantile: the

utocorrelation function (DS ACF) of the query points in each
uantile, and the cross-correlation function (DS CCF) between the
uantiles and the entire redshift-space galaxy field. These correlation
unctions are then decomposed into multipoles (equation ( 5 )). 

(iv) The collection of correlation functions of all quantiles but the
iddle-one, is combined in a joint data vector, which is then fitted

n a likelihood analysis to extract cosmological information. 

In Fig. 1 , we show the different density-split summary statistics
or five quantiles and R s = 10 h 

−1 Mpc , as measured in the ABA-
USSUMMIT simulations presented in Section 2.2.1 . Note that the
moothing scale can be varied depending on the average density of
racers in a given survey, here we restrict ourselves to a smoothing
cale appropriate for a CMASS-like surv e y. In the first column, we
how the CCF of the different density quantiles and the entire galaxy
ample. Abo v e, the amplitude of the different correlations reflects
he non-Gaussian nature of the density PDF: the most underdense
egions, Q 0 , are al w ays constrained from below as voids cannot be
mptier than empty ( δ = −1), meanwhile, dense regions, Q 4 , can go
ell beyond 1, breaking the symmetry of the correlations. Around

he scale of 100 h 

−1 Mpc we can distinguish the signal coming from
he baryon acoustic oscillations for all density quantiles, both for
he cross- and autocorrelations. Regarding the quadrupole moments,
he anisotropy found is a consequence of the RSD effect on the
alaxy positions, which also introduces an additional anisotropy
n the distribution of quantiles when these are identified using the
alaxy-redshift-space distribution, as shown in (Paillas et al. 2023b ).

.2 Forward modelling the galaxy obser v ables 

n this section, we will first present the suite of dark matter-only
 -body simulations used in this work to model the cosmological de-
endence of DSC, and will later present the galaxy–halo connection
odel we adopt to build CMASS-like mock galaxy catalogues. 

.2.1 The ABACUSSUMMIT simulations 

BACUSSUMMIT (Maksimova et al. 2021 ) is a suite of cosmological
 -body simulations that were run with the ABACUS N -body code

Garrison, Eisenstein & Pinto 2019 ; Garrison et al. 2021 ), designed
o meet and exceed the simulation requirements of DESI (Levi et al.
019 ). The base simulations follow the evolution of 6912 3 dark
atter particles in a (2 h 

−1 Gpc ) 3 volume, corresponding to a mass
esolution of 2 × 10 9 M �/h . 

In total, the suite spans 97 different cosmologies, with varying 

 = { ω cdm 

, ω b , σ8 , n s , d n s / d ln k, N eff , w 0 , w a } , (6) 

here ω cdm 

= 
c h 2 and 
b h 2 are the physical cold dark matter and
aryon densities, d n s /dln k is the running of the spectral tilt, N eff is the
f fecti ve number of ultra-relativistic species, w 0 is the present-day
ark energy equation-of-state, and w a captures the time evolution
f the dark energy equation-of-state. The simulations assume a flat
patial curvature, and the Hubble constant H 0 is calibrated to match
he Cosmic Microwave Background acoustic scale θ∗ to the Planck
018 measurement. 
In this study, we focus on the following subsets of the ABACUS-

UMMIT simulations: 

(i) c000 : Planck 2018 � CDM base cosmology (Planck
ollaboration 2020 ), corresponding to the mean of the
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Figure 1. A visualization of the DSC data vectors from the ABACUSSUMMIT simulations, along with emulator prediction at the parameter values of the 
simulation. The lowest density quantile is shown in blue, Q 0 , and the highest one in red, Q 4 . Markers and solid lines show the data vectors and the emulator 
predictions, respectively, whereas the shaded area represents the emulator predicted uncertainty. Left: multipoles of the quantile–galaxy CCFs. Middle: 
multipoles of the quantile ACFs. Right: multipoles of the 2PCF. The upper and lower panels show the monopole and quadrupole moments, respectively. 
We also display the difference between the model and the data, in units of the data error. Each colour corresponds to a different density quantile. https: 
// github.com/ florpi/ sunbird/ blob/ main/ paper figures/ emulator paper/ F1 data vectors.py 
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ase plikHM TTTEEE lowl lowE lensing likelihood. There are 25 
ndependent realizations of this cosmology. 

(ii) c001-004 : Secondary cosmologies, including a low ω cdm 

hoice (WMAP7, Komatsu et al. 2011 ), a wCDM choice, a high- N eff 

hoice, and a low- σ 8 choice. 
(iii) c013 : Cosmology that matches Euclid Flagship2 � CDM 

Castander et al., in preparation). 
(iv) c100-126 : A linear deri v ati ve grid that provides pairs

f simulations with small ne gativ e and positive steps in an 8D
osmological parameter space 

(v) c130-181: An emulator grid around the base cosmology 
hat provides a wider coverage of the cosmological parameter space. 
ote that all the simulations in the emulator grid have the same phase

eed. The parameter ranges in the emulator grid are shown in Table 1 .

Moreo v er, we use a smaller set of 1643 N -body simulations
enoted as ABACUSSMALL to estimate covariance matrices. These 
imulations are run with the same mass resolution as that of
BACUSSUMMIT in 500 h 

−1 Mpc boxes, with 1728 3 particles and 
arying phase seeds. 

Group finding is done on the fly, using a hybrid Friends-
f-Friends/Spherical Overdensity algorithm, dubbed CompaSO 

Hadzhiyska et al. 2021 ). We use dark matter halo catalogues from
napshots of the simulations at z = 0.5 and populate them with
alaxies using the extended HOD framework presented in Section 
.2.2 . 
.2.2 Modelling the galaxy–halo connection 

e model how galaxies populate the cosmic web of dark matter
sing the HOD framework, which populates dark matter haloes with 
alaxies in a probabilistic way, assuming that the expected number 
f galaxies in each halo correlates with some set of halo properties,
he main one being halo mass. 

In the base halo model (Zheng, Coil & Zehavi 2007 ), the average
umber of central galaxies in a halo of mass M is given by 

 N c 〉 ( M) = 

1 

2 

(
1 + erf 

(
log M − log M cut √ 

2 σ

))
, (7) 

here erf( x ) denotes the error function, M cut is the minimum mass
equired to host a central, and σ is the slope of the transition between
aving zero and one central galaxy. The average number of satellite
alaxies is given by 

 N s 〉 ( M) = 〈 N c 〉 ( M) 

(
M − κM cut 

M 1 

)
, α (8) 

here κM cut gives the minimum mass required to host a satellite,
 1 is the typical mass that hosts one satellite, and α is the power-

a w inde x for the number of galaxies. Note that these particular
unctional forms have been developed for the clustering of luminous 
ed galaxies (LRGs) and should be modified for other tracers such
s emission-line galaxies (ELGs). 
MNRAS 531, 3336–3356 (2024) 

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F1_data_vectors.py
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M

Table 1. Definitions and ranges of the cosmological and galaxy–halo connection parameters for the simulations used to train our emulator. 

Parameter Interpretation Prior range 

Cosmology ω cdm 

Physical cold dark matter density [0.103, 0.140] 
ω b Physical baryon density [0.0207, 0.024] 
σ 8 Amplitude of matter fluctuations in 8 h −1 Mpc spheres [0.687, 0.938] 
n s Spectral index of the primordial power spectrum [0.901, 1.025] 

d n s /dln k Running of the spectral index [ −0.038, 0.038] 
N eff Number of ultra-relativistic species [2.1902, 3.9022] 
w 0 Present-day dark energy equation-of-state [ −1.27, −0.70] 
w a Time evolution of the dark energy equation-of-state [ −0.628, 0.621] 

HOD M cut Minimum halo mass to host a central [12.4, 13.3] 
M 1 Typical halo mass to host one satellite [13.2, 14.4] 

log σ Slope of the transition from hosting zero to one central [ −3.0, 0.0] 
α Power-la w inde x for the mass dependence of the number of satellites [0.7, 1.5] 
κ Parameter that modulates the minimum halo mass to host a satellite [0.0, 1.5] 
αc Velocity bias for centrals [0.0, 0.5] 
αs Velocity bias for satellites [0.7, 1.3] 

B cen Environment-based assembly bias for centrals [ −0.5 0.5] 
B sat Environment-based assembly bias for satellites [ −1.0, 1.0] 
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Alternatively, one could model the connection between dark matter
aloes and galaxies through more complex models of galaxy forma-
ion such as semi-analytical models or hydrodynamical simulations.
n these scenarios, the simplified assumptions of HOD models whose
ccupation parameters solely depend on halo mass have been found
o break down. In particular, recent studies have found the halo
ocal density to be a good tracer of dark matter halo secondary
roperties that control galaxy occupation, both in hydrodynamical
imulations (Hadzhiyska et al. 2020 ) and semi-analytical models
f galaxy formation (Xu et al. 2021 ). There is ho we ver no direct
bserv ational e vidence of this ef fect so far, and we are interested
n using density-split statistics to more accurately constrain the role
hat environment plays in defining the halo–galaxy connection. 

In this work, we implement the HOD modelling using ABA-
USHOD (Yuan et al. 2021 ), which is a highly efficient PYTHON pack-
ge that contains a wide range of HOD variations. In ABACUSHOD ,
he environment-based secondary bias parameters, B cen and B sat ,
f fecti vely modulate the mass of a dark matter halo during the HOD
ssignment, so that it depends on the local matter o v erdensity δm 

log 10 M 

eff 
cut = log 10 M cut + B cen ( δm 

− 0 . 5) 

log 10 M 

eff 
1 = log 10 M 1 + B sat ( δm 

− 0 . 5) . (9) 

ere, δm is defined as the mass-density within a 5 h 

−1 Mpc top-hat
lter from the halo centre, without considering the halo itself. More
etails about the exact implementation of this extension can be found
n Yuan et al. ( 2021 ). 

Moreo v er, we include v elocity bias parameters to increase the flex-
bility of the model to describe the dynamics of galaxies within dark
atter haloes, that ultimately influence galaxy clustering through
SDs. There is in fact observational evidence pointing towards
entral galaxies having a larger velocity dispersion than their host
ark matter haloes (Guo et al. 2014 ; Yuan et al. 2021 ) for CMASS
alaxies (dominated by LRGs), evidence for other tracers is not
stablished yet. In the ABACUSHOD implementation, the positions
nd velocities of central galaxies are matched to the most-bound
article in the halo, whereas the satellites follow the positions and
elocities of randomly selected dark matter particles within the halo.
he velocity bias parameters, αvel, c and αvel, s , allo w for of fsets in

hese velocities, such that the centrals do not perfectly track the
elocity of the halo centre, and the satellites do not exactly match the
NRAS 531, 3336–3356 (2024) 
ark matter particle velocities. The exact velocity match is recovered
hen αvel, c = 0 and αvel, c = 1. 
The extended-HOD framework used in this study is then com-

rised of 9 parameters 

 = { M cut , M 1 , σ, α, κ, αvel , c , αvel , s , B cen , B sat } . (10) 

Note that we are here not including additional parameters that may
elp marginalize o v er the effect that baryons hav e on halo density
rofiles. Although this has been shown to be a small effect (Bose et al.
019 ), Yuan et al. ( 2021 ) presented an extended parametrization that
ould be use to marginalize o v er this effect. 

.2.3 Generating mock galaxy catalogues 

e generate a Latin hypercube with 8500 samples from the 9D HOD
arameter space defined in equation ( 10 ), with parameter ranges as
isted in Table 1 . Each of the 85 cosmologies is assigned 100 HOD
ariations from the Latin hypercube, which are then used to generate
ock galaxy catalogues using the ABACUSHOD . This number of
OD variations was chosen as a compromise between reducing

he emulator error and increasing the computational cost of these
easurements. In the future, we plan to develop a more efficient
OD sampling strategy to resample those HOD parameter values
here the emulator error is large. 
Our target galaxy sample is the DR12 BOSS CMASS galaxy

ample (Reid et al. 2016 ) at 0.45 < z < 0.6. If the resulting
umber density of an HOD catalogue is larger than the observed
umber density from CMASS, n gal ≈ 3 . 5 × 10 −4 ( h/ Mpc ) −3 , we
nvoke an incompleteness parameter f ic and randomly downsample
he catalogue to match the target number density. 

The resulting HOD catalogues consist of the real-space galaxy
ositions and velocities. Under the distant-observer approximation,
e map the positions of galaxies to redshift space by perturbing their

oordinates along the line of sight with their peculiar velocities along
he same direction (equation ( 2 )). For each mock catalogue, we build
hree redshift-space counterparts by adopting three different lines-of-
ight, taken to be the x , y , and z axes of the simulation, which can be
veraged out in the clustering analysis to increase the signal-to-noise
atio of the correlation functions (Smith et al. 2020 ). 

Since the end goal of our emulator is to be able to model galaxy
lustering from observations, we adopt the same fiducial cosmology
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s in our CMASS clustering measurements (Paillas et al. 2023a ) 

 cdm 

= 0 . 12 ω b = 0 . 02237 h = 0 . 6736 

σ8 = 0 . 807952 n s = 0 . 9649 , (11) 

nd infuse the mocks with the AP distortions that would be produced
f we were to analyse each mock with this choice of fiducial
osmology. We do so by scaling the galaxy positions 1 and the 
imulation box dimensions with the distortion parameters from 

quation ( 4 ), which depend on the adopted fiducial cosmology and
he true cosmology of each simulation. Since, in general, q ⊥ 

and q � 
an be different, the box geometry can become non-cubic, but it still
aintains the periodicity along the different axes. This is taken into 

ccount when calculating the clustering statistics, as explained in the 
urther section. 

.2.4 Generating the training sample 

e run the DSC pipeline on the HOD mocks using our publicly
vailable code 2 redshift-space-galaxy positions are mapped onto a 
ectangular grid of resolution R cell = 5 h 

−1 Mpc , smoothed with a
aussian kernel of width R s = 10 h 

−1 Mpc . The o v erdensity field 3 is
ampled at N query random locations, where N query is equal to five times
he number of galaxies in the box. We split the query positions into
ve quantiles according to the o v erdensity at each location. We plan

o explore the constraining power of the statistic based on different 
alues of the smoothing scale and the number of quantiles in future
ork. 
We measure the DS ACFs and CCFs of each DS quantile in bins

f μ and s using PYCORR , which is a wrapper around a modified
ersion of CORRFUNC (Sinha & Garrison 2020 ). We use 241 μ bins
rom −1 to 1, and radial bins of different widths depending on the
cale: 1 Mpc h –1 bins for 0 < s < 4 h 

−1 Mpc , 3 Mpc h –1 bins for 4 <
 < 30 h 

−1 Mpc , and 5 Mpc h –1 bins for 30 < s < 150 h 

−1 Mpc .
dditionally, we measure the galaxy 2PCF adopting these same 

ettings. All the correlation functions are then decomposed into their 
ultipole moments (equation ( 5 )). In this analysis, we decided to

mit the hexadecapole due to its low-signal-to-noise ratio, restricting 
he analysis to the monopole and quadrupole. The multipoles are 
nally averaged over the three lines-of-sight. 
Due to the addition of AP distortions, whenever the true cosmology 

f a mock does not match our fiducial cosmology, the boxes will have
on-cubic dimensions while still maintaining the periodicity along 
he three axes. Both the DENSITYSPLIT and PYCORR codes can handle 
on-cubic periodic boundary conditions. In the case of DENSITYSPLIT , 
e choose to keep the resolution of the rectangular grid fixed, so that
 cell = 5 h 

−1 Mpc remains fixed irrespectively of the box dimensions 
which, as a consequence, can change the number of cells that are
equired to span the different boxes). The smoothing scale R s is also
 These distortions would have been naturally produced if we had started 
rom galaxy catalogues in sky coordinates, and used our fiducial cosmology 
o convert them to comoving Cartesian coordinates. In our case, we have to 

anually distort the galaxy positions, since we are already starting from the 
omoving box. 
 https:// github.com/ epaillas/ densitysplit. 
 The galaxy o v erdensity in each grid cell depends on the number of galaxies 
n the cell, the average galaxy number density, and the total number of grid 
ells. As we are working with a rectangular box with periodic boundary 
onditions, the average galaxy number density can be calculated analytically, 
hich allows us to convert the galaxy number counts in each cell to an 
 v erdensity. When working with galaxy surv e ys, this has to be calculated 
sing random catalogues that match the surv e y window function. 

2  

n
l  

a
b
S  

D  

f

. 

 

024
ept fixed to 10 h 

−1 Mpc , but since the underlying galaxy positions
re AP-distorted, this mimics the scenario we would encounter in 
bservations, where we make a choice of smoothing kernel and 
pply it to the distorted galaxy-o v erdensity field. 

An example of the density-split summary statistics for c000 and 
ne of the sampled HOD parameters from the latin hypercube is
hown in Fig. 1 . 

.3 Defining the obser v able’s lik elihood 

he data vector for DSC is the concatenation of the monopole and
uadrupole of the ACFs and CCFs of quantiles Q 0 , Q 1 , Q 3 , and
 4 . In the case of the galaxy 2PCF, it is simply the concatenation
f the monopole and quadrupole. In Appendix A , we show that
he likelihood of these data vectors is well-approximated by a 
aussian distribution as also demonstrated in Paillas et al. ( 2023b ).
e therefore define the log-likelihood as 

log L ( X 

obs | C, G) = 

(
X 

obs − X 

theo ( C, G ) 
)

C 

−1 
(
X 

obs − X 

theo ( C, G ) 
)
 

, (12) 

here X 

obs is the observed data vector, X 

theo is the expected 
heoretical prediction dependent on C, the cosmological parameters, 
nd G, the parameters describing how galaxies populate the cosmic 
eb, referred to as galaxy bias parameters throughout this paper, 

nd C the theoretical covariance of the summary statistics. We will
ere assume that the covariance matrix is independent of C and G,
nd use simulations with varying random seeds to estimate it. This
ssumption has been shown to have a neglibible impact in parameter
stimation for two-point functions (Kodwani, Alsono & Ferreira 
019 ), although it will need to be revised as the statistical precision
f future surv e ys increases. 
In the following section, we demonstrate how we can use neural

etworks to model the mean relation between cosmological and HOD 

arameters and the density-split statistics in the generated galaxy 
ocks. 

.3.1 Emulating the mean with neural networks 

e split the suite of mocks of different cosmologies (and their
orresponding HOD variations) into training, validation, and test 
ets. We assign cosmologies c000 , c001 , c002 , c003 , c004 , and
013 to the test set, while 80 per cent of the remaining cosmologies
re randomly assigned to the training and 20 per cent to the validation
et. See Section 2.2.1 for the definition of the different cosmologies.

We construct separate neural-network emulators for the galaxy 
PCF, the DS ACF, and the DS CCF. The inputs to the neural
etwork are the cosmological and HOD parameters, normalized to 
ie between 0 and 1, and the outputs are the concatenated monopole
nd quadrupole of each correlation function, also normalized to be 
etween 0 and 1.We train fully connected neural networks with 
igmoid Linear Units as acti v ation functions (Elfwing, Uchibe &
oya 2018 ) and a ne gativ e Gaussian log-likelihood as the loss

unction 

L ( X | μpred ( C, G) , σpred ( C, G)) 

= 

1 

n 

n ∑ 

i= 1 

(
( X i − μpred ( C, G)) 2 

2 σpred ( C, G) 2 
+ log ( σpred ( C, G) 2 ) + 

1 

2 
log (2 π ) 

)

(13)
MNRAS 531, 3336–3356 (2024) 
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Where μpred ( C, G), the mean of the log likelihood, emulates the
heory predictions from the N -body simulations, σpred ( C, G) models
he network’s uncertainty in its prediction, and n is the batch size. 

We use the AdamW optimization algorithm to optimize the
eights of the neural network, together with a batch size of 256.

n contrast to Adam, AdamW includes L2 regularization to ensure
hat large weights are only allowed when they significantly reduce
he loss function. To further prevent overfitting, given the limited
ize of our data set, we also introduce a dropout factor (Sri v astav a
t al. 2014 ). Finally, to impro v e the model’s performance and reduce
raining time, we decrease the learning rate by a factor of 10 every
 epochs o v er which the validation loss does not impro v e, until the
inimum learning rate of 10 −6 is reached. 
We use Optuna 4 to find the hyperparameters of the neural network

hat produce the best validation loss. We optimize the following
yperparameters: learning rate, weight decay controlling the strength
f L2 regularization, number of layers, number of hidden units in each
ayer, and the dropout rate, o v er 200 trials. More details related to
he neural network architecture and its optimization can be found on
ur GitHub repository. 5 

In Section 3 , we present an e xtensiv e validation of the emulator’s
ccuracy. 

.3.2 Estimating the covariance matrix 

he likelihood function in equation ( 12 ) requires defining the data
 ector, e xpected theoretical mean, and covariance matrix of the
ummary statistics. The total covariance matrix includes contribu-
ions from three sources (i) the intrinsic error of the emulator in
eproducing simulations with identical phases to those of the training
et ( C emu ); (ii) the error related to the difference between the fixed-
hase simulations used for training and the true ensemble mean
 C sim 

); and (iii) the error between the observational data and the
ean ( C data ) 

 = C data + C emu + C sim 

. (14) 

ecause the test sample is small and co v ers a range of cosmologies, to
stimate the contribution from the emulator’s error to the covariance
atrix, we are limited to either assume a diagonal covariance matrix
hose diagonal elements are the emulator’s predicted uncertainties

s a function of cosmological and HOD parameters, σpred ( C, G), or
e can estimate the emulator error from the test set simulations

nd ignore its parameter dependence. For the latter, we compute the
ifference between measurements from the test set and the emulator
redictions, � X = X 

emu − X 

test , and we estimate a covariance matrix
s 

 emu = 

1 

n test − 1 

n test ∑ 

k= 1 

(
� X k − � X k 

) (
� X k − � X k 

)
 

, (15) 

here the o v erline denotes the mean across all 600 test set mocks. 
To estimate C sim 

, we do a χ2 minimization to choose an HOD
atalogue from the fiducial c000 cosmology that matches the
ensity-split multipoles measured from BOSS CMASS (Paillas
t al. 2023a ). We then use those HOD parameters to populate dark
atter haloes and measure the multipoles from multiple independent

ealizations of the small ABACUSSUMMIT boxes ran with different
NRAS 531, 3336–3356 (2024) 

 https:// github.com/ optuna/ optuna 
 https:// github.com/ florpi/ sunbird 

d  

w  

t  

p  

m

hases. The covariance is calculated as 

 sim 

= 

1 

n sim 

− 1 

n sim ∑ 

k= 1 

(
X 

sim 

k − X 

sim 

) (
X 

sim 

k − X 

sim 

)
 

, (16) 

here n sim 

= 1643. Each of these boxes is 500 h 

−1 Mpc on a side,
o we rescale the covariance by a factor of 1/64 to match the
2 h 

−1 Gpc ) 3 volume co v ered by the base simulations. See Howlett &
erci v al ( 2017 ) for an in-depth discussion on rescaling the covariance
atrix by volume factors. For a volume such as that of CMASS, the

ontribution of C sim 

will be almost negligible. Ho we ver, this will not
e true for larger data sets such as those from the upcoming DESI
alaxy surv e y (DESI Collaboration 2016 ). Alternativ ely, the phase
orrection routine introduced in appendix B of Yuan et al. ( 2022 )
ould be used to reduce this contribution. 

The calculation of C data depends on the sample that is used to
easure the data vector. In this work, we estimate it from multiple

ealizations of the small ABACUSSUMMIT boxes, in the same way
s we compute C sim 

. Thus, in the current setup, C data = C sim 

.
hen fitting real observ ations, ho we v er, C data would hav e to be

stimated from mocks that match the properties of the specific galaxy
ample that is being used, or using other methods such as jackknife
esampling. Importantly, the volume of ABACUSSUMMIT is much
arger than the volume of the CMASS galaxy sample that we are
argetting, and therefore we are providing a stringent test of our
mulator framework. 

In Fig. 2 , we show the correlation matrix for both data and
mulator. The full data vector, which combines DSC and the
alaxy 2PCF, is comprised by 648 bins. This results in covariance
atrices with 648 2 elements, showing significant (anti) correlations

etween the different components of the data vector. The horizontal
nd vertical black lines demarcate the contributions from different
ummary statistics. Starting from the bottom left, the first block
long the diagonal represents the multipoles of the DS CCF, for all
our quantiles. The second block corresponds to the DS ACF, and
he last block corresponds to the galaxy 2PCF. The non-diagonal
locks show the cross-covariance between these different summary
tatistics. 

 VA LI DATI NG  T H E  N E U R A L  N E T WO R K  

MULATO R  

n this section, we present an e xhaustiv e e v aluation of the emulator’s
ccuracy by, (i) assessing the network’s accuracy at reproducing the
est set multipoles, (ii) ensuring that the emulator reco v ers unbiased
osmological constraints when the test set is sampled from the same
istribution as the training set, (iii) testing the ability of the emulator
o reco v er unbiased cosmological constraints when applied to out-
f-distribution data. 

.1 Testing the accuracy of the emulated multipoles 

e first compare the multipoles measured from the test simulations
gainst the emulator predictions. Fig. 1 shows the density-split and
he 2PCF multipoles as measured from one of the HOD catalogues
orresponding to the c000 cosmology. The HOD catalogue is chosen
mong the prior samples to maximize the likelihood of the CMASS
ata set presented in Paillas et al. ( 2023a ). The model predictions,
hich are o v erplotted as solid lines, show e xcellent agreement with

he data on a wide range of scales. These theory lines are the emulator
rediction for the true cosmology and HOD parameters from the
ock catalogue. 

https://github.com/optuna/optuna
https://github.com/florpi/sunbird
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Figure 2. Correlation matrices of the data and model vectors in our clustering analysis. C data corresponds to errors associated with the sample variance of the 
data vector, while C emu is associated with the systematic or intrinsic error of the model due to an imperfect emulation. The black horizontal and vertical lines 
demarcate contributions from the three summary statistics included in the data vector: the density-split cross-correlations and ACFs, and the galaxy 2PCF (listed 
in the same order as they appear along the diagonal of the correlation matrices). 
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In the lower sub-panels, we compare the emulator accuracy 
o the data errors. In this paper, we want to present a strin-
ent test of the emulator and therefore compare its accuracy 
o that of the ABACUSSUMMIT simulations with a volume of 
2 h 

−1 Gpc) 3 , which is about 8 times larger than that of the
MASS galaxy sample we are targetting (Paillas et al. 2023a ). 
he data errors are estimated from the co variance box es of the
BACUSSMALL simulations and are rescaled to represent the ex- 
ected errors for a volume of (2 h 

−1 Gpc) 3 as explained in Sec-
ion 2.3.2 . In Fig. 1 , we show that the model prediction is

ostly within 1 σ of the data vector for this particular exam- 
le, for both multipoles, and cross-correlations and autocorrela- 
ions. 

For a quantitative assessment of the emulator accuracy in predict- 
ng multipoles o v er a range of cosmological parameters, we show in
ig. 3 the median absolute emulator error (taken to be the difference
etween the prediction and the test data), calculated across the entire 
est sample, in units of the data errors. The errors al w ays lie within
 σ of the errors of the data for all scales and summary statistics, and
eak at around the smoothing scale. 

In Appendix B , we show a similar version of this plot where
nstead of rescaling the vertical axis by the errors of the data, we
 xpress ev erything in terms of the fractional emulator error. While
he monopoles of all different density-split summary statistics are 
ccurate within 5 per cent, and mostly well within 1 per cent on 
mall scales, the quadrupoles tend to zero on very small scales, 
lowing up the fractional error. 
Among all the multipoles, the error is generally larger for the 
onopole of the DS CCFs. This is in part due to the sub-per cent

rrors on the data vector below scales of ∼ 40 h 

−1 Mpc , but also due
o the fact that the sharp transition of the CCFs below the smoothing
cale is o v erall harder to emulate. The DS autocorrelation emulator
rrors are almost al w ays within 1 σ of the data errors, with the
xception of the quadrupole of Q 5 . In Appendix Fig. B1 , we see
hat the emulator accuracy is at sub per cent level for the majority of
he summary statistics in the analysis. 
.1.1 Sensitivity to the different cosmological parameters 

fter corroborating that the emulator is sufficiently accurate, we 
 xplore the dependenc y of the different summary statistics with
espect to the input parameters through the use of deri v ati ves around
he fiducial Planck 18 cosmology (Planck Collaboration 2020 ). 

In Fig. 4 , we show the deri v ati ves of the quantile–galaxy cross-
orrelations for the different density environments with respect to the 
osmological parameters. In Appendix C , we show the corresponding 
eri v ati ves respect with respect to the HOD parameters, together
ith those of the quantile autocorrelations. These are estimated by 

omputing the gradient between the emulator’s output and its input 
hrough jax ’s autograd functionality 6 which reduces the errors that 
umerical deri v ati ve estimators can introduce. 
In the first column of Fig. 4 , we show that increasing ω cdm 

reduces
he amplitude of the cross-correlations for all quantiles, possibly 
ue to lowering the average halo bias. Increasing ω cdm 

also produces
hifts in the acoustic peak on large-scales for all quantiles. Moreo v er,
he effect on the quadrupole is to reduce its signal for the most
xtreme quantiles (note that the quadrupole of Q 0 is positive, whereas
hat of Q 4 is ne gativ e. Note that there are two different RSD effects
nfluencing the quadrupole: on one hand, identifying the density 
uantiles in redshift space introduces an anisotropy in the quantile 
istribution, as was shown in Paillas et al. ( 2023b ), and on the other
and, there will be an additional increase in anisotropy in the cross-
orrelations due to the RSD of the galaxies themselves. 

Regarding σ 8 , shown in the second column of Fig. 4 , the effect on
he monopoles is much smaller than that on the quadrupole due to
nhancing velocities and therefore increasing the anisotropy caused 
y RSD. 
Finally, the effect of n s on the monopole is similar to that of
 cdm 

, albeit without the shift at the acoustic scale. Interestingly, the
MNRAS 531, 3336–3356 (2024) 
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Figure 3. Median absolute emulator errors in units of the data errors, which are estimated for a volume of 2 h −1 Gpc. We show the monopole ACFs, quadrupole 
ACFs, monopole CCFs, and quadrupole CCFs in each row. The different density quantiles are shown in different colours. In Appendix B , we show that 
even though the emulator can be as far as 2 σ away from the data for the monopole of quantile–galaxy cross-correlations, these are sub per cent errors. 
https:// github.com/ florpi/ sunbird/ blob/ main/ paper figures/ emulator paper/ F3 emulator errors.py 

Figure 4. We show the sensitivity of the density-split statistics to each cosmological parameter by computing the deri v ati ves of the different quantile–galaxy 
cross-correlations with respect to the cosmological parameters. From left to right, we show the derivatives with respect to ω cdm 

, σ 8 , and n s , respectively. The 
upper panel shows the monopole deri v ati ves, whereas the lower panel shows the deri v ati ves of the quadrupole. We note that deri v ati ves are estimated via 
automatic differentiation, as opposed to finite dif ferences. Ho we ver, these can still be noisy if the data vector itself is noisy. At small scales, the shot noise that 
dominates the quadrupole measurements induces noise in the estimation of the deri v ati ves, which manifests itself as the sudden spikes on the smallest separation 
bins. https:// github.com/ florpi/ sunbird/ blob/ main/ paper figures/ emulator paper/ F4 deri v ati ves.py 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/3/3336/7689214 by EPF Lausanne user on 03 July 2024
NRAS 531, 3336–3356 (2024) 

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F3_emulator_errors.py
https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F4_derivatives.py
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Figure 5. Z-scores of the emulator uncertainty predictions, compared to 
a standard normal distribution, N (0 , 1), for the test set of the density- 
split cross-correlation functions. The emulator predicted uncertainty is o v er- 
confident, meaning that this predicting smaller uncertainties than those 
observed empirically on the test set. https:// https:// github.com/ florpi/ sunbird/ 
blob/ main/ paper figures/ emulator paper/ F5 zscores uncertainties.py 
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eri v ati ve of the quadrupole may change sign near the smoothing
cale. 

.1.2 Evaluating the uncertainty estimates 

hile the emulator offers precise mean predictions, its uncertainty 
stimations present challenges. Specifically, the uncertainty esti- 
ates, σpred ( C, G), derived from training the emulator to optimize the
aussian log-likelihood as per equation ( 13 ), tend to underestimate 

he true uncertainties. This underestimation is problematic as it might 
ntroduce biases in our derived cosmological parameter constraints. 

To illustrate this, we present the z-score of the emulator’s pre- 
ictions in Fig. 5 for the monopole and quadrupole of the DS

CFs, defined as z k = 

X emu 
k 

−X test 
k 

σ emu 
k 

. Given that the emulator errors are

odelled as Gaussian, the emulator uncertainties would be well- 
alibrated if the distribution of z k ’s followed a standard normal 
istribution. Fig. 5 shows that this is not the case, since the z-scores
how a variance larger than 1 by about a 15 per cent. One possible
eason for this discrepancy could be the limited size of our data
et. In the remainder of the paper, we will ignore the emulator’s
redicted uncertainties and quantify its errors by directly estimating 
hem from the test set instead, as described in equation ( 15 ). In the
uture, we aim to refine the calibration of uncertainty predictions for
imulation-based models. 

.2 Solving the inverse problem: reco v ering the cosmological 
arameters 

n this section, we focus on the inv erse problem, that is, reco v ering the
ocks’ true cosmological parameters from their summary statistics. 
e will show that the emulator can reco v er unbiased parameter

onstraints on the test ABACUSSUMMIT HOD catalogues, as well as on
 different N -body simulation with a galaxy–halo connection model 
hat is based on another prescription than HOD. We also demonstrate 
here the density-split information comes from by varying various 

hoices of settings in the inference analysis pipeline. 
.2.1 Recovery tests on ABACUSSUMMIT 

n this section, we show the results of using the emulator to infer
he combined set of cosmological and HOD parameters, a total of 17
arameters, on the test set we reserved from the ABACUSSUMMIT 

imulations, namely those mocks that were not used during the 
raining of the emulator. 

First, for each cosmology from the test set we select the mock
atalogue with HOD parameters that maximize the likelihood with 
espect to a realistic data vector, taken to be the observed density-
plit multipoles from the BOSS CMASS galaxy sample (Paillas 
t al. 2023a ), and infer the posterior of the cosmological and HOD
arameters for that particular sample. 
Since our model for the mock observables is differentiable, we can

ake advantage of the estimated derivatives to efficiently sample the 
osterior distributions through Hamiltonian Monte Carlo (HMC). 
MC utilizes the gradient information from differentiable models 

o guide the sampling process through Hamiltonian dynamics, 
nabling more efficient exploration of the posterior landscape. It 
ntroduces momentum variables and a Hamiltonian function to 
epresent the total energy, then follows the gradients to deter- 
inistically evolve the parameters over time while conserving the 
amiltonian. Here, we employ the NUTS sampler implementation 

rom NUMPYRO . We use flat prior ranges for the parameters that
atch those listed in Table 1 . Fitting one mock takes about 1 min on
 CPU. 
We first fit c000 , the baseline cosmology of ABACUSSUMMIT .

ig. 6 shows the posterior distribution of the cosmological parame- 
ers, marginalized o v er the HOD parameters. Density-split clustering, 
he galaxy 2PCF, and their combination reco v er unbiased constraints
ith the true cosmology of the simulation lying within the 68 per cent

onfidence region of the marginalized posterior of every parameter. 
ote that in particular density-split statistics contribute to breaking 

he strong de generac y between n s and ω cdm 

observed in the 2PCF.
n Table 2 , we show the resulting constraints for each of the three
ases tested. For the (2 h 

−1 Gpc ) 3 volume that is considered here, the
aseline analysis reco v ers a 2.6 per cent, 1.2 per cent, and 1.2 per cent
onstraint for ω cdm 

, σ 8 , and n s , respectively. These constraints are a
actor of about 2.9, 1.9, and 2.1 tighter than for the 2PCF, respectively.

oreo v er, the parameters N eff and w 0 are reco v ered with a precision
f 8 per cent and 4.9 per cent in the baseline analysis. These are in
urn a factor of about 2.5 and 1.9 times tighter than for the 2PCF.
n an idealized Fisher analysis using simulated dark matter haloes 
Paillas et al. 2023b ), we found similar expected improvements for
ll parameters but σ 8 , for which the Fisher analysis predicted a much
arger impro v ement. 

The posterior distribution of the HOD parameters, marginalized 
 v er cosmology, is shown in Appendix Fig. D1 . In particular,
ensity-split statistics can contribute to significantly tightening the 
onstraints on the environment-based assembly bias parameters, B cen 

nd B sat . We expect that reducing the smoothing scale used to estimate
ensities with future denser data sets would help us attain even
ighter constraints on these parameters that may lead to significant 
etections of the effect in such galaxy samples. Note that for this
articular sample some of the true HOD parameters are close to the
rior boundary. 
Moreo v er, in Fig. 7 we show the marginalized constraints on ω cdm 

nd σ 8 for four particular cosmologies in the test set that vary
hese two parameters. As before, the HOD parameters are chosen 
rom the prior for each cosmology to maximize the likelihood of
MASS data. These cosmologies are of particular interest since 

hey show that the model can reco v er lower and higher σ 8 values
MNRAS 531, 3336–3356 (2024) 

https://https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F5_zscores_uncertainties.py
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Figure 6. Reco v ery of ABACUSSUMMIT fiducial cosmology ( c000 ) for the set of HOD parameters that minimize the data χ2 error, after marginalizing o v er 
the HOD parameters. We show constraints from the 2PCF in green, Density-split statistics (Density-Split) in pink, and a combination of the two (2PCF 
+ Density-Split) in blue. https:// github.com/ florpi/ sunbird/ blob/ main/ paper figures/ emulator paper/ F6 cosmo inference c0.py 

t  

S  

W  

c  

t  

c
a

3

I  

s  

o  

i  

s

 

s  

n  

t  

s  

B  

g  

f  

s
 

f  

w
 

e  

r  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/3/3336/7689214 by EPF Lausanne user on 03 July 2024
han that of the fiducial Planck cosmology. The additional ABACUS-
UMMIT cosmologies that we are analysing are, c001 , based on
MAP9 + ACT + SPT LCDM constraints (Calabrese et al. 2017 ),
003 , a model with extra relativistic density ( N eff ) taken from

he base nnu plikHM TT lowl lowE Riess18 post BAO
hain of (Planck Collaboration 2020 ) which also has both high σ 8 

nd ω cdm 

, and c004 , a model with lower amplitude clustering σ 8 . 

.2.2 Exploring the information content 

n this section, we will delve deep into the effects that removing
ubsets of the data when analysing the fiducial cosmology c000 have
n the resulting parameter constraint to analyse what information
s being used to constrain each of the parameters. The results are
ummarized in Fig. 8 . 
NRAS 531, 3336–3356 (2024) 
Let us first examine how the constraints vary as a function of the
cales included in the analysis. Bear in mind ho we ver that we are
ot truly removing the small scales since the smoothing introduced
o estimate densities leaks information from small scales into all the
cales. In Fig. 8 , we sho w first the ef fect of analysing only from the
AO scale, s min = 80 h 

−1 Mpc . In that case, we still see significant
ains o v er the full-shape 2PCF. For most parameters, ho we ver, apart
rom n s , we find there is more information contained in the smaller
cales. 

Regarding the different quantiles, most of the information comes
rom the combination of void-like, Q 0 , and cluster-like, Q 4 , regions,
hereas the intermediate quantiles barely contribute. 
Moreo v er, we hav e e xamined the effect of remo ving the different

rror contributions on the covariance matrix. First, we show that
emoving the emulator error produces statistically consistent con-

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F6_cosmo_inference_c0.py
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Table 2. Parameter constraints from the galaxy two-point correlation (2PCF), DSC, and the baseline 
combination (2PCF + DSC) analyses. Each ro w sho ws the parameter name and the corresponding mean 
and 68 per cent confidence intervals. We note that the constraints on ω b are dominated by the prior used 
described in Table 1 . 

Parameter 
2PCF (68 per cent 

confidence interval) 
DSC (68 per cent 

confidence interval) 
2PCF + DSC (68 per cent 

confidence interval) 

Cosmology ω b – 0.02257 ± 0.00054 0.02242 ± 0.00050 

ω cdm 

0 . 1187 + 0 . 0077 
−0 . 010 0.1220 ± 0.0039 0.1225 ± 0.0032 

σ 8 0.815 ± 0.018 0.801 ± 0.011 0.8056 ± 0.0094 

n s 0 . 976 + 0 . 032 
−0 . 023 0 . 954 + 0 . 014 

−0 . 016 0.957 ± 0.012 

d n s /dln k −0 . 003 + 0 . 018 
−0 . 024 0 . 004 + 0 . 015 

−0 . 014 0.0074 ± 0.0090 

N eff 3.04 ± 0.40 3 . 06 + 0 . 22 
−0 . 20 3.13 ± 0.17 

w 0 −0 . 959 + 0 . 10 
−0 . 081 −0.974 ± 0.053 −0.992 ± 0.049 

w a < 0.0662 −0 . 17 + 0 . 22 
−0 . 26 −0.08 ± 0.22 

HOD log M 1 14.03 ± 0.15 13 . 94 + 0 . 17 
−0 . 11 14 . 01 + 0 . 12 

−0 . 098 

log M cut 12 . 588 + 0 . 066 
−0 . 11 12 . 621 + 0 . 097 

−0 . 12 12 . 581 + 0 . 047 
−0 . 060 

α 1 . 13 + 0 . 25 
−0 . 19 1 . 19 + 0 . 27 

−0 . 11 1 . 25 + 0 . 16 
−0 . 11 

αvel, c 0 . 375 + 0 . 069 
−0 . 054 0 . 286 + 0 . 17 

−0 . 089 0 . 390 + 0 . 039 
−0 . 033 

αvel, s > 1.05 1 . 08 + 0 . 18 
−0 . 10 1 . 09 + 0 . 11 

−0 . 090 

log σ −1 . 54 + 0 . 98 
−0 . 56 −1 . 61 + 0 . 64 

−0 . 48 −1 . 58 + 0 . 57 
−0 . 50 

κ −− − < 0.830 0 . 65 + 0 . 22 
−0 . 63 

B cen < −0.404 −0 . 336 + 0 . 059 
−0 . 14 −0 . 410 + 0 . 043 

−0 . 060 

B sat < −0.0339 −0.11 ± 0.36 −0.37 ± 0.28 

Figur e 7. Mar ginalized constraints from DSC on ω cdm 

, σ 8 , and n s , 
derived from fits to mock galaxy catalogues at 4 different cosmolo- 
gies from our test sample. The true cosmology of each mock is 
shown by the horizontal and vertical-dotted coloured lines. 2D contours 
show the 68 and 95 per cent confidence regions around the best fit 
values. https:// github.com/ florpi/ sunbird/ blob/ main/ paper figures/ emulator 
paper/F7 cosmo inference c0 c1 c3 c4.py 
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traints, but about a factor of 2 tighter for most parameters compared
o the baseline. As we will show in the further section, our estimated
ncertainties are designed to be conserv ati ve and therefore removing
he emulator error does not lead in this case to extremely biased
onstraints. In the future, we will work on developing training sets
nd models that can o v ercome this limitation and produce more
ccurate predictions on small scales. This could lead to major 
mpro v ements on the σ 8 constraints. 

Finally, we demonstrate that cross-correlations between quantiles 
nd galaxies (DS CCF) are on their own the most constraining
tatistic but there is a significant increase in constraining power 
btained when combining them with auto correlations for the 
arameters ω cdm 

, σ 8 , and n s . 

.2.3 Co vera g e probability test 

e can test the covariance matrix and likelihood using a co v erage
robability test. Using repeated experiments with true values drawn 
rom the Bayesian prior, we can test that the reco v ered values have the
orrect distribution within the likelihood using the chains sampling 
he posterior (Hermans et al. 2021 ). 

In simple terms, if you have a 95 per cent confidence interval
erived from the likelihood, the expected coverage is 95 per cent.
hat means that, theoretically, we expect that for 100 repeated trials,

he true value should fall within that interval 95 times. The empirical
o v erage is what you actually observe when you compare the rank
f the true value within the likelihood. Using the same 95 per cent
onfidence interval, if you applied this method to many samples and
ound that the true value was within the interval only 90 times out
f 100, then the empirical co v erage for that interval would be 90
er cent. 
MNRAS 531, 3336–3356 (2024) 

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F7_cosmo_inference_c0_c1_c3_c4.py
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M

Figur e 8. Mar ginalized constraints on ω cdm 

, σ 8 , n s , N eff , and B sat for different configurations in the inference analysis. Dots and error bars show the mean and 
the 68 per cent confidence interval of the parameters, respectively. The uppermost points show the baseline configuration, which consists of the combination 
of the monopole and quadrupole of the DS cross-correlation and autocorrelation functions for quantiles Q 0 , Q 1 , Q 3 , and Q 4 . https:// github.com/ florpi/ sunbird/ 
blob/ main/ paper figures/ emulator paper/ F8 whisk er.p y 

Figure 9. Comparison of the empirical co v erage for a given confidence 
le vel, sho wn in different colours for the different cosmological parameters, 
to the expected coverage, shown in grey. A perfectly calibrated model 
would follow the one-to-one diagonal. This diagonal has some associated 
error bars ho we ver, gi ven that we are only using 600 samples to estimate 
the co v erage, we quantify this by sampling 600 points from a uniform 

distribution and estimating its co v erage 30 times. These are the different 
grey lines plotted in the figure. https:// github.com/ florpi/ sunbird/ blob/ main/ 
paper figures/emulator paper/F9 posterior co v erage.py 
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We can use co v erage to verify that our covariance estimates are in-
eed conserv ati ve and that we are not subsequently underestimating
he uncertainties on the parameters of interest. Note that co v erage
s simply a measure of the accuracy of the uncertainties, and not
f its information content. We estimate the empirical co v erage of
ach parameter on the 600 test set samples of p ( θ , X ), extracted
rom six different values of the cosmological parameters and 100
if ferent HOD v alues for each of them. In Fig. 9 , we compare
he empirical co v erage to the expected one. For a perfectly well-
alibrated covariance, all should match up on the diagonal line. A
onserv ati ve estimator of the covariance and of the likelihood would
NRAS 531, 3336–3356 (2024) 
roduce curv es abo v e the diagonal, whereas o v erconfident error
stimation would generate curves underneath the diagonal line. Fig. 9
hows that we mostly produce conservative confidence intervals from
he likelihood, in particular for ω cdm 

, whereas confidence intervals
an be slightly o v erconfident for σ 8 although the deviation from the
iagonal line is close to the error expected from estimating coverage
n a small data set of only 600 examples. The HOD parameters are
ll very well-calibrated. 

.2.4 Recovery tests on Uchuu 

ne of the fundamental validation tests for our emulator is to ensure
hat we can reco v er unbiased cosmological constraints when applied
o mock catalogues based on a different N -body simulation, and using
 different galaxy–halo connection model. The latter is particularly
mportant since the HOD model used to train the emulator makes
trong assumptions about how galaxies populate dark matter haloes
nd its flexibility to model the data needs to be demonstrated. 

To this end, we test our model on the Uchuu simulations (Ishiyama
t al. 2021 ; Dong-P ́aez et al. 2024 ; Aung et al. 2023 ; Oogi et al.
023 ; Prada et al. 2023 ) and use mock galaxies that were created by
hai et al. ( 2023 ) using subhalo abundance matching (SHAM, e.g.
ravtsov et al. 2004 ; Vale & Ostriker 2006 ) to populate dark matter
aloes with galaxies. This model assigns galaxies to dark matter
aloes based on the assumption that the stellar mass or luminosity
f a galaxy is correlated with the properties of dark matter halo
r subhalo hosting this galaxy . Specifically , we use the method of
ehmann et al. ( 2017 ) to assign galaxies to dark matter haloes and
ubhaloes. In this method, the property used to rank haloes is a
ombination of the maximum circular velocity within the halo, v max ,
nd the virial velocity, v vir . This model also includes a certain amount
f galaxy assembly bias, further testing the flexibility of our HOD
odelling. 
Uchuu is a suite of cosmological N -body simulations that were

enerated with the GreeM code (Ishiyama, Fukushige & Makino
009 ) at the ATERUI II supercomputer in Japan. The main simulation
as a volume of (2 h 

−1 Gpc ) 3 , following the evolution of 2.1 trillion
ark matter particles with a mass resolution of 3 . 27 × 10 8 h 

−1 M �. It
s characterized by a fiducial cosmology 
m 

= 0.3089, 
b = 0.0486,
 = 0.6774, σ 8 = 0.8159, and n s = 0.9667. Dark matter haloes

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F8_whisker.py
https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F9_posterior_coverage.py
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Figur e 10. Mar ginalized posterior on the cosmological parameters when 
analysing the SHAM mocks based on the Uchuu simulations. We show the 
contours obtained when analysing only the 2PCF, compared to those found 
when analysing the combination of the 2PCF and density-split statistics. The 
true parameters that generated the mock are shown in grey. https://github. 
com/ florpi/ sunbird/ blob/ main/ paper figures/ emulator paper/ F10 uchuu.py 
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re identified using the ROCKSTAR halo finder (Behroozi, Conroy & 

echsler 2010 ), which is also different from the one implemented 
n ABACUSSUMMIT . 

Fig. 10 shows the resulting marginalized inference using our 
mulator for both the 2PCF, and the combination of density-split with 
he 2PCF. Note that the constraints on n s from the 2PCF are in this
ase completely prior dominated. We can ho we v er reco v er unbiased
onstraints, even for the stringent test case of a (2 h 

−1 Gpc ) 3 volume.

 DISCUSSION  A N D  C O N C L U S I O N S  

.1 Comparison with previous work 

.1.1 Analytical models of density dependent statistics 

imilar definitions of density-split statistics have been presented in 
eyrinck et al. ( 2018 ); Repp & Szapudi ( 2021 ). In Neyrinck et al.

 2018 ), the authors defined sliced correlation functions, by slicing 
he correlation function on local density. They have also presented 
 model with the Gaussian assumption. In Repp & Szapudi ( 2021 ),
he authors introduce indicator functions by identifying regions of 
 given density and computing the power spectrum in density bins.
his is essentially the F ourier v ersion of the DS ACF. Our analyses
ave included both the DS CCF and ACF, but finding that the CCF
arries most of the cosmological information. These statistics are all 
imilar in spirit. 

.1.2 Fisher 

n previous work, Paillas et al. ( 2023b ) showed with a Fisher analysis
he potential of density-split statistics to constrain cosmological 
arameters from dark matter halo statistics. Here, we have confirmed 
heir findings by modelling the density-split statistics explicitly as 
 function of the cosmological parameters, and including the halo–
alaxy connection to model the density-split statistics of galaxies. 

The impro v ed constraints o v er 2PCFs found here are of a similar
agnitude to those in Paillas et al. ( 2023b ) for all cosmological

arameters, but σ 8 , for which we find weaker constraints. More- 
 v er, we also find that the most extreme quantiles have a similar
onstraining power and that it is their combination that explains 
ost of the information content of density-split statistics. Finally, 
aillas et al. ( 2023b ) found that density-split statistics could break

mportant degeneracies between cosmological parameters that would 
ead to much tighter constraints on the sum of neutrino masses. This
s not something we could corroborate in this paper since variations
n neutrino mass are not included in the suite of simulations used in
his work, but we plan to work on this in the future by utilizing N -
ody simulations that can accurately simulate the effects of massive 
eutrinos in the large-scale structure (Elbers et al. 2021 ). 

.1.3 Cosmic voids 

ver the past decade, there has been renewed interest in using cosmic
oids to constrain cosmology (Pisani et al. 2019 ). They have been
ound to be amongst the most pristine probes of cosmology in terms
f how much information is preserved in linear theory at late times
Cai et al. 2016 ; Hamaus et al. 2017 ; Nadathur & Perci v al 2019 ).
o we ver, in practice, extracting cosmological information from 

oids has pro v en to be difficult from a purely perturbation theory
erspective mainly due to (i) void definitions being difficult to treat
nalytically and producing different results (Cautun et al. 2018 ), 
ii) identifying voids in redshift space adds additional anisotropy 
o the observed void–galaxy cross-correlation (Nadathur, Carter & 

erci v al 2019 ; Correa et al. 2020 ), a similar effect to that found
ere when estimating densities directly in redshift space, which 
s difficult to model analytically, and (iii) linear theory can only
ccurately model the mapping from real to redshift space, which 
eans we still require some way of estimating the real space void

rofiles. In this work, we have shown how emulators can fix all
f the abo v e-mentioned issues by forward modelling each of these
ffects. 

Moreo v er, we hav e sho wn here ho w although void–galaxy cross-
orrelations contain a wealth of information to constrain the cosmo- 
ogical parameters, it is their combination with o v erdense environ-

ents that would give us the tightest constraints. 

.1.4 The AEMULUS emulator 

elated to this work, Storey-Fisher et al. ( 2024 ) presented an emula-
ion framework based on the AEMULUS suite of cosmological N -body
imulations to accurately reproduce two-point galaxy clustering, the 
nderdensity probability function and the density-marked correlation 
unction on small scales (0 . 1 − 50 h 

−1 Mpc ). We confirm that includ-
ng summary statistics beyond two-point functions can impro v e the
osmological constraints significantly, even after marginalizing over 
he HOD parameters. Moreo v er , en vironment-based statistics could
ead to a significant detection of assembly bias. As opposed to the

arked correlations shown in Storey-Fisher et al. ( 2024 ), we estimate
ensities around random points spread o v er the surv e y volume which
etter samples underdensities in the cosmic web. In the future, it
ould be interesting to compare the density-split constraints to those 
f density-marked correlation functions, and perhaps the findings in 
his paper on what environments are most constraining can inform 

he shape of the mark function used. 
MNRAS 531, 3336–3356 (2024) 

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F10_uchuu.py
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.2 Conclusions 

e have presented a new simulation-based model for DSC and
he galaxy 2PCF, based on mock galaxy catalogues from the

BACUSSUMMIT suite of simulations. These models allow us to
xtract information from the full-shape of the correlation functions on
 very broad scale range, 1 h 

−1 Mpc < s < 150 h 

−1 Mpc , including
edshift-space and AP distortions to constrain cosmology and deepen
ur understanding of how galaxies connect to their host dark
atter haloes. We have trained neural network surrogate models, or

mulators, which can generate accurate theory predictions for DSC
nd the galaxy 2PCF in a fraction of a second within an extended
� CDM parameter space. 
The galaxy–halo connection is modelled through an extended

OD framework, including a parametrization for velocity bias and
nvironment-based assembly bias, but the emulator is also validated
gainst simulations that use a SHAM framework and a different
 -body code to demonstrate the robustness of the method. We
ave shown that density-split statistics can extract information from
he non-Gaussian density field that is averaged out in the galaxy
PCF. 
Our emulators, which reach a sub-per cent level accuracy down

o 1 h 

−1 Mpc , are able to reco v er unbiased cosmological constraints
hen fitted against measurements from simulations of a (2 h 

−1 Gpc ) 3 

olume. The reco v ered parameter constraints are robust against
hoices in the HOD parametrization and scale cuts, and show
onsistency between the different clustering summary statistics. 

We find that density-split statistics can increase the constraining
ower of galaxy 2PCFs by factors of 2.9, 1.9, and 2.1 on the
osmological parameters ω cdm 

, σ 8 , and n s , respectiv ely. Moreo v er,
he precision on parameters N ur , and w 0 can be impro v ed by factors of
.5 and 1.9 with respect to the galaxy 2PCF. Finally, we find density-
plit statistics to be particularly constraining the environment-based
ssembly bias parameters. In a companion paper, we show how
ll these findings result on parameter constraints from the CMASS
ample of SDSS (Paillas et al. 2023a ). 

As we transition to the era of DESI, with its high-density galaxy
amples, particularly BGS, alternative summary statistics such as
ensity-split have a huge potential to not only increase the precision
n cosmological parameter constraints, but to deepen our under-
tanding of how galaxies connect to dark matter haloes. However,
his opportunity comes with challenges. The precision that DESI
romises requires that our theoretical frameworks are refined to an
nprecedented degree of accuracy. It is essential to address these
heoretical challenges to fully harness the potential of upcoming
bservational data sets in cosmological studies. 
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PPENDIX  A :  GAUSSIANITY  L I K E L I H O O D  

n this section, we check that the likelihood of DS statistics is dis-
ributed as multi v ariate Gaussian, follo wing the analysis in Friedrich
t al. ( 2021 ). We first compute the χ2 value of the summary statistic
easured in each of the fiducial simulations 

2 
i = 

(
d i ( s ) − d̄ ( s ) 

)
 

C 

−1 
(

d i ( s ) − d̄ ( s ) 
)
, (A1) 

here d i represents the value of the summary statistic for the i -th
ducial simulation e v aluated at the pair separation vector s , d̄ ( s ) is

he average of the summary statistic over all fiducial simulations at
he pair separation vector s , and C is the covariance matrix estimated
rom all the fiducial simulations. 

If the likelihood of the summary statistic is Gaussian-distributed,
he χ2 

i values should also follow a χ2 distribution with degrees of
reedom determined by the number of pair-separation bins. 

Furthermore, if the likelihood is Gaussian, the distribution of χ2 
i 

hould also be very close to that of sampling from a multi v ariate
NRAS 531, 3336–3356 (2024) 

igure A1. A qualitative assessment of the Gaussianity of the likelihoods for the 
right). The coloured histograms show the distribution of χ2 values, as measured
istribution with the same mean and covariance as the simulations (blue). The soli
umber of pair separation bins. https:// github.com/florpi/ sunbird/ blob/main/ paper 
aussian with a mean given by d̄ and the covariance measured from
he simulations. 

In Fig. A1 , we show how the 2PCF and DS statistics χ2 
i calculated

rom the ABACUSSMALL data follow a very similar χ2 distribution as
hat of the random samples generated from a multi v ariate Gaussian. 

PPENDI X  B:  FRAC TI ONA L  E R RO R S  

n this appendix, we present the emulator median fractional errors
or the different multipoles of each statistic, measured on the test
et simulations. Fig. B1 shows that the monopoles of all summary
tatistics are predicted well within 1 per cent for all statistics apart
rom Q 4 cross-correlations, where the errors get closer to 5 per cent.
egarding the quadrupole, the fractional errors blow up to do the
uadrupole approaching zero on small scales. Ho we ver, the eror on
arge-scales is well within 5 per cent. 
2PCF (left), DS galaxy cross-correlations (middle), and DS autocorrelations 
 from the ABACUSSMALL simulations (orange) and a multi v ariate Gaussian 
d line shows a theoretical χ2 distribution with degrees of freedom set to the 
figures/emulator paper/A1 gaussian likelihood.py 

3/3336/7689214 by EPF Lausanne user on 03 July 2024

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/A1_gaussian_likelihood.py
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Figure B1. Median absolute fractional errors of the emulator. We show the monopole A CFs, quadrupole A CFs, monopole CCFs, and quadrupole CCFs in 
each row, estimated from the test set simulations with varying cosmologies and HOD parameters. The different density quantiles are shown in different colours. 
https:// github.com/florpi/ sunbird/ blob/main/ paper figures/emulator paper/F3 emulator errors.py 
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PPENDIX  C :  EMULA  TO R  D E R I VA  TIVES  WI TH  

ESPECT  TO  T H E  C O S M O L O G I C A L  

A R A M E T E R S  

n this section, we showcase the cosmological dependence of the dif-
erent summary statistics by computing the deri v ati ve of the statistic
ith respect to the different cosmological and HOD parameters. 
In particular, we show the DS CCFs derivatives with respect to
ifferent HOD parameters in Fig. C1 . As expected, the impact of the
OD parameters is stronger on small scales. 
In Fig. C2 , we show the derivatives of the DS ACFs with respect

o the cosmological parameters. As seen on the first panel, changes
n ω cdm 

shift the BAO position of the different density quantiles.
oreo v er, Fig. C3 shows the derivatives of the same statistic with

espect to the HOD parameters. 
MNRAS 531, 3336–3356 (2024) 

https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F3_emulator_errors.py
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M

Figure C1. Deri v ati ves of the dif ferent quantile–galaxy cross-correlations with respect to the HOD parameters. From left to right, we show the deri v ati ves with 
respect to log M 1 , B cen and B sat , respectively. The upper panel shows the monopole derivatives, whereas the lower panel shows the derivatives of the quadrupole. 
https:// github.com/florpi/ sunbird/ blob/main/ paper figures/emulator paper/F4 deri vati ves.py 

Figure C2. Deri v ati ves of the dif ferent density-split autocorrelations with respect to the cosmological parameters. From left to right, we show the deri v ati ves 
with respect to ω cdm 

, σ 8 , and n s , respectively. The upper panel shows the monopole derivatives, whereas the lower panel shows the derivatives of the quadrupole. 
https:// github.com/florpi/ sunbird/ blob/main/ paper figures/emulator paper/F4 deri vati ves.py 
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https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F4_derivatives.py
https://github.com/florpi/sunbird/blob/main/paper_figures/emulator_paper/F4_derivatives.py
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Figure C3. Deri v ati ves of the dif ferent density-split autocorrelations with respect to the HOD parameters. From left to right, we sho w the deri v ati ves with 
respect to log M 1 , B cen , and B sat , respecti vely. The upper panel sho ws the monopole deri v ati ves, whereas the lo wer panel sho ws the deri v ati ves of the quadrupole. 
https:// github.com/florpi/ sunbird/ blob/main/ paper figures/emulator paper/F4 deri vati ves.py 
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PPENDIX  D :  C O N S T R A I N T S  O N  T H E  H O D  

A R A M E T E R S  

inally, in Fig. D1 , we present the constraints on the HOD parameters
btained by the different summary statistics after marginalizing 
 v er cosmology, for the ABACUSSUMMIT fiducial cosmology. We 
emonstrate that the combination of 2PCF and density-split does 
ndeed reco v er unbiased constraints. 

Although density-split does not provide stringent constraints on 
hose parameters that constrain the occupation of satellites (as 
xpected, due to the choice of a large smoothing scale), it can
onstrain the environment-based assembly bias parameters very 
ccurately in combination with the galaxy 2PCF. 
MNRAS 531, 3336–3356 (2024) 
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MNRAS 531, 3336–3356 (2024) 

Figure D1. Reco v ery of the ABACUSSUMMIT fiducial cosmology for the set of HOD parameters that minimize the data χ2 error, after marginalizing o v er the 
cosmological parameters. In green, we show the posterior distribution found when only using the galaxy 2PCF. In pink, we show those found with density-split 
statistics (CCFs and ACFs). In blue, we show the combination of density-split statistics and the 2PCF. https:// github.com/florpi/ sunbird/ blob/main/ paper figur 
es/emulator paper/F6 cosmo inference c0.py 
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