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We study the effects of exceptionally light QCD axions on the stellar configuration of white dwarfs. At
finite baryon density, the nonderivative coupling of the axion to nucleons displaces the axion from its in-
vacuum minimum, which implies a reduction of the nucleon mass. This dramatically alters the composition
of stellar remnants. In particular, the modifications of the mass-radius relationship of white dwarfs allow us
to probe large regions of unexplored parameter space without requiring that axions are dark matter.
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I. INTRODUCTION

Recent years have seen a resurgence of interest in the
physics of the QCD axion, driven by a thriving exper-
imental program in sync with a burst of novel theoretical
ideas. One instance is the possibility of relaxing the
standard relation between the axion potential and its
defining couplings to gluons. Arguably the most exciting
outcome of these models is the new set of signals they give
rise to beyond the canonical QCD-axion phenomena. Here
we present a novel implication associated with exception-
ally light QCD axions: white dwarfs (WDs) of a certain size
should not exist. This leads to novel bounds on the QCD
axion parameter space, Fig. 1.
We consider models of the QCD axion, a pseudoscalar

field ϕ with a coupling to gluons

L ¼ g2s
32π2

ϕ

f
GμνG̃

μν; ð1Þ

where gs is the strong coupling, f is the axion decay
constant, and Gμν is the gluon field strength. Below the
QCD scale the axion obtains the potential [1]

V ≃ −ϵm2
πf2π

�
cos

�
ϕ

f

�
− 1

�
; ð2Þ

where mπ ≃ 135 MeV is the pion mass and fπ ≃ 93 MeV
is the pion decay constant. A parameter ϵ ≤ 1 is introduced
to tune the axion lighter than naively expected [2]. For a
symmetry-based realization, see, e.g., [3–6], where note
that around the origin and at finite density, these models are
well parametrized by Eq. (2). While in the main text we
focus on the simple potential Eq. (2) , a full analysis and
discussion of the modifications due to the form of the ZN
axion potential [4] is presented in Appendix C. In vacuum,
the axion is stabilized at the origin, thereby solving the
strong CP problem.
The coupling to gluons, Eq. (1), also induces an isospin-

symmetric coupling to nucleons

L ≃ −σNN̄N

�
cos

�
ϕ

f

�
− 1

�
; ð3Þ

where σN ≃ 50 MeV is the pion-nucleon σ term. Together
with the observed mass, mN ≃ 939 MeV, this coupling can
be interpreted as an effective ϕ-dependent nucleon mass,
m�

NðϕÞ ≤ mN .
A finite nucleon number density, ρN ≡ hN̄γ0Ni, implies

a nonzero expectation value of hN̄Ni. In the nonrelativistic
limit, these two quantities are approximately equal,
ρN ≃ hN̄Ni.
Interestingly, a finite ρN can destabilize the axion from

its in-vacuum minimum as soon as σNhN̄Ni > ϵm2
πf2π , with

new minima appearing at �πf [2,7]. Furthermore, once
the axion sits in its new minimum, the neutron mass is
reduced by
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δmN ≃ 32 MeV

�
σN

50 MeV

�
: ð4Þ

Reducing the constituent mass acts as additional binding
energy in compact objects.
The sourcing of ϕ happens in nonrelativistic systems of

size R when

R≳ λϕ ≃ 104 km

�
f

1016 GeV

��
10−4 MeV3

ρN

�
1=2

; ð5Þ

where λϕ ∼m−1
ϕ ðρNÞ is the typical length scale of the axion

at finite density [2,8,9], see also Eq. (13). Typical WD
densities fall in the range ρWD ≃ ð10−4–1 MeVÞ3. This
implies that, for systems with a small characteristic length
scale, such as single nuclei, the axion remains stabilized
at ϕ ¼ 0 and therefore does not significantly affect forces
between nucleons.
However, for large and dense systems such as stellar

remnants, the sourcing of ϕ implies dramatic changes in
their composition and hence their mass-radius (M–R)
relation. A particularly clean and well-studied example

of stellar remnants are WDs. The modifications of their
M–R relation allow us to probe large regions in the light
axion parameter space. For an exploratory study of axions
and other particles influencing the stellar structure of
neutron stars in the same manner, see [9,10].

II. WHITE DWARF MASS-RADIUS RELATION

WDs balance the force of gravity with the degeneracy
pressure of electrons, while almost their entire mass comes
from light but nonrelativistic nuclei. Because of charge
neutrality, the number density of electrons is related to the
energy density of nucleons, εψ ≃ YemNρe, where Ye ¼
A=Z is the ratio of nucleons per electron. Since WDs are
composed of light nuclei, ranging from helium 4He to
magnesium 24Mg, the ratio of nucleons per electron is well
approximated by Ye ≃ 2, see also Fig. 2.

A. Noninteracting gas of electrons and nuclei

The equation of state (EOS) for a degenerate WD can be
described by a Fermi gas of noninteracting electrons
together with a gas of nuclei. For simplicity, we take
positively charged nonrelativistic nuclei, which we denote
by ψ, with twice the nucleon mass mψ ¼ 2mN . The
pressure is dominated by the electron contribution,
p ¼ pe þ pψ ≃ pe, while the nuclei constitute, to a good
approximation, the entire energy density, ε ¼ εe þ εψ ≃ εψ .

FIG. 1. Constraints and future projections on the axion param-
eter space for the ϵ model. Exclusions from modifications of the
white dwarf M–R relation are shown in red. Note that the WD
bound overlaps with bounds from the Sun in large parts of the
region (slightly darker red). The observation of WDs close to the
Chandrasekhar limit can further probe the parameter space until
the orange dashed line. The solid black line shows the QCD axion
with mϕf ¼ mπfπ . For reference, we plot f ¼ MP in gray.
Further bounds originate from the sourcing in the Sun [2] (blue)
and the gravitational wave signal of the neutron star binary
GW170817 [11] (violet), which we both adapted at large f
according to numerically inspired Oð1Þ factors, the supernova
1987A [12] (green), and black hole superradiance [13] (yellow).
We would furthermore like to note that the pulsar bound of [2]
goes away once all finite gradient effects are properly taken into
account (besides lying within a region that is strongly dependent
on the neutron star EOS) [9]. Finally, we show which parameters
lead to a new ground state accessible in neutron stars (dot-dashed
purple); for more details see [9].

FIG. 2. White dwarfM–R relation with light QCD axions. Free
Fermi gas of nuclei and electrons without an axion (black). The
upper and lower bands correspond to the constitutions of light
and more heavy nuclei, i.e., 4He which corresponds to Ye ¼ 2 and
56Fe corresponding to Ye ¼ 2.15, respectively, while the gray
shaded area corresponds to intermediate values. In orange we
show the two branches with an axion for ϵ ¼ 10−11 in the limit
RWD ≫ λϕ for Ye ¼ 2. The metastable branch follows the free
Fermi gas line at large radii, while the new ground state phase has
much smaller radii. Data points are taken from [14] (turquoise),
[15] (blue), [16] (pink), [17,18] (red), [19] (green), and [20]
(gray). One can clearly see the gap in the predicted M–R relation
that is incompatible with data.
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Because of charge neutrality, ρψ ¼ ρe ≡ ρ, we relate the
electron Fermi momentum to the energy density as
kF ¼ ð3π2εψ=YemNÞ1=3, and derive the EOS

pðεÞ ¼ 2

3

Z
kFðεÞ

0

d3k
ð2πÞ3

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p : ð6Þ

We work in the limit T → 0, which is justified since
T=μe ≪ 1 for typical WDs, where μe is the electron
chemical potential. Temperature shifts the M–R relation
up to higher masses, an effect most relevant for the largest
and most dilute WDs, see Refs. [19,21–26] as well as
Ref. [27] for a review.
The EOS completes the set of equations that describe

the balance between the electron degeneracy pressure
and gravity, the Tolman-Oppenheimer-Volkoff (TOV)
equations [28,29],

p0 ¼ −
GMε

r2

�
1þ p

ε

��
1 −

2GM
r

�
−1
�
1þ 4πr3p

M

�
; ð7aÞ

M0 ¼ 4πr2ε; ð7bÞ

whereG ¼ M−2
P is Newton’s constant,MðrÞ is the enclosed

mass, and all derivatives are taken with respect to the radial
coordinate. Solutions with varying central pressures lead to
a M–R relationship that agrees well with current data, as
shown in Fig. 2.

B. The axion WD system: A new
ground state

In the presence of the axion, the full system is described
by a free Fermi gas of electrons, an ideal gas of nuclei with
a ϕ-dependent mass [30], m�

ψðϕÞ ¼ 2m�
NðϕÞ, the gravita-

tional field gμν, and the axion ϕ. The gravitational field is
sourced by an energy-momentum tensor

Tμν ¼ Tψϕ
μν þ Tgrad

μν : ð8Þ

The first term takes the form of an ideal fluid, Tψϕ
μν ¼

Diagðε;−p;−p;−pÞ, with

pðϕ; ρÞ ¼ 2

3

Z
kFðρÞ

0

d3k
ð2πÞ3

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p − VðϕÞ; ð9Þ

εðϕ; ρÞ ¼ m�
ψðϕÞρþ εeðρÞ þ VðϕÞ; ð10Þ

where we neglected the subleading contributions to the
pressure pψðϕ; ρÞ ≪ peðρÞ. The second term in Eq. (8)
contains the contribution of the axion gradient

ðTgradÞμν ¼
ðϕ0Þ2
2

�
1 −

2GM
r

��
δμν − 2δμrδrν

�
: ð11Þ

Using Einstein’s and the scalar equations of motion, we
find the following set of coupled differential equations:

ϕ00
�
1 −

2GM
r

�
þ 2

r
ϕ0
�
1 −

GM
r

− 2πGr2ðε − pÞ
�
¼ ∂V

∂ϕ
þ ρ

∂m�
ψ ðϕÞ
∂ϕ

≡Uðϕ; ρÞ; ð12aÞ

p0 ¼ −
GMε

r2

�
1þ p

ε

��
1 −

2GM
r

�
−1
�
1þ 4πr3

M

�
pþ ðϕ0Þ2

2

	
1 −

2GM
r


��
− ϕ0Uðϕ; ρÞ; ð12bÞ

M0 ¼ 4πr2
�
εþ 1

2

�
1 −

2GM
r

�
ðϕ0Þ2

�
: ð12cÞ

Equation (12a) is the static axion equation of motion
coupled to gravity, while Eqs. (12b) and (12c) are the TOV
equations in the presence of an axion. Note that we recover
the ordinary TOVequations (7) in the limit ϕ ¼ 0. While it
is possible to numerically solve Eq. (12) using the shooting
method, there exists a limit in which these equations
simplify dramatically.
The displacement of the axion at sufficiently high

densities costs gradient energy and therefore it only occurs
if balanced by the gain in potential energy. This leads to the
typical scale on which the axion is displaced,

λϕðρÞ ≃
πfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðδmNρ − ϵm2
πf2π

p
Þ ; ð13Þ

to be evaluated at typical WD densities.
For RWD ≫ λϕ, the field essentially tracks the minimum

of the effective in-density potential on stellar scales and is
given by the solution to

Uðϕ; ρÞ ¼ 0: ð14Þ
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At the same time, the gradient terms in Eqs. (12b) and (12c)
are confined to a small transition shell, where the field does
not follow its minimum. However, this localized contribu-

tion is negligible as long as λϕ
RWD

δmN
mN

≪ 1, which is trivially
fulfilled in this case.
Therefore, for large systems, we can neglect the axion

gradient ϕ0 ≃ 0. As a result, Eq. (12) decouples to give the
regular TOVequations (7) in addition to Eq. (14). Note that
the latter is the same condition as the minimization of the
energy density εðϕ; ρÞ with respect to ϕ. Solutions ϕðρÞ
describe a thermodynamically stable EOS used to solve the
regular TOV equations.
Interestingly, if the axion is destabilized in a WD, the

energy per particle of the light nuclei εðρÞ=ρ is not mini-
mized when the nuclei are infinitely separated (ρ → 0), but
rather at some finite density ρ�, which can be found
numerically. This implies the existence of an energetically
favored state of matter at ρ�, where the axion is at
hϕi ¼ �πf. This new ground state is, in fact, reminiscent
to strange quark matter [31]. Note that the density of the
new ground state is slightly larger than the density at which
the destabilization occurs, ρ� > ρc ≡ ϵm2

πf2π=2σN .
For low densities ρ < ρc, matter is in a metastable state

where the classical sourcing of the axion is not preferable.
Once hϕi ¼ �πf, there is a range ρc < ρ < ρ�, where the
energy per particle decreases ∂ρðεðρÞ=ρÞ < 0, implying a
negative pressure. At densities slightly above ρc, the total
pressure turns negative due to the onset of the axion
potential p ¼ pe − V < 0. As ρ increases, V stays constant
while pe increases, until finally the system stabilizes at
p ¼ peðρ�Þ − V ¼ 0, see Fig. 3. In this unstable phase, the
system contracts until it stabilizes in the new ground state.
This instability leads to a “gap” in the predicted M–R

relationship as seen in Fig. 2. The position of this gap is ϵ
dependent; the smaller ϵ is, the more the gap is shifted

toward small masses and large radii. We use the position of
this gap to probe the existence of light QCD axions.
Note that the simplified discussion above is only valid

for RWD ≫ λϕ. For RWD ∼ λϕ we numerically solve the full
coupled system in Eq. (12) and find that, for large values of
the axion decay constant f, and small ϵ, the position of the
gap is ϵ independent. This is understood as follows: on the
stable branch, the gradient pressure, which is controlled by
f, is relevant. If gravity is subdominant, this pressure fixes
the central density of the star, ρðr ¼ 0Þ > ρ�. The maximal
radius is then achieved when the gravitational pressure
equals the gradient pressure. For the metastable branch, the
minimum radius is set by R ∼ limϵ→0λϕ.
Finally, in the limit RWD ≪ λϕ, the gradient energy is so

large that the field cannot move away from its in-vacuum
minimum and therefore has no influence on the structure
of WDs.

C. Confrontation with observational data

There are large datasets available containing masses and
radii of WDs (see, e.g., [14–20,32–38]). However, not all of
these datasets can be used to probe the M–R relation. In
some catalogs (see [32–36]), the M–R relation is used as
an input to significantly reduce observational error. On the
other hand, there are sets (e.g., [14–20,37,38]) that sys-
tematically test the M–R relation using observational data.
While in [19] the determination of the mass and radius is
completely independent of WD models, most other works
depend on an atmospheric model to determine the radius.
Nevertheless, we combine the datasets [14–20] and show
them in Fig. 2.
The data of measured WD masses and radii are scattered

broadly between radii of 5000 and 40000 km, which
matches reasonably well with the free Fermi gas descrip-
tion. The notable deviation in mass found at large radii in
Fig. 2 is due to finite temperature effects; μe in these dilute
stars is typically smaller, increasing the relevance of T=μe
corrections. Finite temperature effects lead to modifications
of the EOS and to a slight modification of masses and radii,
but still predict a continuous M–R curve. The same holds
for other well-known corrections to the EOS, such as
different compositions, electrostatic corrections, or nuclear
reactions, see, e.g., Refs. [27,39]. While nuclear reactions
change in the sourced phase, e.g., due to a different mass of
the pions, this has negligible effect on the static structure of
white dwarfs [40,41].
We perform a simplified statistical analysis to determine

the compatibility of the observed WD radii with a gapped
radius distribution hypothesis (marginalizing over mass
and neglecting small theory systematics). We summarize
here its main results, with the full details given in
Appendix B. For the purpose of the analysis, we calculate
the position of the radius gap as a function of ϵ and f,
relying both on numerical results, as well as on numerically
verified analytical estimates. In the region f ≪ 109 GeV,

FIG. 3. The energy per particle ε=ρ as a function of number
density (left) and the EOS (right). At low densities ρ < ρc, the
system is in its metastable ϕ ¼ 0 phase (dark blue). For
ρc < ρ < ρ�, the system is unstable, i.e., p < 0 (dashed line
on left). At larger densities ρ� < ρ, the system is in its ϕ ¼ πf
phase (light blue), with a new ground state at ε�, where p ¼ 0.

REUVEN BALKIN et al. PHYS. REV. D 109, 095032 (2024)

095032-4



finite gradient effects are negligible with respect to the
position of the gap, making it f independent. For the
simplified model described in the main text, we are able to
exclude at the 2σ level the following interval in ϵ,

2 × 10−20 ≲ ϵ≲ 2 × 10−7 ð95% C:L:Þ; ð15Þ

see Fig. 1. On the other hand, for the ZN model, our
analysis (see Appendix C) leads to the exclusion of

33 ≤ N ≤ 69 ð95% C:L:Þ; ð16Þ

as shown in Fig. 12.
The upper limit is set by the smallest, most massive WDs

and our analysis effectively excludes all points in the axion
parameter space that cannot predict a WD with a radius
smaller than around ∼4000 km on the metastable branch.
The lower limit is sensitive to the largest, extremely low-
mass WDs [20]. For even lower values of ϵ, the stable
branch covers most of the range of observed radii. In this
case, although all the observed WDs are sourcing the scalar
field, the gap in radius is relegated to extremely large (and
potentially unpopulated) WD radii. Note, however, that this
region in parameter space is already ruled out by requiring
that no sourcing occurs in our Sun [2].
Conversely, in the region ϵ ≪ 10−20, or N ≫ 71, finite

gradient effects are dominant with respect to the position of
the gap, making it ϵ independent. Using solutions of the
coupled system, Eq. (12), we are able to exclude at the 2σ
level the following interval in f:

5.5 × 109 < f=GeV < 1.1 × 1016 ð95% C:L:Þ; ð17Þ

see Fig. 1. The upper value represents the limit in which
WDs are not large enough to source the scalar field,
i.e., λϕ ≳ RWD. In the region fϵ−1=3 ∼MP, in which both
gradient and finite ϵ effects are important, we verify
numerically that the sourcing stops at lower values of f.
Similar to the lower bound on ϵ, the lower bound on f is
sensitive to the largest, extremely low-massWDs.We stress
again that we do not expect our results to strongly depend
on finite temperature effects.

III. CONCLUSIONS

The mass-radius relationship of white dwarfs is well
understood and has been observationally tested with
increasing accuracy in recent years. We showed how light
QCD axions change the structure of WDs, thus predicting
the presence of a gap. We used existing data to place novel
bounds on their parameter space. We stress that the bounds
arising from the existence of a new ground state accessible
in white dwarfs, and the corresponding gap in radii, are
qualitatively very different than the strategy proposed in
Ref. [2], which relies on the change of the properties of

nuclei, and the corresponding change in x-ray emission,
when a (lighter) QCD axion is displaced to θ ¼ π [40].
The QCD axion generically predicts a nonderivative

coupling to nucleons. At finite baryon density this coupling
can destabilize the axion from its in-vacuum minimum. If
sourced, the nonzero axion expectation value reduces the
mass of nucleons. For a large region of the parameter space,
this leads to a new ground state of matter, which has less
energy per particle than infinitely separated nucleons. If
accessible in WDs, this drastically changes their M–R
relation. Since the axion is sourced by the WD, this does
not rely on the axion contributing to the dark matter relic
abundance.
More precise tests of the WD M–R curve using the

recent Gaia DR3 are expected in the near future and will
further probe the parameter space of light QCD axions.
As a consequence of the new ground state of matter, we

predict new small self-bound objects held together by the
gradient pressure of the axion. These objects could give rise
to novel signatures of exceptionally light QCD axions
down to the QCD-axion line.
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APPENDIX A: ANALYTIC ESTIMATES
FOR THE RADIUS GAP

We define p0 as the inward pointing pressure at the core
of a white dwarf as a sum of a gravitational and a gradient
contribution

p0 ≃ Δpgrav þ pgrad; ðA1Þ

with the gravitational pressure given by
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Δpgrav ¼
R2m2

Nρ
2
0

M2
P

; ðA2Þ

where ρ0 is the number density at the core (r ¼ 0). The
gradient pressure in the sourced phase (i.e., stars on the
stable branch) is given by

pgrad ¼

8><
>:

f2

Rλϕ
¼ f

ffiffiffiffiffiffiffiffiffiffi
δmNρR

p
R λϕ ≪ R

f2

R2 λϕ ∼ R
; ðA3Þ

where ρR is the number density at the edge
(r ¼ R − λϕ ≈ R) of the WD. The first line in Eq. (A3)
represents the thin wall limit λϕ ≪ R, in which the gradient
pressure is exerted at a small transition region at the edge
of the star. In the last step, we use the definition of the in-
medium wavelength of Eq. (13) assuming a negligible
contribution from the scalar potential and neglecting Oð1Þ
factors. The second line in Eq. (A3) is the opposite regime
λϕ ∼ R, where the gradient pressure is delocalized and is
spread throughout the star. This is the typical edge case
configuration in which the star is barely large enough to
source the axion. In the unsourced phase, i.e., stars on the
metastable branch, pgrad ¼ 0. See Ref. [9] for more details
on the derivation of Eqs. (A2) and (A3).
On the other hand, we define the outward pressure at the

core balancing p0, see Eq. (A1), as the contribution of the
electron gas and the scalar potential, which can be written
analytically in the nonrelativistic (NR) and ultrarelativistic
(UR) limits as

p0 ≃ −VðϕÞ þ peðρ0Þ; ðA4Þ

peðρ0Þ ≃
(
ρ5=30 =me ðNR ρ0 ≪ m3

eÞ
ρ4=30 ðUR ρ0 ≫ m3

eÞ
; ðA5Þ

where in the sourced phase we have by definition
VðϕÞ ¼ peðρ�Þ, while in the unsourced phase the scalar
potential vanishes VðϕÞ ¼ 0. Note that in Eqs. (A2), (A3),
and (A5), we work at leading order in δmN=mN ≪ 1 and
neglect Oð1Þ numerical prefactors.
Let us start by estimating the minimal radius on the

metastable branch, which we denote by Rmeta
min , and the maxi-

mal radius on the stable branch, which we denote by Rstable
max ,

in the negligible gradient regime, where Δpgrav ≫ pgrad. In
this limit, Rstable

max is the radius of the largest approximately
constant energy density configurations. Therefore, we esti-
mate it by setting ρ0 ≈ cρ� ≈ cϵ3=5ðmem2

πf2πÞ3=5, where
c ∼Oð1Þ, and solving for R. The contribution to the
pressure from VðϕÞ ¼ peðρ�Þ is neglected since it is at
most of the same order as peðρ0Þ and would therefore have
at most an Oð1Þ effect on the final result. We find

Rstable
max ðϵÞ ¼ MP

mNΛQCD

8<
:
�
ΛQCD

me

�
3=5

ϵ−1=10 ðNRÞ
ϵ−1=4 ðURÞ

; ðA6Þ

where for brevity we denoted m2
πf2π ≡ Λ4

QCD. We omit the
weak dependence on c, which amounts to an Oð1Þ pre-
factor. In the left panel of Fig. 4 we compare the analytic
estimates to the numeric results. We find that the NR
estimation is in excellent agreement with the numerical
results for ϵ≲ 10−13 (red curve). For larger values of ϵ,
the smaller minimal radii on the stable branch correspond
to denser configurations, where relativistic corrections

FIG. 4. Left: the ratio between the numerical results and the analytical estimates for the radii that correspond to the edges of the radius
gap, as a function of ϵ. In (dashed) red we plot the ratio for Rstable

max divided by the NR (UR) estimate given in Eq. (A6). In green we plot
the ratio for Rmeta

min , divided by the NR estimate give in Eq. (A7). In all cases we match theOð1Þ prefactors to the numerical results. Right:
the radius gap defined by Rstable

max (red) and Rmeta
min (green) as a function of ϵ. Solid curves indicate regions where numerical results are used,

while the dashed curve indicates where extrapolation (using the verified analytic estimates) is used. The gray region corresponds to the
observed radii range of WDs.
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become important. Thus, for ϵ≳ 10−11 the UR estimation
agrees with the numerical results (red dashed curve).
The edge of the metastable branch Rmeta

min is found by
taking ρ0 ≈ ρc ≈ ϵΛ4

QCD=ð2σNÞ and solving for R in the NR
approximation, resulting in

Rmeta
min ðϵÞ ¼

MP

mNΛQCD

�
σNΛ2

QCD

m3
e

�1=6

ϵ−1=6 ðNRÞ: ðA7Þ

A similar UR approximation is straightforward to derive.
However, it is only valid for R ≪ MP=ðmNmeÞ ∼ 5000 km,
which is outside our range of interest. In the left panel
of Fig. 4, we compare the analytic numerical results of
Rmeta
min ðϵÞ to the analytic estimate. We find good agreement

in most of the calculated region, namely, for ϵ≲ 10−9. For
larger values, relativistic corrections start becoming impor-
tant and the UR approximation begins to degrade.
The radius gap in the negligible gradient regime is

plotted in the right panel of Fig. 4 as a function of ϵ.
For the purpose of the analysis of Appendix B, solid curves
indicate the regions where we use our numerical results,
while dashed lines indicate regions where extrapolation,
based on the verified numerical estimate, is used. The gray
region corresponds to the observed radii range of WDs.
In the region of parameter space where ϵ is negligibly

small (to be determined below), the position of the radius
gap is determined by finite gradient effects. On one side,
the edge of the metastable branch indicates when a region
of size λϕ with above-critical density is formed, which leads
to an instability. On the other side, the largest configura-
tions on the stable branch are those in which the gravita-
tional pressure begins to dominate over the gradient
pressure exerted at the edge of the star [9].

First, we find Rstable
max for lower values of f where the thin-

wall approximation holds, by taking ρ0 ¼ ρR ≡ ρeq > ρ�,
where ρeq is found by solving ΔpgravðρeqÞ ¼ ΔpgravðρeqÞ
for ρeq. We than plug ρeq into Eq. (A1) and using the NR
approximation of Eq. (A5) solve for R and find

Rstable
max ðfÞ ¼

�
MP

mN

�
7=6
�

1

δm1=12
N f1=6m3=4

e

�
ðλϕ ≪ RÞ;

ðA8Þ

where we again neglect the contribution from VðϕÞ as an
Oð1Þ correction at most. We compare this estimate with the
numerical results in Fig. 5 (red curve). We find it is con-
sistent with the numerical results in the region f ≪
1015 GeV. Above these values of f, the thin-wall approxi-
mation breaks down and Rstable

max ðfÞ can be estimated using
the λϕ ∼ R expression for pgrav and the UR expression for
the electron pressure, which gives us

Rstable
max ðfÞ ¼ M2

P

m2
Nf

ðλϕ ≲ RÞ: ðA9Þ

We find this estimate consistent with the numerical results
in the region f ≫ 1015 GeV, see dashed curve in Fig. 5.
The edge of the metastable branch Rmeta

min is found by first
finding the critical density for which the whole size of the
star is of the order of the scalar in-medium wavelength,
namely, by solving λϕðρÞ ¼ f=

ffiffiffiffiffiffiffiffiffiffiffiffi
ρδmN

p ¼ R for ρ and
plugging the result in Eq. (A1) using the NR approximation
for the electron gas. We find

FIG. 5. Left: the ratio between the numerical results and the analytical estimates for the radii that correspond to the edges of the radius
gap, as a function of f. In solid and dashed red, we plot the ratio for Rstable

max divided by the NR and UR estimates given in Eqs. (A8) and
(A9), respectively. In green, we plot the ratio for Rmeta

min , divided by the NR estimate give in Eq. (A10). In all cases, we match the Oð1Þ
prefactors to the numerical results. Right: the radius gap defined by Rstable

max (red) and Rmeta
min (green) as a function of f. Solid curves indicate

regions where numerical results are used, while the dashed curve indicates where extrapolations (using the verified analytic estimates)
are used. The gray region corresponds to the observed radii range of WDs.

WHITE DWARFS AS A PROBE OF EXCEPTIONALLY LIGHT … PHYS. REV. D 109, 095032 (2024)

095032-7



Rmeta
min ðfÞ ¼

 
δm1=2

N M3
P

fm3=2
e m3

N

!
1=2

: ðA10Þ

We find this estimate consistent with the numerical results,
see green curve in Fig. 5. The deviations from the analytical
estimate at large value of f is expected, since for smaller
and denser stars relativistic corrections to the EOS become
increasingly larger.
To conclude, we note that, for the whole fϵ; fg plane, we

define the maximal radius of the gap as

Rmeta
min ðϵ; fÞ ¼ Min


Rmeta
min ðϵÞ; Rmeta

min ðfÞ
�
; ðA11Þ

where the two radii coincide Rmeta
min ðϵÞ ∼ Rmeta

min ðfÞ around
the curve defined by

fϵ−1=3 ≈
ffiffiffiffiffiffiffiffiffi
δmN

pffiffiffiffiffiffi
me

p
mN

�Λ4
QCD

σN

�1=3

MP ∼MP; ðA12Þ

using the NR estimations for both expressions. This defines
(a posteriori) the ranges of validity for the negligible
gradient and negligible ϵ approximations for the determi-
nation of Rmeta

min , e.g., the negligible gradient is a valid
approximation in the region of parameter space where
fϵ−1=3 ≪ MP. Around fϵ−1=3 ∼MP, we computed a
numerical solution using the appropriate fϵ; fg values
in order to obtain Rmeta

min ðϵ; fÞ. In a similar fashion, we
define for the whole fϵ; fg plane the minimal radius of the
gap as

Rstable
max ðϵ; fÞ ¼ Max


Rstable
max ðϵÞ; Rstable

max ðfÞ�; ðA13Þ

where the two radii coincide Rstable
max ðϵÞ ∼ Rstable

max ðfÞ around
the curve defined by

fϵ−3=5 ≈
Λ12=5
QCDMPffiffiffiffiffiffiffiffiffi

δmN
p

m9=10
e mN

∼ 20MP; ðA14Þ

using the NR estimations for both expressions. This defines
(a posteriori) the ranges of validity for the negligible
gradient and negligible ϵ approximations for the determi-
nation of Rstable

max .

APPENDIX B: STATISTICAL ANALYSIS
AND BOUNDS

The goal is to quantitatively determine how compatible are
the observed WD radii with a gapped distribution. Our
working assumption is that the variance in the observed
mass can be explained by varying other important properties
of WDs, such as temperature and composition, which for
simplicitywe kept fixed. Therefore, our focus is strictly on the
radius distribution, and in order to determine the bounds on ϵ
andf, we performa 1Dgoodness-of-fit test on the radius axis.
Given the central values from a combined dataset ofN ¼ 295
observedWD radii frig and their corresponding uncertainties
fσig [14–20], we calculate the sum of squares, which we
denote by χ, for each point in the fϵ; fg plane,

χðϵ; fÞ ¼
XN
i¼1

D2
ðriÞ; Rstable

max ðϵ; fÞ; Rmeta
min ðϵ; fÞ

�
σ2i

; ðB1Þ

with the distance function

D
ðriÞ; Rstable

max ðϵ; fÞ; Rmeta
min ðϵ; fÞ

� ¼
(
min


ri − Rstable

max ðϵ; fÞ; Rmeta
min ðϵ; fÞ − ri

�
; ri ∈


Rstable
max ðϵ; fÞ; Rmeta

min ðϵ; fÞ
�

0; otherwise
: ðB2Þ

We use the numerically calculated values for
fRstable

max ðϵ; fÞ; Rmeta
min ðϵ; fÞg where available and otherwise

use the verified analytical estimates as extrapolation; see
right panels of Figs. 4 and 5.
In Figs. 6 and 7, we plot the results of our statistical

analysis in the negligible gradient and negligible ϵ limits,
respectively. In the left panels, we plot χ normalized to the
effective number of degrees of freedom N − 1.
As a rough estimate, the range in which χ > 1 is

considered incompatible with the gapped radii distribution
hypothesis. A more refined statement can be made by
calculating the corresponding p values for each value of ϵ
of f, shown in the right panels of Figs. 6 and 7,
respectively. We are able to exclude at the 2σ level the
following interval in ϵ:

2 × 10−20 < ϵ < 2 × 10−7 ð95% C:L:Þ: ðB3Þ

We are able to exclude at the 2σ level the following interval
in f:

5.5 × 109 < f=GeV < 1.1 × 1016 ð95% C:L:Þ: ðB4Þ

APPENDIX C: ZN AXION

The potential of lighter than expected QCD axions due to
a ZN discrete symmetry reads, in the large N limit [4],

VN ðθÞ ¼ −m2
πf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z
1þ z

1

πN

r
zN ½cos ðN θÞ − 1�; ðC1Þ
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where N ≫ 1 is odd and z ¼ mu=md. The corresponding
axion mass reads

m2
a ¼

N 3=2zN
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ffiffiffi
π

p ð1þ zÞ
m2

πf2π
f2

: ðC2Þ

We can map the ZN axion to the potential in Eq. (2) by
requiring equal axion masses. We find the relation

ϵ ¼ 1ffiffiffi
π

p N 3=2zN−1ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
: ðC3Þ

While this relation fixes the axion mass to be the same in
both models, the value of the potential at θ ¼ π is different.
We find

VN ðπÞ ≃ 1

N 2
VðπÞ; ðC4Þ

where VðθÞ is the potential from Eq. (2). Clearly, there is a
large suppression for N ∼Oð10Þ, which is the scenario we
are interested in.
At finite density ρ ¼ k3F=3π

2, the potential for the ZN
axion is given by [4]

VN ðθ; ρÞ ¼ VN ðθÞ þ 2σπNρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βsin2

�
θ

2

�s
; ðC5Þ

where β ¼ 4z=ð1þ zÞ2. The critical density, at which
the minimum at the origin is destabilized, i.e.,
∂
2
θVN ð0; ρcÞ ¼ 0 is

ρc ¼
m2

πf2π
2
ffiffiffi
π

p
σπN

N 3=2zN−1ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; ðC6Þ

which matches the critical density for the potential in
Eq. (2), ρc ¼ ϵm2

πf2π=2σπN , with ϵ given by Eq. (C3).

FIG. 7. Left: χðfÞ, as defined in Eq. (B1) in the negligible ϵ limit, normalized to the effective number of degrees of freedom
N − 1 ¼ 294, as a function of f. Right: the p value as a function of f. For reference, we plot the 2σ threshold, equivalent to p ¼ 0.05, as
a gray dashed line.

FIG. 6. Left: χðϵÞ, as defined in Eq. (B1) in the negligible gradient limit, normalized to the effective number of degrees of freedom
N − 1 ¼ 294, as a function of ϵ. Right: the p value as a function of ϵ. For reference, we plot the 2σ threshold, equivalent to p ¼ 0.05, as a
gray dashed line.
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At densities below the critical density, VN ðθ; ρÞ has
ðN þ 1Þ=2 minima in the interval θ∈ ½0; π�, which we
label by k ¼ 1;…; ðN þ 1Þ=2.
At nonzero densities, minima with k > 1 have lower

energy than the minimum at θ ¼ 0 (or k ¼ 1), but get
destabilized at lower densities than the minimum at θ ¼ 0.
In particular, we would like to point out that θ ¼ π is
initially not the lowest energy configuration since it
remains a maximum for these intermediate densities, hence
it is not preferred over, e.g., θ ¼ ðN − 1Þπ=N . We solve
∂
2
θVN ðπ; ρπcÞ ¼ 0 and find that the density at which θ ¼ π
becomes the lowest energy configuration is

ρπc ¼
1 − z
1þ z

ρc: ðC7Þ

At densities ρπc ≤ ρ ≤ ρc, two minima exist, at θ ¼ 0 and
θ ¼ π, while at densities ρ > ρc the only remaining
minimum is at θ ¼ π.
We show an N ¼ 7 potential for zero and subcritical

densities in the left panel of Fig. 8. In the right panel, we
show solutions θðρÞ that sit in the ðN þ 1Þ=2 minima
between θ ¼ 0 and θ ¼ π for N ¼ 7.
In the negligible gradient limit, we can derive the EOS

as described in the main text, i.e., by solving Eq. (14).
At subcritical densities we find ðN þ 1Þ=2 independent
branches of the EOS, one for each metastable minimum.
The field value of θ increases with k and so does the
reduction of the mass. The lowest energy configuration is
therefore the branch that starts at θ ¼ ðN − 1Þπ=N at low
densities.
Solving the system for all branches of the EOS, we

generally find a qualitatively distinct behavior at small and
large values of N .

1. Small N

At small N , i.e., N ≤ 31, the electron Fermi pressure
dominates over the negative contribution from the poten-
tial, such that the total pressure stays positive. This is
because electrons become relativistic at the relevant den-
sities, since the lower the value of N , the larger the critical
density, see Eq. (C6).
Therefore, we do not find a gap in the EOS, which is

qualitatively different from what we found for the potential
in Eq. (2). We show the EOS, i.e., pðεÞ, in the left panel of
Fig. 9 for N ¼ 31. Note that the EOS for the branch that
sits closest to π (red curve) does not experience a thermo-
dynamic instability for any density, given that the pressure
stays a monotonically increasing function of the energy
density. Nevertheless, the onset of the nonzero potential
once the field starts to be displaced reduces the pressure
significantly, leading to a much softer EOS at large
densities than the EOS for θ ¼ 0.
In the zero gradient limit, theM–R curve is readily found

by solving the regular TOV equations (7) with the pre-
scribed EOS. As expected from the EOS, we find con-
tinuous M–R curves. For very low values of N , sourcing
happens only for the densest WDs. We show the family of
M–R branches in the right panel of Fig. 9 for N ¼ 31.
Even though the ðN − 1Þπ=N [i.e., k ¼ ðN þ 1Þ=2]

branch encounters an instability in the M–R curve at inter-
mediate radii (where ∂MWD=∂ρ0 < 0), the θ ¼ 0 branch
covers these radii.
Since we are agnostic about the formation mechanism of

the star, and thus of the branch it ends up after formation,
a χ2 in radii is not enough to exclude this prediction. In
principle, an exclusion might be possible for the highestN
in this regime, i.e., N ¼ 31. This requires a more sophis-
ticated statistical analysis than done for the gapped curve
and is beyond the scope of this work.

FIG. 8. Left: axion potential, Eq. (C5), for N ¼ 7, at zero density (blue), at finite density such that intermediate minima (at
θ ¼ 2π=7; θ ¼ 4π=7; θ ¼ 6π=7) are present (orange), and at a subcritical finite density such that the intermediate minima are
destabilized (green), see Eq. (C6). Right: θðρÞ forN ¼ 7. Rainbow color coding marks the solutions to the ð7þ 1Þ=2 ¼ 4minima from
the one closest to π (red) to the one at zero (violet). The dot-dashed and dashed gray lines correspond to ρπc and ρc, respectively.
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2. Large N

At large N , i.e., N ≥ 33, we find that the negative
contribution of the potential dominates over the electron
Fermi pressure. This implies a thermodynamic instability
and a gap in the EOS, associated with a new ground state
with density ρ� > ρπc. Contrary to the case of Eq. (2) (see
Fig. 3), this gap can be covered by the θ ¼ 0 branch. This is
because the θ ¼ ðN − 1Þπ=N minimum disappears (and
the one at θ ¼ π appears) before the minimum at θ ¼ 0 is
destabilized, as follows from Eq. (C7). In Fig. 10, for
N ¼ 33, it is shown that the region in which the instability
occurs is covered for all densities by the metastable (θ ¼ 0)
branch. For such N , the new ground state density ρ� lies
below the critical density, as can be seen in the left panel of
Fig. 10. For N ≥ 39, we find instead ρ� > ρc, a scenario
that parallels that discussed in the main text.

Analytic estimates for the density of the new ground
state can be found by solving

peðρ�Þ − VN ðπÞ ¼ 0; ðC8Þ

in the nonrelativistic and ultrarelativistic limit. To leading
order and neglecting Oð1Þ numbers, these are given by

ρ�NR ≃
�

zNffiffiffiffiffi
N

p
�

3=5

ðmem2
πf2πÞ3=5; kF ≪ me; ðC9Þ

ρ�UR ≃
�

zNffiffiffiffiffi
N

p
�

3=4

ðm2
πf2πÞ3=4; kF ≫ me: ðC10Þ

As we have seen from the EOS, for larger values of N
we find negative pressure phases in the ðN − 1Þπ=N

FIG. 10. Left: pressure as function of the energy density for N ¼ 33. The rainbow color coding marks the different branches of the
EOS for the ð33þ 1Þ=2 ¼ 17minima of θ with the ones closer to π being more red. Importantly, here the branch closest to π experiences
an instability. Right: M − R curves for N ¼ 33 in blue (SBO) and orange (metastable) and for the corresponding ϵ [Eq. (C3)] in green
(SBO) and red (metastable).

FIG. 9. Left: pressure as function of the energy density forN ¼ 31. Rainbow color coding marks the solutions to the ð31þ 1Þ=2 ¼ 17
minima from the one closes to π (most red) to the one at zero (most violet). The red curve never experiences negative pressure. While the
pressure decreases due to the displacement of θ from 30π=31, the Fermi pressure, due to electrons becoming relativistic, keeps the total
pressure positive. Right: M–R curves for N ¼ 31 in the same color coding.
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branch. We therefore expect constant density self-bound
objects (SBOs) and a gap in radii. In the left panel of
Fig. 10 we show the EOS for N ¼ 33, which is the lowest
N for which we find a new ground state (NGS). In the right
panel of Fig. 10 we show the correspondingM − R curves.
As can be seen, the NGS leads to SBO solutions, i.e., the
red curve that connects to MWD ¼ 0 and RWD ¼ 0. This
branch is disconnected by a gap in radii from the metastable
branches at larger radii.
In the left panel of Fig. 11 we show the gap in radii as a

function of N for N ≥ 33. In green, we show the minimal
radius of the metastable branch Rmeta

min , where for very large
radii we used the analytic estimate

Rmeta
min ≃ 104

�
2mNρc

106 g cm−3

�
−1=6

km; ðC11Þ

see, e.g., [39]. In red, we show the maximal radius of the
stable branch Rstable

max for which we use our numerical results
and a similar analytic estimate

Rstable
max ≃

MP

mN
ffiffiffiffiffiffi
me

p
�

1

ρ�NR

�
1=6

: ðC12Þ

In the right panel of Fig. 11 we show the results of the
χ2 analysis, described in Appendix B. As can be seen,

at the 95% confidence level, we are able to exclude
33 ≤ N ≤ 69.
Last, we expect gradient effects to be of similar impor-

tance as in the detailed study above for only one minimum.
Thus, we expect also for the ZN axion that the bound shuts
down similarly around f ∼ 1016 GeV. With an analogous
statistical analysis as done above, we come to a slightly
modified bound, as is shown in Fig. 12.

FIG. 11. Left: radius gap as a function of N . Gray shaded area marks radii populated by data. Right: χ2 values over data points in the
gap as a function of N .

FIG. 12. Constraints and future projections on the axion
parameter space for the ZN model. Same as in Fig. 1.
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