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Regional uniqueness of tree species
composition and response to forest loss and
climate change

Nina van Tiel 1,2 , Fabian Fopp 3,4, Philipp Brun 4, Johan van den Hoogen1,
Dirk Nikolaus Karger 5, Cecilia M. Casadei 6,7, Lisha Lyu3,4, Devis Tuia 2,
Niklaus E. Zimmermann 4, Thomas W. Crowther 1,8 & Loïc Pellissier 3,4,8

The conservation and restoration of forest ecosystems require detailed
knowledge of the native plant compositions. Here, we map global forest tree
composition and assess the impacts of historical forest cover loss and climate
change on trees. The global occupancy of 10,590 tree species reveals complex
taxonomic and phylogenetic gradients determining a local signature of tree
lineage assembly. Species occupancy analyses indicate that historical forest
loss has significantly restricted the potential suitable range of tree species in all
forest biomes. Nevertheless, tropical moist and boreal forest biomes display
the lowest level of range restriction and harbor extremely large ranged tree
species, albeit with a stark contrast in richness and composition. Climate
change simulations indicate that forest biomes are projected to differ in their
response to climate change, with the highest predicted species loss in tropical
dry and Mediterranean ecoregions. Our findings highlight the need for pre-
serving the remaining large forest biomeswhile regenerating degraded forests
in a way that provides resilience against climate change.

The UN Decade on Ecosystem restoration has begun to catalyze
interest in nature restoration, from the conservation andmanagement
of existing forests to the rejuvenation of ecosystems on degraded
lands1,2. Sustainable management offers an opportunity to address
biodiversity loss and climate change, and at the same time enhance
human well-being across the globe3. A key component in this global
effort is the conservation and restoration of forests, which represent
the largest repositories of biodiversity and carbon on land4,5 and are
associated with essential ecosystem services6. Earth is home to
~73,000 tree species7 and understanding the spatial distribution of
these species is a challenge to be tackled to guide regional to global

management policies. Conservation and restoration efforts should be
guided by solid information on species’ ecological preferences, taxo-
nomic and phylogenetic diversity, and ecosystem resistance to climate
change8.

The latest assessment indicates that at least 31% of all tree species
are threatened with extinction globally9. This loss of biodiversity has
far-reaching consequences10, and halting and reverting it requires the
identification of priority conservation areas to target regions of
greatest threat. The selection of such regions may consider different
facets of biodiversity, such as taxonomic, functional, and phylogenetic
diversity, in an effort to prevent the extinction of species, as well as
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unique branches of evolutionary history11,12. The strongest gradients in
tree species composition are often observed at the boundary between
major plant kingdoms following deep historical splits13, or between
juxtaposed biomes, such as between tropical and temperate forests14,
associated with rapid changes in climate, topography, and other
environmental conditions15. These major shifts in tree lineage com-
position are complemented by gradients of community composition
within biomes, influenced by a complex interplay of abiotic factors at
regional scales, suchas variations in freezing frequencies ormoisture16.
A better understanding of these gradients is not only important to
comprehend the conditions sustaining biodiversity hotspots but also
for conserving and restoring forest ecosystems and ensuring their
continued contribution to biodiversity and ecosystem services. A few
studies have investigated tree species composition at the global scale,
using only the location of observations to construct species’ ranges17

or to compute species richness18. Basing such analyses on habitat
suitabilitymapsmay allow a better estimate of diversity in regionswith
limited observational data. However, suitability-based investigations
of tree species composition have so far been limited to a relatively
small number of tree species or local to regional scales19,20. A global
high-resolution mapping effort would offer a picture of the main gra-
dients of taxonomic and phylogenetic composition in the forests from
local to global scales.

Establishing effective conservation targets requires a sound
understanding of the historical decline of species ranges associated
with habitat loss21. For instance, Hubbell et al. used neutral theory to
estimate how the decline of forest cover could have impacted tree
species diversity22. However, the distribution of tree species is regu-
lated by non-neutral ecological determinants23, and the consequence
of habitat loss could be informed by estimated species occupancy24. In
particular, species potential ranges can be matched with terrestrial
land cover tomap the species’ area of habitat (AOH, also known as the
extent of suitable habitat), which is considered a criterion for estab-
lishing species ranking on the IUCN red list25. However, in contrast to
vertebrates26, the estimated species ranges for trees are limited to
selected families27 or available at coarse resolution only17, which limits
assessments of the effect of habitat loss on tree diversity at the
regional scale. To overcome this challenge, machine learning can
support themapping of species’ habitat suitabilitywith high predictive
power28. Then, combining these maps with data on forest cover esti-
mated from remote sensing29,30 can provide insights into historical
range loss and, therefore, support management decisions for
conservation31.

The challenges of forest management are significantly com-
pounded by the rapid changes in climate32. As climatic conditions
change, the potential distribution of plant species will also shift33,34,
leading to changes in species composition14 and a potential decline in
provided ecosystem services35. Moreover, the response of species to
those changes can largely vary across regions, where some might
suffer more extinctions, while others might be able to track climate
change along latitude or elevation36. Thus, climate change-resilient
forest and ecosystemmanagement require an understanding of which
species have the potential to thrive under future climatic conditions.
However, predicting the potential distribution of tree species under
changing climate conditions is a major challenge asmodel predictions
incorporate various limitations and assumptions37,38. Nevertheless,
estimating future suitable ranges with statistical models remains a
scalable approach to gain insights into the effects of climate change
and inform conservation and restoration efforts.

The objective of this study is twofold: first, we estimated the
spatial distribution of a large number of tree species at the global level
at a 30-arc second resolution. We developed a cloud-based imple-
mentation of an environmental niche modeling pipeline with geo-
graphic dispersal constraints and over 26 million recorded
observations of trees from a broad compilation of databases (Table 1)

to generate range maps for 10,590 tree species for which we had at
least 90 occurrence records, which was found to be sufficient to train
models with good predictive performance. Subsequently, and beyond
the pure large-scale mapping effort, we used the predicted distribu-
tions to perform three analyses investigating the global distribution of
tree species. First, we inferred global gradients of species composition
and investigated the global variation of taxonomic and phylogenetic
forest composition. Second, by combining potential species occu-
pancy with tree cover data, we computed the reduction in species
ranges when constrained to current forest cover, therefore assessing
the impact of historical forest loss on species range reduction. Third,
using climate change simulations, we investigated the extent of spe-
cies turnover and shifts in latitude and elevation under projected cli-
mate change. This study provides a comprehensive overview of the
global forest composition, the characterization of species’ range sizes,
and the resilience of tree biodiversity to climate change. Thanks to
large publicly available occurrence databases and our cloud-based
implementation, we are able to reach results of unprecedented scale
for habitat suitability mapping, both in terms of spatial coverage and
resolution and in terms of the number of species, allowing us to
investigate the global composition of tree species at very high granu-
larity in our subsequent analyses.

Results
Model performance
We applied a model combining geographic range polygons and spe-
cies distribution modeling to map the ecological suitability of tree
species, based on climatic and pedologic variables, at a 30-arc second
resolution. Observational datawas collated from 13 databases (Table 1)
and aggregated to the same resolution as the model covariates. Geo-
graphic range polygons were constructed, using reported native
countries and the location of occurrences, as coarse estimated of
species’ native ranges. They were used to filter observation records
and to constrain the extents of the projected ranges. We modeled the
distributions of 24,140 tree species with at least 20 distinct observa-
tions after aggregation, and with reported native countries available
from GlobalTreeSearch39. We assessed the performance of the models
and found our modeling approach to obtain sufficient predictive
performance for species with at least 90 spatially explicit observations
(Supplementary Fig. 1). In total, 10,590 tree species met this criterion.
When evaluated by 3-fold cross-validation, the models achieved an
average true skill statistic (TSS) of 0.77 ± 0.11 and an average area
under the ROC curve (AUC) of 0.93 ± 0.04 (Supplementary Fig. 2). The
evaluation of themodels on an independent presence-absence dataset
from sPlot40 yielded lower TSS (0.53 ± 0.30) with a high recall and low
precision (Supplementary Fig. 3). This points towards a low binariza-
tion threshold, which is expected for low-prevalence species when
optimizing the threshold on maximum-TSS. With an average false
positive rate of 29.5%, false positive errors were the most common
than false negative errors which had an average rate of 17.3%. False
positive errors, where themodel classified a location to be suitable for
a species although no occurrence was recorded there, are not neces-
sarily problematic as the species may be absent due to factors that
were not considered by the model, such as biotic interactions, human
influence, or stochasticity. Moreover, the comparison of our modeled
distributions to maximum habitat suitability maps for 23 European
species for which confident estimations were available in a published
report41 showed some considerable differences with an average
intersection over union (IoU) of 0.42 (Supplementary Fig. 4). However,
our models were generally more conservative with ranges on average
36% smaller than those to which they were compared. Unlike previous
large-scale modeling efforts42, our approach combined both species
distribution modeling and geographic range limits, which can, for
instance, represent dispersal limitations43 and consider reported
native ranges.
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Unique species composition across the globe
Our models show that global tree taxonomic and phylogenetic com-
position is organized in complex biogeographic and environmental
gradients worldwide. By computing non-metric multidimensional
scaling (NMDS) on the community matrix based on our predicted
distributions, sampled at using an equal area projection at a resolution
of 100 km, we can visualize an estimate of tree species composition
globally (Fig. 1a, b and Supplementary Fig. 5a–c). Combining the
community matrix with a phylogeny of the 10,590 species
considered44, we computed a phylogenetic ordination45,46 thus
obtaining an estimate of phylogenetic beta-diversity globally (Fig. 1c, d
and Supplementary Fig. 5d–f). Taxonomic and phylogenetic compo-
sition show marked spatial gradients, where any given locations dis-
plays a unique signature in taxonomic and phylogenetic composition.
Species composition also varies in environmental space, with similar
taxonomic or phylogenetic compositions often found under similar
environmental conditions, although we also observe dissimilar com-
positions under similar environmental conditions, such as across tro-
pical moist forests.

Taxonomic turnover is described by smooth distributions both in
geographical and ordination space (Supplementary Fig. 5c). The lack
of structure in the underlying distributions can be characterized by the
difficulty of finding an adequate clustering: we found that two clusters
obtained the best score, albeit with high intra-cluster variance and
massive cluster size (Supplementary Fig. 6a, b). Phylogenetic turnover
showed clearer spatial boundaries and more peaky distributions
(Supplementary Fig. 5f). One of the most striking peaks of these dis-
tributions corresponds to a very homogeneous phylogenetic compo-
sition across Northern Canada and Alaska which also corresponds to

one of the six clusters formed by the phylogenetic ordination (Sup-
plementary Fig. 6c, d). Redundancy analysis indicates that gradients in
phylogenetic beta-diversity are associated with shifts in climatic and
edaphic factors, with 57.6% variance explained by the nine variables
used for niche modeling. In contrast, the variation in taxonomic
diversity was not well captured by the same abiotic variables, with only
11.8% variance explained. For both ordinations, variation partitioning
analysis indicated that climatic variables had stronger effect than
edaphic variables (Supplementary Fig. 7). This may be associated to
scale-dependency or to the soil data being generated bymodels reliant
on climate-related variables47. Together, the lack of structured dis-
tributions and of fine-grained clusters in these ordinations point
towards a near-unique biodiversity signature, as any given site is
associatedwith a unique set of tree species and lineages resulting from
a combination of historical and ecological factors.

Potential species occupancy restricted by tree cover
Combining remotely sensed tree cover and the potential habitat suit-
ability of species described above, we documented that the suitable
occupation area, considering ecological preference together with
biogeographic and dispersal limitations, is significantly restricted by
forest cover loss. We computed species’ range sizes based on their
modeleddistributions, and range sizesof thedistributions constrained
to forested areas, defined as areas with at least 10% tree cover as
estimated using remote sensing data from the year 200029. The rela-
tive decrease in range size reflects how species ranges are restricted by
historical forest cover loss and we find a median range reduction of
22.0% across all considered species. All biomes showed significantly
lower realized ranges compared to potential ranges of species

ba

dc

Fig. 1 | Gradients in taxonomic and phylogenetic composition show a near-
uniquebiodiversity signatureofevery single locationontheplanet.Taxonomic
composition is represented by a 3-axis non-metric dimensional scaling (NMDS) and
phylogenetic beta-diversity is represented by the 3 first axes of a phylogenetic
ordination (evoPCA). Both the taxonomic and phylogenetic ordinations are com-
puted on the global community matrix derived from the modeled distributions of
n = 10,590 tree species sampled at a resolution of 100km, resulting in n = 12,548
sites. The 3 axes of each ordination are mapped to red, green, and blue with
minimum and maximum values corresponding to the 10th and 90th percentiles.

a, c. Scatter plot of taxonomic and phylogenetic ordinations in environmental
space, a 2-dimensional space made up of the 2 first axes of a PCA of the environ-
mental variables used for species distributionmodeling: mean annual temperature
(MAT), temperature seasonality (T season), annual precipitation (Annual P), pre-
cipitation seasonality (P season), growing season length (GSL), net primary pro-
ductivity (NPP), silt content (Silt), coarse fragments (CF), and soil pH (pH).b,d.Map
of taxonomic and phylogenetic ordinations in geographical space. Source data are
provided as a Source Data file. The maps were created with QGIS110 and the gray
base map corresponds to all areas for which model predictors were available.
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(p < 0.01 for t-test between unrestricted and restricted range sizes over
all species and per biome) with median range reduction per biome
varying between 11.4% and 67.2%.

This decline was especially pronounced in the tropical dry
broadleaf forests and temperate conifer forest biomes (33.0% and
29.3% median range reduction, respectively), and even more in the
Mediterranean biomes with a 67.2% median range reduction (Fig. 2b).
Despite increasing forest loss in the last two decades29, some biomes
had so far limited decline and those biomes still host species with

uniquely broad ranges, typically at high latitudes in the boreal forests,
but also around the equator in the Amazon, Congo basin and South
East Asian forests (Fig. 2c and Supplementary Fig. 8). While all species
found in boreal forests were predicted to have large ranges, the ranges
of species in tropical moist forests have a large spread in range size,
spanning three orders ofmagnitude. For instance, the species with the
smallest (Palaquium sericeum) and the largest (Terminalia grandis)
range sizes with no tree cover restriction are found in the tropical
moist broadleaf biome.

Median SDM range
size (million km2)
Logarithmic scale

0.5 5

a b

dc

Fig. 2 | Species occupancy range distribution and loss. aDistributions of species
occupancy range sizes globally (gray) and constrained to forests (at least 10% tree
cover, color) for species in each forest biome. bBoxplot of relative range reduction
across species in each forest biome with the center line showing the median, the
box limits the quartiles, the whiskers 1.5 times the interquartile range, and the
points the outliers. The distributions and boxplots are computed for
n = 6810 species for Tropical Moist Broadleaf Forests, n = 588 species for Tropical
Coniferous Forests, n = 1101 species for Tropical Dry Broadleaf Forests,

n = 54 species for Boreal Forests, n = 1744 species for Temperate Broadleaf Forests,
n = 178 species for Temperate Conifer Forests and n = 580 species for Mediterra-
nean Forests. c Global map of median species range size constrained to forests,
created with QGIS110. The gray base map corresponds to all areas for which model
predictors were available. d Plot of species’ median latitude against range size
constrained to forests, colored by point density, where red indicates the highest
density. Source data are provided as a Source Data file.
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Response of tree species to climate change across biomes
We compared species distributions mapped with climatic variables
averaged over 1981-2010 with distributions with projected future cli-
mate for 2071–2100 with emissions corresponding to the shared
socioeconomic pathway (SSP) 5.85. Predicting future species dis-
tributions hasmany limitations37, yet it presents a scalable approach to
grasp how climate change may affect species distributions in the
future. Acknowledging that there aremany uncertainties at the species
level, we investigated trends at the scale of regional ecosystems, using
the RESOLVE ecoregions48. The results for each of the 497 forest
ecoregions were then aggregated to their corresponding biome
(Fig. 3). Our results predict that ecoregions in different biomes will
show significant diverging behavior in their response to climate
change (Pillai’s Trace test, p <0.001).

Species distributions in all forest ecoregions were predicted to
undergo latitudinal shifts, with the smallest shifts found in tropical
forest ecoregions, with amedian of 1.25°, and particularly pronounced
shifts in boreal forests with a median of 6.00°. Elevation shift pre-
sented a larger variation across ecoregions, with a coefficient of var-
iation of 3.07, compared to 0.73 for shifts in absolute latitude, pointing
towards a higher variability of available habitat in elevation than in
latitude. We find relatively small median elevation shifts inmost forest
ecoregions, with an absolute median shift of less than five meters in
about 24% of the considered ecoregions. Temperate and tropical
coniferous forest biomes presented the highest positive median ele-
vation shifts across ecoregions, with medians of 32 meters across
ecoregions inboth biomes. However, some ecoregionswere estimated
to have large downward median elevation shifts, in particular in the
boreal forest biome with a median elevation shift of −1.95 meters.
While most species are expected to shift their ranges upwards,

downward elevation shifts have been reported in multiple studies49,50

and may reflect both newly available suitable habitats and changes in
precipitation regimes51.

Our results indicate that, in boreal forest ecoregions, many new
species may find suitable habitats and few species may lose suitable
habitats under future climate change. This is coherent with our pre-
dictionsof larger shifts in latitudeor elevationallowing species to track
climate change thanks to continuously available habitat and is esti-
mated to have a strong effect on the phylogenetic composition of
these ecoregions. On the other hand, tropical dry and Mediterranean
forests, with generally much more geographically restricted species’
ranges, were found to suffer the highest proportion of extirpated
species, with some ecoregions predicted to lose suitable habitat for
over 50% of currently suitable species. In Mediterranean ecoregions,
the turnover of species is estimated to affect taxonomic composition
more strongly than the phylogenetic composition. Overall, more
modest changes in composition were found in tropical forest ecor-
egions than in temperate and boreal forest ecoregions.

Discussion
Understanding tree species distribution is central to the conservation,
restoration, and management of global forest biodiversity. Here, we
provide species occupancy estimations for over 10,000 tree species,
beyond regions where species range maps are already available and
broadly used by foresters to manage forest resources52. Our analysis
reveals the high uniqueness of local lineage composition, where any
region across the globe is characterized by a unique tree composition
signature associatedpartiallywith ecological factors.Residual variance
may be attributed to regional and historical factors53, such as plate
tectonics and long-distance dispersal54. By restricting species’ suitable

Fig. 3 | Response of tree species to climate change across biomes. The median
absolute latitude and median elevation shift among species, fraction of lost and
gained species, and change in taxonomic and phylogenetic composition under
climate change were computed for each forest ecoregion. The boxplots show
statistics for n = 239 ecoregions for Tropical Moist Broadleaf Forests, n = 14 ecor-
egions for Tropical Coniferous Forests,n = 55ecoregions for Tropical DryBroadleaf
Forests, n = 26 ecoregions for Boreal Forests, n = 91 ecoregions for Temperate
Broadleaf Forests, n = 49 ecoregions for Temperate Conifer Forests and n = 61

ecoregions for Mediterranean Forests. The center line of the boxplots shows the
median, the box limits the quartiles, the whiskers 1.5 times the interquartile range,
and thepoints the outliers. Changes are computedbetweenpredicteddistributions
with climate variables for 1981-2010 and climate projections for 2071-2100 under
climate change scenario SSP 5.85. Changes in composition are computed as the
Euclidean distance between scaled NMDS and evoPCA values computed at the
ecoregion level. Source data are provided as a Source Data file.
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habitat to forests with tree cover estimated from remote sensing29,
realized tree species distribution is significantly narrower than its
potential, evenwhen considering geographic range limits. Considering
predicted species distributions under future climate projections
shows that different areas will be affected differently by climate
change and stresses the importance of climate-smart conservation
efforts that are adapted to the specific region.

Modeling species distributions for such a large number of species
was facilitated by the use of Google Earth Engine, a cloud-based plat-
form for geospatial analysis, and its available implementation of
machine learning algorithms55. Additionally, models with adequate
predictive performance can only be constructed if enough occur-
rences are available for a given species. This is made increasingly
possible by the availability of large databases and citizen science
efforts56. Such global databases typically display important spatial
bias57,58, although efforts to concatenate different databases, as done
here, may mitigate the acquisition bias from a single dataset. Never-
theless, to ensure satisfactory predictive performance, we excluded
many rare and under-sampled species and our results are likely to
present biases towards common and large-ranged species. Future
work may consider the recent application of deep learning to species
distributions modeling, which allows the joint estimation of the dis-
tributions of thousands of species with a single model and has been
shown to obtain more reliable results for species with very few
occurrence records59–61. Moreover, the availability of global maps of
environmental variables allowed us to make continent-wide predic-
tions of species distributions. While we selected variables that are of
general ecological relevance across all biomes, future work may con-
sidermore specific factors, such as the fire frequency and severity. The
cloud-based data integration andmodeling approach demonstrate the
potential of high-performance computing infrastructure to support
the documentation of global biodiversity patterns at scales and reso-
lutions unattained before, therefore allowing fine-grained, global
analyses such as those presented here.

With the distributions of thousands of tree species, we showed a
striking uniqueness of local tree species and lineage composition with
both large- and small-scale turnover. The phylogenetic beta-diversity
showed a spatial organization matching known phytogeographic
boundaries, such as the split between Gondwanan and Laurasian
biotas13, or the clustering of tropical forests54,62,63. In contrast, some
regions displayed phylogenetic similarities despite the large geo-
graphic distance between them, which reflects historical connectivity.
For instance, the phylogenetic similarity of the Indo-Pacific regionmay
highlight the signal of its past connection before their segregation
caused by plate tectonics62, or long-distance dispersal54. The similarity
across Palearctic and Nearctic temperate and boreal forests is likely to
indicate the long history of connectivity between these regions64.
Within these larger biogeographic boundaries, our results further
highlighted the role of environmental gradients in shaping tree lineage
turnover, such as the compositional divide in tree assemblages in the
Americas between tropical and extratropical environments, which is
related to temperature16 and moisture gradients65. Taxonomic com-
position showed more smooth gradients and was only weakly asso-
ciated with environmental variables, suggesting a strong effect of
historical factors, such as geographic range limits. Focusing on the
most common tree species, our analyses uncovered marked local
gradients in species and lineage composition. However, the global
composition of tree species and the corresponding phylogenetic
diversity may be even more strongly geographically structured when
including rare species.

Beyond the current habitat suitability of local species, it is
important for conservationand restoration efforts to take into account
the past and the futurewith estimates about both the historical decline
of species’ ranges and to understand the spatial variation in climatic
risks to forests to guide climate-smart ecosystemmanagement66,67. We

derived estimates of these effects from our modeled species dis-
tributions. However, it is important to acknowledge the limitations
associated with our approach. To compute historical species’ range
reduction, we compare species’ potential range size with their ranges
constrained to current forests. Yet, computing potential ranges based
only on ecological suitability and biogeographic limitations may lead
to an overestimation of range size, as competition with other vegeta-
tion types is likely to restrict realized species distributions. Moreover,
since trees may also be present outside of forests68,69, constraining
ranges to areas with at least 10% tree cover is likely to underestimate
the realized range of some species. Nevertheless, the extent of the
discrepancy between potential and actual distributions remains indi-
cative of the extent of historical forest loss due to landuse change70. To
predict future species distributions under climate change, we use
projections of several climatemodels used by the IPCC (CMIP6) which
are associated with substantial spatial and temporal uncertainty71 and
do not directly account for extreme events such as floods, fires,
droughts or floods which can cause large-scale forest die-backs72.
Furthermore, our models present added uncertainties associated with
limitations due to their correlative nature and the assumption that the
relationships of species with environmental covariates remain con-
stant through time. Althoughmechanisticmodelsmaypresent a better
approach to predict range shifts under climate change73,74, they are
challenging to implement and require data that is not as widely avail-
able, aswell as the identification of key limiting processes38. Therefore,
correlative models remain the most feasible option to predict the
effects of climate change for a large number of species and at a global
scale. Finally, the bias of our results towards well-sampled species
should be carefully considered. The exclusion of species for which not
enough occurrence records were available is likely to have led to an
underestimation of the number of species with small ranges, in parti-
cular in tropical biomes due to sampling biases. Rare and small-ranged
species may also be particularly vulnerable to change and our results
regarding the response of ecosystems to climate change may be
affected by their omission.

Despite these limitations, our results may serve as a guide for
forest stakeholders, offering a global perspective that can be com-
bined with more local observations and expert knowledge to con-
serve the preserved area and to decide which tree species to consider
for restoration75. For instance, in Mediterranean ecoregions, known
for a long history of human land use and pastoralism76, we find by far
the strongest range reduction, leading to small realized species
ranges and high predicted extirpation rates under climate change,
highlighting the need for climate-smart restoration in these forests.
In contrast, in accordance with a remote sensing-based estimation77,
we found that the tropical moist broadleaf forests had the greatest
intactness. Specifically, Amazonia, the Congo Basin, and South East
Asia are home to not only the highest species richness (Supple-
mentary Fig. 9) but also some of the species with the largest ranges
on Earth, alongside many small-ranged species. Our results relate to
the finding of the hyperdominance of some species in the Amazon
basin78, suggesting that both extreme ecological generalism and
specialism are viable strategies in tropical environments. However,
small ranges may also reflect non-equilibrium dynamics rather than
narrow ecological niches79. Outside the tropics, the boreal forest
shows the broadest ranges of species with the lowest decline asso-
ciated with habitat loss. Moreover, the climate of boreal forests is
predicted to become suitable for many species that are currently not
found there.

Our results underline the uniqueness of species composition
across the globe, and also the diversity of species’ historical range
reduction and response to climate change, reflecting that climate
change displays distinct intensities and effects globally80. While local
forest protection efforts should be made everywhere, international
efforts for forest conservation strategies should primarily focus on
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conserving the remaining most pristine extensive forest ecoregions.
The strongest effort of restoration may be performed in temperate
forests where historical losses were highest and recoverymight bring
the most direct benefits. Furthermore, tropical dry and Mediterra-
nean regions may require the most acute conservation attention to
avoid the extinction of a large faction of species. Together, our
findings emphasize the need for local restoration and conservation
decisions that are tailored to the unique characteristics of each
specific forest.

Methods
We used the python API for Google Earth Engine55 to create a pipeline
for high-resolution species distribution modeling. The distribution of
each species is modeled separately. After data preparation, the pipe-
line consisted of two parts: (1) constructing the geographic range in
which the species is considered, and (2)modeling ecological suitability
with an ensemble of tree-based machine learning models, allowing us
to map the species distribution using current climate covariates, as
well as future climate projections. Further analyses were applied to the
results of our models using the python API for Google Earth Engine
v0.1.32955 with python v3.8.1381 with helper packages: pandas v1.4.482,
numpy v1.23.483, matplotlib v3.5.384 and seaborn v0.12.185. Moreover,
some analyses were performed using R v4.2.286 with helper packages:
tidyr 1.3.087, tidyverse 1.3.288, tibble 3.1.889, data.table 1.14.690, dplyr
1.1.091, gridExtra 2.392 and ggplot2 3.4.193.

Data sources and cleaning
Tree species occurrence data were downloaded from 13 different
online databases, published and unpublished datasets (Table 1). We
kept only records with standardized tree species names, according to
the global tree checklist GlobalTreeSearch39 (v1.3, downloaded in Jan-
uary 2020). Then, records from all databases were merged and
duplicates with identical coordinates for the same species were
removed. We obtained almost 30million (29,715,021) observations for
52,725 species. There were between 1 and 895,762 observations per
species with a median of 196. The observations were then aggregated
to the 30-arc second-pixel level to match the resolution of the pre-
dictor layers. Duplicate occurrences that fell within the same grid cell
were removed and observations that fell off the pixel grid used for the
predictors were removed (e.g. observations close to a coast that are
aggregated to a pixel in the water). In subsequent steps, we consider
the 24,140 species for which there were at least 20 spatially explicit
observations after aggregation, whichmay be considered a reasonable
minimum number of observations for modeling58.

Geographic range polygon
For each species, we constructed a geographic range that was used to
select observations to be included in the model training, thus
excluding observations of non-native or invasive species, and for
model projection, to prevent predictions outside the native range. The
same range was used for model projection for all considered climate
scenarios. The range for each species was constructed based on the
reported native countries fromGlobalTreeSearch39 and the location of
the observations.

The reported native range consisted of the geometries of the
countries in which the species is listed as native with a 1000 km buffer
to compensate for potential gaps in the database. The particularly
large buffer size was also chosen to allow species to spread under
projected future climates; however, this will consequently expand the
range beyond the native countries. The geometries for country
boundaries were obtained from the Global Administrative Unit Layers
(GAUL) dataset, implemented by FAO. Particularly when the reported
native range contained large countries, it was important to exclude the
areas in which no observations were found. For this purpose, we
intersected the reported native range with a polygon constructed
around the ecoregions48 in which there were observations that had at
least 3 other observations within 1000 km. For small ecoregions
(bounding box less than 1000 km in width or length), the ecoregion
with a 1000 km buffer was included in the polygon. For larger ecor-
egions, a 1000 km buffer around the part of the ecoregion that is
within 200 km of an observation was included in the polygon. For
computational efficiency, if there were more than 10,000 observa-
tions, these were spatially aggregated for the construction of
the range.

Training data
The training data consisted of the observations that fell within the
considered range and pseudoabsences sampled uniformly at random
within the considered range. Formost species, the number of sampled
pseudoabsences (nPA,training) was 10 times the number of observations
(nobs,training). If there were less than 500 observations, we sampled
5000 pseudoabsences such that the environmental conditions of the
region were well represented in the training data. The number of
points in the training data was capped at 20,000 to ensure the model
could run in Google Earth Engine without running out of memory.
Therefore, if there were more than 1818 observations, we sampled
fewer pseudoabsences, and if there were more than 10,000 observa-
tions we randomly sampled 10,000 observations and 10,000 pseu-
doabsences (Table 2).

Table 1 | Online databases used as data sources for occurrence data

Database name URL

Botanical Information and Ecology Network
(BIEN)104

https://bien.nceas.ucsb.edu/

BIOMASS105 https://www.nature.com/articles/sdata201770#data-records

Caudullo et al. 201752 https://doi.org/10.1016/j.dib.2017.05.007

CONIFER https://herbaria.plants.ox.ac.uk/bol/conifers

DRYFLOR106 http://www.dryflor.info/data/datadownload108

GBIF107 https://www.gbif.org/occurrence/download/0032444-200221144449610

GFBI7,18 https://www.gfbinitiative.org/

IDIGBIO https://www.idigbio.org/portal/search

INDIABIODIVERSITY https://indiabiodiversity.org/observation/list

MUSEUM Field collection records and manually georeferenced herbarium data from Naturalis (L) and Paris (P) natural
history museums. Unpublished data collected by J.S. Strijk.

PNG http://www.pngplants.org/search.htm

PREDICTS108 https://data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-database

RAINBIO109 https://gdauby.github.io/rainbio/download_page.html
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Environmental variables and climate change scenarios
For the environmental niche model modeling, we selected nine
environmental variables related to climate and soil conditions as pre-
dictive variables, based on preliminary variable importance analysis on
a random subset of species using a random forests model. The climate
variables consisted of average annual temperature, temperature sea-
sonality, annual precipitation, precipitation seasonality, growing sea-
son length, and potential net primary production, and were obtained
from CHELSA V2.194,95. These factors represent basic resource
requirements, metabolic modifiers or disturbance constraints to plant
growth and survival. The soil variables consisted of soil pH, coarse
fragment content, and silt content, and were obtained from
SoilGrids47.We extracted all variables at a 30arc-second resolution and
projected them to the World Geodetic System 1984 (EPSG:4326)
projection.

Species distribution modeling
For each species, we fitted an ensemble model consisting of two ran-
dom forests and two gradient tree boost classifiers, with different
complexity levels with regard to model formulation96. The final dis-
tribution map was then achieved by taking the average over the pre-
dictions of the four individual models. We ran the model for 24,140
species for which at least 20 spatially explicit observations were
available after aggregation.

To avoid overfitting when modeling rare species, we limited the
number of predictor variables used in each model based on the
number of observations for the corresponding species. We ensured
that the number of observations available was at least 10 times the
number of predictors used. For species that had less than 90 obser-
vations, the most important predictors for each species were selected
based on the variable importance obtained when training a random
forest model with all predictors. The number of selected predictors
was determined by the number of occurrences in the training data
(e.g., twopredictorswere selected for specieswith 20-29occurrences).
All nine predictors were used for species that had at least 90
observations.

The model output was probabilistic, and we used a 3-fold cross-
validation with random fold assignment to determine the optimal
threshold to transform the probabilistic output to binary, by assessing
the threshold maximizing the true skill statistic (TSS). We evaluated
ourmodels by computing TSS, as well as the area under the ROC curve
(AUC) during cross-validation.

Finally, the ensemble model was trained on the full training set
and predictionsweremade on globalmaps of the covariates clipped to
the considered range for each species. While soil variables were kept
constant, we performed the predictions on historical averages of data
from 1981-2010, referred to as current climate, and nine sets of vari-
ables for future climate scenarios: three time periods (2011-2040,
2041-2070, 2071-2100) and three different socio-economic pathways
(SSP’s), representing a sustainability scenario (SSP 1.26), a regional
rivalry scenario (SSP 3.70), and a fossil fuel development scenario (SSP
5.85).Weusedfivedifferent global circulationmodels (GCMs) from the
sixth coupled model intercomparison project (CMIP6): GFDL-ESM4,

UKESM1-0-LL, MPI-ESM1.2-HR, IPSL-CM6A-LR, and MRI-ESM2.0. They
were bias-corrected97 for the intersectoral-impact model inter-
comparison project (ISIMIP)98. For computational efficiency, the dis-
tributionswere computedwith a singlemodel considering the average
values over the five models, rather than taking the average of the
predictions of five models each considering one GCM.

For further analyses, based on model evaluation through cross-
validation (Supplementary Fig. 1), we considered only the 10,590 spe-
cies for which at least 90 spatially explicit observations were included
in the training data. The distributions were further evaluated on
independent presence-absence data from sPlot40. Data was available
for 5939 of the 10,590 considered species and covered 47,479 plots
across the globe. However, the comparisonwas computed only for the
3594 species that had at least 5 presences recorded in plots within the
species’ geographic range. For every species, a confusion matrix was
constructed comparing the species’ distribution model output to the
survey data from plots within the species’ geographic range, and the
TSS, precision, and recall were computed. Finally, we compared our
modeled distributions to maximum habitat suitability maps for 23
European species from the “Tree species distribution data and maps
for Europe” report from the European Commission41 by computing
their overlap with intersection over union (IoU).

Taxonomic and phylogenetic ordination
We extracted a global community matrix for the 10,590 considered
tree species by extracting the predicted species distribution for the
current climate at 100 km resolution using the equal area projection
EPSG:693399, obtaining 12,548 sites. The distributions had to be sam-
pled at a relatively low resolution due to computational feasibility of
the ordinations. Distances between sites were computed with the
Sorenson distance using the vegdist() function from the vegan R
package100 (2.6.4). The taxonomic ordination was computed as a 3-axis
non-metric dimensionality scaling (NMDS) with the metaMDS() func-
tion with default parameters from the vegan R package100 (2.6.4). We
obtained a satisfactory stress value of 0.04. Each axis was mapped to
the red, green, and blue values for visualizations. The phylogenetic
ordination was computed with the evopcahellinger() function in the
adiv R package46 (2.2) using the same community matrix and a phy-
logenetic tree constructed with the phylo.maker() function in the
V.PhyloMaker Rpackage44 (0.1.0). The first three axes of the ordination
were retained. They explain 26.4%, 10.6% and 6.5% of the variation,
respectively, and were also mapped to the red, green, and blue values.

The clustering analysis was performed using the sklearn.clus-
ter.Kmeans() function and evaluated with the sklearn.me-
trics.silhouette_score() function from the scikit-learn python
package101 (v1.1.3). The 3-axes of each ordination were clustered
together after the removal of outliers, defined as points that fall out-
side of the range [Q1-IQR, Q3 + IQR] where Q1 and Q3 are the first and
third quartiles and IQR is the interquartile range (ie. Q3-Q1). Maps of
the clustered ordinations were created with the number of clusters
that generated thehighest silhouette score. Redundancyanalyseswere
performed on the outputs from both ordinations with the rda() func-
tion and variation partitioning analyses with the varpart() function,
both from the vegan R package100 (2.6.4).

A principal component analysis was applied to the environmental
variables extracted at a 100 km resolution, to match the sites of the
ordinations. We used the sklearn.decomposition.PCA() function from
the scikit-learn python package101 (v1.1.3). The two first principal
components were used to represent the taxonomic and phylogenetic
ordination results in a 2-dimensional representation of the
environmental space.

Occupancy range size
We obtained the species range sizes by computing the surface area
covered by the estimated species distribution for the current climate

Table 2 | The number of observations and pseudoabsences
included in the training data (nobs,training and nPA,training)
dependent on the number of observations after aggrega-
tion (nobs)

nobs nobs,training nPA,training ntotal

nobs >= 10,000 10,000 10,000 20,000

1818 <= nobs < 10,000 nobs 20,000 - nobs 20,000

500 <= nobs < 1818 nobs nobs * 10 5500 - 20,000

nobs < 500 nobs 5000 5000 - 5500
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variables (1981-2010). Range sizes were computed for the full dis-
tributions and for the distributions constrained to forested areas,
defined as areas with at least 10% tree cover as estimated using remote
sensing data from the year 200029. Although maps of tree cover cor-
responding to more recent years are available, we used the one from
the year 2000 because it corresponds roughly to the period repre-
sented by the climatic data. Biome-level statistics were computed
using the forest biomes from the RESOLVE classification48 with species
assigned to a biome if at least 20% of their estimated distribution fell
within that biome. The global map of median range size was obtained
by computing the median of the range sizes for all species that were
predicted to be suitable in each 30-arc-second pixel.

Species response to climate change
To assess the response of tree species distributions to climate change,
we computed differences between the predicted distribution maps
with climatic variables for 1981-2010 and for 2041-2070 with SSP 5.85.
The most distant and extreme climate change scenario was selected
such that differences would be maximized. However, as species-level
predictions in the future have many uncertainties, trends were inves-
tigated instead on the ecoregion-level, using the ecoregions from
forest biomes using the RESOLVE classification48. The fraction of spe-
cies predicted to be gained and lost under climate change was com-
puted for each ecoregion using the species predicted to be found
within each ecoregion’s boundaries for both sets of climatic variables.
The median elevation shift and absolute latitude shift were computed
for each ecoregion over the species predicted to be present in an
ecoregion with both current and future climatic variables, by taking
the shift in median latitude and elevation between current and future
distributions for each species. Taxonomic and phylogenetic ordina-
tions were computed on the ecoregion-level community matrix, con-
sidering both current and future compositions simultaneously. The
same functions as for the global taxonomic and phylogenetic com-
position analysis were used. We obtained a stress value of 0.08 for the
3-dimesional NMDS, and the three first axes of the phylogenetic PCA
explained 40%, 15%, and 7% of the variation. The change composition
was computed as the Euclidean distance between scaled ordination
values. Biome-level means and 95% confidence intervals were com-
puted over the ecoregions assigned to each biome according to the
RESOLVE ecoregion and biome classification48.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The occurrence data used in this study are available from the online
databases which are listed in Table 1. One unpublished dataset was
used; it is available from the corresponding author upon request. The
bioclimatic raster data used as used model covariates in this study are
available from CHELSA 2.194,95. The edaphic raster data used as used
model covariates in this study are available from Soilgrids47. The
reported native ranges data used in this study are available from
GlobalTreeSearch39. The country boundary data from the FAO used in
this study are available through the Google Earthengine data catalog
(https://developers.google.com/earth-engine/datasets/catalog/FAO_
GAUL_2015_level0). Plot data used as an independent validationdata in
this study area available from sPlot40. The biome and ecoregion data-
base used in this study are available through the Google Earthengine
data catalog (https://developers.google.com/earth-engine/datasets/
catalog/RESOLVE_ECOREGIONS_2017). The tree cover map used in
this study are available through the Google Earthengine data catalog
(https://developers.google.com/earth-engine/datasets/catalog/UMD_
hansen_global_forest_change_2023_v1_11). Source Data for Figs. 1,
2 and 3 are provided with this paper as Source Data files. The raster

data of the modeled tree species’ distributions generated in this study
have been deposited in Zenodo: https://doi.org/10.5281/zenodo.
10911892102. Source data are provided with this paper.

Code availability
The code used for both the modeling pipeline and the downstream
analyses can be found in the following GitHub repository: https://
github.com/ninavantiel/tree_sdms103.
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