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Strong coupling between a microwave
photon and a singlet-triplet qubit

J.H.Ungerer 1,2,7 , A. Pally1,7 , A.Kononov 1, S. Lehmann 3, J. Ridderbos1,6,
P. P. Potts 1,2, C. Thelander3, K. A. Dick4, V. F. Maisi 3, P. Scarlino5,
A. Baumgartner 1,2 & C. Schönenberger 1,2

Combining superconducting resonators and quantum dots has triggered tre-
mendous progress in quantum information, however, attempts at coupling a
resonator to even charge parity spin qubits have resulted only in weak spin-
photon coupling. Here, we integrate a zincblende InAs nanowire double
quantum dot with strong spin-orbit interaction in a magnetic-field resilient,
high-quality resonator. The quantum confinement in the nanowire is achieved
using deterministically grown wurtzite tunnel barriers. Our experiments on
even charge parity states and at large magnetic fields, allow us to identify the
relevant spin states and to measure the spin decoherence rates and spin-
photon coupling strengths. We find an anti-crossing between the resonator
mode in the single photon limit and a singlet-triplet qubit with a spin-photon
coupling strength of g/2π = 139 ± 4 MHz. This coherent coupling exceeds the
resonator decay rate κ/2π = 19.8 ± 0.2 MHz and the qubit dephasing rate
γ/2π = 116 ± 7 MHz, putting our system in the strong coupling regime.

Spin qubits in semiconductors are promising candidates for scalable
quantum information processing due to long coherence times and fast
manipulation1–4. For the qubit readout, circuit quantum electro-
dynamics based on superconducting resonators5, allows a direct and
fast measurement of qubit states and their dynamics6. Recently,
resonators were used to achieve charge–photon7,8, spin–photon9–11 as
well as coherent coupling of distant charge12 and spin qubits13,14,
enabling coherent information exchange between distant qubits.
However, the small electric and magnetic moments of individual
electrons require complicated device architectures such as micro-
magnets, and a large number of surface gates that render scaling up to
more complex architectures challenging. These approaches typically
achieve a relatively weak electron spin–photon coupling on the order
of ~10−30MHz. In addition to single electron spin qubits, also spin
qubits based on two electrons in a double quantum dot (DQD), e.g. a
singlet–triplet qubit have been demonstrated15. Spin qubits based on
two electrons typically offer a large hybridization of the spin and

charge degree of freedom compared to single-electron spin qubits in
principle allowing even stronger coupling strengths. So far, however,
the experimentally achieved coupling strengths in such systems16,17

remained well below the strong coupling limit in which the coherent
coupling rate exceeds both, the cavity mode decay rate and the qubit
linewidth.

Here, we demonstrate that the strong coupling regime between a
singlet–triplet qubit and a single photon in a superconducting reso-
nator can be reached. We achieve this strong coupling by carefully
designing the resonator and by using a DQD defined by in-situ grown
tunnel barriers in a semiconductor with a large spin–orbit interaction.
The tunnel barriers consist of InAs segments in the wurtzite crystal-
phase with an atomically sharp interface to the zincblende bulk of the
nanowire (NW)18. These crystal-phase barriers are highly reproducible
and render the need of barrier gates obsolete, simplifying integration
with superconducting resonators and making the nanowires a viable
prototype for scalable quantum computing architectures.
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In this work, wemake use of the large spin–orbit interaction in these
nanowires19 to define a singlet–triplet qubit at a finite in-plane magnetic
field in which the T +

1,1 and S2,0 states hybridize, forming a quantum two-
level system. Incorporating aNWwith amagnetic-field resilient resonator
based on NbTiN20,21 allows us to measure an avoided crossing between
the singlet–triplet qubit and a single-photon excitation of the resonator
at a magnetic-field strength of B=300mT. The measured coupling
strength is very large compared to previously reported electron
spin–photon coupling9–11, which enables us to reach the strong coupling
regime. In addition, by analyzing the response of the hybridized
resonator-qubit system for varying magnetic-field strengths, we perform
qubit spectroscopy22–24. This allows us to identify the specific spin states
and to quantitatively extract the relevant device properties.

Results
Device characterization
Details about the NWproperties and their growth can be found in the
supplementary. The resonator-qubit system of device A is shown in
Fig. 1a, including a false-colored SEM-image of the crystal-phase
defined NW DQD. We report similar experiments for two devices, A
and B, with B discussed in the supplementary. They aremeasured in a
dilution refrigerator with a base temperature of 70mK. The DQD
forms in the 490 and 370nm long zincblende segments (green),
separated by 30 nm long wurtzite (red) tunnel barriers with a con-
duction band offset of ~100meV25, as illustrated in Fig. 1b. A high-
impedance, half-wave coplanar-waveguide resonator is capacitively
coupled to the DQD at its voltage anti-node via a sidegate. In addi-
tion, the same sidegate can be used to tune the DQD charge states
using a dc voltage (VR) applied at the resonator voltage node. The
DQD state is probed by reading out the resonator rf-transmission.We
extract the bare resonance frequency of the resonator ω0/
2π = 5.1705 ± 0.0003GHz at zero magnetic field and the bare decay

rate κ∣B=0/2π = 27.3 ± 0.6MHz. The resonator design and fitting are
described in detail in the “Methods” section. In the following, we
prepare the DQD in an even charge configuration in the many-
electron regime (see the “Methods” section), described by a two-
electron Hamiltonian given in the “Methods” section. Figure 1c shows
the eigenvalues of this Hamiltonian as a function of external mag-
netic field B at a fixed DQD detuning. At zero magnetic field, the
detuning renders the singlet S2,0 the ground state, for which both
electrons reside in the same dot. Without spin-rotating tunneling,
this, and the S1,1 state, with the electrons distributed to different dots,
form a charge qubit26. The subscripts describe the dot electron
occupation of the left and right dots, respectively. By applying an
external magnetic field, the Zeeman effect lowers the energy of the
triplet T +

1,1 state, that becomes the ground state for sufficiently high
magnetic fields. In the presence of a spin-rotating tunneling t =ΔSO/2
induced by the intrinsic spin–orbit interaction ΔSO, the energy levels
of the hybridized S2,0 and T +

1,1 states are split. The two new eigen-
states of the avoided crossing form a singlet–triplet qubit shown
schematically in Fig. 1a and b.

Figure 2a shows the charge stability diagram of device A at a
magnetic field of 600mT with the angle α = 164° with respect to the
NW axis (see Fig. 1a) detected as a shift in the transmission phase φ of
the resonator, plotted as a function of the two gate voltages VL and VR

at a fixed probe frequency of ωp/2π = 5.174GHz, close to resonance.
We observe a characteristic honeycomb pattern of the charge stability
diagram of a DQD. Using a capacitancemodel27,28, we extract the gate-
to-dot capacitances CR2 = 44± 2 aF, CL2 = 2.0 ± 0.2 aF, CR1 = 5 ± 2 aF and
CL1 = 4.6 ± 0.2 aF for device A.

Wenow focus on oneparticular inter-dot transition (IDT)markedby
a green rectangle in Fig. 2a. The same IDT is shown in Fig. 2b and c at
B=0T and B=300mT respectively, with α= 57°. In Fig. 2d we show the
normalized transmission ðA=A0Þ2 at B=0T, while varying the probe
frequency ωp and relative detuning εrel, illustrated by the white line in
Fig. 2b. An electron can now reside on either of the two tunnel-coupled
dots, constituting a charge qubit. At the IDT, close to charge degeneracy,
the electrical dipole moment of the charge qubit interacts with the
resonator, resulting in a dispersive shift of the resonance frequency. By
fitting input-output theory (see the “Methods" section) to this particular
IDT, we extract the inter-dot tunnel coupling t∣B=0/2π= 5.1 ± 1.0GHz, the
charge–photon coupling g0∣B=0/2π=353±72MHz, and the charge qubit
linewidth γ∣B=0/2π= 1.7 ±0.7GHz.

Strong spin–photon coupling
When investigating the magnetic-field dependence of IDTs similar to
the ones shown in Fig. 2b, c, we observe two qualitatively different
behaviors which we identify as even and odd charge parity config-
urations described in the “Methods” section. In the following, we
investigate a single IDT, shown in Fig. 2c, with an even charge parity.

As illustrated in Fig. 1c, the DQD can be operated as a singlet–triplet
qubit when applying a magnetic field. The qubit frequency ωq can be
brought into resonance with the cavity frequency ω0 at B≳ 200mT, as
discussed in more detail below. At the resonance condition (ωq ~ω0), an
anti-symmetric (bonding) and a symmetric (anti-bonding) qubit-photon
superposition state are formed. The corresponding resonances can
spectroscopically be discriminated only if the splitting 2g between them
is larger than the dressed states’ linewidth γ+ κ/229. In particular, the
hybrid system is considered strongly coupled if the qubit-photon cou-
pling strength g exceeds γ and κ29.

In Fig. 3a, we plot a spectroscopic measurement of the resonator
where the singlet–triplet qubit is tuned into resonance by applying an
electrostatic detuning εrel relative to the configuration at which S2,0
and T +

1,1 would be fully degenerate in the absence of a a spin-rotating
tunneling. Consistent with strong coupling, we observe an avoided
crossing between the resonator and the qubit. At the points where the
bare qubit frequency ωq and resonator frequency ω0 (dashed, white
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Fig. 1 | Coupled resonator-qubit system. a False colored SEM-image of device A.
The NW (green) is divided into two segments by an in-situ grown tunnel barrier
(red), thus forming the DQD system. The NW ends are contacted by two Ti/Au
contacts (S,D) and the NW segements can be electrically tuned by two Ti/Au side-
gates SGR (purple) and SGL (yellow). The voltage anti-node with amplitude Vrf of a
high-impedance, half-wave resonator is connected to SGR. Top gates TGL and TGR

(orange) are kept at a constant voltage of−0.28 V. The magnetic field is applied in-
plane at an angle αwith respect to the NWaxis, as illustrated by the gray arrow. The
white arrows illustrate an even charge configuration with the two degenerate DQD
states T +

1,1 and S2,0. b Schematic of the crystal-phase defined DQD. The conduction
band of wurzite at energy Ewz and the one of zincblende at energy Ezb are offset
by ~100meV, resulting in a tunnel barrier between the zincblende segments. The
intrinsic spin–orbit interaction enables spin-rotating tunneling between these
segments. c Energy levels of an even charge configuration as a function ofmagnetic
fieldB at a fixed positive detuning εbetween the dot levels. Atfinitemagneticfields,
T +
1,1 (blue) hybridizes with S2,0 (red) defining a singlet-triplet qubit with an energy

splitting given by the spin–orbit interaction strength ΔSO.
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curves) are degenerate, instead of crossing, they anti-cross. And in
Fig. 3a, a faint double peak structure is visible at around εrel ~ 0 as
2g > κ/2 + γ, signature of the strong coupling regime29.

For a quantitative analysis, we fit Lorentzians to the transmission
of each trace of constant εrel, we extract the transition frequencies ω±

of the dressed states. These are fitted to the Jaynes–Cummings model
(solid, white curves in Fig. 3a) described in the “Methods” section.
From this fit, we extract the tunnel rate t∣B=300mT/2π =Δso∣B=300mT/
4π = 2.54 ±0.03GHz and bare spin–photon coupling strength

g JC
0 jB= 300mT=2π = 123± 16MHz. The extracted tunnel rate allows to plot

the qubit transition frequency ωq =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔso=_Þ2 + ðεrelÞ2

q
in Fig. 3a and to

identify the resonance condition ωq =ω0 at a small electrostatic
detuning εrel/2π = ± 1.0 GHz. We evaluate the effective coupling
strength g = g0⋅2t/ωq at the finite detuning εrel/2π = −1.0 GHz and
obtain g JCjϵrel=2π =�1GHz,=2π = 121 ± 16MHz, as the spin–photoncoupling

strength on resonance condition.

In Fig. 3b, we plot a line trace at this detuning value as indicated in
Fig. 3a.Despite the large noise, the double peak structure is also clearly
visible and stands in stark contrast to the bare resonator transmission
at large detuning (see corresponding linetrace in Fig. 3c). Using Eq. (6)
derived from input–output theory described in the supplementary, we
fit these data at 300mTand extract the spin-photon coupling strength
gεrel =�1GHz=2π = 139±4 MHz and qubit dephasing γ/2π = 116 ± 7MHz
wherewe used the bare resonator decay κ∣B=300mT/2π = 19.8 ± 0.6MHz.
This value agrees well with the one obtained from the
Jaynes–Cummings model. Using the values from input–output theory
wemodel thewhole anti-crossing using input–output theory in Fig. 3d,
observing a very good agreement with the measurement.

All together, this measurement therefore clearly demonstrates
that the strong coupling regime between a single microwave photon
and a singlet–triplet qubit is reached.

Magnetospectroscopy
To explicitly identify and characterize the spin–orbit eigenstates and to
independently verify the character of the singlet–triplet qubit, we now
study the magnetic field evolution of the IDT from 0 up to 900mT
applied at the angle α= 130°. We measure the amplitude A and phase φ
of the signal transmitted through the resonator as function of detuning ε
and magnetic field strength B. A non-zero φ occurs at the IDT when
tunneling between the dots is allowed resulting in a non-zero DQD
dipole moment. As described in the “Methods” section, we model the
DQD by an effective two electron Hamiltonian which allows us to fit the
gate voltage and field dependence of the IDT (white dashed line in
Fig. 4a).We find that themagneto-dispersion of the IDT iswell described
using the followingfit parameters: the spin-conserving singlet and triplet
tunnel rates tSc=2π ≈8:5 GHz, and tTc=2π ≈ 3:2 GHz, the singlet–triplet
coupling rate tSO/2π=ΔSO/4π≈ 2.9GHz, the electron g-factors of the
right and left dots, gR≈ 1 and gL≈8, as well as the single dot
singlet–triplet energy splitting ΔST/2π≈47GHz. These fit parameters are
consistent with parameters obtained previously in this material
system19,30–33. We note, however, that the fit is under-determined and
therefore, it does not provide accurate numbers. Nonetheless, the
model gives a qualitative, physical understanding of the system and
allows us to establish which DQD levels interact with the resonator.

Independently, we gain quantitative information about the sys-
tem by considering the functional dependence of the amplitude A and
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respect to the bare resonance frequency. At small positive detuning a triplet state
crosses the IDT, leading to a suppressed resonator transmission.
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phase φ. This is possible because the resonator provides an absolute
energy scale allowing for a quantitative analysis of the interaction
between the DQD and the resonator and hence to perform qubit
spectroscopy22–24. This spectroscopy complements theprecedingDQD
Hamiltonian fit. As described in the “Methods” section, by fitting
input–output theory to φ and A simultaneously, we extract the qubit
tunnel amplitude t, the qubit linewidth γ, and the qubit–photon cou-
pling strength g as a function of B, which we plot in Fig. 4b. Here, we
assume γ as constant in detuning ε.

Using the fits to both, the 2-electron Hamiltonian model and
input–output theory in the 2-level approximation, allows us to directly
identify several regimes, in each of which the qubit has a different spin-
character. Figure 4c shows the correspondingDQD level structure based
on the fit parameters as a function of ε for different magnetic field.

At a low magnetic fields around B = 20mT, the triplet states
(blue curves) are Zeeman split and the ground-state curvature is
dominated by the anti-crossing between S1,1 and S2,0 (red curves).
We find a singlet charge qubit in the weak coupling limit, i.e. the
linewidth exceeds the charge–photon coupling by a factor of five.
The formation of an asymmetric double-dip structure in φ(ε)

between B ~ 0.01 T and B ~ 0.18 T is explained by an interaction
between the three states S2,0, S1,1 and T +

1,1 as described in the
supplementary material. Traces of φ(ε) with an asymmetric
double-dip structure cannot be described by a two-level
input–output model and are therefore not analyzed quantita-
tively here. At B ≈ 50mT, φ becomes positive. Which we inter-
preted as a drop of the tunnel rate below the resonator
frequency, 2t < ω0.

As B is increased, the triplet state T +
1,1 becomes the ground state

for ε <0, as shown in the second panel of Fig. 4c for B = 300mT. The
spin–orbit interaction couples the singlet and triplet states, leading to
an anti-crossing between S2,0 and T +

1,1, which constitutes a
singlet–triplet qubit with ωq =ΔSO = 2tSO34,35. In this regime, at larger B,
the resonance condition between S2,0 and T +

1,1 occurs at larger ε,
because the energy of the bare T +

1,1 state decreases with larger B and
the energy of S2,0 decreases with larger ε. Therefore, the IDT is
observed at larger ε for increasing B.

Consistent with the interpretation of the formation of a
singlet–triplet qubit, wemeasure an approximately constant tunneling
rate t between B ~ 0.18 T and B ~ 0.36 T. In this regime, we extract the
average spin–orbit tunneling rate to be �tso = 1:94±0:02 GHz. At a
magnetic field of B ≈ 370mT, the resonator phase φ starts to vanish
due to the the triplet state T +

2,0 becoming relevant. The triplet state
results in a level repulsion between T +

2,0 and T +
1,1 and hence leads to a

reduced energy gap between the S2,0 level and the T +
1,1 level. In Fig. 4c,

this is illustrated by the smaller energy gap (black arrow) at B = 410mT
compared to the one at B = 300mT. Due to the reduced gap
(ΔSO<<ω0), the resonator-qubit coupling is reduced and hence is the
singal in φ.

The level structure at large magnetic fields is plotted exemplary
for B = 600mT in the right panel of Fig. 4c. In this regime, the ground-
state of theDQDat the IDT is formedby a superposition of theT +

2,0 and
T +
1,1 states. We find that the curve of Fig. 4a turns back towards lower ε

for increasing B, which can be understood by noting that the spin-
polarized triplets T +

2,0 and T +
1,1 form a charge qubit similar to the

singlets at low field. While the transition is increasingly dominated by
the triplet-charge qubit for increasing B, φ becomes negative at the
IDT, because the anti-crossing between the triplet states T +

2,0 and T +
1,1

occurs at much larger frequencies, 2tTc>2tSO,ω0. Hence, the triplet
charge qubit frequency does not cross the resonator frequency,
leading to a negative phase shift.

At fields B > 700mT the dispersion turns to higher ε again. Which
is not accounted for in our model. A possible explanations to this
discrepancy is that themagnetic field not only affects the detuning εof
the DQD but also the total energy. This results in the lead to dot
transitions starting to influece the IDT at high magnetic fields. Never-
theless, the data is well described at the magnetic field strengths we
investigate in detail.

This large number of detailed findings justify the parameters
of the two-electron Hamiltonian introduced above, which, in turn,
directly allows us to identify the singlet–triplet spin qubit, for
which we find the strong coupling limit to the electromagnetic
cavity.

Note, that the extracted qubit linewidth is larger in Fig. 4b com-
pared to the strong-coupling in Fig. 3. This is caused by applying the
magnetic field at different angles in the two measurements. The
dependence of the qubit parameters on the angle of the in-plane
magnetic field is beyond the scope of this manuscript and will be
investigated in future studies.

Discussion
In summary, we demonstrate a semiconductor nanowire DQD device
with crystal-phase defined tunnel barriers that can be operated as
different types of qubits, coupled to a high-impedance, high magnetic
field resilient electromagnetic resonator. As the main result, we find a
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black line. Shaded areas indicate the errorbarswhichoriginate from the uncertainty
of the gate lever arm, which was independently measured. c Two-electron energy
level diagrams at various magnetic fields with the corresponding field strength
indicated in a andbby the given symbols. For clarity a constant offset of 10, 20, and
30GHz was added to the energy levels at 300, 410 and 600mT. Given the input
power Pin = −128 dBm, the average photon number is n <0.8 in these experiments
(see methods).
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singlet–triplet qubit for which we extract the relevant qubit para-
meters, especially a large electron spin–photon coupling of g/
2π = 139MHz in the single photon limit, reaching the strong coupling
regime g > γ, κ.

Our experiments demonstrate that deterministically grown
tunnel barriers allow for a reduced number of gate lines, and that,
mediated by intrinsic spin–orbit interaction, singlet–triplet
qubits can reach the strong coupling limit for low photon num-
bers, similar to flopping mode spin qubits36,37. This finding is
potentially applicable to other promising platforms with strong
spin–orbit interactions, like holes in Ge35. Our nanowire platform
without depletion gates results in a significantly reduced gate-
induced photon-leakage in the absence of on-chip filtering6,38,39.
And, since DQD parameters (such as charging energy and indivi-
dual tunnel rates) can be set deterministically in the NW growth,
multiple NWs with optimal and essentially identical character-
istics properties can be obtained simultaneously40 and possibly
integrated on the same substrate41. This drastically simplifies the
search for an optimal gate regime and renders further gates, such
as the top gates in our device, unnecessary. An optimized gate
design with resonators with larger impedance28 therefore pre-
sents an ideal platform to investigate new phenomena in the
ultrastrong coupling regime28,42. Additionally, the large electron
spin–photon coupling found in our experiments will be crucial
for the implementation of two-qubit gates between distant spin
qubits, a milestone on the way towards scalable quantum
computers.

Methods
Resonator characterization and analysis
The resonator is fabricated from a thin-film NbTiN (thickness ~ 10 nm),
sputtered onto a Si/SiO2 (500μm/100 nm) substrate21. These resona-
tors can be operated for in-plane fields exceeding 5 T20,21. The large
sheet kinetic inductance of the used NbTiN film of Lsq ≈ 90pH com-
bined with the narrow center conductor width of ~380 nm, and the
largedistance to the groundplaneof ~35μmresults in an impedanceof
2.1 kΩ. The resonator can be dc biased using a bias line which contains
ameandered inductor ensuring sufficient frequencydetuning between
the half-wave resonance used in the experiment and a second, low-
quality resonance mode at a lower frequency that forms due to the
finite inductance of the bias line39. A scanning electron micrograph of
the resonator center-conductor is shown in Fig. S1b in the supple-
mentary. One of the two resonator voltage anti-nodes is galvanically
connected to gate SGR shown in Fig. 1c of the main text.

Device fabrication
For the NW growth refer to Supplmentary II. After the resonator fab-
rication, the NWs are deposited on the device area using a micro-
manipulator. Following the deposition, the NW position and barrier
locations are determined using scanning electron imaging. A GaSb-
shell, grown for the barrier determination, is then removed before
contacting by a 3min 30 s wet-etching process using MF-319
developer43,44. The contacts and gates are then fabricated using stan-
dard e-beam lithography and e-beam evaporation. For the contacts,
the native oxide is removed using in-situ argon-milling in the eva-
poration chamber. For the SGs and TGs no argon-milling is performed
and the native oxide is left intact to serve as an insulating layer for
the TGs.

Charge parity determination
We measure the phase φ and amplitude A of the resonator as a
function of detuning ε and magnetic field B at a probe-frequency
ωp/2π = 5.253 GHz, close to the bare resonator frequency. A
change in φ reflects the dispersive interaction between the
resonator and two anticrossing levels of the DQD45,46. Therefore,

the non-zero phase response of the resonator tracks the position
of the IDT along the detuning axis. The comparison of the mag-
netic field dependence of the IDT position to a Hamiltonian
model of the DQD allows one to determine the charge parity46,47.
Figure S2a and S2b in the Supplementary show two typical low
field IDT characteristics of device B.

For an odd number of electrons (Fig. S2b in the Supplemen-
tary), the DQD resonance gate voltage VR, at which the IDT is
observed, disperses linearly with magnetic field starting from
zero. This can be understood considering the Zeeman-splitting of
the unpaired electron energy levels and two non-equal Landé g-
factors of the two dots. Figure S2c in the Supplementary shows
the energy level diagram of a one-electron Hamiltonian including
Zeeman-splitting with a g-factor difference of 1.0 and spin–orbit
interaction tSO/2π = 5 GHz at a magnetic field of B = 500mT
(green, dashed line in Fig. S2b. The one-electron Hamiltonian is
explicitly discussed in the Supplementary material. The arrow
points out the center of the IDT (largest curvature of the
groundstate48) which corresponds to the largest dipole moment
of the DQD and thus to the largest change in φ. This point shifts
with B towards increasingly negative values.

For an even number of electrons in the DQD at zero magnetic
field (Fig. S2a in the Supplementary), a single dip in phase is
observed, but at a low magnetic fields, B ≈ 60mT, a double dip
structure emerges as a function of ε (see Supplementary material
for details). This double-dip originates from an interaction
between S2,0, S1,1 and T +

1,1 as explained in detail in the supple-
mentary material. The dependence of the IDT on magnetic field
for an even number of electrons can be understood using an
effective two electron Hamiltonian including spin–orbit interac-
tion described in more detail below. In Fig. S2c in the Supple-
mentary, we plot the energy levels at a magnetic field B = 0.15 T. In
contrast to the odd filling, starting at zero magnetic field, the
arrow marking the center of the IDT barely changes, consistent
with our measurement. The double dip vanishes when further
increasing the magnetic field, because of an increasing occupa-
tion of the polarized triplet states. Once the Zeeman energy of
the triplet state ∣T +

1,1

�
becomes comparable to the singlet charge

tunneling tSc, the position of the IDT as a function of B disperses
towards larger ε47,49,50. This transition is marked by the white
dashed line at 0.2 T in Fig. S2a in the Supplementary.

Based on the good qualitative agreement between our data and
the one electron and two electron Hamiltonian, respectively, we can
clearly identify the even and odd charge parities.

Jaynes–Cummings model
In the regimeof only twoDQD levels being relevant,wemodel theDQD
Hamiltonian as an effective two-level system (qubit) interacting with a
singlemode in the resonator. The combined system is describedby the
Jaynes–Cummings model51

Ĥ=_=ω0â
yâ+

ωq

2
σ̂z + g âσ̂y + âyσ̂

� �
, ð1Þ

where â is the photon annihilation operator, σ̂ the qubit lowering
operator, and σ̂z the Pauli z-matrix in the qubit subspace. The qubit

frequency is given by ωq =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tð Þ2 + ε2

q
26 with the effective

qubit–photon coupling strength g = g0⋅2t/ωq accounting for themixing
angle7,52, where g0 is the bare qubit–photon coupling. An excitation
from the ground state has the transition frequency52

ω± =
ω0 +ωq

2
±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 + ðω0 � ωqÞ2

q
: ð2Þ
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Input–output theory
To derive the response of the resonator, we use the equations of
motion53

∂thâiðtÞ= � iω0âðtÞ � ighσ̂iðtÞ � κ
2
hâiðtÞ

� ffiffiffiffiffi
κ1

p hb̂in,1iðtÞ �
ffiffiffiffiffi
κ2

p hb̂in,2iðtÞ,
∂thσ̂iðtÞ= � iωqhσ̂iðtÞ+ ighâσ̂ziðtÞ � γhσ̂iðtÞ:

ð3Þ

The input couplings are denoted by κj and the operators b̂in,jðtÞ
capture a coherent drive in port j. In our experiments κ1 ≈ κ2 ≈ κ/2 as the
resonator is symmetrically coupled and operates in the strongly over-
coupled regime. The output of the cavity can be computed from the
input–output relation53

hb̂out,jiðtÞ= hb̂in,jiðtÞ+
ffiffiffiffiffi
κj

p hâiðtÞ: ð4Þ

To solve these equations, we approximate54,55

hâσ̂ziðtÞ ! hâiðtÞhσ̂zi, ð5Þ

where hσ̂zi is evaluated at steady state and captures the difference
between the population of the excited qubit state and the ground
state, accounting for operation at larger temperatures or drive
strengths. In our experiments, we operate in the linear
regime, hσ̂zi= � 1.

To compute the transmission amplitude, we solve Eqs. (3) and (4)
upon Fourier transformation and set hb̂in,2iðtÞ=0. This results in the
transmission amplitude

τðωÞ= � hb̂out,2iðωÞ
hb̂in,1iðωÞ

=
ffiffiffiffiffiffiffiffiffiffi
κ1κ2

p
AðωÞ, ð6Þ

where the minus sign accounts for the phase difference of π between
the input and the output port (λ/2 resonator) and

AðωÞ= γ + iðωq � ωÞ
½κ=2 + iðω0 � ωÞ�½γ + iðωq � ωÞ� � g2hσ̂zi

: ð7Þ

In the main text, the absolute value squared of this quantity nor-
malized by its maximal value is shown.

The phase of the transmitted signal is given by

φðωÞ= � arctanðΛÞ,

Λ=
�2ðωq � ωÞg2hσ̂zi � 2ðω0 � ωÞ½γ2 + ðωq � ωÞ2�

κ½γ2 + ðωq � ωÞ2� � 2γg2hσ̂zi
:

ð8Þ

As examples, the phase and amplitude of the bare resonance in
Coulomb blockade is simultaneously fit in Fig. S1a in the Supplemen-
tary and in Fig. S3 in Supplementary the same is done for a linecut of
Fig. 4a at 0.25 T.

Estimation of the photon number
Similarly, we may obtain hâiðtÞ by solving Eq. (3). Using

hb̂in,1iðtÞ= expð�iωptÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin=ωp

q
, where Pin denotes the power in the

input field, we find

hâiðtÞ= �
ffiffiffiffiffiffiffiffiffiffiffi
κ1Pin

_ωp

s
e�iωptAðωpÞ: ð9Þ

In the low-drive regime we consider here, we estimate the photon
number as

n = hâi
�� ��2 = κ1Pin

_ωp
AðωpÞ
�� ��2, ð10Þ

where we approximate κ1≃ κ/2.

Effective two-electron Hamiltonian model
We model an effective two-electron Hamiltonian in the presence of
spin–orbit interaction andmagnetic field. We write the Hamiltonian in
the basis of singlet and triplet states f∣S1,1i,∣S2,0i,∣T ± ,0

1,1 i,∣T ± ,0
2,0 ig, with the

subscripts indicating the charge distribution in the DQD. The Hamil-
tonian reads

H=HS
0 +HT

0 +HZ +Hso, ð11Þ

with the spin quantum-number conserving Hamiltonians

HS
0=_= � ε∣S2,0

�
S2,0
�

∣+ tSc ∣S1,1
�
S2,0
�

∣+h:c:, ð12Þ

HT
0=_= ðΔST � εÞ

X
± ,0

∣T ± ,0
2,0

E
T ± ,0
2,0

D
∣

+ tTc
X
± ,0

∣T ± ,0
1,1

E
T ± ,0
2,0

D
∣+h:c:

ð13Þ

Here, tS,Tc are the tunnel rates between the two singlets, and
between the two triplet states respectively, and ΔST is the single-dot
singlet–triplet splitting that separates the T2,0 states from the S2,0
states. The Zeeman Hamiltonian is given by

HZ=μB =B
X
±

±
gL + gR

2
T ±
1,1

�� �
T ±
1,1

� ��± gL T ±
2,0

�� �
T ±
2,0

� ��� 	
, ð14Þ

where gL (gR) is the Landé g-factor of the left (right) dot. Because of the
large intrinsic spin–orbit interaction in the NW, we include the
spin–orbit Hamiltonian that couples the singlet and triplet states with
opposite charge configuration using the spin–orbit tunnel rate tSO as

HSO=_= tSO T0
1,1

��� E
S2,0
� ��+ X

±

± T ±
1,1

�� �
S2,0
� �� !

+h:c: ð15Þ

Data availability
The nummerical data used in this study are available in the zenodo
database https://doi.org/10.5281/zenodo.7777840.
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